
HP OpenView
Event Correlation Services

Designer’s Reference

HP-UX, Solaris, Windows NT®, Windows® 2000 andWindows® XP
Manufacturing Part Number: J1095-90314

January 2003

© Copyright 2001 Hewlett-Packard Company.

Legal Notices
Hewlett-Packard makes no warranty of any kind with regard to this
manual, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Hewlett-Packard
shall not be held liable for errors contained herein or direct, indirect,
special, incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Warranty. A copy of the specific warranty terms applicable to your
Hewlett- Packard product and replacement parts can be obtained from
your local Sales and Service Office.

Restricted Rights Legend. All rights are reserved. No part of this
document may be photocopied, reproduced, or translated to another
language without the prior written consent of Hewlett-Packard
Company. The information contained in this document is subject to
change without notice.

Use, duplication or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013
for DOD agencies, and subparagraphs (c) (1) and (c) (2) of the
Commercial Computer Software Restricted Rights clause at FAR 52.227-
19 for other agencies.

HEWLETT-PACKARD COMPANY

3404 E. Harmony Road

Fort Collins, CO 80528 U.S.A.

Use of this manual and flexible disk(s), tape cartridge(s), or CD-ROM(s)
supplied for this pack is restricted to this product only. Additional copies
of the programs may be made for security and back-up purposes only.
Resale of the programs in their present form or with alterations, is
expressly prohibited.

Copyright Notices. © Copyright 1983-2001 Hewlett-Packard Company,
all rights reserved.

Reproduction, adaptation, or translation of this document without prior
written permission is prohibited, except as allowed under the copyright
laws.
2

Contains software from AirMedia, Inc.

© Copyright 1996 AirMedia, Inc.

Trademark Notices

Java™ is a U.S. trademark of Sun Microsystems, Inc.

Microsoft® is a U.S. registered trademark of Microsoft Corporation.

Windows NT® is a U.S. registered trademark of Microsoft Corporation.

Windows® 2000 is a U.S. registered trademark of Microsoft Corporation.

Windows® and MS Windows® are U.S. registered trademarks of
Microsoft Corporation.

Netscape™ and Netscape Navigator™ are U.S. trademarks of Netscape
Communications Corporation.

Oracle® is a registered U.S. trademark of Oracle Corporation, Redwood
City, California.

Oracle7™ is a trademark of Oracle Corporation, Redwood City,
California.

OSF/Motif® and Open Software Foundation® are trademarks of Open
Software Foundation in the U.S. and other countries.

Pentium® is a U.S. registered trademark of Intel Corporation.

UNIX® is a registered trademark of The Open Group.

Perl is a trademark of O’Reilly & Associates, Inc.

All other product names are the property of their respective trademark
or service mark holders and are hereby acknowledged.
 3

4

Contents
1. Introduction
Purpose. .20
Audience. .21

2. Circuits and Compound Nodes
ECS Correlation Circuits .25

Circuit Features .26
Streams .27

Stream Policy. .27
Event Flow Within a Circuit .29
Circuit Design and Stream Policy .30
Circuit Sharing Between Streams .30
Multiple Circuits .32
The ECS Designer .33

Compound Nodes .34
Properties of Circuits and Compound Nodes .34
External Event Filtering .35
Global Definitions. .37
Attributes: Passing Information out of a Compound Node 40
Parameters: Passing Information into a Compound Node.41
Circuit Policy .42

3. Circuit Nodes
Common Features of Nodes .46

Node Configuration .46
Name and Status .46
Node Parameters .49
Input and Output Ports of Nodes .53
Node Attributes .55
Transit Delays and Simulation Statistics .56

Annotate Node .58
Annotate Node Processing .59
 5

Contents
Annotate Node Parameters . 61
Annotate Node Ports . 62
Annotate Node Notes . 63

Clock Node . 64
Clock Node Processing . 65
Clock Node Parameters . 66
Clock Node Ports . 70
Clock Node Notes . 70

Combine Node. 71
Combine Node Description . 73
Combine Node Parameters . 75
Combine Node Ports . 78
Combine Node Notes. 78

Compound Node . 80
Count Node . 81

Count Node Processing . 82
Count Node Parameters . 84
Count Node Attributes . 84
Count Node Ports . 85
Count Node Notes . 85

Create Node . 87
Create Node Processing . 87
Create Node Parameters . 89
Create Node Ports . 91
Create Node Notes . 91

Delay Node . 93
Delay Node Processing . 93
Delay Node Parameters . 95
Delay Node Ports. 96
Delay Node Notes . 96

Extract Node. 97
Extract Node Processing. 97
6

Contents
Extract Node Parameters. .100
Extract Node Ports .101
Extract Node Notes .101

Filter Node .102
Filter Node Processing .102
Filter Node Parameters .103
Filter Node Ports .104

Modify Node .105
Modify Node Processing .106
Modify Node Parameters .107
Modify Node Ports .107
Modify Node Notes .107

Rate Node. .109
Rate Node Processing. .109
Rate Node Parameters .111
Rate Node Attributes .114
Rate Node Ports .115
Rate Node Notes .115

Rearrange Node .116
Rearrange Processing. .116
Rearrange Node Parameters .118
Rearrange Node Ports .120
Rearrange Node Notes .121

Sink Node. .122
Sink Node Processing. .122
Sink Node Ports .124
Sink Node Notes .124

Source Node .125
Source Node Processing .125
Source Node Ports .127

Table Node .128
Table Node Processing .129
 7

Contents
Table Node Parameters. 133
Table Node Ports . 135
Table Node Attributes. 135
Table Node Examples . 136
Table Node Notes . 137

Unless Node . 139
Unless Node Processing . 141
Unless Node Parameters . 143
Unless Node Ports . 144
Unless Node Examples . 145
Unless Node Notes . 145

4. Events in ECS
Introduction . 149

Event Flow. 150
Manipulating Events . 150

Event Header Attributes . 152
Primitive Events. 154

Structure of Primitive Events . 154
Working with Event Attributes . 155

Temporary Events . 157
Structure of Temporary Events . 157

Composite Events. 159
Working with Attributes and Components . 159

5. Timing Considerations
Time Synchronization . 167
Times and Durations . 168
Current Time . 169
Event Time Attributes . 170

Creation Time . 170
Arrival Time . 170
8

Contents
Transit Delays .171
Simulating Time in the ECS Designer .173

Engine Input Event Logs .176
Order of Processing .177
Engine Time Management .179

Input Phase. .179
Cleanup Phase .179
Input Phase Overload Processing .180

6. Data Store and Fact Store
Data Store and Fact Store Contexts .183

Overview .183
Contexts and Multiple Circuits .183
Event Creation .184
Store Versions and Transit Delays .185

Data Store .186
File Formats .187
Data Types .188
Using the Current Context to Access the Data Store.190
Using Event Contexts to Access the Data Store.191

Fact Store .193
File Formats .194
Data Types .195
Using the Current Context to Access the Fact Store197
Using Event Contexts to Access the Fact Store199

Multiple Data and Fact Stores .200
Simulating Event Contexts in the ECS Designer201

Overview .201
ADD Commands .201
DELETE Commands .202
Dumping Stores .202
 9

Contents
7. Identifiers, Comments, and Reserved Words
Identifiers . 205
Comments in ECDL . 206
Reserved Words and Symbols . 207

8. Data Types
Integer Data Type . 213
Real Data Type . 214
Boolean Data Type . 215
Duration Data Type . 216
Time Data Type . 217
Oid Data Type . 218
String Data Type . 219
Token Data Type . 221
Tuple Data Type. 222
List Data Type . 223
Dictionary Data Type. 225
Event Data Type. 226
Void Data Type . 227
Function Data Type . 228
Opaque Data Type . 229
Dynamic and User Defined Types. 230

Dynamic types. 230
Union types . 231
User-Defined types . 231

9. Operators and Built-in Functions
Operators . 235

+ (add, string concatenate, positive) . 237
– (subtract, negative) . 238
* (multiply) . 240
/ (real divide) . 241
10

Contents
^ (exponentiate) .242
= and != (equality operators) .243
> >= < <= (relational operators). .244
:: (list constructor) .246

Built-in Functions .247
alter .252
and. .253
append. .254
bitand .255
bitinv .256
bitleft .257
bitor .258
bitright .259
bitxor .260
chr .261
datastore .262
div .263
explode .264
explode_time .265
fact_exists .267
fact_find_left .268
fact_find_right .269
feed .270
feedall .271
feedothers .272
flush. .273
foldl .274
foldr .275
gen_ccall .276
gen_perlcall. .276
implies. .276
implode_time .278
 11

Contents
integerOf . 280
inter . 280
interc . 281
Ip.fromOctet . 282
Ip.toOctet . 283
join . 284
length . 285
Match.make. 286

Pattern-matching. 287
Defining Match Expressions . 288
Tags. 290
Assignment Rules . 290
Sub-Patterns Assignment . 291
Examples of Pattern-matching Conditions 292

Match.test . 293
Match.testVars . 294
mod. 296
not . 296
nth . 297
oid.append . 298
oid.join . 299
oid.last . 300
oid.split . 301
oid.split_at . 302
oid.split_nnm. 303
or . 304
ord . 304
perl_interp . 305
reverse . 306
round . 306
split . 307
stringOf . 308
12

Contents
System.audit_log .309
System.circuit_dump .310
System.trace .311
System.set_trace_mask .312
Time.now. .314
truncate. .315
union .316
unionc .317

10. Writing ECDL Expressions
Binding and Comparisons .321

Named Values. .321
Binding Patterns .321
“Let” Expressions in Node Parameters .324

Comments in ECDL. .325
Data Type Handling .326

Tuple Manipulation .326
List Manipulation. .327

Searching Lists .328
Deriving Lists from Lists .330

Dictionary and Event Manipulation .332
Flow-control Expressions .334

Making Decisions: If and Choose Expressions334
Case. .336
Typecase .337
Sequence .339

Exceptions .341
Handling Exceptions .341
Standard Exceptions .342
Raising Exceptions .343

Functions and Language Layout .344
Calling Function Syntax .344
 13

Contents
Prefix and Infix Functions . 345
User Defined Functions . 345
Advanced Function Writing Features . 347
Fixity Declarations, Associativity and Precedence 351

Modules. 355
Module Files . 356
Modules and Name Search . 356

Invoking Perl Functions from ECDL . 359
Perl to ECDL Mapping . 360
Perl to ECDL Data Type Mapping . 362

Invoking ‘C’ Functions . 363
Writing functions in C . 363

An Introduction to ECDL for C Programmers 370

11. Event Log File Format
Log File Syntax. 379

The Event Syntax Line . 380
Logs Generated by the ECS Engine. 381
Annotation Logs . 382

The Annotation Event Format . 383
Special Characters . 385

12. Audit Logging
Verifying the Operation of a Circuit . 389
The audit_log Function . 390

Using Unique IDs to Lookup Events Details 391
Designing an Audit . 392

Static and Dynamic Evaluation . 392

13. Files and Directories
Files Used or Generated by the ECS Designer. 397
14

Contents
A. Event Correlation in OVO
OVO Message Attributes. .403

Using Event Attributes .408
Logging Events in OVO. .409

Event Log Format. .409
Troubleshooting OVO-specific Problems .412

 Glossary
 15

Contents
16

Contact Information

Contacts Please visit our HP OpenView web site at:

http://openview.hp.com/

There you will find contact information as well as details about the
products and services HP OpenView has to offer.

Support The “hp OpenView support” area of the HP OpenView web site includes:

• Downloadable documentation

• Troubleshooting information

• Patches and updates

• Problem reporting

• Training Information

• Support program information
 17

18

1 Introduction
19

Introduction
Purpose
Purpose
This reference contains the information and concepts you need to use HP
OpenView Event Correlation Services (ECS) Designer:

• the ECS circuit paradigm, based on event flow through
interconnected correlation nodes

• the importance of time in event correlation

• the mechanism for parameterizing ECS circuits to make them
data-driven

• the Event Correlation Description Language (ECDL), including its
language constructs, functions, and data types
20 Chapter 1

Introduction
Audience
Audience
The reader should be experienced in building network management
applications on UNIX or Windows NT platforms, and be familiar with:

• network management principles

• the problems that typically occur within their managed network, and
the events generated as a consequence

• programming in high-level languages, particularly functional
languages (only advanced users of the ECS Designer)
Chapter 1 21

Introduction
Audience
22 Chapter 1

2 Circuits and Compound Nodes
23

Circuits and Compound Nodes
An ECS circuit is built using the ECS Designer. See the HP OpenView
Event Correlation Services Designer’s Guide for detailed information on
how to use this tool. This chapter defines the basic concept of a circuit
and describes how a circuit is connected to its external environment. It
also describes how circuits are modularized and broken down into
Compound nodes.

The information in this chapter provides a foundation for later chapters
in this book. The first section:

• “ECS Correlation Circuits” on page 25

describes what a circuit is and modularization using Compound nodes.
The second section discusses circuit properties and the differences
between a top-level circuit and a Compound node:

• “Compound Nodes” on page 34

NOTE In HP OpenView Operations an ECS circuit is equivalent to a template.
24 Chapter 2

Circuits and Compound Nodes
ECS Correlation Circuits
ECS Correlation Circuits
Conceptually, event correlation in ECS is done by processing a stream of
events through a correlation circuit. Like electrons in an electronic
circuit, events flow through a correlation circuit from inputs to outputs.
The components in a correlation circuit are called correlation nodes,
(or usually just nodes) and events flow from one node to the next along
connections.

Correlation nodes are standardized building-blocks, like integrated
circuit chips, that are parameterized by supplying values and
expressions, to perform specific operations on the events flowing through
them. For example, some nodes are used to filter events, others to store
events, and others to create or modify events. By connecting such nodes
together and parameterizing them with ECDL expressions, an ECS
circuit is constructed.

ECDL is the Event Correlation Description Language used to describe
the values and expressions that constrain a general purpose node to a
particular correlation task. Although ECDL is a full-featured language,
most node parameters are just literal values or simple expressions. If the
problem is complex, however, the full power of a functional programming
language is available.

The ECS Designer is a graphical tool that makes it easy to build circuits
and simulate their operation. The ECS Designer must be used to create
or modify a circuit; there is no other way in which a circuit can be
developed, edited, or compiled.

ECS circuits can implement a wide variety of correlation logic to:

• Reduce the number of events to be managed by suppressing:

— repetitious events,

— unwanted event types,

— paired events (such as power-down followed closely by power-up)

• Provide the root cause rather than the symptoms of a network
management incident by:

— recognizing patterns of events
Chapter 2 25

Circuits and Compound Nodes
ECS Correlation Circuits
• Increase the information content of events by:

— consolidating information from a number of events

— adding simple data and facts to events

— annotating events with information derived from an external
system such as a database

• Translate events from one format to another.

For example, generating the appropriate SNMP trap in response to a
pattern of ASCII messages).

ECS can reduce network loads by eliminating unwanted messages, and
lead to quicker problem identification and resolution by increasing the
information content of remaining messages.

Circuit Features

The circuits built with ECS Designer have a number of important
features:

Input Port. A circuit must have at least one input port through which
events can enter the circuit. Each input port can be configured to accept
certain events only.

Output Port. A circuit must have one or more output ports from which
events are output from the circuit.

Nodes. A circuit is comprised of at least one correlation node. Like
circuits, nodes have one or more input and output ports through which
events flow. Nodes provide pre-packaged logical operations that affect
the stream of events flowing through them.

Connections. Nodes are connected together by joining the output port
of one node to the input port of another. An output port can be connected
to many input ports, and an input port can be connected to many output
ports.

Node Parameters. To configure a node you enter expressions in the
node’s parameters. Expressions can read and set event attributes,
compare values, lookup information, and perform general purpose
computations.
26 Chapter 2

Circuits and Compound Nodes
ECS Correlation Circuits
Global Definitions. Expressions in node parameters can make use of
global definitions to simplify expressions, provide consistency, and
improve readability.

Fact and Data Stores. Simple, relatively static information can be
loaded into a Fact or Data Store and accessed from expressions in node
parameters.

Annotation. Complex or dynamic information outside ECS can be
accessed through the Annotate node.

Compound Nodes. Any circuit or partial circuit can be encapsulated as
a Compound node. Once encapsulated, the Compound node can be used
like any other node. The properties of circuits and Compound nodes are
discussed in detail in “Compound Nodes” on page 34.

Streams

Multiple independent event streams are supported within the ECS
Engine, where each event that enters the engine simultaneously flows
into every stream. Each stream is correlated independently, which
means that outputting or discarding an event in one event stream does
not affect this event in any other event stream. Applications register for
a specific event stream.

In a standalone ECS correlation engine environment and in NNM,
applications specify their desired stream as a parameter when
registering for event output.

The environment in which the engine is running can restrict the means
by which events can be output. For more details, see the HP OpenView
ECS Administrator’s Guide.

Stream Policy

Each stream has a configurable policy for handling events that are not
accepted by any circuit. The stream policy determines how events are
processed:

• A stream with an output policy outputs an event unless at least one
circuit enabled on the stream discards the event.

• A stream with a discard policy outputs an event when at least one
circuit enabled on the stream outputs it.
Chapter 2 27

Circuits and Compound Nodes
ECS Correlation Circuits
The default stream policy is “Output” which outputs events that are not
accepted by any circuit.

These rules are summarized in Table 2-1.

For example, a circuit designed to create a special warning event when a
security violation is detected would probably be given a Discard circuit
policy, meaning that it could only be enabled on a stream with a Discard
policy. When this stream is initially created it is opaque—that is, it will
not output any events until at least one circuit is enabled. When the
security violation circuit is enabled, the only events output from the
stream are those explicitly output by the circuit, in this case when the
circuit detects a security violation. Only then is the special warning
event created and emitted.

Compare this with a circuit designed to suppress events during
scheduled maintenance. In this case, the circuit would have a policy of
Output and could only be enabled on an Output stream. When the output
stream is enabled it is transparent—that is, it passes all events from its
input to its output. When the scheduled maintenance circuit is enabled,
the only events suppressed are those that the circuit recognizes are being
generated by equipment under scheduled maintenance; all other events
are passed through.

In practise, output stream policies are more common than discard
stream policies. In NNM, for example, the default stream has an output
policy, and this policy cannot be changed.

Table 2-1 Summary of Stream Policy Rules

Policy Allowed Circuit
Policies

An Event is
Discarded When...

An Event is
Output When...

Output • Output

• Unspecified

At least one circuit in the stream
discards the event.

The event is not discarded by
any circuit in the stream.

Discard • Discard

• Unspecified

The event is not output by any
circuit in the stream.

At least one circuit in the stream
outputs the event.
28 Chapter 2

Circuits and Compound Nodes
ECS Correlation Circuits
Event Flow Within a Circuit

To understand how a circuit affects the correlation of an event, it is
important to understand the difference between copying an event and
creating a new reference to the event.

When a primitive event enters the ECS engine, there is just a single
instance of the event which can never be modified; it is either output
unchanged, or discarded completely. This ensures that an event referred
to by a node will not change unexpectedly.

As the original primitive event cannot be modified, the engine uses
references to the same event throughout the circuit. New references to
events are created by each source node that accepts the event, and when
the output from one node is connected via junctions into the inputs for
several nodes.

References to events are discarded under the following circumstances:

• When an event exits a node from an unconnected port, the reference
to the event is discarded.

• When an event enters a node that does not output the event, the
reference to the event is (eventually) discarded. For instance, events
entering the inhibitor port of an unless node are discarded when the
Unless node has finished with the event. See Chapter 3, “Circuit
Nodes,” on page 43 for details on specific nodes.

It is normal for references to an event to be discarded many times by a
circuit. However, an event is only considered to be discarded by a circuit
when every reference to the event in the circuit has been discarded, and
the event never reached an output port in the circuit.

To change an event, a copy of the event is made and the changes are
made to that. This means that all existing references to the original
event will be unaffected by the new changed event, and the circuit’s
decision whether to output the new changed event has no effect on the
decision whether to output the original event.

New primitive events are created or modified under the following
circumstances:

• The Extract node creates a new event by copying events from a Table
node, and then modifies the creation/arrival time of the new event.

• The Modify node creates a copy of the input event and modifies that.
The reference to the input event is then discarded.
Chapter 2 29

Circuits and Compound Nodes
ECS Correlation Circuits
• The Create node creates a new event. The reference to the input
event is then discarded.

If several references to the same event reach output node(s), the second
and subsequent occurrences are ignored. In other words, the original
event will never be output more than once, even if it reaches more than
one output node in one or more circuits.

Circuit Design and Stream Policy

The stream policy affects the way that most circuits are designed. This is
because a circuit may accept “extra” events that it does not wish to
correlate. For instance, a Source node may accept a broader category of
events than the circuit wants, or a circuit may use one event to assist in
the correlation of another event without wanting to affect the output
decisions for the first event.

The circuit designer does not want to affect the output decisions for these
“extra” events. In other words, as the circuit becomes enabled or
disabled, the engine’s event flow for these extra events should be
unchanged.

If the stream policy is “output”, the circuit designer must output these
extra events otherwise they would be discarded from the event flow.
Similarly, if the stream policy is “discard”, the circuit designer must
discard these events otherwise they would be output from the event flow.

To summarize, for a circuit to preserve the original output decision for an
event, the circuit should handle the event the same way that the stream
policy would.

For this reason, circuit designers and the ECS administrator should
agree on the appropriate stream policy for the ECS engine.

Circuit Sharing Between Streams

A circuit can be enabled on more than one stream. There are two ways to
do this:

• Load the circuit once and enable it multiple times so that the same
instance of the circuit is used in multiple streams.

• Load the circuit using a different symbolic name in each stream so
that there is a different instance of the circuit in each stream.

Both methods are valid approaches, depending on what you are trying to
achieve.
30 Chapter 2

Circuits and Compound Nodes
ECS Correlation Circuits
Single Instances Shared Across Multiple Streams Each stream
can contain multiple circuits, and the same circuit can be enabled in
multiple streams. If the same circuit is enabled in several streams, only
one instance of the circuit is created, and outputting an event from the
circuit is recognized by every stream to which the circuit belongs. In
other words, the same instance of a circuit contributes to multiple
streams. This can be far more efficient for the ECS engine than loading
and enabling a new instance of the same circuit for each stream.

Events only enter the circuit once, regardless of how many streams the
circuit is enabled in. The input of a circuit will not be disabled until it
has been disabled in every stream, but the output of a circuit can be
enabled and disabled on a per-stream basis. When a circuit’s output is
disabled in a specific stream, the events within the circuit will be flushed
into that stream (subject to stream policy), but the circuit itself and the
other streams will be unaffected.

There are a number of reasons why it is more efficient to have the same
instance of a circuit in multiple streams rather than a different instance
in each stream:

• Create, Modify, and Extract nodes produce new events, meaning that
multiple instances of a circuit would produce different events from
each stream.

• Annotation and topology requests must be done multiple times if
different instances of a circuit are used in each stream.

• Performance suffers if the same things is done multiple times.

• Timing in general and multiple calls to topology could potentially
produce different results from the same circuit on different streams.

Separate Instances for Each Stream The same circuit can be loaded
multiple times using different circuit identifiers. This means different
instances of the same circuit can be loaded in different streams. This can
be useful when the circuit is used with a different data store or fact store.
For example, when testing a new circuit you might want to test the new
circuit in a separate “test” stream using test instances of existing
production circuits. This would ensure that the testing would not make
any changes to production data stores or fact stores.
Chapter 2 31

Circuits and Compound Nodes
ECS Correlation Circuits
Multiple Circuits

So far we have examined events within a single circuit, now let’s
examine what happens when the same event enters multiple circuits. In
particular, consider what should happen when some circuits output the
event and some circuits discard the event.

The stream’s policy can be thought of as the default behavior for events
before any circuits are loaded. Therefore, the purpose of circuits is to
change this behavior for an event.

For instance, if the stream’s policy is to output events, circuits will
change the event flow by discarding events and by creating new events.
Circuits will preserve the event flow by outputting events.

Similarly, if the stream’s policy is to discard events, circuits will change
the event flow by outputting events and by creating new events. Circuits
will preserve the event flow by discarding events.

When several circuits make different decisions for the same event, the
engine will uphold a decision to change the event flow over a decision to
preserve the event flow. Therefore, if the same event enters multiple
circuits and is output by some circuits and discarded by others, the event
will actually be discarded under an output policy, and output under a
discard policy.

Remember, with an output policy, the engine will output an event unless
it is discarded by any circuit. With a discard policy, the engine will
discard the event unless it is output by any circuit.

When a new event is created by a Create node, a Modify node or an
Extract node, this new event will never be affected by another circuit.
This is because circuits only see the original event flow entering the
engine; they cannot see events created by another circuit.

When an event enters the ECS engine, it simultaneously enters every
circuit that accepts it. With a discard policy, the event is output as soon
as any circuit outputs it as the remaining circuits will not affect the
output decision. However, with an output policy, the event cannot be
output until every circuit that accepted it has output it. This means that
under a discard policy an event has the transit delay of the circuit with
the smallest transit delay, but under an output policy an event has the
transit delay of the circuit with the largest transit delay.
32 Chapter 2

Circuits and Compound Nodes
ECS Correlation Circuits
The ECS Designer

The ECS Designer allows you to load, build and simulate one circuit at a
time, so it is important to understand what happens when multiple
circuits operate on the same engine.

Although circuits are designed for either stream policy, the simulator
within the ECS Designer always runs with a Discard policy. This means
that events that are not accepted by any input port in the simulated
circuit will not be seen in the output event logs.

This allows a circuit designer to focus on the events that are affected by
the circuit.
Chapter 2 33

Circuits and Compound Nodes
Compound Nodes
Compound Nodes
Basically, a Compound node is a self-contained block of ECS circuitry. It
provides a means to encapsulate selected functionality and encourages:

• reuse of commonly used circuitry

• standardization of common correlation functions

• dividing a large problem into smaller problems

All circuits, whether they are enclosed in a Compound node or not,
possess a set of properties that determine how that circuit interacts with
its environment. Some of these properties apply when the circuit is used
as a Compound node, others apply when it is used as a top-level circuit.
The following sections describe all the circuit properties in detail.

Properties of Circuits and Compound Nodes

Table 2-1 summarizes the properties of top-level circuits and Compound
nodes. Note that a circuit always possesses all the properties, but that
only the appropriate set of properties is active at any given time. So,
some of these properties apply only when the circuit is used as a
Compound node and others apply only when it is used as a top-level
circuit connected to the outside world. The only common property is the
event flow circuit itself.

These differences lead to some subtle behavior differences between a
circuit in a compound node and a top-level circuit:

• When a circuit is treated as a Compound node its global definitions
are active but not visible in the ECS Designer. Only global definitions
in the top-level circuit are visible in the ECS Designer.

• Circuit input ports become node input ports when a circuit is
packaged as a Compound node. Configuration details that are specific
to a circuit’s interface with the outside world are ignored when the
circuit is used as a Compound node.

• If a Compound node is to be configurable, attributes and parameters
must be exported from the circuit. Conversely, when the Compound
node is used as a top-level circuit its exported attributes and
parameters are ignored.
34 Chapter 2

Circuits and Compound Nodes
Compound Nodes
These properties are discussed in detail in the remainder of this chapter.

External Event Filtering

When a top-level ECS circuit is connected to an event stream, it may be
subjected to many events in which the circuit has no interest. The events
in which a circuit is interested are defined by the external input port
filters.

Events that do not pass into any of the circuits running on the engine are
handled by the engine’s policy.

An ECS circuit can have many input ports. Each input port can be
configured to filter events based on the event’s encoding type, event
syntax, event type, the transit delay, and/or an ECDL Filter Condition
expression. The conditions are specified in the ECS Designer on the
External Tab. See the HP OpenView Event Correlation Services
Designer’s Guide for details.

Table 2-2 Differences Between Circuits and Compound
Nodes

Property Top-level Circuit Compound Node

Event Flow Circuit YES YES

External Input port
filtering

YES Ignored

Global Definitions YES Uses globals from the
enclosing circuit. Globals
defined in the compound are
not visible.

Attributes Ignored, not
appropriate

YES

Parameters Ignored, not
appropriate

YES

Circuit Policy YES YES
Chapter 2 35

Circuits and Compound Nodes
Compound Nodes
Input port event
processing

Events can enter more than one input port, but only under the following
conditions:

• the event satisfies the conditions for that port, and

• there is no other port with a more restrictive condition that this event
satisfies.

In other words, an event enters the most restrictive port that it can, to
the exclusion of less restrictive ports. If there are several equally
restrictive ports then the event enters all the equally restrictive input
ports.

An ECS circuit can have up to 50 input ports. Each event is tested
against each input port’s conditions, depending on the restrictions
specified for each of the input ports. The restrictions that can be specified
are the Encoding Type, Event Syntax, Event Type, Transit Delay range,
and Filter Condition. Only when an event matches more than one port’s
input specifications at the same restriction level, will it enter more than
one port.

When an event enters more than one input it is processed by both circuit
paths. However, the event is not duplicated; there is still only one event
and the ECS Engine will ultimately transmit only one instance of the
event from the output, unless the event is suppressed.

For example, a circuit with five inputs might have the following External
Tab settings:

External Port
Name

Encoding
Type

Event Syntax Event
Type

Min
TD

Max
TD

Filter
Condition

input1 “mdl” “SimpleEvent” 1 true

input2 “mdl” “AMS” 0s 10s true

input3 “mdl” “AMS” 10s 15s true

input4 “mdl” “AMS” true

input5 “mdl” “AMS” true
36 Chapter 2

Circuits and Compound Nodes
Compound Nodes
Events with an Event Syntax of “SimpleEvent” and an Event Type of 1
will enter input1 only. Events with an Event Syntax of “AMS” enter the
other input ports as follows:

• If the event has a TD (Transit Delay) of 10 seconds or less then it will
enter input2.

• If the event has a TD of 10 seconds to 15 seconds then it will enter
input3.

Events with a TD of exactly 10 seconds will enter both input2 and
input3.

• Otherwise, if the event has a transit delay of more than 15 seconds
then it will enter both input4 and input5, because both these inputs
specify the same conditions.

Global Definitions

Global definitions are named constant values. A Global Definition is
available to all the nodes within the circuit, including any Compound
nodes inside it.

Global definitions are specified in the Global Definitions dialog box
displayed by selecting Circuit: Global Definitions from the ECS
Designer menu.

Use global definitions to improve the readability of expressions by
substituting short meaningful names for complex values, and to factor
out values and functions that are used in many places in a circuit.

Global values are defined with the val keyword; global functions are
defined with the fun keyword; and global type definitions are defined
with the type keyword.

Global values Global values have the form:

val constantName = value

Each global value is introduced with the val keyword, followed by the
name, an equals sign (=), and the value.

For example, to declare a value to test the generic-trap field of SNMP
traps, you could define the following Global Definition:

val enterpriseSpecific = 6
Chapter 2 37

Circuits and Compound Nodes
Compound Nodes
This binds the integer value 6 to the global name enterpriseSpecific.
Now you can test a condition by writing:

input_event "generic-trap" = enterpriseSpecific

Function
definitions

Function definitions have the form:

fun <funcname> <arg1> [<arg2>...<argn>] [: returnType] =
expression

where at least one argument must be supplied. arg1 to argn can be
simple argument names as in:

fun intplus x y = x+y

or can optionally specify argument type constraints (note the use of
parentheses):

fun intplus (x:integer) (y:integer) = x+y

A return type can also be specified as follows:

fun intplus (x:integer) (y:integer) : integer = x+y

The following expression would then result in a value of 7:

intplus 3 4

See Chapter 10, “Writing ECDL Expressions,” on page 319 for
information about more complex expression writing.

Type definitions Global type definitions have the form:

type typeName = type

For example, suppose you find that you are frequently comparing the
agent-addr attributes of two events for equality, perhaps in an
expression like:

input_event "agent-addr" = inhibitor_event "agent-addr"

You could define a type anyEvent and a function equalSource to save
typing this expression repeatedly:

type anyEvent = any dict, -- Events have a ’Dictionary’ data type

fun equalSource (ev1:anyEvent) (ev2:anyEvent) : boolean =
ev1 "agent-addr" = ev2 "agent-addr"
38 Chapter 2

Circuits and Compound Nodes
Compound Nodes
Now, in the Condition parameter of an Unless node, you could write the
expression:

not (equalSource input_event inhibitor_event)

Library node
external
references

Global definitions are stored with the ECS circuit file. If you convert part
of a circuit to a Compound node and save it in the Library, the global
definitions are not saved with the Compound node. If you then use that
Compound node in a different circuit it will still refer to the old global
definitions from the original circuit, and the circuit will not verify.

However, when a Library node is imported, any global definitions
associated with it are retained. This means that you can save a
Compound node to the library, open it as a top-level circuit, add the
required global definitions and then save it. From now on the Compound
has its own global definitions that override any definitions of the same
name in circuits that the Compound is imported into.

If you use Node:Make local on a Compound node, it loses its global
definitions. If a reference is not resolved then an error will be reported
when the circuit is verified.

Scope Global definitions in Compound nodes form a series of enclosing scopes:
the outermost scope is the Global Definitions that belong to a top-level
circuit. The scope of “global definitions” in nested Compounds follows the
nesting of the Compound nodes themselves. Definitions in inner scopes
override definitions in outer scopes.

NOTE The ECS Designer can be used to edit the Global Definitions of the
current top-level circuit only. For example, if you have drilled down into
a library Compound node and you select File:Global Definitions
from the menu, the top-level circuit Global Definitions are displayed,
rather than the Global Definitions for the current library Compound
node. To display the Global Definitions that belong to the library
Compound node you must load the Compound node as a top-level circuit
by selecting Circuit:Open from the menu, navigating to the library
directory, and opening the appropriate .ecs file.
Chapter 2 39

Circuits and Compound Nodes
Compound Nodes
Attributes: Passing Information out of a Compound
Node

The Count, Rate, and Table primitive nodes have preconfigured
attributes that can be referenced from other nodes. Compound nodes too
can be configured to have one or more attributes. In other words,
attributes are the means by which information is passed out of a
Compound node, into the enclosing circuit.

Compound node attributes are created by exposing the attributes of
primitive nodes contained inside them. For example, a Compound node
could define an attribute called Power_fail_count that makes the value
of a Count nodes’s Count attribute visible outside the compound.

Figure 2-1 Compound Node Attributes

To expose an attribute within a Compound node:

1. With the Compound node open in the ECS Designer, define a unique
name for the attribute by clicking the Attributes Tab and adding
the appropriate details. In the Attributes Tab of the ECS Designer
you enter the details separately as:

Exported Attribute Name: Power_fail_count
 Internal Node Name: Power_fail
 Node Attribute Name: count

Compound node
attribute

Top-level circuit

Power_fail_count=Power_fail.Count

myCompound.Power_fail_count > 3

myCompound

Power_fail

Count
40 Chapter 2

Circuits and Compound Nodes
Compound Nodes
2. Place the compound node in its enclosing circuit.

3. Refer to the Compound node’s attributes, using dot notation, in the
form compound_node_name.Exported_attribute_name. In this
example the attribute could be referenced as
myCompound.Power_fail_count.

See the HP OpenView Event Correlation Services Designer’s Guide for
details.

Parameters: Passing Information into a Compound
Node

A Compound node can have one or more parameters. Parameters are
used to modify the node’s behavior, based on information supplied from
the circuit that encloses the Compound node. In other words, parameters
pass information into a Compound node.

Figure 2-2 Compound Node Parameters

There are three steps to parameterizing a Compound node:

1. With the Compound node open in the ECS Designer, define a unique
name for the parameter by clicking the Parameter Tab and adding
the appropriate details.

2. Within the Compound node’s circuit, use the newly defined parameter
in ECDL expressions, as you would a Global Definition.

3. Place the Compound node in its enclosing circuit and configure the
parameter value just as you would for any other node.

Compound
node parameter

Top-level circuit

fail_count > 3

fail_count = counter.count

counter
Chapter 2 41

Circuits and Compound Nodes
Compound Nodes
See the HP OpenView Event Correlation Services Designer’s Guide for
details.

Circuit Policy

Compounds imported from the circuit library may have an associated
intended circuit policy. If a compound is imported into a circuit with a
conflicting policy (e.g. a compound written for an output engine
configuration is imported into a circuit written for a discard
configuration), a warning message is produced, but the import of the
compound is still allowed.
42 Chapter 2

3 Circuit Nodes
43

Circuit Nodes
Circuit nodes are the building blocks with which circuits are constructed.
This chapter describes the fifteen primitive nodes in detail. The first
section:

• “Common Features of Nodes” on page 46

describes those aspects common to all nodes and describes how to
customize node behavior through the node parameters. Following this is
a complete description of each node that includes:

• a summary and diagram of the node

• a diagram and detailed description of the processing done by the node

• a description of the node’s parameters

• a description of the node’s attributes (if any)

• a description of the node’s ports

• notes and design hints

Primitive nodes The primitive nodes described in this chapter are:

• “Annotate Node” on page 58

• “Clock Node” on page 64

• “Combine Node” on page 71

• “Count Node” on page 81

• “Create Node” on page 87

• “Delay Node” on page 93

• “Extract Node” on page 97

• “Filter Node” on page 102

• “Modify Node” on page 105

• “Rate Node” on page 109

• “Rearrange Node” on page 116

• “Sink Node” on page 122

• “Source Node” on page 125

• “Table Node” on page 128
44 Chapter 3

Circuit Nodes
NOTE The Compound node lets you encapsulate a circuit to create your own
node. It is described separately in Chapter 2, “Circuits and Compound
Nodes,” on page 23.
Chapter 3 45

Circuit Nodes
Common Features of Nodes
Common Features of Nodes
This section describes features common to all primitive nodes and should
be read in conjunction with the node descriptions in the remainder of
this chapter.

Node Configuration

Nodes are manipulated within an ECS circuit using the HP OpenView
Communications ECS Designer in Build mode. To configure a node you
select the node and then select Node: Configure, or right-click to
display the popup menu and select Configure. The Configure dialog box
is displayed. Select the Parameter or Port tab, to display the
appropriate settings.

Each node is assigned a default name when it is placed on the canvas.
However you can override it with a descriptive name of your own. In
addition to a name, most nodes have one or more parameters. Generally,
the ECS Designer supplies a default value for each parameter, but these
values are frequently useful only as a guide to the form and type of the
parameter value. Most of the work in designing a circuit is in writing the
ECDL expressions that comprise the node parameters.

As you design the correlation circuit the status of each node is indicated
by its color. You can instantly recognize an incomplete or incorrect node
configuration by its color.

Attributes The expressions you write for node parameters can refer to the attributes
of other nodes. You cannot see the attributes of a node in Build mode.
But, if your circuit verifies and runs a simulation successfully, you can
view the current values of a node’s attributes. These values are displayed
in the Attributes page of the Node Status dialog, reached by selecting
Simulate:Node and then selecting the Status Attributes tab.

Name and Status

Node names When you first place a node on the canvas, the ECS Designer gives it a
default name constructed from the node type, a number, and underscores
in the general pattern:

nodeType_n_
46 Chapter 3

Circuit Nodes
Common Features of Nodes
where n is the next available number. For example, the default name of
the first Count node that you place on the canvas is count_1_. You can
change this name in the Configure dialog reached by selecting Node:
Configure.

The trailing underscore causes the node name to be suppressed on the
screen. To make the node name visible, delete the trailing underscore.

CAUTION If you change the name of a node that has attributes that are referenced
by other nodes, you must change all references to the node throughout
the ECS circuit. If you change a node name and forget to update a
reference then the ECS circuit will fail to verify.

Status indications The fill, border, and background colors of a node vary to indicate its
status. There are two major groups of variations: those you see in Build
mode, and those you see in Simulate mode.

Building and
simulating circuits

The following variations in node appearance are displayed in both Build
and Simulate modes.

Delete the trailing underscore to make a name visible on the canvas.

Node
Appearance

Color and
Border

Description

Light fill, black
border

In Build mode this indicates a correctly
parameterized and connected node. In
Simulate mode it indicates the node is
inactive and no breakpoint is set.

Gray surround
with resizing
handles

Selected
Chapter 3 47

Circuit Nodes
Common Features of Nodes
Building circuits
only

These node variations appear in Build mode only.

Simulating circuits
only

These node variations appear in Simulate mode only.

Dark gray drop
shadow

Library node (Compound node)

Node
Appearance

Color and
Border

Description

Node
Appearance

Color and
Border

Description

Pale blue fill Parameters missing or active ports not
connected

Red fill Verification failed

Node
Appearance

Color and
Border

Description

Red outline Breakpoint set

Green fill Processing event when tracing or
stepping
48 Chapter 3

Circuit Nodes
Common Features of Nodes
Node Parameters

Many nodes have parameters. Parameters are used to customize node
behavior. To change a node’s behavior, you select the Parameters Tab of
the node Configure dialog, reached by selecting Node: Configure in
Build mode. The expressions you enter in this dialog box control aspects
of the node’s behavior.

Expressions All parameters take arbitrarily complex expressions. You can type a
simple literal value such as the value 500 in the Max Events parameter
in Figure 3-1. On the other hand, this example also shows the Save
Until parameter fetches a value called TableTimeout from the Data
Store. Save Until is assigned whatever value TableTimeout has at the
time the expression is evaluated.

Expressions are written in a language called ECDL (Event Correlation
Description Language). See Chapter 10, “Writing ECDL Expressions,” on
page 319 for details.

Expressions in node parameters can refer to:

• other node’s attributes using dot notation (nodeName.attribute)

• the Data and Fact stores

• surrounding values such as global definitions or the parameters of a
compound node containing the node

Purple frame Location of current event when tracing or
stepping

Node
Appearance

Color and
Border

Description
Chapter 3 49

Circuit Nodes
Common Features of Nodes
Figure 3-1 Configure Dialog—Parameters Screen

Event names To read the value of an event attribute from an ECDL expression you
need to use the appropriate event name. Event names are predefined
expressions that provide access to the dictionary structure that
represents an event. The predefined event names are listed in Table 3-1.

Table 3-1 Event Names

Name Node(s) this event name is defined for

input_event Annotate Create Extract Filter Modify Unless

Also used in the Filter Condition on the External Tab.

output_event Combine

created_event Create

current_event Table

retained_event Table
50 Chapter 3

Circuit Nodes
Common Features of Nodes
To retrieve an attribute value from a primitive event, you simply specify
the event attribute you want. For example,

input_event create_time

retrieves the value of the create_time attribute from the event header.
Generally header attributes are defined by tokens, whereas body
attributes are defined as strings. For example, to retrieve the
"equipmentId" body attribute we place double-quotes around the string,
as in:

input_event "equipmentId"

When retrieving attribute values from a composite event you need to
specify the “path” to the event you are interested in. For example,

input_event 2 1 create_time

retrieves the create_time event header attribute from the first event
inside the second event inside the composite event referred to by
input_event. See Chapter 10, “Writing ECDL Expressions,” on page 319
for details.

inhibitor_event Unless

Table 3-1 Event Names

Name Node(s) this event name is defined for
Chapter 3 51

Circuit Nodes
Common Features of Nodes
Static and
dynamic
evaluation

Some node parameters are statically evaluated, others are evaluated
dynamically. When an expression refers to a Data Store or a Fact Store,
you must be aware of when the expression is evaluated:

• Statically evaluated expressions are evaluated once when the circuit
is loaded. Data or fact store values are retrieved at this point and any
subsequent updates to the stores have no effect on the parameter
value.

• Dynamically evaluated expressions are evaluated each time the value
is required. Updated Data or Fact Store values are reflected in the
evaluated parameter values.

In the example shown in Figure 3-2 on page 53, the Retain Condition
parameter is dynamically evaluated for each input event arriving at the
Table node.

In the description of each node, the Evaluation column in the table of
parameters for each node indicates whether the parameter is evaluated
statically or dynamically. Generally, parameters that define a condition
are evaluated dynamically, and all others are evaluated statically.

CAUTION The Data Store and Fact Store can be updated while the ECS Engine is
running. However, statically evaluated expressions are not re-evaluated
when a store is updated. You must disable, reload, then re-enable the
ECS circuit to cause statically evaluated expressions to be re-evaluated.
See the HP OpenView Communications Event Correlation Services
Administrator’s Guide.

Data types Parameter expressions must evaluate to the correct data type for that
parameter. You must ensure that the value returned from the expression
you enter will be of the correct type. In the example in Figure 3-1 on
page 50, the Max Events parameter is of data type Integer. If you supply
a different data type, or the expression you enter returns a different data
type, then an error occurs when the expression is evaluated.

Data type errors in dynamically evaluated expressions trigger an error
only when they are evaluated. Remember that statically evaluated
parameters are evaluated when the circuit is loaded but dynamically
evaluated parameters are not evaluated until an event passes through
the node, which may be some time later.

The Type column in the table of parameters for each node identifies the
52 Chapter 3

Circuit Nodes
Common Features of Nodes
return data type required by each parameter. The Default column shows
the value used if you do not supply your own value.

Input and Output Ports of Nodes

Each node has one or more input and output ports. Some ports are
required, others are optional. The Configure dialog, displayed by
selecting Node: Configure in the ECS Designer Build mode, controls
optional ports. You click check boxes in the Ports page of the Configure
dialog, as shown in Figure 3-2 on page 53 to activate optional ports.

Figure 3-2 Configure Dialog—Ports Screen

The port descriptions for each node describe each port in terms of
whether it must be connected, whether it is activated by default, and
what classes of event can be input or output from that port.

Input ports Nodes may have one or more of the following input ports:

Input This is the main input port for most nodes. Generally,
at least one main input port must be connected.

Reset Input When any event arrives at this port, it causes the node
to reset to a known condition. Typically, any events
waiting at a main input port are flushed out of a Fail
Output port. Attributes and parameters may be reset

Required ports

Inactive optional ports

Active optional ports

Input Output

Fail Output

Ports are positioned in the
same order as they are
listed in the dialog.

In this example there are
three active ports: Input,
Output and Fail Output.
Chapter 3 53

Circuit Nodes
Common Features of Nodes
to initial or default values. This port need not be
connected.

Output ports Nodes may have one or more of the following output ports:

Output This is the main output port from which most nodes
transmit processed events.

Error Output Some parameters have expressions which can include
events as arguments. If the expression cannot evaluate
the event, the event is transmitted from this port.

The Error Output port need not be connected but, if
not connected and an error occurs, an error message is
appended to the engine log file if logging is enabled.

Fail Output When an event arrives at the Reset Input port, any
events waiting at a main Input port are transmitted
from the Fail Output port. This port need not be
connected.

Reset Output Any event received by the Reset Input port of a node
is immediately transmitted from the node’s
corresponding Reset Output port. This lets you chain
Reset Output ports to Reset Input ports to
selectively reset only certain nodes in a chain, without
affecting other nodes. This port need not be connected.

Event classes The table of port details in the description of each node includes a
column labelled “Events” that shows what classes of events the port
transmits:

P Primitive

C Composite

T Temporary

See Chapter 4, “Events in ECS,” on page 147 for a detailed description of
event types.

Identifying ports In the ECS Designer, ports on the canvas are not specifically identified.
To identify a port in Build mode, right-click on the canvas, select
Connection from the pop-up menu, and click on the port you want to
identify. The name of the port is displayed in the status line, below the
canvas.
54 Chapter 3

Circuit Nodes
Common Features of Nodes
Node Attributes

The Count, Rate, and Table nodes have attributes that can be read by
other nodes in the circuit. After you have verified a circuit and run the
Simulator, you can view the values of these attributes in the Attributes
page of the Node Status dialog. You reach this dialog by selecting
Simulate: Node Status in Simulate mode. See Figure 3-3 on page 55.

Figure 3-3 Node Status Dialog—Attributes Screen

Referencing
attributes

To access a node’s attributes you use dot notation:

nodeName.attributeName

For example, to refer to the Count attribute of the count_1_ node
pictured above, in an expression you would type:

count_1_.Count

Filter example For example, say you want to set up a circuit to detect dropout
notifications from a power supply and ignore them unless the rate of
notifications is greater than 5 per second.

A Rate node named Intermittent is set with an Interval parameter of
1s. A Filter node named PassIntermittent is set with a Condition
parameter of Intermittent.Rate > 5. The Filter node examines the
Rate attribute of the Rate node whenever the Condition is evaluated.
Chapter 3 55

Circuit Nodes
Common Features of Nodes
The result is that PassIntermittent passes events only when
Intermittent detects a rate greater than 5 events per second.

Transit Delays and Simulation Statistics

The Annotate, Combine, Delay, and Unless nodes can delay events
during processing. Keep these delays to the minimum necessary for the
circuit to operate correctly. Otherwise, the circuit can become inefficient.
Chapter 5, “Timing Considerations,” on page 165, contains general
background details.

After a simulation you can view transit delay times and event counts in
the Node Status dialog to monitor the performance of your circuit and to
locate delays. You display this dialog in Simulation mode by selecting
Simulate: Node Status and selecting the Statistics button. See
Figure 3-4.

Figure 3-4 Node Status Dialog—Statistics Screen

Interpreting
statistics

The Node Status dialog presents statistics in the form

portName_statisticType

where statisticType can be maxTD, minTD, numin, or numout. For
example, the statistics for the Input port of a Filter node are
input_maxTD, input_minTD, and input_numin (numout is inappropriate
56 Chapter 3

Circuit Nodes
Common Features of Nodes
for an input port). The following table summarizes the available
statistics:

Restrictions on
recursion

Transit delays are propagated through the circuit by nodes which may
detain events. The cumulative delays are calculated automatically by the
engine. This has the side-effect that recursion within a circuit
(connecting a downstream node’s output to the input of an upstream
node) is disallowed when any of the nodes in such a loop are capable of
detaining events. This means that loops must not be constructed from
the following nodes:

• Unless node

• Delay node

• Annotate node

• Combine node

• Table node

Statistic
Type

Input
Ports

Output
Ports

Description

maxTD Yes Yes Maximum transit time from origin
to port

minTD Yes Yes Minimum transit time from origin
to port

numin Yes No Number of events that arrived at
an input

numout No Yes Number of events that departed an
output
Chapter 3 57

Circuit Nodes
Annotate Node
Annotate Node
The Annotate node holds events that arrive at its Input port while a
request for external data is made. If a response is received within a
specified time, a composite event is transmitted containing the original
input event annotated with the response data.

Figure 3-5 Annotate Node

The Annotate node is used to export data to, or import data from, an
external process called an annotation server, without delaying other
events in the circuit. This asynchronous action ensures that a potentially
slow lookup or search conducted by the annotation server does not affect
other areas of the circuit.

The annotation server is an external process supplied by the user and is
not part of the HP OpenView Communications ECS product.

(3) Annotation server

(2) Request (4) Response

(1) Input event (5) Transmitted composite

Input Output

event
58 Chapter 3

Circuit Nodes
Annotate Node
Annotate Node Processing

Figure 3-6 Annotate Node Processes

I

A

5s

➻

[? [!]

I I

User-implemented
application external to
correlation engine.

Timeout or reset releases
detained events

Annotation
Server

Output

Error Output

Fail Output

Reset OutputReset Input

Input

Time Limit

Annotate Spec

Success

input_event

➻

Connection required

Connection optional (unconnected o/p discards events)

Connection optional (unconnected o/p logs events)
Parameter (“input”)
Event flows

Logic flows

Parameter “switches” event to appropriate path
References to attributes, Stores, and Global Definitions

Events stored
Parameter evaluated

Time window
Evaluation error

I

?

!
A

Input event

Annotation request

Annotation response
Annotate temporary event
Chapter 3 59

Circuit Nodes
Annotate Node
On receipt of an event at its Input port, the Annotate node evaluates the
Annotate Spec parameter, which must return a List data type. The List
is passed directly to the annotation server.

When the annotation server produces a response, it is forwarded directly
back to the Annotate node that issued the corresponding request.

If the response is received within the time specified in the Time Limit
parameter, it is used to create a temporary event (the response event)
that is coupled with the input event in a composite event, and
transmitted from the Output port.

The transmitted composite event has the following form:

The response event can contain any number of data elements of any data
type. Each element is an attribute of the temporary event, accessed by an
integer key starting from 1. That is, if the temporary event has three
attributes, their keys are 1, 2, and 3. It is the responsibility of the circuit
designer and the annotation server developer to ensure that returned
data is correctly interpreted.

The following examples show how a downstream Filter node might
access data in the composite event:

Expression Attribute

input_event 1 "equipmentId" Returns the "equipmentId"
attribute of the input event
(the first event).

input_event 2 1 Returns the first attribute of the
temporary event
(the second event).

Annotate event

Response eventInput event

1 2
60 Chapter 3

Circuit Nodes
Annotate Node
If the response is not received within the time specified in the Time
Limit parameter, the input event is transmitted from the Fail Output
port. If an overdue response is finally received it is discarded. If the Fail
Output port is not connected then the input event is discarded.

If there is an error evaluating the Annotate Spec parameter, the input
event is immediately transmitted from the Error Output port, and no
request is generated. If the Error Output is not connected, an error
message is logged if logging is enabled.

Upon receipt of an event at the Reset Input port, all pending
annotations are abandoned, their originating events are transmitted
from the Fail Output port, and the event arriving at the Reset Input
port is transmitted from the Reset Output port (or discarded if the
Reset Output port is not connected).

See the HP OpenView Communications Event Correlation Services
Developer’s Guide & Reference for a complete explanation of the
annotation process and implementing an annotation server.

Annotate Node Parameters

Annotate Spec Annotate Spec is a dynamically evaluated expression that determines
the data passed to the external annotation server. This parameter is a
List that can contain any data type for any member. The circuit designer
must ensure that the data in this list is correctly formatted for the
appropriate annotation server.

An example Annotate Spec is:

["getEquipmentDetails", input_event "equipmentId"]

input_event 2 2 Returns the second attribute of the
temporary event (the second
event).

Parameter Type Default Evaluation

Annotate Spec List (of any type) none Dynamic

Time Limit Duration 0s Static

Expression Attribute
Chapter 3 61

Circuit Nodes
Annotate Node
In this example, the first member of the list is a string describing the
type of annotation request, "getEquipmentDetails". The second
member, input_event "equipmentId" is an expression that returns the
"equipmentId" attribute from the input event.

There is no limit on the number or types of members in the list, but it is
essential that the list conforms to the expectations of the annotation
server.

The name of the Annotate node, the name of the circuit, and the Time
Limit value are implicitly passed as part of the request. The Time Limit
is passed as an absolute time (current time + Time Limit).

Time Limit Time Limit is a statically evaluated expression that determines the
maximum time an input event is held, while a response is pending.

For example, if the Time Limit parameter is 10s then the input event is
held for up to 10 seconds while awaiting the response. If a request is not
received within 10 seconds then the input event is transmitted from the
Fail Output port.

If a response is received after the time limit has expired it is discarded.

Annotate Node Ports

Any event transmitted from the Output port is a composite event
containing the original input event and temporary event carrying data
returned from the annotation server.

Port Connected Activated Eventsa

a. Events are: P = primitive, C = composite, T = temporary.

Input Yes Yes PCT

Reset Input No No PCT

Output Yes Yes C

Error Output (logged) No No PCT

Reset Output No No PCT

Fail Output No No PCT
62 Chapter 3

Circuit Nodes
Annotate Node
Annotate Node Notes

A single Annotate node can annotate many events concurrently. The
Annotate node combines the correct response with each input event even
when many events are in the process of being annotated.

Do not send the composite events generated by an Annotate node to the
Sink node of an ECS circuit. Only primitive events can be transmitted
from an ECS circuit.

When determining the Time Limit value you must consider the required
annotation server processing time and the two-way communication
delay. The Time Limit should be set to the minimum reasonable value.
An excessive Time Limit can delay input events, and can have effects on
events in other circuit paths.
Chapter 3 63

Circuit Nodes
Clock Node
Clock Node
The Clock node generates temporary events at specified intervals, after
the internal metronome is started by an event on the Start Input. It
stops generating events when an event is received at the Stop Input.

The Clock node can also be started when the engine starts, and the
timing of the first clock event can be aligned with the real-time clock
(UTC).

Figure 3-7 Clock Node

The Clock node is used to trigger the action of a downstream node at
regular intervals. For example, you can trigger a Create node to generate
an event, or trigger an Annotate node to obtain data from an external
source at regular intervals. You could also use a Clock node to generate a
temporary event if a specific input event has not occurred for a specified
length of time.

Temporary events at constant intervals

Start Input

Stop Input
Output

Interval

Event starts “metronome”

Event stops “metronome”
64 Chapter 3

Circuit Nodes
Clock Node
Clock Node Processing

Figure 3-8 Clock Node Processes

The Clock node generates empty temporary events and emits them from
the Output port. See Figure 3-8. The Interval parameter determines
the time between events. If the Autostart parameter is true then the
Clock node starts when the correlation engine starts. Otherwise it starts
or restarts when an event is received at the Start Input port. The Clock
node stops generating events when it receives an event at the Stop
Input port.

The timing of the first event generated by the Clock node after a start or
restart depends on the setting of the Time Alignment parameter.
Subsequent events are separated by the Interval. This allows events
generated by the Clock node to be aligned with the external real-time
clock.

Time points are defined by the Time Alignment tuple parameter such
that the first component of the tuple describes a time period and the
second describes the offset. For example, to define a period of 1 hour and

Output

Start Output

Stop Output

Interval

Autostart

Time Alignment

Start Input

Stop Input

Start Stop

Temporary
event
generated

Connection required
Connection optional (unconnected o/p discards events)

Event flows

Parameter (“input”)
Parameter evaluated
Logic flows

Chapter 3 65

Circuit Nodes
Clock Node
an offset of 15 minutes 30 seconds set Time Alignment to (1h, 15m30s).

The create_time header attribute of the temporary event generated by
the Clock node is set to the value of current time when the event is
generated. The arrival_time header attribute is set to the time when
the event is transmitted from the node, which may be up to one second
later.

Events entering the Start Input or Stop Input are transmitted from
the Start Output or Stop Output respectively, or discarded if these
ports are not connected.

Clock Node Parameters

Interval Interval is a statically evaluated expression that determines the period
between events generated by the Clock node. The default value is 1s.

For example,

9h21m14s * 2

causes a Clock node to generate an event at intervals of 18 hours,
42 minutes, and 28 seconds.

The Interval parameter is not truncated. That is, a value of 0.1s
causes the Clock node to generate 10 temporary events every second, and
a value of 0.4s generates 5 events every 2 seconds.

Auto Start Auto Start is a statically evaluated expression that determines whether
the Clock node starts generating events when the correlation engine is
started. If the expression evaluates to true the Clock node starts when
the engine starts. If the expression evaluates to false the Clock node
does not start until it receives an event on the Start Input port. The
default value is false.

Time Alignment Time Alignment is a statically evaluated expression that determines a

Parameter Type Default Evaluation

Interval Duration 1s Static

Auto Start Boolean false Static

Time Alignment (Duration,
Duration)

(0s, 0s) Static
66 Chapter 3

Circuit Nodes
Clock Node
series of time points with which generated events can be aligned. It can
be any expression that evaluates to a tuple of two duration data types of
the form (period, offset). The default value is (0s, 0s).

• If Time Alignment is set to (0s, 0s), no time alignment occurs and
the first clock event is transmitted Interval seconds after the Clock
node starts, provided no event has arrived at either the Start Input
or the Stop Input in the meantime.

• If the Time Alignment parameter is set to a value other than(0s,
0s), the first event is transmitted on the first available time point
defined by the parameter, provided no event has arrived at either the
Start Input port or the Stop Input port in the meantime.

The Time Alignment parameter determines the time point of the first
event generated by the clock after being started or restarted. The second
and subsequent events are generated at regular intervals after that, as
specified by the Interval.

The first time point is calculated as follows:

when (current time mod period) = 0,

wait for offset seconds,

then generate the first time point.

The effect is to align the first time point with the correlation engine’s
clock such as ‘1 minute past the hour’ or ‘30 seconds past midnight’. This
is shown graphically in the following diagram.
Chapter 3 67

Circuit Nodes
Clock Node
Figure 3-9 Time Alignment

1. An event arrives at the Start Input port.

2. When Current time mod period = 0 (at 04:40) the engine waits for
offset to elapse before emitting the first event. 05:10 is the first time
point after the start event arrives.

3. The second event is emitted after the duration specified in the
interval has elapsed. In this example, at 07:40, which is 2:30 after
05:10. Each subsequent event is emitted separated by the interval.
Note that second and subsequent events do not have to align with
time points; only the first event in a series must align with a time
point.

4. An event arrives at the Stop Input so the clock stops emitting
events.

If another event arrives at the Start Input port at any time the process
starts over at step 1 again.

There are a number of constraints on the values that the Time
Alignment tuple can take:

• period must be a positive number of seconds. If a real number of
seconds is specified it is truncated to an integer. Negative numbers
are treated as 0.

• period must be less than or equal to Interval.

2

1 3 4

Start StopEvents

Current time

Time points
Current time

Output Output Output

IntervalInterval

00:00 01:00 02:00 04:00 06:00 07:00 08:00 09:00

Time Alignment = (0h, 5h, 30m)
Interval = 1h

11:00

mod period = 0

03:00 05:00 10:00

offset
68 Chapter 3

Circuit Nodes
Clock Node
• offset must be less than or equal to period. Otherwise, offset is
set to offset mod period.

Note that the current time is measured from the epoch at 00:00 1 Jan
1970 Coordinated Universal Time (UTC). The effect of the Time
Alignment parameter is only likely to be meaningful if it exactly divides
the number of seconds in a day, hour or minute. If you choose, for
example, 7s for the offset, then the first time point could be at any second
of the hour, depending on the date.

The following examples assume the Clock node is started at UTC
00:00:00.

Time
Alignment
(period, offset)

Interval First event Second event Third
event

Comments

(1h,15m30s) 1h 01:15:30 02:15:30 03:15:30

(15m,0s) 1h 00:00:00 01:00:00 02:00:00

(-1m,-1s) 1h 00:00:00 01:00:00 02:00:00 Negative values are
treated as 0.

(2h,0s) 1h Compile error – see error log. The period must be less than or equal
to the interval.

(2m,3m) 1h 00:03:00 01:03:00 02:03:00 offset > period
so offset is set to
offset mod
period. 3 mod 2 =
1, so Time
Alignments is
effectively
(2m, 1m).
Chapter 3 69

Circuit Nodes
Clock Node
Clock Node Ports

Clock Node Notes

Do not send the temporary events generated by a Clock node to the Sink
node of an ECS circuit. Only primitive events can be transmitted from an
ECS circuit.

Place Filter nodes before the Start Input and Stop Input ports to
ensure that only the appropriate events start or stop the Clock node.

Port Connected Activated Eventsa

a. Events are: P = primitive, C = composite, T = temporary.

Start Input No Yes PCT

Stop Input No No PCT

Output Yes Yes T

Start Output No No PCT

Stop Output No No PCT
70 Chapter 3

Circuit Nodes
Combine Node
Combine Node
The Combine node combines events received at all of its inputs into
composite events. When the components of each composite are in a
specified order of creation, their creation times fall within a specified
interval, and they satisfy a specified condition, the composite event is
transmitted. Otherwise, the Composite event is discarded.

Figure 3-10 Combine Node

The Combine node lets you group events and deal with them as a single
entity. It is typically used to group events that have been created almost
simultaneously.

For example, you may have a Create node that is extracting attributes
from several different events to place into a newly created event for
eventual transmission. For this to be possible the events have to be
grouped into a composite event upstream of the Create node such that
the Create node can be presented with a single composite event at its
input port.

Another example is if you want to form pairs of events that were created
only a few seconds apart on the same input stream, so you can compute
the trend or create an alarm event if an event attribute changes too
rapidly (sometimes called the “recent duplicate suppression” scenario).
To achieve this you would use a Combine node with two input ports
connected to the same input stream, specify that the creation order must
be [1,2] such that the composite contains the older event followed by
the younger event, and set the condition such that pairs formed by the
same event are discarded.

Input1

Streams of events Streams of composite events

Input2

Inputn

Output
...
Chapter 3 71

Circuit Nodes
Combine Node
CAUTION Normally event correlation aims to reduce the number of events. Be
careful to avoid situations where a Combine node increases the number
of events:

• many input ports

• many events arriving at all input ports at very short intervals

• a long Interval parameter

• a Condition parameter that accepts too many events.

In such situations, the number of possible combinations which the
Combine node would build and consider for output can easily number in
the thousands, reducing throughput greatly.
72 Chapter 3

Circuit Nodes
Combine Node
Combine Node Description

Figure 3-11 Combine Node Processes

The Combine node receives primitive, temporary, or composite events at
each Input port. It forms composite events from these input events.

As shown in Figure 3-12, a composite event (C) consists of a reference to

➻

10s

[2,1]

21 n…

…

Condition

Interval

Order

Input 1

Input 2

...

Input n

Reset Input

R

output_event

true

false

Output

Error Output
Reset discards retained events

Reset Output

➻

Connection required
Connection optional (unconnected o/p discards events)

Connection optional (unconnected o/p logs events)
Parameter (“input”)

Parameter “switches” event to appropriate path
References to node attributes, Data and Fact Stores,
and Global Definitions

Events stored
Parameter evaluated
Time window

Event flows
Logic flows

Evaluation error
Event discarded
Chapter 3 73

Circuit Nodes
Combine Node
one component event from each input port, in order, from the Input 1
port (I1) to the Input n port (In).

Figure 3-12 Composite Event Built by Combine Node

The Combine node forms composite events from all possible
combinations of input events where the input events satisfy both of the
following conditions:

• they were all created less than Interval apart, and

• they were created in an order that conforms to the specified Order.

Whenever such a composite is formed it is subjected to the Condition
parameter. Depending on the result of evaluating the condition the
composite event is:

• transmitted from the Output port if Condition evaluates to true, or

• removed if Condition evaluates to false, or

• transmitted from the Error Output port if the evaluation results in
an error.

Each time an event arrives at an Input port, the Combine node builds all
possible composite events that can be formed from that event and events
already retained on the other Input ports. Each composite event consists
of a reference to the newly arrived event and a reference to one event
taken from the events retained at each of the other Input ports. All
possible combinations are built.

The create_time attribute of each composite event is set to that of its
youngest component event and its arrival_time attribute is set to the
current time.

The node then tests each composite event with the Order and Condition
parameters. For each composite event, if both the Order and Condition

C

1 2 3 ..n

I1 I2 I3 In
74 Chapter 3

Circuit Nodes
Combine Node
parameters evaluate to true the event is transmitted from the Output
port. Otherwise, if evaluation of Condition raises an error, the event is
immediately transmitted from the Error Output port.

Since there can be many events retained at the input ports, the Combine
node repeats the process for every combination of the newly arrived
event and the currently retained events on the other ports. If one or more
of the other input ports does not have any retained events, no composite
event is built.

Finally, the newly arrived event is retained at the input port. It is
necessary to retain the event as it may form combinations with events
that have not yet arrived or perhaps have not even been created yet.

Events retained at the Input ports are removed from the node whenever
the current time advances past the point where all newly arrived events
on the other input ports have a creation time that is more than Interval
after the creation time of the retained event. The maximum transit
delays for the input ports are used as a basis for this decision.

When an event arrives at the Reset Input port, all currently retained
events are removed from the Input ports and discarded. The Combine
node is then in the same state as when the circuit was initialized. The
reset event is immediately transmitted from the Reset Output port if
the port is connected.

Combine Node Parameters

Interval Interval is a statically evaluated expression that determines the time
window within which events are combined. There is no default value, so

Parameter Type Default Evaluation

Interval Duration None Static

Order List of up to n

Integersa

a. All elements in the Order list must be between 1 and n inclusive
(where n is the number of input ports) and each number may occur once
at most.

[]b

b. Empty list.

Static

Condition Boolean true Dynamic
Chapter 3 75

Circuit Nodes
Combine Node
a value or expression that resolves to a duration data type must be
provided.

The Combine node builds composite events where the creation times of
all the component events are separated by less than the value of the
Interval parameter.

For example,

42s

causes the Combine node to consider combinations of received events
that were created up to 42 seconds apart. That is, if we use D (delta) to
represent the difference, then for three events:

create_time1 D create_time2 <= 42, and

create_time2 D create_time3 <= 42, and

create_time3 D create_time1 <= 42

Order Order is a statically evaluated expression that stipulates a sequence in
which input events must have been created. The expression must resolve
to a List data type containing integers between 1 and n inclusive, where
n is the number of input ports. Each number is allowed to occur at most
once. The default value is [] (empty list), placing no restrictions on the
order of creation times of the input events.

After building composite events, the Combine node tests each composite
against the Order parameter. To pass the test, the creation times of the
component events in the composite must be in the sequence specified by
the Order parameter.

For example, the Order parameter

[2,1,4]

requires that the event received at Input 2 is created before the event
that arrives at Input 1, which must have been created before the event
that arrives at Input 4. All events must be received within the time
specified by the Interval parameter. If there are other ports not
mentioned in the Order parameter list, say Input 3, then the relative
ordering of events at this port does not matter.

Condition Condition is an expression that is dynamically evaluated once for each
composite event. If the expression evaluates to true then the event is
immediately transmitted from the Output port. If the expression
76 Chapter 3

Circuit Nodes
Combine Node
evaluates to false then the composite event is discarded. The default
value is true, allowing all events to pass.

If an unhandled exception is raised or the expression returns something
other than a boolean data type then the composite event is transmitted
from the Error Output port.

Because the Condition parameter is dynamically evaluated it may refer
to the composite event using the event name output_event and it may
refer to other nodes’ attributes and to the Data and Fact Stores.

If the expression refers to the components of the composite event, you
must use the event name output_event n, where n refers to the
required component event. That is, output_event 3 refers to the third
component event of the composite. In Figure 3-12 on page 74, this would
be a copy of event I3 inside the composite event C.

For example, if the second and third components are primitive events,
the expression:

(output_event 2 "generic-trap" = 4)

and

(output_event 3 "generic-trap" = 6)

transmits a composite event only if the "generic-trap" attribute of the
second component is 4 and the "generic-trap" attribute of the third
component is 6.
Chapter 3 77

Circuit Nodes
Combine Node
Combine Node Ports

A newly placed Combine node has only two Input ports, both of which
must be connected. You can add more input ports, each of which is named
Input followed by an integer, for example, Input 21. Up to 50 input
ports are possible but, in practice, too many ports degrades performance.

Combine Node Notes

Do not send the composite events generated by a Combine node to a Sink
node of an ECS circuit. Only primitive events can be transmitted from an
ECS circuit.

Reduce processing overhead by preceding a Combine node with Filter
nodes, upstream of the Input ports, that pass only events required by the
Combine node. Do not use the Condition parameter to test properties of
individual input events that could have been tested in a filter before the
Combine node.

CAUTION Normally, event correlation aims to reduce the number of events. If many
events arrive at the input ports within the specified interval then many
composite events are built. Even though many of these events may be
rejected by the condition specified and are never visible outside the node,
they must all be built and tested. To reduce the number of composite
events generated, minimize the value of the Interval parameter

Port Connected Activated Eventsa

a. Events are: P = primitive, C = composite, T = temporary.

Input1 Yes Yes PCT

Input2 Yes Yes PCT

Input3...n Yes No PCT

Reset Input No No PCT

Output Yes Yes C

Error Output No (logged) No C

Reset Output No No PCT
78 Chapter 3

Circuit Nodes
Combine Node
consistent with the intended operation of the node.

References to the original input events are used (rather than copies)
because each retained event has the potential to be included in several
composite events. By using a reference, the identity of the event (its
unique_id) is preserved and efficiency is maintained.
Chapter 3 79

Circuit Nodes
Compound Node
Compound Node
Compound nodes are nodes containing an encapsulated circuit.
Compound nodes can have parameters and attributes, just like primitive
nodes.

See Chapter 2, “Circuits and Compound Nodes,” on page 23 for details.
80 Chapter 3

Circuit Nodes
Count Node
Count Node
The Count node maintains counters (Count and Count_dict attributes)
that can be incremented and decremented by events entering or passing
through it. The values of these attributes are made available to other
nodes in the ECS circuit.

Figure 3-13 Count Node

The Count and Count_dict attributes maintained by the Count node can
be referenced by expressions in the parameters of other nodes to trigger
an action when a specific value is reached. For example, a Filter node
may discard events as soon as the Count attribute reaches 20.

4 7 1 8 3

“FERF” 45
“LOS” 35
“LOF” 25
...

Event increases the value of the relevant counter(s) by 1

Event decreases the value of the
relevant counter(s) by 1

Increment Input

Decrement Input

Increment Input (optional)

Decrement Input (optional)

Count (attribute)

Count_dict (attribute)
Chapter 3 81

Circuit Nodes
Count Node
Count Node Processing

Figure 3-14 Count Node Processes

The initial values of the counters are defined by the Initial Count
parameter.

The Count attribute is incremented by each event entering at the
Increment Input port and decremented by each event entering at the
Decrement Input port.

Events entering the Increment Input or Decrement Input are
transmitted immediately from the Increment Output or Decrement
Output port respectively, or discarded if these ports are not connected.

The Count attribute is reset to the value of the Initial Count
parameter whenever an event arrives at the Reset Input port or the
Clear Input port. Events entering these ports are transmitted from the
Reset Output and Clear Output ports respectively, or discarded if the

Initial Count

Key Spec

Increment Input

Decrement Input

Reset Input

Clear Input

Error Ooutput

Count

Count_dict

Increment Output

Decrement Output

Reset Output

Clear Output

Count and Count_dict
attributes updated

Plus Minus R C

Resets the Count attribute to Initial Count
and resets the Count_dict to an empty dictionary.

Resets the Count attribute and appropriate keyed
Count_dict attributes to Initial Count.

Connection optional (unconnected o/p discards events)

At least one connection required

Parameter (“input”)

Parameter evaluated
Attribute (“output”)
Logic flows
82 Chapter 3

Circuit Nodes
Count Node
ports are not connected.

The Count_dict attribute is a dictionary comprising counter values
keyed by the evaluation of the Key Spec parameter.

The optional Key Spec parameter is an ECDL function that takes the
input_event. The evaluation of this parameter must result in a value of
type “Any Simple”. If the Key Spec parameter is omitted, the
Count_dict is not used and will remain empty.

For example, a Key Spec may be: input_event “device_id” .

This will extract the device_id attribute from the input event, and
increments, decrements, or clears will apply to the Count_dict element
keyed by device_id .

When an event arrives at the increment_input , decrement_input , or
clear_input ports, the following process takes place:

1. The Key Spec parameter is evaluated for the incoming event. If the
parameter evaluates successfully, the process continues at Step 2. If,
however, there is an error during the evaluation of the Key Spec
parameter, then one of the following actions occurs:

• If the Error Output port has been configured, the input event is
sent to the Error Output port.

• If the Error Output port has not been configured, the error is
logged in the engine log.

2. The Count_dict attribute is keyed with the result of Step 1. If this is
the first time a given key is used, the dictionary element is created
and the value set to Initial Count.

3. The value of the keyed element of the Count_dict attribute is
incremented, decremented, or set to Initial Count respectively.
Chapter 3 83

Circuit Nodes
Count Node
Count Node Parameters

Initial Count Initial Count is a statically evaluated expression that determines the
initial value of the counters in the Count and elements of the
Count_dict attributes. It is also the value to which these counters are
reset after an event is received on the Reset Input port. The default
value is 0.

Key Spec Key Spec is a dynamically evaluated expression that determines the
keyed element of the Count_dict attribute. There is no default value.

Count Node Attributes

Count Count is an integer value that is incremented or decremented by events
entering the node. This attribute can be referenced by other nodes using
dot notation syntax nodeName.Count, where nodeName is the name of a
specific Count node.

For example, to configure a Filter node to pass events through the False
Output port if the Count attribute of Count node Counter24 has
exceeded 20, you enter the following condition:

Counter24.Count <= 20

Parameter Type Default Evaluation

Initial Count Integer 0 Static

Key Spec Any Simple None Dynamic

Attribute Type

Count Integer

Count_dict Dictionary
84 Chapter 3

Circuit Nodes
Count Node
Count_dict Count_dict is a dictionary containing named counts. The integer value
of a dictionary element is incremented or decremented by events that
cause the Key Spec parameter to evaluate to the name of the element.
Dictionary elements can be referenced by other nodes using dot notation
syntax nodeName.Count_dict elementName, where nodeName is the
name of a specific Count node and elementName is the name of an
element in the Count_dict attribute.

For example, to configure a Filter node to pass events through the false
output port if the number of events from the same device is greater than
20, you configure the Count node Counter24 with a Key Spec of
input_event “device_id” and the use the following condition for the
Filter node:

Counter24.Count_dict (input_event “device_id”) <= 20

Count Node Ports

Count Node Notes

The Count and Count_dict attributes can have any value in the range

Port Connected Activated Eventsa

a. Events are: P = primitive, C = composite, T = temporary.

Increment Input Nob

b. At least one of the Increment Input or Decrement Input ports must be
connected.

Yes PCT

Decrement Input No No PCT

Reset Input No No PCT

Increment Output No Yes PCT

Decrement Output No No PCT

Reset Output No No PCT

Clear Input No No PCT

Clear Output No No PCT

Error Output No (logged) No PCT
Chapter 3 85

Circuit Nodes
Count Node
–2,147,483,648 to 2,147,483,647. If either of these bounds are exceeded
the value wraps. For example, if the Count attribute has a value of
2,147,483,647 and an event enters the Increment Input port the Count
attribute is changed to a value of -2,147,483,648.
86 Chapter 3

Circuit Nodes
Create Node
Create Node
The Create node creates a new primitive event for each event that
arrives at its Input port.

Figure 3-15 Create Node

The Create node, in effect, acts as a management agent because it
permits you to create a new event. The event can then be further
processed by the ECS circuit and also, once it leaves the correlation
engine, by external management applications such as an event browser
or alarm manager. The new event can contain data describing a situation
that the correlation engine has recognized by correlating a pattern
consisting of many received events.

Create Node Processing

On receipt of an event at its Input port, the Create node creates a new
event using the specified Encoding Type and Event Syntax, and then
evaluates the Create Spec parameter, which can refer to the input and
created events using the event names input_event and created_event,
respectively.

Input Output

Encoding Type,
Event Syntax and
Create Spec parameters

Stream of primitive, temporary
and composite events

Stream of new, custom,
primitive events
Chapter 3 87

Circuit Nodes
Create Node
Figure 3-16 Create Node Processes

input_event identifies the incoming event.

created_event identifies the event created by the
node after evaluation of the Create
Spec parameter.

If an error occurs during the evaluation of the Create Spec parameter
then the incoming event is immediately transmitted on the Error
Output port and the created event is discarded.

I
C

➻

I C

➻

I

II

Encoding Type

Event Syntax

Create Spec

Input Output

Error Output

input_event created_event

Event
created

Connection required
Connection optional (unconnected o/p logs events)
Parameter (“input”)
Parameter “switches” event to appropriate path
References to node attributes, Data and Fact Stores,
and Global Definitions

Parameter evaluated

Evaluation error
Logic flows

Event flows

Input event
Created event
88 Chapter 3

Circuit Nodes
Create Node
Create Node Parameters

Encoding Type The Encoding Type is a statically evaluated expression that evaluates to
a String data type. The Encoding Type parameter identifies the
endecoder that is used to create the event. It must be one of the String
values listed in Table 3-2:

Event Syntax Event Syntax is a statically evaluated expression that evaluates to
either a String or Oid data type.

Parameter Type Default Evaluation

Encoding Type String None Static

Create Spec Void or Event None Dynamic

Event Syntax String or Oid None Static

Table 3-2 Valid Encoding Types for Create Nodes

Event Value

ASCII "mdl"

CMIP and SNMP "ber"

OVO Messages "OpC_Msg"

Table 3-3 Valid Event Syntax Values for Create Nodes

Event Example Values

ASCII "SimpleEvent" Any String value that identifies a
currently loaded MDL event syntax.

CMIP 2.9.3.2.10.4 Any Oid value that represents a
GDMO notification specification.

SNMP "Trap-PDU" The ASN.1 syntax identifier for
SNMP Traps. "Trap-PDU" is the only
valid value.

OVO Messages "OpC_Msg" The OVO Message syntax identifier.
“OpC_Msg" is the only valid value.
Chapter 3 89

Circuit Nodes
Create Node
Create Spec Create Spec is a dynamically evaluated expression that fills in the
attribute values of the created event. It is executed for its effect on the
event only and not for its return value. The value returned by the
expression is ignored.

An example Create Spec for an ASCII event (with the syntax
“SimpleEvent”) is:

let
val t = explode_time (time.now ())
in

created_event alter
(

"createTime.date.year" => t time.year,
"createTime.date.month" => t time.month,
"createTime.date.day" => t time.day,
"createTime.time.hour" => t time.hours,
"createTime.time.minute" => t time.minutes,
"createTime.time.second" => t time.seconds,
"deviceId" => "Ephor",
"messageType" => "LNKUP",
"severity" => 2,
"text" => ""

)
end

The Create Spec parameter can also refer to other node’s attributes, the
Data and Fact Stores, and surrounding values, as explained in
“Expressions” on page 49.

All non-optional event attributes must be set in the Create Spec
parameter. In many instances it is easier to use the Modify node to copy
and alter an existing event, rather then creating a new event from
scratch.

Optional attributes Optional attributes are identified by the ASN.1 “OPTIONAL” keyword;
or by square brackets [...] surrounding a set of MDL attributes. All OVO
message attributes are optional. These are the only attributes that can
be left out of a Create Spec parameter; you must supply values for all
other attributes. If an optional attribute is left out of a Create Spec
expression then it is set to Void or, in the case of OVO messages, to an
empty String.
90 Chapter 3

Circuit Nodes
Create Node
Create Node Ports

Any event transmitted from the Output port is a primitive event
conforming to the syntax specified in the Event Syntax parameter.

The Error Output port is inactive by default and, if it is unconnected, all
error events are logged to the engine log file if logging is enabled.

Create Node Notes

In the following example expression for the Create Spec parameter,
data is extracted from an SNMP trap (input_event) and placed in a
newly created CMIP notification (created_event). The expression is
described in steps:

1. Set the “managedObjectClass” to a (fictitious) object class for this
Create node. (Note that only the ASN.1 globalForm of
managedObjectClass is supported, so there is no need to express this
as a Tuple (CHOICE).)

created_event alter("managedObjectClass" => 1.2.3.4.5.6.7)

2. Set the “managedObjectInstance” to a (fictitious) instance
representing the managed object that this event is being issued from.
Note that the naming attribute for this object is assigned its value
from the “agent-addr” attribute of the SNMP input event:

created_event alter
("managedObjectInstance" =>
 ("distinguishedName",
 [[(1.2.3.4.5, "myParentNamingValue")],
 [(1.2.3.4.6, input_event "agent-addr")]
]
)
)

Port Connected Activated Eventsa

a. Events are: P = primitive, C = composite, T = temporary.

Input Yes Yes PCT

Output Yes Yes P

Error output No (logged) No PCT
Chapter 3 91

Circuit Nodes
Create Node
3. Now set up the “eventInfo” part of our new event. Let’s first set
“probableCause” from the “specific-trap” attribute of the SNMP event.

created_event alter("eventInfo.probableCause" =>
 ("localValue", input_event "specific-trap"))

4. Assume that all traps have at least one member in the variable
bindings and that this member has a string value. Put this value in
the “additionalText” attribute of the CMIP event. The string value is
inside two levels of ASN.1 choice, hence the complex syntax.

let
 val (_, (_, str)) = input_event
"variable_bindings[0].value"
in
 created_event alter("eventInfo.additionalText" => str)
end

5. Set optional attributes that are not present to Void. For example:

created_event alter ("optionalData" => ())
92 Chapter 3

Circuit Nodes
Delay Node
Delay Node
The Delay node detains each input event until the difference between the
current time of the correlation engine and the creation time of the event
reaches a specified duration. The node then transmits the event.

Figure 3-17 Delay Node

In some management networks, events may arrive at the correlation
engine with wide variations in transit delays. This means that events
may not arrive at the correlation engine in the order in which they were
created. Although many of the circuit nodes are designed to correlate
events arriving out of order, some correlation problems are more easily
solved if the events are sorted into creation time order with a Delay node.

Delay Node Processing

The processing of an event in the Delay node depends on the event’s age,
which at any time is determined as the difference between current time
and the event’s creation time.

An event entering the Input port is detained at the Input port if its age
is less than the duration specified by the Delay Until parameter. It is
detained until current time changes such that the event is the age
specified by the Delay Until parameter.

Input Output

Delay Until

Events arriving out of creation time order Delayed events depart in creation time order
Chapter 3 93

Circuit Nodes
Delay Node
Figure 3-18 Delay Node Processes

If the difference between the current time of the correlation engine and
the creation time of the event is at least the duration specified by the
Delay Until parameter, then the event is transmitted from the Output
port immediately.

The effect of the Delay node on the transmitted event stream is
illustrated by the following examples:

9sDelay Until

Input

Reset Input

Output

Fail Output

Reset Output

Reset flushes
stored events

Connection required

Connection optional (unconnected o/p discards events)
Parameter (“input”)

Events stored

Time window
Logic flows

Event flows

Arrival Time Creation Time Delay Until Output Time

00:00:00 00:00:00 15s 00:00:15a

a. After all other events at that time.

00:00:10 00:00:00 15s 00:00:16(a)

00:00:20 00:00:00 15s 00:00:20

00:00:20 00:00:05 15s 00:00:21(a)

00:00:25 00:00:05 15s 00:00:25
94 Chapter 3

Circuit Nodes
Delay Node
When current time is updated, the Delay node transmits all currently
detained events which are greater or equal to the age specified by the
Delay Until parameter.

When an event enters the Reset Input port it is immediately
transmitted from the Reset Output port, or discarded if not connected.
All detained events at the Input port are then transmitted in creation
time order from the Fail Output port, or discarded if this port is not
connected. These events are not old enough to be transmitted from the
Output port. The Delay node is now in the same state as when the circuit
was first initialized.

Delay Node Parameters

Delay until Delay Until is a statically evaluated expression that determines the
length of time that the delay node detains events entering the Input
port. The default value is 0s.

CAUTION The default value of 0s is a special case that causes the maximum transit
delay of the Delay node’s Input port to be substituted. The substituted
duration is the minimum duration required to cause the Delay node to
sort all incoming events into creation-time order.

For example, a Delay Until value of 25s causes the Delay node to
detain incoming events until the difference between the event’s creation
time and the correlation engine’s current time is less than or equal to 25
seconds.

If the duration specified for the Delay Until parameter is less than or
equal to the minimum transit delay on the Delay node’s Input port (and
is not 0s) then the Delay node will have no effect.

Parameter Type Default Evaluation

Delay until Duration 0s Static
Chapter 3 95

Circuit Nodes
Delay Node
Delay Node Ports

Delay Node Notes

The Delay node does not delay every event for the duration specified by
the Delay Until parameter. An event may be detained by the Delay
node for any duration between 0s and the duration defined by the Delay
Until parameter, depending on the creation time of the event and the
current time when it arrives at the Delay node.

Port Connected Activated Eventsa

a. Events are: P = primitive, C = composite, T = temporary.

Input Yes Yes PCT

Reset Input No No PCT

Output Yes Yes PCT

Fail Output No No PCT

Reset Output No No PCT
96 Chapter 3

Circuit Nodes
Extract Node
Extract Node
The Extract node combines input events with one or more events
selected from a Table node’s Contents attribute to form a composite
event, which is immediately transmitted. Configuration parameters
define the number and identity of the events combined with the input
event.

Figure 3-19 Extract Node

The Extract node can be used in conjunction with a Rearrange node to
select and transmit an event stored earlier by a Table node.

Alternatively, the Extract node can be used to combine an event with
related events to form a composite so that downstream processing is
simplified.

Extract Node Processing

Each event entering the Input port is combined with one or more events
from the Table node’s Contents attribute to form a new composite event
as defined by the Extract Spec and Max Events parameters.

(1) Arriving event
(2) Extract

(3) Table nodes

(4) Extracted events

(5) Departing composite event

Input Output

Spec
Chapter 3 97

Circuit Nodes
Extract Node
Figure 3-20 Extract Node Processes

The Extract Spec parameter is an expression, which may reference the
input event with the event name input_event. It must return a list of
one or more events called the extract list. The members of the list are
copies of events in the Table node.

The Max events parameter truncates the extract list returned by the
Extract Spec parameter to the specified number of event elements.

A composite event is created from the input event and the extract list.

I
Tn

➻

➻

T T…II

II

II

II

Extract Spec

Max Events

input_event

Input
Found

Not found

Output

Fail Output

Error Output

Extracts list of
events from the
Contents of

Table nodes

Connection required

Connection optional (unconnected o/p discards events)
Connection optional (unconnected o/p logs events)
Parameter (“input”)
Event flows
References to node attributes (including Table nodes’
Contents), Data and Fact Stores, and Global Definitions

Parameter evaluated

Time window
Evaluation error
Logic flows

Input event

Extracted Table events
98 Chapter 3

Circuit Nodes
Extract Node
The created composite event is transmitted immediately from the
Output port.

If the number of extracted events is zero, a composite event cannot be
created. In this case the input event is immediately transmitted from the
Fail Output port, or discarded if the port is not connected.

If there is an error during evaluation of the Extract Spec parameter,
the input event is transmitted from the Error Output port, or an error is
logged to the engine log file if the port is not connected and logging is
enabled.

The created composite event is constructed so that the first component is
the event which entered the node at the input port, the second
component is the first event in the extract list, the third component is the
second event in the extract list, and so on.

The create_time and arrival_time attributes of the created composite
event are set to the current engine time. The creation and arrival time
attributes of the original and extract events are not changed.

The input event and the events in the list returned by Extract Spec can
be any combination of primitive, temporary, or composite events.

Max Events

1. Input event 2. First event from list

3. Second event from list

Original event

Extract event
Composite event
Chapter 3 99

Circuit Nodes
Extract Node
Extract Node Parameters

Extract Spec Extract Spec is a dynamically evaluated parameter that selects and
returns a list of events. The input event is referred to in the Extract
Spec expression by using the event name input_event. There is no
default value for this parameter.

For example to select all the events from the Table myTable the
expression is simply:

myTable.contents

To select all of the events stored in the Table tableT1 that have the same
“ManagedObjectInstance” as the input event:

select ev from ev in tableT1.Contents where
 input_event "managedObjectInstance" =
 ev "managedObjectInstance"

Alternatively, to select the most recent event stored in Table tableT2
with the same “ManagedObjectInstance” as the input event:

let
 val (ev, _) = find ev in tableT2.contents where
 input_event "managedObjectInstance" =
 ev "managedObjectInstance"
in
 [ev]
end

The Extract Spec expression can be arbitrarily complex, selecting
events from a combination of Table nodes or referencing the Data Store,
Fact Store, and other nodes’ attributes.

Max Events Max Events is a statically evaluated parameter that is used to truncate
the extract list returned by the Extract Spec parameter to the specified
number of elements. The default value is 1, which means that the
created composite will consist of two components—the input event and
just the first element in the extract list.

Parameter Type Default Evaluation

Extract Spec List of Events none Dynamic

Max Events Integer 1 Static
100 Chapter 3

Circuit Nodes
Extract Node
Extract Node Ports

Extract Node Notes

The Extract node copies selected events from the Contents attribute of
the Table node. It never deletes them or alters them in any way.

The copied events have their creation and arrival times set to the time
they were extracted from the Table node. This ensures that they are not
discarded because their transit delay is too large. The input event in the
composite output event is the original input event (not a copy).

The Extract Spec expression must always return a list, even when only
one event is extracted.

It is more efficient to specify an Extract Spec that creates a list with
the required number of events than to rely on Max Events to truncate a
long list.

Port Connected Activated Eventsa

a. Events are: P = primitive, C = composite, T = temporary.

Input Yes Yes PCT

Output Yes Yes C

Fail Output No No PCT

Error Output No (logged) No PCT
Chapter 3 101

Circuit Nodes
Filter Node
Filter Node
The Filter node evaluates a boolean condition for each event that arrives
at its Input port, and transmits that event immediately from either the
True Output port or the False Output port.

Figure 3-21 Filter Node

The Filter node can be used to transmit only events that match a given
condition, or as a true/false event flow branching mechanism in a circuit.

Filter Node Processing

When an event arrives at its Input port, the Filter node evaluates the
Condition parameter. The condition can refer to the input event using
the event name input_event.

• If the Condition parameter evaluates to the boolean value true, the
event is immediately transmitted from the True Output port, or
discarded if the port is not connected.

• If the Condition parameter evaluates to the boolean value false, the
event is transmitted from the False Output port, or discarded if the
port is not connected.

• If there is an error evaluating the Condition expression, the event is
immediately transmitted from the Error Output port, or sent to the
error log if the port is not connected and logging is enabled.

Stream of different events Stream of selected events

Input True Output

condition
102 Chapter 3

Circuit Nodes
Filter Node
Figure 3-22 Filter Node Processes

Filter Node Parameters

Condition Condition is a dynamically evaluated Boolean expression that
determines the port from which the event is transmitted. The expression
can refer to other node’s attributes, the Data and Fact Stores, and
surrounding values, as explained in “Expressions” on page 49.

The following simple example passes only events whose

➻

➻

Condition

Input True Output

False Output

Error Output

input_event

true

false

Connection required
At least one connection required

Connection optional (unconnected o/p logs
events)

Parameter “switches” event to appropriate path
References to node attributes, Data and Fact
Stores, and Global Definitions

Parameter evaluated
Evaluation error

Parameter (“input”)
Event flows

Logic flows

Parameter Type Default Evaluation

Condition Boolean true Dynamic
Chapter 3 103

Circuit Nodes
Filter Node
“perceivedSeverity” is critical (where 1 is critical):

input_event "eventInfo.perceivedSeverity" = 1

To block events where the “perceivedSeverity” of the event is not critical
and an event from the same “managedObjectInstance” is already present
in a Table node named myTable, you might enter:

not (
 input_event "eventInfo.perceivedSeverity" != 1 and
 exists table_event in myTable.contents where
 table_event "managedObjectInstance" =
 input_event "managedObjectInstance"

)

Filter Node Ports

At least one of the True Output or False Output ports must be
connected.

Port Connected Activated Eventsa

a. Events are: P = primitive, C = composite, T = temporary.

Input Yes Yes PCT

True Output No Yes PCT

False Output No No PCT

Error Output No (logged) No PCT
104 Chapter 3

Circuit Nodes
Modify Node
Modify Node
The Modify node allows event attributes to be added, deleted, or
changed.

Figure 3-23 Modify Node

The Modify node should be used instead of the Create node where the
required event syntax of the output event is the same as the input event.

NOTE The Modify node actually creates a copy of the input event, discards the
input event, and then modifies the copy. This ensures that references to
the input event in other paths through the circuit, or in other circuits,
are not affected.

Stream of events Stream of events with modified attributes

Output

Modify Spec

Input
Chapter 3 105

Circuit Nodes
Modify Node
Modify Node Processing

Figure 3-24 Modify Node Processes

On receipt of an event at its Input port the Modify node creates a copy of
the event and evaluates the Modify Spec parameter. The modified copy
is then immediately transmitted from the Output port.

Because a copy is created and modified there is no need to be concerned
about other references to the input event elsewhere in the circuit. Even
the components of composite events can be freely modified. The copy of
the event is identical in all respects except for the unique_id attribute
and the event’s creation time.

The Modify Spec parameter can refer to the input event using the event
name input_event.

If there is an error during the evaluation of the Modify Spec then the
(unchanged) incoming event (not a copy) is immediately transmitted

➻

I
C

➻

I CI

II

Modifies
eventModify Spec

Input Output

Error Output

Success

input_event

Connection required

Connection optional (unconnected o/p logs events)
Parameter “switches” event to appropriate path
Event flows
References to node attributes, Data and Fact
Stores, and Global Definitions

Parameter (“input”)
Parameter evaluation
Evaluation error

Logic flows

Input event
Modified copy of input event
106 Chapter 3

Circuit Nodes
Modify Node
from the Error Output port.

Modify Node Parameters

Modify Spec Modify Spec is a dynamically evaluated expression that allows
modification of the input_event. For example:

input_event alter ("AlarmCode" => "B")

In this example the event has the value of the attribute "AlarmCode"
changed to the string "B".

The expression can refer to other node’s attributes, the Data and Fact
Stores, and surrounding values, as explained in “Expressions” on
page 49. It is executed for its effect on the event only and not for its
return value. The result of evaluating the Modify Spec parameter is
ignored.

Modify Node Ports

The Error Output port is inactive by default. If it is not connected an
error message is written to the engine log file for each discarded event.

Modify Node Notes

The incoming event is copied before being passed to the Modify Spec
parameter and hence has a different unique_id event attribute and
creation time. If it is passed through without change and then compared
for identity with the original event the comparison returns false despite

Parameter Type Default Evaluation

Modify spec Void or Event none Dynamic

Port Connected Activated Eventsa

a. Events are: P = primitive, C = composite, T = temporary.

Input Yes Yes PCT

Output Yes Yes PCT

Error output No (logged) No PCT
Chapter 3 107

Circuit Nodes
Modify Node
the fact that the events are identical in all other attributes.

If a required event attribute is removed from the event it may fail to
encode when transmitted from the correlation engine.

In the following example expression, one attribute is modified and two
(optional) attributes are removed from the input event.

If the “probableCause” event attribute is greater than 0, decrement it:

let
 val (_, pc) = input_event "eventInfo.probableCause"
in
 if pc > 0 then input_event alter("eventInfo.probableCause"
=>
 ("localValue", pc - 1))
 else
 () -- do nothing, return Void
 end
end

Next, remove the “additionalText” event attribute and
“additionalInformation” event attribute from the notification:

input_event alter(
 "eventInfo.additionalText" => (),
 "eventInfo.additionalInformation" => ()
);
108 Chapter 3

Circuit Nodes
Rate Node
Rate Node
The Rate node measures the number of events per second that passed
through the node during the last interval of a specified duration.

Figure 3-25 Rate Node

The Rate node’s Rate and Rate_dict attribute can be referenced by
expressions in the parameters of other nodes to trigger an action when a
specific value is reached. For example, a Filter node may discard events
whenever the rate exceeds 20 events per second.

Rate Node Processing

Events entering the Input port are immediately transmitted from the
Output port or discarded if the Output port is not connected.

The initial value of the Rate attribute is zero.

The initial value of the Rate_dict attribute is an empty dictionary.

“FERF” 4.5
“LOS” 3.5
“LOF” 0.5
...

..

Stream of received events are transmitted immediately

Output

Rate_dict (attribute)

Input

Rate read by other nodes
Chapter 3 109

Circuit Nodes
Rate Node
Figure 3-26 Rate Node Processes

The following formula is used to calculate the rate:

The Rate node has two modes of operation: fixed-interval and
moving-interval, as described in the following paragraphs.

Fixed-interval
mode

The Rate and Rate_dict attributes are calculated periodically, every
interval seconds (where interval is the duration in seconds as specified by
the Interval parameter). The values of the attributes gives the rate of
event input for the last completed interval.

Input events have no immediate effect on the Rate node attributes in
fixed interval mode. A count of incoming events is kept and used to
calculate the rate at the end of the current interval.

Interval

Moving

Time Alignment

Key Spec

Input

Reset Input

Clear Input

Error Output

Rate

Output

Reset Output

Clear Output
Clears all entries from Rate_dict

Rate and
Rate_dict
attributes
updated

Plus C A Resets node to initial state and
sets values in Rate_dict to 0.0

Connection required

Connection optional (unconnected o/p discards events)

Parameter (“input”)
Attribute (“output”)

Parameter evaluation

Event flows

Logic flows

Number of events in input during interval

Interval length in seconds
Rate =
110 Chapter 3

Circuit Nodes
Rate Node
Action occurs only at the end of the current interval. When the end of the
interval is reached, the rate for the interval just completed is calculated
using the above formula and all rate attributes are updated to this value.

Moving-interval
mode

Rates are recalculated at the end of each second. Only events that
arrived within the previous interval seconds, or since the last reset, are
considered in calculating the rate.

The rate is also recalculated following the arrival of each event.

Reset action If an event is received on the Reset Input port, the Rate attribute and
all values in Rate_dict are reset to 0. No input events received prior to
the reset event will be considered in future rate calculations.

If the Rate node is operating in fixed interval mode then time alignment
occurs. See Time Alignment.

Events entering the Reset Input are immediately transmitted from the
Reset Output, or discarded if the port is not connected.

Clear action When an event arrives at the Clear Input port, the Rate attribute is
reset to 0 and all entries are cleared from the Rate_dict attribute.

Events entering the Clear Input are immediately transmitted from the
Clear Output, or discarded if the port is not connected.

Rate Node Parameters

Interval Interval is a statically evaluated parameter that specifies the duration
over which the rate is to be calculated.

The Interval parameter must be equivalent to a whole number of
seconds. If it is not then it is truncated to an integral number of seconds.

There is no default value for this parameter.

Parameter Type Default Evaluation

Interval Duration none Static

Moving Boolean false Static

Time Alignment (Duration,
Duration)

(0s, 0s) Static

Key Spec Any Simple None Dynamic
Chapter 3 111

Circuit Nodes
Rate Node
Moving Moving is a statically evaluated parameter that determines the mode of
operation of the Rate node.

The default value of this parameter is false, which selects fixed interval
mode. To select moving interval mode enter an expression that evaluates
to true.

Time Alignment Time Alignment is a statically evaluated parameter that may be used to
control the placement of interval boundaries in fixed interval mode. It
can be any expression that evaluates to a tuple of two duration data
types of the form (period, offset).

This parameter has no effect if the moving-interval mode of operation is
selected.

The default value of this parameter is (0s, 0s). No time alignment
occurs and the first interval begins when the correlation engine is
enabled or the Rate node is reset. The first interval ends interval seconds
later.

If the Time Alignment parameter is set to any value other than (0s,
0s) then the first interval ends on the first available time point after the
correlation engine is enabled or the Rate node is reset. Subsequent
intervals will end every Interval seconds after the first one.

The first available time point is determined as follows:

• When the engine is enabled or the Rate node is reset

• wait until (current time mod period) = 0

• wait for offset seconds

• perform the initial rate calculation

Or in other words, the next time t, such that (t – offset) mod period = 0

NOTE The initial rate calculation assumes that the interval starts Interval
seconds before the interval end time but does not consider events
received prior to the last time the node was reset.

There are a number of constraints on the values that the Time
Alignment tuple can take:

• period must be a positive number. If a real number is specified it is
112 Chapter 3

Circuit Nodes
Rate Node
truncated to an integer. Negative numbers are treated as 0.

• period must be less than or equal to Interval. If this constraint is
violated a compilation error is generated.

• offset must be less than or equal to period. Otherwise, offset is
set to offset mod period.

The following examples assume the Rate node is started or reset at
02:35:14.

Key Spec Key Spec is a dynamically evaluated expression that determines the
keyed element of the Rate_dict attribute. There is no default value.

When an error occurs during the evaluation of the input event’s Key
Spec parameter, one of the following actions occurs:

• If the Error Output port has been configured, the input event is sent
to the Error Output port.

• If the Error Output port has not been configured, the error is logged
in the engine log.

Time Alignment Interval First
interval
ends

Second
interval
ends

Third
interval
ends

Comments

(1h,15m30s) 1h 03:15:30 04:15:30 05:15:30

(15m,0s) 1h 02:45:00 03:45:00 04:45:00

(-1m,-1s) 1h 03:35:14 04:35:14 05:45:14 Negative values are
treated as 0.

(2h,0s) 1h Compile error. See error
log.

(2m,3m) 1h 02:37:00 03:37:00 04:37:00 offset > period so
offset is set to
offset mod period.
Chapter 3 113

Circuit Nodes
Rate Node
Rate Node Attributes

Rate The Rate attribute is of data type real. This attribute can be referenced
from other nodes by using the syntax nodeName.Rate, where nodeName
is the name of a specific Rate node.

For example, to configure a Filter node to pass events through its True
Output port if a Rate node called “Traffic” measures a rate less than 20
events per second, you enter the following condition:

Traffic.Rate < 20.0

Rate_dict Rate_dict is a dictionary containing named rates. Dictionary elements
can be referenced by other nodes using dot notation syntax
nodeName.Rate_dict key, where nodeName is the name of a specific
Rate node and key is a specific key spec value, usually an event attribute
value. For example:

Traffic.Rate_dict 2.9.3.2.10.4

Attribute Type Initial value

Rate Real 0.0

Rate_dict Dictionary (empty)
114 Chapter 3

Circuit Nodes
Rate Node
Rate Node Ports

Rate Node Notes

The rate calculation is based on the arrival time of events at the Rate
node, not the arrival time of events at the engine.

The moving-interval mode of operation requires more frequent
recomputation than the fixed-interval mode and may affect the
performance of the ECS circuit if too many moving-interval rate nodes
are used.

Port Connected Activated Eventsa

a. Events are: P = primitive, C = composite, T = temporary.

Input Yes Yes PCT

Reset Input No No PCT

Output No No PCT

Reset Output No No PCT

Clear Input No No PCT

Clear Output No No PCT

Error Output No (logged) No PCT
Chapter 3 115

Circuit Nodes
Rearrange Node
Rearrange Node
The Rearrange node receives a composite event and transmits a new
event constructed from one or more of the events contained in the
original composite event.

Figure 3-27 Rearrange Node

Composite events are created as part of the normal operation of the
Annotate, Combine, and Extract nodes, and as the error output of the
Unless node. It is not possible to transmit a composite event from an
ECS circuit.

The Rearrange node is often used to extract a single primitive event from
a composite event. The Rearrange node can also be used to produce a
new composite event which is a rearrangement of selected component
events of the input event.

Rearrange Processing

The Rearrange node accepts composite events at its Input port. Events
of any other type are immediately transmitted from the Error Output
port.

Stream of composite events Stream of rearranged events

Output

Rearrange Spec

Input
116 Chapter 3

Circuit Nodes
Rearrange Node
Figure 3-28 Rearrange Node Processes

The Rearrange node creates a new composite event if the Rearrange
Spec parameter specifies a composite output event. Otherwise, if a single
primitive event is being extracted, the original primitive event is
extracted from the composite input event and transmitted from the
Output port. The composite input event and all component events that
are not transferred to the output event are discarded.

If the creation of a new event fails, either because the input event has
the wrong format or because the output event is incomplete, then the
input event is immediately transmitted from the Error Output port.

Format errors arise if the Rearrange Spec parameter refers to a
component of the input event that either does not exist or is a composite
event.

➻

➻

2

21 3

21 3

[([2],[])]Rearrange Spec

Input
Success

Output

Error Output

Composite event
rearranged

Connection required

Connection optional (unconnected o/p logs events)
Parameter (“input”)
Parameter “switches” event to appropriate path

Parameter evaluation

Evaluation error
Event flows
Logic flows
Chapter 3 117

Circuit Nodes
Rearrange Node
Rearrange Node Parameters

Rearrange Spec Rearrange Spec is a statically evaluated parameter that specifies which
component events of the input event to include in the new event, and
their position in the new event.

A Rearrange Spec consists of a list of pairs (Tuples) of the form
(from_component, to_component).

The from_component is a list of integers that specify the location of the
component events to be extracted from the composite input event. The
specified events must be either primitive or temporary events, otherwise
an error occurs at runtime.

The to_component is a list of integers that identify the positions in the
new event of the events specified by the from_component.

Extracting a single
event

The Rearrange node is frequently used to extract a primitive or
temporary component from a composite event.

In this case the Rearrange Spec should consist of a list with a single
(from_component, to_component) pair. The from_component should
specify the location of the desired primitive or temporary event within
the input composite event. The to_component should be the empty list
[].

Parameter Type Default Evaluation

Rearrange Spec List of Tuples
of type Integer

none Static
118 Chapter 3

Circuit Nodes
Rearrange Node
For example, to extract the primitive P3, you would write the list
expression

[([2, 1], [])]

The left-hand list [2, 1] in the tuple specifies the event P3 to be
extracted, and the empty right-hand list [] specifies that it is to be an
isolated event and not a component of a composite.

Restructuring a
composite

The Rearrange node can also be used to build a new composite event
with a different structure. (Remember that you do not have to use all the
components in the new composite.) To do this, the Rearrange Spec
parameter maps from each component event in the received composite to
a component in the event to be transmitted.

[([2,1], [])]
2 31

1 2

C1

P1 P2C2

P3 P4

P3
Chapter 3 119

Circuit Nodes
Rearrange Node
For example, to map the components of composite C1 to the new
composite C2, you would write the list expression

[([4], [1]),

([3], [3]),

([2], [2, 1]),

([1], [2, 2])]

Rearrange Node Ports

If anything other than a composite event arrives at the Input port it is
transmitted immediately from the Error Output port.

Port Connected Activated Eventsa

a. Events are: P = primitive, C = composite, T = temporary.

Input Yes Yes PCT

Output Yes Yes PCT

Error Output No (logged) No PCT

[([4], [1]),

([3], [3]),

([2], [2, 1]),

([1], [2, 2])]

P1 P4P2 P3

2 31

1 2

C2

P4 P3C3

P2 P1

41 2 3

C1
120 Chapter 3

Circuit Nodes
Rearrange Node
Rearrange Node Notes

If the output event is a composite event, then the Rearrange Spec must
ensure that all components of the output event are present. For example,
it is an error to specify a Rearrange Spec such as [([1], [2,2])]. This
results in all input events being transmitted from the Error Output
port.

Do not connect the Output port directly to a Sink node in an ECS circuit
if the Rearrange node is configured to transmit a composite event. Only
primitive events can be transmitted from an ECS circuit.

The Error Output port can also transmit composite or temporary
events. It is advisable not to connect this port directly to a Sink node of
an ECS circuit.
Chapter 3 121

Circuit Nodes
Sink Node
Sink Node
The Sink node accepts events from inside a circuit through its single
input port and transmits them to the enclosing environment. If the
enclosing environment is a circuit then all events are transmitted.
Otherwise, if the enclosing environment is the external environment
then only primitive events are transmitted.

Figure 3-29 Sink Node

The Sink node must be used to transmit events from an ECS circuit.

A Sink node has a single Input port and no Parameters.

Sink Node Processing

The Sink node is the path by which a Compound node transmits events
to the enclosing circuit. In a top-level circuit the Sink node is the path by
which an ECS circuit transmits events to the external environment.

In a Compound node, each Sink node inside the Compound node circuit
is visible from the enclosing circuit as an output port of the Compound
node, as shown in Figure 3-30.

Stream of events from circuit

Input

Stream of events
or compound node

Output ports of ECS
circuit or compound node

port
122 Chapter 3

Circuit Nodes
Sink Node
Figure 3-30 Sink Nodes in a Compound Circuit

When the same circuit is operating as a top-level circuit instead of a
Compound node, the output streams from all Sink nodes are merged into
a single event stream, as shown in Figure 3-31.

Events that are output from a circuit may still not be output from the
engine. Engine output is determined by the engine policy. See “Streams”
on page 27 for details.

Sink nodes are seen
from the enclosing
circuit as Output Ports

Compound node

Internal circuit Sink nodes

Enclosing circuit
Chapter 3 123

Circuit Nodes
Sink Node
Figure 3-31 Sink Nodes in a Top-level Circuit

Sink Node Ports

Sink Node Notes

Only primitive events are transmitted through a Sink node when it is
the output port of a top-level ECS circuit. Temporary and composite
events are not transmitted from a top-level ECS circuit, although they
will pass through a Sink node when it is functioning within a Compound
node.

ECS circuit

Internal circuit Sink nodes

External environment

The output of all
Sink nodes is
merged into one
external event
stream

Port Connected Activated Eventsa

a. Events are: P = primitive, C = composite, T = temporary.

Input Yes Yes PCT
124 Chapter 3

Circuit Nodes
Source Node
Source Node
The Source node accepts events from the enclosing environment and
transmits them into an ECS circuit through its single output port.

Figure 3-32 Source Node

Source Node Processing

Purpose The Source node is the path by which a Compound node receives events
from the enclosing circuit. In a top-level circuit the Source node accepts
events arriving at the ECS engine, via the associated input port which
may be configured to accept only certain events.

In a Compound node, a Source node inside the compound is represented
as an input port when the compound is viewed from outside, as shown in
Figure 3-33.

Stream of events from outside

Output

Stream of events
circuit or compound node

Input ports of ECS
circuit or compound node port
Chapter 3 125

Circuit Nodes
Source Node
Figure 3-33 Source Nodes in a Compound Circuit

In a top-level ECS circuit, the external event stream is available to all of
the external input ports. Inside the circuit, each Source node is
associated with an input port. Using the External Tab on the ECS
Designer, external input ports can be created and configured to accept
events of a particular encoding type, event syntax, event type, and/or
create time, as shown in Figure 3-34. You can also use a filter condition
to filter input events. For more information, see “External Event
Filtering” on page 35.

Use the Configure Source dialog box to change the input port name, and
to change the Auto Connect setting. When Auto Connect is on, the input
port is automatically connected when the node is dropped on an existing
connection.

Enclosing circuit

Source nodes Internal circuit

Compound node

Input ports are visible on
the “outside” of a
Compound node
126 Chapter 3

Circuit Nodes
Source Node
Figure 3-34 Source Nodes in a Top-level Circuit

Source Node Ports

The Source node takes events from the input port of an ECS circuit or
Compound node, and transmits them from the Output port to be
processed by downstream nodes. The Output port is always activated
and must be connected.

External environment ECS External Tab ECS circuit

Each input port can be
configured to filte

All events are available
to all input ports

Input ports

input1
event_type = "mdl"

input2
event_type = "mdl"
delay = (0s,2s)

Source nodes Internal circuit

Port Connected Activated Eventsa

a. Events are: P = primitive, C = composite, T = temporary.

Output Yes Yes PCT
Chapter 3 127

Circuit Nodes
Table Node
Table Node
The Table node maintains a table of attributes or a table of events that
have passed through it, and a count of the number of events currently
stored in the table. The contents of the table and the current count of
events in it is made available to other nodes. The Table node provides
short term as well as long term storage of entire events or just some
extracted attributes of an event.

Figure 3-35 Table Node

The Table node works in two modes, namely

• Event Collection mode

When the Table node works in the Event Collection mode, the Table
node stores the entire event and a count of the number of events that
are currently stored in the node. Events stored by the Table node are
saved in a list that is publicly accessible as the node’s Contents
attribute.

NOTE The Table node works in the Event Collection mode by default. All
explaination hereinafter assumes it works in the Event Collection mode

Stream of received events … are transmitted immediately

OutputInput

References to passing
events are stored in the
Contents attribute

The Contents and Count
attributes can be read by
other nodes
128 Chapter 3

Circuit Nodes
Table Node
unless otherwise mentioned.

• Attribute Collection mode

In the Attribute Collection mode, the Table node stores only the
values of extracted attributes of an event and a count of the number
of events(whose attributes have been extracted) that are currently
stored in the node. Extracted attributes are stored as a list of
dictionaries that can be accessed using the node’s Contents
attribute. These attributes are specified in the Attribute List
discussed later.

Table node contents can be used to trigger an action when a specific
sequence of events has been identified. For example, when four
consecutive events from a specific device indicate that its temperature
has been steadily increasing.

It is possible to store events indicating the state of a device as it was
hours or days ago and extract this information for use in further
correlation. Stored events can be extracted into composite events using
an Extract node and can re-enter the correlation some time after they
initially entered the ECS circuit.

Table Node Processing

The processing of an event in the Table node depends on the event’s age,
which is the difference between the current time and the event’s creation
time. Events entering at the Input port are first filtered according to
their age. The filtering compares each event’s age with the Save Until
parameter.The Table node processing differs depending on which mode it
is working.

Event Collection mode

If the event’s age is less than or equal to the Save Until parameter,
reference to the event is saved(the event itself is not copied and the
unique_id is the same for both events) and the event is immediately
transmitted from the Output port. Otherwise, if the event is too old to
store it is immediately transmitted from the Error Output port. If the
Error Output port is not connected the event is recorded in the engine
log file. If a reference to the event is saved, the event is subjected to
further tests depending on the events already stored in the Contents
attribute.
Chapter 3 129

Circuit Nodes
Table Node
The Contents attribute is a list of events in creation time order, with
younger events at the beginning and older events at the end.

The Contents attribute list is conceptually divided into two regions:

• the current region is limited in size and is based on event age, and

• the retained region can be any size and is controlled by logical
expressions in the form of retain and delete conditions.

The division between the two regions is controlled by the values of the
parameters Save Until and Max Events to maintain the following
conditions:

• All events in the current region are at most Save Until old.

• There are at most Max Events events in the current region.

There are no limits on the age of events or the number of events in the
retained region.

Attribute Collection mode

If the event’s age is less than or equal to the Save Until parameter, the
extracted attribute values are stored as a list of dictionaries. Othewise, it
is immediately transmitted from the Error Output port. If this list is
saved, the event is subjected to further tests.

The Contents attribute is a list of dictionaries, with each dictionary
corresponding to an event stored in extraction time order. It displays a
list of dictionaries with each dictionary containing the Attribute values
specified while configuration of the Table node.
130 Chapter 3

Circuit Nodes
Table Node
Figure 3-36 Table Node Processes- I

297

2h

2h

Delete
Condition

Retain
Condition

Max
Events

Save
Until

Input

Reset
Input

Contents

Count

Output

Error
Output

Reset
Output

current_
events

retained_
events

true

false trueR

Reset discards
Content

Too old

Young enough

Current
region

Retained
region

Connection required

Connection optional (unconnected o/p discards events)

Connection optional (unconnected o/p logs events)
Parameter (“input”)
Parameter “switches” event to appropriate path
References to node attributes, Data and Fact Stores,
and Global Definitions

Events stored

Parameter evaluated
Time window
Attribute (“output”)

Logic flows

Event flows
Event discarded

1

2

3
4

5

Chapter 3 131

Circuit Nodes
Table Node
Figure 3-37 Table Node Processes - II

Events arriving at a Table node go through one or more phases from
arrival until they are no longer stored in the Table node (the numbers
refer to Figure 3-36 on page 131):

1. arrived: becomes new or is passed through the Error Output port

2. new: becomes current or retiring

3. current: becomes retiring

4. retiring: becomes retained or is deleted

5. retained: is deleted if a retiring event causes it to be deleted

When an event no longer fits in the current region it is retired. A retiring
event is moved to the retained region if the Retain Condition
parameter is true or deleted if it is false.

When current time is updated, all events in the current region that have
become older than the value of the Save Until parameter are selected
for retirement and retired one by one.

An event may be selected for retirement immediately after it arrives at

The Contents attribute
can be read by other nodes

Current region of
Contents

Retained region of
Contents

Save Until and Max Events
control the size of the current
region

Retain Condition controls
whether retiring events are retained

Delete Condition controls
deletion of retained events
132 Chapter 3

Circuit Nodes
Table Node
the Table node, provided that it is young enough, as specified by the Save
Until parameter.

When an event is retained, all events currently held in the retained
region are reconsidered for deletion. For each currently retained event
the Delete Condition parameter is evaluated, and if it evaluates to
true the event is deleted.

When an event arrives at the Reset Input port the Contents attribute
is reset to an empty list and the Count attribute is reset to 0. Events
entering the Reset Input port are transmitted immediately from the
Reset Output port or discarded if the port is not connected.

Table Node Parameters

Save Until Save Until is a statically evaluated parameter that determines the
maximum age of events entering the table, and also determines the
longest time an event may stay in the current region of the table. The
default value is 0s. When an event arrives, and at every engine cycle, all
events are examined to see if they should be retired because they are
now too old.

Max Events Max Events is a statically evaluated parameter that determines the
maximum number of events in the current region. A Table node stores
events in creation time order. When a new event enters the table and the
number of events now exceeds Max Events, the oldest event is
retirement. The default value 0 ensures that events are not stored in the
current region but are retired immediately they arrive at the Table node.

Retain Condition The Retain Condition is a dynamically evaluated parameter that
determines whether a retiring event is deleted or retained. The retiring
event is referred to in the condition by using the event name

Parameter Type Default Evaluation

Save Until Duration 0s Static

Max Events Integer 0 Static

Retain Condition Boolean false Dynamic

Delete Condition Boolean true Dynamic

Attribute List List None Static
Chapter 3 133

Circuit Nodes
Table Node
current_event. The default value is false, causing no events to be
retained.

When an event is selected for retirement, the Retain Condition
parameter is evaluated. If it evaluates to the boolean value true, the
event is retained. Otherwise, if it is false or an error occurs, the event is
deleted.

Delete Condition The Delete Condition is a dynamically evaluated parameter that
determines whether a retained event is deleted or stays retained when
another, possibly younger, event is retiring. The retiring and retained
events are referred to in the condition with the event names
current_event and retained_event respectively. The default value is
true, causing retained events to be deleted when another event is
retired.

The Delete Condition parameter may depend on both the current
(retiring) event and the retained event. This makes it possible to
compare the two events. For example, to keep only the most recent
temperature reading from a device you would specify that an older event
from that device must be deleted when a younger event from the same
device is retired.

When an event is selected for retirement and it has been determined that
it will be retained, the Delete Condition parameter is evaluated for
every event currently in the retained region. If it evaluates to the
boolean value false, the retained event stays retained, otherwise the
retained event is deleted. Finally, the newly retiring element is inserted
in the retained region.

Attribute List The Attribute List is a statically evaluated parameter that
determines the attributes of the event that will be stored in the Table
node. Specifying parameters in the Attribute List window enables the
Table node to work in the Attribute Collection mode.

The attributes specified in the Attribute List window will be extracted
and stored in a dictionary. If there is no list specified in this window the
Table node will function in the Event Collection mode, storing the entire
event itself.

An empty list [] could be specified in the Attribute list to extract a
minimum of the createTime and arrivalTime attributes. Any other
attributes specifically listed will also be extracted. For example, to
extract the createTime, ArrivalTime, managedObjectClass and
eventType, type
134 Chapter 3

Circuit Nodes
Table Node
[“managedObjectClass”, “eventType”]

Any attribute being accessed in the Delete Condition or Retain
Condition must also be listed in the attribute list. If not, the extracted
attributes will not be evaluated with both Delete and Retain conditions,
since they are not present in the attribute list.

Table Node Ports

Table Node Attributes

Contents The Contents attribute is a List data type used to access the list of
events stored in the Table node. This attribute can be referenced in other
expressions by using the syntax nodeName.Contents , where nodeName is
the name of a specific Table node.

For example, to configure a Filter node to pass events only when a
previous event has been received with the same

Port Connected Activated Eventsa

a. Events are: P = primitive, C = composite, T = temporary.

Input Yes Yes PCT

Reset Input No No PCT

Output No Yes PCT

Error Output No (logged) No PCT

Reset Output No No PCT

Attribute Mode Type Initial value

Contents Event Collection Mode List of Events []

Attribute Collection
Mode

List of Dictionaries none

Count Event Collection Mode Integer 0

Attribute Collection
Mode

Integer 0
Chapter 3 135

Circuit Nodes
Table Node
“managedObjectInstance” (a CMIP event attribute), you enter the
following filter condition:

exists table_event in TableTemp.Contents where
 table_event "managedObjectInstance" =
 input_event "managedObjectInstance"

If the Table node is working in Attribute Collection mode, ensure that
the “managedObjectInstance” is listed in the Attribute List window
if you want to store only this attribute and not the entire event.

NOTE The Contents of a table node cannot be accessed from an Extract Node
when the table node is operating in the Attribute Collection mode
because the <TableNode-Name>.Contents returns a list of dictionaries
and not the list of events itself.

Count Count is an integer attribute that is the number of events currently
stored in the Table node. This attribute can be referenced in other
expressions by using the syntax nodeName.Count, where nodeName is the
name of a specific Table node. The following identity is always true:

nodeName.Count = length nodeName.Contents

Table Node Examples

Retain the
youngest event

Configure a Table node to always retain only the youngest event that has
passed through it:

Save Until: 24h (long duration)
Max Events: 1
Retain Condition: false
Delete Condition: true

Note that in a Table node configured like this, if transit delays cause an
older event to arrive at the node after a younger event, the older event is
retired and immediately deleted.

Retain the latest
event

Configure a Table node to always retain only the latest event that has
passed through it:

Save Until: 24h (a long duration)
Max Events: 0
Retain Condition: true
136 Chapter 3

Circuit Nodes
Table Node
Delete Condition: true

Note that in a Table node configured like this, if transit delays cause an
older event to arrive at the node after a younger event, the older event
will be the one that is selected for retirement and hence it will delete the
younger one from the retained region.

Retain the latest
event for a
managed object

Configure a Table node to always retain only the latest event for a
particular “managedObjectInstance” that has passed through it, from as
many different “managedObjectInstance”s as there happen to be. Set the
parameters as follows:

Save Until: 24h (a long duration)
Max Events: 0
Retain Condition: true
Delete Condition: current_event "managedObjectInstance" =
retained_event "managedObjectInstance"

Retain the latest
event for a
managed object
when table is
working in
Attribute
Collection mode

Configure a Table node to always retain the “managedObjectClass”,
“additionalText”, “createTime” and “arrivalTime” for 1 hr. Set the
parameters as follows:

Save Until: 1h
Max Events: 50
Retain Condition: input_event
“ManagedObjectClass”=1.3.6.1.4.1.999.9
Delete Condition: true
Attribute List: ["managedObjectClass",
“eventInfo.additionalText”]

Table Node Notes

Time Action When current time is updated or a new event arrives, more than one
event may be due for retirement. Events are retired one by one, and a
newly retiring event may cause previously retained events to be deleted
even though they were selected for retirement together. However, the
order of retirement is not specified and your circuit should not make any
assumptions about the order.

Save Until The default value for the Save Until parameter is rarely useful. The
default value of 0s causes events to be stored only if they arrive at the
Table node at the same time as they are created. This is not appropriate
behavior for most real circuits. It is therefore nearly always necessary to
set Save Until to a suitable duration. To ensure that all events enter
Chapter 3 137

Circuit Nodes
Table Node
the Table node, set Save Until to a large number (e.g. 100000000s), or
use the predefined global definition infinite_duration.

Retain Condition If evaluation of the Retain Condition parameter results in an
evaluation error or a type error then the retiring event is deleted and a
message is recorded in the engine log file.

Delete Condition If evaluation of the Delete Condition results in an evaluation error or
a type error then the event is deleted and a message is recorded in the
engine log file.

Duplication of
events

The Table node stores a reference to the original event and does not copy
the event itself while functioning in the Event Collection mode. In effect,
the same event exists simultaneously in more than one place in the
circuit. For example, a downstream node could test the unique_id
header attribute of an event that has passed through the Table node
against all the events stored in the Table contents to confirm whether the
event is in the Table’s contents or not.

Retain Condition
and Delete
Condition

The Delete Condition and Retain Condition may refer to other
nodes’ attributes. However, they should not depend on the current Table
node’s Count or Contents attributes as the results of doing so are
undefined.

Contents There is no way to reference only the current region or the retained
region.

The list of events is ordered such that younger events come before older
events in the list. However, the ordering of events of the same age is not
specified, and your circuit should not make any assumptions about that
ordering.

To force all events into the retained region, with the current region
effectively disabled, set Save Until very large, Max Events to 0, and
Retain Condition to true. Alternatively, to disable the retained region,
simply set the Retain Condition to false.

Storage If the Table Node works in the Attribute Collection mode, memory usage
is less as only the values of extracted attributes of the events are stored.
138 Chapter 3

Circuit Nodes
Unless Node
Unless Node
The Unless node transmits input events unless prevented by an
appropriate inhibiting event. An inhibiting event is an event that
satisfies a given condition, and whose creation time is within a certain
window of time before or after the creation time of an input event.

Figure 3-38 Unless Node

The Unless node may be used to block events that are a logical
consequence of another event. For example, when a link fails a stream of
consequential events may be generated by a device. If a LinkDown event
has already been transmitted, the Unless node can prevent transmission
of further events about the failure of individual connections on that link.

The Unless node is also useful for processing events that are inverses of
each other such as PowerFail and PowerRestore events, On and Off
events, or StartUp and ShutDown events. For example, a transient
power failure can be suppressed by transmitting a PowerFail event only
if it is not followed by a PowerRestore event within ten seconds.

The Unless node can also be used to filter out “jabber” events created, for
example, by consecutive duplicate readings from a device monitoring
temperature or voltage levels.

The Unless node detains any input event until no more inhibiting events
for that event can arrive at the node. The additional transit delay
imposed by the Unless node must be taken into account during design of

Streams of candidate
and inhibiting events

Stream of non-inhibited
events allowed through

Window and Condition
parameters control
transmission of events

Inhibiting events can
prevent the transmission
of events received at the
Input port

Output
Input

Inhibitor Input
Chapter 3 139

Circuit Nodes
Unless Node
the downstream circuit.

Figure 3-39 Unless Node Processes

(-1s,4s)

➻

➻

21

1

1

2

1

1

1

2

Condition

Window

Input

Inhibitor Input

Reset Input

Output

Inhibited Output

Error Output

Fail Output

Reset Output

Reset flushes stored Input port events,
but discards Inhibitor Input port events

input_event

inhibitor_event true

Other

R

Connection required

Connection optional (unconnected o/p discards events)

Connection optional (unconnected o/p logs events)
Parameter (“input”)

Parameter “switches” event to appropriate path
References to node attributes, Data and Fact Stores,
and Global Definitions

Events stored

Parameter evaluated

Time window
Evaluation error
Event flows

Logic flows
140 Chapter 3

Circuit Nodes
Unless Node
Unless Node Processing

The Unless node receives events on its Input port and Inhibitor Input
port. An event arriving on the Input port is detained until no further
inhibiting events can arrive, before being transmitted. Events arriving at
the Inhibit Input port are retained only so long as they could inhibit
input events which have not yet arrived. Inhibiting events are never
transmitted, except as a component of a composite event on the Error
Output port.

The processing of an event in the Unless node depends on the event’s
age, defined as the difference between the current time and the event’s
creation time. The processing of pairs of input and inhibiting events
depends on the difference between the input event’s creation time and
the inhibiting event’s creation time. That is, how much older or younger
the inhibiting event is.

The Unless node considers all possible pairs of input events and
inhibiting events that may prevent an input event from being
transmitted. All pairs are considered as soon as both events have arrived
at the node, without adding any unnecessary delays to the processing of
the input events.

When considering each pair of input and inhibiting events, the Unless
node compares their creation times as specified by the Window
parameter. The Window parameter specifies how much older or younger
the inhibiting event may be.

If a pair satisfies the relative age criteria as specified by the Window
parameter, the Unless node then evaluates the Condition parameter
The two events are referred to by the event names input_event and
inhibitor_event.

(-1s,4s)

2.1 2.2

1

2.3 2.4

– +0

Input event
Window

Inhibitor events

Creation time

Event pairs considered within the window are: (1, 2.2) and (1, 2.3)

Too old Candidate Candidate Too young

Future
Chapter 3 141

Circuit Nodes
Unless Node
The evaluation of the Condition parameter should return a boolean
data type. If the evaluation result is true, the input event is transmitted
from the Inhibited Output port, and that input event is not considered
for any further pair formations. If the evaluation result is false or an
evaluation error occurs, the inhibiting event is not capable of inhibiting
the input event.

If an evaluation error occurs when considering a pair, a composite event
is formed containing the pair of events. The composite event is
immediately transmitted from the Error Output port, or logged if the
port is not connected. The composite event consists of the input event as
the first element and the inhibitor event as the second element. The
creation time of the composite event is the creation time of the youngest
event, and the arrival time of the composite event is set to the current
time.

Figure 3-40 Structure of Unless Node’s Composite Error Event

To be able to form all possible pairs of input events and inhibiting events,
the Unless node may need to detain input events for a while:

1. When an input event arrives it is paired with all inhibiting events
currently detained. If any inhibiting event is found, the input event is
immediately transmitted from the Inhibited Output port, and is not
considered for any further comparisons. If no inhibiting event is
found, the input event continues to be detained at the Input port.

2. When an inhibiting event arrives it is paired with all input events
currently detained. Any input event that is inhibited by the inhibiting
event is immediately transmitted from the Inhibited Output port.
Finally, the inhibiting event is detained at the Inhibitor Input port
if it is possible that this event may fit in the time window of input
events which have not arrived yet.

When current time is updated, the Unless node transmits all detained
input events that are now so old that future inhibiting events will be too

1. Input event

Composite event

2. Inhibitor event
142 Chapter 3

Circuit Nodes
Unless Node
young to fit into the specified time window. Also, retained inhibiting
events are deleted if they are now so old that they will not fit within the
specified time window of any future input event.

An event arriving on the Reset Input port of the Unless node is
immediately transmitted from the Reset Output port, if connected. All
currently detained events on the Input Port are immediately
transmitted from the Fail Output port. These events have not been
kept long enough to determine whether they should be inhibited or not.
Finally, the Unless node discards any inhibiting events retained at its
Inhibitor Input port.

The Unless node is now in the same state as it was when the ECS circuit
was first initialized. All events received at the Input port have been
transmitted from one of the node’s output ports.

Unless Node Parameters

Window Window is a statically evaluated parameter that must consist of a tuple
containing a pair of duration data types. The Window parameter
determines limits for the age difference between the inhibiting event and
the input event, that is:

(inhibitor_event create_time) - (input_event create_time)

The first element of the pair determines the minimum age difference, the
second element determines the maximum age difference. There is no
default value. The following examples illustrate the effect of various
window sizes:

Parameter Type Default Evaluation

Window (Duration, Duration) none Static

Condition Boolean true Dynamic

Window To inhibit the input event the inhibitor event must be
created:

(5s, 10s) anywhere between five and ten seconds after the input event

(-5s, 5s) anywhere between five seconds before and five seconds after
the input event
Chapter 3 143

Circuit Nodes
Unless Node
 Condition The Condition is a dynamically evaluated parameter that determines
whether an inhibiting event inhibits an input event. The events are
referred to in the condition by using the event names input_event and
inhibitor_event respectively. The default value is true, causing any
inhibiting event which fits into the time window of an input event to
inhibit input events.

When an input event and an inhibiting event pair is selected for
evaluation of the Condition parameter, the inhibiting event inhibits the
input event only if the evaluation of the Condition parameter returns
true. If the evaluation of the Condition parameter fails or returns a
value which is not of boolean type, a composite event is formed from the
two events and transmitted from the Error Output port for possible
further processing in the ECS circuit.

Unless Node Ports

At least one of the Output port and the Inhibited Output port must be
connected.

(0s, 0s) at exactly the same time as the input event

Window To inhibit the input event the inhibitor event must be
created:

Port Connected Activated Eventsa

a. Events are: P = primitive, C = composite, T = temporary.

Input Yes Yes PCT

Inhibitor Input Yes Yes PCT

Reset Input No No PCT

Output No Yes PCT

Inhibited Output No No PCT

Error Output No (logged) No C

Fail Output No No PCT
144 Chapter 3

Circuit Nodes
Unless Node
Unless Node Examples

Configure an Unless node to pass a “PowerOff” event only if there was no
“PowerOn” event created by that same equipment less than ten seconds
later than the “PowerOff” event.

Precede the Unless node with Filter nodes to direct the “PowerOff”
events to the Input port and the “PowerOn” events to the Inhibitor
Input port.

Set the parameters as follows:

Window (0s, 10s)

Condition input_event "managedObjectInstance" =
inhibitor_event "managedObjectInstance"

Unless Node Notes

Node delay The Unless node introduces a transit delay because of the Window
parameter. You should minimize the length of the Window consistent with
the correct operation of the node. You can view transit delays through the
Unless node in the Node Status dialog when running a simulation.

Event sorting The Unless node sorts the events on the Output port as a side-effect of its
processing. Sorting the Input and Inhibitor Input event streams by
placing Delay nodes upstream of an Unless node does not affect the
processing load in the node.

Time action When current time is updated more than one event may be transmitted
from the Output port. Events are transmitted one by one. However, the
order in which events with the same creation time are transmitted is
undefined and your circuit should not make any assumptions about that
order.

Window If a Window parameter is specified that will allow inhibiting events to
arrive a long time after the input events, the Unless node must retain
input events for a long time as well, unless they have already been
retained upstream of the Unless node.

Efficiency Place suitable filtering upstream of an Unless node such that only the
proper events arrive at the Input and Inhibitor Input ports, and
configure a short time window. Otherwise, the amount of processing
incurred when an event arrives at the node may become excessive as
Chapter 3 145

Circuit Nodes
Unless Node
pairs must be made with all events already detained or retained on the
other port.

NOTE Do not connect the Error Output port to a Sink node of an ECS circuit.
Only primitive events can be transmitted from an ECS circuit.
146 Chapter 3

4 Events in ECS
147

Events in ECS
Events are the “electrons” of an ECS circuit. ECS primitive events
represent external information of some sort. They can represent network
messages of any type (SNMP traps, CMIP notifications, OVO messages,
etc.) or even log file entries or database records. Primitive events are
described in detail in:

• “Primitive Events” on page 154.

ECS also uses events internally to pass information around a circuit, and
to package information (including other events) together. These special
event types are described in the following sections:

• “Temporary Events” on page 157

• “Composite Events” on page 159.

The section on each type of event explains

• what the event is and how it is generated

• the structure of the event and its attributes

• how to read and test the header and body attribute values of an event

• how to modify the body of an event.

The way a primitive event appears in ECS, and in particular the way its
attributes are addressed, is dependent on the event encoder/decoder. See
the following related publications for details:

• HP OpenView Event Correlation Services ASCII Module

• HP OpenView Event Correlation Services SNMP Module

• HP OpenView Event Correlation Services CMIP Module

HP OpenView OVO Messages are described in Appendix A, “Event
Correlation in OVO,” on page 401.
148 Chapter 4

Events in ECS
Introduction
Introduction
Inside an ECS circuit, information is moved around in the form of events.
All events consist of two main parts, as illustrated in Figure 4-1:

Figure 4-1 Structure of an Event

• The event header contains information about the event. Header
attributes are the same for all events, and describe the event’s
identity, when it was created, when it arrived at the ECS engine, and
how the event is encoded. One of the header attributes, the
event_class, determines the class of the event and what the body of
the event contains.

• The event body contains information specific to the event’s class.

There are three classes of event in ECS:

• Primitive events represent an externally defined unit of data, such as
a network message, trap or notification. The body of a primitive event
consists of the externally defined attribute values.

• Temporary events are generated inside an ECS circuit by the Clock
node and the Annotate node, and cannot be transmitted outside the
circuit. The body of a temporary event depends on whether it was
generated by a Clock or an Annotate node.

• Composite events contain other nested events, and cannot be
transmitted outside the circuit. The body of a composite event can
contain any number of events nested in a tree structure.

Body
Specific information carried

Header
The same for all events

Contents of the event body are
dependent on the event_class

ECS attributes:
unique_id
event_class
create_time
arrival_time
encoding_type
event_syntax
event_type

by the event
Chapter 4 149

Events in ECS
Introduction
Event Flow

Events in the ECS engine are moved through the nodes in a circuit by
reference. This avoids ambiguity problems and maintains efficiency.

The ECS Engine maintains a list of all current events. When a network
message, report, notification or trap arrives at the engine, a primitive
event is created and entered in the list. When the event is output from
the engine, or if it is suppressed by a correlation circuit, it is deleted from
the list. Temporary and composite events are also placed in the list as
they are created within a circuit, and removed from the list when they
are no longer needed.

Each event is stored just once and the engine ensures that, at most, only
one copy of an event is ever instantiated on output to a given stream.

Each event has a unique ID assigned to it when it is placed in the list.
Effectively, it is only the event’s unique ID that is passed around the
circuit, not the event itself. Because the event is addressed by reference
rather than being copied, the exact same event can be processed in many
places at once within a circuit. It can even be present simultaneously in
different circuits running in different streams.

Problems could arise if an event was changed in one place while being
tested in another place, such as in a different circuit. This potential
problem is circumvented by the following rules:

• Events are read-only. You cannot change the contents of an existing
event.

• The Modify node does not actually modify the input event. Instead, it
creates a copy with a different unique ID, and modifies that. The
result is a new event, complete with a new unique ID. This way, any
other references to the input event still refer to the original event
rather than the modified event.

Manipulating Events

An event is a subtype of the ECDL Dictionary data type. A Dictionary
type is an unordered collection of key-value pairs. To access a dictionary
value you need to identify the particular dictionary containing the value
you want, and you need a valid key. Given these two items you can
retrieve a value from the dictionary.

To identify the dictionary you use one of the predefined event names,
such as input_event, as described in “Event names” on page 50. So, if
150 Chapter 4

Events in ECS
Introduction
you wanted the event_class header attribute of the input_event you
would write:

input_event event_class

This would return one of the three Token values EVPrimitive,
EVTemporary or EVComposite, as appropriate for the particular event.
You can test to ensure an event is primitive with an expression such as:

if (input_event event_class = EVPrimitive)
then

...
else

...
end

The previous example illustrates standard Dictionary syntax. However,
the Event subtype supports a wider range of key addressing schemes
than the Dictionary does. These schemes make it possible to address the
various classes and parts of events in a natural way that reflects the
structure of the underlying data. For example, a composite event
contains other events arranged in a tree structure, so a numbering
scheme that reflects a tree graph is used.

To manipulate all the data in an event you must know all the keys for
that event. There is no way to enumerate the keys or to traverse all the
key-value pairs in an event without knowing each and every key. Since
there is a potentially infinite number of different events, this begs the
question of knowing what type an event is. Usually, a circuit is designed
so that low-level comparisons of event attributes are performed only
after extensive filtering of the event stream. So, at the point where you
need to address particular event attributes, you know exactly what type
of event you are dealing with, and what the keys are. This eliminates the
possibility of errors raised by attempted access of non-existent or
incorrect event attributes keys.

The event header, and the body of each of the three classes of event, has
its own scheme for addressing the data contained in it. The remainder of
this chapter describes the key addressing schemes used to access the
various parts of an event.
Chapter 4 151

Events in ECS
Event Header Attributes
Event Header Attributes
A primitive event consists of a header and a body—see Figure 4-1 on
page 149. The header consists of a set of keys that are the same for all
events, regardless of their class or type. The header attributes are listed
in Table 4-1.

Among other things, the event header attributes identify the structure of
the event’s body. This means that, by configuring an ECS circuit to filter
and route events based on their header attributes, you can be confident
that when you delve into the event’s body for more interesting
information, you know how the event is constructed and consequently
how to address the information you want.

In practice you will generally filter on the encoding_type and
event_syntax header attributes. For certain events you may also need
to filter on the event_type.

The header attributes of an event are key-value pairs, where the key is
always a Token data type. Tokens are text values that represent discrete
alternatives, similar to an enumerated data type.

You can test and read header values, but you cannot alter them (you
cannot use the alter function).

Table 4-1 Event Header Attributes

Attribute name (Token) Data type Value and data type returned

unique_id This attribute returns a value that uniquely identifies
an event. You can test whether one event is the same
as another by comparing their unique_id
attributes.

event_class Token Returns a value of EVPrimitive,
EVTemporary or EVComposite. You test this
attribute when you need to determine whether an
event is a primitive, temporary, or composite event.

create_time Time The time at which the event was created (UTC).

arrival_time Time The time at which the event arrived at the ECS
circuit (UTC).
152 Chapter 4

Events in ECS
Event Header Attributes

nt

t
encoding_type String This attribute returns the value "ber", "mdl" or
"OpC_Msg". SNMP and CMIP events are always
ber-encoded, ASCII events are always mdl-encoded
and OVO messages are encoded using the
OpC_Msg endecoder..

event_syntax String If encoding_type is "ber" then
event_syntax identifies the GDMO syntax. For
SNMP, the event_syntax is "Trap-PDU". If the
encoding_type is "mdl" then it identifies the syntax
of a particular message in the MDL source.
Otherwise, if encoding_type is "OpC_Msg" then
event_syntax is also "OpC_Msg".

event_type Oid for CMIP
notifications,
otherwise
String.

Returns the value "generic-trap" for an
SNMP trap, a legal object identifier (Oid)
corresponding to the “eventType” attribute for a
CMIP notification, a syntax-specific value for
ASCII events, or the value of the “MSGTYPE”
attribute for OVO messages.

data_store Data Store Returns the data store corresponding to the conte
that existed when the event was created.

fact_store Fact Store Returns the fact store corresponding to the conten
that existed when the event was created.

num_attrs Integer Returns the number of attributes in a temporary
event.

Table 4-1 Event Header Attributes

Attribute name (Token) Data type Value and data type returned
Chapter 4 153

Events in ECS
Primitive Events
Primitive Events
Primitive events are the internal ECS representations of externally
defined network messages, traps, notifications and reports. They are
created when an externally generated event arrives at the ECS engine,
when a Create node is triggered, or when an event passes through a
Modify node in an ECS circuit.

Primitive nodes are output from the circuit through a Sink node.
Primitive events are the only events that can be transmitted from a
circuit (temporary and composite events can exist only inside a circuit).

See also • HP OpenView Event Correlation Services CMIP Module

• HP OpenView Event Correlation Services ASCII Module

• HP OpenView Event Correlation Services SNMP Module

• “Create Node” on page 87

• “Modify Node” on page 105

Structure of Primitive Events

Overview A primitive event consists of a header and a body—see Figure 4-1 on
page 149. The header contains attributes required for internal
housekeeping as the event travels through an ECS circuit, and the body
consists of one or more attributes.

The exact details of how the attributes of a primitive event are addressed
is dependent on the event endecoder. The following description
illustrates the general idea. Refer to the appropriate module guide (as
listed in the See also list above) for specific details.

Body attributes Primitive event attribute keys are String data types. The names
themselves are taken from the external event description:

• "ber" encoded events use the GDMO/ASN.1 metadata

• "mdl" encoded events use the MDL metadata

• "OpC_Msg" messages use the OVO message attribute keys listed in
Appendix A, “Event Correlation in OVO,” on page 401.
154 Chapter 4

Events in ECS
Primitive Events
Working with Event Attributes

Reading and
testing attributes

To identify the event whose attributes you want to read, you use one of
the event names defined for that particular node parameter (see “Event
names” on page 50). For example, to access the event entering a Filter
node you would use the event name input_event.

The event name is followed by the name of the event attribute you want
to test. Body attribute keys for primitive events are always of String data
type. So to filter on the attribute “messageType” you would enter:

input_event "messageType"

Note the double-quotes around the attribute key—primitive event body
attributes keys are always Strings.

Structured
attributes

Some event encodings support structures such as sequences and sets. In
general these are supported as described in Table 4-2. Refer to the
appropriate module guide for details.

Altering attributes To set an attribute value you use the alter function in a Modify or
Create node.

For example, to change the “severity” value in an ASCII event to the

Table 4-2 Attribute Names

Structure Naming notation Example Event Attribute Name

Simple attribute Field name "managedObjectInstance"

SEQUENCE, SET
or subtype

Higher-level attribute name,
followed by a ‘.’, followed by the
member name

"eventInfo.probableCause"

SEQUENCE OF or
SET OF, or list.

Higher-level attribute name,
followed by a number in square
brackets, representing an index
into the list, with the first element
starting at 0.

"managedObjectInstance[0]"

For lists that contain other lists,
multiple bracketed indices may
be specified, separated by a dot
‘.’.

"managedObjectInstance[0].[0]"
Chapter 4 155

Events in ECS
Primitive Events
value 2, you would write the following expression in the parameter of a
Modify node:

input_event alter ("severity" => 2)

Creating a new
primitive event

When you create a new primitive event using the Create node, ECS
generates a new event and sets the header attributes. The body of the
event must be specified in the Create spec parameter using the alter
function to set each attribute value in the created event.

For example, the Create spec for an ASCII event with the SimpleEvent
syntax might be:

let
 val t = explode_time (Time.now ())
in

created_event alter
(

"createTime.date.year" => t Time.year,
"createTime.date.month" => t Time.month,
"createTime.date.day" => t Time.day,
"createTime.time.hour" => t Time.hours,
"createTime.time.minute" => t Time.minutes,
"createTime.time.second" => t Time.seconds,
"deviceId" => "Ephor",
"messageType" => "LNKUP",
"severity" => 2,
"text" => ""

)
end

Values must be supplied for all non-optional body attributes, including
values such as “createTime” (above) from which the create_time header
attribute is derived. The derivation of the create_time header attribute
works in one direction only; even though a new event has the current
time placed in the create_time header attribute, this does not
automatically set the body attributes from which create_time is derived.
In this example, Time.now returns a Time data type value, which is
converted to a dictionary named t by the built-in function
explode_time. The exploded time values are extracted from this
dictionary with expressions such as t Time.year.
156 Chapter 4

Events in ECS
Temporary Events
Temporary Events
Temporary events are created within an ECS circuit and cannot be
transmitted from the circuit. They are used to transport information
between nodes, or to trigger other nodes into action.

How temporary
events are
produced

Temporary events are created by:

• An Annotate node when it receives a response from an external
annotation server. The temporary event contains the data returned
from the annotation server and is transmitted as a component of the
composite event created by the Annotate node.

• A Clock node on each tick of the clock.

See also • “Annotate Node” on page 58

• “Clock Node” on page 64

Structure of Temporary Events

Overview The header of a temporary event always has an event_class attribute
value of EVTemporary. The contents of the body of a temporary event
depends on whether the event was created by a Clock node or an
Annotate node:

• Temporary events created by an Annotate node are embedded within
the composite event created when the annotation server responds.
The temporary event consists of attributes with keys of type Integer.
Keys are numbered sequentially from 1 (one) where each number
corresponds to an item in the response List. See Figure 4-2 on
page 158.

• Temporary events created by a Clock node have an empty body.
Chapter 4 157

Events in ECS
Temporary Events
Figure 4-2 Temporary Event Created by an Annotate Node

Response

Request

Annotation Server

Input event

Annotate node

Temporary event
Composite event

The Annotate node converts
the annotation response to a
temporary event with numbered
attributes

1 2

1.234
 “high”
2.9.3.2.7

1
2
3

158 Chapter 4

Events in ECS
Composite Events
Composite Events

What composite
events are

Composite events are combinations of events packaged together so that
they can be treated as a single event. The component events can be
primitive, temporary, or composite events.

Composite events avoid the overhead of dealing with related events
separately. For example, you might package several events together so
that a Create node can extract information from several events to
include in a single new event.

This mechanism is fundamental to the ability of ECS to concentrate
information taken from the event stream over time, allowing fewer
delivered events to have a higher information content.

How composite
events are
produced

The Annotate, Combine, and Extract nodes create composite events as
their normal output. The Unless node creates composite events only as
an error output. The Rearrange node can create new composite events
out of the components of a received composite, but is most often used to
extract a primitive or temporary event out of a composite.

Composite events exist only within an ECS circuit and cannot be
transmitted from a circuit.

See also • “Annotate Node” on page 58

• “Combine Node” on page 71

• “Extract Node” on page 97

• “Rearrange Node” on page 116

• “Unless Node” on page 139

Working with Attributes and Components

Reading and
testing
composites’
attributes

The header of a composite event always has an event_class attribute
value of EVComposite. The body of a composite event is comprised of
other events. To obtain the value of an attribute from a contained event
you must specify the path the event and the key.

For example, to decode composite events with the structure shown in the
following diagram, you may want a Filter node to pass a composite C1 if
Chapter 4 159

Events in ECS
Composite Events
the primitive component P4 on path 1 2 has a “messageType” attribute
with the value "LNKDN":

You specify the path to the component event whose attribute you want to
test using a series of numbers. Each number represents the nth event at
the current level in the tree. Starting from C1, the path we want goes
through C2, which is path 1. From C2 we want to access P4, which is the
second event at the next level, so we append the number 2 to the path to
form the complete path 1 2. To test the “messageType” attribute, you
would use the following expression in the Condition parameter:

input_event 1 2 "messageType" = "LNKDN"

Modifying
components’
attributes

The Modify node duplicates an event and allows the attributes of the
new event to be altered with the alter function. For example, in the
composite C1 (below) you may want to change a value in the event P5:

C1

C2

P1 P2

P3 P4

input_event 1 2 ...

1 2 3

21
160 Chapter 4

Events in ECS
Composite Events
To change the value of the “severity” attribute of the composite event P5
to 9, you would write the following expression:

(input_event 3 2) alter ("severity" => 9)

Extracting a
primitive or
temporary

The Rearrange node is frequently used to extract a primitive or
temporary component from a composite event. For example, from the
composite event C1 (below) you might want to extract the primitive
event P4, which is a component of the composite component C2.

To extract the primitive P4, for the Rearrange Spec parameter you

C1

C2

P1 P2

P4 P5

1 2 3

21

4

P3

C1

C2

P1 P2

P4 P5

1 2 3

21

P3

4

P4

[([2,1], [])]
Chapter 4 161

Events in ECS
Composite Events
would write the following expression:

[([2, 1], [])]

The Rearrange Spec parameter defines a List of Tuples. In this case
there is just one Tuple. Each Tuple encloses a pair of Lists. The left-hand
list ([3, 2]) specifies the event to be extracted, and the empty
right-hand list [] specifies its destination is to be an isolated event and
not a component of a composite.

Rearranging
composite events

The Rearrange node can also be used to build a new composite event
with a different structure. You can use as many or few components as
required in the new composite.

For example, given an event with the structure of composite event C1
(below). You might want to build the new composite C2 containing all the
components of composite C1 in a different structure.

To map the components of composite C1 to the new composite C2, you
would write the Rearrange Spec parameter as a List containing four
Tuples:

[([4], [1]),
([3], [3]),
([2], [2, 1]),
([1], [2, 2])]

The left-hand list in each Tuple specifies the path to the source

C1

1 2 3 4

C2

1 2 3
[([4], [1]),

([3], [3]),

([2], [2, 1]),

([1], [2, 2])]

1 2
162 Chapter 4

Events in ECS
Composite Events
component in composite C1, and the right-hand list specifies the path to
the destination component in composite C2.
Chapter 4 163

Events in ECS
Composite Events
164 Chapter 4

5 Timing Considerations
165

Timing Considerations
ECS correlates events in real time. However, an event may take a
substantial amount of time to travel from the device that generated it to
the ECS Engine that will process it. Events can even arrive at a
correlation engine in a different order to that in which they were created.

A correctly designed circuit can compensate for network delays that
would otherwise disrupt the recognition of event patterns. This chapter
provides essential background on the mechanics of time and event delay
management within the ECS engine, and the timing considerations you
need to take into account when designing a circuit.

The chapter covers:

• “Time Synchronization” on page 167

• “Times and Durations” on page 168

• “Current Time” on page 169

• “Event Time Attributes” on page 170

• “Transit Delays” on page 171

NOTE To compensate for network delays, events must be stamped with an
accurate creation time. If creation time is not known (such as with
SNMP traps) then ECS substitutes the time the event arrived at the
ECS Engine, and the circuit loses its ability to compensate for network
delays.
166 Chapter 5

Timing Considerations
Time Synchronization
Time Synchronization
Many correlation problems depend on the timing of the events being
compared. For example, receipt of a link-down event may be relatively
unimportant if it is followed soon after by a link-up event. The problem is
that network and other delays can separate events in time. This can even
result in a link-up event arriving before the corresponding link-down.

Because the notion of time is central to the concept of correlation, some
form of synchronization is essential, and that requires a knowledge of
the time an event was created. Unfortunately, many factors combine to
reduce the reliability of event creation times. For example:

• inaccurate clocks that gain or lose time,

• lack of synchronization between clocks,

• use of different time standards on different clocks,

• the complications of daylight saving time when local time is in use.

These problems are further compounded by devices that create events
without any creation time stamp at all, and major differences between
protocols in the way creation time is defined, if it is defined at all.

HP OpenView ECS expects events to be stamped with the time they were
created using Coordinated Universal Time (UTC). Since this is
frequently not the case, creation time is approximated by setting it to the
arrival time of the event on the following occasions:

• When the “eventTime” attribute of a CMIP notification is absent.

• For all SNMP events.

• For ASCII events, if a create_time part is not specified in the event
description and the user-provided event I/O process does not specify a
create_time. See the HP OpenView ECS Developer’s Guide and
Reference.

• When the creation time is deemed incorrect by the correlation engine.
For example, when creation time is later than the time the event
arrives at the engine.
Chapter 5 167

Timing Considerations
Times and Durations
Times and Durations
Times and durations in ECS are measured with a precision of
microseconds. Time values and functions work correctly during and
beyond the year 2000.

Time Time is implemented using the Time data type. It is assumed that all
times are in Coordinated Universal Time (UTC). Both the create_time
and arrival_time event header attributes are Time data types. The body
of an event may contain additional Time values.

Duration Relative times in the correlation engine are implemented using the
Duration data type. Transit delays and parameters such as time
windows, intervals, and time-outs are implemented as durations.

See also • “Duration Data Type” on page 216

• “Time Data Type” on page 217
168 Chapter 5

Timing Considerations
Current Time
Current Time
In the ECS Designer in simulation mode, current time is manipulated in
a variety of ways so that you can see the passage of events through the
circuit. In a running engine, however, current time is derived from the
host machine. Current time always runs forwards. Even in simulation
mode you cannot reverse the direction of time.

Resolution The current time is incremented in one second steps. Although the
engine is capable of calculating time values down to the microsecond, the
resolution of “current time” is limited to an integral number of seconds.

Simulation current
time

The current time of the correlation engine is displayed in the top-left
corner of the ECS Designer circuit window while a simulation is running.

In simulation mode, current time is initialized and manipulated by the
event log file. See “Simulating Time in the ECS Designer” on page 173.

You can then step through the time line established by the event log by
clicking the appropriate Step By button: [Activity], [Event], or
[Time].
Chapter 5 169

Timing Considerations
Event Time Attributes
Event Time Attributes
The ECS correlation engine uses the create_time and arrival_time event
header attributes to manipulate an event while it is in the engine.

Creation Time

The create_time event header attribute is an absolute Coordinated
Universal Time (UTC) value representing the time at which the event
was created.

Where an accurate event creation time is available it is used, otherwise
it is approximated. By default, create_time is set to the time at which the
event arrives at the ECS engine. However, this is overridden if a more
accurate creation time is available:

• If the message itself carries a creation time attribute then this value
may be used to set create_time (e.g. CMIP notifications and ASCII
events where a create_time part is specified in the MDL message
description).

• If creation time information is available from some other source then
events delivered through the ECS Event I/O API can set the
create_time parameter to EIO_sendEvent(3).

See the HP OpenView ECS Developer’s Guide and Reference for further
information on setting the create_time attribute in the event I/O process.

Arrival Time

The arrival_time event header attribute is set to the current time
when the event arrives at the ECS correlation engine.
170 Chapter 5

Timing Considerations
Transit Delays
Transit Delays
Event transit delay is the difference between current time and the
event’s creation time. An understanding of transit delays will assist you
to design circuits that are efficient in their use of memory, and that add
the minimum additional delay to transit times.

As a circuit designer, you are interested in two aspects of event transit
delay:

• External transit delays that occur prior to an event’s arrival at the
ECS correlation engine.

• Internal transit delays that occur inside an ECS circuit, as introduced
by the circuit designer.

The circuit designer must deliberately introduce transit delay in order to
correlate events that may already have been delayed and may therefore
arrive out of time order. For example, the Delay node is often used to
ensure that events arriving within a certain time window are in creation
time order. It does this by delaying events until they are a certain age.

A circuit may also introduce delay for other reasons. For example, an
Unless node may be used to pass a PowerOff event unless a PowerOn
event occurs within 30 seconds. In this case PowerOff events transmitted
by the circuit will always be at least 30 seconds old because the Unless
node cannot transmit the PowerOff event until it is sure that a PowerOn
event has not been generated.

When both external and internal delay is present, the designer must
know the maximum and minimum delays that events are subject to
when they arrive at the engine. Given this information the engine can
propagate the delay values through the circuit.

The External tab on the ECS Designer window lists all of the circuit’s
input ports and allows a transit delay window to be specified for each
one. When a circuit contains nodes that store events for a time based on
the event’s creation time (Delay, Unless, Annotate, Table, or Combine
nodes) then you must specify values for both the maximum and the
minimum transit delay for each port. If the circuit does not contain nodes
that store events then there is no need to specify transit delays.

If you do not know what the minimum transit delay is, then 0 (zero)
should be substituted. If you do not know what the maximum transit
Chapter 5 171

Timing Considerations
Transit Delays
delay is then you must make a reasonable estimate and you may need to
provide additional circuitry for events that take longer than this.

Event bypass If a late event arrives after the maximum transit delay that you specify
then its handling is determined by the stream policy, unless there is
another (more broadly specified) input port that it can enter. In other
words, events that are older than the allowed maximum may bypass the
circuit. This behavior occurs if the stream policy is “Output” (the
default). If you need to suppress such events then you have two options:

• change the stream policy to “Discard” (ecsmgr -stream stream
-policy discard)

• provide a parallel circuit that provides a route for events that are
older than the maximum specified for the primary circuit(s).

Performance In both the external network and the ECS circuit, transit delays can only
be increased. The ECS engine processes events in real time and it is no
more possible to undo a transit delay than it is to go backwards in time.
The longer the transit delay, the longer events must be held in memory
awaiting the possible arrival of related events. In extreme situations the
additional memory requirements can impact the performance of the
engine.

Sometimes, you need to know the maximum and minimum transit delay
that events are subject to at a particular node in the circuit. You can do
this in simulation mode by clicking the Statistics tab on the Node Status
dialog box.

NOTE Events that have their create_time attribute set to the time the event
arrives at the engine, as described in “Time Synchronization” on
page 167, always have a transit delay of zero. If you set a minimum
transit delay of anything other than 0 (zero), your circuit will not receive
any of these events.
172 Chapter 5

Timing Considerations
Simulating Time in the ECS Designer
Simulating Time in the ECS Designer
When you run an ECS circuit in the ECS Designer in simulate mode, the
time at which the engine is started and the arrival times of events are
controlled by the event log. In addition to events, the event log contains
additional control information that the Designer uses to control its
notion of time.

The ECS event log file can be created using the ECS engine to capture a
stream of real events off the network and write them to a file. See the
HP OpenView ECS Designer’s Guide for details on how to capture an
event log file. However, you may need to add or modify information in
this event log file to manipulate time. This is easily done using a
conventional text editor.

A typical output event log, as captured by the ECS Engine, is shown in
the following example:

eventid(0:1)
+0
!1
1997/01/03 12:03:00,Thor,LNKDN,5,”Link Down:Vili”
% mdl:SimpleEvent:
eventid(0:2)
+0
!1
1997/01/03 12:03:01,Oden,LNKDN,5,”Link Down:Vili”
% mdl:SimpleEvent:
eventid(0:3)
+0
!1
1997/01/03 12:05:00,Vili,PWRUP,5,”Power Up”
% mdl:SimpleEvent:

Note that time control lines are all +0, and that there is no transit delay
(there is no number specified at the end of the % lines). Before using such
a file in the ECS Designer for simulation, you may need to modify the
event arrival times. You may also need to add transit delays. The
following discussion describes how to specify these, and how the engine
interprets time.

Initial engine time When specifying event arrival times it is easiest to think in terms of
“engine time”. If you use the log file above in the ECS Designer (by
selecting Simulate:Load Input Events from the menu in simulate
Chapter 5 173

Timing Considerations
Simulating Time in the ECS Designer
mode) then the initial engine time is set to the create_time of the first
event in the event log. In this example, if the create_time header
attribute is derived from the event itself then the initial engine time (and
the first event’s arrival time) is 12:03:00 on 3rd January 1997.

The initial engine time is set for specific kinds of events as follows:

• For OVO messages, the time is set to the creation time of the first
message in the event log (as indicated by the CREATION_TIME
attribute).

• ASCII events (events with an encoding_type of "mdl") may or may not
have a create_time part defined, depending on the MDL message
description. If a create_time part is present in the MDL message
description then the time in the first event is interpreted as local
time, converted to UTC, and used to set the engine’s initial time. If a
create_time part is not present, the engine’s initial time is set to the
current real time (UTC). See HP OpenView Event Correlation
Services ASCII Module Guide for details.

• If the first event in the log is a CMIP notification with a valid
“eventTime” attribute, then this time is used to set the engine.

• If the first event in the log is an SNMP Trap, or a valid create_time
cannot be derived from the first event, then the engine start time is
set to the start of the current day (00:00:00). (SNMP v1 does not
define a creation time attribute, only a “time-stamp” that counts ticks
since the last device reset.)

NOTE If a time zone or UTC is not specified for the event’s create_time, then
local time is assumed. Since the ECS Engine (and the ECS Designer)
work in UTC, the time displayed in the Input Events and Output Events
windows are always in UTC.

Adjusting arrival
times

The create_times of events after the first have no effect on the engine
time during simulation. If you run a simulation using an event log that
does not specify any time increments, then all events arrive at the engine
at the same time—the create_time of the first event.

To control when events arrive at the engine in the simulator, you must
add information to the raw engine output event log. The first task is to
manipulate arrival times by adding lines of the form +119 to the event
log. This increments engine time by 119 seconds before inputting the
174 Chapter 5

Timing Considerations
Simulating Time in the ECS Designer
event. For example:

eventid(0:1)
+0
!1
1997/01/03 12:03:00,Thor,LNKDN,5,”Link Down:Vili”
% mdl:SimpleEvent:
eventid(0:2)
+2
!1
1997/01/03 12:03:01,Oden,LNKDN,5,”Link Down:Vili”
% mdl:SimpleEvent:
eventid(0:3)
+119
!1
1997/01/03 12:05:00,Vili,PWRUP,5,”Power Up”
% mdl:SimpleEvent:

The second event now arrives at 12:03:00 + 2 seconds (12:03:02) and the
third event arrives at 12:03:02 + 119 seconds (12:05:01). Note that unless
you increment the time explicitly with +n directives, the engine time
remains the same forever.

Setting transit
delays

You can also adjust the create_time of an event relative to its arrival
time by specifying a “transit delay” value. To do this you add a number
representing the seconds of transit delay to the end of the event syntax
line (the lines starting with %). Continuing the example, to bring the
creation times of the events in the simulator into line with the time
stamps on the events, we add the following transit delays:

eventid(0:1)
+0
!1
1997/01/03 12:03:00,Thor,LNKDN,5,”Link Down:Vili”
% mdl:SimpleEvent:0
eventid(0:2)
+2
!1
1997/01/03 12:03:01,Oden,LNKDN,5,”Link Down:Vili”
% mdl:SimpleEvent:1
eventid(0:3)
+119
!1
1997/01/03 12:05:00,Vili,PWRUP,5,”Power Up”
% mdl:SimpleEvent:1

The first event has no transit delay specified. The second event has a
Chapter 5 175

Timing Considerations
Simulating Time in the ECS Designer
transit delay of 1 second (as indicated by % mdl:SimpleEvent:1). The
ECS Designer subtracts one second from the arrival time and deems the
create_time of this event to be 12:03:02 – 1 second (12:03:01).

The third event also has a transit delay of 1 second and so the
create_time is deemed to be 12:05:01 – 1 second (12:05:00).

If a transit delay is specified for the first event then the arrival time of
the first event (which is derived from the create_time attribute of the
first event) is incremented by this amount and the engine time is set to
the computed arrival time.

Engine Input Event Logs

A typical input event log, as captured by the ECS Engine, is shown in the
following example:

eventid(0:1)
+0
!1
1997/01/03 12:03:00,Thor,LNKDN,5,”Link Down:Vili”
% mdl:SimpleEvent:49
eventid(0:2)
+1
!1
1997/01/03 12:03:01,Oden,LNKDN,5,”Link Down:Vili”
% mdl:SimpleEvent:48
eventid(0:3)
+119
!1
1997/01/03 12:05:00,Vili,PWRUP,5,”Power Up”
% mdl:SimpleEvent:29

Note that time control lines (starting with +) increment the simulator’s
clock and that transit delays are specified (49 seconds for the first event).
176 Chapter 5

Timing Considerations
Order of Processing
Order of Processing
The order of processing within an engine step is not defined. This is
generally not a problem. However, when you need to refer to an attribute
of another node, such as the value of a Count node’s Count attribute, you
must be careful to arrange the nodes in series rather than in parallel, in
order to avoid undefined results.

For example, consider the following simple circuit that is intended to
transmit only the 10th event that appears at the input1 node:

A poorly designed
circuit

Incoming events are transmitted to both the Count node and the Filter
node. Conceptually, the same event arrives simultaneously at both these
nodes.

The Count node is incremented by each event, and the Filter node
Condition parameter passes the event to the output1 node only if the
count is exactly 10. The problem is that you cannot rely on one node
being evaluated before the other. Consequently, the Filter node might
pass either the 10th or the 11th event or it might not pass any events at
all, depending on which node is evaluated first.

On the other hand, the next circuit avoids this problem by processing
events serially instead of in parallel:

HowMany.count = 10
Chapter 5 177

Timing Considerations
Order of Processing
A well designed
circuit

HowMany.count = 10
178 Chapter 5

Timing Considerations
Engine Time Management
Engine Time Management
This section explains how time is managed by the engine when it is
running. The way in which the engine steps through time is described,
followed by an explanation of the processing done in each of the two
phases within a step.

The ECS correlation engine sees time change in one second increments.
Unless it is overloaded, the engine has a full second in which to process
all the events that were in the circuit at the start of that second. Time is
then incremented by one second, and the process repeated. The engine
proceeds in this step-wise fashion for as long as it is running.

Within each step there are two distinct processing phases:

• The input phase.

• The cleanup phase.

Input Phase

The input phase processes all events entering the engine. It starts at the
beginning of a second and ends when all events have been processed
through the circuit.

The input phase can take as long as necessary. It does not have to
complete before the start of the next second.

When the input phase is complete the cleanup phase is started.

Cleanup Phase

The cleanup phase starts immediately after the input phase. The main
purpose of the cleanup phase is to perform time-based actions in the
engine, such as releasing an event from a Delay node when the event is
sufficiently old.

A cleanup phase is executed for each second the engine is running,
regardless of whether an input phase was executed for that second.

During the cleanup phase, nodes that retain events for a given time
period are cleaned up. For example, Delay, Unless, Combine and Table
nodes all retain events, but Filter, Modify, Create and Extract nodes do
not.
Chapter 5 179

Timing Considerations
Engine Time Management
Input Phase Overload Processing

If a step lasts longer than one second, input phases are skipped until the
engine catches up. A cleanup phase is never skipped no matter how
loaded the engine becomes because this can adversely affect the order
that events are delivered to nodes.

The following time line illustrates input and cleanup phase processing in
a fully loaded engine (that is, in an engine which, for three seconds, has
no free time).

Figure 5-1 Input and Cleanup Phases in a Fully Loaded Engine

The subscripts on the Input (In) and Cleanup (Cn) phases in Figure 5-1
represents the engine time for work performed. Notice that I28 is skipped
altogether and C28 does not occur until the 29th second. This means that
for a heavily loaded engine, engine time may lag behind real time.

Where long transit delays could be introduced by this process it may be
worthwhile adding a second path to the circuit, specifically for events
that have been delayed. The second path would do less processing than
the primary path, but would ensure that events were not lost.

A second path might, for example, simply create a new event for every
100 input events, effectively dividing the downstream event rate by 100.

Time

Input phase Cleanup phase

I27

27 28

C27 C28

I29

29

C29

I30

30

C30

31
180 Chapter 5

6 Data Store and Fact Store
181

Data Store and Fact Store
Networks are subject to constant change. Equipment is replaced,
additional equipment is installed, and new backbones and management
facilities are added. However, the event patterns recognized by your
correlation circuits change much less frequently and for different
reasons.

The Data Store and Fact Store allow you to separate the environmental
aspects of event correlation from the basic logic and rules that are
“hard-coded” into a circuit. The Data Store and Fact Store let you:

• Build data-driven ECS circuits customized by external parameters.

• Separate the task of ECS circuit design from the tasks of installing
and administering circuits.

• Install the same ECS circuit in different nodes of a network by
redefining local topology relationships and operating parameters.

Data can be accessed from Data Stores and Fact Stores in either the
current context or the event contexts. This is discussed in detail in:

• “Data Store and Fact Store Contexts” on page 183.

The Data Store holds ECS circuit and external network details such as
intervals, threshold values, and other constants. It is discussed in detail
in:

• “Data Store” on page 186.

The Fact Store holds details about relationships such as the network
topology. It is discussed in detail in:

• “Fact Store” on page 193.

Multiple Data Stores and Fact Stores can be loaded into an ECS Engine.
This is discussed in detail in:

• “Multiple Data and Fact Stores” on page 200.

It is possible to simulate event contexts when using the ECS Designer in
Simulate mode. This is discussed in detail in:

• “Simulating Event Contexts in the ECS Designer” on page 201.

In some circumstances the Annotate node may provide a better
mechanism for accessing volatile data than the Fact and Data Stores.
See “Annotate Node” on page 58 for details.
182 Chapter 6

Data Store and Fact Store
Data Store and Fact Store Contexts
Data Store and Fact Store Contexts

Overview

A Data or Fact Store entry is accessed as either the most recently
updated version of an entry (using the current context) or the version of
the entry that existed when the event was created (using the event
context). ECDL operations are provided to access the required context.

Two logical contexts are supported:

• The current context, comprising the collection of the most recently
updated entries in the Data and Fact Stores.

• The event context, for an event currently existing in the correlation
circuit, comprising the collection of Data and Fact Store entries that
were current when the event was created. That is, the event context
of an event is the current context that existed when the event was
created. An event context is a property (an attribute) of an event. This
means it is only accessible where the event is accessible.

Contexts and Multiple Circuits

There can be any number of Data Stores and Fact Stores loaded into a
correlation engine, and there can be any number of correlation circuits
loaded into the engine. A correlation circuit can associate with any one
Data Store and any one Fact Store without restriction. Any Store can be
shared between any number of correlation circuits.

Also, an event can enter any number of correlation circuits. The same
current context of a store is visible in the scope of all correlation circuits
that are associated with that store. It can be considered to be a global
value for the entire engine, accessible from any ECDL expression in any
correlation circuit that is associated with that store.

The event context of a store is visible in all circuits where the event is
visible, because it is an attribute of the event. An event context is a
snapshot of history and is immutable. It is conceptually a universal
read-only value. In this sense, an event context can be considered to be
global to the engine, but only accessible by expressions configured for the
dynamic parameters of any correlation node (in any correlation circuit)
through which it is processed.
Chapter 6 183

Data Store and Fact Store
Data Store and Fact Store Contexts
Event Creation

The read-only create_time event header attribute is used to associate
the appropriate event context values with the data_Store and
fact_Store attributes when an event is received by the correlation
engine or created by a correlation node. Correlation nodes variously
create primitive, composite, and temporary events, setting the
create_time attribute and associating context values with the
data_Store and fact_Store attributes.

A summary of how event contexts are assigned when correlation nodes
create new events is shown in Table 6-1. This table does not include
event creation as a result of run-time errors.

Table 6-1 Context Assignment for Events Created by Correlation Nodes

Node Type Event Type Source of Event Context

Annotate composite create_time equals engine time, so the current context is
used as the event context.

Clock temporary create_time equals engine time, so the current context is
used as the event context.

Combine composite create_time set to that of youngest component, so the
created event inherits the event context of the youngest
component.

Create primitive create_time equals engine time, so the current context is
used as the event context.

Extract composite The create_time of the composite event and the copies
of extracted events are equal to engine time, so the current
context is used as the event context for the composite event
and extracted components.

Modify primitive The input event is copied, so the created event uses the same
event contexts as the input event.

Rearrange primitive

composite

primitive: no new event is created.

composite: create_time equals engine time, so the
current context is used as the event context.
184 Chapter 6

Data Store and Fact Store
Data Store and Fact Store Contexts
Store Versions and Transit Delays

For either a Data Store or a Fact Store, a new (logical) version is created
whenever an update is made to the Store. The latest version is by
definition the current context. The previous version of the Store will
remain in existence as long as an event is using it as a context, or it may
be held as a potential event context if an event may yet arrive to claim it
(determined from circuit transit delays).

When a Store version is deleted, it is no longer available for association
with any new events, and any entries that were unique to the particular
version are deleted from the engine.

For a circuit without a maximum transit delay configured, a new event
may arrive after its true context has been deleted. The event will be
assigned the youngest context that is older than the event’s creation
time; otherwise the oldest context available will be assigned. This can
lead to timing inaccuracies, so it is recommended that transit delays
always be used to avoid the problem.

Loading and unloading of circuits with and without configured transit
delays will cause dynamic adjustment of the rules governing context
deletion.

Table nodes present special problems. An event may be held in a table
node indefinitely. Since every event may have an event context for each
Store, this implies that the associated event context may exist
indefinitely. This context will be available to any event which is
subsequently accepted by the engine.

An event retained by a Table node consumes resources, including the
resources consumed by the Store versions associated with contexts. In
the worst case, where all entries in the Data and Fact Stores referenced
by a circuit change between events, every retained event will have
unique Store versions. If the Stores are very large, system memory
requirements may become excessive. ECS imposes no limits on the size
of a Store or the number of versions that can exist.
Chapter 6 185

Data Store and Fact Store
Data Store
Data Store
This section describes the format and use of the Data Store, a data
structure that contains key-value pairs. These key-value pairs can be
referenced using the dataStore function anywhere a value is required.

The Data Store is held in memory for fast access. It is loaded and
updated from Data Store files that define a series of actions (add or
delete) and key-value pairs.

The ECS correlation engine loads the Data Store from the Data Store file
when the ecsmgr command is run. In the case of the ECS Engine
simulator in the ECS Designer, the Data Store is loaded when the
running of events is started. A Data Store can be modified while the ECS
correlation engine is running, subject to some restrictions.

Generating Data
Store files

When designing circuits, you can create Data Store files with any text
editor. But in a production environment, you will probably program
applications or shell scripts to generate these files automatically from
your network database. Other sources of data could be the MIBs of the
managed objects in your network and the GDMO metadata of HP
OpenView DM.

Data Store file
names

The file suffix must be *.ds for the file to found by the ECS Designer,
although files with any name can be loaded into the ECS correlation
engine.

Loading Data
Stores

In the ECS Designer, Data Stores are loaded from the Simulate menu
before a simulation is run.

In the ECS Engine, Data Stores are loaded using the ecsmgr command
line tool, or by accessing the appropriate ECS Manager CORBA object.
For more information about the ecsmgr command line tool, see the
ecsmgr(1M) reference page.

Data Stores in the Engine can be updated at any time. You cannot,
however, change Data Stores during simulation in the Designer.

For more information, see the HP OpenView ECS Administrator’s Guide
and the HP OpenView ECS Developer’s Guide and Reference.
186 Chapter 6

Data Store and Fact Store
Data Store
File Formats

This section discusses the format and contents of the files used to load
and modify the Data Store.

General file format A Data Store file is an ASCII file following ECDL syntax. The first line is
a mandatory header with a special format. Following the header are any
number of commands that add or delete key-value pairs.

Header line The header line is the first line in the file and has the format:

#path#date#version#future

where:

• a hash sign # precedes each component

• path is the full path and file name of the Data Store file, and must be
in UNIX form even for Windows NT

• date is the date the file was created

• version is the Data Store file version number. This value is displayed
when ecsmgr -info is entered from the command line. (See HP
OpenView Event Correlation Services Administrator’s Guide.)

• future is reserved for future use. Currently it must have a value of 0.

For example, Version 3 of the Data Store file
/usr/telecom/telcodata.ds created on August 17 1997 would have
the following header line:

#/usr/telecom/telcodata.ds#Thu Aug 17 13:27:30 1997#3#0

Commands Commands appear after the header and have the format:

ADD DATA (keyValue, ReturnValue) offset

or

DELETE DATA (keyValue) offset

where:

• Case is important: add data is not equivalent to ADD DATA. The two
words may be separated by any amount of whitespace (space, tab or
newline characters).

• keyValue is the value used to identify this Data Store tuple
Chapter 6 187

Data Store and Fact Store
Data Store
• returnValue is the value returned by the dataStore function when
it is passed keyValue.

• offset is an optional ECDL duration specifying the time after the
start time that this command is logically executed.

The offset only applies to ECS Designer in Simulate mode. It is
ignored by the ECS Engine. The offset enables event contexts to be
simulated in the ECS Designer.

Comments A comment is started by two hyphens (--). All text from the start of the
comment to the end of the current line is ignored when the file is loaded.
Consequently, if a Data Store file is loaded and then unloaded from the
ECS Engine, all comments are lost.

NOTE Commands can contain whitespace characters (space, tab and newline).
The logical end of a command is defined by the closing bracket. This
means that long commands can be wrapped to the next line for easy
reading if required.

Adding data To add new data entries, use the ADD DATA command:

ADD DATA ("OverHeated", 80)
ADD DATA (("Reverse", "Trigger"), 60s)
ADD DATA ("BRKData",[([4],[1]),([2],[3]), ([3],[2,1])])

Deleting data To delete existing data entries, use the DELETE DATA command:

DELETE DATA ("OverHeated")
DELETE DATA (("Reverse", "Trigger"))

Modifying data To modify existing data entries, use the ADD DATA command to overwrite
the existing value in the Data Store. For example, the existing entry
"OverHeated" can be updated with the command:

ADD DATA ("OverHeated", 82)

Data Types

Data Store file entries are tuples containing key-value pairs. This section
explains the data types that can be used for both key and return values.

Format of entries Each entry in a Data Store file has this general syntax
188 Chapter 6

Data Store and Fact Store
Data Store
(keyValue, returnValue)

A typical entry looks like this

ADD DATA ("HeartBeat", 25s)

The keyValue is used as the argument to the dataStore function which
returns returnValue. Once a file containing the previous command has
been loaded into the Data Store the value can be accessed from, say, the
Interval parameter of a Clock node with the expression

dataStore "HeartBeat"

This causes the Clock node’s Interval parameter to be set to 25s when
the correlation engine is started. In this example, the key value
"HeartBeat" has a string data type, and the return value 25s has a
duration data type.

Permitted data
types

Both keyValue and returnValue can be any of the following data types:

• Simple types:

— Duration

— Time

— Integer

— Oid

— Real

— String

• Structured types:

— List

— Tuple

In addition, returnValue can also be a dictionary. keyValue, however,
cannot be a dictionary.

In addition the returnValue must be compatible with the type expected
where it is used.

Simple data types In the previous example, the Data Store file entry was

ADD DATA("HeartBeat", 25s)

It could just as easily have been
Chapter 6 189

Data Store and Fact Store
Data Store
ADD DATA(444, 25s)

Using the following expression in a Clock node Internal parameter:

dataStore 444

will return the value 25s.

Computed values
illegal

Both the key value and the return value must consist of explicit
constants. For example, the Data Store file entry

ADD DATA("Heart Beat", 25s)

is legal for an Interval parameter, with a string key and duration return
value. But this next example,

ADD DATA("Heart " + "Beat", 5s * 5)

consisting of (apparently) equivalent implicit values is illegal. This is
because expressions in entries are not evaluated when entries are loaded
into the correlation engine.

See also • Chapter 3, “Circuit Nodes,” on page 43

• Chapter 8, “Data Types,” on page 211

Using the Current Context to Access the Data Store

The only function that provides access to Data Store values is the
dataStore function. The dataStore function takes a single parameter,
the keyValue, and returns the associated returnValue from the Data
Store. For example, if the following entry has been added to the Data
Store:

ADD DATA("AlarmDelay", 30s)

then the expression

dataStore "AlarmDelay"

will return the duration 30s. The return type of the dataStore function
is always the same type as returnValue. It is up to the circuit designer
and the Data Store administrator to ensure that the returned type is
compatible.

If the key is not found, the dataStore function raises an exception which
can be handled by providing a default value like this:

(dataStore "AlarmDelay")
handle
190 Chapter 6

Data Store and Fact Store
Data Store
NotFound => 5s
end

Note the parentheses () surrounding the call to the dataStore function.
These are necessary to ensure that the handle applies to the whole
expression. Without them, the handle would be applied only to the
immediately preceding "AlarmDelay" argument.

Using Event Contexts to Access the Data Store

An event has an associated Data Store context. The Data Store event
context of an event is an attribute of the event. This means the event
context is accessed in a manner similar to any other event header
attribute (cf. create_time). In this case, the value data_Store is the
name of the attribute. It fetches the logical version of the Data Store that
existed when the event was created.

For example, for a filter node condition parameter expression we can
write:

input_event “severity” = input_event data_Store “critical”

Here the term input_event data_Store returns the Data Store context
from the event. Then the “critical” (string type) Data Store key is
applied to the context to get the entry from the Data Store. This is then
compared for equality with the input_event attribute identified by the
“severity” key.

Note that the same mechanism is used to access the current context and
the event context. The expression:

input_event data_Store “critical”

is evaluated as:

(input_event data_Store) “critical”

and the term (input_event data_Store) evaluates to a Data Store
context which is the same type as the global value dataStore.

One event may be considered in the Data Store context of another event.
For an Unless node, the following condition can be configured:

let
 val context = input_event data_Store
in
 input_event “device” = context “device”
and
Chapter 6 191

Data Store and Fact Store
Data Store
 inhibitor_event “device” = context “device”
end

Here we get the Data Store context for the input_event, which is the
context that existed when the event was created. This context is then
used for both the input_event and the inhibitor_event comparisons.
192 Chapter 6

Data Store and Fact Store
Fact Store
Fact Store
This section describes the format and usage of the Fact Store, a data
structure that contains relationship definitions. These relationships
usually describe the local network topology.

Relationships need not be confined to network topologies. You could also
describe the hierarchy of an organization, or the relationships of your
organization with other organizations: suppliers, customers, service
providers, carriers, regulatory authorities, standards organizations, and
so on. All these relationships could be relevant to correlating events in
the network with your operations and services.

The ECS correlation engine loads the Fact Store when the ecsmgr
command is run. In the case of the ECS Engine simulator in the ECS
Designer, the Fact Store is loaded when the running of events is started.
Once loaded, a Fact Store can be modified while the ECS correlation
engine is running.

Generating Fact
Store files

When designing circuits, you can create Fact Store files with any text
editor. But in a production environment, you will probably program
applications or shell scripts to generate these files automatically from
equipment or topology databases.

Fact Store file
names

The file suffix must be *.fs for the file to be found by the ECS Designer,
although files with any name can be loaded into the ECS correlation
engine.

Loading Fact
Stores

In the ECS Designer, Fact Stores are loaded from the Simulate menu
before a simulation is run.

In the ECS Engine, Fact Stores are loaded using the ecsmgr command
line tool, or by accessing the appropriate ECS Manager CORBA object.
For more information about the ecsmgr command line tool, see the
ecsmgr(1M) reference page.

Fact Stores in the Engine can be updated at any time. You cannot,
however, change Fact Stores during simulation in the Designer.

For more information, see the HP OpenView ECS Administrator’s Guide
and the HP OpenView ECS Developer’s Guide and Reference.
Chapter 6 193

Data Store and Fact Store
Fact Store
File Formats

This section discusses the format and contents of the files used to load
and modify the Fact Store. Both load and update files use the same Fact
Store file format.

General file format A Fact Store file is an ASCII file following ECDL syntax. The first line is
a header with a special format. The header line is required. Following
the header are any number of commands that add or delete facts to or
from the Store.

Header line The header line is the first line in the file and has the format:

#path#date#version#future

where the format is the same as for the Data Store file described in
“Header line” on page 187.

Commands Commands appear after the header and have the format:

COMMAND(leftValue, relation, rightValue) offset

where:

• COMMAND can be either ADD FACT or DELETE FACT. Case is important:
add fact is not equivalent to ADD FACT. The two words may be
separated by any amount of whitespace (space, tab or newline
characters).

• leftValue is the value returned by the fact_find_left function.

• rightValue is the value returned by the fact_find_right function.

• relation defines the relationship between the two values and forms a
key in conjunction with either one of them. relation is passed as the
second parameter to both fact_find_left and fact_find_right.

• offset is an optional ECDL duration specifying the time after the
start time that this command is logically executed.

The offset only applies to ECS Designer in Simulate mode. It is
ignored by the ECS Engine. The offset enables event contexts to be
simulated in the ECS Designer.

Comments A comment is started by two hyphens (--). All text from the start of the
comment to the end of the current line is ignored when the file is loaded.
Consequently, if a Fact Store file is loaded and then unloaded from the
194 Chapter 6

Data Store and Fact Store
Fact Store
ECS Engine, all comments are lost.

NOTE Commands can contain whitespace characters (space, tab and newline).
The logical end of a command is defined by the closing bracket. This
means that long commands can be wrapped to the next line for easy
reading if required.

Adding facts To add a new fact entry use the ADD FACT command:

ADD FACT (("Switch", "SW_71"), 176, ("PowerSupply", "Solar
BAT82"))
ADD FACT (1.43.23.1, 24, 1.43.225.5)
ADD FACT ("SprayCom Corp", 76, "Microwave Link LK47")
ADD FACT (("Switch", "SW_71"), 766, ("Supplier", "Mercata"))

Deleting facts To delete an existing fact entry use the DELETE FACT command:

DELETE FACT (("Switch", "SW_71"), 176, ("PowerSupply", "Solar
BAT82"))

When deleting a fact entry the complete fact must be supplied, just as it
was when the fact was added.

You can also delete a series of related facts by replacing the left or the
right value with (). For example:

DELETE FACT (("Switch", "SW_71"), 176, ())

would delete all fact entries that matched the left value and relation
supplied, regardless of the right value.

Data Types

Fact Store file entries consist of two values of any allowed data type,
“joined” by a relationship. The relationship must always be an integer.

Format of entries Each entry in a Fact Store has this general syntax

(leftValue, relation, rightValue)

A typical entry looks like this

ADD FACT("SprayCom", 76, "LK47")
Chapter 6 195

Data Store and Fact Store
Fact Store
Permitted data
types

Both leftValue and rightValue can be any of the following data types:

• Base types:

— Duration

— Time

— Integer

— Oid

— Real

— String

• Structured types:

— List

— Tuple

In addition both values must be compatible with the type expected in the
node parameter where they are ultimately used.

The relation must always be an integer. Typically, a standard list of
relationships is defined and loaded as a set of Global Definitions so that
circuit designers do not need to remember the relation numbers. For
example:

-- STANDARD RELATIONSHIP DECLARATIONS
-- Only these relationships are to be used in
-- SprayCom Support Corporation ECS circuits

-- Relation Equivalent integer

val is_connected_to = 24
val is_powered_by = 176
val is_owned_by = 1029
val is_serviced_by = 43
val is_leased_from = 766
val leases = 76
val is_routed_via = 891

val is_registered_with = 666
val has_service_contract = 113 -- etc.

Once entered as Global Definitions, these bindings can be used in ECS
circuits instead of the relation numbers. You must, however, use
numbers when defining relationships in the Fact Store file.
196 Chapter 6

Data Store and Fact Store
Fact Store
A text file containing your standard relationship declarations is a useful
reference for circuit designers.

Computed values
illegal

Values in a Fact Store entry must consist of explicit constants. For
example, the Fact Store file entry

ADD FACT("SprayCom", 70 + 6, "LK" + "47")

is illegal because expressions in entries are not evaluated when entries
are loaded into the correlation engine.

See also • Chapter 3, “Circuit Nodes,” on page 43

• Chapter 8, “Data Types,” on page 211

Using the Current Context to Access the Fact Store

Overview The functions that access the Fact Store are:

• fact_exists (leftValue, relation, rightValue), which checks
whether a complete relationship is present, and returns a boolean
value of true or false

• fact_find_right (leftValue, relation), which returns the
right values of relationships as a list containing none, one, or more
elements

• fact_find_left (rightValue, relation), which returns the left
values of relationships as a list containing none, one, or more
elements

Note the following:

1. The arguments to fact_exists is a tuple with three elements and
the argument to fact_find_left and fact_find_right is a tuple
with two arguments.

2. The order of the elements in the lists returned by the
fact_find_right and fact_find_left functions is undefined.

Example
relationships

To understand how the Fact Store functions work, consider these
example relations in a Fact Store:

("aaa", 1, "bbb")
("aaa", 1, "ccc")
("ddd", 1, "ccc")
("eee", 2, "fff")
Chapter 6 197

Data Store and Fact Store
Fact Store
("eee", 3, "fff")

where the relationship values 1, 2 and 3 mean:

1 is contained in

2 is the parent of

3 is equal to

Checking the
existence of a
relationship

When you use the fact_exists function, you must give the entire
relationship as the argument, that is a tuple containing leftValue,
relation, and rightValue. For example, given the Fact Store above,

• fact_exists ("aaa", 1, "bbb") returns true

• fact_exists ("aaa", 3, "bbb") returns false

• fact_exists ("eee", 1, "bbb") returns false

Returning the right
value

When you use the fact_find_right function, you provide a tuple
containing the leftValue and the relation as arguments. The returned
list contains a copy of all rightValues that match the supplied
leftValue and relation. An empty list is returned if no match is found.
For example, given the Fact Store above,

• fact_find_right ("aaa", 2) returns []

• fact_find_right ("ddd", 1) returns ["ccc"]

• fact_find_right ("aaa", 1) returns ["bbb", "ccc"]

Returning the left
value

When you use the fact_find_left function, you provide a tuple
containing the rightValue and the relation as arguments. The
returned list contains a copy of all leftValues that match the supplied
rightValue and relation. An empty list is returned if no match is
found. For example, given the Fact Store above,

• fact_find_left ("ccc", 3) returns []

• fact_find_left ("fff", 2) returns ["eee"]

• fact_find_left ("ccc", 1) returns ["ddd", "aaa"]

See also • Chapter 3, “Circuit Nodes,” on page 43

• Chapter 8, “Data Types,” on page 211

• “fact_exists” on page 267
198 Chapter 6

Data Store and Fact Store
Fact Store
• “fact_find_left” on page 268

• “fact_find_right” on page 269

Using Event Contexts to Access the Fact Store

Alternative forms of the in-built ECDL Fact Store access functions are
provided to access a given Fact Store context. For example, for the
input_event accessible in a filter node condition:

fact_exists_ctxt (input_event fact_Store) (left_fact,
relationship, right_fact)

The (input_event fact_Store) argument is a Fact Store context, here
the one from input_event. The function returns true if the fact exists,
else false.

fact_find_left_ctxt (input_event fact_Store) (right_value,
relationship)

returns a list of all facts which satisfy the requirement. Similarly we
have:

fact_find_right_ctxt (input_event fact_Store) (left_value,
relationship)

As in the Data Store example, a single Fact Store context can be used in
multiple places:

let
val facts = input_event fact_Store
in
fact_exists_ctxt facts (f1, r1, g1)
or fact_exists_ctxt facts (f2, r2, g2)
end

The global value factStore can be passed to these fact functions to
represent the current Fact Store context, as in:

fact_exists_ctxt factStore (left_fact, relationship,
right_fact)
Chapter 6 199

Data Store and Fact Store
Multiple Data and Fact Stores
Multiple Data and Fact Stores
Any number of named Data and Fact Stores may be loaded into an
engine. When a circuit is loaded it may be associated with at most one
Data Store and one Fact Store. Multiple circuits may reference a common
Store.

In fact, any store file (Data or Fact) may contain either or both Data
Store entries and Fact Store entries. A useful adaptation of this is to use
a single Fact Store file to hold common facts and data and individual
Data Stores for each circuit to hold per-circuit private data and facts.
200 Chapter 6

Data Store and Fact Store
Simulating Event Contexts in the ECS Designer
Simulating Event Contexts in the ECS
Designer

Overview

ECS Designer allows only a single Data Store and a single Fact Store to
be loaded, before a circuit is simulated. Updating the Data and Fact
Stores is not supported in the Designer, only in the ECS Engine.

offset values are used after the ADD and DELETE commands in the Data
and Fact Stores to allows contexts to be simulated.

It is assumed that the sequence of commands that add and delete Data
and Fact Store entries are intended to emulate the initial loading and
subsequent real-time updates to the respective Stores. This means that
the order of the commands is important, with subsequent commands
being deemed to be effected later in time.

ADD Commands

An ADD command causes an entry to be added. If a relative time is
provided, the entry will be added to the appropriate Store version. If the
entry is the only entry for this data or fact entry and has no relative time
parameter, it is assigned to the first version. If the entry already exists
(was previously added to a version), and the subsequent entry contains a
relative time, it is assigned to the appropriate version. If a subsequent
entry does not contain a relative time, it is assigned to the first version.
See Table 6-2.

Table 6-2 Adding Store Entries

Relative
Time

Existing
Entry

Data Store Action Fact Store Action

no no Add to first version. Add to first version.

no yes Replace entry in first version. If identical, no action.

yes no Add to version with time stamp equal
to simulation start time plus offset.

Add to version with time stamp
equal to simulation start time plus
offset.
Chapter 6 201

Data Store and Fact Store
Simulating Event Contexts in the ECS Designer
When an entry is added to a Store version, it is automatically added to
all subsequent Store versions (i.e. the entry persists in time) unless the
entry is deleted or changed for a subsequent version. For backward
compatibility, for input files with no relative times, there is only one Data
Store version and one Fact Store version, and these are used for all
contexts.

DELETE Commands

A DELETE command causes an entry to be deleted. There may be multiple
instances of a data item or a fact participating in different Store
versions. If the relative time is not given, the command applies to all
versions (supporting backward compatibility).

If a relative time is given, the entry will be deleted from the identified
Store version and later Store versions. Any earlier versions of the entry
will continue to exist. If a different entry should exist in later versions, it
must be added by subsequent commands with appropriate relative
times.

Any reference to a deleted (or otherwise non-existent) data entry in a
Store version will result in a NotFound exception being raised.

Dumping Stores

The Data Store or Fact Store can be dumped from the ECS Engine via
the ecsmgr utility or via an operation on an interface of the ECSManager
object. When a Store is dumped, it is dumped with a relative time on
each entry. The oldest version will have a “relative time” of zero. This
format will allow the file to be loaded into the ECS Designer simulator. If
the resultant files are reloaded into an ECS Engine, only the most recent
entries will be used, since time offsets are ignored and (by definition) all
events must occur after the latest entries are loaded.

yes yes Replace entry in version with time
stamp equal to simulation start time
plus offset.

If identical, no action.

Table 6-2 Adding Store Entries

Relative
Time

Existing
Entry

Data Store Action Fact Store Action
202 Chapter 6

7 Identifiers, Comments, and
Reserved Words
203

Identifiers, Comments, and Reserved Words
This chapter summarizes the requirements for constructing identifiers,
inserting comments, and lists reserved words and symbols:

• “Identifiers” on page 205.

• “Comments in ECDL” on page 206.

• “Reserved Words and Symbols” on page 207.
204 Chapter 7

Identifiers, Comments, and Reserved Words
Identifiers
Identifiers
Identifiers are names constructed with a subset of characters between
ASCII code 32 (“ ” space) and 126 (~ tilde). An identifier must begin with
a letter, followed by any combination of letters, digits, underscores, and
apostrophes (’). Other characters are not permitted. Be careful with
underscores (_)—an underscore on its own has a special meaning.

Letters can be upper-case (A) or lower-case (a), but ECDL is
case-insensitive, and treats all letters as lower-case (except within
strings). For example, Event, event, and eVeNt are all equivalent.

Identifiers must
not be reserved

The words and symbols summarized in Table 7-1 and Table 7-2 have
special meanings and cannot be used for ECDL identifiers such as value
names. Doing so will cause a syntax error when the circuit is compiled.

NOTE Correlation circuit file names are identifiers and so must follow the same
rules.
Chapter 7 205

Identifiers, Comments, and Reserved Words
Comments in ECDL
Comments in ECDL
ECDL comments begin with a double-hyphen “--” and terminate with
either the end of the line, or another double-hyphen. For example:

-- This entire line is a comment

val myValue = 23 -- This is a comment after my value
 -- definition

val myValue = --23-- 24 -- This is a comment after my value
 -- definition, where the value 23 has
 -- been "commented out", and the
 -- value 24 is used instead.
206 Chapter 7

Identifiers, Comments, and Reserved Words
Reserved Words and Symbols
Reserved Words and Symbols
Table 7-1 lists the reserved words that you cannot use for identifiers in
ECDL expressions. Table 7-2 lists the symbols that have special meaning
in ECDL expressions.

Table 7-1 Reserved Words

and annotate any as

attributes case choose clock

combine compound count create

data delay dict else

end exception exists external

extract false filter find

fn forall from fun

graphics handle identification if

implies in infix inputs

internal is let list

mod modify module node

not of open or

outputs parameters pragma prefix

raise rate select simple

table then token true

type typecase unless val

where
Chapter 7 207

Identifiers, Comments, and Reserved Words
Reserved Words and Symbols
Table 7-2 Reserved Symbols

Symbol Names or Functions

() precedence operator; tuple delimiter; dictionary delimiter;
void

[] list delimiter

, separator (of elements in lists, tuples, and dictionaries)

. separator (of components in nodes, modules, Oid’s)

; —

: is of data type

:: prepend (element to list)

+ add (numeric); concatenate (string)

– subtract

* multiply (numeric); construct (tuple pattern)

/ divide

^ exponentiate

= equal

!= not equal

> greater than

>= greater than or equal to

< less than

<= less than or equal to

| where (list builder); alternative (type declarations)

:– such that

=> consists of, is (function declarations); maps to (dictionaries)

-> returns (function type declarations)
208 Chapter 7

Identifiers, Comments, and Reserved Words
Reserved Words and Symbols
See also • Chapter 9, “Operators and Built-in Functions,” on page 233

• Chapter 10, “Writing ECDL Expressions,” on page 319

–– comment delimiter

_ (underscore) Place holder in a binding pattern.

{ reserved

} reserved

reserved

@ reserved

Table 7-2 Reserved Symbols

Symbol Names or Functions
Chapter 7 209

Identifiers, Comments, and Reserved Words
Reserved Words and Symbols
210 Chapter 7

8 Data Types
211

Data Types
This chapter summarizes the data types used in the ECDL language,
which in turn is used for all parameters and values used in the
correlation engine.

Simple data types • “Integer Data Type” on page 213

• “Real Data Type” on page 214

• “Boolean Data Type” on page 215

• “Duration Data Type” on page 216

• “Time Data Type” on page 217

• “Oid Data Type” on page 218

• “String Data Type” on page 219

• “Token Data Type” on page 221

Structured data
types

• “Tuple Data Type” on page 222

• “List Data Type” on page 223

• “Dictionary Data Type” on page 225

Other data types • “Function Data Type” on page 228

• “Function Data Type” on page 228

• “Opaque Data Type” on page 229

• “Dynamic and User Defined Types” on page 230

More advanced information about the ECDL type system and its use is
presented in Chapter 10, “Writing ECDL Expressions,” on page 319.
212 Chapter 8

Data Types
Integer Data Type
Integer Data Type

Definition Integers are 32-bit whole numbers.

Representation Integers are represented as a string of digits. Numbers without a leading
+ sign are assumed to be positive. Commas are not allowed. For example:

21 +47 –4759

The range of numbers is +/–2,147,483,647.

Operators and
functions

Integer expressions can be manipulated with the arithmetic operators,

+ - * / mod div ^

compared with the relational operators,

= != > >= < <=

converted to a string representation,

stringOf chr

and treated as bitmasks with the bit string operators,

bitand bitor bitxor bitinv bitleft bitright

NOTE A negative number must be enclosed in parentheses when used as a
literal argument to a function, to ensure that it binds correctly. For
example, instead of writing System.trace –2.5 , write System.trace
(-2.5) instead.
Chapter 8 213

Data Types
Real Data Type
Real Data Type

Definition Real numbers are implemented as 64 bit IEEE format double precision
floating point numbers, which have a range from
-2.2250738585072014E308 to 1.7976931348623157E308. The smallest
exponent is -308.

Representations Real numbers are expressed with a decimal point, and may include an
exponent. Note that 100 is an integer, whereas 100.0 is a real number.
Further examples of real numbers are:

21.0 –629.4 2.34E–7

Operators and
functions

Real numbers can be manipulated with the arithmetic operators,

+ - * / ^

converted to integers,

truncate round

compared with the relational operators,

= != > >= < <=

and converted to a string,

stringOf

NOTE A negative number must be enclosed in parentheses when used as a
literal argument to a function, to ensure that it binds correctly. For
example, instead of writing round –2.5 , write round (-2.5) instead.
214 Chapter 8

Data Types
Boolean Data Type
Boolean Data Type

Definition Boolean values are either true or false. No other value is allowed and no
type conversions are available. Specifically, you cannot substitute an
integer for a boolean data type, as is possible in some other languages.

Representation A boolean expression evaluates to one of only two values: true or false.

Operators and
functions

Boolean expressions can be manipulated with the logical operators,

and or implies not

compared with the relational operators,

= !=

and converted to a string representation with

stringOf
Chapter 8 215

Data Types
Duration Data Type
Duration Data Type

Definition The duration data type is used to store relative times. A relative time is
the elapsed time between two absolute time points, as represented by the
time data type. Duration is a signed data type with a resolution of 1
microsecond and a range of approximately +/–596,523 hours (68 years).

 Representation A duration is specified in hours, minutes and/or seconds. The
specification can consist of any or all of these parts. Each part is followed
immediately by one of the letters h, m, or s, as appropriate. For example:

13.5h 13h30m 44s

There must be no spaces between the components of a duration value, for
example, 12h27m52.5s is correct but 12h 27m 52.5s is incorrect.

If there is only one number, the letter can be omitted and the value is
read as seconds. For example, 44 is interpreted as 44.0s in a context
where a duration is expected. It is recommended to always add the
trailing s for clarity. The decimal point is optional: 44s is the same as
44.0s.

Operators and
functions

Duration expressions can be manipulated with the arithmetic operators,

+ - * /

 compared with the relational operators,

= != > >= < <=

and converted to a string representation with

stringOf

Integer and Real values are converted to Duration in any mixed context.
For example, in the expression 24h + 1, the 1 is converted to a duration of
1s before being added to the 24h to give a result of 24h 0m 1s.
216 Chapter 8

Data Types
Time Data Type
Time Data Type

Definition The time data type is used to represent absolute time. That is, a date and
a time of day on that date.

For example, event creation times are represented using the time data
type. Elapsed times, such as network delays, are represented with the
duration data type.

A time value (absolute time) is represented internally as the time
elapsed since 00h 00m 00s, 1 January 1970 (UTC). Time data type has a
resolution of 1 microsecond and can represent any time up to the year
2038.

Representation Literal time values are represented in the following format:

yyyymmddhhiiss.uuuuuuZ

For example, the date/time value January 3, 1997 at 1:59:59.123456 PM
(UTC) would be:

19970103135959.123456Z

Operators and
functions

Time values can be manipulated by adding or subtracting a duration to
produce a time,

+ -

subtracting from another time to produce a duration,

-

compared with the relational operators,

= != > >= < <=

and converted,

explode_time

The current time can be obtained by calling,

Time.now ()
Chapter 8 217

Data Types
Oid Data Type
Oid Data Type

Definition The oid data type is used to represent Object Identifiers.

The term “oid” is the abbreviation of object identifier used to uniquely
identify information objects.

Representation An oid value is a sequence of integers separated by periods. For example:

1.43.67.52

An oid value must contain at least two dots. For example, the value
1.23.689.12 is interpreted as an oid but the correlation engine treats
the value 1.23 as a real number and raises a type error.

Operators and
functions

Oid expressions can be compared with the relational operators:

= != > >= < <=

or converted to a string:

stringOf
218 Chapter 8

Data Types
String Data Type
String Data Type

Definition The string data type is an array of multibyte characters. Each character
is a value that represents a character in the current character encoding.
There is no practical implementation limit to the size of a string.

Representation A string is entered as a sequence of characters enclosed in double-quotes
("..."). For example:

"notificationIdentifier"
"A newline starts after this\n"

Two quotes typed together represent an empty string:

""

A string can be continued over several lines by ending the current line
with a backslash:

"To break a string \
over several lines \
end each line with a backslash."

The backslash (\) is also used as an escape character to allow special
characters to be entered. For example, "\t" represents a tab character
and "\\" represents a single backslash character. Table 8-1 summarizes
additional special characters and character combinations for
representing special characters and symbols.

Table 8-1 Special Character Combinations in String Expressions

Combination Description Comment

\ Special combination
escape

Signals the start of one of the following special
combinations.

\" Double-quote Enters a double-quote (") in the string.

\\ Backslash

\t Tab

\n New line

\r Carriage return
Chapter 8 219

Data Types
String Data Type
Event arguments Event arguments mapped to ECDL strings may not support localization.
This is because some endecoders do not support anything other than
ASCII (e.g. MDL supports 8-bit ASCII events only).

Operators and
functions

Strings can be concatenated,

+

compared with the relational operators,

= != > >= < <=

converted with string and integer functions,

join split explode chr ord

and their length measured,

length

All string operators and functions handle multibyte strings correctly.

Relational
operations

The relational operators =, !=, >, >=, <, and <= compare pairs of string
arguments character-by-character using the current character encoding
collating sequence, and return either true or false. A string which is a
prefix of a longer string is always “less than”.

String search Sophisticated string search and compare is available with the match
functions.

stringOf The stringOf function produces a string representation of any data
type, including strings.

\nnn Character code Enters a character corresponding to the octal code
nnn, where nnn must represent a valid character in the
current character encoding, otherwise an InvalidArgs
exception is raised.

Table 8-1 Special Character Combinations in String Expressions

Combination Description Comment
220 Chapter 8

Data Types
Token Data Type
Token Data Type

Definition The token data type describes a set of discrete alternatives. A token is
one value from the set.

Token data types are used as keys for the header attributes of events
within an ECS circuit. Token types are also used as keys in the
dictionary returned by the explode_time function.

Representation Tokens are identified by name anywhere within the scope of their type
definition.

Examples You can create your own tokens by writing a type definition. The
following statement defines a new token type to identify a set of warning
levels:

type Warning = token(low, medium, high, panic)

The four warnings low, medium, high and panic can now be used freely
to identify an error anywhere in the enclosing scope. For example:

if errorLevel = panic
then throwHandsInAir
else process errorLevel
end

There are also a number of predefined tokens. For example, the following
tokens are used as keys in event headers:

unique_id event_class create_time

Some Token names may be qualified by a module name in order not to
contaminate the user’s own name space. The following predefined tokens
are used in the dictionary returned by the explode_time function. These
token names are of the form time.Name because they belong to a module
named time. For example,

time.year time.hour

Qualifying token names in this way makes it possible to write:

let
 val year = (explode_time (time.now()) time.year)
...
Chapter 8 221

Data Types
Tuple Data Type
Tuple Data Type

Definition A tuple is a data structure consisting of a fixed collection of elements,
where each element can be any type. Tuples allow you to define your own
structured type.

A tuple type definition is composed of two or more types separated with
the “*” type constructor.

Representation Tuple values are represented as a sequence of expressions separated by
commas and enclosed in parentheses. Each expression in the Tuple must
conform to the type specification for that element.

Examples To define a Tuple type that consists of an integer and a string:

type xType = (Integer * String)

Having defined the new type xType, you can now create a named value of
this type:

val x : xType = (4, "abc")

The presence of the type constraint ensures that x must match the
number and type of the elements.

Individual elements in a Tuple may be accessed by binding identifiers to
the elements in the Tuple:

let
 val (High, Low) = input_event "Threshold"
in
 High > 60
end

Operators and
functions

Tuple expressions can be compared for equality or inequality:

= !=
222 Chapter 8

Data Types
List Data Type
List Data Type

Definition A list is a variable-length ordered set of values. All the elements in a list
must be of the same nominal data type. However, by making use of
dynamic data types, lists can be defined that hold a variety of data. If a
data type for the list is not defined, then it is set by the compiler to the
most restrictive type that includes all the elements of the list.

Representation A list can be defined to hold any combination of data types. For example,
a list to hold integers can be defined as:

type IntList = list integer

and a list to hold integers and reals can be defined as:

type NumList = list (integer | real)

Having defined these types we can assign values by providing a list of
values separated by commas and enclosed in square brackets, as follows:

val l : IntList = [1, 2, 3, 4]
val n : NumList = [1, 2.12, 3, 4.0]
val u = [1, 2.12, "Aspro"]

The last example above defines a list with no type restriction. In this
case u is assigned a type of list any type.

Using lists Lists are described in detail in “List Manipulation” on page 327.

List expressions A list can be inspected element by element using the expressions:

exists forall

A list can be inspected element by element until the first time a specified
condition is true. The result is a tuple consisting of the first element for
which the condition is true plus the remainder of the list:

find element in [2, 4, 1, 7] where element = 4

See “Searching Lists” on page 328 for details.

Building lists See “Deriving Lists from Lists” on page 330

Operators &
functions

A list can have an element prepended to it:

1 :: [2,3]
Chapter 8 223

Data Types
List Data Type
This results in a list of three elements [1,2,3].

The first element of a list can be accessed by binding a named value to
the first element and another name to the remainder of the list. In the
following:

val HeadElement :: TailList = [1,2,3]

HeadElement is bound to the value 1 and TailList is bound to the List
value [2,3].

An arbitrary element of a list can be accessed using the nth function:

nth 2 [1,2,3]

The length of a list can be found:

length [1,2,3]

A new list can be created whose elements are in the reverse order:

reverse [1,2,3]

A list can be built from two list expressions using the set operators:

union inter unionc interc

A list can be inspected element by element and a data value calculated
for the whole list:

foldl foldr
224 Chapter 8

Data Types
Dictionary Data Type
Dictionary Data Type

Definition A dictionary is an unordered collection of key-value pairs. Values are
retrieved from a dictionary by specifying the key.

Representation A dictionary type is defined as (for example):

type Postal = dict (string, integer)

The typical dictionary shown in this example has a string type for the
keys and an integer type for the values in each attribute. To define a
dictionary of type Postal, you use the mapping operator => to map values
to keys:

val aust:Postal="Burwood"=>3125, "Blackburn"=>3103,
"Perth"=>6001)

To retrieve a value from this dictionary you specify the key:

val PostCode = aust "Perth"

which returns the integer value 6000.

The following represents an empty dictionary:

(=>)

Element data
types

A dictionary key must be a simple data type such as an integer or string.
Values can be of any type, and may be different from one key-value pair
to the next within the same dictionary.

Operators and
functions

Dictionaries are used on the right-hand side of the alter function to
change the attributes of an event. For example:

created_event alter ("severity"=>6, "deviceId"=>"TUNA")
Chapter 8 225

Data Types
Event Data Type
Event Data Type

Definition An Event behaves like a Dictionary with the type:

dict((Any Simple), (Any Data))

in a context where a dictionary is expected. Some built-in functions have
restrictions where an event cannot be used but a dictionary can.

Element data
types

An Event key must be a simple data type such as an integer or string.
Values can be of any type, and may be different from one key-value pair
to the next within the same dictionary. Event keys are generally called
“attributes”. By convention event header attributes are defined as
Tokens and primitive event body attributes are defined as Strings.

Using dictionaries Like Dictionaries, Events are read-only except in two specially defined
circumstances: in the Create Spec parameter of a Create node and in
the Modify Spec parameter of the Modify node. The alter built-in
function can be used in these parameters to set event attributes. See
“alter” on page 252 for details.

Operators and
functions

The only dictionary operator is alter, which is restricted for use with
events in the Create and Modify nodes only.

NOTE Events effectively have a predefined set of attributes whose values may
be set (using alter) but that cannot be removed. To “remove” an optional
attribute, set its value to Void:

created_event alter ("optionalAttribute"=>())
226 Chapter 8

Data Types
Void Data Type
Void Data Type

Definition Void is a special type. It has only one value that represents nothing
(void).

Representation A Void type is defined as:

type Nothing = Void

However, this syntax is rarely used as it is sufficient to use () to indicate
a Void value. For example:

val t = Time.now ()

where Time.now is a built-in function that requires a Void argument.

Using void The Void value “()” is typically used to represent the ASN.1 NULL value
or OPTIONAL attributes that are not present.

Operators and
functions

Tests for equality are the only operations supported on void.
Chapter 8 227

Data Types
Function Data Type
Function Data Type
Just as the numerals 3, 10 or –20 are values of the type integer, functions
are values of the type function. A function type expression describes the
types of the arguments and the type of the result. Each combination of
types in a function type is a different function type. There may be many
different functions that have the same function type.

Definition The basic form of a function type expression is:

param_1_type -> param_2_type -> ... -> param_ n_type ->
return_type

where param_1_type to param_n_type is a list of parameters expected
by the function when it is called, and return_type is the type returned
by the function.

Using Function
types

For example, nth is a built-in function that has an integer as its first
parameter, a list as its second parameter, and returns any type (because
it depends on the list element type) and may have been defined
something like:

fun nth (i : Integer) (l : List (Any Type)) : (Any Type) = ...

A call to this function may look like this:

val result = nth 2 [1, 34, 2]

where result will be the integer value 34.

The nth function has the following function type expression:

Integer -> List (Any Type) -> (Any Type)

The parentheses around (Any Type) are optional, but are included here
for clarity.

See also “User-Defined types” on page 231.

Operators and
functions

There are no operators defined for function data types. In particular, you
cannot use the equality operator to compare function types for identity.
228 Chapter 8

Data Types
Opaque Data Type
Opaque Data Type

Definition Opaque is a special data type that ECDL cannot manipulate. Typically,
an Opaque data type is used as a “handle” to a block of data that needs to
be passed around but never examined. It is rarely used, however, the
ECDL string pattern matching functions are an example of the use of an
Opaque type.

Representation There is no representation for values of the Opaque data types.

Using Opaque
types

The ECDL match.make function is the only place you will probably use
the Opaque data type:

let
 val pat = match.make ("cat", "", IgnoreCase)
in
 match.test pat "concatenate"
end

Here, the name pat is associated with the Opaque data type value
returned by the match.make function.

Operators and
functions

There are no operators defined for Opaque data types. In particular, you
cannot use the equality operator to compare Opaque types for identity.
Chapter 8 229

Data Types
Dynamic and User Defined Types
Dynamic and User Defined Types
ECS performs type checking when a circuit is verified or compiled. This
catches many type errors before the circuit is even run. However, the
data types of event attribute values may not be known until run-time.
ECDL supports dynamic data types for these values and performs type
checking at run-time.

ECDL compile-time type checking minimizes the amount of run-time
type checking by trying to determine a subset of types that a run-time
type may take. You can assist this process by specifying dynamic types
that support all required subtypes, and exclude support for unwanted
subtypes. This brings type-checking forward to compile-time and
consequently improves error reporting.

The data types Integer, Real, Boolean, String, Duration, Time, Oid, and
Token are referred to as the Simple data types in the following sections.

NOTE Dynamic Data Types have nothing to do with Dynamic Attributes

Dynamic types

A dynamic type consists of the keyword Any, followed by one of the
keywords in Table 8-2.

For example:

val someSimpleValue : Any Simple =
 input_event "eventInfo.additionalText"

Table 8-2 Dynamic Types

Keyword Details

simple All simple types (including any user-defined simple types and
token types).

list All list types (including any user-defined list types).

dict All dict types (including any user-defined dict types).
230 Chapter 8

Data Types
Dynamic and User Defined Types
Dynamic types are also useful when defining functions, as described in
“User-Defined types” on page 231.

Union types

Union types serve a similar purpose to dynamic types, the difference
being that you can explicitly define the allowed types. The union type is
expressed by the joining of the possible event types by “|” (vertical bar
character). For example:

val fred : (Integer | String) = 2

User-Defined types

A type declaration may be used to name a user-defined type. The
declaration takes the following form:

type new_type_identifier = type_expression

Where new_type_identifier is the name of the user defined type, and
type_expression is the ECDL type definition. For example:

type StringInteger = (Integer | String)

This creates a new type called StringInteger, which is a union type of
integer and string types. The user defined type name can now be used
anywhere you would specify a type expression.

User Defined types should be defined in the "Global Definitions" for your
circuit.

data All types except functional types.

type Any type at all, including functional types.

Table 8-2 Dynamic Types

Keyword Details
Chapter 8 231

Data Types
Dynamic and User Defined Types
232 Chapter 8

9 Operators and Built-in
Functions
233

Operators and Built-in Functions
This chapter describes all the operators and built-in functions provided
with the Event Correlation Description Language (ECDL):

• “Operators” on page 235

• “Built-in Functions” on page 247

See also Chapter 8, “Data Types,” on page 211 and .
234 Chapter 9

Operators and Built-in Functions
Operators
Operators
Operators are the arithmetic and logical functions represented by the
usual character symbols + - > = etc. Most operators are heavily
overloaded. That is, they are implemented for more than one data type.
For example, the + operator is implemented for integer, real, duration
and string data types.

The + and - operators also support two separate forms: they can each
operate on numbers as a unary operator taking one operand, as well as
an infix operator taking two operands.

Particular care must be taken with the unary minus operator - because,
under some circumstances, it can be interpreted as subtraction. To avoid
this it is a good idea to place parentheses around negative numbers when
used as literal arguments to functions:(-15) .

Table 9-1 Summary of ECDL Operators

Operator Description Section and Page

+ Add two number or concatenate two
strings

“+ (add, string concatenate, positive)”
on page 237

– Subtract the second number from the
first; unary minus

“– (subtract, negative)” on page 238

* Multiply two numbers “* (multiply)” on page 240

/ Divide a real number or duration by
another number

“/ (real divide)” on page 241

^ Raise the first number to the power of
the second

“^ (exponentiate)” on page 242

= Test the first value for equality with the
second

“= and != (equality operators)” on
page 243

!= Test that the first number is NOT equal
to the second

“= and != (equality operators)” on
page 243

> Test that the first value is greater than
the second

“> >= < <= (relational operators)” on
page 244
Chapter 9 235

Operators and Built-in Functions
Operators
>= Test that the first value is greater than or
equal to the second

“> >= < <= (relational operators)” on
page 244

< Test that the first value is less than the
second

“> >= < <= (relational operators)” on
page 244

<= Test that the first value is less than or
equal to the second

“> >= < <= (relational operators)” on
page 244

:: Add the first value to the list represented
by the second value

“:: (list constructor)” on page 246

Table 9-1 Summary of ECDL Operators

Operator Description Section and Page
236 Chapter 9

Operators and Built-in Functions
Operators
+ (add, string concatenate, positive)

Syntax + integer

+ real

+ duration

string1 + string2

integer1 + integer2

real1 + real2

duration1 + duration2

time + duration

duration + time

Where:

If one of the arguments is duration and the other is integer or real,
then the integer or real is promoted to a duration with a unit of
seconds. Likewise, if one of the arguments is a real and the other is an
integer, then the integer is promoted to a real before the addition.

Description The first form, with a single argument, returns its argument unchanged
and is a redundant form.

If both arguments are of string data type then the result is the
concatenated string result of the two arguments: string1string2.
Otherwise, the result is the numeric addition of the two arguments.

For numeric addition the data type of the returned value depends on the
data type of the arguments. If both arguments are of the same data type
then the result is the same data type. If the arguments are of different
data types then the result is the same data type as the “wider” of the two
arguments, where the order from narrowest to widest is: integer, real,
duration.

Adding a time and a duration produces a time.

Examples The redundant form + 23 returns its argument: 23.

Adding a real and an integer in the expression 1.414 + 1 returns the
real number 2.414.

The expression "Hewlett" + " Packard" results in the string
"Hewlett Packard".
Chapter 9 237

Operators and Built-in Functions
Operators
– (subtract, negative)

Syntax - integer

- real

- duration

integer1 - integer2

real1 - real2

duration1 - duration2

time - duration

time - time

Where:

If one of the arguments is duration and the other is integer or real,
then the integer or real is promoted to a duration with a unit of
seconds. Likewise, if one of the arguments is a real and the other is an
integer, then the integer is promoted to a real before the subtraction.

Description The first form, with a single argument, is equivalent to 0 - arg.
Otherwise, the result is the numeric subtraction of the second argument
from the first.

The data type of the returned value depends on the data type of the
arguments. The first form always returns a value of the same type as its
single argument. If both arguments are of the same data type then the
result is the same data type. If the arguments are of different data types
then the result is the same data type as the “larger” of the two
arguments, where the order from smallest to largest is: integer, real,
duration

Subtracting a duration from a time produces a time value. Subtracting a
time from a time produces a duration.

Examples The form - 42 returns the value -42.

Subtracting an integer from a real in the expression 1.414 - 1 returns
the real number 0.414.
238 Chapter 9

Operators and Built-in Functions
Operators
NOTE In an expression such as round (-1.5), the parentheses are essential.
Without them the expression round -1.5 is interpreted as an attempt to
subtract 1.5 from round. That is, round - (1.5).

See also • “Time Data Type” on page 217
Chapter 9 239

Operators and Built-in Functions
Operators
* (multiply)

Syntax integer1 * integer2

real1 * real2

Where:

Any combination of integers, reals and durations can be multiplied
together, except that two durations cannot be multiplied. If one of the
arguments is duration and the other is integer or real, then the
integer or real is promoted to a duration with a unit of seconds.
Likewise, if one of the arguments is a real and the other is an integer,
then the integer is promoted to a real before the multiplication.

Description The result is the numeric multiplication of the arguments.

The data type of the returned value depends on the data type of the
arguments. If both arguments are of the same data type then the result
is the same data type. If the arguments are of different data types then
the result is the same data type as the “wider” of the two arguments,
where the order from narrowest to widest is: integer, real, duration.

Examples Multiplying an integer and a real in the expression 1.414 * 2 returns
the real number 2.828.
240 Chapter 9

Operators and Built-in Functions
Operators
/ (real divide)

Syntax real1 / real2

duration / integer

duration / real

duration / duration

Where:

If either or both arguments are integer then they are promoted to
real. If one argument is duration then the other is promoted to a
duration. In other words, all division using the / operator is done
with reals or durations. Use the div built-in function for integer
division.

Description The result is the numeric division of the first argument by the second.

The data type of the return value depends on the data type of the
arguments. If the first argument is a duration then the return type is
also of type duration. Otherwise the return type is real.

If the divisor is 0 (zero) then a DivideByZero exception is raised.

Examples Dividing a real by an integer in the expression 1.414 / 2 returns the
real number 0.707. In this case the integer 2 is promoted to a real (2.0)
before the division.

Dividing a duration by a real in the expression 1m30s / 2.0 returns the
duration 45s

See also • “div” on page 263
Chapter 9 241

Operators and Built-in Functions
Operators
^ (exponentiate)

Syntax integer1 ^ integer2

real ^ integer

Where:

 The second argument is always an integer. If the second argument is
not an integer then a TypeMismatch exception is raised.

Description The result is the first argument raised to the power of the second
argument.

The data type of the returned value is the same as the data type of the
first argument.

If the first argument is integer then the second must be greater than or
equal to 0 (zero).

Examples Raising a real number to a power in the expression 1.414 ^ 2 returns
the real number 1.999.

2 ^ 2 results in the integer 4.
242 Chapter 9

Operators and Built-in Functions
Operators
= and != (equality operators)

Syntax boolean1 = boolean2

integer1 = integer2

real1 = real2

string1 = string2

oid1 = oid2

duration1 = duration2

time1 = time2

list1 = list2

token1 = token2

token1 = token2

Where:

If one of the arguments is duration and the other is integer or real,
then the integer or real is promoted to a duration with a unit of
seconds. That is, the real number 1.1 is promoted to a duration of 1.1
seconds.

Description The result is a boolean that is true if the two values are the same and
false otherwise. String comparisons are done character by character, are
case sensitive, and use the current character encoding collation
sequence. Lists are compared element by element. Tuples are compared
member by member. Oid types are compared numerically item by item.

The inequality operator in the expression a != b is equivalent to not (a
= b).

A TypeMismatch exception is raised if = or != is not defined for the data
types being compared.

Examples Comparing an integer with a real as in the expression 1 = 1.0 returns
true because the integer is promoted to a real before the comparison.

"cat" = "cat" returns true, but "cat" = "Cat" returns false because
the comparison is case-sensitive.

See also • “Match.test” on page 293
Chapter 9 243

Operators and Built-in Functions
Operators
> >= < <= (relational operators)

Syntax integer1 op integer2

real1 op real2

string1 op string2

oid1 op oid2

duration1 op duration2

time1 op time2

token1 op token2

Where:

op is one of the following relational operators:

> greater than

>= greater than or equal to

< less than

<= less than or equal to

If one of the arguments is duration and the other is integer or real,
then the integer or real is promoted to a duration with a unit of
seconds. That is, the real number 1.1 is promoted to a duration of 1.1
seconds.

Description The result is a boolean. String comparisons are done character by
character, are case sensitive, and use the current character encoding
collation sequence. A short string that is the prefix of a longer string is
less than the longer string. Lists are compared element by element.
Tuples are compared member by member. Tokens must be of the same
type and are compared by ID code where the first ID code declared is less
than ID codes that are declared later. Oid types are compared
numerically item by item.

Examples Comparing two integers in the expression 2 > 1 returns the boolean
result true and 2 > 2 returns false because 2 is not greater than itself.

"cat" >= "cat" returns true, and "z" > "a" returns true but "z" >
"A" returns false because the comparison is case-sensitive.

"cat" < "cats" returns true because "cat" is shorter than "cats".
244 Chapter 9

Operators and Built-in Functions
Operators
See also • “= and != (equality operators)” on page 243

• “Match.test” on page 293
Chapter 9 245

Operators and Built-in Functions
Operators
:: (list constructor)

Syntax any :: list

Where:

any is an element of any data type that is to be prepended to the list.

list is the list to which the element any will be prepended.

Description The returned result is list, with a new element any prepended to it.

The :: symbol is also used in binding patterns to bind a name to the first
element in a list.

Examples 1 :: [2,3] results in the list [1,2,3].

See also • “List Data Type” on page 223

• “List Manipulation” on page 327
246 Chapter 9

Operators and Built-in Functions
Built-in Functions
Built-in Functions
Built-in functions are those supplied with ECS. This section lists all
built-in functions alphabetically and describes each in detail.

Although ECDL is not case-sensitive, most of the examples use
lower-case consistently. Capitals are used only where it makes the text
clearer.

Some functions, such as the string search functions Match.make,
Match.test and Match.testVars are actually implemented in a
separate module. However, you must use the full name as shown,
including the dot, to reference these functions. See “Modules and Name
Search” on page 356.

Table 9-2 Summary of ECDL Built-in Functions

Operator Description Section and Page

alter Modifies the contents of a dictionary “alter” on page 252

and True if both arguments are true “and” on page 253

append Adds to correlation information to
an event

“append” on page 254

bitand The bitwise and operation on its
arguments

“bitand” on page 255

bitinv The bitwise inverse of the argument “bitinv” on page 256

bitleft Shift bits left “bitleft” on page 257

bitright Shift bits right “bitright” on page 259

bitor True if either argument is true “bitor” on page 258

bitxor The bitwise exclusive-or of the two
arguments

“bitxor” on page 260

chr Returns a character string of one
character with the value specified

“chr” on page 261

datastore Returns a value from the Data Store “datastore” on page 262
Chapter 9 247

Operators and Built-in Functions
Built-in Functions
div Integer divide (see also the /
operator)

“div” on page 263

explode Returns a list containing the
individual characters in the string
supplied

“explode” on page 264

explode_time Returns a dictionary containing the
components of the time value
supplied

“explode_time” on page 265

fact_exists True if the specified fact is in the
Fact Store

“fact_exists” on page 267

fact_find_left Returns a list of matching left-parts
from the Fact Store

“fact_find_left” on page 268

fact_find_right Returns a list of matching right-parts
from the Fact Store

“fact_find_right” on page 269

feed Identifies the events that are to be
sent to other circuits

“feed” on page 270

feedall Feeds back events to all circuits
including source circuit.

“feedall” on page 271

feedothers Feeds back events to all circuits
other than source circuit

“feedothers” on page 272

flush Flushes the event “flush” on page 273

foldl Iterates a function over the elements
of a list from left to right

“foldl” on page 274

foldr Iterates a function over the elements
of a list, from right to left

“foldr” on page 275

gen_ccall Returns tuple that contains the status
of the call and the return value(s) of
the function

“gen_ccall” on page 276

Table 9-2 Summary of ECDL Built-in Functions

Operator Description Section and Page
248 Chapter 9

Operators and Built-in Functions
Built-in Functions
gen_perlcall Returns the tuple that contains the
status of the call and the return
value(s) of the perl function in the
form of a list

“gen_perlcall” on page 276

implies Returns true unless the first
argument is true and the second is
false

“implies” on page 276

implode_time Returns a time value based on the
contents of the dictionary supplied

“implode_time” on page 278

Ip.fromOctet Converts an IP address from a 4 byte
ASN.1 IpAddress representation to
its ASCII text form.

“Ip.fromOctet” on page 282

Ip.toOctet Converts an IP address from ASCII
text form to its 4 byte ASN.1
IpAddress representation.

“Ip.toOctet” on page 283

integerOf Converts a string containing a
decimal number to an integer.

“integerOf” on page 280

inter Returns the intersection between two
lists

“inter” on page 280

interc Returns the intersection between two
lists using the supplied function to
perform the comparison

“interc” on page 281

join Returns a string from a list of
characters

“join” on page 284

length Returns the length of a string or list “length” on page 285

Match.make Compiles a search pattern for use
with the test or testVars function

“Match.make” on page 286

Match.test Returns true if the supplied string
contains the specified pattern

“Match.test” on page 293

Table 9-2 Summary of ECDL Built-in Functions

Operator Description Section and Page
Chapter 9 249

Operators and Built-in Functions
Built-in Functions
Match.testVars Returns tags matching the search
pattern from the supplied string

“Match.testVars” on page 294

mod Returns the first integer modulus the
second integer

“mod” on page 296

not The logical inverse of the argument “not” on page 296

nth Extracts an element from a list “nth” on page 297

oid.append Appends an integer to the end of an
oid and returns the resulting oid

“oid.append” on page 298

oid.join Appends a number of integers to
form an oid and returns the resulting
oid

“oid.join” on page 299

oid.last Returns part of the oid as an integer “oid.last” on page 300

oid.split Returns a list of integers
representing all the elements in an
oid

“oid.split” on page 301

oid.split_at Splits an oid into two oids after the
specified element, and returns the
oids as a tuple

“oid.split_at” on page 302

oid.split_nnm Removes the last number from an
oid and returns a tuple comprising
the truncated oid and the number

“oid.split_nnm” on page 303

or True if either or both arguments are
true

“or” on page 304

ord Returns the integer ASCII value of
the single-character string passed

“ord” on page 304

reverse Reverses the order of the elements in
a list

“reverse” on page 306

round Returns the nearest integer to the
real number supplied

“round” on page 306

Table 9-2 Summary of ECDL Built-in Functions

Operator Description Section and Page
250 Chapter 9

Operators and Built-in Functions
Built-in Functions

split Splits a string into a list of substrings “split” on page 307

stringOf Returns a string representation of the
supplied value

“stringOf” on page 308

System.audit_log Prints any specified data to the
engine log

“System.audit_log” on
page 309

System.circuit_dump Prints a snapshot of the engine to the
trace log

“System.circuit_dump” on
page 310

System.trace Prints text to the trace log “System.trace” on page 311

System.set_trace_mask Sets the engine trace mask “System.set_trace_mask” on
page 312

Time.now Returns the current time “Time.now” on page 314

truncate Returns the nearest integer value
closer to zero

“truncate” on page 315

union Returns a list consisting of the union
of the two lists supplied

“union” on page 316

unionc Returns a list consisting of the union
of the two lists suppled using the
supplied function to perform
comparisons

“unionc” on page 317

Table 9-2 Summary of ECDL Built-in Functions

Operator Description Section and Page
Chapter 9 251

Operators and Built-in Functions
Built-in Functions
alter

Syntax event alter dict

Where:

event is an event.

dict is a dictionary (not an event) with key-value pairs of a type that
conforms to the types of key-value pairs in event.

Description This function takes the keys of dict and merges them with those of
event to create an updated event. A key of dict overwrites the value
associated with the same key in event. If event is alterable then it is
altered in place and is also the returned result.

Events can only be altered in the Create and Modify nodes. Further, only
certain event attributes are alterable—you cannot alter event header
attributes.

To “remove” an attribute, set its value to Void ().

Example For example, to change the “severity” attribute of an existing event in the
the Modify Spec parameter of a Modify node:

input_event alter ("severity" => 7)

Multiple attributes can be set in one call. To set the “severity” to 7 and
the “text” attribute to "WARNING":

created_event alter ("severity" => 7, "text" => "WARNING")

See also • “Dictionary Data Type” on page 225

• “Event Data Type” on page 226

• “Dictionary and Event Manipulation” on page 332

• “Create Node” on page 87

• “Modify Node” on page 105
252 Chapter 9

Operators and Built-in Functions
Built-in Functions
and

Syntax boolean1 and boolean2

Where:

boolean1 and boolean2 are both booleans.

Description The result is the boolean value true if both arguments are true,
otherwise the result is false.

If the first argument is false then the operation short-circuits and the
second argument is not evaluated. This can have implications if you
require the second argument to be evaluated for its side-effects.

Examples true and true returns the boolean true.

false and true returns the boolean false.

See also • “Boolean Data Type” on page 215

• “inter” on page 280

• “or” on page 304
Chapter 9 253

Operators and Built-in Functions
Built-in Functions
append

Syntax append <event 1> <event 2> <relation string>

Where:

event 1 and event 2 are both primitive events.

Description The drill information for an event can be appended to an event from any
node within the node’s condition parameter.

The function takes the correlated event and correlating events and
relation string as parameters.From above event1 is the correlated event
and event2 is the correlating event.

Examples append in an unless node may look like,

append input_event inhibitor_event “relation_suppress ”

See also • “flush” on page 273
254 Chapter 9

Operators and Built-in Functions
Built-in Functions
bitand

Syntax bitand Integer1 Integer2

Where:

Integer1 and Integer2 are both integers.

Description The result is the integer value of a bitwise and operation between the
two arguments. The arguments are treated as 32 bit unsigned bit
patterns.

Examples bitand 7 0 returns the integer 0.

bitand 7 1 returns the integer 1.

See also • “bitinv” on page 256

• “bitleft” on page 257

• “bitor” on page 258

• “bitright” on page 259

• “bitxor” on page 260
Chapter 9 255

Operators and Built-in Functions
Built-in Functions
bitinv

Syntax bitinv integer

Where:

integer is an integer.

Description The result is the integer value of a bitwise inversion of the argument.
The argument is treated as a 32 bit unsigned bit pattern.

Examples bitinv 1 returns the integer -2.

See also • “bitand” on page 255

• “bitleft” on page 257

• “bitor” on page 258

• “bitright” on page 259

• “bitxor” on page 260
256 Chapter 9

Operators and Built-in Functions
Built-in Functions
bitleft

Syntax bitleft integer1 integer2

Where:

integer1 is an integer specifying the number of bits to shift.

integer2 is the integer whose bits are to be shifted.

Description The result is the integer value of a bitwise left shift of integer2 by
integer1 bits. Both arguments are treated as 32 bit unsigned bit
patterns.

Examples bitleft 3 1 returns the integer 8.

See also • “bitand” on page 255

• “bitinv” on page 256

• “bitor” on page 258

• “bitright” on page 259

• “bitxor” on page 260
Chapter 9 257

Operators and Built-in Functions
Built-in Functions
bitor

Syntax bitor integer1 integer2

Where:

integer1 and integer2 are both integers.

Description The result is the integer value of a bitwise or operation between the two
arguments. The arguments are treated as 32 bit unsigned bit patterns.

Examples bitor 7 0 returns the integer 7.

bitor 7 1 returns the integer 7.

bitor 8 1 returns the integer 9.

See also • “bitand” on page 255

• “bitinv” on page 256

• “bitleft” on page 257

• “bitright” on page 259

• “bitxor” on page 260
258 Chapter 9

Operators and Built-in Functions
Built-in Functions
bitright

Syntax bitright integer1 integer2

Where:

integer1 is an integer specifying the number of bits to shift.

integer2 is the integer whose bits are to be shifted.

Description The result is the integer value of a bitwise right shift of integer2 by
integer1 bits. Both arguments are treated as 32 bit unsigned bit
patterns.

Examples bitright 3 8 returns the integer 1.

See also • “bitand” on page 255

• “bitinv” on page 256

• “bitleft” on page 257

• “bitor” on page 258

• “bitxor” on page 260
Chapter 9 259

Operators and Built-in Functions
Built-in Functions
bitxor

Syntax bitxor integer1 integer2

Where:

integer1 and integer2 are both integers.

Description The result is the integer value of a bitwise exclusive or operation
between the two arguments. The arguments are treated as 32 bit
unsigned bit patterns.

Examples bitxor 7 0 returns the integer 7.

bitxor 7 1 returns the integer 6.

bitxor 8 1 returns the integer 9.

See also • “bitand” on page 255

• “bitinv” on page 256

• “bitleft” on page 257

• “bitor” on page 258

• “bitright” on page 259
260 Chapter 9

Operators and Built-in Functions
Built-in Functions
chr

Syntax chr integer

Where:

integer is the ASCII code of a character.

Description chr returns a string consisting of a single character. The character has
the code of the integer passed. integer must be in the range 0 <=
Integer <= 65536 decimal. The translation is sensitive to the current
locale settings.

Example For U.S. English, chr 97 returns the single character string "a".

See also • “String Data Type” on page 219

• “ord” on page 304
Chapter 9 261

Operators and Built-in Functions
Built-in Functions
datastore

Syntax datastore keyValue

Where:

keyValue can be any data of any data type.

Description The only function that provides access to Data Store values is the
datastore function. The datastore function takes a single parameter,
the keyValue, and returns the associated returnValue from the Data
Store.

Example For example, if the following entry has been added to the Data Store:

ADD DATA("AlarmDelay", 30s)

then the expression

datastore "AlarmDelay"

will return the duration 30s. The return type of the datastore function
is always the same type as the value in the Data Store.

See also • “Data Store” on page 186
262 Chapter 9

Operators and Built-in Functions
Built-in Functions
div

Syntax int1 div int2

Where:

int1 is the integer dividend.

int2 is the integer divisor.

Description The div function divides int1 by int2 to produce an integer result.

Example 7 div 3 results in 2

See also • “Integer Data Type” on page 213

• “/ (real divide)” on page 241
Chapter 9 263

Operators and Built-in Functions
Built-in Functions
explode

Syntax explode string

Where:

string is a string to be exploded

Description explode returns a list of one-character strings consisting of the letters in
the argument string.

Examples explode "hedley" returns the list of strings
["h","e","d","l,"e","y"].

explode "" returns the empty list[].

See also • “String Data Type” on page 219

• “List Data Type” on page 223

• “split” on page 307
264 Chapter 9

Operators and Built-in Functions
Built-in Functions
explode_time

Syntax explode_time time

Where:

time is a time data type to be exploded

Description explode_time returns a dictionary with the following predefined
structure:

type TimeKey = token (year,
 month,
 day,
 hours,
 minutes,
 seconds,
 micro_seconds,
 timezone,
 daylight

)
dict (Time.TimeKey, Integer|Real)

The time is represented in UTC. All values in the dictionary are integers
except for:

• seconds, which is a Real value that can contain fractions of a second

• micro_seconds, which is always zero because it is no longer used (it
has been kept for compatibility with ECS 2)

• timezone, which is always zero because the time is represented in
UTC

• daylight, which is a Boolean value that is always false because the
time is represented in UTC

Example The following example illustrates a function that returns true if an input
event’s creation time is between 9am and 5pm UTC.

let
 val etime = explode_time (input_event create_time)
 val hour = etime (Time.hours)
in
 (hour >= 9) and (hour <= 17)
end

The TimeKey component is prefaced by the module name “Time” in the
form Time.hours.
Chapter 9 265

Operators and Built-in Functions
Built-in Functions
See also • “Time Data Type” on page 217

• “implode_time” on page 278
266 Chapter 9

Operators and Built-in Functions
Built-in Functions
fact_exists

Syntax fact_exists fact

Where:

fact is a 3-tuple conforming to the type definition:

type Fact = (any data, integer, any data)

By convention the data values are referred to as leftValue and
rightValue, and the integer is referred to as the relation.

Description The fact_exists function checks if fact exists in the Fact Store. It
returns the boolean data type true if the fact exists, otherwise it returns
false.

Example When you use the fact_exists function, you must give the entire
relationship as the argument, that is, leftValue, relation, and
rightValue. For example, given the Fact Store:

("aaa", 1, "bbb")
("aaa", 1, "ccc")
("ddd", 1, "ccc")
("eee", 2, "fff")
("eee", 3, "fff")

we can write the following:

• fact_exists ("aaa", 1, "bbb") returns true

• fact_exists ("aaa", 3, "bbb") returns false

• fact_exists ("eee", 1, "bbb") returns false

See also • “Fact Store” on page 193

• “fact_find_left” on page 268

• “fact_find_right” on page 269
Chapter 9 267

Operators and Built-in Functions
Built-in Functions
fact_find_left

Syntax fact_find_left factQuery

Where:

factQuery is a tuple conforming to the type definition:

type FactQuery = (any data, integer)

For the fact_find_left function the data value is the rightValue
and the integer is the relation.

Description The fact_find_left function returns a list containing a copy of all
leftValues that match the supplied rightValue and relation. An
empty list is returned if there are no matching facts.

Example When you use the fact_find_left function, you provide the
rightValue and the relation as arguments. For example, given the
Fact Store:

("aaa", 1, "bbb")
("aaa", 1, "ccc")
("ddd", 1, "ccc")
("eee", 2, "fff")
("eee", 3, "fff")

we can write:

• fact_find_left ("ccc", 3) returns []

• fact_find_left ("fff", 2) returns ["eee"]

• fact_find_left ("ccc", 1) returns ["ddd", "aaa"]

See also • “Fact Store” on page 193

• “fact_exists” on page 267

• “fact_find_right” on page 269
268 Chapter 9

Operators and Built-in Functions
Built-in Functions
fact_find_right

Syntax fact_find_right factQuery

Where:

factQuery is a tuple conforming to the type definition:

type FactQuery = (any data, integer)

For the fact_find_right function the data value is the leftValue and
the integer is the relation.

Description The fact_find_right function returns a list containing a copy of all
rightValues that match the supplied leftValue and relation. An
empty list is returned if there are no matching facts.

Example When you use the fact_find_right function, you provide the
leftValue and the relation as arguments. For example, given the Fact
Store:

("aaa", 1, "bbb")
("aaa", 1, "ccc")
("ddd", 1, "ccc")
("eee", 2, "fff")
("eee", 3, "fff")

we can write:

• fact_find_right ("aaa", 2) returns []

• fact_find_right ("ddd", 1) returns ["ccc"]

• fact_find_right ("aaa", 1) returns ["bbb", "ccc"]

See also • “Fact Store” on page 193

• “fact_exists” on page 267

• “fact_find_left” on page 268
Chapter 9 269

Operators and Built-in Functions
Built-in Functions
feed

Syntax feed <event> <flagToSrcCircuit>

Where:

• <event> is the event that is fed back into the engine

• <flagToSrcCircuit> should be true or false

Description The feed() function is provided to identify events that will be sent to
other circuits. The feed() API is used while configuring other nodes.

The second argument to the feed() function is flagToSrcCircuit . If
the argument is false, the event is fed back to all circuits except the
source circuit. If the argument is “true” then the event is fed back to all
the circuits including the source circuit.

WARNING When the parameter flagToSrcCiruit is set to “true”, ensure that
proper conditions are specified to avoid infinite feedback of
events into the source circuit.

Example feed input_event false

See Also • “feedall” on page 271

• “feedothers” on page 272
270 Chapter 9

Operators and Built-in Functions
Built-in Functions
feedall

Syntax feedall <event>

Where:

<event> is the event that is fed back to the engine.

Description The feedall function is used to send back events to all the circuits
including the source circuit in the same engine. The feedall function
works in the similar manner that the feed function works with the
flagToSrcCircuit set to “true” .

WARNING Proper conditions have to be specified to avoid infinite looping
of events into the source cicuit.

Example feedall input_event

See Also • “feed” on page 270

• “feedothers” on page 272
Chapter 9 271

Operators and Built-in Functions
Built-in Functions
feedothers

Syntax feedothers <event>

Where:

<event> is the event that is to be fed back into the engine.

Description The feedothers function is used to feed back events to all circuits
except the source circuit in the same engine.The feedothers function
works in the same manner that the feed function works with the
flagToSrcCircuit set to “false” .

Example feedothers input_event

See Also • “feed” on page 270

• “feedall” on page 271
272 Chapter 9

Operators and Built-in Functions
Built-in Functions
flush

Syntax flush <event>

Where:

event is the event that is to be logged.

Description If an event is going to be stored in the circuit forever or there can be no
append happening then the event maybe flushed.

WARNING In case of drill info being added after flush, duplicate record for
the event could be created.

Examples flush in a table node may look like,

flush current_event

See also • “append” on page 254
Chapter 9 273

Operators and Built-in Functions
Built-in Functions
foldl

Syntax foldl func initial list

Where:

func is the function to iterate over the list elements and takes the
form:

func arg1 arg2

arg1 will receive successive elements from the list, and arg2 is
initially set to initial, and then the accumulated result returned
from the previous iteration of func.

initial is the initial value applied to the accumulated result.

list is the list whose values are to be iterated over.

Description foldl makes it easy to scan a function over a list and accumulate a
result. Contrast foldl with foldr which iterates list elements in the
opposite direction.

The function func must be defined assuming that its first argument is an
element of list and the second is the accumulated result, initially set to
initial. Each iteration of func accumulates the result, until all
elements of list are processed. The final result is the value returned by
the last call of func.

Example You could define foldl (fn x y => (x + 10*y)) 0 [3, 5, 7]. This
would proceed in steps like this:

1. 0 is assigned to the accumulated result for Step 2.

2. (3 + 10*0) results in 3, which is assigned to the intermediate result
for Step 3.

3. (5 + 10*3) results in 35, which is assigned to the intermediate
result for Step 4.

4. (7 + 10*35) results in 357, which is the final result, and the
iteration ends.

See also • “Advanced Function Writing Features” on page 347

• “foldr” on page 275
274 Chapter 9

Operators and Built-in Functions
Built-in Functions
foldr

Syntax foldr func initial list

Where:

func is the function to iterate over the list elements and has the form:

func arg1 arg2

where arg1 will receive successive elements from the list, and arg2 is
initially set to initial, and then the accumulated result returned
from the previous iteration.

initial is the initial value applied to the accumulated result.

list is the list whose values are to be iterated over.

Description foldr makes it easy to scan a function over a list and accumulate a
result. Contrast foldr with foldl which iterates list elements in the
opposite direction.

The function func must be defined assuming that its first argument is an
element of list and the second is the accumulated result, initially set to
initial. Each iteration of func accumulates the result, until all
elements of list are processed. The final result is the value returned by
the last call of func.

Example The expression foldr (fn x y => (x + 10*y)) 0 [3, 5, 7] would
proceed in steps like this:

1. 0 is assigned to the accumulated result for Step 2.

2. (7 + 10*0) results in 7, which is assigned to the intermediate result
for Step 3.

3. (5 + 10*7) results in 75, which is assigned to the intermediate
result for Step 4.

4. (3 + 10*75) results in 753, which is the final result, and the
iteration ends.

See also • “List Manipulation” on page 327

• “foldl” on page 274
Chapter 9 275

Operators and Built-in Functions
Built-in Functions
gen_ccall

Syntax gen_ccall (“libName, functionName, list)

Where:

libName is the name of the shared library in which the function
resides of type string

functionName is the name of the function to call of type string

list is a list of parameters to be passed to the perl function

Description The result is a tuple that contains the status of the call and the return
value(s) of the function in the form of a list.

Examples val (status, returnList) = gen_ccall(“libraryName”,
“C_FunctionName”, [1,2,3]) .

if the function call succeeded then the status is zero and the return
value(s) of the ‘C’ function is in list, returnList

gen_perlcall

Syntax gen_perlcall (functionName, list)

Where:

functionName is the name of the function to call - it a string

list is the list of parameters to be passed to the perl function

Description The result is a tuple that contains the status of the call and the return
value(s) of the perl function in the form of a list.

Examples val (status, returnList) = gen_perlcall(“PerlFunctionName”,
[1,2,3])

if the function call succeeded then the status is zeroand the return
value(s) of the perl function is in the list, returnList.

implies

Syntax boolean1 implies boolean2
276 Chapter 9

Operators and Built-in Functions
Built-in Functions
Where:

boolean1 and boolean2 are both booleans.

Description The result is the boolean value true unless boolean1 is true and
boolean2 is false, in which case the result is false. The following identity
is always true:

boolean1 implies boolean2 = (not boolean1) or boolean2

If boolean1 is false then the expression “short-circuits” returning true,
and boolean2 is not evaluated.

Examples true implies false returns the boolean false.

false implies false returns the boolean true.

false implies true returns the boolean true.

To check if all events coming from Sydney are going to Melbourne:

forall ev in ev_list :-
 (ev("source") = "Sydney")
 implies
 (ev("dest") = "Melbourne")

See also • “List Manipulation” on page 327

• “and” on page 253

• “or” on page 304
Chapter 9 277

Operators and Built-in Functions
Built-in Functions
implode_time

Syntax implode_time dict

Where dict is a time value dictionary with the structure defined below.

Description implode_time returns a value of type Time, based on the contents of the
dictionary dict, which has the following predefined structure:

type TimeKey = token (year,
 month,
 day,
 hours,
 minutes,
 seconds,
 micro_seconds
 timezone,
 daylight

)
dict (Time.TimeKey, Integer|Real)

All values in the dictionary are integers except for:

• seconds, which is a Real value that can contain fractions of a second.

• micro_seconds, which is always zero because it is no longer used (it
has been kept for compatibility with ECS 2)

• timezone, which is a duration that is positive for time zones west of
GMT. A timezone specified as an integer or real is interpreted as
seconds.

• daylight, which is a Boolean value that is true if daylight saving is
in effect.

All members of the dictionary are required, but timezone and/or daylight
values can be omitted with the following effect:

timezone daylight Effect

absent absent Assume local time and obtain the daylight
savings mode from the operating system.

present absent Use the specified timezone value, and assume
a value of false for daylight.
278 Chapter 9

Operators and Built-in Functions
Built-in Functions
Example The following example converts the time 11:13:03.5 AM, 15 April 1990
EST-10 to a Time value:

val birthday = implode_time (
 Time.year => 1990,
 Time.month => 4,
 Time.day => 15,
 Time.hours => 11,
 Time.minutes => 13,
 Time.seconds => 3.5,
 Time.timezone => -10h
 Time.daylight => true
)

See also • “Time Data Type” on page 217

• “explode_time” on page 265

absent present Use local time and the specified daylight
value.

timezone daylight Effect
Chapter 9 279

Operators and Built-in Functions
Built-in Functions
integerOf

Syntax integerOf <string>

Where:

string can be any string containing a decimal number.

Description The integerOf function converts a string containing a decimal number to
an integer.

Example integerOf “1234” returns 1234

inter

Syntax list1 inter list2

Where:

list1 and list2 are lists containing elements of any data type.

Description Returns a new list consisting of the intersection between list1 and
list2. Each of the elements of list1 and list2 are compared using the
= (equality) operator to produce the list of elements common to both.
Duplicate elements are removed. A TypeMismatch exception is raised if
= is not defined for the data types of the elements in the lists.

Example [1,2,3] inter [2,3,4] returns the list [2,3].

[1,2,3] inter [4,5,6] returns the empty list [].

[1,1,2,2,3] inter [1,1,2,2,3] eliminates duplicates to return the
list [1,2,3].

[1,1,2,2,3] inter [] returns the empty list [].

See also • “List Data Type” on page 223

• “interc” on page 281

• “union” on page 316

• “unionc” on page 317
280 Chapter 9

Operators and Built-in Functions
Built-in Functions
interc

Syntax interc func list1 list2

Where:

list1 and list2 are lists containing elements of any data type.

func is a function that returns a boolean data type and has the form:

func arg1 arg2

The return value must be true if the arg1 and arg2 are “the same”,
and false otherwise.

Description Returns a new list consisting of the intersection between list1 and
list2. Each of the elements of list1 and list2 are compared, using the
function func supplied as the first argument. The result is a list of only
those elements common to both lists. Duplicate elements are eliminated.

The interc function is similar to the inter function except that interc
is in prefix form instead of infix, and the comparison between elements is
performed using a user-supplied function instead of the = operator.

The interc function is most useful when manipulating lists of elements
whose data types do not have an equality operation defined, or when the
required comparison is something other than a simple test for equality.

Example The following example compares elements from two lists using the
anonymous function fn x y => x = y that simply uses the = operator to
compare each of the elements in the lists.

interc (fn x y => x = y) [1,2,3] [2,3,4]

The expression returns the list [2,3]. This is equivalent to writing
[1,2,3] inter [2,3,4].

The next example uses a named function instead:

fun event_equals e1 e2 = e1(unique_Id) = e2(unique_Id)
val evlist_intersect = interc event_equals ev1 ev2

See also • “List Data Type” on page 223

• “interc” on page 281

• “union” on page 316

• “unionc” on page 317
Chapter 9 281

Operators and Built-in Functions
Built-in Functions
Ip.fromOctet

.

 See also: Ip.toOctet

Syntax Ip.fromOctet string

Where:

string is the IP address in 4 byte network address form. For
example, the address 122.48.33.46 would be \172\060\041\056.

Description SNMP IP addresses arrive at ECS in the form of an OCTET STRING of
size 4 (as per the ASN.1 definition for IpAddress). Each octet contains a
1-byte internal integer value for each of the 4 parts to an IP address. For
instance, the string \172\060\041\056 (octal escape characters) is used
to represent the IP address 122.48.33.46.

Ip.fromOctet converts the 4 byte ASN.1 IpAddress representation to
its ASCII text form.

To convert the other way, from ASCII text to ASN.1 representation, use
Ip.toOctet.

Example Ip.fromOctet \172\060\041\056 evaluates to “122.48.33.46”.

The following example extracts the IP address from an SNMP trap and
prints it to the trace log in ASCII text form:

let
 val (“internet”, ipAddress) = input_event agent-addr
in
 system.trace (Ip.fromOctet ipAddress)
end

Ip.toOctet (Ip.fromOctet myIpAddress) evaluates to myIpAddress.

See also • “Ip.toOctet” on page 283
282 Chapter 9

Operators and Built-in Functions
Built-in Functions
Ip.toOctet

Syntax Ip.toOctet string

Where:

string is the IP address in ASCII text form e.g. “122.48.33.46”. The
sequence must be comprised of four numbers separated by periods.
Each number must be in the range 0 to 255.

Description SNMP IP addresses arrive at ECS in the form of an OCTET STRING of
size 4 (as per the ASN.1 definition for IpAddress). Each octet contains a
1-byte internal integer value for each of the 4 parts to an IP address. For
instance, the string \172\060\041\056 (octal escape characters) is used
to represent the IP address 122.48.33.46

Ip.toOctet converts the IP address from ASCII text form to its 4 byte
ASN.1 IpAddress representation.

To convert the other way, from ASN.1 representation to ASCII text, use
Ip.fromOctet.

Example Ip.toOctet “122.48.33.46” evaluates to the four byte sequence
“z0!.” or \172\060\041\056

The following example sets the IP address for an SNMP trap in a Create
node’s create_spec parameter:

let
 val aa = (“internet”, Ip.toOctet “122.48.33.46”)
in
 created_event alter (“agent-addr” => aa)
end

Ip.fromOctet (Ip.toOctet myIpAddress) evaluates to myIpAddress.

See also • “Ip.fromOctet” on page 282
Chapter 9 283

Operators and Built-in Functions
Built-in Functions
join

Syntax join listOfStrings string

Where:

listOfStrings is a list of source strings to be joined

string is a string of separator characters

Description join takes the strings in listOfStrings and concatenates them into a
single string, separating each string from the next with the characters in
string. The returned result is a string.

Examples join ["h", "a", "t"] "-" returns the string "h-a-t".

join ["cat", "dog"] "\t" returns "cat dog"

join ["h", "a", "t"] "" returns the string "hat".

See also • “String Data Type” on page 219

• “List Data Type” on page 223

• “explode” on page 264

• “split” on page 307
284 Chapter 9

Operators and Built-in Functions
Built-in Functions
length

Syntax length string
length list

Where:

string is a (multibyte) string whose characters are to be counted.

list is a list whose elements are to be counted.

Description length returns an integer representing the number of characters in the
string passed, or elements in the list, as appropriate.

Examples length "jabber" returns the integer 6.

length "" returns the integer 0.

length [1, 2, 3] returns the integer 3.

See also • “String Data Type” on page 219

• “List Data Type” on page 223
Chapter 9 285

Operators and Built-in Functions
Built-in Functions
Match.make

Syntax Match.make (string1, string2, CaseFlag)

The single 3-tuple argument for this function has the following form:

• string1 is a search pattern string.

• string2 is a separator string. If an empty string is supplied ("") then
the separators default to space and tab. See <S>, <nS> and <@>
expressions under “Defining Match Expressions” on page 288.

• CaseFlag is a token data type with the definition:
type CaseFlag = token(IgnoreCase, ExactCase).

The Match functions do not support strings that contain the NUL
character (\000). If any of the string arguments to a Match function
contain NUL then the result is undefined.

Description Match.make returns an opaque data type that contains the compiled
form of the search pattern. The compiled search is usually passed
directly to the Match.test or Match.testVars function.

A two-stage compile and search makes the pattern matching mechanism
more efficient, particularly if the pattern compilation is done in a Global
Definition. Ultimately, the compiled opaque data type can only be passed
to one of the test functions Match.test or Match.testVars.

Examples Match.make("cat", "", IgnoreCase) returns an opaque data type
containing the compiled search expression.

Match.test(Match.make("cat", "", IgnoreCase)) "concatenate"
returns the boolean true.

Match.test(Match.make("cat", "", IgnoreCase)) "fred"
returns the boolean false.

See also • “= and != (equality operators)” on page 243

• “> >= < <= (relational operators)” on page 244

• “Match.test” on page 293

• “Match.testVars” on page 294
286 Chapter 9

Operators and Built-in Functions
Built-in Functions
Pattern-matching

ECS provides a powerful text pattern-matching language that allows
logical testing for the existence of substrings and patterns. Parts of a
text string can be extracted and assigned to tags, which may be reused
within the same scope. This section describes the operators and syntax of
the pattern-matching language.

The pattern-matching language used in the match functions is the same
as that used in HP OpenView IT Operations.

Frequently, pattern-matching means simply scanning for a specific
substring in the target string. For example, to search for the substring
ERROR anywhere in the target string you search for the pattern:

"ERROR"

Similarly, should you wish to match text not containing a specific
substring (for example, WARNING), you type:

"<![WARNING]>"

This uses the not operator "!", together with the chevrons "< >" that
must enclose all operators, and the square brackets "[]" that isolate
sub-patterns.

You control case-sensitivity with a separate argument to the Match.make
function.
Chapter 9 287

Operators and Built-in Functions
Built-in Functions
Defining Match Expressions

• Ordinary Characters

Ordinary characters generally represent themselves. However, if any
of the following special characters are used they must be prefaced
with a backslash escape character (\) to mask their usual function.

[] < > | ^ $

• Expression Anchoring Characters (^ and $)

If the caret (^) is used as the first character of the pattern, only
expressions discovered at the beginning of lines are matched. For
example, "^ab" matches the string "ab" in the line "abcde", but not
in the line "xabcde".

If the dollar sign is used as the last character of a pattern, only
expressions at the end of lines are matched. For example, "de$"
matches "de" in the line "abcde", but not in the string "abcdex".

If ̂and $ are not used as anchoring characters, that is, not as first or
last characters, they are considered as ordinary characters without
masking.

• Expressions Matching Multiple Characters

Patterns used to match strings consisting of an arbitrary number of
characters require one or more of the following expressions:

• <*> matches any string of zero or more characters (including
separators)

— <n*> matches a string of n arbitrary characters (including
separators)

• <#> matches a sequence of one or more digits

• <n#> matches a number composed of n digits

• <S> matches a sequence of one or more separator characters

• <nS> matches a string of n separators

• <@> matches any string that contains no separator characters, in
other words, a sequence of one or more non-separators; this can be
used for matching words.

Separator characters are configurable for each pattern. By default,
separators are the space and the tab characters. The separator string
288 Chapter 9

Operators and Built-in Functions
Built-in Functions
is specified as the second element in the 3-tuple passed to the
Match.make function.

• Bracket ([and]) Expressions

The brackets ([and]) are used as delimiters to group expressions. To
increase performance, brackets should be avoided wherever they are
superfluous. In the pattern:

"ab[cd[ef]gh]"

all brackets are unnecessary—"abcdefgh" is equivalent.

Bracketed expressions are used frequently with the OR operator "|",
the NOT operator "!" and when using sub-patterns to assign strings
to tags.

• The OR (|) Operator

Two expressions separated by the vertical bar character "|" matches
a string that is matched by either expression. For example, the
pattern:

"[ab|c]d"

matches the string "abd" and the string "cd".

• The NOT (!) Operator

The not operator "!" must be used with delimiting square brackets,
for example:

"<![WARNING]>"

The pattern above matches all text which does not contain the string
"WARNING".

The not operator may also be used with complex sub-patterns:

“LN<*>: R< ![490|[501[a|b]]] >-<*>”

The above pattern makes it possible to generate a message for any
line connection other than from repeaters 490, 501a or 501b.
Therefore, the following would be matched:

"LN270: R300-427"

However, this string is not matched, because it refers to repeater
501a:

"LN270: R501a-800"

If the sub-pattern including the not operator does not find a match,
Chapter 9 289

Operators and Built-in Functions
Built-in Functions
the not operator behaves like a <*>: it matches zero or more
arbitrary characters. For this reason, there is a difference between
the UNIX expression "[!123]", and the corresponding ECS pattern
matching expression: "<![1|2|3]>". The ECS expression matches
any character or any number of characters, except 1, 2, or 3; the
UNIX expression matches any one character, except 1, 2, or 3.

• The Mask (\) Operator

The backslash “\” is used to mask the special meaning of the
characters:

[] < > | ^ $

A special character preceded by \ results in an expression that
matches the special character itself.

Because ^ and $ only have special meaning when placed at the
beginning and end of a pattern respectively, you need not mask them
when they are used within the pattern (in other words, not at
beginning or end).

The only exception to this rule is the tab character, which is specified
by entering “\t” into the pattern string.

Tags

Search patterns may use tags to identify part(s) of the target string to,
for example, compose a new string from selected parts of the target
string. To define a tag, add “.tagname” before the closing chevron. The
pattern:

^errno: <#.number> - <*.error_text>

matches a string such as:

errno: 125 - device not in service

and assigns "125" to the tag number and "device not in service" to
the tag error_text. The tags may be accessed as members of a
dictionary. See “Match.testVars” on page 293.

Assignment Rules

In matching the pattern "<*.tag1><*.tag2>" against the string
"abcdef", it is not immediately clear which substring of the input string
is assigned to each tag. For example, it is possible to assign an empty
string to tag1 and the whole input string to tag2, as well as assigning
290 Chapter 9

Operators and Built-in Functions
Built-in Functions
"a" to tag1 and "bcdef" to tag2, and so forth.

The pattern-matching algorithm always scans both the input line and
the pattern definition (including alternative expressions) from left to
right. <*> expressions are assigned as few characters as possible. <#>,
<@>, <S> expressions are assigned as many characters as possible.
Therefore, tag1 will be assigned an empty string in the above example.

To match an input string such as:

"this is error 100: big problem"

use a pattern such as:

error <#.errnumber>:<*.errtext>

In which:

• "100" is assigned to the tag errnumber

• "big problem" is assigned to the tag errtext

For performance and pattern readability purposes, you can specify a
delimiting substring between two expressions. In the above example, “:”
is used to delimit <#> and <*>.

Matching <@.word><#.num> against "abc123" assigns "abc12" to word
and "3" to num, as digits are permitted for both <#> and <@>, and the left
expression takes as many characters as possible.

Patterns without expression anchoring can match any substring within
the input line. Therefore, patterns such as:

"this is number<#.num>"

are treated in the same way as:

"<*>this is number<#.num><*>"

Sub-Patterns Assignment

In addition to being able to use a single operator, such as * or #, to assign
a string to a tag, you can also build up a complex sub-pattern composed
of a number of operators, according to the following pattern:
<[sub-pattern].tag>

For instance: <[rack<#>.brd<#>].hware>

In the example above, the period (.) between rack<#> and brd<#>
matches a similar dot character, while the dot between] and hware is
necessary syntax. This pattern would match a string such as
Chapter 9 291

Operators and Built-in Functions
Built-in Functions
"rack123.brd47" and assigns the complete string to hware.

Other examples of sub-patterns are:

<[Error|Warning].sev>

and

<[Error[<#.n><*.msg>]].complete>

In the first example above, any line with either the word “Error” or the
word “Warning” is assigned to the tag, sev. In the second example, any
line containing the word “Error” has the error number assigned to the
tag, n, and any further text assigned to msg. Finally, both number and
text are assigned to complete.

Examples of Pattern-matching Conditions

The following examples show some of the many ways in which the ECS
pattern-matching language can be used.

• "Error"

Recognizes any message containing the keyword Error at any place
in the message, when ExactCase is specified.

• "panic"

Matches all messages containing panic, Panic, PANIC at any place in
the text, when IgnoreCase is specified.

• "logon|logoff"

Uses the or operator to recognize any message containing the
keyword logon or logoff.

• "^switch:<*.msg> errno<*><#.errnum>$"

Recognizes any message such as:

"switch: lost service errno : 6"

or

"switch: service unavailable; errno 16"

In the first example, the string "lost service errno" is assigned to
the tag msg. The digit 6 is assigned to the tag errnum. Note the way
that the anchoring symbol is used to specify that the digit 6 will only
be matched if it is at the end of the line.

• "^errno[|=]<#.errnum> <*.errtext>"
292 Chapter 9

Operators and Built-in Functions
Built-in Functions
Matches strings such as:

"errno 6 - no such device or address "

or

"errno=12 not enough capacity. "

Note the space before the or operator. The expression in square
brackets matches either this blank space, or the equals sign. The
space between <#.errnum> and <*.errtext> is used as a delimiter.
Although not strictly required for assignments to the tags shown
here, this space serves to increase performance.

• "^system:<*>:<*.id>:"

Matches a line delimited by colons such as:

"system:abc123:#103.79a:270295114730:"

and returns the third field in tag id. The colon “:” in the middle of the
pattern is used to delimit the string passed to id from the preceding
string. The colon at the end of the pattern delimits the string passed
to id from the succeeding field in the input pattern. Here the colon is
necessary to separate the strings, not merely to enhance efficiency.

• ^Warning:<*.text>on circuit<@.circuit>$

Matches any message such as:

"Warning: too many errors on circuit 473-186"

and assigns "too many errors" to text, and "473-186" to circuit.

Match.test

Syntax Match.test opaque string

Where:

opaque is a compiled search pattern, as provided by the Match.make
function.

string is the string to be searched for the pattern.

Match functions do not support strings that contain the NUL character
(\000). If any of the string arguments to a match function contain NUL
then the result is undefined.
Chapter 9 293

Operators and Built-in Functions
Built-in Functions
Description Match.test returns a boolean value indicating whether the pattern was
found in the string string. The value true is returned if the pattern
represented by the opaque argument is present in string. Otherwise,
the value false is returned. The pattern being searched for must first be
compiled by the Match.make function before being passed to Match.test
as the opaque argument. Any tags in the pattern are ignored.

Examples For example, the following ECDL fragment returns true because the
pattern "cat" appears in the string "concatenate":

let

 Val pat = Match.make ("cat","",IgnoreCase)

in

 Match.test pat "concatenate"

end

See also • “String Data Type” on page 219

• “= and != (equality operators)” on page 243

• “> >= < <= (relational operators)” on page 244

• “Match.test” on page 293

• “Match.testVars” on page 294

Match.testVars

Syntax Match.testVars opaque string

Where:

opaque is a compiled search pattern, as provided by the Match.make
function.

string is the string to be searched for the pattern.

Match functions do not support strings that contain the NUL character
(\000). If any of the string arguments to a match function contain NUL
then the result is undefined.

Description Match.testVars returns a tuple containing a boolean and dictionary.
The boolean value indicates whether the pattern was found in the string
294 Chapter 9

Operators and Built-in Functions
Built-in Functions
string. The dictionary contains tags contained in the pattern, together
with the value of each, extracted from the string. The dictionary is empty
if no match is found. The pattern being searched for must first be
compiled by the Match.make function into an opaque data type before
being passed to Match.test as the opaque argument. The data type of
the return value is defined as:

(Boolean * Dict(String, String))

Examples The following example extracts digits from the end of strings matching
the pattern in pat:

fun test1 (result) =
let
 val pat = Match.make("xyz<*.text>D<#.digits>$", "",
 ExactCase)
 val (succ, vars) = Match.testVars pat "xyzjunkD6"
 val digits =
 if succ
 then vars "digits"
 else raise NotFound
 end
in
 digits :: result
end

See also • “> >= < <= (relational operators)” on page 244

• “Match.test” on page 293

• “Match.testVars” on page 294
Chapter 9 295

Operators and Built-in Functions
Built-in Functions
mod

Syntax integer1 mod integer2

Where:

integer1 and integer2 are both integers.

Description The result is the integer value of the remainder after dividing Integer1
by Integer2.

Examples 7 mod 3 returns the integer 1.

1 mod 1 returns the integer 0.

7 mod (-3) returns the integer 1.

(-7) mod 3 returns the integer -1

See also • “/ (real divide)” on page 241

• “div” on page 263

not

Syntax not boolean

Description The result is the boolean value which is the logical inverse of the
argument.

Examples not true returns the boolean false.

not false returns the boolean true.

See also • “Boolean Data Type” on page 215
296 Chapter 9

Operators and Built-in Functions
Built-in Functions
nth

Syntax nth integer list

Where:

integer is the number of the element to be returned.

list is the list from which the element is to be extracted.

Description nth returns a single element from the list. The first element in the list is
element number one. The data type of the result is the data type of the
returned element.

If there is no such element because integer is less than 1 or greater
than the number of elements in the list, then a NotFound exception is
raised.

Example nth 1 [1,2,3] returns the integer 1.

nth 3 [1,2.0,3s] returns the duration 3s.

nth 1 [[1,2,3], "rat"] returns the list[1,2,3].

See also • “List Data Type” on page 223

• “length” on page 285
Chapter 9 297

Operators and Built-in Functions
Built-in Functions
oid.append

Syntax Oid.append oid number

Where:

oid is an oid data type.

number is an integer to be appended to the end of the oid.

Description Oid.append appends the integer number to the end of the object
identifier oid and returns the resulting oid.

Examples Oid.append 1.3.6.1.4.1.11.2.17.1 58916865 returns the oid
1.3.6.1.4.1.11.2.17.1.58916865

See also • “oid.join” on page 299

• “oid.last” on page 300

• “oid.split” on page 301

• “oid.split_at” on page 302

• “oid.split_nnm” on page 303
298 Chapter 9

Operators and Built-in Functions
Built-in Functions
oid.join

Syntax Oid.join listOfIntegers

Where:

listOfIntegers is a list data type containing the integers to be
assembled into an oid.

Description Oid.join returns an oid formed from appending all the integers
together. This is the inverse of the Oid.split function.

Examples Oid.join [1, 3, 6, 1, 4, 1, 11, 2, 17, 1, 58916865] evaluates
to the oid 1.3.6.1.4.1.11.2.17.1.58916865.

Oid.join (Oid.split myOid) evaluates to myOid. Oid.join is the
inverse of Oid.split.

Oid.join [5] evaluates to the oid 5 (note that this is an oid data type
and not an integer). This is a useful way to obtain oids with two or less
components. Normally, you cannot write a literal oid with less than three
parts because the ECDL compiler interprets it as a real or an integer. For
example, “1.2” is interpreted as a real and “1” is interpreted as an
integer.

Oid.join [] evaluates to an oid with no numbers. This is probably only
useful as an argument to other Oid. functions.

See also • “oid.append” on page 298

• “oid.last” on page 300

• “oid.split” on page 301

• “oid.split_at” on page 302

• “oid.split_nnm” on page 303
Chapter 9 299

Operators and Built-in Functions
Built-in Functions
oid.last

Syntax Oid.last oid

Where:

oid is an oid data type.

Description Oid.last returns the last part of the oid as an integer.

Examples Oid.last (1.3.6.1.4.1.11.2.17.1.58916865) evaluates to the
integer 58916865.

See also • “oid.append” on page 298

• “oid.join” on page 299

• “oid.split” on page 301

• “oid.split_at” on page 302

• “oid.split_nnm” on page 303
300 Chapter 9

Operators and Built-in Functions
Built-in Functions
oid.split

Syntax Oid.split oid

Where:

oid is an oid data type.

Description Oid.split returns a list of integers representing all the elements in the
oid.

Examples Oid.split 1.3.6.1.4.1.11.2.17.1.58916865 evaluates to the list
[1, 3, 6, 1, 4, 1, 11, 2, 17, 1, 58916865]

Oid.split (Oid.join myListOfIntegers) evaluates to
myListOfIntegers. Oid.split is the inverse of Oid.join.

See also • “oid.append” on page 298

• “oid.join” on page 299

• “oid.last” on page 300

• “oid.split_at” on page 302

• “oid.split_nnm” on page 303
Chapter 9 301

Operators and Built-in Functions
Built-in Functions
oid.split_at

Syntax Oid.split_at index oid

Where:

index is an integer that determines where the oid is split. index
must be positive. An InvalidArgs exception is raised if it is less than
0.

oid is an oid data type.

Description Oid.split_at splits the object identifier oid into two oids after the
indexth element. The two oids are returned as a tuple.

Examples Oid.split_at 4 1.3.6.1.4.1.11.2.17.1 returns (1.3.6.1,
4.1.11.2.17.1)

Oid.split_at 0 1.3.6.1.4.1.11.2.17.1 returns (?,
1.3.6.1.4.1.11.2.17.1) where ? represents the “unwritable” Oid with
no parts

Oid.split_at 10 1.3.6.1.4.1.11.2.17.1 returns
(1.3.6.1.4.1.11.2.17.1, ?) where ? represents the “unwritable” Oid
with no parts

See also • “oid.append” on page 298

• “oid.join” on page 299

• “oid.last” on page 300

• “oid.split” on page 301

• “oid.split_nnm” on page 303
302 Chapter 9

Operators and Built-in Functions
Built-in Functions
oid.split_nnm

Syntax Oid.split_nnm oid

Where:

oid is an oid data type.

Description Oid.split_nnm removes the last number from the oid and returns a
tuple comprising the truncated oid and the number. It will raise the
InvalidArgs exception if the oid has no parts.

Examples The following contrived example for a Filter node Condition parameter
splits the supplied NNM oid and prints the enterprise object identifier
and specific trap number to the trace log:

let
 val (enterprise, specificTrap) = Oid.split_nnm
 1.3.6.1.4.1.11.2.17.1.58916865
in
 system.trace (StringOf enterprise) ;
 system.trace (StringOf specificTrap) ;
 true
end

results in the following lines in the trace log:

TRACE [interpreter]: 1.3.6.1.4.1.11.2.17.1
TRACE [interpreter]: 58916865

See also • “oid.append” on page 298

• “oid.join” on page 299

• “oid.last” on page 300

• “oid.split” on page 301

• “oid.split_at” on page 302
Chapter 9 303

Operators and Built-in Functions
Built-in Functions
or

Syntax boolean1 or boolean2

Where:

boolean1 and boolean2 are both booleans.

Description The result is the boolean value true if either or both arguments are true,
otherwise the result is false.

If boolean1 is true then the function “short-circuits” and boolean2 is not
evaluated. This may have implications if boolean2has side effects.

Examples true or false returns the boolean true.

false or false returns the boolean false.

See also • “Boolean Data Type” on page 221

• “and” on page 258

• “inter” on page 278

ord

Syntax ord string

Where:

string is a (multibyte) string data type consisting of a single
character only.

Description ord returns an integer representing the code of the character in the
current character set.. If an empty string is passed then a RangeError
exception is raised. If the string length is greater than one then an
InvalidArgs exception is raised.

Examples ord "a" returns the integer 97.

See also • “String Data Type” on page 219

• “chr” on page 261
304 Chapter 9

Operators and Built-in Functions
Built-in Functions
perl_interp

Syntax perl_interp function-name

Where:

function-name is the user defined function written in Perl. The
perl_interp function is used to access external data and perform
correlation based on the data obtained.

Description The perl_interp function calls a user defined Perl function.

Example val perl_ret =
perl_interp("perl_func_name",arg1,arg2,arg3....,argn)

perl_ret is a list of EV_AttrValues, where individual perl_ret values can
be accessed by
Chapter 9 305

Operators and Built-in Functions
Built-in Functions
reverse

Syntax reverse list

Where:

list is a list of any data types.

Description reverse returns a new list with same elements in reverse order.

Example reverse [1,2,3] returns the list [3,2,1].

See also • “List Data Type” on page 223

round

Syntax round real

Where:

real is the real number to be rounded.

Description The result is the nearest integer value, where .5 rounds away from 0.

The return data type is integer.

Examples round 1.5 returns the integer 2.

round (-1.5) returns the integer -2.

round 10.3 returns the integer 10.

See also • “Real Data Type” on page 214

• “truncate” on page 315
306 Chapter 9

Operators and Built-in Functions
Built-in Functions
split

Syntax split string1 string2

Where:

string1 is the source (multibyte) string to be split

string2 is the (multibyte) substring to search for

Description split searches string1 for a substring exactly matching string2 and
splits string1 into separate strings at each match to produce a list of
strings. The matched pattern (string2) is removed from string1 before
it is split. The result is a list of strings.

Examples split "h-a-t" "-" returns the list ["h", "a", "t"].

split "splatter" "plat" returns ["s", "ter"]

split "jabber" "z" returns ["jabber"] because no split point
substring was found.

See also • “String Data Type” on page 219

• “List Data Type” on page 223

• “explode” on page 264

• “join” on page 284
Chapter 9 307

Operators and Built-in Functions
Built-in Functions
stringOf

Syntax stringOf anydata

Where:

anydata can be any of the types listed in the table below.

Description The stringOf function converts its argument to a human-readable
string form.

Example The following table illustrates how various types are converted to a
string representation. The event and opaque types return a meaningless
hexadecimal number.

Type Example of string returned by stringOf function

Void ()

Integer 123

Boolean true

Real 4.7

String "abc"

Time yyyymmddhhmmss.usecsZ e.g. 19960101000000.0Z for 1 Jan
1996

Duration 2000s for 33m 20s

Oid 4.6.8.0

Event event(0x...)

Opaque Opaque(0x...)

Tuple (3, 5, false)

List [3, 5, false], lists of lists are properly represented.

Token token(2)(3)
308 Chapter 9

Operators and Built-in Functions
Built-in Functions
System.audit_log

Syntax System.audit_log anydata

Where:

anydata is an ECDL expression that evaluates to any data type
(anything except a function type).

Description The System.audit_log function converts anydata to printable data and
writes it to the engine log at a log mask level of LOG_INFO. The return
value is Void.

Data Types The data types supported for anydata are:

Simple: Integer, Real, Boolean, String, Duration, Time, Oid,
Token

Compound: Tuple, List, Event

For the Event data type, the unique ID of the event is logged (the
unique_id header attribute). The unique ID may be used to locate the
event in the event logs, if event logging is enabled.

Example The following expression for a Filter node Condition parameter passes
events with an “errorCode” attribute of 73, and logs two text strings and
the input event unique ID to the engine log:

(
 System.audit_log ("suppress circuit",
 "testing the error code",
 input_event) ;
 input_event "errorCode" = 73
)

See also • “Sequence” on page 339
Chapter 9 309

Operators and Built-in Functions
Built-in Functions
System.circuit_dump

Syntax System.circuit_dump ()

Where:

() is a Void dummy argument that must be passed.

Description The System.circuit_dump function is equivalent to the ecsmgr
-snapshot command except that the engine snapshot is written to the
trace log file.

The System.circuit_dump function returns Void.

A snapshot is a static dump of an engine’s state and should only be
performed at the request of support personnel. Depending upon the
nature of the circuit and the number of events detained or stored in the
circuit, a snapshot may produce a very large quantity of data. This
function may be used in an appropriately configured sequence
expression, in any correlation node parameter.

Example In a Filter node Condition parameter a snapshot may be taken before
the condition is evaluated with:

(System.circuit_dump () ; input_event "deviceId" = "thor")

See also • “Sequence” on page 339

• ecsmgr(1M) command referenc
310 Chapter 9

Operators and Built-in Functions
Built-in Functions
System.trace

Syntax System.trace string

Where:

string is any expression that evaluates to a String.

Description The System.trace function writes string to the trace log and returns
Void. The string may be literal text or an expression that evaluates to a
String data type. This function may be use in an appropriately
configured sequence expression, in any correlation node parameter.

The trace mask must be set to enable the System.trace log level using
either System.set_trace_mask or ecsmgr -trace.

Example The following expression configures a Filter node Condition parameter
to forward critical events and delete others, and to write an appropriate
message to the trace log:

if (input_event "severity" = critical)
then

System.trace "event forwarded" ; true
else

System.trace "event deleted" ; false
end

Each of the sequence expressions writes a text string to the trace log (if
tracing is enabled) and then returns either true (for the Filter node to
pass the event) or false (for the Filter node to suppress the event).

See also • “Sequence” on page 339

• “System.set_trace_mask” on page 312

• ecsmgr(1M) command reference
Chapter 9 311

Operators and Built-in Functions
Built-in Functions
System.set_trace_mask

Syntax System.set_trace_mask integer

Where:

integer is the trace log mask value.

Description The System.set_trace_mask function sets the trace log mask to the
value of the integer argument expression and returns the previous trace
mask as an Integer value. This function may be used in an appropriately
configured sequence expression, in any correlation node parameter.

The trace mask values shown in Table 8-3 should be summed to enabled
multiple log levels. Note that trace mask values must be expressed in
decimal notation; ECDL does not support hexadecimal.

Table 9-3 Trace Mask Values

Decimal
value

Description

1 Event transfer

2 Event discard

4 Event create

8 Internal debugging (user usage limited)

16 Create/delete of nodes

64 Entry or exit of events to nodes

128 (unused)

256 Memory allocation failure (user usage limited)

512 Processing information, OPI debugging

1024 Circuit load, transit delays

2048 Invariant fail (user usage limited)

4096 Interpreter tracing, exception messages

8192 Interpreter detail (user usage limited)
312 Chapter 9

Operators and Built-in Functions
Built-in Functions
Example In a Filter node Condition parameter, to set the trace mask to enable
event transfer, event discard and event create (using a sequence
expression):

(
System.set_trace_mask (1 + 2 + 4) ;
input_event "severity" = critical

)

To set the trace mask as above, and to enable subsequent use of the
system.trace function:

(
System.set_trace_mask (1 + 2 + 4 + 65536) ;
input_event "severity" = critical

)

See also • “Sequence” on page 339

• “System.trace” on page 311

• ecsmgr(1M) command reference

16384 Event delete

32768 Management, ecsmgr and engine

65536 system.trace

Table 9-3 Trace Mask Values

Decimal
value

Description
Chapter 9 313

Operators and Built-in Functions
Built-in Functions
Time.now

Syntax Time.now ()

Where:

() is a void value (dummy parameter) that must be passed.

Description The result is a Time data type value containing the current time.

Examples The following example sets the “createTime” attribute of a newly created
event to the current time. Note that explode_time is used to deconstruct
the Time data type value into its component parts:

let
val t = explode_time (Time.now ())

in
created_event alter
(

"createTime.date.year" => t Time.year,
"createTime.date.month" => t Time.month,
"createTime.date.day" => t Time.day,
"createTime.time.hour" => t Time.hours,
"createTime.time.minute" => t Time.minutes,
"createTime.time.second" => t Time.seconds,
"deviceId" => "Ephor",
"messageType" => "LNKUP",
"severity" => 2,
"text" => ""

)
end

See also • “Time Data Type” on page 217

• “explode_time” on page 265
314 Chapter 9

Operators and Built-in Functions
Built-in Functions
truncate

Syntax truncate real

Where:

real is the real number to be truncated.

Description The result is the nearest integer value closer to 0.

The return data type is integer.

Examples truncate 1.5 returns the integer 1.

truncate (-1.5) returns the integer -1.

Note the use of parentheses in the second example to ensure that the
unary minus operator is bound to the number. Without parentheses this
is interpreted as an attempt to subtract 1.5 from truncate, resulting in
a compile time type error.

See also • “Real Data Type” on page 214

• “round” on page 306
Chapter 9 315

Operators and Built-in Functions
Built-in Functions
union

Syntax list1 union list2

Where:

list1 and list2 are lists containing elements of any data type for
which the equality operator = is defined.

Description Returns a new list consisting of the union of list1 and list2. The
result is a list of all elements from both lists, except that duplicate
elements are eliminated.

Example [1,2,3] union [2,3,4] returns the list [1,2,3,4]. Duplicates are
eliminated from the result.

[1,2,3] union [4,5,6] returns the list [1,2,3,4,5,6] .

[1,1,2,2,3] union [1,1,2,2,3] eliminates duplicates to return the
list [1,2,3].

[1,1,2,2,3] union [] returns the list [1,2,3].

See also • “List Data Type” on page 223

• “inter” on page 280

• “interc” on page 281

• “unionc” on page 317
316 Chapter 9

Operators and Built-in Functions
Built-in Functions
unionc

Syntax unionc func list1 list2

Where:

list1 and list2 are lists containing elements of any data type.

func is a function that returns a boolean data type and has the form:

func arg1 arg2

The return value must be true if the arg1 and arg2 are “the same”,
and false otherwise.

Description Returns a new list consisting of the union of list1 and list2. Each of
the elements of list1 and list2 are compared, using the function func
supplied as the first argument. The result is a list of all elements from
both lists, except that duplicate elements are eliminated.

The unionc function is similar to the union function except that union is
in prefix form instead of infix, and the comparison between elements is
performed using a user supplied function instead of the = operator.

The unionc function is most useful when manipulating lists of elements
whose data types do not have an equality operation defined, or when the
required comparison is something other than a simple test for equality.

Example The following example compares elements from the two lists using the
anonymous function fn x y => x = y that simply uses the = operator to
compare each of the elements in the lists.

unionc (fn x y => x = y) [1,2,3] [2,3,4]

The expression returns the list [1,2,3,4]. This is equivalent to writing
[1,2,3] union [2,3,4].

See also • “List Data Type” on page 223

• “inter” on page 280

• “interc” on page 281

• “union” on page 316
Chapter 9 317

Operators and Built-in Functions
Built-in Functions
318 Chapter 9

10 Writing ECDL Expressions
319

Writing ECDL Expressions
This chapter contains a detailed description of the Event Correlation
Description Language (ECDL)—the language used to configure nodes in
a correlation circuit. Typically, elements of the language are used:

• when filling in parameters of nodes (condition parameter in
particular)

• in the “Global Definitions” of a circuit

• in the Filter Condition expression on the External tab

NOTE You cannot use ECDL expressions in Data Store or Fact Store entries
because no expression evaluation is done when these stores are loaded,
updated or accessed.

The main sections in this chapter are:

• “Binding and Comparisons” on page 321

• “Comments in ECDL” on page 325

• “Data Type Handling” on page 326

• “Flow-control Expressions” on page 334

• “Exceptions” on page 341

• “Functions and Language Layout” on page 344

• “Modules and Name Search” on page 356

If you have a good working knowledge of the C language then the last
section is specifically for you:

• “An Introduction to ECDL for C Programmers” on page 370
320 Chapter 10

Writing ECDL Expressions
Binding and Comparisons
Binding and Comparisons
ECDL binding patterns assign names to values. Without the use of
binding patterns a lot of event data manipulations and comparisons
would be difficult to perform.

Named Values

ECDL provides a mechanism for assigning names to values. This is
similar to the concept of variables in some languages but in ECDL, once
a name is assigned to a value, that value cannot be changed. These are
known as named values.

For example,

val myValue = 23

Here, the keyword val represents a value definition, myValue is the
name, and 23 is the value that myValue represents. The value that
myValue represents is now unchangeable. The named value myValue can
now be used anywhere where an integer number is expected.

For example:

val myOtherValue = 2 * myValue + 3

Neither of these two examples specifies the data types of the named
values. ECDL infers that the data type is Integer in both cases. However,
it is sometimes desirable to specify the data type explicitly, particularly
in function application.

To specify a data type, simply follow the named value with a colon (:),
followed by the type expression. For example:

func plus2 (num : Integer) : Integer = num + 2

Binding Patterns

The previous chapter described complex data types associated with the
manipulation of events. To help manage these complex expressions,
ECDL has a mechanism known as binding patterns. Binding patterns
enable named values to be used for all or part of a complex ECDL data
value. This mechanism allows for more than one name to be bound
simultaneously to parts of a complex data value.
Chapter 10 321

Writing ECDL Expressions
Binding and Comparisons
Where an ECDL value is a Tuple (as with the ASN.1 CHOICE name and
value) for example:

("number", 5)

Typically, you need to have access to the value (5 in this case), as a
simple ECDL value. By using binding patterns we can write:

val (choiceName, myValue) = ("number", 5)

This now provides the named values choiceName (representing
"number") and myValue (representing 5).

The wildcard pattern _ (underscore) can be used for elements in the
binding pattern whose value is of no interest. In the previous example, if
you were not interested in the CHOICE name, say, you could write:

val (_, myValue) = ("number", 5)

In this case, we have only myValue as a named value, which can now be
used in subsequent expressions such as:

myValue > 3

Table 10-1 Binding Pattern Forms

Pattern Description

identifier An identifier matches any value and binds the identifier to the value. All of the
identifiers in a binding pattern must be different.

identifier:type This binds the identifier as above and also says the type of the value must
conform to the given type (compile time check only).

_ The underscore character is the wildcard pattern. It will match with any value but
does not bind a name to the value.

constant A pattern can be any constant including the void value () and token names. The
constant pattern matches if the value is equal to the constant. This form is mainly
used in case expressions. For example:

case severity of low 1 | medium 2 | high 3

returns the value 1, 2, or 3 depending on whether the severity is low, medium, or
high.
322 Chapter 10

Writing ECDL Expressions
Binding and Comparisons
Binding patterns can be used in more detailed data type manipulations
as we will see later in this chapter.

(pat1, pat2, ...) A tuple of patterns matches a tuple value if the number of inner patterns pat1,
pat2, etc. is the same as the number of values in the tuple and each inner pattern
matches the corresponding value in the tuple. pat1 is bound to the first element
in the tuple, pat2 is bound to the second, and so on. For example:

(part1,part2) = input_event "choiceAttribute"

binds part1 to the first value in the choice tuple, and part2 to the second value.

[] This matches an empty list.

[pat1, pat2, ...] This matches a list with the same number of elements as there are inner patterns
pat1, pat2 etc. Each inner pattern is bound to the corresponding list element.
For example:

[a,b,c] = [1,2,3]

binds a to 1, b to 2, and c to 3.

pat1::pat2 This matches any list that is not empty. The pattern pat1 is bound to the first
element in the list and the second pattern pat2 is bound to the rest of the list,
from the second element on. For example:

val first::rest = [1,2,3,4]

binds first to the value 1 and rest to the value [2,3,4].

pat1 as pat2 This allows two patterns to bind to the same value. The first pattern must be an
identifier, optionally with a type constraint. At the same time, the value is
matched with pat2. The result is that you can use the name in pat1 to refer to
the whole value and the names in pat2 to refer to its parts. This can be more
efficient. For example:

val whole as (part1, part2) = input_event "choiceAttribute"

Table 10-1 Binding Pattern Forms

Pattern Description
Chapter 10 323

Writing ECDL Expressions
Binding and Comparisons
“Let” Expressions in Node Parameters

To take advantage of named values and binding patterns in the
parameters of circuit nodes we need to introduce the let expression.

To test if an event’s severity is either 5 or 7, and pass it through a Filter
node if it has, you could use an expression such as:

input_event "severity" = 5 or input_event "severity" = 7

This can be written using a let expression as:

let
val severity = input_event "severity"
val badProblem = 5
val reallyBadProblem = 7

in
severity = badProblem or severity = reallyBadProblem

end

The named values badProblem and reallyBadProblem are introduced
only to show simple named values being defined, and to help express the
meaning of the subsequent condition. The values 5 and 7 could have been
used in the condition directly without affecting the result.

The let expression allows you to define named values that are visible
only within the scope of the let expression. You define named values
between the let and in keywords, and place any valid expression
between the in and the end. The expression between the in and the end
can refer to any of the named values defined earlier. The named values
are only visible between the let and the end, and are invisible outside
that scope. The value returned by the whole expression is the value of
the expression between the in and end.

No identifier (the name of the named value) may be defined more than
once within the same let expression, but let expressions may be nested
and, if the same identifier is defined in a nested let expression, the inner
identifier hides the one defined at the outer level.

A let expression can be used anywhere an expression can be used (such
as in a node condition parameter).
324 Chapter 10

Writing ECDL Expressions
Comments in ECDL
Comments in ECDL
ECDL uses the same language comment style as ASN.1 and GDMO.
That is, comments begin with a double-hyphen “--” and terminate with
either the end of the line, or another double-hyphen. For example:

-- This entire line is a comment

val myValue = 23 -- This is a comment after my value
 -- definition

val myValue = --23-- 24 -- This is a comment after my value
 -- definition, where the value 23 has
 -- been "commented out", and the
 -- value 24 is used instead.
Chapter 10 325

Writing ECDL Expressions
Data Type Handling
Data Type Handling
The basics of data types supported in ECDL are described in Chapter 8,
“Data Types,” on page 211. In summary, the ECDL types include:

• simple types like Integer, Real, Boolean, Oid, and String

• complex types such as Tuple, List, and Dictionary

• special types such as Function, and Void.

• type collections such as dynamic types and unions

This section describes how complex types, such as Tuples, Lists and
Dictionaries, are handled.

Tuple Manipulation

“Tuple Data Type” on page 222 introduced the tuple type. This section
shows more advanced ways of manipulating tuples.

A tuple is a fixed structure containing two or more members. Each
member of the tuple has a defined data type.

Tuples arise in ECDL expressions as node parameters, such as:

• the Time Alignment parameter to the Clock and Rate nodes

• event attributes in events that rely on ASN.1 or MDL (ITO messages
do not contain Tuples)

In ASN.1 the SEQUENCE/SET and CHOICE types are represented
using the Tuple type. In MDL subtypes are represented as Tuples.

Tuples appear in ECDL as a comma-separated member set enclosed in
parentheses:

("number", 42)

Tuples may be nested to any level.

Tuple type
specification

The type specification for a tuple consists of a list of member data type
specifications, separated by asterisks “*”, and enclosed in parentheses.
The following example defines a tuple holding a string as the first
member, and an integer as the second:

val myTuple: (String * Integer) = ("number", 42)
326 Chapter 10

Writing ECDL Expressions
Data Type Handling
Tuple binding
patterns

Binding patterns are frequently useful when accessing MDL and ASN.1
event attributes. The form for the binding pattern is a comma separated
member identifier set, enclosed in parentheses. For example:

val (firstMember, secondMember) = ("number", 42)

This results in firstMember = "number" and secondMember = 42.

To access the members of an ASN.1 SEQUENCE type, you could write:

val (identifier, significance, _) =
 input_event("eventInfo.additionalInformation[0]")

This might result in identifier = 2.9.3.2.7.29 and significance =
true. Note also that the wildcard character “_” is used for the third
member of the tuple to indicate that you are not interested in using that
value. The wildcard character “_” can be used more than once in a
binding pattern. Identifiers must, however, be unique.

The length of a binding pattern is important: (id, sig, _) is not the
same as (id, sig).

List Manipulation

A list is an ordered set of values and is of variable length. All the
elements in a list must be of the same nominal data type. However, by
making use of dynamic data types, lists can be defined to hold a variety
of data. If a data type for the list is not is not defined then it is set to List
Any Type.

Lists are represented in ECDL as a comma separated list of elements
enclosed in square brackets. Some simple examples are:

[5, 4, 8, 10] -- List of Integers
["abc", "zyz", "def"] -- List of Strings
[1, "ghi", 3.4] -- List of mixed types (List Any Type)

A more complex example is a list of tuples:

[("number", 1), ("number", 5), ("number", 7)]

The empty list has the form:

[]
Chapter 10 327

Writing ECDL Expressions
Data Type Handling
List type
specification

The type specification for lists consists of the keyword list, followed by
the type specification for the data type of all elements in the list.

For example to define a list of Integer values:

val myIntegerList : List Integer = [5, 4, 8, 10]

Alternatively, to define a list that can contain elements of any type:

val myAnyList : List (Any Type) = ["abc", 5, (2, "def")]

The parentheses around (Any Type) are simply for clarity and are not
required.

List construction Lists may be constructed using the infix construction operator “::”. For
example:

5 :: 4 :: 8 :: 10 :: []

produces a list with the value [5, 4, 8, 10].

This operator takes its left operand as a data element and its right
operand as a list, and is right associative. Which means that if you read
the example starting with the empty list [] on the right side, then you
prepend element value 10 to that list, which produces a list [10], which
in turn has element value 8 prepended to it, producing [8,10], etc., until
the list is constructed.

Searching Lists

Some list operations are performed using functions documented in
Chapter 9, “Operators and Built-in Functions,” on page 233. The
operations discussed here are not functions but are based on expressions
whose syntax is part of the ECDL language.

Exists The exists operation is used to determine if a particular element is
present in a list. The basic form of the exists expressions is:

exists element in someList where condition

This reads “does there exist an element in someList, such that a given
condition is satisfied.” The result type of this expression is boolean.

For example

exists element in [2, 4, 1, 7] where element > 3

produces the boolean result of true, since the list contains at least one
element greater than 3. The elements in the list are iterated over from
328 Chapter 10

Writing ECDL Expressions
Data Type Handling
first to last (or until the condition evaluates to true), with element
representing each element in the iteration for the evaluation of the
condition.

An example is to check for any events in a Table node’s Contents
attribute that are of a given event type:

exists table_event in table1.contents where
 table_event "eventType" = 2.9.3.2.10.4

An older form of this expression also exists: (v1 form).

ForAll The forall operation is similar to the exists operation except that
where exists returns true if any element in a list satisfies a given
condition, forall must satisfy the condition for every element in the list.

The basic form of the forall expression is:

forall element in someList where condition

This reads “is it true that, for all elements in someList, the condition is
true.” The result type of this expression is boolean.

For example

forall element in [2, 4, 1, 7] where element > 3

produces the boolean result of false, since at least one element in the list
is not greater than 3. The elements in the list are iterated over from first
to last (or until the condition evaluates to false), with element
representing each element in the iteration for the evaluation of the
condition.

An older form of the forall expression also exists: (v1 form).

Find The find operation searches a list for the first element that matches a
given condition.

The basic form of the find expression is:

find element in someList where condition

This reads “Find the first element in someList, such that a given
condition is satisfied.” The result type of this expression is a tuple
containing the matched element as the first member, and the remaining
list after the found element as the second member.

For example

find element in [2, 4, 1, 7] where element = 4
Chapter 10 329

Writing ECDL Expressions
Data Type Handling
produces the result

(4, [1,7])

The elements in the list are iterated over from first to last, with element
representing each element in the iteration for the evaluation of
condition.

If condition cannot be satisfied for any element in the list, the
NotFound exception is raised.

An older form of the find expression also exists: (v1 form).

Deriving Lists from Lists

Some complex decisions on lists of events are more simply expressed as a
combination of simpler decisions.

Suppose we have a Table node holding alarms from a wide area and wish
to determine if there have been more than three alarms from Sydney of
severity greater than 5. This can be broken down into two steps.

1. Select the events in the table that satisfy the alarm condition.

2. Count them.

The selection step can be done with a select expression, such as this:

select event
from event in alarm_table.contents
where event "severity" > 5 and event "source" = "Sydney"

The expression has three parts. The from part contains an iterator just
like the search expressions. It passes over all events in the contents list
and makes each one available under the name event. For each event in
the list the condition in the where part is evaluated to decide if the event
is to be selected. Then for each selected event the expression after the
select keyword (called the map expression) is evaluated. The results of
all of these evaluations are combined into a new list. Here the map
expression is just event which means “put the selected event into the
new list”.

The result of this select expression is a list of just those events in the
table that satisfy our condition. We can then count them using the
length built-in function, which determines how many members are in a
list.

Putting this all together we get a condition that looks like this:
330 Chapter 10

Writing ECDL Expressions
Data Type Handling
let
val alarms =

select event
from event in alarm_table.contents
where event "severity" > 5 and event "source" =

"Sydney"
in

length alarms > 3
end

The expression after the select keyword can be used to put more than
just the event into the new list. For example we could build a list of the
devices that produced the alarms, from a “device” attribute, by writing

select (event "device")
from event in alarm_table.contents
where event "severity" > 5 and event "source" = "Sydney"

There will be one device value in the list for each selected alarm. This
will probably mean that there are duplicates in the list. You can use the
union built-in function to discard duplicates.

let
 val devices =

select (event "device")
from event in alarm_table.contents
where event "severity" > 5 and event "source" =

"Sydney"

val unique_devices = devices union []
in
... -- use unique_devices
end

Where part The where part is optional. If omitted then the default is as if you wrote
where true.

Iterator patterns Just as with the search expressions, the iterator can include any binding
pattern. Only those list members that match the pattern are considered.
In the variable bindings of an SNMP event, we could find all string
values and their names in a variable binding list by writing:

select (name, value)
from (name, ("simple", ("string", value))) in var_bindings

Here we use the default where part, which has a value of true. The only
members that will be selected are those that match the pattern. For each
Chapter 10 331

Writing ECDL Expressions
Data Type Handling
selected member we construct a Tuple of the name and value.

List builder There is an older more compact form of syntax for select expressions,
called the list builder syntax. The list builder equivalent of the first
select expression example would be:

[event | event in alarm_table.contents :-
event “severity” > 5 and event “source” = “Sydney”]

The select syntax is the recommended form for readability.

Dictionary and Event Manipulation

A dictionary is a structure that holds key-value pairs. The event data
type is a specialization of the dictionary type, and is used to access the
attributes of events in ECDL. We have seen many ECDL examples that
access members of an event using the form:

input_event "eventType"

In this case, the string "eventType", which is the name of the event
attribute, forms the key for a given event. The value returned by this
expression is the value of the event attribute.

General dictionaries are used as the right-hand parameter to the alter
function, and are required when using certain string pattern matching
functions.

A simple example of a dictionary value is:

val myDict =
 ("currentTemp" => 32.1, "minTemp" => 27.0, "maxTemp" => 35.5)

Dictionary values are accessed in the same way as event attributes. For
example:

myDict "minTemp"

This results in the real value of 27.0.

The previous examples all used a string key to access values in a
dictionary. However, the key can be any simple data type. For example,
attributes of temporary events in an ECS circuit are accessed using an
integer key.

There is no restriction on the number of key-value pair members in a
dictionary.
332 Chapter 10

Writing ECDL Expressions
Data Type Handling
Dictionary type
specification

The type specification for dictionary consists of the keyword dict,
followed by the specification for the data types of the key and value,
comma separated and enclosed in parentheses. The data type of the key
can be any simple type.

The following is an example dictionary with a string key, and a real
value:

val myDict : dict (String, Real) =
 ("currentTemp" => 32.1, "minTemp" => 27.0, "maxTemp" => 35.5)
Chapter 10 333

Writing ECDL Expressions
Flow-control Expressions
Flow-control Expressions
This section discusses the ECDL flow-control expressions.

Like many languages, ECDL provides if and choose for alternative
expression evaluation. It also supports switching on dynamic types with
the typecase expression.

ECDL provides no explicit looping expressions but there are constructs
that allow equivalent processing to be done. Iteration is typically
handled by built in functions or by writing recursive functions (a
function that either directly or indirectly calls itself).

The flow-control expressions in ECDL are:

• Choose

• Case

• Typecase

• If

• Sequence

Making Decisions: If and Choose Expressions

An if expression can be used to select between two values, depending on
a Boolean value. In the following example the severity threshold depends
on the source of the event.

let
val source = input_event “source”
val severity = input_event “severity”

in
if source = “Sydney”
then

severity > 5
else

severity > 3
end

end

An if expression must have both a then and else part containing an
expression each (and an end afterwards). The value of the if expression
is either the value of the then expression or the value of the else
334 Chapter 10

Writing ECDL Expressions
Flow-control Expressions
expression depending on whether the value after the if is true or false.

When we examine the if expression we see that only the threshold
varies with the source. We could reduce the if to the smallest size by
rearranging the expression:

let
val source = input_event “source”
val severity = input_event “severity”
val threshold = if source = “Sydney” then 5 else 3 end

in
severity > threshold

end

This example illustrates an important facet of ECDL. An expression
evaluates to a value so any expression can be used where any value is
expected, provided that the expression evaluates to the expected type. A
literal value is the simplest form of an expression. The right hand side of
a val declaration must be an expression so we can put an if expression
there. It selects between the two integer literals which are the then and
else expressions.

The above example also shows a name being declared in one val
declaration and used in another.

If we wanted to choose the threshold depending on several sources we
could use nested if expressions. For example:

if input_event “Source” = “Sydney”
then

5
else

if input_event “Source” = “Canberra”
then

3
else

4
end

end

Here the else expression is itself another if expression. This can be
written more simply using a choose expression.

choose (input_event “Source”) of
“Sydney” => 5

| “Canberra” => 3
| _ => 4
end
Chapter 10 335

Writing ECDL Expressions
Flow-control Expressions
The expression after the choose keyword is the test expression. The body
of the choose expression is a sequence of choice parts separated by a
vertical bar character (|). Each part consists of a choice expression and a
result expression. The value of the test expression is compared with each
of the choice expressions in turn. When one is found that is equal to the
test value then the corresponding result expression is evaluated. The
result value becomes the value of the choose expression.

The last choice part in the above example is a catch-all that uses the
wildcard symbol (an underscore _). The wildcard symbol matches with
any test value so the last choice part is always chosen if none of the
previous parts was chosen.

A wildcard part is not necessary, but if you omit it and none of the choice
parts is selected then a NotFound exception is raised. The wildcard must
always be the last part, if present.

The next section describes a similar expression, the case expression,
which makes choices depending on value structures.

Case

A case expression is similar to a choose expression but it makes its
decision based on the structure of the test value, by matching binding
patterns rather than by testing for equality.

A (simplistic) demonstration is to find the first member of a tuple no
matter whether it has two or three members.

case myTuple of
(f, _) => f

| (f, _, _) => f
end

Here we use the name f to match the first member of the tuple in each
case and wildcards to ignore the other members.

The case parts are examined from top to bottom in order. The first one
that matches is selected and the expression after the arrow is evaluated.
If no case part matches then the BindingMismatch exception is raised.
You can add a catch-all using a single wildcard. For example:

case myTuple of
(f, _) => f

| (f, _, _) => f
| _ => “rubbish”

end
336 Chapter 10

Writing ECDL Expressions
Flow-control Expressions
This works because a wildcard matches any value, no matter what its
structure.

Here is an example of a case expression to extract the “TimeTicks” value
from an ObjectSyntax value in an SNMP variable binding, if it is a
“TimeTicks” value, otherwise return 0.

case object_value of
("simple", ("ticks", n)) => n

| _ => 0
end

Literal strings are used to match the SNMP choice tags for the choices
that we want. (The nested pattern structure follows the structure of the
ObjectSyntax ASN.1 declaration.) The name n is bound to the
“TimeTicks” value if the rest of the pattern matches.

A very common use of a case expression arises when writing your own
functions to iterate over lists. At each step of the iteration, examine the
first member of the remainder of the list. The code for a complex list
search might include something like this:

case rest_of_list of
[] => raise NotFound

| first :: rest =>
if first = ... -- test first, use rest

end

You must consider both the empty and non-empty cases otherwise a
BindingMismatch will occur.

Typecase

Typecase expressions provide a mechanism to do alternative processing,
depending upon the data type of something (such as an event attribute).
Typecase is useful for dealing with dynamic or union types in ECDL.

The basic form of the typecase expression is:

typecase match oftype_expression_1 => result_1
|type_expression_2 => result_2
|...

|type_expression_n => result_n
end
Chapter 10 337

Writing ECDL Expressions
Flow-control Expressions
The match expression is evaluated first. Then, each type_expression_
is evaluated in order from first to last. The evaluation stops when a
type_expression_ matches match. The corresponding result_ is then
evaluated. The return value of the entire typecase expression is the
return value of result_ for the matched type_expression_.

The possible type values for type_expression_ are listed in Table 10-2.

You can also use any Union of these types (Integer | Real) for
example, or user defined names for these types (including names of token
types).

NOTE The Tuple data type is not supported for typecase expressions.

The following example is a typecase expression that results in the
boolean value true if the data type of the value being tested is integer or
real, or false otherwise.

typecase myValue of
 Integer=> true
| Real=> true
| Any Type=> false
end

There is no specific construct for a default typecase part. However, the
type Any Type matches on any data type, and acts as a catch-all. If no
match is made for the typecase, a TypeMismatch exception is raised.

Table 10-2 Valid Typecase Types

Integer Real Boolean

String Oid Duration

Time Void Opaque

Any list Any Dict Any Event

Any Data Any Type
338 Chapter 10

Writing ECDL Expressions
Flow-control Expressions
Sequence

The sequence expression is a mechanism for separating multiple ECDL
expressions, sequentially. This construct is sometimes useful to configure
Modify or Create nodes (though its use is not necessary). It is rarely used
otherwise.

The basic form of the Sequence expression is:

expression_1 ; expression_2 ; ... expression_n

expression_1 is evaluated first, followed by expression_2, and so on.
Each expression is separated from the next by a semicolon “;” . For
example, in a Modify node:

(
 input_event alter ("generic-trap" => 1);
 input_event alter ("specific-trap" => 3)
)

In this example, the first alter is performed, then the second. The
return value of a sequence expression is the return value of the last
expression in the sequence.

The parentheses surrounding the sequence expression are optional in
most places. The ECS Designer always puts parentheses around the text
of any node parameter so you can write the parameter as a sequence
expression without the parentheses.

The return value of sequence expressions is ignored by Create and
Modify nodes (the event is modified rather than the return value being
used). Consequently, the return value from the sequence does not matter.

On the other hand, if a sequence expression is used where the return
value is to be used, you must ensure that the last expression in the
sequence returns the value you want. The return value(s) of previous
expressions in the sequence are ignored. The following example
illustrates the point for the Condition parameter of a Filter node, where
a boolean result is required:

(
system.trace "Filtering on severity = ";
system.trace (stringOf (input_event "severity"));
input_event "severity" = 3

)

Chapter 10 339

Writing ECDL Expressions
Flow-control Expressions
The overall result is true if the event’s severity is 3, or false otherwise.
The system.trace expressions are evaluated for their side-effects
(printing a value to the trace log), and return values (Void in this case)
are ignored and lost.
340 Chapter 10

Writing ECDL Expressions
Exceptions
Exceptions
Exceptions are a convenient way of dealing with errors without having to
write code to deal with every possible error condition. Exceptions let you
alter the flow of control in a controlled and predictable way.

When an ECDL operation cannot be completed, an appropriate exception
is raised. An exception disrupts the normal flow of control and prevents
the expression from returning a value. When an exception is raised you
can explicitly handle the exception by taking some action within ECDL
or you can allow the exception to be passed back to the ECS circuit node
in which the expression is being evaluated. Here the exceptio-
+n will be logged, unless the error output port of that node has been
connected.

Handling Exceptions

Typically, an exception is raised because of some error in the ECDL
expression being evaluated. Allowing the exception to be passed back to
the ECS node makes sense most of the time. However, there are some
instances where you may decide to explicitly handle the exception and
return an appropriate value. For instance, a NotFound exception may be
raised by a find operation on a list, where no element in the list matched
a given condition. Under some circumstances this would not be
considered an error, in which case you would like to handle the NotFound
exception rather than allowing the exception to be passed back to the
ECS node.

The following example shows how to return the number of elements in a
list, after a certain element (that satisfies a given condition), or -1 if that
element could not be found in the list:

let val (_, theRemainingList) = find table_event in
 table1.contents where table_event "eventType" =
2.9.3.2.10.4
in
 length theRemainingList
end
handle NotFound => -1 end

The handle is attached to the smallest previous expression (if necessary,
use parentheses to define the expression to be handled). In the above
example, it is attached to the let expression. Any expression can have a
Chapter 10 341

Writing ECDL Expressions
Exceptions
handle expression defined for it. For instance, a handle could be placed
in the declarations section, or expression section of a let expression, if
needed to handle exceptions at that level.

In the previous example, the handle shown is a simple, one exception
handler. However, the handle expression is very similar to a case
expression, enabling different expressions to be evaluated depending on
the exception raised.

The basic form of the handle expression is:

handlehandle_pattern_1 => expression_1
 |handle_pattern_2 => expression_2
 |...
 |handle_pattern_n => expression_n
end

Where handle_pattern_x is an exception name, or the wildcard handle
pattern “_” may be used as a default handle pattern to match any
exception.

Standard Exceptions

The standard predeclared exceptions are listed in Table 10-3 (names are
case-insensitive). The Code represents the Integer value code that may
appear in engine logs.

Table 10-3 Standard Exceptions

Code Name Description

1 BindingMismatch Raised when an attempt is made to bind a value to a
binding pattern and the binding cannot be completed.

2 TypeMismatch Raised when the type of a data value does not
conform to the data type expected for the operation
being attempted.

3 DivideByZero Raised when an attempt is made to divide by zero.

4 FloatingOverflow Raised by an operation performed with real
arithmetic that overflows or underflows the floating
point representation.

5 RangeError Raised in cases where a value is of the right type but
its value exceeds some allowed range.
342 Chapter 10

Writing ECDL Expressions
Exceptions
Raising Exceptions

Both user defined and standard exceptions may be raised from ECDL
expressions. Generally, you define a new exception as a Global Definition
using the basic form:

exception exception_identifier

For example, in

exception myNewException

myNewException is now an exception name that can be used in handle
expressions.

To raise an exception, the basic form is:

raise exception_identifier

For example

raise NotFound

raises the standard NotFound exception. Likewise

raise myNewException

raises the user defined exception myNewException.

6 NotFound A general-purpose exception that is raised by some of
the built-in search and dictionary operations.

7 InvalidArgs Raised when a built-in function is applied with
invalid arguments. Declared functions could use this
as well. For example: applying ord to a string with
length > 1.

8 InternalError Raised when the correlation engine detects a fault
while evaluating the predicate. The evaluation may
be unable to continue.

Table 10-3 Standard Exceptions

Code Name Description
Chapter 10 343

Writing ECDL Expressions
Functions and Language Layout
Functions and Language Layout
The function mechanism in ECDL includes a large part of the
mechanisms of functional languages. The power of these advanced
features can be used to simplify the writing of sophisticated conditions.

Calling Function Syntax

The standard layout for calling ECDL functions is:

function_name parameter_1 parameter_2 ... parameter_n

A simple example is:

split "abc:def:ghi" ":"

Here, the function_name is split, and it has two parameters, the string
"abc:def:ghi" and the string ":". Parameters in ECDL are
whitespace-separated, not comma-separated as in some other languages.
Parentheses may sometimes be necessary to delimit the parameters. For
example

split ("abc:def" + ":ghi") ":"

In this case, the string "abc:def" is concatenated with the string
":ghi", and that resulting string is the first parameter to the split
function and the string ":" is the second parameter.

A subtle problem in ECDL is the action of the – (unary minus) operator.
This is simply a function that takes one parameter, a number, as in
–1.23 . However, where a literal value is being passed to a function, as in
the following expression:

round -1.23 -- wrong!

a type error is raised unless you use parentheses:

round (-1.23) -- correct

This forces the unary minus operation to be evaluated before the round.
Without the parentheses the default order of evaluation is (round -)
1.23 , thus leading to a type error when an attempt is made to pass the
unary minus operator to the function round .
344 Chapter 10

Writing ECDL Expressions
Functions and Language Layout
Extra parentheses can be freely used to ensure the appropriate
parameters are passed. For example:

split ("abc:def" + ":ghi") (":")

In this case, the parentheses around the second parameter, although
completely redundant, do no harm.

The following examples show common errors with parentheses:

split ("abc:def:ghi" ":") -- Error, trying to pass
 -- a single parameter, which
 -- is itself incorrect

split ("abc:def:ghi", ":") -- Error, trying to pass a
 -- a single parameter, which in
 -- this case is a tuple
 -- containing two strings.

Prefix and Infix Functions

There are two types of functions that can be called in ECDL: prefix and
infix. Prefix functions are like the split function in the previous
example. These functions have the function name followed by its
parameters:

function_name parameter_1 parameter_2 ... parameter_n

Infix functions are slightly different, in that the first parameter appears
before the function name and only two parameters are allowed:

parameter_1 function_name parameter_2

For example, in a Modify node the Modify Spec parameter:

input_event alter ("severity" => 3)

the function alter takes two dictionary parameters: input_event and
("severity" => 3). The first parameter is to the left of the function
name and the second parameter is to the right. Infix functions improve
the readability of ECDL for certain functions and simplify the
construction of multiple expressions.

User Defined Functions

By writing ECDL functions, similar expressions can be shared as
reusable functions, and complex conditions can be made more readable
by calling functions to solve the problem.
Chapter 10 345

Writing ECDL Expressions
Functions and Language Layout
Typically, user defined functions are stored in the Global Definitions for
your ECS circuit then called from within node parameters. However,
functions can also be declared locally, within a node parameter
expression, or nested within let expressions. Functions can even be
declared without naming them (anonymous functions).

When you type an expression in the condition parameter of a node you
are providing the body of a function. The Filter node Condition
parameter is a good example. When an event enters a Filter node, the
expression in the Condition parameter is called as a function. This
function must return a boolean value and takes one parameter: the
input_event.

The basic form for writing functions is:

fun function_name param_1_spec param_2_spec ... param_n_spec
 :return_type_expression = function_body_expression

Where function_name is the name of the function, param_x_spec is the
specification for each of the parameters to the function,
: return_type_expression is the optional data type to be returned by
the function and function_body_expression is the body of the function.

The format for the param_x_spec has the form:

param_binding_pattern : param_type_specification

Where the param_binding_pattern is the binding pattern which the
calling parameters will be bound to, with the identifiers in the binding
pattern available for use in the function body, and
:param_type_specification is the optional data type specification for
the parameter.

It is recommended that you include type definitions for all parameters.
Likewise, a type definition for the function result is also recommended.
For example:

func myfunc (param1 : Integer) (param2 String) : Boolean = ...

Following is a simple a function that takes two integer parameters, adds
them, doubles them, and returns the value:

fun addAndDouble (x:Integer) (y:Integer) :Integer = (x + y) * 2

NOTE The parentheses around the parameter type constraints in the previous
346 Chapter 10

Writing ECDL Expressions
Functions and Language Layout
example are required.

To call this function you write:

addAndDouble 2 5

Which returns the integer value 14.

The type specifications for the parameters and function result are
optional, so the function could look like:

fun addAndDouble x y = (x + y) * 2

However, without the type constraints the compiler cannot check that
valid types are passed to the function, so type errors may be raised at
runtime rather than during compilation.

Advanced Function Writing Features

Iteration and
Recursive
Functions

ECDL provides no explicit looping expressions but there are constructs
that allow equivalent processing to be done. Iteration is typically
handled by built in functions or by writing recursive functions (a
function that either directly or indirectly calls itself).

The following examples, show several different ways to count the number
of negative integers in a list of integers. The first example uses a select
expression, the second uses the alternative list builder expression, the
third uses the foldl built-in ECDL function, and the fourth uses a
recursive function. For each example, assume the following input list:

val myList = [1, -4, 0, -1, 5, 9]

Each example should produce the integer value 2.

Using a select
expression

length (select e from e in myList where e < 0)

Here, the select expression has been used to first construct a new list
that contains only those elements from the input list that are negative.
The built-in length function is then used to return the number of
elements in that new list.
Chapter 10 347

Writing ECDL Expressions
Functions and Language Layout
Using a list builder
expression

length [e | e in myList where e < 0]

This is just an alternative form of the select expression and has exactly
the same effect.

Using the built-in
foldl function

The built-in fold functions are often the most desirable way to iterate
through a list. In the following example, incrementIfNegative function
returns an updated count (countSoFar) for each element in the list:

fun incrementIfNegative element countSoFar =
 if element < 0
 then
 countSoFar + 1
 else
 countSoFar
 end

foldl incrementIfNegative 0 myList

The foldl function takes a function as its first parameter, and calls the
function for each element in the list. The parameters to the called
function are the current element of the iteration followed by the return
value from the last call to that function in the iteration (or the second
parameter to the foldl function if it is the first step in the iteration).

Foldr could equally be used here, just the direction of iteration would be
reversed.

The first step in the iteration calls incrementIfNegative with the
following parameter values:

incrementIfNegative 1 0

to return the value 0. The second step is

incrementIfNegative -4 0

returns the value 1. The third step is

incrementIfNegative 0 1

and so on.

The final value for the foldl function is that returned from the last call
to incrementIfNegative, which is 2 in this case.

Typically, the function definition is stored in the Global Definitions of the
circuit, and the foldl call is done from a node parameter. The following
example shows a Filter Condition parameter, which passes an event
only if there are less than 3 negative values in the given list:
348 Chapter 10

Writing ECDL Expressions
Functions and Language Layout
(foldl incrementIfNegative 0 myList) < 3

Often, simple functions like the one passed to the foldl function here,
can be done with an anonymous (un-named) function, written inline with
the foldl call. The following is equivalent to the previous example:

foldl (fn element countSoFar =>

if element < 0

then
 countSoFar + 1

else
 countSoFar

end) 0 myList

Note the use of the ECDL keyword fn for the anonymous function.

The definition for incrementIfNegative did not use any type
constraints. However, it is good practice to use type constraints,
wherever it makes sense, to help detect type-mismatches at compile-time
rather than run-time, and to provide self-documenting code. The function
definition would then have started as:

fun incrementIfNegative (element : Integer)
(countSoFar : Integer) : Integer =

...

In this case we are restricting the function to only accept Integers, and
only result in an Integer. Without the type constraints, the function
would have been able to work directly (without change) on real numbers
also. You can take advantage of this to write functions that support
multiple types. The use of a Union type may be helpful for these cases
also.

Writing a recursive
function

The fourth and final way to solve our example problem is to design a
function to recursively call itself until it has counted all the negative
numbers in the list.

fun countNegative (theList : List Integer) : Integer =
let
 fun countRemaining (remainingList : List Integer)
 (countSoFar : Integer) : Integer =
 case remainingList of
 [] => countSoFar-- At end of List
 | element::restOfList =>
Chapter 10 349

Writing ECDL Expressions
Functions and Language Layout
 if element < 0
 then
 -- Is a negative number
 countRemaining -- recursive
 restOfList
 (countSoFar + 1)
 else
 -- Is not a negative number
 countRemaining -- recursive
 restOfList
 countSoFar
 end
 end
in
 countRemaining theList 0
end

To call the above function:

countNegative myList

Here, we call the countNegative function, with our input list as a
parameter. This function acts as a wrapper function to the local recursive
function (countRemaining), which does the actual work. The only reason
for using the wrapper function, is that the actual recursive function
requires an extra parameter, which is the count of negative numbers so
far (0 initially). The following expression would produce the same result:

countRemaining myList 0

The countRemaining function takes two parameters, the remaining list
that is yet to be checked for negative numbers, and the count of negative
numbers so far. The first call to this function will receive our entire list,
and 0 as the initial count.

This function first checks to see if it has reached the end of the list (using
the case expression to check for empty list). If the empty list is found,
the result is simply the countSoFar. If the list is not empty, the list is
separated into the head element, and the remaining list (using the ::
binding pattern in the case expression). If the element is negative, the
countRemaining function is called recursively, with the remainingList
and the countSoFar incremented by one. If the element is not negative,
the same call is made, but the countSoFar is not incremented. The
following shows the sequence of recursive calls:

countRemaining [1, -4, 0, -1, 5, 9] 0
countRemaining [-4, 0, -1, 5, 9] 0
350 Chapter 10

Writing ECDL Expressions
Functions and Language Layout
countRemaining [0, -1, 5, 9] 1
countRemaining [-1, 5, 9] 1
countRemaining [5, 9] 2
countRemaining [9] 2
countRemaining [] 2

The final result is 2.

The piece of ECDL that checks whether the element is negative can be
simplified, since the then and else parts are very similar:

if element < 0
then
 -- Is a negative number
 countRemaining -- recursive
 restOfList
 (countSoFar + 1)
else
 -- Is not a negative number
 countRemaining -- recursive
 restOfList
 countSoFar
end

This could be replaced with the more elegant:

countRemaining restOfList (if element < 0 then
 (countSoFar + 1) else countSoFar end)

Fixity Declarations, Associativity and Precedence

A fixity declaration changes the fixity, precedence and associativity
properties of a name. These properties control how a function name is
bound to its arguments and the order of evaluation. This section
describes how you can set the fixity, associativity, and precedence of
functions that you name yourself. You can also override an infix function
at the point where it is called, thus temporarily converting it to prefix
form. Also in this section are tables that describe the default
associativity and precedence of the operators and built-in functions.

Fixity Declarations Fixity declarations must appear in the same declaration group as the
name that it affects. The best place to put it is straight after the
declaration of the name. The syntax is:

fixity name precedence associativity

where
Chapter 10 351

Writing ECDL Expressions
Functions and Language Layout
• fixity is one of the reserved names infix or prefix

• name is the unqualified name that is being changed

• precedence is an integer precedence level

• associativity is one of the (non-reserved) names left, right or
nonassoc.

Precedence controls the order of evaluation when two different operators
conflict. For example in the expression (1 + 3 * 4) either the + or the *
could be done first. The * is done first since it has higher precedence.

Associativity controls the order of evaluation when two or more infix
operations of the same precedence conflict. For example the expression (1
+ 2 + 3) could be evaluated with left-associativity:

(1 + 2) + 3

or with right-associativity:

1 + (2 + 3)

If an operator is declared to be nonassoc then it is illegal to have this
sort of conflict. For example the = operator is not associative. You cannot
write (1 = 2 = 3). This is because neither ((1 = 2) = 3) nor (1 = (2 = 3))
makes sense. In either case you would be comparing a Boolean with an
Integer.

There is a restriction that all names in an expression at the same
precedence level have the same associativity. So if you define your own
infix operators you must take into account the precedence and
associativity of the built-in operators.

Removing Infix It is sometimes useful to be able to call an infix operator or function as a
prefix function. To convert an infix expression to prefix, place
parentheses around the function name. For example, to sum the values
in a list called myList you can write:

val total = foldl (+) 0 myList
352 Chapter 10

Writing ECDL Expressions
Functions and Language Layout
Defaults The default fixity information for user-defined functions is prefix, a
precedence level of 150 and non-associative.

The standard operators and symbols have the associativity shown in
Table 10-4.

By appropriate use of parentheses, you can always ensure the operation
you want to perform is performed the way you require it to.

Table 10-5 shows the precedence of the built-in operators and relevant
syntax elements. The higher the precedence number then the tighter the
operator binds.

Table 10-4 Associativity of Operators and Symbols

Associativity Operator/Symbol

left or xor and (infix +) (infix -) * / mod rem

right => ^ (prefix +) (prefix -) implies

none = != < <= > >=

Table 10-5 Precedence and Fixity of Operators and
Built-in Functions

Precedence Infix / prefix Operator/Symbol

130 prefix + -

120 prefix built in functions

100 infix ::, available for infix functions

90 infix ^

80 infix * / mod

70 infix + -

60 infix = != < <= > >=

50 prefix not

40 infix and

30 infix or
Chapter 10 353

Writing ECDL Expressions
Functions and Language Layout
20 infix implies

10 infix =>

Table 10-5 Precedence and Fixity of Operators and
Built-in Functions

Precedence Infix / prefix Operator/Symbol
354 Chapter 10

Writing ECDL Expressions
Modules
Modules
A module is a group of declarations collected together under a module
name. Modules may be nested directly within other modules and only
other modules. All compound nodes, primitive nodes and other material
that you include in your circuit appear within a module. Normally the
ECS Designer takes care of the module structure automatically but it is
useful to know about modules for the following reasons:

• Diagnostic messages such as trace and statistics information use fully
qualified node names that show the module structure. Familiarity
with the module structure makes it easier to read this information.

• Some built-in functions reside in their own module (for example,
Time, Match and System). You must use the module name when
accessing these functions.

• Many facilities in ECDL are packaged into modules. This includes
declarations to do with particular endecoders. You can access the
declarations in a module using qualified names.

• Everything is enclosed in a module called Std. This includes all of the
built-in functions. It may sometimes be useful to qualify a built-in
name with Std to ensure that you are getting the right one.

In addition, you can add new modules:

• The global definitions section is inside a module (created by the
Designer) that encloses the entire circuit.

• You can define your own modules as global definitions.
Chapter 10 355

Writing ECDL Expressions
Modules
Module Files

Module files are special forms of correlation circuit source files. These
files can be modified or created using the ECS Designer.

The purpose of module files is to define ECDL definitions or functions for
inclusion into all circuits (like an ECDL equivalent of C “include” files).
Some standard module files are included with the ECS Designer:

ecs_defaults.ecs Standard definitions and default
settings. Required.

cmip_defaults.ecs Useful in relation to CMIP event
access only

nnm_defaults.ecs Required when creating circuits for
the NNM correlation engine.

To include a “site-specific” module file, create a correlation circuit source
file containing no nodes (this should compile with an error, no nodes
type message). Place the source file (.ecs) into the modules directory.
The default location of the modules directory is
$OV_CONF/ecs/modules/, though this can be overridden.

NOTE Inclusion of non-essential modules files in the modules directory will not
normally affect circuit development. Module scoping prevents name
clashes.

Modules and Name Search

The fully qualified name of a declaration in a module M is a sequence of
module names from Std to the module M, then the declared name, all
separated by periods, with no white space. Some examples of fully
qualified names are:

Std.foldl
Std.Match.test

The first is the built-in foldl function and the second is the test
function in the built-in string matching module Match. Module names on
the left may be omitted if there is no ambiguity. For example Match.test
is sufficient to locate the test function unless you have defined another
visible module called Match.
356 Chapter 10

Writing ECDL Expressions
Modules
Terminology In the following explanation we use this terminology.

• The phrase “the local module” means the one that the declaration in
question is immediately declared in. The declaration is said to be
“local to the module”.

• The phrase “an enclosing module” means any module that contains
the declaration in question, directly or indirectly, including the local
module.

• A “qualified name” has zero or more module names. A “fully qualified
name” always starts with the module Std.

Module syntax A module is declared with the syntax

module identifier is
declaration
...

end

Declarations within the module are separated by white space.

Open declaration The open declaration has the syntax

open qualified-name

The qualified name must be the name of a module. This declaration
causes the declarations in the module to be directly visible within the
local module without the need to qualify them with module names.

Name search When you use a name in ECDL, as opposed to declaring one, the compiler
must search for a declaration with that name. Any use of a name may be
a qualified name.

The name search is conducted first in the local module and then in
enclosing modules until Std is reached. If this first search does not find
the name then the declarations in opened modules are consulted. The
open declarations that are consulted are those in the local module and
then in enclosing modules.

The search only looks at names of the appropriate kind. For example if
the context shows that the name must be the name of a value then only
val and fun declarations will be examined. The kinds of names are:
value, type, exception and scope.The scope kind includes all modules,
compound node names and instances of nodes, compound or primitive.

If a name is qualified then the first module name is searched for first.
Chapter 10 357

Writing ECDL Expressions
Modules
Then if found, the rest of the qualified name must lead to a declaration in
the found module and inner modules.

If there are multiple open declarations in a module then they don’t
interact. The qualified name in one declaration is not looked up in
another opened module in the local module. It is, however, possible for
the name in an open declaration to be found in a module opened by an
outer open declaration.

Scope of
declarations

The scope of a declared name is the region of ECDL text where the name
may be used. The scope of a name declared in a module is all of the
module. This means that a name may be used anywhere in the module,
either before or after the place that it is declared. (This is in contrast to
many other programming languages, which only allow a name to be
referred to in places after it has been declared.)
358 Chapter 10

Writing ECDL Expressions
Invoking Perl Functions from ECDL
Invoking Perl Functions from ECDL
ECS provides a means to execute Perl functions from ECDL code. A
built-in function, gen_perlcall, is used to invoke the perl script.

Pre-requisites

This document assumes the following:

• Perl version 5.6 is installed on the machine

• The user has a working knowledge of Perl and is aware of the
different data types

• The user has a working knowledge of ECDL and ECDL data types

The interprocess communication between the engine and the Perl script
is transparent to the user. The perl function receives the paramters
passed to it as an array/list

The gen_perlcall has two sets of parameters:

• name of the user supplied Perl function

• list of arguments to be passed as paramerters to the Perl function

The argument list can contain nested Lists, Tuples and other ECDL
data types.

The gen_perlcall function calls the user supplied function, passes the
paramters specified to that function, process it and returns a list of
ordered set of values. The List can consist of any number of values in any
combination of the supported data types.
Chapter 10 359

Writing ECDL Expressions
Invoking Perl Functions from ECDL
Figure 10-1 Perl to ECDL

Perl to ECDL Mapping

The gen_perlcall uses ECDL data types to be passed into the called
Perl function. The return type passed in the form of EV_AttrValues is
also an ECDL data type. This is a recursive structure capable of
representing a (nested) list of values of various data types. It is a direct
representation of the ECDL List and supports most ECDL data types.
Refer to Table 10-6 for a mapping of Perl data types to ECDL.

Perl functions are provided to enable exchange of data types from ECDL
to Perl

• ecdlEncap() function is included in the customer supplied Perl file.
This function can also be called from another file provided the file
containing the ecdlEncap() function is sourced appropriately. For a
sample of the ecdlEncap() function

#begin

sub ecdlEncap

{

 my $x=$_[0];

 my $z=$_[1];

 if("$z" eq "ECS_TUPLE")

Customer
Database

ECS

Engine

.......

.......

.......
sub ecdlEncap()
{
...
}
sub perlfun()
{
....
}

 user.pl

perlinterp(perlfun, arg1,
 arg2, ...)

ECDL code

Perl file loaded into the
engine
360 Chapter 10

Writing ECDL Expressions
Invoking Perl Functions from ECDL
 { push @$x,"ECS_TUPLE"; }

 if("$z" eq "ECS_OID")

 { push @$x,"ECS_OID"; }

 if("$z" eq "ECS_TIME")

 { push @$x,"ECS_TIME"; }

 if("$z" eq "ECS_DURATION")

 { push @$x,"ECS_DURATION"; }

 if("$z" eq "ECS_BOOLEAN")

 { push @$x,"ECS_BOOLEAN"; }

 if("$z" eq "ECS_BOOLEAN")

 { push @$x,"ECS_BOOLEAN"; }

}

#end

Ensure that the file containing the ecdlEncap() function defintion and
the user defined Perl file are placed under the same directory.

The user defined Perl functions should be placed at the locations given
below.

UNIX

$OV_CONTRIB/ecs/external/perl

Windows NT

%OV_CONTRIB%ecs\external\perl

Sample Perl functions are placed at

UNIX

$OV_DB/ecs/examples/circuits/mdl/scen3

Windows NT

%OV_DB%ecs\examples\circuits\mdl\scen3

Example 10-1 ecdlEncap usage

#BEGIN perl

...

@ret1 = (“1.2.3.4”)
Chapter 10 361

Writing ECDL Expressions
Invoking Perl Functions from ECDL
ecdlEncap(\@ret1,"ECS_OID");

return \@ret1;

...

#END

Perl to ECDL Data Type Mapping

The table below maps the Perl data types to their ECDL equivalents for
the various Perl data types that could be used:

Additionally a new data format called ECS_FORMAT has been introduced.
The ECS_FORMAT maps a complex list of values to the corresponding
values in ECDL data types.

Table 10-6 Perl to ECDL Data Type Mapping

ECDL Data Type Perl Type Example ECDL Value

Object Identifier String “1.43.67.52”

Tuple Referance to Array (1.3.6.1.4.11.2.17.2.1.0,(“
simple”, (“number”,108)))

List Referance to Array [
(1.3.6.1.4.11.2.17.2.1.0,(“
simple”, (“number”,108))),
(1.3.6.1.4.11.2.17.2.1.0,
(“simple”, (“string”,
“SYD”)))
]

Duration Double 13.5h

Time Double 19970103135959.123456z

Integer Integer 123

REAL Double 5.6

String String “My String”

Boolean Integer true and false
362 Chapter 10

Writing ECDL Expressions
Invoking ‘C’ Functions
Invoking ‘C’ Functions
ECS provides a means to execute ‘C’ functions from ECDL code. A
built-in function, gen_ccall, is used to invoke the ‘C’ function.

The interprocess communication between the ECS engine and the ‘C’
funcion is transparent to the user.

Writing functions in C

This section describes how to write the C function such that it is
accessible from within ECS. The procedure consists of two parts

1. Writing the C function using the guidelines as described in the next
section.

2. Create a shared library of the C function(s) and store the shared
library in the following location

For UNIX

$OV_CONTRIB/ecs/external

For NT

%OV_CONTRIB%/ecs/external

NOTE The shared library is loaded by the runtime the first time a function
within the shared library is invoked(as part of a correlation rule). When
a shared library is loaded, the function _Init will be invoked if it exists.
The signature for _Init is exactly the same as that of other C functions.
Chapter 10 363

Writing ECDL Expressions
Invoking ‘C’ Functions
Guidelines for writting a C function

Given below is the skeleton code for a function in ’C’

#include <stdio.h>
#include <ECS/GC_Values.h>
int testFunction(int argc,void ** argv,int reqId,int cmdId,
genc_callback * callback)
{
 int i = 0;
 char * str = NULL;
 char * oid = NULL;
 char myStr[] = "some string ";
 char myOid[] = "1.2.3.4.5.6.7.8.9";
 GC_Values ** retValue = NULL;
 GC_Values * intVal = NULL;
 GC_Values * strVal = NULL;
 GC_Values * oidVal = NULL;
/* Do your own checking here - this example checks if # of
arguments is 3 */
 if(argc != 3)
 {
 /* Improper No. for argumnets */
 /* Allocate the space for returing the err string back
to ECS */

 retValue = (GC_Values **)calloc(1,sizeof(GC_Values *));

 GC_MAKEVALUE(GC_ERRSTR, "Improper Argumnets", strVal);

 if(!strVal)
 { /* hosed !!! just return */
 callback(reqId, cmdId, 0, NULL);
 return ;
 }

 retValue[0] = strVal;
 /* Do callback to notify the error */
 callback(reqId, cmdId, 1, &retValue);
 return 0;
 }

/* Get the arguments passed to the function. They type of the
arguments needs to be defined by the function writer and its
the resposibility of the Orchestartor user to pass in the
correct number and type.*/

/* Do not free these values, will be freed by caller when
callback is called */
364 Chapter 10

Writing ECDL Expressions
Invoking ‘C’ Functions
 i = *(int *)argv[0];
 str = (char *)argv[1];
 oid = (char *)argv[2];

/* OID will be passed as string to the function */

/* Do your processing here */

/* processing is done-time to return back to ECS*/
/* THIS is the second half */
/* Allocate space for 3 return values - one can return any
number of retrun values - the example return 3 */

 retValue = (GC_Values **)calloc(3,sizeof(GC_Values *));

/* Now create the wrapper to pass back the values to ECS*/

 GC_MAKEVALUE(GC_INTEGER, &i, intVal); /* Integer*/
 if(!intVal)
 {
 /* Do Error handling */
 }

 GC_MAKEVALUE(GC_STRING, myStr, strVal); /* String */
 if(!strVal)
 {
 /* Do Error handling */
 GC_FREEVALUE(intVal);
 }
 GC_MAKEVALUE(GC_OID, myOid, oidVal); /* OID */
 if(!oidVal)
 {
 /* Do Error handling */
 GC_FREEVALUE(intVal);
 GC_FREEVALUE(strVal);
 }

/* Set the 3 return values in the wrapper */
 retValue[0] = intVal;
 retValue[1] = strVal;
 retValue[2] = oidVal;

/* Call the callback to give the value back to ECS

1. ReqId
2. cmdId passed as the argument to this function
3. Number of return values i.e. number of elements in the
GC_Values array
4. Address of the GC_Values array */
Chapter 10 365

Writing ECDL Expressions
Invoking ‘C’ Functions
 callback(reqId, cmdId, 3, &retValue);
 return 0;
}

Basic Structure

The signature of all functions that need to be invoked from ECS is as
given below.

int func(int argc, void ** argv, int reqId, int cmdId,
genc_callback *callback)

where,

argc is the number of arguments passed in

argv is an array of pointers to the arguments

reqId and cmdId are opaque parameters and are used while calling the
Callback function.

callback is a pointer to a function that needs to be invoked on
completion and to pass back any return values to ECS.

Writing the function

Writing a function consists of three distinct parts

1. the first part is getting the arguments passed from ECS

2. the second part is the processing

3. the third part is to return a value or a set of values back into ECS

The first part is getting the arguments passed from ECS. The
function can take any number of arguments of any type. It is the
responsibility of the user of the function to configure ECS correctly to
ensure that the correct parameters are passed in. In the example above
the function expects three parameters, an integer, a string and an OID.
The pointers to these parameters are in argv and are accessed as
argv[0], argv[1], argv[2]. While accessing these pointers cast them
to the right type.

Parameters passed in MUST NOT be freed by the function. The freeing
of the space will be done when the Callback function is invoked.
366 Chapter 10

Writing ECDL Expressions
Invoking ‘C’ Functions
The table below lists the data type as received by ECS.

Once the parameters passed in have been accessed, the function needs
to process it. The function indicates completion of processing by
invoking the Callback function. This mechanism allows the freedom to
the function writer to process either synchronously or asynchronously. In
other words the function returning does not indicate function completion.
The user can choose to extract the arguments, queue them up for some
other thread to process it and return immediately. Post processing the
Callback function can be invoked to return the values to ECS and
simultaneously indicates completion(obviously the call to the Callback
will be made from a function other than the one that was originally
called). This is useful when(for example) the function needs to go over
the network to access data or when databases need to be accessed, both
of which take time. If the function being invoked takes very little time, it
is suggested that the Callback is called and then return.

If the function encounters an error at any point during it’s processing,
the error is indicated by calling the Callback function with the error code
as shown in the example.

NOTE The Callback function must be called whether or not the
function succeeds or fails.

Returning values back - Returning values consists of four steps

1. allocating space for the return value

2. wrapping the return value

Type passed in from
ECS

Type as received by the C
function

Integer Integer

Float Float

String Char *

OID Char *

Time Integer
Chapter 10 367

Writing ECDL Expressions
Invoking ‘C’ Functions
3. marshalling the return values

4. calling the Callback function

allocating space for the return value - Make the following calls to
allocate space

retValue = (GC_Values **)calloc(X,sizeof(GC_Values *));

where X is the number of return values that needs to be returned.

retValue is defined like - GC_Values ** retValue = NULL;

wrapping the return value by calling a provided macro(present in the
file GC_Value.h) - as shown below

GC_MAKEVALUE(GC_STRING, valToReturn, strVal);

GC_Values * strVal = NULL

where,

the first parameter is one of

• GC_INTEGER to return an integer

• GC_STRING to return a string

• GC_OID to return an OID(to return an OID, the

 valToReturn should be a string in the dot notation).

Example “1.2.3.4”

• GC_FLOAT to return a float

the second parameter valToReturn holds the value to be returned

the third parameter strVal is a pointer to the macro GC_Values
(Example, GC_Values * strVal;)

marshalling the return values - in Step 1 we allocated space. In Step
2 we wrapped the return values. In this step we will tie the two.
Assuming there are two values to be returned, do the following

retValue[0] = valToReturn1;

retValue[1] = valToReturn2;

where retValue is gotten in step 1 and valToReturn1 and valToReturn2
are gotten is step2.

calling the Callback function- the last step is to indicate completion
of processing and returning the values to be returned. This is done as
368 Chapter 10

Writing ECDL Expressions
Invoking ‘C’ Functions
follows

callback(reqId, cmdId, 3, &retValue);

where

callback is the pointer to a function which was passed in as the fifth
parameter and reqId and cmdId were the third and fourth parameters
passed in.
Chapter 10 369

Writing ECDL Expressions
An Introduction to ECDL for C Programmers
An Introduction to ECDL for C Programmers
Internally, ECS circuits are completely described as ECDL programs.
The compiled ECDL program runs on the ECS Engine to correlate a
stream of events. ECDL has two sides: a structural side and a functional
side. The structural side describes how a circuit is assembled from nodes
and other components. It is read and written by the ECS Designer and
the only way to interact with it is graphically, through the circuit
displayed on the ECS Designer canvas. The functional side of ECDL is
used to implement circuit node parameters, such as the Condition
parameter of a Filter node.

Concepts Languages like C and Pascal fall into the category of imperative
languages. In the imperative style there is some mutable global state
(the computer’s memory) and all computation is done by making changes
to the state. A variable in an imperative language names a piece of the
machine state. An assignment statement changes the value associated
with a variable name and data structures are updated in place. The
imperative programmer must be careful to keep all state changes in the
right order or the result will be incorrect.

ECDL falls into the category of functional languages. In a (pure)
functional language computation is done by applying pure functions to
immutable values to compute new values. There is no state anywhere to
be changed. A simple example of a pure function expression is

1 + 2

This demonstrates the three basic concepts:

• The values 1 and 2 are immutable. The value 2 is always two.

• The + operator is a pure function which means that its result depends
only on its arguments, here 1 and 2. Its behavior cannot be affected by
anything in its environment.

• The effect of evaluating the expression is to produce a new value 3.
Neither of the arguments 1 or 2 is affected.

This simple expression would be quite a bit harder to understand if you
could not be sure what the value of its arguments really were or what the
+ operator was going to do with them. You would certainly be surprised if
you got different results from the addition depending on some global
state somewhere.
370 Chapter 10

Writing ECDL Expressions
An Introduction to ECDL for C Programmers
The goal of the functional style is to preserve these concepts throughout
the language so that all code in the language becomes a lot easier to
understand.

The problems that an imperative programmer has to deal with include:

• Making sure that variable and data structure updates occur in the
right order especially over long sequences of function calls with
side-effects.

• Copy-by-reference versus copy-by-value.

• “Sneak” paths due to side-effects.

The copy-by-reference problem arises when you want to make a copy of a
data structure. (Just passing a data structure as an argument to a
function is an act of copying.) You could do this by reference, meaning
that one instance of the data structure is shared by each copy.
Alternatively you could duplicate the data, (copy-by-value) ensuring that
there is no sharing. If you do the former then when the first copy is
updated the second copy appears to change as well. If you do the latter
then updating the first will not result in an update of the second. If you
are not very careful about which is the correct way to copy in each
circumstance then bugs will arise that can be quite difficult to track
down.

Sneak paths are the general problem of side-effects, where one part of
the program can have obscure effects on other parts through global
variables, shared data structures, and lots more. Sneak paths make
functions impure.

By starting with the premise that there will be no mutable state
anywhere, functional languages avoid these problems.

• Since there are no side effects or mutations, the programmer no
longer has to worry about the order of operations. The compiler is free
to choose an execution order that is convenient and/or efficient.

• Copy-by-reference becomes indistinguishable from copy-by-value as
far as the programmer is concerned. The compiler is free to choose
whichever way is appropriate for each copy.

• The absence of sneak paths means that all data flows are explicit in
the code. This makes the code easier to understand. It also makes it
more modular since each piece can be guaranteed to function without
interference from other pieces.
Chapter 10 371

Writing ECDL Expressions
An Introduction to ECDL for C Programmers
A functional language transfers much more of the burden of
programming to the compiler compared with an imperative language.
This is an important advantage of ECDL since the goal is to minimize
the need for programming when designing a circuit.

ECDL also contains only a rather small subset of the sophisticated
features found in general purpose functional languages.

Notable
Differences

Here is a summary of notable differences between ECDL and C:

• There are no variables in the C sense of the word in ECDL. You can
create a value, assign it a name, and manipulate values in
sophisticated ways—but once created, a value is immutable. There is
no place, for example, for the concept of incrementing a counter (as in
the C expression n++).

• Complex data types such as the List, Tuple and Dictionary are built
into the language. They are supported by a range of operators that
understand the semantics of these data types and make it easy to
perform tasks that are complex and error-prone in languages such as
C.

• Binding patterns provide a declarative way to build and extract
component values from complex types. Binding patterns are a
powerful and intuitive mechanism, fundamental to ECDL
declarations.

• Functions are first class values meaning that they can be passed
around, stored in data structures and be the result of computations.
This makes it easy to build complex functions by composing simpler
functions without having to write code. For example complex filtering
conditions can be composed from a library of simple conditions.

• ECDL is dynamically typed. This means that the types of values are
not comprehensively checked until run-time, although many obvious
type errors can be reported at compile time. This is needed because
the types of event attributes is often not knowable at compile-time.

• A function must return exactly one value. However, the return value
can be a complex data type containing several component values, or
the special Void value if no other value is sensible.

• Since there are no mutable variables there can be no iterative-style
loops like the for, while, or do...until loops of C. Most tasks that
involve iteration can be achieved with the rich collection of operations
on lists. Custom iterative tasks can be solved using recursive
372 Chapter 10

Writing ECDL Expressions
An Introduction to ECDL for C Programmers
functions.

ECDL types The types in ECDL are fully described in Chapter 8, “Data Types,” on
page 211. In summary, the ECDL types include:

• Simple types like Integer, Real, Boolean or String.

• Domain-specific types like Oid (Object Identifier) and Time.

• Tuples and Lists.

• A Dictionary type which is a map from a key to a value.

• Functions.

• Type collections which represent values whose type is not known
until run-time e.g. unions (Integer|Real) and dynamic types like Any
Data, Any Simple.

The type system includes subtyping to better describe the possible types
a variable may have at run-time. The compiler uses a simple form of “soft
typing” to report statically knowable type errors at compile time.

Uniform Data
Model

An event may have almost any structure (CMIP, SNMP, ASCII, OVO
message etc.) An ECS circuit is expected to handle any of these kinds of
events, possibly several at the same time. This flexibility is achieved by
having the engine translate events into the ECDL data types.

The entire event appears as a Dictionary that maps from attribute keys
to values. Complex attribute values such as ASN.1 SEQUENCEs, or
records in ASCII events, map to Tuples. Attributes with variable
numbers of members map to Lists, for example the ASN.1 SEQUENCE
OF and SET OF.

Events are not normally alterable. However, there are special occasions
when you need to change an event attribute value, such as in a Modify or
Create node. The alter function provides a way to do this.

Iterating over Lists ECDL provides specific looping constructs that are tightly associated
with the only data type that can be iterated over—the List. These are
summarized below. (P is a predicate over x, and f is some function).

exists x in xlist where P(x)
forall x in xlist where P(x)
find x in xlist where P(x)
[f x | x in xlist :- P(x)]
select f x from x in xlist where P(x)
 -- alternate form to above
Chapter 10 373

Writing ECDL Expressions
An Introduction to ECDL for C Programmers
foldl and foldr

Lists are central to ECDL in several ways:

• Lists occur as event attributes, particularly in CMIP. For example,
the CMIP “eventInfo.specificProblems” attribute is a List of Tuples.

• Lists are a natural construct to use for any ordered collection of data
of variable size.

• In annotation, Lists are used to exchange request/response data with
an outside process. In this case, lists provide a flexible way to
exchange data of type Any Data. This means that each element in the
List can be of any data type.

Binding patterns Much of the expressive power of ECDL is due to the concept of binding
patterns. Binding patterns provide a conceptually simple mechanism
that allows you to associate names with values. However, unlike a simple
assignment mechanism, binding patterns can assign names to parts of
complex data structures, such as Tuples and Lists. In most other
languages extracting a component value from a complex data structure
is like peeling an onion—you peel back each layer in the structure until
you reach the value you want. Binding patterns replace this procedural
approach with a simple declarative style where you effectively say
“match up these names to the parts of an object that looks like this.”
After that you simply access the parts using the names you supplied.

Binding patterns are an indispensable mechanism when dealing with
CMIP and SNMP events because of the extensive use of Tuple data types
and the ability of binding patterns to easily extract multiple component
values from a Tuple. ECDL Tuples represent ASN.1 SEQUENCE, SET
and CHOICE constructs.

Summary ECDL is a functional language, well-suited to the event correlation
domain. Specific features of ECDL that make it such a good match
include:

• Statelessness which helps to make reasoning about circuits easier.
Most circuit nodes are stateless or nearly so and ECDL preserves this
property in the expressions attached to them.

• Easy access to components of complex data types built from Tuples,
Lists and Dictionaries.

• It minimizes programming by providing powerful features as well as
mechanisms for building up complex operations from a library of
374 Chapter 10

Writing ECDL Expressions
An Introduction to ECDL for C Programmers
simpler operations.
Chapter 10 375

Writing ECDL Expressions
An Introduction to ECDL for C Programmers
376 Chapter 10

11 Event Log File Format
377

Event Log File Format
This chapter contains a detailed description of the structure of the ECS
event log files generated by the ECS Engine and used by the ECS
Designer in Simulation mode.

The event log file format is actually in two parts. The first part describes
the overall format of log files and the format of meta-information carried
in the file. This is the subject of the present chapter.

• “Log File Syntax” on page 379

• “Special Characters” on page 385

The second part is the format used to represent events themselves.
Binary encoded events such as SNMP and CMIP are represented in a
modified ASN.1 format which is documented in the appropriate module
guide:

• HP OpenView Event Correlation Services SNMP Module

• HP OpenView Event Correlation Services CMIP Module

• HP OpenView Event Correlation Services ASCII Module

• Appendix A, “Event Correlation in OVO,” on page 401
378 Chapter 11

Event Log File Format
Log File Syntax
Log File Syntax
ECS event log files consist of a series of events. Each event is defined by
a sequence of line types that must occur in a defined order. The line types
and the order in which they must occur are listed in Table 11-1. The
default lead-in character(s) for the control lines must appear at the very
start of the line.

Table 11-1 Event Log Line Types

Lead-in Type Details

Comments
(optional)

One or more contiguous comment lines starting
with a # character and ending with the first line
that does not start with a #. Thereafter, any line in
the event starting with # is not treated as a
comment. This allows one block of comment
lines per event.

+ Time control
(optional)

A time control line commences with a + character
and is used to advance the engine time by the
number of seconds specified.

! Repeat
(optional)

A repeat control line commences with a !
character and is used by the ecsevgen utility to
send the specified number of copies of the event
to the engine. It is ignored by the ECS Designer.
If a repeat control line is not present then a single
copy of the event is generated.

Event One or more lines comprising the event itself,
terminated by and interpreted according to the
following event syntax control line.

%[space]
(can be
changed)

Event Syntax The event syntax line commences with the
specified syntax start control sequence. By
default this is a percent character followed by a
single space character(% ...). The event syntax
control line specifies which endecode module to
use and the syntax that the endecode module
should use to decode and encode the event. See
below for details
Chapter 11 379

Event Log File Format
Log File Syntax
The characters # + ! and % are only treated specially if they occur as the
first character in a line.

For example, an event log with one event is illustrated in Figure 11-1.

Figure 11-1 A Simple Event Log Entry

In the example shown in Figure 11-1 the event occupies only one line and
is terminated by the syntax line starting with a %. This line specifies
that the preceding event is to be decoded using the MDL endecoder and
the syntax SimpleEvent, and that a network delay of 3 seconds should
be simulated.

The order of events in the log determines the order in which events are
input to the engine during simulation. See “Simulating Time in the ECS
Designer” on page 173 for details.

The Event Syntax Line

The event syntax line serves several purposes:

• it terminates the event

• it specifies the endecoder module to be used to encode this event

• it specifies the syntax of the event

• and optionally, it specifies the number of seconds that this event is
deemed to have been delayed on the network relative to its creation
time.

The event syntax line consists of three fields separated by colons:

% endecoder:syntax:delay

where the fields have the following meanings:

{
{

Optional

Mandatory

Comment lines

Advance engine time by 2 seconds

Generate 4 copies of the event

The event itself (may be many lines)

Event Syntax

eventid(0:85)

The last comment line

12:03:00,Thor,LNKDN,5,"Link Down:Vili"

% mdl:SimpleEvent:3

+2

!4
380 Chapter 11

Event Log File Format
Log File Syntax
• endecoder is a mandatory field that specifies the name of the
endecoder module (mdl, ber, OpC_Msg, or anno).

• syntax is a mandatory field that specifies the syntax of the event (for
example, Trap-PDU for SNMP traps, request for annotation requests,
or response for annotation responses).

• delay is an optional integer value specifying the number of seconds
that this event is deemed to have been delayed in the delivery
network, relative to its creation time. See Chapter 5, “Timing
Considerations,” on page 165 for details on simulating network
delays.

Logs Generated by the ECS Engine

The ECS event log file format is flexible and contains several optional
line types. However, the files generated by the ECS Engine are fixed
format and consist of the following line types:

• A single comment line containing the event’s unique ID in the form:

eventid(0:1)

The unique ID is assigned to the event by the ECS Engine and may
be used in conjunction with the audit trail information to extract
events of interest from the event log files.

• The comment is followed by the time control line. This line indicates
the number of seconds that elapsed between logging the previous
event in the file and this one:

+0

Engine event output logs always record an increment of 0 seconds.

• The next line specifies a repeat count of 1. Engine event output logs
always specify a repeat count of 1:

!1

• The repeat line is followed by the event itself in the appropriate
format. The event may extend over several lines:

1997/01/03 12:03:00,Thor,LNKDN,5,"Link Down:Vili"

• The event is terminated by an event syntax line defining the
endecoder and syntax:

% mdl:SimpleEvent:
Chapter 11 381

Event Log File Format
Log File Syntax
Engine output event logs do not include the transit delay. Input event
logs may specify the actual transit delay.

A typical example event log file, generated by the ECS Engine output
event log, with just two events is:

eventid(0:1)
+0
!1
1997/01/03 12:03:00,Thor,LNKDN,5,"Link Down:Vili"
% mdl:SimpleEvent:
eventid(0:2)
+0
!1
1997/01/03 12:03:01,Oden,LNKDN,5,"Link Down:Vili"
% mdl:SimpleEvent:

Annotation Logs

Annotation requests and responses are read and written in the form of
event log entries. Each request or response appears like an event, with
one attribute (responseList) containing the request or response
information, as appropriate, in the form of a List.

Annotation requests are written by both the ECS Designer and the ECS
Engine. The ECS Designer writes annotation requests to the Output
Events window during simulation whenever an Annotate node is
triggered. The contents of the Output Events window can then be saved
to a file.

The ECS Engine logs annotation requests and responses like any other
event, with the one exception that it logs requests in the output event log
and responses in the input event log.

The ECS Designer is selective about which events are loaded from a log
file. The selection of events depends on the function chosen from the
Simulate menu:

• Simulate:Load Input Events. Annotation responses are ignored;
other events are input to the engine.

• Simulate:Load Annotation Events. All events except annotation
responses are ignored; annotation responses are read and used to
simulate responses received from an annotation server.

This selective behavior means that you can use the same ECS Engine
input log (containing normal input events as well as annotation
382 Chapter 11

Event Log File Format
Log File Syntax
responses) for both inputs to the ECS Designer.

The Annotation Event Format

The annotation event format consists of six attributes, each on a
separate line. The six attributes are:

requestId The unique annotation request ID generated by the
ECS Engine when a request is initiated.

circuitName The name of the loaded circuit which generated the
annotation request.

nodeName A fully qualified name for the annotation node which
generated the annotation request.

sequenceId The unique ID generated by the annotation node which
initiated the request. This ID is unique for the
annotation node which generated it only.

expiryTime The time at which the annotation request will expire.

responseList The annotation response values encoded as an ECS
List.

In addition, the event syntax line for an annotation request is:

% anno:request:

And for an annotation response it is:

% anno:response:transitDelay

Where transitDelay is the number of seconds by which the response is
to be delayed during a simulation (expiryTime is ignored during a
simulated annotation response). For example, a complete annotation
response would appear as follows:

My annotation event
0
simulate
anno_reg_001_module.tmpcompound.tmpnode.annonode
2
19970103010400.000000Z
["Link Down:Vili", (5, "Thor"), 1.230000, 1]
% anno:response:61

This event would appear in the ECS Designer (with View:ECDL-Like
Events selected) like this:
Chapter 11 383

Event Log File Format
Log File Syntax
-- response -- (
-- requestId -- 0,
-- circuitName -- simulate,
-- nodeName --

anno_reg_001_module.tmpcompound.tmpnode.annonode,
-- sequenceId -- 2,
-- expiryTime -- 19970103010400.000000Z,
-- responseList -- ["Link Down:Vili", (5, "Thor"), 1.230000,
1]

)

384 Chapter 11

Event Log File Format
Special Characters
Special Characters
There are five special characters in event log files:

• The four characters used to define the event log line types (% + ! and
#)

• and the reserved character @

If it is possible that your event text could start with one of these
characters then you need to take special action as described here.

The @ character is reserved for future use. Where an event may start
with this character you must insert a line consisting of a single @
character after the comment lines or as the first line if there are no
comments.

Where an event may start with a # precede the event with a time control
line:

+0
#1,"LNKDN","Vili", 23/2/97
% mdl:SimpleEvent:

Where an event may start with a + precede the event with a repeat
control line:

!1
+1,"LNKDN","Vili", 23/2/97
% mdl:SimpleEvent:

Where an event may start with a ! precede the event with a repeat
control line:

!1
!1,"LNKDN","Vili", 23/2/97
% mdl:SimpleEvent:

The first line starting with ! is interpreted as the repeat control line. Any
following lines that start with a ! are not treated specially as only one
repeat control line is allowed.

Where any line of an event may start with a % followed by a space, a
slightly more complex solution is required which redefines the lead-in
string for the event syntax control line. This is done using a special
comment, as in the following example:
Chapter 11 385

Event Log File Format
Special Characters
A comment
SYNTAX START:MyEventSyntax:
+0
!1
%1,"LNKDN","Vili", 23/2/97
MyEventSyntax:mdl:SimpleEvent:

This example redefines the default syntax control line lead-in sequence
from "% ". This is done with the special comment # SYNTAX START:
which defines the remainder of the comment line to be the replacement
lead-in. In this case the lead-in string is defined to be MyEventSyntax:
(including the terminating character :).

This example would allow events to start with any character except the
string sequence MyEventSyntax:.
386 Chapter 11

12 Audit Logging
387

Audit Logging
This chapter describes the basis of the ECS audit logging facility. This is
an advanced chapter that assumes that you are already familiar with
ECS, ECDL and operation of the ECS Engine.

The first section introduces the key concepts:

• “Verifying the Operation of a Circuit” on page 389

This is followed by a description of the function used to write information
to the audit log:

• “The audit_log Function” on page 390

Finally, some helpful design hints:

• “Designing an Audit” on page 392

You may also need to refer to details on the operation of the ECS Engine
in order to enable the appropriate logging facilities and log levels:

• HP OpenView Event Correlation Services Administrator’s Guide
388 Chapter 12

Audit Logging
Verifying the Operation of a Circuit
Verifying the Operation of a Circuit
Sometimes the operation of an ECS circuit needs to be verified. Two
specific verification requirements are:

• prove that an ECS circuit is operating as expected

• identify the input events that caused a particular event to be output
(or that caused a particular event not to be output).

Auditing is the process of enhancing an ECS circuit by inserting extra
ECDL statements to record critical data in a log, and then analyzing the
log file. The audit expressions that you add are inserted into ECDL
expressions wherever important data is required and wherever decisions
are made in the circuit. For example, it may be important to know the
time at which a circuit is loaded, and to record every occasion on which
an event is suppressed by a Filter node.

Engine log Audit log information is written to the ECS Engine log file:

$OV_LOG/ecs/instance/ecsd.log0

During a simulation, you can view the engine log in the ECS Designer by
selecting Simulate: Engine Log from the menu.

For audit statements to be recorded in the ECS Engine log, you must
enable the ETL_LOGINFORM level of logging. If you are running the
pmd-linked version of the ECS Engine then you must also enable the
postmaster log:

$OV_LOG/pmd.log0

Usually, you will also need to enable event logging in the ECS Engine.
See the HP OpenView Event Correlation Services Administrator’s Guide
for information about setting logging mask values and turning on input
event logging.

Efficiency
considerations

The principle on which auditing is based is that you, the circuit designer,
must have complete control over the information recorded in the log.
This allows you to reduce the overheads involved in auditing to the
minimum necessary to satisfy operational requirements.
Chapter 12 389

Audit Logging
The audit_log Function
The audit_log Function
Audit records are written by the System.audit_log function using an
expression such as:

system.audit_log "event forwarded"

This expression prints the text event forwarded to the engine log file.

The system.audit_log built-in function takes one argument, converts it
to readable form if necessary, and prints it to the engine log if logging is
in effect. The return value is Void, and this creates a potential problem
for most node parameter expressions where you want the expression to
return an appropriate value.

To ensure that the appropriate value is returned you must use a
sequence expression. Sequences allow multiple expressions to be strung
together and executed in the sequence in which you write them. The
value of the last expression in the sequence is returned as the value of
the sequence as a whole. See Chapter 10, “Writing ECDL Expressions,”
on page 319 for further details about sequence expressions.

To use a sequence expression you simply separate each expression with a
semicolon. Generally, it is also a good idea to enclose the whole lot in
parentheses to ensure the sequence is evaluated as a block:

(system.audit_log "event forwarded" ; true)

In this case the audit_log function is executed first, followed by the
expression true, which simply returns the value true. The Void value
returned by the audit_log function is discarded.

A more realistic example that you might place in a Filter node to pass
only those events with a severity of 3 is:

if (input_event "severity" = 3)
then

(system.audit_log "event forwarded" ; true)
else

(system.audit_log "event deleted" ; false)
end

The examples used so far simply place a text message in the log.
However, you can also log values and even entire events. For example, to
audit the action of an Unless node configured to suppress duplicate
events (same "deviceId" but different unique_id), you could write:
390 Chapter 12

Audit Logging
The audit_log Function
if (inhibitor_event "deviceId" = input_event "deviceId"
and
inhibitor_event unique_id != input_event unique_id

)
then(

system.audit_log ("DuplicateGroup",
input_event "deviceId",
"suppressing duplicate event",
input_event unique_id)

; true
)

else
false

end

Here, the collection of four elements to be logged is turned into a Tuple
by placing parentheses around the collection and separating elements
with commas. The audit_log function logs the Tuple and decomposes it
into simple data items which it then converts to text. The first and third
elements are simply text, but the second element extracts the
"deviceId" attribute from the input event and the last element logs the
unique ID of the input event.

Using Unique IDs to Lookup Events Details

Frequently, you will want to record an ECS event in the audit log. To do
this you must enable ECS Engine input event logging. This records all
events that enter the ECS Engine, together with each event’s unique ID
(see “Logs Generated by the ECS Engine” on page 381).

When you record an event in the log file, instead of writing out the entire
event details, the audit_log function records just the event’s unique ID,
which you can match with the details recorded in the event log. This is
much more efficient than recording complete event details in the audit,
possibly repeating the same details many times.

This referencing technique works because an event can never be changed
in ECS. Even the Modify node creates a copy of the input event (with a
new unique ID) and modifies that instead of the original event.
Chapter 12 391

Audit Logging
Designing an Audit
Designing an Audit
To validate an entire ECS circuit you need to write an audit log entry for
each major decision affecting an event:

• on entry to the circuit

• just before it is suppressed

• as each decision is taken

• as an event is created (Create node) or modified

• on output from the circuit

Events that can be ignored (not recorded in the log) include those events
that are incidental and play no part in the correlation.

In some cases the log will be analyzed by another program, such as a
general purpose utility like grep(1), a database or spreadsheet
application, or a specially developed application capable of more
sophisticated analysis. In any case, you need to think about what
information should be placed in the log and, if necessary, coordinate the
design of the log format with the requirements of the external
application that will read it.

Static and Dynamic Evaluation

Audit log information is written to the log whenever an expression
containing an audit_log function is evaluated. When designing an audit
you need to consider whether a parameter is evaluated statically or
dynamically.

Audit expressions added to static parameters are evaluated just once,
when the circuit is loaded (such as the Count node Initial count
parameter). On the other hand, audit expressions added to dynamically
evaluated parameters are evaluated whenever the parameter is
evaluated. For example, the Filter node Condition parameter is
evaluated whenever an event enters the node. Some parameters (such as
the Delete Condition in a Table node) are evaluated very frequently
and can generate huge numbers of audit log entries if you place audit log
expressions in them.

See the description of each node in Chapter 3, “Circuit Nodes,” on
392 Chapter 12

Audit Logging
Designing an Audit
page 43 for information about whether a particular parameter is
evaluated statically or dynamically.
Chapter 12 393

Audit Logging
Designing an Audit
394 Chapter 12

13 Files and Directories
395

Files and Directories
This chapter describes the files read and written by the HP OpenView
Event Correlation Services Designer.
396 Chapter 13

Files and Directories
Files Used or Generated by the ECS Designer
Files Used or Generated by the ECS Designer
The directory paths listed in Table 13-1 assume that you have defined
the Universal Pathname environment variables set with the
ov.envvars.sh script. The locations used by ECS are listed in Table
13-2 on page 399. See the HP OpenView Event Correlation Services
Administrator’s Guide for further details.

Default names and
locations

The ECS engine itself does not require particular filename suffixes.
However, the ECS Designer expects files to have certain suffixes and to
be located in certain directories.

Unless the pathname is specified, all ecsmgr(1M) commands that specify
file names assume that files are to be loaded from or saved to the present
working directory.

Table 13-1 File Names and Default Locations

File Location Description

*.ecs $OV_DB/ecs/ Uncompiled ECS circuit. This is
just the default location. Files can
be read from or written to any
location to which the user has
access.

ecs_defaults.ecs,
cmip_defaults.ecs,
and nnm_defaults.ecs

$OV_CONF/ecs/modules/ Default modules installed when
ecsdes is installed

*.eco User defined Compiled ECS circuits

*.ds User defined Data store files, including updates
or dumps from the correlation
engine

*.fs User defined Fact store files, including updates or
dumps from the correlation engine

*.evt User defined Event log files to be loaded into
ecsdes.
Chapter 13 397

Files and Directories
Files Used or Generated by the ECS Designer
pmd.log0
and
pmd.log1

$OV_LOG Engine log files (DM only)

pmd.trc0
and
pmd.trc1

$OV_LOG Engine trace files (DM only)

ecsin.evt0
and
ecsin.evt1

$OV_LOG/ecs/instance/ Engine input event logs generated
by the ECS Engine.

ecsout.evt0
and
ecsout.evt1

$OV_LOG/ecs/instance/ Engine output event logs generated
by the ECS Engine.

circuit_name.evt0
and
circuit_name.evt1

$OV_LOG/ecs/instance/ Output event log for the specified
circuit, generated by the ECS
Engine. instance is the instance
number of the ECS engine

ecsd.conf $OV_CONF/ecs/instance/ Configuration file for the ECS
Engine. See manpage for details.

mdl.md $OV_CONF/ecs/md/mdl/ Metadata file used by the MDL
endecoder.

ecs.* $OV_CONF/ecs/md/ber/ Metadata file used by the BER
endecoder.

ed.conf $OV_CONF/ecs/ed/ Configuration file listing the
endecode modules used by the
ECS Engine.

*.mdl $OV_CONF/ecs/ed/mdl/ Message description files
containing MDL source.

Table 13-1 File Names and Default Locations

File Location Description
398 Chapter 13

Files and Directories
Files Used or Generated by the ECS Designer
Where instance is a number that identifies the ECS Engine instance.

The ECS Engine always writes to log and trace files with the suffix 0.
These files are renamed with a suffix of 1, overwriting any existing file
with the same name. Renaming happens on startup and whenever the
engine log file size limit is reached (see the HP OpenView Event
Correlation Services Administrator’s Guide). The ECS Designer uses
event log files without any suffix, so you must rename log files generated
by the ECS Engine before they can be used in the ECS Designer.

The environment variables installed by default vary depending on the
operating system used, as described in Table 13-2.

Table 13-2 Predefined Environment Variables for File Locations

Environment
Variable

Windows NT 4.x HP-UX 10.x, 11.x Solaris 2.x

$OV_LOG C:\Openview\log /var/opt/OV/share/
log

/var/opt/OV/share/
log

$OV_CONF C:\Openview\
conf

/etc/opt/OV/share/
conf

/etc/opt/OV/share/
conf

$OV_DB C:\Openview\
databases

/var/opt/OV/share/
databases

/var/opt/OV/share/
databases

$OV_MAIN_PATH C:\Openview /opt/OV /opt/OV
Chapter 13 399

Files and Directories
Files Used or Generated by the ECS Designer
400 Chapter 13

A Event Correlation in OVO
401

Event Correlation in OVO
This appendix provides detailed, low-level information designed to help
the OVO administrator better understand the design and configuration
of event-correlation circuits in the context of OVO. It also gives some
hints on how to go about investigating problems relating to OVO-specific,
event-correlation circuits. It is divided into the following parts:

• Event or Message attributes

• Event logging

• Troubleshooting OVO-specific problems
402 Appendix A

Event Correlation in OVO
OVO Message Attributes

he
OVO Message Attributes
Event (or “message” in the context of OVO) attributes are referenced in
string form in ECS circuit nodes. For example, a Filter node in an ECS
circuit would refer to the OVO message attribute “OBJECT” in the
following way: input_event OBJECT. Similarly, the “CREATION_TIME”
message attribute could be accessed as: input_event CREATION_TIME.
See Table A-1 for more information on the OVO-specific event attributes
that you may use for event correlation in the context of OVO.

See Table 4-1 on page 152 for OVO primitive event header attribute
values.

Table A-1 OVO Primitive Event Body Message Attributes

OVO Message Attribute Type Description

AACTION_ACK Boolean Defines whether or not the message is acknowledged
automatically on the OVO management server after the
corresponding automatic action has finished successfully.

AACTION_ANNOTATE Boolean Defines whether or not OVO creates “start” and “end”
annotations for automatic actions.

AACTION_CALL String The command to use as automatic action for the OVO
message. Default: empty string; max. length: 254 chars.

AACTION_NODE String Defines the system on which the automatic action runs.
Default value: the content ‘NODENAME’; max. length:
254 chars

AACTION_STATUS Integer Defines the status of the automatic action belonging to t
current message. Possible values are:

• ACTION_UNDEF (default)

• ACTION_DEF (default if AACTION_CALL is
defined)

• ACTION_STARTED

• ACTION_FINISHED

• ACTION_FAILED
Appendix A 403

Event Correlation in OVO
OVO Message Attributes

r

e

of

APPLICATION String Application name to use for the OVO message. Default:
empty string; max. length: 32 chars.

CREATION_TIME Time The time the message was created. The time is in UNIX
format (seconds since Epoch). Default: the (local) time
when the message was created.

GROUP String The OVO message group to use for the message. Default:
empty string; max. length: 32 chars.

INSTR_IF String The name of the external, instruction-text interface. The
external, instruction-text interface must be configured in
OVO. Default: empty string; max. length: 36 chars.

INSTR_IF_TYPE Integer Defines whether the internal OVO instruction-text
interface or an external interface is used to display
instructions for the message. Possible values are:

• INSTR_NOT_SET (default)

• INSTR_FROM_OPC

• INSTR_FROM_OTHER

INSTR_PAR String Parameters for the call to the external, instruction-text
interface. Default: empty string; max. length: 254 chars.

MSGID String Read only. Unique identifier of the message. Modified o
newly created messages will assume the ID: ‘00000....’

MSGSRC String Read only. This attribute specifies the source of the
message, e.g., the name of the encapsulated logfile if th
message originated from logfile encapsulation or the
interface name if the message was sent via an instance
the Message-Stream Interface. Default: empty string; no
max. length.

Table A-1 OVO Primitive Event Body Message Attributes

OVO Message Attribute Type Description
404 Appendix A

Event Correlation in OVO
OVO Message Attributes

s,

ge
t

g
MSGSRC_TYPE Integer Read only. Specifies the source type of the message. Each
source is represented in one bit, e.g. a message that was
generated by the logfile encapsulator and then modified at
the Agent MSI will have ‘bitor LOGFILE_SRC
AGTMSI_SRC’ set.

Possible values are:

• OPCMSG_SRC

• LOGFILE_SRC

• MONITOR_SRC

• SNMPTRAP_SRC

• SCHEDULE_SRC

• CONSOLE_SRC

• SVMSI_SRC

• AGTMSI_SRC

• LEGLINK_SRC

MSGTEXT String Message text. Default: empty string; no max. length.

MSGTYPE String This attribute is used to group messages into subgroup
e.g., to denote the occurrence of a specific problem.
Default: empty string; max. length: 36 ASCII chars, no
spaces.

MSG_LOG_ONLY Boolean Inserts the message immediately into the history-messa
table when the message is received on the Managemen
Server. The message is not sent to any operator. An
Operator will only be able to see the message when usin
the OVO history message browser

Table A-1 OVO Primitive Event Body Message Attributes

OVO Message Attribute Type Description
Appendix A 405

Event Correlation in OVO
OVO Message Attributes

er

lt:

n
MSI_OUTPUT Integer Defines the handling of the message in the OVO Message
Stream Interface. Each value is representing one bit that
can be bitor’ed. Possible values are:

• SV_MSI_NO_OUTPUT (default)

• SV_MSI_DIVERT

• SV_MSI_COPY

• AGT_MSI_NO_OUTPUT (default)

• AGT_MSI_DIVERT

• AGT_MSI_COPY

NODENAME String The name of the system on which the message was
created. The message is only handled by the OVO
management server if NODENAME is part of the OVO
managed environment (OVO node bank). Default: local
node name; max. length: 254 chars.

NOTIFICATION Boolean Forwards OVO messages from OVO management serv
to the OVO notification interface, if the notification
interface is configured.

OBJECT String The “object” name to use for the OVO message. Defau
empty string; max. length: 32 chars.

OPACTION_ACK Boolean Defines whether the message is acknowledged
automatically on the OVO management server after the
corresponding operator-initiated action has finished
successfully.

OPACTION_ANNOTATE Boolean Defines whether or not OVO creates “start” and “end”
annotations for the operator-initiated action.

OPACTION_CALL String Command to use as automatic action for the OVO
message. Default: empty string; max. length: 254 chars.

OPACTION_NODE String Defines the system on which the operator-initiated actio
should run. Default value: OPCDATA_NODENAME;
max. length: 254 chars.

Table A-1 OVO Primitive Event Body Message Attributes

OVO Message Attribute Type Description
406 Appendix A

Event Correlation in OVO
OVO Message Attributes

et
f

s
er.

s
o
OPACTION_STATUS Integer Defines the status of the operator-initiated action
belonging to the current message. Possible values are:

• ACTION_UNDEF (default)

• ACTION_DEF (default if OPACTION_CALL is
defined)

• ACTION_STARTED

• ACTION_FINISHED

• ACTION_FAILED

ORIGMSGTEXT String The original message text. This attribute allows you to s
additional source information for a message. It is useful i
the message text was reformatted but the OVO operator
needs to have access to the original text. Default: empty
string; no max. length.

RECEIVE_TIME Time Read only. The time the message was received by the
management server. The time is in UNIX format (second
since Epoch). This value is set by the management serv

SEVERITY Integer The severity of the message. Possible values are:

• SEV_UNKNOWN

• SEV_NORMAL

• SEV_WARNING

• SEV_MINOR

• SEV_MAJOR

• SEV_CRITICAL

TROUBLETICKET Boolean Forwards OVO messages from the OVO management
server to the OVO trouble-ticket (TT) interface, if the TT
interface is configured.

TROUBLETICKET_ACK Boolean Defines that the OVO management server acknowledge
the message automatically if forwarding of the message t
the trouble ticket system was successful.

Table A-1 OVO Primitive Event Body Message Attributes

OVO Message Attribute Type Description
Appendix A 407

Event Correlation in OVO
OVO Message Attributes
All attributes can be read and altered (in a Create or Modify node) except
for those marked read-only.

Using Event Attributes

OVO event attributes can be addressed as String data types, or as
Tokens. This means, for example, that you can address the OBJECT
message attribute using the String value "OBJECT" or the Token value
OBJECT. In practise this means you can either use quotes (String form) or
not (Token form).

Using the Token address form has the advantage that a misspelled token
name is picked up when the circuit is validated (compiled) rather than at
run time. Token addresses are also more efficient than Strings. You
should also remember that case is important with Strings, but is not
important when Tokens are used. So OBJECT, object and "OBJECT" are
acceptable, but "object" will raise a run time error.

All other ECS documentation assumes that the attributes of primitive
events are addressed as String values.

Examples To filter events based on their severity you could enter a Filter node
Condition parameter such as:

input_event SEVERITY = SEV_UNKNOWN

To change messages with a severity of SEV_UNKNOWN to
SEV_NORMAL you could use a Modify node after the Filter node above,
with a Modify Spec parameter such as:

modified_event alter (SEVERITY => SEV_NORMAL)

To retain just the latest event from a particular OBJECT in a Table node,
you could enter a Delete Condition parameter such as:

current_event OBJECT = retained_event OBJECT

UNMATCHED Boolean Defines whether or not the message matched a condition.

Table A-1 OVO Primitive Event Body Message Attributes

OVO Message Attribute Type Description
408 Appendix A

Event Correlation in OVO
Logging Events in OVO
Logging Events in OVO
The OVO event correlation processes on the management server and the
managed node log messages going into and out of the ECS Engine in the
files ecevilg and ecevolg respectively. These logfiles are used for
testing and debugging and reside in the following directories:

Management Server

HP-UX 10.x /var/opt/OV/log/OpC/mgmt_sv

Managed Node

HP-UX 10.x /var/opt/OV/log/OpC

HP-UX 9.x /usr/OV/log/OpC

For example, the ECS Designer uses the logfile ecevilg as its simulation
input. You need to transfer the file manually from the managed node to
the server if you wish to simulate a circuit’s operation. Note also that the
ECS Designer requires a .evt suffix for the event logfiles.

In order to rebuild an original message from the content of the ECS
logfile, the logfile must contain as much information as possible relating
to the messages that passed through the correlation process.
Consequently, the structure of all OVO message logfiles are designed to
ensure that they contain the required message attributes in the
appropriate format.

You can switch on the logging of input and output events in the “Options”
window, which you access from the “Message Source Templates” window.
Switching on logging for any one of the EC templates you assign and
distribute to a managed node means that logging is switched on for all
EC templates on that managed node.

Event Log Format

In the ECS Designer event display windows, and in the event log file
itself, a typical OVO message appears as shown below:

> 9399111c-a06f-71d0-0fd2-0f88781c0000
> 858786227 ; Wed Mar 19 16:43:47 1997
> riffraff.bbn.hp.com (IP) ; Normal ;
> Matched ; succeeded_su ; Logfile: Su (10.x HP-UX)
Appendix A 409

Event Correlation in OVO
Logging Events in OVO
> Security ; /usr/bin/su(1) Switch User ; frankv
> ; :
> INSTR_NOT_SET: ;
> AA: ; ; ; Undef
> AA:
> OA: ; ;
> OA:
> Succeeded switch user to oracle by frankv
> SU 03/19 16:43 + ttyp6 frankv-oracle
% OpC_Msg::
0858786227
+0

The values shown in the message above are matched to OVO message
attributes as shown below. The notation [OPACTION_ACK: "ACK" | ""]
means: depending on the OPACTION_ACK attribute, the log contains either
ACK or nothing; no quotes are present in the log file itself.

> [MSGID]
> [CREATION_TIME] ; [CREATION_TIME (in ASCII)]
> [NODENAME] ([net_type: usually IP]) ; [SEVERITY] ;
 [MSG_LOG_ONLY: "LOG_ONLY"|""]
> [UNMATCHED: "Matched"|"Suppressed"|"Unmatched"] ; [MSGTYPE] ;
 "Console"|"OpC"|"Logfile"|"Monitor"|"SNMP"|"MSI": [MSGSRC]
> [GROUP] ; [APPLICATION] ; [OBJECT]
> [NOTIFICATION: "NOTIFICATION"|""] ; [TROUBLETICKET: "TT"|""]:
 [TROUBLETICKET_ACK: "ACK"|""]
> [INSTR_IF_TYPE:
 "INSTR_NOT_SET"|"INSTR_NOT_SET"|"INSTR_FROM_OTHER"]:
 [INSTR_IF] ; [INSTR_PAR]
> AA: [AACTION_NODE] ; [AACTION_ACK: "ACK"|""] ;
 [AACTION_ANNOTATE: "ANN"|""] ; [AACTION_STATUS:
 "Undef"|"Def"|"Started"|"Finished"|"Failed"]
> AA: [AACTION_CALL]
> OA: [OPACTION_NODE] ; [OPACTION_ACK: "ACK"|""] ;
 [OPACTION_ANNOTATE: "ANN"|""] ; [OPACTION_STATUS:
 "Undef"|"Def"|"Started"|"Finished"|"Failed"]
> OA: [OPACTION_CALL]
> [MSGTEXT]
> [ORIGMSGTEXT]
% OpC_Msg::(time difference between log time and CREATION_TIME)
(log time in seconds since epoch)
(time difference to next message)

Where:

> Marks the start of a new line.
410 Appendix A

Event Correlation in OVO
Logging Events in OVO
; Separates attributes on the same line.

XXX Literal text that appears in the message.

[...] A message attribute value, as described in Table A-1 on
page 403. The square brackets may enclose a list of
literal values, but are not present in the message itself.

"..." A named value (the quotes are not present in the
message itself – empty quotes "" indicate that a
missing value is acceptable.).

| Separates alternative values.

(...) Encloses a descriptive comment.
Appendix A 411

Event Correlation in OVO
Troubleshooting OVO-specific Problems
Troubleshooting OVO-specific Problems
There are a number of options you can choose when investigating
EC-related problems in the context of IT/Operations. The problems you
encounter can concern the malfunction of either the ECS circuits and
templates you design and distribute or the ECS engine itself. First of all
you need to establish whether the following conditions are true:

• MSI output must be enabled on the management server and the
managed node. You enable MSI output by opening the following
sequence of windows:

Management Server Actions -> Server -> Configure:
MSI - Enable Output

Managed Node Actions -> Node -> Modify ->
Advanced Options: MSI - Enable
Output

• Output to the MSI must be enabled and the option “Divert/Copy
Messages” set for each of the message conditions that output
messages to the event-correlation engine. You do this by opening the
following sequence of windows: Window -> Message Source Templates
-> Conditions -> Condition Number # -> Advanced Options: MSI -
Divert/Copy Messages

• The “message-type” attribute must be set correctly for each message
condition. The OVO administrator defines message types: a message
type is usually the name of the sub-group to which the message
belongs. You set the “message-type” attribute by opening the
following sequence of windows: Window -> Message Source
Templates-> Conditions -> Condition Number #: Message Type

• The message attribute you specify in the “message-type” attribute
field for a given message condition must match the message attribute
defined in the event-type field of the appropriate event-correlation,
input node. The appropriate ECS input node is the one that starts the
event-correlation flow which you want to process the message
produced by a given message condition.
412 Appendix A

Event Correlation in OVO
Troubleshooting OVO-specific Problems
If all these conditions are true, then the message should pass through
the correlation process as expected. However, if it is the case that the
expected behavior means that the message is discarded during the
correlation process, then verifying whether or not the event-correlation
process is running correctly is more difficult.

The easiest way to find out whether the message is being generated by
the template in the first place (since if it were indeed being generated by
the template but then correctly discarded by the event-correlation
process, it would not appear in the “Message Browser” window) is either
to disable the output to the MSI (Actions -> Server -> Configure or
Actions -> Node -> Modify) so that the message passes directly to the
Message Browser, or set the “Divert/Copy” message to MSI switch to
“Copy”.

NOTE Make sure that you redistribute the message source template after
changes in conditions such as toggling the “Divert/Copy message to MSI”
switch.

The result of this is that either the original message or a copy of it will
appear in the “Message Browser window”. If the message does appear in
the “Message Browser” window when the output to the MSI is switched
off, you can concentrate further investigation on the event-correlation
process itself.
Appendix A 413

Event Correlation in OVO
Troubleshooting OVO-specific Problems
414 Appendix A

Glossary
Abstract Syntax Notation 1
(ASN.1) An OSI standard related
to the Presentation Layer where
the abstract representation of the
data is independent of its physical
encoding. It is specified in ISO/IEC
8824, X.208.

agent A program or process
running on a remote device or
computer system that responds to
management requests, performs
management operations, and/or
sends event notifications.

annotation API A set of
application program interface
functions and data structures that
supports the transfer of data
between an external annotaton
server and one or more Annotate
nodes in an ECS circuit.

annotation server A user
supplied server that receives a
request from an Annotation node
within a correlation circuit,
performs some action, and returns
a response to the Annotate node.
The action performed by the
annotation server may involve
information extracted from events
in the circuit, and the information
returned is typically obtained
external to the ECS Engine and
the annotation server.
arrival time The time an event
arrives at the ECS engine in
Universal Coordinated Time
(UTC).

ASCII American Standard Code
for Information Interchange. A
standard used by computers for
interpreting binary numbers as
characters.

ASN.1 Abstract Syntax Notation
1.

attribute An object characteristic
or property that describes the
current state of the object and
which has a unique identifier by
which it is accessed. In ECS, for
example, the “eventTime”
attribute of a CMIP event, or the
“Rate” attribute of a Rate node.
See event attribute; identifier;
correlation node attribute.

attribute-value pair The
combination of an attribute
identifier and the value of that
attribute for a specific object. In
ECS, attribute-value pairs are
represented as key-value pairs in
an ECDL dictionary. See also
key-value pair; dictionary.
415

Basic Encoding Rules (BER)

Defines how ASN.1 data types are
encoded for transport on the
network.

breakpoint A point in a program
at which execution is halted so
that the program’s status, contents
of variables and other factors can
be examined. In the ECS Designer,
in simulation mode, breakpoints
are locations in a correlation
circuit where event processing is
halted to allow for manual
intervention.

canvas The working area of the
ECS Designer screen. This is
where you place, connect, and
configure correlation nodes to
create your correlation circuit.

CCITT The International
Telegraph and Telephone
Consultative Committee, an
international organization
concerned with proposing
recommendations for international
communications. Replaced by the
International Telecommunications
Union, Telecommunications
(ITU-T) in 1992. See International
Telecommunications Union,
Telecommunications (ITU-T).

circuit See correlation circuit.
416
CMIP See Common Management
Information Protocol (CMIP).

Common Management
Information Protocol (CMIP) A
protocol for exchanging network
management information in an
OSI environment (ISO/ITU-T
X.710). CMIP communicates
management information between
a manager and an agent. CMIP
allows a manager to retrieve (get)
management information from, or
to alter (set) management
information on an agent. CMIP
also allows the manager to create
and delete instances of an object
managed by the agent, or perform
an action on an object. An agent
can also emit unsolicited messages,
called notifications, to alert
managers of noteworthy local
conditions.

component event An event that
is combined with other events to
create a new event. In ECS, a
composite event is composed of two
or more component events. See
composite event.

composite event In ECS, a
composite event consists of a
structured aggregation of
addressible component events each
of which may be a primitive event,
a temporary event, or a composite

event. A composite event may only
exist within a correlation circuit.
See also component event;
primitive event; temporary event.

compound node A graphical
element that represents a
container of lower level
components. The lower level
components will be displayed when
the user opens the compound node.
In ECS, a correlation circuit
fragment may be encapsulated in a
compound node, hence creating a
new user-defined correlation node.
Compound nodes may be added to
libraries and re-used by reference
or by copy. Compare with primitive
node.

condition (parameter) In ECS, a
condition is an ECDL expression
specified for a correlation node
parameter, usually involving
attribute from an event, that
returns a value used to modify the
behavior of the correlation node.

correlation A procedure for
evaluating the relationship
between sets of data or objects to
determine the degree to which
changes in one are accompanied by
changes in the other. In ECS,
correlation is a process of
analyzing a stream of events by
filtering and detecting patterns
and replacing groups of events
with single events that have
(possibly) higher information
content.

correlation circuit In ECS, a
collection of interconnected
primitive nodes and compound
nodes, configured to perform a
filtering or correlation activity.
Each correlation node is configured
appropriately to the correlation
requirement. The configuration
includes the specification of the
event types, and the allowed
transit delays for those events, to
be accepted from the external
event stream. A correlation circuit
can be loaded into an ECS Engine.

correlation circuit port The
logical connections between a
correlation circuit and the
containing infrastructure where
events enter and leave the circuit.
These ports may be configured to
select a subset of events in the
input event stream, based upon
event encoding type and event
syntax. A single port may be
connected to multiple Source/Sink
nodes, and a single Source/Sink
node may be connected to multiple
circuit ports.
417

correlation engine The ECS
runtime component that reads an
input event stream, decodes the
input events, performs the event
correlation, encodes the output
events and returns the output
events to the event stream. The
event correlation is as specified by
the one or more correlation circuits
loaded into the correlation engine.

correlation node A processing
element in a correlation circuit.
See also compound node; primitive
node.

correlation node attribute A
property of a correlation node that
can be read from another
correlation node. The Count, Rate,
and Table nodes have attributes
(which may be exported by a
containing compound node as
attributes of the compound node).
Attributes are addressed using a
dot notation:
“node_name.attribute_name”.

correlation node parameter In
the ECS Designer, a correlation
node parameter is an ECDL
expression used to configure a
correlation node.

correlation node port One of
possibly many connection points of
a correlation node used to
418
interconnect correlation nodes.
Events enter a correlation node
through a port and leave a
correlation node through a port.
Port types include input, output,
control, reset, and error ports. In
the ECS Designer, ports visually
indicate the sense of the associated
event flow. Optional ports are not
displayed by default.

creation time The time an event
was created. Inside the ECS
Engine creation time is
represented in Universal
Coordinated Time (UTC).

daemon A process that “serves”
clients. Sometimes referred to as a
server.

data store In ECS, a component
of the ECS Engine which holds
user-specified named data items of
an ECDL data type. The entries in
the data store may be referenced
from the ECDL expressions
configured into the correlation
nodes. A correlation circuit may be
associated with one of the possibly
many data stores loaded into the
correlation engine.

data type A particular kind of
data; for example integer,
alphanumeric, boolean, date. In
ECS, data types are ECDL data

types which define the type and
range of values to which an
identifier may be assigned. Every
value in ECDL has a data type, but
the type need not be explicitly
stated. The types range from
simple types such as integers, to
compound types such as
dictionaries and lists, and special
types such as functions and events.

dictionary (data type) In ECS, a
dictionary is an ECDL data type
comprised of an unordered list of
key-value pairs. Any value is
accessed via reference to the key.
Within ECS, an event is treated as
a dictionary with attribute names
being the dictionary keys which
provide access to the attribute
values.

Distributed Management
Platform (DM) HP OpenView
Distributed Management
Platform, the platform which
provides the infrastructure for
implementing OSI-based
management solutions.

DM See Distributed Management
Platform (DM)
duration data type In ECS, a
duration is an ECDL data type
used to represent relative or
elapsed time values. Compare with
time data type.

dynamic parameter A
parameter whose value is
determined during program
execution. In ECS, an ECDL
expression configured for a
correlation node parameter which
is evaluated each time an event
enters the correlation node.
Typically, the value returned by a
dynamic parameter changes for
each event processed.

ECDL See Event Correlation
Description Language (ECDL).

ECS See Event Correlation
Services (ECS).

ECS circuit See correlation
circuit.

ECS Designer The ECS Designer
is the ECS component which you
use to create and test correlation
circuits. The ECS Designer works
in two modes: build mode where
you create correlation circuits, and
simulate mode where you test the
circuits.
419

ECS Engine See correlation
engine.

ecsmgr The command line
program used to administer a
running ECS Engine.

endecode In ECS, a term used to
refer to a combined encoding or
decoding function or capability. An
endecode module is an
architectural entity which provides
encoding and decoding for a
specific type of event.

evaluation license A license
granted for a specific period of time
for the purpose of evaluating ECS.

event An event is an unsolicited
notification such as an SNMP trap,
a CMIP notification, or a TL1
event, generated by an agent
process in a managed object or by a
user action. Events usually
indicate a change in the state of a
managed object or cause an action
to occur. In ECS, an event is
encoded as a primitive, compound,
or temporary event. ECS events
contain header attributes added to
the input events to assist the
processing of the events while they
are in the ECS correlation circuit.
The header attributes are stripped
before the events are transmitted
from the ECS circuit.
420
event attribute A characteristic
property of an event. In ECS, event
attributes are either part of the
internally created event header
common to all event types, or part
of the event body that contains the
input event.

Event Correlation Description
Language (ECDL) The language
used to specify correlation circuits
(node relationships, parameter
expressions, data and fact store
values) for the ECS Engine.

Event Correlation Services
(ECS) The HP OpenView Event
Correlation Services product.

event encoding type The first
and highest level in the
three-tiered ECS event
classification system. An event’s
encoding type determines the
endecode module that will be used
to translate the event to and from
its native format. For example,
CMIP notifications and SNMP
traps both use the BER encoding
type. ASCII events use the MDL
encoding type, and ITO messages
use the ITO encoding type. See
also event syntax; event type

event flow An ECS circuit
represented graphically as a
circuit schematic consisting of

correlation nodes interconnected
by lines (connections). See also
correlation circuit.

event body The body of an event
depends on the event class. The
body of a primitive event is the
original message, trap or event;
the body of a temporary event may
be empty; and the body of a
composite event consists of other
events.

event header Inside ECS and
event is augmented with
additional information such as the
event encoding type, event syntax,
event type, and event class. This
information is carried in a header
that is attached to the event body.
See also event body.

event I/O API A set of application
program interface functions and
data structures that supports the
input and output of events to and
from the ECS Engine.

event syntax The rules governing
the structure and content of an
event. In ECS, the event syntax is
the second level in the three-tiered
ECS event classification system.
An event’s syntax determines how
the event’s attributes are read and
written. For example, SNMP traps
have an event syntax of Trap-PDU
and CMIP notifications have an
event syntax that evaluates to an
OID identifying the GDMO
notification. ASCII events have a
syntax determined by the MDL
definition used to read and write
them. See also event encoding
type; event type.

event type A classification of an
event into a particular category
that further defines the nature of
the event. In ECS, the event type
is the third and lowest level in the
three-tiered event classification
system. The event type is
represented by the ECS header
attribute “event_type”. For SNMP
traps the event type is the generic
trap number (1-6). The CMIP
event type is the OID of the
notification. ASCII events have an
event type determined by the MDL
definition used to read and write
them. See also event encoding
type; event syntax.

expiry time Annotation requests
are valid for a limited time,
determined by the Annotate node’s
Time Limit parameter. The expiry
time is the time at which the
annotation request was generated
plus the Time Limit. In other
words, it is the time at which the
request expires.
421

expression In general, a set of
reserved words, symbols, variables,
and functions that is evaluated to
provide a result. In ECS, an
expression is any collection of valid
ECDL statements. Note that
ECDL is a functional language
that has no concept of variables.

fact store A component of the
ECS Engine which stores
relationships between objects. Any
two objects which may be any
ECDL data type, may be related
using any user-defined
relationship. The facts may be
accessed at runtime by the ECDL
expressions configured into the
correlation node parameters.

FLEXlm A Licensing technology
used in stand-alone and
DM-integrated ECS products.

floating license A license where
there is a single license server for
all licensing clients on the
network. Any licensing client on
the network can access the license
server to check out a license.

function A general term for a
portion of a program that performs
a specific task. In ECS, an ECDL
function is one of the built-in
functions or operators, or a user
422
defined function. ECDL functions
can be named or anonymous, but
must return an ECDL value.

GDMO See Guidelines for the
Definition of Managed Objects
(GDMO).

Greenwich Mean Time

Standard time used throughout
the world based on the mean solar
time of the meridian of Greenwich.
See Universal Coordinated Time
(UTC).

Guidelines for the Definition of
Managed Objects (GDMO)

Describes a formal method for
describing the important
characteristics and operations of
an object class. Specified in ISO
10165-4, X.722.

HP OpenView A family of
network and system management
products, and an architecture for
those products. HP OpenView
includes development
environments and a wide variety of
management applications.

identifier A name that within a
given scope uniquely identifies the
object with which it is associated.

IEC International
Electrotechnical Commission.

IEEE Institute of Electronic and
Electrical Engineers.

International
Telecommunications Union,
Telecommunications (ITU-T)

The ITU is a world-wide
organization within which
governments and industry
coordinate the establishment and
operation of telecommunications
networks and services. It is
responsible for the regulation,
standardization, coordination and
development of international
telecommunications as well as the
harmonization of national policies.
The ITU is an agency of the United
Nations. In 1992 it took over the
functions of the CCITT.

ISO International Standards
Organization.

ITU-T International
Telecommunications Union,
Telecommunications.

key-value pair A data storage
item consisting of a search key
paired with a value. In ECDL, a
key-value pair is written as “key
=> value”. See also dictionary.
library In ECS, a repository for
compound nodes. Compound nodes
in the library may be referenced
from a circuit, or copied from the
library and modified.

license The legal right to use a
feature in a software program.

license server The server
processes that manage access to
ECS features by licensed users.

list data type a variable-length
ordered set of values all of the
same data type. In ECDL, a list
data type may contain a set of
values of any other ECDL data
type including complex types such
as lists and tuples.

Management Information Base
(MIB) A logical collection of
configuration and status values
that can be accessed via a network
management protocol.

MDL See Message Description
Language.

message description Detailed
information about an event or
message. In ECS, a description of
the attributes and formatting of a
text-based event (message), that
allows the MDL endecode module
to decode and encode events
423

consistent with that syntax.
Message descriptions which are
written in Message Description
Language (MDL) are translated
into metadata before being used by
the ECS engine endecode module.
See metadata.

Message Description
Language A language used to
describe a text event’s attributes
and formatting. Each text event
syntax has its own message
definition written in MDL. See also
message definition; event syntax.

metadata Data about data. In
ECS, message descriptions are
translated into metadata which is
a form which maximizes access
performance by the MDL endecode
module. See message description.
CMIP and SNMP metadata is
derived from MIBs.

MIB Management Information
Base (MIB).

Network Node Manager
(NNM) Definition to come from
OVSD.

NNM See Network Node Manager
(NNM).
424
node 1. A computer system or
device (e.g., a printer, router,
bridge) in a network. 2. A
graphical element in a drawing
that acts as a junction or
connection point for other
graphical elements. 3. In ECS, see
correlation node.

nodelock license A license where
the license server and license
clients must be on the same
machine, meaning that the
licensed application is “locked” to
running on the node that is the
license server.

object identifier (OID) A unique
sequence of numbers or string of
characters used for specifying the
identity of an object, that is
obtained from an authorized
registration authority or an
algorithm designed to generate
universally unique values.

OID See object identifier (IOD).

oid data type In ECS, an oid is an
ECDL data type which contains an
Object Identifier in dot-separated
notation (e.g., 1.2.3.4.5). Where the
data item is dynamically
interpreted, at least three
elements (2 dots) are required to
avoid interpretation as a real data
type.

Open Systems Interconnection
(OSI) A standardization model in
which a manager process is
responsible for executing specific
management functions requested
by the user through interactions
with an agent process. The agent
process represents the
management services offered by
the managed objects.

OSI See Open Systems
Interconnection (OSI).

OVO HP OpenView Operations, a
distributed client/server software
solution that helps system
administrators detect, solve, and
prevent problems occurring in
networks, systems, and
applications.

parameter In ECS, see correlation
node parameter.

pmd HP OpenView postmaster
daemon.

port 1. A location for passing
information into and out of a
network device. 2. In ECS, a
location for passing events into
and out of a correlation node or a
correlation circuit. See correlation
node port; correlation circuit port.
primitive event An ECS internal
event which encapsulates an input
event. Several header attributes
are added as a header for
correlation and control purposes,
which are stripped before the
primitive event leaves the ECS
engine. See also event; temporary
event; composite event.

reserved word Words that have
special meaning in ECS and
cannot be used for any other
identifier.

Simple Network Management
Protocol (SNMP) The ARPA
network management protocol
running above TCP/IP used to
communicate network
management information between
a manager and an agent. SNMPv2
has extended functionality over
the original protocol.

simulate See simulation.

simulation In general, the
imitation by a program of a process
or set of conditions affecting one or
more objects such that the results
of the program reflect the impact of
the process or changes in
conditions. In ECS, a simulation is
the process of feeding events from
an event log file through the
correlation circuit to observe the
425

behavior of the correlation circuit
using aids such as breakpoints,
tracing, and stepping.

SNMP See Simple Network
Management Protocol (SNMP).

SNMP trap An unconfirmed
event, generated by an SNMP
agent in response to some internal
state change or fault condition,
which conforms to the protocol
specified in RFC-1155. See event.

socket stack An interface that
supports interprocess
communication based on the use of
file handles. In ECS a socket stack
is used to communicate with the
ECS Engine for command, i/o and
annotation purposes.

Software Distributor (SD) HP
OpenView multi-platform software
installation product.

static parameters In general,
parameters whose values are
determined prior to program
execution. In ECS, a statically
evaluated parameter is a
correlation node parameter where
the value is defined when the
correlation circuit is loaded. The
value does not change when an
426
event enters the associated
node/port. See dynamic
parameters.

syntax In general, the rules
governing the structure and
content of a language or the
description of an object. In ECS,
see event syntax.

Telecommunications
Management Network (TMN)

The term used to identify a
homogeneous approach to the
management of heterogeneous
networks. It is defined in the
international standards referred to
as ITU-TSS M3100. TMN
recommendations incorporate OSI
NM concepts, principles, protocols
and application services.

temporary event In ECS, an
event that is created transparently
by particular correlation nodes,
and which may exist only within a
correlation circuit. Temporary
events may consist only of header
attributes created by the
correlation engine, or they may
additionally contain user data.
Temporary events cannot be
transmitted outside the correlation
engine. See also event; primitive
event; composite event.

time data type An ECDL data
type that includes time and date.

TL1 Transaction Language One
was developed by Bellcore and is a
management system protocol that
uses structured text messages to
pass information about networks
and network element states.

TMN See Telecommunications
Management Network (TMN).

transit delay The difference
between an event’s arrival time
and its creation time. Transit
delays can be caused by external
network delays or by deliberately
introduced delays in an ECS
circuit.

trap See SNMP trap; event.

tuple data type An ECDL data
type. A data structure consisting of
a fixed collection of elements,
where each element is a simple
ECDL type or a complex ECDL
data type.

Universal Coordinated Time
(UTC) Standard time used
throughout the world based on the
mean solar time of the meridian of
Greenwich. Formerly known as
Greenwich Mean Time (GMT).
universal pathname A set of
environment variables that
describe standard pathnames.
Universal pathnames hide
variations between pathnames on
different versions of Unix.

UTC See Universal Coordinated
Time (UTC).

X/Open Management Protocol
(XMP) An API specified by the
X/Open standards body that
provides a common access
mechanism to both CMIS and
SNMP management protocol
services.

XMP See X/Open Management
Protocol (XMP).

Zulu See Universal Coordinated
Time (UTC).
427

428

Index
– arithmetic subtraction, 238
– negative sign, 238

Symbols
, 244
! not (pattern matching), 289
one or more digits (pattern matching), 288
$ end-of-line anchor (pattern matching), 288
() dict delimiter, 225
() expression sequence delimiter, 339
() tuple delimiter, 326
() void value, 227
* arithmetic multiplication, 240
* tuple data type separator, 326
* zero or more characters (pattern matching),

288
.conf file suffix, 398
*.ds file suffix

description and default location, 397
required by ECS Designer, 186

*.eco file suffix, 397
*.ecs file suffix, 397
.evt file suffix, 397, 398
*.fs file suffix

description and default location, 397
required by ECS Designer, 193

.log file suffix, 398
.md file suffix, 398
.mdl file suffix, 398
.trc file suffix, 398
+ arithmetic addition, 237
+ positive sign, 237
+ string concatenation, 237
, dict key-value pair separator, 225
, list element separator, 327
, tuple member separator, 326
. pattern assignment (pattern matching), 290
/ arithmetic division, 241
:: list prepend, 246

; expression separator, 339
= relational equality, 243
= value binding, 37
=> (map dict key to value), 225
> relational greater than, 244
>= relational greater than or equal to, 244
@ one or more non-separators (pattern

matching), 288
[] list delimiter, 327
[]expression nesting (pattern matching), 289
\ character escape (pattern matching), 290
\t tab (pattern matching), 290
^ arithmetic exponentiation, 242
^ start-of-line anchor (pattern matching), 288
__wildcard (binding pattern), 322
| alternative (pattern matching), 289
| alternative (typecase expressions), 337
| alternative (union data types), 231

A
AACTION_ACK

ITO message attribute, 403
AACTION_ANNOTATE

ITO message attribute, 403
AACTION_CALL

ITO message attribute, 403
AACTION_NODE

ITO message attribute, 403
AACTION_STATUS

ITO message attribute, 403
addition operator,

arithmetic (+), 237
alter function (dict or Event), 252
alternative operator

pattern matching (|), 289
typecase expressions (|), 337
union data types (|), 231

and function (boolean), 253, 254
Annotate
Index 429

Index
source of event context, 184
Annotate node

AAAA, 58
allowable output to Sink node, 63
creates composite events, 159
creates temporary events, 157
introduces internal transit delays, 171
introduction to, 58
recursive connection forbidden, 57
transit delays, 56

annotate spec parameter, Annotate node, 61
Annotated node

See also Sink node
annotation

and circuits, 27
Annotate node, 58
event format, 383
logs, 382
requests and responses, logging, 382
selective logging, 382
transit delays, 171

any keyword
dynamic data types, 230

APPLICATION
ITO message attribute, 404

applications and streams, 27
arrival_time

event (header) attribute, 152, 170
ASCII events

create_time, 170, 174
ASN.1

attribute notation, 155
associativity in ECDL expressions, 351
attributes

circuit vs. Compound node, 35
audit log information

formatting for external applications, 392
when written to the log, 392

audit_log function, 309, 390

auditing
circuit operation, 389
use of unique IDs, 391

autostart parameter
Clock node, 66

B
benefits of ECS, 25
BER metadata file

name and location, 398
binding patterns

_ (wildcard), 322
and named values, 321
forms of, 322
named values, 321
tuple data type, 322

BindingMismatch exceptions, 342
bitand function (integer), 255
bitinv function (integer), 256, 273
bitleft function (integer), 257
bitor function (integer), 258
bitright function (integer), 259
bitxor function (integer), 260
boolean data type, 215

C
C language

introduction to ECDL, 370
case expressions (ECDL), 336
character escape operator,

pattern matching (\), 290
choose expressions (ECDL), 334
chr function (string), 261
circuit design and stream policy, 30
circuit designer

skills and experience required, 21
circuit_dump function, 310
circuitName
430 Index

Index
annotation attribute, 383
circuits

compiled files
enabling and disabling on streams, 31
entry of events, 31
events entering multiple, 32
features of, 26
global definitions, 39
multiple circuits, 32
multiple streams, sharing, 30
parameters, 35
properties of, 34
representation of events within, 152–163
scope of correlation logic, 25
testing new, 31
as top-level Compound node, 35
transit delays accommodate delayed

events, 171
uncompiled files, 397
using with different Data and Fact stores,

31
verification, 389

cleanup phase
engine processing, 179

Clear Input port
Count node, 85
Rate node, 115

Clear Output port
Count node, 85
Rate node, 115

Clock node
AAAA, 64
allowable output to Sink node, 70
creates temporary events, 157
introduction to, 64
See also Sink node
source of event context, 184

CMIP event reports
create_time, 174

stamped with absolute creation times, 167
Combine node

AAAA, 71
allowable output to Sink node, 78
creates composite events, 159
introduces internal transit delays, 171
introduction to, 71
recursive connection forbidden, 57
See also Sink node
source of event context, 184
transit delays, 56

comments
in Data Store files, 188
in ECDL expressions, 325
in Fact Store files, 194

composite events
AAA, 149
AAAA, 159
creating, 159
definition of, 149
exist only within a circuit, 159
introduction to, 159
restructuring, 159, 161

Compound node
introduction to, 34
and circuits, 27
attributes referable by other nodes, 40
as a circuit at the top-level, 35
circuit policy, 42
global definitions lost when stored in

library, 39
node parameters, 41
properties of, 34
scope of global definitions, 39

concatenation operator,
string (+), 237

concept of correlation, 25
condition parameters

Combine node, 76
Index 431

Index
Filter node, 103
Table node, 133, 134
Unless node, 144

conf file suffix, 398
configuration file

name and location, 398
Configure nodeName dialog

node parameters, 46, 49
node ports, 46, 53

connections, within circuits, 26
constants

binding patterns, 322
contents attribute

Table node, 135
context

Data and Fact Stores for current, 185
introduction to, 183

Coordinated Universal Time
definition of, 69
required in event timestamps, 167, 168

correlation engine
incrementing current time, 179
order of correlating events indeterminate,

177
phases in correlation step, 179

correlation, concept of, 25
count attribute

Count node, 84
Table node, 136

Count node
AAAA, 81
attribute referable by other nodes, 40
introduction to, 81

count_dict attribute
Count node, 85

countRemaining function, 350
Create node

AAAA, 87
creating primitive events, 30, 156

introduction to, 87
modifying created primitive events, 30
setting create_time attributes, 156
source of event context, 184

create spec parameter
Create node, 90

create_time
event (header) attribute, 152, 170, 184

created_event (event name), create spec
parameter, 88

CREATION_TIME
ITO message attribute, 404

current context
See current context

current time
increments in correlation engine, 179
resolution of, 169

current_event (event name)
delete condition parameter, 134
retain condition parameter, 134

D
data keyword

dynamic data types, 231
Data Store files

comments in, 188
creating, 186
data types of entries, 188
ECDL expressions forbidden in, 190, 320
format of entries, 187
format of header line, 187
formats of files, 187
name and default location, 397

Data Stores
AAAA, 186
and circuits, 27
and statically evaluated node parameters,

52
dumping, 202
432 Index

Index
in current context, 185
introduction to, 186
limits to size or number of versions, 185
persistence of context, 185
tips for the use of, 200
when deleted, fate of events, 185

data type errors
in dynamically evaluated expressions, 52

data types
binding patterns, 322
boolean (simple type), 215
dict (structured type), 225
duration (simple type), 168, 216
dynamic (special), 230
integer (simple type), 213
list (structured type), 223, 327
oid (simple type), 218
opaque (special), 229
real (simple type), 214
specifying return types of functions, 346
string (simple type), 219
time (simple type), 168, 217
token (simple type), 221
tuple (structured type), 222, 326
typecase expressions, 337
types permitted in Data Store files, 189
types permitted in Fact Store files, 195, 196
union (structured type), 231
user-defined (special), 231
void (special), 227

data_store attribute
associating context values with, 184
event (header) attribute, 153

dataStore function
AAAA, 262
accessing data store entries, 189
description of, 262
example, 190
references Data Store, 186

Decrement Input port
Count node, 85

Delay node
AAAA, 93
and transit delays, 56, 171
introduction to, 93
recursive connection forbidden, 57

delay until parameter
Delay node, 95

delete condition parameter
Table node, 134

delimiter
dict "()", 225
expression sequences "()", 339
list data type ([]), 327
tuple data type "()", 326

designer
skills and experience required, 21

dict data type
introduction to, 225
key data type, 332
keys access values, 332
manipulating, 332
specifying types, 333

dict keyword
dynamic data type, 230

div function (integer), 263
DivideByZero exceptions, 342
division operator,

arithmetic (/), 241
dot notation, 55
ds file suffix

description and default location, 397
required by ECS Designer, 186

duration data type
AAAA, 216
applies to relative or elapsed time, 168
introduction to, 216

dynamic data types
Index 433

Index
AAAA, 230
groupings of simple and structured types,

231
introduction to, 230
list data type and, 327

dynamically evaluated parameters
Create node, 90
evaluation of, 52
Filter node, 103
Modify node, 107
Table node, 133, 134
when auditing, 392

E
ECDL

introduction to, 25
ECDL expressions, 325

binding patterns, 321
comments in, 206, 325
comparison with C language, 370
exception expressions, 343
exists expressions, 328
find expressions, 329
flow-control expressions, 334
forall expressions, 329
forbidden in Data and Fact Store files, 197
forbidden in Data and Fact store files, 190,

320
forcing precedence, common errors, 345
fun expressions, 346
handle expressions, 342
iteration, 347
let expression, 324
named values, 321
raise expressions, 343
recursion, 347
sequence expressions, 339
typecase expressions, 337
user-defined functions, 345

eco file suffix, 397
ECS circuit, see circuits
ECS Designer

introduction to, 25
engine policy for simulation, 33
environment variables for, 399
Fact Store not updatable while engine is

running, 193
files loaded or generated by, 397
identifying ports, 54

ECS Designer (Build) window
defining transit delay window for circuit

input ports, 171
ECS Designer (Simulate) window

displays current time, 169
statistics available in, 56

ecs file suffix, 397
ecs_defaults.ecs file, 397
ecsin.evt* files, 398
ecsout.evt* files, 398
encoding type parameter, Create node, 89
encoding_type

event (header) attribute, 153
end-of-line anchor, pattern matching ($), 288
engine log files

auditing information, 389
file names for DM, 398
flexible format, 381

engine policy, effect on unaccepted events, 35
engine trace files, 398
environment variables, subset required by

ECS Designer, 399
equality operator,

relational (=), 243
Error Output port

AAAA, 54
AAAB, 54
Annotate node, 62
Combine node, 78
434 Index

Index
Count node, 85
Create node, 91
events logged to engine log if not connected,

54
Extract node, 101
Filter node, 104
general characteristics of, 54
Modify node, 107
Rate node, 115
Rearrange node, 120
Table node, 135
Unless node, 144

errors
data type, in dynamically evaluated

expressions, 52
EVComposite

event_class attribute value, 159
event attributes

arrival time set in event header, 170
creation time set in event header, 170
Event data type, 332
temporary attributes prepended in header,

152
event contexts

simulating in ECS Designer, 201
using to access Fact Store, 199

Event data type
AAAA, 226
event attributes, 332
introduction to, 226
subtype of dict data type, 332

event I/O API, 170
event log files

annotation requests and responses, 382
captured by ECS Engine, 173
example entry, 380
format generated by the ECS Engine, 381
interpolating delays between events, 169
line types, 379

name and location, 397
requirements for event format, 385
special characters, 385
syntax, 379

event names
AAAA, 50
created_event, 88
current_event, 134
general characteristics of, 50
inhibitor_event, 144
input_event, 62, 88, 104, 107, 144
output_event, 77
retained_event, 134

event specification parameters
Create node, 89, 90
Modify node, 107
Rearrange node, 118

event syntax parameter
Create node, 89

event types
basis for filtering at circuit inputs, 36

event_class
event (header) attribute, 152

event_syntax
event (header) attribute, 153

event_type
event (header) attribute, 153

events
AAAA, 149
accommodating events with long transit

delays, 180
and engine policy, 35
arrival_time attribute, 170
create_time attribute, 170
creating, 29
creating composite, 159
creating primitive, 156
creating, temporary, 157
definition of, 149
Index 435

Index
entering multiple circuits, 32
entry into circuits, 31
event log files, requirements for, 385
filtered on event types at circuit inputs, 36
filtered on transit delays at circuit inputs,

35
header attributes, 152
internal handling of, 29
manipulating, 150
modifying attributes of, 29, 155
network delays and time stamping, 166
not accepted by any circuit, 35
order of correlation indeterminate, 177
primitive, handling of, 29
restrictions to output, 27
structure of, 149, 152
temporary header prepended within a

circuit, 154
temporary, structure of, 157
types transmitted from output ports, 54
unique id, 150

evt file suffix, 397, 398
EVTemporary

event_class attribute value, 157
exception expressions (ECDL), 343
exceptions

_ (wildcard) handles any, 342
BindingMismatch, 342
DivideByZero, 342
FloatingOverflow, 342
handling, 341
InternalError, 343
introduction to, 341
InvalidArgs, 343
NotFound, 343
NotFound exception, 341
raising, 341, 343
RangeError, 342
standard, 342

TypeMismatch, 342
user-defined, 343

exists expressions (ECDL), 328
expiryTime, annotation attribute, 383
explode function (list string), 264
explode_time function (dict), 265
exponentiation operator,

arithmetic (^), 242
expression delimiter

pattern matching (), 288
expression delimiter (pattern matching), 288
expression nesting delimiter

pattern matching ([]), 289
Expressions, 49
external filtering, 36
Extract node

AAAA, 97
creates composite events, 159
creating primitive events, 29
introduction to, 97
modifying created primitive events, 29
source of event context, 184

extract spec parameter
Extract Node, 100

F
Fact Store files

comments in, 194
creating, 193
data types of entries, 195
ECDL expressions forbidden in, 197, 320
format of entries, 194, 195
format of header line, 194
formats of files, 194
name and default location, 397

Fact Stores
AAAA, 193
and circuits, 27
436 Index

Index
and statically evaluated node parameters,
52

dumping, 202
in current context, 185
introduction to, 193
limits to size or number of versions, 185
persistence of context, 185
tips for the use of, 200
when deleted, fate of events, 185

fact_exists function
AAAA, 267
example, 198
introduction to, 267
testing presence of relationships, 197

fact_find_left function
AAAA, 268
example, 198
extracts left-hand values of relationships,

197
introduction to, 268

fact_find_right function
AAAA, 269
example, 198
extracts right-hand values of relationships,

197
introduction to, 269

fact_store
event (header) attribute, 153

fact_store attribute
associating context values with, 184

Fail Output port
AAAA, 54
Annotate node, 62
Create node, 96
Extract node, 101
general characteristics of, 54
Unless node, 144

False Output port
Filter node, 104

files
*.ds data store files, 186
*.fs Fact Store files, 193
Fact Store file naming, 193
loaded and generated by ECS Designer, 397

filesData Store file naming, 186
Filter node

introduction to, 102
find expressions (ECDL), 329
fixity declarations in ECDL, 351
FloatingOverflow exceptions, 342
flow-control expressions (ECDL)

AAAA, 334
and exceptions, 341
introduction to, 334

foldl function
AAAA, 274
example, 348
introduction to, 274

foldr function
AAAA, 275
example, 348
introduction to, 275

forall expressions (ECDL), 329
fs file suffix

description and default location, 397
required by ECS Designer, 193

fun expressions (ECDL), 346
functions

AAAf, 228
AAAfixity, 345
alter (dict), 252
and (boolean), 253, 254
arguments white-space separated, 344
audit_log, 390
bitand (integer), 255
bitinv (integer), 256
bitleft (integer), 257
bitor (integer), 258
Index 437

Index
bitright (integer), 259
bitxor (integer), 260
calling syntax, 344
chr (integer), 261
countRemaining, 350
datastore (various), 189, 262
div (integer), 263
explode (list string), 264
explode_time (dict), 265
fact_exists (boolean), 197, 267
fact_find_left (any list), 197, 268
fact_find_right (any list), 197, 269
fixity of, 345
foldl (various), 274
foldr (various), 275
function types, 228
global, definitions of, 38
implies (boolean), 276
implode_time (time), 278
infix, 345
inter (list), 280
interc (list), 281
Ip.fromOctet (string), 282
Ip.toOctet (string), 283
iteration, 347
join (string), 284
length (integer), 285
match.make (opaque), 286
match.test (boolean), 293
match.testVars (tuple boolean * dict), 294
mod (integer), 296
not (boolean), 296
nth (various), 297
oid.append (boolean), 298
oid.join (boolean), 299
oid.last (boolean), 300
oid.split (boolean), 301
oid.split_at (boolean), 302
oid.split_nnm (boolean), 303

or (boolean), 304
ord (integer), 304
prefix, 345
recursion, 347
reverse (list), 305, 306
round (integer), 306
specifying return data types, 346
split (list string), 307
stringOf (string), 308
System.audit_log, 309, 390
System.circuit_dump, 310
System.set_trace_masks, 312
System.trace, 311
Time.now, 314
truncate (integer), 315
union (list), 316
unionc (list), 317

G
global definitions

introduction to, 37
and circuits, 27
binding values to identifiers, 37
circuits vs. Compound nodes, 35
not saved when Compound node stored in

library, 39
scope of in Compound node, 39
stored with a circuit, 39

Global Definitions dialog
accessing, 37
defining exceptions, 343
defining Fact Store relationships, 196
defining union data types, 231
defining user-defined data types, 231

global functions, 38
global types, 38
global values, 37
greater than operator,

relational (>), 244
438 Index

Index
greater than or equal to operator, relational
(>=), 244

GROUP
ITO message attribute, 404

H
handles for expressions (ECDL)

attaching to expressions, 342
specifying scope, 191

handling exceptions, 341

I
identifiers

binding global values to, 37
binding patterns, 322
construction of, 205

if expressions (ECDL), 334
implies function (boolean), 276
implode_time function (time), 278
Increment Input port

Count node, 85
Increment Output port

Count node, 85
infix and prefix (ECDL), 352
infix functions, 345
Inhibited Output port

Unless node, 144
Inhibitor Input port

Unless node, 144
inhibitor_event (event name), condition

parameter, Unless node, 144
initial count parameter

Count node, 84
input phase

engine processing, 179
overload processing, 180

input policy, 27
Input port

AAAA, 53
Annotate node, 62
Combine node (multiple inputs), 78
Create node, 91
Delay node, 96
Extract node, 101
Filter node, 104
general characteristics of, 53
Modify node, 107
Rate node, 115
Rearrange node, 120
relationship with circuit, 26
Sink node, 124
Table node, 135
Unless node, 144

input ports
AAAA, 53
circuit vs Compound node, 35
configured in Configure nodeName dialog,

53
external filtering, 36
general characteristics of, 53
maximum number of, 36
required and optional ports, 53

input_event (event name)
annotate spec parameter, 62
condition parameter

Filter node, 104
Unless node, 144

create spec parameter, 88
modify spec parameter, 107

INSTR_IF
ITO message atttribute, 404

INSTR_IF_TYPE
ITO message attribute, 404

INSTR_PAR
ITO message atttribute, 404

integer data type, 213
inter function (list), 280
Index 439

Index
interc function (list), 281
InternalError exceptions, 343
interval parameter

Clock node, 66
Combine node, 75
Rate node, 111

InvalidArgs exceptions, 343
Ip.fromOctet function (string), 282
Ip.toOctet function (string), 283
ITO

create_time, 174
encoding_type, 153
event logs, 409
event_syntax, 153
message attributes, 403
troubleshooting, 412

ITO event attributes
addressing, 408

J
join function (string), 284

K
key spec parameter

Count node, 84
Rate node, 113

L
length function (integer), 285
less than operator, relational (, 244
less than or equal to operator, relational (,

244
let expressions (ECDL), 324
libraries

global definitions lost when Compound
node stored, 39

life, the universe, and everything, meaning
of, 238, 327

list builder expressions (ECDL)
examples, 347
syntax, 332

list constructor operator (::), 246
list data type

AAAA, 223
binding patterns, 322
constructor (::), 328
deriving sub-lists, 330
dynamic data types and, 327
empty list, 327
exists expressions, 328
find expressions, 329
forall expressions, 329
introduction to, 223
manipulating, 327
select expressions, 330
specifying type, 328

list key word
dynamic data type, 230

log file suffix, 398

M
map dict key to value (=>), 225
mask operator,

pattern matching (\), 290
mask-character operator,

pattern matching (\), 290
match.make (opaque), 286
match.test (boolean), 293
match.testVars (tuple boolean * dict), 294
max events parameter

Extract node, 100
Table node, 133

md file suffix, 398
mdl file suffix, 398
MDL message description file

name and location, 398
MDL metadata file
440 Index

Index
name and location, 398
message description file

MDL, name and location, 398
metadata file

BER, name and location, 398
MDL, name and location, 398

mod function (integer), 296
Modify node

AAAA, 105
creating primitive events, 29
introduction to, 105
modifying components of composite events,

160
modifying created primitive events, 29
source of event context, 184

modify spec parameter
Modify node, 107

module
AAAA, 355
files, 356
introduction to, 355
names, 355
names, scope of, 358

moving parameter
Rate node, 112

MSG_LOG_ONLY
ITO message attribute, 405

MSGID
ITO message attribute, 404

MSGSRC
ITO message attribute, 404

MSGSRC_TYPE
ITO message attribute, 405

MSGTEXT
ITO message attribute, 405

MSGTYPE
ITO message attribute, 405

MSI_OUTPUT
ITO message attribute, 406

multiple circuits
and events, 32
and stream policy, 32

multiplication operator,
arithmetic (*), 240

N
n# number of digits (pattern matching), 288
n* number of characters (pattern matching),

288
named values

AAAA, 321
and binding patterns, 321
binding patterns, 321
introduction to, 321
let expressions in, 324
specifying data type, 321

negative sign operator (–), 238
network delays

time stamping of events, 166
no separators match operator,

pattern matching (), 288
node

changing names attribute references, 47
colors indicate status of, 47
common features, 46
configuring, 46
default names of, 46
displaying names of, 47
order of correlating events indeterminate,

177
nodes

and circuits, 26
node attributes

AAAA, 55
changing node names breaks references to,

47
in Compound nodes, 40
displayed in Node Status dialog, 46, 55
Index 441

Index
general characteristics of, 55
referencing in node parameter expressions,

55
value, retrieving from composite events, 51
value, retrieving from primitive events, 51

node parameters
AAAA, 49
and circuits, 26
and Data and Fact Store updates, 52
in Compound nodes, 41
configured in Configure nodeName dialog,

49
dynamic evaluation of, 52
expect values with specific data type, 52
general characteristics of, 49
simple expressions in, 49
static evaluation of, 52

Node Status dialog
displays node statistics, 56

NODENAME
ITO message attribute, 406

nodeName,
annotation attribute, 383

nodes
can introduce transit delays, 56
changing names breaks, attribute

references, 47
colors indicate status of, 47
common features, 46
configuring, 46
default names of, 46
displaying names of, 47
order of correlating events indeterminate,

177
nonassoc ECDL keyword, 352
not function (boolean), 296
not operator,

pattern matching (!), 289
NotFound exception, 341, 343

NOTIFICATION
ITO message attribute, 406

now function, 314
nS number of separators (pattern matching),

288
nth function (various types), 297
num_attrs

event (header) attribute, 153
number of characters expression, pattern

matching (n), 288
number of digits expression, pattern

matching (n#), 288
number of separators expression, pattern

matching (nS), 288

O
OBJECT

ITO message attribute, 406
oid data type, 218
oid.append function, 298, 299
oid.last function, 300
oid.split function, 301
oid.split_at function, 302
oid.split_nnm function, 303
one or more digits expression, pattern

matching (#), 288
one or more non-separators expression,

pattern matching (ˆ), 288
one or more separators expression, pattern

matching (S), 288
OPACTION_ACK

ITO message attribute, 406
OPACTION_ANNOTATE

ITO message attribute, 406
OPACTION_CALL

ITO message attribute, 406
OPACTION_NODE

ITO message attribute, 406
OPACTION_STATUS
442 Index

Index
ITO message attributes, 407
opaque data type, 229
operators, 235–246

, 244, 244
– (subtraction, sign), 238
() (dict delimiter), 225
() (expression sequence delimiter), 339
() (tuple delimiter), 326
* (multiplication), 240
* (tuple type separator), 326
+ (plus, concatenation, sign), 237
, (dict key-value pair separator), 225
, (list element separator), 327
, (tuple member separator), 326
/ (division), 241
:: (prepend to list), 246
; (expression separator), 339
= (equality), 243
=> (map dict key to value), 225
> (greater than), 244
>= (greater than or equal), 244
[] (list delimiter), 327
^ (exponentiation), 242
| (alternative), 231
| (typecase alternative), 337
AAAfixity, 345
fixity of, 345

or function (boolean), 304
or operator, pattern matching (|), 289
ord function (string), 304
order parameter

Combine node, 76
ORIGMSGTEXT

ITO message attribute, 407
output event log files, 398
output policy, 27
Output port

AAAA, 54
Annotate node, 62

Clock node, 70
Combine node, 78
Create node, 91, 96
Extract node, 101
general characteristics of, 54
Modify node, 107
Rate node, 115
Rearrange node, 120
relationship with circuit, 26
Source node, 127
Table node, 135
Unless node, 144

output ports
AAAA, 53
configured in Configure nodeName dialog,

53
events discarded if not connected, 54
general characteristics of, 53
required and optional ports, 53
types of events transmitted from, 54

output_event (event name)
condition parameter

Combine node, 77
overload processing, 180

P
pattern assignment operator,

pattern matching (.), 290
pattern matching, 287

assigning subpatterns to variables, 290
examples, 292
operators and expressions, 288
subpatterns, 291

pattern matching expressions, 288, 293
 (expression delimiter), 288
! (not), 289
(one or more digits match), 288
$ (end-of-line anchor), 288
* (zero or more characters match), 288
Index 443

Index
. (pattern assignment), 290
@ (one or more non-separators match), 288
\t (tab), 290
^ (start-of-line anchor), 288
| (alternative), 289
assigning patterns to variables

rules for, 290
examples, 292
n# (number of digits match), 288
n* (number of characters match), 288
nS (number of separators match), 288
opaque data type and pattern matching

expressions
AAAo, 229

rules for, 290
S (one or more separators match), 288

pmd.log* files, 398
pmd.trc* files, 398
ports

identifying in ECS Designer, 54
postmaster log

when required for auditing, 389
precedence in ECDL, 351
prefix and infix (ECDL), 352
prefix functions, 345
prepend operator, list (::), 246
primitive events

AAAA, 149
attribute key data type, 155
creating through Create node, 156
definition of, 149
modifying attributes of, 155
structure of, 152, 154

properties of circuits and compound nodes, 34

R
raising exceptions (ECDL), 343
RangeError exceptions, 342
rate attribute

Rate node, 114
Rate node

AAAA, 109
attribute referable by other nodes, 40
introduction to, 109

rate_dict attribute
Rate node, 114

real data type, 214
Rearrange node

AAAA, 116
allowable output to Sink node, 121
introduction to, 116
restructures composite events, 159
See also Sink node
source of event context, 184

rearrange spec parameter, Rearrange node,
118

RECEIVE_TIME
ITO message attribute, 407

recursive connections, 57
relational operators, 244
requestId

annotation attribute, 383
reserved words and symbols, 204
Reset Input port

AAAA, 53
Annotate node, 62
Combine node, 78
Count node, 85
Create node, 96
general characteristics of, 53
Rate node, 115
Table node, 135
Unless node, 144

Reset Output port
AAAA, 54
Annotate node, 62
Combine node, 78
Count node, 85
444 Index

Index
general characteristics of, 54
Rate node, 115
Table node, 135

responseList
annotation attribute, 383

restrictions to event output, 27
retain condition parameter, Table node, 133
retained_event (event name)

delete condition parameter, 134
reverse function (list), 305, 306
round function (integer), 306

S
S one or more separators (pattern matching),

288
save until parameter

Table node, 133
scope of names, 358
select expressions, 330, 347
separator

dict key-value pair (,), 225
expressions (;), 339
list elements (,), 327
tuple data types (*), 326
tuple members (,), 326

sequence expressions (ECDL)
mechanism for separating ECDL

expressions, 339
returns value of last expression, 339

sequenceId
annotation atttribute, 383

set_trace_mask function, 312
SEVERITY

ITO message attribute, 407
simple keyword

dynamic data types, 230
simulating

time, 173
transit delays, 175

Sink node
introduction to, 122
output to external environment, 124
receiving output from Annotate node, 63
receiving output from Clock node, 70
receiving output from Combine node, 78
receiving output from Rearrange node, 121
receiving output from Unless node, 146

snapshot of engine state, 310
SNMP traps

create_time, 174
transit delay set to zero, 172
variable bindings example, 337

source code samples, 361
Source node

introduction to, 125
split function (list string), 307
Start Input port

Clock node, 70
Start Output port

Clock node, 70
start-of-line anchor

pattern matching (^), 288
statically evaluated parameters

evaluation of, 52
when auditing, 392

statistics
displayed in Node Status dialog, 56

Std, module name, 356
Stop Input port

Clock node, 70
Stop Output port

Clock node, 70
stream

default policy, 28
policy, 27
policy and circuit design, 30

stream policy
and multiple circuits, 32
Index 445

Index
and transit delays, 32
streams

introduction to, 27
and applications, 27
enabling and disabling circuits, 31
entry of events, 31
sharing circuits, 30

string concatenation operator (+), 237
string data type, 219
stringOf function (string), 308
subtraction operator,

arithmetic (–), 238
synchronization of network important, 167
System.audit_log function, 309, 390
System.circuit_dump function, 310
System.set_trace_masks function, 312
System.trace function, 311

T
tab character

pattern matching (\t), 290
Table node

AAAA
, 128

and event contexts, 185
attributes referable by other nodes, 40
introduction to, 128
recursive connection forbidden, 57

tags, 290
temporary events

AAA, 149
introduction to, 157
creating, 157
definition of, 149
exist only within a circuit, 157
structure of, 157

testing a new circuit, 31
time

setting create_time attributes, 156

synchronization, 167
time zones, 174

time alignment parameter
Clock node, 66
Rate node, 112

time data type
AAAA, 217
applies to absolute times, 168
introduction to, 217

time limit parameter
Annotate node, 62

time window parameters
Clock node, 66
Combine node, 75
Delay node, 95
Rate node, 111
Table node, 133
Unless node, 143

Time.now function, 314
timing

importance of network synchronization, 167
token data type, 221
trace function, 311
transit delays

accommodating long delays, 180
Annotate node, 56
basis for filtering events at circuit inputs,

35
Combine node, 56
Delay node, 56
effect of stream policy, 32
external filtering, 36
how caused, 171
introduced by some nodes, 56, 171
set to zero for SNMP traps, 172
setting in event log, 175
Unless node, 56

trc file suffix, 398
TROUBLETICKET
446 Index

Index
ITO message attribute, 407
TROUBLETICKET_ACK

ITO message attribute, 407
True Output port

Filter node, 104
truncate function (integer), 315
tuple data types

AAAA, 222
binding pattern for, 322
Data Store files, 188
Fact Store files and function arguments,

197
introduction to, 222
manipulating, 326
specifying, 326
typecase expressions not permitted, 338

type
global, definition of, 38

type keyword
dynamic data types, 231
user-defined data types and, 231

typecase expressions (ECDL)
introduction to, 337
valid data type tests in, 338

TypeMismatch exceptions, 342

U
union data types

AAAA, 231
defined in the Global Definitions dialog, 231
introduction to, 231

union function (list), 316
unionc function (list), 317
unique ID

of an event, 150
used for auditing purposes, 391

unique_id
event (header) attribute, 152

universal pathnames

subset required by ECS Designer, 399
Unless node

AAAA, 139
allowable output to Sink node, 146
creates composite events on error, 159
introduces internal transit delays, 171
introduction to, 139
recursive connection forbidden, 57
See also Sink node
transit delays, 56

UNMATCHED
ITO message attribute, 408

user-defined data types
AAAA, 231
defined in the Global Definitions dialog, 231
introduction to, 231

UTC, See Coordinated Universal Time

V
value binding operator (=), 37
values

global, definitions of, 37
verification of circuits, 389
void data type, 227
void value "() ", 227

W
wildcard binding pattern (_), 322
window parameter

Unless node, 143

Z
zero or more characters expression, pattern

matching (*), 288
Index 447

	HP OpenView Event Correlation Services Designer’s Reference
	1� Introduction
	Purpose
	Audience

	2 Circuits and Compound Nodes
	ECS Correlation Circuits
	Circuit Features
	Streams

	Compound Nodes
	Properties of Circuits and Compound Nodes
	External Event Filtering
	Global Definitions
	Attributes: Passing Information out of a Compound Node
	Parameters: Passing Information into a Compound Node
	Circuit Policy

	3 Circuit Nodes
	Common Features of Nodes
	Node Configuration
	Name and Status
	Node Parameters
	Input and Output Ports of Nodes
	Node Attributes
	Transit Delays and Simulation Statistics

	Annotate Node
	Annotate Node Processing
	Annotate Node Parameters
	Annotate Node Ports
	Annotate Node Notes

	Clock Node
	Clock Node Processing
	Clock Node Parameters
	Clock Node Ports
	Clock Node Notes

	Combine Node
	Combine Node Description
	Combine Node Parameters
	Combine Node Ports
	Combine Node Notes

	Compound Node
	Count Node
	Count Node Processing
	Count Node Parameters
	Count Node Attributes
	Count Node Ports
	Count Node Notes

	Create Node
	Create Node Processing
	Create Node Parameters
	Create Node Ports
	Create Node Notes

	Delay Node
	Delay Node Processing
	Delay Node Parameters
	Delay Node Ports
	Delay Node Notes

	Extract Node
	Extract Node Processing
	Extract Node Parameters
	Extract Node Ports
	Extract Node Notes

	Filter Node
	Filter Node Processing
	Filter Node Parameters
	Filter Node Ports

	Modify Node
	Modify Node Processing
	Modify Node Parameters
	Modify Node Ports
	Modify Node Notes

	Rate Node
	Rate Node Processing
	Rate Node Parameters
	Rate Node Attributes
	Rate Node Ports
	Rate Node Notes

	Rearrange Node
	Rearrange Processing
	Rearrange Node Parameters
	Rearrange Node Ports
	Rearrange Node Notes

	Sink Node
	Sink Node Processing
	Sink Node Ports
	Sink Node Notes

	Source Node
	Source Node Processing
	Source Node Ports

	Table Node
	Table Node Processing
	Table Node Parameters
	Table Node Ports
	Table Node Attributes
	Table Node Examples
	Table Node Notes

	Unless Node
	Unless Node Processing
	Unless Node Parameters
	Unless Node Ports
	Unless Node Examples
	Unless Node Notes

	4 Events in ECS
	Introduction
	Event Flow
	Manipulating Events

	Event Header Attributes
	Primitive Events
	Structure of Primitive Events
	Working with Event Attributes

	Temporary Events
	Structure of Temporary Events

	Composite Events
	Working with Attributes and Components

	5 Timing Considerations
	Time Synchronization
	Times and Durations
	Current Time
	Event Time Attributes
	Creation Time
	Arrival Time

	Transit Delays
	Simulating Time in the ECS Designer
	Engine Input Event Logs

	Order of Processing
	Engine Time Management
	Input Phase
	Cleanup Phase
	Input Phase Overload Processing

	6 Data Store and Fact Store
	Data Store and Fact Store Contexts
	Overview
	Contexts and Multiple Circuits
	Event Creation
	Store Versions and Transit Delays

	Data Store
	File Formats
	Data Types
	Using the Current Context to Access the Data Store
	Using Event Contexts to Access the Data Store

	Fact Store
	File Formats
	Data Types
	Using the Current Context to Access the Fact Store
	Using Event Contexts to Access the Fact Store

	Multiple Data and Fact Stores
	Simulating Event Contexts in the ECS Designer
	Overview
	ADD Commands
	DELETE Commands
	Dumping Stores

	7 Identifiers, Comments, and Reserved Words
	Identifiers
	Comments in ECDL
	Reserved Words and Symbols

	8 Data Types
	Integer Data Type
	Real Data Type
	Boolean Data Type
	Duration Data Type
	Time Data Type
	Oid Data Type
	String Data Type
	Token Data Type
	Tuple Data Type
	List Data Type
	Dictionary Data Type
	Event Data Type
	Void Data Type
	Function Data Type
	Opaque Data Type
	Dynamic and User Defined Types
	Dynamic types
	Union types
	User-Defined types

	9 Operators and Built-in Functions
	Operators
	+ (add, string concatenate, positive)
	– (subtract, negative)
	* (multiply)
	/ (real divide)
	^ (exponentiate)
	= and != (equality operators)
	> >= < <= (relational operators)
	:: (list constructor)

	Built-in Functions
	alter
	and
	append
	bitand
	bitinv
	bitleft
	bitor
	bitright
	bitxor
	chr
	datastore
	div
	explode
	explode_time
	fact_exists
	fact_find_left
	fact_find_right
	feed
	feedall
	feedothers
	flush
	foldl
	foldr
	gen_ccall
	gen_perlcall
	implies
	implode_time
	integerOf
	inter
	interc
	Ip.fromOctet
	Ip.toOctet
	join
	length
	Match.make
	Match.test
	Match.testVars
	mod
	not
	nth
	oid.append
	oid.join
	oid.last
	oid.split
	oid.split_at
	oid.split_nnm
	or
	ord
	perl_interp
	reverse
	round
	split
	stringOf
	System.audit_log
	System.circuit_dump
	System.trace
	System.set_trace_mask
	Time.now
	truncate
	union
	unionc

	10 Writing ECDL Expressions
	Binding and Comparisons
	Named Values
	Binding Patterns
	“Let” Expressions in Node Parameters

	Comments in ECDL
	Data Type Handling
	Tuple Manipulation
	List Manipulation
	Dictionary and Event Manipulation

	Flow-control Expressions
	Making Decisions: If and Choose Expressions
	Case
	Typecase
	Sequence

	Exceptions
	Handling Exceptions
	Standard Exceptions
	Raising Exceptions

	Functions and Language Layout
	Calling Function Syntax
	Prefix and Infix Functions
	User Defined Functions
	Advanced Function Writing Features
	Fixity Declarations, Associativity and Precedence

	Modules
	Module Files
	Modules and Name Search

	Invoking Perl Functions from ECDL
	Perl to ECDL Mapping
	Perl to ECDL Data Type Mapping

	Invoking ‘C’ Functions
	Writing functions in C

	An Introduction to ECDL for C Programmers

	11 Event Log File Format
	Log File Syntax
	The Event Syntax Line
	Logs Generated by the ECS Engine
	Annotation Logs

	Special Characters

	12 Audit Logging
	Verifying the Operation of a Circuit
	The audit_log Function
	Using Unique IDs to Lookup Events Details

	Designing an Audit
	Static and Dynamic Evaluation

	13 Files and Directories
	Files Used or Generated by the ECS Designer

	A Event Correlation in OVO
	OVO Message Attributes
	Using Event Attributes

	Logging Events in OVO
	Event Log Format

	Troubleshooting OVO-specific Problems

	Glossary

