
Opsware® Automation
Platform Developer’s

Guide

Corporate Headquarters

599 North Mathilda Avenue Sunnyvale, California 94085 U.S.A.
T + 1 408.744.7300 F +1 408.744.7383 www.opsware.com

Opsware SAS Version 6.5

Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Opsware Inc. Unpublished Confidential Information. NOT for Redistribution. All Rights

Reserved.

Opsware is protected by U.S. Patent Nos. 6,658,426, 6,751,702, 6,816,897, 6,763,361

and patents pending.

Opsware, OCC, Model Repository, Data Access Engine, Web Services Data Access

Engine, Software Repository, Command Engine, Opsware Agent, Model Repository

Multimaster Component, and Code Deployment & Rollback are trademarks and service

marks of Opsware Inc. All other marks mentioned in this document are the property of

their respective owners.

Additional proprietary information about third party and open source materials can be

found at http://www.opsware.com/support/sas65tpos.pdf.

Table of Contents

Preface 11

About this Guide. .11

Contents of this Guide .11

Chapter 1: Overview 13

Overview of the Opsware Automation Platform .13

Components of the Opsware Automation Platform 14

Opsware Automation Applications .15

Opsware Runtime Environment .15

Opsware Platform Resources .17

Opsware Management Network .19

Opsware Managed Devices .20

Benefits of the Opsware Automation Platform .20

Powerful Security .20

Comprehensive Reach .21

Rich Services. .21

Easily Accessible to a Broad Spectrum of Programmers22

Opsware Automation Platform API Design .22

Services .22

Objects in the API. .24

Exceptions .25

Event Cache .25
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 3

Opsware® Automation Platform Developer’s Guide
Searches .26

Security .26

API Documentation and the Twister .27

Constant Field Values .28

Importing and Exporting Packages With PUT and GET 28

Supported Clients. .28

Obtaining the Code Examples. .29

Chapter 2: Opsware CLI Methods 31

Overview of Opsware CLI Methods .31

Method Invocation .32

Security .32

Mapping Between API and OCLI Methods .33

Differences Between OCLI Methods and Unix Commands33

OCLI Method Tutorial .34

Format Specifiers .39

Position of Format Specifiers .40

Default Format Specifiers .40

ID Format Specifier Examples .41

Structure Format Specifier Syntax .41

Structure Format Specifier Examples. .42

Directory Format Specifier Examples. .44

Value Representation. .44

Opsware Objects in the OGFS .45

Primitive Values. .47

Arrays .48

OCLI Method Parameters and Return Values .49
4 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Method Context and the self Parameter .49

Passing Arguments on the Command-Line. .50

Specifying the Type of a Parameter .51

Complex Objects and Arrays As Parameters .51

Overloaded Methods .51

Return Values .52

Exit Status .52

Search Filters and OCLI Methods. .53

Search Syntax .53

Search Examples .54

Searchable Attributes and Valid Operators. .56

Example Scripts .57

create_custom_field.sh .57

create_device_group.sh .58

create_folder.sh .59

detect_hba_version.sh. .60

remediate_policy.sh .61

remove_custom_field.sh .63

schedule_audit_task.sh .63

Getting Usage Information on OCLI Methods .64

Listing the Services .64

Finding a Service in the API Documentation. .65

Listing the Methods of a Service. .65

Listing the Parameters of a Method .65

Getting Information About a Value Object .65

Determining If an Attribute Can Be Modified .66

Determining If an Attribute Can Be Used in a Filter Query 66
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 5

Opsware® Automation Platform Developer’s Guide
Chapter 3: Python Access to the API with Pytwist 67

Overview of Pytwist .67

Setup for Pytwist .67

Supported Platforms for Pytwist .68

Access Requirements for Pytwist .68

Installing Pytwist on Managed Servers .68

Pytwist Examples .69

get_server_info.py .70

create_folder.py .71

remediate_policy.py .72

Pytwist Details .74

Authentication Modes .75

TwistServer Method Syntax .75

Error Handling .76

Mapping Java Package Names and Data Types to Pytwist76

Chapter 4: Java RMI Clients 79

Overview of Java RMI Clients .79

Setup for Java RMI Clients .79

Java RMI Example .80

Compiling and Running the GetServerInfo Example80

Chapter 5: Web Services Clients 83

Overview of Web Services Clients .83

Programming Language Bindings Provided in This Release83

URLs for Service Locations and WSDLs .83

Security for Web Services Clients. .84
6 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Overloaded Operations. .84

Java Interface Support .84

Unsupported Data Types .84

Invoke setDirtyAtrributes When Creating or Updating VOs86

Compatibility With Opsware Web Services API 2.286

Perl Web Services Clients .86

Running the Perl Demo Program. .87

Perl Example Code. .87

Construction of Perl Objects for Web Services .91

C# Web Services Clients .95

Required Software for C# Clients .95

Obtaining the C# Client Stubs. .95

Accessing the C# Stub Documentation. .95

Building the C# Demo Program. .96

Running the C# Demo Program .97

C# Example Code .97

Chapter 6: Pluggable Checks 101

Overview of Pluggable Checks .101

Setup for Pluggable Checks .101

Pluggable Check Tutorial. .102

Overview of Audit and Remediation .110

Pluggable Check Creation .112

Guidelines for Pluggable Checks . 113

Development Process for Pluggable Checks . 115

Pluggable Check Configuration (config.xml) . 115

Audit (get) Scripts . 118
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 7

Opsware® Automation Platform Developer’s Guide
Remediation (set) Scripts . 119

Other Code for Pluggable Checks . 120

Zipping Up Pluggable Checks . 120

Importing Pluggable Checks . 121

Audit Policy Creation .122

Creating an Audit Policy . 122

Exporting the Audit Policy. 123

Document Type Definition (DTD) for config.xml File.123

Chapter 7: Job Approval Integration 133

Overview of Job Approval Integration .133

Scenario for Job Approvals . 134

Behind the Scenes . 134

The Opsware PAS Connector .135

Prerequisites for the PAS Connector . 135

Configuring Opsware SAS for Job Approval Integration. 136

PAS Connector Configuration File . 136

Securing the PAS Password . 138

Enabling Job Approval Integration for Opsware SAS 138

Troubleshooting the PAS Connector . 139

Managing Blocked Jobs With the Opsware API .139

Approving Blocked Jobs . 139

Updating Blocked Jobs . 140

Canceling Blocked Jobs . 140

Searching for Blocked Jobs . 140

Appendix A: Search Filter Syntax 143
8 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Filter Grammar .143

Usage Notes .144
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 9

Opsware® Automation Platform Developer’s Guide

1
0 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Preface

Document Date: May 16, 2007

Welcome to the Opsware Server Automation System (SAS) — an enterprise-class

software solution that enables customers to get all the benefits of Opsware Inc.’s data

center automation platform and support services. Opsware SAS provides a core

foundation for automating formerly manual tasks associated with the deployment,

support, and growth of server and server application infrastructure.

About this Guide
Intended for advanced system administrators and software developers, this guide

explains how to create client applications for the Opsware Automation Platform.

Contents of this Guide

This guide contains the following chapters:

Chapter 1: Overview - Summarizes the Opsware Automation Platform, the Opsware API,

and the supported client technologies.

Chapter 2: Opsware OCLI Methods - Explains the concepts and syntax of the Opsware

CLI methods. Provides scripting examples for the methods.

Chapter 3: Python Access to the API With Pytwist - Describes how to invoke the

Opsware API in Python scripts that run on managed servers or from within custom

extensions.

Chapter 3: Python Access to the API With Pytwist - Describes how to invoke the

Opsware API in Python scripts on managed servers or within custom extensions. Includes

several examples.

Chapter 4: Java RMI Clients - Shows how to set up and create Java RMI clients that

access the Opsware API. Provides a simple example.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 11

Opsware® Automation Platform Developer’s Guide

1

Chapter 5: Web Services Clients - Shows how to set up and create Perl and C# clients

that access the Opsware API through Web Services. Includes simple examples.

Chapter 6: Pluggable Checks - Includes a tutorial and reference information for

developing and uploading customized audit rules, which are also known as pluggable

checks.

Appendix A: Search Filter Syntax - Contains formal syntax for search filters as well as

usage notes.
2 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 1: Overview

Overview of the Opsware Automation Platform
The Opsware Automation Platform (OAP) is a set of APIs and a runtime environment that

facilitate the integration and extension of Opsware SAS. The Opsware Automation

Platform APIs expose core services such as audit compliance, Windows patch

management, and OS provisioning. The runtime environment executes Global Shell

scripts that can access the Opsware Global File System (OGFS).

With the Opsware Automation Platform, you can perform the following tasks:

• Build new automation applications and extend Opsware SAS to improve IT productivity

and comply with your IT policies.

• Exchange information with other IT systems, such as existing monitoring, trouble

ticketing, billing, and virtualization technology.

• Use the Opsware Model Repository to store and organize critical IT information about

operations, environment, and assets.

• Automate the management of a wide range of applications and operating systems

without having to wait for Opsware, Inc. to deliver out-of-the-box support for a particular

technology.

• Incorporate existing Unix and Windows scripts with Opsware SAS, enabling the scripts

to run in a secure, audited environment.

I N T H I S C H A P T E R

This chapter discusses the following topics:

• Overview of the Opsware Automation Platform

• Components of the Opsware Automation Platform

• Benefits of the Opsware Automation Platform

• Opsware Automation Platform API Design

• Supported Clients
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 13

Opsware® Automation Platform Developer’s Guide

1

Components of the Opsware Automation Platform
Figure 1-1 is a layer cake diagram showing the major elements of the Opsware

Automation Platform (OAP).

Figure 1-1: OAP Components

As Figure 1-1shows, the OAP comprises the following five key elements. (Each of these

elements is discussed in more detail in subsequent sections.)

• Opsware Automation Applications: The applications users write on top of the OAP.

These applications can either be Opsware Hosted Applications which run in the context

of the running Opsware SAS or stand alone applications running in the context of

existing business and management systems.

• Opsware Runtime Environment: Provides a set of powerful, out of the box runtime

services and a corresponding language independent programming model explicitly

designed to be easily accessibility to a broad spectrum of programmers, from scripters

to Web developers to experienced enterprise Java programmers.
4 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 1: Overview
• Opsware Platform Resources: Provide developers easy access to the OAP’s rich data

objects, automation actions (such as patching, provisioning, and auditing), and

capabilities (such as remote access to each managed server’s runtime environment).

• Opsware Management Network: A powerful set of connectivity, security, and caching

technologies which enable the OAP to reach any device regardless of its location, IP

address space, bandwidth availability, and so on.

• Opsware Managed Devices: The managed servers and network devices connected

to the platform by the Opsware Management Network.

Opsware Automation Applications

As Figure 1-1 shows, the Opsware Automation Applications are at the top of the stack.

These are the applications users write on top of the OAP.

Automation applications can either be Opsware Hosted Applications, which run in the

Opsware Runtime Environment, or as stand alone applications that run in a completely

independent context. Stand alone applications access the OAP remotely through Web

Services calls.

Simple applications can be written as simple Unix shell scripts in minutes. More complex

applications—such as integration with an existing source control or ticketing system—can

take a little longer and might involve Python or Microsoft .NET or Java coding. In either

case, the OAP is designed as a language-independent system easily adopted by a wide

variety of developers.

Opsware Runtime Environment

Next down the OAP stack is the Opsware Runtime Environment, which provides a set of

powerful, out-of-the box runtime services and a corresponding language-independent

programming model. Opsware Hosted Applications run in the Opsware Runtime

Environment.

The core of the runtime environment consists of two components: the Opsware Global

Shell and the Opsware Global File System. Together, these two components organize and

provide access to all managed devices in a familiar Linux/Unix shell file-and-directory

paradigm.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 15

Opsware® Automation Platform Developer’s Guide

1

Opsware Global Shell

The Global Shell is a command-line interface to the Opsware Global File System (OGFS).

The command-line interface is exposed through a Linux shell such as bash that runs in a

terminal window. The OGFS unifies the Opsware data model and the contents of

managed servers—including files—into a single, virtual file system.

Opsware Global File System

The OGFS represents objects the OAP data model (such as facilities, customers, and

device groups) and information available on OAP managed devices (such as the

configuration setting on a managed network device or the file system of a managed

server) as a hierarchical structure of file directories and text files. For example, in the

OGFS, the /opsw/Customer directory contains details about Opsware customer

objects and the /opsw/Server directory has information about managed servers. The

/opsw/Server directory also contains subdirectories that reflect the contents (such as

file systems and registries) of the managed servers.

This file-and-directory paradigm allows administrators familiar with shell scripting to easily

write scripts which perform the same task across different servers by iterating through the

directories that represent servers. Behind the scenes, the Opsware Global File System

securely delivers and executes any logic in the script to each managed server.

The contents of devices can be accessed through the Opsware Global File System, a

virtual file system that represents all devices managed by Opsware SAS and NAS. Given

the necessary security authorizations, both end users and automation applications can

navigate through the OGFS to the file systems of remote servers. On Windows servers,

administrators can also access the registry, II metabase, and COM+ objects.

Opsware Command Line Interface

The Opsware Command Line Interface (OCLI) provides system administrators and OAP

automation applications a way to invoke automation tasks such as provisioning software,

patching devices, or running audits from the command line. A rich syntax allows users to

represent rich object types as input or receive them as output from OCLI invocations.

The OCLI itself is actually programmatically generated on top of the OAP API, discussed

in the next section. The advantage of this is that as soon as Opsware Inc. adds a new API

to the OAP API, a corresponding OCLI method is automatically available for it. In other

words, there is no lag time between the availability of new features in the product and the

availability of the corresponding OCLI methods in the platform.
6 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 1: Overview
Opsware Automation Platform API

The Opsware Automation Platform API is the Win32 API of Opsware: It defines a set of

application programming interfaces to get and set values as well as perform actions. The

Opsware user interfaces, including the SAS Client and the Opsware Command Line

Interfaces (OCLI), are all built on top of the Opsware Automation Platform API. The

Opsware Automation Platform API includes libraries for Java RMI clients and WSDLs for

SOAP-based Web Services clients. With Web Services support, programmers can create

clients in popular languages such as Perl, C#, and Python.

Opsware Platform Resources

Opsware Platform Resources sit beneath the Opsware Runtime Environment and give

developers access to a rich set of objects and actions which they can re-use and

manipulate in their own applications.

Inventory Model

The Inventory Model provides all the information gathered by the Opsware SAS about

each managed devices such as make, manufacturer, CPU, operating system, installed

software, and so on. Inventory information is made available through the Opsware

Automation Platform API and also appears as files (in the attr subdirectories) in the

Opsware Global File System. The Inventory Model includes objects such as Servers and

Network Devices.

Administrators can extend the data associated with inventory objects. For example, if

users want to store a picture of the device or a lease expiration date or the ID of a UPS the

device is plugged into, the OAP makes it easy to add those attributes to each device

record. Users can then add, delete, and work with those attributes just as they would the

attributes that come out of the box.

Security Model

The Security Model allows developers to leverage the built-in authentication and

authorization security systems of the Opsware SAS.

All clients of the OAP—management applications, scripts, as well as the end-user

interfaces provided by Opsware Inc.—are controlled by the same security framework.

The security administrator—not the developer—creates user roles and grants permissions.

Developers can re-use all of these user roles and permissions in the context of their own

applications. For example, network administrators can write a shell script and share it with

other network administrators with the con.dence that those network administrators can

only run that script on network devices they are authorized to manage—and no others.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 17

Opsware® Automation Platform Developer’s Guide

1

The authorization mechanism controls access at several levels: the types of tasks users

can perform, the servers and network devices accessed by the tasks, and the Opsware

objects (such as software policies).

Environment Model

The Environment Model defines the overall business context in which devices live. In

general, devices belong to one or more customers, are located in a particular facility, and

belong to one or more groups. The OAP makes each of these objects—Customers

Facilities, Device Groups, and others—available to application developers.

As with inventory objects, environment objects can easily be extended. This makes it

easy, for example, to define attributes such as the SNMP trap receiver used in a particular

data center or printers only available in a particular facility, or Apache configurations used

by only a particular business unit.

Policy Model

The Policy Model gives developers access to all the best practices that policy setters

have defined in the Opsware SAS. Policies describe the desired state on a server or

network device. For example, a patch policy describes the patches that should be on a

server, a software policy describes what software should be on a server, and so on.

Subject matter experts define these policies which can be used by any authorized system

administrator to audit devices to discover whether what’s actually on a device differs from

what should be on the device. Programmers have access to this complete library of

policies to use in their own applications.

Software policies are organized into folders which can define security boundaries. In other

words, applications will be able to access only those software policies they are permitted

to access based on their user permissions.

Package Repository

The Package Repository gives developers access to all the software and patches stored

in the Server Automation System. These include operating system builds, operating

system patches, middleware, agents, and any other pieces of software that users have

uploaded into the Opsware SAS.
8 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 1: Overview
Event Repository

The Event Repository houses the digitally signed audit trails that the Opsware

SASgenerates when actions are performed, either through the user interface or

programmatically with the OAP. As with other OAP objects, these events are available

programmatically.

Automation Actions

Automation Actions allow developers to programmatically launch any of the actions the

Opsware SAS can perform on managed devices, ranging from running an audit to

provisioning software to applying the latest OS patch. The OAP provides access to the

same features available to end-users in the Opsware SAS Client. These features include

tasks such as installing patches, provisioning operating systems, and installing and

removing software policies. In fact, the Opsware SAS Client calls the same APIs that are

exposed programmatically through the Opsware Runtime Environment.

Remote Access

Remote Access gives developers programmatic access to the managed device’s file

system (in the case of servers) and execution environment (in the case of all devices).

Developers can easily write applications which check for the existence of a file or

particular software package, run operating system commands to check disk usage, or run

system scripts to perform routine maintenance tasks.

Opsware Management Network

The Opsware Management Network is a powerful combination of technologies which

enable developers to securely access any device under management. The Opsware

Management Network delivers several key services:

• Connectivity: Allows the OAP (and hence automation applications) to reach any

managed device.

• Security: Includes SSL/TLS-based encryption, authentication, and message integrity.

• Address space virtualization: Enables the OAP to locate servers across multiple

overlapping IP address spaces. Most complex enterprise networks have multiple

private IP address spaces.

• Availability: Allows system architectures to define redundant paths to any given

managed device so that devices can still be reached despite failures in any given

network path.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 19

Opsware® Automation Platform Developer’s Guide

2

• Caching: Enables servers to download software and patches from a nearby server

rather than a distant server, saving both time and network connectivity charges.

• Bandwidth throttling: Lets system architectures determine how much bandwidth

Opsware SAS and any Opsware Automation Applications may consume as it traverses

the network to a particular device.

• Least cost routing: Allows system designers to set up rules governing which paths to

use to reach a particular device to minimize network connectivity costs.

Opsware Managed Devices

At the bottom of the OAP stack are the actual devices under management. The OAP

manages over 65 server OS versions and over 35 different network device vendors with

thousands of device models/versions supported out of the box.

Opsware Inc. has a dedicated device engineering team whose entire job is to grow the list

of supported devices. OAP developers and scripters benefit directly from this growing

device list since their automation applications can consistently reach an ever growing list

of managed devices in the same, familiar OAP programming environment.

Benefits of the Opsware Automation Platform
The Opsware Automation Platform (OAP) has the following key benefits.

Powerful Security

The OAP delivers the following comprehensive security mechanisms so developers don’t

have to worry about providing them in their own applications.

• Secure communication channels: End-to-end communication from the automation

applications out to the managed devices is encrypted and authenticated.

• Role-based access control: The OAP respects the role-based access controls built

into the Opsware SAS so developers can easily share their applications with the

con.dence that they will run just on those devices that an administrator has been

granted access to.

• Digitally signed audit trail: After an automation application runs, the OAP generates a

digitally signed audit trail capturing who ran the application, the time of the application

execution, and the devices on which the application ran.
0 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 1: Overview
Comprehensive Reach

The OAP provides comprehensive reach across all devices so system administrators and

developers don’t have to worry about how to get to a device:

• Market-leading platform coverage: Supported devices include over 65 server OS

versions and more than 1,000 network devices.

• In any physical location: The devices can be located anywhere in the world whether

in a major data center or a retail store or a satellite of.ce.

• In any IP address space: The devices can belong to any IP address space, as the

OAP supports multiple overlapping IP address spaces.

• In DMZs: Devices can be located in DMZs or other difficult-to-access network spaces

without requiring the developer or system administrator to worry about the details of

reaching the device (for example, through a bastion host).

Rich Services

The OAP exposes practically all the relevant data and actions in the underlying

automation system:

• Rich data out-of-the-box: Developers have easy access to a rich set of data

generated in part by the OAP itself (such as device inventory data and facility

information) and in part by users interacting with the OAP (such as device groups

customers, best practices policies, and uploaded software, patches, and scripts).

Developers can easily write applications to read and write this data.

• Extensible data store: Developers can easily extend the native OAP objects to include

their own data. Device inventory models can be extended to include attributes the OAP

does not natively discover. Customer and facility objects can be extended to include

attributes that should guide the provisioning or auditing of devices related to that

customer.

• Automation tasks: The OAP exposes nearly all the capabilities of the underlying

automation systems to developers: patching, provisioning, auditing, and others. This

enables developers writing complex workflows that span multiple systems to simply

call these actions from the context of an automation application.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 21

Opsware® Automation Platform Developer’s Guide

2

Easily Accessible to a Broad Spectrum of Programmers

The OAP is explicitly designed to appeal to a broad range of developers ranging from Unix

shell and Visual Basic scripters to Perl and Python programmers to enterprise .NET or

Java programmers. The OAP’s Runtime Services layer makes most OAP objects available

in a file-and-directory paradigm and most OAP services available from a command-line

interface (the OCLI). This allows system administrators used to writing shell scripts to

instantly use the OAP without having to learn a new programming language and tool.

They can get started with their favorite text editor, a familiar Unix shell, and then quickly

develop scripts.

For more complicated applications and integration with existing systems, system

programmers can use whatever programming tools and languages that have Web

Services bindings.

Opsware Automation Platform API Design
The Opsware Automation Platform API is defined by Java interfaces and organized into

Java packages. To support a variety of client languages and remote access protocols, the

API follows a function-oriented, call-by-value model.

Services

In the Opsware Automation Platform API, a service encapsulates a set of related functions.

Each service is specified by a Java interface with a name ending in Service, such as

ServerService, FolderService, and JobService.

Services are the entry points into the API. To access the API, clients invoke the methods

defined by the server interface. For example, to retrieve a list of software installed on a

managed server, a client invokes the getInstalledSoftware method of the

ServerService interface. Examples of other ServerService methods are

checkDuplex, setPrimaryInterface, and changeCustomer.

The Opsware Automation Platform API contains over 70 services – too many to describe

here. Table 1-1 lists a few of the services that you may want to try out first. For a full list of

services, in a browser go to the URL shown in “API Documentation and the Twister” on

page 27.
2 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 1: Overview
Table 1-1: Partial List of Services of the Opsware API

SERVICE NAME
SOME OF THE OPERATIONS PROVIDED

BY THIS SERVICE

AuditTaskService Create, get, and run audit tasks.

ConfigurationService Create application configurations, get the

software policies using an application

configuration.

DeviceGroupService Create device groups, assign devices to

groups, get members of groups, set

dynamic rules.

EventCacheService Trigger actions such as updating a client-

side cache of value objects. See “Event

Cache” on page 25.

FolderService Create folders, get children of folders, set

customers of folders, move folders.

InstallProfileService Create, get, and update OS installation

profiles.

JobService Get progress and results of jobs, cancel

jobs, update job schedules.

NasConnectionService Get host names of NAS servers, run com-

mands on NAS servers.

NetworkDeviceService Get information such as families, names,

models, and types, according to specified

search filters.

SequenceService Create, get, and run OS sequences to

install operating systems on servers.

ServerService Get information about servers, reconcile

(remediate) policies on servers (install soft-

ware), get and set custom fields and

attributes, execute OS sequences (install

OS).
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 23

Opsware® Automation Platform Developer’s Guide

2

Objects in the API

Although the Opsware Automation Platform API is function-oriented, its design enables

clients to create object-oriented libraries. The Opsware SAS data model includes objects

such as servers, folders, and customers. These are persistent objects; that is, they are

stored in the Opsware Model Repository. In the API, these objects have the following

items:

• A service that defines the object’s behavior. For example, the methods of the

ServerService specify the behavior of a managed server object.

• An object (identity) reference that represents an instance of a persistent object. For

example, ServerRef is a reference that uniquely identifies a managed server. In the

ServerService, the first parameter of most methods is ServerRef, which

identifies the managed server operated on by the method. The Id attribute of a

ServerRef is the primary key of the server object stored in the Opsware Model

Repository.

• One or more value objects (VOs) that represent the data members (attributes, fields) of

a persistent object. For example, ServerVO contains attributes such as

agentVersion and loopbackIP. The attributes of ServerHardwareVO include

manufacurer, model, and assetTag. Most attributes cannot be changed by client

applications. If an attribute can be changed, then the API documentation for the setter

method includes “Field can be set by clients.”

SoftwarePolicyService Create software policies, assign policies to

servers, get contents of policies, remediate

(reconcile) policies with servers.

SolPatchService Install and uninstall Solaris patches, add

policy overrides.

VirtualColumnService Manage custom fields and custom

attributes.

WindowsPatchService Install and uninstall Windows patches, add

policy overrides.

Table 1-1: Partial List of Services of the Opsware API (continued)

SERVICE NAME
SOME OF THE OPERATIONS PROVIDED

BY THIS SERVICE
4 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 1: Overview
For performance reasons, update operations on persistent objects are coarse-grained.

The update method of ServerService, for example, accepts the entire ServerVO as

an argument, not individual attributes.

Exceptions

All of the API exceptions that are specific to Opsware SAS are derived from one of the

following exceptions:

• OpswareException - Thrown when an application-level error occurs, such as when

an end-user enters an illegal value that is passed along to a method. Typically, the

client application can recover from this type of exception. Examples of exceptions

derived from OpswareException are NotFoundException,

NotInFolderException, and JobNotScheduledException.

• OpswareSystemException - Thrown when an error occurs within Opsware SAS.

Usually, the Opsware Administrator must resolve the problem before the client

application can run.

The following exceptions are related to security:

• AuthenticationException - Thrown when an invalid Opsware user name or

password is specified.

• AuthorizationException - Thrown when the user does not have permission to

perform an operation or access an object. For more information on permissions, see

the Opsware® SAS Administration Guide.

Event Cache

Some client applications need to keep local copies of Opsware SAS objects. Accessed by

clients through the EventCacheService, the cache contains events that describe the

most recent change made to Opsware SAS objects. Clients can periodically poll the

cache to check whether objects have been created, updated, or deleted. The cache

maintains events over a configured sliding window of time. By default, events for the most

recent 2 hours are maintained. To change the sliding window size, edit the Web Services

Data Access Engine configuration file, as described in the Opsware® SAS Administration

Guide.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 25

Opsware® Automation Platform Developer’s Guide

2

Searches

The search mechanism of the Opsware Automation Platform API retrieves object

references according to the attributes (fields) of value objects. For example, the

getServerRefs method searches by attributes of the ServerVO value object. The

getServerRefs method has the following signature:

public ServerRef[] getServerRefs(Filter filter) . . .

Each get*Refs method accepts the filter parameter, an object that specifies the

search criteria. A filter parameter with a simple expression has the following syntax:

value-object.attribute operator value

(This syntax is simplified. For the full definition, see “Filter Grammar” on page 143.)

The following examples are filter parameters for the getServerRefs method:

ServerVO.hostName = "d04.opsware.com"
ServerVO.model BEGINS_WITH "POWER"
ServerVO.use IN "UNKNOWN" "PRODUCTION"

Complex expressions are allowed, for example:

(ServerVO.model BEGINS_WITH "POWER") AND (ServerVO.use =
"UNKNOWN")

Not every attribute of a value object can be specified in a filter parameter. For

example, ServerVO.state is allowed in a filter parameter, but

ServerVO.OsFlavor is not. To find out which attributes are allowed, locate the value

object in the API documentation and look for the comment, “Field can be used in a filter

query.”

Security

Users of the Opsware Automation Platform must be authenticated and authorized to

invoke methods on the Opsware Automation Platform API. To connect to Opsware SAS, a

client supplies an Opsware user name and password (authentication). To invoke

methods, the Opsware user must belong to a user group with the necessary permissions

(authorization). These permissions restrict not only the types of Opsware SAS operations

that users can perform, but also limit access to the servers and network devices used in

the operations.
6 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 1: Overview
Before application clients can run on the platform, the Opsware Administrator must

specify the required users and permissions with the Opsware Command Center. For

instructions, see the User Group and Setup chapter of the Opsware® SAS Administration

Guide. For information about security-related exceptions, see “Exceptions” on page 25.

Communication between clients and Opsware SAS is encrypted. For Web Services

clients, the request and response SOAP messages (which implement the operation calls)

are encrypted using SSL over HTTP (HTTPS).

API Documentation and the Twister

The Opsware SAS 6.0 core ships with API documentation (javadocs) that describe the

Opsware Automation Platform API. To access the API documentation, specify the following

URL in your browser:

https://occ_host:1032/twister/docs/index.html

Or:

https://occ_host:443/twister/docs/index.html

The occ_host is the IP address or host name of the core server running the Opsware

Command Center component.

To list the services in the API documentation, specify the following URL:

https://occ_host:443

Also included in the core, the Twister is a program that lets you invoke API methods, one

at a time, from within a browser. For example, to invoke the

ServerService.getServerVO method, perform the following steps:

1 Open the API documentation in a browser.

2 In the All Classes pane, select com.opsware.server.

3 In the com.opsware.server pane, select ServerService.

4 In the main pane, scroll down to the getServerVO method.

5 Click Try It for the getServerVO method.

6 Enter your Opsware SAS user name and password.

7 In the Twister pane for ServerService.getServerVO, enter the ID of a

managed server in the oid field.

8 Click Go. The Twister pane displays the attributes of the ServerVO object returned.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 27

Opsware® Automation Platform Developer’s Guide

2

Constant Field Values

Some of the API’s value objects (VOs) have fields with values defined as constants. For

example, JobInfoVO has a status field that can have a value defined by constants

such as STATUS_ACTIVE, STATUS_PENDING, and so forth. The API specifies constants

as Java static final fields, but the WSDLs generated from the API do not define the

constants. To view the definitions for constants, in the API documentation, go to the

Constant Field Values page:

https://occ_host:1032/twister/docs/constant-values.html

For example, the Constant Field Values page defines STATUS_ACTIVE as the integer 1.

Importing and Exporting Packages With PUT and GET

The following wiki page is available only to Opsware, Inc. employees:

http://wiki.corp.opsware.com/owiki/
OpswareReleases_2fEinstein_2fPatchManagement_2fFileTransferApi

Supported Clients
The Opsware Automation Platform supports programmers with different skills, from

system administrators who write shell scripts to .NET and Java programmers familiar with

the latest tools and technologies. All supported clients call the same set of methods,

which are organized into the services of the Opsware Automation Platform. A developer

can create the following types of clients that call methods in the Opsware Automation

Platform API:

• Opsware Command-line Interface (OCLI): Launched from Global Shell sessions,

shell scripts can access the Opsware Automation Platform API by invoking the OCLI

methods, which are executable programs in the OGFS. Each OCLI method

corresponds to a method in the Opsware Automation Platform API.

• Web Services: Using SOAP over HTTPS, these clients send requests to Opsware SAS

and get responses back. The Web Services operations (defined in WSDLs) correspond

to the methods in the Opsware Automation Platform API. Developers can write Web

Services clients in popular languages such as Perl and C#.

• Java RMI: These clients invoke remote Java objects from other Java virtual machines.

• Pytwist: These Python programs can run on Opsware SAS managed or core servers.
8 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 1: Overview
The Web Services and Java RMI clients can run on servers different than the Opsware

SAS core or managed servers. The OCLI methods execute in a Global Shell session on

the core server where the OGFS is installed.

Obtaining the Code Examples
To obtain the code examples discussed in this guide, perform the following steps:

1 In a browser, go to the Opsware Technical Support Downloads page:

https://download.opsware.com/download/

2 Download the ZIP file labelled Opsware SAS API Code Examples.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 29

Opsware® Automation Platform Developer’s Guide

3
0 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 2: Opsware CLI Methods

Overview of Opsware CLI Methods
End-users access Opsware SAS through the GUI utilities, that is, the SAS Client and the

SAS Web Client. At times, advanced users need to access Opsware SAS in a command-

line environment to perform bulk operations or repetitive tasks on multiple servers. In

Opsware SAS, the command-line environment consists of the Global Shell, OGFS, and

Opsware Command-line Interface (OCLI) methods.

To perform Opsware SAS operations from the command-line, you invoke OCLI methods

from within a Global Shell session. An OCLI method is an executable in the OGFS that

corresponds to a method in the Opsware API. When you run an OCLI method, the

underlying API method is invoked.

In order to understand this chapter, you should already be familiar with the Opsware

Global Shell and the OGFS. For a quick introduction to these features, see the “Global

Shell Tutorial” in the Opsware® SAS User’s Guide: Server Automation.

I N T H I S C H A P T E R

This chapter contains the following topics:

• Overview of Opsware CLI Methods

• OCLI Method Tutorial

• Format Specifiers

• Value Representation

• OCLI Method Parameters and Return Values

• Search Filters and OCLI Methods

• Example Scripts

• Getting Usage Information on OCLI Methods
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 31

Opsware® Automation Platform Developer’s Guide

3

Method Invocation

As shown by Figure 2-1 when an OCLI method is invoked, the following operations occur:

1 In a Global Shell session, the user enters an OCLI method with parameters.

2 The command-line entered in the previous step is parsed to determine the API

method and parameters.

3 The underlying API method is invoked.

4 An authorization check verifies that the user has permission to perform this

operation. Then, Opsware SAS performs the operation.

5 The API method passes the results back to the OCLI method.

6 The OCLI method writes the return value to the stdout of the Global Shell session.

If an exception was thrown, the OCLI method returns a non-zero status.

Figure 2-1: Overview of an OCLI Method Invocation

Security

OCLI methods use the same authentication and authorization mechanisms as the SAS

Client and the SAS Web Client. When you start a Global Shell session, Opsware SAS

authenticates your Opsware user. When you run an OCLI method, authorization is

performed. To run an OCLI method successfully, your Opsware user must belong to a

group that has the required permissions. For more information on security, see the

Opsware® SAS Administration Guide.

Global Shell Session

$./getDeviceGroups self:i=12

Opsware API

getDeviceGroups (ServerRef self)

Opsware SAS
Core Components

1 2

4

3

5

Accounting App
All Windows Servers
Visalia Vendors

$

6

2 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 2: Opsware CLI Methods
Mapping Between API and OCLI Methods

The OGFS represents Opsware SAS objects as directory structures, object attributes as

text files, and API methods as executables. These executables are the OCLI methods.

Every OCLI method matches an underlying API method. The method name, parameters,

and return value are the same for both types of methods.

For example, the setCustomer API method has the following Java signature:

public void setCustomer(ServerRef self,
CustomerRef customer). . .

In the OGFS, the corresponding OCLI method has the following syntax:

setCustomer self:i=server-id customer:i=customer-id

Note that the parameter names, self and customer, are the same in both languages.

(The :i notations are called format specifiers, which are discussed later in this chapter.)

In this example, the return type is void, so the OCLI method does not write the result to

the stdout. For information on how OCLI methods return strings that represent objects,

see “Return Values” on page 52.

Differences Between OCLI Methods and Unix Commands

Although you can run both Unix commands and OCLI methods in the Global Shell, OCLI

methods differ in several ways:

• Unlike many Unix commands, OCLI methods do not read data from stdin. Therefore,

you cannot insert an OCLI method within a group of commands connected by pipes (|).

(However, OCLI methods do write to stdout.)

• Most Unix commands accept parameters as flags and values (for example,

ls -l /usr). With OCLI methods, command-line parameters are name-value pairs,

joined by equal signs.

• Unix commands are text based: They accept and return data as strings. In contrast,

OCLI methods can accept and return complex objects.

• With OCLI methods, you can specify the format of the parameter and return values.

Unix commands do not have an equivalent feature.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 33

Opsware® Automation Platform Developer’s Guide

3

OCLI Method Tutorial
This tutorial introduces you to OCLI methods with a few examples for you to try out in your

environment. After completing this tutorial, you should be able to run OCLI methods,

examine the self file of an Opsware object, and create a script that invokes OCLI

methods on multiple servers.

Before starting the tutorial, you need the following capabilities:

• You can log on to the SAS Client.

• Your Opsware user has Read & Write permissions on at least one managed server.

Typically assigned by a security administrator, permissions are discussed in the

Opsware® SAS Administration Guide.

• Your Opsware user has all Global Shell permissions on the same managed server. For

information on these permissions, see the “aaa Utility” section in the Opsware® SAS

User’s Guide: Server Automation.

• You are familiar with the Global Shell and the OGFS. If these features are new to you,

before proceeding with this tutorial you should step through the “Global Shell Tutorial” in

the Opsware® SAS User’s Guide: Server Automation.

The example commands in this tutorial operate on a Windows server named

abc.opsware.com. This server belongs to a server group named All Windows Servers.

When trying out these commands, substitute abc.opsware.com with the host name of

the managed server you have permission to access.

1 Open a Global Shell session.

You can open a Global Shell session from within the SAS Client. From the Actions menu,

select Global Shell. You can also open a Global Shell session from a terminal client

running on your desktop. For instructions, see “Opening a Global Shell Session” in the

Opsware® SAS User’s Guide: Server Automation.

2 List the OCLI methods for a server.

The method subdirectory of a specific server contains executable files-- the methods you

can run for that server. The following example lists the OCLI methods for the

abc.opsware.com server:

$ cd /opsw/Server/@/abc.opsware.com/method
$ ls -1
addDeviceGroups
attachPolicies
attachVirtualColumn
4 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 2: Opsware CLI Methods
checkDuplex
clearCustAttrs
. . .

These methods have instance context – they act on a specific server instance (in this

case, abc.opsware.com). The server instance can be inferred from the path of the

method. Methods with static context are discussed in step 5.

3 Run an OCLI method without parameters.

To display the public server groups that abc.opsware.com belongs to, invoke the

getDeviceGroups method:

$ cd /opsw/Server/@/abc.opsware.com/method
$./getDeviceGroups
Accounting App
All Windows Servers
Visalia Vendors

4 Run a method with a parameter.

Command-line parameters for methods are indicated by name-value pairs, separated by

white space characters. In the following invocation of setCustomer, the parameter

name is customer and the value is 20039. The :i at the end of the parameter name is

an ID format specifier, which is discussed in a later step.

The following method invocation changes the customer of the abc.opsware.com

server from Opsware to C39. The ID of customer C39 is 20039.

$ cd /opsw/Server/@/abc.opsware.com
$ cat attr/customer ; echo
Opsware
$ method/setCustomer customer:i=20039
$ cat attr/customer ; echo
C39

5 List the static context methods for managed servers.

Static context methods reside under the /opsw/api directory. These methods are not

limited to a specific instance of an object.

To list the static methods for servers, enter the following commands:

$ cd /opsw/api/com/opsware/server/ServerService/method
$ ls

The methods listed are the same as those displayed in step 2.

6 Run a method with the self parameter.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 35

Opsware® Automation Platform Developer’s Guide

3

This step invokes getDeviceGroups as a static context method. Unlike the instance

context method shown in step 3, the static context method requires the self parameter

to identify the server instance.

For example, suppose that the abc.opsware.com server has an ID of 530039. To list

the groups of this server, enter the following commands:

$ cd /opsw/api/com/opsware/server/ServerService/method
$./getDeviceGroups self:i=530039
Accounting App
All Windows Servers
Visalia Vendors

Compare this invocation of getDeviceGroups with the invocation in step 3 that

demonstrates instance context. Both invocations run the same underlying method in the

API and return the same results.

7 Examine the self file of a server.

Within Opsware SAS, each managed server is an object. However, OGFS is a file system,

not an object model. The self file provides access to various representations of an

Opsware SAS object. These representations are the ID, name, and structure.

The default representation for a server is its name. For example, to display the name of a

server, enter the following commands:

$ cd /opsw/Server/@/abc.opsware.com
$ cat self ; echo
abc.opsware.com

If you know the ID of a server, you can get the name from the self file, as in the

following example:

$ cat /opsw/.Server.ID/530039/self ; echo
abc.opsware.com

8 Indicate an ID format specifier on a self file.

To select a particular representation of the self file, enter a period, then the file name,

followed by the format specifier. For example, the following cat command includes the

format specifier (:i) to display the server ID:

$ cd /opsw/Server/@/abc.opsware.com
$ cat .self:i ; echo
com.opsware.server.ServerRef:530039
6 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 2: Opsware CLI Methods
This output shows that the ID of abc.opsware.com is 530039. The

com.opsware.server.ServerRef is the class name of a server reference, the

corresponding object in the Opsware API.

The leading period is required with format specifiers on files and method return values,

but is not indicated with method parameters.

9 Indicate the structure format specifier.

The structure format specifier (:s) indicates the attributes of a complex object. The

attributes are displayed as name-value pairs, all enclosed in curly braces. Structure

formats are used to specify method parameters on the command-line that are complex

objects. (For an example method call, see “Complex Objects and Arrays As Parameters”

on page 51.)

The following example displays abc.opsware.com with the structure format:

$ cd /opsw/Server/@/abc.opsware.com
$ cat .self:s ; echo
{
managementIP="192.168.8.217"
modifiedBy="spujare"
manufacturer="DELL COMPUTER CORPORATION"
use="UNKNOWN"
discoveredDate=1149012848000
origin="ASSIMILATED"
osSPVersion="SP4"
locale="English_United States.1252"
reporting=false
netBIOSName=
previousSWReg=1150673874000
osFlavor="Windows 2000 Advanced Server"
. . .

The attributes of a server are also represented by the files in the attr directory, for

example:

$ pwd
/opsw/Server/@/abc.opsware.com
$ cat attr/osFlavor ; echo
Windows 2000 Advanced Server

10 Create a script that invokes an OCLI method.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 37

Opsware® Automation Platform Developer’s Guide

3

The example script shown in this step iterates through the servers of the public server

group named All Windows Servers. On each server, the script runs the

getCommCheckTime OCLI method.

First, return to your home directory in the OGFS:

$ cd
$ cd public/bin

Next, run the vi editor:

$ vi

In vi, insert the following lines to create a bash script:

#!/bin/bash
iterate_time.sh

METHOD_DIR="/opsw/api/com/opsware/server/ServerService/
method"
GROUP_NAME="All Windows Servers"
cd "/opsw/Group/Public/$GROUP_NAME/@/Server"

for SERVER_NAME in *
do
 SERVER_ID=`cat $SERVER_NAME/.self:i`
 echo $SERVER_NAME
 $METHOD_DIR/getCommCheckTime self:i=$SERVER_ID
 echo
 echo
done

Save the file in vi, naming it iterate_time.sh. Quit vi.

Change the permissions of iterate_time.sh with chmod, and then run it:

$ chmod 755 iterate_time.sh
$./iterate_time.sh
abc.opsware.com
2006/06/20 16:46:56.000
. . .
8 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 2: Opsware CLI Methods
Format Specifiers
Format specifiers indicate how values are displayed or interpreted in the OCLI

environment. You can apply a format specifier to a method parameter, a method return

type, the self file, and an object attribute. To indicate a format specifier, append a colon

followed by one of the letters shown in Table 2-1.

If a format specifier is indicated for a file or a method return value, a period must precede

the file or method name. For method return values that have format specifiers, the leading

period is not included.

Table 2-1: Summary of Format Specifiers

FORMAT
SPECIFIER

DESCRIPTION
VALID OBJECT

TYPES

ALLOWED AS
METHOD

PARAMETER?

:n Name: A string identifying the

object. Unique names are

preferred, but not required. For

objects that do not have a name,

this representation is the same as

the ID representation.

Opsware

objects

Yes. If the name is

ambiguous, an error

occurs.

:i ID: A format that uniquely

identifies the object type and its

Opsware ID. Also known as an

object reference.

Opsware

objects;

Dates

(java.util.

Calendar)

objects

Yes. If the type is

clear from the

context, the type may

be omitted.

:s Structure: A compact

representation intended for

specifying complex values on the

command-line. Attributes are

enclosed in curly braces.

Any complex

object

Yes
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 39

Opsware® Automation Platform Developer’s Guide

4

Position of Format Specifiers

A format specifier immediately follows the item it affects. For files, a format specifier

follows the file name. In the following example, note the leading period:

cat .self:s

When applied to a method return type, a format specifier follows the method name. The

following invocation displays the IDs of the groups returned:

./.getDeviceGroups:i

With method parameters, a format specifier follows the parameter name and precedes

the equal sign, as in the following example:

./setCustomer self:i=9977 customer:i=239

A method parameter with a format specifier does not have a leading period.

Default Format Specifiers

Every value or object has a default format specifier. For example, the name format

specifier is the default for the osVersion attribute. The following two cat commands

generate the same output:

cd /opsw/Server/@/d04.opsware.com/attr
cat osVersion
cat .osVersion:n

The name format specifier is the default for Opsware objects stored in the Model

Repository, such as servers and customers. The structure format specifier is the default

for other complex objects.

:d Directory: Represents an attribute

as a directory in the OGFS.

Any complex

object that is an

attribute. This

representation

cannot be used

for method

parameters or

return values.

No

Table 2-1: Summary of Format Specifiers (continued)

FORMAT
SPECIFIER

DESCRIPTION
VALID OBJECT

TYPES

ALLOWED AS
METHOD

PARAMETER?
0 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 2: Opsware CLI Methods
ID Format Specifier Examples

The next example displays the ID of the facility that the d04.opsware.com server

belongs to:

cd /opsw/Server/@/d04.opsware.com/attr
cat .facility:i ; echo

(The preceding echo command is optional. It generates a new-line character, which

makes the output easier to read. The semicolon separates bash statements entered on

the same line.)

The output of a value with the ID format specifier is prefixed by the Java class name. For

example, if the facility value has an ID of 39, then the previous cat command displays

the following output:

com.opsware.locality.FacilityRef:39

The following invocation of the getDeviceGroups method lists the IDs of the public

server groups that d04.opsware.com belongs to:

cd /opsw/Server/@/d04.opsware.com/method
./.getDeviceGroups:i

For more ID format examples, see “The self File” on page 46.

Structure Format Specifier Syntax

The structure format represents complex objects, which can contain various attributes.

You might use this format to specify a method parameter that is a complex object. For

examples, see “Complex Objects and Arrays As Parameters” on page 51.

The structure format is a series of name-value pairs, separated by white space characters,

enclosed in curly braces. Each name-value pair represents an attribute. The structure

format has the following syntax:

{ name-1=value-1 name-2=value-2 . . . }

Here’s a simple example:

{ version=10.1.3 isCurrent=true }

Any white space character can be used as a delimiter:

{
 version=10.1.3
 isCurrent=true
}

Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 41

Opsware® Automation Platform Developer’s Guide

4

Attributes can be specified as structures, enabling the representation of nested objects. In

the following example, the versionDesc attribute is represented as a structure:

{
program=agent
versionDesc={
 version=10.1.3
 isCurrent=true
 comment="Latest version"
 }
}

To specify an array within a structure, repeat the attribute name. The following structure

contains an array named steps that has three elements with the values 33, 14, and 28.

{ moduleName="Some Initiator" steps=33 steps=14 steps=28 }

Structure Format Specifier Examples

The following example specifies the structure format for the facility attribute:

cd /opsw/Server/@/d04.opsware.com/attr
cat .facility:s

This cat command generates the following output. Note that customers is an array,

which contains an element for every customer associated with this facility.

{
modifiedBy="192.168.9.246"
customers="Customer Independent"
customers="Not Assigned"
customers="Opsware Inc."
customers="Acme Inc."
. . .
ontogeny="PROD"
createdBy=
status="ACTIVE"
createdDt=-1
realms="Transitional"
realms="C39"
realms="C39-agents"
modifiedDt=1146528752000
name="C39"
displayName="C39"
}

The following invocation of getDeviceGroups indicates the structure format specifier

for the return value:
2 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 2: Opsware CLI Methods
cd /opsw/Server/@/d04.opsware.com/method
./.getDeviceGroups:s

This call to getDeviceGroups displays the following output. Because

d04.opsware.com belongs to two server groups, the output includes two structures. In

each structure, the devices array has elements for the servers belonging to that group.

{
dynamic=true
devices="m302-w2k-vm1.dev.opsware.com"
devices="d04.opsware.com"
. . .
status="ACTIVE"
public=true
fullName="Device Groups Public All Windows Servers"
description="test"
createdDt=-1
modifiedDt=1142019861000
parent="Public"
}

{
dynamic=true
devices="opsware-nibwp.build.opsware.com"
devices="glengarriff.snv1.dev.opsware.com"
devices="millstreet"
. . .
fullName="Device Groups Public z_testsrvgroup"
. . .
}

The structure format specifier is the default for methods that retrieve value objects (VOs).

For example, the following two calls to getServerVO are equivalent:

cd /opsw/Server/@/d04.opsware.com/method
./.getServerVO:s
./getServerVO

In this example, getServerVO displays the following output:

{
managementIP="192.168.198.93"
modifiedBy=
manufacturer="DELL COMPUTER CORPORATION"
use="UNKNOWN"
discoveredDate=1145308867000
origin="ASSIMILATED"
osSPVersion="RTM"
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 43

Opsware® Automation Platform Developer’s Guide

4

locale="English_United States.1252"
reporting=false
netBIOSName=
previousSWReg=1147678609000
osFlavor="Windows Server 2003, Standard Edition"
peerIP="192.168.198.93"
modifiedDt=1145308868000
. . .
serialNumber="HVKZS51"
}

This structure represents the ServerVO class of the Opsware API. Every attribute in this

structure corresponds to a file in the attr directory. In the next example, the

getServerVO and cat commands both display the value of the serialNumber

attribute of a server:

cd /opsw/Server/@/d04.opsware.com
./method/getServerVO | grep serialNumber
cat attr/serialNumber ; echo

Directory Format Specifier Examples

The following command changes the current working directory to the customer

associated with the server d04.opsware.com:

cd /opsw/Server/@/d04.opsware.com/attr/.customer:d

The next command lists the name of this customer:

cat /opsw/Server/@/d04.opsware.com/attr/\
.customer:d/attr/name

The directory specifier can be used only in command arguments that require directory

names. The following cat command fails because it attempts to display a directory:

cat /opsw/Server/@/d04.opsware.com/attr/.customer:d # WRONG!

However, the next command is legal:

ls /opsw/Server/@/d04.opsware.com/attr/.customer:d

Value Representation
Because they run in a shell environment (Global Shell), OCLI methods accept and return

data as strings. However, the underlying API methods can accept and return other data

types, such as numbers, booleans, and objects. The sections that follow describe how the

OGFS and OCLI methods represent non-string data types.
4 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 2: Opsware CLI Methods
Opsware Objects in the OGFS

The Opsware data model includes objects such as servers, server groups, customers,

and facilities. In the OGFS, these objects are represented as directory structures:

/opsw/Customer
/opsw/Facility
/opsw/Group
/opsw/Library
/opsw/Realm
/opsw/Server
. . .

The preceding list is not complete. To see the full list, enter ls /opsw.

Object Attributes

The attributes of an Opsware SAS object are represented by text files in the attr

subdirectory. The name of each file matches the name of the attribute. The contents of a

file reveals the value of the attribute.

For example, the /opsw/Server/@/buzz.opsware.com/attr directory contains

the following files:

agentVersion
codeset
createdBy
createdDt
customer
defaultGw
description
discoveredDate
facility
hostName
locale
lockInfo
loopbackIP
managementIP
manufacturer
. . .

To display the management IP address of the buzz.opsware.com server, enter the

following commands:

cd /opsw/Server/@/buzz.opsware.com/attr
cat managementIP ; echo
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 45

Opsware® Automation Platform Developer’s Guide

4

Custom Attributes

Custom attributes are name-value pairs that you can assign to Opsware objects such as

servers. In the OGFS, custom attributes are represented as text files in the CustAttr

subdirectory. You can create custom attributes in a Global Shell session by creating new

text files under CustAttr. The following example creates a custom attribute named

MyGreeting, with a value of hello there, on the buzz.opsware.com server:

cd /opsw/Server/@/buzz.opsware.com/CustAttr
echo -n "hello there" > MyGreeting

For more examples, see “Managing Custom Attributes” in Opsware® SAS User’s Guide:

Server Automation.

The self File

The self file resides in the directory of an Opsware SAS object such as a server or

customer. This file provides access to various representations of the current object,

depending on the format specifier. (For details, see “Format Specifiers” on page 39.)

To list the ID of the buzz.opsware.com server, enter the following commands:

cd /opsw/Server/@/buzz.opsware.com
cat .self:i ; echo

For a server, the default format specifier is the name. The following commands display the

same output:

cat self ; echo
cat .self:n ; echo

The next command lists the attributes of a server in the structure format:

cat .self:s
6 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 2: Opsware CLI Methods
Primitive Values

Table 2-2 indicates how primitive values are converted between the API and their string

representations in OCLI methods. Except for Dates, primitive values do not support format

specifiers. Dates support ID format specifiers.

Table 2-2: Conversion Between Primitive Types and OCLI Methods

PRIMITIVE TYPE JAVA EQUIVALENT
OUTPUT FROM
OCLI METHOD

 INPUT TO CLI
METHODS

String java.lang.

String

Character string,

presented in the

encoding of the

current session.

Character string,

converted to

Unicode from the

current session

encoding.

Number byte, short,

int, long,

float, double;

and their object

equivalents

Decimal format, not

localized. Scientific

notation for very

large or small

values.

Examples -

Decimal: 101,

512.34, -104

Hex: 0x1F32,

0x2e40

Octal: 0543

Scientific: 4.3E4,

6.532e-9,

1.945e+02

Boolean boolean,

Boolean

true or false The string “true” and

all mixed-case

variants evaluate to

true. All other

values evaluate to

false.

Binary data byte[], Byte[] Binary string. No

conversion from

session encoding.

Binary string. No

conversion to

session encoding.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 47

Opsware® Automation Platform Developer’s Guide

4

Arrays

The representation of array objects depends on whether they are standalone (an array

attribute file or a method return value) or contained in the structure of a complex object.

First, standalone array objects are presented according the the underlying type, separated

by new-line characters. Within an array element, a new-line character is escaped by \n

and a backslash by \\.

Array values can be output or input using any representation supported by the underlying

type. For example, by default, the getDeviceGroups method lists the groups as

names:

All Windows Servers
Servers in Austin
Testing Pool

If you indicate the ID format specifier, (.getDeviceGroups:i) the method displays the

IDs of the groups:

com.opsware.device.DeviceGroupRef:15960039
com.opsware.device.DeviceGroupRef:10390039
com.opsware.device.DeviceGroupRef:17380039

Date java.util.

Calendar

Date value. By

default, presented in

this format:

YYYY/MM/DD

HH:MM:SSS

The time is

presented in UTC. If

an ID format

specifier is

indicated, the value

is presented as the

number of

milliseconds since

the epoch, in UTC.

Same as output.

Table 2-2: Conversion Between Primitive Types and OCLI Methods

PRIMITIVE TYPE JAVA EQUIVALENT
OUTPUT FROM
OCLI METHOD

 INPUT TO CLI
METHODS
8 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 2: Opsware CLI Methods
Second, an array contained in the structure of a complex object is represented as a set of

name-value pairs, using the attribute as the name. The attribute appears multiple times,

once for each element in the array. The order in which the attributes appear determine the

order of the elements in the array. The following example shows a structure that contains

two attributes, a string called subject and a three-element array of numbers called

ranks:

{ subject=”my favorites” ranks=17 ranks=44 ranks=24 }

Arrays can also be represented by directories. Within an array directory, each array

element has a corresponding file (for primitive types) or subdirectory (for complex types).

The name of each entry is the index number of the array element, starting with zero.

For an array that is the attribute of a complex object, you should modify the array by

editing its attribute file. This action completely replaces the array with the contents of the

edited file.

For an array containing elements that are complex objects, you should modify the array by

changing its directory representation. To change an element value, edit the element file.

For example, suppose you have an array with five string elements. The ls command lists

the elements as follows:

0 1 2 3 4

The following command changes the value of the third element:

echo -n "My new value" > 2

OCLI Method Parameters and Return Values
This section discusses the details of method context (instance or static), parameter

usage, return values, and exit status.

Method Context and the self Parameter

In the OGFS, a method resides in multiple locations. The location of a method is related to

its context, which is either instance or static.

The method with instance context resides in method directory of a specific Opsware SAS

object. The method invocation does not require the self parameter. The instance of the

object affected by the method is implied by the method location. The following example

changes the customer of the d04.opsware.com server:

cd /opsw/Server/@/d04.opsware.com/method
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 49

Opsware® Automation Platform Developer’s Guide

5

./setCustomer customer:i=9

A method with static context resides in a single location under /opsw/api. The method

invocation requires the self parameter to identify the instance affected by the method. In

the following static context example, self:i specifies the ID of the managed server:

cd /opsw/api/com/opsware/server/ServerService/method
./setCustomer self:i=230054 customer:i=9

Passing Arguments on the Command-Line

The command-line arguments are specified as name-value pairs, joined by the equal sign

(=). The name-value pairs are separated by one or more white space characters, typically

spaces. The names on the command-line match the parameter names of the

corresponding Java method in the Opsware API.

For example, in the Opsware API, the setCustomField method has the following

definition:

public void setCustomField(CustomFieldReference self,
java.lang.String fieldName, java.lang.String strValue)...

The following OCLI method example assigns a value to a custom field of the server with

ID 3670039:

cd /opsw/api/com/opsware/server/ServerService/method
./setCustomField self:i=3670039 \
fieldName="Service Agreement" strValue="Gold"

As described in the previous section, a method with an instance context does not require

the self parameter. The following setCustomField example is equivalent to the

preceding example:

cd /opsw/.Server.ID/3670039
./setCustomField \
fieldName="Service Agreement" strValue="Gold"

You can specify the command-line arguments in any order. The following two OCLI

method invocations are equivalent:

./setCustomField fieldName="My Stuff" strValue="abc"

./setCustomField strValue="abc" fieldName="My Stuff"

To specify a null value for a parameter, either omit the parameter or insert a white space

after the equal sign. In the following examples, the value of myParam is null:

./someMethod myField="more info" myParam= anotherParam=9834

./someMethod myField="more info" anotherParam=9834
0 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 2: Opsware CLI Methods
Specifying the Type of a Parameter

If a method has an abstract type for a parameter, you must specify the concrete type as

well as the value. In the following example, the com.opsware.folder.FolderRef

type is required:

cd /opsw/api/com/opsware/folder/FolderService/method
./remove self:i="com.opsware.folder.FolderRef:730555"

If you do not specify the concrete type, the following error message is displayed:

Object type type-name is abstract. Specify a concrete sub-
type.

Complex Objects and Arrays As Parameters

To pass an argument that is a complex object, enclose the object’s attributes in curly

braces, as shown in the “Structure Format Specifier Syntax” on page 41.

The following example creates a public server group named AllMine. The create

method has a single parameter, pattern, which encloses the parent and shortName

attributes in curly braces. In this example, getPublicRoot returns 2340555, the ID of

the top public group.

cd /opsw/api/com/opsware/device/DeviceGroupService/method
./.getPublicRoot:i ; echo
./create “pattern={ parent:i=2340555 shortName=’AllMine’ }”

Specify array parameters by repeating the parameter name, once for each array element.

For example, the following invocation of the assign method specifies the first two

elements in the array parameter named policies:

cd /opsw/api/com/opsware/swmgmt
cd SoftwarePolicyService/method
./attachPolicies self:i=4220039 \
policies:i=4400335 policies:i=4400942

Overloaded Methods

A Java method name is overloaded if multiple methods in the same class have the same

name but different parameter lists. With overloaded OCLI methods, the argument names

on the command-line indicate which method to invoke. The setCustomField method,

for example, is overloaded to support the setting of different data types. The following two

commands invoke different versions of the method:

./setCustomField \
fieldName="Service Agreement" strValue="Gold"
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 51

Opsware® Automation Platform Developer’s Guide

5

./setCustomField \
fieldName=hmp longValue=2245

Return Values

If the API method underlying an OCLI method returns a value, then the OCLI method

outputs the value to stdout. As with Unix commands, you can redirect a method’s

stdout to a file or assign it to an environment variable.

To change the representation of the return value, insert a leading period and append a

format specifier to the method name. The following example returns server references as

IDs, instead of the default names:

cd /opsw/api/com/opsware/server/ServerService/method
./.findServerRefs:i

If you indicate a format specifier that is incompatible with the method’s return type, the file

system responds with an error.

Exit Status

Like Unix shell commands, OCLI methods use the exit status ($?) to indicate the result of

the call. An exit status of zero indicates success; a non-zero indicates an error. OCLI

methods output error messages to stderr.

Table 2-3: Exit Status Codes for OCLI Methods

EXIT STATUS CATEGORY DESCRIPTION

0 Success The method completed successfully.

1 Command-Line Parse

Error

The command-line for the method call is malformed and

could not be parsed into a set of options (--option[=value])

and parameter values (param=value).

2 Parameter Parse Error The parameter values could not be parsed into the object

types required by the API.

3 API Usage Error The call failed because of a usage error, such as an invalid

parameter value.

4 Access Error The user does not have permission to perform the

operation.
2 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 2: Opsware CLI Methods
For example, the following bash script checks the exit status of the getDeviceGroups

method:

#!/bin/bash

cd /opsw/Server/@/toro.snv1.corp.opsware.com/method
./getDeviceGroups
cmnd_exit_status=$?

if [$cmnd_exit_status -eq 0]
then
 echo "The command was successful."
else
 echo "The command failed."

echo "Exit status = " $cmnd_exit_status
fi

An OCLI method invokes an underlying API method. If the API method throws an

exception, the OCLI method returns a non-zero exit status. When debugging a method

call, you might find it helpful to view information about a thrown exception. The

/sys/last-exception file in the OGFS contains the stack trace of an exception

thrown by the most recent API call. After this file has been read, the system discards the

file contents.

Search Filters and OCLI Methods
Many methods in the Opsware API accept object references as parameters. To retrieve

object references based on search critera, you invoke methods such as

findServerRefs and findJobRefs. For example, you can invoke

findServerRefs to search for all servers that have opsware.com in the hostname

attribute.

Search Syntax

Methods such as findServerRefs have the following syntax:

5 Other Error An error occurred other than those indicated by exit statuses

1- 4.

Table 2-3: Exit Status Codes for OCLI Methods (continued)

EXIT STATUS CATEGORY DESCRIPTION
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 53

Opsware® Automation Platform Developer’s Guide

5

findobjectRefs filter=’[object-type:]expression’

The filter parameter includes an expression, which specifies the search criteria. You

enclose an expression in either parentheses or curly brackets. A simple expression has

the following syntax:

value-object.attribute operator value

(This syntax is simplified. For the full definition, see “Filter Grammar” on page 143)

Search Examples

Most of the SAS object types have associated finder methods. This section shows how to

use just a few of them. To see how searches are used with other OCLI methods, see

“Example Scripts” on page 57.

Finding Servers

Find servers with host names containing opsware.com:

cd /opsw/api/com/opsware/server/ServerService/method
./.findServerRefs:i \
filter=’device:{ ServerVO.hostname CONTAINS opsware.com }’

Find servers with a use attribute value of either UNKNOWN or PRODUCTION:

cd /opsw/api/com/opsware/server/ServerService/method
./.findServerRefs:i \
filter=’{ ServerVO.use IN “UNKNOWN” “PRODUCTION” }’

The following bash script shows how to search for servers, save their IDs in a temporary

file, and then specify each ID as the parameter of another method invocation. This script

displays the public groups that each Linux server belongs to.

#!/bin/bash

TMPFILE=/tmp/server-list.txt
rm -f $TMPFILE

cd /opsw/api/com/opsware/server/ServerService/method

./.findServerRefs:i \
filter='{ ServerVO.osVersion CONTAINS Linux }' > $TMPFILE

for ID in `cat "$TMPFILE"`
do
 echo Server ID: $ID
 ./getDeviceGroups self:i=$ID
 echo
4 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 2: Opsware CLI Methods
done

Finding Jobs

The examples in this section return the IDs of jobs such as server audits or policy

remediations.

Find the jobs that have completed successfully:

cd /opsw/api/com/opsware/job/JobService/method
./.findJobRefs:i filter='job:{ job_status = "SUCCESS" }'

(For a list of allowed values of job_status, see Table 7-6 on page 141.)

Find the jobs that have completed successfully or with warning:

cd /opsw/api/com/opsware/job/JobService/method
./.findJobRefs:i \
filter='job:{ job_status IN "SUCCESS" "WARNING" }'

Find the jobs that have been started today:

cd /opsw/api/com/opsware/job/JobService/method
./.findJobRefs:i \
filter='job:{ JobInfoVO.startDate IS_TODAY "" }'

Find all server audit jobs:

cd /opsw/api/com/opsware/job/JobService/method
./findJobRefs \
filter='job:{ JobInfoVO.description = "Server Audit" }'

Find the jobs that have run on the server with the ID 280039:

cd /opsw/api/com/opsware/job/JobService/method
./.findJobRefs:i filter='job:{ job_device_id = "280039" }'

Find today’s jobs that have failed:

cd /opsw/api/com/opsware/job/JobService/method
./.findJobRefs:i \
filter='job:{ ((JobInfoVO.startDate IS_TODAY "") \
& (job_status = "FAILURE")) }'

Finding Other Objects

This section has examples that search for software policies and packages.

Find the software policies created by the Opsware user jdoe:

cd /opsw/api/com/opsware/swmgmt/SoftwarePolicyService/method
./.findSoftwarePolicyRefs:i \
filter=’{ SoftwarePolicyVO.createdBy CONTAINS jdoe }’
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 55

Opsware® Automation Platform Developer’s Guide

5

Find the MSIs with ismtool for the Windows 2003 platforms:

cd /opsw/api/com/opsware/pkg/UnitService/method
./.findUnitRefs:i \
filter='software_unit:{ ((UnitVO.unitType = "MSI") \
& (UnitVO.name contains "ismtool") \
& (software_platform_name = "Windows 2003")) }'

Find the Solaris patches named 117170-01:

cd /opsw/api/com/opsware/pkg/solaris/SolPatchService/method
./.findSolPatchRefs:i filter='{name = 117170-01}'

Find the folder with the name that includes the string Test and with a parent folder

named My Stuff.

cd /opsw/api/com/opsware/folder/FolderService/method
./.findFolders:s \
filter='((FolderVO.name CONTAINS "Test") \
& (folder_parent_name = "My Stuff"))'

Searchable Attributes and Valid Operators

Not every attribute of a value object can be specified in a search filter. For example, you

can search on ServerVO.use but not on ServerVO.OsFlavor.

To find out which attributes are searchable for a given object type, invoke the

getSearchableAttributes method. The following example lists the attributes of

ServerVO that can be specified in a search expression:

cd /opsw/api/com/opsware/search/SearchService/method
./getSearchableAttributes searchableType=device

The searchableType parameter indicates the object type. To determine the allowed

values for searchableType, enter the following commands:

cd /opsw/api/com/opsware/search/SearchService/method
./getSearchableTypes

To find out which operators are valid for an attribute, invoke the

getSearchableAttributeOperators method. The following example lists valid

operators (such as CONTAINS and IN) for the attribute ServerVO.hostname:

cd /opsw/api/com/opsware/search/SearchService/method
./getSearchableAttributeOperators searchableType=device \
searchableAttribute=ServerVO.hostname
6 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 2: Opsware CLI Methods
Example Scripts
This section has code listings for simple bash scripts that invoke a variety of OCLI

methods. (To download the scripts, see “Obtaining the Code Examples” on page 29.)

These scripts demonstrate how to pass method parameters on the command-line,

including complex objects and the self parameter. If you decide to copy and paste

these example scripts, you will need to change some of the hardcoded object names,

such as the d04.opsware.com server. For tutorial instructions on creating and running

scripts within the OGFS, see step 10 on page 37.

Of the following scripts, the most interesting is remediate_policy.sh on page 61. It

creates a software policy, adds a package to the policy, and in the last line, installs the

package on a managed server by invoking the startFullRemediateNow method.

create_custom_field.sh

This script creates a custom field (virtual column), named TestFieldA attaches the field

to all servers, and then sets the value of the field on a single server. Until it is attached, the

custom field does not appear in the SAS Web Client. You can create custom fields for

servers, device groups, or software policies. To create a custom field, your Opsware user

must belong to a user group with the Manage Virtual Columns permission (new in 6.0.1).

Unlike a custom attribute, a custom field applies to all instances of a type. For an example

that creates a custom attribute in the OGFS, see "Managing Custom Attributes" in the

Opsware® SAS User’s Guide: Server Automation.

The create_custom_field.sh script has the following code:

#!/bin/bash
create_custom_field.sh

cd /opsw/api/com/opsware/custattr/VirtualColumnService/method

Create a virtual column.
Remember the name because you cannot search for the
displayName.
./create vo=’{ name=TestFieldA type=SHORT_STRING \
displayName="Test Field A" }’

column_id=‘./.findVirtualColumn:i name=TestFieldA‘

echo --- column_id = $column_id

cd /opsw/api/com/opsware/server/ServerService/method
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 57

Opsware® Automation Platform Developer’s Guide

5

Attach the column to all servers.
All servers will have this custom field.
./attachVirtualColumn virtualColumn:i=$column_id

Get the ID of the server named d04.opsware.com
devices_id=‘./.findServerRefs:i \
filter=\
’device:{ ServerVO.hostname CONTAINS "d04.opsware.com" }’‘

echo --- devices_id = $devices_id

Set the value of the custom field (virtual column) for
a specific server.
./setCustomField self:i=$devices_id fieldName=TestFieldA \
strValue="This is something."

create_device_group.sh

This script creates a static device group and adds a server to the group. Next, the script

creates a dynamic group, sets a rule on the group, and refreshes the membership of the

group. The last statement of the script lists the devices that belong to the dynamic group.

Here is the script’s code:

#!/bin/bash
create_device_group.sh

cd /opsw/api/com/opsware/device/DeviceGroupService/method

Get the ID of the public root group (top of hierarchy).
public_root=‘./.getPublicRoot:i‘

Create a public static group.
./create "vo={ parent:i=$public_root shortName=’Test Group A’ }"

Get the ID of the group just created.
group_id=‘./.findDeviceGroupRefs:i \
filter=’{ DeviceGroupVO.shortName = "Test Group A" }’ ‘

echo --- group_id = $group_id

cd /opsw/api/com/opsware/server/ServerService/method

Get the ID of the server named d04.opsware.com
devices_id=‘./.findServerRefs:i \
filter=\
’device:{ ServerVO.hostname CONTAINS "d04.opsware.com" }’‘
8 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 2: Opsware CLI Methods
echo --- devices_id = $devices_id

cd /opsw/api/com/opsware/device/DeviceGroupService/method

Add a server to the device group.
./addDevices \
self:i=$group_id devices:i=$devices_id

Create a dynamic device group.
./create \
"vo={ parent:i=$public_root \
shortName=’Test Dyn B’ dynamic=true }"

Get the ID of the device group.
dynamic_group_id=‘./.findDeviceGroupRefs:i \
filter=’{ DeviceGroupVO.shortName = "Test Dyn B" }’ ‘

echo --- dynamic_group_id = $dynamic_group_id

Set the rule so that this group contains servers with
hostnames containing the string opsware.com.
The rule parameter has the same syntax as the filter
parameter of the find methods.
./setDynamicRule self:i=$dynamic_group_id \
rule=’device:{ ServerVO.hostname CONTAINS opsware.com }’

By default, membership in dynamic device groups is refreshed
once
an hour, so force the refresh now.
./refreshMembership selves:i=$dynamic_group_id now=true

Display the names of the devices that belong to the group.
echo --- Devices in group:
./getDevices selves:i=$dynamic_group_id

create_folder.sh

This script creates a folder named /Test 1, lists the folders under the root (/) folder, and

then creates the subfolder /Test 1/Test 2. After creating these folders, you can view

them under the Library in the navigation pane of the SAS Client.

Here is the code for this script:

#!/bin/bash
create_folder.sh
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 59

Opsware® Automation Platform Developer’s Guide

6

cd /opsw/api/com/opsware/folder/FolderService/method

Get the ID of the root (top) folder.
root_id=`./.getRoot:i`

Create a new folder under the root folder.
./create vo="{ name='Test 1' folder:i=$root_id }"

Display the names of the folders under the root folder.
./getChildren self:i=$root_id

Get the ID of the folder "/Test 1"
folder_id=`./.getFolderRef:i path="Test 1"`

Create a subfolder.
./create vo="{ name='Test 2' folder:i=$folder_id }"

Get the ID of the folder "/Test 1/Test 2"
folder_id=`./.getFolderRef:i path="Test 1" path="Test 2"`
echo folder_id = $folder_id

detect_hba_version.sh

This script detects the HBA firmware level of all Unix servers and for each server assigns

the level to a custom field. (The HBA is the Host Bus Adaptor, an interface card that

connects a host to a storage device.) Before running this script, create a server custom

field named hba_firmware_version and then create a dynamic device group with a

rule that specifies the value of this custom field. After the script runs, the device group is

automatically populated with servers that have the specified HBA firmware level.

A future version of Opsware SAS might include the HBA firmware level in the server

properties gathered by the Opsware Agent. Until then, you can run this script to fetch the

firmware level and store it in a custom field.

The detect_hba_version.sh script has the following code:

#!/bin/bash
detect_hba_version.sh

Native Emulex command that fetches the HBA firmware level:
NATIVE_CMND="/opt/EMLXemlxu/bin/get_fw_rev"

cd "/opsw/Group/Public/All Unix Servers/@/Server"

Iterate through all Unix servers.
Run the native command on each server
0 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 2: Opsware CLI Methods
Assign the results of the command to the server's custom
field.
for SERVER in *; do
 FIRMWARE_VER=$(cd $SERVER; rosh -l root "$NATIVE_CMND")
 ./$SERVER/method/setCustomField \

fieldName=hba_firmware_version strValue="$FIRMWARE_VER"
 echo SERVER = $SERVER FIRMWARE_VER = $FIRMWARE_VER
done

remediate_policy.sh

This script creates a software policy named TestPolicyA in an existing folder named

Test 2, adds a package containing ismtool to the policy, attaches the policy to a

single server (not a group), and then remediates the server. The remediation action

launches a job that installs the package onto the server. You can check the progress and

results of the job in the SAS Client. For examples that search for jobs with OCLI methods,

see “Finding Jobs” on page 55.

In this script, in the create method of the SoftwarePolicyService, the value of the

platforms parameter is hardcoded. In most of these example scripts, hardcoding is

avoided by searching for an object by name. In the case of platforms, searching by the

name attribute is difficult because if differs from the displayName attribute, which is

exposed in the SAS Client but is not searchable. The easiest way to find a platform ID is

by going to the twister and running the PlatformService.findPlatformRefs

method with no parameters.

The update method in this script hardcodes the ID of softwarePolicyItems, an

object that can be difficult to search for by name if the Software Repository contains many

packages with similar names. One way to get the ID is to run the SAS Client, search for

Software by fields such as File Name and Operating System, open the package located

by the search, and note the Opsware ID in the properties view of the package.

In the following listing, the update method has a bad line break. If you copy this code,

edit the script so that the vo parameter is on a single line.

Here is the source code for the remediate_policy.sh script:

#!/bin/bash
remediate_policy.sh

Get the ID of the folder where the policy will reside.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 61

Opsware® Automation Platform Developer’s Guide

6

cd /opsw/api/com/opsware/folder/FolderService/method
folder_id=\
‘./.findFolders:i filter=’{ FolderVO.name = "Test 2" }’‘

cd /opsw/api/com/opsware/swmgmt/SoftwarePolicyService/method

Create a software policy named TestPolicyA.
This policy resides in the folder located in the preceding
findFolders call.
The platform for this policy is Windows 2003 (ID 10007)
./create softwarePolicyVO="{ platforms:i=10007 \
name="TestPolicyA" \
folder:i=$folder_id }"

policy_id=‘./.findSoftwarePolicyRefs:i \
filter=’{ SoftwarePolicyVO.name = "TestPolicyA" }’‘

echo --- policy_id = $policy_id

Call the update method to add a package to the software
policy. The package ID is 4230039.

NOTE: The following command has a bad line break.
The vo parameter should be on a single line.

./update self:i=$policy_id force=true\
The next 2 lines should be on a single line.
vo=’{
softwarePolicyItems:i=com.opsware.pkg.windows.MSIRef:4230039 }’

cd /opsw/api/com/opsware/server/ServerService/method

Get the ID of the server named d04.opsware.com
devices_id=‘./.findServerRefs:i \
filter=’device:{ ServerVO.hostname CONTAINS "d04.opsware.com"
}’‘

echo --- devices_id = $devices_id

Attach the policy to a single server (not a group).
./attachPolicies self:i=$devices_id \
policies:i=$policy_id

Remediate the server to install the package in the policy.
job_id=‘./.startFullRemediateNow:i self:i=$devices_id‘

echo --- job_id = $job_id
2 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 2: Opsware CLI Methods
remove_custom_field.sh

Although not common in an operational environment, removing custom fields is

sometimes necessary in a testing environment. Note that a custom field must be

unattached before it can be removed.

Here is the code for remove_custom_field.sh:

#!/bin/bash
remove_custom_field.sh

if [! -n "$1"]
 then
 echo "Usage: ‘basename $0‘ <name>"
 echo "Example: ‘basename $0‘ hmp"
 exit
fi

cd /opsw/api/com/opsware/custattr/VirtualColumnService/method

column_id=‘./.findVirtualColumn:i name=$1‘

echo --- column_id = $column_id

cd /opsw/api/com/opsware/server/ServerService/method

Column must be detached before it can be removed.
./detachVirtualColumn virtualColumn:i=$column_id

cd /opsw/api/com/opsware/custattr/VirtualColumnService/method

Remove the virtual column.
./remove self:i=$column_id

schedule_audit_task.sh

This script starts an audit task, scheduling it for a future date. With OCLI methods, date

parameters are specified with the following syntax:

YYYY/MM/DD HH:MM:SS.sss

The method that launches the task, startAudit, returns the ID of the job that performs

the audit. For examples that search for jobs with OCLI methods, see “Finding Jobs” on

page 55.

Here is the code for schedule_audit_task.sh:

#!/bin/bash
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 63

Opsware® Automation Platform Developer’s Guide

6

schedule_audit_task.sh

cd /opsw/api/com/opsware/compliance/sco/AuditTaskService/method

Get the ID of the audit task to schedule.
audit_task_id=‘./.findAuditTask:i \
filter=’audit_task:{ \
((AuditTaskVO.name BEGINS_WITH "HW check") \
& (AuditTaskVO.createdBy = "gsmith")) }’‘

echo --- audit_task_id = $audit_task_id

Schedule the audit task for Oct. 17, 2008.
In the startDate parameter, note that the last delimiter for
the time is a period, not a colon.
job_id=‘./startAudit self:i=140039 \
schedule:s=’{ startDate="2008/10/17 00:00:00.000" }’ \
notification:s=’{ onFailureOwner="sjones@opsware.com" \
onFailureRecipients="jdoe@opsware.com" \
onSuccessOwner="sjones@opsware.com" \
onSuccessRecipients="jdoe@opsware.com" }’‘

echo --- job_id = $job_id

Getting Usage Information on OCLI Methods
In a future release, the OCLI methods will display usage information. Until then, you can

get the necessary information from the API documentation or the OGFS with the

techniques described in the following sections.

Listing the Services

The Opsware API methods are organized into services. To find out what services are

available for OCLI methods, enter the following commands in a Global Shell session:

cd /opsw/api/com/opsware
find . -name "*Service"

To list the services in the API documentation, specify the following URL in your browser:

https://occ_host:1032

The occ_host is the IP address or host name of the core server running the Opsware

Command Center component.
4 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 2: Opsware CLI Methods
Finding a Service in the API Documentation

The path of the service in the OGFS maps to the Java package name in the API

documentation. For example, in the OGFS, the ServerService methods appear in the

following directory:

/opsw/api/com/opsware/server

In the API documentation, the following interface defines these methods:

com.opsware.server.ServerService

Listing the Methods of a Service

In the OGFS, you can list the contents of the method directory of a service, For example,

to display the method names of the ServerService, enter the following command:

ls /opsw/api/com/opsware/server/ServerService/method

In the API documentation, perform the following steps to view the methods of

ServerService:

1 In the upper left pane, select com.opsware.server.

2 In the lower left pane, select ServerService.

3 In the main pane, scroll down to view the methods.

Listing the Parameters of a Method

In the API documentation, perform the steps described in the preceding section. In the

Method Detail section of the service interface page, view the parameters and return types.

(For more information about method parameters, see “Passing Arguments on the

Command-Line” on page 50.)

Getting Information About a Value Object

The API documentation shows that some service methods pass or return value objects

(VOs), which contain data members (attributes). For example, the

ServerService.getServerVO method returns a ServerVO object. To find out what

attributes ServerVO contains, perform the following steps:

1 In the API documentation, select the ServerVO link. You can find the this link in

several places:

• The method signature for getServerVO

• The list of classes (lower left pane) for com.opsware.server
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 65

Opsware® Automation Platform Developer’s Guide

6

• On the Index page. A link to the Index page is at the top of the main pane of the API

documentation.

2 On the ServerVO page, note the getter and setter methods. Each getter-setter pair

corresponds to an attribute contained in the value object. For example,

getCustomer and setCustomer indicate that ServerVO contains an attribute

named customer.

Determining If an Attribute Can Be Modified

Only a few object attributes can be modified by client applications. To find out if an

attribute can be modified, perform the following steps:

1 In the API documentation, go to the value object page, as described in the preceding

section.

2 In the Method Detail section of the setter method, look for “Field can be set by

clients.”

For Opsware SAS objects represented in the OGFS, such as servers and customers, you

can determine which attributes are modifiable by checking the access types of the files in

the attr directory. The files that have read-write (rw) access types correspond to

modifiable attributes. For example, to list the modifiable attributes of a server, enter the

following commands:

cd /opsw/Server/@/server-name/attr
ls -l | grep rw

Determining If an Attribute Can Be Used in a Filter Query

To find out if an attribute of a value object can be used in a filter query (a search), perform

the following steps:

1 In the API documentation, go to the value object page.

2 In the Method Detail section of the getter method that corresponds to the attribute,

look for the string, “Field can be used in a filter query.”

From within a Global Shell session, to find out if an attribute can be searched on, follow

the techniques described in “Searchable Attributes and Valid Operators” on page 56
6 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 3: Python Access to the API with
Pytwist

Overview of Pytwist
Pytwist is a set of Python libraries that provide access to the Opsware API from managed

servers and custom extensions. (The twist is the internal name for the Web Services Data

Access Engine.) For managed servers, you can set up Python scripts that call Opsware

APIs through Pytwist so that end users can invoke the scripts as DSEs or ISM controls.

Created by Opsware Inc. Professional Services, custom extensions are Python scripts that

run in the Command Engine (way). Pytwist enables custom extensions to access recent

additions to the Opsware SAS data model, such as folders and software policies, which

are not accessible from Command Engine scripts.

This chapter is intended for developers and consultants who are already familiar with the

Opsware SAS data model, custom extensions, Opsware Agents, and the Python

programming language.

Setup for Pytwist
Before trying out the examples in this chapter, make sure that your environment meets the

following setup requirements, as detailed in the following sections.

I N T H I S C H A P T E R

This chapter contains the following topics:

• Overview of Pytwist

• Setup for Pytwist

• Pytwist Examples

• Pytwist Details
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 67

Opsware® Automation Platform Developer’s Guide

6

Supported Platforms for Pytwist

Pytwist is supported on managed servers and core servers. For a list of operating

systems supported for these servers, see the Opsware® SAS Release Notes.

Pytwist relies on Python version 1.5.2, the version used by Opsware Agents and custom

extensions.

Unlike Web Services and Java RMI clients, a Pytwist client relies on internal Opsware SAS

libraries. If your client program needs to access the Opsware API from a server that is not

a managed or core server, then use a Web Services or Java RMI client, not Pytwist.

Access Requirements for Pytwist

Pytwist needs to access port 1032 of the core server running the Web Services Data

Access Engine. By default, the engine listens on port 1032.

Installing Pytwist on Managed Servers

During an Opsware SAS installation or upgrade, the Pytwist libraries are placed on the

core server with the Command Engine component. Therefore, you do not need to install

Pytwist to use it with custom extensions.

However, Pytwist is not included with the Agent installation. You install Pytwist on a

managed server by remediating a policy that contains a Pytwist ZIP file. In the Opsware

SAS Client, the Pytwist ZIP files are located in the following folder:

/Opsware/Tools/Python Opsware API Access

This folder also includes pre-built software policies containing the Pytwist ZIP files for

each platform. For example, the policy named Windows Python Opsware API Access

contains ZIP files for Windows XP, 2000, 2003, and so forth. When you remediate this

policy, only the ZIP file that matches platform version is installed. For example, if you

remediate the policy on a Windows 2003 server, only the ZIP file for Windows 2003 is

installed.

To install Pytwist on a managed server, perform the following steps:

1 In the Opsware SAS Client, under Devices, locate the managed server.

2 In the Content pane, open the managed server.

3 In the Managed Server window, from the Actions menu select Install Software.

4 In the Install Software window, select the software policy, for example, Windows

Python Opsware API Access.
8 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 3: Python Access to the API with Pytwist
5 Click Install.

6 Step through the Remediate wizard until you get to the Summary Review window.

7 Click Start Job.

Pytwist Examples
The Python code examples in this section show how to get information from managed

servers, create folders, and remediate software policies. To download the examples, see

“Obtaining the Code Examples” on page 29.

Each Pytwist example performs the following operations:

1 Import the packages.

When importing objects of the Opsware API namespace, such as Filter, the path

includes the Java package name, preceded by pytwist. Here are the import

statements for the get_server_info.py example:

import sys
from pytwist import *
from pytwist.com.opsware.search import Filter

2 Create the TwistServer object:

ts = twistserver.TwistServer()

See “TwistServer Method Syntax” on page 75 for information about the method’s

arguments.

3 Get a reference to the service.

The Python package name of the service is the same as the Java package name,

but without the leading opsware.com. For example, the Java

com.opsware.server.ServerService package maps to the Pytwist

server.ServerService:

serverservice = ts.server.ServerService

4 Invoke the Opsware API methods of the service:

filter = Filter()
. . .
servers = serverservice.findServerRefs(filter)
. . .
for server in servers:

vo = serverservice.getServerVO(server)
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 69

Opsware® Automation Platform Developer’s Guide

7

. . .

get_server_info.py

This script searches for all managed servers with host names containing the command-

line argument. The search method, findServerRefs, returns an array of references to

server persistent objects. For each reference, the getServerVO method returns the

value object (VO), which is the data representation that holds the server’s attributes. Here

is the code for the get_server_info.py script:

#!/opt/opsware/bin/python
get_server_info.py

Search for servers by partial hostname.

import sys
sys.path.append("/opt/opsware/pylibs")
from pytwist import *
from pytwist.com.opsware.search import Filter

Check for the command-line argument.
if len(sys.argv) < 2:
 print ’You must specify part of the hostname as the search
target.’
 print "Example: " + sys.argv[0] + " " + "opsware.com"
 sys.exit(2)

Construct a search filter.
filter = Filter()
filter.expression = ’device_hostname *=* "%s"’ % (sys.argv[1])

Create a TwistServer object.
ts = twistserver.TwistServer()

Get a reference to ServerService.
serverservice = ts.server.ServerService

Perform the search, returning a tuple of references.
servers = serverservice.findServerRefs(filter)

if len(servers) < 1:
 print "No matching servers found"
 sys.exit(3)

For each server found, get the server’s value object (VO)
and print some of the VO’s attributes.
0 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 3: Python Access to the API with Pytwist
for server in servers:
 vo = serverservice.getServerVO(server)
 print "Name: " + vo.name
 print " Management IP: " + vo.managementIP
 print " OS Version: " + vo.osVersion

create_folder.py

This script creates a folder named /TestA/TestB by invoking the createPath

method. Note that the path parameter of createPath does not contain slashes. Each

string element in path indicates a level in the folder. Next, the script retrieves and prints

the names of all folders directly below the root folder. The listing for the create_

folder.py script follows:

#!/opt/opsware/bin/python
create_folder.py

Create a folder in Opsware SAS.

import sys
sys.path.append("/opt/opsware/pylibs")
from pytwist import *

Create a TwistServer object.
ts = twistserver.TwistServer()

Get a reference to FolderService.
folderservice = ts.folder.FolderService

Get a reference to the root folder.
rootfolder = folderservice.getRoot()
Construct the path of the new folder.
path = ’TestA’, ’TestB’

Create the folder /TestA/TestB relative to the root.
folderservice.createPath(rootfolder, path)

Get the child folders of the root folder.
rootchildren = folderservice.getChildren(rootfolder,
’com.opsware.folder.FolderRef’)

Print the names of the child folders.
for child in rootchildren:
 vo = folderservice.getFolderVO(child)
 print vo.name
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 71

Opsware® Automation Platform Developer’s Guide

7

remediate_policy.py

This script creates a software policy, attaches it to a server, and then remediates the

policy. Several names are hardcoded in the scirpt: the platform, server, and parent folder.

Optionally, you can specify the policy name on the command-line, which is convenient if

you run the script multiple times. The platform of the software policy must match the OS

of the packages contained in the policy. Therefore, if you change the hardcoded platform

name, then you also change the name in unitfilter.expression.

The following listing has several bad line breaks. If you copy this code, be sure to fix the

bad line breaks before running it. The comment lines beginning with "NOTE" point out the

bad line breaks.

#!/opt/opsware/bin/python
remediate_policy.py

Create, attach, and remediate a software policy.

import sys
sys.path.append("/opt/opsware/pylibs")
from pytwist import *
from pytwist.com.opsware.search import Filter
from pytwist.com.opsware.swmgmt import SoftwarePolicyVO

Initialize the names used by this script.
foldername = ’TestB’
platformname = ’Windows 2003’
servername = ’d04.opsware.com’
If a command-line argument is specified,
use it as the policy name
if len(sys.argv) == 2:
 policyname = sys.argv[1]
else:
 policyname = ’TestPolicyA’

Create a TwistServer object.
ts = twistserver.TwistServer()

Get the references to the services used by this script.
folderservice = ts.folder.FolderService
swpolicyservice = ts.swmgmt.SoftwarePolicyService
serverservice = ts.server.ServerService
unitservice = ts.pkg.UnitService
2 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 3: Python Access to the API with Pytwist
platformservice = ts.device.PlatformService

Search for the folder that will contain the policy.
folderfilter = Filter()
folderfilter.expression = ’FolderVO.name = ’ + foldername
folderrefs = folderservice.findFolderRefs(folderfilter)

if len(folderrefs) == 1:
 parent = folderrefs[0]
elif len(folderrefs) < 1:
 print "No matching folders found."
 sys.exit(2)
else:
 print "Non-unique folder name: " + foldername
 sys.exit(3)

Search for the reference to the platform "Windows Server
2003."
platformfilter = Filter()
platformfilter.objectType = ’platform’
doublequote = ’\"’
Because the platform name contains spaces,
it’s enclosed in double quotes
NOTE: The following code line has a bad line break.
The assignment statement should be on a single line.
platformfilter.expression = ’platform_name = ’ + doublequote +
platformname + doublequote
platformrefs = platformservice.findPlatformRefs(platformfilter)

if len(platformrefs) == 0:
 print "No matching platforms found."
 sys.exit(4)

Search for the references to some software packages.
unitfilter = Filter()
unitfilter.objectType = ’software_unit’
NOTE: The following code line has a bad line break.
The assignment statement should be on a single line.
unitfilter.expression = ’((UnitVO.unitType = "MSI") & (
UnitVO.name contains "ismtool") & (software_platform_name =
"Windows 2003"))’
unitrefs = unitservice.findUnitRefs(unitfilter)

Create a value object for the new software policy.
vo = SoftwarePolicyVO()
vo.name = policyname
vo.folder = parent
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 73

Opsware® Automation Platform Developer’s Guide

7

vo.platforms = platformrefs
vo.softwarePolicyItems = unitrefs

Create the software policy.
swpolicyvo = swpolicyservice.create(vo)

Search by hostname for the reference to a managed server.
serverfilter = Filter()
serverfilter.objectType = ’server’
NOTE: The following code line has a bad line break.
The assignment statement should be on a single line.
serverfilter.expression = ’ServerVO.hostname = ’ + servername
serverrefs = serverservice.findServerRefs(serverfilter)

if len(serverrefs) == 0:
 print "No matching servers found."
 sys.exit(5)

Create an array that has a reference to the
newly created policy.
swpolicyrefs = [1]
swpolicyrefs[0] = swpolicyvo.ref

Attach the software policy to the server.
swpolicyservice.attachToPolicies(swpolicyrefs, serverrefs)

Remediate the policy and the server.
NOTE: The following code line has a bad line break.
The assignment statement should be on a single line.
jobref = swpolicyservice.startRemediateNow(swpolicyrefs,
serverrefs)

print ’The remediation job ID is %d’ % jobref.id

Pytwist Details
This section describes the behavior and syntax that is specific to Pytwist.
4 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 3: Python Access to the API with Pytwist
Authentication Modes

The authentication mode of a Pytwist client is important because it affects the Opsware

SAS features and the resources that the client can access. A Pytwist client can run in one

of the following modes:

• Authenticated: The client has called the authenticate(username, password)

method on a TwistServer object. After calling the authenticate method, the

client is authorized as the Opsware user specified by the username parameter, much

like an end user who logs onto the Opsware SAS client.

• Not Authenticated: The client has not called the TwistServer.authenticate

method. On a managed server, the client is authenticated as if it is the device that

controls the Opsware Agent certificate. When used within a custom extension, a non-

authenticated Pytwist client needs acces to the Command Engine certificate. For more

information on custom extensions and certificates, contact Opsware Inc. Support.

TwistServer Method Syntax

The TwistServer method configures the connection from the client to the Web

Services Data Access Engine. (For sample invocations, see “Pytwist Examples” on page

69.) All of the arguments of TwistServer are optional. Table 3-1 lists the default values

for the arguments.

When the TwistServer object is created, the client does not establish a connection

with the server. Therefore, if a connectivity problem occurs, it is not encountered until the

client calls authenticate or an Opsware API method.

Table 3-1: Arguments of the TwistServer Method

ARGUMENT DESCRIPTION DEFAULT

host The hostname to connect to. twist

port The port number to connect to. 1032

secure Whether to use https for the

connection. Allowed values: 1

(true) or 0 (false).

1

ctx The SSL context for the

connection.

None. (See also “Authenti-

cation Modes” on page 75.)
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 75

Opsware® Automation Platform Developer’s Guide

7

Error Handling

If the TwistServer.authenticate method or an Opsware API method encounters a

problem, a Python exception is raised. You can catch these exceptions in an except

clause, as in the following example:

Create the TwistServerobject.
ts = twistserver.TwistServer(’localhost’)
Authenticate by passing an Opsware user name and password.
try:

ts.authenticate(’jdoe’, ’secretpass’)
except:

print "Authentication failed."
sys.exit(2)

Mapping Java Package Names and Data Types to Pytwist

The Pytwist interface is for Python, but the Opsware API is written in Java. Because of the

differences between two programming languages a Pytwist client must follow the

mapping rules described in this section.

In the Opsware API documentation, Java package names begin with com.opsware.

When specifying the package name in Pytwist, insert pytwist at the beginning, for

example:

from pytwist.com.opsware.compliance.sco import *

The Opsware API documentation specifies method parameters and return values as Java

data types. Table 3-2 shows how to map the Java data types to Python for the API method

invocations in Pytwist.

Table 3-2: Mapping Data Types from Java to Python

JAVA DATA TYPE IN OPSWARE API PYTHON DATA TYPE IN PYTWIST

Boolean An integer 1 for true or the integer 0 for

false.

Object[]

(object array)

As input parameters to API method calls,

object arrays can be either Python tuples or

arrays. As output from API method calls,

object arrays are returned as Python tuples.

Map Dictionary

List Array
6 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 3: Python Access to the API with Pytwist
Date A long data type representing the number

of milliseconds since epoch (midnight on

January 1, 1970).

Table 3-2: Mapping Data Types from Java to Python

JAVA DATA TYPE IN OPSWARE API PYTHON DATA TYPE IN PYTWIST
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 77

Opsware® Automation Platform Developer’s Guide

7
8 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 4: Java RMI Clients

Overview of Java RMI Clients
A Java Remote Invocation (RMI) client can call the methods of the Opsware API from a

server that has network access to the Opsware core. The server running the client does

not have to be an Opsware core or managed server. When it connects to the core, the

client specifies an Opsware user name and password, much like an end user logging on

with the Opsware SAS Client. The group that the user belongs to determines which

Opsware resources and tasks are available to the client.

This chapter is intended for software developers who are familiar with Opsware SAS

fundamentals and the Java programming language.

Setup for Java RMI Clients
Before developing Java RMI clients for the Opsware API, perform the following steps:

1 Install an Opsware SAS core in a development environment. Do not use a production

core.

2 Obtain a development server where you will build and run the Java RMI client.

3 On the development server, install the J2SE v 1.4.2 SDK.

4 Verify that the development server has a network connection to the Opsware SAS

core server that runs the OCC component.

I N T H I S C H A P T E R

This chapter contains the following topics:

• Overview of Java RMI Clients

• Setup for Java RMI Clients

• Java RMI Example
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 79

Opsware® Automation Platform Developer’s Guide

8

5 Download the opswclient.jar file from the Opsware SAS core server to your

development server. The opswclient.jar file contains the Java RMI stubs for the

Opsware API. You include the opswclient.jar in the classpath option when

compiling and running Java RMI clients.

To download opswclient.jar specify the following URL, where occ_host is the

core server running the OCC component:

https://occ_host:/twister/opswclient.jar

Java RMI Example
This section describes a simple Java RMI client named GetServerInfo. To download

the source code, see “Obtaining the Code Examples” on page 29.

The GetServerInfo client searches for managed servers by full or partial host name,

which you specify as a command-line argument. For each managed server found, the

client prints out the server’s name, management IP address, and OS version.

The GetServerInfo client performs the following steps:

1 Connects to Opsware SAS:

OpswareClient.connect("https", host, (short)port,
userPasswd[0], userPasswd[1], true);

2 Gets a reference to the ServerService interface:

serverSvc = (ServerService)OpswareClient.getService
(ServerService.class);

3 Invokes methods on ServerService:

ServerRef[] serverRefs = serverSvc.findServerRefs(filter);
. . .
ServerVO[] serverVOs = serverSvc.getServerVOs(serverRefs);
. . .
System.out.println(serverVOs[i].getName());

Compiling and Running the GetServerInfo Example

Before compiling and running the example, perform the following tasks:

1 Obtain the opswclient.jar file, as described in “Setup for Java RMI Clients” on

page 79.

2 Download the ZIP file that contains the demo program GetServerInfo.java file.

3 To compile the client, specify the opswclient.jar file for the classpath option:
0 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 4: Java RMI Clients
javac -classpath path/opswclient.jar GetServerInfo.java

4 To run the client, enter the following command, where target is the full or partial name

of a server managed by Opsware SAS:

java -classpath .:path/opswclient.jar \
GetServerInfo [options] target

In the following example, GetServerInfo connects to Opsware SAS on host c44

(where the OCC core component runs) and port 443. The program displays

information for managed servers with hostnames that contain the string opsw.

java -classpath .:/home/jdoe/opswclient.jar \
GetServerInfo --host c44.dev.opsware.com --port 443 opsw

5 Respond to the prompts for the Opsware user name and password. The Opsware

user must have read permissions for the servers that match the target specified

on the command line.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 81

Opsware® Automation Platform Developer’s Guide

8
2 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 5: Web Services Clients

Overview of Web Services Clients
The Opsware API supports Web Services, a programming environment built on open

industry standards such as SOAP (Simple Object Access Protocol) and WSDL (Web

Services Definition Language). You can create Web Services clients in a variety of

programming languages such as Perl and C# (as shown later in this chapter) or with Web

Services-enabled development environments such as Microsoft Visual Studio .NET and

BEA WebLogic Workshop.

This chapter is intended for software developers who are familiar with Opsware SAS

fundamentals and Web Services development.

Programming Language Bindings Provided in This Release

This release of Opsware SAS includes Web Services client stubs for C#. Web Services

clients written in Perl do not require client stubs.

This release does not include Web Services client stubs for Java or Python. However, Java

clients can access the Opsware API through RMI and Python clients through Pytwist, as

described in the preceding chapters.

URLs for Service Locations and WSDLs

Clients access the Web Services at URLs with the following syntax, where host is the

server running the OCC core component and port is for the HTTPS proxy. (The default

proxy port is 443). The packageName corresponds to the Java library that the service

belongs to.

I N T H I S C H A P T E R

This chapter contains the following topics:

• Overview of Web Services Clients

• Perl Web Services Clients

• C# Web Services Clients
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 83

Opsware® Automation Platform Developer’s Guide

8

https://host:port/osapi/packageName/WebServiceName

The WSDL files are at URLs with the following syntax:

https://host:port/osapi/packageName/WebServiceName?WSDL

For example, the following URLs point to the FolderService location and WSDL:

https://occ.c38.opsware.com:443/osapi/com/opsware/folder/
FolderService

https://occ.c39.opsware.com:443/osapi/com/opsware/folder/
FolderService?wsdl

The SOAP binding style is RPC (Remote Procedure Call) and the transport protocol is

HTTPS.

Security for Web Services Clients

Like other clients of the Opsware API, Web Services clients must be authenticated and

authorized to perform operations in Opsware SAS. Communication between clients and

the Web Services component in the Opsware core is encrypted. Access is restricted to

HTTPS clients through the HTTPS proxy port of the OCC core component. (The default

port is 443.)

Overloaded Operations

The Opsware API has overloaded operations, but the WSDL 2.0 specifications do not

support overloading. An overloaded operation in the Opsware API is exposed by the Web

Service as a single operation.

Java Interface Support

The Opsware API uses Java interfaces, but Web Services does not support interfaces. As

a workaround, the WSDL files map interfaces to xsd:anyType. For clients coded in

object-oriented programming languages such as C#, if an API method returns an

interface, the return type must be cast to a concrete class. Arrays of interfaces are

converted to Object[]; specific types of the array members are preserved through

serialization/deserialization. For a C# code example, see “Handle Interface Return Types”

on page 98.

Unsupported Data Types

The following data types are used by the Opsware API but are not supported by SOAP:

java.util.Properties
4 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 5: Web Services Clients
com.opsware.common.ModifiableMap
com.opsware.acm.ValueSet
com.opsware.swmgmt.PolicyOverrideFilter

Methods Omitted from Web Services

The following Opsware API methods use unsupported data types as parameters or return

types. As a result, they are not exposed as operations in the Web Services.

com.opsware.custattr.CustomAttribute.getCustAttrs
com.opsware.custattr.CustomAttribute.setCustAttrs
com.opsware.custattr.CustomField.getCustomFields
com.opsware.custattr.CustomField.setCustomFields
com.opsware.pkg.Patch.getPolicyOverrideRefs

Partial Support for java.util.Map

Axis converts java.util.Map to apachesoap:Map, which is a collection of key-value

pairs. With .NET, this conversion does not work. C# clients, for example, will receive an

empty array of key-value pairs. However, this conversion does work with Soap::Lite in Perl.

Therefore, Opsware API methods that use java.util.Map are available as operations

in the Web Services.

The following methods use java.util.Map as parameters or return types:

com.opsware.acm.GroupConfigurable.getApplicationInstances
com.opsware.acm.ServerConfigurable.getCustAttrsWithRC
com.opsware.compliance.sco.CMLSnapshot.getValueSet
com.opsware.compliance.sco.CMLSnapshot.setValueSet
com.opsware.compliance.sco.SnapshotResultService.remediateCM
LSnapshot
com.opsware.custattr.VirtualColumnVO.getConfigInfo
com.opsware.custattr.VirtualColumnVO.setConfigInfo

Methods in VOs With Unsupported Data Types

The following methods of VOs use unsupported data types as parameters or return types:

com.opsware.acm.ApplicationInstanceVO.getValueset
com.opsware.acm.ApplicationInstanceVO.setValueset
com.opsware.acm.ConfigurableVO.getValueset
com.opsware.acm.ConfigurableVO.setValueset
com.opsware.virtualization.HypervisorInventoryNode.getProper
ties
com.opsware.virtualization.HypervisorInventoryNode.setProper
ties
com.opsware.virtualization.VirtualConfigNode.getProperties
com.opsware.virtualization.VirtualConfigNode.setProperties
com.opsware.virtualization.VirtualServerConfig.getProperties
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 85

Opsware® Automation Platform Developer’s Guide

8

com.opsware.virtualization.VirtualServerConfig.setProperties

Invoke setDirtyAtrributes When Creating or Updating VOs

Web Services clients must invoke setDirtyAttributes before invoking a create or

update method on a service. The setDirtyAttributes method explicitly the marks

the attributes (fields) of a VO that need to be set by the create or update invocation.

The attribute names specified by setDirtyAttributes are case sensitive.

For example, to modify the description attribute of a FolderVO object, the following

code invokes setDirtyAttributes before it invokes update:

// fs is FolderService
FolderVO folderVO = fs.getFolderVO(folderRef);
folderVO.setDescription("credit card processing");
folderVO.setDirtyAttributes(new String[]{"description"});
fs.update(folderRef, folderVO, true, true);

Invoking setDirtyAttributes is required for Web Services clients because of the

way Axis deserializes XML objects from XML. If setDirtyAttributes is not invoked,

Axis calls setters on all attributes of the VO, including read-only attributes, resulting in a

ReadOnlyException.

Compatibility With Opsware Web Services API 2.2

The Opsware Web Services API 2.2 is not compatible with the the Opsware API described

in this guide. The method signatures, services, WSDLs, and port bindings are not the

same. If you are creating new Web Services clients, be sure to use the Opsware API, not

the Opsware Web Services API 2.2.

Tthe Opsware Web Services API 2.2 is still supported for Opsware SAS 6.x. Clients

created for the Opsware Web Services API 2.2 will run with Opsware SAS 6.x and do not

require any modification.

Perl Web Services Clients
This section contains step-by-step instructions and sample code for creating Perl Web

Services clients that access the Opsware API.

Required Software for Perl Clients
6 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 5: Web Services Clients
Your development environment must have the following Perl modules:

• Crypt-SSLeay-0.51

• IO-Socket-SSL-0.95

• Net_SSLeay.pm-1.25

• HTML-Parser-3.35

• MIME-Base64-3.01

• URI-1.30

• libwww-perl-5.76

• SOAP-Lite-0.65_6

If you are running a recent version of ActiveState Perl on Windows, the only module you

need to install is SSL. To install SSL with PPM, perform the following steps:

1 Start PPM, either from the Windows Start menu or by entering ppm.bat at the

command prompt.

2 Enter the following command:

install http://theoryx5.uwinnipeg.ca/ppms/Crypt-SSLeay.ppd

3 Respond to the prompts. The default values should work.

Running the Perl Demo Program

To run the demo program, perform the following steps:

1 Obtain the ZIP file that contains the demo program uapisample.pl file. To

download the file, see “Obtaining the Code Examples” on page 29.

2 Edit the uapisample.pl file, changing the hardcoded values for host,

username, password, and object IDs such as serverID.

3 Run uapisample.pl.

Perl Example Code

The following code snippets are from uapisample.pl, a Perl program contained in the

ZIP file you downloaded previously.

Set Up the Service URI

Construct the URI for the service.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 87

Opsware® Automation Platform Developer’s Guide

8

#
my $username = "integration";
my $password = "integration";
my $protocol = "https";
my $host = "occ.c38.dev.opsware.com";
my $port = "443";
my $contextUri = "osapi/com/opsware/";
my $folderServiceName = "folder/FolderService";
my $folderUri = "http://www.opsware.com/" . $contextUri .
$folderServiceName;

Create a proxy to the FolderService.
#
my $folderProxy = $protocol . "://" . $username . ":" .
$password . "@" . $host . ":" . $port . "/" . $contextUri .
$folderServiceName;

Initiate a New Service

my $folderPort = SOAP::Lite
 -> uri($folderUri)
 -> proxy($folderProxy);

Invoke a Service Method

my $root = $folderPort->getRoot()->result();
print 'Got root folder: ' . $root->{'name'} . "\n";

Alternative:
my $root = $folderPort->SOAP::getRoot();
print 'Got root folder: ' . $root->{'name'} . "\n";

Get a VO

$rootVO = $folderPort->getFolderVO(SOAP::Data->name('self')
->value(\SOAP::Data->name('id')->type('long')->value(0)))
->result();

The preceding call to getFolderVO does not pass a FolderRef
parameter. If a method such as FolderService.remove accepts a
FolderRef parameter, use the following code:
#
my $folderToBeRemoved = SOAP::Data->name('self')
->attr({ 'xmlns:ns_fs' => 'http://folder.opsware.com/
FolderService'}) ->type('ns_fs:FolderRef')->value(\SOAP::Data-
>name('id')->type('long') ->value(123456));
$folderPort->remove($folderToBeRemoved);
8 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 5: Web Services Clients
To see the Perl representation of the returned VO, you can use
the Dumper method. This will help you understand how to
construct the dirty attributes of a VO for a create or update
method.
#
use Data::Dumper;
print Dumper($folderVO);

Get an Array

Construct $folder, the FolderRef before getting the array.
#
my $folder = SOAP::Data->name('self') ->attr({ 'xmlns:ns_fs' =>
'http://folder.opsware.com'}) ->type('ns_fs:FolderRef')-
>value(\SOAP::Data->name('id')->type('long') ->value($root-
>{'id'}));

The getChildren method returns an array of FNodeReference
objects.
#
my $children = $folderPort->getChildren($folder, SOAP::Data-
>name('type')->type('string')->value(''))->result();

foreach $child (@{$children}){
 print 'Get child: ' . $child->{'name'} . "\n";
}

Construct an Object Array

For a function that takes an object array as a parameter,
such the getVOs method, take the following approach:
First, construct the Array object elements individually
and put them in an array.
#
my @refs = [];
foreach my $ref (@{$myRefs}){

Assume myRefs was returned from a previous
Web Services call.

 my $object = SOAP::Data->name('FacilityRef')
 ->value(\SOAP::Data->name('id')
 ->type('long')
 ->value($ref->{'id'}
)
)->attr({ 'xmlns:facility' => 'http://
locality.opsware.com'})
 ->type('facility:FacilityRef');
 push @refs, $object;
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 89

Opsware® Automation Platform Developer’s Guide

9

}

Second, construct an Array Object and put the array in it.
#
my $selves = SOAP::Data->name("selves" =>
 \SOAP::Data->name("element" => @refs)-
>type("facility:FacilityRef"))
 ->attr({ 'xmlns:facility' => 'http://
locality.opsware.com'})
 ->type("facility:ArrayOfFacilityRef");

Update or Create a VO

This example updates the description attribute of a ServerVO.
#
my $serverID = 40038;
my $server = SOAP::Data->name('self')->value(\SOAP::Data-
>name('id')->type('long')->value($serverID));

Don’t forget to set dirtyAttributes for the attributes
you want to update. You also need dirtyAttributes for
create methods that pass a VO.
#
my @dirtyAttrs = ('description');
my $serverVO = SOAP::Data->name('vo') ->attr({ 'xmlns:ns_ss' =>
'http://server.opsware.com'}) ->value(\SOAP::Data->value(
SOAP::Data->name('description')->value('PERL_UPDATE_DESC')-
>type('string'), SOAP::Data->name('logChange')->value('false')-
>type('boolean'), SOAP::Data->name('dirtyAttributes' =>
\SOAP::Data->name("element" => @dirtyAttrs)->type("string")) -
>type("ns_ss:ArrayOf_soapenc_string"),));

my $force = SOAP::Data->name('force')->value('true')-
>type('boolean');
my $refetch = SOAP::Data->name('refetch')->value('true')-
>type('boolean');

Call the update method.
#
print 'Invoking method serverWSPort.update...', "\n";
my $updatedServerVO = $serverWSPort->update(
 $server,
 $serverVO,
 $force,
 $refetch)->result();
print "New description: ", $updatedServerVO->{'description'},
"\n";
0 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 5: Web Services Clients
Handle SOAP Faults

Make sure that you turn off on_fault subroutine in the
"use SOAP::Lite ..." statement.
#
The fault member of a SOAP return will be set if the Web
Service call throws an exception.
The following code tries to get a folder that does not exist:
#
my $testVO = $folderPort->getFolderVO(SOAP::Data->name('self') -
>value(\SOAP::Data->name('id')->type('long')->value(123456)));

if($testVO->fault){
 print $testVO->faultstring . "\n";

This will print the error msg.
 print "ExceptionName: " . getExceptionName($testVO) . "\n";

A NotFoundException should be displayed here
The code that deals with the error goes here....

}
. . .
The following subroutine extracts the exception name from the
returned faultdetail.
#
sub getExceptionName {
 my $fault = shift; #get the fault object
 if($fault->faultdetail->{'fault'}){
 return ref($fault->faultdetail->{'fault'});
 }
}
. . .
As shown in the preceding code, it’s easier to handle SOAP
faults if you execute functions like this:
#
my $data = $port->function(...);
Not like this:
$port->SOAP::function(...);
$port->function(...)->result;

Construction of Perl Objects for Web Services

Before calling a Web Services operation, a Perl client must set up the data structures that

are required for the input parameters. The information you need for setting up the data

structures is in the the API documentation (javadocs) and the service’s WSDL file. The

Perl code example in this section shows how to construct the input parameter for the

getServerVO operation. The step-by-step instructions after the code show where to get

the information about the input parameter from the API documentation and the WSDL file.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 91

Opsware® Automation Platform Developer’s Guide

9

Source Code for Calling getServerVO

The following Perl code sets up the input parameter self and then calls the

getServerVO operation. This call retrieves the VO (value object) for the managed server

of ID 12345.

Create a top-level SOAP::Data object that represents the
with the name self.
#
$self = SOAP::Data->name(’self’)

The namespace corresponds to the schema of the data type
of the SOAP:Data object. The name chosen (ns_ss) is
arbitrary.
#
$self->attr({’xmlns:ns_ss =>
’http://server.opsware.com/ServerService’});

Specify the type (ServerRef) for the parameter self, using the
name of the namespace from the preceding statement.

$self->type(’ns_ss:ServerRef’);

Create the value for the parameter. The value is a pointer
to a SOAP::Data object. The number 12345 is the Opsware ID of
a managed server.
#
my $id = SOAP::Data->name(’id’)->type(’long’)->value(12345);

From the self object, point to the value.
#
$self->value(\$id);

Finally, call getServerVO:
#
my $data = $serverPort->getServerVO($self);
if($data->fault){
 # Handle exceptions here ...
}
else{
 my $serverVO = $data->result;
}
. . .

Location of Information for getServerVO Setup

To get the information needed to write the code for the call to getServerVO, perform the

following steps:
2 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 5: Web Services Clients
1 In a browser, go to the API documentation (javadocs) at the following URL:

https://occ_host:1032/twister/docs/index.html

The occ_host is the IP address or host name of the core server running the Opsware

Command Center component. (For instructions on invoking methods with the Twister, see

“API Documentation and the Twister” on page 27.)

2 Examine the API documentation to determine the input parameters and return value

of the method.

The getServerVO method is defined in the interface

com.opsware.server.ServerService. In the following method signature, note that

getServerVO accepts a ServerRef as a parameter and returns a ServerVO:

public ServerVO getServerVO(ServerRef self)
 throws java.rmi.RemoteException,
 NotFoundException,
 AuthorizationException

3 In a browser, specify the following URL to open the WSDL file for the

ServerService:

https://occ_host/osapi/com/opsware/server/ServerService?wsdl

4 In the WSDL file, locate the namespace for the ServerService:

<schema targetNamespace="http://server.opsware.com"
xmlns="http://www.w3.org/2001/XM
LSchema">

The following Perl statement (from the code listed previously) specifies the namespace:

$self->attr({’xmlns:ns_ss =>
’http://server.opsware.com/ServerService’});

5 In the WSDL file, locate the getServerVO operation and note the input message

name getServerVORequest.

<wsdl:operation name="getServerVO" parameterOrder="self">
 <wsdl:input message="impl:getServerVORequest"
name="getServerVORequest"/>
 <wsdl:output message="impl:getServerVOResponse"
name="getServerVOResponse"/>
 <wsdl:fault message="impl:NotFoundException"
name="NotFoundException"/>
 <wsdl:fault message="impl:AuthorizationException"
name="AuthorizationException"/>
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 93

Opsware® Automation Platform Developer’s Guide

9

</wsdl:operation>

6 In the WSDL file, locate the getServerVORequest message:

<wsdl:message name="getServerVORequest">
 <wsdl:part name="self" type="impl:ServerRef"/>
</wsdl:message>

The getServerVORequest message element defines the name (self) and type

(ServerRef) of the input parameter of getServerVO. The following Perl statement

specifies ServerRef:

$self->type(’ns_ss:ServerRef’);

7 In the WSDL file, locate the complexType for ServerRef:

<complexType name="ServerRef">
 <complexContent>
 <extension base="tns1:ObjRef">
 <sequence>
 <element name="secureResourceTypeName" nillable="true"
type="soapenc:string"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

Note that ServerRef extends ObjRef.

8 In the WSDL file, locate the complexType for ObjRef:

<complexType abstract="true" name="ObjRef">
 <sequence>
 <element name="id" type="xsd:long"/>
 <element name="idAsLong" nillable="true" type="soapenc:long"/>
 <element name="name" nillable="true" type="soapenc:string"/>
 </sequence>
</complexType>

In ObjRef, note the name (id) and type (long). These data types are specified in the

following Perl statement:

my $id = SOAP::Data->name(’id’)->type(’long’)->value(12345);
4 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 5: Web Services Clients
C# Web Services Clients
This section contains step-by-step instructions and sample code for creating C# Web

Services clients that access the Opsware API.

Required Software for C# Clients

To develop C# Web Services clients, your development environment must have the

following software:

• Microsoft .NET Framework SDK version 1.1

• C# client stubs for Opsware API

Obtaining the C# Client Stubs

Opsware, Inc. provides a stub file for each service, for example, FolderService.cs.

All stubs have the same namespace: OpswareWebServices. In addition to the stubs,

Opsware, Inc. provides shared.cs, the file that contains shared classes such as

ServerRef.

To obtain a ZIP file containing the C# stubs, specify the following URL, where occ_host is

the core server running the OCC component:

https://occ_host:1032/twister/opswcsharpclient.zip

The constants defined in services and objects are not defined in the C# stubs. To get

information about the constants, use the API documentation (javadocs), as described in

“Constant Field Values” on page 28.

Accessing the C# Stub Documentation

Reference documentation generated by Ndoc is available as a compiled Windows help

file that is contained in the same ZIP file as the C# stubs. (NDoc generates code

documentation from the from .NET assemblies and the XML documentation files output

by the C# compiler.) This reference documentation contains syntax (but not descriptive)

information about the class hierarchy and member method signatures. For descriptions,

see the corresponding javadocs as explained in “API Documentation and the Twister” on

page 27.

To access the C# stub documentation, perform the following steps:

1 Download the opswcsharpclient.zip file from the URL shown in the previous

section.

2 Unzip opswcsharpclient.zip.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 95

Opsware® Automation Platform Developer’s Guide

9

3 In Windows, open the wscsharplcient.chm file.

Building the C# Demo Program

To build the demo program, perform the following steps:

1 Obtain the ZIP file that contains the following demo program files:

• App.config - application settings

• WebServicesDemo.cs - client code that invokes service methods

• MyCertificateValidation.cs - certificate validation class

To download the ZIP file, see “Obtaining the Code Examples” on page 29.

2 Create the following directory:

C:\wsapi

3 From the Visual Studio.NET 2003 Start Page, select New Project and create a project

with the following values:

• Project Type: Visual C# Projects

• Template: Console Application

• Name: WSAPIDemo

• Location: C:\wsapi

This action creates the new directory C:\wsapi\WSAPIDemo, which contains

some files.

4 In the new project, delete the default file Class1.cs from the list of objects.

5 Copy the files you obtained in step 1 into the C:\wsapi\WSAPIDemo directory.

6 Download the client stubs from the URL specified in “Obtaining the C# Client Stubs”

on page 95.

7 Copy the C# client stubs into the C:\wsapi\WSAPIDemo directory.

8 Add the files copied in the preceding two steps to the WSAPIDemo project:

• In Visual Studio.NET, from the File menu, select Add Existing Item.

• Browse to the directory C:\wsapi\WSAPIDemo, and select each file, one at a

time.

9 Add a reference to System.Web.Services.dll:
6 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 5: Web Services Clients
• In Visual Studio.NET, from the Project menu, select Add Reference.

• Under the .NET tag, browse to Component with Name: System.Web.Services.dll.

• Click System.Web.Services.dll, click Select, and then click OK.

10 If you used a different template when creating the project, you might need to add

references to System, System.XML, and System.Data. Check the Project References

to determine if you need to add these references.

11 In the App.config file, change the values for username, password, host, and

the hardcoded object IDs such as serverID.

12 In Visual Studio.NET, from the Build menu, select Build WSAPIDemo.

Running the C# Demo Program

To run the demo program, perform the following steps:

1 Open the Visual Studio .NET 2003 command prompt:

Start➤ All Programs ➤ Microsoft Visual Studio .NET 2003 ➤

Visual Studio .NET Tools ➤ Visual Studio .NET 2003 Command Prompt Change

2 Change the directory to:

C:\wsapi\WSAPIDemo\bin\Debug

3 Enter the following command:

WSAPIDemo.exe

C# Example Code

The following code snippets are from WebServicesDemo.cs, a C# program contained

in the ZiP file you downloaded previously.

Set Up Certificate Handling

This setup is required just once for the client.
#
ServicePointManager.CertificatePolicy = new
MyCertificateValidation();

Assign the URL Prefix

This is the URL prefix for all services.
#
wsdlUrlPrefix = protocol + "://" + host + ":" + port + "/" +
contextUri + "/";
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 97

Opsware® Automation Platform Developer’s Guide

9

Initiate the Service

FolderService fs = new FolderService();
fs.Url = wsdlUrlPrefix + "com.opsware.folder/FolderService";

Invoke Service Methods

FolderRef root = fs.getRoot();
FolderVO vo = fs.getFolderVO(root);

Handle Interface Return Types

In the API, FolderVO.getMembers returns an array of
FNodeReference interfaces, but Web Services does not support
interfaces. In the C# stub, the return type of
FolderVO.members is Object[]. If a returned Object type will
be used as a parameter that must be a specific type, then you
must cast it to that type. For example, the following code
casts elements of the returned array to FolderRef as
appropriate.
#
Object[] members = vo.members;
for(int i=0;i<members.Length;i++)
{
Console.WriteLine("Got object: " + members[i].GetType().FullName
+ " --> " + ((ObjRef)members[i]).name);

if(members[i] is FolderRef) {
Console.WriteLine("I am a FolderRef: " +
((FolderRef)members[i]).name);
}

}

Update or Create a VO

When updating a VO, the changed attributes must be set in
dirtyAttributes. (The VO passed to a create method has
the same requirement.)
#
Note: If you update a VO that was returned from a service
method invocation, such as getFolderVO, then you must
set the logChange attribute of the VO to false:
vo.logChange = false;
#
The following code changes the name of a folder.
#
Console.WriteLine("Changing name from " + vo.name +
" to yo_csharp.");
8 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 5: Web Services Clients
vo.name = "yo_csharp";
vo.dirtyAttributes = new String[]{"name"};
Manually set dirty fields being changed.
#
vo = fs.update(folder, vo, true, true);
Console.WriteLine("Folder name changed to: " + vo.name);

Handle Exceptions

.NET converts Web Services faults into SoapExceptions
without trying to deserialize them into application
exceptions first. As a result, your code cannot catch
application exceptions. As a workaround, the C# stubs
provided by Opsware, Inc. include SOAPExceptionParser,
a class that enables you to get information from
SOAPExceptions. The following code shows how to get the
exception name and error message by calling the getDetail
method of SOAPExceptionParser.
#
try{
// Try to get a non-existent folder here.
} catch(SoapException e){
 SoapExceptionDetail detail =

SoapExceptionParser.getDetail(e);
 Console.WriteLine("SoapExceptionDetail.name: " +

detail.exceptionName);
 Console.WriteLine("SoapExceptionDetail.msg: " +

detail.message);
...
}

Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 99

Opsware® Automation Platform Developer’s Guide

10
0 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 6: Pluggable Checks

Overview of Pluggable Checks
The Opsware SAS Audit and Remediation feature enables you to define and monitor the

compliance information for Opsware SAS managed servers. Because compliance

standards are continuously evolving, Opsware SAS lets you create specialized custom

checks and policies, and extend those provided by Opsware, Inc. A pluggable check is an

audit rule, which belongs to one or more audit policies. You create a pluggable check in a

command-line environment, upload the check, and then add it to an audit policy with the

SAS Client.

This chapter is intended for software developers who are familiar with XML and with the

Audit and Remediation feature of Opsware SAS.

Setup for Pluggable Checks
Before developing pluggable checks, perform the following steps:

1 Install an Opsware SAS core in a development environment. Do not use a production

core.

I N T H I S C H A P T E R

This chapter contains the following topics:

• Overview of Pluggable Checks

• Setup for Pluggable Checks

• Pluggable Check Tutorial

• Pluggable Check Creation

• Audit Policy Creation

• Document Type Definition (DTD) for config.xml File
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 101

Opsware® Automation Platform Developer’s Guide

10
2 On a server that has an Opsware Agent, install OCLI 1.0. For step-by-step

instructions, see “Installing OCLI 1.0” in the Opsware® SAS Content Utilities Guide.

Pluggable Check Tutorial
This tutorial shows how to create a pluggable check named HelloWorld Check. This

simple check verifies that the /var/tmp/helloworld file exists on a Unix managed

server. If the file does not exist, the remediation script of the pluggable check creates the

file.

To develop the HelloWorld Check, perform the following steps:

1 Follow the instructions in “Setup for Pluggable Checks” on page 101. The server

where you install OCLI 1.0 will be the development server for this tutorial.

2 The HelloWorld Check example code is included with the ZIP file that contains the

API code examples. See “Obtaining the Code Examples” on page 29.

3 Unzip the file you downloaded in the preceding step and verify that the

pluggable_checks/helloworld directory contains the following files:

config.xml
gethelloworld.py
sethelloworld.py

The HelloWorld check is made up of these three files. The config.xml file is a

configuration file. The gethelloworld.py Python script performs the audit. The

sethelloworld.py Python script performs the remediation. In the following steps,

you package these files into a ZIP file and then import the ZIP file into Opsware SAS.

4 On your development server, copy the unzipped helloworld files to a working

directory, for example:

cd /home/jdoe/dev
mkdir helloworld
cd helloworld
cp unzip_dest/pluggable_checks/helloworld/* .

5 Obtain a Globally Unique ID (GUID). Each pluggable check requires a GUID. You can

acquire a valid GUID by using one of the following techniques:

• Log on to web sites such as the following:

http://kruithof.xs4all.nl/uuid/uuidgen

• Download the free Windows tool guidgen from:
2 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 6: Pluggable Checks
http://www.microsoft.com/downloads/
details.aspx?FamilyID=94551F58-484F-4A8C-BB39-
ADB270833AFC&displaylang=en

If you programmatically create your GUIDs, then your code should conform to

RFC4122 (http://www.ietf.org/rfc/rfc4122.txt).

6 With a text editor, insert the GUID in the config.xml file, for example:

<checkGUID>6c7ed38c-d8d6-11db-8314-0800200c9a66</checkGUID>

This is the only element in config.xml that you need to modify for this tutorial.

7 In the text editor, save config.xml with the change you made for the GUID.

Keep the text editor open. Throughout this tutorial, you will examine various elements

in config.xml to learn how they map to the Python scripts and the SAS Client

display fields of the HelloWorld Check.

8 In the config.xml file, note the following elements, which are related to the audit

(get) and remediation (set) scripts of the HelloWorld Check:

<!-- The name of the script that performs the check. -->
<checkGetScriptName>gethelloworld.py</checkGetScriptName>

<!-- The name of the script that remediates the audit. -->
<checkSetScriptName>sethelloworld.py</checkSetScriptName>

<!-- The exit code of the gethelloworld.py script will be
checked.-->
<checkReturnType>EXITCODE</checkReturnType>

<!-- A string argument is passed to gethelloworld.py. -->
<checkGetArgumentType>STRING</checkGetArgumentType>

<!-- The default argument for gethelloworld.py is the name of
the file the script is checking for. -->
<checkGetArgumentDefaultValue>/var/tmp/helloworld
</checkGetArgumentDefaultValue>

<!-- If the helloworld file exists, the exit code of
gethelloworld.py is 0. -->
<checkSuccessExitCodeValue>0</checkSuccessExitCodeValue>
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 103

Opsware® Automation Platform Developer’s Guide

10
<!-- If the helloworld file does not exist, the exit code of
gethelloworld.py is 1. -->
<checkSuccessExitCodeValue>1</checkSuccessExitCodeValue>

9 Examine the gethelloworld.py script, which performs the audit by checking for

the existence of the file /var/tmp/helloworld. You do not need to edit this

script for this tutorial. Later in this tutorial (step 29 on page 108), when you run the

audit in the SAS Client, this script executes on a managed server.

The /var/tmp/helloworld string is the default argument of the script, as

indicated by the value of <checkGetArgumentDefaultValue> in

config.xml. The script’s exit code (result) corresponds to the values specified

for <checkSuccessExitCodes>.

Here is the source code for the gethelloworld.py script:

import sys
import os
import string

if __name__ == "__main__":

 if len(sys.argv) != 2:
 sys.stderr.write("No argument found! Please enter a

file name!\n")
 sys.exit(220)

 filename = sys.argv[1]
 if os.path.isfile(filename) or os.path.isdir(filename):
 result = 0
 else:
 result = 1

 sys.stderr.write("Debugging: Found result %s\n"
% result)

 sys.stdout.write("%s\n" % result)

 sys.exit(result)

10 Next, examine the remediation script sethelloworld.py, which creates the

/var/tmp/helloworld file. This script runs on a managed server if you decide

to remediate the audit in step 34 on page 109. Do not change the script for this

tutorial.
4 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 6: Pluggable Checks
Tthe source code for sethelloworld.py follows:

import sys
import os
import string

if __name__ == "__main__":

 if len(sys.argv) != 2:
 sys.stderr.write("No argument found!

Please enter a file name!\n")
 sys.exit(220)

 filename = sys.argv[1]
 if os.path.isfile(filename) or os.path.isdir(filename):
 # Do nothing because the file already exists.
 pass
 else:
 try:

fd = open(filename, "w")
fd.write(" ")
fd.close()

 except:
 sys.stderr.write("Could not open file %s for

writing!\n" % filename)
 sys.exit(220)

 # Exit successfully with a 0 exit code.
 sys.stderr.write("Successfully created file\n")
 sys.exit(0)

11 Package the HelloWorld Check.

To package the HelloWorld pluggable check, archive the contents of the working

directory into a single ZIP file, for example:

cd /home/jdoe/dev/helloworld
zip ../helloworld.zip *

12 Verify that the ZIP file contains the two Python scripts and the config.xml file by

entering the following unzip command:

unzip -t ../helloworld.zip
 testing: config.xml OK
 testing: gethelloworld.py OK
 testing: sethelloworld.py OK
No errors detected in compressed data of ../helloworld.zip.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 105

Opsware® Automation Platform Developer’s Guide

10
13 Import the pluggable check into Opsware SAS with the oupload command of OCLI

1.0:

oupload -C"Customer Independent" \
-t"Server Configuration Check" \
--forceoverwrite --old -O"SunOS 5.8" ../helloworld.zip

Note: The platform option (-O) is SunOS 5.8 for all Unix and Linux checks. For

Windows checks, the platform option is Windows 2003.

If oupload does not run successfully, make sure that you have installed the correct

version of OCLI 1.0, set the PATH environment variable correctly, and included the

login file in your environment. For details on these requirements, see “Installing

OCLI 1.0” in the Opsware® SAS Content Utilities Guide.

14 Open the SAS Client.

In the next few steps, you create a new audit, adding to it the HelloWorld Check you

imported with the oupload command.

15 From the Tools menu, select Update Cache.

16 From the Navigation pane, select Library ➤ By Type ➤ Audits and Remediation
➤ Audits ➤ Unix.

17 From the Actions menu, select New.

18 In the the Audit Window, in the Name field of the Properties pane, enter HelloWorld

Audit.

19 In the Views pane, select Rules ➤ File System.

The Content pane should list the HelloWorld Check under Available for Audit, as

shown in Figure 6-2.

Figure 6-2: HelloWorld Check in the Rules for a File System
6 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 6: Pluggable Checks
20 In the config.xml file, note the following elements, which are related to the

information displayed in Figure 6-2:

<!-- The check name is the rule name shown in the SAS Client.
-->
<checkName>HelloWorld Check</checkName>

<!-- The category corresponds to the rule hierarchy dispayed
by the SAS Client. -->
<checkCategory>File System|My Custom Checks</checkCategory>

21 In the Audit Window of the SAS Client, under Available for Audit, select HelloWorld

Check and click the plus sign.

The Content pane should list the details for HelloWorld Check, as shown in Figure 6-

3.

Figure 6-3: HelloWorld Check Rule Details

22 In the config.xml file, examine the following elements, which are related to the

information displayed under Rule Details in Figure 6-3:

<!-- The following value appears under Description in the
Rule Details of the SAS Client. -->
<checkDefaultDescription>
Check that /var/tmp/helloworld exists.
</checkDefaultDescription>
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 107

Opsware® Automation Platform Developer’s Guide

10
<!-- The following element correpsonds to the Test ID in the
SAS Client. -->
<checkTestID>helloworld 1</checkTestID>

<!-- This label is under Input Values in the SAS Client. -->
<checkGetArgumentDefaultLabel>File Name
</checkGetArgumentDefaultLabel>

<!-- The default argument to the gethelloworld.py script also
appears under Input Values in the SAS Client. -->
<checkGetArgumentDefaultValue>/var/tmp/helloworld
</checkGetArgumentDefaultValue>

23 In the Views pane of the SAS Client, select Targets.

In the following steps you add a target server to HelloWorld Audit. In later steps, the

gethelloworld.py and sethelloworld.py scripts will run on the target

server.

24 In the Contents pane, click Add.

25 In the Select Server window, drill down to a server and click OK.

26 In the Audit window, select File ➤ Save.

At this point, the HelloWorld Audit contains the HelloWorld Check (rule) and is

associated with a target server.

27 In the Audit window, from the Actions menu, select Run Audit.

28 Step through the windows of the Run Audit task.

29 In the Run Audit window, click Start Job.

This action launches the job that runs the gethelloworld.py script on the target

server.

30 After the job has completed, click View Results.

31 In the Views pane of the Audit Result window, select Policy Rules (1).

32 In the Content pane of the Audit Result window, open HelloWorld Check.
8 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 6: Pluggable Checks
The Difference Details window should appear, as shown in Figure 6-4.

Figure 6-4: HelloWorld Check Difference Details

33 In the config.xml file, note the following elements, which are related to the

information displayed in the Difference Details window of Figure 6-4:

<!-- The following value appears as the Policy Value in the
Difference Details window. -->
<checkSuccessExitCodeDefaultDisplayName>
File exists</checkSuccessExitCodeDefaultDisplayName>

<!-- The next value appears as the Actual Value in the same
window. -->
<checkSuccessExitCodeDefaultDisplayName>
File does not exist</checkSuccessExitCodeDefaultDisplayName>

34 If you want to create /var/tmp/helloworld on the target server, on the

Differences Window, click Remediate.

This action runs the sethelloworld.py script. For more information, see “Audit

and Remediation” in the online help or the Opsware® SAS User’s Guide: Application

Automation.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 109

Opsware® Automation Platform Developer’s Guide

11
Overview of Audit and Remediation
Sarbanes-Oxley (SoX), Information Technology Infrastructure Library (ITIL), and ISO20000

make it urgent to keep server configurations in compliance. The Opsware SAS Audit and

Remediation feature offers you a well-organized set of policies to help you address

compliance issues. A graphical interface makes it easy for you to select and run audits

against specified servers, and see how well they comply with professional standards.

Audit and Remediation also simplifies system administration. For example, you might

monitor a class of servers that run a home grown application built by your team, such as

a database server or middleware application. As you configure and monitor the servers

that run the application, you keep a list that tracks the ideal state of the configuration.

Such a list might include file, directory, and network share permissions.

You can create an audit that defines these configurations, then audit the servers after

installing the application. The audit results will confirm whether or not the application is

installed and has been configured successfully according to your criteria. If the

configuration is non-compliant, you can create an ad-hoc audit to troubleshoot the

problem. When the audit results indicate an error, you can remediate the server to match

your ideal configuration. To ensure that the configuration change works in production, you

can set the audit to run on a configurable schedule and have a notification sent upon

completion.

Showing a window for selecting an audit, Figure 6-5 includes the following callouts:

• Callout A: Any category listed in the Views panel may have Opsware SAS non-

modifiable capabilities, or modifiable pluggable checks.

• Callout B: This points to the SAS capabilities for dealing with Windows services.

• Callout C: This lists pluggable checks for working with Windows Services.
0 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 6: Pluggable Checks
Figure 6-5: Windows Services Audit Rule

Each check evaluates one rule. Several checks can be bundled together into a policy.

The Opsware SAS Audit and Remediation feature comes with many out-of-the-box

checks. You can run most audits by selecting the desired check. The choice of audits

grows continuously as developers design, code, test, and add more checks to the system

through the Opsware Network (TON). These checks are imported as complete policies.

However, since every business has unique challenges and unique resources, you may

need to determine compliance against a set of criteria not available for auditing within the

SAS Audit and Remediation framework. For this reason, the system provides a way to

create your own custom pluggable checks.

The Audit and Remediation feature evaluates, by specific rules, the compliance state of

servers under SAS management. This feature can also remediate the servers that do not

match the desired configuration state as defined in the rules. These rules include various

server parameters, registry values, file permissions, application configurations, file

existence, COM+ objects, and more.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 111

Opsware® Automation Platform Developer’s Guide

11
In the Windows environment, web server rules can also be specified by the Opsware

Application Configuration feature, which is based upon the Microsoft Internet Information

Services (IIS) Web server configuration file, UrlScan.ini. Application Configuration can

compare partial or full values from specific configuration files, select the desired elements

from the file, and make sure that these values or configuration file entries exist. You can

use the Application Configuration Markup Language (CML) to manage configuration file

values. This is discussed in detail in the Opsware SAS CML Tutorial.

The Audit and Remediation feature comes with a number of pre-designed audit rules.

Each defines a desired state of configuration for a server or server groups. Some rules are

value-based, providing a comparator (<, >, ==, !=, contains, etc.), a value or set of

values, and one or more checks, which spell out the underlying code used to evaluate the

state of the audited item or items. The comparison data determines compliance or non-

compliance. A rule may also contain remediation values if the check supports

remediation.

A rule consists of a single check. You can create new functionality by using custom

content objects in the form of pluggable checks. You can also bundle related pluggable

checks into audit policies for convenience.

Pluggable Check Creation
A pluggable check is code that is downloaded to the managed server or servers and is

executed by the Audit and Remediation framework. You can use checks to extend the

native Audit and Remediation properties and to provide additional specialized

functionality. Each pluggable check includes a customized config.xml file and at least one

script that compares the audited feature against values specified in the config.xml file. A

pluggable check may also include a script that sets specified variables in the audited

server to the value specified in the config.xml file. You can write pluggable check scripts

in Python 1.5.2, Visual Basic Scripting (VBS), BAT, or shell script. A pluggable check is

packaged as a zip archive.

Most of the CIS checks are direct translations of the CIS benchmarks. More information

can be found at http://www.cisecurity.org.
2 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 6: Pluggable Checks
• Most types of checks fall into one of the following categories:

– Windows Registry checks

– Unix Services checks

– User checks, which may use password or shadow file information

Guidelines for Pluggable Checks

To simplify server maintenance, adhere to the following guidelines:

• When creating a new pluggable check, pay special attention to the names. Describe

the purpose of the check, and replace spaces with an underscore. For example,

Users_Without_Password_Expiration is self-explanatory. This will help you to

find a check quickly when a server acquires several hundred or more checks.

• Write a generic check. This enables you to easily create additional checks of the same

execution type with only a few lines of code change. For example, for most CIS2k3

Windows Service Checks, you can change a single line of code to create a new check

for a new service.

• When naming the audit (get) and remediation (set) scripts, remove the spaces or

underscores from the directory name, and prefix with get or set, as appropriate. For

example, getUsersWithoutPasswordExpiration.sh is a good name for an

audit file. Be consistent on this, even if you think your custom check will not be used by

anyone else.

• Pay attention to error checking. Remember that unexpected return values might report

an audit as non-compliant when a script failure occurs. Trap the unexpected error or

exception, and write out information about it to stdout or stderr to simplify

troubleshooting.

• Convert most checks to a simple binary case of True or False when possible.

• Always try to handle not only the specific benchmark case, but also its counterpart. For

example, you can easily create a “Disable Service X,” pluggable check at the same

time that you create an “Enable Service X” and reuse most of the code. This can be

useful if you decide later to test for the opposite condition.

• Use the standard exit codes defined by the framework whenever possible. These are:

EXIT_FAILURE=220
EXIT_ERR_USAGE=221
EXIT_ERR_INVALID_OS=222
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 113

Opsware® Automation Platform Developer’s Guide

11
• When returning disabled or enabled in a Boolean type check, return 0 for disabled, 1

for enabled.

• Package each pluggable check as a ZIP archive. A single file system directory contains

the files listed in Table 6-3.

The file names for the audit and remediation scripts do not need to begin with get and

set, but this convention simplifies file maintenance.

The following example shows a directory structure for a pluggable check:

./check_name/

./check_name/config.xml

./check_name/getcheckname.py

./check_name/setcheckname.py

Table 6-3: Pluggable Check Contents

FILE NAME DESCRIPTION

config.xml (Required) The XML configuration file defining how this

pluggable check executes, returns, and ultimately reports

compliance or non-compliance.

getName. {py | sh
| BAT | vbs}

(Required) The audit script, written in Python, VBS, BAT, or

shell, that evaluates the audited object, and returns text

and exit codes according to the config.xml definitions.

setName. {py | sh
| BAT | vbs}

(Optional) The remediation script, written in Python, VBS,

BAT, or shell, that remediates the condition checked by

the audit script.

Additional Code,
Scripts, or
Libraries

(Optional) Helper and supplementary scripts used by

either the audit or remediation scripts.
4 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 6: Pluggable Checks
Development Process for Pluggable Checks

Figure 6-6 shows an overview for the development process, which takes place in a

command-line environment.

Figure 6-6: Development Process

Pluggable Check Configuration (config.xml)

The config.xml file is a specification file for the pluggable check that contains elements to

control how this check appears in the SAS Client, default values, value types for

comparison, and the category of the check. For example, the following element in the

config.xml file determines the pluggable check’s rule category in the SAS Client:

<checkCategory>Windows Services</checkCategory>
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 115

Opsware® Automation Platform Developer’s Guide

11
Standard categories, each indicated with its own icon, include hardware, software,

operating systems, users and groups, file systems, and more, as shown by Figure 6-7.

Figure 6-7: Pluggable Check Categories in the Rule Hierarchy
6 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 6: Pluggable Checks
The following listing shows the template for the config.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE checkConfiguration SYSTEM "check.dtd">
<checkConfiguration version="1.0">
<checkName>$CHECKNAME</checkName>
<checkGUID>$CHECKGUID</checkGUID>
<checkDefaultDescription>$CHECKDESCRIPTION</
checkDefaultDescription>
<checkRemediationDefaultDescription> $CHECKREMEDIATIONDESCRIPTION
</checkRemediationDefaultDescription>
<checkGetScriptName>$GETSCRIPTNAME</checkGetScriptName>
<checkGetScriptType>PY</checkGetScriptType><!-- Or SH for shell,
BAT for Bat, VBS for Visual Basic -->
<checkSetScriptName>$SETSCRIPTNAME</checkSetScriptName><!--
Optional -->
<checkSetScriptType>PY</checkSetScriptType><!-- Optional -->
<checkVersion>32b.0-1.0</checkVersion>
<checkReturnType>$RETURNTYPE</checkReturnType> <!-- EXITCODE,
STRING, or NUMBER -->
<checkTestIDs>
<checkTestID>$CHECKTESTID</checkTestID> <!-- Optional -->
</checkTestIDs>
<checkPlatformTypes>
<checkPlatform>$PLATFORMTYPE</checkPlatform> <!-- Currently Unix
or Windows -->
</checkPlatformTypes>
<checkCategories>
<checkCategory>$CATEGORY</checkCategory> <!-- Top-level GUI
category -->
</checkCategories>
<checkGetArguments> <!-- All arguments are optional -->
<checkGetArgument>
<checkGetArgumentType>$GETARGTYPE</checkGetArgumentType> <!--
STRING or NUMBER -->

<checkGetArgumentDefaultLabel>$GETDEFAULTLABEL</
checkGetArgumentDefaultLabel>

<checkGetArgumentDefaultDescription>$GETDEFAULTDESCRIPTION</
checkGetArgumentDefaultDescription>

<checkGetArgumentDefaultValue>$GETDEFAULTVALUE</
checkGetArgumentDefaultValue>

</checkGetArgument>
</checkGetArguments>
<checkSetArguments> <!-- Also optional -->
<checkSetArgument>
<checkSetArgumentType>$SETARGTYPE</checkSetArgumentType>

<checkSetArgumentDefaultLabel>$SETDEFAULTLABEL</
checkSetArgumentDefaultLabel>
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 117

Opsware® Automation Platform Developer’s Guide

11

<checkSetArgumentDefaultDescription>$SETDEFAULTDESCRIPTION</
checkSetArgumentDefaultDescription>

<checkSetArgumentDefaultValue>$SETDEFAULTVALUE</
checkSetArgumentDefaultValue>
</checkSetArgument>
</checkSetArguments>
<checkSuccessExitCodes> <!-- Only for EXITCODE type checks,
generally at least two entries -->

<checkSuccessExitCode>
<checkSuccessExitCodeValue>$EXITCODEVALUE</
checkSuccessExitCodeValue>

<checkSuccessExitCodeDefaultDescription>$EXITCODEDESCRIPTION

</checkSuccessExitCodeDefaultDescription>

<checkSuccessExitCodeDefaultDisplayName>$EXITCODEDISPLAYNAME

</checkSuccessExitCodeDefaultDisplayName>
</checkSuccessExitCode>

</checkSuccessExitCodes>
</checkConfiguration>

For more details, see “Document Type Definition (DTD) for config.xml File” on page 123.

Audit (get) Scripts

You can design the audit script, also known as the get script, to obtain a value from a

managed server. The script is executed with optional parameters, as specified in the

config.xml file. If the script is running an EXITCODE check, the result of the script is

compared to the exit codes specified in the config.xml file. For STRING and NUMBER

return type checks, the result is compared to what is written to STDOUT.

An audit script has a set of pre-defined return codes. You can define additional return

codes in the check config.xml file.

The audit script may display informational messages. These messages are useful when

troubleshooting an audit script failure. Review the following sample Python audit script:

import sys
import os
import string

if __name__ == "__main__":

If there are get arguments they will be loaded into sys.argv

Enter the desired check code here
Example:
8 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 6: Pluggable Checks
Looking for file "/usr/bin/ssh"

if os.path.isfile("/usr/bin/ssh"):
result = 1

else:
result = 0

Case A:
If number/string check, the results are grabbed from
stdout.

All debugging statements must be sent to stderr so as not
to be picked up.

sys.stderr.write("Debugging: Found result %s\n" % result)

sys.stdout.write(result)

Case B:
If exitcode check, the results are returned by the argument
passed to sys.exit(). The exitcodes must match the
ExitCodeValues defined in the config.xml file.

sys.exit(result)

Remediation (set) Scripts

You can design the remediation script, also known as the set script, to enact a change on

the managed server that would cause the audit script to return success when completed.

The script is executed with optional parameters, as specified in the check config.xml

file.

These set scripts are optional, and can vary in character from being very similar to their

counterpart get scripts to entirely different (and longer).

From a shell standpoint, there is nothing special in the script itself, other than the return

codes being used. Most checks display some debug output or information messages.

This is not normally seen by users, except in the event of a script failure, where the

messages are useful for troubleshooting purposes.

As a standard practice, always include at least one parameter to the set script. Also,

remember to modify the config.xml file so that it displays nicely in the SAS Client

when adding a set script to an already existing check.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 119

Opsware® Automation Platform Developer’s Guide

12
Make sure your remediation scripts exit with exitcode 0 to indicate success. All other

exitcodes will indicate failure of the remediation operation.

Review the following sample Python set script.

import sys
import os
import string
if __name__ == "__main__":

If there are set arguments they will be loaded into
sys.argv
Enter the desired set code here. Stdout may be used for
debugging.
Uses exitcode 0 for success, and all other values for
failure.
enter condition where set script if successful. for this
example, use ‘if 1’

if 1:
sys.exit(0)

else:
sys.exit(-1)

Other Code for Pluggable Checks

Pluggable checks may also contain code other than the get or set scripts. Libraries,

executables or additional scripts can be added to the check, so their set or get scripts

can utilize these upon execution.

You can also include additional code in the ZIP file.

Zipping Up Pluggable Checks

After you have created the config.xml file, the audit (get) script, and the optional

remediation (set) script, create a ZIP archive containing these files. The following shell

history shows the creation process in a UNIX environment.

ls
 check_name
cd check_name
zip ../checkname.zip *
0 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 6: Pluggable Checks
 adding: config.xml
 adding: getcheckname.py
 adding: setcheckname.py
unzip -t ../checkname.zip
 testing: config.xml OK
 testing: getcheckname.py OK
 testing: setcheckname.py OK
No errors detected in compressed data of ../checkname.zip.

Importing Pluggable Checks

Import a pluggable check into an Opsware core or mesh using the OCLI 1.0 utility, which

is documented in the Opsware® SAS Content Utilities Guide. The following shell history

provides an example of the import process for Linux:

cp checkname.zip /var/tmp/checks
cd /var/tmp/checks
cp opsware_32.a.692.0-upload/disk001/packages/Linux/3AS/ocli-
32a.2.0.5-linux-3AS .
chmod 755 ocli-32a.2.0.5-linux-3AS
./ocli-32a.2.0.5-linux-3AS
. ./ocli/login.sh
export PATH=/opt/opsware/bin:$PATH
oupload -C"Customer Independent" -t"Server Configuration
Check" --forceoverwrite --old -O"SunOS 5.8" your_Pluggable_
check.zip

The oupload command uses "SunOS 5.8" to specify that the check falls into the generic

Unix category in the SAS Client. To specify a check for the Windows category, use

"Windows 2003."
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 121

Opsware® Automation Platform Developer’s Guide

12
Audit Policy Creation
The audit policy creation procedure is illustrated in Figure 6-8 below:

Figure 6-8: Audit Policy Creation Procedure

Creating an Audit Policy

Audit policies consist of rules. Each rule consists of one or more checks, which can

include the user-created pluggable check. Audit policies and rules are displayed, created

and edited in the SAS Client. Figure 6-9 shows a list of the audit rules available on a

model system.

Figure 6-9: List of Audit Rules

For detailed information on creating an audit policy, see the “Audit and Remediation”

chapter in the Opsware® SAS 6.1 User’s Guide: Application Automation.
2 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 6: Pluggable Checks
Exporting the Audit Policy

To move a new audit policy to other Opsware cores, export it from one and import it to

another using the DCML Exchange Tool (DET) command-line utility. Use this tool to

populate a newly-installed Opsware core with content, such as policies, from an existing

core. For detailed instructions on this procedure, see the Opsware® SAS 6.1 Content

Utilities Guide.

Document Type Definition (DTD) for config.xml File
This file governs SAS Client display names and descriptions, default values, comparisons

to be performed upon values returned by the check code, the category of the SAS Client

displaying these values, and more.

Two elements in the default config.xml file, checkGetArguments and

checkSetArguments, are used to pass data values to the scripts at execution time. If

your programmable check does not require any arguments, delete these elements from

your config.xml file.

The following DTD for config.xml is dynamically generated by Opsware SAS:

<!ELEMENT checkConfiguration (checkName, checkGUID,
checkDefaultDescription, checkRemediationDefaultDescription?,
checkGetScriptName?, checkGetScriptType?, checkSetScriptName?,
checkSetScriptType?, checkVersion,
checkAllowRemediationOnFailure?, checkReturnType,
checkTestIDs?, checkPlatformTypes, checkExclusivePlatforms?,
checkExcludePlatforms?, checkCategories, checkGetArguments?,
checkSetArguments?, checkComparisonDefaults?,
checkCompareValidValues?, checkSuccessExitCodes?)>
<!ATTLIST checkConfiguration version CDATA #REQUIRED>
<!ELEMENT checkName (#PCDATA)>
<!ELEMENT checkGUID (#PCDATA)>
<!ELEMENT checkDefaultDescription (#PCDATA)>
<!ELEMENT checkRemediationDefaultDescription (#PCDATA)>
<!ELEMENT checkGetScriptName (#PCDATA)>
<!ELEMENT checkGetScriptType (#PCDATA)>
<!ELEMENT checkSetScriptName (#PCDATA)>
<!ELEMENT checkSetScriptType (#PCDATA)>
<!ELEMENT checkVersion (#PCDATA)>
<!ELEMENT checkAllowRemediationOnFailure (#PCDATA)>
<!ELEMENT checkReturnType (#PCDATA)>
<!ELEMENT checkTestIDs (checkTestID+)>
<!ELEMENT checkTestID (#PCDATA)>
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 123

Opsware® Automation Platform Developer’s Guide

12
<!ELEMENT checkPlatformTypes (checkPlatform+)>
<!ELEMENT checkPlatform (#PCDATA)>
<!ELEMENT checkExclusivePlatforms (checkExclusivePlatform+)>
<!ELEMENT checkExclusivePlatform (#PCDATA)>
<!ELEMENT checkExcludePlatforms (checkExcludePlatform+)>
<!ELEMENT checkExcludePlatform (#PCDATA)>
<!ELEMENT checkCategories (checkCategory+)>
<!ELEMENT checkCategory (#PCDATA)>
<!ELEMENT checkGetArguments (checkGetArgument+)>
<!ELEMENT checkGetArgument (checkGetArgumentType,
checkGetArgumentDefaultLabel,
checkGetArgumentDefaultDescription,
checkGetArgumentDefaultValue?, checkGetArgumentValidValues?)>
<!ELEMENT checkGetArgumentType (#PCDATA)>
<!ELEMENT checkGetArgumentDefaultLabel (#PCDATA)>
<!ELEMENT checkGetArgumentDefaultDescription (#PCDATA)>
<!ELEMENT checkGetArgumentDefaultValue (#PCDATA)>
<!ELEMENT checkGetArgumentValidValues
(checkGetArgumentValidValue+)>
<!ELEMENT checkGetArgumentValidValue
(checkGetArgumentValidValueItem,
checkGetArgumentValidValueDisplayName)>
<!ELEMENT checkGetArgumentValidValueItem (#PCDATA)>
<!ELEMENT checkGetArgumentValidValueDisplayName (#PCDATA)>
<!ELEMENT checkSetArguments (checkSetArgument+)>
<!ELEMENT checkSetArgument (checkSetArgumentType,
checkSetArgumentDefaultLabel,
checkSetArgumentDefaultDescription,
checkSetArgumentDefaultValue?, checkSetArgumentValidValues?)>
<!ATTLIST checkSetArgument populateFromRule CDATA #IMPLIED>
<!ELEMENT checkSetArgumentType (#PCDATA)>
<!ELEMENT checkSetArgumentDefaultLabel (#PCDATA)>
<!ELEMENT checkSetArgumentDefaultDescription (#PCDATA)>
<!ELEMENT checkSetArgumentDefaultValue (#PCDATA)>
<!ELEMENT checkSetArgumentValidValues
(checkSetArgumentValidValue+)>
<!ELEMENT checkSetArgumentValidValue
(checkSetArgumentValidValueItem,
checkSetArgumentValidValueDisplayName)>
<!ELEMENT checkSetArgumentValidValueItem (#PCDATA)>
<!ELEMENT checkSetArgumentValidValueDisplayName (#PCDATA)>
<!ELEMENT checkComparisonDefaults
(checkComparisonDefaultOperator?,
checkComparisonDefaultValues)>
<!ELEMENT checkComparisonDefaultOperator (#PCDATA)>
<!ATTLIST checkComparisonDefaultOperator not CDATA #IMPLIED>
4 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 6: Pluggable Checks
<!ATTLIST checkComparisonDefaultOperator caseInsensitive CDATA
#IMPLIED>
<!ELEMENT checkComparisonDefaultValues
(checkComparisonDefaultValue+)>
<!ELEMENT checkComparisonDefaultValue
(checkComparisonDefaultValueItem,
checkComparisonDefaultValueDisplayName)>
<!ELEMENT checkComparisonDefaultValueItem (#PCDATA)>
<!ELEMENT checkComparisonDefaultValueDisplayName (#PCDATA)>
<!ELEMENT checkCompareValidValues (checkCompareValidValue+)>
<!ELEMENT checkCompareValidValue (checkCompareValidValueItem,
checkCompareValidValueDisplayName)>
<!ELEMENT checkCompareValidValueItem (#PCDATA)>
<!ELEMENT checkCompareValidValueDisplayName (#PCDATA)>
<!ELEMENT checkSuccessExitCodes (checkSuccessExitCode+)>
<!ELEMENT checkSuccessExitCode (checkSuccessExitCodeValue,
checkSuccessExitCodeDefaultDescription,
checkSuccessExitCodeDefaultDisplayName)>
<!ELEMENT checkSuccessExitCodeValue (#PCDATA)>
<!ELEMENT checkSuccessExitCodeDefaultDescription (#PCDATA)>
<!ELEMENT checkSuccessExitCodeDefaultDisplayName (#PCDATA)>

The following table describes the elements of the config.xml DTD.

Table 6-4: DTD Elements and Attributes

ELEMENTS ATTRIBUTES

checkConfiguration version Set to 1.0, only change if the Audit and Remediation

framework requires it.

checkName The English name that displays in the SAS Client for the

check/rule.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 125

Opsware® Automation Platform Developer’s Guide

12
checkGUID A standard GUID, for example,

9500A4AE-EE9E-4383-87F2-BAD7DDC26C59

can be generated using the “guidgen” Windows utility,

downloaded from a web site, or by other means.

The GUID MUST be unique or the pluggable check will fail

on upload to core. Once a check is uploaded with its

unique GUID, you MUST NOT change the GUID or it will

fail on re-upload with a "Database Unique Constraint

Error" until you delete the original. Checks are uniquely

identified by GUID, but for upload are solely identified by

their name (of the zip file).

checkDefaultDescription Displays in the SAS Client description box. Honors hard

carriage returns and HTML. With HTML, the HTML tags

need to be converted with < and >.

checkRemediationDefaultDescri

ption

Displays in the SAS Client under the Remediation section

of the check/rule.

checkGetScriptName The file name for the get script, for example,

getUsersWithoutPasswordExpiration.sh.

checkGetScriptType The type of code determines the interpreter to be run. Get

and set scripts may be types: SH, VBS, PY, BAT.

checkSetScriptName The file name for the remediation script.

checkSetScriptType The type of code determines interpreter to be run. Set

(remediation) scripts may be of types SH, VBS, PY, BA.

checkVersion This is based on SAS and framework build number, such

as 32b.0-1.0.

checkAllowRemediationOnFailur

e

Some scripts may fail during the get phase, but you may

be able to correct this condition via the remediation script.

This allows remediation to be performed even in the

event of a script failure. For example, if the non-existence

of a registry key is undefined, you can create and set it in

your set code.

Table 6-4: DTD Elements and Attributes (continued)
6 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 6: Pluggable Checks
checkReturnType Permissible values are EXITCODE, STRING, or NUMBER:

EXITCODE — Standard script return via Wscript.Quit(), exit,

return, etc.

NUMBER — Audit and Remediation framework will grab

from stdout and interpret it as numeric type.

STRING — Audit and Remediation framework will grab

from stdout and interpret as a string type.

checkTestIDs List of test IDs.

checkTestID Used to display the CIS, MSFT, NSA or other Policy

standard nomenclature, for example, CIS-RHEL 8.4. This

is a free form field, and displays in the SAS Client, so be

consistent in naming it to correspond with the TON

Content.

checkPlatformTypes List of valid platform types for a check.

checkPlatform WINDOWS | UNIX (or both as individual elements).

Table 6-4: DTD Elements and Attributes (continued)
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 127

Opsware® Automation Platform Developer’s Guide

12
checkExclusivePlatforms List of exclusive platforms. Audit and Remediation

currently separates things by Windows or Unix by default,

but real world standards as well as limitations and/or

differences across operating systems do not make this

always desirable. You can limit Audit and Remediation to

any platform specified by a platform ID retrieved from the

spin.

Supported platform IDs include, but are not limited to:

Red Hat Enterprise Linux AS 2.1 (ID 960007)

Red Hat Enterprise Linux AS 3 (ID 430007)

Red Hat Enterprise Linux AS 3 IA64 (ID 30100)

Red Hat Enterprise Linux AS 3 X86_64 (ID 10773)

Red Hat Enterprise Linux AS 4 (ID 40099)

Red Hat Enterprise Linux AS 4 X86_64 (ID 10099)

Red Hat Enterprise Linux ES 2.1 (ID 10730013)

Red Hat Enterprise Linux ES 3 (ID 10720013)

Red Hat Enterprise Linux ES 3 IA64 (ID 40100)

Red Hat Enterprise Linux ES 3 X86_64 (ID 10774)

Red Hat Enterprise Linux ES 4 (ID 50099)

Red Hat Enterprise Linux ES 4 X86_64 (ID 20099)

SunOS 5.10 (ID 30007)

SunOS 5.10 X86 (ID 10044)

SunOS 5.6 (ID 130000)

SunOS 5.7 (ID 90000)

SunOS 5.8 (ID 150001)

SunOS 5.9 (ID 920007)

Windows 2000 (ID 120000)

Windows 2003 (ID 10007)

Windows 2003 x64 (ID 60100)

Windows XP (ID 10008)

checkExclusivePlatform Individual platform ID.

checkExcludePlatforms List of excluded platforms. If the PlatformType claims

UNIX, you can supply platform IDs to exclude from the

UNIX set (all Linux + all Unixes).

Table 6-4: DTD Elements and Attributes (continued)
8 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 6: Pluggable Checks
checkExcludePlatform Individual platform ID

checkCategory This is the SAS Client Category that a check displays in.

Currently, a check can only display in a single category. If

a category does not exist, it will be created upon upload.

The following standard categories for existing checks

should be used where possible:

Event Logging

File System

Operating System

Operating System|Domain Controller (sub-category)

Operating System|Network (sub-category)

Registry

Services

Users and Groups

checkGetArgument

(checkGetArgumentType,

checkGetArgumentDefaultLabel,

checkGetArgumentDefaultDescri

ption,

checkGetArgumentDefaultValue?

,

checkGetArgumentValidValues?)

>

Specifies parameters to the get script.

checkGetArgumentType NUMBER | STRING

checkGetArgumentDefaultLabel SAS Client tag next to the input box or drop-down.

checkGetArgumentDefaultDescri

ption

Hover text with further explanation.

checkGetArgumentDefaultValue Default value for this get parameters.

checkGetArgumentValidValue

(checkGetArgumentValidValueIt

em,

checkGetArgumentValidValueDis

playName

checkGetArgumentValidValueItem (#PCDATA)>

checkGetArgumentValidValueDisplayName (#PCDATA)>

Table 6-4: DTD Elements and Attributes (continued)
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 129

Opsware® Automation Platform Developer’s Guide

13
checkGetArgumentValidValues

(checkGetArgumentValidValue+)

(Optional) Useful for limiting the parameters for example

to 0/disable and 1/enable.

checkSetArguments

(checkSetArgument+)

checkSetArgument (checkSetArgumentType,

checkSetArgumentDefaultLabel,

checkSetArgumentDefaultDescription,

checkSetArgumentDefaultValue?,

checkSetArgumentValidValues?)

setArgument elements are identical to the GetArguments,

but for the remediation/set script if it exists.

The exception is:

checkSetArgument populateFromRule — the set

parameter default should or should not populate itself

from the rule data, versus if any default values were

supplied in config.xml. Generally, this is always set to true.

checkSetArgumentType NUMBER | STRING

checkSetArgumentDefaultLabel SAS Client tag next to the input box or drop-down.

checkSetArgumentDefaultDescri

ption

Hover text with further explanation.

checkSetArgumentDefaultValue Default value for this set parameter.

checkSetArgumentValidValues

(checkSetArgumentValidValue+)

>

checkSetArgumentValidValue

(checkSetArgumentValidValue

Item,

checkSetArgumentValidValue

DisplayName)>

checkSetArgumentValidValueItem (#PCDATA)>

checkSetArgumentValidValueDisplayName (#PCDATA)>

checkSetArgumentValidValueItem (#PCDATA)> check-

SetArgumentValidValueDisplayName (#PCDATA)>

checkSetArgumentValidValue

Item

(Optional) Useful for limiting the parameters for example

to 0/disable and 1/enable.

Table 6-4: DTD Elements and Attributes (continued)
0 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 6: Pluggable Checks
checkSetArgumentValidValueDis

playName

<!ELEMENT

checkComparisonDefaults

(checkComparisonDefaultOperat

or?,

checkComparisonDefaultValues)

>

checkComparisonDefaultOperator not — negation of

operator specified, TRUE | FALSE

checkComparisonDefaultOperator caseInsensitive — only

valid for STRING types.

<!ELEMENT

checkComparisonDefaultOperato

r (#PCDATA)>

List of default values for comparator. Useful for field or

development outside the TON build framework.

checkComparisonDefaultValues

(checkComparisonDefaultValue+

)

checkComparisonDefaultValue (checkComparisonDe-

faultValueItem,

checkComparisonDefaultValueDisplayName).

checkComparisonDefaultValueIt

em

Value for default, passed to code.

checkComparisonDefaultValueDi

splayName

Display name for the value, seen in the SAS Client.

checkCompareValidValues

(checkCompareValidValue+)>

checkCompareValidValue

(checkCompareValidValueItem,

checkCompareValidValueDisplay

Name)>

checkCompareValidValueItem

(#PCDATA)>

checkCompareValidValueDisplay

Name (#PCDATA)>

Table 6-4: DTD Elements and Attributes (continued)
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 131

Opsware® Automation Platform Developer’s Guide

13
checkSuccessExitCodes

(checkSuccessExitCode+)

checkSuccessExitCode

(checkSuccessExitCodeValue,

checkSuccessExitCodeDefaultDe

scription,

checkSuccessExitCodeDefaultDi

splayName)>

For a checkReturnType of EXITCODE, you must define the

valid values for proper script operation, which generally

include both the compliant and non-compliant expected

values. Anything returned other than a value specified

here will be seen as a script failure, which is shown differ-

ently in the SAS Client, as well as in reporting.

checkSuccessExitCodeValue Value for script completion, for example, 0 (for disabled

typically).

checkSuccessExitCodeDefaultDe

scription

Hover text for the DisplayName/Value.

checkSuccessExitCodeDefaultDi

splayName

Value or text shown to user for this value, for example,

Disabled.

Table 6-4: DTD Elements and Attributes (continued)
2 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 7: Job Approval Integration

Overview of Job Approval Integration
An Opsware SAS job is a major task such as Remediate Policies, Install Patch, and Run

OS Sequence. When launching a job in the SAS Client, you specify when a job runs:

immediately, once in the future, or repeatedly in the future. The SAS Client displays the

status of jobs in the Job Logs, Recurring Schedules, and Job Status windows. For

example, if a job will run once in the future, in the Job Logs window the status is

Scheduled.

In many IT environments, operations such as those performed by Opsware SAS jobs must

be approved and assigned tickets before they can be executed. Opsware SAS includes a

connector that communicates with Opsware Process Automation System (PAS), which

can automate the workflow for approving jobs and tracking tickets. This chapter explains

how to set up Opsware SAS so that certain types of jobs wait for approval before

executing. It also explains how to configure the connector to run an Ops flow that

approves blocked jobs.

This chapter is intended for system integrators and software developers who are familiar

with Opsware SAS jobs, Ops flows, and ticketing systems.

I N T H I S C H A P T E R

This chapter contains the following topics:

• Overview of Job Approval Integration

• The Opsware PAS Connector

• Managing Blocked Jobs With the Opsware API
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 133

Opsware® Automation Platform Developer’s Guide

13
Scenario for Job Approvals

This scenario is just one example of how end users might participate in a job approval

process that has been integrated with Opsware SAS. In this scenario, Sam is a system

administrator responsible for managing Linux servers in a data center. Cheryl is a member

of the IT organization’s Change Review Board. She is responsible for approving change

requests from the Linux system administrators.

1 Sam logs onto the SAS Client and goes to the compliance dashboard. He notices

that one of the Linux servers is non-compliant because it needs an RPM that is

specified by a software policy.

2 To install the RPM on the server, Sam remediates the software policy, choosing to run

the job immediately. After Sam clicks Start Job, the SAS Client displays the job status

as Pending Approval.

3 Cheryl logs onto BMC Remedy Help Desk and searches for recent change requests.

The search results include the remediation job launched by Sam. Cheryl goes to the

the ticket associated with the remediation job. In the ticket details, she notes the

server name, the type of job, and the user, Sam.

4 Cheryl decides that the remediation can be applied now, so she approves the job.

5 In the SAS Client, Sam goes to the Job Logs window and locates his remediation job.

He notices that the job has a ticket ID that its status is now In Progress.

6 A few minutes later, Sam receives an email notifying him that the job has completed

successfully. In the SAS Client, the status of the job is Completed.

7 In BMC Remedy Help Ticket, Cheryl checks the ticket and sees that it has been

closed and that the remediation was successful. The ticket details include

information about the job’s results, such as the start and end times, the name of the

changed, and the RPM installed on the server.

Behind the Scenes

While Sam and Cheryl interact with the UIs in the preceding scenario, Opsware SAS and

Opsware PAS perform the following operations behind the scenes:

1 When Sam starts the job, Opsware SAS verifies that the job type, Remediate Policies,

is one of the job types that require approval. Opsware SAS sets the job status to

Pending Approval. At this point, the job is blocked and will not run until it has been

approved.
4 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 7: Job Approval Integration
2 Opsware SAS runs the PAS connector, which reads a configuration file, connects to

Opsware PAS, and executes an Ops flow, passing along the job ID.

3 The flow invokes the JobService.getJobInfoVO method of the Opsware API.

From the value object (VO), the flow gets information such as the servers associated

with the job, the type of job, and the user who started the job.

4 The flow creates a help ticket and fills in the ticket details with the job information.

5 The flow invokes the JobService.updateBlockedJob method, assigns the

ticket ID to the job, and then ends

6 Cheryl approves the job in BMC Remedy Help Ticket, an action that invokes a new

Ops flow.

7 The flow invokes the JobService.approveBlockedJob method.

8 Opsware SAS runs the remediation job, setting the job status to In Progress.

9 The remediation job installs the missing RPM on the server.

10 After the job finishes, Opsware SAS sets job the status to Completed.

11 The flow invokes the JobService.getResult method and determines that the

job has completed successfully. The flow updates the ticket details with the job

results and then closes the ticket.

The Opsware PAS Connector
The PAS connector is the software in the Opsware core that communicates with Opsware

PAS when an Opsware SAS job is blocked (Pending Approval). The connector resides on

the core server running the Command Engine. By default, the connector is not enabled.

For instructions on setting up the connector, see “Configuring Opsware SAS for Job

Approval Integration” on page 136.

Prerequisites for the PAS Connector

Make sure that your environment meets the following requirements:

• Opsware SAS is version 6.5 or later.

• Opsware PAS is version 2.1 or later.

• Opsware PAS is installed on a server that has network connectivity to the Opsware SAS

core.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 135

Opsware® Automation Platform Developer’s Guide

13
• The flow for approving Opsware SAS jobs is installed and tested on Opsware PAS.

• Port 8443 on the Opsware PAS server is open. This port number is configurable, as

described in Table 7-5.

• The Opsware SAS user specified by the Ops flow has the required Opsware SAS

permissions: Edit All Jobs and View All Jobs. For instructions on setting up permissions,

see the Opsware® SAS Administration Guide.

Before configuring the connector, gather the following information:

• Host name or IP address of the server running Opsware PAS.

• Name (path in the Library) of the Ops flow that approves the Opsware SAS jobs.

Configuring Opsware SAS for Job Approval Integration

This section explains how to set up Opsware SAS for job approval integration with the PAS

connector. For instructions on configuring Opsware PAS and creating Ops flows, see the

Opsware PAS technical documentation.

In a multimaster mesh, perform steps 2 - 4 on every Command Engine server in the

mesh. Perform step 5 one time for the entire mesh.

To set up job approval integration, perform the following steps:

1 Review “Prerequisites for the PAS Connector” on page 135.

2 As root, log onto the Opsware core server running the Command Engine.

3 In a text editor, open the the PAS connector configuration file (iconclude.conf),

edit the required properties, and save the file. Initially, you can create

iconclude.conf by copying iconclude.conf.samp. For details, see “PAS

Connector Configuration File” on page 136.

4 Remain logged on as root and create the password file (iconclude.pwd), as

described in “Securing the PAS Password” on page 138.

5 Log onto the SAS Client and follow the instructions in “Enabling Job Approval

Integration for Opsware SAS” on page 138.

PAS Connector Configuration File

This text file contains name-value pairs that specify properties such as the PAS host and

flow. The configuration file resides on the Command Engine server at the following

location:
6 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 7: Job Approval Integration
/etc/opt/opsware/iconclude-connector/iconclude.conf

In the following example of the iconclude.conf file, the first line indicates that the PAS

connector is enabled:

iconclude.enabled: 1
iconclude.host: flowmaster.opsware.com
iconclude.port: 8443
iconclude.proto: https
iconclude.flow.approve: Library/Test Flows/Approve SAS Job
iconclude.user: iconclude

Opsware SAS includes a sample configuration file, iconclude.conf.samp, which you

can copy to iconclude.conf. During an Opsware SAS upgrade,

iconclude.conf.samp is replaced but iconclude.conf is unchanged.

Table 7-5 describes all properties of the iconclude.conf file. Required properties are

noted in the Default column of the table.

Table 7-5: PAS Connector Configuration File

PROPERTY DEFAULT DESCRIPTION

iconclude.enabled 0 An integer, either:

1 - enable the connector

0 - disable the connector

iconclude.host None

(required)

Host name or IP address of the Opsware

PAS server.

iconclude.proto https Protocol (http or https) for connecting to the

Opsware PAS server.

iconclude.port 8443 Port of the Opsware PAS listener.

iconclude.flow.

approve

None

(required)

The name (path) in the Opsware PAS Library

of the flow that is run when an Opsware SAS

job requires approval.

iconclude.user None

(required)

The Opsware PAS user name.

iconclude.password The encrypted password

in the iconclude.pwd

file. See “Securing the

PAS Password” on page

138.

The clear text password of the Opsware PAS

user. Do not include this property in a

production environment.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 137

Opsware® Automation Platform Developer’s Guide

13
Securing the PAS Password

The PAS connector needs a PAS user name and password for authentication. You specify

the user name in the iconclude.conf file, as described previously. Although you can

also specify the password in iconclude.conf, this approach is not secure because

the contents of iconclude.conf are in clear text.

To secure the PAS password, perform the following steps:

1 As root, log onto the Opsware core server running the Command Engine.

If the iconclude.conf file contains a line with the iconclude.password

property, delete that line from the file.

2 Create the directory that will contain the iconclude.pwd file:

mkdir -p /var/opt/opsware/crypto/iconclude-connector/

3 Enter a password in iconclude.pwd. The following command, for example, enters

the password secret:

echo -n "secret" > \
/var/opt/opsware/crypto/iconclude-connector/iconclude.pwd

At this point, the password in iconclude.pwd is in clear text. However, the next

time the PAS connector runs, the password in iconclude.pwd is encrypted.

4 Change the access to the directory containing iconclude.pwd:

chmod -R go-rwx /var/opt/opsware/crypto/iconclude-connector

Enabling Job Approval Integration for Opsware SAS

The steps in this section require the Manage Approval Integration permission of Opsware

SAS.

To enable job approval integration and to select the types of jobs that require approval,

perform the following steps:

1 In the SAS Client, from the Navigation panel select Opsware Administration➤

Approval Integration.

2 Select Enable Approval Integration.

3 Under Job Types Requiring Approval, select Yes for one or more types.

4 Click Apply.

After you have performed the steps in this section, new jobs of the types you select in

step 3 are blocked until they are either approved or canceled. In the SAS Client, the status

of a blocked job is Pending Approval. Because jobs cannot be approved from within the
8 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 7: Job Approval Integration
SAS Client, be sure to set up the PAS connector. Otherwise, the jobs launched by your

end users will stay blocked and will not run. In a testing environment, you can approve a

job by starting a Global Shell session and invoking the method described in “Updating

Blocked Jobs” on page 140.

Troubleshooting the PAS Connector

If Opsware SAS cannot contact Opsware PAS because of incorrect settings in the

iconclude.conf file, error messages are logged in the following file on the Command

Engine server:

/var/log/waybot/waybot.err

The error messages do not appear in the SAS Client.

Managing Blocked Jobs With the Opsware API
In the API, JobService provides the following methods for managing blocked jobs:

approveBlockedJob
updateBlockedJob
cancelScheduledJob
findJobRefs

These methods are the callbacks into Opsware SAS that enable job approval integration.

For example, an Ops flow can specify the approveBlockedJob method for the ssh

command.

To run the first three methods in the list, the Opsware SAS user must have the Edit All

Jobs and View All Jobs permissions. For the findJobRefs method to return jobs

launched by other users, the user invoking findJobRefs needs the View All Jobs

permission.

In the SAS Client, the status of a blocked job is Pending Approval.

Approving Blocked Jobs

To approve (unblock) a job, invoke the JobService.approveBlockedJob method.

The end users of the SAS Client cannot approve a blocked job. The following example

invokes the OCLI method from within a Global Shell session:
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 139

Opsware® Automation Platform Developer’s Guide

14
cd /opsw/api/com/opsware/job/JobService/method
./approveBlockedJob self:i=$job_id

Updating Blocked Jobs

The JobService.updateBlockedJob method enables you to change the value of

the Ticket ID and Reason fields displayed in the Job Status window of the SAS Client. The

end users of the SAS Client cannot change these fields. The TicketID field corresponds to

the userTag parameter of updateBlockedJob and the Reason field corresponds to

the blockReason parameter. Here’s an OCLI example:

cd /opsw/api/com/opsware/job/JobService/method
./updateBlockedJob self:i=$job_id userTag=$ticket_id \
blockReason="This type of job requires approval of CMB."

Canceling Blocked Jobs

To cancel a blocked job, invoke the JobService.updateBlockedJob method. In the

following example, note that the ID parameter is jobRef, not self:

cd /opsw/api/com/opsware/job/JobService/method
./cancelScheduledJob jobRef:i=$job_id \
reason="Job was scheduled to run outside of change window."

A job that is currently running (job_status = "ACTIVE") cannot be canceled.

Searching for Blocked Jobs

To find blocked jobs, invoke the findJobRefs method. The following OCLI method call

returns the IDs of all blocked jobs:

cd /opsw/api/com/opsware/job/JobService/method
./.findJobRefs:i filter=’job:{ job_status = "BLOCKED" }’

For related examples, see “Finding Jobs” on page 55.

To search for jobs of a particular status with the findJobRefs method, specify the job_

status string in the filter, not the JobInfoVO.status integer. Table 7-6 lists the

allowed values of the job_status searchable attribute. Note that a job_status of

BLOCKED means that the job is Pending Approval, whereas a job_status of PENDING

indicates that the job is Scheduled. The table also lists the corresponding integer values

for JobInfoVO.status, which you can examine if your client code has already

retrieved the VO. In a Java client, you can compare JobInfoVO.status with field

constants such as STATUS_ACTIVE, instead of the integers listed in the table.
0 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Chapter 7: Job Approval Integration
Table 7-6: Job Status in Opsware SAS

Value of
job_status
Searchable
Attribute

Value of
JobInfoVO.

status

Job Status Displayed
by SAS Client

Description

ABORTED 0 Command Engine

Script Failure

The job has finished running and a Command

Engine failure has been detected.

ACTIVE 1 In Progress The job is currently running.

BLOCKED 11 Pending Approval The job has been launched, but requires

approval before it can run.

CANCELLED 2 N/A A schedule has been deleted.

DELETED 3 Canceled The job was scheduled but was later canceled.

EXPIRED 13 Expired The current date is later than the job schedule's

end date, so the job schedule is no longer in

effect.

FAILURE 4 Completed With Errors The job has finished running and an error has

been detected.

PENDING 5 Scheduled The job is scheduled to run once in the future.

RECURRING 12 Recurring The job is scheduled to run repeatedly in the

future.

STALE 10 Stale

SUCCESS 6 Completed The job has finished running successfully.

TAMPERED 9 Tampered

UNKNOWN 7 Unknown

WARNING 8 Completed With

Warnings

 The job has finished running and a warning

has been detected.

ZOMBIE 14 Orphaned
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 141

Opsware® Automation Platform Developer’s Guide

14
2 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Appendix A: Search Filter Syntax

Filter Grammar
A search filter is a parameter for methods such as findServerRefs. The expression in

a search filter enables you to get references to Opsware SAS objects (such as servers

and folders) according to the values of the object attributes. The formal syntax for a search

filter follows:

<filter> ::= (<expression-junction>)+

<expression-junction> ::= <expression-list-open> <junction>
(<expression>)+ <expression-list-close>

<expression> ::= <expression-open> <attribute>
<general-delimiter> <operator> <general-delimiter>
<value-list> <expression-close>

<attribute> ::= <resource_field>
<vo_member> ::= <text>
<resource_field> ::= <text>
<value-list> ::= (<double-quote> <text> <double-
quote>)* | (<number>)*

<text> ::= [a-z] [A-Z] [0-9]
<number> ::= [0-9] [.]

<junction> ::= <union-junction> |
<intersect-junction>

<union-junction> ::= ‘|’
<intersect-junction ::= ‘&’
<expression-list-open> ::= ‘(‘

I N T H I S A P P E N D I X

This appendix discusses the following topics:

• Filter Grammar

• Usage Notes
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 143

Opsware® Automation Platform Developer’s Guide

14
<expression-list-close> ::= ‘)’
<expression-open> ::= ‘(‘ | ‘{‘
<expression-close> ::= ‘(‘ | ‘}’
<general-delimiter> ::= <whitespace>
<whitespace> ::= ‘ ‘
<double-quote> ::= ‘”’
<escape-character> ::= ‘\’

<operator> ::= <equal_to> |...| <contains_or_above>

Valid operators for the preceding line:

<equal_to> ::= ‘=’ | ‘EQUAL_TO’
<not_equal_to> ::= ‘!=’ | ‘<>’ | ‘NOT_EQUAL_TO’
<in> ::= ‘=’ | ‘IN’
<not_in> ::= ‘!=’ | ‘<>’ | ‘NOT_IN’
<greater_than> ::= ‘>’ | ‘GREATER_THAN’
<less_than> ::= ‘<‘ | ‘LESS_THAN’
<greater_than_or_equal> ::= ‘>=’ | ‘GREATER_THAN_OR_EQUAL’
<less_than_or_equal> ::= ‘<=’ | ‘LESS_THAN_OR_EQUAL’
<begins_with> ::= ‘=*’ | ‘BEGINS_WITH’
<ends_with> ::= ‘*=’ | ‘ENDS_WITH’
<contains> ::= ‘*=*’ | ‘CONTAINS’
<not_contains> ::= ‘*<>*’ | ‘NOT_CONTAINS’
<in_or_below> ::= ‘IN_OR_BELOW’
<in_or_above> ::= ‘IN_OR_ABOVE’
<between> ::= ‘BETWEEN’
<not_between> ::= ‘NOT_BETWEEN’
<not_begins_with> ::= ‘NOT_BEGINS_WITH’
<not_ends_with> ::= ‘NOT_ENDS_WITH’
<is_today> ::= ‘IS_TODAY’
<is_not_today> ::= ‘IS_NOT_TODAY’
<within_last_days> ::= ‘WITHIN_LAST_DAYS’
<within_last_months> ::= ‘WITHIN_LAST_MONTHS’
<within_next_days> ::= ‘WITHIN_NEXT_DAYS’
<within_next_months> ::= ‘WITHIN_NEXT_MONTHS’
<not_within_last_days> ::= ‘NOT_WITHIN_LAST_DAYS’
<not_within_last_months> ::= ‘NOT_WITHIN_LAST_MONTHS’
<not_within_next_days> ::= ‘NOT_WITHIN_NEXT_DAYS’
<not_within_next_months> ::= ‘NOT_WITHIN_NEXT_MONTHS’
<contains_or_below> ::= ‘CONTAINS_OR_BELOW’
<contains_or_above> ::= ‘CONTAINS_OR_ABOVE’

Usage Notes
The same junction type must be used within each expression junction:
4 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved.

Appendix A: Search Filter Syntax
• valid: ((x = y) & (a = y) & (x = a))

• invalid: ((x = y) & (a = y) | (x = a))

A text value needs to have double-quotes surrounding it but a number does not. Any

double-quote that is part of the value must be escaped with a backslash:

• valid number: 123.456

• valid text: "abc"

• invalid text: abc

• valid text: "ab\"c"

• invalid text: "ab"c"

• invalid text: ab"c

Parentheses must surround groups of expressions which will junction with another group

of expressions:

• valid grouping: ((x = y) & (a = b)) | (n = r)

• invalid grouping: (x = y) & (a = b) | (n = r)
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2007 Opsware Inc. All Rights Reserved. 145

	Opsware® Automation Platform Developer’s Guide
	Table of Contents
	Preface
	About this Guide
	Contents of this Guide

	Chapter 1: Overview
	Overview of the Opsware Automation Platform
	Components of the Opsware Automation Platform
	Opsware Automation Applications
	Opsware Runtime Environment
	Opsware Platform Resources
	Opsware Management Network
	Opsware Managed Devices

	Benefits of the Opsware Automation Platform
	Powerful Security
	Comprehensive Reach
	Rich Services
	Easily Accessible to a Broad Spectrum of Programmers

	Opsware Automation Platform API Design
	Services
	Objects in the API
	Exceptions
	Event Cache
	Searches
	Security
	API Documentation and the Twister
	Constant Field Values
	Importing and Exporting Packages With PUT and GET

	Supported Clients
	Obtaining the Code Examples

	Chapter 2: Opsware CLI Methods
	Overview of Opsware CLI Methods
	Method Invocation
	Security
	Mapping Between API and OCLI Methods
	Differences Between OCLI Methods and Unix Commands

	OCLI Method Tutorial
	Format Specifiers
	Position of Format Specifiers
	Default Format Specifiers
	ID Format Specifier Examples
	Structure Format Specifier Syntax
	Structure Format Specifier Examples
	Directory Format Specifier Examples

	Value Representation
	Opsware Objects in the OGFS
	Primitive Values
	Arrays

	OCLI Method Parameters and Return Values
	Method Context and the self Parameter
	Passing Arguments on the Command-Line
	Specifying the Type of a Parameter
	Complex Objects and Arrays As Parameters
	Overloaded Methods
	Return Values
	Exit Status

	Search Filters and OCLI Methods
	Search Syntax
	Search Examples
	Searchable Attributes and Valid Operators

	Example Scripts
	create_custom_field.sh
	create_device_group.sh
	create_folder.sh
	detect_hba_version.sh
	remediate_policy.sh
	remove_custom_field.sh
	schedule_audit_task.sh

	Getting Usage Information on OCLI Methods
	Listing the Services
	Finding a Service in the API Documentation
	Listing the Methods of a Service
	Listing the Parameters of a Method
	Getting Information About a Value Object
	Determining If an Attribute Can Be Modified
	Determining If an Attribute Can Be Used in a Filter Query

	Chapter 3: Python Access to the API with Pytwist
	Overview of Pytwist
	Setup for Pytwist
	Supported Platforms for Pytwist
	Access Requirements for Pytwist
	Installing Pytwist on Managed Servers

	Pytwist Examples
	get_server_info.py
	create_folder.py
	remediate_policy.py

	Pytwist Details
	Authentication Modes
	TwistServer Method Syntax
	Error Handling
	Mapping Java Package Names and Data Types to Pytwist

	Chapter 4: Java RMI Clients
	Overview of Java RMI Clients
	Setup for Java RMI Clients
	Java RMI Example
	Compiling and Running the GetServerInfo Example

	Chapter 5: Web Services Clients
	Overview of Web Services Clients
	Programming Language Bindings Provided in This Release
	URLs for Service Locations and WSDLs
	Security for Web Services Clients
	Overloaded Operations
	Java Interface Support
	Unsupported Data Types
	Invoke setDirtyAtrributes When Creating or Updating VOs
	Compatibility With Opsware Web Services API 2.2

	Perl Web Services Clients
	Running the Perl Demo Program
	Perl Example Code
	Construction of Perl Objects for Web Services

	C# Web Services Clients
	Required Software for C# Clients
	Obtaining the C# Client Stubs
	Accessing the C# Stub Documentation
	Building the C# Demo Program
	Running the C# Demo Program
	C# Example Code

	Chapter 6: Pluggable Checks
	Overview of Pluggable Checks
	Setup for Pluggable Checks
	Pluggable Check Tutorial
	Overview of Audit and Remediation
	Pluggable Check Creation
	Guidelines for Pluggable Checks
	Development Process for Pluggable Checks
	Pluggable Check Configuration (config.xml)
	Audit (get) Scripts
	Remediation (set) Scripts
	Other Code for Pluggable Checks
	Zipping Up Pluggable Checks
	Importing Pluggable Checks

	Audit Policy Creation
	Creating an Audit Policy
	Exporting the Audit Policy

	Document Type Definition (DTD) for config.xml File

	Chapter 7: Job Approval Integration
	Overview of Job Approval Integration
	Scenario for Job Approvals
	Behind the Scenes

	The Opsware PAS Connector
	Prerequisites for the PAS Connector
	Configuring Opsware SAS for Job Approval Integration
	PAS Connector Configuration File
	Securing the PAS Password
	Enabling Job Approval Integration for Opsware SAS
	Troubleshooting the PAS Connector

	Managing Blocked Jobs With the Opsware API
	Approving Blocked Jobs
	Updating Blocked Jobs
	Canceling Blocked Jobs
	Searching for Blocked Jobs

	Appendix A: Search Filter Syntax
	Filter Grammar
	Usage Notes

