HP Virtual User Generator

for the Windows and UNIX operating systems

Software Version: 9.10

User’s Guide
Volume Il - Protocols

Document Number: T7182-90013
Document Release Date: February 2008

Software Release Date: February 2008

invent

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty
statements accompanying such products and services. Nothing herein should be construed
as constituting an additional warranty. HP shall not be liable for technical or editorial errors
or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or
copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software,
Computer Software Documentation, and Technical Data for Commercial Items are licensed
to the U.S. Government under vendor's standard commercial license.

Third-Party Web Sites

HP provides links to external third-party Web sites to help you find supplemental
information. Site content and availability may change without notice. HP makes no
representations or warranties whatsoever as to site content or availability.

Copyright Notices

© Copyright 2000 - 2008 Hewlett-Packard Development Company, L.P.

Trademark Notices

Java™ is a US trademark of Sun Microsystems, Inc.

Microsoft® and Windows® Microsoft and Windows are U.S. registered trademarks of
Microsoft Corporation.

Oracle® is a registered US trademark of Oracle Corporation, Redwood City, California.
UNIX® is a registered trademark of The Open Group.

Documentation Updates

This manual’s title page contains the following identifying information:

e Software version number, which indicates the software version

¢ Document release date, which changes each time the document is updated

e Software release date, which indicates the release date of this version of the software

To check for recent updates, or to verify that you are using the most recent edition of a
document, go to:

http://ovweb.external.hp.com/lpe/doc_serv/

http://ovweb.external.hp.com/lpe/doc_serv/

Support

Mercury Product Support

You can obtain support information for products formerly produced by Mercury as follows:

e Ifyou work with an HP Software Services Integrator (SVI) partner (www.hp.com/
managementsoftware/svi_partner_list), contact your SVI agent.

e Ifyou have an active HP Software support contract, visit the HP Software Support Web
site and use the Self-Solve Knowledge Search to find answers to technical questions.

e For the latest information about support processes and tools available for products
formerly produced by Mercury, we encourage you to visit the Mercury Customer Support
Web site at: http:/support.mercury.com.

e Ifyou have additional questions, contact your HP Sales Representative.

HP Software Support

You can visit the HP Software Support Web site at:
www.hp.com/go/hpsoftwaresupport/

HP Software online support provides an efficient way to access interactive technical support
tools. As a valued support customer, you can benefit by using the support site to:

e Search for knowledge documents of interest

e Submit and track support cases and enhancement requests
e Download software patches

e Manage support contracts

e Look up HP support contacts

* Review information about available services

e Enter into discussions with other software customers

¢ Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in.
Many also require a support contract. To find more information about access levels, go to:
www.hp.com/managementsoftware/access_level

To register for an HP Passport ID, go to:
www.managementsoftware.hp.com/passport-registration.html

www.hp.com/go/hpsoftwaresupport
www.hp.com/managementsoftware/svi_partner_list
www.hp.com/managementsoftware/svi_partner_list
http://support.mercury.com
www.hp.com/managementsoftware/access_level
www.managementsoftware.hp.com/passport-registration.html

Table of Contents

PART I: INTRODUCING PROTOCOLS

Chapter 1: Understanding Protocols.............ccccceeiiiiininiiiiiiciiinnnnennnn. 21
USING This GUIAEcceiiiiiiiiiiiiiiiieiiiiiee e e 21
VUSCT LY PO ittt ettt e s 22

PART 1I: SOA AND WEB SERVICES TESTING

Chapter 2: Understanding the SOA Test Types......ccccccceeeriiciinnnniennnn. 27
ADOUL SOA TeSt TYPES ceeeeiiiiiiiiieeeeiiitettee ettt e e 27
Getting Started with Web Services Vuser SCripts.......ccccccceeeeeniunnneeenn. 28
Chapter 3: Working with Web Services Scripts.......c.ccccccevivicivnunnennn. 31
About Working with Web Services SCripts.........cccceeeviiiiieeeeeinncnneeen. 31
Viewing and Editing SCIIPtScceviiriiiiiiiieeriiieeeeeeereeeeeee e 32
Parameterizing SCIiPLs ..ceeeviiiiiiiiiiiiiiiiiii e 35
Chapter 4: Managing Web Services..........ccccccceeeiiiiiineecciiiiciiineeneennnn. 37
About Managing Web Services Vuser SCIipts.......ccccceeevviveeeeeernnnnneeen. 38
Viewing and Setting Service Properties.........ccccueeeeeeviiiiiieeeeennncnneeeen. 39
IMPOTting SEIVICES....uvviiiiiiiiiiiiiiiiiiiiiiii e 43
Specifying a Service on @ UDDI SeIver........cccccceveeveeiiieereeeenniiieeeeeennn. 45
Choosing a Service from Quality Centercccccoeveiviieeeeiiniiiieeeeeennn. 46
Specifying WSDL Connection Settingscccceeeeeeiiieereeeennnieeeeeeennn. 47
Deleting SEIVICES.ceviiiiiiiiiiiieeeeeiiiteee e e ettt e e et e e e e e sireeeeeeeeeas 49
Comparing WSDL FIlesccoiiiiiiiiiiiiiiiiiieeeeeeeeee e 49

Viewing WSDL Filesccccoiiiiiiiiiiiiiiiiieee e eieeee e 54

Table of Contents

Chapter 5: Adding Content to Web Services Scriptsccccceeeennnee. 55
About Adding Content to Web Services SCripts.......coccvvvieiiiiiinnneen. 55
Recording a Web Services SCIiptcccovvviiiiiiiiiiniiiiiiiiiiie 56
Viewing the WOTKEIOWcoccciiiiiiiiiiiiiiiiieciecceeec e 61
Adding New Web Service Callsccccccovvviiiiiiiiiniiiiiiiine, 62
Importing SOAP ReQUESEScoovvumiiiiiiiiiiiiiiiiiiiiiiiccc e 65
USINng YOUT SCTIPt..cccciiiiiiiiiiiiiiiiiiiiiiiicccc e 68
Working with Service Test Managementcccccoeveviiiiiiininiinnieeenn. 69
Chapter 6: Creating Server Traffic Scripts.......ccccccvvviiiiinniiinnniccnnnnns 71
About Creating Server Traffic SCIPtScevvviieiriiiiiiiiciieeceieeee 71
Getting Started with Server Traffic SCIiptS.....coccoceirviieeiniiiiiniiiienne 73
Generating a Capture File ... 74
Creating a Basic Script from Server TraffiC.......c..cccvviiiiiiiiiinnnennnnnnn. 76
Specifying Traffic Informationccceeeviiiiiiiiinniiiiiiiiieeeeeee 78
Choosing an Incoming or Outgoing Filtercccccevviiiiiiiiiienenennn. 79
Providing an SSL Certificate........c.eeeeiirriiiiiiiieiiiiniiieeeeeeeiiieeeeeee 80
Chapter 7: Working in the Web Service Call Viewcccoevuureinnnne 83
About the Web Service Call VIewcccccovviiiiiiiiiniiiiiiininn 83
Viewing Web Services SOAP Snapshotscccccovvvviiiiiiiinnini. 84
Understanding Web Service Call Propertiesccccccoevveniiiiiiinnn. 87
Derived TYPES ...uuviiiiiiiiiiiiiicciiiiit e 98
Working with Optional Parameterscccccoviiiiiiiiiiiiiiiiiinnniee. 99
Base 64 ENcoding.........cccceeieiiiiiiiiiiiiiiiiiiiiiiicccnec 103
AACHIMIENIES ..o 107
Working with the XML.........ccccciniiiiiiiiii, 111
Using Web Service Output Parameterscccoeeeviiiiiiiniiiiicnnnnn. 115
Setting Checkpointsccccevvviiiiiiiiiiii e, 119
Chapter 8: Setting Advanced Properties for Web Service Scripts ...127
About Setting the Transport Layer, Security and User Handlers....... 127
Configuring the Transport Layerccccceeeeeiiiiiiiiiieeeeinnniiieeeeeeene 128
Creating Web Service Security POLCIeScccovvviiiiiiiiiniiiiiinnn. 141
Setting SAML OpPtionscooeiiiiiiiiiiiiie e 147
Customizing Web Service Script Behavior........ccccceeeeiiiiiiiiiiiieeneenen. 150
Chapter 9: Running SOA/Web Services Scripts.........cccoevueerivnnniennnns 159
About Running Web Services VUSerSccccceiiiiiiniiiiiiiiiiniinnne, 159
Setting Web Services JMS Run-Time Settings.............cccccovvvniiinnnnn. 161
Using Web Services FUNCHONScccccovviiiiiiiiiiiiiiiini, 163
Viewing Web Services RepOItsccceeiiiviiiiiiiiiiininne, 163

PART I1Il: WORKING WITH JAVA LANGUAGE PROTOCOLS

Table of Contents

Chapter 10: Recording Java Language Vuser Scriptsccceuueenne. 171
About Recording Java Language Vuser SCIipts.......ccoeeevuviiieiinnnnnnnen. 172
Getting Started with Recording..........cccccoeeviiiiiiinnnniiiiiiiinnn. 173
Recording Java EVentscccccovviiiiiiiiiiiiiiiieccen 175
Recording a Corba-Java VUSerccccoovviiiiiiiiiniiiiiiinnee, 178
Recording RMI over ITOP........ccooovviiiiiiiiiiiiiiiiiiiiiiiiceeceen 179
Recording an RMI VUSET.........ccoovviiiiiiiiiiiiiiiiiiiiiiicccceeceen 180
Recording a Jacada VUSEToooviiiiiiiiiiiiiiiiiiiiiiieeceen 180
Recording on Windows XP and Windows 2000 Servers 181
Chapter 11: Working with Java Vuser Scripts.......cc.cccccevvvuieiiinnennn. 183
Understanding Java VUuser SCIPtSccccoovvvviiiiiiiiiniiiiiceiiiniinee, 184
Working with Corba-Java.........cccccovviiiiiiiiniiiii 185
Working with RMI Java........cccccciiiiiiiiiiiiiiiiiiiis 187
Working with Jacada.........cccooiiiiiiiiiii 188
Running a Script as Part of a Packagecccceeeeeeiviieeiiniccennneeenns 189
Viewing the Java Methodsccccooviiiiiiiiiiiii, 190
Manually Inserting Java Methodscccccovvviiiiiiniiniii. 192
Configuring Script Generation Settings........cccoccceeeeevveerniieeennneeennns 194
Java Custom FIlterS.......coeiiiiiniiiieiiiee e e 198
Chapter 12: Setting Java Recording Options........ccccccccevvvuicininnnnenn. 207
About Setting Java Recording Options..........ccccveeiiiniiiiiiiiiiiinnnnnnnn. 208
Java Virtual Machine (JVM) Recording Options...........cccccceevvnnnnnne. 209
Setting Classpath Recording Options............cccccevvviiiiiiiiiiniinnnnnn. 211
Recorder OPtionsccoooiiiiiiiiiiiiiiiiiien e 212
Serialization OPtionS........ccccccciiiiiiiiiiiiiii 214
Correlation OPtionscccccciiiiiiiiiiiiii 216
LOZ OPLIONS evviiiiiiiiiiiiiiiieeieiiieeieeeeee ettt 217
CORBA OPLIONS ..evviiiiiiiiiiiiiiiiiiiiiiiie ittt 219
Chapter 13: Correlating Java Scripts......ccoccccevvviieinnniiinnnnceininncenn. 221
About Correlating Java SCIiptsccoooiiiiiiiiiiiiiiiii, 222
Standard Correlationcccceivviiiiiiiiiiiii 223
Advanced Correlationcccccoiiviiiiiiiiiiini 223
String Correlation ...t 225
Using the Serialization Mechanismcccccceivviiiiiiiinnn. 226
Chapter 14: Configuring Java Run-Time Settingsccccecccevvenueenn. 233
About Configuring Java Run-Time Settings..........cccceeeveiirieeennnnneen. 233
Specifying the JVM Run-Time Settingscccoecceeeeviiieinniiecennnneennns 234
Setting the Run-Time Classpath Optionscccceeeviiiiiiiinininiinnn. 235

Table of Contents

PART IV: APPLICATION DEPLOYMENT SOLUTION PROTOCOLS

Chapter 15: Creating Citrix Vuser Scripts.........ccoovvevieeiiiivvvneeccnnnene. 239
About Creating Citrix Vuser SCIptS.....ccccovvviiiiiiiiiiiiiiiiiinne, 240
Getting Started with Citrix Vuser SCIipts.......ccccovviniiiiiiiniiiiiciinnn. 241
Setting Up the Client and Server........ccocociiiiiiiiiiiiiiiiiiniiinien, 242
ReCOTAINgG TIPSuvviiiiiiiiiiiiiiiiiiiiiiic it 245
Understanding Citrix Recording Options........ccccceeviiiiiiiiiiinnninenn. 247
Setting the Citrix Recording Options..........ccccccvvviiiiiiiiniiiinicinnnn. 255
Setting the Citrix Display Settingsccccccviiiiiiiiiiiiiiiinninn, 256
Setting the Citrix Run-Time Settingsccccccovvvviiiiiiiininiinicnnn. 257
Viewing and Modifying Citrix Vuser SCriptsccceevveervcereirnnneen. 260
Synchronizing Replay.........ccccooevviiiiiiiiiiiiiiiinece 261
Understanding ICA Filescoooooviiiiiiiiiiiiiiiiiiiiieeecece 269
Using Citrix FUNCHIONScciiviiiiiiiiiiiee e 270
Tips for Replaying and Troubleshooting Citrix Vuser Scripts 271
Chapter 16: Using the LoadRunner Citrix Agent........c.cccccoevuveennnnns 277
About the LoadRunner Citrix Agent........coecooiiiiiiiniiiiiiiiiinnnnnnne.. 277
Benefitting From the Citrix Agentcccccceeviiieiniieeiniiiieinieeeenes 278
Installationcccoeeiiiiiiiiii 283
Effects and Memory Requirements of the Citrix Agent.................... 284
Sample SCHPt.....oviiiiiiiiii 284
Chapter 17: Creating Remote Desktop Protocol Vuser Scripts........ 285
About Microsoft Remote Desktop Protocol (RDP) Vuser Scripts 286
RecOTding TIPSueiiiiiiiiiiiiiiiiiiiiiiiiic it 286
Understanding The RDP Recording Options.........ccccceeeiiiiiinnneeenn. 287
Recording a RDP Vuser SCript......cccoceeiiiiiiiiiiiiiiiiiineee, 291
Understanding the RDP Run-Time Settings..........cccccccceeivvinnniiiinnn. 293
Running RDP VUSser SCIiptscccooviiiiiiiiiiiiiiiiiiiiiiiceneeen 295
Working with Clipboard Data............cccccovvviiiiiiiinin, 296
Synchronizing Replay.........ccccooveviiiiiiiniiiiiiiieece 298

Table of Contents

PART V: CLIENT SERVER PROTOCOLS

Chapter 18: Developing Database Vuser Scripts.........cccccceeeeuueneeenn. 309
About Developing Database Vuser SCIiptscceeeeeeeieiiiiiiiiininnnnnnnnnne. 310
Introducing Database VUSETS...........cccccooivviiiiiiiiiiiiiiiiiicieeeeeen 311
Understanding Database Vuser Technology.........ccccccciiiininiinnn. 312
Getting Started with Database Vuser SCripts......cccecevviiiiiiininiinnn. 313
Setting Database Recording Options..........ccccccevivviiiiiiiiiinninneenn. 314
Database Advanced Recording Options..........ccccoevvvniiiiiiiiiiinneeenn. 316
Using LRD FUNCHONS.........ciiiiiiiiiiiiiiiniiniiiienns 318
Understanding Database Vuser SCIiptscccccccevivniiiiiiiiiiniiinnnen. 319
Working with Grids........coooviiiiiiiiiiii 322
Evaluating Error Codes.........ccccoovviiiiiiiiiniiiiiiiiniiinnceen 324
Handling EITOTSccooiiiiiiiiiiiiiiiiieccc e 325
Chapter 19: Correlating Database Vuser Scripts..........cccoeceeevinnnenn. 329
About Correlating Database Vuser SCIiptsccccoovvviiiiiiiiinnnnnnn. 329
Scanning a Script for Correlationsccoccueeeveeeeriiieeinniie e 330
Correlating a Known Value..........ccccoiiiiiiiiiiiiin, 332
Database Correlation FUNCHONS.........ccccovviiiiiiiiiniiiiiine, 334
Chapter 20: Developing DNS Vuser Scripts........cccovveeiinuieinineennnns 335
About Developing DNS VUuser SCIiptscccoovvvviiiiiiiiiiiiiiiiiiiniinne, 335
Working with DNS Functions..........ccccccccciiiniiiiiiiiiiii, 336
Chapter 21: Developing WinSock Vuser Scripts.........ccccoeveeivinnienn. 337
About Recording Windows Sockets Vuser Scripts..........ccccceevvennnnee. 337
Getting Started with Windows Sockets Vuser Scripts.......cccccceveeeen. 338
Setting the WinSock Recording Options..........cccccovviiiiiiiiinninnnneen. 340
Using LRS FUNCLIONS.......c.oviiiiiiiiiiiiiiiicncce 343
Chapter 22: Working with Windows Socket Data...............cccuuueenne. 345
About Working with Windows Socket Datacccoccceiiiiiiinnnnnnne. 346
Viewing Data in the Snapshot Windowcccccevviiiiiiiiinnnnnne. 346
Navigating Through the Datacccccoinniiiii, 348
Modifying Buffer Data.........cccceeviiiiiniiiiiniieeeiecceeec e 351
Modifying Buffer Namescccoevvveeeriiiiiiniiieeeieeeneee e 358
Viewing Windows Socket Data in Script View.........ccoccciiiiiinnnnnn. 359
Understanding the Data File Format..............cccccovvvniiiiiiinnnn. 360
Viewing Buffer Data in Hexadecimal format.........cccocccceerniieeennnneen. 362
Setting the Display Format..........cccccceiiiiiniiiiiiiiin, 365
Debugg@ing TiPS.......cceiiiiiiiiiiiiiiiic it 368
Manually Correlating WinSock Scriptscccccceiiiiiiiiiiiiiiiinnnnne. 369

Table of Contents

PART VI: CUSTOM VUSER SCRIPTS

Chapter 23: Creating Custom Vuser Scripts......c..ccccceeviiivvvcuneceennenns 375
About Creating Custom Vuser SCIipts.......cccoovviiiiiiniiiiiiiiiiniinnn, 376
C VUSEIS ittt 377
Using the Workflow Wizard for C Vuser SCripts........ccceeeeeerneueeennnns 378
AT B VA0 < 5 TR 381
VB VUSEIS...uiiiiiiiiiiiiiiiiiiiiiiiiiiiiii s 382
VBSCIIPE VUSETS....eviiiiiiiiiiiiiiiiii it 383
JavaSCIIPt VUSETS ...ooviiiiiiiiiiiiiiiiiiiiiicccinit e 384
Chapter 24: Programming Java Scripts.......cccocccevvvviieiinnecinninecnnnns 385
About Programming Java SCIiptscccccvvvviiiiiiiiiiniiiinne, 386
Creating a Java VUSETccoivviiiiiiiiiiiiiiiinncccceecce e 387
Editing a Java Vuser SCIiptcocooviiiiiiiiiiiiiiiiiiie, 387
Java Vuser API FUNCHONSueiiiiiiiiieeeieee e 389
Working with Java Vuser Functionscccocccciiniinnnn, 391
Setting your Java Environment..........cccoooooiiiiiiniiii, 397
Running Java VUuser SCIiptsoooovviiiiiiiiiiiiiiiiiiineee, 398
Compiling and Running a Script as Part of a Package...................... 399
Programming TipsS......cccccocciiiiiiiiiiiii 400

PART VII: DISTRIBUTED COMPONENT PROTOCOLS

PART VIII: E

10

Chapter 25: Recording COM Vuser Scripts.......ccooveveeeiiiiinnnneeccennnn. 405
About Recording COM VUsSser SCIPEScooveuiriiiiiiiiniiiiieeeeiieeeeeen. 406
COM OVEIVIEW ...uviiiiiiiiiiiiiiiccc it 406
Getting Started with COM VUSETS......cooceuiiiiiiiiiiiiiiieceiiiieeeeeee 408
Selecting COM Objects to Recordccccveeeeiiiiiiiicciiiiniiiiiceennnn. 409
Setting COM Recording Optionsccccoveviieiiiiiiniiiiiceeiiniiieeeeeen. 412
Chapter 26: Understanding COM Vuser Scripts.......cccccoevvuuueeecennnnnn 421
About COM VUSET SCIIPLS ..ovviiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeee e 421
Understanding VuGen COM Script Structure...........ccccceeevvvnnnneeeeen. 422
Examining Sample VuGen COM SCIPtS......ccceevvvimiiiciiiininiiieceennnne. 424
Scanning a Script for Correlationscccceveeeiiiiiiiieeciiiniiiiieceeeenn. 430
Correlating a Known Value...........cccccceviniiiiiiiiininniiiniieeeeee, 432

-BUSINESS PROTOCOLS

Chapter 27: Developing AJAX (Click and Script) Vusers.................. 437
About Developing AJAX (Click and Script) Vuser Scripts................. 437
Recording an AJAX (Click and Script) Session........cccccceevvenniieceennnne. 439
Understanding AJAX (Click and Script) SCripts......ccccceeeeeiiiinnneeeeen. 439

Table of Contents

Chapter 28: Developing AMF Vuser Scripts.........cccoveeivinuccininncennn. 41
About Developing AMF Vuser SCIptsccoovvviiiiiiiiiiiiiiiiiiininnnee, 441
Understanding AMF TeImscccccccceiiiiiiiiiiiiiiniiiiiiieecceen 443
Setting the AMF Recording Modeccooccuviiiiiiiniiiiiiiiiinnnn, 443
Setting AMF Code Generation Optionscccccvevviiiiiiiiiniiinienenn. 448
Working with AMF Functions..........cccccccceiiviiiiiiiiniii, 449
Correlating AMEF SCIIPESooiiiiiiiiiiiiiii e, 450
Viewing AMEF Data.......cccoovviiiiiiiiiiiiiiiiicccinnccec 454
Understanding AMEF SCIPtS.......ooooviiiiiiiiiiiiiee, 454
Chapter 29: Developing FTP Vuser Scripts.........ccccovuiiivinuieininncennn. 459
About Developing FTP Vuser SCIipts......ccccoovvviiiiiiniiiiiiiiiiiinninnne, 459
Working with FTP FUNCHONScoovviiiiiiiiiiiiiiis 460
Chapter 30: Developing Flex Vuser Scripts.........ccccovueiiiinnicininncennn. 461
About Developing Flex Vuser SCIipts.....cccccvvvvviiiiiiiiiiiiiiiiiiiniinnnee. 461
Working with Flex Functions...........cccccccciinniiiiiiinn, 463
Setting Flex Code Generation Optionscccccovvviiiiiiiiiininnnnnen, 464
Correlating Flex SCIIPESccoiiiiiiiiiiiiiiiiiiiieieeceen 465
Viewing Flex Data.......cccccovvviiiiiiiiniiiiiiiiiiiiiiiecccnee, 470
Setting Flex Step Propertiescccccvviiiiiiiiiiiiiiiiinniiiinee, 473
Chapter 31: Developing LDAP Vuser Scriptsccccocceevvinieininnncennn. 475
About Developing LDAP Vuser SCIiptS.......coocciiiiiiiniiiiiiiiiiiiininnne, 475
Working with LDAP FUNctionscccccccoviviiiiiiiiiiniiiniiieee, 476
Defining Distinguished Name Entries..........cccecceeiviiiiinniniiinnneennns 478
Specifying Connection OPtions........cccceeeveiererniieeeniieeenniieeenreeeenans 479
Chapter 32: Recording Microsoft .NET Vuser Scripts.........ccceuueenne. 481
About Recording Microsoft .NET Vuser SCripts.......cceeceeervueeernnnen. 482
Getting Started with Microsoft .NET VUSeIscceevvveeriiieeinnneeennns 483
Setting Microsoft .NET Recording Options.........cccceeveveerniieeennnneennes 485
Configuring the Recording Settings.........cccccevveieiiniiieiiniiicennneeennns 486
Viewing Scripts in VuGen and Visual Studio..........ccocccciiiiiinnnnnn. 491
Configuring .NET Environment Run-Time Settings.........c.ccccoeueeee. 493
Viewing Data Sets and GridS........cccooovviiiiiiiiiiiiiiiiiiii, 496
Correlating Microsoft .INET SCripts.......cccovvierimnieeiniieeenniieeenieeenans 497
Configuring Application Security and Permissions............cccecuueeene. 500
Recording WCF Duplex Communication........cccceevviiiiiiiiiniiniennn. 504
Chapter 33: Setting Filters for .NET Vuser Scripts.......cccocceeevinnnenn. 513
About Microsoft INET Filters.......cccccevviiiiniieinniiiiiniiecerieeceeeeen 513
Guidelines for Setting Filters.........cccoeoveeimiiiiiiniicinieeiiee e, 515
Setting a Recording Filterc.ccccoiiiiiiiniiiiiiiii, 519
Working with the Filter Manager...........cccccooeeeiiiiiiiiiniiiiinnnn. 521

11

Table of Contents

12

Chapter 34: Creating Web Vuser Scripts......ccccccovvveiieniiiiiinnecccnnnen. 531
About Developing Web Level Vuser SCripts.........cooeeeeeeiiiiiiiiiiineee 531
Introducing Web VUSerS..........ooovviiiiiiiiiiiiiiiiiiiiceeee, 532
Understanding Web Vuser Technologycccccoevvviiiiiiiinninnnneenn. 533
Choosing a Web Vuser Typeccccvviiiiiiiiiiiiiiiiiiiiiiinceen 533
Getting Started with Web Vuser SCripts.........ccccoovvviiiiiiiiinnnnnnn. 537
Recording a Web SesSion.........occccviiiiiiiiiiiiiiiiiiiiiieeeeec e 539
Converting Web Vuser Scripts into Java..........ccoeeevviiiiiiniiiiciinnn. 540
Chapter 35: Tips for Web (Click and Script) Vusers............cccceeeune.e. 541
RecOTding ISSUESccoovvuiiiiiiiiiiiiiiiiiiiiiic e 541
ReCOTAING TIPS ...uvviiiiiiiiiiiiiiiiiiiiiiirc e 543
Replay Problemscooociiiiiiiiiiiiiiiiiiiin e 545
REPIAY TIPS coooiiiiiiiiiiiiiiiiicct 547
Miscellaneous Problemscccovvuiiiiiiiiniiiiiiiiiiiecceee, 548
Miscellaneous TiPsccovvviiiiiiiiiiiiiiiii e 550
Enhancing Your Web (Click and Script) Vuser Script.........ccccceeeeien. 551
Chapter 36: Using Web Vuser Functions............cccceecveeiviniiiinnnccnnns 557
About Web Vuser FUNCLIONScccceviiiiiiiiiiiiiiiiiiiiienee, 558
Adding and Editing FUnctionscccccevvvviiiiiiiinnn, 559
General APINOESoooviiiiiiiiiiiiiiite e 561
Using Values Stored in the Cache...........ccccoiiiiiiiniiii. 563
Chapter 37: Recording with Click and Script........ccccccovvuiiinnniicnnns 567
About Recording with Click and SCriptcccccceiiiniiiiiiiiinnnn, 567
Viewing Web (Click and Script) Vuser Scripts.......cccccceeeiiiniinnnnen. 568
Setting Click and Script Recording Optionsccccccevvveniniiiinnn. 569
Setting Advanced GUI Properties..........cccccuviiiiiiiiiiiciiiininiinicnnnnn. 571
Configuring Web Event Recordingc.ccccceeveieeiiniiieinnieeennneeenns 574
Chapter 38: Setting Recording Options for Internet Protocols 587
About Setting Recording Options for Internet Protocols.................. 587
Setting Advanced Recording Optionscccccvvviiiiiiiiniiiiniciinnnn. 588
Setting a Recording Schemecccccovviiiiiiiiini, 590
Chapter 39: Setting Recording Options for Web Vusers 597
About Setting Recording Optionsccccevveviiiiiiiiniiiiieiiiiniinnneen, 597
Selecting a Recording Level............cccccovvviiiiiiiiinniiie 598
Setting the Recording Level............ccccccoiivviiiiiiiiiii, 611

Table of Contents

Chapter 40: Configuring Internet Run-Time Settings...................... 613
About Internet Run-Time Settingsccccoovvviiiiiiininiiniiinnnnn. 613
Setting Proxy OPtionscccccviiiiiiiiiiiiiiiiiiiniecn, 615
Setting Browser Emulation Properties............cccccvvvviiiiiiiiiniinnnnnnn. 620
Setting Internet Preferencesccceveveeeeriieiinnieeiniiee e 625
Filtering Web Sites.......cooociiiiiiiiiiiiiiiiiiiinieee 633
Obtaining Debug Informationccceeeveiiinieiiniciniicceeeeeans 635
Performing HTML COMPIessionccccceeveverernieeeennieeerniieeensneeeenans 636
Chapter 41: Checking Web Page Content...........ccceuvervinnicrninncnnn. 637
About Checking Web Page Contentccoocccvviiiiiniiiiiiiiiinnnnnne. 637
Setting the ContentCheck Run-Time Settings.............cccccoovvnnniennn. 638
Chapter 42: Verifying Web Pages Under Load............ccceeueeerinnncnn. 643
About Verification Under Load..........ccceeeeernniiiiieeeiiniiiieeeee e, 643
Adding a Text ChecK........ccccoiiiiiiiiiiiiiiiiii 646
Understanding Text Check Functionsccccoovvviiiiiiiiinnnnnn. 649
Adding an Image Checkcccccoivviiiiiiiiiiii 654
Defining Additional Propertiescccceevoeirnnieeeniiieernceeeennneeenn. 657
Chapter 43: Modifying Web and Wireless Vuser Scripts.................. 659
About Modifying Web and Wireless Vuser Scriptscccocceeeeenneeee. 660
Adding a Step to a Vuser SCIipt.......cccccceviiiiiiiiiiiiiinii, 661
Deleting Steps from a Vuser SCript.......cccovevereeeiieeiniieeeniiieceeeeeeans 662
Modifying ACtiON StePSccocuveiiiiiiiiiiiiiieee ettt 663
Modifying Control STEPScuuvvieeiiiriiiiiiieeee ettt 680
Modifying Service StePs.....cccuueieeeiiriiiiiiiiiieieiiiee e 683
Modifying Web Checks (Web 0nly).....cccccovvriiiieiiiiniiiiieeeeeeeiieeeee, 684
Chapter 44: Setting Correlation Rules for Web Vuser Scripts.......... 685
About Correlating Statements............cccccceviviiiiiiiiininii, 685
Understanding the Correlation Methods.........ccccoeeeviiiiiiinnnnn. 687
Using VuGen's Correlation Rules..........ccoccoiiiiiiinniiiiiinn. 688
Setting Correlation Rules..........ccooooiiiiiiiiiiiiii, 694
Testing Rules......coooiiiiiiiiiiiiii 696
Setting the Correlation Recording Optionscccccvviiiiiininninenn. 697
Chapter 45: Correlating Vuser Scripts After Recording 699
About Correlating with Snapshots........ccccevvviiiiii. 700
Viewing the Correlation Results Tab.......cccccccceevieiiiiiiiiiiinniinnnnnnnnnne. 701
Setting Up VuGen for Correlations.......ccceeeeuveeeeeeernniiiieeeeennnniiieeen. 704
Performing a Scan for Correlations......cccooecvveeeeeerrrniiieeeeeennniiiieeeen. 707
Performing Manual Correlation........cccccoevueiieeeeiiniiiiiiieeeeeniieeeeeenn 711
Defining a Dynamic String’s Boundariescccccoeevvieeeieennnnineeennnn. 716

13

Table of Contents

PART IX: EN

Chapter 46: Testing XML Pages..........ccccovverrinuicininiccininnicinnnnecnnnns 719
About Testing XML Pagescoooveiiiiiiiiiiiiiiiiiiiiiiiieee e, 719
Viewing XML as URL Stepsccoovvviiiiiiiiiiiiiiiiiiiiicnee, 720
Inserting XML as a Custom Requestcccccovviiiiiiiiinniiiiiicinnn. 723
Viewing XML Custom Request Steps........ccccceviiiiiininiiiiiiiniiineenn. 724

TERPRISE JAVA BEAN PROTOCOLS

Chapter 47: Performing EJB Testingccccccevvvmnnnnieciiininnneeccennnn. 729
About EJB TeSHIG ...ceviiiiiiiiiiiiiiiiiiiccceereee e 730
Working with the EJB Detector..........cccccevvvviiiiiiiiiiniiiecceeieee, 731
Creating an EJB Testing VUSeI........ccooooiiiiiiiiiiiiiiiiiiiiiccneeccceeceee 735
Setting EJB Recording Options.......cccccvvevviiiiiiiiiiiiiiccciiinieeceeeenne 739
Understanding EJB VUser SCIipts.......cccccovveiiiiiiiiiniiiieeiiieeeeen. 740
Running EJB VUuser SCIiptS......ccccevviiiiiiiiiiiiiiiiiiieeeeneeeeeeeee 746

PART X: ERP/CRM PROTOCOLS

14

Chapter 48: Creating Oracle NCA Vuser Scriptsccccoovvnuueecennnn. 753
About Creating Oracle NCA Vuser SCIiptsccccccevvveiiiieiiiiniinnnneen. 754
Getting Started with Oracle NCA VUSETISccceevvvvvniieieeeiiiinnnneeeen. 755
Recording Guidelinescccoovvviiiiiiiiiiiiiiiiiiiiiiiicceeeceee e 756
Enabling the Recording of Objects by Name........cccccccceeevvrvnnnneeeen. 758
Oracle Applications via the Personal Home Page..................ccooel 761
Using Oracle NCA Vuser FUNCtionsccccccveeveiiininiiiciiiiininineeeeen. 762
Understanding Oracle NCA VUSETIS.....ccccovviiieiiiiiiiiieceeiiiiieeeeeeeene 763
Configuring Oracle NCA Run-Time Settingscccccoovviiiininiinnnn, 764
Testing Oracle NCA Applications........cccccovveemiieiiiiinniiiiceeiiniieeeeeen. 767
Correlating Oracle NCA Statements for Load Balancing.................. 771
Additional Recommended Correlationscccccovviiiiniiiiiinnnn. 772
Recording in Pragma Mode............ceeeeiviviiiiiiiiiiniiiiicceiiiieecee e 774
Chapter 49: Developing SAPGUI Vuser Scriptsccccovvnunneeccennnnn. 777
About Developing SAPGUI Vuser SCIipts.....ccccccceeviveiiieieeeiiniinnneeen. 778
Checking your Environment for SAPGUI Vusersc.cccooeieeinnnns 779
Creating a SAPGUI VUuser SCIipt......oooovvviiiiiiiiiiiiiiiiiieciiiiicn 790
Recording a SAPGUI Vuser SCTipt......cccoovvviiiiiiiiiiiiiiiiiciiiiieeeeen, 791
Setting the SAPGUI Recording Options.......ccccovveuveveceiiininnineccennnnn. 794
Inserting Steps Interactively into a SAPGUI Scriptccoceiviiiiinns 797
Understanding a SAPGUI Vuser SCript........ccccccevvveiiiiceiiiiiiiineneeenn. 799
Enhancing a SAPGUI Vuser SCIiptcoovvvviiiiiiiiiiiiiiiicciiiiiiieeeeeene 803

Table of Contents

Chapter 50: Developing SAP (Click and Script) Vusers.................... 807
About Developing SAP (Click and Script) Vuser Scripts 807
Recording a SAP (Click and Script) Session......ccccoeeeviiiiiiiiniiiniiennnn. 808
Understanding SAP (Click and Script) SCripts.......coocovviiiiiiiiinniennn. 808
Chapter 51: Developing SAP-Web Vuser Scripts.........cccceeuveerinnnenn. 811
About Developing SAP-Web Vuser SCripts.....ccccccceeviiiiiiiiiinnnininnnnne. 812
Creating a SAP-Web Vuser SCIiptcccccovvviiiiiiiiiniiiinee, 812
Setting SAP-Web Recording Options.........cccccvviiiiiiniiiiiiiiiiniinnnnen. 814
Understanding a SAP-Web Vuser Script.......cccccccovvniiiiiiiiinnnn. 815
Replaying a SAP-Web Vuser SCript......ccccovviiiiiiiiiniiiiiii, 817
Chapter 52: Running SAPGUI Vuser Scriptscccccevvvviieriiccinvunnnennn. 819
About Replaying SAPGUI Vuser SCripts ..ccoeevveeeeeeeiiiiiiiiiinniinnnininennn. 819
Replaying SAPGUI Optional Windowscccccoevvviiiiiiiinniiniinnnn. 820
Setting SAPGUI Run-Time Settingscccceeevviiiiiiiiiiiciiiininnnnnen, 821
SAPGUI FUNCHOMNS .cvvviiiiiiiiiiiiiiiiiiiieieiiieeeeeee e 824
Tips for SAPGUI VUSET SCIIPLS ..eeervuvieeieiiieiiiieeeniieeeeee e 825
Troubleshooting SAPGUI Vuser SCIipts.......cccccviiiiiiniiiiiiiiiiiininnnne. 830
Additional ReSOUICESccccuviiiiiiiiiiiiiiiiiiiiiiccece 832
Chapter 53: Developing Siebel-Web Vuser Scripts.......ccccccceeeuuueennn. 833
About Developing Siebel-Web Vuser SCripts......cccccceeeeeiiiiiinininnnnnnn. 833
Recording a Siebel-Web Sessioncccccovvviiiiiiiiiniiiiii, 834
Correlating Siebel-Web SCripts.........cccccoivviiiiiiiiinii 835
Correlating SWECount, ROWID, and SWET Parameters.................. 842
Troubleshooting Siebel-Web Vuser Scriptscccccoovviiiiiiinnnnnnne. 844

PART XI: LEGACY PROTOCOLS

Chapter 54: Introducing RTE Vuser Scriptscccoovvueeiiivvinnnnnneeen. 851
About Developing RTE Vuser SCIiptsccccovveiiciiiiiiiiiiiiieiininnee, 851
Introducing RTE VUSETS........cccciiiimiiiiiiiiiiieiieceeeeeeeee, 852
Understanding RTE Vuser Technologyccccccevvveiiiiiiiiinninnneeen. 852
Getting Started with RTE Vuser SCripts......ccccccevviniiiiiiiiiniiiieeenn. 853
Using TE FUNCHIONScccoiiiiiiiiiiiiiiiiiies 854
Working with Ericom Terminal Emulationcccecoiiniiinnnnn. 855
Mapping Terminal Keys to PC Keyboard Keys.......cc.ccccoveeieiinnnnnne. 857

15

Table of Contents

PART XII: M

16

Chapter 55: Recording RTE Vuser Scripts.........ccccoeviiiinnnicinniiccnnns 859
About Recording RTE Vuser SCIipts......cccooevuiiiiiiiiniiiiiiiiiiniinnnen, 860
Creating a New RTE Vuser SCriptccooovviiiiiiiiiiiiiiiiiii, 860
Recording the Terminal Setup and Connection Procedure.............. 861
Recording Typical User ACHONScccoovvviiiiiiiiiiiiiiiiiciiiiinieceeee 865
Recording the Log Off Procedure........cccoecueeeereiieiiniieeenciieeenieeeennes 866
Setting RTE Configuration Optionsccccceeveveeireieeeeniieeeinieeeennnns 867
Setting the RTE Recording Options..........ccccccceeviviniiiiiiiiniiiiicninnn. 868
Typing Input into a Terminal Emulatorccccoececiinn. 871
Generating Unique Device Names..........cccccceiiiiiiiiiieiiiiniiiniccennn. 874
Setting the Field Demarcation Charactersccccccvveevvevvieeeeeeeeeeeees 875
Chapter 56: Configuring RTE Run-Time Settingscccoevuviennnes 877
About Terminal Emulator Run-Time Settings...........cccccccceinnnnnien. 878
Modifying Connection Attempts........ccceeeveieeerniieeinnieeerieeee e 879
Specitying an Original Device Nameccccoeeeeereiieeiriiiecennneeenns 880
Setting the Typing Delay........ccoccooiiiiiiiiiiiiiiiiiieec, 880
Configuring the X-System Synchronization........cc.ccccceeciiinineennanns 881
Chapter 57: Synchronizing RTE Vuser Scriptsccccovvuieriinicennnns 883
About Synchronizing Vuser SCripts......ccccoovviiiiiiiiniiiiiiiinn, 883
Synchronizing Block-Mode (IBM) Terminals.............ccccovvnnniiiinnn. 885
Synchronizing Character-Mode (VT) Terminals............coecccvnieeinnnn. 888
Chapter 58: Reading Text from the Terminal Screen 895
About Reading Text from the Terminal Screenccoeeceeeernnnenn. 895
Searching for Text on the SCreenccceeveeeriieiinieciniiie e 896
Reading Text from the SCreenccooccceevviiiiiiiiieiiniieeineee e 896

AILING SERVICES PROTOCOLS

Chapter 59: Developing Vuser Scripts for Mailing Services............. 901
About Developing Vuser Scripts for Mailing Services....................... 902
Getting Started with Mailing Services Vuser Scripts.....cccceeeevveeeeenne. 902
Understanding IMAP SCTIPSccuvviiiiiiniiiiiiiiiciiieccceeccee e 904
Understanding MAPI SCIPESuvvviiiiiiniiiiiiiieciiiiicceeecee e 905
Understanding POP3 SCIIPES ...couvvviiiiiiiiiiiiiieeiiieieceecceeee 906
Understanding SMTP SCIPES......cuviiiiiiniiiiiiiiiiiiiiicceecceeee 907

Table of Contents

PART XIll: MIDDLEWARE PROTOCOLS

Chapter 60: Developing Tuxedo Vuser Scripts.......c.cccccevvicciuenneenn. 911
About Tuxedo VUSEr SCIPLSccoiivriiiiiiiiiiiiiiicciiccce s 912
Getting Started with Tuxedo Vuser SCripts......ccccoevviiiiiiiiniininnnnn. 913
Understanding Tuxedo Vuser SCIipts........cccccceeiiiiiniiiiiiiiiiinnennn. 914
Viewing Tuxedo Buffer Datacccccoeeiieiriiiiiiniiciniiic e, 917
Defining Environment Settings for Tuxedo Vusers............cccoeueeene. 918
Debugging Tuxedo Applications........cccccoevvviiiiiiniiiiiiiiiiiiinneeen, 919
Correlating Tuxedo SCIPtS.......coooviiiiiiiiiiiiiiiiii 919

PART XIV: STREAMING DATA PROTOCOLS

Chapter 61: Developing Streaming Data Vuser Scripts 929
About Recording Streaming Data Virtual User Scripts........ccccouuee.e. 930
Getting Started with Streaming Data Vuser Scriptscccoeeeeeeeeeen. 930
Using RealPlayer LREAL Functionsccccceeecveeeeiiinniiiicciiininnnneeeeen. 931
Using Media Player MMS FUNCtionsccccccceeiiviniiiiciiiininnneeeen. 932

PART XV: WIRELESS PROTOCOLS

Chapter 62: Recording Wireless Vuser Scripts..........cccccceevvevnnnnneeenn. 935
Understanding the WAP Protocol.........coceeoviiiiiiiiiniiiiiiiiiniieeeeen. 935
Getting Started with Wireless Vuser SCIipts....cccccovvviviiiiiininnneeenen. 937
Using Wireless Vuser FUNCHONScccooviiiiiiiiiniiiiiieeiiieeeeen 939
PUsh SUPPOTL ... 940
VuGen Push SUPPOTt.....coovviiiiiiiiiiceece 942
Chapter 63: Configuring WAP Run-Time Settingscccceevuuuuneeeen. 945
About WAP Run-Time Settingsccccccceeeiimiiiiciiiiniiiieieee e, 945
Configuring Gateway OPHiONScccceeivveiiieeiiiniiiiieeeeeeeeeeene 946
Configuring Radius Connection Data............ccccvvveniiiiiiiinnnneenenn. 950
Chapter 64: Developing MMS Vuser Scriptsccccoovvuueeieiviiiinnnneeen. 953
About MMS (Multimedia Messaging Service) Vuser Scripts 953
Configuring MMS Run-Time Settings........ccccccccevvvviiiiiciiiinnnnneeeennn. 954
Running an MMS Scenario in the Controller..............cccocoiiiniiiin, 956
INA@X ettt 957

17

Table of Contents

18

Part |

Introducing Protocols

20

1

Understanding Protocols

VuGen supports a variety of applications and protocols, allowing you to
record and create a script that accurately emulates your actions.

Note: The HP Virtual User Generator User’s Guide online version is a single
volume, while the printed version consists of two volumes, Volume I-Using
VuGen and Volume II - the Protocols user guide.

Using This Guide

This user’s guide, Protocols, is the second volume of the HP Virtual User
Generator user’s guide. The first volume, Using VuGen, describes how to
work with VuGen and create tests. This volume describes the unique settings
and guidelines for the individual protocols. For example, this volume
includes the recording options and run-time settings that are protocol-
specific, while Using VuGen lists the settings that are common to all or most
of the protocols.

When you are deciding which Vuser type to record, you may find that your
application uses several protocols, such Web & FTP or Web & Web Services.
VuGen supports recording for multi-protocol scripts. For more information,
see Volume I-Using VuGen.

To view a list of all supported protocols in alphabetical order, choose File >
New and select All Protocols in the Protocol Type list box.

To develop GUI Vuser scripts for use with LoadRunner, refer to the HP
WinRunner User’s Guide or HP QuickTest Professional User’s Guide.

21

Chapter 1 ¢ Understanding Protocols

Vuser Types

22

VuGen provides a variety of Vuser technologies that allow you to emulate
your system. Each technology is suited to a particular architecture and
results in a specific type of Vuser script. For example, you use Web Vuser
Scripts to emulate users operating Web browsers and FTP Vusers to emulate
an FTP session. The various Vuser technologies can be used alone or
together, to create effective tests or Business Process Monitor profiles.

The Vuser types are divided into the following categories:

» All Protocols. a list of all supported protocols in alphabetical order.

» Application Deployment Solution. For the Citrix and Microsoft Remote
Desktop Protocol (RDP) protocols.

» Client/Server. For DB2 CLI, Domain Name Resolution (DNS), Informix,
Microsoft .NET, MS SQL Server, ODBC, Oracle (2-tier), Sybase Ctlib,
Sybase Dblib, and Windows Sockets protocols.

» Custom. For C templates, Java templates, Javascript, VB script, VB
templates, and VBNet type scripts.

» Distributed Components. For COM/DCOM, and Microsoft .NET
protocols.

> E-business. For Action Message Format (AMF), AJAX (Click and Script),
Flex, File Transfer Protocol (FTP), Listing Directory Service (LDAP,)
Microsoft .NET, Web (Click and Script), Web (HTTP/HTML), and Web
Services protocols.

> Enterprise Java Beans. For EJB Testing.

» ERP/CRM. For Oracle NCA, Oracle Web Applications 11i, Peoplesoft
Enterprise, Peoplesoft-Tuxedo, SAP-Web, SAPGUI, SAP (Click and Script),
and Siebel (Siebel-DB2CLI, Siebel-MSSQL, Siebel-Oracle, and Siebel-Web)
protocols.

» Java. For the Java Record/Replay protocol.
» Legacy. For Terminal Emulation (RTE).

» Mailing Services. Internet Messaging (IMAP), MS Exchange (MAPI), Post
Office Protocol (POP3), and Simple Mail Protocol (SMTP).

» Middleware. The Tuxedo protocol.

Chapter 1 Understanding Protocols

» Streaming. For MediaPlayer (MMS) and RealPlayer protocols.
» Wireless. For Multimedia Messaging Service (MM) and WAP protocols.

23

Chapter 1 ¢ Understanding Protocols

24

Part Il

SOA and Web Services Testing

26

2

Understanding the SOA Test Types

You use VuGen to create tests for your Web Services.

This chapter includes:
» About SOA Test Types on page 27
> Getting Started with Web Services Vuser Scripts on page 28

The following information only applies to Web Services/SOA Vuser scripts.

About SOA Test Types

SOA systems are based on Web Services, self-contained applications that can
run across the Internet on a variety of platforms. The services are built using
Extensible Markup Language (XML) and Simple Object Access Protocol
(SOAP). They serve as building blocks enabling the rapid development and
deployment of new applications.

Using VuGen, you create test scripts for testing your SOA environment. You
can use a test generation wizard to automatically generate scripts, or create
the scripts manually.

To automatically generate test scripts, you use the SOA Test Generator. A
wizard guides you through the process of selecting testing aspects such as
interoperability with different toolkits, boundary testing, and standard
compliance. For more information, see Chapter 23, “Using the SOA Test
Generator.”

27

Chapter 2 » Understanding the SOA Test Types

To manually create scripts, you begin by creating an empty script. Then you
add content to the script either by recording a session, analyzing network
traffic, or manually inserting calls to the Web service as described in
Chapter 5, “Adding Content to Web Services Scripts.”

For manual scripts, you use VuGen to create one of the following scripts.

Single Protocol Script. A script that emulates SOAP traffic by sending SOAP
requests to the Web service.

Multi Protocol Script. A script that emulates several protocols in a single
script. For example, if your environment contains a client that accesses a
Web Services and Web pages, choose both the Web Services and Web (Click
and Script) protocols.

Getting Started with Web Services Vuser Scripts

28

This section provides an overview of the process of developing a Web
Services / SOA Vuser script.

To develop a test script:
Create a new Web Services script.

Create a new script using the SOA Test Generator, or manually create a new
single or multiple protocol script, or a Business Process Testing component.

Add content to the script.

Add content to the script (excluding the SOA Test Generator). For details, see
Chapter 5, “Adding Content to Web Services Scripts.”

Set properties, values, and checkpoints.

Enhance the script by customizing the step properties, inserting argument
values, and setting checkpoints. For details, see Chapter 7, “Working in the
Web Service Call View.”

Chapter 2 Understanding the SOA Test Types

4 Parametrize your script.

Parameterization lets you replace constant values with a variable to
substitute new values for each iteration. To parameterize a value, double-
click on a step to open its properties and click the ABC icon adjacent to the
value box. For complex type elements, use the XML parameter type as
described in “Setting Properties for XML Parameters” on page 182.

5 Configure the Run-Time settings.

The Run-Time settings control the script’s behavior during execution. These
settings include Web Service-specific settings (client emulation) and General
settings—run logic, pacing, logging, and think time.

For information about the Web Service-specific settings, see “Setting Web
Services JMS Run-Time Settings” on page 161, and “Configuring Run-Time
Settings” in Volume I-Using VuGen.

6 Verify that the script is functional.
Replay the script in VuGen to verify that it runs correctly.

For details about replaying the script, see“Running Vuser Scripts in
Standalone Mode” in Volume I-Using VuGen.

7 Save the script.

Save the script in the file system or in a Quality Center repository. If you
save the scripts in Quality Center, you can associate them to a test set and
perform functional and regression testing directly from Quality Center. For
more information about Quality Center and its integration with scripts, see
“Working with Service Test Management” on page 69.

After you prepare a script, you are ready to use it for your testing. For more
information, see “Using Your Script” on page 68.

Use Quality Center to manage all of your tests while tracking defects and
requirements. For more information, see www.hp.com or contact your sales
representative.

29

Chapter 2 » Understanding the SOA Test Types

30

3

Working with Web Services Scripts

After creating a Web Services script, you can view it in either Script view or
Tree view. Within these views, you can modify the script and its properties.
This chapter includes:

» About Working with Web Services Scripts on page 31

» Viewing and Editing Scripts on page 32

» Parameterizing Scripts on page 35

The following information only applies to Web Services Vuser scripts.

About Working with Web Services Scripts

After you create a script, you can view its contents in either Tree view or
Script view. The tree view is a graphical view, while Script view displays the
actual functions in the script.

When viewing your script, you can examine it and determine if it needs to
be enhanced in any way. The most common enhancements are transactions
and parameterization.

Transactions let you mark a group of actions to be measured to check the
applications’s performance. For example, if you want to check the time it
took for a service to update an address, you mark those actions as a
transaction. For more information, see “Inserting Transactions into a Vuser
Script” on page 128.

31

Chapter 3 » Working with Web Services Scripts

Parameterization is the replacing of constants with parameters. This is useful
for testing your service with different values, or passing information from
one step to another. For more information, see “Parameterizing Scripts” on
page 35.

Viewing and Editing Scripts

32

You can view and edit all of the scripts that you created both manually and
automatically in the VuGenwindow.

You can view a script in either Tree View or Script View. Tree view displays
the steps of the script in a graphical interface, while the Script view shows
all steps, including the actual web_service_call functions that emulate your
service. Script view is ideal for advanced users that require more flexibility
within the script.

Tree View

The Tree view shows a graphical representation of each one of the script’s
steps.

|EH=III‘.EH Calc - Web Services |

wuser_init]
E--g vuszer_init[)
AR Service: £
-8 Service: £
B4 U index.
D'"Q%’
----- Q%— Multiply
B-~Ep Add_107
H E Thirk,
Divide_10

| SOAP-EMY:Ervelope

9 smins: SOAPSDKT = htkp: v, w3, org/2001 /2MLS chema

9 wmins: SOAPSDKZ = htkp: { v, w3 ,org/2001 J2MLSchema-instance

S wmins: SOAPSDKS = htkp: fischemas. xmisoap,orgfsoapfencoding)

G wins: SOAP-ENY = http:/{schemas, xmisoap. orgfsoap/envelops]

=0 SOAP-ENV:Body

SOAP-EMY: encodingStvle = http:/fschemas . xmlsoap.org/soap/encoding)

SO0AP Snapshot

When you select a step, VuGen displays information about the step in
several tabs:

Step Properties. The properties and argument values of the Web service call.
This tab allows you to modify the properties of an existing step. See
“Understanding Web Service Call Properties” on page 87.

Chapter 3 » Working with Web Services Scripts

Checkpoint. A list of checkpoints defined for the step. See “Setting
Checkpoints” on page 119.

SOAP Snapshot. A snapshot of the SOAP request and response for both
record and replay. See “Viewing Web Services SOAP Snapshots” on page 84.

For more information about these tabs, see Chapter 7, “Working in the Web
Service Call View.”

To view a script in Tree view:

1 Click the Tree button or choose View > Tree View.

In the upper left box, select the section containing the steps of the script
that you want to view: vuser_init, Action, or vuser_end. To specify a new
action choose Actions > Create New Action.

3 In the left pane, select the step or sub-node that you want to view or modify.

Select the Step Properties tab in the right pane to view or modify the
properties.

Select the Snapshot tab to view the step’s SOAP header and body. To display
a specific replay iteration, choose View > Snapshot > Select Iteration.

To add additional Web Service steps, click the Add Service Call button. For
more information, see “Adding New Web Service Calls” on page 62.

To insert advanced functionality, such as JMS queue retrieval and SAML
security, choose Insert > Add Step and choose the appropriate step. For more
information, see Chapter 8, “Setting Advanced Properties for Web Service
Scripts.”

To replace argument values with parameters, go to the Step Properties tab.
Select the node whose value you want to replace in the script, and click the
ABC icon to the right of the Value box.

To set a checkpoint, click the Checkpoint tab. For more Information, see
“Setting Checkpoints” on page 119.

33

Chapter 3 » Working with Web Services Scripts

34

Script View

The Script view shows the actual functions that were generated in the script.
You can expand or collapse each of the web_service_call functions to view
only the functions that interest you.

@ vuzer_init Actiond)
Action t -
@ user_end nethod name Addaddr

;ﬁ'] globals.h 3.

e
type Addr
* .

=1 web_=ervice call{ "StepName=Aiddiddr 145",
"S0APHethod=AddrBool . AddrBookSospPort | Addaddr",
"HesponseParan=response",
"WSDL=L:Load_testing-LE TESTS w=dl.-AddrBool., w=dl"
"Snapshot=t1155282735 . inf ",

BEGIN_ ARGUMENTS.

"®ml ;Addr=<Addrr<name:< namnser<{strest:{ /strest>{icit
"(rziprizipd r¢szipd < phone—nunbers: < Phonsel
"¢ phone-nunber » < “phone—nunber » ¢ “PhoneHunbe

END_ARGUMENTS,

BEGIN_RESULT,

END_ERESULT.

LasST): ﬂ

To view a script in Script view:

Click the Script button or choose View > Script View.

In the left pane, select the section containing the steps of the script that you
want to view: vuser_init, Action, or vuser_end. To specify a new section
choose Actions > Create New Action.

To add additional Web Service steps at the location of the cursor, click the
Add Service Call button. For more information, see Chapter 7, “Working in
the Web Service Call View.”

To insert advanced functionality, such as JMS queue retrieval and SAML
security, choose Insert > Add Step and choose the appropriate step. For more
information, see Chapter 8, “Setting Advanced Properties for Web Service
Scripts.”

To replace argument values with parameters, select the value you want to
replace in the script, and select Replace with Parameter from the right-click
menu.

Chapter 3 » Working with Web Services Scripts

For more information about the functions, refer to the Online Function
Reference (Help > Function Reference) or select a function and click F1.

Parameterizing Scripts

VuGen supports parameterization for all of the argument values.
Parametrization lets you substitute the original values with external values.
This is useful for testing your service with different values, or passing
information from one step to another. For an overview on parameterization,
see “Creating Parameters” in Volume I-Using VuGen.

If your arguments are the simple, non-array type, you can replace them with
a simple parameter. For example, if you want to test a service that does
addition, you can substitute each of the input arguments with a parameter,
and store the values in a file or a table.

If, however, your arguments are a complex structure with many values, you
can use an XML type parameter to replace the entire structure with a single
parameter. You can create several value sets for the XML type parameter and
assign a different value set for each iteration. For more information, see
“Understanding Parameter Types” in Volume I-Using VuGen.

Using parameters, you can pass the output value from one operation, as
input for a later operation. For more information, see “Using Web Service
Output Parameters” on page 115.

35

Chapter 3 » Working with Web Services Scripts

To replace a constant value with a parameter:

1 Switch to the Step Properties tab and select the parent or child element
whose value you want to parameterize.

2 Under the Input Arguments node, select the argument you want to
parameterize. In the right pane, click the ABC icon in the Value box. The
Select or Create Parameter dialog box opens.

Select or Create Parameter FE3

fevpoon
T

fenaeJohne ey <sestySha
L] concl | Propotis.. |

3 Specify a parameter name and type.

4 Click Properties to set the type of parameter—File, XML, and so on—and to
assign values.

For more information, see “Creating Parameters” in Volume I-Using VuGen.

36

4

Managing Web Services

VuGen provides utilities that let you validate and manage the WSDL files
associated with your service entries.
This chapter includes:
» About Managing Web Services Vuser Scripts on page 38
» Viewing and Setting Service Properties on page 39
» Importing Services on page 43
» Specifying a Service on a UDDI Server on page 45
» Choosing a Service from Quality Center on page 46
» Specifying WSDL Connection Settings on page 47
» Deleting Services on page 49
» Comparing WSDL Files on page 49
» Viewing WSDL Files on page 54

The following information only applies to Web Services and SOA Vuser
scripts.

37

Chapter 4 « Managing Web Services

About Managing Web Services Vuser Scripts

The Service Management window lets you manage a list of service entries for
the current script. You can view and set the properties of each service entry.

Manage Services x|
x S S kel
Impart Delete Compare W3-1Validation View WSDL
Calc Description | Dperations | Connection Settings | UDDI Data
Service name: | BEI
WSDL

Original lozation: IL:/Load_testing/LFi_T ESTS AwsdlAwSDLACale. wadl

Last update l— . .
from original: 03/171/2007 16:43.14 Update Mow ||_ Update when opering script

Address
Service address: Ihttp:.-".-"kalimaniaro.v‘MS SoapSamples30/Cale/Service/Rpo/lzapiCpp/Cale. wWSDL

[~ Overide address

Details
Description:
Created by: jay
Tonlkit: I.NET Framewsark

Ll The WSDL file associated with this service passed validation with no errors.

Ok I Cancel | Apply |

You add service entries to the list by importing WSDL files. When you add a
WSDL to the list, VuGen creates a working copy that it saves with the
script—it is not global. Therefore, for each script that you create, you must
import the desired WSDL files.

To view the copy of the locally saved WSDL in Internet Explorer, click the
View WSDL button.

38

Y Y Y VY Y

Chapter 4 « Managing Web Services

Note: All validations and modifications to WSDL files are done on the
working copy. If you want to replace the imported WSDL file with a newer
version, use the Update Now option described in “Description” on page 39.

To open the Service Management window, choose SOA Tools > Manage
Services or click the Manage Services toolbar button.

The Service Management window provides an interface for:

Viewing and Setting Service Properties
Importing Services

Deleting Services

Comparing WSDL Files

Viewing WSDL Files

Viewing and Setting Service Properties

Y Y VY Y

The Service Management window lets you view and modify information
about the imported WSDLs. It shows details about the selected service entry
in the following tabs:

Description
Operations
Connection Settings

UDDI Data

Description

The Service Management window’s Description tab displays information
about the service: WSDL, Endpoint Address, and Details. You can add
annotations or notes about your service, in the Details area.

39

Chapter 4 « Managing Web Services

40

WSDL

The WSDL area provides information about the location of the WSDL, and
the date that it was last imported.

» Original location. The original source of the WSDL file (read-only).
» Service name. The name of the Web Service.

» Last update from original. (For services not imported from Quality Center)

The last date that the local copy was updated with a WSDL file from the
original source.

» To manually update the working copy of the WSDL, click Update Now.
VuGen backs up the existing WSDL and updates it from the location
indicated above.

» To instruct VuGen to update the WSDL every time you open the script,
select Update when opening script.

» date of the last of the service from QC

Last updated from QC. (For services imported from Quality Center) The last
date that the service was updated from Quality Center.

Address

Service address. An endpoint address to which the request is sent.

If you want to override the endpoint specified in the WSDL file, choose
Override address and specify a different address in the Service address box.

This is useful for implementing emulated services. VuGen uses the override
address as targetAddress for the Web Service call. This overriding affects all
Web Service calls. To use a different target address for a particular Web
Service call, you specify it in that step’s properties. For more information,
see “Using Emulated Services in Vuser Scripts” on page 489.

Details

Description. A description of the Web service, taken by default from the
WSDL file. This text area is editable.

Created by. The name of the user who originally imported the service (read-
only).

Chapter 4 « Managing Web Services

» Toolkit. The toolkit associated with the script. You set this before importing
the first WSDL file.

Operations

Each of the imported services may define multiple operations. The
Operations tab indicates which operations are being used for the service you
selected in the left pane.

Description Operations | Connection Settingz | UDDI Data

Operation M ame | Fart Mame | Uzed In Script ﬂ
EchoBoolean ExtendedECHO _rpc_encod... Mo
EchoBooleanduray EwtendedECHO rpc_encod... es
EchoBooleandrayEvRef ExtendedECHO _rpc_encod... Mo
EchoBooleanByRef EwtendedECHO rpe_encod... Mo
EchoByte ExtendedECHO _rpc_encod... Mo
EchoBpteturay EwtendedECHO rpe_encod... Mo -

You can sort the list of operations by clicking on the relevant column. For
example, to list the operations by name, click the Operation Name column.
To list them in descending order, click the column name again. A small
arrow indicates the sorted column. An upward arrow indicates ascending
order, while a downward arrow indicates descending order.

41

Chapter 4 « Managing Web Services

Connection Settings

In some cases WSDLs reside on secure sites requiring authentication. In
certain instances, the WSDL is accessed through a proxy server.

VuGen supports the importing of WSDLs using security and WSDLs accessed
through proxy servers. The following security and authentication methods
are supported:

> SSL
» Basic and NTLM authentication
» Kerberos for the .NET and Generic toolkits
It is recommended that you enter the authentication or proxy information

while importing the WSDL. If however, the settings changed, you can
modify them through the Service Manager’s Connection Settings tab.

Descriptionl Operations Connection Settings | UDDI Datal

Authentication

[Usze Authentication Settings

|dzermarne: I
Password: I
The abowe walues only apply to the imported WSOL, To uze these values duing
replay, add a web_zet_user step with the dezired values.
Prowuy

[Usze Prosy Settings

Server I Fart:

Usemame; |

Pazzward: I

The abowe walues only apply to the imported WSOL, To uze these values duing
replay, add a web_zet_proxy step with the desired values.

For more information about setting the connection information while
importing the WSDL, see “Connection Settings” on page 45.

42

Chapter 4 « Managing Web Services

UDDI Data

You can view the details of the UDDI server for each service that you
imported from a UDDI registry.

UDDI| server: Ihttp:.-".-"_','Sa_','B[S2-i|ZSDSD.-"uddif"inquil}'

LDDI versior: |2

Service key: |52?2?Ed0-dc?‘l -11db-bee2-BbdaadElboc2

The read-only information indicates the URL of the UDDI server, the UDDI
version, and the Service key.

For information about importing from a UDDI, see “Specifying a Service on
a UDDI Server” on page 45.

Importing Services

VuGen lets you import services for the purpose of creating a high-level tests
with Web Service Call steps. Typically, you begin creating a script by
importing a WSDL file.

When importing a file, you specify the following information:

> Source. the source of the WSDL: URL, File, UDDI, or Quality Center
» Location. the path or URL of the WSDL, entered manually or by browsing

» Toolkit. the toolkit to permanently associate with all services in the script
(only available for the first service added to the script)

43

Chapter 4 « Managing Web Services

44

» Connection Settings. authentication or proxy server information (optional)

Import Service i |

Select WSDL from:
" URL i+ File uoo " Quality Center

IL: “oad testing'LR_TESTSwwzdvedRecwebs ervices wadl j |

Analyze with toolkit;
I.NET Frameswork, j

MOTE: Selected toolkit will be permanently associated with pour script.

Impart I Catcel |

If VuGen detects a problem with your WSDL when attempting to do an
import, it issues an alert and prompts you to open the report. The report
lists the errors and provides details about them.

Source
When specifying a WSDL, you can indicate the source:

» URL. The complete URL of the service.
» File. The complete path and name of the WSDL file.

» UDDI. Universal Description, Discovery, and Integration—a universal

repository for services. For more information, see “Specifying a Service on a
UDDI Server” on page 45.

Quality Center. A service stored in the Quality Center repository. For more
information, see “Choosing a Service from Quality Center” on page 46.

VuGensupports URL or UDDI paths that are secure, requiring authentication
or accessed through proxy servers. For more information, see “Specifying a
Service on a UDDI Server” on page 45.

Location
In the Location box, you specify the path or URL of the WSDL.
For the URL or UDDI options, make sure to insert a complete URL—not a

shortened version. Click the Browse button to the right of the text box to
open the default browser.

Chapter 4 « Managing Web Services

For a file, click the Browse button to the right of the text box to locate the
WSDL on the file system.

For Quality Center, click the Quality Center Connection button to specify a
server URL and to initiate a connection. For more information, see
“Choosing a Service from Quality Center” on page 46.

Toolkit

Choosing a toolkit instructs VuGen to send real client traffic using an actual
toolkit—not an emulation. Once you select a toolkit, it becomes
permanently associated with the script for all subsequent recordings,
imports, and replays.

VuGen supports the .NET Framework with WSE 2 version SP3 and Axis/Java
based Web Services Framework toolkits. VuGen imports, records, and replays
the script using the actual .NET or Axis toolkit.

Connection Settings

When importing WSDL files from a URL or UDDI, the WSDL may require
authentication if it resides in a secure location. In certain cases, the access to
the WSDL may be through a proxy server. Using the Connection Settings
button, you can specify this information. For more information, see
“Specifying WSDL Connection Settings” on page 47.

Specifying a Service on a UDDI Server

Service brokers register and categorize published Web Services and provide
search capabilities. The UDDI business registry is an example of a service
broker for WSDL-described Web Services.

Your Web Service client can use broker services such as the UDD], to search
for a required WSDL-based service. Once located, you bind to the server and
call the service provider.

45

Chapter 4 « Managing Web Services

Click the Browse button to open the Search for Service in UDDI dialog box.

Search For Service In UDDI

Cale 17397300 . wedltype represe http: /K alimanjarn/d 5 5 nap5 amples30/CaledSery
Category_So... 4f39e3al-.. wedltupe represe.. hittp://guccimercuy. ook 8080 uddi/ docAwsdl /e,
CheckOrderS... Bcb7?di00.. This service supp... hitp://gueci. mercury. co.il:B080/uddi/doc/demos/...
Configurator_... 505865c0.. wedltype represe... hitp://guecci.mercuny. co.ikB080uddi/docAwedlic. .
ConfiguratorLi... 4fd204f0-.. wedltype represe... hitp:A/guecci.mercuny. co.ikB080 uddi/docAwedlic. .
N . o . Configuratortd... 4fe20a880-.. wadltype represe... hitp:/guecci.mercuny. co.ik 8080 uddi/docAwedlic. .
hlto:/quccimercuy. co.- 8080 vd [CustornerMatif.. dSe3aed0.. This service provi.. hittp://gueci mercuny. co il 8080/ uddi/doc/demos/...

To search for a service on a UDDI:

In the UDDI server inquiry address box, enter the URL of the UDDI server.

2 Specity the UDDI version.

3 Specify the name or part of the name of the service. Select Exact Match or

Case Sensitive to refine your search, if they are applicable. To perform a
wildcard search, use the percent (%) character.

Click Search. VuGen displays all of the matching results.

Double-click on a service in the list to import it.

Choosing a Service from Quality Center

46

HP Quality Center with the Service Test Management add-on, integrates
with VuGen. This integration allows you to store service entries and tests in
Quality Center. You can also create and organize services according to your
test requirements and test plan.

Chapter 4 « Managing Web Services

To specify a service from Quality Center:
1 In the Import Service dialog box, choose Quality Center.

2 If you have not yet connected to your Quality Center project, click Quality
Center Connection to open the Connection dialog box. For information on
opening a Quality Center connection, see Managing Scripts Using Quality
Center in Volume I-Using VuGen.

3 Click the Browse button to view the list of service entries saved in Quality
Center.

4 Double-click on a service in the list to import it.

Import Service from Quality Center

s BB WEDSErViCeS
s ACHWORKS SOAP (THS - Rico Pamplonia)
.; Acrozs Communications
oy AdoirBook
oy AdorBook_1
._‘ Address Finder (Metherlands)
e Mldress Meister

_'5. Calc
oy ExtendedECHO _doc_literal

S
-
-----_':;;,. SimpleEchoTokensServiceService

Specifying WSDL Connection Settings

VuGen supports the importing of WSDLs using authentication and WSDLs
accessed through proxy servers.

Once you enter the security or proxy information, it remains with the
WSDL, visible through the Connection Settings tab in the Service
Management dialog box. If you enable the Keep up to date option to allow
automatic synchronization, Service Test accesses the WSDL at its source
using the authentication or proxy server settings.

47

Chapter 4 « Managing Web Services

48

These connection settings only apply to the importing of a WSDL. To use
authentication during replay for access to a server, use the web_set_user or
web_set_proxy steps. For more information, refer to the Online Function
Reference (Help > Function Reference).

To specify authentication or proxy information for importing:

Open the Import Service dialog box as you normally would, either with a
new Web Service call, recording, or Traffic Analysis.

Select either the URL or UDDI option and specify a URL of the service to be
imported.

In the Import Service dialog box, click the Connection Settings button to
open the box.

Connection Settings

Authentication

7 Use Authentication Settings

Username: I

Pagzword: I

The above values only apply to the imported WSDL. To use these values during
replay, add & web_set uzer step with the desired walues.

Prowy
™ Use Proxy Settings

Server I Port: I

Llsermame: |

Pazsword: I

The abowe walues only apply to the imported WSDL. To use these values during
replay, add a web_zet_proxy step with the desired values.

Ok I Cancel |

4 In the Connections Settings dialog box, select the desired option: Use

Authentication Settings, Use Proxy Settings or both.

5 Specity the authentication details, and, for a proxy server, the name and

port of the server. If you attempt to import the secure service before
specifying the necessary credentials, VuGen prompts you to enter the
information.

Chapter 4 « Managing Web Services

6 To update or modify the security settings, open the Service Manager and
select the appropriate service in the left pane. Click the Connection Settings
tab. Edit the required fields and click OK.

Deleting Services

You can delete service entries from the Service Management dialog box,
when they are no longer required. If a service was updated, you can
synchronize the WSDL from the source—you don’t need to delete it and
reimport the service.

Before deleting a service, make sure that it is not required for your script. If
you created a script based on a specific service and you then attempt to
delete it, VuGen warns you that the deletion may affect your script.
Deletions cannot be undone.

To delete a service, select it from the list of services and click the Delete
button.

Comparing WSDL Files

When you import a WSDL file, VuGen makes a working copy and saves it
along with the script. This saves resources and enables a more scalable and
stable environment.

It is possible, however, that by the time you run the script, the original
WSDL file will have changed. If you run the script, the test results may be
inaccurate and the script may no longer be functional. Therefore, before
replaying a Web Services script that was created at an earlier date, you
should run a comparison test on the WSDL file.

VuGen provides a comparison tool which compares the local working copy
of the WSDL file with the original file on the file system or Web server.

If the differences are significant, you can update the WSDL from the original
copy using the Synchronize option in the Service Management dialog box.

VuGen also has a general utility that allows you to compare any two XML
files. For more information, see “Comparing XML Files” on page 53.

49

Chapter 4 « Managing Web Services

50

Y Y VY Y

Setting WSDL/XML Comparison Options

VuGen offers the following options when comparing the local and global
copies of the WSDL documents, or the revisions of an XML file:

Show only differences. Show only lines with differences. Do not show the
entire document.

Ignore case. Ignore case differences between the texts.
Ignore comments. Ignore all comments in the texts.
Ignore processing Instructions. Ignore all texts with processing instructions.

Ignore namespaces. Ignore all namespace differences.

To configure the comparison options:

Configure the comparison settings. Choose SOA Tools > SOA Settings >
XML/WSDL Compare. The WSDL Operations Options dialog box opens.
Select the desired options.

XML/ WSDL Comparison

o
o e

a

Click OK.

Note: The comparison option settings apply to both WSDL comparisons
from within the Service Management window, and for XML comparisons
accessed from the Tools menu.

Chapter 4 « Managing Web Services

Comparison Reports

VuGen lists the differences between the files in a Comparison report.
In WSDL Comparison reports, there are two columns— Working Copy and
Original File. The Working Copy is the WSDL stored with the script, while

the Original File is the WSDL at its original location—a network file path or
a URL.

In XML Comparison reports, each column displays the path of an XML file.

The Comparison report uses the following legend to mark the differences
between the two files:

» Yellow. Changes to an existing element (shown in both versions).

> Green. A new element added (shown in the original file copy).

» Pink. A deleted element (shown in the working copy).

In the following example, line 24 was deleted from the original copy and
and line 28 was added.

_

0:00:10 2005
Found 2 differences.
Working copy
ypes 18
13 =1-- Addr
e name="Addr"> z0
bTal-b Z1
lement name="name" type="string" s 2z
lement name="street" type="string" > Z3
lement name="apt" type="string'/: 24
lement name="city" type="string"/= 25
lement name="state" type="string"/* 26
lement hame="zip" type="string"/> 27
28
lement name="phone-numbers" type="typens:ArraylfPhonelunher" /= 29
ence = 0
pes 31
added line [Deleted line [] | |
-
Kl o

51

Chapter 4 « Managing Web Services

52

Running a WSDL Comparison

After running a file comparison, you can decide whether to ignore the
changes, if they exist, or reload the WSDL file.

To compare WSDL files:

Configure the comparison settings. Choose SOA Tools > SOA Settings >
XML/WSDL Compare. The XML/WSDL Comparison dialog box opens.
Select the desired options.

HMLAWSDL Comparison

by W
"

|

Open the Service Management window. Choose SOA Tools > Service
Management or click the Manage Services toolbar button

Select the service upon which you want to perform a comparison. You can

only run the comparison on one service at a time.
Click Compare. The WSDL Comparison Report opens.
Scroll down through the file to locate the differences.

If you find differences between the two files and you want to update

VuGen'’s working copy of the WSDL file, click on the WSDL file in the tree in
the left pane. Select Refresh file from global copy from the right-click menu.

This copies the current version of the WSDL into the script’s WSDL
directory.

To close the WSDL Comparison Report window, choose File > Exit.

Chapter 4 « Managing Web Services

Comparing XML Files
VuGen provides a utility that lets you compare two XML files.

You can specify what differences to ignore, such as case or comments. For
additional information about the comparison options, see “Setting
WSDL/XML Comparison Options” on page 50.

To compare two XML files:

Choose Tools > Compare XML Files. The XML File Comparison dialog box
opens.

*ML File Comparizon

Click the Browse button to the right of the Base Revision box to locate the
original XML file.

Click the Browse button to the right of the Compared Revision box to locate
the newer XML file.

Click OK. VuGen opens the XML Comparison Report window.

For information about the Comparison report, see “Comparison Reports” on
page S1.

53

Chapter 4 « Managing Web Services

Viewing WSDL Files

The Service Management window lets you view the WSDL in your default
browser.

To view a WSDL:
1 Select it in the left pane.
2 Click the View WSDL button in the Service Management window.

54

S5

Adding Content to Web Services Scripts

You use VuGen to create a script to test your Web Services through
recording, manually adding calls, or analyzing server traffic.
This chapter includes:

» About Adding Content to Web Services Scripts on page 55

» Recording a Web Services Script on page 56

» Viewing the Workflow on page 61

» Adding New Web Service Calls on page 62

» Importing SOAP Requests on page 65

» Using Your Script on page 68

» Working with Service Test Management on page 69

The following information only applies to Web Services and SOA Vuser
scripts.

About Adding Content to Web Services Scripts

Web Services scripts let you test your environment by emulating Web
Service clients.

After creating an empty Web Services script, as described in “Understanding
the SOA Test Types” on page 27, you add content through one of the
following methods: recording, manually inserting Web Service calls,
importing SOAP, or by analyzing server traffic.

55

Chapter 5 » Adding Content to Web Services Scripts

To create scripts automatically, run the SOA Test Generator using the wizard
to add content. For more information, see Chapter 23, “Using the SOA Test
Generator.”

For information on creating scripts by See

recording “Recording a Web Services Script”
below

manually inserting Web Service calls “Adding New Web Service Calls” on
page 62

importing SOAP requests “Importing SOAP Requests” on
page 65

analyzing server traffic Chapter 6, “Creating Server Traffic
Scripts”

running the SOA Test Generator Chapter 23, “Using the SOA Test
Generator”

Recording a Web Services Script

56

By recording a Web Services session, you capture the events of a typical
business process. If you have already built a client that interacts with the
Web Service, you can record all of the actions that the client performs. The
resulting script emulates the operations of your Web Service client. After
recording, you can add more Web Service calls and make other
enhancements.

Specify Services for Recording

When you record an application, you can record it with or without a Web
Service WSDL file. It is recommended to record with a WSDL when possible.

If you include a WSDL file, VuGen allows you to create a script by selecting
the desired methods and entering values for their arguments. VuGen creates
a descriptive script that can easily be updated when there are changes in the
WSDL.

Chapter 5 » Adding Content to Web Services Scripts

If you do not specify a WSDL file (not recommended), VuGen creates a test
with SOAP requests instead of Web Service call steps. If you create a script
without importing a service, VuGen creates a soap_request step whose
arguments are difficult to maintain.

To create Web Services script through recording:
Create an empty script.
Choose File > New to open the New Virtual User dialog box.

For a single protocol script, click New Single Protocol Script in the left pane.
Select Web Services protocol from the E-Business category. Click OK.

New Yirtual User
Mew Single Protocol Script

E-Business

:ghction Message Format [&MF)

@File Transfer Protocal (FTP)
isting Directory Service (LDAP)
icrosoft MET

& SAP (Click and Script)
& w/eb [Click and Seript)

& web (HTTPAHTHML)
)

If you need to record several different protocols, such as Web Services and
Web, click New Multiple Protocol Script in the left pane and specify the
desired protocols. Click OK.

57

Chapter 5 ¢ Adding Content to Web Services Scripts

58

2 Begin the recording process.

Click the Start Record button or Ctrl+R to open the Specify Services screen.

Recording Wizard

(ba jalC hitp: #/lazarus w'ebS ervices/EstensionT est/Servicel. asmx Pwed|

Service Test

® Add Services
® Specify Application

3 Add a service to the list.

To produce a high-level Web Service script, add one or more services using
the Import button. If the WSDL of the recorded Web Service is available, it is
recommended to import it here. If you create a script without importing a
service, VuGen creates a soap_request step. The Import Service dialog box
opens.

Import Service ll

Select WSDL from:

" URL ' File unol = Quality Center
IL:\Load_testing\LF!_TESTS\wsdI\MedHecWebSewices.wsdl j |

Analyze with toolkit:
I.NET Framewiork, j

MOTE: Selected toolkit will be permanently aszociated with your script.

Impart I Cancel

Chapter 5 » Adding Content to Web Services Scripts

a Choose a source and location for the WSDL.

b Select a toolkit. The toolkit you choose is permanently associated with
the script. For more information, see “Importing Services” on page 43.

¢ Click Import.

Repeat the above step for each WSDL you want to import.
Enter details for the Web Service.

Click Details to open the Service Manager window and view the details of
the Web Services that you added. For more information, see Chapter 7,
“Working in the Web Service Call View.”

In the next step, you choose an application to record.

Selecting an Application to Record

In this screen you specify the application to record. You can record a
browser session or client application.

59

Chapter 5 » Adding Content to Web Services Scripts

60

1 Specify the recording details.

» Record default Web Browser. Records the actions of the default Web
browser, beginning with the specified URL. Select this option where you
access the Web Service through a Web-based UI.

> Record any application. Records the actions of a your client application.
Specify or browse for the path in the Program to record box. Specify any
relevant arguments and working directories.

Configure options.

» Record into action. The action in which to generate the code. If there are
startup procedures that you do not need to repeat, place them in the
vuser_init section. During recording you can switch to another section,
such as Action.

> Record application startup. Records the application startup as part of the
script. If you want to begin recording at a specific point, not including
the startup, clear this check box.

» Advanced Options. Opens the Recording Options dialog box, allowing
you to customize the way in which the script is generated. For more
information, see the section on setting Script Generation preferences.

Click Finish.

VuGen opens the application and begins recording. Perform the desired
actions within your application and then press the Stop button on the
floating toolbar. VuGen generates web_service_call functions, or
soap_request functions if you did not import a WSDL.

After recording, you can enhance your script with additional service calls
and parameterization. You run the completed script in VuGen to check its
functionality.

For more information, see “Getting Started with Web Services Vuser Scripts”
on page 28.

Chapter 5 ¢ Adding Content to Web Services Scripts

Viewing the Workflow

When adding script content through recording or Analyzing traffic, VuGen'’s
workflow guides you through the stages of preparing a script. By clicking in
the Tasks pane, you can read about the steps for creating a script, view
information about your recording, and verify the replay. Use the Back and
Next buttons to navigate between screens.

If you do not see the Workflow screen, click the Tasks button on the toolbar
to open the Tasks pane, and select a task.

Create Script

The Create Script screen provides several guidelines for creating a Web
Services script. It also provides a link for opening the Web Services wizard.

> Before You Start. Describes what you should know before you begin.
» About Script Creation. Describes the stages of script creation.

» Actions. Describes script sections and why they are important.

There are two action-related links:

» Start Recording. Opens the Start Recording dialog box where you provide
information about the application to record.

» Analyze Traffic. Lets you analyze traffic captured over the network to
create a script that emulates a server.

Creation Summary

After you create a script, the Creation Summary screen provides information
about the recording or script generation.

» Protocols. Lists which protocols were used during the script creation.

» Actions. Describes into which sections actions were recorded or
imported.

61

Chapter 5 » Adding Content to Web Services Scripts

It also provides links that allow you to modity the script:

> Add a web_service_call statement. Lets you manually add a
web_service_call function to your script by specifying a service,
operation, and argument values.

» Manage the services. Opens the Service Repository window with a list of
all of the services that are available to the script and their properties.

» Compare XML files. Allows you to compare two versions of an XML file.
This is useful for comparing WSDL files and determining if there was a
change since your originally imported it into the script.

For information about the remainder of the workflow, see Chapter 3,
“Viewing the VuGen Workflow.”

Adding New Web Service Calls

62

You can add new Web Service call functions in both Tree and Script views.

To add a Web Service call:
1 Click the cursor at the desired location in your script.

2 Click the Add Service Call button. The New Web Service Call dialog box
opens. Select the desired Service. If this is a new script and you did not yet
import a WSDL, do so at this point. For more information, see “Importing
Services” on page 43.

Chapter 5 » Adding Content to Web Services Scripts

3 Select an Operation. For services using multiple ports, select a Port Name for
the operation. This lets you differentiate between identical operations
performed on separate ports.

Mew Web Service Call

ServiceMPMEMPT =] SrvlPart1Mathad! =
oz L]

ﬁh Sr¥1Port1Methodl
Tranzport Layer Configuration
Custom SOAP Header
o Imput Arguments
<, Output Arguments
L Srvl Port] Method Result

WSDL File L:%Load testing\LA...
Service ServiceMPMBMPT
Part name part2

Target address hitp: /w2 almara...
S0P Action
SOAP Hamespace

4 To specify a target address other than the default for the active port, select
Override address and enter the address.

5 To provide sample input values for the service, click on the highest level
node (the service name) and select Generate auto-values for input
arguments. VuGen adds sample values and places an arrow before each of
the arguments, to indicate that it is using auto-values.

To provide sample values for all Input arguments, select the Input
Arguments node and click Generate.

63

Chapter 5 » Adding Content to Web Services Scripts

64

6 To parameterize the input arguments of the operation, see “Setting
Properties for XML Parameters” on page 182.

7 Select the Transport Layer Configuration node to specify advanced options,
such as JMS transport for SOAP messages (Axis toolkit only), asynchronous
messaging, or WS Addressing. For more information, see “Configuring the
Transport Layer” on page 128.

8 Click on each of the nodes and specify your preferences for argument
values. For more information, see Chapter 7, “Working in the Web Service
Call View.”

9 To add an attachment to an input argument, or to specify a parameter to
store output arguments, select the operation’s main node and make the
appropriate selection. For more information, see “Attachments” on
page 107.

Chapter 5 ¢ Adding Content to Web Services Scripts

Importing SOAP Requests

VuGen lets you create Web service calls from SOAP files. If you have a SOAP
request file, you can load it directly into your script. VuGen imports the
entire SOAP request (excluding the security headers) with the argument
values as they were defined in the XML elements. By importing the SOAP,
you do not need to set argument values manually as in standard Web
Service calls.

For example, suppose you have a SOAP request with the following elements:

- <soap:Body soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
- <q1:AddAddr xmiIns:q1="http://tempuri.org/AddrBook/message/">
<Addr href="#id1" />
</q1:AddAddr>
- <g2:Addr id="id1" xsi:type="q2:Addr" xmlns:q2="http://tempuri.org/AddrBook/type/">
<name xsi:type="xsd:string">Tom Smith</name>
<street xsi:type="xsd:string">15 EIm Street</street>
<city xsi:type="xsd:string">Pheonix</city>
<state xsi:type="xsd:string">AZ</state>
<zip-code xsi:type="xsd:string">97432</zip-code>
<phone-numbers href="#id2" />
<birthday xsi:type="xsd:date">1983-04-22</birthday>
</g2:Addr>

65

Chapter 5 ¢ Adding Content to Web Services Scripts

When you import the SOAP request, VuGen imports all of the values to the
Web Service call:

ﬁ& Trargport Layer Configuration
Custom S0AP Header

- Input Arguments

B- T Addr

-G8 name=Tom Smith
B streat=15 Elm Street
BB city=Pheanix

B state=pZ

-] zipcode

-1 phaonenumbers[1]
L-BER birthdap=1983-04-22

4 Dutput Argurnents = ‘

Service AddrB ook, D

Step Properties

To create a new Web Service call based on a SOAP request, you must first

import a WSDL file. If a WSDL is not available, or if you want to send the
SOAP traffic directly, you can create a SOAP Request step. You specify the
URL of the server, the SOAP action, and the response parameter.

Import SOAP

L'\Load_testingLR_TESTS\WebServicest mpontSOAPNS oaptddaddiequest uml | |:|

66

Chapter 5 » Adding Content to Web Services Scripts

In Script view, the SOAP Request step appears as a soap_request function,
described in the Online Function Reference (Help > Function Reference).

To import a SOAP request:
Click the Import SOAP button or choose SOA Tools > SOAP Import.

Import SOAP

Browse for the XML file that represents your SOAP request.

3 Choose the type of step you would like to generate: Create Web Service Call
or Create SOAP Request. In order to create a Web Service Call, you must first
import at least one WSDL that describes the operation in the SOAP request
tile. To import a WSDL, click Service Management and then click the
Import button. To view the SOAP before loading it, click View SOAP.

Click Load. VuGen loads the XML element values.

For a Web Service Call, set the properties for the Service call as described in
“Understanding Web Service Call Properties” on page 87.

67

Chapter 5 ¢ Adding Content to Web Services Scripts

For a SOAP request, provide the URL and the other relevant parameters.

Import SOAP

Li\Load_testinghLR_TE ST S\webServices\mpanS DAPAS oapdddddRiequest i | |:|
Eai=riel=e|

rezponse

5 For a Web Service Call, if there are multiple services with same operation
(method) names, you need to choose the service whose SOAP traffic you
want to import. For information about additional properties, see
“Understanding Web Service Call Properties” on page 87.

6 Click OK to generate the new step within your script.

7 Set checkpoints and replay the step. For more information, see “Setting
Checkpoints” on page 119.

Using Your Script
After you create scripts, you can manage them in one of the following ways:

> Service Test Management. An add-on for HP Quality Center that lets you
manage SOA testing by allowing you to import, store and define services in
Quality Center. Its sections include Requirements Management, Test Plan,
Test Lab, and Defects Management. For more information, see “Working
with Service Test Management” on page 69.

68

Chapter 5 ¢ Adding Content to Web Services Scripts

You can use the completed script to test your system in several ways:

» Functional Testing. Run the script to see if your Web services are functional.
You can also check to see if the Web service generated the expected values
For more information, see Chapter 9, “Running SOA/Web Services Scripts.”

> Load Testing. Integrate the script into a LoadRunner Controller scenario to
test its performance under load. For more information, see the HP
LoadRunner Controller or Performance Center documentation.

» Production Testing. Check your Web service’s performance over time
through a Business Process Monitor profile. For more information, refer to
the HP Business Availability Center documentation.

Working with Service Test Management

HP Quality Center is a Web-based application for test management. Its
sections include Requirements Management, Test Plan, Test Lab, and Defects
Management.

The Service Test Management add-on for Quality Center, lets you manage
SOA testing by allowing you to import, store and define services in Quality
Center.

The Service Test Management integration lets you:

» Store Web Services. You can store and organize Web Services in Quality
Center for use within Service Test.

> Write Service Test scripts. You can create scripts based on the services
stored in Quality Center, while maintaining up-to-date WSDLs
throughout the life-cycle of the service and the script.

» Compose a Business Process Test. You can create a BPT (Business Process
Test) in Quality Center based on services defined through Service Test
Management.

Service Test Management also integrates with HP’s Systinet Registry, to
create test requirements and plans. Once the services are imported, Service
Test Management identifies any changes to the services and automatically
generates the necessary test cases that need to be run.

69

Chapter 5 » Adding Content to Web Services Scripts

70

Using the Service Test Management add-on for Quality Center, groups
throughout your organization can contribute to the quality process in the
following ways:

» Business analysts define application requirements and testing objectives.
» Test managers and project leads design test plans and develop test cases.

» Test managers automatically create QA testing requirements and test assets

for SOA services and environments.

Test automation engineers create automated scripts and store them in the
repository.

QA testers run manual and automated tests, report execution results, and
enter defects.

Developers review and fix defects logged into the database.

» Project managers can export test and resource data in various reports, or in

native Microsoft Excel for analysis.

» Product managers decide whether an application is ready to be released.

» QA analysts can auto-generate test asset documentation in Microsoft Word

format.

For more information about the integration, refer to the HP Service Test
Management User’s Guide.

6

Creating Server Traffic Scripts

Using VuGen, you can create scripts to test your Web Service by analyzing
server traffic capture files.
This chapter includes:

» About Creating Server Traffic Scripts on page 71

> Getting Started with Server Traffic Scripts on page 73

» Generating a Capture File on page 74

» Creating a Basic Script from Server Traffic on page 76

» Specifying Traffic Information on page 78

» Choosing an Incoming or Outgoing Filter on page 79

» Providing an SSL Certificate on page 80

The following information only applies to Web Services/SOA Vuser scripts.

About Creating Server Traffic Scripts

The main focus when testing enterprises and complex systems, is to measure
the performance from the client end. Ordinarily, VuGen records the actions
you perform in the application or browser, and generates a script emulating
the client actions and requests to the server.

In certain test environments, you may be unable to record the client
application to retrieve the requests to the server. This may be a result of the
server acting as a client, or because you do not have access to the client
application. In these cases, you can create a script using VuGen'’s Analyze
Traffic feature.

71

Chapter 6 ¢ Creating Server Traffic Scripts

72

The Analyze Traffic feature examines a capture file containing the server
network traffic, and creates a script that emulates requests sent to or from
the server. The steps in creating a script by analyzing server traffic are
described below in Getting Started with Server Traffic Scripts.

4 4
o,

/ INCOMING SERVER OUTGOING | SERVER
—— A B

CLIENT

U

CAPTURE
TRAFFIC

There are two types of emulations: Incoming traffic and Outgoing traffic.

Incoming traffic scripts emulate situations in which you want to send
requests to the server, but you do not have access to the client application,
for example, due to security constraints. The most accurate solution in this
case is to generate a script from the traffic going into the server, from the
side of the client.

When you specify an Incoming server network traffic, you indicate the IP
address of the server and the port number upon which the application is
running. VuGen examines all of the traffic going into the server, extracts the
relevant messages, and creates a script. In the above diagram, if the client is
unavailable, you could create an Incoming script to emulate the requests
coming into Server A.

Outgoing Traffic scripts emulate the server acting as a client for another
server. In an application server that contains several internal servers, you
may want to emulate communication between server machines, for
example between Server A and Server B in the above diagram. The solution
in this case is to generate a script from the traffic sent as output from a
particular server.

Chapter 6 * Creating Server Traffic Scripts

When you create an Outgoing traffic script, you indicate the IP address of
the server whose outgoing traffic you want to emulate, and VuGen extracts
the traffic going out of that server. In the above diagram, an Outgoing script
could emulate the requests that Server A submits to the Server B.

Getting Started with Server Traffic Scripts

The following section outlines the process of creating a script that analyzes
server traffic.

1 Create a capture file.

VuGen uses the capture file to analyze the server traffic and emulate it. For
more information, see “Generating a Capture File” on page 74.

2 Create a new Web Services script.

Using VuGen’s main interface, you create a new Web Services script. For
more information see Chapter 2, “Understanding the SOA Test Types.”

3 Specify the Services (optional, but recommended).

To create a high-level script, import a WSDL which describes the Web
Service you want to test.

4 Specify the traffic information.

Click the Analyze Traffic button. Specify the location of the traffic file and
whether your script will be for Incoming or Outgoing traffic. For more
information, see “Specifying Traffic Information” on page 78.

5 Specify the traffic filter Recording options.

Filter options let you determine which hosts to include or exclude in your
script. For more information, see “Choosing an Incoming or Outgoing
Filter” on page 79.

6 Specify the SSL certificate information.

The SSL configuration lets you analyze secure traffic over HTTPS in order to
generate the script. For more information, see “Providing an SSL Certificate”
on page 80.

73

Chapter 6 * Creating Server Traffic Scripts

Generating a Capture File

74

A capture file is a trace file containing a log of all TCP traffic over the
network. Using a sniffer application, you obtain a dump of all of the
network traffic. The sniffer captures all of the events on the network and
saves them to a capture file.

To generate a smaller, more manageable script, try to capture the network
traffic only for the time that you perform actions in your application.

Note: Capture files do not contain loopback network traffic.

You can obtain a capture file using the command line utility or any existing
capture tool.

The VuGen Command Line Utility

The VuGen command line utility, Irtcpdump, is located in the product’s bin
directory. There is a separate utility for each of the platforms: Irtcpdump.exe
(Windows), Irtcpdump.hp9, Irtcpdump.ibm, Irtcpdump.linux, and
Irtcpdump.solv4.

To invoke the capture tool, type:

Irtcpdump -i<interface> -f<file>

where interface is the name of the network card whose traffic you want to
capture, and file is the name of the capture file in which to store the
information. Do not leave a space between the command line option (i or f)
and the value.

To create a capture file on a Windows platform:

1 Choose Start > Run, type cmd and click OK to open a command window.

Drag in or enter the full path of the Irtcpdump.exe program located in the
product’s bin directory.

Provide a file name for the capture file using the following syntax:
Irtcpdump -f <file>

Chapter 6 * Creating Server Traffic Scripts

for example Irtcpdump -fmydump.cap.

Irtcpdump prompts you to select a network card. If there are multiple
interface cards, it lists all of them. Type in the number of the interface card
(1, 2, 3 etc.) and click Enter.

Perform typical actions within your application.

6 Return to the command window and click Enter to end the capture session.

To create a capture file on a UNIX platform:

Locate the appropriate Irtcpdump utility for your platform in the product’s
bin directory. Copy it to a folder that is accessible to your UNIX machine.
For example, for an HP platform, copy Irtcpdump.hp9. If using FTP, make
sure to use the binary transfer mode.

Switch to the root user to run the utility.

3 Provide execution permissions. chmod 755 Irtcpdump.<platform>

On UNIX platforms, if there are multiple interface cards, Irtcpdump uses the
first one in alphabetical order. To get a complete list of the interfaces, use
the ifconfig command.

Run the utility with its complete syntax, specifying the interface and file
name. For example, Irtcpdump.hp9 -ietho -fmydump.cap. The capturing of
the network traffic begins.

Perform typical actions within your application.

7 Return to the window running Irtcpdump and follow the instructions on

the screen to end the capture session.

Place the capture file on the network in a location accessible to the machine
running VuGen.

An Existing Capture Tool

Most UNIX operating systems have a built-in version of a capture tool. In
addition, there are many downloadable capture tools such as
Ethereal/tcpdump.

When using external tools, make sure that all packet data is being captured
and none of it is being truncated.

75

Chapter 6 ¢ Creating Server Traffic Scripts

Note: Certain utilities require additional arguments. For example, tcpdump
requires the -s 0 argument in order to capture the packets without
truncating their data.

Creating a Basic Script from Server Traffic

You create a script from server traffic just as you would create a recorded
script.

You can optionally specify a Web Service for your script. If you specify a
service, VuGen will create a script with web_service_call functions. If you
do not specify a service, VuGen creates a script with soap_request functions.

To create a server traffic script:
1 Choose File > New and click New Single Protocol Script in the left pane.
2 Select the Web Services protocol and click OK.

3 Click the Analyze Traffic button or choose Vuser > Analyze Traffic. The
wizard opens.

4 Add one or more services to the list. This step is optional.

hitp:/ Mazaruz webServices/EchowS /Echo_doc_Literal. asms Ywedl
AddrB ook, http: A kalimanjaro/M 55 0apSs amples 20/ Cale/S ervice/Rpo/l zapiCpp/Ca...
Calc http: A kalimanjaro/M 55 0apSs amples 20/ Cale/S ervice/Rpo/l zapiCpp/Ca...

EchoiwSSemvice hittp: A Mk alimanjaro: 8080/ axis /B choWwS . jwes Ywed]
EutendedECHO_doc_literal hitp:/ Mazaruz webServices/EchowS /Echo_doc_Literal. asms Ywedl

76

Chapter 6 * Creating Server Traffic Scripts

» To add a new service, click Import. In the Import Service dialog box,
specify the location of the WSDL. You can specify a URL, File, UDDI
server (such as Systinet), or a location in Quality Center. In the Import
Service dialog box, you also choose a toolkit for analyzing the service.
The selected toolkit will be permanently associated with the script—it
cannot be changed. For more information, see “Importing Services” on
page 43.

» To set or view details about the services, click Details to open the Service
Management window. For more information about Service Management,
see Chapter 4, “Managing Web Services.”

» To remove a listed service, select it and click Delete

5 On the bottom of the wizard screen, click Next to specify the traffic file
information. For more information, see below.

6 After providing traffic information, click Finish to generate a script.

77

Chapter 6 ¢ Creating Server Traffic Scripts

Specifying Traffic Information

78

The traffic file contains a dump of all the network traffic. Using the wizard,
you specify the location of the traffic file and whether you want your script
to emulate incoming or outgoing traffic.

Capture file. The name and path of the traffic file, usually with a cap
extension.

Incoming traffic:Server/Port. The IP address and port of the server whose
incoming traffic you want to examine.

Outgoing traffic:Server. The IP address of the server whose outgoing traffic
you want to examine.

Record into action. The section into which to create the script. If you want
to use iterations, specify the Actions section.

Filter options. Opens a filter interface allowing you to specify which IP
addresses to include or exclude from the script. For more information, see
below.

SSL Configuration. Allows you to add SSL certificates to analyze traffic from
a secure server with the required credentials. For more information, see
“Providing an SSL Certificate” on page 80.

Chapter 6 * Creating Server Traffic Scripts

Choosing an Incoming or Outgoing Filter

You can provide a filter to drill down on specific requests going to or from a
server, by specifying its IP address and port.

It is also possible to filter your capture file with an external tool before
loading it into VuGen. In that case, you may not require additional filtering.

You filter the requests by choosing the relevant host IP addresses. The filter
can be inclusive or exclusive—you can include only those IPs in the list, or
include everything except for those IPs that appear in the list.

79

Chapter 6 * Creating Server Traffic Scripts

To filter the traffic file:

Open the Traffic Filters recording options. Click Filter Options in the Specify
Traffic Information step, or choose Tools > Recording Options. Select the
Traffic Analysis:Traffic Filters node.

Select one of the filtering options: include all IP addresses in the list or
exclude all IP addresses in the list.

Select the tab that corresponds to your script type: Incoming Traffic or
Outgoing Traffic.

Add hosts to the list.

To add a host to the list, click the Add button. Specify the IP address of the
server you want to add to the list. For incoming traffic, specify the port of
the server to include or exclude. Click OK to accept the settings.

Click Delete to remove an entry.

After the script is created you can change the filters and regenerate the
script—there is no need to re-analyze the capture file.

Providing an SSL Certificate

80

To analyze traffic from a secure server, you must provide a certificate
containing the private key of the server.

If the traffic is SSL encrypted, you must supply a certificate file and password
for decryption. If you want traffic from multiple servers to be reflected in
the script, you must supply a separate certificate and password for each IP
address that uses SSL.

Chapter 6 * Creating Server Traffic Scripts

To specify an SSL certificate:
1 In the Specify Traffic Information screen, click SSL Configuration.
2 Add certificates to the list.

To add a certificate to the list, click the Add button. Specify the IP address,
port, path of the certificate file (with a pem extension), and the password for
the certificate. Make sure the pem file contains the private key. If you are
unsure of how to obtain the certificate, contact your system administrator.

S5L Configuration

285.34.00 zervil 2 pem

- Click the Delete button to remove an entry from the list.
3 Repeat the above steps for every certificate you want to add.

4 Click OK to close the dialog box.

81

Chapter 6 * Creating Server Traffic Scripts

82

7

Working in the Web Service Call View

You use the Web Service Call view to display snapshots, set properties, and
add checkpoints to Web Service calls.
This chapter includes:
» About the Web Service Call View on page 83
» Viewing Web Services SOAP Snapshots on page 84
» Understanding Web Service Call Properties on page 87
» Working with Optional Parameters on page 99
» Base 64 Encoding on page 103
» Attachments on page 107
» Working with the XML on page 111
» Using Web Service Output Parameters on page 115
» Setting Checkpoints on page 119

The following information only applies to Web Services and SOA Vuser
scripts.

About the Web Service Call View

Using the Web Service Call view, you can view snapshots, set properties, and
define checkpoints for each of the Web Service calls in your script.

To open the Web Service Call view, you must be in Tree view. Choose View >
Tree View in the VuGen window to open Tree view.

83

Chapter 7 « Working in the Web Service Call View

The Snapshot lets you view the SOAP structure of each step. You can view
snapshots of the recording, replay, request, and response. For more
information, see below.

The Properties tab lets you configure the settings for each Web Service call.
You can set properties in the area of argument values, parameterization,
transport layer, and security. For more information, see “Understanding
Web Service Call Properties” on page 87.

Checkpoints let you verify your Web service results. You can check for
expected values and view the output to see if they were matched. For more
information, see “Setting Checkpoints” on page 119.

Viewing Web Services SOAP Snapshots

84

You can use VuGen'’s snapshot viewer to examine the SOAP requests and
responses that occurred during record and replay. Note that you must replay
the session at least once in order to view a replay snapshot.

There are several ways to view the SOAP snapshots:

Record and/or Replay

> Request or Response Data

Tree or XML View

Using the buttons in the Snapshot window, you can control the view:

[#] Recording | [*] Replay (5] Bath | 5+ Request ‘ |*| Response | ‘ ’f“ﬂ Tree xf‘ﬂ =ML |

In Tree view, you can expand the nodes to view the values of the arguments,
if they were assigned.

In Request view, the displayed values are those that were sent to the server
during the Web Services session. In Response view, the displayed values are
the results returned by the server.

Chapter 7 » Working in the Web Service Call View

In the following example, the Snapshot window shows the Record and
Replay snapshots of the Request data in Tree view.

wmins:soap = http:/fschemas, xmisoap.org/soapienvelopel
=9 wmins:xsi = http:/ w, w3, org/ 2001 ¥MLSchema-instance
=9 wminsixsd = http: v, w3, org/2001 ¥MLSchema

+5 soap:Body

xmins:soap = htkp: ffschemas. xmlsoap,org/soap/envelope)
wrnlns sl = hkkpe [freme w3, orgf 2001 [¥MLSchema-instance

@ wrins:xsd = hitkp: /e w3 argf 2001 fEMLScherma

=9 wminsiwsa = htkp: /{schemas. xmisoap.argfws)2004)03/ addressing
u{'j soapiHeader

+ soap:Body H

To learn more about a node, select it and choose Node Properties from the
right-click menu.

85

Chapter 7 ¢ Working in the Web Service Call View

86

In the XML view, you can view the whole SOAP message in XML format.

5 oo |57 [S

=7uml version="1.0" encoding="utf-8" 7=
- <soap:Envelope zmins:soap="http://schemas.xmlsoap.org/soap/envel
wmins: wsi="http:/ fwww . w3.0rg/ 2001/ XMLSchema-instance”
wmins:wsd="http:/ /www.w3.0org/ 2001 /¥XMLSchema"
wmins:wsa="http:/ fschemas.xmlsoap.org/ws /2004 /03 /addressing":
- <soap:Header>
<wsa: Action=http:/ /tempuri.org/EchoAddr</wsa: Action=
<wsa:MessagelD>uuid:a310ba0?7-0994-47be-94cf-355826100759</
- <wsaiReplyTox=

<wsa: Addresszhttp:/ fschemas.xmlsoap.org/ws /2004703 /add
</wsarReplyTos

<wsa: Toxhttp:f flazarus /webServices /ExtensionTest /Servicel.as

</snap Header:=

Choosing a Replay Iteration

If you replayed the script with multiple iterations, you can specify which
iteration to display in the snapshot. In addition, you can display a snapshot
from test results that you saved in a location other than the script’s folder.

By default, the Snapshot view shows the last iteration.

To choose an iteration to display:
Choose View > Snapshot > Choose Iteration.

Select the desired iteration and click OK.

3 To display results from another folder, choose Select Folder and browse to

the location of the test results.

Chapter 7 « Working in the Web Service Call View

Understanding Web Service Call Properties

VuGen provides an interface for you to view and modify the properties of
each one of the Web Service calls.

Properties describe the behavior of each method within your service. You
can set a target address, argument values, parameterization, and transport
layer preferences for each of your service’s methods.

You can view a step’s properties from Tree view (View > Tree view) in one of
the following ways:

» Double-click on a step in the left pane to open the Web Service Call
Properties dialog box.

» Select the Step Properties tab in the right pane.

87

Chapter 7 ¢ Working in the Web Service Call View

The Properties view displays each of the service’s operations in a tree
hierarchy. The nodes of the tree represent the Transport Layer
Configuration, the SOAP header, input arguments, and output arguments.

Web Service Call Properties

; ﬁg. Transport Laper Configuration
i Custom S04P Header
- o Input Arguments
LB strSting={My_Aray_String}
4 Output Arguments

WhDL File hitp: #flazarisw'e.
Service EutendedECHO_d...
Part hame EwtendedECHO_d...
Target address hitp: /flazaziwe...
Step Hame EchoString_101
S04F Action

By default, the script takes the target address from the WSDL. You can
override this address for each operation. Select the Override Address option
and specify the desired Target Address.

88

Chapter 7 « Working in the Web Service Call View

The contents of the right pane changes, depending on the level of the
selected tree node. The following table describes the content for each node:

If you select...

The right pane shows...

A method or operation
name

» The method’s properties.

» A check box to enable the automatic generation
of values for input arguments.

» A check box to include attachments.

Transport Layer

Advanced transport options:

Configuration » HTTP/S Transport with async. or WS-A routing.
» JMS Transport support with response and request
Queue information.
SOAP Header An edit box to indicate the value of the SOAP

header for the current element. For more
information, see “SOAP Headers” on page 111.

Input Arguments node

» The Name of each method and its Value.
» Include All, Reset and Generate buttons.

An individual argument

» Name. The name of the argument (read-only)

» Type. The argument type as defined in the
WSDL. When the WSDL contains derived types,
this box becomes a drop down list. For more
information, see “Derived Types” on page 98.

» Include argument in call. Includes the Optional
parameters in the Web Service call. See “Working
with Optional Parameters” on page 99.

» Nil. Sets the Nillable attribute to True.

» Value. The value of the argument. For base64
binary type arguments, Get from file or Base64
Encoded text.

» Generate auto-value for this argument. Insert
automatic values for this node.

89

Chapter 7 « Working in the Web Service Call View

A complex input
argument

» XML. Enables the Edit, Import, and Export
buttons. By editing the XML, you can manually
insert argument values. Click on the ABC icon to
replace the entire XML structure with a single
XML type parameter. Note: This import
operation handles XML files that were previously
exported—not standard SOAP files. To import
SOAP, see “Importing SOAP Requests” on
page 65.

» Generate auto-value for this argument. Inserts
automatic values for all arguments of this
complex type node.

» Add/Delete. Adds or removes elements from the
array.

Output Arguments

The Name arguments and the Parameter that will
store the value

Input Attachments

The Attachment Format for encoding the soap
request: DIME or MIME for the VuGen toolkit,
DIME only for .NET, and MIME only for Axis.

90

Y Y Y Y Y

Chapter 7 « Working in the Web Service Call View

Attachment

>

>

Take Data from. The name of the file to attach or
the name of the parameter containing the data.
Content Type. The attachment’s content type.
You can instruct VuGen to detect it automatically
or choose a type from the dropdown list or enter
a value manually.

Content ID. The attachment’s ID attribute. You
can instruct VuGen to automatically generate a
value or specify your own ID.

Delete Attachment. A button to remove the
attachment.

Output Attachments

Save All Attachments. Saves all attachments to
parameters:

Content. The name of the parameter prefix for
storing the attachment.

Content Type. The attachments’ content type
attribute (read-only).

Content ID. The attachment’s ID attribute (read-
only).

Save Attachments by Index. Save the
attachments by number, beginning with 1. Click
Add to insert additional attachment indexes.

Input Argument Values
Output Arguments
Arrays
Attachments

SOAP Headers

You can set argument values for the following elements: (manually edited
arguments are displayed in blue)

91

Chapter 7 ¢ Working in the Web Service Call View

Input Argument Values

The Input Arguments node lets you define values for all of the input
arguments and lets you control the Optional elements. For more
information about Optional elements, see “Working with Optional
Parameters” on page 99.

New Web Service Call

AddiBook 2 Addtddr 2
AddrB ook SoapPart = |

4 AddAddr
BB Transport Layer Configuration
i Custom SOAP Header

: G zipd
-8 phonenumbers[1]
H-, Output Arguments

» Include All. Includes all Optional elements—all of the operation’s elements
are included.

> Reset. Excludes all Optional elements and only includes the mandatory
ones.

» Generate. Includes all Optional elements and generates automatic values for
all of the operation’s elements.

92

Chapter 7 » Working in the Web Service Call View

» Edit Argument. Opens the node of the selected argument and lets you set its
values.

The individual argument nodes lets you define values for each of the input
arguments.

Wweb Service Call Properties

<4 AddAddr

ﬁg. Tranzport Layer Configuration
- HE Custom S04P Header

-+ Input Arguments

=& AT ITERLTEE(|

B street ’7 ’7

B city
E[ﬁ state
&2 zip

B zipd O ’?

= % phone-numbers[1]
- [E= PhaneMumber1]
]+, Output Arguments

» XML/Value. A manually specified value for the node. If your argument is an
array, you can specify an XML structure. Otherwise, specify an ordinary
value. To create a parameter for the argument, click the ABC icon in the
right corner of the XML/Value box to open the Select or Create Parameter
dialog box.

» Generate auto-value for this argument. If you want VuGen to automatically
generate a value for this argument, select this option or select the argument
in the tree hierarchy and choose Generate Auto-values from the right-click
menu.

93

Chapter 7 ¢ Working in the Web Service Call View

94

Choice Elements

If your WSDL defines Choice elements, you can view them and set their
values in the Properties view.

@1 EchoAddrwithChoice

-8B, Transport Layer Configuration
iene Custom SOAP Header

B9 Input Arguments

B[add

--BE8 name=John Smith

-G shest=Maple Lane
8 city=Dinon

BB state=MC

BB zip=5E100

(=844 TChoice

EIE <choicer
-3 DecimalNumber

B4 Qutput Arguments
M- [E out_addr

To set a value for a choice element, select the parent element, enable the
Include argument in call option in the right pane, and provide a value.

To parameterize the argument, click the ABC icon. In the Parameter
Properties dialog box, provide values for the choice argument. You only
need to provide values for one of the choice elements. When running
multiple iterations, the script uses the values for the same choice element,
according to the assignment method (sequential, unique or random). For
example, if your choice elements are Decimal Number, String, and Number,
and you provided values for Number, the Vuser will always use the Number
element.

Choice support is provided for both Input and Output arguments,
Parameterization, Checkpoints, and Service Emulation.

For information about working with optional arguments, see “Working with
Optional Parameters” on page 99.

Chapter 7 » Working in the Web Service Call View

Output Arguments

You can view the output argument values and save them to parameters or in
an array.

Multiply

G} Transport Layer Corfiguration
e S0AP Header

= |put Arguments

Pararn_ultiplyFesult

| Step Properties

» Save returned value in parameter. Saves the returned value to a parameter
whose name you specify in the text box.

95

Chapter 7 ¢ Working in the Web Service Call View

96

Arrays

To work with an array—for either input or output arguments, select it in the
left pane.

ﬁ AddAddr
%g. Tranzport Layer Configuration
it Custom 504P Header
B v Input Arguments
E-TE Addr ¥ Amiefiiel == e = i 2=l
B8 name
EI# street
B city
EI# state
£ zip
i3 zipd
E PhoneM umber[1]
-6 description

£ phone-number
-4 Output Arguments

» XML. The path of the XML file containing the values of the array elements.

Click the ABC icon to replace the XML with an XML type parameter. XML
parameterization supports arrays as input arguments. In the XML parameter,
you define the number of array elements as required.

When saving an array to a parameter, the number of array elements per
parameter is constant. If you want to run multiple iterations, with each
iteration using a different number of array elements, you need to define
separate parameters, each containing the desired number of array elements.

For more information about XML parameters, see “Setting Properties for
XML Parameters” in Volume I-Using VuGen.

Chapter 7 » Working in the Web Service Call View

» Edit/Import/Export. To modify complex types and arrays, select the
elements and arguments and click Edit. Click Export to export the selected
entry to a separate XML file, or Import to load a previously exported XML
file. Note: This Import operation handles XML files that were previously
exported—not standard SOAP files. To import SOAP, see “Importing SOAP
Requests” on page 65.

» Add. Opens the Add Array Elements dialog box, allowing you to add array
elements, either simple or complex.

> Delete. Deletes array elements. Specify the starting index and the number of
elements to remove.

Adding Array Elements

When you click Add in the Array Elements section, the Add Array Elements
dialog box opens as described below.

Add Amray Elements

» Start Index. The index of the first element that will be added.
» Elements. The number of elements to add.

» Copy values from index. Assigns values of an existing array element to the
new elements. Specify the array index of the element whose value you want
to use.

97

Chapter 7 « Working in the Web Service Call View

Derived Types

VuGen supports WSDLs with derived types. When setting the properties for
a Web Service Call, you can set the arguments to use the base type or derived

type.

New Web Service Call x|

- Select Web Service Call

Service: IDerivedT_l,JpesSW j UDBlaliDn:lEchoBase j
j ™ Overide Address

Port M ame: I DenvedT ypesSmSoan

Target Address: Ihttp: Aflocalhozt 38337 AtestdS ervice. azmyx

<41 EchoBase
@2. Tranzport Layer Configuration Marme: |c
----- #ean Custorn $04P Header . —
= Type: FestrictionT -
=l Input Arguments Im-"' estnchion | ppe J
=B
[Include argument in call
Sulb argumerits: Ihelude | Exclude |
. L
=< Output Arguments ML I EI
G EchoBasefiesul " Generate auto-value for this argument

Edit... | Import... | Export... |

(] 4 | Cancel |

After you select the desired type, VuGen updates the argument tree node to
reflect the new type.

98

Chapter 7 « Working in the Web Service Call View

Abstract Types

Abstract is a declaration type declared by the programmer. When an
element or type is declared to be abstract, it cannot be used in an instance
document. Instead, a member of the element's substitution group, provided
by the XML schema, must appear in the instance document. In such a case,
all instances of that element must use the xsi:type to indicate a derived type
that is not abstract.

When VuGen encounters an Abstract type, it cannot create an abstract class
and replay will fail. In this case, VuGen displays a warning message beneath
the Type box, instructing you to replace the Abstract type with a derived

type.

Working with Optional Parameters

If your WSDL file contains optional parameters, you can indicate whether or
not to include them in the SOAP request.

In WSDL files, optional parameters are defined by one of the following
attributes:

minoccurs="'0'
nillable="true'

minoccurs = 0 indicates a truly optional element, that can be omitted.
Nillable means that the element can be present without its normal content,
provided that the nillable attribute is set to true or 1. By default, the
minoccurs and maxoccurs attributes are set to 1.

In the following example, name is mandatory, age is optional, and phone is

nillable.

<s:element minOccurs="1" name="name" type="s:string" />
<s:element minOccurs="0" name="age" type="s:int" />
<s:element minOccurs="1" name="phone" nillable="true" type="s:string" />

99

Chapter 7 ¢ Working in the Web Service Call View

When setting argument values for your service call, VuGen indicates the
type of element by enabling or disabling the options:

Web Service Call Properties

*ih EchoPerson

B-[& per

] hone]

E|f‘_F= com

62 EchoPersonResult

ﬁg. Transport Layer Configuration
HERE Custom SOAP Header
=R Imput Argurnents

Eﬁ companyHame
EE# zip
B4 Output Arguments
E out_per

S AT G TETES [HEIEE]

The following table indicates the availability of the options:

Parameter type

Nil radio button

Include arguments in call

Mandatory disabled disabled
MinOccurs=0 disabled enabled
Nillable enabled disabled

To include a specific optional argument in the service call, click the node
and select Include Argument in Call. The nodes for all included arguments
are colored in blue. Arguments that are not included are colored in gray.

100

Chapter 7 » Working in the Web Service Call View

If you include an element on a parent level, it automatically includes all
mandatory and nillable children elements beneath it. If it is a child element,
then it automatically includes the parent element and all other mandatory
or nillable elements on that level. If you specify Generate auto-value to a
parent element, VuGen provides values for those child elements that are
included beneath the parent.

Note: VuGen interprets whether elements are mandatory or optional
through the toolkit implementation. This may not always be consistent
with the element’s attributes in the WSDL file.

To include a sub elements:

To include a specific sub element, choose it in the left pane and select the
Include Argument in Call option.

To include all sub elements of a parent element, apply Include Argument in
Call to the parent element and click the Include button beneath it.

To exclude all sub elements, select the parent element and click the Exclude
button. It will exclude all omittable arguments.

<47 AddAddr
BB Trarsport Layer Configuration
im0 Custom S04F Header

ﬁ shreet

£ city

E[%H state

& zip

] zipd

E|1—E| phonenumberz[1]

B+ [& PhoneMuriber1]

i description
i phonenumber

-4 Output Arguments

101

Chapter 7 ¢ Working in the Web Service Call View

102

Recursive Elements

Using the Properties dialog box, you can control the level of recursive
elements to include in the Web Service call.

To exclude a certain level and exclude those below, highlight the lowest
parent node that you want to include and select Include Argument in Call.
VuGen includes the selected nodes, its mandatory children, and all of its
parent nodes.

In the following example, three levels of the Choice argument are
included—the rest are not. A non-included node is grayed out.

= ﬁ_’: Mydrgurment
B- E: <choicer

E ﬁ_’: recChoiceT ype
B- E: <choicer

=k E recChoiceT ype
B- E: <choicer

E recChoiceT ppe
B- E: <choicer

I E recChe

Output Arquments

Choice Optional Elements

A Choice element in a WSDL defines a set of elements where only one of
them appears in the SOAP message. In some cases, one of the Choice
elements is optional, while the others are not. In Service Test, you can select
the Choice element and still prevent its optional element from appearing in
the SOAP envelope. In Tree view, select the Choice element, and clear the
Include argument in call option. In Script view, delete the line that defines
the Choice argument.

Chapter 7 » Working in the Web Service Call View

Base 64 Encoding

Base 64 encoding is an encoding method used to represent binary data as
ASCII text. Since SOAP envelopes are plain text, you can use this encoding
to represent binary data as text within SOAP envelopes.

When VuGen detects a WSDL element of base64Binary type, it lets you
provide an encoded value. You can specify a value in two ways:

» Get from file. Reference a file name.

» Embed encoded text. Specify the text to encode.

New Web Service Call

Boseit = EcroBssctd -
Bazeb4Soap = |

<] EchoBase64

tear Custom SOAP Header
- Imput Arguments

103

Chapter 7 ¢ Working in the Web Service Call View

To specify a base64Binary value:
1 Select the Value option.

2 To specify a file, select Get from file and locate the file using the Browse
button below.

3 To specity text, select the Embed encoded text option and click the Browse
button below. The Process Base64 Data dialog box opens.

[Process Baseb4 Data

My Encoded Text

Unicode [UTF-8) [

TrEgRWSIbZR1ECEUZRN0

Enter text in the Text to encode box.

To use an encoding other than the default UTF-8 method, select it from the
Encoding Options list.

Click Encode.
4 Click OK. VuGen adds the Web Service call to the script. You can now view

the step and its properties in Tree view.

If you referenced the value from a file, the Web Service call will contain the
file name:

"xml:arr="
"<arr base64Mode=\"file\">C:\\Load_testing\TEcho.xml</arr>",

104

Chapter 7 « Working in the Web Service Call View

If you inserted the actual text using the Base 64 Encoding Text option, then
the Web Service call in the script will contain the encoded text.

"xml:arr="
"<arr base64Mode=\"encoded\">YWJjZGVmZw==</arr>",

Setting a Parameter Value for Base64Binary Data

To set the Base64 argument value to a parameter, create a new parameter of
of File type, or XML type for Complex arguments. For more information, see
“Setting Properties for XML Parameters” in Volume I-Using VuGen.

For complex type arguments containing base64Binary values, VuGen lets
you process the base64Binary for setting parameter, checkpoint, or
emulation values. When specifying the values, you can get values from a File
or specify the Text manually and apply encoding.

If you choose to get the value from a file, specify one of the following
options:

» Link to file. Reference the file containing the values.

105

Chapter 7 ¢ Working in the Web Service Call View

» Do not Link to a file. Use the content of the specified file. VuGen copies the
content to the script folder. To use this option, clear the Link to file check
box.

¥ Process BaseG4 Data

C:Alogin_bot.jpg
’7

Tip: It is generally recommended to link to a file since this improves the
script’s performance. If your text exceeds 10KB, you must link to a file.

To open the Process Base64 dialog box:
1 Create a new parameter for a complex argument.

2 In the grid view (XML parameters or checkpoints), click the Browse button
to the right of the value box. The Process Base64 dialog box opens.

3 Specify File or Text as a source for the value.
4 If you chose File as the Source, specify whether or not to link to a file.

5 To decode an encrypted value, for example, a value obtained during replay,
click Decode to File. For more information, see below.

106

Chapter 7 « Working in the Web Service Call View

This section applies to all of the places within VuGen that use the grid view
of argument values: the parameter list and checkpoints.

Decoding to a File

VuGen lets you decode the encoded text to a file. This is especially useful for
checking the correctness of base64 encoded values returned from the server,
such as images.

The following procedure describes how to check if the Record and Replay
images match one another.

To validate images using decoding:

1 Create a New Web Service call.

N

Set a value for the Base64 argument, using the Get from file option. Specify
an image file. Continue creating the script.

Save the script and replay it.
Switch to the Checkpoint tab and load the Replay values.

Click on the Replay value of the Base 64 argument and open its properties.

QA B AW

Click Decode to file. Specify a file name to which to save the file. Use the
same extension as the original file.

7 Compare the decoded image to your original one to verify a match.

Attachments

When transferring binary files such as images over SOAP, the data must be
serialized into XML. Serialization and deserialization can cause a significant
amount of overhead. Therefore, it is common to send large binary files using
an attachments mechanism. This keeps the binary data intact, reducing the
parsing overhead.

Using attachments, the original data is sent outside the SOAP envelope,
eliminating the need to serialize the data into XML and making the transfer
of the data more efficient.

107

Chapter 7 ¢ Working in the Web Service Call View

The mechanisms used for passing a SOAP message together with binary data
are MIME (Multipurpose Internet Mail Extensions) and the newer, more
efficient DIME (Direct Internet Message Encapsulation) specifications.

VuGen supports the sending and receiving of attachments with SOAP
messages. You can send Input (Request) or save Output (Response)
attachments.

To add or save attachments, select an operation or a method in the left pane
to which the attachments will be associated. You can add both input or
output attachments

Input Attachments
Input attachments are added to the request message.
To add an attachment to the request:

1 Select the operation in the left pane, to which you want to add the
attachment.

2 In the right pane, select Add to request (Input). VuGen prompts you to
enter information about the attachment and adds it to the method’s tree
structure.

The Add Input dialog box opens.

Add Input Attachment

C:tempimaged. gif Ed l_

test/richtest Ed

I
ok | Concel | e |

108

Chapter 7 « Working in the Web Service Call View

Specify the following information:

Take data from. The location of the data. This can be a file or a parameter
that contains the binary data.

» File. You can specify the file location in two ways:

» Absolute Path: The full path of the file. Note that this file must be
accessible from all machines running the script.

» Relative Path: (recommended) A file name. Using this method, during
replay, VuGen searches for the attachment file in the script’s folder. To
add it to the script’s folder, choose File > Add Files to Script and specify
the file name.

» Parameter. You specify the name of a parameter containing the data.

Content-type. The content type of the file containing the data. The Detect
Automatically option instructs VuGen to automatically determine the

content type. You can also choose from a list of the common content types
in the Value box, such as text/html, and image/gif or type in another content

type.

Content-ID. The ID of the content. By default, VuGen generates this
automatically by VuGen and serves as a unique identifier for the
attachment. Optionally, you can specify another ID in the Value box.

Output Attachments

Output attachments are added to the response message.

To save the response as an attachment:

Select the operation in the left pane, for which you want to save the
response.

In the right pane, select Save received (Output). VuGen adds an Output
Attachment node to the method’s tree structure in the left pane.

109

Chapter 7 ¢ Working in the Web Service Call View

3 Select the desired option: Save All Attachments or Save Attachment by
Index based on their index number—beginning with 1.

Mew Web Service Call

AddiBook =]
AddiB ookS oapPort |— 1]

*#h AddAddr
; Tranzport Layer Configuration
- Hedl Cugtom S04 Header
- Input Argurents
Output Arguments
] Output Attachments

When you specify Save All Attachments, VuGen creates three parameters for
each attachment based on the parameter name that your specify: a
parameter containing the attachment data, the content type of the
attachment, and a unique ID for the attachment.

For example, if you specify the name MyParam in the Content field, the
parameter names for the first attachment would be:

MyParam_1
MyParam_1_ContentType
MyParam_1_ContentID

110

Chapter 7 « Working in the Web Service Call View

When you specify Save Attachments by Index, you specify the index
number and name of the parameter in which to store the attachment. The
parameter name that you specify for Content, is used as a prefix for the
Content type and Content ID parameters.

To edit the properties of either an Input or Output attachment, click the
attachment in the left pane, and enter the required information in the right
pane.

SOAP Headers

This view is available when you select SOAP header in the method’s tree
view. The right pane lets you indicate whether or not to use SOAP headers.
To use them, select Use SOAP header. Note that you must individually
specify SOAP headers for each element. You can import XML code for the
SOAP header, or compose your own using the Edit XML option. For more
information, see “Editing an XML Tree” on page 112.

Working with the XML
Web Services allow you to viewand edit your XML.
The following sections describe:

» Editing an XML Tree
» Saving and Copying the SOAP Response

111

Chapter 7 ¢ Working in the Web Service Call View

Editing an XML Tree

You can use VuGen's XML Editor to view and edit the XML representation of
complex types (structures, objects, etc.) and arrays.

7 EchoMix
BB Transport Layer Configuration
-hem Custom SOAP Header
Bl Input Arguments
° = T
i BB intD=32347597
EE# st ame
BT sttddiess
1-L"‘-I-_| Computers[1]
B-752 PhoneList(1]
-4, Output Argumesnts
B[EchoMisResult

Entering the values for the XML elements is a tedious and error-prone task.
VuGen provides you with an interface that simplifies the task of entering,
saving, and restoring the information. Once you enter the data manually,
you can save it to an XML file using the Export option. For subsequent tests,
you can import this file without needing to reenter the values a second
time.

To edit XML strings:

1 Select the Web Service call whose element you want to modify and click the
Step Properties tab.

2 In the method’s tree hierarchy, click on a complex type or array argument.
The right-most pane shows the XML code as a single string. Select the XML
option.

3 To edit the XML code for that entry, click Edit. VuGen may issue a warning
indicating that only changes to element values and the number of array
elements will be saved—not changes in the XML elements themselves.

112

Chapter 7 » Working in the Web Service Call View

4 Click OK. The XML Editor dialog box opens.

1 XML Editor

Addr
<[] bitthday
L ity

-ﬂ state
o zip-code

H-] phone-rumbers
Lo street

5 In the XML Tree view, double-click on a node to open its property dialog
box. Edit the value as required. Click OK to save the new values.

6 To edit the code in text mode, click the Text View tab. Edit the XML code
manually. Click OK to save the changes.

1 XML Editor

L0 < birthdayss < city> <name/> < state/> <zip-codes < phone-numbe |«
152 < PhoneM umber: < dezcriptiond> < phone-numbers» </PhoneMumber:
<Phonetumber: < descriptions> < phone-number/> < /PhoneM umbers </
phone-numberzs: <street> < Adddr

7 To import a previously saved XML file, click Import and specity the file’s
location. Edit the file in the XML Editor dialog box.

113

Chapter 7 « Working in the Web Service Call View

8 To save your XML data to a file so it can be used for other tests, click Export
and specify a location.

Saving and Copying the SOAP Response

In addition to saving the input argument values as an XML type parameter,
you can also save the SOAP response to a parameter or copy it for use within
an editor.

To save the SOAP response to a parameter:

1 Switch to the SOAP Snapshot tab and select the parent or child element
whose value you want to parameterize.

2 Select Save XML in parameter from the right-click menu. The XML
Parameter Properties dialog box displays the properties of the selected XML

element.

DE Mame: IPalameI_searchT imel

®ML Source: I{result}

#Path Clueny: I Body/dolG oogleSearchResponse/ieturn/sea EI

[~ Save all matches

Ok I Cancel |

3 Specify a name for the XML parameter, and click OK.

To copy the XML structure for use within another editor, choose Copy XML
from the right-click menu.

114

Chapter 7 » Working in the Web Service Call View

Using Web Service Output Parameters

In certain cases, you may need to use the result of one Web Service call as
input for another. To do this, you save the result to an output parameter and
reference it at the required point.

In the following example, the output argument is saved to a parameter
My_Array_String.

MNew Web Service Call

ExtendedECHO_doc_literal = EchoStringdray =]
ExtendedECHO_doc_literalSoap |— |

{q EchoStringArray
@E« Tranzport Layer Configuration
i Custom SOAP Header
Input Arguments
1:1-_| strString[1]
Output Arguments

by Arrap Sting

115

Chapter 7 ¢ Working in the Web Service Call View

116

The script shows the saved output parameter as a result argument:

web_service_call("StepName=EchoStringArray_101",
"SOAPMethod=ExtendedECHO_doc_literal.ExtendedECHO_doc_literalSoap.EchoStri
ngArray",
"ResponseParam=response",
"Service=ExtendedECHO_doc_literal",
"Snapshot=t1169994766.inf",
BEGIN_ARGUMENTS,
"xml:strString=<strString><string></string></strString>",
END_ARGUMENTS,
BEGIN_RESULT,
"EchoStringArrayResult/*[1]=My_Array_String",
END_RESULT,
LAST);

For information on saving results to parameters, see “Saving Output
Parameters” on page 117.

After you save an output parameter, it becomes available for parameter
substitution or for other referencing, such as evaluating it and printing its
value. In the following example, the saved output parameter,
My_Array_String, is used as an input argument for a subsequent Web Service
call.

7 EchoStringAmay
BB, Transport Laper Configuration
i Cughom S04P Header
El- o Input Angurmerts
EI% shiShing[1 =ty _fmay_Sting}
B4~ Output rguments

% EchoStingdmrayR esult1]

WEIEIESS

Chapter 7 « Working in the Web Service Call View

For information on using saved output parameters, see “Using Saved
Parameters for Input” on page 118.

Saving Output Parameters

You can save multiple result arguments to parameters through the Properties
dialog box, or by manually editing them in the script code.

You can also save result parameters from XML actions, and use them as
input arguments. For example, if you save the result parameter for
Ir_xml_insert, you can reference the saved parameter in a subsequent Web
Service call. For more information, see “Using Result Parameters” in Volume
I-Using VuGen.

To save an output parameter:

View the script in Tree view.

Make sure you are in Tree view. Otherwise, choose View > Tree view.

Check for a Service.

Click the Manage Services button to verify that you have imported at least
one service. To import a new service, click Import in the Service
Management dialog box.

View the steps’s properties.
For a new Web Service call, click Add Service Call.

For an existing Web Service call, double-click on the step or click the
Properties tab in the right pane.

Select the output argument.

In the left pane, select the output argument whose value you want to save to
a parameter.

Enable the saving of the output parameter.

In the right pane, select Save returned value in parameter. Accept the
default name or specify a custom name.

117

Chapter 7 ¢ Working in the Web Service Call View

118

Using Saved Parameters for Input

After saving output parameters, you can use them in subsequent Web
Service calls.

You can also use saved result parameters from XML actions as input. For
example, if you saved the result parameter for Ir_xml_insert, you can
reference it in a subsequent Web Service call. For more information, see
“Using Result Parameters” in Volume I-Using VuGen.

To use a saved parameter for input:

1 View the steps’s properties in Tree view.

For a new Web Service call, click Add Service Call.

For an existing Web Service call, double-click on the step or click the
Properties tab in the right pane.

2 Select the input argument.

In the left pane, select the input argument whose value you want to replace
with a previously saved output parameter.

3 Open the Select Parameter dialog box.

In the right pane, select Value, and click on the ABC icon adjacent to the
Value box. The Select or Create Parameter box opens.

4 Choose an output parameter.

Select the desired output parameter from the drop-down list and click OK.
Select or Create Parameter

=

=

q

Ne .
7

To specify an input parameter in Script view, select the value you want to
replace and select Use Existing Parameters from the right-click menu.
Choose one of the available parameters.

Chapter 7 » Working in the Web Service Call View

Note: If you modify an output parameter name in Script view, it will not be
updated in the parameter list until you switch to Tree view.

Setting Checkpoints

In functional testing, one of the most important tasks is to check the
response from the server to confirm that your test performed the actions
correctly. In Web Services, the response can contain several arguments, each
containing several data items.

VuGen'’s Checkpoint tab is a central point for defining the required checks
for your test.

E Responze-Arguments
B EchoMixResult
intlD
st ame
B strAddress

City
Street
Mumb

Checkpoint

119

Chapter 7 « Working in the Web Service Call View

120

Before running the test, you set expected values for the arguments. You can
load a set of expected values as they were captured either during recording
or during replay. This is useful when you have many argument values—
instead of manually entering values, you automatically load them.

After the test run, you can view the Replay log or the test results and
determine if the results were as expected.

VuGen automatically displays all of the method’s arguments with a check
box. To include a checkpoint in the test, you select its check box. You can
load the recorded or replay values (if they exist) and then select only those
that you want to check.

An optional Stop on Validation Error flag indicates whether or the step fails
in case of a checkpoint failure.

In the script, VuGen adds a checkpoint argument for each row that you
select in the Checkpoint tab.

web_service_call("StepName=Add_2",
"SOAPMethod=Calc.CalcSoapPort.Add",

BEGIN_CHECKPOINTS,
StopOnValidationError=1,
CHECKPOINT, "XPATH=Result[1]", "Value=13",
CHECKPOINT, "XPATH=AddResult", "Expression=Hel*?",
END_CHECKPOINTS,
LAST);

VuGen also provides support for standard XPATH validations using
Ir_xml_find. For verification of the SOAP body (or SOAP headers with the
.NET toolkit), you can use checkpoints. However, when using a toolkit other
than .NET, checkpoints are not supported for SOAP headers—instead use
Ir_ xml_find. For more information, refer to the Online Function Reference
(Help > Function Reference).

Chapter 7 » Working in the Web Service Call View

Expected Value Types

During replay, VuGen creates a set of expected values for the purpose of
validation. These are listed in the upper section, Basic Validation.

In addition to the basic validation, you can define Advanced Validation to
validate a checkpoint on non-leaf nodes or to define expected values in
terms of a regular expression.

=] Response-Arguments
= out_addr
I harme
street

out_addr[1]/name[1] Fiegular E spression

employee/name Exact Phrase

In Basic validation, VuGen looks for exact matches of the value in the
Expected value column.

In Advanced validation, VuGen looks for either exact matches or those
based on regular expressions.

You define the advanced validation values by entering an XPATH query in
the Advanced Validation section. To obtain the initial XPATH expression,
you can copy it from the basic validation (Copy Row XPATH from the right-
click menu) and paste it in the Advanced Validation section.

Note that when you choose a non-leaf node, you need to supply all of the
XML beneath the node.

121

Chapter 7 « Working in the Web Service Call View

122

You can define both basic and advanced validations for the same step.

In the Vuser script, VuGen indicates an exact match by Value= and a regular
expression with Expression=:

BEGIN_CHECKPOINTS,
CHECKPOINT, "XPATH=/AddResult[1]", "Value=50"
CHECKPOINT, "XPATH=AddResult", "Expression=Hel*?",
END_CHECKPOINTS,

To set a basic checkpoint:

1 In Tree view (View > Tree view), select a step in the left pane.

Select the Checkpoint tab.

3 To check for exact matches, specify expected values in the upper Basic

Validation section:

» To manually specify expected values, enter the values in the Expected
Values column.

» To load data from a recording or replay session, click the Record or
Replay buttons in the Load From section. VuGen fills in the data as it was
captured during record or replay.

Select the check boxes in the Validate column for all the results you want to
check. To select all Basic validation checkpoints, click Select All. To clear all
of the selections, click Unselect All.

Click Delete All in the upper section to clear all of the expected values.

6 Select Stop On Validation Error to instruct the Vusers to fail the step when

the replay did not generate the expected values.

Run the script and view the Replay log to determine if the service returned
the expected values. It is recommended that you enable the Extended log in
the run-time settings. If there is no match, the Replay log issues an
appropriate message:

Action.c(14): Failure: checkpoint "/AddResult[1]" expected value="3" actual result="15"
Action.c(14): Error: Web service call "Add" 1/1 checks failed

Open the Test Results (View > Test Results) to see a detailed report of the
validation. For more information about viewing test results, see below.

Chapter 7 « Working in the Web Service Call View

To set an advanced checkpoint:

1 In Tree view (View > Tree view), select a step in the left pane.

Select the Checkpoint tab.

3 Provide expected values in the bottom section, Advanced Validation:

» An XPATH Query expression describing the criteria of the search. You can
copy XPATH expressions from the Basic Validation section in the upper
window. To copy an XPATH expression, select the text in the Schema
column, and choose Copy Row XPath from the right-click menu. In the
Advanced Validation section, double-click in the next available row and
choose Paste from the right-click menu. Modify the expression as
required.

» A Validation Method: Choose Exact Phrase or Regular Expression from
the dropdown list.

» The Expected Value, either in the form of an exact value or a regular
expression.

To delete an advanced checkpoint, select it and click Delete Row in the
Advanced Validation section.

To delete all of the advanced checkpoints, click the Delete All button in the
Advanced Validation section.

Select Stop On Validation Error to instruct the Vusers to stop when the
replay did not generate the expected values.

Run the script and view the Replay log, which contains information on
whether or not the match was found.

Open the Test Results (View > Test Results) to see a detailed report of the
validation. For more information about viewing test results, see “Viewing
Web Services Reports” on page 163.

123

Chapter 7 « Working in the Web Service Call View

124

Parameterizing Checkpoints

You can parameterize the expected values for Checkpoint leaf nodes. This
allows the Vuser to use different expected values for multiple iterations.

To replace the expected value with a parameter:

1 Choose Vuser > Parameter List to open the Parameter List dialog box.

Create a new parameter, selecting the appropriate type: File, Table and so
forth. For more information, see “Working with VuGen Parameters” in
Volume 1I-Using VuGen.

In Script view, locate the CHECKPOINT section and replace the actual values
with the parameter name you created earlier.

BEGIN_CHECKPOINTS,
CHECKPOINT, "XPATH=EchoMixResult[1]", "Value=MyParam"
END_CHECKPOINTS,

Viewing Checkpoint Results

After running a script, you can view the checkpoint results to see their
status—Passed or Failed, and the reason for the failure.

To view the test results for the checkpoints:

1 Choose View > Test Results to open the Test Results window.

2 In the left pane, expand the step whose checkpoint you want to view.

Chapter 7 » Working in the Web Service Call View

3 Click on the Checkpoint step in the left pane. The right pane shows the

details about the test run.

§ Calculator - Test Results

: Fle Yiew Tools Help

BT AR e+]|2

Calculator Summary e p
user_inik Summary

ame:

eckpoint_ =

=101]

[alculatar Ikeration 1 (Row 1)
Ackion Summary

Step Passed

% Service: Add Auto Heade
B Service: Add Header

Object

Details Result Time

B4 Service: Add Header
v 3 Add

Checkpoint_Add

Checkpoint check was successful

Passed 11/8/2007-17:24:45

e <Bp HTTP Traffic

: {w?w_r Checkpaint_add
B2 Service: Add Header
B4 Service: Add Header

Check Points Summary:

b 1)

| -%— Mulkiply
B4 Service: Add Header
ML Service: Add Header

Number of Check
Points

Number of Successful Check

Number of Failed Check

Points Points

l 19:1' Subtrack 1
B Service: Add Header

1 i}

H4E Service: Add Header
v -3 Divide

Falculatar Iteration 2 (Row 2)
Falculatar Iteration 3 (Row 3)
uzer_end Summary

Check Points Details:

Result xPath

Evaluation Style

Expected VYalues Actual Result

" AddResul]
Kl |+

Exact Phrase 15 15

K

For Help, press F1

[Ready Il |

125

Chapter 7 ¢ Working in the Web Service Call View

The lower pane provides detailed information about the checkpoint:

» The number of successful and failed checkpoints (for multiple iterations)
» The expected values and actual results

» The type of evaluation (exact phrase or regular expression)

» The response argument tree

Check Points Summary: B
Number of Number of Successful MNumber of Failed
Check Points Check Points Check Points

1 1 0

Check Points Details:

Sl ey DR [T Actual
Style Values Result
/ [F;"]ESUH Exact Phrase 15.0 150

Response Argument Tree:

<outputs
<Result>15.0</Results
</output>

=

For more information about viewing test results, see “Viewing Test Results”
in Volume I-Using VuGen.

126

8

Setting Advanced Properties for Web
Service Scripts

Advanced users can customize Web Service calls by setting the transport
layer properties and security policies, and by writing user handlers to define
the behavior of the Web Service calls.
This chapter includes:
» About Setting the Transport Layer, Security and User Handlers on page 127
» Configuring the Transport Layer on page 128
» Creating Web Service Security Policies on page 141
» Setting SAML Options on page 147
» Customizing Web Service Script Behavior on page 150

The following information only applies to Web Services and SOA Vuser
scripts.

About Setting the Transport Layer, Security and User
Handlers

You can configure your script with advanced capabilities to customize its
behavior.

Using VuGen, you can specify a transport method, such as JMS, for your
Web Service calls. You can also set security policies for your Web Service,
including standard security with security tokens, SAML security, and JMS.

127

Chapter 8 e Setting Advanced Properties for Web Service Scripts

With user handlers, you can process SOAP requests and responses and assign
them a custom behavior. For more information, see “Customizing Web
Service Script Behavior” on page 150.

Configuring the Transport Layer

128

VuGen allows you to configure the transport layer for your services. The
transport layer lets you indicate how to transport messages to and from the
server—HTTP/HTTPS or JMS (Java Message Service). To learn more about
HTTP/HTTPS, see below. For more information about using JMS transport,
see “Understanding JMS” on page 137.

HTTP/HTTPS

HTTP is used for sending requests from a Web client, usually a browser, to a
Web server. HTTP is also used to return the Web content from the server
back to the client.

HTTPS handles secure communication between a client and server.
Typically, it handles credit card transactions and other sensitive data.

If you are working with HTTP or HTTPS transport, you can use
asynchronous calls and WS-Addressing.

Asynchronous Messages

In synchronous messaging, the replay engine blocks script execution until
the server sends its response. In asynchronous mode, the replay engine
executes the script without waiting for server’s response for previous
messages.

VuGen supports both types of messaging.

Chapter 8 Setting Advanced Properties for Web Service Scripts

In Script view, VuGen indicates asynchronous messaging with the added
parameter, AsyncEvent.

web_service_call("StepName=EchoString_101",
"SOAPMethod=EchoRpcEncoded.EchoSoap.EchoString",
"ResponseParam=response1",
"Service=ExtendedECHO _rpc_encoded",
"AsyncEvent=event_1",
"Snapshot=t1157371707.inf",
BEGIN_ARGUMENTS,
"sec=7",
"strString=mytext",
END_ARGUMENTS,
BEGIN_RESULT,
"EchoStringResult=first_call",
END_RESULT,
LAST);

To enable asynchronous messaging in Tree view, select the Transport Layer
Configuration node in the Step Properties tab.

129

Chapter 8 e Setting Advanced Properties for Web Service Scripts

130

Select the Add Async support option and specify an event.

New Web Service Call

ServiceMPMEMPT ha Srvl PartlMethod! =
| =

*{h Sr¥1Port1 Methodl

-Heae Custom 5048P Header
- Input Argurmets
< Output Arguments

When working with asynchronous messaging, you perform synchronization
within your script using the Web Service Wait for Event step or the
web_service_wait_for_event function in Script view. This function
instructs the Vuser to wait for the response of previous asynchronous service
requests. The listener blocks the execution of the service until the server
responds.

When adding a Web Service Wait for Event step:

» You list all of the asynchronous events for which you want to wait.

» You then specify whether you want the Vuser to wait for all events to receive

a response or just one of them. If you specified ANY, then during replay the
function returns the name of the first event to receive a response. If you
specified ALL, any one of the event names is returned.

Chapter 8 Setting Advanced Properties for Web Service Scripts

» You provide a timeout in milliseconds. If no events receive responses in the
specified timeout, web_service_wait_for_event returns a NULL.

In the following example, the web_service_wait_for_event call waits forty
milliseconds for any of the events: event_1, event_2, or event_3.

web_service_wait_for_event("StepName=First_Wait",
"Quantifier=ANY",
"Timeout=40",
BEGIN_EVENTS,
"event_1",
"event_2",
"event 3",
END_EVENTS,
LAST);

When running a script with asynchronous messaging, the Replay log
provides information about the events and the input and output arguments.

For additional information about the web_service_wait_for_event
function, see the Online Function Reference (Help > Function Reference or
click F1 on the function).

You can also indicate the location you want the service to reply to when it
detects an event, using WS-Addressing. For more information, see the
section below.

WS-Addressing

WS-Addressing is a specification that defines a standard for allowing Web
Services to communicate addressing information. It identifies Web service
endpoints in order to secure end-to-end endpoint identification in
messages. This allows you to transmit messages through networks that have
additional processing nodes such as endpoint managers, firewalls, and
gateways. WS-Addressing supports Web Services messages traveling over
both synchronous or asynchronous transports.

The WS-Addressing specification requires a WSAReplyTo address—the
location to which you want the service to reply.

131

Chapter 8 e Setting Advanced Properties for Web Service Scripts

An optional WSAAction argument allows you to define a SOAP action for
instances where transport layers fails to send a message.

The following example illustrates a typical SOAP message using WS-
Addressing, implemented by VuGen in the background.

<S:Envelope xmins:S="http://www.w3.0rg/2003/05/soap-envelope"
xmins:wsa="http://www.w3.0rg/2004/12/addressing">
<S:Header>
<wsa:MessagelD>
http://example.com/SomeUniqueMessageldString
</wsa:MessagelD>
<wsa:ReplyTo>
<wsa:Address>http://myClient.example/someClientUser</wsa:Address>
</wsa:ReplyTo>
<wsa:Address>http://myserver.example/DemoErrorHandler</wsa:Address>
</wsa:FaultTo>
<wsa: To>http://myserver.example/DemoServiceURI</wsa:To>
<wsa:Action>http://myserver.example/DoAction</wsa:Action>
</S:Header>
<S:Body>
<!-- Body of SOAP request message -->
</S:Body>
</S:Envelope>

132

Chapter 8 e Setting Advanced Properties for Web Service Scripts

To create a SOAP request using WS-Addressing in VuGen, you specify a
WSAReplyTo entry in the Transport Layer Configuration’s node under the
Step Properties tab.

New Web Service Call

Er Echolt |
EchoServerSoapPort |— u

wee Custorn 50&4P Header
v Input Arguments

autodetect

For the WSAReplyTo argument, you can specify an IP address or autotdetect
to instruct the service to detect the host name of the machine. This is useful
when running the same script on several different machines.

133

Chapter 8 e Setting Advanced Properties for Web Service Scripts

In the following example, the server responds to the interface
212.199.95.138 when it detects Event_1.

web_service_call("StepName=Add_101",
"SOAPMethod=Calc.CalcSoap.Add",
"ResponseParam=response",
"AsyncEvent=Event_1",
"WSAReplyTo=212.199.95.138",

"WSDL=http://lab1/WebServices/CalcWS/Calc.asmx?wsdl",
"UseWSDLCopy=1",
"Snapshot=t1153825715.inf",
BEGIN_ARGUMENTS,

"first=1",

"second=2",
END_ARGUMENTS,
BEGIN_RESULT,

"AddResult=Param_AddResult1",
END_RESULT,
LAST);

WS-Addressing calling may be issued in both asynchronous and
synchronous modes. To use WS-Addressing in synchronous mode, you leave
the Async Event box empty in the Transport Layer options. In Script view,
you remove the AsyncEvent argument. This instructs the replay engine to
block script execution until the complete response is received from the
server.

134

Chapter 8 e Setting Advanced Properties for Web Service Scripts

To add support for asynchronous messages and WS-Addressing:

1 For a new Web Service call, select the Transport Layer Configuration node.
For an existing Web Service call, select the step in Tree view, and select the
Step Properties tab. Select the Transport Layer Configuration node.

New Web Service Call

- oot
EchoServerSoapPaort ha |

¢ Custom 504P Header
- Input Arguments

4 Dutput Arguments

L-fE Result

2 To mark the Web Service call as an asynchronous message:

» Select the Add Async support option. This is only enabled for HTTP/S
type transport.

» Provide an event name in the Async Event box. This can be an arbitrary
name.

3 In the WS-A Reply to box, enter an IP address or autodetect to use the
current host. The server will reply to the specified location when the event
occurs.

135

Chapter 8 e Setting Advanced Properties for Web Service Scripts

4 For asynchronous events, choose Insert > New Step and add a Web Service
Wait For Event step after the Web Service call step.

JMS Set General Property

JMS Set Meszage Property
]k\'ﬂ L
]--Q Services
-3 web Checks
%&— Web Service Set Security
g Soap Request
wieb Service Set Security SakL
Web Service Cancel Security SAML
WSDL WS- Validation
fgﬁ- Web Service Wait For Evert
I i

5 Specity a step name, quantifier, and timeout. To add an event name, click
Add. The Web Service will wait for the specified event before responding.

Web Service Wait For Event EHE

T

6 Use the Edit, Move Up, and Move Down buttons to manipulate the events.

7 Click OK.

136

Chapter 8 Setting Advanced Properties for Web Service Scripts

Understanding JMS

JMS implements point-to-point messaging by defining a message queue as
the target for a message. Multiple senders send messages to a message queue,
and the receiver gets the message from the queue. VuGen supports the
sending and receiving JMS messages to a queue from a Web Service call and
by using JMS script functions.

Before you can send messages over JMS transport, you need to configure
several items that describe the transport:

JNDI initial context factory. The class name of the factory class that creates
an initial context which will be used to locate the JMS resources such as JMS
connection factory or JMS queue.

JNDI provider. The URL of the service provider which will be used to locate
the JMS resources such as JMS connection factory or JMS queue.

JMS connection factory. The JNDI name of the JMS connection factory.

In addition, VuGen lets you set a timeout for received messages and the
number of JMS connection per process.

You can configure all of these settings through the JMS run-time settings, as
described in “Setting Web Services JMS Run-Time Settings” on page 161.

JMS Script Functions

VuGen uses its JMS API functions to implement the JMS transport. Each
function begins with a jms prefix. For example,
jms_receive_message_queue Receives a message from a queue.

For additional information about the JMS functions, see the Online Function
Reference (Help > Function Reference or click F1 on the function).

Using JMS as a Transport Layer

The JMS transport for Web services allows users to send SOAP messages
using a JMS transport instead of the common HTTP transport.

137

Chapter 8 e Setting Advanced Properties for Web Service Scripts

138

A Web Service can:

» Import a WSDL and then specify JMS instead of HTTP as a transport layer.

» Record SOAP messages using HTTP, and use the recorded script for sending

the messages through JMS transport.

Send and/or receive general JMS messages to a JMS destination (queue) from
the Web Services script.

The basic steps in transmitting messages over JMS protocol are:

Import a WSDL file. For more information, see “Importing Services” on
page 43.

Setting the queue information, as described below.

3 Configuring the JMS run-time settings before running the script, as

described in “Setting Web Services JMS Run-Time Settings” on page 161.

Chapter 8 e Setting Advanced Properties for Web Service Scripts

For each Web Service call step, you can specify JMS Transport and the
Request and Response queues.

Hew Web Service Call E

{ AddBook |5 bt [

g
o S0AP Header
Input Arguments
B =
: Output Arguments

]

To specify JMS transport information:

In Tree view, select the Step Properties tab and select the Transport Layer
Configuration node.

2 Select the JMS Transport option.

3 Specify the names of the Request Queue and Response Queue. You can use
the same queue for the request and response. The Response Queue box is
disabled for one-way functions in Axis toolKkits.

139

Chapter 8 e Setting Advanced Properties for Web Service Scripts

4 To manually set additional transport information or get and set properties,
add one of the JMS functions. Choose Insert > New Step and expand the
JMS Functions node.

: Functions
'&1 JMS Send Message Queue
U®, IMS Receive Meszage Queue
7= JMS Send Receive Oueus
JMS Set General Property

E JMS Set Meszage Property
&" WML
ZI--Q Services
-5 web Checks

28 v/eh Service Set Security

,ﬁ—' Snap Request

%uf— ‘wieb Service Set Secunty SAML
... D w'eh Serire Cancel S eyl b

The current solution is a replay only solution and does not allow recording
JMS messages sent between the client and server. VuGen only supports
synchronized calls.

For additional information about these functions, see the Online Function
Reference (Help > Function Reference or click F1 on the function).

JMS Message Types

JMS can be sent with several message body formats. Two common formats
are TextMessage and BytesMessage.

Service Test attempts to resolve the desired format based on the message’s
content type. If the content type is text/*, it sends the message in
TextMessage format. Otherwise, it sends it in BytesMessage format.

To override the default behavior, use a jms_set_general_property function
before sending the message. Set the JMS_MESSAGE_TYPE property to
TextMessage, BytesMessage, or Default. For Example:

jms_set_general_property("step1","JMS_MESSAGE_TYPE","BytesMessage");

For more information, see the Online Function Reference.

140

Chapter 8 Setting Advanced Properties for Web Service Scripts

Creating Web Service Security Policies

When building Web Service applications, there is a challenge in building
scalable applications that are secure. You can secure Web Services by having
the message sent over a secure transport, such as Secure Sockets Layer (SSL),
but that is limited to point-to-point communication.

To allow you to send your messages securely, VuGen supports several
security mechanisms: Security Tokens and SAML.

Note: If your WSDL is located in a secure location, you must provide the
security information through the Service Management dialog box. For more
information, see “Specifying WSDL Connection Settings” on page 47.

For more information on tokens, see below.

For more information on SAML, see “Setting SAML Options” on page 147.

Security Tokens and Encryption

The WS-Security specification lets you place security credentials in the
actual SOAP message. You accomplish this by instructing a client to obtain
security credentials from a source that is trusted by both the sender and
receiver. When a SOAP message sender sends a request, those security
credentials, known as security tokens, are placed in the SOAP message.
When the Web server receives the SOAP request, it does not need to send
additional requests to verify the integrity of the sender. The server verifies
that the credentials are authentic before letting the Web Service execute the
application. By not having to go back to the source of the credentials, this
significantly improves the application’s scalability.

To further secure Web Services, it is common to use digital signatures or
encryption for the SOAP messages. Digitally signing a SOAP message,
verifies that the message has not been altered during transmission.
Encrypting a SOAP message helps secure a Web Service by making it difficult
for anyone other than the intended recipient, to read the contents of the
message.

141

Chapter 8 e Setting Advanced Properties for Web Service Scripts

142

The Web Services security mechanism associates security tokens with
messages. This mechanism supports several security token formats to
accommodate a variety of authentication requirements. For example, a
client might need to provide a proof of identity or a security certificate.

To support WS-Security, VuGen allows you to create security tokens for your
script. You can create multiple tokens and set their properties. After creating
a token, you use it to sign or encrypt a SOAP message.

In certain instances, you do not send the token explicitly—you use the
token for the purpose of signatures or encryption, without including the
actual token in the SOAP envelope header. Using the Add option, you can
indicate whether to send the actual token explicitly.

The available tokens are Username and Password, X.509 Certificate,
Kerberos Ticket, Kerberos2 Ticket, Security Context Token, and Derived
Token. The information you need to provide differs for each token.

User Name and Password. The User Name and Password token contains
user identification information for the purpose of authentication: User
Name and Password.

You can also specify Password Options, indicating how to send the password
to the server for authentication: SendPlainText, SendNone, or SendHashed.

X.509 Certificate. This security token is a token based on an X.509
certificate. To obtain a certificate, you can either purchase it from a
certificate authority, such as VeriSign, Inc. or set up your own certificate
service to issue a certificate. Most Windows servers support the public key
infrastructure (PKI) which enable you to create certificates. You can then
have it signed by a certificate authority or use an unsigned certificate.

When you add an X.509 token to the Vuser script, you specify the Logical
Name, Store Name, Key identifier type, Key identifier value, and Store
Location arguments.

Chapter 8 Setting Advanced Properties for Web Service Scripts

> Kerberos Ticket/Kerberos2 Ticket. (for Windows 2003 or XP SP1 and later)
The Kerberos protocol is used to mutually authenticate users and services on
an open and unsecured network. Using shared secret keys, it encrypts and
signs user credentials. A third party, known as a KDC (Kerberos Key
Distribution Center), authenticates the credentials. After authentication, the
user may request a service ticket to access one or more services on the
network. The ticket includes the encrypted, authenticated identity of the
user. The tickets are obtained using the current user’s credentials.

VuGen supports tokens based on both Kerberos and Kerberos2 security
tokens. The primary difference between the Kereberos and Kerberos2 tokens,
is that Kerberos2 uses the Security Support Provider Interface (SSPI), so it
does not require elevated privileges to impersonate the client's identity. In
addition, the Kerberos2 security token can be used to secure SOAP messages
sent to a Web Service running in a Web farm.

When you add a Kerberos token to the Vuser script, you specify a Logical
Name for the token along with the Host and Domain names of the Web
Services machine.

> Security Context Token. These tokens are security tokens that can be used
repeatedly until they expire. SOAP message senders can use security context
tokens to sign and/or encrypt a series of SOAP messages, known as a
conversation, between a SOAP message sender and the target Web Service.
The main benefits of this type of token are:

> As long as the security context token has not expired, the SOAP message
sender can use the same security context token to sign and/or encrypt
the SOAP messages sent to the target Web Service.

» Security context tokens are based on a symmetric key, making them more
efficient at digitally signing or encrypting a SOAP message than an
asymmetric key.

» Security context tokens can be requested from one security token service
by sending a SOAP message to another security token service.

When you add a Security Context token to the Vuser script, you specify
values for the Logical Name, Base Token, Issuer Token, End Point URI, and
Add applies to arguments.

143

Chapter 8 e Setting Advanced Properties for Web Service Scripts

144

» Derived Token. The Derived token is a token based on another existing

token, excluding X.509 for which derivation is not supported. You need to
specify a Logical Name and the Derived From token. If you remove the
original token, then the derived token will no longer be available. Note that
you cannot use a Derived type of token in a recursive manner.

For more information about configuring tokens, refer to the Online Function
Reference (Help > Function Reference).

When you add a Web Services Set Security step to your script, VuGenadds a
web_service_set_security function that contains arguments with the
tokens, message signatures, and encryption that you defined in the security
properties.

web_service_set_security(
SECURITY_TOKEN, "Type=USERNAME", "TokenName=mytoekn1",
"UserName=bob", "Password=123", "PasswordOptions=SendNone", "Add=True",
LAST);

Note that parameterization is not supported for the following arguments:
Token Type, Logical Name, Base Token, Issuer Token or Derive From
arguments.

Working with Message Signatures and Encrypted Data

When you add a security token to a SOAP message, it is added to the SOAP
message in the form of an XML element in the WS-Security SOAP header.

The message, however, is exposed and therefore requires additional security.
This is especially true when the credentials, including the password, are sent
in plain text as it is with role-based security.

The two methods used to secure the data are digital signatures and
encryption.

Digital Signatures. Digital Signatures are used by message recipients to verify
that messages were not altered since their signing. The digital signature is
usually in the form of XML within the SOAP message. The recipient checks
the signature to make sure it is valid. Certain environments, such as WSE,
automatically verify the signature on the SOAP recipient's computer.

Chapter 8 Setting Advanced Properties for Web Service Scripts

» Encryption. Although the XML digital signature does offer a mechanism for
verifying that the message has not been altered since it was signed, it does
not encrypt the SOAP message—the message is still plain text in XML
format. To secure the message in order that it should not be exposed, you
encrypt it, making it difficult for an intruder to view and obtain a user
passwords.

VuGen allows you to supply information about the encryption and message
signatures.

Add Meszsage Signature E3

Chooze a token to uge, with 8 meszage zignature.
Specify a Target token or leave it empty to apply the
signature ta the whole mezzage body.

Use toker: * IMyToken‘I j
Target taker: I j

Cancel | Help |

Note that parameterization is not supported for message signatures and
encryption arguments. For more information on adding message signatures
and encryption to your script, see below.

Setting Web Services Security

While developing a script, you can add security to your Web Service calls
using standard WS-Security.

To add Web Service security:

1 Click at the appropriate location in your script. To apply the security to the
entire script, place the cursor at the beginning of the script.

2 Choose Insert > New Step to open the Add Step dialog box.

145

Chapter 8 e Setting Advanced Properties for Web Service Scripts

3 Select Web Services Set Security and click OK. The Set Security Properties

box opens.

Set Secunty Properties

MuToken

User Mame and ...

User Mame *

jon01

Password *

tiger

Pazzword Options

SendPlainT ext

Add

True

4 Click Add to add a new token. The Add Token dialog box opens.

Add Token

146

Uzer Mame and Password |—

Chapter 8 Setting Advanced Properties for Web Service Scripts

5 Choose a token type. For information about the token types, see “Security
Tokens and Encryption” on page 141.

In the Logical Name box, assign an arbitrary name for the token to be used
by VuGen in identifying the token.

Add any relevant information, such as User Name and Password for the
User Name and Password type token.

To send the token explicitly in the SOAP envelope header, choose True. To
exclude the token from the SOAP envelope header, choose False.

6 To specify a time for which the message packet is considered valid, select
Time To Live and specify the time in seconds.

7 Click OK. VuGen inserts a Web Services Set Security step at the location of
the cursor.

Setting SAML Options

VuGen supports SAML (Security Assertion Markup Language) for Web
Services. SAML is an XML standard for exchanging security-related
information, called assertions, between business partners over the Internet.
The assertions can include attribute statements, authentication, decision
statements, and authorization decision statements.

SAML uses brokered authentication with a security token issued by STS
(Security Token Service). The STS is trusted by the client and the Web Service
to provide interoperable security tokens. SAML tokens are important for
Web Service security because they provide cross-platform interoperability
and a means of exchanging information between clients and services that
do not reside within a single security domain.

You can set the SAML settings for an entire script or part of the script. To set
SAML security, add a Web Services Set Security SAML step. To remove the
security, insert a Web Services Cancel Security SAML step.

147

Chapter 8 e Setting Advanced Properties for Web Service Scripts

148

Note: You cannot apply SAML security and the standard Web Service (a Web
Service Set Security step) security to the same step. To cancel Web Service
security, insert a web_service_cancel_security function.

Policy Files

SAML policy files follow the WSE 3.0 standard and define the attribute
values for the SAML security. By default, VuGen uses the samlPolicy.config
file located in the installation’s dat folder.

When entering SAML security information, you can enter it manually in the
properties dialog box, or you can refer to a policy file containing all of the
security information. You can create your own policy file based on
samlPolicy.config.

You can modify the policy file to include values for the security parameters,
such as username and certificate information. When adding a SAML security
step to your script, if you explicitly specify values for the security arguments,
they override the values in the policy file.

If you make changes to the default policy file, it is recommended that you
copy the new policy file to your script’s folder. Make sure to save custom
policy files with a .config extension to insure that they remain with the
script, even when running it on other machines or calling it from the
LoadRunner Controller.

To learn more about the SAML policy files, refer to the SAML STS example
on the MSDN Web site. If you want to emulate SAML Federation behavior,
copy the samlFederationPolicy.config file from the data folder to your
script’s folder, and specify it as the policy file.

To add SAML security:

Click at the appropriate location in your script. To apply the security to the
entire script, place the cursor at the beginning of the script.

Chapter 8 e Setting Advanced Properties for Web Service Scripts

2 Choose Insert > New Step to open the Add Step dialog box.

%&- web Service Set Secunty
E Soap Request

S ecunty SAML
Wwieh Service Cancel Security SAML
WSDL WS- Validation

B Submit Data
Custom Reguest

web_service_set_security_saml |

3 To add SAML security, choose Web Services Set Security SAML.

Enter the desired information. If you enter values into this dialog box, they
override any values that were set in the policy file. You must provide an
Issuer URL, also known as the STS URL.

Web Service Set Security SAML

samlPolicy.config

ok] Coed |

To use a different policy file, specify it in the Policy File box. Specify a full
path, or a file location relative to the script’s path.

149

Chapter 8 e Setting Advanced Properties for Web Service Scripts

4 To remove the security, choose Web Services Cancel Security SAML. The
security is cancelled from that point onward.

For additional information about these functions, see the Online Function
Reference (Help > Function Reference or click F1 on the function).

Customizing Web Service Script Behavior

VuGen provides several advanced capabilities that allow you to customize
the way your script behaves. These capabilities are:

» User Handlers
» .NET Filters

» Configuration Files

User Handlers

VuGen allows you to call user handlers to process SOAP requests and
responses. Using the handlers, you can retrieve and modify the SOAP
envelope, get or set parameters, and issue log messages. You can also use the
handler mechanism to add security features, message compression, and
filters.

You can implement a user handler in several ways:
» Defining a Handler Function in a Script

» Creating a Custom User Handler as a DLL

Defining a Handler Function in a Script

For basic implementation of a user handler, you define a user handler
function within your Vuser script:

int MyScriptFunction(const char* pArgs, int isRequest)
{

150

Chapter 8 Setting Advanced Properties for Web Service Scripts

The pArgs argument contains the string that is specified in UserHandlerArgs
argument of web_service_call function. For more information, see the
Online Function Reference (Help > Function Reference).

The isRequest argument indicates whether the function is being called
during processing of a Request (1) or Response (0) SOAP envelope.

The content of SOAP envelope is passed to a parameter called
SoapEnvelopeParam for both requests and responses. After the function
processes the SOAP envelope, make sure to store it in the same parameter

To call the handler function, specify the function name as a value for the
UserHandlerFunction argument in the relevant Web Service Call step.

web_service_call(
"UserHandlerFunction=MyScriptFunction",
"UserHandlerArgs=<handler arguments>",

LAST);

VuGen recognizes the following return codes for the handler function.

Return Code Description

LR_HANDLER_SUCCEEDED 0 The Handler succeeded,
but the SOAP envelope
did not change.

LR_HANDLER_FAILED 1 The Handler failed and
further processing should
be stopped.

LR_HANDLER_SUCCEEDED_AND_MODIFIED | 2 The Handler succeeded
and the updated SOAP
envelope is stored in
SoapEnvelopeParam.

151

Chapter 8 e Setting Advanced Properties for Web Service Scripts

In the following example a script handler manipulates the outgoing
envelope:

/[This function processes the SOAP envelope before sending it to the server.
int MyScriptFunction(const char* pArgs, int isRequest)

{
if (isRequest == 1) {

//Get the request that is going to be sent
char* str = Ir_eval_string("{SoapEnvelopeParam}");

/Manipulate the string...

/[Assign the new request content
Ir_save_string(str, "SoapEnvelopeParam");

return LR_HANDLER_SUCCEEDED_AND_MODIFIED;

}
return LR_HANDLER_SUCCEEDED;

}
Action()

{
/lInstruct the web_service_call to use the handler
web_service_call("StepName=EchoAddr_102",
"SOAPMethod=SpecialCases.SpecialCasesSoap.EchoAddr",
"ResponseParam=response",
"userHandlerFunction=MyScriptFunction",
"Service=SpecialCases",
"Snapshot=t1174304648.inf",
BEGIN_ARGUMENTS,
"xml:addr="
"<addr>"
"<name>abcde</name>"
"<street>abcde</street>"
"<city>abcde</city>"
"<state>abcde</state>"
"<zip>abcde</zip>"
"</addr>",
END_ARGUMENTS,
BEGIN_RESULT,
END_RESULT,
LAST);

return O;

152

Chapter 8 Setting Advanced Properties for Web Service Scripts

Overriding the Transport Layer

You can write a user handler function to override the transport layer. In this
case, VuGen will not automatically send the SOAP request over HTTP
transport—instead it follows the transport method indicated in the custom
handler.

After you receive a response, you can set the response envelope with the
command:

Ir_save_string(someResponseEnvelopeStr, "SoapEnvelopeParam");

To apply an alternate transport layer, specify ReplaceTransport as an value
for the UserHandlerOrder argument, and define the transport layer in the
handler function.

web_service_call(

"UserHandlerFunction=<Transport HandlerFunction>",
"UserHandlerArgs=<handler arguments>",
"UserHandlerOrder=ReplaceTransport"

LAST);

Creating a Custom User Handler as a DLL

You can also define a user handler by creating a DLL file through Visual
Studio and the handler API. The API header file, LrWsHandlerAPIl.h, located
in the LoadRunner/include folder, contains many in-line comments and
descriptions.

VuGen provides a sample Visual Studio project that can be used as a
template for creating a handler. The sample retrieves the request and
response envelope and saves it to a parameter. This sample is located in the
LoadRunner/samples/WebServices/SampleWsHandler folder. To use this
sample, open it in Visual Studio and modity it as required. If you do not
need to save the request/response to a parameter, you can remove that
section of the sample.

153

Chapter 8 e Setting Advanced Properties for Web Service Scripts

154

After editing the sample, save it and compile the DLL. When you compile
the project, Visual Studio places the <user_handler_name>.DLL file in the
LoadRunner/bin folder. If you compile the project from another location, or
if you want to copy the DLL from one machine to another, make sure to
place it in the bin folder.

Configuring the User Handler
You can declare the user handler DLL globally or locally.

To use the handler globally, for all requests in the script, add the following
section to the default.cfg file located in the script’s folder.

[UserHandler]

Function=<name>

Args=<arguments>
Order=<BeforeSecurity/AfterSecurity/AfterAttachments>

» Name. The name of the DLL.

» Args. A list of the configuration arguments for the handler. Use the

GetArguments method to retrieve the arguments in your handler.

Order. The order in which Vusers process the user handler in requests:
Before Security, After Security, or After Attachments. You can also use this
argument to override the transport layer, by entering the value Replace
Transport.

Note: Setting the UserHandlerFunction property of a web_service_call
function, overrides the definitions in the .cfg file.

By default, user handlers are processed before the security. For request
messages, Vusers process the attachments handler after the security handler.
For responses, Vusers process the handlers in a reversed order. In typical
cases the order does not matter, so any value is acceptable.

Chapter 8 Setting Advanced Properties for Web Service Scripts

To override the Transport layer, specify Order=Replace Transport and specify
the new transport handler. If you implement the transport handler as a
separate DLL, the HandleRequest function is called, while the
HandleResponse function is ignored.

To use the handler locally, for a specific request, add the following
arguments to the web_service_call function:

UserHandlerName=<name1>

UserHandlerArgs=<args1>

UserHandlerOrder=<BeforeSecurity/AfterSecurity/AfterAttachments/Replace
Transport>

Note: If you copy the script to another machine, it retains the handler
information, since it is defined in script’s folder. A user handler defined
locally for a specific step in the script, overrides the global handler settings
(defined in the script’s default.cfg file).

Note: The user handler DLL should be accessible to all Load Generator
machines running scripts that call it. You may, for example, copy it to the
LoadRunner/bin folder.

Implementing the User Handler

To implement a user handler, you use the entry functions HandleRequest or
HandleResponse. Both functions have a single parameter, context, whose
properties you can set in your handler. Use the Get functions to retrieve
properties, and Set functions to pass information from the replay framework
to the handlers or between the handlers.

> GetEnvelope. Gets the envelope content. For example, example:
const char * pEnvelope = context->GetEnvelope();

> GetEnvelopelength. Gets the envelope length

155

Chapter 8 e Setting Advanced Properties for Web Service Scripts

156

» SetEnvelope. Sets the envelope content and length. For example:

string str("MySoapEnvelope...");
context->SetEnvelope(str.c_str(), str.length());

> SetContentType. Sets a new value for HTTP header content type
> LogMessage. Issues a message to the replay log

> GetArguments. Gets the configuration arguments defined for the current

handler in order to pass it to the DLL

» GetProperty. Gets a custom property value

> SetProperty. Sets a custom property value

For more information, see the comments in the LrWWsHandlerAPl.h file
located in the LoadRunner/include folder.

.NET Filters

If you are familiar with Microsoft's Web Service Enhancements (WSE) 2.0,
you can create a .NET filter and register it for incoming or outgoing SOAP
messages. A .NET filter is a class that is derived from
Microsoft.Web.Services2.SoapInputFilter or
Microsoft.Web.Services2.SoapOutputFilter. By overriding the
ProcessMessage function of this class, you can examine and modify the
envelope’s body and header.

You can apply a .NET filter to your messages using the user handler
mechanism.

To define the filter globally for the entire script, add the following lines to
the script’s default.cfg file below.

[UserHandler]

Function=LrWsSoapFilterLoader

Args=<Filters InputFilterClass="class name" InputFilterLib="lib name"
OutputFilterClass="class name" OutputFilterLib="lib name" />
Order=BeforeSecurity/AfterSecurity/AfterAttachments

Chapter 8 Setting Advanced Properties for Web Service Scripts

The InputFilterClass parameter indicates the name of your class, and
InputFilterLib indicates the name of the assembly in which the class resides.
For example:

web_service_call(

"UserHandlerName=LrWsSoapFilterLoader",
"UserHandlerArgs=<Filters
InputFilterClass=\"MyFilterNamespace.MyFilterClassName\"
InputFilterLib=\"MyAssemblyName\" />",
BEGIN_ARGUMENTS,

END_ARGUMENTS,
)i

Use SoapOutputFilter to examine an outgoing web_service_call request,
and SoapInputFilter to examine the response from the server. Use
InputFilterClass and InputFilterLib if your filter is derived from
SoapInputFilter, or OutputFilterClass and OutputFilterLib if your filter is
derived from SoapOutputFilter.

To define the filter for a specific step, add the following arguments to the
web_service_call function.

UserHandlerName= LrWsSoapFilterLoader

UserHandlerArgs=<Filters InputFilterClass=\"class name\" InputFilterLib=\"lib name\"
OutputFilterClass=\"class name\" OutputFilterLib=\"lib name\" />

UserHandlerOrder=BeforeSecurity/AfterSecurity/AfterAttachments

Configuration Files

The mmdrv.exe.config file, located in the LoadRunner/bin folder, is a
standard .NET configuration file, and contains information such as the WSE
configuration. Use the filter with the Input prefix if your filter is derived
from SOAP input, or the Output prefix if your filter is derived from SOAP
output.

157

Chapter 8 e Setting Advanced Properties for Web Service Scripts

158

If your application has its own configuration file, app.config, you can
implement it in several ways:

Save it as mmdrv.exe.config, overwriting the existing configuration file. This
will apply your configuration information to all scripts on the machine.

Save app.config to the script’s folder. The settings in the app.config file
override the ones in mmdrv.exe.config. In addition, if you save it to the
script’s file, it will always be associated with the script, not requiring you to
copy it over separately to other machines.

In addition, the configuration file contains security information. You can
configure whether or not to allow unsigned test certificates.

By default, VuGen allows unsigned certificates to facilitate testing. To
disallow unsigned certificates, modify the allowTestRoot flag in the
mmdrv.exe.config file to false.

<security>
<x509 storeLocation="currentuser” alllowTestRoot="false”

9

Running SOA/Web Services Scripts

After you create an SOA/ Web Services scripts, you run it to make sure it is
functional. After you run the script, you can view the test results to see
whether the services performed as expected.
This chapter includes:

» About Running Web Services Vusers on page 159

» Setting Web Services JMS Run-Time Settings on page 161

» Using Web Services Functions on page 163

» Viewing Web Services Reports on page 163

The following information only applies to Web Services and SOA Vuser
scripts.

About Running Web Services Vusers

In Tree view, VuGen provides three tabs that allow you to understand and
examine your script before running it:

» Snapshot. Displays the SOAP requests and responses that occurred during
record and replay. For more information, see “Viewing Web Services SOAP
Snapshots” on page 84.

> Step Properties. Provides details of each step in your script, along with its
argument values, attachments, SOAP headers, and transport layer
configuration. For more information, see Chapter 7, “Working in the Web
Service Call View.”

159

Chapter 9 Running SOA/Web Services Scripts

» Checkpoint. VLists the verification points that help your determine whether
or not your service produced correct results. For more information, see
“Setting Checkpoints” on page 119.

Before running the script, you can set run-time settings that help you
emulate real users more accurately. These settings include general run-time
settings (iteration, log, think time, and general information), and Web-
Services related settings (JMS).

For details, see the following sections or “Configuring Run-Time Settings” in
Volume 1-Using VuGen.

160

Chapter 9 * Running SOA/Web Services Scripts

Setting Web Services JMS Run-Time Settings

To use JMS as a transport for Web Service calls, there are several resources
that need to be allocated and configured. Those resources include the JVM,
JNDI initialization parameters, JMS resources, and timeout values.

VuGen lets you configure some of those resources through the run-time
settings.

You can set options in the area of VM (Virtual Machine), the JMS
connections, and message timeouts.

—JiS: Advanced
Java Meszage Service [JMS] Configuration
Propert | Yalue :I
= 1[E) ms
Additional ¥ Parameters
DT initial conkext Factary
JMDI provider URL
I35 connection Factory
M5 security principal
W5 security credentials
tumber of JM3 connections per process 1
- Received message kHmeaout opkions
O Infinite wait

Q Mo wait
9 cracifu tha Fieeok in camnnde -
1 EaD

VM

» Use external VM. Enables you to select a VM (Virtual Machine) other than
the standard one. If you disable this option, Vusers use the JVM provided
with VuGen.

> JVM Home. The location of the external JVM. This should point to the JDK
home directory, defined by JDK_HOME. VuGen supports JDK 1.4 and above.

161

Chapter 9 Running SOA/Web Services Scripts

162

» Classpath. The vendor implementation of JMS classes together with any

other required supporting classes, as determined by the JMS implementation
vendor

JMS

Additional VM Parameters. Extra parameters to send to the JVM such as
Xbootclasspath, and any parameters specified by the JVM documentation

JNDI initial context factory. The fully qualified class name of the factory
class that will create an initial context. Choose a context factory from the
list or provide your own.

JNDI provider. The URL string of the service provider. For example:
Weblogic - t3://myserver:myport
Websphere - iiop://myserver:myport

JMS connection factory. The JNDI name of the JMS connection factory. You
can only specify one connection factory per script.

JMS security principal. Identity of the principal (for example the user) for
the authentication scheme.

JMS security credentials. The principal’s credentials for the authentication
scheme.

Number of JMS connections per process. The number of JMS connections
per mdrv process, or Vuser. All Vusers sharing a connection will receive the
same messages. The default is 1, and the maximum is 50 Vusers. The less
connections you have per process, the better your performance.

Receive message timeout options. The timeout for received messages. The
default is No wait.

> Indefinite wait. Wait as long as required for the message before
continuing.

» No wait. Do not wait for the Receive message, and return control to
the script immediately. If there was no message in the queue, the
operation fails. (default)

> Specify the timeout in seconds. Manually specify a timeout value for
the message. If the timeout expired and no message arrived, the
operation fails.

Chapter 9 * Running SOA/Web Services Scripts

User defined timeout. Specify the amount of seconds to wait for the
message before timing out. The default is five seconds.

» Automatically generate selector. Generates a selector for the response
message with the correlation ID of the request (No by default). Each JMS
message sent to the server has a specific ID. Enable this option if you want
VuGen to automatically create a selector that includes the message ID.

Using Web Services Functions

Web Service functions call services and provide security and
synchronization. The Web Service functions begin with the web_service
prefix. For example, web_service_call performs a SOAP request from a
WSDL and its argument data.

To perform a SOAP request from raw data, use the soap_request function.

In addition, you can enhance your script with JMS functions, jms_<suffix>
or XML functions, Ir_xml_<suffix>. For more information, refer to the
Online Function Reference (Help > Function Reference).

Viewing Web Services Reports

After you run a Web Services script, you can view a summary of the test
results using the Test Results viewer. The viewer also shows the results of the
checkpoints.

This section describes the Summary report’s Web Services information.

The Summary report opens automatically after you replay the script. To
open the report manually, choose View > Test Results.

163

Chapter 9 Running SOA/Web Services Scripts

164

The test results are divided into iterations, actions, and steps. When you
select a node in the left pane, the report shows relevant information about
that node.

#8 Calculator - Test Results

Eile ‘Wew Tools Help

(O T s aal | 2
& Test Calculator Summary

&g wuser_init summary Calculator Results Summary
" [* Calculator Teeration 1 (Row 1)
B v L action summary

..... M0 Service: Add Auto Hez Test: Calculator
""" %4 Service! Add Header Results name: result]
----- HA Service: Add Header . .
=T .
B v S Add Time Zone: Jerusalem Standard Time
----- a0 Service: Add Header Run started: 11/5/2007 - 16:51:23
----- ¥ Service: Add Header Run ended: 11/3/2007 - 16:51:28

= o S Multiply

b B HTTP Traffic
----- Ha0 Service! Add Header lteration # Results
----- H8L Service: Add Header
=T
[+ o -2 Sublract 1 Passed
----- H8 Service: Add Header 2 Passed
----- H8 Service: Add Header
B o - Divide 3 Passed
[o [Caleulator Theration 2 (Row 2)
@ [Calculator Teeration 3 (Row 3)
----- Q wuser_end Summary
Status Times
Passed 12
Failed 0
0
|4 | B
For Help, press F1 Rezady l_”—

The Results report marks a successful step with a green check mark and a
failed step with a red X. An iteration is only marked as successful if all of its
steps and actions have succeeded.

If VuGen cannot interpret the script or if it encounters another type of error,
the report displays a message in the right pane stating the problem.

When you click on one of the service’s operations, the report shows
information about the service, operation, toolkit, testing aspect, and WSDL.

#8 Calculator - Test Results 10l =|
: Fle Wiew Tools Help
BETIRRAR] « 2]
JEI' Test Calculator Summary =
[vuser_init Summary Ste p Name: Add
B [Calculator Tteration 1 (Row 1) N
E---Jg Ackion Surrnary Step Passed
----- % Service: Add Auko Hes
----- e Service: Add Header
_____ B Seryice: Add Header Object Details Result Time
- v 2 1 Add Web service call was Pasced 11/8/2007- | |
""" P Service: Add Header successful asse 16:51:24 =
----- BB Service: Add Header
(SR ﬂ%— TMultiply -
2 3 =
------ <z HTTP Traffic . .
..... 1 service: ddHeader | YVED Service Call Properties
----- %2“1 Service: Add Header
[= Subtract -
..... M0 Service: Add Header Service Name |Calc
""" (¥ Service: AddHeader | |Port Name CalcSoapPort
[o -2 Divide :
- v ¥ Calculator Tteration 2 (Row 2) | |Operation Name Add
B o [Calculator Treration 3 (Row 3) | |WwSDL location |LyLoad_testing/LR_TESTSwsdlMSDL/Calcwscl
----- L vuser_end summary -
Toolkit MNet
Testing Aspect |Positive Testing —
| —— [
For Help, press F1 [ready IC I | i

Chapter 9 ¢ Running SOA/Web Services Scripts

165

Chapter 9 ¢ Running SOA/Web Services Scripts

166

If you expand an operation’s node further, you can view the actual SOAP

trafffic for the Request and Response.

§ Calculator - Test Results

File Wiew Tools Help

FETIRAR) 2]

=10l x|

E Test Calculator Summary
: wuser_init Summary
« [Calculator Treration 1 (Row 1)
EJQ Action Surmary
----- T Service: Add Auto Hee
----- B8 Service: Add Header
----- BB Service: Add Header
- -2 Add

3
----- B8 Service: Add Header
----- BB Service: Add Header
s % TMultiply
L B HTTP Traffic
----- B8 Service: Add Header
----- BB Service: Add Header
[o ﬂ%— Subtract
----- B8 Service: Add Header
----- BB Service: Add Header
[+ o -2 Divide
- ¢ ¥ Calculator Iteration 2 (Row 2)
- o ¥ Calculator Iteration 3 (Row 3)
----- Q vuser_end Summary

Step Name: HTTP Traffic

Step Done

Obiject

Details Result

Time

HTTP Traffic

HTTP Traffic Done

11/8/2007 - 16:51:25

Web Service Call HTTP Snapshot

T N

HTTP Header

T

HTTP/1.1

HTTP Body

Famarn s Haadars

<?xml wersion="1.0" encoding="utf-5"7?> A|
<soap:Envelope xmlns:soap="http://schemas.xmlso

Kl | B

For Help, press F1

<?xml wver
<30LP-ENY

-
SEORT
3

Ready Ll

I | 4

Chapter 9 ¢ Running SOA/Web Services Scripts

Checkpoint Results

The Results window also shows checkpoint results. It provides a summary

with a reason for the failure. It also provides the Expected Value and Actual
Results as well as the argument tree.

To view the checkpoint details, expand the appropriate step under the
operation in the left pane and click the Checkpoint node.

#8 Calculator - Test Results

=10l

¢ File Yew Tools Help
== vl | = = | 2
Calculator Summary -] p ame: ec p oin

user_inik Surnmary
Falculator Treration 1 (Row 1) Step Passed
Action Surnmary

% Service: Add Auko Heade
B8 Service: Add Header

#M Service: Add Header Checkpoint_Add Checkpoint check was successful Passed 11/8/2007-17:24:45
o 8r Add

& HTTP Traffic

v < e Check Points Summary:
B8 Service: Add Header

e Service: Add Header

L

Object Details Result Time

L Led

v <5 Multiply Number of Check Number of Successful Check Number of Failed Check
2 Service: Add Header Points Points

a Service: Add Header fROints
| 3 Subtract 1 1 il
2 Service: Add Header
a Service: Add Header
o 3 Divide

Falculator Iteration 2 (Row 23 C h e ck P 0 | nts D eta | | 5"
[alculator Iteration 3 (Row 3)
user_end Summary

Result XPath Ewvaluation Style Expected Values Actual Result
J AddResult[1] ExactFhrase 15 15

Kl |2 =l

Far Help, press F1 |Ready “ ” ” | 4

For more information about working with the Test Results, see Volume I-
Using VuGen.

167

Chapter 9 Running SOA/Web Services Scripts

168

Part il

Working with Java Language Protocols

Working with Java Language Protocols refers to RMI, CORBA, JMS, EJB, and
Jacada types. For each of the mentioned protocols, refer to the appropriate
section. This part contains information that applies to all types of Java
Vusers.

170

10

Recording Java Language Vuser Scripts

Y Y Y Y Y Y Y Y

VuGen allows you to record applications or applets written in Java, in
protocols such as CORBA, RMI, EJB, JMS or Jacada. You can also use VuGen'’s
navigation tool to add any method to your script.

This chapter includes:

About Recording Java Language Vuser Scripts on page 172

Getting Started with Recording on page 173

Recording Java Events on page 175

Recording a Corba-Java Vuser on page 178

Recording RMI over IIOP on page 179

Recording an RMI Vuser on page 180

Recording a Jacada Vuser on page 180

Recording on Windows XP and Windows 2000 Servers on page 181

The following information applies to Java Record Replay Vuser scripts for
the CORBA-Java, RMI-Java, E]JB, JMS and Jacada protocols.

171

Chapter 10 ¢ Recording Java Language Vuser Scripts

About Recording Java Language Vuser Scripts

172

Using VuGen, you can record a Java application or applet. VuGen creates a
pure Java script enhanced with Vuser API Java-specific functions. After
recording, you can enhance or modify the script with standard Java code
using JDK libraries or custom classes.

After you prepare your script, you run it in standalone mode from VuGen.
Sun’s standard Java compiler, javac.exe, checks the script for errors and
compiles it. Once you verify that the script is functional, you incorporate it
into a LoadRunner scenario or Business Process Monitor profile.

When you create a script through recording and manual enhancements, all
of the guidelines and limitations associated with Java Vuser scripts apply. In
addition, any specific classes used in the script must be present on the
machine executing the Vusers and indicated by the classpath environment
variable. Refer to Chapter 24, “Programming Java Scripts” for important
information about function syntax and system configuration.

Before recording a Corba-Java Vuser, verify that your application or applet
functions properly on the recording machine.

Ensure that you have properly installed a JDK version from Sun on the
machine running VuGen—JRE alone is insufficient. You must complete this
installation before recording a script. Verify that the classpath and path
environment variables are set according to the JDK installation instructions.

Note: When you load an applet or application from VuGen during
recording, it may take several seconds longer than if you were to load it
independent of VuGen.

Chapter 10 ¢ Recording Java Language Vuser Scripts

VuGen provides a tool that enables you to convert a Vuser script created for
Web, into Java. For more information, see “Converting Web Vuser Scripts
into Java” on page 540.

After recording, you can enhance or modify the script with standard Java
code using JDK libraries or custom classes.

After you prepare your script, you run it in standalone mode from VuGen.
Sun’s standard Java compiler, javac.exe, checks the script for errors and
compiles it.

You integrate finished scripts into your environment: a LoadRunner
scenario, Performance Center load test, or Business Process Monitor profile.
For more information, refer to the HP LoadRunner Controller, Performance
Center, or HP Business Availability Center documentation.

Getting Started with Recording
The following procedure outlines how to record Java language Vuser scripts.

1 Ensure that the recording machine is properly configured.

Make sure that your machine is configured properly for Java before you
begin recording. For more information, see Chapter 24, “Programming Java
Scripts” and the Readme file.

2 Create a new Vuser script.
Select The Java Record/Replay Vuser type.
3 Specify a Java protocol.

Select a protocol from the recording options.

173

Chapter 10 ¢ Recording Java Language Vuser Scripts

174

4 Set the recording parameters and options for the script.

You specify the parameters for your applet or application such as working
directory and paths. You can also set JVM, serialization, correlation,
recorder, and debug recording options. For more information, see
Chapter 12, “Setting Java Recording Options.”

Record typical user actions.

Begin recording a script. Perform typical actions within your applet or
application. VuGen records your actions and generates a Vuser script.

Enhance the Vuser script.

Add Vuser API specific functions to enhance the Vuser script. For details, see
Chapter 24, “Programming Java Scripts.” You can use the built-in Java
function Navigator. For more information, see “Viewing the Java Methods”
on page 190.

Parameterize the Vuser script.

Replace recorded constants with parameters. You can parameterize complete
strings or parts of a string. Note that you can define more than one
parameter for functions with multiple arguments. For details, see “Defining
Parameters” in Volume I-Using VuGen.

Configure the run-time setting for the script.

Configure run-time settings for the Vuser script. The run-time settings
define the run-time aspects of the script execution. For the specific run-time
settings for Java, see Chapter 14, “Configuring Java Run-Time Settings.”

Save and run the Vuser script.

Run the script from VuGen and view the execution log for run-time
information. For details, see “Running Vuser Scripts in Standalone Mode” in
Volume 1I-Using VuGen.

For detailed information on the recording procedure, refer to the specific
chapter for your Vuser type.

Chapter 10 ¢ Recording Java Language Vuser Scripts

Recording Java Events

Ensure that you have properly installed a JDK version from Sun on the
machine running the Vusers—JRE alone is insufficient.Verify that the
classpath and path environment variables are set according to the JDK
installation instructions. Before you replay a Vuser script, verify that your
environment is configured properly for the JDK and relevant Java classes.

This is the general procedure for recording a Java session.

To begin recording:

1 Choose File > New and select JAVA Record Replay from the Java category.
The Start Recording dialog box opens.

Start Recording

pctors
o)] e |

2 In the Application Type box, select the appropriate value.
> Java Applet to record a Java applet through Sun’s appletviewer.
> Java Application to record a Java application.
» Netscape or IExplore to record an applet within a browser.

> Executable/Batch to record an applet or application that is launched
from within a batch file or the name of an executable file.

175

Chapter 10 ¢ Recording Java Language Vuser Scripts

» Listener to instruct VuGen to wait for the batch file that initializes the
configuration and runs an application before recording. This mode
requires you to define the system variable _JAVA_OPTIONS as --
Xrunjdkhook using jdk1.2.x and higher. (For JDK 1.1.x, define the
environment variable _classload_hook=)DKhook. For JDK 1.6 set
_JAVA_OPTIONS as -agentlib:jdhook.)

3 In the Vendor Classes box, select Network if the classes are being
downloaded from the network. Otherwise, when classes are loaded locally,
(such as JDK 1.2 and higher), only Local is supported.

4 Specify additional parameters according for the following chart:

Application Type Fields to Set

Java Applet Applet Path, Working Directory

Java Application App. Main Class, Working Directory, App. parameters
IExplore [Explore Path, URL

Netscape Netscape Path, URL

Executable/Batch Executable/Batch, Working Directory

Listener N/A

Note: A Working Directory is necessary only if your application must know
the location of the working directory (for example, reading property files or
writing log files).

5 Click Options to open the Recording Options dialog box. You select a Java
protocol: CORBA, RMI, JMS, or Jacada and set other recoridng properties.
For information about setting recording options, see Chapter 12, “Setting
Java Recording Options.”

176

Chapter 10 ¢ Recording Java Language Vuser Scripts

In the Record into Action box, select the section corresponding to the
method into which you want to record. The Actions class contains three
methods: init, action, and end, corresponding to the vuser_init, Actions, and
vuser_end sections. The following table shows what to include into each
method, and when each method is executed.

T;::::g;‘g::in :ftcig:‘d i) Used to emulate... Executed during...
init vuser_init a login to a server Initialization
action Actions client activity Running

end vuser_end a log off procedure Finish or Stopped

Note: Make sure to import the org.omg.CORBA.ORB function in the
vuser_init section, so that it will not be repeated for each iteration.

Click OK to begin recording. VuGen starts your application, minimizes itself
and opens a progress bar and the floating recording toolbar. The progress
toolbar displays the names of classes as they load. This indicates that the
Java recording support is active.

ercury Loading Progress [_[O] <]

iraker.orb. liopAdapter

Perform typical actions within your application. Use the floating toolbar to
switch methods during recording.

Recording... {17 events).

& » B I | Adion | I Bl B b

177

Chapter 10 ¢ Recording Java Language Vuser Scripts

9 After recording the typical user actions, select the vuser_end method from
the floating toolbar.

Recording... (20 events).

Perform the log off procedure. VuGen records the procedure into the
vuser_end method of the script.

| 10 Click Stop Recording on the Recording toolbar. The VuGen script editor
di
isplays all the recorded statements.

H Click Save and provide a name for the script.

Recording a Corba-Java Vuser

For recording a CORBA Java script, you need to set the following options in
the Recording Options:

» JNDI
» Use DLL hooking to attach VuGen support

178

Chapter 10 ¢ Recording Java Language Vuser Scripts

Using CORBA Application Vendor Classes

Running CORBA applications with JDK1.2 or later, might load the JDK
internal CORBA classes instead of the specific vendor CORBA classes. To
force the virtual machine to use the vendor classes, specify the following
java.exe command-line parameters:

Visigenic 3.4

-Dorg.omg.CORBA.ORBClass=com.visigenic.vbroker.orb.ORB

-Dorg.omg.CORBA.ORBSingletonClass=com.visigenic.vbroker.orb.
ORBSingleton

Visigenic 4.0
-Dorg.omg.CORBA.ORBClass=com.inprise.vbroker.orb.ORB
-Dorg.omg.CORBA.ORBSingletonClass=com.inprise.vbroker.orb. ORBSingleton

OrbixWeb 3.x

-Dorg.omg.CORBA.ORBClass=IE.lona.OrbixWeb.CORBA.ORB

-Dorg.omg.CORBA.ORBSingletonClass=IE.lona.OrbixWWeb.CORBA.
singletonORB

OrbixWeb 2000

-Dorg.omg.CORBA.ORBClass=com.iona.corba.art.artimpl. ORBImpl

-Dorg.omg.CORBA.ORBSingletonClass=com.iona.corba.art.artimpl.
ORBSingleton

Recording RMI over IIOP

The Internet Inter-ORB Protocol (IIOP) technology was developed to allow
implementation of CORBA solutions over the World Wide Web. IIOP lets
browsers and servers exchange complex objects such as arrays, unlike HTTP,
which only supports transmission of text.

RMI over IIOP technology makes it possible for a single client to access
services which were only accessible from either RMI or CORBA clients in the
past. This technology is a hybrid of the JRMP protocol used with RMI and
IIOP used with CORBA. RMI over IIOP allows CORBA clients to access new
technologies such as Enterprise Java Beans (EJB) among other J2EE
standards.

179

Chapter 10 ¢ Recording Java Language Vuser Scripts

VuGen provides full support for recording and replaying Vusers using the
RMI over IIOP protocol. Depending on what you are recording, you can
utilize VuGen’s RMI recorder to create a script that will optimally emulate a
real user:

Pure RMI client. recording a client that uses native JRMP protocol for remote
invocations

RMI over IIOP client. recording a client application that was compiled using
the IIOP protocol instead of JRMP (for compatibility with CORBA servers).

Recording an RMI Vuser

Before recording an RMI Vuser, verify that your application or applet
functions properly on the recording machine.

Before you record, verify that your environment is configured properly.
Make sure that the required classes are in the classpath and that you have a
full installation of JDK. For more information on the required environment
settings, see Chapter 24, “Programming Java Scripts.”

Recording a Jacada Vuser

180

The Jacada Interface Server provides an interface layer for mainframe
applications. This layer separates the user interface from the application
logic in order to insulate the organization from changes in standards and
technologies. Instead of working with green-screen applications, the Jacada
server converts the environment to a user friendly interface.

VuGen records Jacada’s Java thin-client. To record communication with the
Jacada server through the HTML thin-client, use the Web HTTP/HTML type
Vuser. For more information, see Chapter 34, “Creating Web Vuser Scripts.”

Before replay, you must also download the clbase.jar file from the Jacada
server. All classes used by the Java Vuser must be in the classpath—either set
in the machine’s CLASSPATH environment variable or in the Classpath Entries
list in the Classpath node of the Run-Time settings.

Chapter 10 ¢ Recording Java Language Vuser Scripts

During replay, the Jacada server may return screens from the legacy system,
in a different order than they appear in the recorded script. This may cause
an exception in the replay. For information on how to handle these
exceptions, please contact support.

Recording on Windows XP and Windows 2000 Servers

When recording on Windows XP and Windows 2000 servers, the Java plug-
in may be incompatible with VuGen’s recorder. To insure proper
functionality, perform the following procedure after the installation of the
java plug-in, before recording a script.

To configure your machine for a Corba-Java or Rmi-Java recording:

1 Open the Java Plug-in from the Control Panel. Choose Start > Settings >
Control Panel and open the Java Plug-in component. The Basic tab opens.

§& Java(TM) Plug-in Control Panel [_ [O)]
fBasic rnd\ranced erwser erxies rCache rCertiﬁcates rnhuut |

[+l Enable Java Plug-in
Java Console

! Show console
(@ Hide console

{_! Do not start console

[_] Show Exception Dialog Box

Reset

2 (Clear the Enable Java Plug-In check box and click Apply. Then, reselect the
Enable Java Plug-In check box and click Apply.

181

Chapter 10 ¢ Recording Java Language Vuser Scripts

3 Open the Browser tab.

& Java[TM] Plug-in Control Panel [_ O]
(‘Basic | Advanced | Browser | Proxies | Cache | Certificates | About |

Settings
Java(TM) Plug-in will be used as the default Java Runtime in the following browser(s):

[v] Microsoft Internet Explorer

[_] Metscape 6

Reset

4 (Clear the Microsoft Internet Explorer check box and click Apply. Then,
reselect the Microsoft Internet Explorer check box and click Apply.

182

11

Working with Java Vuser Scripts

VuGen allows you to record applications or applets written in Java. You can
run the recorded script or enhance it using standard Java library functions
and Vuser API Java-specific functions.
This chapter includes:

» Understanding Java Vuser Scripts on page 184

» Working with Corba-Java on page 185

» Working with RMI Java on page 187

» Working with Jacada on page 188

» Running a Script as Part of a Package on page 189

» Viewing the Java Methods on page 190

» Manually Inserting Java Methods on page 192

» Configuring Script Generation Settings on page 194

» Java Custom Filters on page 198

The following information applies to Java Record Replay Vuser scripts for
the CORBA-Java, RMI-Java, E]JB, JMS and Jacada protocols.

183

Chapter 11 ¢ Working with Java Vuser Scripts

Understanding Java Vuser Scripts

184

When you record a session, VuGen logs all calls to the server and generates a
script with functions. These functions describe all of your actions within the
application or applet. The script also contains supplementary code required
for proper playback, such as property settings, and naming service
initialization (JNDI).

The recorded script is comprised of three sections:

» Imports
» Code

» Variables

The Imports section is at the beginning of the script. It contains a reference
to all the packages required for compiling the script. The Code section
contains the Actions class and the recorded code within the init, actions,
and end methods. The Variables section, after the end method, contains all
the type declarations for the variables used in the code.

After you finish recording, you can modify the functions in your script, or
add additional Java or LoadRunner functions to enhance the script. Note
that if you intend to run Java Vusers as threads, the Java code you add to
your script must be thread-safe. For details about function syntax, refer to
the Online Function Reference (Help > Function Reference). In addition, you
can modify your script to enable it to run as part of another package. For
more information, see “Compiling and Running a Script as Part of a
Package” on page 399.

Chapter 11 ¢ Working with Java Vuser Scripts

Working with Corba-java

CORBA-specific scripts usually have a well-defined pattern. The first section
contains the ORB initialization and configuration. The next section
indicates the location of the CORBA objects. The following section consists
of the server invocations on the CORBA objects. The final section includes a
shutdown procedure which closes the ORB. Note that pattern is not
mandatory and that each one of these sections may appear multiple times
within a script.

In the following segment, the script initializes an ORB instance and
performs a bind operation to obtain a CORBA object. Note how VuGen
imports all of the necessary classes.

import org.omg.CORBA.*;
import org.omg.CORBA.ORB.%;
import Irapi.lr;

public class Actions {

/I Public function: init
public int init() throws Throwable {

/I Initialize Orb instance...
MApplet mapplet = new MApplet("http://chaos/classes/", null);
orb = org.omg.CORBA.ORB.init(mapplet, null);

/I Bind to server...
grid = grid_dsi.gridHelper.bind("gridDSI", "chaos");
return Ir.PASS;

The org.omg.CORBA.ORB function makes the connection to ORB.
Therefore, it should only be called once. When running multiple iterations,
place this function in the init section.

185

Chapter 11 ¢ Working with Java Vuser Scripts

In the following section, VuGen recorded the actions performed upon a grid
CORBA obiject.

// Public function: action
public int action() throws Throwable {

grid.width();
grid.height();
grid.set(2, 4, 10);
grid.get(2, 4);

return Ir.PASS;

At the end of the session, VuGen recorded the shutdown of the ORB. The
variables used throughout the entire recorded code appear after the end
method and before the Actions class closing curly bracket.

/l Public function: end
public int end() throws Throwable {

if (Ir.get_vuser_id() == -1)
orb.shutdown();

return Ir.PASS;
}

/I Variable section
org.omg.CORBA.ORB orb;
grid_dsi.grid grid;

}

Note that the ORB shutdown statement was customized for this product.
This customization prevents a single Vuser’s shutdown from shutting down
all other Vusers.

186

Chapter 11 ¢ Working with Java Vuser Scripts

Working with RMI Java

This section describes the elements of the Java Vuser script that are specific to
RMI Vusers. RMI does not have constructs (as in CORBA)—instead it uses
Serializable Java objects. The first section performs a Naming Registry
initialization and configuration. The next section is generated when Java
objects (both Remote and Serializable) are located and casted. The following
section consists of the server invocations on the Java objects. In RMI there is
no specific shutdown section (unlike CORBA). Note that objects might
appear multiple times within the script.

The following segment locates a naming registry. This is followed by a
lookup operation to obtain a specific Java object. Once you obtain the
object, you can work with it and perform invocations such as set_sum,
increment, and get_sum. The following segment also shows how VuGen
imports all of the necessary RMI classes.

Import java.rmi.*;
Import java.rmi.registry.*;

// Public function: action
public int action() throws Throwable {

_registry = LocateRegistry.getRegistry("localhost",1099);
counter = (Counter)_registry.lookup("Counter1");
counter.set_sum(0);

counter.increment();

counter.increment();

counter.get_sum();

return Ir.PASS;
}

187

Chapter 11 ¢ Working with Java Vuser Scripts

When recording RMI Java, your script may contain several calls to
Ir.deserialize, which deserializes all of the relevant objects. The
Ir.deserialize calls are generated because the object being passed to the next
invocation could not be correlated to a return value from any of the
previous calls. VuGen therefore records its state and uses lr.deserialize call
to represent these values during replay. The deserialization is done before
VuGen passes the objects as parameters to invocations. For more
information, see “Using the Serialization Mechanism” on page 226.

Working with Jacada

188

The Actions method of a Java Vuser script using Jacada, has two main parts:
properties and body. The properties section gets the server properties.
VuGen then sets the system properties and connects to the Jacada server.

/I Set system properties...
_properties = new Properties(System.getProperties());
_properties.put("com.ms.applet.enable.logging"”, "true");
System.setProperties(_properties);

_jacadavirtualuser = new cst.client. manager.JacadaVirtualUser();

Ir.think_time(4);
_jacadavirtualuser.connectUsingPorts("localhost", 1100, "LOADTEST", ", ", "");

Chapter 11 ¢ Working with Java Vuser Scripts

The body of the script contains the user actions along with the exception
handling blocks for the checkFieldValue and checkTableCell methods.

l...
/*
try {
_jacadavirtualuser.checkFieldValue(23, "S44452BA");
}catch(java.lang.Exception e) {
Ir.log_message(e.getMessage());

}
...

/*

try {

_jacadavirtualuser.checkTableCell(41, 0, 0, ");
}catch(java.lang.Exception e) {
Ir.log_message(e.getMessage());

}
...

The checkField method has two arguments: field ID number and expected
value. The checkTableCell method has four arguments: table ID, row,
column, and expected value. If there is a mismatch between the expected
value and the received value, an exception is generated.

By default, the try-catch wrapper blocks are commented out. To use them in
your script, remove the comment markers.

In addition to the recorded script, you can add any of the Java Vuser API
functions. For a list of these functions and information on how to add them
to your script, see Chapter 24, “Programming Java Scripts.”

Running a Script as Part of a Package
This section is not relevant for Jacada type scripts.

When creating or recording a Java script, you may need to use methods
from classes in which the method or class is protected. When attempting to
compile such a script, you receive compilation errors indicating that the
methods are not accessible.

189

Chapter 11 ¢ Working with Java Vuser Scripts

To use the protected methods, add the Vuser to the package of required
methods. At the beginning of your script, add the following line:

package a.b.c;

where a.b.c represents a directory hierarchy. VuGen creates the a/b/c
directory hierarchy in the user directory and compiles the Actions.java file
there, thus making it part of the package. Note that the package statement
is not recorded—you need to insert it manually.

Viewing the Java Methods

VuGen provides a navigator that lets you view all of the Java classes and
methods in your application’s packages.

Insert Java Function E

@ LRJDBCRET =]
LiPreparedStatement

LiResult5et

LiSQLE sception

& LrStatement

[]---ﬁ sharky.amay

-6 uils
|

| & ArgsParserSting(])
/f. ArgsParzerString[], String)

A getvalue(String)

& getvalue(String, String)

& euizts(Sting)

& mainString[])

HTMLParser —

-6 Muminserter hd
4| »
— Clazs ubilz. ArgsParser
public class ArgsParser ;I
[d:program fileshmercunysloadiunner.classes] ;I

Pazte Locations... | Cloze I

190

Chapter 11 ¢ Working with Java Vuser Scripts

To insert a class or method into your script, you select it and paste it into
your script. For step-by-step instructions, see “Manually Inserting Java
Methods” on page 192.

The lower part of the dialog box displays a description of the Java object, its
prototype, return values and path. In the following example, the description
indicates that the deserialize method is a public static method that receives
two parameters—a string and an integer. It returns a java.lang.object and
throws an exception.

public static synchronized java.lang.Object deserialize (java.lang.String, int) throws
Exception

The following table describes the icons that represent the various Java
objects:

Icon Item Example
[ﬁ Package java.util
f,% Class public class Hashtable extends java.util.Dictionary

implements java.lang.Cloneable, java.io.Serializable

% Interface public interface Enumeration
Class
(gray icon)

& Method public synchronized java.util. Enumeration keys ()

& Static Method | public static synchronized java.util. TimeZone
(yellow icon) | getTimeZone

) ’;:»‘ Constructor public void Hashtable ()
= Method

191

Chapter 11 ¢ Working with Java Vuser Scripts

Manually Inserting Java Methods

192

You use the Java Function navigator to view and add Java functions to your
script. The following section apply to EJB Testing and Java Record/Replay
Vusers. You can customize the function generation settings by modifying
the configuration file. For more information, see “Configuring Script
Generation Settings” on page 194.

To insert Java functions:

Click within your script at the desired point of insertion. When you paste a
function, VuGen places it at the location of the cursor.

Choose Insert > Insert Java Function. The Insert Java Function dialog box
opens.

Insert Java Function E

LRJDBCRET
LiPreparedStatement
LiResultSet
LrSOLE xception
o5 LiStatement
E]---ﬁ sharky.amay
=@ uis

S

a

& ArgsParserSting(])

& ArgzParserString[]. Sting)
A getvalue(String)

A getvalue(String, String)
A evists(Sting)

& mainlStringl])

g HTMLParser —

[+l Murmlnserter
4| »

— Clags utils. ArgsParser
public clazz ArgsParser ;I

[d:program fileshmercunysloadiunner.classes] ;I

Pazte Locations... | Cloze I

Chapter 11 ¢ Working with Java Vuser Scripts

3 Click Locations. The Locations dialog box opens. By default, VuGen lists the
paths defined in the CLASSPATH environment variable.

Locations E
Add Location:
I Browse
&dd
[d: program fileshmercunshloadrunnerclasses
oK | Cancel |

4 Click Browse to add another path or archive to the list. To add a path,
choose Browse > Folder. To add an archive (jar or zip), choose Browse > File.
When you select a folder or a file, VuGen inserts it in the Add Location box.

Click Add to add the item to the list.

(%]

6 Repeat steps 4 and 5 for each path or archive you want to add.

N

Select or clear the check boxes to the left of each item in the list. If an item is
checked, its members will be listed in the Java Class navigator.

8 Click OK to close the Locations dialog box and view the available packages.

9 Click the plus and minus signs to the left of each item in the navigator, to
expand or collapse the trees.

10 Select an object and click Paste. VuGen places the object at the location of
the cursor in the script. To paste all the methods of a class into your script,
select the class and click Paste.

11 Repeat the previous step for all of the desired methods or classes.

193

Chapter 11 ¢ Working with Java Vuser Scripts

12 Modify the parameters of the methods. If the script generation setting
DefaultValues is set to true, you can use the default values inserted by
VuGen. If DefaultValues is set to false, you must add parameters for all
methods you insert into the script.

In addition, modify any return values. For example, if your script generated
the following statement "(String)=LavaVersion.getVersionld();", replace
(String) with a string type variable.

13 Add any necessary statements to your script such as imports or Vuser API
Java functions (described in Chapter 24, “Programming Java Scripts”).

14 Save the script and run it from VuGen.

Configuring Script Generation Settings

You can customize the way the navigator adds methods to your script in the
following areas:

Class Name Path
Automatic Transactions

Default Parameter Values

Y Y VY Y

Class Pasting

To view the configuration setting, open the jquery.ini file in VuGen's dat
directory.

[Display]
FullClassName=False

[Insert]
AutoTransaction=False
DefaultValues=True
CleanClassPaste=False

194

Chapter 11 ¢ Working with Java Vuser Scripts

Class Name Path

The FullClassName option displays the complete package and class name in
the Java Function navigator. This option does not affect the way the
functions are added into the script—it only affects the way the classes are
displayed in the navigator. By default, this option is set to false. If your
packages have many classes and you are unable to view the package and
class names at the same time, you should enable this option.

FullClassName enabled FullClassName disabled

B [ﬁ mercury.inspect El [ﬁ mErcuninspect

{ mercuny. inspect. Buffer { Buffer
rercuny. ingpect. Client Client

mercury. ingpect, CloseConnectionE xoeptio
mercuny. inspect.J avalnspect

ClozeConnectionE woe
Javalnzpect

G g

g g g

195

Chapter 11 ¢ Working with Java Vuser Scripts

Automatic Transactions

The AutoTransaction setting creates a Vuser transaction for all methods.
When you enable this option, VuGen automatically encloses all Java
methods with Ir.start_transaction and Ir.end_transaction functions. This
allows you to individually track the performance of each method. This
option is disabled by default.

\I'iltual Uszer Generator - [.ejb1.usr - General-Java]
EEile Edit Wiew Insert “user Action: Tool: “Window Help _|E|i|

Jgﬁn‘xﬁ’ﬂ’”‘ﬂ||ﬁ= JJ'-’E’@'}:{'@|. n u F“.&Cﬁons
=

puklic int action() {

lr.start transaction("get host name");
(ftring) = lr.get _host name () ;
lr.end transaction("get host name", 1lr.AUTO); N

lr.start transaction("issystemClaszs™);
(boolean) = isSystemClass ((String)"");
lr.end transaction("isSystemClass", 1lr.AUTO);

a1 o

For Help, press F1. |Cal:1 |Lire: 24 W

Default Parameter Values

The DefaultValues setting includes default values for all methods you paste
into your script. This option is enabled by default and inserts a null for all
objects. If you disable this option, you must manually insert parameter
values for all functions in the script. The following table illustrates the
DefaultValues flag enabled and disabled.

DefaultValues enabled DefaultValues disabled
Ir.message((String)™); Irmessage((String));
Ir.think_time((int)0); Ir.think_time((int));
Ir.enable_redirection((boolean)false); Ir.enable_redirection((boolean));
Ir.save_data((byte[])null, (String)"); Ir.save_data((byte[]), (String));

196

Chapter 11 ¢ Working with Java Vuser Scripts

Class Pasting

The CleanClassPaste setting pastes a class so that it will compile cleanly:
with an instance returning from the constructor, with default values as
parameters, and without a need for import statements. Using this option,
you will most likely be able to run your script without any further
modifications. If you disable this option (default), you may need to
manually define parameters and include import statements. Note that this
setting is only effective when you paste an entire class into your script—not
when you paste a single method.

The following segment shows the toString method pasted into the script
with the CleanClassPaste option enabled.

_class.toString();
/I Returns: java.lang.String

The same method with the CleanClassPaste option disabled is pasted as
follows:

(String) = toString();

The next segment shows the NumlInserter Constructor method pasted into
the script with the CleanClassPaste option enabled.

utils.Numinserter _numinserter = new utils.Numinserter
((java.lang.String)"", (java.lang.String)"", (java.lang.String)™...);
/l Returns: void

The same method with the CleanClassPaste option disabled is pasted as:

new utils.Numinserter((String)"", (String)"", (String)"",...);

197

Chapter 11 ¢ Working with Java Vuser Scripts

Java Custom Filters

198

When testing your JAVA application, your goal is to determine how the
server reacts to client requests. When load testing, you want to see how the
server responds to a load of many users. With VuGen’s Java Vuser, you create
a script that emulates a client communicating with your server.

VuGen provides filter files that define hooking properties for commonly
used methods. There are filter definitions for RMI, CORBA, JMS, and
JACADA protocols. You can also define custom filters as described below.

When you record a method, the methods which are called from the
recorded method either directly or indirectly, will not be recorded.

In order to record a method, VuGen must recognize the object upon which
the method is invoked, along with the method’s arguments. VuGen
recognizes an object if it is returned by another recorded method provided
that:

» the construction method of that object is hooked
» it is a primitive or a built-in object

» It supports a serializable interface.

You can create a custom filter to exclude unwanted methods. When
recording a JAVA application, your script may include calls to methods that
do not affect the server, such as calls to a local utility or the GUI interface.
These calls are usually not relevant to your testing goals, and it would be
correct to filter them out.

The built-in filters for RMI, CORBA, JMS, and JACADA protocols were
designed to record only the server related traffic relevant to your testing
goals. In some instances, however, you may need to customize filters to
capture your JAVA application's calls or exclude unnecessary calls. Custom
JAVA protocols, proprietary enhancements and extensions to the default
protocols, and data abstraction all require a custom filter definition.

Chapter 11 ¢ Working with Java Vuser Scripts

Guidelines for Setting Filters

Before creating a test, it is recommended that you become familiar with
your application and determine its primary classes and methods, so that you
will know which ones to include in your recording.

If you are not familiar with your application's classes, VuGen allows you to
record with a stack trace that logs all of the methods that were called by
your application. In order to record with stack trace set the log level to
Detailed. For more information, see “Defining an Effective Filter” on

page 201.

Once you determine the required methods and classes, you include them by
updating the user.hooks file. When preparing a script, you may need to
customize the filter several times in order to achieve the optimal filter. An
optimal filter records the relevant methods without introducing a large
number of irrelevant calls to the script.

Note: If you plan to add manual code to your script such as control flow or
message statements, make sure to do so after you have a functional script
that runs inside VuGen. The reason for this, is that if you rerecord a script
after modifying the filters, it will overwrite all manual changes.

199

Chapter 11 ¢ Working with Java Vuser Scripts

200

Determining which Elements to Include or Exclude

When designing a custom filter, it is recommended that you start by
choosing the appropriate built-in filter as a base filter. You can then
customize the filter using one of the following approaches:

Top Down Approach. An approach in which you include the relevant
package and exclude specific classes that are not part of the client-server
activity. This is recommended if you are familiar with your application and
you can identify a well-defined layer which implements all client-server
activity without involving any GUI elements.

Bottom up Approach. An approach in which you use the default filter and
refine it by adding individual methods or classes. Use this approach if you
cannot identify a well-defined layer or if you are not familiar with your
application. Do not add all AUT packages and then try to remove extra
component one by one.

The following section provides guidelines on when to include or exclude
elements.

» If, as a result of your including a class, your script has many unrelated
method calls, try modifying the filter to exclude the irrelevant methods.

» If you identify a non-client/server call in your script, exclude its method
in the filter.

» During recording, VuGen may detect an unknown input argument, for
example, an argument whose construction it had never encountered
before. If this argument supports serialization, VuGen serializes it by
saving it to a file in a special format. During replay, VuGen reconstructs
the argument by deserializing it.

» VuGen serializes objects passed as arguments that were not included by
the filter. It is recommended that you include this object in the filter in
order to track its construction and activity instead of using it in its
serialized form. You can identify serialized objects in the script by
searching for calls to the Ir.deserialize() method in your script. For more
information see “Using the Serialization Mechanism” on page 226.

» Exclude all activity which involves GUI elements.

» Add classes for utilities that may be required for the script to be
compiled.

Chapter 11 ¢ Working with Java Vuser Scripts

Defining an Effective Filter

When preparing a script, you may need to customize the filter several times
in order to achieve the optimal filter. An optimal filter records the relevant
methods without introducing a large number of irrelevant calls to the script.

To define an effective filter:

Create a new filter based on one of the built-in filters by modifying the
user.hooks file which is located in the product’s classes directory.

Open the Recording Options (Ctrl+F7) and select the Log Options node.
Select the Log Level to Detailed.

Record your application. Click Start Record (Ctrl + R) to begin and Stop
(Ctrl + F5) to end.

View the script's steps. If you can determine the business logic from the
steps and apply correlation, you may not need to create custom filters. If,
however, the script is very long or hard to maintain and correlate, you
should customize the script's filter.

Try to identify the high-level method in the call that captures or wraps one
or more client server calls. You can do this by opening the AUT source files
(if they are available) or by viewing a Stack Trace of the script.

Set the filter to include the relevant methods. For more information, see
“Determining which Elements to Include or Exclude” on page 200.

Record the application again. You should always rerecord the application
after modifying the filter.

Repeat steps 4 through 7 until you get a simple script which can be easily
maintained and correlated.

Correlate the script. In order for your test to run properly, you may need to
insert a correlation to capture a value and use it at a later point in the script.
For more information about the built-in correlation mechanism, see
Chapter 13, “Correlating Java Scripts.”

201

Chapter 11 ¢ Working with Java Vuser Scripts

Note: Do not modify any of the other .hooks file as it might damage the
VuGen recorder.

Adding custom hooks to the default recorder is a complicated task and
should be considered thoroughly as it has both functional and performance
consequences.

Incorrect hooking definitions can lead to incorrect scripts, slow recording,
and application freeze-up.

Hooks Files Structure

The following section describes the structure of a typical hooks file:

[Hook-Name]

class = MyPackage.MyClass
method = MyMethod

signature = ()V

ignore_cl =

ignore_mtd =

ignore_tree =

cb_class = mercury.ProtocolSupport
cb_mtd =

general_cb = true

deep_mode = soft | hard
make_methods_public = true | false
lock = true | false

The hook files are structured as .ini files where each section represents a
hook definition. Regular expressions are supported in some of the entries.
Any entry that uses regular expression must start with a '!'.

Hook-Name

Specifies the name of this section in the hooks file. Hook-Name must be
unique across all hooks files. A good practice is to give the fully qualified
class name and method. For example:

[lavax.jms.Queue.getQueueName]

202

Chapter 11 ¢ Working with Java Vuser Scripts

Class

A fully qualified class name. Regular expression can be used to include
several classes from the same package, a whole package, several packages, or
any class that matches a name. For example:

Class = ljavax\.jms\.*

Method

The simple name of the method to include. Regular expressions can be used
to include more than one method from the class. For example:

Method = getQueueName

Signature

The standard Java internal type signature of the method. To determine the
signature of a method, run the command javap -s class-name where class
name is the fully qualified name of the class. Regular expressions can be
used to include several methods with the same name, but with different
arguments. For example:

Signature = 1.

ignore_cl

A specific class to ignore from the classes that match this hook. This can be a
list of comma separated class names. Each item in the list can contain a
regular expression. If an item in the list contains a regular expression,
prepend a '!' to the class name. For example:

Ignore_cl = lcom.hp.jms.Queue,!com\.hp\..*

ignore_mtd

A specific method to ignore. When the loaded class method matches this
hook definition, this method will not be hooked. The method name must
be the simple method name followed by the signature (as explained above).
To ignore multiple methods, list them in a comma separated list. To use a
regular expression, prepend a '!' to the method name. For example:

Ignore_cl = open, close

203

Chapter 11 ¢ Working with Java Vuser Scripts

204

ignore_tree

A specific tree to ignore. When the name of the class matches the ignore tree
expression, any class that inherits from it will not be hooked, if it matches
this hooks definition. To ignore multiple trees, list them in a comma
separated list. To use a regular expression, prepend a '!' to the class name.
This option is relevant only for hooks that are defined as deep.

cb_class
The callback class that gets the call from the hooked method. It should
always be set to mercury.ProtocolSupport.

cb_mtd

A method in the callback class that gets the call from the hooked method. If
omitted, it uses the default, general_rec_func. For cases where you just need
to lock the subtree of calls, use general_func instead.

general_cb
The general callback method. This value should always be set to true.

Deep_mode

Deep mode refers to classes and interfaces that inherit or implement the
class or interface that the hook is listed for. The inherited classes will be
hooked according to the type of hook: Hard, Soft, or Off.

Hard. Hooks the current class and any class that inherits from it. If regular
expressions exist, they are matched against every class that inherits from the
class in the hook definition. Interface inheritance is treated the same as class
inheritance.

Soft. Hooks the current class and any class that inherits from it, only if the
methods are overridden in the inheriting class. If the hook lists an interface,
then if a class implements this interface those methods will be hooked. If
they exist in classes that directly inherit from that class they will also be
hooked. However, if the hook lists an interface and a class implements a
second interface that inherits from this interface, the class will not be
hooked.

Chapter 11 ¢ Working with Java Vuser Scripts

Note: Regular expressions are not inherited but converted to actual
methods.

Off. Only the class listed in the hook definition and the direct inheriting
class will be hooked. If the hook lists an interface, only classes that directly
implement it will be hooked.

make_methods_public:

Any method that matches the hook definition will be converted to public.
This is useful for custom hooks or for locking a sub tree of calls from a non-
public method.

Note that this applies only during record. During replay, the method will
use the original access flags. In the case of non-public methods, it will throw
java.lang.VerifyError.

Lock

When set to true, it locks the sub tree and prevents the calling of any
method originating from the original method.

When set to false, it will unlock the sub tree, record any method originating
from the current method (if it is hooked), and invoke the callback.

205

Chapter 11 ¢ Working with Java Vuser Scripts

206

12

Setting Java Recording Options

VuGen allows you to control the way in which you record your CORBA,
RMI, JMS or Jacada application. You can use the default recording options,
or customize them for your specific needs.
This chapter includes:

» About Setting Java Recording Options on page 208

» Java Virtual Machine (JVM) Recording Options on page 209

» Setting Classpath Recording Options on page 211

» Recorder Options on page 212

» Serialization Options on page 214

» Correlation Options on page 216

» Log Options on page 217

» CORBA Options on page 219

The following information applies to Java Record Replay and EJB Vuser
scripts.

207

Chapter 12 o Setting Java Recording Options

About Setting Java Recording Options

Using VuGen, you record a CORBA (Common Object Request Broker
Architecture) or RMI (Remote Method Invocation) Java application or
applet. For recording an EJB test, see Chapter 47, “Performing EJB Testing.”

Before recording, VuGen lets you set recording options for the Java Virtual
Machine (JVM) and for the code generation stage. Setting the recording
options is not mandatory; if you do not set them, VuGen uses the default
values.

The options described in this chapter were previously handled by modifying
the mercury.properties file.

You can set recording options in the following areas:

Java Virtual Machine (JVM) Recording Options
Setting Classpath Recording Options

Serialization Options

>

>

» Recorder Options
>

» Correlation Options
>

Log Options

208

Chapter 12 ¢ Setting Java Recording Options

Java Virtual Machine (JVM) Recording Options

The Java VM options indicate additional parameters to use when recording
Java applications.

When you record a Vuser, VuGen automatically sets the Xbootclasspath
variable with default parameters. If you use this dialog box to set the
Xbootclasspath with different parameters, it will use those command
parameters—not the default ones.

You can also instruct VuGen to add the Classpath before the Xbootclasspath
(prepend the string) to create a single Classpath string.

By default, VuGen uses the classic VM during recording. You can also
instruct VuGen to use another virtual machine (Sun’s Java Hotspot VM).

209

Chapter 12 o Setting Java Recording Options

210

To set the Java Virtual Machine recording options:

Click Options in the Start Recording dialog box. Select the Java Environment
Settings:Java VM node in the Recording Options tree.

In the Additional VM Parameters box, list the Java command line
parameters. These parameters may be any Java VM argument. The common
arguments are the debug flag (-verbose) or memory settings (-ms, -mx). For
more information about the Java VM flags, see the JVM documentation. In
additional, you may also pass properties to Java applications in the form of a
-D flag.

VuGen automatically sets the -Xbootclasspath variable (for JDK 1.2 and
higher) with default parameters. When you specify -Xbootclasspath with
parameter values as an additional parameter, VuGen uses this setting instead
of the default one.

To use the same Additional VM parameters in replay, select the Use the
specified Additional VM Parameters during replay check box.

To use the classic VM, select the Use classic Java VM check box (default). To
use another VM (Sun'’s Java HotSpot), clear the check box.

To add the Classpath before the Xbootclasspath (prepend the string), select
the Prepend CLASSPATH to -Xbootclasspath parameter check box.

Click OK to close the dialog box and begin recording.

Chapter 12 ¢ Setting Java Recording Options

Setting Classpath Recording Options

The Java Environment Settings:Classpath node lets you specify the location
of additional classes that were not included in the system’s classpath
environment variable. You may need these classes to run Java applications
and insure proper recording.

You can browse for the required classes on your computer or network and
disable them for a specific test. You can also manipulate the classpath
entries by changing their order.

[w] C:%Pragrarn FilestMetzeapei\CommunicatorProgrami avahClaszes\jiod 0. jar
-“Program Files'M etscapehCommunicatorProgramt avatClasses\scd 0 jar
-“Program Files'MetscapelCommunicatorProgram® avasClaszestidapl0.jar

[:\Program Filess) avaSoftv REST 2Mibaws jar

[:Program Filess) avaSofthvJREST. 2D sunrzasign. jar

[:Program FilesJ avaSofth REST. 24T 8 jar

[:MProgram Filez'\MokiavwibP_ T oolkitywss_wenc,jar

rogram FileghMokiaWwiaP_Toolkittoolkit.jar

To set the Classpath recording options:

1 Click Options in the Start Recording dialog box. Select the Java Environment
Settings:Classpath node in the Recording Options tree.

2 To add a classpath to the list:
Click the Add Classpath button. VuGen adds a new line to the classpath list.

Type in the path and name of the jar, zip or other archive file for your class.
Alternatively, click the Browse button to the right of the field, and locate
the desired file. VuGen adds the new location to the classpath list, with an
enabled status.

3 To permanently remove an entry, select it and click the Delete button.

211

Chapter 12 e Setting Java Recording Options

4 To disable a classpath entry for a specific test, clear the check box to the left
of the entry.

5 To move an entry down in the list, select it and click the Down arrow.

=

6 To move a classpath entry up within the list, select it and click the Up arrow.

7 Click OK to close the dialog box and begin recording.

Recorder Options

The Recorder options indicate which protocol to record and some of the
protocol-specific settings.

. Recorded Prokocal
Extensions List

Use dil hooking to atkach Mercury support

Usi local vendor classes

Load parent class befare class
Use _JAWA_OPTIONS Flag
Insert Functional Check
Comment Lines Containing <undefined >

Remove Lines Conkaining
Bytes as Characters

Unreadable Strings as Bytes

» Recorded protocol. Specifies which protocol to record: RMI, CORBA, JMS, or
Jacada. (RMI by default).

» Extensions list. A comma separated list of all supported extensions. Each
extension has its own hooks file (JNDI by default).

> Use DLL hooking to attach LoadRunner support. Use DLL hooking to
automatically attach LoadRunner support to any JVM.

212

Chapter 12 e Setting Java Recording Options

> Load parent class before class. Change the loading order so that parent
classed are loaded before child classes. This helps identify hooking for trees
with deep inheritance. (enabled by default).

» Use _JAVA_OPTION flag. Forces JVM versions 1.2 and higher to use the
_JAVA_OPTION environment variable which contains the desired JVM
parameters (disabled by default).

> Insert functional check. Inserts verification code that compares the return
value received during replay, to the expected return value generated during
recording. This option only applies to primitive return values (disabled by
default).

» Comment lines containing. Comment out all lines in the script containing
one of the specified strings. To specify multiple strings, separate the entries
with commas. By default, any line with a string containing <undefined>,
will be commented out.

> Remove lines containing. Remove all lines containing one of the specified
strings from the script. To specify multiple strings, separate the entries with
commas. This feature is useful for customizing the script for a specific
testing goal.

> Bytes as characters. Displays readable characters as characters with the
necessary casting—not in byte or hexadecimal form (enabled by default).

> Unreadable strings as bytes. Represents strings containing unreadable
characters as byte arrays. This option applies to strings that are passed as
parameters to invocations (enabled by default).

> Byte array format. The format of byte arrays in a script: Regular, Unfolded
Serialized Objects, or Folded Serialized Objects. Use one of the serialized
object options when recording very long byte arrays. The default is Regular.

» Record LoadRunner callback. Records the LoadRunner stub object as a
callback. If disabled, VuGen records the original class as the callback
(enabled by default).

213

Chapter 12 e Setting Java Recording Options

To set the Java Recorder options:

1 Click Options in the Start Recording dialog box and select the Recording
Properties:Recorder Options node.

2 Set the options as desired. For the options with check boxes, select or clear
the check box adjacent to the option. For options that require strings, type
in the desired value.

3 To set all options to their default values, click Use Defaults.

4 Click OK to close the dialog box and begin recording.

Serialization Options

The Serialization options let you to control how objects are serialized.
Serialization is often relevant to displaying objects in an ASCII
representation in order to parameterize their values.

- Unfald Ser Ohjects
Limit Object Size (bvke)

Ignore Serialized Objects

Serialization Delimiter
- Unfald Arrays
Limit Array Entries

214

Chapter 12 e Setting Java Recording Options

The following options are available:

Unfold Serialized Objects. Expands serialized objects in ASCII
representation. This option allows you to view the ASCII values of the
objects in order to perform parameterization (enabled by default).

> Limit Object Size (bytes). Limits serializable objects to the specified
value. Objects whose size exceeds this value, will not be given ASCII
representation in the script. The default value is 3072.

> Ignore Serialized Objects. Lists the serialized objects not to be
unfolded when encountered in the recorded script. Separate objects
with commas.

> Serialization Delimiter. Indicates the delimiter separating the elements
in the ASCII representation of objects. VuGen will only parameterize
strings contained within these delimiters. The default delimiter is ‘#'.

Unfold Arrays. Expands array elements of serialized objects in ASCII
representation. If you disable this option and an object contains an array,
the object will not be expanded. By default, this option is enabled—all
deserialized objects are totally unfolded.

> Limit Array Entries. Instructs the recorder not to open arrays with more
than the specified number of elements. The default value is 200.
To set the Serialization options:

Click Options in the Start Recording dialog box and select the Recording
Properties:Serialization Options node.

Set the options as desired. To set all options to their default values, click Use
Defaults.

Click OK to close the dialog box and begin recording.

For more information on serialization, see “Using the Serialization
Mechanism” on page 226.

215

Chapter 12 e Setting Java Recording Options

Correlation Options

216

The Correlation options let you enable automatic correlation, and control
its depth.

Correlabe Collection Type
Advanced Correlation

Caorrelation Lewvel

The following options are available:

» Correlate Strings. Correlate all strings that require correlation. If this option
is disabled, VuGen prints them in the script, wrapped in quotes (disabled by
default).

» Correlate String Arrays. Correlate text within string arrays (enabled by
default).

» Correlate Collection Type. Correlates objects from the Collection class for
JDK 1.2 and higher (disabled by default).

» Advanced Correlation. Enables deep correlation in CORBA container
constructs and arrays (enabled by default).

» Correlation Level. Indicates the level of deep correlation, the number of
inner containers to be scanned (15 by default).

Chapter 12 ¢ Setting Java Recording Options

To set the Correlation options:

1 Click Options in the Start Recording dialog box and select the Recording
Properties:Correlation Options node.

2 Enable the desired options, or for options that require values, enter the
desired value. To set all options to their default values, click Use Defaults.

3 Click OK to close the dialog box and begin recording.

For more information about correlation, see Chapter 13, “Correlating Java
Scripts.”

Log Options

The Log recording options let you determine the level of debug information
generated during recording.

Property |vake |
-Lljg Level

O class Dumping

D Synchronize Threads
-0 Digest Calculation

Exclude From Digest

217

Chapter 12 o Setting Java Recording Options

The following options are available:

> Log Level. The level of recording log to generate.
> None. No log file is created
> Brief. Generates a standard recording log and output redirection

> Detailed. Generates a detailed log for methods, arguments, and return
values.

» Debug. Records hooking and recording debug information, along with
all of the above.

» Class Dumping. Dumps all of the loaded classes to the script directory.
(disabled by default).

» Synchronize Threads. For multi-threaded applications, instructs VuGen to
synchronize between the different threads (disabled by default).

» Digest Calculation. Generate a digest of all recorded objects (disabled by
default).

> Exclude from Digest. A list of objects not to be included in the digest
calculation.

To set the Log options:

-

Click Options in the Start Recording dialog box and select the Recording
Properties:Log Options node.

N

Choose a Log level: None, Brief, Detailed, or Debug.

w

Enable the desired options, or for options that require values, enter the
desired value.

&~

To set all options to their default values, click Use Defaults.

(%

Click OK to close the dialog box and begin recording.

218

Chapter 12 ¢ Setting Java Recording Options

CORBA Options

The following options are specific to Corba-Java. These options let you set
the CORBA specific recording properties and several callback options.

dor
se local vendor classes
Record Properties
Show IDL Construcks
[record 011 Only
O Resclve CoRBA Chiects
Record Callback. Connection

The following options are available:

» Vendor. The CORBA vendors Inprise Visibroker, lona OrbixWeb, or Bea
Weblogic.

» Use local vendor classes. Use local vendor classes and add the srv folder to
the BOOT classpath. If you disable this option, VuGen uses network classes
and adds the script’s classes to the classpath (enabled by default).

» Record Properties. Instructs VuGen to record system and custom properties
related to the protocol (enabled by default).

» Show IDL Constructs. Displays the IDL construct that is used when passed as
a parameter to a CORBA invocation (enabled by default).

» Record DLL only. Instructs VuGen to record only on a DLL level (disabled by
default).

> Resolve CORBA Objects. When correlation fails to resolve a CORBA object,
recreate it using its binary data (disabled by default).

219

Chapter 12 o Setting Java Recording Options

> Record CallBack Connection. Instructs VuGen to generate a connect
statement for the connection to the ORB, for each callback object (disabled
by default).

To set the Corba recording options:

1 Click Options in the Start Recording dialog box and select the Recording
Properties:Corba Options node.

2 Enable or disable the options as desired.
3 To set all options to their default values, click Use Defaults.

4 Click OK to close the dialog box and begin recording.

220

13

Correlating Java Scripts

VuGen’s correlation allows you to link Java Vuser functions by using the
results of one statement as input to another.
This chapter includes:

» About Correlating Java Scripts on page 222

» Standard Correlation on page 223

» Advanced Correlation on page 223

» String Correlation on page 225

» Using the Serialization Mechanism on page 226

The following information only applies to Java Vuser scripts.

221

Chapter 13 ¢ Correlating Java Scripts

About Correlating Java Scripts

222

Vuser scripts containing Java code often contain dynamic data. When you
record a Java Vuser script, the dynamic data is recorded into scripts, but
cannot be re-used during replay. If you encounter an error when running
your Vuser, examine the script at the point where the error occurred. In
many cases, correlation will solve the problem by enabling you to use the
results of one statement as input to another.

VuGen’s Java recorder attempts to automatically correlate statements in the
generated script. It only performs correlation on Java objects. When it
encounters a Java primitive (byte, character, boolean, integer, float, double,
short, and long) during recording, the argument values appear in the script
without association to variables. VuGen automatically correlates all objects,
arrays of objects, and arrays of primitives. Note that Java arrays and strings
are also considered objects.

VuGen employs several levels of correlation: Standard, Enhanced, Strings.
You enable or disable correlation from the Recording options. An additional
method of Serialization can be used to handle scripts where none of the
former methods can be applied. For more information, see “Using the
Serialization Mechanism” on page 226.

Chapter 13 e Correlating Java Scripts

Standard Correlation

Standard correlation refers to the automatic correlation performed during
recording for simple objects, excluding object arrays, vectors, and container
constructs.

When the recorded application invokes a method that returns an object,
VuGen'’s correlation mechanism records these objects. When you run the
script, VuGen compares the generated objects to the recorded objects. If the
objects match, the same object is used. The following example shows two
CORBA objects my_bank and my_account. The first object, my_bank, is
invoked; the second object, my_account, is correlated and passed as a
parameter in final line of the segment:

public class Actions {

/I Public function: init
public int init() throws Throwable {

Bank my_bank = bankHelper.bind("bank", "shunra");
Account my_account = accountHelper.bind("account","shunra");

my_bank.remove_account(my_account);

}

Advanced Correlation

Advanced or deep correlation refers to the automatic correlation performed
during recording for complex objects, such as object arrays and CORBA
container constructs.

The deep correlation mechanism handles CORBA constructs (structures,
unions, sequences, arrays, holders, ‘any’s) as containers. This allows it to
reference inner members of containers, additional objects, or different
containers. Whenever an object is invoked or passed as a parameter, it is also
compared against the inner members of the containers.

223

Chapter 13 ¢ Correlating Java Scripts

In the following example, VuGen performs deep correlation by referencing
an element of an array. The remove_account object receives an account
object as a parameter. During recording, the correlation mechanism searches
the returned array my_accounts and determines that its sixth element
should be passed as a parameter.

public class Actions {

/I Public function: init
public int init() throws Throwable {

my_banks[] = bankHelper.bind("banks", "shunra");

my_accounts[] = accountHelper.bind("accounts","shunra");

my_banks[2].remove_account(my_accounts[6]);

}

The following segment further illustrates enhanced correlation. The script
invokes the send_letter object that received an address type argument. The
correlation mechanism retrieves the inner member, address, in the sixth
element of the my_accounts array.

public class Actions {

/I Public function: init
public int init() throws Throwable {

my_banks = bankHelper.bind("bank", "shunra");
my_accounts = accountHelper.bind("account", "shunra");

my_banks[2].send_letter(my_accounts[6].address);

}

224

Chapter 13 e Correlating Java Scripts

String Correlation

String correlation refers to the representation of a recorded value as an
actual string or a variable. When you disable string correlation (the default
setting), the actual recorded value of the string is indicated explicitly within
the script. When you enable string correlation, it creates a variable for each
string, allowing you to use it at a later point in the script.

In the following segment, string correlation is enabled—you store the value
returned from the get_id method in a string type variable for use later on in
the script.

public class Actions {

/I Public function: init
public int init() throws Throwable {

my_bank = bankHelper.bind("bank", "shunra");
my_account1 = accountHelper.bind("account1", "shunra");
my_account2 = accountHelper.bind("account2", "shunra");

string = my_account1.get_id();
string2 = my_account2.get_id();
my_bank.transfer_money(string, string2);

You set the correlation method from the Correlation tab in the recording
options.

» Correlate Strings. Correlate strings in script during recording. If you disable
this option, the actual recorded values are included in the script between
quotation marks. If this option is disabled, all other correlation options are
ignored (disabled by default).

» Correlate String Arrays. Correlate strings within string arrays during
recording. If you disable this option, strings within arrays are not correlated
and the actual values are placed in the script (enabled by default).

» Advanced Correlation. Enables correlation on complex objects such as
arrays and CORBA container constructs and arrays. This type of correlation
is also known as deep correlation (enabled by default).

225

Chapter 13 ¢ Correlating Java Scripts

» Correlation Level. Determines the level of deep correlation—how many
inner containers to search.

» Correlate Collection Type. Correlate objects contained in a Collection class
for JDK 1.2 or higher (disabled by default).

Using the Serialization Mechanism

In RMI, and some cases of CORBA, the client AUT creates a new instance of
a Java object using the java.io.serializable interface. It passes this instance as
a parameter for a server invocation. In the following segment, the instance p
is created and passed as a parameter.

/I AUT code:
java.awt.Point p = new java.awt.Point(3,7);
map.set_point(p);

The automatic correlation mechanism is ineffective here, since the object
did not return from any previous call. In this case, VuGen activates the
serialization mechanism and stores the object being passed as a parameter. It
saves the information to a binary data file under the user directory.
Additional parameters are saved as new binary data files, numbered
sequentially. VuGen generates the following code:

public class Actions {

// Public function: init
public int init() throws Throwable {
java.awt.Point p = (java.awt.Point)Ir.deserialize(0, false);
map.set_point(p);
}

The integer passed to Ir.deserialize represents the number of binary data
files in the Vuser directory.

226

Chapter 13 e Correlating Java Scripts

To parameterize the recorded value, use the public setLocation method (for
information, see the JDK function reference). The following example uses
the setLocation method to set the value of the object, p.

public class Actions {

/I Public function: init
public int init() throws Throwable {
java.awt.Point p = (java.awt.Point)Ir.deserialize(0, false);
p.setLocation(2,9);
map.set_point(p);
}

In certain instances the public method of setLocation is not applicable. As
an alternative, you can use the API of your class that incorporate get or set
accessor methods. If you are working with AUT classes that do not have
get/set methods or use private methods, or if you are unfamiliar with the
classes’ API, you can use VuGen'’s built-in serialization mechanism. This
mechanism allows you to expand objects in their ASCII representation and
manually parameterize the script. You enable this mechanism in the
Recording Options dialog box (see Chapter 12, “Setting Java Recording
Options”).

VuGen generates an Ir.deserialize method that deserializes the data or
displays complex data structures as serial strings. Once the structure is
broken down to its components, it is easier to parameterize. The
Ir.deserialize method receives two arguments, a string and an integer. The
string is the parameter’s value that is to be substituted during replay. The
integer is the index number of binary file to load.

227

Chapter 13 ¢ Correlating Java Scripts

228

If you choose not to expand objects in your script by clearing the Unfold
Serialized Obijects check box, you can control the serialization mechanism
by passing arguments to the Ir.deserialize method. The first argument is an
integer indicating the number of binary files to load. The second integer is a
boolean value:

true Use VuGen'’s serialization mechanism.

false Use the standard Java serialization mechanism.

The following segment shows a generated script in which the serialization
mechanism was enabled.

public class Actions {

/[Public function: init
public int init() throws Throwable {
_string = "java.awt.Point __ CURRENT_OBJECT = {" +
"int x = "#5#" +
"inty = "#8#" +
e
java.awt.Point p = (java.awt.Point)Ir.deserialize(_string,0);
map.set_point(p);
}

The string values are placed between delimiters.The default delimiter is "#".
You can change the delimiter in the Serialization tab of the recording
options. Delimiters are used to speed up the parsing of the string during

replay.
When modifying the string, you must maintain the following rules:

Order of lines may not be changed. The parser reads the values one-by-
one—not the member names.

» Only values between two delimiters may be modified.

» Object references may not be modified. Object references are indicated only

to maintain internal consistency.

Chapter 13 e Correlating Java Scripts

» "_NULL_" can appear as a value, representing the Java null constant. You can
replace it with string type values only.

» Objects may be deserialized anywhere in the script. For example, you can
deserialize all objects in the init method and use the values in the action
method.

» Maintain internal consistency for the objects. For example, if a member of a
vector is element count and you add an element, you must modify the
element count.

In the following segment, a vector contains two elements:

public class Actions {

/I Public function: init
public int init() throws Throwable {
_string = "java.util.Vector CURRENTOBJECT = {" +

"int capacitylncrement = "#0#" +

"int elementCount = #2#" +

"javal/lang/Object elementData[] = {" +
"elementData[0] = #First Element#" +
"elementData[1] = #Second Element#" +
"elementData[2] = _NULL_" +

"elementData[9] = NULL "+

ll}ll +
||}ll;
_vector = (java.util.Vector)lr.deserialize(_string,0);
map.set_vector(_vector);

}

229

Chapter 13 ¢ Correlating Java Scripts

In the following example, one of the vector’s elements was changed—a
"_NULL_" value was changed to "Third element". In coordination with the
addition of the new element, the "elementCount" member was modified to
"3”.

public class Actions {

// Public function: init
public int init() throws Throwable {
_string = "java.util.Vector CURRENTOBJECT = {" +

"int capacitylncrement = "#0#" +

"int elementCount = #3#" +

"java/lang/Object elementData[] = {" +
"elementData[0] = #First Element#" +
"elementData[1] = #Second Element#" +
"elementData[2] = #Third Element#" +

"elementData[9] = _NULL_" +
ll}ll +
ll}ll;
_vector = (java.util.Vector)Ir.deserialize(_string,0);
map.set_vector(_vector);

}

Due to the complexity of the serialization mechanism, which opens up the
objects to ASCII representation, opening large objects while recording may
increase the time required for script generation. To decrease this time, you
can specify flags which will improve the performance of the serialization
mechanism.

When adding Ir.deserialize to your script, it is recommended that you add it
to the init method—not the action method. This will improve performance
since VuGen will only deserialize the strings once. If it appears in the action
method, VuGen will deserialize strings for every iteration.

230

Y Y Y Y Y

Chapter 13 e Correlating Java Scripts

The following list shows the available options which you set in Serialization
tab of the recording options:

Serialization Delimiter
Unfold Serialized Objects
Unfold Arrays

Limit Array Entries
Ignore Serialized Objects

For complete information on the recording options, see Chapter 12,
“Setting Java Recording Options.”

231

Chapter 13 ¢ Correlating Java Scripts

232

14

Configuring Java Run-Time Settings

After you record a Java Vuser script, you configure the run-time settings for
the Java Virtual Machine.
This chapter includes:

» About Configuring Java Run-Time Settings on page 233

» Specifying the JVM Run-Time Settings on page 234

» Setting the Run-Time Classpath Options on page 235

The following information applies to Java and EJB Testing type Vusers.

About Configuring Java Run-Time Settings

After developing a Java Vuser script, you set the run-time settings for the
Java VM (Virtual Machine). These settings let you set additional paths and
parameters, and determine the run mode.

You set the Java related run-time settings through the Java VM options in
the Run-Time Settings dialog box.

i To display the Run-Time Settings dialog box, click the Run-Time Settings
= button on the VuGen toolbar.

This chapter only discusses the Run-Time settings for Java type Vusers. For
information about run-time settings that apply to all Vusers, see
“Configuring Run-Time Settings” in Volume I-Using VuGen.

233

Chapter 14 ¢ Configuring Java Run-Time Settings

Specifying the JVM Run-Time Settings

In the Java VM section, you provide information about the Java virtual
machine settings.

Wirtual Machine settings
ta lacate JDK

@® Use internal lagic
-0 Use specified J0K
JCk.
Additional ¥ Parameters
[using -xboatclasspath parameters
- Class Loading Settings
[Load each vuser using dedicabed class loader

The following settings are available:

» Virtual Machine settings

> Use internal logic to locate JDK. Search the PATH, registry, and Windows
folder for the JDK to use during replay.

» Use specified JDK. Use the JDK specified below during replay.

> Additional VM Parameters. Enter any optional parameters used by the
virtual machine.

» Using Xbootclasspath parameters. Replays the script with the
Xbootclasspath /p option.

» Class Loading Settings

> Load each Vuser using dedicated class loader. Load each Vuser using a
dedicated class loader. This will allow you to use a unique namespace
for each Vuser and manage their resources separately.

234

Chapter 14 ¢ Configuring Java Run-Time Settings

To set the Java VM run-time settings:

1 Choose Vuser > Run-Time Settings and select the Java Environment
Settings:Java VM node in the Run-Time Settings tree.

2 Select the desired Virtual Machine settings indicating the JDK to use for the
replay.

3 To replay with the -Xbootclasspath/p option, select the Using
Xbootclasspath parameters option.

4 Click OK.

Setting the Run-Time Classpath Options

The ClassPath section lets you specify the location of additional classes that
were not included in the system’s classpath environment variable. You may
need these classes to run Java applications and insure proper replay.

You can browse for the required classes on your computer or network and
disable them for a specific test. You can also manipulate the classpath
entries by changing their order.

—dawa Erwironment Settings; Clazzpath

Classpath Entries: _f'l + %“?‘sl)(I

[:\Program Filesh avaSoft JRENT . 3hibhsunrzasign. jar

[:“Program Filesh avaSoft JRENT . 34kt jar

[:\Program Filesh avaS ot JRENT . 3hibjams jar

[:\Program Filesh avaS ot JRENT . 34T B jar

[:\Program FileshH okiaWWwWaP_ T oolkituwss_wenc. jar

WD \Frogram Files\Maokia

fP_Toolkitparzer jar

235

Chapter 14 ¢ Configuring Java Run-Time Settings

236

+

-

To set the Classpath run-time settings:

Open the Run-Time settings (F4). Select the Java Environment
Settings:Classpath node in the Run-Time settings tree.

Add a classpath to the list:

Click the Add Classpath button. VuGen adds a new line to the classpath list.

Type in the path and name of the jar, zip or other archive file for your class.
Alternatively, click the Browse button to the right of the field, and locate
the desired file. VuGen adds the new location to the classpath list, with an
enabled status.

To permanently remove a classpath entry, select it and click the Delete
button.

To disable a classpath entry for a specific test, clear the check box to the left
of the entry.

To move a classpath entry down in the list, select it and click the Down
arrow.

To move a classpath entry up within the list, select it and click the Up arrow.

7 Click OK to close the dialog box.

Part IV

Application Deployment Solution
Protocols

238

15

Creating Citrix Vuser Scripts

VuGen allows you to record the actions of a Citrix client communicating
with its server using the Citrix ICA protocol. The resulting script is called a
Citrix Vuser script.

The optional Citrix Agent helps you create an intuitive script that provides
built-in synchronization. For more information, see Chapter 16, “Using the
LoadRunner Citrix Agent.” Refer to “Tips for Replaying and Troubleshooting
Citrix Vuser Scripts” on page 271 for valuable tips on creating scripts.
This chapter includes:

» About Creating Citrix Vuser Scripts on page 240

> Getting Started with Citrix Vuser Scripts on page 241

» Setting Up the Client and Server on page 242

» Recording Tips on page 245

» Understanding Citrix Recording Options on page 247

» Setting the Citrix Recording Options on page 255

» Setting the Citrix Display Settings on page 256

» Setting the Citrix Run-Time Settings on page 257

» Viewing and Modifying Citrix Vuser Scripts on page 260

» Synchronizing Replay on page 261

» Understanding ICA Files on page 269

» Using Citrix Functions on page 270

» Tips for Replaying and Troubleshooting Citrix Vuser Scripts on page 271

239

Chapter 15 ¢ Creating Citrix Vuser Scripts

The following information only applies to the Citrix ICA protocol.

About Creating Citrix Vuser Scripts

240

Citrix Vuser scripts emulate the Citrix ICA protocol communication
between a Citrix client and server. VuGen records all activity during the
communication and creates a Vuser script.

When you perform actions on the remote server, VuGen generates functions
that describe these actions. Each function begins with a ctrx prefix. These
functions emulate the analog movements of the mouse and keyboard. In
addition, the ctrx functions allow you to synchronize the replay of the
actions, by waiting for specific windows to open.

VuGen also allows you to record a Citrix NFUSE session. With Citrix NFuse,
the client is installed, but your interface is a browser instead of a client
interface. To record NFUSE sessions, you must perform a multi-protocol
recording for Citrix and Web Vusers. (See “Recording with VuGen” in
Volume I-Using VuGen.) In multi-protocol mode, VuGen generates functions
from both Citrix and Web protocols during recording.

In the following example, ctrx_mouse_click simulates a mouse click on the
left button.

ctrx_mouse_click(44, 318, LEFT_BUTTON, 0, CTRX_LAST);

For more information about the syntax and parameters, refer to the Online
Function Reference (Help > Function Reference).

You can view and edit the recorded script from VuGen’s main window. The
API calls that were recorded during the session are displayed in VuGen,
allowing you to track your actions.

Chapter 15 ¢ Creating Citrix Vuser Scripts

Getting Started with Citrix Vuser Scripts

This section provides an overview of the process of developing Citrix ICA
Vuser scripts using VuGen. In addition, see “Tips for Replaying and
Troubleshooting Citrix Vuser Scripts” on page 271.

To develop a Citrix ICA script:
1 Make sure that your client and server are configured properly.

For general information about these settings, see “Setting Up the Client and
Server” on page 242.

2 Record the actions using VuGen.

Invoke VuGen and create a new Vuser script. Insert bitmap and text
synchronization during recording as described in “Synchronizing Replay”
on page 261.

For general information about recording, see “Recording with VuGen” in
Volume 1-Using VuGen.

3 Enhance the Vuser script.

Enhance the Vuser script by inserting transactions, rendezvous points, and
control-flow structures into the script.

For details, see “Enhancing Vuser Scripts” in Volume I-Using VuGen.
4 Define parameters (optional).

Define parameters for the fixed-values recorded into your Vuser script. By
substituting fixed-values with parameters, you can repeat the same business
process many times using different values.

For details, see “Creating Parameters” in Volume I-Using VuGen.
5 Configure the Citrix display options.

Configure the display options for replaying Citrix Vusers. These options let
you show the Citrix client during replay and open a snapshot when an error
occurs. For details, see “Setting the Citrix Display Settings” on page 256.

6 Configure the Run-Time settings.

The Run-Time settings control Vuser behavior during script execution.
These settings include pacing, logging, think time, and connection
information.

241

Chapter 15 ¢ Creating Citrix Vuser Scripts

For details about the Citrix specific Run-Time settings, see “Setting the Citrix
Run-Time Settings” on page 257. For information about general Run-Time
settings, see “Configuring Run-Time Settings” in Volume I-Using VuGen.

Save and run the Vuser script from VuGen.

Save and run the Vuser script from VuGen to verify that it runs correctly.
While you record, VuGen creates a series of configuration, data, and source
code files. These files contain Vuser run-time and setup information. VuGen
saves these files together with the script.

For details about running the Vuser script as a standalone test, see “Tips for
Replaying and Troubleshooting Citrix Vuser Scripts” on page 271 and
“Running Vuser Scripts in Standalone Mode” in Volume I-Using VuGen.

After you create a script, you integrate it into your environment: a
LoadRunner scenario, Performance Center load test, or Business Process
Monitor profile. For more information, refer to the HP LoadRunner Controller,
Performance Center, or HP Business Availability Center documentation.

Setting Up the Client and Server

242

Before creating a script, make sure you have a supported Citrix client
installed on your machine, and that your server is properly configured. This
section describes:

» Client Versions

» Server Configuration

Client Versions

In order to run your script, you must install a Citrix client on each Load
Generator machine. If you do not have a client installed, you can download
one from the Citrix Website www.citrix.com under the download section.

VuGen supports all Citrix clients with the exception of versions 8.00,
version 6.30.1060 and earlier, and Citrix Web clients.

Chapter 15 ¢ Creating Citrix Vuser Scripts

Server Configuration

To record in VuGen, you need to configure the Citrix server in the following
areas:

MetaFrame. Make sure the MetaFrame server (1.8, XP, 3, or 4) is installed. To
check the version of the server, select Citrix Connection Configuration on
the server’s console toolbar and choose Help > About.

Configure Server to Close Sessions. Configure the Citrix server to
completely close a session. After a Citrix client closes the connection, the
server is configured, by default, to save the session for the next time that
client opens a new connection. Consequently, a new connection by the
same client will face the same workspace from which it disconnected
previously. It is preferable to allow each new test run to use a clean
workspace.

The ensure a clean workspace for each test, you must configure the Citrix
server not to save the previous session. Instead, it should reset the
connection by disconnecting from the client each time the client times-out
or breaks the connection.

» MetaFrame 1.8 or XP Servers

» MetaFrame 3 and 4 Servers

MetaFrame 1.8 or XP Servers

To reset the connection for every session on a MetaFrame Server:

Open the Citrix Connection Configuration dialog box. Choose Start >
Programs > Citrix > MetaFrame > Citrix Connection Configuration.

Double-click on the ica-tcp connection name. The Edit Connection dialog
box opens.

243

Chapter 15 ¢ Creating Citrix Vuser Scripts

244

3 Click the Advanced button. The Advanced Connection Settings dialog box
opens.

Advanced Connection Settings E

—Logon —AutoLogon

€ Disabled & UselNameI

— Timeout setings [in mingkes] ———————————————— D omain I Cancel |
Connection I ' Na Timeout Fassword I Help |

™ [irherit user config) Carfirrn Fassword I
Prampt far Passward [

Disconnecti0n|1 I™" Mo Timenut ¥ [inherit client config)
[[inkerit user carfig)

r Initial Program
I ™ Mo Timeout Corimatid
Idle |5 e
[(inkerit user corfig) - I
[irectony

— Security

J ¥ [inkerit client/user config)

Required encreption | B asi) .
4 i3 I 810 ™ Only run Published &pplications

[Usze default NT Authentication

— User Profile Overides

™ Disable Wallpaper

On a broken or timed-out connection, Ireset. vl the session, | [inherit user config)

Beconnest sessions dizconnected Ifrc.m atw client, ﬂ W [inkerit user config)

Shadouing Iis enabled: input O, notify 0N, j ¥ [inherit user config)

4 In the bottom section of the dialog box, clear the inherit user config check
box adjacent to the On a broken or timed-out connection list box. Change
the entry for this list box to reset.

5 Click OK.

MetaFrame 3 and 4 Servers

To reset the connection for every session on a MetaFrame 3 server:

1 Open the Citrix Connection Configuration dialog box. Choose Programs >
Citrix > Administration Tools > Citrix Connection Configuration Tool.

2 Select the ica-tcp connection name and choose Connection > Edit.
Alternatively, double-click on the connection. The Edit Connection dialog
box opens.

Chapter 15 ¢ Creating Citrix Vuser Scripts

3 Click the Advanced button. The Advanced Connection Settings dialog box
opens.

4 In the bottom section of the dialog box, clear the inherit user config check
box adjacent to the On a broken or timed-out connection list box. Change
the entry for this list box to reset.

5 Click OK.

Recording Tips

When recording a script, be sure to follow these guidelines in order to create
an effective script.

Single vs. Multi-Protocol Scripts

When creating a new script, you may create a single protocol or multi-
protocol script. If you plan to record a simple Citrix ICA session, use a single
protocol script. When recording an NFUSE Web Access session, however,
you must create a multi-protocol script for Citrix ICA and
Web(HTML/HTTP), to enable the recording of both protocols. For more
information, see “Recording with VuGen” in Volume I-Using VuGen.

Record into Appropriate Sections

Record the connection process into the vuser_init section, and the closing
process into the vuser_end section. This will prevent you from performing
iterations on the connecting and disconnecting. For more information
about recording into sections, see “Recording with VuGen” in Volume I-Using
VuGen.

Run a Clean Session

When recording a session, make sure to perform the complete business
process, starting with the connection and ending with the cleanup. End
your session at a point from where you could start the entire process from
the beginning. Do not leave any client or application windows open.

245

Chapter 15 ¢ Creating Citrix Vuser Scripts

246

Explicit Clicks

When opening expanded menu options, click explicitly on each option—do
not depend on the expanding menu. For example, when choosing Start >
Programs > Microsoft Word, be sure to click on the word Programs.

Do not Resize Windows

Although VuGen supports the resizing of windows during recording the
session, it is recommended that you do not move or resize them while
recording. To change the size or position of a window, double-click on the
relevant Sync on Window step in the script’s Tree view and modify the
window’s coordinates.

Make Sure Resolution Settings are Consistent

To insure successful bitmap synchronization, make sure that the resolution
settings match. On the recording machine, check the settings of the ICA
client, the Recording Options, and the Run Time settings. On the Injector
machines, check the settings of the ICA client, and make sure that they are
consistent between all injector and recording machines. If there is an
inconsistency between the resolutions, the server traffic increases in order to
make the necessary adjustments.

Add Manual Synchronization Points

While waiting for an event during recording, such as the opening of an
application, it is recommended that you add manual synchronization
points, such as Sync on Bitmap or Sync on Text. For details, see
“Synchronizing Replay” on page 261.

Disable Client Updates

Disable client updates when prompted by the Citrix client. This will prevent
forward compatibility issues between VuGen and newer Citrix clients that
were not yet tested.

Chapter 15 ¢ Creating Citrix Vuser Scripts

Windows Style

For Sync on Bitmap steps, record windows in the "classic" windows style—
not the XP style.

To change the Windows style to "classic":

Click in the desktop area.

Choose Properties from the right-click menu.

Select the Theme tab.

Choose Windows Classic from the Theme drop down list.

Click OK.

i b W N =

Understanding Citrix Recording Options
You can set the Citrix Recording options in the following areas.

» Configuration Recording Options
» Recorder Recording Options
» Code Generation Recording Options

» Login Recording Options (only for single protocol Citrix ICA scripts)

247

Chapter 15 ¢ Creating Citrix Vuser Scripts

Configuration Recording Options

In the Citrix:Configuration Recording options, you set the window
properties and encryption settings for the Citrix client during the recording
session.

Property |vae |
-Er 2 efault Ad

‘window Size 800 x 600

> Encryption Level. The level of encryption for the ICA connection: Basic, 128
bit for login only, 40 bit, 56 bit, 128 bit, or Use Server Default to use the
machine’s default.

» Window Size. The size of the client window: 640 x 480, 800 x 600 (default),
1024 x 768, 1280 x 1024, or 1600 x 1200.

248

Chapter 15 ¢ Creating Citrix Vuser Scripts

Recorder Recording Options

The Citrix:Recorder Recording options let you specify how to generate
window names where the window titles change during recording. You can
also specify whether to save snapshots of the screens together with the script
files and whether to generate text synchronization functions.

@ Use new window name as is

O Use common prefix For new window narmes
O Use common suffix For new window names
Save snapshots

Window Name

In some applications, the active window name changes while you are
recording. If you try to replay the script as is, the Vuser uses the original
window name and the replay may fail. Using the recording options, you can
specify a naming convention for the windows in which VuGen uses a
common prefix or common suffix to identify the window.

For example, if the original window’s name is "untitled - Notepad" where the
name changes during application's run to "my_test - Notepad", you can
instruct VuGen to use the common suffix only, "Notepad".

The following options are available for generating window names during
recording.

Use new window name as is. Set the window name as it appears in the
window title. (default)

249

Chapter 15 ¢ Creating Citrix Vuser Scripts

250

» Use common prefix for new window names. Use the common string from

the beginning of the window titles, as a window name.

Use common suffix for new window names. Use the common string from
the end of the window titles, as a name.

Note: Alternatively, you can modify the window names in the actual script
after recording. In the Script view, locate the window name, and replace the
beginning or end of the window name with the "*" wildcard notation.
ctrx_sync_on_window ("My Application*", ACTIVATE, ...CTRX_LAST);

Snapshots

The Save snapshots option instructs VuGen to save a snapshot of the Citrix
client window for each script step, when relevant. It is recommended that
you enable this option to provide you with a better understanding of the
recorded actions. Saving snapshots, however, uses more disk space and slows
down the recording session.

Chapter 15 ¢ Creating Citrix Vuser Scripts

Code Generation Recording Options

The Recording:Code Generation Recording options let you configure the
way VuGen captures information during recording.

» Use Citrix Agent input in Code Generation. Use the Citrix Agent input to
generate a more descriptive script with additional synchronization
functions (enabled by default).

» Add text synchronization calls. Adds text synchronization Sync on Text
steps before each mouse click (disabled by default).

Text synchronization steps that you add manually during the recording are
not affected by the above settings—they appear in the script even if you
disable the above options. For more information about adding Sync on Text
steps during recording, see “Manual Synchronization” on page 264.

The above options are also available for regenerating a script. For
example, if you originally recorded a script with Add text synchronization
calls disabled, you can regenerate after to recording to include text
synchronization. For more information about regenerating your script, see
“Recording with VuGen” in Volume I-Using VuGen.

251

Chapter 15 ¢ Creating Citrix Vuser Scripts

252

Note: If you use the VuGen 8.1 or higher to regenerate a script from an
earlier version of VuGen, the script will no longer be compatible with earlier
versions—it behaves as if you created a new script.

Login Recording Options

In the Citrix:Login Recording options, you set the connection and login
information for the recording session. (When working with NFUSE, the
Login options are not available since the login is done through the Web

pages.)

You can provide direct login information or instruct VuGen to use an
existing configuration stored in an ica file.

You must provide the name of the server—otherwise the connection VuGen
generates a ctrx_connect_server function:

ctrx_connect_server("steel", "test", "test", "testlab", CTRX_LAST);

Chapter 15 ¢ Creating Citrix Vuser Scripts

If you do not provide login information, you are prompted for the
information when the client locates the specified server.

You provide the following user and server information for the Citrix session.
Logon Information. This section contains the login information:

» the User Name for the Citrix user.

» the Password for the Citrix user.

» the Domain of the Citrix user.

» the Client Name, by which the MetaFrame server identifies the client
(optional).

253

Chapter 15 ¢ Creating Citrix Vuser Scripts

254

Connection. This section contains the server information:

> Network Protocol. the preferred TCP/IP or TCP/IP+HTTP. Most Citrix
Servers support TCP/IP. Certain servers, however, are configured by the
administrators to allow only TCP/IP with specific HTTP headers. If you
encounter a communication problem, select the TCP/IP+HTTP option.

» Server. The Citrix server name. To add a new server to the list, click Add,
and enter the server name (and its port for TCP/IP + HTTP). Note that
multiple servers apply only when you specify a Published Application. If
you are connecting to the desktop without a specific application, then
list only one server.

» Published Application. The name of the Published Application as it is
recognized on Citrix server. The drop-down menu contains a list of the
available applications. If you do not specify a published application,
VuGen uses the server’s desktop. If you added or renamed a published
application, close the Recording options and reopen them to view the
new list.

To change the name of the published application on the Citrix client,
you must make the change on the Citrix Server machine. Choose
Manage Console > Application and create a new application or rename
an existing one.

Note that if you do not specify a published application, Citrix load
balancing will not work. To use load balancing when accessing the
server’s desktop, register the desktop as a published application on the
server machine, and select this name from the Published Application
drop-down list.

Using an ICA File with Connection Parameters

If you have an existing .ica file with all of the relevant configuration
information, select Use ICA file for connection parameters. In the following
row, specify the full path of the .ica file.

For information about the format of an ICA file, see “Understanding ICA
Files” on page 269 and the Citrix Website, www.citrix.com.

http://www.citrix.com
http://www.citrix.com

Chapter 15 ¢ Creating Citrix Vuser Scripts

Setting the Citrix Recording Options
Before recording, you set the desired recording options.

To set the Citrix recording options:

1 Open the Recording Options dialog box. Choose Tools > Recording Options
or click the Options button in the Start Recording dialog box. The keyboard
shortcut key is CTRL+F7.

2 Select the Citrix:Login node (only for single protocol Citrix ICA scripts).

» If you have an existing ica file with all of the relevant configuration
information, select Use ICA file for connection parameters. Specify the
tull path of the ica file, or click the Browse button and locate the file on
the local disk or network.

» If you do not have an ica file, select Define connection parameters. This
is the default setting. Enter the Connection and Identification
information.

3 Select the Citrix:Configuration node. Choose an encryption level and a
window size.

4 Select the Citrix:Code Generation node. To use information from the Citrix
agent for a more descriptive script, enable the node’s options.

5 Select the Citrix:Recorder node. Specify how to generate window names for
windows whose titles change during the recording session.

6 To prevent VuGen from saving a snapshot for each step, clear Save
snapshots.

7 When recording an NFUSE session, set the Web recording mode to URL-
based. Choose the General:Recording recording option and select URL-
based script.

8 Click OK to accept the setting and close the dialog box.

255

Chapter 15 ¢ Creating Citrix Vuser Scripts

Setting the Citrix Display Settings
Before running your Citrix Vuser script, you can set several display options
to be used during replay. Although these options increase the load upon the
server, they are useful for debugging and analyzing your session.
To set the Citrix display options:
1 Open the General Options dialog box. Choose Tools > General Options in

the main VuGen window.

2 Select the Citrix Display tab.

3 Select Show client during replay to display the Citrix client when replaying
the Vuser script.

4 Select Show Bitmap Selection popup to issue a popup message when you
begin to work interactively within a snapshot. VuGen issues this message
when you choose the right-click menu option Insert Sync Bitmap or Insert
Get Text, before you select the bitmap or text.

5 Click OK.

256

Chapter 15 ¢ Creating Citrix Vuser Scripts

Setting the Citrix Run-Time Settings

After creating a Citrix Vuser script, you set the run-time settings. These
settings let you control the behavior of the Vuser when running the script.
Your Citrix run-time settings in the Configuration node should correspond
to the properties of your Citrix client. These settings will influence the load
on the server. To view the connection properties, select the icon
representing the ICA connection in the Citrix Program Neighborhood, and
choose Properties from the right-click menu. Select the Default Options tab.

Note: Citrix Vusers do not support IP spoofing.

To set the General Run-time settings, see “Configuring Run-Time Settings”
in Volume I-Using VuGen. To set the Speed Emulation properties, see
“Configuring Network Run-Time Settings” in Volume I-Using VuGen.

You can set the Citrix-specific run-time settings in the following areas:

» Citrix Configuration Run-Time Settings

» Citrix Timing Run-Time Settings

Citrix Configuration Run-Time Settings

The configuration settings relate to the screen latency, data compression,
disk cache, and queuing of mouse movements.

To set the Configuration Run-Time Settings:

Open the Run-Time settings dialog box. Click the Run-Time Settings button
on the VuGen toolbar, or choose Vuser > Run-Time Settings.

257

Chapter 15 ¢ Creating Citrix Vuser Scripts

258

2 Select the Citrix:Configuration node. Specify the General properties:

r— Citris: Configuration

Client Configuration

Froperty | Yalue |
- = A
SpeedScreen Latency Reduction Usze Server Defaul

lUse data compression
O use disk cache for bitmapz
[Gueue mouse movements and keystrokes
Sound quality Usge Server Defaul

— General

General Citrix client configuration zetting

Set the desired client configuration options:

SpeedScreen Latency Reduction. The mechanism used to enhance user
interaction when the network speed is slow. You can turn this mechanism
on or off, depending on the network speed. The auto option turns it on or
off based on the current network speed. If you do not know the network
speed, set this option to Use Server Default to use the machine’s default.

Use data compression. Instructs Vusers to compress the transferred data. To
enable this option, select the check box to the left of the option; to disable
it, clear the check box. You should enable data compression if you have a
limited bandwidth (enabled by default).

Use disk cache for bitmaps. Instructs Vusers to use a local cache to store
bitmaps and commonly-used graphical objects. To enable this option, select
the check box to the left of the option; to disable it, clear the check box. You
should enable this option if you have a limited bandwidth (disabled by
default).

Queue mouse movements and keystrokes. Instructs Vusers to create a queue
of mouse movements and keystrokes, and send them as packets to the server
less frequently. This setting reduces network traffic with slow connections.
Enabling this option makes the session less responsive to keyboard and
mouse movements. To enable this option, select the check box to the left of
the option; to disable it, clear the check box (disabled by default).

Chapter 15 ¢ Creating Citrix Vuser Scripts

> Sound quality. Specifies the quality of the sound: Use server default, Sound

off, High sound quality, Medium sound quality, or Low sound quality. If the
client machine does not have a 16-bit Sound Blaster-compatible sound card,
select Sound Off. With sound support enabled, you will be able to play
sound files from published applications on your client machine.

Citrix Timing Run-Time Settings
The timeout settings relate to the connect and waiting times.
To set the Timing Run-Time Settings:

Open the Run-Time settings dialog box. Click the Run-Time Settings button
on the VuGen toolbar, or choose Vuser > Run-Time Settings.

Select the Citrix:Timing node.

— Citris: Tirnitg
Timing Setting
Property | Walue |
- [I
Connect time 180
' aiting time =]
Typing rate 150
|— Timeout |

Indicate the Connect Time, the time in seconds to wait idly at an established
connection before exiting. The default is 180 seconds.

Indicate the Waiting Time, the time in seconds to wait idly at a
synchronization point before exiting. The default is 60 seconds.

To set the waiting time for a specific section of the script, use the Insert >
Add Step dialog box to insert a Set Waiting Time step. The new waiting time
applies from the point of insertion until the end of the script or the next Set
Waiting Time step.

5 Specity a Typing rate, the delay in milliseconds between keystrokes.
6 Click OK to accept the settings and close the dialog box.

259

Chapter 15 ¢ Creating Citrix Vuser Scripts

Viewing and Modifying Citrix Vuser Scripts

260

You can view the contents of your Vuser script in VuGen's Script view or
Tree view. For general information about viewing a script, see “Introducing
Service Test” in Volume I-Using VuGen.

In Tree view, you can view a Citrix Vuser’s snapshots. Each step has an
associated snapshot. In addition to displaying the client window, the
snapshot also highlights the object upon which the action was performed.

» For the Mouse steps, a small pink square indicates where the user clicked.

» For Sync on Bitmap, a pink box encloses the bitmap area.

For Sync on Window, a pink box encloses the entire window. In the
following example, the snapshot shows the Sync On Window step.
Notepad’s confirmation box is enclosed by a box indicating the exact
window on which the operation was performed.

Citrix_Test] - Citrix_ICA

i T Obj Mouse Click - <text=0F, clz«|
g Think Time - 1 [zec)
g-_"‘ Sunc on Window "l Ca Administratc
Obj Mouse Double Click. - <cla:
. Think Time - 1 [zec)

Sync on Window "Untitled - Matep
%‘i Type "Thiz is a dema”

Think Time - 2 [zec)

T Obj Mouse Click - <text=Untitle
g1 Sync on Window "112_163_100_¢
21 Swnc on window "Font”
g-_'} Sunc on Window "Untitled - Notep
Sync on ‘Window "158_163_118_F

g1 Spnc on Window "About Notepad & The text in the Untitled file has changed.

Notepad

21 Spnc on Wwindow '
Sune an Window

Do you want to save the changes?

Obj Mouse M Cancel

- Think Time - 3 [zec)

Chapter 15 ¢ Creating Citrix Vuser Scripts

Note that VuGen saves snapshots as bitmap files in the script’s
data/snapshots directory. You can determine the name of the snapshot file
by checking the function’s arguments.

ctrx_sync_on_window("ICA Administrator Toolbar", ACTIVATE, 768, 0, 33,
573, "snapshot12", CTRX_LAST);

After recording, you can manually add steps to the script in either Script
view or Tree view. For information about the various script views, see
“Introducing Service Test” in Volume I-Using VuGen.

In addition to manually adding new functions, you can add new steps
interactively for Citrix Vusers, directly from the snapshot. Using the right-
click menu, you can add bitmap synchronizations. When the Citrix Agent is
installed on the Citrix server machine, you can also add text and object
synchronizations from the right-click menu. For more information, see
Chapter 16, “Using the LoadRunner Citrix Agent.”

To insert a function interactively:
1 Click on a step within Tree view. Make sure that a snapshot is visible.

2 Right-click and choose one of the commands. A dialog box opens with the
available properties.

3 Modify the desired properties and click OK. VuGen inserts the step into your
script.

Synchronizing Replay

When running a script, it is often necessary to synchronize the actions to
insure a successful replay. Synchronization refers to the timing of events
within your script, waiting for windows and objects to become available
before executing an action. For example, you may want to check whether a
certain window has opened before attempting to press a button within the
window.

VuGen automatically generates functions that synchronize the actions
during replay. In addition, you can add manual synchronization functions.

261

Chapter 15 ¢ Creating Citrix Vuser Scripts

262

Automatic Synchronization

During recording, VuGen automatically generates steps that help
synchronize the Vuser’s replay of the script:

» Sync on Window
» Sync on Obj Info

» Sync on Text

Sync on Window

The Sync On Window step instructs the Vuser to wait for a specific event
before resuming replay. The available events are Create or Active. The Create
event waits until the window is created. The Active event waits until the
window is created and then activated (in focus). Usually VuGen generates a
function with a CREATE event. If, however, the next instruction is a keyboard
event, VuGen generates a function with an ACTIVE event.

In Script view, the corresponding function call to the Sync On Window step
is ctrx_sync_on_window.

Sync on Obj Info

The Sync On Obj Info step instructs the Vuser to wait for a specific object
property before resuming replay. The available attributes are Enabled,
Visible, Focused, Text, Checked, Lines, or Item. The Enabled, Visible,
Focused, and Checked attributes are boolean values that can receive the
values true or false. The other attributes require a textual or numerical
object value.

A primary objective of this step is to wait for an object to be in focus before
performing an action upon it.

VuGen automatically generates Sync On Obj Info steps when the Citrix
agent is installed and the Use Citrix Agent Input in Code Generation option
is enabled in the Recording options. By default, this Recording option is
enabled. For more information, see “Code Generation Recording Options”
on page 251.

ctrx_sync_on_obj_info("Run=snapshot9", 120, 144, TEXT, "OK",
CTRX_LAST);

Chapter 15 ¢ Creating Citrix Vuser Scripts

Sync on Text

The Text Synchronization step, Sync On Text, instructs the Vuser to wait for
a text string to appear at the specified position before continuing. When
replaying Sync On Text, Vusers search for the text in the rectangle whose
modifiable coordinates are specified in the step’s properties.

With an agent installation (see Chapter 16, “Using the LoadRunner Citrix
Agent”), you can instruct VuGen to automatically generate a text
synchronization step before each mouse click or double-click. By default,
automatic text synchronization is disabled. For information on how to
enable this Recording option, see “Code Generation Recording Options” on
page 251.

Note, that even if you record a script with the option disabled, if you enable
the option and regenerate the script, VuGen will insert text synchronization
calls throughout the entire script. For more information, see “Code
Generation Recording Options” on page 251.

You can manually add text synchronizations for individual steps both
during and after recording as described in “Manual Synchronization” on
page 264.

In Script view, the corresponding function call to the Sync On Text step is
ctrx_sync_on_text_ex.

The following segment shows a ctrx_sync_on_text_ex function that was
recorded during a Citrix recording with the HP Citrix Agent installed and
text synchronization enabled.

ctrx_sync_on_window ("ICA Seamless Host Agent", ACTIVATE, 0, 0,391,224,
"snapshot1"”, CTRX_LAST);

ctrx_sync_on_text_ex (196, 198, 44, 14, "OK", "ICA Seamless Host
Agent=snapshot2", CTRX_LAST);

ctrx_obj_mouse_click ("<class=Button text=OK>", 196, 198, LEFT_BUTTON, 0, "ICA
Seamless Host Agent=snapshot2", CTRX_LAST);

For more information on this function, refer to the Online Function Reference
(Help > Function Reference).

263

Chapter 15 ¢ Creating Citrix Vuser Scripts

Manual Synchronization

In addition to the automatic synchronization, you can manually add
synchronization both during and after recording. A common use of this
capability is where the actual window did not change, but an object within
the window changed. Since the window did not change, VuGen did not
detect or record a Sync on Window.

For example, if you want the replay to wait for a specific graphic image in a
browser window, you insert manual synchronization. Or, if you are
recording a large window with several tabs, you can insert a synchronization
step to wait for the new tab’s content to open.

The following section describes synchronizing on a bitmap. For information
on adding a Sync on Text manually, see “Retrieving Text” on page 281.

Manually Adding Synchronization During Recording

To add synchronization during recording, you use the floating toolbar. The
Sync On Bitmap function lets you to mark an area within the client window
that needs to be in focus before resuming replay.

Recording... {51 events).
® » W 1 | vuser_nit = g e Bl o S GPoIE AL

Sync on Bitmap

To mark a bitmap area for synchronization:
r53 1 Click the Insert Sync on Bitmap button on the toolbar.

2 Mark a rectangle around the desired bitmap. In Tree view, VuGen generates a
Sync on Bitmap step after the current step. In Script view, VuGen generates a
ctrx_sync_on_bitmap function with the selected coordinates as arguments.

ctrx_sync_on_bitmap(93, 227, 78, 52,
"66de3122a58baade89e63698d1c0d5dfa", CTRX_LAST);

During replay, Vusers look for the bitmap at the specified coordinates, and
wait until it is available before resuming the test.

264

Chapter 15 ¢ Creating Citrix Vuser Scripts

Manually Adding Synchronization After Recording

You can also add synchronization after the recording session. To add a
synchronization step, right-click in the snapshot window and choose a
synchronization option:

> Sync on Bitmap. Waits until a bitmap appears

» Sync on Obj Info. Waits until an object’s attributes have the specified values

(agent installations only)

Sync on Text. Waits until the specified text is displayed (agent installations
only)

During recording, the bitmaps generated for the Sync on Bitmap step are
saved under the script’s data/snapshots directory. If synchronization fails
during replay, VuGen generates a new bitmap that you can examine to
determine why synchronization failed. VuGen displays both bitmaps in the
Failed Bitmap Synchronization dialog box. For more information, see
“Failed Bitmap Synchronization” on page 268.

The bitmap name has the format of sync_bitmap_<hash_value>.bmp. It is
stored in the script’s output directory, or for a scenario or profile, wherever
the output files are written.

Additional Synchronizations

In addition, you can add several other steps that affect the synchronization
indirectly:

> Setting the Waiting Time

» Checking if a Window Exists or Closed

» Waiting for a Bitmap Change

Setting the Waiting Time

The Set Waiting Time step sets a waiting time for the other Citrix
synchronization functions. This setting applies to all functions that follow it
within the script. For example, if your Sync on Window steps are timing out,
you can increase the default timeout of 60 seconds to 180.

To insert this step, choose Insert > Add Step > Set Waiting Time.

265

Chapter 15 ¢ Creating Citrix Vuser Scripts

266

Checking if a Window Exists or Closed

The Win Exist step checks if a window is visible in the Citrix client. By
adding control flow statements, you can use this function to check for a
window that does not always open, such as a warning dialog box. In the
following example, ctrx_win_exist checks whether a browser was launched.
The second argument indicates how long to wait for the browser window to
open. If it did not open in the specified time, it double-clicks its icon.

if (lctrx_win_exist("Welcome",6, CTRX_LAST))
ctrx_mouse_double_click(34, 325, LEFT_BUTTON, 0, CTRX_LAST)

To insert this step, choose Insert > Add Step > Win Exist.

Another useful application for this step is to check if a window has been
closed. If you need to wait for a window to close, you should use a
synchronization step such as UnSet Window or ctrx_unset_window.

For detailed information about these functions, refer to the Online Function
Reference (Help > Function Reference).

Waiting for a Bitmap Change

In certain cases, you do not know what data or image will be displayed in an
area, but you do expect it to change. To emulate this, you can use the Sync
on Bitmap Change step or its corresponding function,
ctrx_sync_on_bitmap_change. Perform a right-click in the snapshot, and
choose an Insert Sync on Bitmap from the right-click menu. VuGen inserts
the step or function at the location of the cursor.

The syntax of the functions is as follows:

ctrx_sync_on_bitmap (x_start, y_start, width, height, hash, CTRX_LAST);

ctrx_sync_on_bitmap_change (x_start, y_start, width, height,
[initial_wait_time,] [timeout,]
[initial_bitmap_value,] CTRX_LAST);

Chapter 15 ¢ Creating Citrix Vuser Scripts

The following optional arguments are available for
ctrx_sync_on_bitmap_change:

> initial wait time value—when to begin checking for a change.

» a timeout—the amount of time in seconds to wait for a change to occur

before failing.
initial bitmap value—the initial hash value of the bitmap. Vusers wait until
the hash value is different from the specified initial bitmap value.

In the following example, the recorded function was modified and assigned
an initial waiting time of 300 seconds and a timeout of 400 seconds.

ctrx_sync_on_bitmap_change(93, 227, 78, 52,
300,400, "66de3122a58baade89e63698d1c0d5dfa",CTRX_LAST);

Note: If you are using Sync on Bitmap, make sure that the Configuration
settings in the Controller, Load Generator machine, and screen are the
same. Otherwise, VuGen may be unable to find the correct bitmaps during
replay. For information on how to configure the client settings, see
“Configuration Recording Options” on page 248.

267

Chapter 15 ¢ Creating Citrix Vuser Scripts

Failed Bitmap Synchronization

The Failed Bitmap Synchronization dialog box opens when there is a
mismatch between the Recording and Replay snapshots during script replay.

You can indicate whether or not you want to mark the mismatch as an error
or adopt the changes.

mFailed Bitmap Spnchronization

Bitmap syhchronizatiof has failed due to a mismatch between the replayed and recorded
ICTEENS.

Fiecording Snapshot Fieplay Shapshat

=

g a Mot-For-Resale license For MetaFra

i o

Click "Stop’ to halt the script execution. Click 'Continue’ to append the new snapshot to the scrpt
and continue sorpt execution,

Continue | Help |

When this dialog box opens, click on one of the following buttons to
proceed:

» Stop. Consider the mismatch between the snapshots to be an error. This
error will be handled like all other errors and halt the execution. You can
specify Continue on Error for a specific function as described in
“Continuing on Error” on page 274.

» Continue. Accept the mismatch and use both the original and new
snapshots as a basis for comparison between screens during future replays. If
replay returns either one of the bitmaps, the Vuser will not fail.

268

Chapter 15 ¢ Creating Citrix Vuser Scripts

Understanding ICA Files

Citrix ICA client files are text files that contain configuration information
for the applications accessed through the Citrix client. These files must have
an .ica extension and must conform to the following format:

[WFClient]
Version=
TcpBrowserAddress=

[ApplicationServers]
AppName1=

[AppName1]
Address=
InitialProgram=#
ClientAudio=
AudioBandwidthLimit=
Compress=
DesiredHRES=
DesiredVRES=
DesiredColor=
TransportDriver=
WinStationDriver=

Username=
Domain=
ClearPassword=

Note: When you load an ICA file using the Recording Options, VuGen saves
the file together with your script, eliminating the need to copy the ICA file
to each injector machine.

269

Chapter 15 ¢ Creating Citrix Vuser Scripts

The following example shows a sample ICA file for using Microsoft Word on
a remote machine through the Citrix client:

[WEClient]
Version=2
TepBrowserAddress=235.119.93.56

[ApplicationServers]
Word=

[Word]

Address=Word
InitialProgram=#Word
ClientAudio=0On
AudioBandwidthLimit=2
Compress=0n
DesiredHRES=800
DesiredVRES=600
DesiredColor=2
TransportDriver=TCP/IP
WinStationDriver=ICA 3.0

Username=test
Domain=user_lab
ClearPassword=test

For more information, see the Citrix Website www.citrix.com.

Using Citrix Functions

During a Citrix recording session, VuGen generates functions that emulate
the communication between a client and a remote server. The generated
functions have a ctrx prefix. You can also manually edit any of the
functions into your Vuser script after the recording session. For example,
ctrx_obj_mouse_click emulates a mouse click for a specific object.

For more information about the ctrx functions, refer to the Online Function
Reference (Help > Function Reference).

270

http://www.citrix.com

Chapter 15 ¢ Creating Citrix Vuser Scripts

Note that for the functions that specify a window name, you can use the
wildcard symbol, an asterisk (*). You can place the wildcard at the
beginning, middle, or end of the string.

Tips for Replaying and Troubleshooting Citrix Vuser Scripts

The following sections provide guidelines and tips for Citrix Vusers in the
following areas:

» Replay Tips
» Debugging Tips

For recording tips, see “Recording Tips” on page 245.

Replay Tips

Wildcards

You can use wildcards (*) in defining window names. This is especially
useful where the window name may change during replay, by its suffix or
prefix.

In the following example, the title of the Microsoft Internet Explorer
window was modified with a wildcard.

ctrx_mouse_click(573, 61, LEFT_BUTTON, O,
"Welcome to MSN.com - Microsoft Internet Explorer");
ctrx_mouse_click(573, 61, LEFT_BUTTON, O,

"* - Microsoft Internet Explorer");

For more information, see the Function Reference (Help > Function
Reference).

Set Initialization Quota

To prevent overloading by multiple Vusers while connecting, set an
initialization quota of 4 to 10 Vusers (depending on the capacity of the
server) or apply ramp-up initialization using the Scheduler.

271

Chapter 15 ¢ Creating Citrix Vuser Scripts

272

Enable Think Time

For best results, do not disable think time in the Run-Time settings. Think
time is especially relevant before the ctrx_sync_on_window and
ctrx_sync_on_bitmap functions, which require time to stabilize.

Regenerate Script

During recording, VuGen saves all of the agent information together with
the script. By default, it also includes this information in the script,
excluding the Sync On Text steps. If you encounter text synchronization
issues, then you can regenerate the script to include the text
synchronization steps.

In addition, if you disabled the generation of agent information in the
Recording options, you can regenerate the script to include them.

Regenerating scripts is also useful for scripts that you manually modified.
When you regenerate the script, VuGen discards all of your manual changes
and reverts back to the originally recorded version.

To regenerate a script, choose Tools > Regenerate and select the desired
options. For more information about regenerating scripts, see “Regenerating
a Vuser Script”in Volume I-Using VuGen.

Set Consistency Between Machines

If you intend to replay the script on another machine, make sure that the
following items are consistent between the record and replay machines:
Window Size (resolution), Window Colors, System Font and the other
Default Options settings for the Citrix client. These settings affect the hash
value of bitmaps, and inconsistencies may cause replay to fail. To view the
Citrix Client settings, select an item from the Citrix program group and
choose Application Set Settings or Custom Connection Settings from the
right-click menu. Select the Default Options tab.

Chapter 15 ¢ Creating Citrix Vuser Scripts

Increasing the Number of Vusers per Load Generator Machine

Load Generator machines running Citrix Vusers may be limited in the
number of Vusers that can run, due to the graphic resources available to that
machine, also known as the GDI (Graphics Device Interface). To increase the
number of Vusers per machine, you can open a terminal server session on
the machine which acts as an additional injector machine.

The GDI count is Operating System dependent. The actual GDI (Graphics
Device Interface) count for a heavily loaded machine using LoadRunner is
approximately 7,500. The maximum available GDI on Windows 2000
machines is 16,384.

For more information on creating a terminal server session, see the Terminal
Services topics in the HP LoadRunner Controller.

Note: By default, sessions on a terminal server use a 256-color set. If you
intend to use a terminal session for load testing, make sure to record on
machines with a 256-color set.

Debugging Tips

Single Client Installation

If you are unsuccessful in recording any actions in your Citrix session, verify
that you have only one Citrix client installed on your machine. To verify
that only one client is installed, open the Add/Remove Programs dialog box
from the Control Panel and make sure that there is only one entry for the
Citrix ICA client.

Add Breakpoints

Add breakpoints to your script in VuGen to help you determine the
problematic lines of code.

273

Chapter 15 ¢ Creating Citrix Vuser Scripts

274

Synchronize Your Script

If replay fails, you may need to insert synchronization functions into your
script to allow more time for the desired windows to come into focus.
Although you can manually add a delay using Ir_think_time, it is
recommended that you use one of the synchronization functions discussed
in “Synchronizing Replay” on page 261.

Continuing on Error

You can instruct Vusers to continue running even after encountering an
error, such as not locating a matching window. You specify Continue on
Error for individual steps.

This is especially useful where you know that one of two windows may
open, but you are unsure of which. Both windows are legal, but only one
will open.

To indicate Continue on Error:

In Tree view, right-click on the step and choose Properties. In the Continue
on Error box, select the CONTINUE_ON_ERROR option.

In Script view, locate the function and add CONTINUE_ON_ERROR as a
final argument, before CTRX_LAST.

This option is not available for the following functions: ctrx_key,
ctrx_key_down, ctrx_key_up, ctrx_type, ctrx_set_waiting time,
ctrx_save_bitmap, ctrx_execute_on_window, and ctrx_set_exception.

Extended Log

You can view additional replay information in the Extended log. To do this,
enable Extended logging in the Run-Time settings (F4 Shortcut key) Log tab.
You can view this information in the Replay Log tab or in the output.txt file
in the script’s directory.

Snapshot Bitmap

When an error occurs, VuGen saves a snapshot of the screen to the script’s
output directory. You can view the bitmap to try to determine why the error
occurred.

Chapter 15 ¢ Creating Citrix Vuser Scripts

During recording, the bitmaps generated for the ctrx_sync_on_bitmap
function are saved under the script’s data directory. The bitmap name has
the format of hash_value.bmp. If synchronization fails during replay, the
generated bitmap is written to the script’s output directory, or if you are
running it in a scenario, to wherever the output files are written. You can
examine the new bitmap to determine why synchronization failed.

Show Vusers

To show Vusers during a scenario, enter the following in the Vuser
command line box: -Ir_citrix_vuser_view. In the Controller, open the Vuser
Details dialog box and click More to expand the dialog box. Note that this
will affect the scalability of the test, so this should only be done to examine
a problematic Vuser’s behavior.

To reduce the effect on the script’s scalability, you can show the details for
an individual Vuser by adding the Vuser’s ID at the end of the command
line: -Ir_citrix_vuser_view <VuserlD>.

To open multiple Vusers, place a comma-separated list of IDs after the
command line. Do not use spaces, but you may use commas or dashes. For
example, 1,3-5,7 would show Vusers 1,3,4,5, and 7, but would not show
Vuser 2, 6 or any Vuser with an ID higher than 7.

View Recording and Replay Logs

To see detailed information about the recording, view the Recording and
Replay logs in the Output window. To open the Output window, choose
View > Output Window.

275

Chapter 15 ¢ Creating Citrix Vuser Scripts

276

To view the Recording Log, select the Recording Log tab. VuGen displays a
detailed log of all functions that were generated by the recording and the
warning messages and errors that were issued during that time.

@ Replay Log | I @ Recarding Log

[Citri=
Citrix
Citrix
Citrix
Citrix
Citrix
Citrix
Citrix
Citrix
Cit