
HP Virtual User Generator

for the Windows and UNIX operating systems

Software Version: 9.10
User’s Guide
Volume II - Protocols
Document Number: T7182-90013

Document Release Date: February 2008

Software Release Date: February 2008

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty
statements accompanying such products and services. Nothing herein should be construed
as constituting an additional warranty. HP shall not be liable for technical or editorial errors
or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or
copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software,
Computer Software Documentation, and Technical Data for Commercial Items are licensed
to the U.S. Government under vendor's standard commercial license.

Third-Party Web Sites

HP provides links to external third-party Web sites to help you find supplemental
information. Site content and availability may change without notice. HP makes no
representations or warranties whatsoever as to site content or availability.

Copyright Notices

© Copyright 2000 - 2008 Hewlett-Packard Development Company, L.P.

Trademark Notices

Java™ is a US trademark of Sun Microsystems, Inc.

Microsoft® and Windows® Microsoft and Windows are U.S. registered trademarks of
Microsoft Corporation.

Oracle® is a registered US trademark of Oracle Corporation, Redwood City, California.

UNIX® is a registered trademark of The Open Group.
2

Documentation Updates

This manual’s title page contains the following identifying information:

• Software version number, which indicates the software version

• Document release date, which changes each time the document is updated

• Software release date, which indicates the release date of this version of the software

To check for recent updates, or to verify that you are using the most recent edition of a
document, go to:

http://ovweb.external.hp.com/lpe/doc_serv/
3

http://ovweb.external.hp.com/lpe/doc_serv/

Support

Mercury Product Support

You can obtain support information for products formerly produced by Mercury as follows:

• If you work with an HP Software Services Integrator (SVI) partner (www.hp.com/
managementsoftware/svi_partner_list), contact your SVI agent.

• If you have an active HP Software support contract, visit the HP Software Support Web
site and use the Self-Solve Knowledge Search to find answers to technical questions.

• For the latest information about support processes and tools available for products
formerly produced by Mercury, we encourage you to visit the Mercury Customer Support
Web site at: http://support.mercury.com.

• If you have additional questions, contact your HP Sales Representative.

HP Software Support

You can visit the HP Software Support Web site at:

www.hp.com/go/hpsoftwaresupport/

HP Software online support provides an efficient way to access interactive technical support
tools. As a valued support customer, you can benefit by using the support site to:

• Search for knowledge documents of interest

• Submit and track support cases and enhancement requests

• Download software patches

• Manage support contracts

• Look up HP support contacts

• Review information about available services

• Enter into discussions with other software customers

• Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in.
Many also require a support contract. To find more information about access levels, go to:
www.hp.com/managementsoftware/access_level

To register for an HP Passport ID, go to:
www.managementsoftware.hp.com/passport-registration.html
4

www.hp.com/go/hpsoftwaresupport
www.hp.com/managementsoftware/svi_partner_list
www.hp.com/managementsoftware/svi_partner_list
http://support.mercury.com
www.hp.com/managementsoftware/access_level
www.managementsoftware.hp.com/passport-registration.html

Table of Contents

PART I: INTRODUCING PROTOCOLS

Chapter 1: Understanding Protocols ..21
Using This Guide ...21
Vuser Types..22

PART II: SOA AND WEB SERVICES TESTING

Chapter 2: Understanding the SOA Test Types..................................27
About SOA Test Types ...27
Getting Started with Web Services Vuser Scripts28

Chapter 3: Working with Web Services Scripts31
About Working with Web Services Scripts..31
Viewing and Editing Scripts ..32
Parameterizing Scripts ...35

Chapter 4: Managing Web Services..37
About Managing Web Services Vuser Scripts38
Viewing and Setting Service Properties ...39
Importing Services...43
Specifying a Service on a UDDI Server ..45
Choosing a Service from Quality Center ..46
Specifying WSDL Connection Settings ...47
Deleting Services..49
Comparing WSDL Files ...49
Viewing WSDL Files ..54
5

Table of Contents
Chapter 5: Adding Content to Web Services Scripts55
About Adding Content to Web Services Scripts..................................55
Recording a Web Services Script ...56
Viewing the Workflow ..61
Adding New Web Service Calls ...62
Importing SOAP Requests ...65
Using Your Script...68
Working with Service Test Management ..69

Chapter 6: Creating Server Traffic Scripts ..71
About Creating Server Traffic Scripts ..71
Getting Started with Server Traffic Scripts ..73
Generating a Capture File ...74
Creating a Basic Script from Server Traffic..76
Specifying Traffic Information..78
Choosing an Incoming or Outgoing Filter ...79
Providing an SSL Certificate..80

Chapter 7: Working in the Web Service Call View83
About the Web Service Call View ...83
Viewing Web Services SOAP Snapshots ..84
Understanding Web Service Call Properties87
Derived Types ..98
Working with Optional Parameters ..99
Base 64 Encoding...103
Attachments ..107
Working with the XML...111
Using Web Service Output Parameters ...115
Setting Checkpoints ..119

Chapter 8: Setting Advanced Properties for Web Service Scripts ...127
About Setting the Transport Layer, Security and User Handlers127
Configuring the Transport Layer ..128
Creating Web Service Security Policies ...141
Setting SAML Options ...147
Customizing Web Service Script Behavior ..150

Chapter 9: Running SOA/Web Services Scripts................................159
About Running Web Services Vusers ..159
Setting Web Services JMS Run-Time Settings....................................161
Using Web Services Functions ..163
Viewing Web Services Reports ..163
6

Table of Contents
PART III : WORKING WITH JAVA LANGUAGE PROTOCOLS

Chapter 10: Recording Java Language Vuser Scripts171
About Recording Java Language Vuser Scripts..................................172
Getting Started with Recording...173
Recording Java Events ...175
Recording a Corba-Java Vuser ...178
Recording RMI over IIOP...179
Recording an RMI Vuser..180
Recording a Jacada Vuser ..180
Recording on Windows XP and Windows 2000 Servers181

Chapter 11: Working with Java Vuser Scripts...................................183
Understanding Java Vuser Scripts ...184
Working with Corba-Java..185
Working with RMI Java...187
Working with Jacada ...188
Running a Script as Part of a Package ...189
Viewing the Java Methods ..190
Manually Inserting Java Methods ...192
Configuring Script Generation Settings ..194
Java Custom Filters..198

Chapter 12: Setting Java Recording Options....................................207
About Setting Java Recording Options..208
Java Virtual Machine (JVM) Recording Options209
Setting Classpath Recording Options..211
Recorder Options ..212
Serialization Options ...214
Correlation Options ...216
Log Options ..217
CORBA Options ..219

Chapter 13: Correlating Java Scripts...221
About Correlating Java Scripts ..222
Standard Correlation ...223
Advanced Correlation ...223
String Correlation..225
Using the Serialization Mechanism ..226

Chapter 14: Configuring Java Run-Time Settings233
About Configuring Java Run-Time Settings......................................233
Specifying the JVM Run-Time Settings ...234
Setting the Run-Time Classpath Options ...235
7

Table of Contents
PART IV: APPLICATION DEPLOYMENT SOLUTION PROTOCOLS

Chapter 15: Creating Citrix Vuser Scripts...239
About Creating Citrix Vuser Scripts ..240
Getting Started with Citrix Vuser Scripts..241
Setting Up the Client and Server...242
Recording Tips...245
Understanding Citrix Recording Options...247
Setting the Citrix Recording Options..255
Setting the Citrix Display Settings ..256
Setting the Citrix Run-Time Settings ..257
Viewing and Modifying Citrix Vuser Scripts260
Synchronizing Replay..261
Understanding ICA Files ...269
Using Citrix Functions ..270
Tips for Replaying and Troubleshooting Citrix Vuser Scripts271

Chapter 16: Using the LoadRunner Citrix Agent..............................277
About the LoadRunner Citrix Agent ...277
Benefitting From the Citrix Agent ..278
Installation ..283
Effects and Memory Requirements of the Citrix Agent....................284
Sample Script ...284

Chapter 17: Creating Remote Desktop Protocol Vuser Scripts........285
About Microsoft Remote Desktop Protocol (RDP) Vuser Scripts286
Recording Tips...286
Understanding The RDP Recording Options287
Recording a RDP Vuser Script..291
Understanding the RDP Run-Time Settings......................................293
Running RDP Vuser Scripts ...295
Working with Clipboard Data...296
Synchronizing Replay..298
8

Table of Contents
PART V: CLIENT SERVER PROTOCOLS

Chapter 18: Developing Database Vuser Scripts..............................309
About Developing Database Vuser Scripts ..310
Introducing Database Vusers...311
Understanding Database Vuser Technology312
Getting Started with Database Vuser Scripts.....................................313
Setting Database Recording Options...314
Database Advanced Recording Options ..316
Using LRD Functions...318
Understanding Database Vuser Scripts ...319
Working with Grids...322
Evaluating Error Codes..324
Handling Errors ...325

Chapter 19: Correlating Database Vuser Scripts329
About Correlating Database Vuser Scripts ..329
Scanning a Script for Correlations ..330
Correlating a Known Value...332
Database Correlation Functions..334

Chapter 20: Developing DNS Vuser Scripts......................................335
About Developing DNS Vuser Scripts ...335
Working with DNS Functions ...336

Chapter 21: Developing WinSock Vuser Scripts337
About Recording Windows Sockets Vuser Scripts.............................337
Getting Started with Windows Sockets Vuser Scripts338
Setting the WinSock Recording Options...340
Using LRS Functions..343

Chapter 22: Working with Windows Socket Data............................345
About Working with Windows Socket Data346
Viewing Data in the Snapshot Window ...346
Navigating Through the Data ...348
Modifying Buffer Data...351
Modifying Buffer Names ...358
Viewing Windows Socket Data in Script View..................................359
Understanding the Data File Format...360
Viewing Buffer Data in Hexadecimal format362
Setting the Display Format..365
Debugging Tips..368
Manually Correlating WinSock Scripts ..369
9

Table of Contents
PART VI: CUSTOM VUSER SCRIPTS

Chapter 23: Creating Custom Vuser Scripts375
About Creating Custom Vuser Scripts...376
C Vusers...377
Using the Workflow Wizard for C Vuser Scripts...............................378
Java Vusers...381
VB Vusers...382
VBScript Vusers..383
JavaScript Vusers ...384

Chapter 24: Programming Java Scripts...385
About Programming Java Scripts ..386
Creating a Java Vuser ..387
Editing a Java Vuser Script ..387
Java Vuser API Functions ..389
Working with Java Vuser Functions ...391
Setting your Java Environment...397
Running Java Vuser Scripts ...398
Compiling and Running a Script as Part of a Package......................399
Programming Tips ...400

PART VII: DISTRIBUTED COMPONENT PROTOCOLS

Chapter 25: Recording COM Vuser Scripts.......................................405
About Recording COM Vuser Scripts ..406
COM Overview..406
Getting Started with COM Vusers...408
Selecting COM Objects to Record ..409
Setting COM Recording Options ..412

Chapter 26: Understanding COM Vuser Scripts...............................421
About COM Vuser Scripts ...421
Understanding VuGen COM Script Structure...................................422
Examining Sample VuGen COM Scripts...424
Scanning a Script for Correlations ..430
Correlating a Known Value...432

PART VIII : E-BUSINESS PROTOCOLS

Chapter 27: Developing AJAX (Click and Script) Vusers437
About Developing AJAX (Click and Script) Vuser Scripts.................437
Recording an AJAX (Click and Script) Session..................................439
Understanding AJAX (Click and Script) Scripts439
10

Table of Contents
Chapter 28: Developing AMF Vuser Scripts......................................441
About Developing AMF Vuser Scripts ...441
Understanding AMF Terms ...443
Setting the AMF Recording Mode ...443
Setting AMF Code Generation Options ..448
Working with AMF Functions...449
Correlating AMF Scripts ..450
Viewing AMF Data...454
Understanding AMF Scripts...454

Chapter 29: Developing FTP Vuser Scripts459
About Developing FTP Vuser Scripts...459
Working with FTP Functions ..460

Chapter 30: Developing Flex Vuser Scripts.......................................461
About Developing Flex Vuser Scripts ..461
Working with Flex Functions..463
Setting Flex Code Generation Options ...464
Correlating Flex Scripts ...465
Viewing Flex Data..470
Setting Flex Step Properties ...473

Chapter 31: Developing LDAP Vuser Scripts475
About Developing LDAP Vuser Scripts..475
Working with LDAP Functions ...476
Defining Distinguished Name Entries...478
Specifying Connection Options..479

Chapter 32: Recording Microsoft .NET Vuser Scripts.......................481
About Recording Microsoft .NET Vuser Scripts.................................482
Getting Started with Microsoft .NET Vusers483
Setting Microsoft .NET Recording Options.......................................485
Configuring the Recording Settings..486
Viewing Scripts in VuGen and Visual Studio....................................491
Configuring .NET Environment Run-Time Settings493
Viewing Data Sets and Grids ...496
Correlating Microsoft .NET Scripts..497
Configuring Application Security and Permissions500
Recording WCF Duplex Communication...504

Chapter 33: Setting Filters for .NET Vuser Scripts............................513
About Microsoft .NET Filters ...513
Guidelines for Setting Filters ...515
Setting a Recording Filter ..519
Working with the Filter Manager..521
11

Table of Contents
Chapter 34: Creating Web Vuser Scripts ..531
About Developing Web Level Vuser Scripts......................................531
Introducing Web Vusers..532
Understanding Web Vuser Technology ..533
Choosing a Web Vuser Type ...533
Getting Started with Web Vuser Scripts..537
Recording a Web Session...539
Converting Web Vuser Scripts into Java...540

Chapter 35: Tips for Web (Click and Script) Vusers541
Recording Issues ..541
Recording Tips...543
Replay Problems ..545
Replay Tips ..547
Miscellaneous Problems ..548
Miscellaneous Tips ..550
Enhancing Your Web (Click and Script) Vuser Script.......................551

Chapter 36: Using Web Vuser Functions ..557
About Web Vuser Functions ...558
Adding and Editing Functions ..559
General API Notes ...561
Using Values Stored in the Cache ...563

Chapter 37: Recording with Click and Script....................................567
About Recording with Click and Script ..567
Viewing Web (Click and Script) Vuser Scripts568
Setting Click and Script Recording Options569
Setting Advanced GUI Properties..571
Configuring Web Event Recording ...574

Chapter 38: Setting Recording Options for Internet Protocols587
About Setting Recording Options for Internet Protocols..................587
Setting Advanced Recording Options ...588
Setting a Recording Scheme ..590

Chapter 39: Setting Recording Options for Web Vusers597
About Setting Recording Options ...597
Selecting a Recording Level ...598
Setting the Recording Level...611
12

Table of Contents
Chapter 40: Configuring Internet Run-Time Settings613
About Internet Run-Time Settings ..613
Setting Proxy Options ...615
Setting Browser Emulation Properties...620
Setting Internet Preferences ..625
Filtering Web Sites...633
Obtaining Debug Information ..635
Performing HTML Compression ...636

Chapter 41: Checking Web Page Content..637
About Checking Web Page Content ...637
Setting the ContentCheck Run-Time Settings638

Chapter 42: Verifying Web Pages Under Load.................................643
About Verification Under Load...643
Adding a Text Check ...646
Understanding Text Check Functions ..649
Adding an Image Check ...654
Defining Additional Properties ..657

Chapter 43: Modifying Web and Wireless Vuser Scripts..................659
About Modifying Web and Wireless Vuser Scripts660
Adding a Step to a Vuser Script ...661
Deleting Steps from a Vuser Script ..662
Modifying Action Steps ...663
Modifying Control Steps ...680
Modifying Service Steps...683
Modifying Web Checks (Web only)..684

Chapter 44: Setting Correlation Rules for Web Vuser Scripts..........685
About Correlating Statements...685
Understanding the Correlation Methods..687
Using VuGen’s Correlation Rules..688
Setting Correlation Rules...694
Testing Rules..696
Setting the Correlation Recording Options697

Chapter 45: Correlating Vuser Scripts After Recording699
About Correlating with Snapshots..700
Viewing the Correlation Results Tab...701
Setting Up VuGen for Correlations...704
Performing a Scan for Correlations...707
Performing Manual Correlation..711
Defining a Dynamic String’s Boundaries ..716
13

Table of Contents
Chapter 46: Testing XML Pages..719
About Testing XML Pages ...719
Viewing XML as URL Steps ...720
Inserting XML as a Custom Request ...723
Viewing XML Custom Request Steps ..724

PART IX: ENTERPRISE JAVA BEAN PROTOCOLS

Chapter 47: Performing EJB Testing ...729
About EJB Testing..730
Working with the EJB Detector...731
Creating an EJB Testing Vuser...735
Setting EJB Recording Options..739
Understanding EJB Vuser Scripts...740
Running EJB Vuser Scripts...746

PART X: ERP/CRM PROTOCOLS

Chapter 48: Creating Oracle NCA Vuser Scripts753
About Creating Oracle NCA Vuser Scripts ..754
Getting Started with Oracle NCA Vusers ..755
Recording Guidelines ..756
Enabling the Recording of Objects by Name....................................758
Oracle Applications via the Personal Home Page761
Using Oracle NCA Vuser Functions ..762
Understanding Oracle NCA Vusers ...763
Configuring Oracle NCA Run-Time Settings764
Testing Oracle NCA Applications..767
Correlating Oracle NCA Statements for Load Balancing771
Additional Recommended Correlations ...772
Recording in Pragma Mode...774

Chapter 49: Developing SAPGUI Vuser Scripts777
About Developing SAPGUI Vuser Scripts..778
Checking your Environment for SAPGUI Vusers779
Creating a SAPGUI Vuser Script ..790
Recording a SAPGUI Vuser Script..791
Setting the SAPGUI Recording Options ..794
Inserting Steps Interactively into a SAPGUI Script797
Understanding a SAPGUI Vuser Script..799
Enhancing a SAPGUI Vuser Script ..803
14

Table of Contents
Chapter 50: Developing SAP (Click and Script) Vusers807
About Developing SAP (Click and Script) Vuser Scripts807
Recording a SAP (Click and Script) Session.......................................808
Understanding SAP (Click and Script) Scripts...................................808

Chapter 51: Developing SAP-Web Vuser Scripts811
About Developing SAP-Web Vuser Scripts ..812
Creating a SAP-Web Vuser Script ..812
Setting SAP-Web Recording Options...814
Understanding a SAP-Web Vuser Script..815
Replaying a SAP-Web Vuser Script ..817

Chapter 52: Running SAPGUI Vuser Scripts819
About Replaying SAPGUI Vuser Scripts ..819
Replaying SAPGUI Optional Windows ...820
Setting SAPGUI Run-Time Settings ...821
SAPGUI Functions ...824
Tips for SAPGUI Vuser Scripts ...825
Troubleshooting SAPGUI Vuser Scripts...830
Additional Resources ...832

Chapter 53: Developing Siebel-Web Vuser Scripts...........................833
About Developing Siebel-Web Vuser Scripts.....................................833
Recording a Siebel-Web Session ..834
Correlating Siebel-Web Scripts ..835
Correlating SWECount, ROWID, and SWET Parameters..................842
Troubleshooting Siebel-Web Vuser Scripts844

PART XI: LEGACY PROTOCOLS

Chapter 54: Introducing RTE Vuser Scripts851
About Developing RTE Vuser Scripts ..851
Introducing RTE Vusers...852
Understanding RTE Vuser Technology ...852
Getting Started with RTE Vuser Scripts ...853
Using TE Functions ...854
Working with Ericom Terminal Emulation855
Mapping Terminal Keys to PC Keyboard Keys..................................857
15

Table of Contents
Chapter 55: Recording RTE Vuser Scripts ...859
About Recording RTE Vuser Scripts...860
Creating a New RTE Vuser Script ..860
Recording the Terminal Setup and Connection Procedure861
Recording Typical User Actions ..865
Recording the Log Off Procedure ..866
Setting RTE Configuration Options ..867
Setting the RTE Recording Options...868
Typing Input into a Terminal Emulator ...871
Generating Unique Device Names..874
Setting the Field Demarcation Characters ..875

Chapter 56: Configuring RTE Run-Time Settings877
About Terminal Emulator Run-Time Settings...................................878
Modifying Connection Attempts..879
Specifying an Original Device Name ..880
Setting the Typing Delay...880
Configuring the X-System Synchronization.....................................881

Chapter 57: Synchronizing RTE Vuser Scripts883
About Synchronizing Vuser Scripts...883
Synchronizing Block-Mode (IBM) Terminals....................................885
Synchronizing Character-Mode (VT) Terminals888

Chapter 58: Reading Text from the Terminal Screen895
About Reading Text from the Terminal Screen895
Searching for Text on the Screen ..896
Reading Text from the Screen ...896

PART XII: MAILING SERVICES PROTOCOLS

Chapter 59: Developing Vuser Scripts for Mailing Services.............901
About Developing Vuser Scripts for Mailing Services.......................902
Getting Started with Mailing Services Vuser Scripts902
Understanding IMAP Scripts ...904
Understanding MAPI Scripts ...905
Understanding POP3 Scripts ...906
Understanding SMTP Scripts...907
16

Table of Contents
PART XIII: MIDDLEWARE PROTOCOLS

Chapter 60: Developing Tuxedo Vuser Scripts.................................911
About Tuxedo Vuser Scripts ..912
Getting Started with Tuxedo Vuser Scripts913
Understanding Tuxedo Vuser Scripts..914
Viewing Tuxedo Buffer Data ...917
Defining Environment Settings for Tuxedo Vusers918
Debugging Tuxedo Applications...919
Correlating Tuxedo Scripts..919

PART XIV: STREAMING DATA PROTOCOLS

Chapter 61: Developing Streaming Data Vuser Scripts929
About Recording Streaming Data Virtual User Scripts......................930
Getting Started with Streaming Data Vuser Scripts930
Using RealPlayer LREAL Functions ...931
Using Media Player MMS Functions ...932

PART XV: WIRELESS PROTOCOLS

Chapter 62: Recording Wireless Vuser Scripts..................................935
Understanding the WAP Protocol...935
Getting Started with Wireless Vuser Scripts......................................937
Using Wireless Vuser Functions ..939
Push Support ...940
VuGen Push Support ...942

Chapter 63: Configuring WAP Run-Time Settings945
About WAP Run-Time Settings ...945
Configuring Gateway Options ..946
Configuring Radius Connection Data...950

Chapter 64: Developing MMS Vuser Scripts953
About MMS (Multimedia Messaging Service) Vuser Scripts953
Configuring MMS Run-Time Settings ...954
Running an MMS Scenario in the Controller956

Index..957
17

Table of Contents
18

Part I

Introducing Protocols

20

1
Understanding Protocols

VuGen supports a variety of applications and protocols, allowing you to
record and create a script that accurately emulates your actions.

Note: The HP Virtual User Generator User’s Guide online version is a single
volume, while the printed version consists of two volumes, Volume I-Using
VuGen and Volume II - the Protocols user guide.

Using This Guide

This user’s guide, Protocols, is the second volume of the HP Virtual User
Generator user’s guide. The first volume, Using VuGen, describes how to
work with VuGen and create tests. This volume describes the unique settings
and guidelines for the individual protocols. For example, this volume
includes the recording options and run-time settings that are protocol-
specific, while Using VuGen lists the settings that are common to all or most
of the protocols.

When you are deciding which Vuser type to record, you may find that your
application uses several protocols, such Web & FTP or Web & Web Services.
VuGen supports recording for multi-protocol scripts. For more information,
see Volume I-Using VuGen.

To view a list of all supported protocols in alphabetical order, choose File >
New and select All Protocols in the Protocol Type list box.

To develop GUI Vuser scripts for use with LoadRunner, refer to the HP
WinRunner User’s Guide or HP QuickTest Professional User’s Guide.
21

Chapter 1 • Understanding Protocols
Vuser Types

VuGen provides a variety of Vuser technologies that allow you to emulate
your system. Each technology is suited to a particular architecture and
results in a specific type of Vuser script. For example, you use Web Vuser
Scripts to emulate users operating Web browsers and FTP Vusers to emulate
an FTP session. The various Vuser technologies can be used alone or
together, to create effective tests or Business Process Monitor profiles.

The Vuser types are divided into the following categories:

➤ All Protocols. a list of all supported protocols in alphabetical order.

➤ Application Deployment Solution. For the Citrix and Microsoft Remote
Desktop Protocol (RDP) protocols.

➤ Client/Server. For DB2 CLI, Domain Name Resolution (DNS), Informix,
Microsoft .NET, MS SQL Server, ODBC, Oracle (2-tier), Sybase Ctlib,
Sybase Dblib, and Windows Sockets protocols.

➤ Custom. For C templates, Java templates, Javascript, VB script, VB
templates, and VBNet type scripts.

➤ Distributed Components. For COM/DCOM, and Microsoft .NET
protocols.

➤ E-business. For Action Message Format (AMF), AJAX (Click and Script),
Flex, File Transfer Protocol (FTP), Listing Directory Service (LDAP,)
Microsoft .NET, Web (Click and Script), Web (HTTP/HTML), and Web
Services protocols.

➤ Enterprise Java Beans. For EJB Testing.

➤ ERP/CRM. For Oracle NCA, Oracle Web Applications 11i, Peoplesoft
Enterprise, Peoplesoft-Tuxedo, SAP-Web, SAPGUI, SAP (Click and Script),
and Siebel (Siebel-DB2CLI, Siebel-MSSQL, Siebel-Oracle, and Siebel-Web)
protocols.

➤ Java. For the Java Record/Replay protocol.

➤ Legacy. For Terminal Emulation (RTE).

➤ Mailing Services. Internet Messaging (IMAP), MS Exchange (MAPI), Post
Office Protocol (POP3), and Simple Mail Protocol (SMTP).

➤ Middleware. The Tuxedo protocol.
22

Chapter 1 • Understanding Protocols
➤ Streaming. For MediaPlayer (MMS) and RealPlayer protocols.

➤ Wireless. For Multimedia Messaging Service (MM) and WAP protocols.
23

Chapter 1 • Understanding Protocols
24

Part II

SOA and Web Services Testing

26

2
Understanding the SOA Test Types

You use VuGen to create tests for your Web Services.

This chapter includes:

 ➤ About SOA Test Types on page 27

 ➤ Getting Started with Web Services Vuser Scripts on page 28

The following information only applies to Web Services/SOA Vuser scripts.

About SOA Test Types

SOA systems are based on Web Services, self-contained applications that can
run across the Internet on a variety of platforms. The services are built using
Extensible Markup Language (XML) and Simple Object Access Protocol
(SOAP). They serve as building blocks enabling the rapid development and
deployment of new applications.

Using VuGen, you create test scripts for testing your SOA environment. You
can use a test generation wizard to automatically generate scripts, or create
the scripts manually.

To automatically generate test scripts, you use the SOA Test Generator. A
wizard guides you through the process of selecting testing aspects such as
interoperability with different toolkits, boundary testing, and standard
compliance. For more information, see Chapter 23, “Using the SOA Test
Generator.”
27

Chapter 2 • Understanding the SOA Test Types
To manually create scripts, you begin by creating an empty script. Then you
add content to the script either by recording a session, analyzing network
traffic, or manually inserting calls to the Web service as described in
Chapter 5, “Adding Content to Web Services Scripts.”

For manual scripts, you use VuGen to create one of the following scripts.

➤ Single Protocol Script. A script that emulates SOAP traffic by sending SOAP
requests to the Web service.

➤ Multi Protocol Script. A script that emulates several protocols in a single
script. For example, if your environment contains a client that accesses a
Web Services and Web pages, choose both the Web Services and Web (Click
and Script) protocols.

Getting Started with Web Services Vuser Scripts

This section provides an overview of the process of developing a Web
Services / SOA Vuser script.

To develop a test script:

 1 Create a new Web Services script.

Create a new script using the SOA Test Generator, or manually create a new
single or multiple protocol script, or a Business Process Testing component.

 2 Add content to the script.

Add content to the script (excluding the SOA Test Generator). For details, see
Chapter 5, “Adding Content to Web Services Scripts.”

 3 Set properties, values, and checkpoints.

Enhance the script by customizing the step properties, inserting argument
values, and setting checkpoints. For details, see Chapter 7, “Working in the
Web Service Call View.”
28

Chapter 2 • Understanding the SOA Test Types
 4 Parametrize your script.

Parameterization lets you replace constant values with a variable to
substitute new values for each iteration. To parameterize a value, double-
click on a step to open its properties and click the ABC icon adjacent to the
value box. For complex type elements, use the XML parameter type as
described in “Setting Properties for XML Parameters” on page 182.

 5 Configure the Run-Time settings.

The Run-Time settings control the script’s behavior during execution. These
settings include Web Service-specific settings (client emulation) and General
settings—run logic, pacing, logging, and think time.

For information about the Web Service-specific settings, see “Setting Web
Services JMS Run-Time Settings” on page 161, and “Configuring Run-Time
Settings” in Volume I-Using VuGen.

 6 Verify that the script is functional.

Replay the script in VuGen to verify that it runs correctly.

For details about replaying the script, see“Running Vuser Scripts in
Standalone Mode” in Volume I-Using VuGen.

 7 Save the script.

Save the script in the file system or in a Quality Center repository. If you
save the scripts in Quality Center, you can associate them to a test set and
perform functional and regression testing directly from Quality Center. For
more information about Quality Center and its integration with scripts, see
“Working with Service Test Management” on page 69.

After you prepare a script, you are ready to use it for your testing. For more
information, see “Using Your Script” on page 68.

Use Quality Center to manage all of your tests while tracking defects and
requirements. For more information, see www.hp.com or contact your sales
representative.
29

Chapter 2 • Understanding the SOA Test Types

30

3
Working with Web Services Scripts

After creating a Web Services script, you can view it in either Script view or
Tree view. Within these views, you can modify the script and its properties.

This chapter includes:

 ➤ About Working with Web Services Scripts on page 31

 ➤ Viewing and Editing Scripts on page 32

 ➤ Parameterizing Scripts on page 35

The following information only applies to Web Services Vuser scripts.

About Working with Web Services Scripts

After you create a script, you can view its contents in either Tree view or
Script view. The tree view is a graphical view, while Script view displays the
actual functions in the script.

When viewing your script, you can examine it and determine if it needs to
be enhanced in any way. The most common enhancements are transactions
and parameterization.

Transactions let you mark a group of actions to be measured to check the
applications’s performance. For example, if you want to check the time it
took for a service to update an address, you mark those actions as a
transaction. For more information, see “Inserting Transactions into a Vuser
Script” on page 128.
31

Chapter 3 • Working with Web Services Scripts
Parameterization is the replacing of constants with parameters. This is useful
for testing your service with different values, or passing information from
one step to another. For more information, see “Parameterizing Scripts” on
page 35.

Viewing and Editing Scripts

You can view and edit all of the scripts that you created both manually and
automatically in the VuGenwindow.

You can view a script in either Tree View or Script View. Tree view displays
the steps of the script in a graphical interface, while the Script view shows
all steps, including the actual web_service_call functions that emulate your
service. Script view is ideal for advanced users that require more flexibility
within the script.

Tree View
The Tree view shows a graphical representation of each one of the script’s
steps.

When you select a step, VuGen displays information about the step in
several tabs:

➤ Step Properties. The properties and argument values of the Web service call.
This tab allows you to modify the properties of an existing step. See
“Understanding Web Service Call Properties” on page 87.
32

Chapter 3 • Working with Web Services Scripts
➤ Checkpoint. A list of checkpoints defined for the step. See “Setting
Checkpoints” on page 119.

➤ SOAP Snapshot. A snapshot of the SOAP request and response for both
record and replay. See “Viewing Web Services SOAP Snapshots” on page 84.

For more information about these tabs, see Chapter 7, “Working in the Web
Service Call View.”

To view a script in Tree view:

 1 Click the Tree button or choose View > Tree View.

 2 In the upper left box, select the section containing the steps of the script
that you want to view: vuser_init, Action, or vuser_end. To specify a new
action choose Actions > Create New Action.

 3 In the left pane, select the step or sub-node that you want to view or modify.

 4 Select the Step Properties tab in the right pane to view or modify the
properties.

 5 Select the Snapshot tab to view the step’s SOAP header and body. To display
a specific replay iteration, choose View > Snapshot > Select Iteration.

 6 To add additional Web Service steps, click the Add Service Call button. For
more information, see “Adding New Web Service Calls” on page 62.

 7 To insert advanced functionality, such as JMS queue retrieval and SAML
security, choose Insert > Add Step and choose the appropriate step. For more
information, see Chapter 8, “Setting Advanced Properties for Web Service
Scripts.”

 8 To replace argument values with parameters, go to the Step Properties tab.
Select the node whose value you want to replace in the script, and click the
ABC icon to the right of the Value box.

 9 To set a checkpoint, click the Checkpoint tab. For more Information, see
“Setting Checkpoints” on page 119.
33

Chapter 3 • Working with Web Services Scripts
Script View
The Script view shows the actual functions that were generated in the script.
You can expand or collapse each of the web_service_call functions to view
only the functions that interest you.

To view a script in Script view:

 1 Click the Script button or choose View > Script View.

 2 In the left pane, select the section containing the steps of the script that you
want to view: vuser_init, Action, or vuser_end. To specify a new section
choose Actions > Create New Action.

 3 To add additional Web Service steps at the location of the cursor, click the
Add Service Call button. For more information, see Chapter 7, “Working in
the Web Service Call View.”

 4 To insert advanced functionality, such as JMS queue retrieval and SAML
security, choose Insert > Add Step and choose the appropriate step. For more
information, see Chapter 8, “Setting Advanced Properties for Web Service
Scripts.”

 5 To replace argument values with parameters, select the value you want to
replace in the script, and select Replace with Parameter from the right-click
menu.

34

Chapter 3 • Working with Web Services Scripts
For more information about the functions, refer to the Online Function
Reference (Help > Function Reference) or select a function and click F1.

Parameterizing Scripts

VuGen supports parameterization for all of the argument values.
Parametrization lets you substitute the original values with external values.
This is useful for testing your service with different values, or passing
information from one step to another. For an overview on parameterization,
see “Creating Parameters” in Volume I-Using VuGen.

If your arguments are the simple, non-array type, you can replace them with
a simple parameter. For example, if you want to test a service that does
addition, you can substitute each of the input arguments with a parameter,
and store the values in a file or a table.

If, however, your arguments are a complex structure with many values, you
can use an XML type parameter to replace the entire structure with a single
parameter. You can create several value sets for the XML type parameter and
assign a different value set for each iteration. For more information, see
“Understanding Parameter Types” in Volume I-Using VuGen.

Using parameters, you can pass the output value from one operation, as
input for a later operation. For more information, see “Using Web Service
Output Parameters” on page 115.
35

Chapter 3 • Working with Web Services Scripts
To replace a constant value with a parameter:

 1 Switch to the Step Properties tab and select the parent or child element
whose value you want to parameterize.

 2 Under the Input Arguments node, select the argument you want to
parameterize. In the right pane, click the ABC icon in the Value box. The
Select or Create Parameter dialog box opens.

 3 Specify a parameter name and type.

 4 Click Properties to set the type of parameter—File, XML, and so on—and to
assign values.

For more information, see “Creating Parameters” in Volume I-Using VuGen.
36

4
Managing Web Services

VuGen provides utilities that let you validate and manage the WSDL files
associated with your service entries.

This chapter includes:

 ➤ About Managing Web Services Vuser Scripts on page 38

 ➤ Viewing and Setting Service Properties on page 39

 ➤ Importing Services on page 43

 ➤ Specifying a Service on a UDDI Server on page 45

 ➤ Choosing a Service from Quality Center on page 46

 ➤ Specifying WSDL Connection Settings on page 47

 ➤ Deleting Services on page 49

 ➤ Comparing WSDL Files on page 49

 ➤ Viewing WSDL Files on page 54

The following information only applies to Web Services and SOA Vuser
scripts.
37

Chapter 4 • Managing Web Services
About Managing Web Services Vuser Scripts

The Service Management window lets you manage a list of service entries for
the current script. You can view and set the properties of each service entry.

You add service entries to the list by importing WSDL files. When you add a
WSDL to the list, VuGen creates a working copy that it saves with the
script—it is not global. Therefore, for each script that you create, you must
import the desired WSDL files.

To view the copy of the locally saved WSDL in Internet Explorer, click the
View WSDL button.
38

Chapter 4 • Managing Web Services
Note: All validations and modifications to WSDL files are done on the
working copy. If you want to replace the imported WSDL file with a newer
version, use the Update Now option described in “Description” on page 39.

To open the Service Management window, choose SOA Tools > Manage
Services or click the Manage Services toolbar button.

The Service Management window provides an interface for:

➤ Viewing and Setting Service Properties

➤ Importing Services

➤ Deleting Services

➤ Comparing WSDL Files

➤ Viewing WSDL Files

Viewing and Setting Service Properties

The Service Management window lets you view and modify information
about the imported WSDLs. It shows details about the selected service entry
in the following tabs:

➤ Description

➤ Operations

➤ Connection Settings

➤ UDDI Data

Description
The Service Management window’s Description tab displays information
about the service: WSDL, Endpoint Address, and Details. You can add
annotations or notes about your service, in the Details area.
39

Chapter 4 • Managing Web Services
WSDL

The WSDL area provides information about the location of the WSDL, and
the date that it was last imported.

➤ Original location. The original source of the WSDL file (read-only).

➤ Service name. The name of the Web Service.

➤ Last update from original. (For services not imported from Quality Center)
The last date that the local copy was updated with a WSDL file from the
original source.

➤ To manually update the working copy of the WSDL, click Update Now.
VuGen backs up the existing WSDL and updates it from the location
indicated above.

➤ To instruct VuGen to update the WSDL every time you open the script,
select Update when opening script.

➤ date of the last of the service from QC

➤ Last updated from QC. (For services imported from Quality Center) The last
date that the service was updated from Quality Center.

Address

➤ Service address. An endpoint address to which the request is sent.

If you want to override the endpoint specified in the WSDL file, choose
Override address and specify a different address in the Service address box.

This is useful for implementing emulated services. VuGen uses the override
address as targetAddress for the Web Service call. This overriding affects all
Web Service calls. To use a different target address for a particular Web
Service call, you specify it in that step’s properties. For more information,
see “Using Emulated Services in Vuser Scripts” on page 489.

Details

➤ Description. A description of the Web service, taken by default from the
WSDL file. This text area is editable.

➤ Created by. The name of the user who originally imported the service (read-
only).

40

Chapter 4 • Managing Web Services
➤ Toolkit. The toolkit associated with the script. You set this before importing
the first WSDL file.

Operations
Each of the imported services may define multiple operations. The
Operations tab indicates which operations are being used for the service you
selected in the left pane.

You can sort the list of operations by clicking on the relevant column. For
example, to list the operations by name, click the Operation Name column.
To list them in descending order, click the column name again. A small
arrow indicates the sorted column. An upward arrow indicates ascending
order, while a downward arrow indicates descending order.
41

Chapter 4 • Managing Web Services
Connection Settings
In some cases WSDLs reside on secure sites requiring authentication. In
certain instances, the WSDL is accessed through a proxy server.

VuGen supports the importing of WSDLs using security and WSDLs accessed
through proxy servers. The following security and authentication methods
are supported:

➤ SSL

➤ Basic and NTLM authentication

➤ Kerberos for the .NET and Generic toolkits

It is recommended that you enter the authentication or proxy information
while importing the WSDL. If however, the settings changed, you can
modify them through the Service Manager’s Connection Settings tab.

For more information about setting the connection information while
importing the WSDL, see “Connection Settings” on page 45.
42

Chapter 4 • Managing Web Services
UDDI Data
You can view the details of the UDDI server for each service that you
imported from a UDDI registry.

The read-only information indicates the URL of the UDDI server, the UDDI
version, and the Service key.

For information about importing from a UDDI, see “Specifying a Service on
a UDDI Server” on page 45.

Importing Services

VuGen lets you import services for the purpose of creating a high-level tests
with Web Service Call steps. Typically, you begin creating a script by
importing a WSDL file.

When importing a file, you specify the following information:

➤ Source. the source of the WSDL: URL, File, UDDI, or Quality Center

➤ Location. the path or URL of the WSDL, entered manually or by browsing

➤ Toolkit. the toolkit to permanently associate with all services in the script
(only available for the first service added to the script)
43

Chapter 4 • Managing Web Services
➤ Connection Settings. authentication or proxy server information (optional)

If VuGen detects a problem with your WSDL when attempting to do an
import, it issues an alert and prompts you to open the report. The report
lists the errors and provides details about them.

Source

When specifying a WSDL, you can indicate the source:

➤ URL. The complete URL of the service.

➤ File. The complete path and name of the WSDL file.

➤ UDDI. Universal Description, Discovery, and Integration—a universal
repository for services. For more information, see “Specifying a Service on a
UDDI Server” on page 45.

➤ Quality Center. A service stored in the Quality Center repository. For more
information, see “Choosing a Service from Quality Center” on page 46.

VuGensupports URL or UDDI paths that are secure, requiring authentication
or accessed through proxy servers. For more information, see “Specifying a
Service on a UDDI Server” on page 45.

Location

In the Location box, you specify the path or URL of the WSDL.

For the URL or UDDI options, make sure to insert a complete URL—not a
shortened version. Click the Browse button to the right of the text box to
open the default browser.
44

Chapter 4 • Managing Web Services
For a file, click the Browse button to the right of the text box to locate the
WSDL on the file system.

For Quality Center, click the Quality Center Connection button to specify a
server URL and to initiate a connection. For more information, see
“Choosing a Service from Quality Center” on page 46.

Toolkit

Choosing a toolkit instructs VuGen to send real client traffic using an actual
toolkit—not an emulation. Once you select a toolkit, it becomes
permanently associated with the script for all subsequent recordings,
imports, and replays.

VuGen supports the .NET Framework with WSE 2 version SP3 and Axis/Java
based Web Services Framework toolkits. VuGen imports, records, and replays
the script using the actual .NET or Axis toolkit.

Connection Settings

When importing WSDL files from a URL or UDDI, the WSDL may require
authentication if it resides in a secure location. In certain cases, the access to
the WSDL may be through a proxy server. Using the Connection Settings
button, you can specify this information. For more information, see
“Specifying WSDL Connection Settings” on page 47.

Specifying a Service on a UDDI Server

Service brokers register and categorize published Web Services and provide
search capabilities. The UDDI business registry is an example of a service
broker for WSDL-described Web Services.

Your Web Service client can use broker services such as the UDDI, to search
for a required WSDL-based service. Once located, you bind to the server and
call the service provider.
45

Chapter 4 • Managing Web Services
Click the Browse button to open the Search for Service in UDDI dialog box.

To search for a service on a UDDI:

 1 In the UDDI server inquiry address box, enter the URL of the UDDI server.

 2 Specify the UDDI version.

 3 Specify the name or part of the name of the service. Select Exact Match or
Case Sensitive to refine your search, if they are applicable. To perform a
wildcard search, use the percent (%) character.

 4 Click Search. VuGen displays all of the matching results.

 5 Double-click on a service in the list to import it.

Choosing a Service from Quality Center

HP Quality Center with the Service Test Management add-on, integrates
with VuGen. This integration allows you to store service entries and tests in
Quality Center. You can also create and organize services according to your
test requirements and test plan.
46

Chapter 4 • Managing Web Services
To specify a service from Quality Center:

 1 In the Import Service dialog box, choose Quality Center.

 2 If you have not yet connected to your Quality Center project, click Quality
Center Connection to open the Connection dialog box. For information on
opening a Quality Center connection, see Managing Scripts Using Quality
Center in Volume I-Using VuGen.

 3 Click the Browse button to view the list of service entries saved in Quality
Center.

 4 Double-click on a service in the list to import it.

Specifying WSDL Connection Settings

VuGen supports the importing of WSDLs using authentication and WSDLs
accessed through proxy servers.

Once you enter the security or proxy information, it remains with the
WSDL, visible through the Connection Settings tab in the Service
Management dialog box. If you enable the Keep up to date option to allow
automatic synchronization, Service Test accesses the WSDL at its source
using the authentication or proxy server settings.
47

Chapter 4 • Managing Web Services
These connection settings only apply to the importing of a WSDL. To use
authentication during replay for access to a server, use the web_set_user or
web_set_proxy steps. For more information, refer to the Online Function
Reference (Help > Function Reference).

To specify authentication or proxy information for importing:

 1 Open the Import Service dialog box as you normally would, either with a
new Web Service call, recording, or Traffic Analysis.

 2 Select either the URL or UDDI option and specify a URL of the service to be
imported.

 3 In the Import Service dialog box, click the Connection Settings button to
open the box.

 4 In the Connections Settings dialog box, select the desired option: Use
Authentication Settings, Use Proxy Settings or both.

 5 Specify the authentication details, and, for a proxy server, the name and
port of the server. If you attempt to import the secure service before
specifying the necessary credentials, VuGen prompts you to enter the
information.
48

Chapter 4 • Managing Web Services
 6 To update or modify the security settings, open the Service Manager and
select the appropriate service in the left pane. Click the Connection Settings
tab. Edit the required fields and click OK.

Deleting Services

You can delete service entries from the Service Management dialog box,
when they are no longer required. If a service was updated, you can
synchronize the WSDL from the source—you don’t need to delete it and
reimport the service.

Before deleting a service, make sure that it is not required for your script. If
you created a script based on a specific service and you then attempt to
delete it, VuGen warns you that the deletion may affect your script.
Deletions cannot be undone.

To delete a service, select it from the list of services and click the Delete
button.

Comparing WSDL Files

When you import a WSDL file, VuGen makes a working copy and saves it
along with the script. This saves resources and enables a more scalable and
stable environment.

It is possible, however, that by the time you run the script, the original
WSDL file will have changed. If you run the script, the test results may be
inaccurate and the script may no longer be functional. Therefore, before
replaying a Web Services script that was created at an earlier date, you
should run a comparison test on the WSDL file.

VuGen provides a comparison tool which compares the local working copy
of the WSDL file with the original file on the file system or Web server.

If the differences are significant, you can update the WSDL from the original
copy using the Synchronize option in the Service Management dialog box.

VuGen also has a general utility that allows you to compare any two XML
files. For more information, see “Comparing XML Files” on page 53.
49

Chapter 4 • Managing Web Services
Setting WSDL/XML Comparison Options
VuGen offers the following options when comparing the local and global
copies of the WSDL documents, or the revisions of an XML file:

➤ Show only differences. Show only lines with differences. Do not show the
entire document.

➤ Ignore case. Ignore case differences between the texts.

➤ Ignore comments. Ignore all comments in the texts.

➤ Ignore processing Instructions. Ignore all texts with processing instructions.

➤ Ignore namespaces. Ignore all namespace differences.

To configure the comparison options:

 1 Configure the comparison settings. Choose SOA Tools > SOA Settings >
XML/WSDL Compare. The WSDL Operations Options dialog box opens.
Select the desired options.

 2 Click OK.

Note: The comparison option settings apply to both WSDL comparisons
from within the Service Management window, and for XML comparisons
accessed from the Tools menu.
50

Chapter 4 • Managing Web Services
Comparison Reports
VuGen lists the differences between the files in a Comparison report.

In WSDL Comparison reports, there are two columns— Working Copy and
Original File. The Working Copy is the WSDL stored with the script, while
the Original File is the WSDL at its original location—a network file path or
a URL.

In XML Comparison reports, each column displays the path of an XML file.

The Comparison report uses the following legend to mark the differences
between the two files:

➤ Yellow. Changes to an existing element (shown in both versions).

➤ Green. A new element added (shown in the original file copy).

➤ Pink. A deleted element (shown in the working copy).

In the following example, line 24 was deleted from the original copy and
and line 28 was added.
51

Chapter 4 • Managing Web Services
Running a WSDL Comparison
After running a file comparison, you can decide whether to ignore the
changes, if they exist, or reload the WSDL file.

To compare WSDL files:

 1 Configure the comparison settings. Choose SOA Tools > SOA Settings >
XML/WSDL Compare. The XML/WSDL Comparison dialog box opens.
Select the desired options.

 2 Open the Service Management window. Choose SOA Tools > Service
Management or click the Manage Services toolbar button

 3 Select the service upon which you want to perform a comparison. You can
only run the comparison on one service at a time.

 4 Click Compare. The WSDL Comparison Report opens.

 5 Scroll down through the file to locate the differences.

If you find differences between the two files and you want to update
VuGen’s working copy of the WSDL file, click on the WSDL file in the tree in
the left pane. Select Refresh file from global copy from the right-click menu.
This copies the current version of the WSDL into the script’s WSDL
directory.

 6 To close the WSDL Comparison Report window, choose File > Exit.
52

Chapter 4 • Managing Web Services
Comparing XML Files
VuGen provides a utility that lets you compare two XML files.

You can specify what differences to ignore, such as case or comments. For
additional information about the comparison options, see “Setting
WSDL/XML Comparison Options” on page 50.

To compare two XML files:

 1 Choose Tools > Compare XML Files. The XML File Comparison dialog box
opens.

 2 Click the Browse button to the right of the Base Revision box to locate the
original XML file.

 3 Click the Browse button to the right of the Compared Revision box to locate
the newer XML file.

 4 Click OK. VuGen opens the XML Comparison Report window.

For information about the Comparison report, see “Comparison Reports” on
page 51.
53

Chapter 4 • Managing Web Services
Viewing WSDL Files

The Service Management window lets you view the WSDL in your default
browser.

To view a WSDL:

 1 Select it in the left pane.

 2 Click the View WSDL button in the Service Management window.
54

5
Adding Content to Web Services Scripts

You use VuGen to create a script to test your Web Services through
recording, manually adding calls, or analyzing server traffic.

This chapter includes:

 ➤ About Adding Content to Web Services Scripts on page 55

 ➤ Recording a Web Services Script on page 56

 ➤ Viewing the Workflow on page 61

 ➤ Adding New Web Service Calls on page 62

 ➤ Importing SOAP Requests on page 65

 ➤ Using Your Script on page 68

 ➤ Working with Service Test Management on page 69

The following information only applies to Web Services and SOA Vuser
scripts.

About Adding Content to Web Services Scripts

Web Services scripts let you test your environment by emulating Web
Service clients.

After creating an empty Web Services script, as described in “Understanding
the SOA Test Types” on page 27, you add content through one of the
following methods: recording, manually inserting Web Service calls,
importing SOAP, or by analyzing server traffic.
55

Chapter 5 • Adding Content to Web Services Scripts
To create scripts automatically, run the SOA Test Generator using the wizard
to add content. For more information, see Chapter 23, “Using the SOA Test
Generator.”

Recording a Web Services Script

By recording a Web Services session, you capture the events of a typical
business process. If you have already built a client that interacts with the
Web Service, you can record all of the actions that the client performs. The
resulting script emulates the operations of your Web Service client. After
recording, you can add more Web Service calls and make other
enhancements.

Specify Services for Recording
When you record an application, you can record it with or without a Web
Service WSDL file. It is recommended to record with a WSDL when possible.

If you include a WSDL file, VuGen allows you to create a script by selecting
the desired methods and entering values for their arguments. VuGen creates
a descriptive script that can easily be updated when there are changes in the
WSDL.

For information on creating scripts by See

recording “Recording a Web Services Script”
below

manually inserting Web Service calls “Adding New Web Service Calls” on
page 62

importing SOAP requests “Importing SOAP Requests” on
page 65

analyzing server traffic Chapter 6, “Creating Server Traffic
Scripts”

running the SOA Test Generator Chapter 23, “Using the SOA Test
Generator”
56

Chapter 5 • Adding Content to Web Services Scripts
If you do not specify a WSDL file (not recommended), VuGen creates a test
with SOAP requests instead of Web Service call steps. If you create a script
without importing a service, VuGen creates a soap_request step whose
arguments are difficult to maintain.

To create Web Services script through recording:

 1 Create an empty script.

Choose File > New to open the New Virtual User dialog box.

For a single protocol script, click New Single Protocol Script in the left pane.
Select Web Services protocol from the E-Business category. Click OK.

If you need to record several different protocols, such as Web Services and
Web, click New Multiple Protocol Script in the left pane and specify the
desired protocols. Click OK.
57

Chapter 5 • Adding Content to Web Services Scripts
 2 Begin the recording process.

Click the Start Record button or Ctrl+R to open the Specify Services screen.

 3 Add a service to the list.

To produce a high-level Web Service script, add one or more services using
the Import button. If the WSDL of the recorded Web Service is available, it is
recommended to import it here. If you create a script without importing a
service, VuGen creates a soap_request step. The Import Service dialog box
opens.

58

Chapter 5 • Adding Content to Web Services Scripts
 a Choose a source and location for the WSDL.

 b Select a toolkit. The toolkit you choose is permanently associated with
the script. For more information, see “Importing Services” on page 43.

 c Click Import.

Repeat the above step for each WSDL you want to import.

 4 Enter details for the Web Service.

Click Details to open the Service Manager window and view the details of
the Web Services that you added. For more information, see Chapter 7,
“Working in the Web Service Call View.”

In the next step, you choose an application to record.

Selecting an Application to Record
In this screen you specify the application to record. You can record a
browser session or client application.
59

Chapter 5 • Adding Content to Web Services Scripts
 1 Specify the recording details.

➤ Record default Web Browser. Records the actions of the default Web
browser, beginning with the specified URL. Select this option where you
access the Web Service through a Web-based UI.

➤ Record any application. Records the actions of a your client application.
Specify or browse for the path in the Program to record box. Specify any
relevant arguments and working directories.

 2 Configure options.

➤ Record into action. The action in which to generate the code. If there are
startup procedures that you do not need to repeat, place them in the
vuser_init section. During recording you can switch to another section,
such as Action.

➤ Record application startup. Records the application startup as part of the
script. If you want to begin recording at a specific point, not including
the startup, clear this check box.

➤ Advanced Options. Opens the Recording Options dialog box, allowing
you to customize the way in which the script is generated. For more
information, see the section on setting Script Generation preferences.

 3 Click Finish.

VuGen opens the application and begins recording. Perform the desired
actions within your application and then press the Stop button on the
floating toolbar. VuGen generates web_service_call functions, or
soap_request functions if you did not import a WSDL.

After recording, you can enhance your script with additional service calls
and parameterization. You run the completed script in VuGen to check its
functionality.

For more information, see “Getting Started with Web Services Vuser Scripts”
on page 28.
60

Chapter 5 • Adding Content to Web Services Scripts
Viewing the Workflow

When adding script content through recording or Analyzing traffic, VuGen’s
workflow guides you through the stages of preparing a script. By clicking in
the Tasks pane, you can read about the steps for creating a script, view
information about your recording, and verify the replay. Use the Back and
Next buttons to navigate between screens.

If you do not see the Workflow screen, click the Tasks button on the toolbar
to open the Tasks pane, and select a task.

Create Script
The Create Script screen provides several guidelines for creating a Web
Services script. It also provides a link for opening the Web Services wizard.

➤ Before You Start. Describes what you should know before you begin.

➤ About Script Creation. Describes the stages of script creation.

➤ Actions. Describes script sections and why they are important.

There are two action-related links:

➤ Start Recording. Opens the Start Recording dialog box where you provide
information about the application to record.

➤ Analyze Traffic. Lets you analyze traffic captured over the network to
create a script that emulates a server.

Creation Summary
After you create a script, the Creation Summary screen provides information
about the recording or script generation.

➤ Protocols. Lists which protocols were used during the script creation.

➤ Actions. Describes into which sections actions were recorded or
imported.
61

Chapter 5 • Adding Content to Web Services Scripts
It also provides links that allow you to modify the script:

➤ Add a web_service_call statement. Lets you manually add a
web_service_call function to your script by specifying a service,
operation, and argument values.

➤ Manage the services. Opens the Service Repository window with a list of
all of the services that are available to the script and their properties.

➤ Compare XML files. Allows you to compare two versions of an XML file.
This is useful for comparing WSDL files and determining if there was a
change since your originally imported it into the script.

For information about the remainder of the workflow, see Chapter 3,
“Viewing the VuGen Workflow.”

Adding New Web Service Calls

You can add new Web Service call functions in both Tree and Script views.

To add a Web Service call:

 1 Click the cursor at the desired location in your script.

 2 Click the Add Service Call button. The New Web Service Call dialog box
opens. Select the desired Service. If this is a new script and you did not yet
import a WSDL, do so at this point. For more information, see “Importing
Services” on page 43.
62

Chapter 5 • Adding Content to Web Services Scripts
 3 Select an Operation. For services using multiple ports, select a Port Name for
the operation. This lets you differentiate between identical operations
performed on separate ports.

 4 To specify a target address other than the default for the active port, select
Override address and enter the address.

 5 To provide sample input values for the service, click on the highest level
node (the service name) and select Generate auto-values for input
arguments. VuGen adds sample values and places an arrow before each of
the arguments, to indicate that it is using auto-values.

To provide sample values for all Input arguments, select the Input
Arguments node and click Generate.
63

Chapter 5 • Adding Content to Web Services Scripts
 6 To parameterize the input arguments of the operation, see “Setting
Properties for XML Parameters” on page 182.

 7 Select the Transport Layer Configuration node to specify advanced options,
such as JMS transport for SOAP messages (Axis toolkit only), asynchronous
messaging, or WS Addressing. For more information, see “Configuring the
Transport Layer” on page 128.

 8 Click on each of the nodes and specify your preferences for argument
values. For more information, see Chapter 7, “Working in the Web Service
Call View.”

 9 To add an attachment to an input argument, or to specify a parameter to
store output arguments, select the operation’s main node and make the
appropriate selection. For more information, see “Attachments” on
page 107.
64

Chapter 5 • Adding Content to Web Services Scripts
Importing SOAP Requests

VuGen lets you create Web service calls from SOAP files. If you have a SOAP
request file, you can load it directly into your script. VuGen imports the
entire SOAP request (excluding the security headers) with the argument
values as they were defined in the XML elements. By importing the SOAP,
you do not need to set argument values manually as in standard Web
Service calls.

For example, suppose you have a SOAP request with the following elements:

- <soap:Body soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
- <q1:AddAddr xmlns:q1="http://tempuri.org/AddrBook/message/">

<Addr href="#id1" />
 </q1:AddAddr>

- <q2:Addr id="id1" xsi:type="q2:Addr" xmlns:q2="http://tempuri.org/AddrBook/type/">
<name xsi:type="xsd:string">Tom Smith</name>

 <street xsi:type="xsd:string">15 Elm Street</street>
 <city xsi:type="xsd:string">Pheonix</city>
<state xsi:type="xsd:string">AZ</state>
<zip-code xsi:type="xsd:string">97432</zip-code>
<phone-numbers href="#id2" />
<birthday xsi:type="xsd:date">1983-04-22</birthday>

 </q2:Addr>
…

65

Chapter 5 • Adding Content to Web Services Scripts
When you import the SOAP request, VuGen imports all of the values to the
Web Service call:

To create a new Web Service call based on a SOAP request, you must first
import a WSDL file. If a WSDL is not available, or if you want to send the
SOAP traffic directly, you can create a SOAP Request step. You specify the
URL of the server, the SOAP action, and the response parameter.
66

Chapter 5 • Adding Content to Web Services Scripts
In Script view, the SOAP Request step appears as a soap_request function,
described in the Online Function Reference (Help > Function Reference).

To import a SOAP request:

 1 Click the Import SOAP button or choose SOA Tools > SOAP Import.

 2 Browse for the XML file that represents your SOAP request.

 3 Choose the type of step you would like to generate: Create Web Service Call
or Create SOAP Request. In order to create a Web Service Call, you must first
import at least one WSDL that describes the operation in the SOAP request
file. To import a WSDL, click Service Management and then click the
Import button. To view the SOAP before loading it, click View SOAP.

 4 Click Load. VuGen loads the XML element values.

For a Web Service Call, set the properties for the Service call as described in
“Understanding Web Service Call Properties” on page 87.
67

Chapter 5 • Adding Content to Web Services Scripts
For a SOAP request, provide the URL and the other relevant parameters.

 5 For a Web Service Call, if there are multiple services with same operation
(method) names, you need to choose the service whose SOAP traffic you
want to import. For information about additional properties, see
“Understanding Web Service Call Properties” on page 87.

 6 Click OK to generate the new step within your script.

 7 Set checkpoints and replay the step. For more information, see “Setting
Checkpoints” on page 119.

Using Your Script

After you create scripts, you can manage them in one of the following ways:

➤ Service Test Management. An add-on for HP Quality Center that lets you
manage SOA testing by allowing you to import, store and define services in
Quality Center. Its sections include Requirements Management, Test Plan,
Test Lab, and Defects Management. For more information, see “Working
with Service Test Management” on page 69.
68

Chapter 5 • Adding Content to Web Services Scripts
You can use the completed script to test your system in several ways:

➤ Functional Testing. Run the script to see if your Web services are functional.
You can also check to see if the Web service generated the expected values
For more information, see Chapter 9, “Running SOA/Web Services Scripts.”

➤ Load Testing. Integrate the script into a LoadRunner Controller scenario to
test its performance under load. For more information, see the HP
LoadRunner Controller or Performance Center documentation.

➤ Production Testing. Check your Web service’s performance over time
through a Business Process Monitor profile. For more information, refer to
the HP Business Availability Center documentation.

Working with Service Test Management

HP Quality Center is a Web-based application for test management. Its
sections include Requirements Management, Test Plan, Test Lab, and Defects
Management.

The Service Test Management add-on for Quality Center, lets you manage
SOA testing by allowing you to import, store and define services in Quality
Center.

The Service Test Management integration lets you:

➤ Store Web Services. You can store and organize Web Services in Quality
Center for use within Service Test.

➤ Write Service Test scripts. You can create scripts based on the services
stored in Quality Center, while maintaining up-to-date WSDLs
throughout the life-cycle of the service and the script.

➤ Compose a Business Process Test. You can create a BPT (Business Process
Test) in Quality Center based on services defined through Service Test
Management.

Service Test Management also integrates with HP’s Systinet Registry, to
create test requirements and plans. Once the services are imported, Service
Test Management identifies any changes to the services and automatically
generates the necessary test cases that need to be run.
69

Chapter 5 • Adding Content to Web Services Scripts
Using the Service Test Management add-on for Quality Center, groups
throughout your organization can contribute to the quality process in the
following ways:

➤ Business analysts define application requirements and testing objectives.

➤ Test managers and project leads design test plans and develop test cases.

➤ Test managers automatically create QA testing requirements and test assets
for SOA services and environments.

➤ Test automation engineers create automated scripts and store them in the
repository.

➤ QA testers run manual and automated tests, report execution results, and
enter defects.

➤ Developers review and fix defects logged into the database.

➤ Project managers can export test and resource data in various reports, or in
native Microsoft Excel for analysis.

➤ Product managers decide whether an application is ready to be released.

➤ QA analysts can auto-generate test asset documentation in Microsoft Word
format.

For more information about the integration, refer to the HP Service Test
Management User’s Guide.
70

6
Creating Server Traffic Scripts

Using VuGen, you can create scripts to test your Web Service by analyzing
server traffic capture files.

This chapter includes:

 ➤ About Creating Server Traffic Scripts on page 71

 ➤ Getting Started with Server Traffic Scripts on page 73

 ➤ Generating a Capture File on page 74

 ➤ Creating a Basic Script from Server Traffic on page 76

 ➤ Specifying Traffic Information on page 78

 ➤ Choosing an Incoming or Outgoing Filter on page 79

 ➤ Providing an SSL Certificate on page 80

The following information only applies to Web Services/SOA Vuser scripts.

About Creating Server Traffic Scripts

The main focus when testing enterprises and complex systems, is to measure
the performance from the client end. Ordinarily, VuGen records the actions
you perform in the application or browser, and generates a script emulating
the client actions and requests to the server.

In certain test environments, you may be unable to record the client
application to retrieve the requests to the server. This may be a result of the
server acting as a client, or because you do not have access to the client
application. In these cases, you can create a script using VuGen’s Analyze
Traffic feature.
71

Chapter 6 • Creating Server Traffic Scripts
The Analyze Traffic feature examines a capture file containing the server
network traffic, and creates a script that emulates requests sent to or from
the server. The steps in creating a script by analyzing server traffic are
described below in Getting Started with Server Traffic Scripts.

There are two types of emulations: Incoming traffic and Outgoing traffic.

Incoming traffic scripts emulate situations in which you want to send
requests to the server, but you do not have access to the client application,
for example, due to security constraints. The most accurate solution in this
case is to generate a script from the traffic going into the server, from the
side of the client.

When you specify an Incoming server network traffic, you indicate the IP
address of the server and the port number upon which the application is
running. VuGen examines all of the traffic going into the server, extracts the
relevant messages, and creates a script. In the above diagram, if the client is
unavailable, you could create an Incoming script to emulate the requests
coming into Server A.

Outgoing Traffic scripts emulate the server acting as a client for another
server. In an application server that contains several internal servers, you
may want to emulate communication between server machines, for
example between Server A and Server B in the above diagram. The solution
in this case is to generate a script from the traffic sent as output from a
particular server.
72

Chapter 6 • Creating Server Traffic Scripts
When you create an Outgoing traffic script, you indicate the IP address of
the server whose outgoing traffic you want to emulate, and VuGen extracts
the traffic going out of that server. In the above diagram, an Outgoing script
could emulate the requests that Server A submits to the Server B.

Getting Started with Server Traffic Scripts

The following section outlines the process of creating a script that analyzes
server traffic.

 1 Create a capture file.

VuGen uses the capture file to analyze the server traffic and emulate it. For
more information, see “Generating a Capture File” on page 74.

 2 Create a new Web Services script.

Using VuGen’s main interface, you create a new Web Services script. For
more information see Chapter 2, “Understanding the SOA Test Types.”

 3 Specify the Services (optional, but recommended).

To create a high-level script, import a WSDL which describes the Web
Service you want to test.

 4 Specify the traffic information.

Click the Analyze Traffic button. Specify the location of the traffic file and
whether your script will be for Incoming or Outgoing traffic. For more
information, see “Specifying Traffic Information” on page 78.

 5 Specify the traffic filter Recording options.

Filter options let you determine which hosts to include or exclude in your
script. For more information, see “Choosing an Incoming or Outgoing
Filter” on page 79.

 6 Specify the SSL certificate information.

The SSL configuration lets you analyze secure traffic over HTTPS in order to
generate the script. For more information, see “Providing an SSL Certificate”
on page 80.
73

Chapter 6 • Creating Server Traffic Scripts
Generating a Capture File

A capture file is a trace file containing a log of all TCP traffic over the
network. Using a sniffer application, you obtain a dump of all of the
network traffic. The sniffer captures all of the events on the network and
saves them to a capture file.

To generate a smaller, more manageable script, try to capture the network
traffic only for the time that you perform actions in your application.

Note: Capture files do not contain loopback network traffic.

You can obtain a capture file using the command line utility or any existing
capture tool.

The VuGen Command Line Utility

The VuGen command line utility, lrtcpdump, is located in the product’s bin
directory. There is a separate utility for each of the platforms: lrtcpdump.exe
(Windows), lrtcpdump.hp9, lrtcpdump.ibm, lrtcpdump.linux, and
lrtcpdump.solv4.

To invoke the capture tool, type:

lrtcpdump -i<interface> -f<file>

where interface is the name of the network card whose traffic you want to
capture, and file is the name of the capture file in which to store the
information. Do not leave a space between the command line option (i or f)
and the value.

To create a capture file on a Windows platform:

 1 Choose Start > Run, type cmd and click OK to open a command window.

 2 Drag in or enter the full path of the lrtcpdump.exe program located in the
product’s bin directory.

 3 Provide a file name for the capture file using the following syntax:
lrtcpdump -f <file>

74

Chapter 6 • Creating Server Traffic Scripts
for example lrtcpdump -fmydump.cap.

 4 lrtcpdump prompts you to select a network card. If there are multiple
interface cards, it lists all of them. Type in the number of the interface card
(1, 2, 3 etc.) and click Enter.

 5 Perform typical actions within your application.

 6 Return to the command window and click Enter to end the capture session.

To create a capture file on a UNIX platform:

 1 Locate the appropriate lrtcpdump utility for your platform in the product’s
bin directory. Copy it to a folder that is accessible to your UNIX machine.
For example, for an HP platform, copy lrtcpdump.hp9. If using FTP, make
sure to use the binary transfer mode.

 2 Switch to the root user to run the utility.

 3 Provide execution permissions. chmod 755 lrtcpdump.<platform>

 4 On UNIX platforms, if there are multiple interface cards, lrtcpdump uses the
first one in alphabetical order. To get a complete list of the interfaces, use
the ifconfig command.

 5 Run the utility with its complete syntax, specifying the interface and file
name. For example, lrtcpdump.hp9 -ietho -fmydump.cap. The capturing of
the network traffic begins.

 6 Perform typical actions within your application.

 7 Return to the window running lrtcpdump and follow the instructions on
the screen to end the capture session.

 8 Place the capture file on the network in a location accessible to the machine
running VuGen.

An Existing Capture Tool

Most UNIX operating systems have a built-in version of a capture tool. In
addition, there are many downloadable capture tools such as
Ethereal/tcpdump.

When using external tools, make sure that all packet data is being captured
and none of it is being truncated.
75

Chapter 6 • Creating Server Traffic Scripts
Note: Certain utilities require additional arguments. For example, tcpdump
requires the -s 0 argument in order to capture the packets without
truncating their data.

Creating a Basic Script from Server Traffic

You create a script from server traffic just as you would create a recorded
script.

You can optionally specify a Web Service for your script. If you specify a
service, VuGen will create a script with web_service_call functions. If you
do not specify a service, VuGen creates a script with soap_request functions.

To create a server traffic script:

 1 Choose File > New and click New Single Protocol Script in the left pane.

 2 Select the Web Services protocol and click OK.

 3 Click the Analyze Traffic button or choose Vuser > Analyze Traffic. The
wizard opens.

 4 Add one or more services to the list. This step is optional.
76

Chapter 6 • Creating Server Traffic Scripts
➤ To add a new service, click Import. In the Import Service dialog box,
specify the location of the WSDL. You can specify a URL, File, UDDI
server (such as Systinet), or a location in Quality Center. In the Import
Service dialog box, you also choose a toolkit for analyzing the service.
The selected toolkit will be permanently associated with the script—it
cannot be changed. For more information, see “Importing Services” on
page 43.

➤ To set or view details about the services, click Details to open the Service
Management window. For more information about Service Management,
see Chapter 4, “Managing Web Services.”

➤ To remove a listed service, select it and click Delete

 5 On the bottom of the wizard screen, click Next to specify the traffic file
information. For more information, see below.

 6 After providing traffic information, click Finish to generate a script.
77

Chapter 6 • Creating Server Traffic Scripts
Specifying Traffic Information

The traffic file contains a dump of all the network traffic. Using the wizard,
you specify the location of the traffic file and whether you want your script
to emulate incoming or outgoing traffic.

➤ Capture file. The name and path of the traffic file, usually with a cap
extension.

➤ Incoming traffic:Server/Port. The IP address and port of the server whose
incoming traffic you want to examine.

➤ Outgoing traffic:Server. The IP address of the server whose outgoing traffic
you want to examine.

➤ Record into action. The section into which to create the script. If you want
to use iterations, specify the Actions section.

➤ Filter options. Opens a filter interface allowing you to specify which IP
addresses to include or exclude from the script. For more information, see
below.

➤ SSL Configuration. Allows you to add SSL certificates to analyze traffic from
a secure server with the required credentials. For more information, see
“Providing an SSL Certificate” on page 80.
78

Chapter 6 • Creating Server Traffic Scripts
Choosing an Incoming or Outgoing Filter

You can provide a filter to drill down on specific requests going to or from a
server, by specifying its IP address and port.

It is also possible to filter your capture file with an external tool before
loading it into VuGen. In that case, you may not require additional filtering.

You filter the requests by choosing the relevant host IP addresses. The filter
can be inclusive or exclusive—you can include only those IPs in the list, or
include everything except for those IPs that appear in the list.
79

Chapter 6 • Creating Server Traffic Scripts
To filter the traffic file:

 1 Open the Traffic Filters recording options. Click Filter Options in the Specify
Traffic Information step, or choose Tools > Recording Options. Select the
Traffic Analysis:Traffic Filters node.

 2 Select one of the filtering options: include all IP addresses in the list or
exclude all IP addresses in the list.

 3 Select the tab that corresponds to your script type: Incoming Traffic or
Outgoing Traffic.

 4 Add hosts to the list.

To add a host to the list, click the Add button. Specify the IP address of the
server you want to add to the list. For incoming traffic, specify the port of
the server to include or exclude. Click OK to accept the settings.

Click Delete to remove an entry.

After the script is created you can change the filters and regenerate the
script—there is no need to re-analyze the capture file.

Providing an SSL Certificate

To analyze traffic from a secure server, you must provide a certificate
containing the private key of the server.

If the traffic is SSL encrypted, you must supply a certificate file and password
for decryption. If you want traffic from multiple servers to be reflected in
the script, you must supply a separate certificate and password for each IP
address that uses SSL.
80

Chapter 6 • Creating Server Traffic Scripts
To specify an SSL certificate:

 1 In the Specify Traffic Information screen, click SSL Configuration.

 2 Add certificates to the list.

To add a certificate to the list, click the Add button. Specify the IP address,
port, path of the certificate file (with a pem extension), and the password for
the certificate. Make sure the pem file contains the private key. If you are
unsure of how to obtain the certificate, contact your system administrator.

Click the Delete button to remove an entry from the list.

 3 Repeat the above steps for every certificate you want to add.

 4 Click OK to close the dialog box.
81

Chapter 6 • Creating Server Traffic Scripts
82

7
Working in the Web Service Call View

You use the Web Service Call view to display snapshots, set properties, and
add checkpoints to Web Service calls.

This chapter includes:

 ➤ About the Web Service Call View on page 83

 ➤ Viewing Web Services SOAP Snapshots on page 84

 ➤ Understanding Web Service Call Properties on page 87

 ➤ Working with Optional Parameters on page 99

 ➤ Base 64 Encoding on page 103

 ➤ Attachments on page 107

 ➤ Working with the XML on page 111

 ➤ Using Web Service Output Parameters on page 115

 ➤ Setting Checkpoints on page 119

The following information only applies to Web Services and SOA Vuser
scripts.

About the Web Service Call View

Using the Web Service Call view, you can view snapshots, set properties, and
define checkpoints for each of the Web Service calls in your script.

To open the Web Service Call view, you must be in Tree view. Choose View >
Tree View in the VuGen window to open Tree view.
83

Chapter 7 • Working in the Web Service Call View
The Snapshot lets you view the SOAP structure of each step. You can view
snapshots of the recording, replay, request, and response. For more
information, see below.

The Properties tab lets you configure the settings for each Web Service call.
You can set properties in the area of argument values, parameterization,
transport layer, and security. For more information, see “Understanding
Web Service Call Properties” on page 87.

Checkpoints let you verify your Web service results. You can check for
expected values and view the output to see if they were matched. For more
information, see “Setting Checkpoints” on page 119.

Viewing Web Services SOAP Snapshots

You can use VuGen’s snapshot viewer to examine the SOAP requests and
responses that occurred during record and replay. Note that you must replay
the session at least once in order to view a replay snapshot.

There are several ways to view the SOAP snapshots:

➤ Record and/or Replay

➤ Request or Response Data

➤ Tree or XML View

Using the buttons in the Snapshot window, you can control the view:

In Tree view, you can expand the nodes to view the values of the arguments,
if they were assigned.

In Request view, the displayed values are those that were sent to the server
during the Web Services session. In Response view, the displayed values are
the results returned by the server.
84

Chapter 7 • Working in the Web Service Call View
In the following example, the Snapshot window shows the Record and
Replay snapshots of the Request data in Tree view.

To learn more about a node, select it and choose Node Properties from the
right-click menu.
85

Chapter 7 • Working in the Web Service Call View
In the XML view, you can view the whole SOAP message in XML format.

Choosing a Replay Iteration

If you replayed the script with multiple iterations, you can specify which
iteration to display in the snapshot. In addition, you can display a snapshot
from test results that you saved in a location other than the script’s folder.

By default, the Snapshot view shows the last iteration.

To choose an iteration to display:

 1 Choose View > Snapshot > Choose Iteration.

 2 Select the desired iteration and click OK.

 3 To display results from another folder, choose Select Folder and browse to
the location of the test results.

86

Chapter 7 • Working in the Web Service Call View
Understanding Web Service Call Properties

VuGen provides an interface for you to view and modify the properties of
each one of the Web Service calls.

Properties describe the behavior of each method within your service. You
can set a target address, argument values, parameterization, and transport
layer preferences for each of your service’s methods.

You can view a step’s properties from Tree view (View > Tree view) in one of
the following ways:

➤ Double-click on a step in the left pane to open the Web Service Call
Properties dialog box.

➤ Select the Step Properties tab in the right pane.
87

Chapter 7 • Working in the Web Service Call View
The Properties view displays each of the service’s operations in a tree
hierarchy. The nodes of the tree represent the Transport Layer
Configuration, the SOAP header, input arguments, and output arguments.

By default, the script takes the target address from the WSDL. You can
override this address for each operation. Select the Override Address option
and specify the desired Target Address.
88

Chapter 7 • Working in the Web Service Call View
The contents of the right pane changes, depending on the level of the
selected tree node. The following table describes the content for each node:

If you select… The right pane shows…

A method or operation
name

➤ The method’s properties.

➤ A check box to enable the automatic generation
of values for input arguments.

➤ A check box to include attachments.

Transport Layer
Configuration

Advanced transport options:

➤ HTTP/S Transport with async. or WS-A routing.

➤ JMS Transport support with response and request
Queue information.

SOAP Header An edit box to indicate the value of the SOAP
header for the current element. For more
information, see “SOAP Headers” on page 111.

Input Arguments node ➤ The Name of each method and its Value.

➤ Include All, Reset and Generate buttons.

An individual argument ➤ Name. The name of the argument (read-only)

➤ Type. The argument type as defined in the
WSDL. When the WSDL contains derived types,
this box becomes a drop down list. For more
information, see “Derived Types” on page 98.

➤ Include argument in call. Includes the Optional
parameters in the Web Service call. See “Working
with Optional Parameters” on page 99.

➤ Nil. Sets the Nillable attribute to True.

➤ Value. The value of the argument. For base64
binary type arguments, Get from file or Base64
Encoded text.

➤ Generate auto-value for this argument. Insert
automatic values for this node.
89

Chapter 7 • Working in the Web Service Call View
A complex input
argument

➤ XML. Enables the Edit, Import, and Export
buttons. By editing the XML, you can manually
insert argument values. Click on the ABC icon to
replace the entire XML structure with a single
XML type parameter. Note: This import
operation handles XML files that were previously
exported—not standard SOAP files. To import
SOAP, see “Importing SOAP Requests” on
page 65.

➤ Generate auto-value for this argument. Inserts
automatic values for all arguments of this
complex type node.

➤ Add/Delete. Adds or removes elements from the
array.

Output Arguments The Name arguments and the Parameter that will
store the value

Input Attachments The Attachment Format for encoding the soap
request: DIME or MIME for the VuGen toolkit,
DIME only for .NET, and MIME only for Axis.
90

Chapter 7 • Working in the Web Service Call View
You can set argument values for the following elements: (manually edited
arguments are displayed in blue)

➤ Input Argument Values

➤ Output Arguments

➤ Arrays

➤ Attachments

➤ SOAP Headers

Attachment ➤ Take Data from. The name of the file to attach or
the name of the parameter containing the data.

➤ Content Type. The attachment’s content type.
You can instruct VuGen to detect it automatically
or choose a type from the dropdown list or enter
a value manually.

➤ Content ID. The attachment’s ID attribute. You
can instruct VuGen to automatically generate a
value or specify your own ID.

➤ Delete Attachment. A button to remove the
attachment.

Output Attachments ➤ Save All Attachments. Saves all attachments to
parameters:

➤ Content. The name of the parameter prefix for
storing the attachment.

➤ Content Type. The attachments’ content type
attribute (read-only).

➤ Content ID. The attachment’s ID attribute (read-
only).

➤ Save Attachments by Index. Save the
attachments by number, beginning with 1. Click
Add to insert additional attachment indexes.
91

Chapter 7 • Working in the Web Service Call View
Input Argument Values

The Input Arguments node lets you define values for all of the input
arguments and lets you control the Optional elements. For more
information about Optional elements, see “Working with Optional
Parameters” on page 99.

➤ Include All. Includes all Optional elements—all of the operation’s elements
are included.

➤ Reset. Excludes all Optional elements and only includes the mandatory
ones.

➤ Generate. Includes all Optional elements and generates automatic values for
all of the operation’s elements.
92

Chapter 7 • Working in the Web Service Call View
➤ Edit Argument. Opens the node of the selected argument and lets you set its
values.

The individual argument nodes lets you define values for each of the input
arguments.

➤ XML/Value. A manually specified value for the node. If your argument is an
array, you can specify an XML structure. Otherwise, specify an ordinary
value. To create a parameter for the argument, click the ABC icon in the
right corner of the XML/Value box to open the Select or Create Parameter
dialog box.

➤ Generate auto-value for this argument. If you want VuGen to automatically
generate a value for this argument, select this option or select the argument
in the tree hierarchy and choose Generate Auto-values from the right-click
menu.
93

Chapter 7 • Working in the Web Service Call View
Choice Elements

If your WSDL defines Choice elements, you can view them and set their
values in the Properties view.

To set a value for a choice element, select the parent element, enable the
Include argument in call option in the right pane, and provide a value.

To parameterize the argument, click the ABC icon. In the Parameter
Properties dialog box, provide values for the choice argument. You only
need to provide values for one of the choice elements. When running
multiple iterations, the script uses the values for the same choice element,
according to the assignment method (sequential, unique or random). For
example, if your choice elements are Decimal Number, String, and Number,
and you provided values for Number, the Vuser will always use the Number
element.

Choice support is provided for both Input and Output arguments,
Parameterization, Checkpoints, and Service Emulation.

For information about working with optional arguments, see “Working with
Optional Parameters” on page 99.
94

Chapter 7 • Working in the Web Service Call View
Output Arguments

You can view the output argument values and save them to parameters or in
an array.

➤ Save returned value in parameter. Saves the returned value to a parameter
whose name you specify in the text box.
95

Chapter 7 • Working in the Web Service Call View
Arrays

To work with an array—for either input or output arguments, select it in the
left pane.

➤ XML. The path of the XML file containing the values of the array elements.
Click the ABC icon to replace the XML with an XML type parameter. XML
parameterization supports arrays as input arguments. In the XML parameter,
you define the number of array elements as required.

When saving an array to a parameter, the number of array elements per
parameter is constant. If you want to run multiple iterations, with each
iteration using a different number of array elements, you need to define
separate parameters, each containing the desired number of array elements.

For more information about XML parameters, see “Setting Properties for
XML Parameters” in Volume I-Using VuGen.
96

Chapter 7 • Working in the Web Service Call View
➤ Edit/Import/Export. To modify complex types and arrays, select the
elements and arguments and click Edit. Click Export to export the selected
entry to a separate XML file, or Import to load a previously exported XML
file. Note: This Import operation handles XML files that were previously
exported—not standard SOAP files. To import SOAP, see “Importing SOAP
Requests” on page 65.

➤ Add. Opens the Add Array Elements dialog box, allowing you to add array
elements, either simple or complex.

➤ Delete. Deletes array elements. Specify the starting index and the number of
elements to remove.

Adding Array Elements

When you click Add in the Array Elements section, the Add Array Elements
dialog box opens as described below.

➤ Start Index. The index of the first element that will be added.

➤ Elements. The number of elements to add.

➤ Copy values from index. Assigns values of an existing array element to the
new elements. Specify the array index of the element whose value you want
to use.
97

Chapter 7 • Working in the Web Service Call View
Derived Types

VuGen supports WSDLs with derived types. When setting the properties for
a Web Service Call, you can set the arguments to use the base type or derived
type.

After you select the desired type, VuGen updates the argument tree node to
reflect the new type.
98

Chapter 7 • Working in the Web Service Call View
Abstract Types

Abstract is a declaration type declared by the programmer. When an
element or type is declared to be abstract, it cannot be used in an instance
document. Instead, a member of the element's substitution group, provided
by the XML schema, must appear in the instance document. In such a case,
all instances of that element must use the xsi:type to indicate a derived type
that is not abstract.

When VuGen encounters an Abstract type, it cannot create an abstract class
and replay will fail. In this case, VuGen displays a warning message beneath
the Type box, instructing you to replace the Abstract type with a derived
type.

Working with Optional Parameters

If your WSDL file contains optional parameters, you can indicate whether or
not to include them in the SOAP request.

In WSDL files, optional parameters are defined by one of the following
attributes:

minoccurs='0'

nillable='true'

minoccurs = 0 indicates a truly optional element, that can be omitted.
Nillable means that the element can be present without its normal content,
provided that the nillable attribute is set to true or 1. By default, the
minoccurs and maxoccurs attributes are set to 1.

In the following example, name is mandatory, age is optional, and phone is
nillable.

<s:element minOccurs="1" name="name" type="s:string" />
<s:element minOccurs="0" name="age" type="s:int" />
<s:element minOccurs="1" name="phone" nillable="true" type="s:string" />
99

Chapter 7 • Working in the Web Service Call View
When setting argument values for your service call, VuGen indicates the
type of element by enabling or disabling the options:

The following table indicates the availability of the options:

To include a specific optional argument in the service call, click the node
and select Include Argument in Call. The nodes for all included arguments
are colored in blue. Arguments that are not included are colored in gray.

Parameter type Nil radio button Include arguments in call

Mandatory disabled disabled

MinOccurs=0 disabled enabled

Nillable enabled disabled
100

Chapter 7 • Working in the Web Service Call View
If you include an element on a parent level, it automatically includes all
mandatory and nillable children elements beneath it. If it is a child element,
then it automatically includes the parent element and all other mandatory
or nillable elements on that level. If you specify Generate auto-value to a
parent element, VuGen provides values for those child elements that are
included beneath the parent.

Note: VuGen interprets whether elements are mandatory or optional
through the toolkit implementation. This may not always be consistent
with the element’s attributes in the WSDL file.

To include a sub elements:

 1 To include a specific sub element, choose it in the left pane and select the
Include Argument in Call option.

 2 To include all sub elements of a parent element, apply Include Argument in
Call to the parent element and click the Include button beneath it.

 3 To exclude all sub elements, select the parent element and click the Exclude
button. It will exclude all omittable arguments.
101

Chapter 7 • Working in the Web Service Call View
Recursive Elements

Using the Properties dialog box, you can control the level of recursive
elements to include in the Web Service call.

To exclude a certain level and exclude those below, highlight the lowest
parent node that you want to include and select Include Argument in Call.
VuGen includes the selected nodes, its mandatory children, and all of its
parent nodes.

In the following example, three levels of the Choice argument are
included—the rest are not. A non-included node is grayed out.

Choice Optional Elements

A Choice element in a WSDL defines a set of elements where only one of
them appears in the SOAP message. In some cases, one of the Choice
elements is optional, while the others are not. In Service Test, you can select
the Choice element and still prevent its optional element from appearing in
the SOAP envelope. In Tree view, select the Choice element, and clear the
Include argument in call option. In Script view, delete the line that defines
the Choice argument.
102

Chapter 7 • Working in the Web Service Call View
Base 64 Encoding

Base 64 encoding is an encoding method used to represent binary data as
ASCII text. Since SOAP envelopes are plain text, you can use this encoding
to represent binary data as text within SOAP envelopes.

When VuGen detects a WSDL element of base64Binary type, it lets you
provide an encoded value. You can specify a value in two ways:

➤ Get from file. Reference a file name.

➤ Embed encoded text. Specify the text to encode.
103

Chapter 7 • Working in the Web Service Call View
To specify a base64Binary value:

 1 Select the Value option.

 2 To specify a file, select Get from file and locate the file using the Browse
button below.

 3 To specify text, select the Embed encoded text option and click the Browse
button below. The Process Base64 Data dialog box opens.

Enter text in the Text to encode box.

To use an encoding other than the default UTF-8 method, select it from the
Encoding Options list.

Click Encode.

 4 Click OK. VuGen adds the Web Service call to the script. You can now view
the step and its properties in Tree view.

If you referenced the value from a file, the Web Service call will contain the
file name:

"xml:arr="
"<arr base64Mode=\"file\">C:\\Load_testing\\TEcho.xml</arr>",
104

Chapter 7 • Working in the Web Service Call View
If you inserted the actual text using the Base 64 Encoding Text option, then
the Web Service call in the script will contain the encoded text.

Setting a Parameter Value for Base64Binary Data

To set the Base64 argument value to a parameter, create a new parameter of
of File type, or XML type for Complex arguments. For more information, see
“Setting Properties for XML Parameters” in Volume I-Using VuGen.

For complex type arguments containing base64Binary values, VuGen lets
you process the base64Binary for setting parameter, checkpoint, or
emulation values. When specifying the values, you can get values from a File
or specify the Text manually and apply encoding.

If you choose to get the value from a file, specify one of the following
options:

➤ Link to file. Reference the file containing the values.

"xml:arr="
"<arr base64Mode=\"encoded\">YWJjZGVmZw==</arr>",
105

Chapter 7 • Working in the Web Service Call View
➤ Do not Link to a file. Use the content of the specified file. VuGen copies the
content to the script folder. To use this option, clear the Link to file check
box.

Tip: It is generally recommended to link to a file since this improves the
script’s performance. If your text exceeds 10KB, you must link to a file.

To open the Process Base64 dialog box:

 1 Create a new parameter for a complex argument.

 2 In the grid view (XML parameters or checkpoints), click the Browse button
to the right of the value box. The Process Base64 dialog box opens.

 3 Specify File or Text as a source for the value.

 4 If you chose File as the Source, specify whether or not to link to a file.

 5 To decode an encrypted value, for example, a value obtained during replay,
click Decode to File. For more information, see below.
106

Chapter 7 • Working in the Web Service Call View
This section applies to all of the places within VuGen that use the grid view
of argument values: the parameter list and checkpoints.

Decoding to a File

VuGen lets you decode the encoded text to a file. This is especially useful for
checking the correctness of base64 encoded values returned from the server,
such as images.

The following procedure describes how to check if the Record and Replay
images match one another.

To validate images using decoding:

 1 Create a New Web Service call.

 2 Set a value for the Base64 argument, using the Get from file option. Specify
an image file. Continue creating the script.

 3 Save the script and replay it.

 4 Switch to the Checkpoint tab and load the Replay values.

 5 Click on the Replay value of the Base 64 argument and open its properties.

 6 Click Decode to file. Specify a file name to which to save the file. Use the
same extension as the original file.

 7 Compare the decoded image to your original one to verify a match.

Attachments

When transferring binary files such as images over SOAP, the data must be
serialized into XML. Serialization and deserialization can cause a significant
amount of overhead. Therefore, it is common to send large binary files using
an attachments mechanism. This keeps the binary data intact, reducing the
parsing overhead.

Using attachments, the original data is sent outside the SOAP envelope,
eliminating the need to serialize the data into XML and making the transfer
of the data more efficient.
107

Chapter 7 • Working in the Web Service Call View
The mechanisms used for passing a SOAP message together with binary data
are MIME (Multipurpose Internet Mail Extensions) and the newer, more
efficient DIME (Direct Internet Message Encapsulation) specifications.

VuGen supports the sending and receiving of attachments with SOAP
messages. You can send Input (Request) or save Output (Response)
attachments.

To add or save attachments, select an operation or a method in the left pane
to which the attachments will be associated. You can add both input or
output attachments

Input Attachments

Input attachments are added to the request message.

To add an attachment to the request:

 1 Select the operation in the left pane, to which you want to add the
attachment.

 2 In the right pane, select Add to request (Input). VuGen prompts you to
enter information about the attachment and adds it to the method’s tree
structure.

The Add Input dialog box opens.
108

Chapter 7 • Working in the Web Service Call View
Specify the following information:

➤ Take data from. The location of the data. This can be a file or a parameter
that contains the binary data.

➤ File. You can specify the file location in two ways:

➤ Absolute Path: The full path of the file. Note that this file must be
accessible from all machines running the script.

➤ Relative Path: (recommended) A file name. Using this method, during
replay, VuGen searches for the attachment file in the script’s folder. To
add it to the script’s folder, choose File > Add Files to Script and specify
the file name.

➤ Parameter. You specify the name of a parameter containing the data.

➤ Content-type. The content type of the file containing the data. The Detect
Automatically option instructs VuGen to automatically determine the
content type. You can also choose from a list of the common content types
in the Value box, such as text/html, and image/gif or type in another content
type.

➤ Content-ID. The ID of the content. By default, VuGen generates this
automatically by VuGen and serves as a unique identifier for the
attachment. Optionally, you can specify another ID in the Value box.

Output Attachments

Output attachments are added to the response message.

To save the response as an attachment:

 1 Select the operation in the left pane, for which you want to save the
response.

 2 In the right pane, select Save received (Output). VuGen adds an Output
Attachment node to the method’s tree structure in the left pane.
109

Chapter 7 • Working in the Web Service Call View
 3 Select the desired option: Save All Attachments or Save Attachment by
Index based on their index number—beginning with 1.

When you specify Save All Attachments, VuGen creates three parameters for
each attachment based on the parameter name that your specify: a
parameter containing the attachment data, the content type of the
attachment, and a unique ID for the attachment.

For example, if you specify the name MyParam in the Content field, the
parameter names for the first attachment would be:

MyParam_1
MyParam_1_ContentType
MyParam_1_ContentID
110

Chapter 7 • Working in the Web Service Call View
When you specify Save Attachments by Index, you specify the index
number and name of the parameter in which to store the attachment. The
parameter name that you specify for Content, is used as a prefix for the
Content type and Content ID parameters.

To edit the properties of either an Input or Output attachment, click the
attachment in the left pane, and enter the required information in the right
pane.

SOAP Headers

This view is available when you select SOAP header in the method’s tree
view. The right pane lets you indicate whether or not to use SOAP headers.
To use them, select Use SOAP header. Note that you must individually
specify SOAP headers for each element. You can import XML code for the
SOAP header, or compose your own using the Edit XML option. For more
information, see “Editing an XML Tree” on page 112.

Working with the XML

Web Services allow you to viewand edit your XML.

The following sections describe:

➤ Editing an XML Tree

➤ Saving and Copying the SOAP Response
111

Chapter 7 • Working in the Web Service Call View
Editing an XML Tree
You can use VuGen’s XML Editor to view and edit the XML representation of
complex types (structures, objects, etc.) and arrays.

Entering the values for the XML elements is a tedious and error-prone task.
VuGen provides you with an interface that simplifies the task of entering,
saving, and restoring the information. Once you enter the data manually,
you can save it to an XML file using the Export option. For subsequent tests,
you can import this file without needing to reenter the values a second
time.

To edit XML strings:

 1 Select the Web Service call whose element you want to modify and click the
Step Properties tab.

 2 In the method’s tree hierarchy, click on a complex type or array argument.
The right-most pane shows the XML code as a single string. Select the XML
option.

 3 To edit the XML code for that entry, click Edit. VuGen may issue a warning
indicating that only changes to element values and the number of array
elements will be saved—not changes in the XML elements themselves.
112

Chapter 7 • Working in the Web Service Call View
 4 Click OK. The XML Editor dialog box opens.

 5 In the XML Tree view, double-click on a node to open its property dialog
box. Edit the value as required. Click OK to save the new values.

 6 To edit the code in text mode, click the Text View tab. Edit the XML code
manually. Click OK to save the changes.

 7 To import a previously saved XML file, click Import and specify the file’s
location. Edit the file in the XML Editor dialog box.
113

Chapter 7 • Working in the Web Service Call View
 8 To save your XML data to a file so it can be used for other tests, click Export
and specify a location.

Saving and Copying the SOAP Response
In addition to saving the input argument values as an XML type parameter,
you can also save the SOAP response to a parameter or copy it for use within
an editor.

To save the SOAP response to a parameter:

 1 Switch to the SOAP Snapshot tab and select the parent or child element
whose value you want to parameterize.

 2 Select Save XML in parameter from the right-click menu. The XML
Parameter Properties dialog box displays the properties of the selected XML
element.

 3 Specify a name for the XML parameter, and click OK.

To copy the XML structure for use within another editor, choose Copy XML
from the right-click menu.
114

Chapter 7 • Working in the Web Service Call View
Using Web Service Output Parameters

In certain cases, you may need to use the result of one Web Service call as
input for another. To do this, you save the result to an output parameter and
reference it at the required point.

In the following example, the output argument is saved to a parameter
My_Array_String.
115

Chapter 7 • Working in the Web Service Call View
The script shows the saved output parameter as a result argument:

For information on saving results to parameters, see “Saving Output
Parameters” on page 117.

After you save an output parameter, it becomes available for parameter
substitution or for other referencing, such as evaluating it and printing its
value. In the following example, the saved output parameter,
My_Array_String, is used as an input argument for a subsequent Web Service
call.

web_service_call("StepName=EchoStringArray_101",
"SOAPMethod=ExtendedECHO_doc_literal.ExtendedECHO_doc_literalSoap.EchoStri
ngArray",

"ResponseParam=response",
"Service=ExtendedECHO_doc_literal",
"Snapshot=t1169994766.inf",
BEGIN_ARGUMENTS,
"xml:strString=<strString><string></string></strString>",
END_ARGUMENTS,
BEGIN_RESULT,
"EchoStringArrayResult/*[1]=My_Array_String",
END_RESULT,
LAST);
116

Chapter 7 • Working in the Web Service Call View
For information on using saved output parameters, see “Using Saved
Parameters for Input” on page 118.

Saving Output Parameters
You can save multiple result arguments to parameters through the Properties
dialog box, or by manually editing them in the script code.

You can also save result parameters from XML actions, and use them as
input arguments. For example, if you save the result parameter for
lr_xml_insert, you can reference the saved parameter in a subsequent Web
Service call. For more information, see “Using Result Parameters” in Volume
I-Using VuGen.

To save an output parameter:

 1 View the script in Tree view.

Make sure you are in Tree view. Otherwise, choose View > Tree view.

 2 Check for a Service.

Click the Manage Services button to verify that you have imported at least
one service. To import a new service, click Import in the Service
Management dialog box.

 3 View the steps’s properties.

For a new Web Service call, click Add Service Call.

For an existing Web Service call, double-click on the step or click the
Properties tab in the right pane.

 4 Select the output argument.

In the left pane, select the output argument whose value you want to save to
a parameter.

 5 Enable the saving of the output parameter.

In the right pane, select Save returned value in parameter. Accept the
default name or specify a custom name.
117

Chapter 7 • Working in the Web Service Call View
Using Saved Parameters for Input
After saving output parameters, you can use them in subsequent Web
Service calls.

You can also use saved result parameters from XML actions as input. For
example, if you saved the result parameter for lr_xml_insert, you can
reference it in a subsequent Web Service call. For more information, see
“Using Result Parameters” in Volume I-Using VuGen.

To use a saved parameter for input:

 1 View the steps’s properties in Tree view.

For a new Web Service call, click Add Service Call.

For an existing Web Service call, double-click on the step or click the
Properties tab in the right pane.

 2 Select the input argument.

In the left pane, select the input argument whose value you want to replace
with a previously saved output parameter.

 3 Open the Select Parameter dialog box.

In the right pane, select Value, and click on the ABC icon adjacent to the
Value box. The Select or Create Parameter box opens.

 4 Choose an output parameter.

Select the desired output parameter from the drop-down list and click OK.

To specify an input parameter in Script view, select the value you want to
replace and select Use Existing Parameters from the right-click menu.
Choose one of the available parameters.
118

Chapter 7 • Working in the Web Service Call View
Note: If you modify an output parameter name in Script view, it will not be
updated in the parameter list until you switch to Tree view.

Setting Checkpoints

In functional testing, one of the most important tasks is to check the
response from the server to confirm that your test performed the actions
correctly. In Web Services, the response can contain several arguments, each
containing several data items.

VuGen’s Checkpoint tab is a central point for defining the required checks
for your test.
119

Chapter 7 • Working in the Web Service Call View
Before running the test, you set expected values for the arguments. You can
load a set of expected values as they were captured either during recording
or during replay. This is useful when you have many argument values—
instead of manually entering values, you automatically load them.

After the test run, you can view the Replay log or the test results and
determine if the results were as expected.

VuGen automatically displays all of the method’s arguments with a check
box. To include a checkpoint in the test, you select its check box. You can
load the recorded or replay values (if they exist) and then select only those
that you want to check.

An optional Stop on Validation Error flag indicates whether or the step fails
in case of a checkpoint failure.

In the script, VuGen adds a checkpoint argument for each row that you
select in the Checkpoint tab.

VuGen also provides support for standard XPATH validations using
lr_xml_find. For verification of the SOAP body (or SOAP headers with the
.NET toolkit), you can use checkpoints. However, when using a toolkit other
than .NET, checkpoints are not supported for SOAP headers—instead use
lr_xml_find. For more information, refer to the Online Function Reference
(Help > Function Reference).

 web_service_call("StepName=Add_2",
"SOAPMethod=Calc.CalcSoapPort.Add",

…
BEGIN_CHECKPOINTS,
 StopOnValidationError=1,
 CHECKPOINT, "XPATH=Result[1]", "Value=13",
 CHECKPOINT, "XPATH=AddResult", "Expression=Hel*?",
END_CHECKPOINTS,
LAST);
120

Chapter 7 • Working in the Web Service Call View
Expected Value Types

During replay, VuGen creates a set of expected values for the purpose of
validation. These are listed in the upper section, Basic Validation.

In addition to the basic validation, you can define Advanced Validation to
validate a checkpoint on non-leaf nodes or to define expected values in
terms of a regular expression.

In Basic validation, VuGen looks for exact matches of the value in the
Expected value column.

In Advanced validation, VuGen looks for either exact matches or those
based on regular expressions.

You define the advanced validation values by entering an XPATH query in
the Advanced Validation section. To obtain the initial XPATH expression,
you can copy it from the basic validation (Copy Row XPATH from the right-
click menu) and paste it in the Advanced Validation section.

Note that when you choose a non-leaf node, you need to supply all of the
XML beneath the node.
121

Chapter 7 • Working in the Web Service Call View
You can define both basic and advanced validations for the same step.

In the Vuser script, VuGen indicates an exact match by Value= and a regular
expression with Expression=:

To set a basic checkpoint:

 1 In Tree view (View > Tree view), select a step in the left pane.

 2 Select the Checkpoint tab.

 3 To check for exact matches, specify expected values in the upper Basic
Validation section:

➤ To manually specify expected values, enter the values in the Expected
Values column.

➤ To load data from a recording or replay session, click the Record or
Replay buttons in the Load From section. VuGen fills in the data as it was
captured during record or replay.

 4 Select the check boxes in the Validate column for all the results you want to
check. To select all Basic validation checkpoints, click Select All. To clear all
of the selections, click Unselect All.

 5 Click Delete All in the upper section to clear all of the expected values.

 6 Select Stop On Validation Error to instruct the Vusers to fail the step when
the replay did not generate the expected values.

 7 Run the script and view the Replay log to determine if the service returned
the expected values. It is recommended that you enable the Extended log in
the run-time settings. If there is no match, the Replay log issues an
appropriate message:

 8 Open the Test Results (View > Test Results) to see a detailed report of the
validation. For more information about viewing test results, see below.

BEGIN_CHECKPOINTS,
 CHECKPOINT, "XPATH=/AddResult[1]", "Value=50"
 CHECKPOINT, "XPATH=AddResult", "Expression=Hel*?",

END_CHECKPOINTS,

Action.c(14): Failure: checkpoint "/AddResult[1]" expected value="3" actual result="15"
Action.c(14): Error: Web service call "Add" 1/1 checks failed
122

Chapter 7 • Working in the Web Service Call View
To set an advanced checkpoint:

 1 In Tree view (View > Tree view), select a step in the left pane.

 2 Select the Checkpoint tab.

 3 Provide expected values in the bottom section, Advanced Validation:

➤ An XPATH Query expression describing the criteria of the search. You can
copy XPATH expressions from the Basic Validation section in the upper
window. To copy an XPATH expression, select the text in the Schema
column, and choose Copy Row XPath from the right-click menu. In the
Advanced Validation section, double-click in the next available row and
choose Paste from the right-click menu. Modify the expression as
required.

➤ A Validation Method: Choose Exact Phrase or Regular Expression from
the dropdown list.

➤ The Expected Value, either in the form of an exact value or a regular
expression.

 4 To delete an advanced checkpoint, select it and click Delete Row in the
Advanced Validation section.

 5 To delete all of the advanced checkpoints, click the Delete All button in the
Advanced Validation section.

 6 Select Stop On Validation Error to instruct the Vusers to stop when the
replay did not generate the expected values.

 7 Run the script and view the Replay log, which contains information on
whether or not the match was found.

 8 Open the Test Results (View > Test Results) to see a detailed report of the
validation. For more information about viewing test results, see “Viewing
Web Services Reports” on page 163.
123

Chapter 7 • Working in the Web Service Call View
Parameterizing Checkpoints

You can parameterize the expected values for Checkpoint leaf nodes. This
allows the Vuser to use different expected values for multiple iterations.

To replace the expected value with a parameter:

 1 Choose Vuser > Parameter List to open the Parameter List dialog box.

 2 Create a new parameter, selecting the appropriate type: File, Table and so
forth. For more information, see “Working with VuGen Parameters” in
Volume I-Using VuGen.

 3 In Script view, locate the CHECKPOINT section and replace the actual values
with the parameter name you created earlier.

Viewing Checkpoint Results

After running a script, you can view the checkpoint results to see their
status—Passed or Failed, and the reason for the failure.

To view the test results for the checkpoints:

 1 Choose View > Test Results to open the Test Results window.

 2 In the left pane, expand the step whose checkpoint you want to view.

BEGIN_CHECKPOINTS,
 CHECKPOINT, "XPATH=EchoMixResult[1]", "Value=MyParam"

END_CHECKPOINTS,
124

Chapter 7 • Working in the Web Service Call View
 3 Click on the Checkpoint step in the left pane. The right pane shows the
details about the test run.
125

Chapter 7 • Working in the Web Service Call View
The lower pane provides detailed information about the checkpoint:

➤ The number of successful and failed checkpoints (for multiple iterations)

➤ The expected values and actual results

➤ The type of evaluation (exact phrase or regular expression)

➤ The response argument tree

For more information about viewing test results, see “Viewing Test Results”
in Volume I-Using VuGen.
126

8
Setting Advanced Properties for Web
Service Scripts

Advanced users can customize Web Service calls by setting the transport
layer properties and security policies, and by writing user handlers to define
the behavior of the Web Service calls.

This chapter includes:

 ➤ About Setting the Transport Layer, Security and User Handlers on page 127

 ➤ Configuring the Transport Layer on page 128

 ➤ Creating Web Service Security Policies on page 141

 ➤ Setting SAML Options on page 147

 ➤ Customizing Web Service Script Behavior on page 150

The following information only applies to Web Services and SOA Vuser
scripts.

About Setting the Transport Layer, Security and User
Handlers

You can configure your script with advanced capabilities to customize its
behavior.

Using VuGen, you can specify a transport method, such as JMS, for your
Web Service calls. You can also set security policies for your Web Service,
including standard security with security tokens, SAML security, and JMS.
127

Chapter 8 • Setting Advanced Properties for Web Service Scripts
With user handlers, you can process SOAP requests and responses and assign
them a custom behavior. For more information, see “Customizing Web
Service Script Behavior” on page 150.

Configuring the Transport Layer

VuGen allows you to configure the transport layer for your services. The
transport layer lets you indicate how to transport messages to and from the
server—HTTP/HTTPS or JMS (Java Message Service). To learn more about
HTTP/HTTPS, see below. For more information about using JMS transport,
see “Understanding JMS” on page 137.

HTTP/HTTPS

HTTP is used for sending requests from a Web client, usually a browser, to a
Web server. HTTP is also used to return the Web content from the server
back to the client.

HTTPS handles secure communication between a client and server.
Typically, it handles credit card transactions and other sensitive data.

If you are working with HTTP or HTTPS transport, you can use
asynchronous calls and WS-Addressing.

Asynchronous Messages
In synchronous messaging, the replay engine blocks script execution until
the server sends its response. In asynchronous mode, the replay engine
executes the script without waiting for server’s response for previous
messages.

VuGen supports both types of messaging.
128

Chapter 8 • Setting Advanced Properties for Web Service Scripts
In Script view, VuGen indicates asynchronous messaging with the added
parameter, AsyncEvent.

To enable asynchronous messaging in Tree view, select the Transport Layer
Configuration node in the Step Properties tab.

web_service_call("StepName=EchoString_101",
"SOAPMethod=EchoRpcEncoded.EchoSoap.EchoString",
"ResponseParam=response1",
"Service=ExtendedECHO_rpc_encoded",
"AsyncEvent=event_1",
"Snapshot=t1157371707.inf",
BEGIN_ARGUMENTS,
"sec=7",
"strString=mytext",
END_ARGUMENTS,
BEGIN_RESULT,
"EchoStringResult=first_call",
END_RESULT,
LAST);
129

Chapter 8 • Setting Advanced Properties for Web Service Scripts
Select the Add Async support option and specify an event.

When working with asynchronous messaging, you perform synchronization
within your script using the Web Service Wait for Event step or the
web_service_wait_for_event function in Script view. This function
instructs the Vuser to wait for the response of previous asynchronous service
requests. The listener blocks the execution of the service until the server
responds.

When adding a Web Service Wait for Event step:

➤ You list all of the asynchronous events for which you want to wait.

➤ You then specify whether you want the Vuser to wait for all events to receive
a response or just one of them. If you specified ANY, then during replay the
function returns the name of the first event to receive a response. If you
specified ALL, any one of the event names is returned.

130

Chapter 8 • Setting Advanced Properties for Web Service Scripts
➤ You provide a timeout in milliseconds. If no events receive responses in the
specified timeout, web_service_wait_for_event returns a NULL.

In the following example, the web_service_wait_for_event call waits forty
milliseconds for any of the events: event_1, event_2, or event_3.

When running a script with asynchronous messaging, the Replay log
provides information about the events and the input and output arguments.

For additional information about the web_service_wait_for_event
function, see the Online Function Reference (Help > Function Reference or
click F1 on the function).

You can also indicate the location you want the service to reply to when it
detects an event, using WS-Addressing. For more information, see the
section below.

WS-Addressing
WS-Addressing is a specification that defines a standard for allowing Web
Services to communicate addressing information. It identifies Web service
endpoints in order to secure end-to-end endpoint identification in
messages. This allows you to transmit messages through networks that have
additional processing nodes such as endpoint managers, firewalls, and
gateways. WS-Addressing supports Web Services messages traveling over
both synchronous or asynchronous transports.

The WS-Addressing specification requires a WSAReplyTo address—the
location to which you want the service to reply.

web_service_wait_for_event("StepName=First_Wait",
"Quantifier=ANY",
"Timeout=40",
BEGIN_EVENTS,
"event_1",
"event_2",
"event_3",
END_EVENTS,
LAST);
131

Chapter 8 • Setting Advanced Properties for Web Service Scripts
An optional WSAAction argument allows you to define a SOAP action for
instances where transport layers fails to send a message.

The following example illustrates a typical SOAP message using WS-
Addressing, implemented by VuGen in the background.

<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope"
 xmlns:wsa="http://www.w3.org/2004/12/addressing">
 <S:Header>
 <wsa:MessageID>
 http://example.com/SomeUniqueMessageIdString
 </wsa:MessageID>
 <wsa:ReplyTo>
 <wsa:Address>http://myClient.example/someClientUser</wsa:Address>
 </wsa:ReplyTo>
<wsa:Address>http://myserver.example/DemoErrorHandler</wsa:Address>
 </wsa:FaultTo>
 <wsa:To>http://myserver.example/DemoServiceURI</wsa:To>
 <wsa:Action>http://myserver.example/DoAction</wsa:Action>
 </S:Header>
 <S:Body>
 <!-- Body of SOAP request message -->
 </S:Body>
</S:Envelope>
132

Chapter 8 • Setting Advanced Properties for Web Service Scripts
To create a SOAP request using WS-Addressing in VuGen, you specify a
WSAReplyTo entry in the Transport Layer Configuration’s node under the
Step Properties tab.

For the WSAReplyTo argument, you can specify an IP address or autotdetect
to instruct the service to detect the host name of the machine. This is useful
when running the same script on several different machines.
133

Chapter 8 • Setting Advanced Properties for Web Service Scripts
In the following example, the server responds to the interface
212.199.95.138 when it detects Event_1.

WS-Addressing calling may be issued in both asynchronous and
synchronous modes. To use WS-Addressing in synchronous mode, you leave
the Async Event box empty in the Transport Layer options. In Script view,
you remove the AsyncEvent argument. This instructs the replay engine to
block script execution until the complete response is received from the
server.

web_service_call("StepName=Add_101",
"SOAPMethod=Calc.CalcSoap.Add",
"ResponseParam=response",
"AsyncEvent=Event_1",

 "WSAReplyTo=212.199.95.138",
"WSDL=http://lab1/WebServices/CalcWS/Calc.asmx?wsdl",
"UseWSDLCopy=1",
"Snapshot=t1153825715.inf",
BEGIN_ARGUMENTS,

"first=1",
"second=2",

END_ARGUMENTS,
BEGIN_RESULT,

"AddResult=Param_AddResult1",
END_RESULT,
LAST);
134

Chapter 8 • Setting Advanced Properties for Web Service Scripts
To add support for asynchronous messages and WS-Addressing:

 1 For a new Web Service call, select the Transport Layer Configuration node.
For an existing Web Service call, select the step in Tree view, and select the
Step Properties tab. Select the Transport Layer Configuration node.

 2 To mark the Web Service call as an asynchronous message:

➤ Select the Add Async support option. This is only enabled for HTTP/S
type transport.

➤ Provide an event name in the Async Event box. This can be an arbitrary
name.

 3 In the WS-A Reply to box, enter an IP address or autodetect to use the
current host. The server will reply to the specified location when the event
occurs.
135

Chapter 8 • Setting Advanced Properties for Web Service Scripts
 4 For asynchronous events, choose Insert > New Step and add a Web Service
Wait For Event step after the Web Service call step.

 5 Specify a step name, quantifier, and timeout. To add an event name, click
Add. The Web Service will wait for the specified event before responding.

 6 Use the Edit, Move Up, and Move Down buttons to manipulate the events.

 7 Click OK.
136

Chapter 8 • Setting Advanced Properties for Web Service Scripts
Understanding JMS
JMS implements point-to-point messaging by defining a message queue as
the target for a message. Multiple senders send messages to a message queue,
and the receiver gets the message from the queue. VuGen supports the
sending and receiving JMS messages to a queue from a Web Service call and
by using JMS script functions.

Before you can send messages over JMS transport, you need to configure
several items that describe the transport:

➤ JNDI initial context factory. The class name of the factory class that creates
an initial context which will be used to locate the JMS resources such as JMS
connection factory or JMS queue.

➤ JNDI provider. The URL of the service provider which will be used to locate
the JMS resources such as JMS connection factory or JMS queue.

➤ JMS connection factory. The JNDI name of the JMS connection factory.

In addition, VuGen lets you set a timeout for received messages and the
number of JMS connection per process.

You can configure all of these settings through the JMS run-time settings, as
described in “Setting Web Services JMS Run-Time Settings” on page 161.

JMS Script Functions

VuGen uses its JMS API functions to implement the JMS transport. Each
function begins with a jms prefix. For example,
jms_receive_message_queue Receives a message from a queue.

For additional information about the JMS functions, see the Online Function
Reference (Help > Function Reference or click F1 on the function).

Using JMS as a Transport Layer

The JMS transport for Web services allows users to send SOAP messages
using a JMS transport instead of the common HTTP transport.
137

Chapter 8 • Setting Advanced Properties for Web Service Scripts
A Web Service can:

➤ Import a WSDL and then specify JMS instead of HTTP as a transport layer.

➤ Record SOAP messages using HTTP, and use the recorded script for sending
the messages through JMS transport.

➤ Send and/or receive general JMS messages to a JMS destination (queue) from
the Web Services script.

The basic steps in transmitting messages over JMS protocol are:

 1 Import a WSDL file. For more information, see “Importing Services” on
page 43.

 2 Setting the queue information, as described below.

 3 Configuring the JMS run-time settings before running the script, as
described in “Setting Web Services JMS Run-Time Settings” on page 161.
138

Chapter 8 • Setting Advanced Properties for Web Service Scripts
For each Web Service call step, you can specify JMS Transport and the
Request and Response queues.

To specify JMS transport information:

 1 In Tree view, select the Step Properties tab and select the Transport Layer
Configuration node.

 2 Select the JMS Transport option.

 3 Specify the names of the Request Queue and Response Queue. You can use
the same queue for the request and response. The Response Queue box is
disabled for one-way functions in Axis toolkits.
139

Chapter 8 • Setting Advanced Properties for Web Service Scripts
 4 To manually set additional transport information or get and set properties,
add one of the JMS functions. Choose Insert > New Step and expand the
JMS Functions node.

The current solution is a replay only solution and does not allow recording
JMS messages sent between the client and server. VuGen only supports
synchronized calls.

For additional information about these functions, see the Online Function
Reference (Help > Function Reference or click F1 on the function).

JMS Message Types

JMS can be sent with several message body formats. Two common formats
are TextMessage and BytesMessage.

Service Test attempts to resolve the desired format based on the message’s
content type. If the content type is text/*, it sends the message in
TextMessage format. Otherwise, it sends it in BytesMessage format.

To override the default behavior, use a jms_set_general_property function
before sending the message. Set the JMS_MESSAGE_TYPE property to
TextMessage, BytesMessage, or Default. For Example:

jms_set_general_property("step1","JMS_MESSAGE_TYPE","BytesMessage");

For more information, see the Online Function Reference.
140

Chapter 8 • Setting Advanced Properties for Web Service Scripts
Creating Web Service Security Policies

When building Web Service applications, there is a challenge in building
scalable applications that are secure. You can secure Web Services by having
the message sent over a secure transport, such as Secure Sockets Layer (SSL),
but that is limited to point-to-point communication.

To allow you to send your messages securely, VuGen supports several
security mechanisms: Security Tokens and SAML.

Note: If your WSDL is located in a secure location, you must provide the
security information through the Service Management dialog box. For more
information, see “Specifying WSDL Connection Settings” on page 47.

For more information on tokens, see below.

For more information on SAML, see “Setting SAML Options” on page 147.

Security Tokens and Encryption
The WS-Security specification lets you place security credentials in the
actual SOAP message. You accomplish this by instructing a client to obtain
security credentials from a source that is trusted by both the sender and
receiver. When a SOAP message sender sends a request, those security
credentials, known as security tokens, are placed in the SOAP message.
When the Web server receives the SOAP request, it does not need to send
additional requests to verify the integrity of the sender. The server verifies
that the credentials are authentic before letting the Web Service execute the
application. By not having to go back to the source of the credentials, this
significantly improves the application’s scalability.

To further secure Web Services, it is common to use digital signatures or
encryption for the SOAP messages. Digitally signing a SOAP message,
verifies that the message has not been altered during transmission.
Encrypting a SOAP message helps secure a Web Service by making it difficult
for anyone other than the intended recipient, to read the contents of the
message.
141

Chapter 8 • Setting Advanced Properties for Web Service Scripts
The Web Services security mechanism associates security tokens with
messages. This mechanism supports several security token formats to
accommodate a variety of authentication requirements. For example, a
client might need to provide a proof of identity or a security certificate.

To support WS-Security, VuGen allows you to create security tokens for your
script. You can create multiple tokens and set their properties. After creating
a token, you use it to sign or encrypt a SOAP message.

In certain instances, you do not send the token explicitly—you use the
token for the purpose of signatures or encryption, without including the
actual token in the SOAP envelope header. Using the Add option, you can
indicate whether to send the actual token explicitly.

The available tokens are Username and Password, X.509 Certificate,
Kerberos Ticket, Kerberos2 Ticket, Security Context Token, and Derived
Token. The information you need to provide differs for each token.

➤ User Name and Password. The User Name and Password token contains
user identification information for the purpose of authentication: User
Name and Password.

You can also specify Password Options, indicating how to send the password
to the server for authentication: SendPlainText, SendNone, or SendHashed.

➤ X.509 Certificate. This security token is a token based on an X.509
certificate. To obtain a certificate, you can either purchase it from a
certificate authority, such as VeriSign, Inc. or set up your own certificate
service to issue a certificate. Most Windows servers support the public key
infrastructure (PKI) which enable you to create certificates. You can then
have it signed by a certificate authority or use an unsigned certificate.

When you add an X.509 token to the Vuser script, you specify the Logical
Name, Store Name, Key identifier type, Key identifier value, and Store
Location arguments.
142

Chapter 8 • Setting Advanced Properties for Web Service Scripts
➤ Kerberos Ticket/Kerberos2 Ticket. (for Windows 2003 or XP SP1 and later)
The Kerberos protocol is used to mutually authenticate users and services on
an open and unsecured network. Using shared secret keys, it encrypts and
signs user credentials. A third party, known as a KDC (Kerberos Key
Distribution Center), authenticates the credentials. After authentication, the
user may request a service ticket to access one or more services on the
network. The ticket includes the encrypted, authenticated identity of the
user. The tickets are obtained using the current user’s credentials.

VuGen supports tokens based on both Kerberos and Kerberos2 security
tokens. The primary difference between the Kereberos and Kerberos2 tokens,
is that Kerberos2 uses the Security Support Provider Interface (SSPI), so it
does not require elevated privileges to impersonate the client's identity. In
addition, the Kerberos2 security token can be used to secure SOAP messages
sent to a Web Service running in a Web farm.

When you add a Kerberos token to the Vuser script, you specify a Logical
Name for the token along with the Host and Domain names of the Web
Services machine.

➤ Security Context Token. These tokens are security tokens that can be used
repeatedly until they expire. SOAP message senders can use security context
tokens to sign and/or encrypt a series of SOAP messages, known as a
conversation, between a SOAP message sender and the target Web Service.
The main benefits of this type of token are:

➤ As long as the security context token has not expired, the SOAP message
sender can use the same security context token to sign and/or encrypt
the SOAP messages sent to the target Web Service.

➤ Security context tokens are based on a symmetric key, making them more
efficient at digitally signing or encrypting a SOAP message than an
asymmetric key.

➤ Security context tokens can be requested from one security token service
by sending a SOAP message to another security token service.

When you add a Security Context token to the Vuser script, you specify
values for the Logical Name, Base Token, Issuer Token, End Point URI, and
Add applies to arguments.
143

Chapter 8 • Setting Advanced Properties for Web Service Scripts
➤ Derived Token. The Derived token is a token based on another existing
token, excluding X.509 for which derivation is not supported. You need to
specify a Logical Name and the Derived From token. If you remove the
original token, then the derived token will no longer be available. Note that
you cannot use a Derived type of token in a recursive manner.

For more information about configuring tokens, refer to the Online Function
Reference (Help > Function Reference).

When you add a Web Services Set Security step to your script, VuGenadds a
web_service_set_security function that contains arguments with the
tokens, message signatures, and encryption that you defined in the security
properties.

Note that parameterization is not supported for the following arguments:
Token Type, Logical Name, Base Token, Issuer Token or Derive From
arguments.

Working with Message Signatures and Encrypted Data

When you add a security token to a SOAP message, it is added to the SOAP
message in the form of an XML element in the WS-Security SOAP header.

The message, however, is exposed and therefore requires additional security.
This is especially true when the credentials, including the password, are sent
in plain text as it is with role-based security.

The two methods used to secure the data are digital signatures and
encryption.

➤ Digital Signatures. Digital Signatures are used by message recipients to verify
that messages were not altered since their signing. The digital signature is
usually in the form of XML within the SOAP message. The recipient checks
the signature to make sure it is valid. Certain environments, such as WSE,
automatically verify the signature on the SOAP recipient's computer.

web_service_set_security(
SECURITY_TOKEN, "Type=USERNAME", "TokenName=mytoekn1",
"UserName=bob", "Password=123", "PasswordOptions=SendNone", "Add=True",

LAST);
144

Chapter 8 • Setting Advanced Properties for Web Service Scripts
➤ Encryption. Although the XML digital signature does offer a mechanism for
verifying that the message has not been altered since it was signed, it does
not encrypt the SOAP message—the message is still plain text in XML
format. To secure the message in order that it should not be exposed, you
encrypt it, making it difficult for an intruder to view and obtain a user
passwords.

VuGen allows you to supply information about the encryption and message
signatures.

Note that parameterization is not supported for message signatures and
encryption arguments. For more information on adding message signatures
and encryption to your script, see below.

Setting Web Services Security
While developing a script, you can add security to your Web Service calls
using standard WS-Security.

To add Web Service security:

 1 Click at the appropriate location in your script. To apply the security to the
entire script, place the cursor at the beginning of the script.

 2 Choose Insert > New Step to open the Add Step dialog box.
145

Chapter 8 • Setting Advanced Properties for Web Service Scripts
 3 Select Web Services Set Security and click OK. The Set Security Properties
box opens.

 4 Click Add to add a new token. The Add Token dialog box opens.
146

Chapter 8 • Setting Advanced Properties for Web Service Scripts
 5 Choose a token type. For information about the token types, see “Security
Tokens and Encryption” on page 141.

In the Logical Name box, assign an arbitrary name for the token to be used
by VuGen in identifying the token.

Add any relevant information, such as User Name and Password for the
User Name and Password type token.

To send the token explicitly in the SOAP envelope header, choose True. To
exclude the token from the SOAP envelope header, choose False.

 6 To specify a time for which the message packet is considered valid, select
Time To Live and specify the time in seconds.

 7 Click OK. VuGen inserts a Web Services Set Security step at the location of
the cursor.

Setting SAML Options

VuGen supports SAML (Security Assertion Markup Language) for Web
Services. SAML is an XML standard for exchanging security-related
information, called assertions, between business partners over the Internet.
The assertions can include attribute statements, authentication, decision
statements, and authorization decision statements.

SAML uses brokered authentication with a security token issued by STS
(Security Token Service). The STS is trusted by the client and the Web Service
to provide interoperable security tokens. SAML tokens are important for
Web Service security because they provide cross-platform interoperability
and a means of exchanging information between clients and services that
do not reside within a single security domain.

You can set the SAML settings for an entire script or part of the script. To set
SAML security, add a Web Services Set Security SAML step. To remove the
security, insert a Web Services Cancel Security SAML step.
147

Chapter 8 • Setting Advanced Properties for Web Service Scripts
Note: You cannot apply SAML security and the standard Web Service (a Web
Service Set Security step) security to the same step. To cancel Web Service
security, insert a web_service_cancel_security function.

Policy Files

SAML policy files follow the WSE 3.0 standard and define the attribute
values for the SAML security. By default, VuGen uses the samlPolicy.config
file located in the installation’s dat folder.

When entering SAML security information, you can enter it manually in the
properties dialog box, or you can refer to a policy file containing all of the
security information. You can create your own policy file based on
samlPolicy.config.

You can modify the policy file to include values for the security parameters,
such as username and certificate information. When adding a SAML security
step to your script, if you explicitly specify values for the security arguments,
they override the values in the policy file.

If you make changes to the default policy file, it is recommended that you
copy the new policy file to your script’s folder. Make sure to save custom
policy files with a .config extension to insure that they remain with the
script, even when running it on other machines or calling it from the
LoadRunner Controller.

To learn more about the SAML policy files, refer to the SAML STS example
on the MSDN Web site. If you want to emulate SAML Federation behavior,
copy the samlFederationPolicy.config file from the data folder to your
script’s folder, and specify it as the policy file.

To add SAML security:

 1 Click at the appropriate location in your script. To apply the security to the
entire script, place the cursor at the beginning of the script.
148

Chapter 8 • Setting Advanced Properties for Web Service Scripts
 2 Choose Insert > New Step to open the Add Step dialog box.

 3 To add SAML security, choose Web Services Set Security SAML.

Enter the desired information. If you enter values into this dialog box, they
override any values that were set in the policy file. You must provide an
Issuer URL, also known as the STS URL.

To use a different policy file, specify it in the Policy File box. Specify a full
path, or a file location relative to the script’s path.
149

Chapter 8 • Setting Advanced Properties for Web Service Scripts
 4 To remove the security, choose Web Services Cancel Security SAML. The
security is cancelled from that point onward.

For additional information about these functions, see the Online Function
Reference (Help > Function Reference or click F1 on the function).

Customizing Web Service Script Behavior

VuGen provides several advanced capabilities that allow you to customize
the way your script behaves. These capabilities are:

➤ User Handlers

➤ .NET Filters

➤ Configuration Files

User Handlers
VuGen allows you to call user handlers to process SOAP requests and
responses. Using the handlers, you can retrieve and modify the SOAP
envelope, get or set parameters, and issue log messages. You can also use the
handler mechanism to add security features, message compression, and
filters.

You can implement a user handler in several ways:

➤ Defining a Handler Function in a Script

➤ Creating a Custom User Handler as a DLL

Defining a Handler Function in a Script

For basic implementation of a user handler, you define a user handler
function within your Vuser script:

int MyScriptFunction(const char* pArgs, int isRequest)
{
…
}

150

Chapter 8 • Setting Advanced Properties for Web Service Scripts
The pArgs argument contains the string that is specified in UserHandlerArgs
argument of web_service_call function. For more information, see the
Online Function Reference (Help > Function Reference).

The isRequest argument indicates whether the function is being called
during processing of a Request (1) or Response (0) SOAP envelope.

The content of SOAP envelope is passed to a parameter called
SoapEnvelopeParam for both requests and responses. After the function
processes the SOAP envelope, make sure to store it in the same parameter

To call the handler function, specify the function name as a value for the
UserHandlerFunction argument in the relevant Web Service Call step.

VuGen recognizes the following return codes for the handler function.

web_service_call(
…
"UserHandlerFunction=MyScriptFunction",
"UserHandlerArgs=<handler arguments>",

LAST);

Return Code Description

LR_HANDLER_SUCCEEDED 0 The Handler succeeded,
but the SOAP envelope
did not change.

LR_HANDLER_FAILED 1 The Handler failed and
further processing should
be stopped.

LR_HANDLER_SUCCEEDED_AND_MODIFIED 2 The Handler succeeded
and the updated SOAP
envelope is stored in
SoapEnvelopeParam.
151

Chapter 8 • Setting Advanced Properties for Web Service Scripts
In the following example a script handler manipulates the outgoing
envelope:

//This function processes the SOAP envelope before sending it to the server.
int MyScriptFunction(const char* pArgs, int isRequest)
{
if (isRequest == 1) {

//Get the request that is going to be sent
char* str = lr_eval_string("{SoapEnvelopeParam}");

//Manipulate the string...

//Assign the new request content
lr_save_string(str, "SoapEnvelopeParam");

return LR_HANDLER_SUCCEEDED_AND_MODIFIED;
}
return LR_HANDLER_SUCCEEDED;

}
Action()
{
//Instruct the web_service_call to use the handler
web_service_call("StepName=EchoAddr_102",

"SOAPMethod=SpecialCases.SpecialCasesSoap.EchoAddr",
"ResponseParam=response",
"userHandlerFunction=MyScriptFunction",
"Service=SpecialCases",
"Snapshot=t1174304648.inf",
BEGIN_ARGUMENTS,
"xml:addr="

"<addr>"
"<name>abcde</name>"
"<street>abcde</street>"
"<city>abcde</city>"
"<state>abcde</state>"
"<zip>abcde</zip>"

"</addr>",
END_ARGUMENTS,
BEGIN_RESULT,
END_RESULT,
LAST);

return 0;
152

Chapter 8 • Setting Advanced Properties for Web Service Scripts
Overriding the Transport Layer

You can write a user handler function to override the transport layer. In this
case, VuGen will not automatically send the SOAP request over HTTP
transport—instead it follows the transport method indicated in the custom
handler.

After you receive a response, you can set the response envelope with the
command:

To apply an alternate transport layer, specify ReplaceTransport as an value
for the UserHandlerOrder argument, and define the transport layer in the
handler function.

Creating a Custom User Handler as a DLL

You can also define a user handler by creating a DLL file through Visual
Studio and the handler API. The API header file, LrWsHandlerAPI.h, located
in the LoadRunner/include folder, contains many in-line comments and
descriptions.

VuGen provides a sample Visual Studio project that can be used as a
template for creating a handler. The sample retrieves the request and
response envelope and saves it to a parameter. This sample is located in the
LoadRunner/samples/WebServices/SampleWsHandler folder. To use this
sample, open it in Visual Studio and modify it as required. If you do not
need to save the request/response to a parameter, you can remove that
section of the sample.

lr_save_string(someResponseEnvelopeStr, "SoapEnvelopeParam");

web_service_call(
…
"UserHandlerFunction=<Transport HandlerFunction>",
"UserHandlerArgs=<handler arguments>",
"UserHandlerOrder=ReplaceTransport"
…

LAST);
153

Chapter 8 • Setting Advanced Properties for Web Service Scripts
After editing the sample, save it and compile the DLL. When you compile
the project, Visual Studio places the <user_handler_name>.DLL file in the
LoadRunner/bin folder. If you compile the project from another location, or
if you want to copy the DLL from one machine to another, make sure to
place it in the bin folder.

Configuring the User Handler

You can declare the user handler DLL globally or locally.

To use the handler globally, for all requests in the script, add the following
section to the default.cfg file located in the script’s folder.

➤ Name. The name of the DLL.

➤ Args. A list of the configuration arguments for the handler. Use the
GetArguments method to retrieve the arguments in your handler.

➤ Order. The order in which Vusers process the user handler in requests:
Before Security, After Security, or After Attachments. You can also use this
argument to override the transport layer, by entering the value Replace
Transport.

Note: Setting the UserHandlerFunction property of a web_service_call
function, overrides the definitions in the .cfg file.

By default, user handlers are processed before the security. For request
messages, Vusers process the attachments handler after the security handler.
For responses, Vusers process the handlers in a reversed order. In typical
cases the order does not matter, so any value is acceptable.

[UserHandler]
Function=<name>
Args=<arguments>
Order=<BeforeSecurity/AfterSecurity/AfterAttachments>
154

Chapter 8 • Setting Advanced Properties for Web Service Scripts
To override the Transport layer, specify Order=Replace Transport and specify
the new transport handler. If you implement the transport handler as a
separate DLL, the HandleRequest function is called, while the
HandleResponse function is ignored.

To use the handler locally, for a specific request, add the following
arguments to the web_service_call function:

Note: If you copy the script to another machine, it retains the handler
information, since it is defined in script’s folder. A user handler defined
locally for a specific step in the script, overrides the global handler settings
(defined in the script’s default.cfg file).

Note: The user handler DLL should be accessible to all Load Generator
machines running scripts that call it. You may, for example, copy it to the
LoadRunner/bin folder.

Implementing the User Handler

To implement a user handler, you use the entry functions HandleRequest or
HandleResponse. Both functions have a single parameter, context, whose
properties you can set in your handler. Use the Get functions to retrieve
properties, and Set functions to pass information from the replay framework
to the handlers or between the handlers.

➤ GetEnvelope. Gets the envelope content. For example, example:
const char * pEnvelope = context->GetEnvelope();

➤ GetEnvelopeLength. Gets the envelope length

UserHandlerName=<name1>
UserHandlerArgs=<args1>
UserHandlerOrder=<BeforeSecurity/AfterSecurity/AfterAttachments/Replace

Transport>
155

Chapter 8 • Setting Advanced Properties for Web Service Scripts
➤ SetEnvelope. Sets the envelope content and length. For example:
string str("MySoapEnvelope...");
context->SetEnvelope(str.c_str(), str.length());

➤ SetContentType. Sets a new value for HTTP header content type

➤ LogMessage. Issues a message to the replay log

➤ GetArguments. Gets the configuration arguments defined for the current
handler in order to pass it to the DLL

➤ GetProperty. Gets a custom property value

➤ SetProperty. Sets a custom property value

For more information, see the comments in the LrWsHandlerAPI.h file
located in the LoadRunner/include folder.

.NET Filters
If you are familiar with Microsoft's Web Service Enhancements (WSE) 2.0,
you can create a .NET filter and register it for incoming or outgoing SOAP
messages. A .NET filter is a class that is derived from
Microsoft.Web.Services2.SoapInputFilter or
Microsoft.Web.Services2.SoapOutputFilter. By overriding the
ProcessMessage function of this class, you can examine and modify the
envelope’s body and header.

You can apply a .NET filter to your messages using the user handler
mechanism.

To define the filter globally for the entire script, add the following lines to
the script’s default.cfg file below.

[UserHandler]
Function=LrWsSoapFilterLoader
Args=<Filters InputFilterClass="class name" InputFilterLib="lib name"
OutputFilterClass="class name" OutputFilterLib="lib name" />
Order=BeforeSecurity/AfterSecurity/AfterAttachments
156

Chapter 8 • Setting Advanced Properties for Web Service Scripts
The InputFilterClass parameter indicates the name of your class, and
InputFilterLib indicates the name of the assembly in which the class resides.
For example:

Use SoapOutputFilter to examine an outgoing web_service_call request,
and SoapInputFilter to examine the response from the server. Use
InputFilterClass and InputFilterLib if your filter is derived from
SoapInputFilter, or OutputFilterClass and OutputFilterLib if your filter is
derived from SoapOutputFilter.

To define the filter for a specific step, add the following arguments to the
web_service_call function.

Configuration Files
The mmdrv.exe.config file, located in the LoadRunner/bin folder, is a
standard .NET configuration file, and contains information such as the WSE
configuration. Use the filter with the Input prefix if your filter is derived
from SOAP input, or the Output prefix if your filter is derived from SOAP
output.

web_service_call(
...
"UserHandlerName=LrWsSoapFilterLoader",
"UserHandlerArgs=<Filters

InputFilterClass=\"MyFilterNamespace.MyFilterClassName\"
InputFilterLib=\"MyAssemblyName\" />",

BEGIN_ARGUMENTS,
...
END_ARGUMENTS,
...
);

UserHandlerName= LrWsSoapFilterLoader

UserHandlerArgs=<Filters InputFilterClass=\"class name\" InputFilterLib=\"lib name\"
OutputFilterClass=\"class name\" OutputFilterLib=\"lib name\" />

UserHandlerOrder=BeforeSecurity/AfterSecurity/AfterAttachments
157

Chapter 8 • Setting Advanced Properties for Web Service Scripts
If your application has its own configuration file, app.config, you can
implement it in several ways:

➤ Save it as mmdrv.exe.config, overwriting the existing configuration file. This
will apply your configuration information to all scripts on the machine.

➤ Save app.config to the script’s folder. The settings in the app.config file
override the ones in mmdrv.exe.config. In addition, if you save it to the
script’s file, it will always be associated with the script, not requiring you to
copy it over separately to other machines.

In addition, the configuration file contains security information. You can
configure whether or not to allow unsigned test certificates.

By default, VuGen allows unsigned certificates to facilitate testing. To
disallow unsigned certificates, modify the allowTestRoot flag in the
mmdrv.exe.config file to false.

<security>
<x509 storeLocation=”currentuser” alllowTestRoot=”false”
158

9
Running SOA/Web Services Scripts

After you create an SOA/ Web Services scripts, you run it to make sure it is
functional. After you run the script, you can view the test results to see
whether the services performed as expected.

This chapter includes:

 ➤ About Running Web Services Vusers on page 159

 ➤ Setting Web Services JMS Run-Time Settings on page 161

 ➤ Using Web Services Functions on page 163

 ➤ Viewing Web Services Reports on page 163

The following information only applies to Web Services and SOA Vuser
scripts.

About Running Web Services Vusers

In Tree view, VuGen provides three tabs that allow you to understand and
examine your script before running it:

➤ Snapshot. Displays the SOAP requests and responses that occurred during
record and replay. For more information, see “Viewing Web Services SOAP
Snapshots” on page 84.

➤ Step Properties. Provides details of each step in your script, along with its
argument values, attachments, SOAP headers, and transport layer
configuration. For more information, see Chapter 7, “Working in the Web
Service Call View.”
159

Chapter 9 • Running SOA/Web Services Scripts
➤ Checkpoint. VLists the verification points that help your determine whether
or not your service produced correct results. For more information, see
“Setting Checkpoints” on page 119.

Before running the script, you can set run-time settings that help you
emulate real users more accurately. These settings include general run-time
settings (iteration, log, think time, and general information), and Web-
Services related settings (JMS).

For details, see the following sections or “Configuring Run-Time Settings” in
Volume I-Using VuGen.
160

Chapter 9 • Running SOA/Web Services Scripts
Setting Web Services JMS Run-Time Settings

To use JMS as a transport for Web Service calls, there are several resources
that need to be allocated and configured. Those resources include the JVM,
JNDI initialization parameters, JMS resources, and timeout values.

VuGen lets you configure some of those resources through the run-time
settings.

You can set options in the area of VM (Virtual Machine), the JMS
connections, and message timeouts.

VM

➤ Use external VM. Enables you to select a VM (Virtual Machine) other than
the standard one. If you disable this option, Vusers use the JVM provided
with VuGen.

➤ JVM Home. The location of the external JVM. This should point to the JDK
home directory, defined by JDK_HOME. VuGen supports JDK 1.4 and above.
161

Chapter 9 • Running SOA/Web Services Scripts
➤ Classpath. The vendor implementation of JMS classes together with any
other required supporting classes, as determined by the JMS implementation
vendor

JMS

➤ Additional VM Parameters. Extra parameters to send to the JVM such as
Xbootclasspath, and any parameters specified by the JVM documentation

➤ JNDI initial context factory. The fully qualified class name of the factory
class that will create an initial context. Choose a context factory from the
list or provide your own.

➤ JNDI provider. The URL string of the service provider. For example:
Weblogic - t3://myserver:myport
Websphere - iiop://myserver:myport

➤ JMS connection factory. The JNDI name of the JMS connection factory. You
can only specify one connection factory per script.

➤ JMS security principal. Identity of the principal (for example the user) for
the authentication scheme.

➤ JMS security credentials. The principal’s credentials for the authentication
scheme.

➤ Number of JMS connections per process. The number of JMS connections
per mdrv process, or Vuser. All Vusers sharing a connection will receive the
same messages. The default is 1, and the maximum is 50 Vusers. The less
connections you have per process, the better your performance.

➤ Receive message timeout options. The timeout for received messages. The
default is No wait.

➤ Indefinite wait. Wait as long as required for the message before
continuing.

➤ No wait. Do not wait for the Receive message, and return control to
the script immediately. If there was no message in the queue, the
operation fails. (default)

➤ Specify the timeout in seconds. Manually specify a timeout value for
the message. If the timeout expired and no message arrived, the
operation fails.

162

Chapter 9 • Running SOA/Web Services Scripts
User defined timeout. Specify the amount of seconds to wait for the
message before timing out. The default is five seconds.

➤ Automatically generate selector. Generates a selector for the response
message with the correlation ID of the request (No by default). Each JMS
message sent to the server has a specific ID. Enable this option if you want
VuGen to automatically create a selector that includes the message ID.

Using Web Services Functions

Web Service functions call services and provide security and
synchronization. The Web Service functions begin with the web_service
prefix. For example, web_service_call performs a SOAP request from a
WSDL and its argument data.

To perform a SOAP request from raw data, use the soap_request function.

In addition, you can enhance your script with JMS functions, jms_<suffix>
or XML functions, lr_xml_<suffix>. For more information, refer to the
Online Function Reference (Help > Function Reference).

Viewing Web Services Reports

After you run a Web Services script, you can view a summary of the test
results using the Test Results viewer. The viewer also shows the results of the
checkpoints.

This section describes the Summary report’s Web Services information.

The Summary report opens automatically after you replay the script. To
open the report manually, choose View > Test Results.
163

Chapter 9 • Running SOA/Web Services Scripts
The test results are divided into iterations, actions, and steps. When you
select a node in the left pane, the report shows relevant information about
that node.

The Results report marks a successful step with a green check mark and a
failed step with a red X. An iteration is only marked as successful if all of its
steps and actions have succeeded.

If VuGen cannot interpret the script or if it encounters another type of error,
the report displays a message in the right pane stating the problem.
164

Chapter 9 • Running SOA/Web Services Scripts
When you click on one of the service’s operations, the report shows
information about the service, operation, toolkit, testing aspect, and WSDL.
165

Chapter 9 • Running SOA/Web Services Scripts
If you expand an operation’s node further, you can view the actual SOAP
trafffic for the Request and Response.
166

Chapter 9 • Running SOA/Web Services Scripts
Checkpoint Results

The Results window also shows checkpoint results. It provides a summary
with a reason for the failure. It also provides the Expected Value and Actual
Results as well as the argument tree.

To view the checkpoint details, expand the appropriate step under the
operation in the left pane and click the Checkpoint node.

For more information about working with the Test Results, see Volume I-
Using VuGen.
167

Chapter 9 • Running SOA/Web Services Scripts
168

Part III

Working with Java Language Protocols

Working with Java Language Protocols refers to RMI, CORBA, JMS, EJB, and
Jacada types. For each of the mentioned protocols, refer to the appropriate
section. This part contains information that applies to all types of Java
Vusers.

170

10
Recording Java Language Vuser Scripts

VuGen allows you to record applications or applets written in Java, in
protocols such as CORBA, RMI, EJB, JMS or Jacada. You can also use VuGen’s
navigation tool to add any method to your script.

This chapter includes:

 ➤ About Recording Java Language Vuser Scripts on page 172

 ➤ Getting Started with Recording on page 173

 ➤ Recording Java Events on page 175

 ➤ Recording a Corba-Java Vuser on page 178

 ➤ Recording RMI over IIOP on page 179

 ➤ Recording an RMI Vuser on page 180

 ➤ Recording a Jacada Vuser on page 180

 ➤ Recording on Windows XP and Windows 2000 Servers on page 181

The following information applies to Java Record Replay Vuser scripts for
the CORBA-Java, RMI-Java, EJB, JMS and Jacada protocols.
171

Chapter 10 • Recording Java Language Vuser Scripts
About Recording Java Language Vuser Scripts

Using VuGen, you can record a Java application or applet. VuGen creates a
pure Java script enhanced with Vuser API Java-specific functions. After
recording, you can enhance or modify the script with standard Java code
using JDK libraries or custom classes.

After you prepare your script, you run it in standalone mode from VuGen.
Sun’s standard Java compiler, javac.exe, checks the script for errors and
compiles it. Once you verify that the script is functional, you incorporate it
into a LoadRunner scenario or Business Process Monitor profile.

When you create a script through recording and manual enhancements, all
of the guidelines and limitations associated with Java Vuser scripts apply. In
addition, any specific classes used in the script must be present on the
machine executing the Vusers and indicated by the classpath environment
variable. Refer to Chapter 24, “Programming Java Scripts” for important
information about function syntax and system configuration.

Before recording a Corba-Java Vuser, verify that your application or applet
functions properly on the recording machine.

Ensure that you have properly installed a JDK version from Sun on the
machine running VuGen—JRE alone is insufficient. You must complete this
installation before recording a script. Verify that the classpath and path
environment variables are set according to the JDK installation instructions.

Note: When you load an applet or application from VuGen during
recording, it may take several seconds longer than if you were to load it
independent of VuGen.
172

Chapter 10 • Recording Java Language Vuser Scripts
VuGen provides a tool that enables you to convert a Vuser script created for
Web, into Java. For more information, see “Converting Web Vuser Scripts
into Java” on page 540.

After recording, you can enhance or modify the script with standard Java
code using JDK libraries or custom classes.

After you prepare your script, you run it in standalone mode from VuGen.
Sun’s standard Java compiler, javac.exe, checks the script for errors and
compiles it.

You integrate finished scripts into your environment: a LoadRunner
scenario, Performance Center load test, or Business Process Monitor profile.
For more information, refer to the HP LoadRunner Controller, Performance
Center, or HP Business Availability Center documentation.

Getting Started with Recording

The following procedure outlines how to record Java language Vuser scripts.

 1 Ensure that the recording machine is properly configured.

Make sure that your machine is configured properly for Java before you
begin recording. For more information, see Chapter 24, “Programming Java
Scripts” and the Readme file.

 2 Create a new Vuser script.

Select The Java Record/Replay Vuser type.

 3 Specify a Java protocol.

Select a protocol from the recording options.
173

Chapter 10 • Recording Java Language Vuser Scripts
 4 Set the recording parameters and options for the script.

You specify the parameters for your applet or application such as working
directory and paths. You can also set JVM, serialization, correlation,
recorder, and debug recording options. For more information, see
Chapter 12, “Setting Java Recording Options.”

 5 Record typical user actions.

Begin recording a script. Perform typical actions within your applet or
application. VuGen records your actions and generates a Vuser script.

 6 Enhance the Vuser script.

Add Vuser API specific functions to enhance the Vuser script. For details, see
Chapter 24, “Programming Java Scripts.” You can use the built-in Java
function Navigator. For more information, see “Viewing the Java Methods”
on page 190.

 7 Parameterize the Vuser script.

Replace recorded constants with parameters. You can parameterize complete
strings or parts of a string. Note that you can define more than one
parameter for functions with multiple arguments. For details, see “Defining
Parameters” in Volume I-Using VuGen.

 8 Configure the run-time setting for the script.

Configure run-time settings for the Vuser script. The run-time settings
define the run-time aspects of the script execution. For the specific run-time
settings for Java, see Chapter 14, “Configuring Java Run-Time Settings.”

 9 Save and run the Vuser script.

Run the script from VuGen and view the execution log for run-time
information. For details, see “Running Vuser Scripts in Standalone Mode” in
Volume I-Using VuGen.

For detailed information on the recording procedure, refer to the specific
chapter for your Vuser type.
174

Chapter 10 • Recording Java Language Vuser Scripts
Recording Java Events

Ensure that you have properly installed a JDK version from Sun on the
machine running the Vusers—JRE alone is insufficient.Verify that the
classpath and path environment variables are set according to the JDK
installation instructions. Before you replay a Vuser script, verify that your
environment is configured properly for the JDK and relevant Java classes.

This is the general procedure for recording a Java session.

To begin recording:

 1 Choose File > New and select JAVA Record Replay from the Java category.
The Start Recording dialog box opens.

 2 In the Application Type box, select the appropriate value.

➤ Java Applet to record a Java applet through Sun’s appletviewer.

➤ Java Application to record a Java application.

➤ Netscape or IExplore to record an applet within a browser.

➤ Executable/Batch to record an applet or application that is launched
from within a batch file or the name of an executable file.
175

Chapter 10 • Recording Java Language Vuser Scripts
➤ Listener to instruct VuGen to wait for the batch file that initializes the
configuration and runs an application before recording. This mode
requires you to define the system variable _JAVA_OPTIONS as --
Xrunjdkhook using jdk1.2.x and higher. (For JDK 1.1.x, define the
environment variable _classload_hook=JDKhook. For JDK 1.6 set
_JAVA_OPTIONS as -agentlib:jdhook.)

 3 In the Vendor Classes box, select Network if the classes are being
downloaded from the network. Otherwise, when classes are loaded locally,
(such as JDK 1.2 and higher), only Local is supported.

 4 Specify additional parameters according for the following chart:

Note: A Working Directory is necessary only if your application must know
the location of the working directory (for example, reading property files or
writing log files).

 5 Click Options to open the Recording Options dialog box. You select a Java
protocol: CORBA, RMI, JMS, or Jacada and set other recoridng properties.
For information about setting recording options, see Chapter 12, “Setting
Java Recording Options.”

Application Type Fields to Set

Java Applet Applet Path, Working Directory

Java Application App. Main Class, Working Directory, App. parameters

IExplore IExplore Path, URL

Netscape Netscape Path, URL

Executable/Batch Executable/Batch, Working Directory

Listener N/A
176

Chapter 10 • Recording Java Language Vuser Scripts
 6 In the Record into Action box, select the section corresponding to the
method into which you want to record. The Actions class contains three
methods: init, action, and end, corresponding to the vuser_init, Actions, and
vuser_end sections. The following table shows what to include into each
method, and when each method is executed.

Note: Make sure to import the org.omg.CORBA.ORB function in the
vuser_init section, so that it will not be repeated for each iteration.

 7 Click OK to begin recording. VuGen starts your application, minimizes itself
and opens a progress bar and the floating recording toolbar. The progress
toolbar displays the names of classes as they load. This indicates that the
Java recording support is active.

 8 Perform typical actions within your application. Use the floating toolbar to
switch methods during recording.

method within
Actions class

Record into
action

Used to emulate... Executed during...

init vuser_init a login to a server Initialization

action Actions client activity Running

end vuser_end a log off procedure Finish or Stopped
177

Chapter 10 • Recording Java Language Vuser Scripts
 9 After recording the typical user actions, select the vuser_end method from
the floating toolbar.

Perform the log off procedure. VuGen records the procedure into the
vuser_end method of the script.

 10 Click Stop Recording on the Recording toolbar. The VuGen script editor
displays all the recorded statements.

Click Save and provide a name for the script.

Recording a Corba-Java Vuser

For recording a CORBA Java script, you need to set the following options in
the Recording Options:

➤ JNDI

➤ Use DLL hooking to attach VuGen support
178

Chapter 10 • Recording Java Language Vuser Scripts
Using CORBA Application Vendor Classes
Running CORBA applications with JDK1.2 or later, might load the JDK
internal CORBA classes instead of the specific vendor CORBA classes. To
force the virtual machine to use the vendor classes, specify the following
java.exe command-line parameters:

Recording RMI over IIOP

The Internet Inter-ORB Protocol (IIOP) technology was developed to allow
implementation of CORBA solutions over the World Wide Web. IIOP lets
browsers and servers exchange complex objects such as arrays, unlike HTTP,
which only supports transmission of text.

RMI over IIOP technology makes it possible for a single client to access
services which were only accessible from either RMI or CORBA clients in the
past. This technology is a hybrid of the JRMP protocol used with RMI and
IIOP used with CORBA. RMI over IIOP allows CORBA clients to access new
technologies such as Enterprise Java Beans (EJB) among other J2EE
standards.

Visigenic 3.4
-Dorg.omg.CORBA.ORBClass=com.visigenic.vbroker.orb.ORB
-Dorg.omg.CORBA.ORBSingletonClass=com.visigenic.vbroker.orb.

ORBSingleton

Visigenic 4.0
-Dorg.omg.CORBA.ORBClass=com.inprise.vbroker.orb.ORB
-Dorg.omg.CORBA.ORBSingletonClass=com.inprise.vbroker.orb.ORBSingleton

OrbixWeb 3.x
-Dorg.omg.CORBA.ORBClass=IE.Iona.OrbixWeb.CORBA.ORB
-Dorg.omg.CORBA.ORBSingletonClass=IE.Iona.OrbixWeb.CORBA.

singletonORB

OrbixWeb 2000
-Dorg.omg.CORBA.ORBClass=com.iona.corba.art.artimpl.ORBImpl
-Dorg.omg.CORBA.ORBSingletonClass=com.iona.corba.art.artimpl.

ORBSingleton
179

Chapter 10 • Recording Java Language Vuser Scripts
VuGen provides full support for recording and replaying Vusers using the
RMI over IIOP protocol. Depending on what you are recording, you can
utilize VuGen’s RMI recorder to create a script that will optimally emulate a
real user:

➤ Pure RMI client. recording a client that uses native JRMP protocol for remote
invocations

➤ RMI over IIOP client. recording a client application that was compiled using
the IIOP protocol instead of JRMP (for compatibility with CORBA servers).

Recording an RMI Vuser

Before recording an RMI Vuser, verify that your application or applet
functions properly on the recording machine.

Before you record, verify that your environment is configured properly.
Make sure that the required classes are in the classpath and that you have a
full installation of JDK. For more information on the required environment
settings, see Chapter 24, “Programming Java Scripts.”

Recording a Jacada Vuser

The Jacada Interface Server provides an interface layer for mainframe
applications. This layer separates the user interface from the application
logic in order to insulate the organization from changes in standards and
technologies. Instead of working with green-screen applications, the Jacada
server converts the environment to a user friendly interface.

VuGen records Jacada’s Java thin-client. To record communication with the
Jacada server through the HTML thin-client, use the Web HTTP/HTML type
Vuser. For more information, see Chapter 34, “Creating Web Vuser Scripts.”

Before replay, you must also download the clbase.jar file from the Jacada
server. All classes used by the Java Vuser must be in the classpath—either set
in the machine’s CLASSPATH environment variable or in the Classpath Entries
list in the Classpath node of the Run-Time settings.
180

Chapter 10 • Recording Java Language Vuser Scripts
During replay, the Jacada server may return screens from the legacy system,
in a different order than they appear in the recorded script. This may cause
an exception in the replay. For information on how to handle these
exceptions, please contact support.

Recording on Windows XP and Windows 2000 Servers

When recording on Windows XP and Windows 2000 servers, the Java plug-
in may be incompatible with VuGen’s recorder. To insure proper
functionality, perform the following procedure after the installation of the
java plug-in, before recording a script.

To configure your machine for a Corba-Java or Rmi-Java recording:

 1 Open the Java Plug-in from the Control Panel. Choose Start > Settings >
Control Panel and open the Java Plug-in component. The Basic tab opens.

 2 Clear the Enable Java Plug-In check box and click Apply. Then, reselect the
Enable Java Plug-In check box and click Apply.
181

Chapter 10 • Recording Java Language Vuser Scripts
 3 Open the Browser tab.

 4 Clear the Microsoft Internet Explorer check box and click Apply. Then,
reselect the Microsoft Internet Explorer check box and click Apply.
182

11
Working with Java Vuser Scripts

VuGen allows you to record applications or applets written in Java. You can
run the recorded script or enhance it using standard Java library functions
and Vuser API Java-specific functions.

This chapter includes:

 ➤ Understanding Java Vuser Scripts on page 184

 ➤ Working with Corba-Java on page 185

 ➤ Working with RMI Java on page 187

 ➤ Working with Jacada on page 188

 ➤ Running a Script as Part of a Package on page 189

 ➤ Viewing the Java Methods on page 190

 ➤ Manually Inserting Java Methods on page 192

 ➤ Configuring Script Generation Settings on page 194

 ➤ Java Custom Filters on page 198

The following information applies to Java Record Replay Vuser scripts for
the CORBA-Java, RMI-Java, EJB, JMS and Jacada protocols.
183

Chapter 11 • Working with Java Vuser Scripts
Understanding Java Vuser Scripts

When you record a session, VuGen logs all calls to the server and generates a
script with functions. These functions describe all of your actions within the
application or applet. The script also contains supplementary code required
for proper playback, such as property settings, and naming service
initialization (JNDI).

The recorded script is comprised of three sections:

➤ Imports

➤ Code

➤ Variables

The Imports section is at the beginning of the script. It contains a reference
to all the packages required for compiling the script. The Code section
contains the Actions class and the recorded code within the init, actions,
and end methods. The Variables section, after the end method, contains all
the type declarations for the variables used in the code.

After you finish recording, you can modify the functions in your script, or
add additional Java or LoadRunner functions to enhance the script. Note
that if you intend to run Java Vusers as threads, the Java code you add to
your script must be thread-safe. For details about function syntax, refer to
the Online Function Reference (Help > Function Reference). In addition, you
can modify your script to enable it to run as part of another package. For
more information, see “Compiling and Running a Script as Part of a
Package” on page 399.
184

Chapter 11 • Working with Java Vuser Scripts
Working with Corba-Java

CORBA-specific scripts usually have a well-defined pattern. The first section
contains the ORB initialization and configuration. The next section
indicates the location of the CORBA objects. The following section consists
of the server invocations on the CORBA objects. The final section includes a
shutdown procedure which closes the ORB. Note that pattern is not
mandatory and that each one of these sections may appear multiple times
within a script.

In the following segment, the script initializes an ORB instance and
performs a bind operation to obtain a CORBA object. Note how VuGen
imports all of the necessary classes.

The org.omg.CORBA.ORB function makes the connection to ORB.
Therefore, it should only be called once. When running multiple iterations,
place this function in the init section.

import org.omg.CORBA.*;
import org.omg.CORBA.ORB.*;
import lrapi.lr;

public class Actions {

// Public function: init
public int init() throws Throwable {

// Initialize Orb instance...
MApplet mapplet = new MApplet("http://chaos/classes/", null);
orb = org.omg.CORBA.ORB.init(mapplet, null);

// Bind to server...
grid = grid_dsi.gridHelper.bind("gridDSI", "chaos");
return lr.PASS;

}

185

Chapter 11 • Working with Java Vuser Scripts
In the following section, VuGen recorded the actions performed upon a grid
CORBA object.

At the end of the session, VuGen recorded the shutdown of the ORB. The
variables used throughout the entire recorded code appear after the end
method and before the Actions class closing curly bracket.

Note that the ORB shutdown statement was customized for this product.
This customization prevents a single Vuser’s shutdown from shutting down
all other Vusers.

// Public function: action
public int action() throws Throwable {

grid.width();
grid.height();
grid.set(2, 4, 10);
grid.get(2, 4);

return lr.PASS;
}

// Public function: end
 public int end() throws Throwable {

 if (lr.get_vuser_id() == -1)
 orb.shutdown();

 return lr.PASS;
}

// Variable section
 org.omg.CORBA.ORB orb;
 grid_dsi.grid grid;
}

186

Chapter 11 • Working with Java Vuser Scripts
Working with RMI Java

This section describes the elements of the Java Vuser script that are specific to
RMI Vusers. RMI does not have constructs (as in CORBA)—instead it uses
Serializable Java objects. The first section performs a Naming Registry
initialization and configuration. The next section is generated when Java
objects (both Remote and Serializable) are located and casted. The following
section consists of the server invocations on the Java objects. In RMI there is
no specific shutdown section (unlike CORBA). Note that objects might
appear multiple times within the script.

The following segment locates a naming registry. This is followed by a
lookup operation to obtain a specific Java object. Once you obtain the
object, you can work with it and perform invocations such as set_sum,
increment, and get_sum. The following segment also shows how VuGen
imports all of the necessary RMI classes.

Import java.rmi.*;
Import java.rmi.registry.*;

:
:

// Public function: action
public int action() throws Throwable {

_registry = LocateRegistry.getRegistry("localhost",1099);

counter = (Counter)_registry.lookup("Counter1");

counter.set_sum(0);
counter.increment();
counter.increment();
counter.get_sum();

return lr.PASS;
}

:

187

Chapter 11 • Working with Java Vuser Scripts
When recording RMI Java, your script may contain several calls to
lr.deserialize, which deserializes all of the relevant objects. The
lr.deserialize calls are generated because the object being passed to the next
invocation could not be correlated to a return value from any of the
previous calls. VuGen therefore records its state and uses lr.deserialize call
to represent these values during replay. The deserialization is done before
VuGen passes the objects as parameters to invocations. For more
information, see “Using the Serialization Mechanism” on page 226.

Working with Jacada

The Actions method of a Java Vuser script using Jacada, has two main parts:
properties and body. The properties section gets the server properties.
VuGen then sets the system properties and connects to the Jacada server.

 // Set system properties...
 _properties = new Properties(System.getProperties());
 _properties.put("com.ms.applet.enable.logging", "true");
 System.setProperties(_properties);

 _jacadavirtualuser = new cst.client.manager.JacadaVirtualUser();

 lr.think_time(4);
 _jacadavirtualuser.connectUsingPorts("localhost", 1100, "LOADTEST", "", "", "");
 …
188

Chapter 11 • Working with Java Vuser Scripts
The body of the script contains the user actions along with the exception
handling blocks for the checkFieldValue and checkTableCell methods.

The checkField method has two arguments: field ID number and expected
value. The checkTableCell method has four arguments: table ID, row,
column, and expected value. If there is a mismatch between the expected
value and the received value, an exception is generated.

By default, the try-catch wrapper blocks are commented out. To use them in
your script, remove the comment markers.

In addition to the recorded script, you can add any of the Java Vuser API
functions. For a list of these functions and information on how to add them
to your script, see Chapter 24, “Programming Java Scripts.”

Running a Script as Part of a Package

This section is not relevant for Jacada type scripts.

When creating or recording a Java script, you may need to use methods
from classes in which the method or class is protected. When attempting to
compile such a script, you receive compilation errors indicating that the
methods are not accessible.

 l…
/*
try {
 _jacadavirtualuser.checkFieldValue(23, "S44452BA");
 }catch(java.lang.Exception e) {
 lr.log_message(e.getMessage());
 }
*/ l…
/*
try {
_jacadavirtualuser.checkTableCell(41, 0, 0, "");

 }catch(java.lang.Exception e) {
 lr.log_message(e.getMessage());
 }
*/ l…
189

Chapter 11 • Working with Java Vuser Scripts
To use the protected methods, add the Vuser to the package of required
methods. At the beginning of your script, add the following line:

where a.b.c represents a directory hierarchy. VuGen creates the a/b/c
directory hierarchy in the user directory and compiles the Actions.java file
there, thus making it part of the package. Note that the package statement
is not recorded—you need to insert it manually.

Viewing the Java Methods

VuGen provides a navigator that lets you view all of the Java classes and
methods in your application’s packages.

package a.b.c;
190

Chapter 11 • Working with Java Vuser Scripts
To insert a class or method into your script, you select it and paste it into
your script. For step-by-step instructions, see “Manually Inserting Java
Methods” on page 192.

The lower part of the dialog box displays a description of the Java object, its
prototype, return values and path. In the following example, the description
indicates that the deserialize method is a public static method that receives
two parameters—a string and an integer. It returns a java.lang.object and
throws an exception.

The following table describes the icons that represent the various Java
objects:

public static synchronized java.lang.Object deserialize (java.lang.String, int) throws
Exception

Icon Item Example

Package java.util

Class public class Hashtable extends java.util.Dictionary

implements java.lang.Cloneable, java.io.Serializable

Interface
Class
(gray icon)

public interface Enumeration

Method public synchronized java.util.Enumeration keys ()

Static Method
(yellow icon)

public static synchronized java.util.TimeZone
getTimeZone

Constructor
Method

public void Hashtable ()
191

Chapter 11 • Working with Java Vuser Scripts
Manually Inserting Java Methods

You use the Java Function navigator to view and add Java functions to your
script. The following section apply to EJB Testing and Java Record/Replay
Vusers. You can customize the function generation settings by modifying
the configuration file. For more information, see “Configuring Script
Generation Settings” on page 194.

To insert Java functions:

 1 Click within your script at the desired point of insertion. When you paste a
function, VuGen places it at the location of the cursor.

 2 Choose Insert > Insert Java Function. The Insert Java Function dialog box
opens.
192

Chapter 11 • Working with Java Vuser Scripts
 3 Click Locations. The Locations dialog box opens. By default, VuGen lists the
paths defined in the CLASSPATH environment variable.

 4 Click Browse to add another path or archive to the list. To add a path,
choose Browse > Folder. To add an archive (jar or zip), choose Browse > File.
When you select a folder or a file, VuGen inserts it in the Add Location box.

 5 Click Add to add the item to the list.

 6 Repeat steps 4 and 5 for each path or archive you want to add.

 7 Select or clear the check boxes to the left of each item in the list. If an item is
checked, its members will be listed in the Java Class navigator.

 8 Click OK to close the Locations dialog box and view the available packages.

 9 Click the plus and minus signs to the left of each item in the navigator, to
expand or collapse the trees.

 10 Select an object and click Paste. VuGen places the object at the location of
the cursor in the script. To paste all the methods of a class into your script,
select the class and click Paste.

 11 Repeat the previous step for all of the desired methods or classes.
193

Chapter 11 • Working with Java Vuser Scripts
 12 Modify the parameters of the methods. If the script generation setting
DefaultValues is set to true, you can use the default values inserted by
VuGen. If DefaultValues is set to false, you must add parameters for all
methods you insert into the script.

In addition, modify any return values. For example, if your script generated
the following statement "(String)=LavaVersion.getVersionId();", replace
(String) with a string type variable.

 13 Add any necessary statements to your script such as imports or Vuser API
Java functions (described in Chapter 24, “Programming Java Scripts”).

 14 Save the script and run it from VuGen.

Configuring Script Generation Settings

You can customize the way the navigator adds methods to your script in the
following areas:

➤ Class Name Path

➤ Automatic Transactions

➤ Default Parameter Values

➤ Class Pasting

To view the configuration setting, open the jquery.ini file in VuGen’s dat
directory.

[Display]
FullClassName=False

[Insert]
AutoTransaction=False
DefaultValues=True
CleanClassPaste=False
194

Chapter 11 • Working with Java Vuser Scripts
Class Name Path
The FullClassName option displays the complete package and class name in
the Java Function navigator. This option does not affect the way the
functions are added into the script—it only affects the way the classes are
displayed in the navigator. By default, this option is set to false. If your
packages have many classes and you are unable to view the package and
class names at the same time, you should enable this option.

FullClassName enabled FullClassName disabled
195

Chapter 11 • Working with Java Vuser Scripts
Automatic Transactions
The AutoTransaction setting creates a Vuser transaction for all methods.
When you enable this option, VuGen automatically encloses all Java
methods with lr.start_transaction and lr.end_transaction functions. This
allows you to individually track the performance of each method. This
option is disabled by default.

Default Parameter Values
The DefaultValues setting includes default values for all methods you paste
into your script. This option is enabled by default and inserts a null for all
objects. If you disable this option, you must manually insert parameter
values for all functions in the script. The following table illustrates the
DefaultValues flag enabled and disabled.

DefaultValues enabled DefaultValues disabled

lr.message((String)"");

lr.think_time((int)0);

lr.enable_redirection((boolean)false);

lr.save_data((byte[])null, (String)"");

lr.message((String));

lr.think_time((int));

lr.enable_redirection((boolean));

lr.save_data((byte[]), (String));
196

Chapter 11 • Working with Java Vuser Scripts
Class Pasting
The CleanClassPaste setting pastes a class so that it will compile cleanly:
with an instance returning from the constructor, with default values as
parameters, and without a need for import statements. Using this option,
you will most likely be able to run your script without any further
modifications. If you disable this option (default), you may need to
manually define parameters and include import statements. Note that this
setting is only effective when you paste an entire class into your script—not
when you paste a single method.

The following segment shows the toString method pasted into the script
with the CleanClassPaste option enabled.

The same method with the CleanClassPaste option disabled is pasted as
follows:

The next segment shows the NumInserter Constructor method pasted into
the script with the CleanClassPaste option enabled.

The same method with the CleanClassPaste option disabled is pasted as:

_class.toString();
// Returns: java.lang.String

(String) = toString();

utils.NumInserter _numinserter = new utils.NumInserter
((java.lang.String)"", (java.lang.String)"", (java.lang.String)""…);

// Returns: void

new utils.NumInserter((String)"", (String)"", (String)"",...);
197

Chapter 11 • Working with Java Vuser Scripts
Java Custom Filters

When testing your JAVA application, your goal is to determine how the
server reacts to client requests. When load testing, you want to see how the
server responds to a load of many users. With VuGen’s Java Vuser, you create
a script that emulates a client communicating with your server.

VuGen provides filter files that define hooking properties for commonly
used methods. There are filter definitions for RMI, CORBA, JMS, and
JACADA protocols. You can also define custom filters as described below.

When you record a method, the methods which are called from the
recorded method either directly or indirectly, will not be recorded.

In order to record a method, VuGen must recognize the object upon which
the method is invoked, along with the method’s arguments. VuGen
recognizes an object if it is returned by another recorded method provided
that:

➤ the construction method of that object is hooked

➤ it is a primitive or a built-in object

➤ It supports a serializable interface.

You can create a custom filter to exclude unwanted methods. When
recording a JAVA application, your script may include calls to methods that
do not affect the server, such as calls to a local utility or the GUI interface.
These calls are usually not relevant to your testing goals, and it would be
correct to filter them out.

The built-in filters for RMI, CORBA, JMS, and JACADA protocols were
designed to record only the server related traffic relevant to your testing
goals. In some instances, however, you may need to customize filters to
capture your JAVA application's calls or exclude unnecessary calls. Custom
JAVA protocols, proprietary enhancements and extensions to the default
protocols, and data abstraction all require a custom filter definition.
198

Chapter 11 • Working with Java Vuser Scripts
Guidelines for Setting Filters
Before creating a test, it is recommended that you become familiar with
your application and determine its primary classes and methods, so that you
will know which ones to include in your recording.

If you are not familiar with your application's classes, VuGen allows you to
record with a stack trace that logs all of the methods that were called by
your application. In order to record with stack trace set the log level to
Detailed. For more information, see “Defining an Effective Filter” on
page 201.

Once you determine the required methods and classes, you include them by
updating the user.hooks file. When preparing a script, you may need to
customize the filter several times in order to achieve the optimal filter. An
optimal filter records the relevant methods without introducing a large
number of irrelevant calls to the script.

Note: If you plan to add manual code to your script such as control flow or
message statements, make sure to do so after you have a functional script
that runs inside VuGen. The reason for this, is that if you rerecord a script
after modifying the filters, it will overwrite all manual changes.
199

Chapter 11 • Working with Java Vuser Scripts
Determining which Elements to Include or Exclude
When designing a custom filter, it is recommended that you start by
choosing the appropriate built-in filter as a base filter. You can then
customize the filter using one of the following approaches:

➤ Top Down Approach. An approach in which you include the relevant
package and exclude specific classes that are not part of the client-server
activity. This is recommended if you are familiar with your application and
you can identify a well-defined layer which implements all client-server
activity without involving any GUI elements.

➤ Bottom up Approach. An approach in which you use the default filter and
refine it by adding individual methods or classes. Use this approach if you
cannot identify a well-defined layer or if you are not familiar with your
application. Do not add all AUT packages and then try to remove extra
component one by one.

The following section provides guidelines on when to include or exclude
elements.

➤ If, as a result of your including a class, your script has many unrelated
method calls, try modifying the filter to exclude the irrelevant methods.

➤ If you identify a non-client/server call in your script, exclude its method
in the filter.

➤ During recording, VuGen may detect an unknown input argument, for
example, an argument whose construction it had never encountered
before. If this argument supports serialization, VuGen serializes it by
saving it to a file in a special format. During replay, VuGen reconstructs
the argument by deserializing it.

➤ VuGen serializes objects passed as arguments that were not included by
the filter. It is recommended that you include this object in the filter in
order to track its construction and activity instead of using it in its
serialized form. You can identify serialized objects in the script by
searching for calls to the lr.deserialize() method in your script. For more
information see “Using the Serialization Mechanism” on page 226.

➤ Exclude all activity which involves GUI elements.

➤ Add classes for utilities that may be required for the script to be
compiled.
200

Chapter 11 • Working with Java Vuser Scripts
Defining an Effective Filter
When preparing a script, you may need to customize the filter several times
in order to achieve the optimal filter. An optimal filter records the relevant
methods without introducing a large number of irrelevant calls to the script.

To define an effective filter:

 1 Create a new filter based on one of the built-in filters by modifying the
user.hooks file which is located in the product’s classes directory.

 2 Open the Recording Options (Ctrl+F7) and select the Log Options node.
Select the Log Level to Detailed.

 3 Record your application. Click Start Record (Ctrl + R) to begin and Stop
(Ctrl + F5) to end.

 4 View the script's steps. If you can determine the business logic from the
steps and apply correlation, you may not need to create custom filters. If,
however, the script is very long or hard to maintain and correlate, you
should customize the script's filter.

 5 Try to identify the high-level method in the call that captures or wraps one
or more client server calls. You can do this by opening the AUT source files
(if they are available) or by viewing a Stack Trace of the script.

 6 Set the filter to include the relevant methods. For more information, see
“Determining which Elements to Include or Exclude” on page 200.

 7 Record the application again. You should always rerecord the application
after modifying the filter.

 8 Repeat steps 4 through 7 until you get a simple script which can be easily
maintained and correlated.

 9 Correlate the script. In order for your test to run properly, you may need to
insert a correlation to capture a value and use it at a later point in the script.
For more information about the built-in correlation mechanism, see
Chapter 13, “Correlating Java Scripts.”
201

Chapter 11 • Working with Java Vuser Scripts
Note: Do not modify any of the other .hooks file as it might damage the
VuGen recorder.

Adding custom hooks to the default recorder is a complicated task and
should be considered thoroughly as it has both functional and performance
consequences.

Incorrect hooking definitions can lead to incorrect scripts, slow recording,
and application freeze-up.

Hooks Files Structure
The following section describes the structure of a typical hooks file:

The hook files are structured as .ini files where each section represents a
hook definition. Regular expressions are supported in some of the entries.
Any entry that uses regular expression must start with a '!'.

Hook-Name

Specifies the name of this section in the hooks file. Hook-Name must be
unique across all hooks files. A good practice is to give the fully qualified
class name and method. For example:

[javax.jms.Queue.getQueueName]

[Hook-Name]
class = MyPackage.MyClass
method = MyMethod
signature = ()V
ignore_cl =
ignore_mtd =
ignore_tree =
cb_class = mercury.ProtocolSupport
cb_mtd =
general_cb = true
deep_mode = soft | hard
make_methods_public = true | false
lock = true | false
202

Chapter 11 • Working with Java Vuser Scripts
Class

 A fully qualified class name. Regular expression can be used to include
several classes from the same package, a whole package, several packages, or
any class that matches a name. For example:

Class = !javax\.jms\.*

Method

The simple name of the method to include. Regular expressions can be used
to include more than one method from the class. For example:

Method = getQueueName

Signature

The standard Java internal type signature of the method. To determine the
signature of a method, run the command javap -s class-name where class
name is the fully qualified name of the class. Regular expressions can be
used to include several methods with the same name, but with different
arguments. For example:

Signature = !.*

ignore_cl

A specific class to ignore from the classes that match this hook. This can be a
list of comma separated class names. Each item in the list can contain a
regular expression. If an item in the list contains a regular expression,
prepend a '!' to the class name. For example:

Ignore_cl = !com.hp.jms.Queue,!com\.hp\..*

ignore_mtd

A specific method to ignore. When the loaded class method matches this
hook definition, this method will not be hooked. The method name must
be the simple method name followed by the signature (as explained above).
To ignore multiple methods, list them in a comma separated list. To use a
regular expression, prepend a '!' to the method name. For example:

Ignore_cl = open, close
203

Chapter 11 • Working with Java Vuser Scripts
ignore_tree

A specific tree to ignore. When the name of the class matches the ignore tree
expression, any class that inherits from it will not be hooked, if it matches
this hooks definition. To ignore multiple trees, list them in a comma
separated list. To use a regular expression, prepend a '!' to the class name.
This option is relevant only for hooks that are defined as deep.

cb_class

The callback class that gets the call from the hooked method. It should
always be set to mercury.ProtocolSupport.

cb_mtd

A method in the callback class that gets the call from the hooked method. If
omitted, it uses the default, general_rec_func. For cases where you just need
to lock the subtree of calls, use general_func instead.

general_cb

The general callback method. This value should always be set to true.

Deep_mode

Deep mode refers to classes and interfaces that inherit or implement the
class or interface that the hook is listed for. The inherited classes will be
hooked according to the type of hook: Hard, Soft, or Off.

➤ Hard. Hooks the current class and any class that inherits from it. If regular
expressions exist, they are matched against every class that inherits from the
class in the hook definition. Interface inheritance is treated the same as class
inheritance.

➤ Soft. Hooks the current class and any class that inherits from it, only if the
methods are overridden in the inheriting class. If the hook lists an interface,
then if a class implements this interface those methods will be hooked. If
they exist in classes that directly inherit from that class they will also be
hooked. However, if the hook lists an interface and a class implements a
second interface that inherits from this interface, the class will not be
hooked.
204

Chapter 11 • Working with Java Vuser Scripts
Note: Regular expressions are not inherited but converted to actual
methods.

➤ Off. Only the class listed in the hook definition and the direct inheriting
class will be hooked. If the hook lists an interface, only classes that directly
implement it will be hooked.

make_methods_public:

Any method that matches the hook definition will be converted to public.
This is useful for custom hooks or for locking a sub tree of calls from a non-
public method.

Note that this applies only during record. During replay, the method will
use the original access flags. In the case of non-public methods, it will throw
java.lang.VerifyError.

Lock

When set to true, it locks the sub tree and prevents the calling of any
method originating from the original method.

When set to false, it will unlock the sub tree, record any method originating
from the current method (if it is hooked), and invoke the callback.
205

Chapter 11 • Working with Java Vuser Scripts
206

12
Setting Java Recording Options

VuGen allows you to control the way in which you record your CORBA,
RMI, JMS or Jacada application. You can use the default recording options,
or customize them for your specific needs.

This chapter includes:

 ➤ About Setting Java Recording Options on page 208

 ➤ Java Virtual Machine (JVM) Recording Options on page 209

 ➤ Setting Classpath Recording Options on page 211

 ➤ Recorder Options on page 212

 ➤ Serialization Options on page 214

 ➤ Correlation Options on page 216

 ➤ Log Options on page 217

 ➤ CORBA Options on page 219

The following information applies to Java Record Replay and EJB Vuser
scripts.
207

Chapter 12 • Setting Java Recording Options
About Setting Java Recording Options

Using VuGen, you record a CORBA (Common Object Request Broker
Architecture) or RMI (Remote Method Invocation) Java application or
applet. For recording an EJB test, see Chapter 47, “Performing EJB Testing.”

Before recording, VuGen lets you set recording options for the Java Virtual
Machine (JVM) and for the code generation stage. Setting the recording
options is not mandatory; if you do not set them, VuGen uses the default
values.

The options described in this chapter were previously handled by modifying
the mercury.properties file.

You can set recording options in the following areas:

➤ Java Virtual Machine (JVM) Recording Options

➤ Setting Classpath Recording Options

➤ Recorder Options

➤ Serialization Options

➤ Correlation Options

➤ Log Options
208

Chapter 12 • Setting Java Recording Options
Java Virtual Machine (JVM) Recording Options

The Java VM options indicate additional parameters to use when recording
Java applications.

When you record a Vuser, VuGen automatically sets the Xbootclasspath
variable with default parameters. If you use this dialog box to set the
Xbootclasspath with different parameters, it will use those command
parameters—not the default ones.

You can also instruct VuGen to add the Classpath before the Xbootclasspath
(prepend the string) to create a single Classpath string.

By default, VuGen uses the classic VM during recording. You can also
instruct VuGen to use another virtual machine (Sun’s Java Hotspot VM).
209

Chapter 12 • Setting Java Recording Options
To set the Java Virtual Machine recording options:

 1 Click Options in the Start Recording dialog box. Select the Java Environment
Settings:Java VM node in the Recording Options tree.

 2 In the Additional VM Parameters box, list the Java command line
parameters. These parameters may be any Java VM argument. The common
arguments are the debug flag (-verbose) or memory settings (-ms, -mx). For
more information about the Java VM flags, see the JVM documentation. In
additional, you may also pass properties to Java applications in the form of a
-D flag.

VuGen automatically sets the -Xbootclasspath variable (for JDK 1.2 and
higher) with default parameters. When you specify -Xbootclasspath with
parameter values as an additional parameter, VuGen uses this setting instead
of the default one.

 3 To use the same Additional VM parameters in replay, select the Use the
specified Additional VM Parameters during replay check box.

 4 To use the classic VM, select the Use classic Java VM check box (default). To
use another VM (Sun’s Java HotSpot), clear the check box.

 5 To add the Classpath before the Xbootclasspath (prepend the string), select
the Prepend CLASSPATH to -Xbootclasspath parameter check box.

 6 Click OK to close the dialog box and begin recording.
210

Chapter 12 • Setting Java Recording Options
Setting Classpath Recording Options

The Java Environment Settings:Classpath node lets you specify the location
of additional classes that were not included in the system’s classpath
environment variable. You may need these classes to run Java applications
and insure proper recording.

You can browse for the required classes on your computer or network and
disable them for a specific test. You can also manipulate the classpath
entries by changing their order.

To set the Classpath recording options:

 1 Click Options in the Start Recording dialog box. Select the Java Environment
Settings:Classpath node in the Recording Options tree.

 2 To add a classpath to the list:

Click the Add Classpath button. VuGen adds a new line to the classpath list.

Type in the path and name of the jar, zip or other archive file for your class.
Alternatively, click the Browse button to the right of the field, and locate
the desired file. VuGen adds the new location to the classpath list, with an
enabled status.

 3 To permanently remove an entry, select it and click the Delete button.
211

Chapter 12 • Setting Java Recording Options
 4 To disable a classpath entry for a specific test, clear the check box to the left
of the entry.

 5 To move an entry down in the list, select it and click the Down arrow.

 6 To move a classpath entry up within the list, select it and click the Up arrow.

 7 Click OK to close the dialog box and begin recording.

Recorder Options

The Recorder options indicate which protocol to record and some of the
protocol-specific settings.

➤ Recorded protocol. Specifies which protocol to record: RMI, CORBA, JMS, or
Jacada. (RMI by default).

➤ Extensions list. A comma separated list of all supported extensions. Each
extension has its own hooks file (JNDI by default).

➤ Use DLL hooking to attach LoadRunner support. Use DLL hooking to
automatically attach LoadRunner support to any JVM.
212

Chapter 12 • Setting Java Recording Options
➤ Load parent class before class. Change the loading order so that parent
classed are loaded before child classes. This helps identify hooking for trees
with deep inheritance. (enabled by default).

➤ Use _JAVA_OPTION flag. Forces JVM versions 1.2 and higher to use the
_JAVA_OPTION environment variable which contains the desired JVM
parameters (disabled by default).

➤ Insert functional check. Inserts verification code that compares the return
value received during replay, to the expected return value generated during
recording. This option only applies to primitive return values (disabled by
default).

➤ Comment lines containing. Comment out all lines in the script containing
one of the specified strings. To specify multiple strings, separate the entries
with commas. By default, any line with a string containing <undefined>,
will be commented out.

➤ Remove lines containing. Remove all lines containing one of the specified
strings from the script. To specify multiple strings, separate the entries with
commas. This feature is useful for customizing the script for a specific
testing goal.

➤ Bytes as characters. Displays readable characters as characters with the
necessary casting—not in byte or hexadecimal form (enabled by default).

➤ Unreadable strings as bytes. Represents strings containing unreadable
characters as byte arrays. This option applies to strings that are passed as
parameters to invocations (enabled by default).

➤ Byte array format. The format of byte arrays in a script: Regular, Unfolded
Serialized Objects, or Folded Serialized Objects. Use one of the serialized
object options when recording very long byte arrays. The default is Regular.

➤ Record LoadRunner callback. Records the LoadRunner stub object as a
callback. If disabled, VuGen records the original class as the callback
(enabled by default).
213

Chapter 12 • Setting Java Recording Options
To set the Java Recorder options:

 1 Click Options in the Start Recording dialog box and select the Recording
Properties:Recorder Options node.

 2 Set the options as desired. For the options with check boxes, select or clear
the check box adjacent to the option. For options that require strings, type
in the desired value.

 3 To set all options to their default values, click Use Defaults.

 4 Click OK to close the dialog box and begin recording.

Serialization Options

The Serialization options let you to control how objects are serialized.
Serialization is often relevant to displaying objects in an ASCII
representation in order to parameterize their values.
214

Chapter 12 • Setting Java Recording Options
The following options are available:

➤ Unfold Serialized Objects. Expands serialized objects in ASCII
representation. This option allows you to view the ASCII values of the
objects in order to perform parameterization (enabled by default).

➤ Limit Object Size (bytes). Limits serializable objects to the specified
value. Objects whose size exceeds this value, will not be given ASCII
representation in the script. The default value is 3072.

➤ Ignore Serialized Objects. Lists the serialized objects not to be
unfolded when encountered in the recorded script. Separate objects
with commas.

➤ Serialization Delimiter. Indicates the delimiter separating the elements
in the ASCII representation of objects. VuGen will only parameterize
strings contained within these delimiters. The default delimiter is ‘#’.

➤ Unfold Arrays. Expands array elements of serialized objects in ASCII
representation. If you disable this option and an object contains an array,
the object will not be expanded. By default, this option is enabled—all
deserialized objects are totally unfolded.

➤ Limit Array Entries. Instructs the recorder not to open arrays with more
than the specified number of elements. The default value is 200.

To set the Serialization options:

 1 Click Options in the Start Recording dialog box and select the Recording
Properties:Serialization Options node.

 2 Set the options as desired. To set all options to their default values, click Use
Defaults.

 3 Click OK to close the dialog box and begin recording.

For more information on serialization, see “Using the Serialization
Mechanism” on page 226.
215

Chapter 12 • Setting Java Recording Options
Correlation Options

The Correlation options let you enable automatic correlation, and control
its depth.

The following options are available:

➤ Correlate Strings. Correlate all strings that require correlation. If this option
is disabled, VuGen prints them in the script, wrapped in quotes (disabled by
default).

➤ Correlate String Arrays. Correlate text within string arrays (enabled by
default).

➤ Correlate Collection Type. Correlates objects from the Collection class for
JDK 1.2 and higher (disabled by default).

➤ Advanced Correlation. Enables deep correlation in CORBA container
constructs and arrays (enabled by default).

➤ Correlation Level. Indicates the level of deep correlation, the number of
inner containers to be scanned (15 by default).
216

Chapter 12 • Setting Java Recording Options
To set the Correlation options:

 1 Click Options in the Start Recording dialog box and select the Recording
Properties:Correlation Options node.

 2 Enable the desired options, or for options that require values, enter the
desired value. To set all options to their default values, click Use Defaults.

 3 Click OK to close the dialog box and begin recording.

For more information about correlation, see Chapter 13, “Correlating Java
Scripts.”

Log Options

The Log recording options let you determine the level of debug information
generated during recording.

217

Chapter 12 • Setting Java Recording Options
The following options are available:

➤ Log Level. The level of recording log to generate.

➤ None. No log file is created

➤ Brief. Generates a standard recording log and output redirection

➤ Detailed. Generates a detailed log for methods, arguments, and return
values.

➤ Debug. Records hooking and recording debug information, along with
all of the above.

➤ Class Dumping. Dumps all of the loaded classes to the script directory.
(disabled by default).

➤ Synchronize Threads. For multi-threaded applications, instructs VuGen to
synchronize between the different threads (disabled by default).

➤ Digest Calculation. Generate a digest of all recorded objects (disabled by
default).

➤ Exclude from Digest. A list of objects not to be included in the digest
calculation.

To set the Log options:

 1 Click Options in the Start Recording dialog box and select the Recording
Properties:Log Options node.

 2 Choose a Log level: None, Brief, Detailed, or Debug.

 3 Enable the desired options, or for options that require values, enter the
desired value.

 4 To set all options to their default values, click Use Defaults.

 5 Click OK to close the dialog box and begin recording.
218

Chapter 12 • Setting Java Recording Options
CORBA Options

The following options are specific to Corba-Java. These options let you set
the CORBA specific recording properties and several callback options.

The following options are available:

➤ Vendor. The CORBA vendors Inprise Visibroker, Iona OrbixWeb, or Bea
Weblogic.

➤ Use local vendor classes. Use local vendor classes and add the srv folder to
the BOOT classpath. If you disable this option, VuGen uses network classes
and adds the script’s classes to the classpath (enabled by default).

➤ Record Properties. Instructs VuGen to record system and custom properties
related to the protocol (enabled by default).

➤ Show IDL Constructs. Displays the IDL construct that is used when passed as
a parameter to a CORBA invocation (enabled by default).

➤ Record DLL only. Instructs VuGen to record only on a DLL level (disabled by
default).

➤ Resolve CORBA Objects. When correlation fails to resolve a CORBA object,
recreate it using its binary data (disabled by default).
219

Chapter 12 • Setting Java Recording Options
➤ Record CallBack Connection. Instructs VuGen to generate a connect
statement for the connection to the ORB, for each callback object (disabled
by default).

To set the Corba recording options:

 1 Click Options in the Start Recording dialog box and select the Recording
Properties:Corba Options node.

 2 Enable or disable the options as desired.

 3 To set all options to their default values, click Use Defaults.

 4 Click OK to close the dialog box and begin recording.
220

13
Correlating Java Scripts

VuGen’s correlation allows you to link Java Vuser functions by using the
results of one statement as input to another.

This chapter includes:

 ➤ About Correlating Java Scripts on page 222

 ➤ Standard Correlation on page 223

 ➤ Advanced Correlation on page 223

 ➤ String Correlation on page 225

 ➤ Using the Serialization Mechanism on page 226

The following information only applies to Java Vuser scripts.
221

Chapter 13 • Correlating Java Scripts
About Correlating Java Scripts

Vuser scripts containing Java code often contain dynamic data. When you
record a Java Vuser script, the dynamic data is recorded into scripts, but
cannot be re-used during replay. If you encounter an error when running
your Vuser, examine the script at the point where the error occurred. In
many cases, correlation will solve the problem by enabling you to use the
results of one statement as input to another.

VuGen’s Java recorder attempts to automatically correlate statements in the
generated script. It only performs correlation on Java objects. When it
encounters a Java primitive (byte, character, boolean, integer, float, double,
short, and long) during recording, the argument values appear in the script
without association to variables. VuGen automatically correlates all objects,
arrays of objects, and arrays of primitives. Note that Java arrays and strings
are also considered objects.

VuGen employs several levels of correlation: Standard, Enhanced, Strings.
You enable or disable correlation from the Recording options. An additional
method of Serialization can be used to handle scripts where none of the
former methods can be applied. For more information, see “Using the
Serialization Mechanism” on page 226.
222

Chapter 13 • Correlating Java Scripts
Standard Correlation

Standard correlation refers to the automatic correlation performed during
recording for simple objects, excluding object arrays, vectors, and container
constructs.

When the recorded application invokes a method that returns an object,
VuGen’s correlation mechanism records these objects. When you run the
script, VuGen compares the generated objects to the recorded objects. If the
objects match, the same object is used. The following example shows two
CORBA objects my_bank and my_account. The first object, my_bank, is
invoked; the second object, my_account, is correlated and passed as a
parameter in final line of the segment:

Advanced Correlation

Advanced or deep correlation refers to the automatic correlation performed
during recording for complex objects, such as object arrays and CORBA
container constructs.

The deep correlation mechanism handles CORBA constructs (structures,
unions, sequences, arrays, holders, ‘any’s) as containers. This allows it to
reference inner members of containers, additional objects, or different
containers. Whenever an object is invoked or passed as a parameter, it is also
compared against the inner members of the containers.

public class Actions {

 // Public function: init
 public int init() throws Throwable {

Bank my_bank = bankHelper.bind("bank", "shunra");
Account my_account = accountHelper.bind("account","shunra");

my_bank.remove_account(my_account);
 }
:
}

223

Chapter 13 • Correlating Java Scripts
In the following example, VuGen performs deep correlation by referencing
an element of an array. The remove_account object receives an account
object as a parameter. During recording, the correlation mechanism searches
the returned array my_accounts and determines that its sixth element
should be passed as a parameter.

The following segment further illustrates enhanced correlation. The script
invokes the send_letter object that received an address type argument. The
correlation mechanism retrieves the inner member, address, in the sixth
element of the my_accounts array.

public class Actions {

// Public function: init
public int init() throws Throwable {

my_banks[] = bankHelper.bind("banks", "shunra");
my_accounts[] = accountHelper.bind("accounts","shunra");

my_banks[2].remove_account(my_accounts[6]);
}

:
}

public class Actions {

// Public function: init
public int init() throws Throwable {

my_banks = bankHelper.bind("bank", "shunra");
my_accounts = accountHelper.bind("account", "shunra");

my_banks[2].send_letter(my_accounts[6].address);
}

:
}

224

Chapter 13 • Correlating Java Scripts
String Correlation

String correlation refers to the representation of a recorded value as an
actual string or a variable. When you disable string correlation (the default
setting), the actual recorded value of the string is indicated explicitly within
the script. When you enable string correlation, it creates a variable for each
string, allowing you to use it at a later point in the script.

In the following segment, string correlation is enabled—you store the value
returned from the get_id method in a string type variable for use later on in
the script.

You set the correlation method from the Correlation tab in the recording
options.

➤ Correlate Strings. Correlate strings in script during recording. If you disable
this option, the actual recorded values are included in the script between
quotation marks. If this option is disabled, all other correlation options are
ignored (disabled by default).

➤ Correlate String Arrays. Correlate strings within string arrays during
recording. If you disable this option, strings within arrays are not correlated
and the actual values are placed in the script (enabled by default).

➤ Advanced Correlation. Enables correlation on complex objects such as
arrays and CORBA container constructs and arrays. This type of correlation
is also known as deep correlation (enabled by default).

public class Actions {

// Public function: init
public int init() throws Throwable {

my_bank = bankHelper.bind("bank", "shunra");
my_account1 = accountHelper.bind("account1", "shunra");
my_account2 = accountHelper.bind("account2", "shunra");

string = my_account1.get_id();
string2 = my_account2.get_id();
my_bank.transfer_money(string, string2);

}
:
}

225

Chapter 13 • Correlating Java Scripts
➤ Correlation Level. Determines the level of deep correlation—how many
inner containers to search.

➤ Correlate Collection Type. Correlate objects contained in a Collection class
for JDK 1.2 or higher (disabled by default).

Using the Serialization Mechanism

In RMI, and some cases of CORBA, the client AUT creates a new instance of
a Java object using the java.io.serializable interface. It passes this instance as
a parameter for a server invocation. In the following segment, the instance p
is created and passed as a parameter.

The automatic correlation mechanism is ineffective here, since the object
did not return from any previous call. In this case, VuGen activates the
serialization mechanism and stores the object being passed as a parameter. It
saves the information to a binary data file under the user directory.
Additional parameters are saved as new binary data files, numbered
sequentially. VuGen generates the following code:

The integer passed to lr.deserialize represents the number of binary data
files in the Vuser directory.

// AUT code:
java.awt.Point p = new java.awt.Point(3,7);
map.set_point(p);
:

public class Actions {

 // Public function: init
 public int init() throws Throwable {
 java.awt.Point p = (java.awt.Point)lr.deserialize(0, false);
 map.set_point(p);
 }
:
}

226

Chapter 13 • Correlating Java Scripts
To parameterize the recorded value, use the public setLocation method (for
information, see the JDK function reference). The following example uses
the setLocation method to set the value of the object, p.

In certain instances the public method of setLocation is not applicable. As
an alternative, you can use the API of your class that incorporate get or set
accessor methods. If you are working with AUT classes that do not have
get/set methods or use private methods, or if you are unfamiliar with the
classes’ API, you can use VuGen’s built-in serialization mechanism. This
mechanism allows you to expand objects in their ASCII representation and
manually parameterize the script. You enable this mechanism in the
Recording Options dialog box (see Chapter 12, “Setting Java Recording
Options”).

VuGen generates an lr.deserialize method that deserializes the data or
displays complex data structures as serial strings. Once the structure is
broken down to its components, it is easier to parameterize. The
lr.deserialize method receives two arguments, a string and an integer. The
string is the parameter’s value that is to be substituted during replay. The
integer is the index number of binary file to load.

public class Actions {

 // Public function: init
 public int init() throws Throwable {
 java.awt.Point p = (java.awt.Point)lr.deserialize(0, false);
 p.setLocation(2,9);
 map.set_point(p);
 }
:
:
}

227

Chapter 13 • Correlating Java Scripts
If you choose not to expand objects in your script by clearing the Unfold
Serialized Objects check box, you can control the serialization mechanism
by passing arguments to the lr.deserialize method. The first argument is an
integer indicating the number of binary files to load. The second integer is a
boolean value:

The following segment shows a generated script in which the serialization
mechanism was enabled.

The string values are placed between delimiters.The default delimiter is "#".
You can change the delimiter in the Serialization tab of the recording
options. Delimiters are used to speed up the parsing of the string during
replay.

When modifying the string, you must maintain the following rules:

➤ Order of lines may not be changed. The parser reads the values one-by-
one—not the member names.

➤ Only values between two delimiters may be modified.

➤ Object references may not be modified. Object references are indicated only
to maintain internal consistency.

true Use VuGen’s serialization mechanism.

false Use the standard Java serialization mechanism.

public class Actions {

 // Public function: init
 public int init() throws Throwable {
 _string = "java.awt.Point __CURRENT_OBJECT = {" +
 "int x = "#5#" +
 "int y = "#8#" +
 "}";
 java.awt.Point p = (java.awt.Point)lr.deserialize(_string,0);
 map.set_point(p);
 }
:
}

228

Chapter 13 • Correlating Java Scripts
➤ "_NULL_" can appear as a value, representing the Java null constant. You can
replace it with string type values only.

➤ Objects may be deserialized anywhere in the script. For example, you can
deserialize all objects in the init method and use the values in the action
method.

➤ Maintain internal consistency for the objects. For example, if a member of a
vector is element count and you add an element, you must modify the
element count.

In the following segment, a vector contains two elements:

public class Actions {

 // Public function: init
 public int init() throws Throwable {
 _string = "java.util.Vector CURRENTOBJECT = {" +
 "int capacityIncrement = "#0#" +
 "int elementCount = #2#" +
 "java/lang/Object elementData[] = {" +
 "elementData[0] = #First Element#" +
 "elementData[1] = #Second Element#" +
 "elementData[2] = _NULL_" +

....
 "elementData[9] = _NULL_" +

 "}" +
 "}";
 _vector = (java.util.Vector)lr.deserialize(_string,0);
 map.set_vector(_vector);
 }
:
}

229

Chapter 13 • Correlating Java Scripts
In the following example, one of the vector’s elements was changed—a
"_NULL_" value was changed to "Third element". In coordination with the
addition of the new element, the "elementCount" member was modified to
"3".

Due to the complexity of the serialization mechanism, which opens up the
objects to ASCII representation, opening large objects while recording may
increase the time required for script generation. To decrease this time, you
can specify flags which will improve the performance of the serialization
mechanism.

When adding lr.deserialize to your script, it is recommended that you add it
to the init method—not the action method. This will improve performance
since VuGen will only deserialize the strings once. If it appears in the action
method, VuGen will deserialize strings for every iteration.

public class Actions {

 // Public function: init
 public int init() throws Throwable {
 _string = "java.util.Vector CURRENTOBJECT = {" +
 "int capacityIncrement = "#0#" +
 "int elementCount = #3#" +
 "java/lang/Object elementData[] = {" +
 "elementData[0] = #First Element#" +
 "elementData[1] = #Second Element#" +
 "elementData[2] = #Third Element#" +

....
 "elementData[9] = _NULL_" +
 "}" +
 "}";
 _vector = (java.util.Vector)lr.deserialize(_string,0);
 map.set_vector(_vector);
 }
:
}

230

Chapter 13 • Correlating Java Scripts
The following list shows the available options which you set in Serialization
tab of the recording options:

➤ Serialization Delimiter

➤ Unfold Serialized Objects

➤ Unfold Arrays

➤ Limit Array Entries

➤ Ignore Serialized Objects

For complete information on the recording options, see Chapter 12,
“Setting Java Recording Options.”
231

Chapter 13 • Correlating Java Scripts
232

14
Configuring Java Run-Time Settings

After you record a Java Vuser script, you configure the run-time settings for
the Java Virtual Machine.

This chapter includes:

 ➤ About Configuring Java Run-Time Settings on page 233

 ➤ Specifying the JVM Run-Time Settings on page 234

 ➤ Setting the Run-Time Classpath Options on page 235

The following information applies to Java and EJB Testing type Vusers.

About Configuring Java Run-Time Settings

After developing a Java Vuser script, you set the run-time settings for the
Java VM (Virtual Machine). These settings let you set additional paths and
parameters, and determine the run mode.

You set the Java related run-time settings through the Java VM options in
the Run-Time Settings dialog box.

To display the Run-Time Settings dialog box, click the Run-Time Settings
button on the VuGen toolbar.

This chapter only discusses the Run-Time settings for Java type Vusers. For
information about run-time settings that apply to all Vusers, see
“Configuring Run-Time Settings” in Volume I-Using VuGen.
233

Chapter 14 • Configuring Java Run-Time Settings
Specifying the JVM Run-Time Settings
In the Java VM section, you provide information about the Java virtual
machine settings.

The following settings are available:

➤ Virtual Machine settings

➤ Use internal logic to locate JDK. Search the PATH, registry, and Windows
folder for the JDK to use during replay.

➤ Use specified JDK. Use the JDK specified below during replay.

➤ Additional VM Parameters. Enter any optional parameters used by the
virtual machine.

➤ Using Xbootclasspath parameters. Replays the script with the
Xbootclasspath /p option.

➤ Class Loading Settings

➤ Load each Vuser using dedicated class loader. Load each Vuser using a
dedicated class loader. This will allow you to use a unique namespace
for each Vuser and manage their resources separately.

234

Chapter 14 • Configuring Java Run-Time Settings
To set the Java VM run-time settings:

 1 Choose Vuser > Run-Time Settings and select the Java Environment
Settings:Java VM node in the Run-Time Settings tree.

 2 Select the desired Virtual Machine settings indicating the JDK to use for the
replay.

 3 To replay with the -Xbootclasspath/p option, select the Using
Xbootclasspath parameters option.

 4 Click OK.

Setting the Run-Time Classpath Options

The ClassPath section lets you specify the location of additional classes that
were not included in the system’s classpath environment variable. You may
need these classes to run Java applications and insure proper replay.

You can browse for the required classes on your computer or network and
disable them for a specific test. You can also manipulate the classpath
entries by changing their order.
235

Chapter 14 • Configuring Java Run-Time Settings
To set the Classpath run-time settings:

 1 Open the Run-Time settings (F4). Select the Java Environment
Settings:Classpath node in the Run-Time settings tree.

 2 Add a classpath to the list:

Click the Add Classpath button. VuGen adds a new line to the classpath list.

Type in the path and name of the jar, zip or other archive file for your class.
Alternatively, click the Browse button to the right of the field, and locate
the desired file. VuGen adds the new location to the classpath list, with an
enabled status.

 3 To permanently remove a classpath entry, select it and click the Delete
button.

 4 To disable a classpath entry for a specific test, clear the check box to the left
of the entry.

 5 To move a classpath entry down in the list, select it and click the Down
arrow.

 6 To move a classpath entry up within the list, select it and click the Up arrow.

 7 Click OK to close the dialog box.
236

Part IV

Application Deployment Solution
Protocols

238

15
Creating Citrix Vuser Scripts

VuGen allows you to record the actions of a Citrix client communicating
with its server using the Citrix ICA protocol. The resulting script is called a
Citrix Vuser script.

The optional Citrix Agent helps you create an intuitive script that provides
built-in synchronization. For more information, see Chapter 16, “Using the
LoadRunner Citrix Agent.” Refer to “Tips for Replaying and Troubleshooting
Citrix Vuser Scripts” on page 271 for valuable tips on creating scripts.

This chapter includes:

 ➤ About Creating Citrix Vuser Scripts on page 240

 ➤ Getting Started with Citrix Vuser Scripts on page 241

 ➤ Setting Up the Client and Server on page 242

 ➤ Recording Tips on page 245

 ➤ Understanding Citrix Recording Options on page 247

 ➤ Setting the Citrix Recording Options on page 255

 ➤ Setting the Citrix Display Settings on page 256

 ➤ Setting the Citrix Run-Time Settings on page 257

 ➤ Viewing and Modifying Citrix Vuser Scripts on page 260

 ➤ Synchronizing Replay on page 261

 ➤ Understanding ICA Files on page 269

 ➤ Using Citrix Functions on page 270

 ➤ Tips for Replaying and Troubleshooting Citrix Vuser Scripts on page 271
239

Chapter 15 • Creating Citrix Vuser Scripts
The following information only applies to the Citrix ICA protocol.

About Creating Citrix Vuser Scripts

Citrix Vuser scripts emulate the Citrix ICA protocol communication
between a Citrix client and server. VuGen records all activity during the
communication and creates a Vuser script.

When you perform actions on the remote server, VuGen generates functions
that describe these actions. Each function begins with a ctrx prefix. These
functions emulate the analog movements of the mouse and keyboard. In
addition, the ctrx functions allow you to synchronize the replay of the
actions, by waiting for specific windows to open.

VuGen also allows you to record a Citrix NFUSE session. With Citrix NFuse,
the client is installed, but your interface is a browser instead of a client
interface. To record NFUSE sessions, you must perform a multi-protocol
recording for Citrix and Web Vusers. (See “Recording with VuGen” in
Volume I-Using VuGen.) In multi-protocol mode, VuGen generates functions
from both Citrix and Web protocols during recording.

In the following example, ctrx_mouse_click simulates a mouse click on the
left button.

For more information about the syntax and parameters, refer to the Online
Function Reference (Help > Function Reference).

You can view and edit the recorded script from VuGen’s main window. The
API calls that were recorded during the session are displayed in VuGen,
allowing you to track your actions.

ctrx_mouse_click(44, 318, LEFT_BUTTON, 0, CTRX_LAST);
240

Chapter 15 • Creating Citrix Vuser Scripts
Getting Started with Citrix Vuser Scripts

This section provides an overview of the process of developing Citrix ICA
Vuser scripts using VuGen. In addition, see “Tips for Replaying and
Troubleshooting Citrix Vuser Scripts” on page 271.

To develop a Citrix ICA script:

 1 Make sure that your client and server are configured properly.

For general information about these settings, see “Setting Up the Client and
Server” on page 242.

 2 Record the actions using VuGen.

Invoke VuGen and create a new Vuser script. Insert bitmap and text
synchronization during recording as described in “Synchronizing Replay”
on page 261.

For general information about recording, see “Recording with VuGen” in
Volume I-Using VuGen.

 3 Enhance the Vuser script.

Enhance the Vuser script by inserting transactions, rendezvous points, and
control-flow structures into the script.

For details, see “Enhancing Vuser Scripts” in Volume I-Using VuGen.

 4 Define parameters (optional).

Define parameters for the fixed-values recorded into your Vuser script. By
substituting fixed-values with parameters, you can repeat the same business
process many times using different values.

For details, see “Creating Parameters” in Volume I-Using VuGen.

 5 Configure the Citrix display options.

Configure the display options for replaying Citrix Vusers. These options let
you show the Citrix client during replay and open a snapshot when an error
occurs. For details, see “Setting the Citrix Display Settings” on page 256.

 6 Configure the Run-Time settings.

The Run-Time settings control Vuser behavior during script execution.
These settings include pacing, logging, think time, and connection
information.
241

Chapter 15 • Creating Citrix Vuser Scripts
For details about the Citrix specific Run-Time settings, see “Setting the Citrix
Run-Time Settings” on page 257. For information about general Run-Time
settings, see “Configuring Run-Time Settings” in Volume I-Using VuGen.

 7 Save and run the Vuser script from VuGen.

Save and run the Vuser script from VuGen to verify that it runs correctly.
While you record, VuGen creates a series of configuration, data, and source
code files. These files contain Vuser run-time and setup information. VuGen
saves these files together with the script.

For details about running the Vuser script as a standalone test, see “Tips for
Replaying and Troubleshooting Citrix Vuser Scripts” on page 271 and
“Running Vuser Scripts in Standalone Mode” in Volume I-Using VuGen.

After you create a script, you integrate it into your environment: a
LoadRunner scenario, Performance Center load test, or Business Process
Monitor profile. For more information, refer to the HP LoadRunner Controller,
Performance Center, or HP Business Availability Center documentation.

Setting Up the Client and Server

Before creating a script, make sure you have a supported Citrix client
installed on your machine, and that your server is properly configured. This
section describes:

➤ Client Versions

➤ Server Configuration

Client Versions
In order to run your script, you must install a Citrix client on each Load
Generator machine. If you do not have a client installed, you can download
one from the Citrix Website www.citrix.com under the download section.

VuGen supports all Citrix clients with the exception of versions 8.00,
version 6.30.1060 and earlier, and Citrix Web clients.

242

Chapter 15 • Creating Citrix Vuser Scripts
Server Configuration
To record in VuGen, you need to configure the Citrix server in the following
areas:

➤ MetaFrame. Make sure the MetaFrame server (1.8, XP, 3, or 4) is installed. To
check the version of the server, select Citrix Connection Configuration on
the server’s console toolbar and choose Help > About.

➤ Configure Server to Close Sessions. Configure the Citrix server to
completely close a session. After a Citrix client closes the connection, the
server is configured, by default, to save the session for the next time that
client opens a new connection. Consequently, a new connection by the
same client will face the same workspace from which it disconnected
previously. It is preferable to allow each new test run to use a clean
workspace.

The ensure a clean workspace for each test, you must configure the Citrix
server not to save the previous session. Instead, it should reset the
connection by disconnecting from the client each time the client times-out
or breaks the connection.

➤ MetaFrame 1.8 or XP Servers

➤ MetaFrame 3 and 4 Servers

MetaFrame 1.8 or XP Servers

To reset the connection for every session on a MetaFrame Server:

 1 Open the Citrix Connection Configuration dialog box. Choose Start >
Programs > Citrix > MetaFrame > Citrix Connection Configuration.

 2 Double-click on the ica-tcp connection name. The Edit Connection dialog
box opens.
243

Chapter 15 • Creating Citrix Vuser Scripts
 3 Click the Advanced button. The Advanced Connection Settings dialog box
opens.

 4 In the bottom section of the dialog box, clear the inherit user config check
box adjacent to the On a broken or timed-out connection list box. Change
the entry for this list box to reset.

 5 Click OK.

MetaFrame 3 and 4 Servers

To reset the connection for every session on a MetaFrame 3 server:

 1 Open the Citrix Connection Configuration dialog box. Choose Programs >
Citrix > Administration Tools > Citrix Connection Configuration Tool.

 2 Select the ica-tcp connection name and choose Connection > Edit.
Alternatively, double-click on the connection. The Edit Connection dialog
box opens.
244

Chapter 15 • Creating Citrix Vuser Scripts
 3 Click the Advanced button. The Advanced Connection Settings dialog box
opens.

 4 In the bottom section of the dialog box, clear the inherit user config check
box adjacent to the On a broken or timed-out connection list box. Change
the entry for this list box to reset.

 5 Click OK.

Recording Tips

When recording a script, be sure to follow these guidelines in order to create
an effective script.

Single vs. Multi-Protocol Scripts

When creating a new script, you may create a single protocol or multi-
protocol script. If you plan to record a simple Citrix ICA session, use a single
protocol script. When recording an NFUSE Web Access session, however,
you must create a multi-protocol script for Citrix ICA and
Web(HTML/HTTP), to enable the recording of both protocols. For more
information, see “Recording with VuGen” in Volume I-Using VuGen.

Record into Appropriate Sections

Record the connection process into the vuser_init section, and the closing
process into the vuser_end section. This will prevent you from performing
iterations on the connecting and disconnecting. For more information
about recording into sections, see “Recording with VuGen” in Volume I-Using
VuGen.

Run a Clean Session

When recording a session, make sure to perform the complete business
process, starting with the connection and ending with the cleanup. End
your session at a point from where you could start the entire process from
the beginning. Do not leave any client or application windows open.
245

Chapter 15 • Creating Citrix Vuser Scripts
Explicit Clicks

When opening expanded menu options, click explicitly on each option—do
not depend on the expanding menu. For example, when choosing Start >
Programs > Microsoft Word, be sure to click on the word Programs.

Do not Resize Windows

Although VuGen supports the resizing of windows during recording the
session, it is recommended that you do not move or resize them while
recording. To change the size or position of a window, double-click on the
relevant Sync on Window step in the script’s Tree view and modify the
window’s coordinates.

Make Sure Resolution Settings are Consistent

To insure successful bitmap synchronization, make sure that the resolution
settings match. On the recording machine, check the settings of the ICA
client, the Recording Options, and the Run Time settings. On the Injector
machines, check the settings of the ICA client, and make sure that they are
consistent between all injector and recording machines. If there is an
inconsistency between the resolutions, the server traffic increases in order to
make the necessary adjustments.

Add Manual Synchronization Points

While waiting for an event during recording, such as the opening of an
application, it is recommended that you add manual synchronization
points, such as Sync on Bitmap or Sync on Text. For details, see
“Synchronizing Replay” on page 261.

Disable Client Updates

Disable client updates when prompted by the Citrix client. This will prevent
forward compatibility issues between VuGen and newer Citrix clients that
were not yet tested.
246

Chapter 15 • Creating Citrix Vuser Scripts
Windows Style

For Sync on Bitmap steps, record windows in the "classic" windows style—
not the XP style.

To change the Windows style to "classic":

 1 Click in the desktop area.

 2 Choose Properties from the right-click menu.

 3 Select the Theme tab.

 4 Choose Windows Classic from the Theme drop down list.

 5 Click OK.

Understanding Citrix Recording Options

You can set the Citrix Recording options in the following areas.

➤ Configuration Recording Options

➤ Recorder Recording Options

➤ Code Generation Recording Options

➤ Login Recording Options (only for single protocol Citrix ICA scripts)
247

Chapter 15 • Creating Citrix Vuser Scripts
Configuration Recording Options
In the Citrix:Configuration Recording options, you set the window
properties and encryption settings for the Citrix client during the recording
session.

➤ Encryption Level. The level of encryption for the ICA connection: Basic, 128
bit for login only, 40 bit, 56 bit, 128 bit, or Use Server Default to use the
machine’s default.

➤ Window Size. The size of the client window: 640 x 480, 800 x 600 (default),
1024 x 768, 1280 x 1024, or 1600 x 1200.
248

Chapter 15 • Creating Citrix Vuser Scripts
Recorder Recording Options
The Citrix:Recorder Recording options let you specify how to generate
window names where the window titles change during recording. You can
also specify whether to save snapshots of the screens together with the script
files and whether to generate text synchronization functions.

Window Name

In some applications, the active window name changes while you are
recording. If you try to replay the script as is, the Vuser uses the original
window name and the replay may fail. Using the recording options, you can
specify a naming convention for the windows in which VuGen uses a
common prefix or common suffix to identify the window.

For example, if the original window’s name is "untitled - Notepad" where the
name changes during application's run to "my_test - Notepad", you can
instruct VuGen to use the common suffix only, "Notepad".

The following options are available for generating window names during
recording.

➤ Use new window name as is. Set the window name as it appears in the
window title. (default)
249

Chapter 15 • Creating Citrix Vuser Scripts
➤ Use common prefix for new window names. Use the common string from
the beginning of the window titles, as a window name.

➤ Use common suffix for new window names. Use the common string from
the end of the window titles, as a name.

Note: Alternatively, you can modify the window names in the actual script
after recording. In the Script view, locate the window name, and replace the
beginning or end of the window name with the "*" wildcard notation.
ctrx_sync_on_window ("My Application*", ACTIVATE, …CTRX_LAST);

Snapshots

The Save snapshots option instructs VuGen to save a snapshot of the Citrix
client window for each script step, when relevant. It is recommended that
you enable this option to provide you with a better understanding of the
recorded actions. Saving snapshots, however, uses more disk space and slows
down the recording session.
250

Chapter 15 • Creating Citrix Vuser Scripts
Code Generation Recording Options
The Recording:Code Generation Recording options let you configure the
way VuGen captures information during recording.

➤ Use Citrix Agent input in Code Generation. Use the Citrix Agent input to
generate a more descriptive script with additional synchronization
functions (enabled by default).

➤ Add text synchronization calls. Adds text synchronization Sync on Text
steps before each mouse click (disabled by default).

Text synchronization steps that you add manually during the recording are
not affected by the above settings—they appear in the script even if you
disable the above options. For more information about adding Sync on Text
steps during recording, see “Manual Synchronization” on page 264.

The above options are also available for regenerating a script. For
example, if you originally recorded a script with Add text synchronization
calls disabled, you can regenerate after to recording to include text
synchronization. For more information about regenerating your script, see
“Recording with VuGen” in Volume I-Using VuGen.
251

Chapter 15 • Creating Citrix Vuser Scripts
Note: If you use the VuGen 8.1 or higher to regenerate a script from an
earlier version of VuGen, the script will no longer be compatible with earlier
versions—it behaves as if you created a new script.

Login Recording Options
In the Citrix:Login Recording options, you set the connection and login
information for the recording session. (When working with NFUSE, the
Login options are not available since the login is done through the Web
pages.)

You can provide direct login information or instruct VuGen to use an
existing configuration stored in an ica file.

You must provide the name of the server—otherwise the connection VuGen
generates a ctrx_connect_server function:

ctrx_connect_server("steel", "test", "test", "testlab", CTRX_LAST);
252

Chapter 15 • Creating Citrix Vuser Scripts
If you do not provide login information, you are prompted for the
information when the client locates the specified server.

You provide the following user and server information for the Citrix session.

Logon Information. This section contains the login information:

➤ the User Name for the Citrix user.

➤ the Password for the Citrix user.

➤ the Domain of the Citrix user.

➤ the Client Name, by which the MetaFrame server identifies the client
(optional).
253

Chapter 15 • Creating Citrix Vuser Scripts
Connection. This section contains the server information:

➤ Network Protocol. the preferred TCP/IP or TCP/IP+HTTP. Most Citrix
Servers support TCP/IP. Certain servers, however, are configured by the
administrators to allow only TCP/IP with specific HTTP headers. If you
encounter a communication problem, select the TCP/IP+HTTP option.

➤ Server. The Citrix server name. To add a new server to the list, click Add,
and enter the server name (and its port for TCP/IP + HTTP). Note that
multiple servers apply only when you specify a Published Application. If
you are connecting to the desktop without a specific application, then
list only one server.

➤ Published Application. The name of the Published Application as it is
recognized on Citrix server. The drop-down menu contains a list of the
available applications. If you do not specify a published application,
VuGen uses the server’s desktop. If you added or renamed a published
application, close the Recording options and reopen them to view the
new list.

To change the name of the published application on the Citrix client,
you must make the change on the Citrix Server machine. Choose
Manage Console > Application and create a new application or rename
an existing one.

Note that if you do not specify a published application, Citrix load
balancing will not work. To use load balancing when accessing the
server’s desktop, register the desktop as a published application on the
server machine, and select this name from the Published Application
drop-down list.

Using an ICA File with Connection Parameters

If you have an existing .ica file with all of the relevant configuration
information, select Use ICA file for connection parameters. In the following
row, specify the full path of the .ica file.

For information about the format of an ICA file, see “Understanding ICA
Files” on page 269 and the Citrix Website, www.citrix.com.
254

http://www.citrix.com
http://www.citrix.com

Chapter 15 • Creating Citrix Vuser Scripts
Setting the Citrix Recording Options

Before recording, you set the desired recording options.

To set the Citrix recording options:

 1 Open the Recording Options dialog box. Choose Tools > Recording Options
or click the Options button in the Start Recording dialog box. The keyboard
shortcut key is CTRL+F7.

 2 Select the Citrix:Login node (only for single protocol Citrix ICA scripts).

➤ If you have an existing ica file with all of the relevant configuration
information, select Use ICA file for connection parameters. Specify the
full path of the ica file, or click the Browse button and locate the file on
the local disk or network.

➤ If you do not have an ica file, select Define connection parameters. This
is the default setting. Enter the Connection and Identification
information.

 3 Select the Citrix:Configuration node. Choose an encryption level and a
window size.

 4 Select the Citrix:Code Generation node. To use information from the Citrix
agent for a more descriptive script, enable the node’s options.

 5 Select the Citrix:Recorder node. Specify how to generate window names for
windows whose titles change during the recording session.

 6 To prevent VuGen from saving a snapshot for each step, clear Save
snapshots.

 7 When recording an NFUSE session, set the Web recording mode to URL-
based. Choose the General:Recording recording option and select URL-
based script.

 8 Click OK to accept the setting and close the dialog box.
255

Chapter 15 • Creating Citrix Vuser Scripts
Setting the Citrix Display Settings

Before running your Citrix Vuser script, you can set several display options
to be used during replay. Although these options increase the load upon the
server, they are useful for debugging and analyzing your session.

To set the Citrix display options:

 1 Open the General Options dialog box. Choose Tools > General Options in
the main VuGen window.

 2 Select the Citrix Display tab.

 3 Select Show client during replay to display the Citrix client when replaying
the Vuser script.

 4 Select Show Bitmap Selection popup to issue a popup message when you
begin to work interactively within a snapshot. VuGen issues this message
when you choose the right-click menu option Insert Sync Bitmap or Insert
Get Text, before you select the bitmap or text.

 5 Click OK.
256

Chapter 15 • Creating Citrix Vuser Scripts
Setting the Citrix Run-Time Settings

After creating a Citrix Vuser script, you set the run-time settings. These
settings let you control the behavior of the Vuser when running the script.
Your Citrix run-time settings in the Configuration node should correspond
to the properties of your Citrix client. These settings will influence the load
on the server. To view the connection properties, select the icon
representing the ICA connection in the Citrix Program Neighborhood, and
choose Properties from the right-click menu. Select the Default Options tab.

Note: Citrix Vusers do not support IP spoofing.

To set the General Run-time settings, see “Configuring Run-Time Settings”
in Volume I-Using VuGen. To set the Speed Emulation properties, see
“Configuring Network Run-Time Settings” in Volume I-Using VuGen.

You can set the Citrix-specific run-time settings in the following areas:

➤ Citrix Configuration Run-Time Settings

➤ Citrix Timing Run-Time Settings

Citrix Configuration Run-Time Settings
The configuration settings relate to the screen latency, data compression,
disk cache, and queuing of mouse movements.

To set the Configuration Run-Time Settings:

 1 Open the Run-Time settings dialog box. Click the Run-Time Settings button
on the VuGen toolbar, or choose Vuser > Run-Time Settings.
257

Chapter 15 • Creating Citrix Vuser Scripts
 2 Select the Citrix:Configuration node. Specify the General properties:

Set the desired client configuration options:

➤ SpeedScreen Latency Reduction. The mechanism used to enhance user
interaction when the network speed is slow. You can turn this mechanism
on or off, depending on the network speed. The auto option turns it on or
off based on the current network speed. If you do not know the network
speed, set this option to Use Server Default to use the machine’s default.

➤ Use data compression. Instructs Vusers to compress the transferred data. To
enable this option, select the check box to the left of the option; to disable
it, clear the check box. You should enable data compression if you have a
limited bandwidth (enabled by default).

➤ Use disk cache for bitmaps. Instructs Vusers to use a local cache to store
bitmaps and commonly-used graphical objects. To enable this option, select
the check box to the left of the option; to disable it, clear the check box. You
should enable this option if you have a limited bandwidth (disabled by
default).

➤ Queue mouse movements and keystrokes. Instructs Vusers to create a queue
of mouse movements and keystrokes, and send them as packets to the server
less frequently. This setting reduces network traffic with slow connections.
Enabling this option makes the session less responsive to keyboard and
mouse movements. To enable this option, select the check box to the left of
the option; to disable it, clear the check box (disabled by default).
258

Chapter 15 • Creating Citrix Vuser Scripts
➤ Sound quality. Specifies the quality of the sound: Use server default, Sound
off, High sound quality, Medium sound quality, or Low sound quality. If the
client machine does not have a 16-bit Sound Blaster-compatible sound card,
select Sound Off. With sound support enabled, you will be able to play
sound files from published applications on your client machine.

Citrix Timing Run-Time Settings
The timeout settings relate to the connect and waiting times.

To set the Timing Run-Time Settings:

 1 Open the Run-Time settings dialog box. Click the Run-Time Settings button
on the VuGen toolbar, or choose Vuser > Run-Time Settings.

 2 Select the Citrix:Timing node.

 3 Indicate the Connect Time, the time in seconds to wait idly at an established
connection before exiting. The default is 180 seconds.

 4 Indicate the Waiting Time, the time in seconds to wait idly at a
synchronization point before exiting. The default is 60 seconds.

To set the waiting time for a specific section of the script, use the Insert >
Add Step dialog box to insert a Set Waiting Time step. The new waiting time
applies from the point of insertion until the end of the script or the next Set
Waiting Time step.

 5 Specify a Typing rate, the delay in milliseconds between keystrokes.

 6 Click OK to accept the settings and close the dialog box.
259

Chapter 15 • Creating Citrix Vuser Scripts
Viewing and Modifying Citrix Vuser Scripts

You can view the contents of your Vuser script in VuGen’s Script view or
Tree view. For general information about viewing a script, see “Introducing
Service Test” in Volume I-Using VuGen.

In Tree view, you can view a Citrix Vuser’s snapshots. Each step has an
associated snapshot. In addition to displaying the client window, the
snapshot also highlights the object upon which the action was performed.

➤ For the Mouse steps, a small pink square indicates where the user clicked.

➤ For Sync on Bitmap, a pink box encloses the bitmap area.

For Sync on Window, a pink box encloses the entire window. In the
following example, the snapshot shows the Sync On Window step.
Notepad’s confirmation box is enclosed by a box indicating the exact
window on which the operation was performed.

260

Chapter 15 • Creating Citrix Vuser Scripts
Note that VuGen saves snapshots as bitmap files in the script’s
data/snapshots directory. You can determine the name of the snapshot file
by checking the function’s arguments.

After recording, you can manually add steps to the script in either Script
view or Tree view. For information about the various script views, see
“Introducing Service Test” in Volume I-Using VuGen.

In addition to manually adding new functions, you can add new steps
interactively for Citrix Vusers, directly from the snapshot. Using the right-
click menu, you can add bitmap synchronizations. When the Citrix Agent is
installed on the Citrix server machine, you can also add text and object
synchronizations from the right-click menu. For more information, see
Chapter 16, “Using the LoadRunner Citrix Agent.”

To insert a function interactively:

 1 Click on a step within Tree view. Make sure that a snapshot is visible.

 2 Right-click and choose one of the commands. A dialog box opens with the
available properties.

 3 Modify the desired properties and click OK. VuGen inserts the step into your
script.

Synchronizing Replay

When running a script, it is often necessary to synchronize the actions to
insure a successful replay. Synchronization refers to the timing of events
within your script, waiting for windows and objects to become available
before executing an action. For example, you may want to check whether a
certain window has opened before attempting to press a button within the
window.

VuGen automatically generates functions that synchronize the actions
during replay. In addition, you can add manual synchronization functions.

ctrx_sync_on_window("ICA Administrator Toolbar", ACTIVATE, 768, 0, 33,
573, "snapshot12", CTRX_LAST);
261

Chapter 15 • Creating Citrix Vuser Scripts
Automatic Synchronization
During recording, VuGen automatically generates steps that help
synchronize the Vuser’s replay of the script:

➤ Sync on Window

➤ Sync on Obj Info

➤ Sync on Text

Sync on Window

The Sync On Window step instructs the Vuser to wait for a specific event
before resuming replay. The available events are Create or Active. The Create
event waits until the window is created. The Active event waits until the
window is created and then activated (in focus). Usually VuGen generates a
function with a CREATE event. If, however, the next instruction is a keyboard
event, VuGen generates a function with an ACTIVE event.

In Script view, the corresponding function call to the Sync On Window step
is ctrx_sync_on_window.

Sync on Obj Info

The Sync On Obj Info step instructs the Vuser to wait for a specific object
property before resuming replay. The available attributes are Enabled,
Visible, Focused, Text, Checked, Lines, or Item. The Enabled, Visible,
Focused, and Checked attributes are boolean values that can receive the
values true or false. The other attributes require a textual or numerical
object value.

A primary objective of this step is to wait for an object to be in focus before
performing an action upon it.

VuGen automatically generates Sync On Obj Info steps when the Citrix
agent is installed and the Use Citrix Agent Input in Code Generation option
is enabled in the Recording options. By default, this Recording option is
enabled. For more information, see “Code Generation Recording Options”
on page 251.

ctrx_sync_on_obj_info("Run=snapshot9", 120, 144, TEXT, "OK",
CTRX_LAST);
262

Chapter 15 • Creating Citrix Vuser Scripts
Sync on Text

The Text Synchronization step, Sync On Text, instructs the Vuser to wait for
a text string to appear at the specified position before continuing. When
replaying Sync On Text, Vusers search for the text in the rectangle whose
modifiable coordinates are specified in the step’s properties.

With an agent installation (see Chapter 16, “Using the LoadRunner Citrix
Agent”), you can instruct VuGen to automatically generate a text
synchronization step before each mouse click or double-click. By default,
automatic text synchronization is disabled. For information on how to
enable this Recording option, see “Code Generation Recording Options” on
page 251.

Note, that even if you record a script with the option disabled, if you enable
the option and regenerate the script, VuGen will insert text synchronization
calls throughout the entire script. For more information, see “Code
Generation Recording Options” on page 251.

You can manually add text synchronizations for individual steps both
during and after recording as described in “Manual Synchronization” on
page 264.

In Script view, the corresponding function call to the Sync On Text step is
ctrx_sync_on_text_ex.

The following segment shows a ctrx_sync_on_text_ex function that was
recorded during a Citrix recording with the HP Citrix Agent installed and
text synchronization enabled.

For more information on this function, refer to the Online Function Reference
(Help > Function Reference).

ctrx_sync_on_window ("ICA Seamless Host Agent", ACTIVATE, 0, 0,391,224,
"snapshot1", CTRX_LAST);

ctrx_sync_on_text_ex (196, 198, 44, 14, "OK", "ICA Seamless Host
Agent=snapshot2", CTRX_LAST);

ctrx_obj_mouse_click ("<class=Button text=OK>", 196, 198, LEFT_BUTTON, 0, "ICA
Seamless Host Agent=snapshot2", CTRX_LAST);
263

Chapter 15 • Creating Citrix Vuser Scripts
Manual Synchronization
In addition to the automatic synchronization, you can manually add
synchronization both during and after recording. A common use of this
capability is where the actual window did not change, but an object within
the window changed. Since the window did not change, VuGen did not
detect or record a Sync on Window.

For example, if you want the replay to wait for a specific graphic image in a
browser window, you insert manual synchronization. Or, if you are
recording a large window with several tabs, you can insert a synchronization
step to wait for the new tab’s content to open.

The following section describes synchronizing on a bitmap. For information
on adding a Sync on Text manually, see “Retrieving Text” on page 281.

Manually Adding Synchronization During Recording

To add synchronization during recording, you use the floating toolbar. The
Sync On Bitmap function lets you to mark an area within the client window
that needs to be in focus before resuming replay.

To mark a bitmap area for synchronization:

 1 Click the Insert Sync on Bitmap button on the toolbar.

 2 Mark a rectangle around the desired bitmap. In Tree view, VuGen generates a
Sync on Bitmap step after the current step. In Script view, VuGen generates a
ctrx_sync_on_bitmap function with the selected coordinates as arguments.

During replay, Vusers look for the bitmap at the specified coordinates, and
wait until it is available before resuming the test.

ctrx_sync_on_bitmap(93, 227, 78, 52,
"66de3122a58baade89e63698d1c0d5dfa", CTRX_LAST);

Sync on Bitmap
264

Chapter 15 • Creating Citrix Vuser Scripts
Manually Adding Synchronization After Recording

You can also add synchronization after the recording session. To add a
synchronization step, right-click in the snapshot window and choose a
synchronization option:

➤ Sync on Bitmap. Waits until a bitmap appears

➤ Sync on Obj Info. Waits until an object’s attributes have the specified values
(agent installations only)

➤ Sync on Text. Waits until the specified text is displayed (agent installations
only)

During recording, the bitmaps generated for the Sync on Bitmap step are
saved under the script’s data/snapshots directory. If synchronization fails
during replay, VuGen generates a new bitmap that you can examine to
determine why synchronization failed. VuGen displays both bitmaps in the
Failed Bitmap Synchronization dialog box. For more information, see
“Failed Bitmap Synchronization” on page 268.

The bitmap name has the format of sync_bitmap_<hash_value>.bmp. It is
stored in the script’s output directory, or for a scenario or profile, wherever
the output files are written.

Additional Synchronizations
In addition, you can add several other steps that affect the synchronization
indirectly:

➤ Setting the Waiting Time

➤ Checking if a Window Exists or Closed

➤ Waiting for a Bitmap Change

Setting the Waiting Time

The Set Waiting Time step sets a waiting time for the other Citrix
synchronization functions. This setting applies to all functions that follow it
within the script. For example, if your Sync on Window steps are timing out,
you can increase the default timeout of 60 seconds to 180.

To insert this step, choose Insert > Add Step > Set Waiting Time.
265

Chapter 15 • Creating Citrix Vuser Scripts
Checking if a Window Exists or Closed

The Win Exist step checks if a window is visible in the Citrix client. By
adding control flow statements, you can use this function to check for a
window that does not always open, such as a warning dialog box. In the
following example, ctrx_win_exist checks whether a browser was launched.
The second argument indicates how long to wait for the browser window to
open. If it did not open in the specified time, it double-clicks its icon.

To insert this step, choose Insert > Add Step > Win Exist.

Another useful application for this step is to check if a window has been
closed. If you need to wait for a window to close, you should use a
synchronization step such as UnSet Window or ctrx_unset_window.

For detailed information about these functions, refer to the Online Function
Reference (Help > Function Reference).

Waiting for a Bitmap Change

In certain cases, you do not know what data or image will be displayed in an
area, but you do expect it to change. To emulate this, you can use the Sync
on Bitmap Change step or its corresponding function,
ctrx_sync_on_bitmap_change. Perform a right-click in the snapshot, and
choose an Insert Sync on Bitmap from the right-click menu. VuGen inserts
the step or function at the location of the cursor.

The syntax of the functions is as follows:

if (!ctrx_win_exist("Welcome",6, CTRX_LAST))
ctrx_mouse_double_click(34, 325, LEFT_BUTTON, 0, CTRX_LAST)

ctrx_sync_on_bitmap (x_start, y_start, width, height, hash, CTRX_LAST);
ctrx_sync_on_bitmap_change (x_start, y_start, width, height,

[initial_wait_time,] [timeout,]
[initial_bitmap_value,] CTRX_LAST);
266

Chapter 15 • Creating Citrix Vuser Scripts
The following optional arguments are available for
ctrx_sync_on_bitmap_change:

➤ initial wait time value—when to begin checking for a change.

➤ a timeout—the amount of time in seconds to wait for a change to occur
before failing.

➤ initial bitmap value—the initial hash value of the bitmap. Vusers wait until
the hash value is different from the specified initial bitmap value.

In the following example, the recorded function was modified and assigned
an initial waiting time of 300 seconds and a timeout of 400 seconds.

Note: If you are using Sync on Bitmap, make sure that the Configuration
settings in the Controller, Load Generator machine, and screen are the
same. Otherwise, VuGen may be unable to find the correct bitmaps during
replay. For information on how to configure the client settings, see
“Configuration Recording Options” on page 248.

ctrx_sync_on_bitmap_change(93, 227, 78, 52,
300,400, "66de3122a58baade89e63698d1c0d5dfa",CTRX_LAST);
267

Chapter 15 • Creating Citrix Vuser Scripts
Failed Bitmap Synchronization
The Failed Bitmap Synchronization dialog box opens when there is a
mismatch between the Recording and Replay snapshots during script replay.

You can indicate whether or not you want to mark the mismatch as an error
or adopt the changes.

When this dialog box opens, click on one of the following buttons to
proceed:

➤ Stop. Consider the mismatch between the snapshots to be an error. This
error will be handled like all other errors and halt the execution. You can
specify Continue on Error for a specific function as described in
“Continuing on Error” on page 274.

➤ Continue. Accept the mismatch and use both the original and new
snapshots as a basis for comparison between screens during future replays. If
replay returns either one of the bitmaps, the Vuser will not fail.
268

Chapter 15 • Creating Citrix Vuser Scripts
Understanding ICA Files

Citrix ICA client files are text files that contain configuration information
for the applications accessed through the Citrix client. These files must have
an .ica extension and must conform to the following format:

Note: When you load an ICA file using the Recording Options, VuGen saves
the file together with your script, eliminating the need to copy the ICA file
to each injector machine.

[WFClient]
Version=
TcpBrowserAddress=

[ApplicationServers]
AppName1=

[AppName1]
Address=
InitialProgram=#
ClientAudio=
AudioBandwidthLimit=
Compress=
DesiredHRES=
DesiredVRES=
DesiredColor=
TransportDriver=
WinStationDriver=

Username=
Domain=
ClearPassword=
269

Chapter 15 • Creating Citrix Vuser Scripts
The following example shows a sample ICA file for using Microsoft Word on
a remote machine through the Citrix client:

For more information, see the Citrix Website www.citrix.com.

Using Citrix Functions

During a Citrix recording session, VuGen generates functions that emulate
the communication between a client and a remote server. The generated
functions have a ctrx prefix. You can also manually edit any of the
functions into your Vuser script after the recording session. For example,
ctrx_obj_mouse_click emulates a mouse click for a specific object.

For more information about the ctrx functions, refer to the Online Function
Reference (Help > Function Reference).

[WFClient]
Version=2
TcpBrowserAddress=235.119.93.56

[ApplicationServers]
Word=

[Word]
Address=Word
InitialProgram=#Word
ClientAudio=On
AudioBandwidthLimit=2
Compress=On
DesiredHRES=800
DesiredVRES=600
DesiredColor=2
TransportDriver=TCP/IP
WinStationDriver=ICA 3.0

Username=test
Domain=user_lab
ClearPassword=test
270

http://www.citrix.com

Chapter 15 • Creating Citrix Vuser Scripts
Note that for the functions that specify a window name, you can use the
wildcard symbol, an asterisk (*). You can place the wildcard at the
beginning, middle, or end of the string.

Tips for Replaying and Troubleshooting Citrix Vuser Scripts

The following sections provide guidelines and tips for Citrix Vusers in the
following areas:

➤ Replay Tips

➤ Debugging Tips

For recording tips, see “Recording Tips” on page 245.

Replay Tips

Wildcards

You can use wildcards (*) in defining window names. This is especially
useful where the window name may change during replay, by its suffix or
prefix.

In the following example, the title of the Microsoft Internet Explorer
window was modified with a wildcard.

For more information, see the Function Reference (Help > Function
Reference).

Set Initialization Quota

To prevent overloading by multiple Vusers while connecting, set an
initialization quota of 4 to 10 Vusers (depending on the capacity of the
server) or apply ramp-up initialization using the Scheduler.

ctrx_mouse_click(573, 61, LEFT_BUTTON, 0,
"Welcome to MSN.com - Microsoft Internet Explorer");
ctrx_mouse_click(573, 61, LEFT_BUTTON, 0,
"* - Microsoft Internet Explorer");
271

Chapter 15 • Creating Citrix Vuser Scripts
Enable Think Time

For best results, do not disable think time in the Run-Time settings. Think
time is especially relevant before the ctrx_sync_on_window and
ctrx_sync_on_bitmap functions, which require time to stabilize.

Regenerate Script

During recording, VuGen saves all of the agent information together with
the script. By default, it also includes this information in the script,
excluding the Sync On Text steps. If you encounter text synchronization
issues, then you can regenerate the script to include the text
synchronization steps.

In addition, if you disabled the generation of agent information in the
Recording options, you can regenerate the script to include them.

Regenerating scripts is also useful for scripts that you manually modified.
When you regenerate the script, VuGen discards all of your manual changes
and reverts back to the originally recorded version.

To regenerate a script, choose Tools > Regenerate and select the desired
options. For more information about regenerating scripts, see “Regenerating
a Vuser Script”in Volume I-Using VuGen.

Set Consistency Between Machines

If you intend to replay the script on another machine, make sure that the
following items are consistent between the record and replay machines:
Window Size (resolution), Window Colors, System Font and the other
Default Options settings for the Citrix client. These settings affect the hash
value of bitmaps, and inconsistencies may cause replay to fail. To view the
Citrix Client settings, select an item from the Citrix program group and
choose Application Set Settings or Custom Connection Settings from the
right-click menu. Select the Default Options tab.
272

Chapter 15 • Creating Citrix Vuser Scripts
Increasing the Number of Vusers per Load Generator Machine

Load Generator machines running Citrix Vusers may be limited in the
number of Vusers that can run, due to the graphic resources available to that
machine, also known as the GDI (Graphics Device Interface). To increase the
number of Vusers per machine, you can open a terminal server session on
the machine which acts as an additional injector machine.

The GDI count is Operating System dependent. The actual GDI (Graphics
Device Interface) count for a heavily loaded machine using LoadRunner is
approximately 7,500. The maximum available GDI on Windows 2000
machines is 16,384.

For more information on creating a terminal server session, see the Terminal
Services topics in the HP LoadRunner Controller.

Note: By default, sessions on a terminal server use a 256-color set. If you
intend to use a terminal session for load testing, make sure to record on
machines with a 256-color set.

Debugging Tips

Single Client Installation

If you are unsuccessful in recording any actions in your Citrix session, verify
that you have only one Citrix client installed on your machine. To verify
that only one client is installed, open the Add/Remove Programs dialog box
from the Control Panel and make sure that there is only one entry for the
Citrix ICA client.

Add Breakpoints

Add breakpoints to your script in VuGen to help you determine the
problematic lines of code.
273

Chapter 15 • Creating Citrix Vuser Scripts
Synchronize Your Script

If replay fails, you may need to insert synchronization functions into your
script to allow more time for the desired windows to come into focus.
Although you can manually add a delay using lr_think_time, it is
recommended that you use one of the synchronization functions discussed
in “Synchronizing Replay” on page 261.

Continuing on Error

You can instruct Vusers to continue running even after encountering an
error, such as not locating a matching window. You specify Continue on
Error for individual steps.

This is especially useful where you know that one of two windows may
open, but you are unsure of which. Both windows are legal, but only one
will open.

To indicate Continue on Error:

In Tree view, right-click on the step and choose Properties. In the Continue
on Error box, select the CONTINUE_ON_ERROR option.

In Script view, locate the function and add CONTINUE_ON_ERROR as a
final argument, before CTRX_LAST.

This option is not available for the following functions: ctrx_key,
ctrx_key_down, ctrx_key_up, ctrx_type, ctrx_set_waiting_time,
ctrx_save_bitmap, ctrx_execute_on_window, and ctrx_set_exception.

Extended Log

You can view additional replay information in the Extended log. To do this,
enable Extended logging in the Run-Time settings (F4 Shortcut key) Log tab.
You can view this information in the Replay Log tab or in the output.txt file
in the script’s directory.

Snapshot Bitmap

When an error occurs, VuGen saves a snapshot of the screen to the script’s
output directory. You can view the bitmap to try to determine why the error
occurred.
274

Chapter 15 • Creating Citrix Vuser Scripts
During recording, the bitmaps generated for the ctrx_sync_on_bitmap
function are saved under the script’s data directory. The bitmap name has
the format of hash_value.bmp. If synchronization fails during replay, the
generated bitmap is written to the script’s output directory, or if you are
running it in a scenario, to wherever the output files are written. You can
examine the new bitmap to determine why synchronization failed.

Show Vusers

To show Vusers during a scenario, enter the following in the Vuser
command line box: -lr_citrix_vuser_view. In the Controller, open the Vuser
Details dialog box and click More to expand the dialog box. Note that this
will affect the scalability of the test, so this should only be done to examine
a problematic Vuser’s behavior.

To reduce the effect on the script’s scalability, you can show the details for
an individual Vuser by adding the Vuser’s ID at the end of the command
line: -lr_citrix_vuser_view <VuserID>.

To open multiple Vusers, place a comma-separated list of IDs after the
command line. Do not use spaces, but you may use commas or dashes. For
example, 1,3-5,7 would show Vusers 1,3,4,5, and 7, but would not show
Vuser 2, 6 or any Vuser with an ID higher than 7.

View Recording and Replay Logs

To see detailed information about the recording, view the Recording and
Replay logs in the Output window. To open the Output window, choose
View > Output Window.
275

Chapter 15 • Creating Citrix Vuser Scripts
To view the Recording Log, select the Recording Log tab. VuGen displays a
detailed log of all functions that were generated by the recording and the
warning messages and errors that were issued during that time.

To view the Replay Log, select the Replay Log tab. VuGen provides a
description of all actions performed by VuGen and any warnings and errors
that were issued during the replay.

To go directly to the step in the script associated with the log message,
double-click on the message in the Replay log.

Note that the extent of information in the Replay log depends on the Log
Run-Time settings. For more information, see “Configuring Run-Time
Settings” in Volume I-Using VuGen.
276

16
Using the LoadRunner Citrix Agent

The LoadRunner Citrix Agent is an optional utility that you can install on
the Citrix server. It provides you with several important benefits that can
enhance your script:

This chapter includes:

 ➤ About the LoadRunner Citrix Agent on page 277

 ➤ Benefitting From the Citrix Agent on page 278

 ➤ Installation on page 283

 ➤ Effects and Memory Requirements of the Citrix Agent on page 284

 ➤ Sample Script on page 284

The following information only applies to the Citrix ICA protocol.

About the LoadRunner Citrix Agent

The LoadRunner Citrix Agent is an optional utility that you can install on
the Citrix server. It is provided on the product’s CD and you can install it on
any Citrix server.

It provides you with the following benefits:

➤ Intuitive and readable scripts

➤ Built-in synchronization

➤ Detailed Information about all objects

➤ Ability to work interactively within the Client window
277

Chapter 16 • Using the LoadRunner Citrix Agent
The agent provides Load Generator machines with detailed information
about objects and events in the client window. It also lets you work
interactively within the client screen to add object-specific steps.

Benefitting From the Citrix Agent

The Citrix agent provides enhancements in the following areas:

➤ Object Details. Provides detailed information about individual objects in the
Citrix client window.

➤ Active Object Recognition. Shows you which objects in the client window
are recognized by VuGen.

➤ Expanded Right-Click Menu. Additional right-click menu items that allow
you to add synchronization, verification, and text retrieval steps.

➤ Retrieving Text. Capability to insert text searches to your script.

Object Details
When the Citrix agent is installed, VuGen records specific information
about the active object instead of a general information about the action.
For example, VuGen generates Obj Mouse Click and Obj Mouse Double Click
steps instead of Mouse Click and Mouse Double Click that it generates
without the agent.

The following example shows the same mouse-click action recorded with
and without the agent installation. Note that with an agent, VuGen
generates ctrx_obj_xxx functions for all of the mouse actions, such as click,
double-click and release.

/* WIthout Agent Installation */
ctrx_mouse_click(573, 61, LEFT_BUTTON, 0, test3.txt - Notepad);

/* WIth Agent Installation */
ctrx_obj_mouse_click("<text=test3.txt - Notepad class=Notepad>" 573,

61, LEFT_BUTTON, 0, test3.txt - Notepad=snapshot21, CTRX_LAST);
278

Chapter 16 • Using the LoadRunner Citrix Agent
In the example above, the first argument of the ctrx_obj_mouse_click
function contains the text of the window’s title and the class, Notepad. Note
that although the agent provides additional information about each object,
Vusers only access objects by their window name and its coordinates.

Active Object Recognition
The agent installation lets you see which objects in the client window are
detected by VuGen. This includes all Windows Basic Objects such as edit
boxes, buttons, and item lists in the current window.

To see which objects were detected, you move your mouse through the
snapshot. VuGen highlights the borders of the detected objects as the mouse
passes over them.

In the following example, the Yes button is one of the detected objects.
279

Chapter 16 • Using the LoadRunner Citrix Agent
Expanded Right-Click Menu
When you click within a snapshot, you can insert several functions into the
script using the right-click menu. When no agent is installed, you are
limited to the Insert Mouse Click, Insert Mouse Double Click, Insert Sync on
Bitmap and Insert Get Bitmap Value. If you are using a 256-color set, the
Insert Sync on Bitmap and Get Bitmap Value steps are not available from the
right-click menu.

When an agent is installed, the following additional options are available
from the right-click menu of window in focus: Insert Get Text, Insert Sync
on Text, Insert Obj Get Info, and Insert Sync on Obj Info. These commands
are interactive—when you insert them into the script, you mark the object
or text area in the snapshot.

The Obj Get Info and Sync on Obj Info steps provide information about the
state of the object: ENABLED, FOCUSED, VISIBLE, TEXT, CHECKED, and
LINES. The Insert Sync on Obj Info step, generated as a
ctrx_sync_on_obj_info function, instructs VuGen to wait for a certain state
before continuing. The Insert Obj Get Info step, generated as a
ctrx_get_obj_info function, retrieves the current state of any object
property. The Insert Sync on Text and Get Text steps are discussed in the
section “Retrieving Text” on page 281.

In the following example, the ctrx_sync_on_obj_info function provides
synchronization by waiting for the Font dialog box to come into focus.

Utilizing VuGen’s ability to detect objects, you can perform actions on
specific objects interactively, from within the snapshot.

To insert a function interactively using the agent capabilities:

 1 Click at a point within the tree view to insert the new step. Make sure that a
snapshot is visible.

 2 Click within the snapshot.

 3 To mark a bitmap, right-click on it and choose Insert Sync on Bitmap.

ctrx_sync_on_obj_info("Font", 31, 59, FOCUSED, "TRUE", CTRX_LAST);

280

Chapter 16 • Using the LoadRunner Citrix Agent
VuGen issues a message indicating that you need to mark the desired area by
dragging the cursor. Click OK and drag the cursor diagonally across the
bitmap that you want to select.

When you release the mouse, VuGen inserts the step into the script after the
currently selected step.

 4 For all other steps, move your mouse over snapshot objects to determine
which items are active—VuGen highlights the borders of active objects as
the mouse passes over them.

Right-click and choose one of the Insert commands. A dialog box opens
with the step’s properties.

Set the desired properties and click OK. VuGen inserts the step into your
script.

Retrieving Text
With the agent installed, VuGen lets you save standard text to a buffer. Note
that VuGen can only save true text—-not a graphical representation of text
in the form of an image.

You save the text using the Sync On Text step either during or after
recording.
281

Chapter 16 • Using the LoadRunner Citrix Agent
To retrieve a text string:

 1 During recording: Click the Insert Sync On Text button on the toolbar.

After recording: Choose Insert Sync On Text from the snapshot’s right-click
menu. The Bitmap Selection dialog opens, indicating that you are inserting
a synchronization or informational function and that you need to mark an
area.

 2 Click at the corner of the text that you want to capture, drag the mouse
diagonally to mark the text you want to save, and release the mouse button.

 3 If you add the step during recording, VuGen places a Insert Sync On Text
step at the current location and saves the text to a buffer.

If your are adding the step after recording, VuGen prompts you with the
Sync On Text Ex dialog box, allowing you to manually specify text.

VuGen marks the saved text with a pink box. In the following snapshot, the
Insert Sync On Text step retrieved the text This.

Bottom callout
282

Chapter 16 • Using the LoadRunner Citrix Agent
Installation

The installation file for the Citrix Agent is located on the LoadRunner CD
#2, under the Additional Components\CitrixAgent folder. The disk space
required for installing the Citrix agent is 25 MBs.

Note that the agent should only be installed on your Citrix server
machine—not Load Generator machines.

If you are upgrading a Citrix Agent, make sure to uninstall the previous
version before installing the next one (see uninstallation instructions
below).

To install the Citrix Agent:

 1 If your server requires administrator permissions to install software, log in as
an administrator to the server.

 2 Locate the installation file, CitrixAgent.exe, on the LoadRunner CD #2 in
the Additional Components\CitrixAgent folder.

Note: After installation the agent will only be active for LoadRunner
invoked Citrix sessions—it will not be active for users who start a Citrix
session without LoadRunner.

To disable the Citrix Agent, you must uninstall it.

To uninstall the Citrix Agent:

 1 If your server requires administrator privileges to remove software, log in as
an administrator to the server.

 2 Choose Start > LoadRunner Citrix Agent > Uninstall LoadRunner Citrix
Agent and follow the uninstall instructions.

Alternatively, open Add/Remove Programs in the server machine’s Control
Panel. Select LoadRunner Citrix Agent and click Change/Remove.
283

Chapter 16 • Using the LoadRunner Citrix Agent
Effects and Memory Requirements of the Citrix Agent

When you run Citrix Vusers with the agent installed, each Vuser runs its
own process of ctrxagent.exe. This results in a slight reduction in the
number of Vusers that can run on the server machine (about 7%).

The memory requirements per Citrix ICA Vuser (each Vuser runs its own
ctrxagent.exe process) is approximately 4.35 MB. To run 25 Vusers, you
would need 110 MBs of memory.

Sample Script

The following script illustrates a true Citrix ICA session with an agent.

vuser_init ()
{

ctrx_set_connect_opt (NETWORK_PROTOCOL, "TCP/IP + HTTP");
ctrx_connect_server ("Plato", "test", lr_decrypt("428c4445a14409b9"), "QAlab");
ctrx_wait_for_event ("LOGON");
ctrx_sync_on_window ("ICA Seamless Host Agent", ACTIVATE, 0, 0,391,224,

"snapshot1", CTRX_LAST);
ctrx_sync_on_text (196, 198, "OK", TEXT, "ICA Seamless Host Agent=snapshot2",

CTRX_LAST);
ctrx_obj_mouse_click ("<class=Button text=OK>", 196, 198, LEFT_BUTTON, 0, "ICA

Seamless Host Agent=snapshot2", CTRX_LAST);
lr_think_time (73);

return 0;
}

284

17
Creating Remote Desktop Protocol Vuser
Scripts

VuGen allows you to record the actions of a client communicating with its
server using the Microsoft Remote Desktop (RDP) protocol. The resulting
script is called a RDP Vuser script.

This chapter includes:

 ➤ About Microsoft Remote Desktop Protocol (RDP) Vuser Scripts on page 286

 ➤ Recording Tips on page 286

 ➤ Understanding The RDP Recording Options on page 287

 ➤ Recording a RDP Vuser Script on page 291

 ➤ Understanding the RDP Run-Time Settings on page 293

 ➤ Running RDP Vuser Scripts on page 295

 ➤ Working with Clipboard Data on page 296

 ➤ Synchronizing Replay on page 298

The following information only applies to Microsoft Remote Desktop
Protocol (RDP) Vuser scripts.
285

Chapter 17 • Creating Remote Desktop Protocol Vuser Scripts
About Microsoft Remote Desktop Protocol (RDP) Vuser
Scripts

The Microsoft Remote Desktop Protocol (RDP) allows users to connect to a
remote computer. For example, you can use RDP to connect to a central and
powerful server for working on specific business applications or graphic
terminals. This provides the user with the same look and feel as if they are
working on a standalone PC.

Note: RDP versions 5.1 and later have an Experience tab that allows you to
set various options. This tab is not supported by VuGen recording. All
options are set to the ON position.

Recording Tips

When recording a script, be sure to follow these guidelines in order to create
an effective script.

Single vs. Multi-Protocol Scripts

When creating a new script, you may create a single protocol or multi-
protocol script. For example, to record both RDP traffic and Web responses,
create a multi-protocol script for RDP and Web to enable the recording of
both protocols. For more information, see “Recording with VuGen” in
Volume I-Using VuGen.

Record into Appropriate Sections

Record the connection process into the vuser_init section, and the closing
process into the vuser_end section. This will prevent you from performing
iterations on the connecting and disconnecting. For more information
about recording into sections, see “Vuser Script Sections” on page 76.
286

Chapter 17 • Creating Remote Desktop Protocol Vuser Scripts
Run a Clean Session

When recording a session, make sure to perform the complete business
process, starting with the connection and ending with the cleanup. End
your session at a point from where you could start the entire process from
the beginning. Do not leave any client or application windows open.

You should also configure your terminal server to end disconnected
sessions. Select Administrative Tools > Terminal Services Configuration >
Connection Properties > Sessions > Override User Settings and set the server
to end disconnected sessions.

Explicit Clicks

When opening expanded menu options, click explicitly on each option—do
not depend on the expanding menu. For example, when choosing Start >
Programs > Microsoft Word, be sure to click on the word Programs.

Understanding The RDP Recording Options

Before recording the script, you can configure how the RDP activities are
recorded and how the script is generated. You do this by setting the
Recording Options.

You can set the recording options in the following areas:

➤ “RDP Login Options” on page 288

➤ “RDP Code Generation Options” on page 289
287

Chapter 17 • Creating Remote Desktop Protocol Vuser Scripts
RDP Login Options
In the RDP Login Options, you indicate how to run the Terminal Services
client session.

➤ Run Client. Run the Terminal Services client.

➤ Connection File. Run the Terminal Services client using an existing
connection file. The file should have an *.rdp extension. You can browse for
the file on your file system or network.

➤ Default Connect File. Use the Default.rdp file in your document’s directory
to connect.
288

Chapter 17 • Creating Remote Desktop Protocol Vuser Scripts
RDP Code Generation Options
The Code Generation settings control the way VuGen creates a script—the
level of detail, triggers, and timeouts.

Yo

You can set the following options:

➤ Script Level. The level of the script and the type of API functions to use
when generating the script. The available levels are High, Low or Raw.

➤ High. Generate high level scripts. Keyboard events are translated to
rdp_type calls. Two consecutive mouse clicks with the same
coordinates are translated as a double-click.

➤ Low. Generate low level scripts. Key up/down events are translated
into rdp_key events. Modifier keys (Alt, Ctrl, Shift) are used as a
KeyModifier parameter for other functions. Mouse up/down/ move
events are translated to mouse click/drag events.
289

Chapter 17 • Creating Remote Desktop Protocol Vuser Scripts
➤ Raw. Generates a script on a raw level, by extracting input events from
network buffers and generating calls in their simplest form: key
up/down, mouse up/down/move. The KeyModifier parameter is not
used.

➤ Generate Mouse Movement Calls. Generates rdp_mouse_move calls in the
script. When enabled, this option significantly increases the script size
(disabled by default).

➤ Generate Raw Mouse Calls. If enabled, VuGen generates
rdp_mouse_button_up/down calls as if the script level was set to Raw.
Keyboard calls will still be generated according to the script level. If
disabled, VuGen generates Mouse calls according to the script level. If the
script level is set to Raw, this option is ignored (disabled by default).

➤ Generate Raw Keyboard Calls. If enabled, VuGen generates
rdp_raw_key_up/down calls as if the script level was set to Raw. Mouse
calls will still be generated according to the script level. If disabled, VuGen
generates Keyboard calls according to the script level. If the script level is set
to Raw, this option is ignored (disabled by default).

➤ Always Generate Connection Name. If selected, function call will contain
the ConnectionName parameter. If not selected, the functions will only
contain this parameter if more than a single rdp_connect_server appears in
the script (disabled by default).

➤ Generate Automatic Sync Points for Mouse. Generates sync_on_image
functions before mouse clicks and drags (enabled by default).

➤ Sync Radius. The number of pixels to include on each side of the image
synchronization point. The default is 20 pixels.

➤ Double-click Timeout (msec). The maximum time in milliseconds between
two consecutive mouse button clicks, to be considered a double-click. The
default is 500 milliseconds.

➤ Snapshots’ Prefix. The prefix to generate for all snapshots file names, for the
current script. This is useful when merging scripts—you can specify a
different prefix for each script. The default is snapshot_.

➤ Clipboard Parameters’ Prefix. The prefix to add before all clipboard
parameters for the current script. This is useful when merging scripts—you
can specify a different prefix for each script.
290

Chapter 17 • Creating Remote Desktop Protocol Vuser Scripts
➤ Correlate clipboard parameters. Replaces the recorded clipboard text sent
by the user, with the correlated parameter containing the same text as
received from the server.

Code Generation Notes

➤ You can also access the RDP:Code Generation by clicking the Options
button in the Regenerate Script dialog box.

➤ Each mouse and keyboard function contains the step and image name in
the following format:

➤ A ‘Step Description=XXX’ parameter in the function call. This is used for
log output and for tree view. You can freely change this argument.

➤ A ‘Snapshot=XXX’ parameter in the function call. This name points
directly to the image file on the disk and should not be modified.

➤ All keyboard or mouse actions are generated as functions in the script.

Recording a RDP Vuser Script

Before recording, you set the desired recording options as described above.

Note: Whenever recording an RDP script, make sure that you record the act
of logging off the server. This ensures that when you run the script you will
begin with a new session.

At any point during recording, you can choose to mark an area of the
remote desktop to synchronize upon. The image is stored on disk as
snapshot_xxx.png where xxx is a sequential index that starts at 1 and is
increased by 1 for each image and includes images from other steps, for
example, mouse clicks. A matching function appears in the script at this
point during code generation.
291

Chapter 17 • Creating Remote Desktop Protocol Vuser Scripts
To create a RDP Vuser script:

 1 Choose File > New or click the New button. The New Virtual User dialog box
opens.

 2 Select Microsoft Remote Desktop Control Protocol (RDP). The Start
Recording dialog box opens.

 3 Click Options to set the Recording Options. For more information, see
“Understanding The RDP Recording Options” on page 287.

 4 Select the RDP: Login node. Choose one of the session options: Run Client,
Connection File, or Default Connection File.

 5 Select the RDP: Code Generation node and enable the desired options.

 6 During recording to select a screen region for synchronization, click the
Sync on image button on the recording toolbar and indicate an area for
synchronization.

Note: You can also add an image synchronization after recording the script.
Right-click on the image snapshot and select Insert Sync On Image from the
menu.

 7 Stop recording and save the script.
292

Chapter 17 • Creating Remote Desktop Protocol Vuser Scripts
Understanding the RDP Run-Time Settings

After creating a RDP Vuser script, you set the run-time settings. These
settings let you control the behavior of the Vuser when running the script.

You can set the RDP-specific run-time settings in the following areas:

➤ RDP Configuration Run-Time Settings

➤ RDP Synchronization Run-Time Settings

RDP Configuration Run-Time Settings
You use the RDP Configuration settings to set the behavior of the (virtual)
RDP client.

➤ RDP Client Version Emulation. The version of RDP packets to produce during
replay: As Recorded, or a specific version number.

➤ Enable RDP caching. Support data caching orders in RDP (enabled by
default).

➤ Window size. The size of the window in which the applications are run:
As Recorded, or a specific size.

➤ Color Resolution. The color resolution settings for the replay: As
Recorded, or a specific resolution.

➤ Start the following program on connection. Invoke the specified
application after opening the RDP connection. Specify the following
information: Program path and file name and optionally, Start in folder.
293

Chapter 17 • Creating Remote Desktop Protocol Vuser Scripts
RDP Synchronization Run-Time Settings
RDP Synchronization settings indicate the default timing values for various
functions.

➤ Default Sync Timeout (sec). The time in seconds to wait for synchronization
operations. Enter a value between 0 and 1000. The default value is 60.

➤ Default Image Sync Tolerance. The tolerance level for performing
synchronization on images. Choose one of the options: Exact, Low (default),
Medium, or High. High has the most tolerance for changes and mismatches.
Low requires a match of approximately 95 per cent, Medium requires a
match of approximately 85 per cent, High requires a match of
approximately 70 per cent, and Exact requires an 100 per cent match.

➤ Default input Origin. The default origin for input operations:

➤ Recorded. Use coordinates as recorded. This is the default selection.

➤ Synched. Add offsets from the last synchronization function to the
recorded coordinates.

➤ Default Offset Addition. Adds the offset of images that moved during
synchronization, to all subsequent function calls (No by default).
294

Chapter 17 • Creating Remote Desktop Protocol Vuser Scripts
➤ Fail image synchronization step on timeout. Instructs Vusers how to proceed
when images are not found. Yes sets a Fail status and Vusers follow the
Continue on Error setting. No returns an LR_NOT_FOUND flag and the
script continues.

➤ Disable Synchronization Failure Dialog. When selected, it prevents the
Synchronization Failure Dialog box from opening (not selected by default).

➤ Typing Speed (msec/char). The time in milliseconds for sending
consecutive characters in keyboard commands. Enter a value between 0 and
1000. The default value is 150.

Running RDP Vuser Scripts

Before running an RDP script, you can set the run-time settings to customize
the behavior of the script. You can set general run-time settings for all
protocols, such as think time, iterations, pacing, and logging, as described in
“Configuring Run-Time Settings” in Volume I-Using VuGen.

For RDP-specific settings, see above.

To run an RDP script:

 1 Open the Run-Time settings dialog box. Click the Run-Time Settings button
on the toolbar, or choose Vuser > Run-Time Settings.

 2 Select the Configuration node. Choose the desired settings.

 3 Select the Synchronization node. Choose the desired settings.

 4 Click OK to accept the run-time settings and close the dialog box.

 5 Click the Run button or select Vuser > Run.

After you create a script, you integrate it into your environment: a
LoadRunner scenario, Performance Center load test, or Business Process
Monitor profile. For more information, refer to the HP LoadRunner Controller,
Performance Center, or HP Business Availability Center documentation.
295

Chapter 17 • Creating Remote Desktop Protocol Vuser Scripts
Working with Clipboard Data

VuGen allows you to copy and paste the textual contents of a clipboard
during an RDP session. You can copy them locally and paste them remotely,
or vice versa—copy them from the remote machine and paste them locally.
The copying of text is supported in TEXT, LOCALE, and UNICODE formats.

VuGen generates separate functions when providing or saving the clipboard
data.

The following example illustrates a copy operation on a local machine and a
paste on a remote machine:

//Notifies the Remote Desktop that new data is available in the Local machine’s
//clipboard.The data can be provided in three formats: TEXT, UNICODE and LOCALE
rdp_notify_new_clipboard_data(
"StepDescription=Send local clipboard formats 1",
"Snapshot=snapshot1.inf",
"FormatsList=RDP_CF_TEXT|RDP_CF_UNICODE|RDP_CF_LOCALE",
RDP_LAST);

rdp_key(
"StepDescription=Key Press 2",
"Snapshot=snapshot_9.inf",
"KeyValue=V",
"KeyModifier=CONTROL_KEY",
RDP_LAST);

//Provides clipboard data to the Remote Desktop when it requests the data.
rdp_send_clipboard_data(
"StepDescription=Set Remote Desktop clipboard 1",
"Snapshot=snapshot1.inf",
"Timeout=20",
REQUEST_RESPONSE, "Format=RDP_CF_UNICODE", "Text=text for clipboard",
RDP_LAST);
296

Chapter 17 • Creating Remote Desktop Protocol Vuser Scripts
This example illustrates a copy operation on a remote machine and a paste
on a local machine:

Normally, the Remote Desktop clipboard data is saved in UNICODE format.
If the Remote Desktop requests data in the TEXT or LOCALE formats, the
rdp_send_clipboard_data function automatically converts the content of
MyParam from UNICODE into the requested format and sends it to the
Remote Desktop. The Replay log indicates this conversions with an
informational message. If the conversion is not possible, the step fails.

For more information about the rdp functions, see the Online Function
Reference (Help > Function Reference).

Correlating Clipboard Parameters

During a recording session, if the client sends the server the same data as it
received, then VuGen replaces the sent data with a parameter during code
generation. VuGen only performs this correlation when the received and
sent data formats are consistent with one another.

rdp_key(
"StepDescription=Key Press 2",
"Snapshot=snapshot_9.inf",
"KeyValue=C",
"KeyModifier=CONTROL_KEY",
RDP_LAST);

// The function requests the Remote Desktop UNICODE text and saves it to a
//parameter
rdp_receive_clipboard_data(
"StepDescription=Get Remote Desktop clipboard 1",
"Snapshot=snapshot1.inf",
"ClipboardDataFormat=RDP_CF_UNICODE",
"ParamToSaveData=MyParam",
RDP_LAST);
297

Chapter 17 • Creating Remote Desktop Protocol Vuser Scripts
The following example shows how the same parameter, MyParam, is used
for both receiving and sending the data.

Synchronizing Replay

An RDP session executes remotely. All keyboard and mouse handling is
done on the server, and it is the server that reacts to them. For example,
when you double-click an application on the desktop, it is the server that
realizes a double-click took place and that the application must be loaded
and displayed.

When an RDP client connects to a server, it does two things:

➤ It sends the server coordinates of actions. For example, 'clicked the left
mouse button at coordinates (100, 100) on the screen'.

➤ It receives images from the server showing the current status of the screen
after the action took place

The RDP client (and therefore, LoadRunner) does not know that the screen
contains windows, buttons, icons, or other objects. It only knows the screen
contains an image and at what coordinates the user performed the action.
To allow the server to correctly interpret the actions, you set
synchronization points within the script. These points instruct the script to
wait until the screen on the server matches the stored screen before
continuing.

// Receive the data from the server
rdp_receive_clipboard_data("StepDescription=Get Remote Desktop clipboard 1",
"Snapshot=snapshot_9.inf",
"Timeout=0",
"ClipboardDataFormat=RDP_CF_UNICODETEXT",
"ParamToSaveData=MyParam",
RDP_LAST);
…
// Send the data to the server
rdp_send_clipboard_data("StepDescription=Get Remote Desktop clipboard 1",
"Snapshot=snapshot_9.inf",
"Timeout=10",
REQUEST_RESPONSE, "Format=RDP_CF_UNICODETEXT", "Text={MyParam}",
RDP_LAST);
298

Chapter 17 • Creating Remote Desktop Protocol Vuser Scripts
To add image synchronization points to a script:

 1 View the script in Tree view. Select View > Tree view.

 2 Select an operation to which you would like to add a synchronization point.

 3 Right-click on the image snapshot and select Insert Synch On Image from
the menu. The cursor will change to a cross-hair.

 4 Mark the area on the screen that you would like to synchronize upon by
clicking on the left button and dragging the box to enclose the area. When
you release the mouse button, the Sync on Image dialog box opens.

 5 Click OK. VuGen adds a new Sync on Image step before the selected step.
When you select this step, VuGen displays a snapshot that contains a pink
box around the area you selected for synchronization.

The next time you replay the script, it will wait until the image returned by
the server matches the image you selected.

Image Synchronization Tips
Use the following guidelines for effective image synchronization:

Synchronize on Smallest Significant Area

When synchronizing on an image, try to synchronize only the part of the
image that is necessary. Additional details within the image may not be
reproduced during replay and could result in a synchronization failure.

For example, when synchronizing on an image of a button, select only the
text itself and not the dotted lines around the text as they may not appear
during replay.
299

Chapter 17 • Creating Remote Desktop Protocol Vuser Scripts
When synchronizing a highlighted area, try to capture only the part of the
image that is not effected by the highlighting. In the following example,
perform a synchronization on the Log Off icon, but not the entire button,
since the highlighting may not appear during replay, and the color could
vary with different color schemes.

Synchronize Before Every User Action

You need to synchronize before every mouse operation. It is also
recommended that you synchronize before the first rdp_key / rdp_type
operation that follows a mouse operation.

Failed Image Synchronization
The Failed Image Synchronization dialog boxes open when there is a
mismatch between the Recording and Replay snapshots during script replay.
There are several Failed Image Synchronization dialog boxes:

➤ Append Snapshot

➤ Raise Tolerance

➤ Lower Tolerance

➤ No Snapshot
300

Chapter 17 • Creating Remote Desktop Protocol Vuser Scripts
Note: Raising or lowering the tolerance level from the dialog box only
changes the level for that step. To change the tolerance level for the whole
script, change the Default Image Sync Tolerance setting as described in
“RDP Synchronization Run-Time Settings” on page 294.

Append Snapshot

The Failed Image Synchronization - Append Snapshot dialog box opens
when the replay image is so different from the recorded image that
changing the tolerance level will not help. You can indicate whether or not
you want to mark the mismatch as an error or adopt the changes.
301

Chapter 17 • Creating Remote Desktop Protocol Vuser Scripts
When this dialog box opens, click on one of the following buttons to
proceed:

➤ Stop. Consider the mismatch between the snapshots to be an error. This
error will be handled like all other errors and halt the execution.

➤ Continue. Accept the mismatch and use both the original and new
snapshots as a basis for comparison between screens during future replays. If
replay returns either one of the bitmaps, the Vuser will not fail.

When you append a new snapshot to the original snapshot, VuGen adds it
to the current step. You can then view both the original and appended
snapshots by clicking the arrows above the Recording snapshot. The Replay
snapshot only shows a single image, the image found during replay.
302

Chapter 17 • Creating Remote Desktop Protocol Vuser Scripts
Raise Tolerance
The Failed Image Synchronization - Raise Tolerance dialog box opens when
the script replay failed to find the exact image requested, but if the tolerance
level for performing synchronization on images was relaxed, then it would
have succeeded in finding the image.

When this dialog box opens, click on one of the following buttons to
proceed:

➤ Stop. Consider the mismatch between the snapshots to be an error. This
error will be handled like all other errors and halt the execution.

➤ Continue. Accept the mismatch and raise the tolerance level so that VuGen
permits a greater degree of a mismatch between the recorded images and
those displayed during the replay.
303

Chapter 17 • Creating Remote Desktop Protocol Vuser Scripts
Lower Tolerance
The Failed Image Synchronization - Lower Tolerance dialog box opens when
the script replay fails to meet the NotAppear or Change conditions. VuGen
detected an image match where you expected it not to detect one. If the
tolerance level was reduced, the recorded and replay images would not
match, and the NotAppear or Change conditions would be met resulting in
a successful replay.

When this dialog box opens, click on one of the following buttons to
proceed:

➤ Stop. Consider the mismatch between the snapshots to be an error. This
error will be handled like all other errors and halt the execution.

➤ Continue. Accept the mismatch and lower the tolerance level so that VuGen
permits a less degree of a mismatch between the recorded images and those
displayed during the replay.
304

Chapter 17 • Creating Remote Desktop Protocol Vuser Scripts
No Snapshot
The Failed Image Synchronization dialog box opens when the script replay
fails to meet any of the synchronization conditions such as NotAppear or
Change. VuGen did not find another image at the original coordinates that
could be appended to the script. You can instruct VuGen to continue replay
despite the mismatch. This is ideal for situations where you know that the
missing image is not essential to the business process.

When this dialog box opens, click on one of the following buttons to
proceed:

➤ Stop. Consider the mismatch between the snapshots to be an error. This
error will be handled like all other errors and halt the execution.

➤ Continue. Accept the mismatch, and do not make any changes in the script.
Continue script execution despite the mismatch.
305

Chapter 17 • Creating Remote Desktop Protocol Vuser Scripts
Shifted Coordinates
When replaying a script, a recorded object may appear at different
coordinates on the screen. The object is the same, but its placement has
been shifted. For example, during recording a window opened at
coordinates (100, 100), but during replay at (200, 250).

In this case, the synchronization point will automatically find the new
coordinates without any intervention on your part. It will automatically
note the difference of 100 pixels in the horizontal axis and 150 pixels in the
vertical axis.

All subsequent mouse operations that are coordinate dependent will use the
modified coordinates, so that a mouse click recorded at (130, 130) will be
replayed to (230, 280) = (130 + 100, 130 + 150).

You control the shifting of the coordinates through the AddOffsetToInput
parameter in the rdp_sync_on_image step. You can override this parameter
to either add or not add the differences in location during replay to the
recorded coordinates for any further operations. If you do not override this
parameter, VuGen takes its value from the default setting in the run-time
settings.

The corresponding parameter in the operations (rdp_mouse_click,
rdp_mouse_drag, etc.) is Origin. This parameter decides whether the
operation should take its coordinates only from the 'clean' values that were
recorded, or whether it should take into account the differences that were
added by the last synchronization point. If not explicitly specified, VuGen
takes the value for this parameter from the run-time settings.
306

Part V

Client Server Protocols

308

18
Developing Database Vuser Scripts

You use VuGen to record communication between a database client
application and a server. The resulting script is called a Database Vuser
script.

This chapter includes:

 ➤ About Developing Database Vuser Scripts on page 310

 ➤ Introducing Database Vusers on page 311

 ➤ Understanding Database Vuser Technology on page 312

 ➤ Getting Started with Database Vuser Scripts on page 313

 ➤ Setting Database Recording Options on page 314

 ➤ Database Advanced Recording Options on page 316

 ➤ Using LRD Functions on page 318

 ➤ Understanding Database Vuser Scripts on page 319

 ➤ Working with Grids on page 322

 ➤ Evaluating Error Codes on page 324

 ➤ Handling Errors on page 325

The following information only applies to Client Server Database (Sybase
CTLib, Sybase DbLib, Informix, MS SQL Server, Oracle 2-Tier, ODBC, and
DB2 CLI) and ERP/CRM Siebel Vuser scripts.
309

Chapter 18 • Developing Database Vuser Scripts
About Developing Database Vuser Scripts

When you record a database application communicating with a server,
VuGen generates a Database Vuser script. VuGen supports the following
database types: CtLib, DbLib, Informix, Oracle, ODBC, and DB2-CLI. The
resulting script contains LRD functions that describe the database activity.
Each LRD function has an lrd prefix and represents one or more database
functions. For example, the lrd_fetch function represents a fetch operation.

When you run a recorded session, the Vuser script communicates directly
with the database server, performing the same operations as the original
user. You can set the Vuser behavior (run-time settings) to indicate the
number of times to repeat the operation and the interval between the
repetitions. For more information, see “Configuring Run-Time Settings” in
Volume I-Using VuGen.

Using VuGen, you can parameterize a script, replacing recorded constants
with parameters. For more information, see “Creating Parameters” in Volume
I-Using VuGen.

In addition, you can correlate queries or other database statements in a
script, linking the results of one query with another. For more information,
see “Correlating Statements” in Volume I-Using VuGen.

For troubleshooting information and scripting tips, see “VuGen Debugging
Tips” in Volume I-Using VuGen.
310

Chapter 18 • Developing Database Vuser Scripts
Introducing Database Vusers

Suppose that you have a database of customer information that is accessed
by customer service personnel located throughout the country. You use
Database Vusers to emulate the situation in which the database server
services many requests for information. A Database Vuser could:

➤ connect to the server

➤ submit an SQL query

➤ retrieve and process the information

➤ disconnect from the server

You distribute several hundred Database Vusers among the available load
generators, each Vuser accessing the database by using the server API. This
enables you to measure the performance of your server under the load of
many users.

The program that contains the calls to the server API is called a Database
Vuser script. It emulates the client application and all of the actions
performed by it. The Vusers execute the script and emulate user load on the
client/server system. The Vusers generate performance data which you can
analyze in report and graph format.
311

Chapter 18 • Developing Database Vuser Scripts
Understanding Database Vuser Technology

VuGen creates Database Vuser scripts by recording all the activity between a
database client and a server. VuGen monitors the client end of the database
and traces all the requests sent to and received from the database server.

Like all other Vusers created using VuGen, Database Vusers communicate
with the server without relying on client software. Instead, each Database
Vuser executes a script that executes calls directly to server API functions.

You create Database Vuser scripts in a Windows environment using VuGen.
Once you create a script, you can assign it to Vusers in both Windows and
UNIX environments. For information about recording scripts, see
“Recording with VuGen” in Volume I-Using VuGen.

Users working in a UNIX only environment can create Database Vuser
scripts through programming using VuGen templates as the basis for a
script. For information about programming Database Vuser scripts on UNIX,
see the appendix “Programming Scripts on UNIX Platforms” in Volume I-
Using VuGen.

312

Chapter 18 • Developing Database Vuser Scripts
Getting Started with Database Vuser Scripts

This section provides an overview of the process of developing Database
Vuser scripts using VuGen.

To develop a Database Vuser script:

 1 Record the basic script using VuGen.

Invoke VuGen and create a new Vuser script. Specify the type of Vuser
(Client Server or ERP protocol types). Choose an application to record and
set the recording options. Record typical operations on your application.

For details, see “Recording with VuGen” in Volume I-Using VuGen.

 2 Enhance the script.

Enhance the Vuser script by inserting transactions, rendezvous points, and
control-flow structures into the script.

For details, see “Enhancing Vuser Scripts” in Volume I-Using VuGen.

 3 Define parameters (optional).

Define parameters for the fixed-values recorded into your script. By
substituting fixed-values with parameters, you can repeat the same query
many times using different values.

For details, see “Creating Parameters” in Volume I-Using VuGen.

 4 Correlate queries (optional).

Correlating database statements allows you to use the result of a query in a
subsequent one. This feature is useful when working on a database with user
constraints.

For details, see “Correlating Statements” in Volume I-Using VuGen.

 5 Configure the run-time settings.

The run-time settings control the Vuser script behavior during script
execution. These settings include loop, log, and timing information.

For details, see “Configuring Run-Time Settings” in Volume I-Using VuGen.

 6 Run the script from VuGen.

Save and run the script from VuGen to verify that it runs correctly.
313

Chapter 18 • Developing Database Vuser Scripts
For details, see “Running Vuser Scripts in Standalone Mode” in Volume I-
Using VuGen.

After you create a script, you integrate it into your environment: a
LoadRunner scenario, Performance Center load test, or Business Process
Monitor profile. For more information, refer to the HP LoadRunner Controller,
Performance Center, or HP Business Availability Center documentation.

Setting Database Recording Options

Before you record a database session, you set the recording options. You can
set basic recording options for automatic function generation, script
options, and think time:

➤ Automatic Transactions. Marks every lrd_exec and lrd_fetch function as a
transaction. When these options are enabled, VuGen inserts
lr_start_transaction and lr_end_transaction around every lrd_exec or
lrd_fetch function. By default, automatic transactions are disabled.
314

Chapter 18 • Developing Database Vuser Scripts
➤ Script Options. Generates comments into recorded scripts, describing the
lrd_stmt option values. In addition, you can specify the maximum length
of a line in the script. The default length is 80 characters.

➤ Think Time. VuGen automatically records the operator’s think time. You can
set a threshold level, below which the recorded think time will be ignored. If
the recorded think time exceeds the threshold level, VuGen places an
lr_think_time statement before LRD functions. If the recorded think time is
below the threshold level, an lr_think_time statement is not generated. The
default value is five seconds.

To set the Database recording options:

 1 Choose Tools > Recording Options. The Recording Options dialog box
opens.

 2 Select Generate transactions for all lrd_exec functions to enable automatic
transactions for lrd_exec statements.

Select Generate transaction for all lrd_fetch functions to enable automatic
transactions for lrd_fetch statements.

 3 Select Generate script comments to instruct VuGen to insert descriptive
comments within the script.

 4 To change the maximum length of a line in the VuGen editor, specify the
desired value in the Maximum length of script line box.

 5 To change the think-time threshold value from the five second default,
specify the desired value in the Think-time threshold box.

You can also set advanced recording options relating to the trace level, Ctlib
function generation, and the code generation buffer.
315

Chapter 18 • Developing Database Vuser Scripts
Database Advanced Recording Options

In addition to the basic recording options, you can configure advanced
options for the log file detail, CtLib specific functions, buffer size, and the
recording engine.

➤ Recording Log Options. You can set the detail level for the trace and ASCII
log files. The available levels for the trace file are Off, Error Trace, Brief
Trace, or Full Trace. The error trace only logs error messages. The Brief Trace
logs errors and lists the functions generated during recording. The Full Trace
logs all messages, notifications, and warnings.

You can also instruct VuGen to generate ASCII type logs of the recording
session. The available levels are Off, Brief detail, and Full detail. The Brief
detail logs all of the functions, and the Full detail logs all of the generated
functions and messages in ASCII code.

➤ CtLib Function Options. You can instruct VuGen to generate a send data
time stamp or an extended result set statement.

➤ Time Stamp. By default, VuGen generates lrd_send_data statements with
the TotalLen and Log keywords for the mpszReqSpec parameter. The
Advanced Recording Options dialog box lets you instruct VuGen to also
generate the TimeStamp keyword. If you change this setting on an
existing script, you must regenerate the Vuser script by choosing Tools >
Regenerate Script. It is not recommended to generate the Timestamp
keyword by default. The timestamp generated during recording is
different than that generated during replay and script execution will fail.
You should use this option only after a failed attempt in running a script,
where an lrd_result_set following an lrd_send_data fails. The generated
timestamp can now be correlated with a timestamp generated by an
earlier lrd_send_data.

➤ Extended Result Set. By default, VuGen generates an lrd_result_set
function when preparing the result set. This setting instructs VuGen to
generate the extended form of the lrd_result_set function,
lrd_result_set_ext. In addition to preparing a result set, this function
also issues a return code and type from ct_results.

➤ Code Generation Buffer Size. Specify in kilobytes the maximum size of the
code generation buffer. The default value is 128 kilobytes. For long database
sessions, you can specify a larger size.
316

Chapter 18 • Developing Database Vuser Scripts
➤ Recording Engine. You can instruct VuGen to record scripts with the older
LRD recording engine for compatibility with previous versions of VuGen.
This option is only available for single-protocol scripts.

To set advanced recording options:

 1 Click the Advanced button in the Database node of the Recording Options
dialog box. The Advanced Recording Options dialog box opens.

 2 Select a Trace file detail level. To disable the trace file, select Off.

 3 To generate an ASCII log file, select the desired detail level from the ASCII
file detail level box.

 4 For CtLib: To instruct VuGen to generate the TimeStamp keyword for
lrd_send_data functions, select the Generate send data time stamp option.

 5 For CtLib: To instruct VuGen to generate lrd_result_set_ext instead of
lrd_result_set, select the Generate extended result set statement option.

 6 To modify the size of the code generation buffer from the default value of
128 kilobytes, enter the desired value in the Code generation buffer size
box.
317

Chapter 18 • Developing Database Vuser Scripts
 7 To use the old VuGen recording engine to allow backwards compatibility,
select the Record script using old recording engine option.

 8 Click OK to save your settings and close the Advanced Recording Options
dialog box.

Using LRD Functions

The functions developed to emulate communication between a database
client and a server are called LRD Vuser functions. Each LRD Vuser function
has an lrd prefix. VuGen automatically records most of the LRD functions
listed in this section during a database session (CtLib, DbLib, Informix,
Oracle (2-Tier), and ODBC). You can also manually program any of the
functions into your script.

The LRD functions are classified into several categories: Access Management
Functions, Environment Functions, Retrieval Handling, Statement
Handling, Statement Correlating, Variable Handling, Siebel, and Oracle 8.

For syntax and examples of the LRD functions, refer to the Online Function
Reference (Help > Function Reference).
318

Chapter 18 • Developing Database Vuser Scripts
Understanding Database Vuser Scripts

After you record a database session, you can view the recorded code in
VuGen’s built-in editor. You can scroll through the script, see the SQL
statements that were generated by your application, and examine the data
returned by the server.

The VuGen window provides you with the following information about the
recorded database session:

➤ the sequence of functions recorded

➤ grids displaying the data returned by database queries

➤ the number of rows fetched during a query

Function Sequence
When you view a Vuser script in the VuGen window, you see the sequence
in which VuGen recorded your activities. For example, the following
sequence of functions is recorded during a typical Oracle database session:

lrd_init Initializes the environment.

lrd_open_connection Connects to the database server.

lrd_open_cursor Opens a database cursor.

lrd_stmt Associates an SQL statement with a cursor.

lrd_bind_col Binds a host variable to a column.

lrd_exec Executes an SQL statement.

lrd_fetch Fetches the next record in the result set.

lr_commit Commits a database transaction.

lr_close_cursor Closes a cursor.

lrd_close_connection Disconnects from the database server.

lrd_end Cleans up the environment.
319

Chapter 18 • Developing Database Vuser Scripts

32
In the following script, VuGen recorded the actions of an operator who
opened a connection to an Oracle server and then performed a query
requesting the local settings.

Row Information
VuGen generates an lrd_fetch function for each SQL query.

The second parameter of the function indicates the number of rows fetched.
This number can be positive or negative.

Positive Row Values

A positive value shows the number of rows fetched during recording, and
indicates that not all rows were fetched. (For example, if the operator
cancelled the query before it was completed.)

In the following example, four rows were retrieved during the database
query, but not all of the data was fetched.

lrd_init(&InitInfo, DBTypeVersion);
lrd_open_connection(&Con1, LRD_DBTYPE_ORACLE, "s1", "tiger", "hp1", "", 0, 0, 0);
lrd_open_cursor(&Csr1, Con1, 0);
lrd_stmt(Csr1, "select parameter, value from v$nls_parameters "
" where (upper(parameter) in ('NLS_SORT','NLS_CURRENCY',"
"'NLS_ISO_CURRENCY', 'NLS_DATE_LANGUAGE',"
"'NLS_TERRITORY'))", -1, 0 /*Non deferred*/, 1 /*Dflt Ora Ver*/, 0);

lrd_bind_col(Csr1, 1, &D1, 0, 0);
lrd_bind_col(Csr1, 2, &D2, 0, 0);
lrd_exec(Csr1, 0, 0, 0, 0, 0);
lrd_fetch(Csr1, 7, 7, 0, PrintRow2, 0);
…
lrd_close_cursor(&Csr1, 0);
lrd_commit(0, Con1, 0);
lrd_close_connection(&Con1, 0, 0);
lrd_end(0);

 lrd_fetch(Csr1, -4, 1, 0, PrintRow7, 0);

 lrd_fetch(Csr1, 4, 1, 0, PrintRow7, 0);
0

Chapter 18 • Developing Database Vuser Scripts
During execution, the script retrieves the number of rows indicated by the
positive value (provided the rows exist).

Negative Row Values

A negative row value indicates that all available rows were fetched during
recording. The absolute value of the negative number is the number of rows
fetched.

In the following example, all four rows of the result set were retrieved:

When you execute an lrd_fetch statement containing a negative row value,
it retrieves all of the available rows in the table at the time of the run—not
necessarily the number at the time of recording. In the above example, all
four rows of the table were retrieved during the recording session. However,
if more rows are available during script execution, they are all retrieved.

For more information about lrd_fetch, refer to the Online Function Reference
(Help > Function Reference).

 lrd_fetch(Csr1, -4, 1, 0, PrintRow7, 0);
321

Chapter 18 • Developing Database Vuser Scripts
Working with Grids

The data returned by a query during a recording session is displayed in a
grid. By viewing the grid you can determine how your application generates
SQL statements and the efficiency of your client/server system.

The data grid is represented by a GRID statement. To open the data grid,
click on the icon in the margin adjacent to the GRID statement.

322

Chapter 18 • Developing Database Vuser Scripts
In the following example, VuGen displays a grid for a query executed on a
flights database. The query retrieves the flight number, airport code,
departure city, day of the week, and other flight-relevant information.

If the data value is very long, only part of it is shown in the grid. This
truncation only occurs in the displayed grid and has no impact on the data.

The grid columns are adjustable in width. You can scroll up to 200 rows
using the scroll bar. To change this value, open the vugen.ini file on your
machine’s Operating System folder (for example, C:\WINNT) and modify
the following entry:

To correlate a value or save the data to a file, click in a cell and use the right-
click menu options, Create Correlation or Save To File.

[general]
max_line_at_grid=200
323

Chapter 18 • Developing Database Vuser Scripts
To search for data within the entire grid, including the non-visible part,
Select Search Grids in the Find dialog box.

VuGen displays the results in the Output window’s Grid Results tab.

Evaluating Error Codes

When a Vuser executes an LRD function, the function generates a return
code. A return code of 0 indicates that the function succeeded. For example,
a return code of 0 indicates that another row is available from the result set.
If an error occurs, the return code indicates the type of error. For example, a
return code of 2014 indicates that an error occurred in the initialization.

There are four types of return codes, each represented by a numerical range:

Type of Return Code Range

Informational 0 to 999

Warning 1000 to 1999

Error 2000 to 2999

Internal Error 5000 to 5999
324

Chapter 18 • Developing Database Vuser Scripts
For more detailed information on the return codes, refer to the Online
Function Reference (Help > Function Reference).

You can evaluate the return code of an LRD function to determine if the
function succeeded. The following script segment evaluates the return code
of an lrd_fetch function:

Handling Errors

You can control how database Vusers handle errors when you run a database
Vuser script. By default, if an error occurs during script execution, the script
execution is terminated. To change the default behavior, you can instruct
the Vuser to continue when an error occurs. You can apply this behavior in
the following ways:

➤ Globally Modifying Error Handling. Provides error handling to the entire
script, or to a segment of the script

➤ Locally Modifying Error Handling. Provides error handling to a specific
function only

Globally Modifying Error Handling
You can change the way that Vusers handle errors by issuing an
LRD_ON_ERROR_CONTINUE or LRD_ON_ERROR_EXIT statement. By
default, a Vuser aborts the script execution when it encounters any type of
error—database, parameter related, and so on. To change the default
behavior, insert the following line into your script:

static int rc;
rc=lrd_fetch(Csr15, -13, 0, 0, PrintRow4, 0);
if (rc==0)
lr_output_message("The function succeeded");

else
lr_output_message("The function returned an error code:%d",rc);

LRD_ON_ERROR_CONTINUE;
325

Chapter 18 • Developing Database Vuser Scripts
From this point on, the Vuser continues script execution, even when an
error occurs.

You can also specify that the Vuser continue script execution when an error
occurs only within a segment of the script. For example, the following code
tells the Vuser to continue script execution even if an error occurs in the
lrd_stmt or lrd_exec functions:

Use the LRD_ON_ERROR_CONTINUE statement with caution, as significant
and severe errors may be missed.

Locally Modifying Error Handling
You can set error handling for a specific function by modifying the severity
level. Functions such as lrd_stmt and lrd_exec, which perform database
operations, use severity levels. The severity level is indicated by the
function's final parameter, miDBErrorSeverity. This parameter tells the Vuser
whether or not to continue script execution when a database error occurs
(error code 2009). The default, 0, indicates that the Vuser should abort the
script when an error occurs.

For example, if the following database statement fails (e.g., the table does
not exist), then the script execution terminates.

To tell a Vuser to continue script execution, even when a database operation
error occurs for that function, change the statement's severity parameter
from 0 to 1.

LRD_ON_ERROR_CONTINUE;
lrd_stmt(Csr1, "select…"…);
lrd_exec(…);
LRD_ON_ERROR_EXIT;

lrd_stmt(Csr1, "insert into EMP values ('Smith',301)\n", -1, 1 /*Deferred*/,
1 /*Dflt Ora Ver*/, 0);

lrd_stmt(Csr1, "insert into EMP values ('Smith',301)\n", -1, 1 /*Deferred*/,
1 /*Dflt Ora Ver*/, 1);
326

Chapter 18 • Developing Database Vuser Scripts
When the severity is set to 1 and a database error occurs, a warning is issued.
Note that the severity level set for a particular function applies only to that
function.

CtLib Result Set Errors
In CtLib recording, the application retrieves all of the available result sets
after executing a statement. If the returned result set contains fetchable
data, the application performs bind and fetch operations on the data as
indicated in the following example:

If a result set does not contain fetchable data, bind and fetch operations
cannot be performed.

When you parametrize your script, result data may become unfetchable
(depending on the parameters). Therefore, a CtLib session that recorded
bind and fetch operations for a particular statement, may not be able to run,
if the new data is unfetchable. If you try to execute an lrd_bind_col or an
lrd_fetch operation, an error will occur (LRDRET_E_NO_FETCHABLE_DATA
— error code 2064) and the Vuser will terminate the script execution.

You can override the error by telling the Vuser to continue script execution
when this type of error occurs. Insert the following line into your script:

To return to the default mode of terminating the script execution, type the
following line into your script:

Use this option with caution, as significant and severe errors may be missed.

lrd_stmt(Csr15, "select * from all_types", -1, 148, -99999, 0);
lrd_exec(Csr15, 0, 0, 0, 0, 0);
lrd_result_set(Csr15, 1 /*Succeed*/, 4040 /*Row*/, 0);
lrd_bind_col(Csr15, 1, &tinyint_D41, 0, 0);
…
lrd_fetch(Csr15, -9, 0, 0, PrintRow3, 0);

LRD_ON_FETCHABLE_SET_ERR_CONT;

LRD_ON_FETCHABLE_SET_ERR_EXIT;
327

Chapter 18 • Developing Database Vuser Scripts
328

19
Correlating Database Vuser Scripts

After you record a database session, you may need to correlate one or more
queries within your script—use a value that was retrieved during the
database session, at a later point in the session.

This chapter includes:

 ➤ About Correlating Database Vuser Scripts on page 329

 ➤ Scanning a Script for Correlations on page 330

 ➤ Correlating a Known Value on page 332

 ➤ Database Correlation Functions on page 334

The following information only applies to Database (CtLib, DbLib,
Informix, Oracle, and ODBC, DB2-CLI) Vuser scripts.

About Correlating Database Vuser Scripts

If you encounter an error when running your script, examine the script at
the point where the error occurred. In many cases, you can overcome the
problem by correlating the query. Correlating the query means that you
save a run-time value to a parameter. You then use the saved value at a later
point in the same script. In summary, correlation is using the results of one
statement as input to another.

There are many queries whose inputs depend on the result of prior queries.
To emulate this behavior, use VuGen’s correlation capabilities.
329

Chapter 19 • Correlating Database Vuser Scripts
Scanning a Script for Correlations

VuGen provides a correlation utility to help you repair your script and allow
a successful replay. It performs the following steps:

➤ Scans for potential correlations

➤ Inserts the appropriate correlation function to save the results to a
parameter

➤ Replaces the statement value with the parameter

You can perform automatic correlation on the entire script, or at a specific
location in your script.

This section describes how to determine the statement which needs to be
correlated. If you already know which value you want to correlate, proceed
to the next section for instructions on correlating a specific value.

To scan and correlate a script detected with automatic correlation:

 1 Open the Output window.

Select View > Output to display the output tabs at the bottom of the
window. Check for errors in the Replay Log tab. Often, these errors can be
corrected by correlation.

 2 Select Vuser > Scan for Correlations.

VuGen scans the entire script and lists all possible values to correlate in the
Correlated Query tab.
330

Chapter 19 • Correlating Database Vuser Scripts
In the following example, in the lrd_ora8_fetch function, VuGen detected a
value to correlate.

 3 In the Correlated Query tab, double-click on the result you want to
correlate. Click on the words (grid column x, row y) VuGen sends the cursor
to the location of the value in your grid.

 4 Choose Create Correlation from the right-click menu. VuGen prompts you
to enter a parameter name for the result value.

 5 Specify a name, or accept the default. Click OK to continue. VuGen inserts
the appropriate correlation statement (lrd_save_value, lrd_save_col, or
lrd_save_ret_param, lrd_ora8_save_col) which saves the result to a
parameter.
331

Chapter 19 • Correlating Database Vuser Scripts
 6 Click Yes to confirm the correlation.

A message box opens asking if you want to search for all occurrences of the
value in the script.

➤ To replace only the value in the selected statement, click No.

➤ To search and replace additional occurrences, click Yes.

 7 A Search and Replace dialog box opens. Confirm any replacements,
including your original statement.

 8 Close the Search and Replace dialog box. VuGen replaces the statement
value with a reference to the parameter. If you choose to cancel the
correlation, VuGen also erases the statement created in the previous step.

Correlating a Known Value

If you know which value needs to be correlated, perform the following
procedure.

To correlate a specific value:

 1 Locate the statement in your script, with the query containing the value you
want to correlate. This is usually one of the arguments of the lrd_assign,
lrd_assign_bind, or lrd_stmt functions. Select the value without the
quotation marks.

 2 Choose Scan for Correlations (at cursor) from the right-click menu. VuGen
scans the selected value for correlations.

 3 In the Output window’s Correlated Query tab, double-click on the result
you want to correlate. Click on the words (grid column x, row y). VuGen
sends the cursor to the location of the value in your grid.

332

Chapter 19 • Correlating Database Vuser Scripts
 4 In the grid, click on the value you want to correlate and choose Create
Correlation from the right-click menu. VuGen prompts you to enter a
parameter name for the result value.

 5 Specify a name, or accept the default. Click OK to continue. VuGen inserts
the appropriate correlation statement (lrd_save_value, lrd_save_col, or
lrd_save_ret_param, lrd_ora8_save_col) which saves the result to a
parameter.

 6 Click Yes to confirm the correlation.

A message box opens asking if you want to search for all occurrences of the
value in the script.

➤ To replace only the value in the selected statement, click No.

➤ To search and replace additional occurrences, click Yes.

 7 A Search and Replace dialog box opens. Confirm any replacements,
including your original statement.

 8 Close the Search and Replace dialog box. VuGen replaces the statement
value with a reference to the parameter. If you cancel the correlation, VuGen
also erases the statement created in the previous step.

Note: If you are correlating a value from an lrd_stmt function, the following
data types are not supported: date, time, and binary (RAW, VARRAW).
333

Chapter 19 • Correlating Database Vuser Scripts
Database Correlation Functions

When working with Database Vuser scripts, (DbLib, CtLib, Oracle, Informix,
and so forth) you can use VuGen’s automated correlation feature to insert
the appropriate functions into your script. The correlating functions are:

➤ lrd_save_col saves a query result appearing in a grid, to a parameter. This
function is placed before fetching the data. It assigns the value retrieved
by the subsequent lrd_fetch to the specified parameter.
(lrd_ora8_save_col for Oracle 8 and higher)

➤ lrd_save_value saves the current value of a placeholder descriptor to a
parameter. It is used with database functions that set output placeholders
(such as certain stored procedures under Oracle).

➤ lrd_save_ret_param saves a stored procedure’s return value to a
parameter. It is used primarily with database procedures stored in DbLib
that generate return values.

Note: VuGen does not apply correlation if the saved value is invalid or
NULL (no rows returned).

For more information about these functions and their arguments, refer to
the the Online Function Reference (Help > Function Reference).
334

20
Developing DNS Vuser Scripts

VuGen allows you to emulate network activity by directly accessing a DNS
server.

This chapter includes:

 ➤ About Developing DNS Vuser Scripts on page 335

 ➤ Working with DNS Functions on page 336

The following information applies only to DNS Virtual User scripts.

About Developing DNS Vuser Scripts

The DNS protocol is a low-level protocol that allows you to emulate the
actions of a user working against a DNS server.

The DNS protocol emulates a user accessing a Domain Name Server to
resolve a host name with its IP address. Only replay is supported for this
protocol—you need to manually add the functions to your script.

To create a script for the DNS protocol, choose File > New to open the New
Virtual User dialog box. Choose the Domain Name Resolution (DNS)
protocol type from the Client/Server category. Since recording is not
supported for DNS, you program the script with the appropriate DNS, Vuser
API and C functions. For more information on these functions, refer to the
Online Function Reference (Help > Function Reference).

After you create a Vuser script, you integrate it into a scenario on either a
Windows or UNIX platform. For more information on integrating Vuser
scripts in a scenario, refer to the HP LoadRunner Controller User’s Guide.
335

Chapter 20 • Developing DNS Vuser Scripts
Working with DNS Functions

DNS Vuser script functions record queries to and from a Domain Name
Resolution (DNS) server. Each DNS function begins with a dns prefix. For
detailed syntax information on these functions, refer to the Online Function
Reference (Help > Function Reference).

In the following example, a query is submitted to the DNS server and the
results are printed to the log file.

Function Name Description

ms_dns_query Resolves the IP address of a host.

ms_dns_nextresult Advances to the next IP address in the list
returned by ms_dns_query.

Actions()
{
int rescnt = 0;
char results = NULL;
results = (char *) ms_dns_query("transaction",

"URL=dns://<DnsServer>",
"QueryHost=<Hostname>",
LAST);

// List all the IP addresses of the host names...
while (*results) {

rescnt++;
lr_log_message(lr_eval_string("(%d) IP of<Hostname> is %s"),

rescnt, results);
results = (char *) ms_dns_nextresult(results);

}
return 1;

}

336

21
Developing WinSock Vuser Scripts

You use VuGen to record communication between a client application and a
server that communicate using the Windows Sockets protocol. The resulting
script is called a Windows Sockets Vuser script.

This chapter includes:

 ➤ About Recording Windows Sockets Vuser Scripts on page 337

 ➤ Getting Started with Windows Sockets Vuser Scripts on page 338

 ➤ Setting the WinSock Recording Options on page 340

 ➤ Using LRS Functions on page 343

The following information applies to the Windows Sockets protocol.

About Recording Windows Sockets Vuser Scripts

The Windows Sockets protocol is ideal for analyzing the low level code of an
application. For example, to check your network, you can use a Windows
Sockets (WinSock) script to see the actual data sent and received by the
buffers. The WinSock type can also be used for recording other low level
communication sessions. In addition, you can record and replay
applications that are not supported by any of the other Vuser types.

When you record an application which uses the Windows Sockets protocol,
VuGen generates functions that describe the recorded actions. Each
function begins with an lrs prefix. The LRS functions relate to the sockets,
data buffers, and the Windows Sockets environment. Using VuGen, you
record your application’s API calls to the Winsock.dll or Wsock32.dll.
337

Chapter 21 • Developing WinSock Vuser Scripts
For example, you could create a script by recording the actions of a telnet
application.

In the following example, lrs_send sends data to a specified socket:

You can view and edit the recorded script from VuGen’s main window. The
Windows Sockets API calls that were recorded during the session are
displayed in the window, allowing you to track your network activities.

VuGen can display a WinSock script in two ways:

➤ As an icon-based representation of the script. This is the default view, and
is known as the Tree view.

➤ As a text-based representation of the script showing the Windows Sockets
API calls. This is known as the Script view.

You use VuGen to view and edit your Vuser script from either the Tree view
or Script view. For more information, see “Introducing Service Test” in
Volume I-Using VuGen.

After creating a script, you can view the recorded data as a snapshot or as a
raw data file. For details, see Chapter 22, “Working with Windows Socket
Data.”

Getting Started with Windows Sockets Vuser Scripts

This section provides an overview of the process of developing Windows
Sockets Vuser scripts using VuGen.

To develop a Windows Sockets script:

 1 Record the actions using VuGen.

Invoke VuGen and create a new Vuser script, specifying Windows Sockets as
the type. Choose an application to record and set the recording options.
Record typical operations on your application.

For details, see “Recording with VuGen” in Volume I-Using VuGen.

lrs_send("socket22", "buf44", LrsLastArg);
338

Chapter 21 • Developing WinSock Vuser Scripts
 2 Enhance the Vuser script.

Enhance the Vuser script by inserting transactions, rendezvous points, and
control-flow structures into the script.

For details, see “Enhancing Vuser Scripts” in Volume I-Using VuGen.

 3 Define parameters (optional).

Define parameters for the fixed-values recorded into your Vuser script. By
substituting fixed-values with parameters, you can repeat the same business
process many times using different values.

For details, see “Creating Parameters” in Volume I-Using VuGen.

 4 Correlate statements (optional).

Correlating statements enables you to use the result of one business process
in a subsequent one.

For details, see “Correlating Statements” in Volume I-Using VuGen.

 5 Configure the run-time settings.

The run-time settings control the Vuser behavior during script execution.
These settings include loop, log, and timing information.

For details, see “Configuring Run-Time Settings” and “Configuring Network
Run-Time Settings” in Volume I-Using VuGen.

 6 Run the Vuser script from VuGen.

Save and run the Vuser script from VuGen to verify that it runs correctly.

For details, see “Running Vuser Scripts in Standalone Mode” in Volume I-
Using VuGen.

After you create a script, you integrate it into your environment: a
LoadRunner scenario, Performance Center load test, or Business Process
Monitor profile. For more information, refer to the HP LoadRunner Controller,
Performance Center, or HP Business Availability Center documentation.
339

Chapter 21 • Developing WinSock Vuser Scripts
Setting the WinSock Recording Options

The following recording options are available for WinSock Vusers:

➤ Configuring the Translation Table

➤ Excluding Sockets

➤ Setting the Think Time Threshold

To open the Recording Options dialog box, choose Tools > Recording
Options or click the Options button in the Start Recording dialog box.
VuGen displays the WinSock options.

340

Chapter 21 • Developing WinSock Vuser Scripts
Configuring the Translation Table
To display data in EBCDIC format, you specify a translation table in the
recording options.

The Translation Table lets you specify the format for recording sessions. This
applies to users running on mainframe machines or AS/400 servers. Both
the server and client machines determine the format of the data from
translation tables installed on your system. Choose a translation option
from the list box.

The first four digits of the listbox item represent the server format. The last
four digits represent the client format. In the above example, the selected
translation table is 002501b5. The server format is 0025 and the client
format is 01b5 indicating a transfer from the server to the client. In a
transmission from the client to the server, you would choose the item that
reverses the formats—01b50025 indicating that the client’s 01b5 format
needs to be translated to the server’s 0025 format.

The translation tables are located in the ebcdic directory under the VuGen’s
installation directory. If your system uses different translation tables, copy
them to the ebcdic directory.

Note: If your data is in ASCII format, it does not require translation. You
must select the None option, the default value. If you do select a translation
table, VuGen will translate the ASCII data.

When working on Solaris machines, you must set the following
environment variables on all machines running the Vuser scripts:

setenv LRSDRV_SERVER_FORMAT 0025
setenv LRSDRV_CLIENT_FORMAT 04e4
341

Chapter 21 • Developing WinSock Vuser Scripts
Excluding Sockets
VuGen supports the Exclude Socket feature, allowing you to exclude a
specific socket from your recording session. To exclude all actions on a
socket from your script, you specify the socket address in the Exclude Socket
list. To add a socket to the list, click the plus sign in the upper right corner of
the box and enter the socket address in one of the following formats:

You can exclude multiple hosts and ports by adding them to the list. To
remove a socket from the excluded list, select the socket address and click
the minus sign in the upper right corner of the box. It is recommended that
you exclude hosts and ports that do not influence the server load under test,
such as the local host and the DNS port (53), which are excluded by default.

By default, VuGen does not log the actions of the excluded sockets in the
Excluded Socket List. To instruct VuGen to log the actions of the excluded
socket(s) clear the Do not include excluded sockets in log check box. When
logging is enabled for the excluded sockets, their actions are preceded by
"Exclude" in the log file.

Value Meaning

host:port Exclude only the specified port on the specified host.

host Exclude all ports for the specified host.

:port Exclude the specified port number on the local host.

*:port Exclude the specified port number on all hosts.

Exclude : /* recv(): 15 bytes were received from socket 116 using flags 0 */
342

Chapter 21 • Developing WinSock Vuser Scripts
Setting the Think Time Threshold
During recording, VuGen automatically inserts the operator’s think time.
You can set a threshold level, below which the recorded think time will be
ignored. If the recorded think time exceeds the threshold level, VuGen
places an lr_think_time statement before LRS functions. If the recorded
think time is below the threshold level, an lr_think_time statement is not
generated.

To set the think time threshold, enter the desired value (in seconds) in the
Think Time Threshold box. The default value is five seconds.

Using LRS Functions

The functions developed to emulate communication between a client and a
server by using the Windows Sockets protocol are called LRS Vuser
functions. Each LRS Vuser function has an lrs prefix. VuGen automatically
records most of the LRS functions listed in this section during a Windows
Sockets session. You can also manually program any of the functions into
your Vuser script.

The LRS functions are classified into several categories: Socket, Buffer,
Environment, Correlating Statements, Conversion, and Timeout.

For more information about the LRS functions, refer to the Online Function
Reference (Help > Function Reference).

After you record a session, VuGen’s built-in editor lets you view the recorded
code. You can scroll through the script, view the functions that were
generated by your application, and examine the transferred data. When you
view the script in the main window, you see the sequence in which VuGen
recorded your activities.
343

Chapter 21 • Developing WinSock Vuser Scripts
The following function sequence is recorded during a typical session:

VuGen supports record and replay for applications using the Windows
Socket protocol on Windows; on UNIX platforms, only replay is supported.

lrs_startup Initializes the WinSock DLL.

lrs_create_socket Initializes a socket.

lrs_send Sends data on a datagram or to a stream
socket.

lrs_receive Receives data from a datagram or stream
socket.

lrs_disable_socket Disables an operation on a socket.

lrs_close_socket Closes an open socket.

lrs_cleanup Terminates the use of the WinSock DLL.
344

22
Working with Windows Socket Data

After you record a session in the Windows Socket protocol you can view and
manipulate the data.

This chapter includes:

 ➤ About Working with Windows Socket Data on page 346

 ➤ Viewing Data in the Snapshot Window on page 346

 ➤ Navigating Through the Data on page 348

 ➤ Modifying Buffer Data on page 351

 ➤ Modifying Buffer Names on page 358

 ➤ Viewing Windows Socket Data in Script View on page 359

 ➤ Understanding the Data File Format on page 360

 ➤ Viewing Buffer Data in Hexadecimal format on page 362

 ➤ Setting the Display Format on page 365

 ➤ Debugging Tips on page 368

 ➤ Manually Correlating WinSock Scripts on page 369

The following information applies to all protocols recorded on a Windows
Socket level.
345

Chapter 22 • Working with Windows Socket Data
About Working with Windows Socket Data

After you record an application using VuGen, you have multiple data buffers
containing the data.

When you view the WinSocket script in tree view, VuGen provides a
snapshot window which allows you to navigate within the data buffers and
modify the data.

When working in script view, you can view the raw data in the data.ws file.
For more information, see “Viewing Windows Socket Data in Script View”
on page 359.

Viewing Data in the Snapshot Window

When viewing a Windows Socket script in tree view, VuGen provides a
buffer snapshot window which displays the data in an editable window. You
can view a snapshot in either Text view or Binary view.

The text view shows a snapshot of the buffer with the contents represented
as text.

By default, VuGen stores the buffer data as read-only data. If you want to
modify the contents of the buffer, clear the Read only box in the buffer’s
Text View. VuGen issues a warning that bookmarks and parameters may be
affected.
346

Chapter 22 • Working with Windows Socket Data
The binary view shows the data in hexadecimal representation. The left
column shows the offset of the first character in that row.
The middle column displays the hexadecimal values of the data. The right
column shows the data in ASCII format.

The status bar below the buffer snapshot provides information about the
data and buffer:

➤ Buffer number. The buffer number of the selected buffer.

➤ Total bytes. the total number of bytes in the buffer.

➤ Buffer type. the type of buffer—received or sent.

➤ Data. the value of the data at the cursor in decimal and hexadecimal
formats, in Little Endian order (reverse of how it appears in the buffer).

➤ Offset. the offset of the selection (or cursor in text view) from the beginning
of the buffer. If you select multiple bytes, it indicates the range of the
selection.

ASCII formatOffset Hexadecimal format
347

Chapter 22 • Working with Windows Socket Data
The status bar also indicates whether or not the original data was modified.

Navigating Through the Data

In tree view, VuGen provides several tools that allow you to navigate
through the data in order to identify and analyze a specific value:

➤ Buffer Navigator

➤ Go To Offset

➤ Bookmarks

Buffer Navigator
By default, VuGen displays all the steps and buffers in the left pane. The
Buffer Navigator is a floating window that lets you display only the receive
and send buffers steps (lrs_send, lrs_receive, lrs_receive_ex, and
lrs_length_receive). In addition, you can apply a filter and view either the
send or receive buffers.

When you select a buffer in the navigator, its contents are displayed in the
buffer snapshot window.

348

Chapter 22 • Working with Windows Socket Data
If you change a buffer’s name after recording, its contents will not appear in
the snapshot window when you click on the step. To view the renamed
buffer’s data, use the buffer navigator and select the new buffer’s name.
VuGen issues a warning message indicating that parameter creation will be
disabled for the selected buffer.

To open the Buffer Navigator, choose View > Buffer Navigator. To close the
navigator, click the X in the top right corner of the navigator dialog box.

Note that you can also navigate between buffers by clicking on the buffer
step in the left pane’s tree view. The advantages of the buffer navigator are
that it is a floating window with filtering capabilities.

Go To Offset
You can move around within the data buffer by specifying an offset. You can
indicate the absolute location of the data, or a location relative to the
current position of the cursor within the buffer. This dialog box also lets you
select a range of data, by specifying the starting and end offsets.

To go to an offset:

 1 Click within the snapshot window. Then select Go to offset from the right-
click menu. The Go to offset dialog box opens.

 2 To go to a specific offset within the buffer (absolute), click Go to offset and
specify an offset value.

 3 To jump to a location relative to the cursor, click Advance by and specify the
number of bytes you want to advance. To advance ahead, enter a positive
value. To move backwards within the buffer, use a negative value.
349

Chapter 22 • Working with Windows Socket Data
 4 To select a range of data within the buffer, click Select range from and
specify the beginning and end offsets.

Bookmarks
VuGen lets you mark locations within a buffer as bookmarks. You give each
bookmark a descriptive name and click on it to jump directly to its location.
The bookmarks are listed in the Output window’s Bookmarks tab below the
buffer snapshot.

Bookmarks can be used in both the text and binary views. You can locate
the desired data in text view, save the location as a bookmark, and jump
directly to that bookmark in binary view.

The bookmark can mark a single byte or multiple bytes. When you click on
a bookmark in the list, it is indicated in the buffer snapshot window as a
selection. Initially, in the text view the data is highlighted in blue, and in
binary view the bookmark block is marked in red. Also in binary view, when
you place your cursor over a bookmark, a popup text box opens indicating
the name of the bookmark.

You can create both permanent and simple bookmarks. A permanent
bookmark is always marked within the buffer’s binary view—it is enclosed
by a blue box. The bookmark stays selected in blue, even when pointing to
another location in the buffer. The cursor location is marked in red. A
simple bookmark, however, is not permanently marked. When you jump to
a simple bookmark, it is marked in red, but once you move the cursor
within the buffer, the bookmark is no longer selected. By default bookmarks
are permanent.
350

Chapter 22 • Working with Windows Socket Data
To work with bookmarks:

 1 To create a bookmark, select one or more bytes in a buffer snapshot (text or
binary view) and select New Bookmark from the right-click menu.

 2 To view the bookmark list, choose View > Output Window and select the
Bookmarks tab.

 3 To assign a name to a bookmark, click on it in the bookmark list and edit the
title.

 4 To change the location of a bookmark, select the bookmark in the
Bookmarks tab, then select the new data in the buffer snapshot. Click
Modify in the Bookmarks tab.

 5 To change a bookmark form being Permanent to simple (permanent means
that it is always marked, even when you move the cursor to a new location),
select the bookmark, perform a right-click, and clear the check adjacent to
Permanent Bookmark.

 6 To display only permanent bookmarks in the list, select the Show
Permanent Bookmarks only check box in the Bookmarks tab.

 7 To view bookmarks from a specific buffer, select a bookmark from the
desired buffer and choose Selected buffer only in the Filter box.

 8 To delete a bookmark, select it in the Bookmarks tab and click Delete.

Modifying Buffer Data

In tree view, VuGen provides several tools that allow you to modify the data
by deleting, changing or adding to the existing data.

➤ Inserting Data

➤ Editing Data

➤ Parameterizing the Data
351

Chapter 22 • Working with Windows Socket Data
Inserting Data
You can insert a numerical value into a data buffer. You can insert it as a
single, double-byte or 4-byte value.

To insert a number into a data buffer:

 1 Click at a location in the buffer.

 2 Open the right-click menu and choose Advanced > Insert Number >
Specify…

 3 Enter the ASCII value that you want to insert into the Value box.

 4 Select the size of the data you want to insert: 1 byte, 2 bytes, or 4 bytes from
the Size box.

 5 Click OK to finish. VuGen inserts the hexadecimal representation of the
data into the buffer.

Editing Data
You can perform all of the standard edit operation on buffer data: copy,
paste, cut, delete, and undo. In the binary view you can specify the actual
data to insert. VuGen allows you to specify the format of the data—single
byte, 2-byte, or 4-byte, and hexadecimal or decimal value. You can copy
binary data and insert it as a number into the buffer. You can see the
decimal or hexadecimal numbers in the right column of the binary view.

In the following example, the word OK was selected.
352

Chapter 22 • Working with Windows Socket Data
If you perform simple copy (CTRL+C) and paste (CTRL+V) operations at the
beginning of the next line of data, it inserts the actual text.

If you choose and Advanced Copy as Number > Decimal and then paste the
data, it inserts the decimal value of the ASCII code of the selected characters:

If you choose and Advanced Copy as Number > Hexadecimal and then paste
the data, it inserts the hexadecimal value of the ASCII code of the selected
characters:

The Undo Buffer retains all of the modifications to the buffer. This
information is saved with the file—if you close the file it will still be
available. If you want to prevent others from undoing your changes, you
can empty the Undo buffer. To empty the Undo buffer, choose Advanced >
Empty Undo Buffer in the right-click menu.

To edit buffer data in the binary view:

 1 To copy buffer data:

➤ As characters, select one or more bytes and press CTRL+C.

➤ As a decimal number, Advanced > Copy As Number > Decimal in the
right-click menu.

➤ As a hexadecimal number, Advanced > Copy As Number > Hexadecimal
in the right-click menu.

 2 To paste the data:

➤ As a single byte (assuming the size of the data on the clipboard is a single
byte), click at the desired location in the buffer and press CTRL+V.

➤ In short format (2-byte), Advanced >Insert Number >Paste Short (2-byte)
in the right-click menu.

➤ In long format (4-byte), Advanced >Insert Number >Paste Long (4-byte)
in the right-click menu.
353

Chapter 22 • Working with Windows Socket Data
 3 To delete data, select it in either one of the views and choose Delete from
the right-click menu.

Parameterizing the Data
In tree view, VuGen lets you parameterize the data directly from the buffer
snapshot view. You can specify a range of what to parameterize and you can
specify borders. If you do not specify borders for the parameterized string,
then VuGen inserts an lrs_save_param function into your script. If you
specify borders, VuGen inserts lrs_save_searched_string into your script
since this function allows you to specify boundary arguments.

Note that the lrs_save_param and lrs_save_searched_string functions
correlate the data. This means that it stores the data that is received, for use
in a later point within the test. Since correlation stores the received data, it
only applies to Receive buffers and not to Send buffers. The recommended
procedure is to select a string of dynamic data within the Receive buffer that
you want to parameterize. Use that same parameter in a subsequent Send
buffer.

This type of correlation should not be confused with simple
parameterization. Simple parameterization (Insert > New Parameter) only
applies to data within Send buffers. You set up a parameter and assign it
several values. VuGen uses the different values in each of the test runs or
iterations. For more information, see “Creating Parameters” in Volume I-
Using VuGen.

The next sections discuss the correlation of data in Receive buffers.
354

Chapter 22 • Working with Windows Socket Data
After you create a parameter, VuGen lists all the locations in which it
replaced the string with a parameter. VuGen also provides information
about the creation of the parameter—the buffer in which it was created and
the offset within the buffer. It lists all occurrences of the parameter in the
Output Window’s Parameters tab, below the snapshot view.

VuGen allows you to manipulate the parameters:

➤ Filtering. You can filter the parameter replacements by the parameter name.

➤ Go to Source. Select a replacement and click Go To Source to jump to the
exact location of the replaced parameter within the buffer.

➤ Deleting. You can delete any one of the parameters. When you delete a
parameter, VuGen replaces the data with its original value and removes the
parameterization function from the script.

➤ Name. You can provide a name to each replacement.

➤ Undo Replacement. You can also undo one or more replacements displayed
in the list.
355

Chapter 22 • Working with Windows Socket Data
To parameterize data from the snapshot window:

 1 Select the data you want to parameterize and choose Create Parameter from
the right-click menu (only available for Receive buffers). A dialog box opens:

 2 Specify a name for the parameter in the Parameter Name box.

 3 Select a range of characters to parameterize. By default, VuGen takes the
range of data that you selected in the buffer. To select a range other than the
one that appears in the dialog box, click Select Range. A small dialog box
opens indicating the selected range.

Choose a range in the buffer snapshot window and then click Done.

 4 If the parameter data is not constant but its borders are consistent, you can
specify a right and left boundary.
356

Chapter 22 • Working with Windows Socket Data
To specify boundaries:

➤ Select the Extract Parameter Data Using Boundaries check box. VuGen
changes the function in the Script Statement section from
lrs_save_param to lrs_save_searched_string. Click Done.

➤ Click the browse button adjacent to the Left box in the Boundaries
section. A small dialog box opens, indicating your selection within the
buffer. Select the boundaries within the buffer and click Done. Repeat
this step for the right boundary.

 5 Make the desired modifications to the arguments in the Script Statement
section. For example you can add _ex to the lrs_save_param function to
specify an encoding type. For more information about these functions refer
to the Online Function Reference (Help > Function Reference).

 6 Click OK to create the parameter. VuGen asks you for a confirmation before
replacing the parameter. Click Yes. You can view all the replacements in the
Parameters tab.

 7 To jump to the original location of the parameter within its buffer, select it
and click Go To Source.

 8 To jump to the buffer location of the selected replacement, select it and click
Go To.

 9 To delete an entire parameter, choose the parameter in the Filter box and
click Delete Parameter.

 10 To undo a replacement, select it in the Parameters tab and click Undo. To
undo all replacements of the displayed parameter, select it in the Parameters
tab and click Undo All.

 11 When you undo specific replacements, the Parameterized column shows No
for that occurrence. To reapply the parameterization rule to an occurrence
that was undone, select it and choose Replace With Parameter from the
right-click menu.

 12 To delete an entire parameter and undo all the replacements, select the
parameter in the Filter box and click Delete Parameters.

 13 Choose Vuser > Parameter List to assign data to the parameters.
357

Chapter 22 • Working with Windows Socket Data
Modifying Buffer Names

You can modify the name of a buffer using the Script view of the data.ws
file. If you modify a buffer name after recording, this will affect the replay of
the Vuser script. You can view the contents of the renamed buffer in the
Script view or in Tree view using the Buffer Navigator.

If you created bookmarks in the buffer and it is not longer available, VuGen
prompts you to delete the bookmarks within the buffer in which they were
defined.

If you created parameters in the buffer and it is not longer available, VuGen
prompts you to delete the parameters from the buffer in which they were
defined. When you delete the parameter, all replacements are undone, even
those in other buffers.

When you view the renamed buffer in the Buffer Navigator, VuGen warns
you that parameter creation will be disabled within that buffer.
358

Chapter 22 • Working with Windows Socket Data
Viewing Windows Socket Data in Script View

When you use VuGen to create a Windows Sockets Vuser script, your actions
are recorded into the three sections of the script: vuser_init, Actions, and
vuser_end. In addition to the Vuser script, VuGen also creates a data file,
data.ws that contains the data that was transmitted or received during the
recording session. You can use VuGen to view the contents of the data file
by selecting data.ws in the Data Files box of the main VuGen window.

The option to view a data file is available by default for Windows Sockets
scripts. Note that you can only view the data in script view.

Several LRS functions, such as lrs_receive and lrs_send, handle the actual
data that is transferred between servers and clients. The data that is received
or transmitted is stored in data buffers, which can be very large. In order to
simplify the appearance of the Vuser script, the actual data is stored in
external files—not in the C file. When a data transfer occurs, the data is
copied from the external file into a temporary buffer.

The external file, data.ws, contains the contents of all the temporary
buffers. The buffers’ contents are stored as sequential records. The records
are marked by identifiers indicating whether the data was sent or received,
and the buffer descriptor. The LRS functions use the buffer descriptors to
access the data.
359

Chapter 22 • Working with Windows Socket Data
The descriptors have one of the following formats:

The buffer index begins with 0 (zero), and all subsequent buffers are
numbered sequentially (1,2,3 etc.) regardless of whether they are send or
receive buffers.

In the following example, an lrs_receive function was recorded during a
Vuser session:

In this example, lrs_receive handled data that was received on socket1. The
data was stored in the fifth receive record(buf4)—note that the index
number is zero-based. The corresponding section of the data.ws file shows
the buffer and its contents.

Understanding the Data File Format

The data.ws data file has the following format:

➤ File header

➤ A list of buffers and their contents

recv bufindex number of bytes received
send bufindex

lrs_receive("socket1", "buf4", LrsLastArg)

recv buf4 39
"\xff\xfb\x01\xff\xfb\x03\xff\xfd\x01"
"\r\n"
"\r\n"
"SunOS UNIX (sunny)\r\n"
"\r"
"\x0"
"\r\n"
"\r"
"\x0"
360

Chapter 22 • Working with Windows Socket Data
The file header includes an internal version number of the data file format.
The current version is 2. If you try to access data from a data file with format
version 1, VuGen issues an error.

An identifier precedes each record, indicating whether the data was received
or sent, followed by the buffer descriptor, and the number of bytes received
(for lrs_receive only). The buffer descriptor contains a number identifying
the buffer.

For example,

indicates that the buffer contains data that was received. The record number
is 5, indicating that this receive operation was the sixth data transfer (the
index is zero based), and twenty-five bytes of data were received.

If your data is in ASCII format, the descriptor is followed by the actual ASCII
data that was transferred by the sockets.

If your data is in EBCDIC format, it must be translated through a look-up
table. For information on setting the translation table, see “Setting the
WinSock Recording Options” on page 340. The EBCDIC whose ASCII value
(after translation) is printable, is displayed as an ASCII character. If the ASCII
value corresponds to a non-printable character, then VuGen displays the
original EBCDIC value.

;WSRData 2 1

recv buf5 25

recv buf6 39
"\xff\xfb\x01\xff\xfb\x03\xff\xfd\x01"
"\r\n"
"SunOS UNIX (sunny)\r\n"
361

Chapter 22 • Working with Windows Socket Data
The following segment shows the header, descriptors, and data in a typical
data file:

Viewing Buffer Data in Hexadecimal format

VuGen contains a utility allowing you to view a segment of data, displaying
it in hexadecimal and ASCII format, while indicating the offset of the data.

To display the data in the viewer window, select the data and press F7. If the
selected text is less than four characters, VuGen displays the data in short
format, showing the hexadecimal, decimal and octal representations.

You can customize the short format in the conv_frm.dat file as described in
“Setting the Display Format” on page 365.

;WSRData 2 1

send buf0
"\xff\xfd\x01\xff\xfd\x03\xff\xfb\x03\xff\xfb\x18"

recv buf1 15
"\xff\xfd\x18\xff\xfd\x1f\xff\xfd"
"#"
"\xff\xfd"
"'"
"\xff\xfd"
"$"

send buf2
"\xff\xfb\x18"
362

Chapter 22 • Working with Windows Socket Data
If the selected text is more than four characters, VuGen displays the data in
several columns in long format. You can customize the long format by
modifying the conv_frm.dat file, as described in “Setting the Display
Format” on page 365.

In the default format, the first column displays the character offsets from
the beginning of the marked section. The second column displays the
hexadecimal representation of the data. The third column shows the data in
ASCII format. When displaying EBCDIC data, all non-printable ASCII
characters (such as /n), are represented by dots.

The F7 viewer utility is especially useful for parameterization. It allows you
to determine the offset of the data that you want to save to a parameter.

ASCII formatOffset Hexadecimal format
363

Chapter 22 • Working with Windows Socket Data
To determine the offset of a specific character:

 1 View data.ws and select the data from the beginning of the buffer.

 2 Press F7 to display the data and the character offsets. Since more than four
characters were selected, the data is displayed in long format.

 3 Locate the value you want to correlate in the ASCII data. In this example, we
will correlate the number 13546 (a process ID during a UNIX session) which
begins at the 31st character—the last character in the second line.

ASCII formatOffset Hexadecimal format
364

Chapter 22 • Working with Windows Socket Data
 4 Use the offset value in the lrs_save_param_ex function in order to correlate
the value of the process ID. For more information, see “Correlating
Statements” in Volume I-Using VuGen.

Setting the Display Format

You can specify how VuGen will display the buffer data in the viewer (F7)
window. The conv_frm.dat file in the lrun/dat directory contains the
following display parameters:

➤ LongBufferFormat. The format used to display five or more characters. Use
nn for offset, XX for the hex data, and aa for ASCII data.

➤ LongBufferHeader. A header to precede each buffer in Long buffer format.

➤ LongBufferFooter. A footer to follow each buffer in Long buffer format.

➤ ShortBufferFormat. The format used to display four characters or less. You
can use standard escape sequences and conversion characters.

The supported escape sequence characters are:

\a Bell (alert)

\b Backspace

\f Formfeed

\n New line

\r Carriage return

\t Horizontal tab

\v Vertical tab

\' Single quotation mark

\" Double quotation mark

\\ Backslash

\? Literal question mark

\ooo ASCII character -octal
365

Chapter 22 • Working with Windows Socket Data
The supported conversion characters are:

➤ AnyBufferHeader. A header to precede each buffer.

➤ AnyBufferFooter. A footer to follow each buffer.

➤ NonPrintableChar. The character with which to represent non-printable
ASCII characters.

➤ PrintAllAscii. Set to 1 to force the printing of non-printable ASCII characters.

In the default settings, long and short formats are set, and a dot is specified
for non-printable characters.

%a ASCII representation

%BX Big Endian (Network Order) Hex

%BO Big Endian (Network Order) Octal

%BD Big Endian (Network Order) Decimal

%LX Little Endian Hex

%LO Little Endian Octal

%LD Little Endian Decimal

[BufferFormats]
LongBufferFormat=nnnnnnnn XX XX XX XX XX XX XX XX XX XX XX XX XX XX
XX XX aaaaaaaaaaaaaaaa\r\n
LongBufferHeader=
LongBufferFooter=
ShortBufferFormat=ASCII:\t\t\t%a\r\n\t\tNetwork Order\t\tLittle Endian\r\n\t\t (Big
Edian)\r\nHex:\t\t%BX\t\t%LX\r\nOctal:\t\t%BO\t\t%LO\r\nDecimal:\t%BD\t\t%LD\r\n
AnyBufferHeader=
AnyBufferFooter=--\r\n
NonPrintableChar=.
PrintAllAscii=0
366

Chapter 22 • Working with Windows Socket Data
The default LongBufferFormat is displayed as:

The default ShortBufferFormat is displayed as:
367

Chapter 22 • Working with Windows Socket Data
Debugging Tips

VuGen offers several means which allow you to debug your script. You can
view the various output logs and windows for detailed messages issued
during execution.

Specifically for Windows Sockets Vuser scripts, VuGen provides additional
information about buffer mismatches. A buffer mismatch indicates a
variation in the received buffer size (generated during replay) and the
expected buffer (generated during record). However, if the received and
expected buffer are the same size, even though the contents are different, a
mismatch message is not issued. This information can help you locate a
problem within your system, or with your Vuser script.

You can view the buffer mismatch information in the Execution log. Choose
View > Output to display the Execution log if it is not visible.

Note that a buffer mismatch may not always indicate a problem. For
example, if a buffer contains insignificant data such as previous login times,
this type of mismatch can be ignored.

However, if there is a very large discrepancy between the size of the
Expected and Received buffers, this could indicate a problem with your
system. Check the data in the corresponding buffer for discrepancies.

In order for you to determine whether or not the mismatch is significant,
you must thoroughly understand your application.

Mismatch (expected 54 bytes, 58 bytes actually received)
The expected buffer is:
=================
\r\n Last login: Wed Sep 2 10:30:18 from acme.hplab.c\r\n
=================
The received buffer is:
=================
\r\n Last login: Thu Sep 10 11:19:50 from dolphin.hplab.c\r\n
368

Chapter 22 • Working with Windows Socket Data
Manually Correlating WinSock Scripts

VuGen provides a user interface for correlating Vuser scripts. Correlation is
required when working with dynamic data. A common issue with WinSock
Vuser scripts is dynamic ports—ports whose numbers are assigned
dynamically. While certain applications always use the same port, others use
the next available port. If you try to replay a script and the recorded port is
no longer available, your test will fail. To overcome this issue, you must
perform correlation—save the actual run-time values and use them within
the script.

You can manually correlate a Vuser script using the correlation functions
that save the dynamic values to a parameter. The lrs_save_param and
lrs_save_param_ex functions let you save data to a parameter based on the
offset of the data in the received buffer. An advanced correlation function
lrs_save_searched_string lets you designate the data by specifying its
boundaries and indicating which occurrence of the matched pattern to save
to a parameter. The following example describes correlation using
lrs_save_param_ex. For information about using other correlation
functions, refer to the Online Function Reference.

To correlate the WinSock Vuser statements:

 1 Insert the lrs_save_param_ex statement into your script at the point where
you want to save the buffer contents. You can save user, static, or received
type buffers.

 2 Reference the parameter.

View the buffer contents by selecting the data.ws file in the Data Files box
of the main VuGen window. Locate the data that you want to replace with
the contents of the saved buffer. Replace all instances of the value with the
parameter name in angle brackets (< >).

lrs_save_param_ex (socket, type, buffer, offset, length, encoding, parameter);
369

Chapter 22 • Working with Windows Socket Data
In the following example, a user performed a telnet session. The user used a
ps command to determine the process ID (PID), and killed an application
based on that PID.

During execution, the PID of the procedure is different (UNIX assigns
unique PIDs for every execution), so killing the recorded PID will be
ineffective. To overcome this problem, use lrs_save_param_ex to save the
current PID to a parameter. Replace the constant with the parameter.

 3 In the data.ws file, determine the buffer in which the data was received,
buf47.

 4 In the Actions section, determine the socket used by buf47. In this example
it is socket1.

frodo:/u/jay>ps
 PID TTY TIME CMD
14602 pts/18 0:00 clock
14569 pts/18 0:03 tcsh

frodo:/u/jay>kill 14602
[3] Exit 1 clock
frodo:/u/jay>

recv buf47 98
"\r"
"\x00"
"\r\n"
" PID TTY TIME CMD\r\n"
" 14602 pts/18 0:00 clock\r\n"
" 14569 pts/18 0:02 tcsh\r\n"
"frodo:/u/jay>"

.

.

.
send buf58
"kill 14602"

lrs_receive("socket1", "buf47", LrsLastArg);
370

Chapter 22 • Working with Windows Socket Data
 5 Determine the offset and length of the data string to save. Highlight the
entire buffer and press F7. The offset of the PID is 11 and its length is 5
bytes. For additional information about displaying the data, see
“Understanding the Data File Format” on page 360.

 6 Insert an lrs_save_param_ex function in the Actions section, after the
lrs_receive for the relevant buffer. In this instance, the buffer is buf47. The
PID is saved to a parameter called param1. Print the parameter to the output
using lr_output_message.

 7 In the data file, data.ws, determine the data that needs to be replaced with a
parameter, the PID.

 8 Replace the value with the parameter, enclosed in angle brackets.

lrs_receive("socket1", "buf79", LrsLastArg);
lrs_save_param("socket1", "user”, buf47, 11, 5, ascii, param1);
lr_output_message ("param1: %s", lr_eval_string("<param1>"));
lr_think_time(10);
lrs_send("socket1", "buf80", LrsLastArg);

send buf58
"kill 14602"

send buf58
"kill <param1>"

Offset of first character in line
371

Chapter 22 • Working with Windows Socket Data
372

Part VI

Custom Vuser Scripts

374

23
Creating Custom Vuser Scripts

In addition to recording a session, you can create a custom Vuser script. You
can use both Vuser API functions and standard C, Java, VB, VBScript, or
Javascript code.

This chapter includes:

 ➤ About Creating Custom Vuser Scripts on page 376

 ➤ C Vusers on page 377

 ➤ Using the Workflow Wizard for C Vuser Scripts on page 378

 ➤ Java Vusers on page 381

 ➤ VB Vusers on page 382

 ➤ VBScript Vusers on page 383

 ➤ JavaScript Vusers on page 384

The following information applies to all custom Vuser scripts: C,
JavaScript, Java, VB and VBScript.
375

Chapter 23 • Creating Custom Vuser Scripts
About Creating Custom Vuser Scripts

VuGen allows you to program your own functions into the script, instead of
recording an actual session. You can use the Vuser API or standard
programming functions. Vuser API functions allow you to gather
information about Vusers. For example, you can use Vuser functions to
measure server performance, control server load, add debugging code, or
retrieve run-time information about the Vusers participating in the test or
monitoring.

This chapter describes how to program a Vuser script from within the
VuGen editor, incorporating your application’s libraries or classes.

You can also develop a Vuser script through programming within the Visual
C and Visual Basic environments. In these environments, you develop your
Vuser script within your development application, while importing the
Vuser API function libraries. For more information, see “Creating Vuser
Scripts in Visual Studio” in Volume I-Using VuGen.

To create a customized script, you first create a skeleton script. The skeleton
script contains the three primary sections of a script: init, actions, and end.
These sections are empty and you manually insert functions into them.

You can create empty scripts for the following programming languages:

➤ C

➤ Java

➤ Visual Basic

➤ VBScript

➤ JavaScript

Note: When working with JavaScript and VBScript Vusers, the COM objects
that you use within your script must be fully automation compliant. This
makes it possible for one application to manipulate objects in another
application, or to expose objects so that they may be manipulated.
376

Chapter 23 • Creating Custom Vuser Scripts
C Vusers

In C Vuser Scripts, you can place any C code that conforms with the
standard ANSI conventions. To create an empty C Vuser script, choose C
Vuser from the Custom category, in the New Virtual User dialog box. VuGen
creates an empty script:

You can use C Vuser functions in all of Vuser script types that use C
functions.

You can also refer to the Online Function Reference (Help > Function
Reference) for a C reference with syntax and examples of commonly used C
functions.

Action1()
{

return 0;
}

377

Chapter 23 • Creating Custom Vuser Scripts
Using the Workflow Wizard for C Vuser Scripts

The Workflow Wizard guides you through the steps of creating a script. By
clicking on a link in the Tasks pane, you can read about the steps in creating
a script, and view information about your replay. Use the Back and Next
buttons to navigate between screens.

If you do not see the Workflow Wizard, make sure that the Tasks pane is
open. (You show and hide the Task pane using the Tasks button on the
toolbar). Then click the first link, Introduction.

For more information about the wizard, see Chapter 3, “Viewing the VuGen
Workflow.”
378

Chapter 23 • Creating Custom Vuser Scripts
Create the Script
The Create Script window contains several guidelines for creating a Web
Services script.

➤ Adding Functions. describes how and where to enter the functions.

➤ Verifying Your Script. describes how to verify your script after adding
functions.

Guidelines for Using C Functions
All standard ANSI-C conventions apply to C Vuser scripts, including control
flow and syntax. You can add comments and conditional statements to the
script just as you do in other C programs. You declare and define variables
using ANSI C conventions.

The C interpreter that is used to run Vuser scripts accepts the standard ANSI
C language. It does not support any Microsoft extensions to ANSI C.

Before you add any C functions to a Vuser script, note the following
limitations:

➤ A Vuser script cannot pass the address of one of its functions as a callback
to a library function.

➤ The stdargs, longjmp, and alloca functions are not supported in Vuser
scripts.

➤ Vuser scripts do not support structure arguments or return types. Pointers
to structures are supported.

➤ In Vuser scripts, string literals are read-only. Any attempt to write to a
string literal generates an access violation.

➤ C Functions that do not return int, must be casted. For example,
extern char * strtok();
379

Chapter 23 • Creating Custom Vuser Scripts
Calling libc Functions

In a Vuser script, you can call libc functions. However, since the interpreter
that is used to run Vuser scripts does not support any Microsoft extensions
to ANSI C, you cannot use Microsoft's include files. You can either write
your own prototypes, or ask HP Customer Support to send you ANSI-
compatible include files containing prototypes for libc functions.

Linking Mode

The C interpreter that is used to run Vuser scripts uses a "lazy" linking mode
in the sense that a function need not be defined at the start of a run, as long
as the function is defined before it is used. For example:

lr_load_dll("mydll.dll");
myfun(); /* defined in mydll.dll -- can be called directly,

immediately after myfun.dll is loaded. */
380

Chapter 23 • Creating Custom Vuser Scripts
Java Vusers

In Java Vuser scripts, you can place any standard Java code. To create an
empty Java Vuser script, choose Java Vuser from the Custom category, in the
New Virtual User dialog box. VuGen creates an empty Java script:

Note that for Java type Vusers, you can only edit the Actions class. Within
the Actions class, there are three methods: init, action, and end. Place
initialization code in the init method, business processes in the action
method, and cleanup code in the end method.

import lrapi.lr;

public class Actions
{

public int init() {
return 0;

}

public int action() {
return 0;

}

public int end() {
return 0;

}
}

381

Chapter 23 • Creating Custom Vuser Scripts
VB Vusers

You can create an empty Visual Basic Vuser script, in which you can place
Visual Basic code. This script type lets you incorporate your Visual Basic
application into VuGen. To create an empty VB Vuser script, choose VB
Vuser from the Custom category, in the New Virtual User dialog box. VuGen
creates an empty VB script:

VuGen creates three sections, vuser_init, action, and vuser_end. Each of
these sections contain a VB function—Init, Actions, and Terminate
respectively. You place your code within these functions, as indicated by the
TO DO comment.

An additional section that is viewable from VuGen, is the global.vba file,
which contains the object and variable global declarations for Vusers and
the VB application.

Public Function Actions() As Long

‘"TO DO: Place your action code here

Actions = lr.PASS
End Function
382

Chapter 23 • Creating Custom Vuser Scripts
VBScript Vusers

You can create an empty VBScript Vuser script, in which you can place
VBScript code. This script type lets you incorporate your VBScript
application into VuGen. To create an empty VBScript Vuser script, choose
VB Script Vuser from the Custom category, in the New Virtual User dialog
box. VuGen creates an empty VBScript Vuser script:

VuGen creates three sections, vuser_init, action, and vuser_end. Each of
these sections contain a VBScript function—Init, Actions, and Terminate
respectively. You place your code within these functions, as indicated by the
TO DO comment.

An additional section that is viewable from VuGen, is the global.vbs file,
which creates the objects for the Vuser API functions and VB Script. For
example, for LoadRunner, the following code creates the standard object, lr:

Public Function Actions()

‘"TO DO: Place your action code here

Actions = lr.PASS
End Function

Set lr = CreateObject("LoadRunner.LrApi")
383

Chapter 23 • Creating Custom Vuser Scripts
JavaScript Vusers

You can create an empty JavaScript Vuser script, in which to place JavaScript
code. This script type lets you incorporate your existing JavaScript
application into VuGen. To create an empty JavaScript Vuser script, choose
JavaScript Vuser from the Custom category, in the New Virtual User dialog
box.

VuGen creates three sections, vuser_init, action, and vuser_end. Each of
these sections contain a JavaScript function—Init, Actions, and Terminate
respectively. You place your code within these functions, as indicated by the
TO DO comment.

An additional section that is viewable from VuGen, is the global.js file,
which creates the objects for the Vuser API functions and the Javascript. For
example, for LoadRunner, the following code creates the standard object, lr:

function Actions()
{

//"TO DO: Place your business process/action code here

return(lr.PASS);
}

var lr = new ActiveXObject("LoadRunner.LrApi")
384

24
Programming Java Scripts

VuGen supports Java type users on a protocol level. This chapter explains
how to create a Java Vuser script by programming. For information on
creating a Java Vuser script through recording, see the chapters describing
the Java protocol.

This chapter includes:

 ➤ About Programming Java Scripts on page 386

 ➤ Creating a Java Vuser on page 387

 ➤ Editing a Java Vuser Script on page 387

 ➤ Java Vuser API Functions on page 389

 ➤ Working with Java Vuser Functions on page 391

 ➤ Setting your Java Environment on page 397

 ➤ Running Java Vuser Scripts on page 398

 ➤ Compiling and Running a Script as Part of a Package on page 399

 ➤ Programming Tips on page 400

The following information applies to Java and EJB Testing, Vuser scripts.
385

Chapter 24 • Programming Java Scripts
About Programming Java Scripts

To prepare Vuser scripts using Java code, use the Java type Vusers. This Vuser
type supports Java on a protocol level. The Vuser script is compiled by a Java
compiler and supports all of the standard Java conventions. For example,
you can insert a comment by preceding the text with two forward slashes
"//".

Chapter 10, “Recording Java Language Vuser Scripts” explains how to create
a script through recording using the Java Record Replay Vuser. To prepare a
Java coded script through programming, see the following sections.

The first step in creating a Java compatible Vuser script, is to create a new
Vuser script template of the type Java Vuser. Then, you program or paste the
desired Java code into the script template. You can add Java Vuser functions
to enhance the script and parameterize the arguments to use different values
during iterations.

The Java Vuser script runs as a scalable multi-threaded application. If you
include a custom class in your script, ensure that the code is thread-safe.
Code that is not thread-safe may cause inaccurate results. For code that is
not thread-safe, run the Java Vusers as processes. This creates a separate Java
Virtual Machine for each process, resulting in a script that is less scalable.

After you prepare a script, run it as a standalone test from VuGen. A Java
compiler (Sun’s javac), checks it for errors and compiles the script.

After you create a script, you integrate it into your environment: a
LoadRunner scenario, Performance Center load test, or Business Process
Monitor profile. For more information, refer to the HP LoadRunner Controller,
Performance Center, or HP Business Availability Center documentation.
386

Chapter 24 • Programming Java Scripts
Creating a Java Vuser

The first step in creating a Java-compatible Vuser script is creating a Java
Vuser template.

To create a Java Vuser script:

 1 Open VuGen.

 2 Choose File > New or click the New button. The New Virtual User dialog box
opens.

 3 Select Custom > Java Vuser from the Select Vuser type list, and click OK.
VuGen displays a blank Java Vuser script.

 4 Click the Actions section in the left frame to display the Actions class.

Editing a Java Vuser Script

After generating an empty template, you can insert the desired Java code.
When working with this type of Vuser script, you place all your code in the
Actions class. To view the Actions class, click Actions in the left pane. VuGen
displays its contents in the right pane.

import lrapi.*;
public class Actions
{
public int init() {

return 0;
}

public int action() {
return 0;

}

public int end() {
return 0;

}
}

387

Chapter 24 • Programming Java Scripts
The Actions class contains three methods: init, action, and end. The
following table shows what to include in each method and when each
method is executed.

Init Method
Place all the login procedures and one-time configuration settings in the init
method. The init method is only executed once—when the Vuser begins
running the script. The following sample init method initializes an applet.

Action Method
Place all Vuser actions in the action method. The action method is executed
according to the number of iterations you set in the runtime settings. For
more information on the iteration settings, see “Configuring Run-Time
Settings” in Volume I-Using VuGen. The following sample action method
retrieves and prints the Vuser ID.

Script method Used to emulate... Is executed when...

init a login to a server the Vuser is initialized (loaded)

action client activity the Vuser is in "Running" status

end a log off procedure the Vuser finishes or is stopped

import org.omg.CORBA.*;
import org.omg.CORBA.ORB.*;
import lrapi.lr;

// Public function: init
 public int init() throws Throwable {

// Initialize Orb instance...
MApplet mapplet = new MApplet("http://chaos/classes/", null);
orb = org.omg.CORBA.ORB.init(mapplet, null);

...

 public int action() {
lr.message("vuser: " + lr.get_vuser_id() + " xxx");
 return 0;

 }
388

Chapter 24 • Programming Java Scripts
End Method
In the end method, place the code you want the Vuser to execute at the end
of the script, such as logging off from a server, cleaning up the environment,
and so forth.

The end method is only executed once—when the Vuser finishes running
the script. In the following example, the end method closes and prints the
end message to the execution log.

Java Vuser API Functions

VuGen provides a specific Java API for Java Vuser scripts. These functions are
all static methods of the lrapi.lr class.

The Java API functions are classified into several categories: Transaction,
Command Line Parsing, Informational, String, Message, and Run-Time
functions.

For further information about each of these functions, refer to the Online
Function Reference (Help > Function Reference). Note that when you create a
new Java Vuser script, the import lrapi.* is already inserted into the script.

To use additional Java classes, import them at the beginning of the script as
shown below.

 public int end() {
 lr.message("End");
 return 0;
 }
389

Chapter 24 • Programming Java Scripts
Remember to add the classes directory or relevant jar file to the classpath.
Make sure that the additional classes are thread-safe and scalable.

import java.io.*;
import lrapi.*;

public class Actions
{
...
}

390

Chapter 24 • Programming Java Scripts
Working with Java Vuser Functions

You can use Java Vuser functions to enhance your scripts by:

➤ Inserting Transactions

➤ Inserting Rendezvous Points

➤ Obtaining Vuser Information

➤ Issuing Output Messages

➤ Emulating User Think Time

➤ Handling Command Line Arguments

Inserting Transactions
You define transactions to measure the performance of the server. Each
transaction measures the time it takes for the server to respond to specified
requests. These requests can be short or complex tasks. When working with
LoadRunner, you can analyze the performance per transaction during and
after the scenario run, using online monitor and graphs.

You can also specify a transaction status: lr.PASS or lr.FAIL. You can let the
Vuser automatically determine if the transaction was successful, or you can
incorporate it into a conditional loop. For example, in your code you can
check for a specific return code. If the code is correct, you issue a lr.PASS
status. If the code is wrong, you issue an lr.FAIL status.

To mark a transaction:

 1 Insert lr.start_transaction into the script, at the point where you want to
begin measuring the timing of a task.

 2 Insert lr.end_transaction into the script, at the point where you want to
stop measuring the task. Use the transaction name as it appears in the
lr.start_transaction function.
391

Chapter 24 • Programming Java Scripts
 3 Specify the desired status for the transaction: lr.PASS or lr.FAIL.

Inserting Rendezvous Points
The following section does not apply to the HP Business Availability Center.

To emulate heavy user load on your client/server system, you synchronize
Vusers to perform a task at exactly the same moment by creating a
rendezvous point. When a Vuser arrives at the rendezvous point, it is held by
the Controller until all Vusers participating in the rendezvous arrive.

You designate the meeting place by inserting a rendezvous function into
your Vuser script.

To insert a rendezvous point:

➤ Insert an lr.rendezvous function into the script, at the point where you want
the Vusers to perform a rendezvous.

public int action() {

for(int i=0;i<10;i++)
{

lr.message("action()"+i);
lr.start_transaction("trans1");
lr.think_time(2);
lr.end_transaction("trans1",lr.PASS);
}

return 0;
}

public int action() {

for(int i=0;i<10;i++)
{

lr.rendezvous("rendz1");
lr.message("action()"+i);
lr.think_time(2);
}
return 0;

}

392

Chapter 24 • Programming Java Scripts
Obtaining Vuser Information
You can add the following functions to your Vuser scripts to retrieve Vuser
information:

In the following example, the lr.get_host_name function retrieves the name
of the computer on which the Vuser is running.

For more information about the above functions, refer to the Online Function
Reference (Help > Function Reference).

Issuing Output Messages
When you run a scenario, the Controller Output window displays
information about script execution. You can include statements in a Vuser
script to send error and notification messages to the Controller. The
Controller displays these messages in the Output window. For example, you
could insert a message that displays the current state of the client
application. You can also save these messages to a file.

lr.get_attrib_string Returns a string containing command line
argument values or runtime information
such as the Vuser ID or the load generator
name.

lr.get_group_name Returns the name of the Vuser’s group.

lr.get_host_name Returns the name of the load generator
executing the Vuser script.

lr.get_master_host_name Returns the name of the machine running
the LoadRunner Controller or Business
Process Monitor.

lr.get_scenario_id Returns the ID of the current scenario.
(LoadRunner only)

lr.get_vuser_id Returns the ID of the current Vuser.
(LoadRunner only)

String my_host = lr.get_host_name();
393

Chapter 24 • Programming Java Scripts
Note: Do not send messages from within a transaction. Doing so lengthens
the transaction execution time and may skew the actual transaction results.

You can use the following message functions in your Vuser script:

In the following example, lr.message sends a message to the output
indicating the loop number:

For more information about the message functions, refer to the Online
Function Reference (Help > Function Reference).

lr.debug_message Sends a debug message to the Output
window.

lr.log_message Sends a message to the Vuser log file.

lr.message Sends a message to a the Output window.

lr.output_message Sends a message to the log file and Output
window with location information.

for(int i=0;i<10;i++)
{

lr.message("action()"+i);
lr.think_time(2);
}

394

Chapter 24 • Programming Java Scripts
You can instruct the Vusers to redirect the Java standard output and
standard error streams to VuGen’s Execution log. This is especially helpful
when you need to paste existing Java code or use ready-made classes
containing System.out and System.err calls in your Vuser scripts. In the
execution log, standard output messages are colored blue, while standard
errors are shown in red.

The following example shows how to redirect specific messages to the
standard output and standard error using lr.enable_redirection:

Note: When you set lr.enable_redirection to true, it overrides all previous
redirections. To restore the former redirections, set this function to false.

For additional information about this function, refer to the Online Function
Reference (Help > Function Reference).

Emulating User Think Time
The time that a user waits between performing successive actions is known
as the think time. Vusers use the lr.think_time function to emulate user
think time. In the following example, the Vuser waits two seconds between
loops:

lr.enable_redirection(true);

System.out.println("This is an informatory message…"); // Redirected
System.err.println("This is an error message…"); // Redirected

lr.enable_redirection(false);

System.out.println("This is an informatory message…"); // Not redirected
System.err.println("This is an error message…"); // Not redirected

for(int i=0;i<10;i++)
{

lr.message("action()"+i);
lr.think_time(2);
}

395

Chapter 24 • Programming Java Scripts
You can use the think time settings as they appear in the script, or a factor of
these values. To configure how Vusers handle think time functions, open
the runtime settings dialog box. For more information, see “Configuring
Run-Time Settings” in Volume I-Using VuGen.

For more information about the lr.think_time function, refer to the Online
Function Reference (Help > Function Reference).

Handling Command Line Arguments
You can pass values to a Vuser script at runtime by specifying command line
arguments when you run the script. You insert command line options after
the script path and filename in the Controller or Business Process Monitor.
There are three functions that allow you to read the command line
arguments, and then to pass the values to a Vuser script:

Your command line should have one of the following two formats where
the arguments and their values are listed in pairs, after the script name:

The following example shows the command line string used to repeat
script1 five times on the machine pc4:

lr.get_attrib_double Retrieves double precision floating point
type arguments

lr.get_attrib_long Retrieves long integer type arguments

lr.get_attrib_string Retrieves character strings

script_name -argument argument_value -argument argument_value

script_name -argument argument_value -argument argument_value

script1 -host pc4 -loop 5
396

Chapter 24 • Programming Java Scripts
For more information on the command line parsing functions, refer to the
Online Function Reference (Help > Function Reference). For more information
on how to insert the command line options, refer to the LoadRunner
Controller, Performance Center, or HP Business Availability Center
documentation.

Setting your Java Environment

Before running your Java Vuser script, ensure that the environment
variables, PATH and CLASSPATH, are properly set on all machines running
Vusers:

➤ To compile and replay the scripts, you must have complete JDK
installation, either version 1.1 or 1.2, or 1.3. The installation of the JRE
alone is not sufficient. It is preferable not to have more than one JDK or
JRE installation on a machine. If possible, uninstall all unnecessary
versions.

➤ The PATH environment variable must contain an entry for JDK/bin.

➤ For JDK 1.1.x, the CLASSPATH environment variable must include the
classes.zip path, (JDK/lib subdirectory) and all of the VuGen classes
(classes subdirectory).

➤ All classes used by the Java Vuser must be in the classpath—either set in
the machine’s CLASSPATH environment variable or in the Classpath
Entries list in the Classpath node of the Run-Time settings.
397

Chapter 24 • Programming Java Scripts
Running Java Vuser Scripts

Java Vuser scripts differ from C Vuser scripts in that they are first compiled
and then executed; C Vuser scripts are interpreted. VuGen locates the javac
compiler from within the JDK installation and compiles the Java code inside
the script. This stage is indicated by the Compiling… status message in the
bottom of the VuGen window. If errors occur during compilation, they are
listed in the execution log. To go to the code in your script that caused the
error, double-click on the error message containing the line number of the
error. Fix the error and run the script again.

If the compilation succeeds, the status message Compiling… changes to
Running… and VuGen begins to execute the script. When you run the script
again, VuGen runs the script without recompiling it, provided that no
changes were made to the script. To debug your script further, you can use
breakpoints and animated run type execution using the step option.

Note: If you are making calls to JNDI extensions within your script, you may
encounter problems trying to run your Vusers as threads. This happens
because JNDI requires each thread to have its own context class loader. In
order to run as threads, instruct each Vuser to run with its own context class
loader, by adding the following line to the beginning of the init section:

DummyClassLoader.setContextClassLoader();
398

Chapter 24 • Programming Java Scripts
Compiling and Running a Script as Part of a Package

When creating a Java Vuser script, you may need to use methods in other
classes in which the class or method is protected. If you try to compile this
type of script, you will receive errors in the compilation stage indicating that
the methods are inaccessible. To make sure that your script can access these
methods, insert the package name containing these methods at the top of
the script, just as you would do in a standard Java program—
<package_name>. In the following example, the script defines the just.do.it
package which consists of a path:

In the above example, VuGen automatically creates the my/test directory
hierarchy under the Vuser directory, and copies the Actions.java file to
my/test/Actions.java, allowing it to compile with the relevant package. Note
that the package statement must be the first line in the script, similar to Java
(excluding comments).

package my.test;

import lrapi.*;
public class Actions
{
 :
}

399

Chapter 24 • Programming Java Scripts
Programming Tips

When programming a Java Vuser script, you can paste ready-made code
segments into scripts or import ready-made classes in order to invoke their
methods. If Vusers need to run as threads under the Controller (for
scalability reasons), you need to make sure that all of the imported code is
thread-safe.

Thread-safety is often difficult to detect. A Java Vuser may run flawlessly
under VuGen and under the Controller with a limited number of Vusers.
Problems occur with a large number of users. Code that is not thread-safe is
usually the result of static class member usage as shown in the following
example:

When you run one Vuser, the iteration_counter member accurately
determines the number of iterations that were executed. When multiple
Vusers run together as threads on a single virtual machine, the static class
member iteration_counter is shared by all threads, resulting in an incorrect
counting. The total number of all Vusers iterations is counted.

import lrapi.*;
public class Actions
{

private static int iteration_counter = 0;

public int init() {
return 0;

}

public int action() {
iteration_counter++;
return 0;

}

public int end() {
lr.message("Number of Vuser iterations: "+iteration_counter);
return 0;

}
}

400

Chapter 24 • Programming Java Scripts
If code is known to be non thread-safe and you still want to import it into
your script, you can run the Vusers as processes. For more information on
running Vusers as threads or processes, see “Configuring Run-Time Settings”
in Volume I-Using VuGen.

When you run a basic Java Vuser script, it usually consists of a single
thread—the main thread. Only the main thread can access the Java Vuser
API. If a Java Vuser spawns secondary worker threads, using the Java API
may cause unpredictable results. Therefore, it is recommended to use the
Java Vuser API only in the main thread. Note that this limitation also affects
the lr.enable_redirection function.

The following example illustrates where the LR API may and may not be
used. The first log message in the execution log indicates that the value of
flag is false. The virtual machine then spawns a new thread set_thread. This
thread runs and sets flag to true, but will not issue a message to the log, even
though the call to lr.message exists. The final log message indicates that the
code inside the thread was executed and that flag was set to true.

boolean flag = false;

public int action() {
lr.message("Flag value: "+flag);
Thread set_thread = new Thread(new Runnable();{

public void run() {
lr.message("LR-API NOT working!");
try {Thread.sleep(1000);} catch(Exception e) {}
flag = true;

}
});
set_thread.start();
try {Thread.sleep(3000);} catch(Exception e) {}
lr.message("Flag value: "+flag);
return 0;

}

401

Chapter 24 • Programming Java Scripts
402

Part VII

Distributed Component Protocols

404

25
Recording COM Vuser Scripts

Many Windows applications use COM-based functions either directly, or
through library calls. You can use VuGen to record a script that emulates a
COM-based client accessing a COM server. The resulting script is called a
COM Vuser script. You can also create COM Vuser scripts by using a Visual
Basic add-in. For more information about the Visual Basic add-in, see
“Creating Vuser Scripts in Visual Studio” in Volume I-Using VuGen.

Chapter 26, “Understanding COM Vuser Scripts,” explains how COM Vuser
scripts operate.

This chapter includes:

 ➤ About Recording COM Vuser Scripts on page 406

 ➤ COM Overview on page 406

 ➤ Getting Started with COM Vusers on page 408

 ➤ Selecting COM Objects to Record on page 409

 ➤ Setting COM Recording Options on page 412

The following information applies only to COM Vuser scripts.
405

Chapter 25 • Recording COM Vuser Scripts
About Recording COM Vuser Scripts

When you record COM client applications, VuGen generates functions that
describe COM client-server activity. The recorded script contains interface
declarations, API calls and instance calls to methods. Each COM function
begins with an lrc prefix.

You can view and edit the recorded script from the VuGen’s main window.
The COM API/method calls that were recorded during the session are
displayed in the window, allowing you to visually track application
COM/DCOM calls.

You can indicate the programming language in which to create a Vuser
script—either C or Visual Basic scripting. For more information, see “Setting
Script Generation Preferences” in Volume I-Using VuGen.

COM Overview

This section provides an outline of COM technology. This should be enough
to get you started with COM Vuser scripts. Refer to Microsoft Developer’s
Network (MSDN) and other documentation for further details.

COM (Component Object Model) is a technology for developing reusable
software components ("plug-ins"). DCOM (Distributed COM) allows use of
COM components on remote computers. Microsoft transaction servers
(MTS), Visual Basic and Explorer all use COM/DCOM technology. Thus, the
application you are testing may use COM technology indirectly, even
though you don’t know it. You will probably have to include some, but
certainly not all, of the COM calls made by your application in the Vuser
script.
406

Chapter 25 • Recording COM Vuser Scripts
Objects, Interfaces and Type Libraries
COM objects are binary code modules. Each COM object implements one or
more interfaces that allow client programs to communicate with it. You
need to know about these interfaces in order to follow the COM calls in the
Vuser scripts. Type libraries, used as a reference for accessing COM interface
methods and parameters, contain descriptions of COM objects and
interfaces. Each COM class, interface, and type library is identified by a
Global Unique Identifier (GUID).

COM Interfaces
A COM interface provides a grouped collection of related methods. For
example, a Clock object may have Clock, Alarm and Timer interfaces. Each
interface has one or more methods. For example the Alarm interface may
have AlarmOn and AlarmOff methods.

An interface may also have one or more properties. Sometimes, the same
function may be performed by calling a method or by setting or getting the
value of a property. For example, you can set the Alarm Status property to
On or call the AlarmOn method.

A COM object may support many interfaces. The IUnknown interface is
implemented by all components and is used to find out about other
interfaces. Many components also implement the IDispatch interface, which
exposes all other interfaces and methods of the object, allowing
implementation of COM automation in scripting languages.

COM Class Context and Location Transparency
COM objects can run on the same machine as the client application, or on a
remote server. COM objects that an application creates may be in a local
library, a local process or a remote machine ("Remote Object Proxy"). The
location of the COM object, known as the "Context," can be transparent to
the application. Most users apply the Vusers to check the load on remote
servers. Therefore, objects accessed by Remote Object Proxy are usually the
most relevant for these tests.
407

Chapter 25 • Recording COM Vuser Scripts
COM Data Types
COM also provides several special data types, including safe arrays, BSTR
strings and variants. You may need to use these data types for debugging,
parameterization and similar tasks.

Getting Started with COM Vusers

This section describes the process of developing COM Vuser scripts.

To develop a COM Vuser script:

 1 Record the basic script using VuGen.

Start VuGen and create a new Vuser script. Specify COM as the type of Vuser.
Choose an application to record and set the recording options. To set the
script related recording options, see “Setting Script Generation Preferences”
in Volume I-Using VuGen. To set the COM specific options and filters, see the
“Setting COM Recording Options” on page 412. Record typical operations
using your application.

For details about recording, see “Recording with VuGen” in Volume I-Using
VuGen.

 2 Refine the Object Filter.

Use the log file that was generated to refine your choice of objects to be
recorded in the filter. See the following section, “Selecting COM Objects to
Record”, for details.

 3 Enhance the script.

Enhance the Vuser script by inserting transactions, rendezvous points, and
control-flow structures into the script.

For details, see “Enhancing Vuser Scripts” in Volume I-Using VuGen.

 4 Define parameters (optional).

Define parameters for the fixed-values recorded into your script. By
substituting fixed-values with parameters, you can repeat the same business
process many times using different values.

For details, see “Creating Parameters” in Volume I-Using VuGen.

408

Chapter 25 • Recording COM Vuser Scripts
 5 Configure the run-time settings.

The run-time settings control the Vuser behavior during script execution.
These settings include loop, log, and timing information.

For details, see “Configuring Run-Time Settings” in Volume I-Using VuGen.

 6 Run the script from VuGen.

Save and run the script from VuGen to verify that it runs correctly.

For details, see “Running Vuser Scripts in Standalone Mode” in Volume I-
Using VuGen.

After you create a script, you integrate it into your environment: a
LoadRunner scenario, Performance Center load test, or Business Process
Monitor profile. For more information, refer to the HP LoadRunner Controller,
Performance Center, or HP Business Availability Center documentation.

Selecting COM Objects to Record

The application you are testing may use a great many COM objects. Only a
few may actually create load and may be important for the load test. Thus,
before you record a COM application, you should select the objects you
want to record for the load test. VuGen allows you to browse for objects
from type libraries that it can read on the local machine and on other
computers in the network.

Deciding Which Objects to Use
There are several ways to decide which COM objects should be included in
the test. Try to determine which remote objects are used by the software. If
you are unsure which objects to choose, try using the default filter. The
Environments branch of the filter includes calls to three sets of objects
(ADO, RDS and Remote) that are likely to generate load on remote servers.
409

Chapter 25 • Recording COM Vuser Scripts
You can also check the actual calls to refine the filter. After you have
recorded the test, you can save the file and look in the data directory that
VuGen creates for a file named lrc_debug_list_<nnn>.log", where nnn is the
process number. This log file contains a listing of each COM object that was
called by the recorded application, regardless of whether or not the
recording filter included that object. Only calls that generate load on the
server should be included for recording.

For example, the following is a local COM of the Visual Basic library:

It should not be added since it does not generate load on the server.

Likewise, since the OLE DB and Microsoft Windows Common Controls are
local objects, the following are examples of classes and libraries that are not
going to place any load on the server and should not be recorded:

However, for example, a listing such as the following indicates a class that
should be recorded since it does generate load on the server:

Calls to classes of the FRS library, used for instance in the flight_sample that
is installed with VuGen, use server capacity and should be recorded.

Class JetES {039EA4C0-E696-11D0-878A-00A0C91EC756}
was loaded from type library "JET Expression Service Type Library"
({2358C810-62BA-11D1-B3DB-00600832C573} ver 4.0)

Class DataLinks {2206CDB2-19C1-11D1-89E0-00C04FD7A829}
was loaded from type library "Microsoft OLE DB Service Component 1.0 Type Library"
({2206CEB0-19C1-11D1-89E0-00C04FD7A829} ver 1.0)

Class DataObject {2334D2B2-713E-11CF-8AE5-00AA00C00905}
was loaded from type library "Microsoft Windows Common Controls 6.0 (SP3)"
({831FDD16-0C5C-11D2-A9FC-0000F8754DA1} ver 2.0)

Class Order {B4CC7A90-1067-11D4-9939-00105ACECF9A}
was loaded from type library "FRS"
({B4CC7A8C-1067-11D4-9939-00105ACECF9A} ver 1.0)
410

Chapter 25 • Recording COM Vuser Scripts
If a COM object itself calls other COM objects, all the calls will be listed in
the type information log file. For example, every time the application calls
an FRS class function, the FRS library calls the ActiveX Data Object (ADO)
library. If several functions in such a chain are listed in a filter, VuGen
records only the first call that initiates the chain. If you selected both FRS
and ADO calls, only the FRS calls will be recorded.

On the other hand, if you select only the ADO library in the filter, then calls
to the ADO library will be recorded. It is often easier to record the call to the
first remote object in the chain. In some cases, however, an application may
use methods from several different COM objects. If all of them use a single
object that puts a load on the server, you could only record the final
common object.

Which Objects Can Be Selected
VuGen can only record objects if it can read their type libraries. If the type
libraries were not installed in the system or VuGen cannot find them, the
COM objects will not be listed in the Recording Options dialog box. If they
are used by your application, VuGen will not be able to identify these
objects and will identify them as INoTypeInfo in the files.

Which Interfaces Can Be Excluded
For each object, the Recording Options dialog box will show you all
interfaces that are listed in the Type Library, and allow you to specify
inclusion or exclusion of each one. However, ADO, RDS and Remote
Objects can be included in the filter as a group. The filter will not show the
individual objects of those environments or their interfaces. Objects that
you included from type libraries may also have interfaces that are not listed
in the type library and therefore not shown in the Recording Options
dialog. After generating a VuGen script, you can identify these interfaces in
the script and get their GUID numbers from the interfaces.h file that VuGen
generates. Using this information, you can exclude the interfaces as
explained below.
411

Chapter 25 • Recording COM Vuser Scripts
Setting COM Recording Options

Use the COM Recording Options dialog box to set the filtering and COM
scripting options. You use the online browser to locate type libraries in the
registry, file system, or the Microsoft Transaction Server (MTS).

For more information, see:

➤ Filtering Objects

➤ Setting the Filter

➤ Setting COM Scripting Options

Filtering Objects
The Filter options let you indicate which COM objects should be recorded
by VuGen. You can select objects from within environments and libraries.

The Filter options set a default filter or create alternate filters. You can filter a
recording session by environment and type libraries.
412

Chapter 25 • Recording COM Vuser Scripts
DCOM Profile

➤ Default Filter. The filter to be used as the default when recording a COM
Vuser script.

➤ New Filter. A clean filter based on the default environment settings. Note
that you must specify a name for this filter before you can record with its
settings.

DCOM Listener Settings

The DCOM Listener Settings display a tree hierarchy of type libraries. You
can expand the tree to show all of the available classes in the type library.
You can expand the class tree to show all of the interfaces supported by that
class.

To exclude a type library, clear the check box next to the library name. This
excludes all of its classes in that type library. By expanding the tree, you can
exclude individual classes or interfaces by clearing the check box next to the
item.

An interface can be implemented differently by various classes. When you
exclude an interface that is implemented by other classes that have not been
excluded, a dialog box opens asking you if you also want to exclude the
interface in all classes that implement it this interface.

Note that when you clear the check box adjacent to an interface, it is
equivalent to selecting it in the Excluded Interfaces dialog box.

➤ Environment. The environments to record: ADO objects, RDS Objects,
and Remote Objects. Clear the objects you do not want to record.

➤ Type Libraries. A type library .tlb or .dll file, that represents the COM
object to record. All COM objects have a type library that represents
them. You can choose a type library from the Registry, Microsoft
Transaction Server, or file system.
413

Chapter 25 • Recording COM Vuser Scripts
Type Libraries. In the lower section of the dialog box, VuGen displays the
following information for each type library.

➤ TypLib. The name of the type library (tlb file).

➤ Path. The path of the type library.

➤ Guid. The Global Unique Identifier of the type library.

Setting the Filter
This section describes how to set the filters.

To select which COM objects to record:

 1 Choose Tools > Recording Options from the main menu or click Options in
the Start Recording dialog box. A dialog box opens displaying the Recording
Options tree. Select the COM/DCOM:Filter node.

Expand the Environments sub-tree, to display the ADO, RDS and Remote
objects listings. The Filter also includes a Type Libraries tree that is initially
empty. You can add Type Libraries as described in the steps below.

By default, all Environments are selected and calls to any of their objects are
included in the filter. Clear the check box adjacent to ADO, RDS or Remote
objects to exclude them from the filter.

 2 Click Add to add another COM type library, and select a source to browse:
registry, file system, or MTS, as described below.
414

Chapter 25 • Recording COM Vuser Scripts
 3 Select Browse Registry to display a list of type libraries found in the registry
of the local computer.

Select the check box next to the desired library or libraries and click OK.

 4 To add a type library from the file system, click Add and select Browse file
system.

Select the desired file and click OK.

 5 Once the type library appears in the list of Type Libraries, you can expand
the tree to show all of the available classes in the type library. You can
expand the class tree to show all of the interfaces supported by that class.

To exclude a type library, clear the check box next to the library name. This
excludes all of its classes in that type library. By expanding the tree, you can
exclude individual classes or interfaces by clearing the check box next to the
item.
415

Chapter 25 • Recording COM Vuser Scripts
When you clear a check box adjacent to an interface, it is equivalent to
selecting it in the Excluded Interfaces dialog box.

 6 An interface can be implemented differently by various classes. When you
exclude an interface that is implemented by other classes that have not been
excluded, VuGen displays the following warning:

If you check Don’t ask me again and close the dialog box, then the status of
all instances of the interface in all other classes will be changed
automatically for this filter, whenever you change the status of the interface
in one object. Click Yes to all to change the status of all instances of this
interface for all other classes, click No to all to leave the status of all other
instances unchanged. Click Next Instance to view the next class that uses
this interface.
416

Chapter 25 • Recording COM Vuser Scripts
 7 To add a component from a Microsoft Transaction Server, click Add and
select Browse MTS. The MTS Components dialog box prompts you to enter
the name of the MTS server.

Type the name of the MTS server and click Connect. Remember that to
record MTS components you need an MTS client installed on your machine.

Select one or more packages of MTS components from the list of available
packages and click Add. Once the package appears in the list of Type
Libraries, you can select specific components from the package.
417

Chapter 25 • Recording COM Vuser Scripts
 8 In addition to disabling and enabling recording of interfaces in the tree
display, you can also click Exclude in the Recording Options dialog to
include or exclude interfaces in the filter, whatever their origin.

Note that you can also exclude classes and interfaces by clearing the check
box adjacent to the item, inside the type library tree hierarchy.

The checked interface listings are the ones that are excluded. You can also
add interfaces that are not listed. Click Add Interface... in the Excluded
Interfaces dialog box and enter the GUID number (interface ID) and name
of the interface. You can copy the GUID from the interfaces.h file created by
VuGen and listed in the selection tree in the left-hand column of the VuGen
screen. Use the Add Interface… feature to exclude interfaces that are called
needlessly by the script, but are not listed anywhere in the filter.

 9 When you have finished modifying your filter, click OK to save it and close
the dialog box. Click Save As to save a New filter, or to save an existing filter
under a new name. You can select saved filters in subsequent recordings.
Default settings are given initially in the Default filter.
418

Chapter 25 • Recording COM Vuser Scripts
Setting COM Scripting Options
You can set additional options for your COM recording session, relating to
the handling of objects, generation of logs, and VARIANT definitions.

The DCOM scripting options apply to all programming languages. These
settings let you configure the scripting options for DCOM methods and
interface handling.

➤ ADO Recordset filtering. Condense multiple recordset operations into a
single-line fetch statement (enabled by default).

➤ Declare Temporary VARIANTs as Globals. Define temporary VARIANT types
as Globals, not as local variables (enabled by default).

➤ Fill array in separate scopes. Fill in each array in a separate scope (enabled
by default).

➤ Fill structure in separate scopes. Fill in each structure in a separate scope
(enabled by default).

➤ Generate COM exceptions. Generate COM functions and methods that
raised exceptions during recording (disabled by default).

➤ Generate COM statistics. Generate recording time performance statistics
and summary information (disabled by default).
419

Chapter 25 • Recording COM Vuser Scripts
➤ Limit size of SafeArray log. Limit the number of elements printed in the
safearray log per COM call, to 16 (enabled by default).

➤ Release COM Objects. Record the releasing of COM objects when they are
no longer in use (enabled by default).

➤ Save Recordset content. Stores Recordset content as grids, to allow viewing
of recordset in VuGen (enabled by default).

➤ Trap binded moniker objects. Trap all of the bound moniker objects
(disabled by default).

To set COM/DCOM options:

 1 Choose Tools > Recording Options from the main menu or click Options in
the Start Recording dialog box. VuGen opens the Recording Options tree.
Select the COM/DCOM:Options node.

 2 Enable the desired options by clicking the check boxes adjacent to them.

 3 Click OK to save your settings and exit.
420

26
Understanding COM Vuser Scripts

This chapter provides details about the scripts VuGen generates for COM
client communications, including an explanation of the function calls and
examples. For basic information about getting started with COM Vuser
scripts, see Chapter 25, “Recording COM Vuser Scripts.”

This chapter includes:

 ➤ About COM Vuser Scripts on page 421

 ➤ Understanding VuGen COM Script Structure on page 422

 ➤ Examining Sample VuGen COM Scripts on page 424

 ➤ Scanning a Script for Correlations on page 430

 ➤ Correlating a Known Value on page 432

The following information applies only to COM Vuser scripts.

About COM Vuser Scripts

For each COM Vuser script, VuGen creates the following:

➤ Interface pointer and other variable declarations in file interfaces.h

➤ Function calls that you can record in the vuser_init, actions or vuser_end
sections.

➤ A user.h file containing the translation of the Vuser script into low level calls

When you record COM client communications, VuGen creates a script with
calls to COM API functions and interface methods. In addition, you can
manually program COM type conversion functions.
421

Chapter 26 • Understanding COM Vuser Scripts
After you record the script, you can view any of these files by selecting them
from the tree on the left-hand side of the VuGen screen.

Each VuGen COM function has an lrc prefix, such as lrc_CoCreateInstance
or lrc_long. The lrc functions are classified into several categories: Creating
Instances, IDispatch Interface Calls, Type Conversion from String,
Assignment to Variants, Create New Variants, Parameterization, Extracting
From Variants. Array Types, ADO Recordset, Byte Array, VB Collection
Support, and Debug functions.

For syntax and examples of the lrc functions, refer to the Online Function
Reference (Help > Function Reference).

You can indicate the programming language in which to create a Vuser
script—either C or Visual Basic scripting. For more information, see “Setting
Script Generation Preferences” in Volume I-Using VuGen.

Understanding VuGen COM Script Structure

VuGen COM scripts are structured in a special way to meet the needs of
COM interfaces.

Interface Methods
Calls to interface methods have the following names and syntax
conventions:

Note that the instance is always the first parameter passed.

The vendors of the respective COM components usually supply
documentation for the interface functions.

Interface Pointers
The interface header file defines the interface pointers, as well as other
variables, that can be used in the script. Each interface has an Interface ID
(IID) which uniquely identifies the interface.

lrc_<interface name>_<method name>(instance,...);
422

Chapter 26 • Understanding COM Vuser Scripts
The format of the interface definition is:

In the following example, the interface type is IDispatch, the name of the
interface instance is IDispatch_0, and the IID of IDispatch type is the long
number string:

Vuser Script Statements
The COM Vuser script consist of code that creates object instances, retrieves
interface pointers and calls the interface methods. Each user action may
generate one or more COM calls. Each COM call is coded by VuGen as a
group of statements. Each such group is contained in a separate scope
enclosed in braces. Several different statements prepare for the main call by
assigning values and performing type conversions. For example, the group
of calls needed to create an object may look like this:

<interface type>*<interface name> = 0; //”{<IID of the interface type>}”

IDispatch* IDispatch_0= 0;//"{00020400-0000-0000-C000-000000000046}"

{
GUID pClsid = lrc_GUID("student.student.1");
IUnknown * pUnkOuter = (IUnknown*)NULL;
unsigned long dwClsContext = lrc_ulong("7");
GUID riid = IID_IUnknown;
lrc_CoCreateInstance(&pClsid, pUnkOuter, dwClsContext, &riid, (void**)&IUnknown_0,
CHECK_HRES);
}

423

Chapter 26 • Understanding COM Vuser Scripts
Error Checking
Each COM method or API call returns an error value. VuGen will set a flag to
check or not to check errors during replay, depending upon whether the call
succeeded during the original recording. The flag appears as the last
argument of the function call and has these values:

Examining Sample VuGen COM Scripts

This section shows examples of how VuGen emulates a COM client
application.

Note that VuGen displays the results of a query in a grid. You can view up to
200 records by scrolling through the grid. For more information, see
“Working with Grids” on page 322

Basic COM Script Operations
The basic operations are:

➤ Instantiation of the object

➤ Retrieving interface pointers

➤ Calling interface methods

Each type of operation is done within a separate scope.

CHECK_HRES This value is inserted if the function passed
during recording and errors should be
checked during replay.

DONT_CHECK_HRES This value is inserted if the function failed
during recording and errors should not be
checked during replay.

424

Chapter 26 • Understanding COM Vuser Scripts
Instantiation of the Object
To use a COM object, the application must first instantiate it and get a
pointer to an interface of that object.

VuGen does the following to instantiate an object:

 1 VuGen calls lrc_GUID to get a unique ProgID for the object, to be stored in
pClsid:

pClsid is the unique global CLSID of the object, which was converted from
the ProgID student.student.1

 2 If the unknown interface pointer is a pointer to an aggregated object, VuGen
retrieves the pointer to that object, or else it sets it to NULL:

 3 VuGen sets the contexts of the object to be created:

dwClsContext contains the context of the object (in process, local, remote
or combinations of these.)

 4 VuGen sets a variable to hold the requested interface ID, which is IUnknown
in this case:

riid contains the interface ID of the IUnknown interface.

 5 After the input parameters are prepared, a call to lrc_CoCreateInstance
creates an object using the parameters defined in the preceding statements.
A pointer to the IUnknown interface is assigned to output parameter
IUnknown_0. This pointer is needed for subsequent calls:

GUID pClsid = lrc_GUID("student.student.1");

IUnknown * pUnkOuter = (IUnknown*)NULL;

unsigned long dwClsContext = lrc_ulong("7");

GUID riid = IID_IUnknown;

lrc_CoCreateInstance(&pClsid, pUnkOuter, dwClsContext, &riid, (void**)&IUnknown_0,
CHECK_HRES);
425

Chapter 26 • Understanding COM Vuser Scripts
The input parameters were prepared and explained above. Since the call
succeeded, VuGen sets error checking on during the user simulation by
inserting the CHECK_HRES value. The call returns a pointer to the
IUnknown interface in IUnknown_0, that can be used in subsequent calls.

Retrieving an Interface
After creating an object, VuGen has access only to the IUnknown interface.
VuGen will use the IUnknown interface for communicating with the
object. This is done using the QueryInterface method of the IUnknown
standard interface. The first parameter in a VuGen method call is the
interface instance. In this case it is the IUnknown_0 pointer set previously
by CoCreateInstance. The QueryInterface call requires as input the ID of
the interface to be retrieved, and returns a pointer to the interface
designated by that ID.

To get the interface:

 1 First, VuGen sets a parameter, riid, equal to the ID of the Istudent interface:

 2 A call to QueryInterface assigns a pointer to the Istudent interface to output
parameter Istudent_0 if the Istudent object has such an interface:

Using an Interface to Set Data
Here is an example of using the methods of the interface to set data.
Suppose that in the application, the user is supposed to input a name. This
activates a method for setting the name. VuGen records this in two
statements. One statement is used for setting up the name string and the
second one sets the name property.

GUID riid = IID_Istudent;

lrc_IUnknown_QueryInterface(IUnknown_0, &riid, (void**)&Istudent_0,
CHECK_HRES);
426

Chapter 26 • Understanding COM Vuser Scripts
To set up the entire function call:

 1 First, VuGen sets a variable (Prop Value) equal to the string. The parameter is
of type BSTR, a string type used in COM files:

In subsequent stages, you will probably parameterize this call, replacing
"John Smith" with a parameter, so that different names are used each time
the Vuser script is run.

 2 Next, VuGen calls the Put_Name method of the Istudent interface to enter
the name:

Using an Interface to Return Data
Returning data from an application is different than entering the data,
because you might want to store these values and use them as inputs in
subsequent calls for parameterization.

The following is an example of what VuGen may do when the application
retrieves data:

 1 Create a variable of the appropriate type (in this case a BSTR) that will
contain the value of the property.

 2 Get the value of the property, in this case a name, into the pVal variable
created above, using the get_name method of the Istudent interface in this
example.

 3 VuGen then generates a statement for saving the values.

BSTR PropValue = lrc_BSTR("John Smith");

lrc_Istudent_put_name(Istudent_0, PropValue, CHECK_HRES);

BSTR pVal;

lrc_Istudent_get_name(Istudent_0, &pVal, CHECK_HRES);

//lrc_save_BSTR("param-name",pVal);
427

Chapter 26 • Understanding COM Vuser Scripts
The statement is commented out. You can remove the comments and
change <param-name> to a variable with a meaningful name to be used for
storing this value. VuGen will use the variable to save the value of pVal
returned by the previous call. You can then use the variable as a
parameterized input in subsequent calls to other methods.

The IDispatch Interface
Most COM objects have specific interfaces. Many of them also implement a
general-purpose interface called IDispatch, which VuGen translates in a
special way. IDispatch is a "superinterface" that exposes all of the other
interfaces and methods of a COM object. Calls to the IDispatch:Invoke
method from VuGen scripts are implemented using lrc_Disp functions.
These calls are constructed somewhat differently from calls to other
interfaces.

The IDispatch interface Invoke method can execute a method, it can get a
property value, or it can set a value or reference value for a property. In the
standard IDispatch:Invoke method these different uses are signalled in a
wflags parameter. In the VuGen implementation they are implemented in
different procedure calls that invoke a method or put or get a property.

For example, a call to IDispatch to activate the GetAgentsArray method may
look like this:

The parameters in the above call are:

retValue = lrc_DispMethod1((IDispatch*)IDispatch_0, "GetAgentsArray", /*locale*/1033,
LAST_ARG, CHECK_HRES);

IDispatch_0 This is the pointer to the IDispatch interface
returned by a previous call to the
IUnknown:Queryinterface method.

GetAgentsArray This is the name of the method to invoke. Behind
the scenes, VuGen will get the ID of the method
from the name.

1033 This is the language locale.
428

Chapter 26 • Understanding COM Vuser Scripts
In addition, there might be another parameter, OPTIONAL_ARGS. This
signals that in addition to any standard parameters, VuGen is sending some
optional arguments. Each optional argument consists of a pair giving the ID
or name of the argument and its value. For example, the following call to
lrc_DispMethod passes optional arguments "#3" and "var3":

The different lrc_Disp methods that use the IDispatch interface are detailed
in the Online Function Reference.

Type Conversions and Data Extraction
As shown in the above example, many COM parameters are defined as
variants. To extract these values, VuGen uses a number of conversion
functions, derived from the equivalent COM functions. The full list is given
in the Online Function Reference. Previously, we showed how the
lrc_DispMethod1 call was used to retrieve an array of name strings:

LAST_ARG This is a flag to tell the IDispatch interface that
there are no more arguments.

CHECK_HRES This flag turns on checking of HRES, since the call
succeeded when it was recorded.

{
GUID riid = IID_IDispatch;
lrc_IOptional_QueryInterface(IOptional_0, &riid, (void**)&IOptional_0,

CHECK_HRES);
}
{

VARIANT P1 = lrc_variant_short("47");
VARIANT P2 = lrc_variant_short("37");
VARIANT P3 = lrc_variant_date("3/19/1901");
VARIANT var3 = lrc_variant_scode("4");
lrc_DispMethod((IDispatch*)IOptional_0, "in_out_optional_args", /*locale*/1024,

&P1, &P2, OPTIONAL_ARGS, "#3", &P3, "var3", &var3, LAST_ARG, CHECK_HRES);
}

VARIANT retValue = lrc_variant_empty();
retValue = lrc_DispMethod1((IDispatch*)IDispatch_0, "GetAgentsArray", /*locale*/1033,
LAST_ARG, CHECK_HRES);
429

Chapter 26 • Understanding COM Vuser Scripts
The following example now shows how VuGen gets the strings out of
retValue, which is a variant that will be read as an array of strings.

First, VuGen extracts the BSTR array from the variant:

With all the values in array0, VuGen provides you with code that you can
use to extract the elements from the array for later use in parameterization,
as in the example below:

VuGen has numerous type conversion functions and functions for
extracting conventional types from variants. These are detailed in the Online
Function Reference (Help > Function Reference)

Scanning a Script for Correlations

VuGen provides a correlation utility to help you repair your script and assist
you in getting a successful replay. It performs the following steps:

➤ scans for potential correlations

➤ insert the appropriate correlation function to save the results to a
parameter

➤ replace the statement value with the parameter

You can perform automatic correlation on the entire script, or at a specific
location in your script.

This section describes how to determine the statement which needs to be
correlated. If you already know which value you want to correlate, proceed
to the next section for instructions on correlating a specific value.

BstrArray array0 = 0;
array0 = lrc_GetBstrArrayFromVariant(&retValue);

//GetElementFrom1DBstrArray(array0, 0); // value: Alex
//GetElementFrom1DBstrArray(array0, 1); // value: Amanda
....
430

Chapter 26 • Understanding COM Vuser Scripts
To scan and correlate a script detected with automatic correlation:

 1 Select View > Output to display the output tabs at the bottom of the
window. Check for errors in the Replay Log tab. Often, these errors can be
corrected by correlation.

 2 Select Vuser > Scan for Correlations. VuGen scans the entire script and lists
all possible values to correlate in the Correlated Query tab.

 3 Correlate the value. In the Correlated Query tab, double-click on the result
you want to correlate. This is located on the line of the message where it
says
grid column x, row x.
VuGen sends the cursor to the grid location of the value in your script.

 4 In the grid, choose Create Correlation from the right-click menu. VuGen
prompts you to enter a parameter name for the result value.

 5 Specify a name, or accept the default. Click OK to continue. VuGen inserts
the appropriate correlation statement (lrc_save_<type>) which saves the
result to a parameter.

 6 Click Yes to confirm the correlation.

 7 A message box opens asking if you want to search for all occurrences of the
value in the script.
Click No to replace only the value in the selected statement.
To search and replace additional occurrences click Yes.

 8 A Search and Replace dialog box opens. Confirm any replacements,
including your original statement.

 9 Close the Search and Replace dialog box. VuGen replaces the statement
value with a reference to the parameter. Note that if you choose to cancel
the correlation, VuGen also erases the statement created in the previous
step.
431

Chapter 26 • Understanding COM Vuser Scripts
Correlating a Known Value

If you know which value needs to be correlated, perform the following
procedure:

To correlate a specific value:

 1 Locate the argument you want to correlate (usually in an lrc_variant_
statement) and select the value without the quotation marks.

 2 Choose Vuser > Scan for Correlations (at cursor).

VuGen scans the value and lists all results within the script that match this
value. The correlation values are listed in the Correlated Query tab.

 3 In the Correlated Query tab, double-click on the result you want to
correlate. This is located on the line of the message where it says
grid column x, row x.
VuGen sends the cursor to the grid location of the value in your script.

 4 In the grid, select the value you want to correlate and choose Vuser > Create
Correlation. VuGen prompts you to enter a parameter name for the result
value.

 5 Specify a name, or accept the default. Click OK to continue. VuGen inserts
the appropriate correlation statement (lrc_save_<type>) which saves the
result to a parameter.

 6 Click Yes to confirm the correlation.

lrc_save_rs_param (Recordset20_0, 1, 1, 0, "Saved_AGENT_NAME");
432

Chapter 26 • Understanding COM Vuser Scripts
 7 A message box opens asking if you want to search for all occurrences of the
value in the script.
Click No to replace only the value in the selected statement.
To search and replace additional occurrences click Yes.

 8 A Search and Replace dialog box opens. Confirm any replacements,
including your original statement.
433

Chapter 26 • Understanding COM Vuser Scripts
434

Part VIII

E-Business Protocols

436

27
Developing AJAX (Click and Script) Vusers

VuGen allows you to create scripts that emulate AJAX (Asynchronous
JavaScript and XML) enabled applications.

This chapter includes:

 ➤ About Developing AJAX (Click and Script) Vuser Scripts on page 437

 ➤ Recording an AJAX (Click and Script) Session on page 439

 ➤ Understanding AJAX (Click and Script) Scripts on page 439

The following information applies only to AJAX (Click and Script) Vuser
scripts.

About Developing AJAX (Click and Script) Vuser Scripts

AJAX (Asynchronous JavaScript and XML) is a technique for creating
interactive Web applications. With AJAX, Web pages exchange small packets
of data with the server, instead of reloading an entire page. This reduces the
amount of time that a user needs to wait when requesting data. It also
increases the interactive capabilities and enhances the usability.

Using AJAX, developers can create fast Web pages using Javascript and
asynchronous server requests. The requests can originate from user actions,
timer events, or other predefined triggers.

AJAX components, also known as AJAX controls, are GUI based controls
that use the AJAX technique—they send a request to the server when a
trigger occurs.
437

Chapter 27 • Developing AJAX (Click and Script) Vusers
For example, a popular AJAX control is a Reorder List control that lets you
drag components to a desired position in a list. VuGen’s support for AJAX
implementation is based on Microsoft’s ASP.NET AJAX Control Toolkit
formerly known as Atlas.

The supported frameworks for AJAX functions are:

➤ Atlas 1.0.10920.0/ASP.NET AJAX—All controls

➤ Scriptaculous 1.8—Autocomplete, Reorder List, and Slider

VuGen supports the following frameworks at the engine level. This implies
that VuGen will create standard Web Click & Script steps, but not AJAX
specific functions:

➤ Prototype 1.6

➤ Google Web Toolkit (GWT) 1.4
438

Chapter 27 • Developing AJAX (Click and Script) Vusers
Recording an AJAX (Click and Script) Session

To create a Vuser script that emulates AJAX enabled applications, you
choose the AJAX (Click and Script) protocol type from the E-Business
category. To begin recording, click the Record button and perform typical
actions on the Web page, that are affected by AJAX such a reordering a list.
For general information about creating and recording a script, see
“Recording with VuGen” in Volume I-Using VuGen.

You can set event related recording options. For more information, see
Chapter 37, “Recording with Click and Script.”

After you create a script, you integrate it into your environment: a
LoadRunner scenario, Performance Center load test, or Business Process
Monitor profile. For more information, refer to the HP LoadRunner Controller,
Performance Center, or HP Business Availability Center documentation.

Understanding AJAX (Click and Script) Scripts

VuGen uses the control handler layer to create the effect of an operation on
a GUI control. During recording, when encountering one of the supported
AJAX controls, VuGen generates a function with an ajax_xxx prefix.
439

Chapter 27 • Developing AJAX (Click and Script) Vusers
In the following example, a user selected item number 1 (index=1) in an
Accordion control. VuGen generated an ajax_accordion function.

Note: When you record an AJAX session, VuGen generates standard Web
(Click and Script) functions for objects that are not one of the supported
AJAX controls. In the example above, the word FILE_PATH was typed into
an edit box.

web_browser("Accordion.aspx",
DESCRIPTION,
ACTION,
"Navigate=http://labm1app08/AJAX/Accordion/Accordion.aspx",
LAST);

lr_think_time(5);

ajax_accordion("Accordion",

 DESCRIPTION,
 "Framework=atlas",
 "ID=ctl00_SampleContent_MyAccordion",

 ACTION,
 "UserAction=SelectIndex",
 "Index=1",
 LAST);

web_edit_field("free_text_2",
"Snapshot=t18.inf",
DESCRIPTION,
"Type=text",
"Name=free_text",
ACTION,
"SetValue=" FILE_PATH ,
LAST);
440

28
Developing AMF Vuser Scripts

VuGen allows you to create Vusers that emulate Flash Remoting using the
AMF format.

This chapter includes:

 ➤ About Developing AMF Vuser Scripts on page 441

 ➤ Understanding AMF Terms on page 443

 ➤ Setting the AMF Recording Mode on page 443

 ➤ Setting AMF Code Generation Options on page 448

 ➤ Working with AMF Functions on page 449

 ➤ Correlating AMF Scripts on page 450

 ➤ Viewing AMF Data on page 454

 ➤ Understanding AMF Scripts on page 454

The following information applies only to AMF Vuser scripts.

About Developing AMF Vuser Scripts

Many client applications communicate with servers using RPC (Remote
Procedure Calls). RPC, however, presents compatibility and security
problems when working over the Internet. Firewalls and proxy servers often
block this type of traffic.

HTTP is supported by all Internet browsers and servers. Therefore, HTTP is a
preferred method of communication between client applications and servers
when working over the Internet.
441

Chapter 28 • Developing AMF Vuser Scripts
SOAP, an XML-based format, provides a secure way to communicate
between applications over HTTP. However, since the messages are text-
based, SOAP is inefficient when working with large messages such as Flash
files and other RIAs (Rich Internet Applications).

To overcome this inefficiency, Macromedia created a proprietary protocol,
AMF (Action Messaging Format), which communicates over HTTP in binary
format. The binary AMF data set is considerably smaller than that of SOAP’s
text-based XML.

A typical client application that submits AMF messages to a server is the
Flash Player that plays Flash clips on personal computers. The Flash Player
sends native Flash objects to an application server via a gateway. The
gateway, known as the Flash Remoting gateway, is a server-side object,
installed on either a Java (including ColdFusion) or .NET server. The
gateway acts as a broker that handles requests between the Flash Player and
the server. It translates Flash objects into native objects for the server and
passes them on to the appropriate server-side services.

After the results are returned, the gateway serializes them back into native
Flash objects and sends them to the Flash client via AMF.

To create a Vuser script that emulates the AMF traffic, you choose the AMF
protocol type from the E-Business category. To begin recording, click the
Record button and perform typical actions against the Web server. For
general information about creating and recording a script, see “Recording
with VuGen” in Volume I-Using VuGen.
442

Chapter 28 • Developing AMF Vuser Scripts
After you create a script, you integrate it into your environment: a
LoadRunner scenario, Performance Center load test, or Business Process
Monitor profile. For more information, refer to the HP LoadRunner Controller,
Performance Center, or HP Business Availability Center documentation.

Understanding AMF Terms

The following table provides definitions for the most common terms that
relate to AMF:

Setting the AMF Recording Mode

You can instruct VuGen how to generate a script from a Flash Remoting
session using the AMF and Web Protocols. The options are:

➤ AMF and Web

➤ AMF Only

➤ Web Only

Term/
Abbreviation

Description

ActionScript A script programming language used for controlling Flash movies
and applications. Its syntax is similar to JavaScript.

AMF A proprietary binary communication protocol used for Flash
Remoting.

Flash
Remoting

Flash Remoting allows data to be exchanged between a Flash
Player and an application server using the AMF format.

Flex An application server for generating RIAs (Reach Internet
Applications).

SOAP A standard for exchanging XML-based messages over a computer
network, normally using HTTP.
443

Chapter 28 • Developing AMF Vuser Scripts
By default, VuGen generates only AMF calls in the script. To configure the
recorded protocols, open the Recording options (Tools > Recording Options)
and select the General:Protocols node. For more information, see “Adding
and Removing Protocols” in Volume I-Using VuGen.

Note: If you record with one of the above options, you can regenerate the
script afterwards to include or exclude other protocols. For more
information about regenerating your script, see Recording with VuGen” in
Volume I-Using VuGen.

AMF and Web

If you enable both AMF and Web protocols, VuGen generates functions for
the entire business process. When it encounters AMF data, it generates the
appropriate AMF functions.
444

Chapter 28 • Developing AMF Vuser Scripts
In the following segment, VuGen generated both Web (web_url) and AMF
(amf_call, amf_define_envelope_header_set) functions.

web_url("flash",
"URL=http://testlab:8200/flash/", "Resource=0",
…
"Snapshot=t1.inf",
EXTRARES,
"Url=movies/XMLExample.swf", "Referer=", ENDITEM,
"Url=movies/JavaBeanExample.swf", "Referer=", ENDITEM,
LAST);

web_link("Sample JavaBean Movie Source",
"Text=Sample JavaBean Movie Source",
"Snapshot=t2.inf",
EXTRARES,
"Url=XMLExample.swf", "Referer=", ENDITEM,
"Url=JavaBeanExample.swf", "Referer=", ENDITEM,
LAST);

amf_set_version("0");

amf_define_header_set("Id=amf_header_set",
HEADER,
"Name=amf_server_debug",
"MustUnderstand=true",
"Data=<object><boolean key=\"coldfusion\">true</boolean>

<boolean key=\"""amfheaders\">false</boolean>…
LAST);

amf_call("flashgateway.samples.FlashJavaBean.testDocument",
"Gateway=http://testlab:8200/flashservices/gateway",
"AMFHeaderSetId=amf_header_set",
"Snapshot=t3.inf",
MESSAGE,
"Method=flashgateway.samples.FlashJavaBean.testDocument",
"TargetObjectId=/1",
BEGIN_ARGUMENTS,
"<xmlString><![CDATA[<TEST message=\"test\"><INSIDETEST/>

</TEST>]]></""xmlString>",
END_ARGUMENTS,
LAST);
445

Chapter 28 • Developing AMF Vuser Scripts
AMF Only

If you are just interested in the AMF calls to emulate the Flash Remoting,
you can disable the Web calls and only generate the AMF calls.

The following example shows the above session recorded with the AMF
protocol enabled and the Web protocol disabled.

Note that this recording method may not represent a complete business
process—it only displays the Flash Remoting calls that use AMF.

Action()
{
amf_set_version("0");

amf_define_header_set("Id=amf_header_set",
HEADER,
"Name=amf_server_debug",
"MustUnderstand=true",
"Data=<object><boolean key=\"coldfusion\">true</boolean>

<boolean key=\"""amfheaders\">false</boolean>…
LAST);

amf_call("flashgateway.samples.FlashJavaBean.testDocument",
"Gateway=http://testlab:8200/flashservices/gateway",
"AMFHeaderSetId=amf_header_set",
"Snapshot=t3.inf",
MESSAGE,
"Method=flashgateway.samples.FlashJavaBean.testDocument",
"TargetObjectId=/1",
BEGIN_ARGUMENTS,
"<xmlString><![CDATA[<TEST message=\"test\"><INSIDETEST

/></TEST>]]></"
"xmlString>",
END_ARGUMENTS,
LAST);

…

446

Chapter 28 • Developing AMF Vuser Scripts
Web Only

The Web Only option provides a fallback to the Web HTTP technology—
VuGen does not generate any AMF calls. Instead it generates
web_custom_request functions with the Flash Remoting information.

The following shows the above segment regenerated without AMF:

web_url("flash",
"URL=http://testlab:8200/flash/",
"Resource=0",
"RecContentType=text/html",
"Referer=",
"Snapshot=t1.inf",
"Mode=HTML",
EXTRARES,
"Url=movies/XMLExample.swf", "Referer=", ENDITEM,
"Url=movies/JavaBeanExample.swf", "Referer=", ENDITEM,
LAST);

web_link("Sample JavaBean Movie Source",
"Text=Sample JavaBean Movie Source",
"Snapshot=t2.inf",
EXTRARES,
"Url=XMLExample.swf", "Referer=", ENDITEM,
"Url=JavaBeanExample.swf", "Referer=", ENDITEM,
LAST);

web_custom_request("gateway",
"URL=http://testlab:8200/flashservices/gateway",
"Method=POST",
"Resource=0",
"RecContentType=application/x-amf",
"Referer=",
"Snapshot=t3.inf",
"Mode=HTML",
"EncType=application/x-amf",

"BodyBinary=\\x00\\x00\\x00\\x01\\x00\\x10amf_server_debug\\x01\\x00\\x00\\x00`\\x0
3\\x00\ncoldfusion\\x01\\x01\\x00\namfheaders\\x01\\x00\\x00\\x03amf\\x01\\x00\\x00\\
x0Bhttpheaders\\x01\\x00\\x00\trecordset\\x01\\x01\\x00\\x05error\\x01\\x01\\x00\\x05tr
ace\\x01\\x01\\x00\\x07m_debug\\x01\\x01\\x00\\x00\t\\x00\\x01\\x00/flashgateway.sam
ples.FlashJavaBean.testDocument\\x00\\x02/1\\x00\\x00\\x004\n\\x00\\x00\\x00\\x01\\x
0F\\x00\\x00\\x00*<TEST message=\"test\"><INSIDETEST /></TEST>",

LAST);
447

Chapter 28 • Developing AMF Vuser Scripts
Setting AMF Code Generation Options

When recording Flex applications, in certain cases VuGen may be unable to
decode externalizable objects. This is due to a proprietary encoding scheme
employed by the Flex 2 application.

To overcome this issue, you can instruct VuGen to generate a Custom
Request function in the case the code is not decipherable.

The AMF Recording option instructs VuGen to attempt to generate AMF Call
requests for externalizable objects. It decodes all externalizable objects as
standard AMF3 objects, generating amf_call functions.

If you disable this option (default), VuGen generates a Custom Request
function containing unparsed AMF3 binary data when encountering an
externalizable object.

Note: Enabling this option may reduce the stability of code generation.

To set the AMF code generation for externalizable objects:

 1 Open the Recording Options dialog box. Choose Tools > Recording Options
or click the Options button in the Start Recording dialog box. The keyboard
shortcut key is CTRL+F7.

 2 Select the AMF:Code Generation node. To generate standard amf_call
functions for externalizable objects, enable the recording option.
448

Chapter 28 • Developing AMF Vuser Scripts
Working with AMF Functions

When you record a Flash Remoting session, VuGen generates AMF Vuser
script functions that emulate your actions. All AMF functions begins with an
amf prefix.

In the following example, the amf_define_header_set function defines a
header set. The amf_call function accesses a gateway and sends a message to
the server.

For detailed syntax information on these functions, refer to the Online
Function Reference (Help > Function Reference).

amf_define_header_set("Id=amf_header_set",
HEADER,
"Name=amf_server_debug",
"MustUnderstand=true",
"Data=<object><boolean key=\"coldfusion\">true</boolean>

<boolean key=\"""amfheaders\">false</boolean>…
LAST);

amf_call("flashgateway.samples.FlashJavaBean.testDocument",
"Gateway=http://testlab:8200/flashservices/gateway",
"AMFHeaderSetId=amf_header_set",
"Snapshot=t3.inf",
MESSAGE,
"Method=flashgateway.samples.FlashJavaBean.testDocument",
"TargetObjectId=/1",
BEGIN_ARGUMENTS,
"<xmlString><![CDATA[<TEST message=\"test\"><INSIDETEST

/></TEST>]]></"
"xmlString>",
END_ARGUMENTS,
LAST);
449

Chapter 28 • Developing AMF Vuser Scripts
Correlating AMF Scripts

Flash Applications often contain dynamic data, data that changes each time
you run the script. For example, certain servers use links comprised of the
current date and time. Alternatively, the object name may change from run
to run.

When you record a Vuser script, VuGen records a set of data and argument
values. When you replay the script, however, the server may reject these
arguments and issue an error. This error could be the result of dynamic data
that is outdated and no longer accepted by the server.

To overcome this, you apply correlation to your script:

➤ Save the server response in preparation for extracting the required values.

➤ Extract the required values from the server response.

➤ Save the values to a parameter.

➤ Use those parameters as input to your AMF requests.

These errors are not always obvious, and you may only detect them by
carefully examining Vuser log files. If you encounter an error when running
your Vuser, examine the script at the point where the error occurred. Often,
correlation will solve the problem by enabling you to use the results of one
statement as input for another.

To perform correlation:

 1 Locate the step in your script that failed due to dynamic values that need
correlation.

Use the Replay Log to assist you in finding the problematic step.
450

Chapter 28 • Developing AMF Vuser Scripts
 2 Identify the server response with the correct value in one of the previous
steps.

Examine the proceeding steps in Tree View and look for the value in the
Server Response tab.

 3 Save the entire server response to a parameter.

Before you extract the value, the entire server response should be saved to a
parameter as follows:

➤ Right-click the step node (in the Action pane) corresponding to the
server response containing the value and select Properties.

➤ In the AMF Call Properties dialog, type a Response parameter name. For
details, see “AMF Call Properties” on page 455.

➤ Click OK to save the new parameter name.

 4 Save the original server response value to a parameter.

➤ In the XML tree of the Server Response, right-click the node above the
value (for example, string), and select Save value in parameter.

➤ In the XML Parameter Properties dialog, specify a parameter Name. You
will use this name in subsequent steps.

➤ Click OK. The script will now contain a new function,
lr_xml_get_values.
451

Chapter 28 • Developing AMF Vuser Scripts
 5 Insert the parameter in the subsequent calls.

In VuGen edit view, beginning with the call that failed, replace the value in
all subsequent calls to the object with the parameter that you defined:

➤ Right-click the step node (in the Action pane) corresponding to the failed
call and select Properties.

➤ Locate the argument that required correlation.

➤ In the Value box, type the parameter name in curly brackets, for example,
{ParamValue_string}.

➤ Click OK.

 6 Run the script.

Make sure that VuGen properly substitutes the argument value with the
parameter value that you saved.
452

Chapter 28 • Developing AMF Vuser Scripts
In the following example, lr_xml_get_values retrieves the value from the
response and creates the parameter ParamValue_string. This parameter,
ParamValue_string, was used in the next amf_call function.

For more information about correlation for Web Vusers, see Chapter 44,
“Setting Correlation Rules for Web Vuser Scripts.”

amf_call(
"ConnectService",
"Gateway=http://labm1app08/AMF/EchoAMF/gateway.aspx",
"Snapshot=t6.inf",
"ResponseParameter=resp",
MESSAGE,
"Method=EchoAMF.SpecialCases.ConnectService",
"TargetObjectId=/1",
BEGIN_ARGUMENTS,
END_ARGUMENTS,

LAST);

lr_xml_get_values("XML={resp}",
"FastQuery=/AMFPacket/Messages/Message/string",
"ValueParam=ParamValue_string",
LAST);

amf_call(
"ConnStatus",
"Gateway=http://labm1app08/AMF/EchoAMF/gateway.aspx",
"Snapshot=t7.inf",
MESSAGE,
"Method=EchoAMF.SpecialCases.ConnStatus",
"TargetObjectId=/2",
BEGIN_ARGUMENTS,
"<string>{ParamValue_string}</string>",
END_ARGUMENTS,

LAST);
453

Chapter 28 • Developing AMF Vuser Scripts
Viewing AMF Data

To view the AMF data in XML format, select the appropriate step in the Tree
View. The right pane of VuGen displays the client request and server
response in XML hierarchy. To view it in true XML, click the XML button.

To view all the elements of the message, make sure that the nodes of the
XML are expanded. To view the XML argument values in a grid, select Show
node values in grid.

VuGen provides a utility to find XML through its XPath. You can also use
the Query Builder to assist you in creating the queries. For more
information, see “Querying an XML Tree” on page 471.

Understanding AMF Scripts

In the following example, the AMF script contains an AMF call, AMF header,
and AMF envelope header. To view details of each node, you select a node
and select Properties from the right-click menu.
454

Chapter 28 • Developing AMF Vuser Scripts
The following sections describe the AMF node properties:

➤ AMF Call Properties

➤ AMF Header Set Properties

➤ AMF Envelope Header Set Properties

AMF Call Properties
The AMF Call Properties dialog shows the AMF request details: the AMF call,
one or more messages, and the arguments for each message. In the example
below, the AMF call is EchoAny, and it is associated with the amf_headers
header set.
455

Chapter 28 • Developing AMF Vuser Scripts
Each AMF call has three levels:

➤ The AMF Call level contains a step name, gateway, AMF header set, and
response parameter

➤ The AMF Message level contains a method, target object ID, and Envelope
header set

➤ The AMF Argument level contains a name, type, and value

AMF Header Set Properties
The AMF Header Set Properties dialog shows the AMF header set definition:
One or more AMF header names and associated header data in XML format.
In the example below, the header set has three headers.
456

Chapter 28 • Developing AMF Vuser Scripts
Each header has a Must understand argument which indicates whether
processing the call continues if the server cannot interpret the header. If
MustUnderstand is true, this header is mandatory and processing is aborted
if it is not understood.

AMF Envelope Header Set Properties
The AMF Envelope Header Set Properties dialog shows the AMF envelope
header set and corresponding data for each header.
457

Chapter 28 • Developing AMF Vuser Scripts
458

29
Developing FTP Vuser Scripts

VuGen allows you to emulate network activity by directly accessing an FTP
(File Transfer Protocol) server.

This chapter includes:

 ➤ About Developing FTP Vuser Scripts on page 459

 ➤ Working with FTP Functions on page 460

The following information applies only to FTP Vuser scripts.

About Developing FTP Vuser Scripts

The FTP protocol is a low-level protocol that allows you to emulate the
actions of a user working against an FTP server.

For FTP, you emulate users logging into to an FTP server, transferring files,
and logging out. To create a script, you can record an FTP session or
manually enter FTP functions.

When you record an FTP session, VuGen generates functions that emulate
the mail client’s actions. If the communication is performed through
multiple protocols such as FTP, HTTP, and a mail protocol, you can record all
of them. For instructions on specifying multiple protocols, see “Recording
with VuGen” in Volume I-Using VuGen.

To create a script for the FTP protocol, you choose the FTP protocol type in
the E-Business category. To begin recording, you click the Record button and
perform typical actions against the FTP server. For more information on
creating and recording a script, see “Recording with VuGen” in Volume I-
Using VuGen.
459

Chapter 29 • Developing FTP Vuser Scripts
After you create a script, you integrate it into your environment: a
LoadRunner scenario, Performance Center load test, or Business Process
Monitor profile. For more information, refer to the HP LoadRunner Controller,
HP Performance Center, or HP Business Availability Center documentation.

Working with FTP Functions

When recording a FTP session, VuGen generates FTP functions. Each FTP
function begins with an ftp prefix.

Most FTP functions come in pairs—one for global sessions and one where
you can indicate a specific mail session. To apply the action to all sessions,
use the version without the ex suffix. To apply the action to a specific
session, use the version with the session identifier with the ex suffix. For
example, ftp_logon logs on to the FTP server globally, while ftp_logon_ex
logs on to the FTP server for a specific session.

For detailed syntax information on these functions, refer to the Online
Function Reference (Help > Function Reference).

You can indicate the programming language in which to create a Vuser
script. For more information, see “Setting Script Generation Preferences” in
Volume I-Using VuGen.

In the following example, the ftp_delete function deletes the test.txt file
from the FTP server.

ftp_logon("FTP",
"URL=ftp://user:pwd@ftp.merc-int.com",
"LocalAddr=ca_server:21",
LAST);

ftp_delete("Ftp_Delete",
"PATH=/pub/for_jon/test.txt", ENDITEM,
LAST);

ftp_logout();
460

30
Developing Flex Vuser Scripts

VuGen allows you to create Vusers that emulate the protocol suite provided
with the Flex 2 SDK.

This chapter includes:

 ➤ About Developing Flex Vuser Scripts on page 461

 ➤ Working with Flex Functions on page 463

 ➤ Setting Flex Code Generation Options on page 464

 ➤ Correlating Flex Scripts on page 465

 ➤ Viewing Flex Data on page 470

 ➤ Setting Flex Step Properties on page 473

The following information applies only to Flex Vuser scripts.

About Developing Flex Vuser Scripts

Flex is a collection of technologies that provide developers with a
framework for building RIAs (Rich Internet Applications) based on the Flash
Player.

RIAs are lightweight online programs that provide users with more dynamic
control than with a standard web page. Like Web applications built with
AJAX, Flex applications are more responsive, because the application does
not need to load a new Web page every time the user takes action. However,
unlike working with AJAX, Flex is independent of browser implementations
such as JavaScript or CSS. The framework runs on Adobe's cross-platform
Flash Player.
461

Chapter 30 • Developing Flex Vuser Scripts
Flex 2 applications consisting of many MXML and ActionScript files. They
are compiled into a single SWF movie file which can be played by Flash
player, installed on the client’s browser.

Flex 2 supports a variety of client/server communication methods, such as
RPC, Data Management, and Real-Time messaging. It supports several data
formats such as HTTP, AMF, and SOAP.

VuGen lets you create a Vuser script that emulates communication with Flex
2 RPC services. VuGen’s Flex type lets you create scripts that emulate Flex
applications working with AMF3 or HTTP data. For Flex applications
working with SOAP data, use the Web Services Vuser type.

The following sections describe how to create scripts for applications using
AMF3 or HTTP communication. For information about Web Service
recording, see Chapter 2, “Understanding the SOA Test Types.”

To create a script, you choose the Flex protocol type from the E-Business
category. To begin recording, click the Record button and perform typical
actions in your Flex application. For general information about creating and
recording a script, see “Recording with VuGen” in Volume I-Using VuGen.

After you create a script, you integrate it into your environment: a
LoadRunner scenario, Performance Center load test, or Business Process
Monitor profile. For more information, refer to the HP LoadRunner Controller,
Performance Center, or HP Business Availability Center documentation.
462

Chapter 30 • Developing Flex Vuser Scripts
Working with Flex Functions

When you record a Flex application, VuGen generates Flex Vuser script
functions that emulate your application. The following functions represent
the Flex Remoting steps:

In the following example, flex_ping checks for the availability of a service.
The flex_remoting_call function invokes the service remotely.

Function Name Description

flex_login Logs on to a password-protected Flex
application.

flex_logout Logs off of a password-protected Flex
application.

flex_ping Checks if a Flex application is available.

flex_remoting_call Invokes one or more methods of a server-side
Remote object (RPC).

flex_web_request Sends an HTTP request with any method
supported by HTTP.

flex_ping("1",
"URL=http://testlab1/weborb30/console/weborb.aspx",
"Snapshot=t6.inf",
LAST);

flex_remoting_call("getProductEdition::GenericDestination",
"URL=http://testlab1/weborb30/console/weborb.aspx",
"Snapshot=t7.inf",
INVOCATION,
"Target=/2",
"Operation=getProductEdition",
"Destination=GenericDestination",
"DSEndpoint=my-amf",
"Source=Weborb.Management.LicenseService",
"Argument=<arguments/>",
LAST);
463

Chapter 30 • Developing Flex Vuser Scripts
The following functions represent the AMF over Flex steps:

For detailed syntax information about all of the Flex functions, refer to the
Online Function Reference (Help > Function Reference).

Setting Flex Code Generation Options

When recording Flex applications, in certain cases, VuGen may be unable to
decode externalizable objects. This is due to a proprietary encoding scheme
employed by the Flex 2 application.

To overcome this issue, you can instruct VuGen to generate a
flex_web_request function in the case the code is not decipherable.

The Flex Recording option instructs VuGen to attempt to generate Flex
Remote requests for externalizable objects. It decodes all externalizable
objects as standard AMF3 objects, generating flex_remoting_call functions.

If you disable this option (default), VuGen generates a flex_web_request
function containing unparsed AMF3 binary data when encountering an
externalizable object.

Note: Enabling this option may reduce the stability of code generation.

To set the Flex code generation for externalizable objects:

 1 Open the Recording Options dialog box. Choose Tools > Recording Options
or click the Options button in the Start Recording dialog box. The keyboard
shortcut key is CTRL+F7.

Function Name Description

flex_amf_call Sends an AMF request.

flex_amf_define_header_set Defines a set of AMF headers.

flex_amf_define_envleope_header_set Defines a set of envelope
headers.
464

Chapter 30 • Developing Flex Vuser Scripts
 2 Select the Flex:Code Generation node. To generate standard
flex_remoting_call functions for externalizable objects, enable the
recording option.

 3 Click OK.

Correlating Flex Scripts

Flex applications often contain dynamic data, data that changes each time
you run the script. For example, the object name may change from run to
run.

When you record a Vuser script, VuGen records a set of data and argument
values. When you replay the script, however, the server may reject these
arguments and issue an error. This error could be the result of dynamic data
that is outdated and no longer accepted by the server.

To overcome this, you apply correlation to your script:

➤ Save the server response in preparation for extracting the required values.

➤ Extract the required values from the server response.

➤ Save the values to a parameter.
465

Chapter 30 • Developing Flex Vuser Scripts
➤ Use those parameters as input to your Flex requests.

These errors are not always obvious, and you may only detect them by
carefully examining Vuser log files. If you encounter an error when running
your Vuser, examine the script at the point where the error occurred. Often,
correlation will solve the problem by enabling you to use the results of one
statement as input for another.

To perform correlation:

 1 Locate the step in your script that failed due to dynamic values that need
correlation.

Use the Replay Log to assist you in finding the problematic step.

Action.c(16): Error Server returned error for message #1 : "Incorrect session ID sent"/
Action.c(16): There was an error during the Flex Call ("ConnStatus")
466

Chapter 30 • Developing Flex Vuser Scripts
 2 Identify the server response with the correct value in one of the previous
steps.

Double-Click the error in the Replay log to go to the step with the error.
Examine the preceding steps in Tree View and look for the value in the
Server Response tab.

 3 Save the entire server response to a parameter.

Before you extract the value, the entire server response should be saved to a
parameter as follows:

➤ Right-click the step node (in the left Action pane) corresponding to the
server response containing the value and select Properties.

➤ In the Flex Call Properties dialog box, type a Response parameter name.

➤ Click OK to save the new parameter name.
467

Chapter 30 • Developing Flex Vuser Scripts
 4 Save the original server response value to a parameter.

➤ In the Replay Snapshot: Response Data, right-click the node above the
value (for example, string), and select Save value in parameter.

➤ In the XML Parameter Properties dialog, specify a parameter Name. You
will use this name in subsequent steps.

➤ Click OK. The script will now contain a new function, lr_xml_get_values.

 5 Insert the parameter in the subsequent calls.

In VuGen edit view, beginning with the call that failed, replace the value in
all subsequent calls to the object with the parameter that you defined:

➤ Right-click the step node (in the Action pane) corresponding to the failed
call and select Properties.

➤ Locate the argument that required correlation.
468

Chapter 30 • Developing Flex Vuser Scripts
➤ In the Value box, type the parameter name in curly brackets, for example,
{ParamValue_string}.

Click OK.

 6 Run the script.

Make sure that VuGen properly substitutes the argument value with the
parameter value that you saved.
469

Chapter 30 • Developing Flex Vuser Scripts
Viewing Flex Data

To view the Flex data, select the appropriate step in the Tree View. The right
pane of VuGen displays a snapshot of the data.

To view all the elements of the message, expand the desired nodes. You can
view the Request or Response data for Recording and Replay, by clicking the
appropriate buttons in the snapshot.

To view the data in its XML structure, click the XML button in the snapshot.
470

Chapter 30 • Developing Flex Vuser Scripts
Querying an XML Tree
VuGen provides a Query Builder that lets you create and execute queries on
the XML.

VuGen displays the XML code in an expandable tree. You can perform a
query on your XML document, and search for a specific Namespace URI,
value, or attribute. Note that all queries are case-sensitive.

To perform a query:

 1 In the Snapshot tab, select on the node that you want to search. Click the
Find XML button. The Find XML dialog button opens.

 2 Select Request or Response. Enter an XPath query and click OK. To formulate
a query, click Query Builder button. The XML Node Query dialog box opens.
471

Chapter 30 • Developing Flex Vuser Scripts
 3 Enable one or more items for searching.

 4 Enable the Name section to search for the name of a node or element.

 5 Enable the Namespace URI section to search for a namespace.

 6 Enable the Text section to search for the value of the element indicated in
the Name box.

 7 Enable the Attributes section to search for an attribute.

 8 Enter the search text in the appropriate boxes. To add an attribute, click the
Add button. The Attribute Properties box opens. Enter an attribute name
and value. Click OK.
472

Chapter 30 • Developing Flex Vuser Scripts
 9 Click OK in the XML Node Query dialog box. VuGen places the text of the
query in the Find XML box.

 10 Click Find Next to begin the search.

Setting Flex Step Properties

The Flex Vuser script contains a series of Flex calls. You can view
information about each step by selecting it in the Tree view.

The right pane has two tabs (for most Flex steps)—Snapshot and Properties
The Snapshot tab shows the data, while the Properties step displays the
properties each step:
473

Chapter 30 • Developing Flex Vuser Scripts
The following example shows the properties for a Flex Remoting Call step.

As you select each node, the right pane shows the properties specific for that
node.
474

31
Developing LDAP Vuser Scripts

VuGen allows you to emulate the communication with an LDAP server.

This chapter includes:

 ➤ About Developing LDAP Vuser Scripts on page 475

 ➤ Working with LDAP Functions on page 476

 ➤ Defining Distinguished Name Entries on page 478

 ➤ Specifying Connection Options on page 479

The following information applies only to LDAP Vuser scripts.

About Developing LDAP Vuser Scripts

LDAP, the Lightweight Directory Access Protocol, is a protocol used to access
a directory listing. The LDAP directory is composed of many LDAP entries.
Each LDAP entry is a collection of attributes with a name, called a
distinguished name (DN). For more information about DN, see “Defining
Distinguished Name Entries” on page 478.

LDAP directory entries are arranged in a hierarchical structure that reflects
political, geographic, and/or organizational boundaries. Entries representing
countries appear at the top of the tree. Below them are entries representing
states or national organizations. Below them might be entries representing
people, organizational units, printers, documents, or just about anything
else.

VuGen records communication over LDAP servers. It creates a script, with
functions that emulate your actions. This includes logging in and out of the
server, adding and deleting entries, and querying an entry.
475

Chapter 31 • Developing LDAP Vuser Scripts
To create a script for the LDAP protocol, you choose the LDAP protocol type
in the E-Business category. To begin recording, choose Vuser > Start
Recording, and perform typical actions against the LDAP server. For more
information on the recording procedure, see “Recording with VuGen” in
Volume I-Using VuGen.

After you create a script, you integrate it into your environment: a
LoadRunner scenario, Performance Center load test, or Business Process
Monitor profile. For more information, refer to the HP LoadRunner Controller,
HP Performance Center, or HP Business Availability Center documentation.

Working with LDAP Functions

You can indicate the programming language in which to create a Vuser
script. For more information, see “Setting Script Generation Preferences” in
Volume I-Using VuGen.

LDAP Vuser script functions emulate the LDAP protocol. Each LDAP
function begins with the mldap prefix.

All LDAP functions come in pairs—one for global sessions and one where
you can indicate a specific session. To apply the action to all sessions, use
the version without the ex suffix. To apply the action to a specific session,
use the version with the session identifier with the ex suffix. For example,
mldap_logon logs on to the LDAP server globally, while mldap_logon_ex
logs on to the LDAP server for a specific session.

For detailed syntax information on these functions, refer to the Online
Function Reference (Help > Function Reference).
476

Chapter 31 • Developing LDAP Vuser Scripts
In the following example, the user logs on to an LDAP server, ldap1. It adds
an entry and then renames the OU attribute from Sales to Marketing.

Action()
{

// Logon to the LDAP server
mldap_logon("Login",

"URL=ldap://johnsmith:tiger@ldap1:80",
LAST);

// Add an entry for Sally R. Jones
mldap_add("LDAP Add",

 "DN=cn=Sally R. Jones,OU=Sales, DC=com",
 "Name=givenName", "Value=Sally", ENDITEM,
 "Name=initials", "Value=R", ENDITEM,
 "Name=sn", "Value=Jones", ENDITEM,
 "Name=objectClass", "Value=contact", ENDITEM,
 LAST);

// Rename Sally’s OU to Marketing
mldap_rename("LDAP Rename",

 "DN=CN=Sally R. Jones,OU=Sales,DC=com",
 "NewDN=OU=Marketing",
 LAST);

// Logout from the LDAP server
mldap_logoff();

return 0;
}

477

Chapter 31 • Developing LDAP Vuser Scripts
Defining Distinguished Name Entries

The LDAP API references objects by its distinguished name (DN). A DN is a
sequence of relative distinguished names (RDN) separated by commas.

An RDN is an attribute with an associated value in the form attribute=value.
The attribute names are not case-sensitive. The following table lists the most
common RDN attribute types.

The following are examples of distinguished names:

DN=CN=John Smith,OU=Accounting,DC=Fabrikam,DC=COM
DN=CN=Tracy White,CN=admin,DC=corp,DC=Fabrikam,DC=COM
The following table lists reserved characters that cannot be used in an
attribute value.

String Attribute Type

DC domainComponent

CN commonName

OU organizationalUnitName

O organizationName

STREET streetAddress

L localityName

ST stateOrProvinceName

C countryName

UID userid

Character Description

space or # character at the beginning of a
string

space character at the end of a string

, comma
478

Chapter 31 • Developing LDAP Vuser Scripts
To use a reserved character as part of an attribute value, you must precede it
with an escape character, a backslash (\). If an attribute value contains other
reserved characters, such as the equal sign (=) or non-UTF-8 characters, you
must encode it in hexadecimal format—a backslash followed by two hex
digits.

The following are examples of DNs that include escaped characters. The first
example is an organizational unit name with an embedded comma; the
second example is a value containing a carriage return.

Specifying Connection Options

Using the mldap_logon[_ex] function, you control the way you login to the
LDAP server.

When specifying the URL of the LDAP server, you specify how to connect
and with what credentilals.

When specifying the server’s URL, use the following format:

+ plus sign

" double quote

\ backslash

< left angle bracket

> right angle bracket

; semicolon

DN=CN=Bitwise,OU=Docs\, Support,DC=Fabrikam,DC=COM
DN=CN=Before\0DAfter,OU=Test,DC=North America,DC=Fabrikam,DC=COM

ldap[s][username:[password]@][server[:port]]
479

Chapter 31 • Developing LDAP Vuser Scripts
The following table shows several examples of connections to LDAP servers.

You can also specify LDAP modes or SSL certificates using the following
optional arguments:

➤ Mode. The LDAP call mode: Sync or Async

➤ Timeout. The maximum time in seconds to search for the LDAP server.

➤ Version. The version of the LDAP protocol version 1,2, or 3

➤ SSLCertDir. The path to the SSL certificates database file (cert8.db)

➤ SSLKeysDir. The path to the SSL keys database file (key3.db)

➤ SSLKeyNickname. The SSL key nickname in the keys database file

➤ SSLKeyCertNickname. The SSL key's certificate nickname in the certificates
database file

➤ SSLSecModule. The path to the SSL security module file (secmod.db)

➤ StartTLS. Requires that the StartTLS extension's specific command must be
issued in order to switch the connection to TLS (SSL) mode

For detailed information about these arguments, refer to the Online Function
Reference (Help > Function Reference).

Syntax Description

ldap://a:b@server.co
m:389

Connects to the server (to 389 port) and then binds with
username "a" , password "b"

ldap://:@server.com Connects to server (to default unsecured port 389) then
binds anonymously with a NULL username and password

ldaps://a:@server.co
m

Connects to server (to default secured port 636)and then
binds with username "a", password ""

ldap://@server.com,
ldap://server.com

Connects to server without binding

ldap://a:b@ Binds with username "a", password "b, executing a bind
on the existing session without reconnecting

ldap://:@ Binds anonymously with a NULL username and password
(executes bind on existing session without reconnecting)
480

32
Recording Microsoft .NET Vuser Scripts

VuGen records applications that were created in the .NET Framework
environment.

This chapter includes:

 ➤ About Recording Microsoft .NET Vuser Scripts on page 482

 ➤ Getting Started with Microsoft .NET Vusers on page 483

 ➤ Setting Microsoft .NET Recording Options on page 485

 ➤ Configuring the Recording Settings on page 486

 ➤ Viewing Scripts in VuGen and Visual Studio on page 491

 ➤ Configuring .NET Environment Run-Time Settings on page 493

 ➤ Viewing Data Sets and Grids on page 496

 ➤ Correlating Microsoft .NET Scripts on page 497

 ➤ Configuring Application Security and Permissions on page 500

 ➤ Recording WCF Duplex Communication on page 504

The following information only applies to Microsoft .NET Vuser scripts.

Before recording a script, it is recommended that you read Chapter 33,
“Setting Filters for .NET Vuser Scripts.” These guidelines will help you create
an optimal script that accurately emulates your application.
481

Chapter 32 • Recording Microsoft .NET Vuser Scripts
About Recording Microsoft .NET Vuser Scripts

Microsoft .NET Framework provides a solid foundation for developers to
build various types of applications such as ASP.NET, Windows Forms, Web
Services, distributed applications, or applications that combine several of
these models.

VuGen supports .NET as an application level protocol. It allows you to create
Vuser scripts that emulate users of Microsoft .NET client applications created
in its .NET Framework. VuGen records all of the client actions through
methods and classes, and creates a script in C Sharp or VB .NET.

By default, the VuGen environment is configured for .NET Remoting,
ADO.NET, Enterprise Services, and WCF (Windows Communication
Foundation) applications. Contact Customer Support for information on
how to configure VuGen to record applications created with other client-
server activity.

For more information about .NET and the above environments, refer to the
MSDN Web site, http://msdn2.microsoft.com.

Limitations
The following limitations apply to the VuGen recording of a Microsoft .NET
application:

➤ Microsoft .NET scripts only support single-protocol recording in VuGen.

➤ Direct access to public fields is not supported—the AUT must access fields
through methods or properties.

➤ VuGen does not record static fields in the applications—it only records
methods within classes.

➤ Multi-threaded support is dependent on the client application. If the
recorded application supports multi-threading, then the Vuser script will
also support multi-threading.

➤ In certain cases, you may be unable to run multiple iterations without
modifying the script. Objects that are already initialized from a previous
iteration, cannot be reinitialized. Therefore, to run multiple iterations, make
sure to close all of the open connections or remoting channels at the end of
each iteration.
482

http://msdn2.microsoft.com
http://msdn2.microsoft.com

Chapter 32 • Recording Microsoft .NET Vuser Scripts
➤ Recording is not supported for Enterprise Services communication based on
MSMQ and Enterprise Services hosted in IIS.

➤ VuGen partially supports the recording of WCF services hosted by the client
application.

➤ Recording is not supported for Remoting calls using a custom proxy.

➤ Recording is not supported for ExtendedProperties property of ADO.NET
objects, when using the default ADO.NET filter.

➤ Applications created with .NET Framework 1.1 which are not compatible
with Framework 2.0, cannot be recorded. To check if your Framework 1.1
application is compatible, add the following XML tags to your application’s
.config file:

<configuration>
<startup>

<supportedRuntime version="v2.0.50727"/>
</startup>

</configuration>

Invoke the application (without VuGen) and test its functionality. If the
application works properly, VuGen can record it. Remove the above tags
before recording the AUT with VuGen. For more information regarding this
solution, refer to the MSDN Knowledge Base.

Getting Started with Microsoft .NET Vusers

This section describes the process of developing Microsoft .NET Vuser
scripts. Note that the AUT (Application Under Test) must be installed on the
machine running the script and all load generators.

To develop a basic .NET Vuser script:

 1 Record the application using VuGen.

Start VuGen and create a new Vuser script. Specify Microsoft .NET as the
type of Vuser. Choose an application to record and set the recording
options. For more information, see “Setting Microsoft .NET Recording
Options” on page 485.
483

Chapter 32 • Recording Microsoft .NET Vuser Scripts
For general details about recording, see “Recording with VuGen” in Volume
I-Using VuGen.

 2 Debug the script and set the filter.

Examine the recorded script and determine if the required methods were
recorded. If necessary, modify the filter and record the script again.

For details about setting the filter, see “Guidelines for Setting Filters” on
page 515.

 3 Correlate the script.

Correlate the values in your script to save them as parameters for use at a
later point in the script.

For details, see “Correlating Microsoft .NET Scripts” on page 497.

 4 Run the script from VuGen.

Save and run the script in VuGen to verify that it runs correctly. To insure a
successful replay, compile and run the script in VuGen before running it
remotely on a Load Generator machine or via the Controller. This applies
each time you make a change to the script—either in the script’s settings or
the actual script. In addition, if you save the script under another name,
replay it in VuGen before running it on a Load Generator.

For details, see “Running Vuser Scripts in Standalone Mode” in Volume I-
Using VuGen.

 5 Configure the run-time settings.

The run-time settings control the Vuser behavior during script execution.
These settings include loop, log, and timing information.

For details, see “Configuring .NET Environment Run-Time Settings” on
page 493.

After you create a script, you integrate it into your environment: a
LoadRunner scenario, Performance Center load test, or Business Process
Monitor profile. For more information, refer to the HP LoadRunner Controller,
Performance Center, or HP Business Availability Center documentation.

484

Chapter 32 • Recording Microsoft .NET Vuser Scripts
Setting Microsoft .NET Recording Options

You can set both Script and Microsoft .NET-specific recording options. This
section describes the recording options specific to Microsoft .NET. For
information on the Script recording options, see “Setting Script Generation
Preferences” in Volume I-Using VuGen.

The recording options specific to Microsoft .NET are in the area of recording
settings and .NET filters.

The recording settings let you control the logging, serialization, debugging,
and the trace level of the logging. For more information, see “Configuring
the Recording Settings” on page 486.

The filtering options let you choose a filter for the recording, using a
standard .NET Remoting, ADO.NET, Enterprise Services, or WCF filter. You
can also create custom filters and configure them according to your needs.
For more information, see Chapter 33, “Setting Filters for .NET Vuser
Scripts.”.

For information about recording WCF duplex communication, see “Setting
WCF Recording Options” on page 505.

Some of the recording options are also relevant to code regeneration. After
recording a script with certain options, you can modify the code generation
options and regenerate the script with different settings or even in a
different language. To change the options and regenerate a script, choose
Tools > Regenerate Script. In the Regenerate Script dialog box, click
Options. For more information, see “Regenerating a Vuser Script”in Volume
I-Using VuGen.
485

Chapter 32 • Recording Microsoft .NET Vuser Scripts
Configuring the Recording Settings

To open the .NET Recording Options dialog box, choose Tools > Recording
Options and select the Recording node.

You can configure your script in the following areas:

➤ Logging

➤ Serialization Settings

➤ Remote Objects

➤ WCF Duplex Binding

➤ Debug Options

➤ Filters

➤ Code Generation
486

Chapter 32 • Recording Microsoft .NET Vuser Scripts
Logging

➤ The Logging options let you set the level of detail in the recording log file:
Log Severity. Sets the level of logging to Errors Only (default), or Debug. The
severity setting applies for all the logs that you enable below. You should
always use the Errors Only log unless specifically instructed to do otherwise
by HP support, since detailed logging may significantly increase the
recording time.

➤ Instrumentation Log. Logs messages related to the instrumentation process
(enabled by default).

➤ Recording Log. Logs messages issued during recording (enabled by default).

➤ Code Generation Log. Logs messages issued during the code generation
stage (enabled by default).

Serialization Settings

The Serialization settings let you set the serialization format.

VuGen uses serialization when it encounters an unknown object during the
recording, provided that the object supports serialization. An unknown
object can be an input argument which was not included by the filter and
therefore its construction was not recorded. Serialization helps prevent
compilation errors caused by the passing of an unknown argument to a
method. If an object is serialized, it is often advisable to set a custom filter to
record this object.

➤ Serialization format. The format of the serialization file that VuGen creates
while recording a class that supports serialization: Binary, XML, or Both. The
advantage of the binary format is that since it is more compressed, it is
quicker. The disadvantage of the binary format is that you do not have the
ability to manipulate the data as you do with XML.

➤ Serialize long arrays. For long arrays containing serializable objects (for
example, an array of primitives), use VuGen’s serialization mechanism.
Enabling this option generates LrReplayUtils.GetSerializedObject calls if the
array size is equal to or larger than the threshold value.

➤ Threshold value for long array size. The threshold size for an array to be
considered a long array. If the array size is equal to or larger than this size,
VuGen serializes it when detecting serializable objects.
487

Chapter 32 • Recording Microsoft .NET Vuser Scripts
Tip: For XML serialization, you can view the content of the XML file. To
view the file, select View XML from the right-click menu.

Remote Objects

This section lets you define the proxy-related recording options.

➤ Record in-process objects. Records activity between the client and server
when the server is hosted in the same process as the client. Since the actions
are not true client/server traffic, it is usually not of interest. When in-process
methods are relevant, for example, in certain Enterprise Service
applications, you can enable this option to capture them (disabled by
default).

Asynchronous Calls

In the following section, you specify how VuGen should handle
asynchronous calls on remote objects and their callback methods. These
options are mostly relevant for .NET Remoting and WCF environments.

➤ Call original callbacks by default. Uses the recorded application’s original
callback when generating and replaying the script. If the callback method is
explicitly excluded by a filter, the callback will be excluded even if you
enable this option. If your callbacks perform actions that are not directly
related to the business process, such as updating the GUI, then make sure to
disable this option.

➤ Generate asynchronous callbacks. This option defines how VuGen will
handle callbacks when the original callbacks are not recorded. This is
relevant when the above option, Call original callbacks is disabled or when
the callbacks are explicitly excluded.

When you enable this option, it creates a dummy method which will be
called during replay instead of the original callback. This dummy callback
will be generated in the callbacks.cs section of the script.

When you disable this option, VuGen inserts a NULL value for the callback
and records the events as they occur.
488

Chapter 32 • Recording Microsoft .NET Vuser Scripts
The following segment shows script generation for a Calculator client, when
Generate asynchronous callbacks is enabled.

To display the callback method, OnComplete1, you click on the callback.cs
file in the left pane.

The following segment shows script generation when the option is disabled.
VuGen generates a NULL in place of the callback and records the events of
the callback as they occur.

Note: If you recorded a script with specific recording options, and you want
to modify them, you do not need to re-record the script. Instead you can
regenerate the script with the new settings. For more information, see
“Regenerating a Vuser Script”in Volume I-Using VuGen.

lr.log("Event 2: CalculatorClient_1.Add(2, 3);");
Int32RetVal = CalculatorClient_1.Add(2, 3);
// Int32RetVal = 5;

callback_1 = new AsyncCallback(this.OnComplete1);
lr.log("Event 3: CalculatorClient_1.BeginAdd(2, 3, callback_1, null);");
IAsyncResult_1 = CalculatorClient_1.BeginAdd(2, 3, callback_1, null);

lr.log("Event 3: CalculatorClient_1.BeginAdd(2, 3, null, null);");
IAsyncResult_1 = CalculatorClient_1.BeginAdd(2, 3, null, null);

lr.log("Event 5: CalculatorClient_1.EndAdd(IAsyncResult_1);");
Int32RetVal = CalculatorClient_1.EndAdd(IAsyncResult_1);
// Int32RetVal = 5;

lr.log("Event 6: ((ManualResetEvent)(IAsyncResult_1.AsyncWaitHandle));");
ManualResetEvent_1 = ((ManualResetEvent)(IAsyncResult_1.AsyncWaitHandle));

lr.log("Event 7: ManualResetEvent_1.Close();");
ManualResetEvent_1.Close();
489

Chapter 32 • Recording Microsoft .NET Vuser Scripts
WCF Duplex Binding

You can set options for applications that use the WCF (Windows
Communication Foundation). For more information, see “Recording WCF
Duplex Communication” on page 504.

Debug Options

The debug options allow you to trace the stack and specify its size.

➤ Stack Trace. Traces the contents of the stack for each invocation within the
script. It allows you to determine which classes and methods were used by
your application. This can be useful in determining which references,
namespaces, classes, or methods to include in your filter. Enabling the trace
may affect your application’s performance during recording. This trace is
disabled by default.

➤ Stack Trace Limit. The maximum number of calls to be stored in the stack.
The default is 20 calls. If the number of calls exceeds the limit, VuGen
truncates it.

Filters

Ignore all assemblies by default. Ignore all assemblies that are not explicitly
included by the selected filter. If you disable this option, VuGen looks for a
matching filter rule for all assemblies loaded during the recording.

Code Generation

The Code Generation options let you indicate whether to show warnings
and a stack trace during code generation.

➤ Show Warnings. Shows warning messages that are issued during the code
generation process.

➤ Show Stack Trace. Shows the Recorded stack trace if it is available.

➤ Show All Event Subscriptions. Generate code for all event subscriptions that
were recorded (disabled by default). If this option is disabled, VuGen will
only generate code for events in which both the publisher (the object which
invokes the event) and the subscriber (the object informed of the event) are
included in the filter.
490

Chapter 32 • Recording Microsoft .NET Vuser Scripts
Viewing Scripts in VuGen and Visual Studio

After the recording, you can view the script in VuGen’s Script view.

VuGen records the actions that occurred and generates C Sharp or VB code.
By default, VuGen wraps all of the steps in lr.log calls.

When you replay the script, VuGen compiles it first to ensure that all of the
calls are valid and that the syntax is correct. VuGen compiles the script into
a DLL file, Script.dll, saved in the script’s bin folder. This DLL file contains
three functions - Init, Actions, and End.

You can compile the script to check its syntax, without running it. To
compile the script directly from VuGen, click Shift+F5 or choose Vuser >
Compile. If VuGen detects a compilation error, it displays it in the Output
window. Double-click on the error to go to the problematic line in the
script.

To run the script directly from VuGen, click F5 or choose Vuser > Run.
Breakpoints and step-by-step replay are not supported in VuGen’s editor
window for Microsoft .NET Vusers. To debug a script and run it with
breakpoints or step-by-step, run it from within Visual Studio .NET as
described below.
491

Chapter 32 • Recording Microsoft .NET Vuser Scripts
Viewing Scripts in Visual Studio

Visual Studio provides you with additional tools to view, edit, and debug
your script. You can add breakpoints, view variable values, add assembly
references, and edit the script using Visual Studio’s IntelliSense. You can also
run the script in a step-by-step mode for debugging.

When you save your script, VuGen creates a Visual Studio 2005 solution file,
Script.sln, in your script’s folder. You can open the solution file in Visual
Studio .NET and view all of its components in the Solution Explorer.

To open the solution in Visual Studio 2005, choose Vuser > Open Solution in
Visual Studio or click the Visual Studio button on VuGen’s toolbar.

Double-click the appropriate section in the Solution Explorer, such as
vuser_init.cs, to view the contents of the script.

Note that VuGen automatically loads all of the necessary references that
were required during recording. You can add additional references for use
during compilation and replay through the Solution Explorer. Select the
Reference node and choose Add Reference from the right-click menu.

Click on globals.cs or globals.vb in the Solution Explorer to view a list of the
variables defined and used by your script.
492

Chapter 32 • Recording Microsoft .NET Vuser Scripts
Configuring .NET Environment Run-Time Settings

Before running your Microsoft .NET Vuser script, you can specify the .NET
environment settings from the Run-Time Settings dialog box.

You can also set general run-time settings for your Microsoft .NET script for
configuring the pacing and iteration options. For more information, see
“Configuring Run-Time Settings” in Volume I-Using VuGen.

AUT Configuration

AUT Application Base Path. The AUT (Application Under Test) base directory
from which DLLs are loaded during replay. By default, during recording, all
of the necessary DLLs are stored in the script’s directory. Use this option to
specify the location of any missing DLL files for the AUT. This is usually the
installation path of the recorded application. Note that the AUT must be
installed on the machine running the script. If you leave this box empty,
VuGen uses the local script\bin directory as the application base directory
during replay.
493

Chapter 32 • Recording Microsoft .NET Vuser Scripts
AUT Configuration File. The file name of the recorded application’s
configuration file. VuGen copies the AUT configuration file to the script\bin
directory and loads the locally saved file. To specify a different location, use
a full path. If you only specify a file name, and the file is not in the
script\bin folder, VuGen loads it from the App base directory.

Concurrency

➤ AppDomain Per Vuser. Enables execution of each Vuser in a separate app
domain (true by default). Running Vusers in separate App Domains enables
each Vuser to execute separately without sharing static variables and
prevents locking between them.

ADO.NET providers deploy a feature called connection pooling which can
significantly influence load test accuracy. Whenever only one app domain is
used for all Vusers, connection pooling is turned on—.NET Framework keeps
the database connections open and tries to reuse them when a new
connection is requested. Since many Vusers are executed in the context of a
single application domain, they may interfere with one another. Their
behavior will not be linear and that may decrease their accuracy. The default
setting, true, allocates a separate connection pool for each Vuser. This means
that there is connection pooling in the scope of each Vuser, but the Vusers
will not interfere with one another. This setting provides more accuracy, but
lower scalability.

If you disable this option, you need to manually disable connection pooling
for the database.
494

Chapter 32 • Recording Microsoft .NET Vuser Scripts
The following table describes how to manually disable connection pooling:

To specify .NET resources:

 1 Open the run-time setting—press F4 or choose Vuser > Run-Time Settings.

 2 Click on the .NET Environment node in the left pane.

 3 Set the base folder of the DLLs in the AUT Application Base Path box.

 4 Set the path of the recorded application in the AUT Configuration File box.

 5 The recommended setting for AppDomain Per Vuser is true, the default.

Provider Option

.NET Framework Data Provider for SQL
Server

"Pooling=false" or "Pooling=no"

.NET Framework Data Provider for Oracle "Pooling=false" or "Pooling=no"

.NET Framework Data Provider for ODBC Connection pooling is managed by
an ODBC Driver Manager. To
enable or disable connection
pooling, use the ODBC Data Source
Administrator (found in Control
Panel or the Administrative Tools
folder). The Connection Pooling
tab allows you to specify
connection pooling parameters for
each of the installed ODBC drivers.

.NET Framework Data Provider for OLE DB "OLE DB Services=-2"

Oracle Data Provider for .NET "pooling=false"

Adaptive Server Enterprise ADO.NET Data
Provider

"Pooling=False"
495

Chapter 32 • Recording Microsoft .NET Vuser Scripts
Viewing Data Sets and Grids

When you record a method returning a dataset, data table, or data reader
action, VuGen generates a grid for displaying the data.

When working with a data reader, VuGen collects the data retrieved from
each Read operation and converts it to the replay helper function,
DoDataRead.

For example, after recording the following application code,

VuGen generates the following lines in the script:

where two the parameters indicate that during recording, the Application
read all 27 available records. Therefore, during replay the script will read all
available records.

In addition, VuGen generates a data grid containing all the information
retrieved by the Read operations.

During replay you can use the output data table, containing the actual
retrieved values, for correlation and verification. For more information
regarding the DoDataRead function, refer to the Online Function Reference
(Help > Function Reference).

SqlDataReader reader = command.ExecuteReader();
while(reader.Read())
{

// read the values, e.g., get the string located in column 1
 string str = reader.GetString(1)

}

SqlDataReader_1 = SqlCommand_1.ExecuteReader();
LrReplayUtils.DoDataRead(SqlDataReader_1, out valueTable_1, true, 27);
496

Chapter 32 • Recording Microsoft .NET Vuser Scripts
By default, VuGen displays the grids in your script. To disable the grid
display and instruct VuGen to show the collapsed version of the grid, select
View > Data Grids.

The dataset is stored in an XML file. You can view this XML file in the
script’s data/datasets folder. The data files are represented by an
<index_name>.xml file, such as 20.xml. Since one file may contain several
data tables, refer to the file datasets.grd file, which maps the script index to
the file index to determine which XML contains the data.

For additional information about grids, see “Working with Grids” on
page 322.

Correlating Microsoft .NET Scripts

After you record a session, you may need to correlate one or more values
within your script. Correlating a value means that you capture a value
during the script replay, and save it to a parameter. You can then use this
parameter at a later point in the script.

VuGen automatically does a basic correlation—if an object is returned from
a function call and later called in the script or if the object is passed to
another method, VuGen uses the same object instance.

You can further correlate values in your script by manually saving the
parameters through coding, or through VuGen’s built-in correlation tools.

To correlate a value within VuGen, you locate the value in your dataset and
use the right-click menu to save the value to a parameter.
497

Chapter 32 • Recording Microsoft .NET Vuser Scripts
To correlate a value for ADO.NET environments:

 1 Locate the dataset in your script.

Display the grids in your script to show the returned datasets. If the grids are
not visible, choose View > Data Grids or expand the applicable
DATASET_XML statement. For example:

 2 Locate the value.

Locate the value you want to correlate. To search for a value in a grid, open
the Find dialog box, Ctrl+F, and select the Search Grids option.

 3 Create a correlation.

Click on the value in the grid that you want to correlate and choose Create
Correlation from the right-click menu. The Create a correlation dialog box
opens.

 4 Specify a parameter name.

Specify a parameter name, identical to the variable you defined earlier. Click
OK. VuGen prompts you if you want to search for all occurrences. Click OK.

VuGen adds a lr.save_string function before each dataset. For example:

 5 Reference the parameter at a later point in the script.

Select the value you want to replace with a parameter and choose Replace
with a parameter from the right-click menu. Insert the saved variable name
in the Parameter name box. Click OK. VuGen prompts you to replace all of
the values with a parameter, using the lr.eval_string function to evaluate the
string’s value.

lr.save_string("MyCustomerID",
CustomerAndOrdersDataSet_3.Tables["Customers"].Rows[0]["CompanyName"].ToStri
ng());

lr.message("The customer ID is""+ lr.eval_string("{MyCustomerID}") + ");
498

Chapter 32 • Recording Microsoft .NET Vuser Scripts
Unlike other protocols, the script includes direct calls to the application or
framework method. Therefore, you cannot replace the string value with the
{paramName}—instead you must use lr.eval_string to evaluate the
parameter’s value.

The above method is effective for ADO.NET environments. For primitive
values, you should generate the script with output parameter values and
examine the output parameters for correlations.

To correlate with output parameters:

 1 Choose Tools > Recording Options, and choose the General:Script node.

 2 Enable the Insert output parameter values option. Click OK to close
Recording Options.

 3 Choose Tools > Regenerate Script to regenerate the script.

 4 Search the commented output primitive values for correlations.

For more information about using correlation functions, refer to the Online
Function Reference (Help > Function Reference).
499

Chapter 32 • Recording Microsoft .NET Vuser Scripts
Configuring Application Security and Permissions

A Security Exception that occurs while recording an application is usually
due to a lack of permissions—the recording machine does not have
sufficient permissions to record the application. This is common where your
application is not local, but on the Intranet or network.

To solve this problem, you need to allow the recording machine to access
the application and the script with Full Trust.

One solution is to copy the application and save your script locally, since by
default, users have Full Trust permissions to all local applications and
folders.

An additional solution is to create new code groups that gives Full Trust to
each application folder, and the script folder.

To grant Full Trust permissions to a specific folder:

 1 Open the .NET Configuration settings. Choose Start > Programs >
Administrative Tools > Microsoft .NET Framework 2.0 Configuration. The
.NET Configuration window opens.

 2 Expand the Runtime Security Policy node to show the Code Groups of the
machine.

 3 Select the All_Code node.
500

Chapter 32 • Recording Microsoft .NET Vuser Scripts
 4 Choose Action > New …. The Create New Code Group dialog box opens.

 5 Enter a name for a new Code Group for your application or script. Click
Next.
501

Chapter 32 • Recording Microsoft .NET Vuser Scripts
 6 Select the URL condition type. In the URL box, specify the full path of the
application or script in the format file://… and click Next.

 7 Choose the FullTrust permission set. Click Next.
502

Chapter 32 • Recording Microsoft .NET Vuser Scripts
 8 Click Finish in the Completing the Wizard dialog box. The configuration
tool adds your Code Group to the list of existing groups.

 9 Repeat the above procedure for all .NET applications that you plan to
record.

 10 Repeat the above procedure for the Vuser script folder.

Note: Make sure that the script folder has FullTrust permissions on all Load
Generator machines that are participating in the test (LoadRunner only).
503

Chapter 32 • Recording Microsoft .NET Vuser Scripts
Recording WCF Duplex Communication

WCF (Windows Communication Foundation) is a programming model that
unifies Web Services, .NET Remoting, Distributed Transactions, and Message
Queues into a single Service-oriented programming model for distributed
computing.

WCF creates a proxy object to provide data for the service. It also marshalls
the data returned by the service into the form expected by the caller.

In addition to general support for the WCF environment, VuGen provides
specialized support for applications that use WCF’s duplex communication.
In duplex communication, the client proxy contacts the service, and the
service invokes the callback handler on the client machine. The callback
handler implements a callback interface defined by the server. The server
does not have to respond in a synchronous manner—it independently
determines when to respond and invoke the callback handler.

The communication between the client and server is as follows:

➤ The server defines the service contract and an interface for the callback.

➤ The client implements the callback interface defined by the server.

➤ The server calls the callback handler in the client whenever needed.

When trying to record and replay duplex communication, you may
encounter problems when the script calls the original callback methods. By
default, the callback handlers are not included in the filter. You could
customize the filter to include those callback handlers. However, the
standard playback would be ineffective for a load test, since many of the
callbacks are local operations such as GUI updates. For an effective load test
you cannot replay the original callback method invoked by the server.
504

Chapter 32 • Recording Microsoft .NET Vuser Scripts
VuGen’s solution is based on replacing the original callback handler with a
dummy implementation. This implementation performs a typical set of
actions that you can customize further for your application.

You instruct VuGen to replace the original callbacks by activating the
Generate Dummy Callback Handler recording option. For more
information, see below.

Setting WCF Recording Options
VuGen’s recording options for WCF’s duplex communications enable you to
generate a script that will be effective for load testing. You can set recording
options on the following areas:

➤ Generating Dummy Callback Implementations

➤ Recording Dual HTTP Bindings
505

Chapter 32 • Recording Microsoft .NET Vuser Scripts
Generating Dummy Callback Implementations
The Generate Dummy Callback Handler recording option instructs VuGen
to replace the original callback in duplex communication with a dummy
callback.

The dummy callback implementation performs the following actions:

➤ Store arguments. When the server calls the handler during replay, it saves
the method arguments to a key-value in memory map.

➤ Synchronize replay. It stops the script execution until the next response
arrives. VuGen places the synchronization at the point that the callback
occurred during recording. This is represented in the script by a warning:

As part of the synchronization, the script calls GetNextResponse to get the
stored value.

Enabling the Dummy Callback Recording Option

By default, this option is enabled.

To enable this recording option:

 1 Choose Tools > Recording Options.

 2 Select the Microsoft .NET:Recording node.

 3 Select Generate Dummy Callback Handler.

VuGen Implementation of a Duplex Callback

As part of the duplex communication solution, VuGen generates two
support files:

➤ DuplexCallbackHelper.<language>

➤ Callback_Name.<language>

#warning: Code Generation Warning
// Wait here for the next response.
// The original callback during record was:…

Vuser<Callback_Name>.GetNextResponse();
506

Chapter 32 • Recording Microsoft .NET Vuser Scripts
The following example shows the generated files for a Calculator
application using duplex communication:

The Helper file serves as a general template for working with duplex callback
handlers. It serves as a base class for the implementation of the callback.

The second file, Callback_Name, contains the implementation of the
callback. The name of the callback implementation class is Vuser<xxxx>
where xxxx is the name of the callback interface and it inherits from the
VuserDuplexCallbackHelper class defined in the Helper file. VuGen creates
separate implementation files for each interface.
507

Chapter 32 • Recording Microsoft .NET Vuser Scripts
This file performs two primary tasks:

➤ Set Response. It stores the data that came from the server in a map. It stores
them with sequential IDs facilitating their retrieval. This method is called
from the implementation of the callback interface. The following sample
code demonstrates the dummy implementation of a callback method
named Result. The method's arguments are stored in the map as an object
array.

➤ Get Response. Waits for the next response to arrive. The implementation of
GetNextResponse retrieves the next response stored in the map using a
sequential indexer, or waits until the next response arrives.

The script calls GetNextResponse at the point that the original callback
handler was called during recording. At that point, the script prints a
warning:

Replacement of the Callback in the Script

When you enable the Dummy Callback option (enabled by default), VuGen
replaces the original duplex callback handlers with dummy
implementations. The dummy implementation is called Vuser <Callback
Name>. At the point of the original callback handler, the script prints a
warning indicating that it was replaced.

// ---
 public virtual void Result(string operation, double result) {
 // Add here your own callback implementation and set the response data
 SetResponse(responseIndex++, new object[] {
 operation,
 result});
}

// Wait here for the next response.
// The original callback during record was:
508

Chapter 32 • Recording Microsoft .NET Vuser Scripts
Recording Dual HTTP Bindings
If your application employs dual HTTP Binding, since HTTP is inherently
not a duplex protocol, the framework uses a standard port to receive
response data being passed to the callback. When you attempt to run
multiple instances of your application, you may be unable to do so using
the same port number. VuGen provides you with an option of replacing the
original client base address’s port number with a unique port.

When you enable the Generate Unique Client Base Address recording
option, VuGen checks the type of communication used by the application.
If it detects dual HTTP communication, WSDualHttpBinding, it runs the
FindPort utility (provided in LrReplayUtils) in the Helper file and finds
unique ports for each instance of the callback.

This option is enabled by default. It is only relevant when you enable the
above option, Generate dummy callback handler.

When you enable this option, VuGen generates the following code in the
script:

Customizing the Dummy Implementation
You can modify the implementation file to reflect your environment.

Several suggested customization are:

➤ Timeouts

➤ Key Identifier

➤ Return Values

➤ Get Response Order

➤ Find Port

#warning: Code Generation Warning
// Override the original client base address with a unique port number
DualProxyHelper.SetUniqueClientBaseAddress<XXXX>(YYYYY);
509

Chapter 32 • Recording Microsoft .NET Vuser Scripts
Timeouts

The default timeout for which the callback waits for the next response is
60000 msec, or one minute. To use a specific timeout, replace the call to
GetNextResponse with the overloading method which gets the timeout as
an argument as shown below. This method is implemented in the callback
implementation file <Callback_Name> listed in the left pane after the
DuplexCallbackHelper file.

To change the default threshold for all callbacks, modify the
DuplexCallbackHelper file.

Key Identifier

Many applications assign key identifiers to the data, which connects the
request and response to one another. This allows you to retrieve the data
from the map using its ID instead of the built-in incremental index. To use a
key identifier instead of the index, modify the file <Callback_Name>
replacing the first base template parameter, named ID, with the type of your
key identifier. For example, if your key identifier is a string you may change
the first template argument from int to string:

In addition, you may remove the implementation of GetNextResponse()
and replace it with calls to GetResponse(ID) defined in the base class.

// Get the next response.
 // This method waits until receiving the response from the server
 // or when the specified timeout is exceeded.
 public virtual object GetNextResponse(int millisecondsTimeout) {
 return base.GetResponse(requestIndex++, millisecondsTimeout);
 }

 // Default timeout threshold while waiting for response
 protected int millisecondsTimeoutThreshold = 60000;

public class VuserXXX : VuserDuplexCallbackHelper<string, object>
510

Chapter 32 • Recording Microsoft .NET Vuser Scripts
Return Values

By default, since VuGen supports OneWay communication, the
implementation callback does not return any value or update an output
parameter when it is invoked.

If your application requires that the callback return a value, insert your
implementation at that point.

Get Response Order

In VuGen’s implementation, a blocking method waits for each response.
This reflects the order of events as they occurred during recording—the
server responded with data. You can modify this behavior to execute
without waiting for a response or to implement the blocking only after the
completion of the business process.

Find Port

The FindPort method in the Helper file is a useful utility that can be used in
a variety of implementations. The Helper class uses this method to find
unique ports for running multiple instances of the script. You can utilize
this utility method for other custom implementations.

Recording Server Hosted By Client Applications
If the communication in your system is a server hosted by a client, VuGen’s
default solution for duplex communication will not be effective. In server
hosted by client environments, it is not true duplex communication since
the client opens the service and does not communicate through the
Framework. For example, in queuing, the client sends a message to the
service and opens a response queue to gather the responses.

To emulate a server hosted by a client, use the pattern depicted in the above
solution—replace the original response queues with dummy callbacks and
perform synchronization as required. For more information, contact HP
support.

 public virtual void Result(string operation, double result) {
 // Add here your own callback implementation and set the response data
511

Chapter 32 • Recording Microsoft .NET Vuser Scripts
512

33
Setting Filters for .NET Vuser Scripts

VuGen provides several built-in filters and also allows you to customize
them.

This chapter includes:

 ➤ About Microsoft .NET Filters on page 513

 ➤ Guidelines for Setting Filters on page 515

 ➤ Setting a Recording Filter on page 519

 ➤ Working with the Filter Manager on page 521

The following information only applies to Microsoft .NET Vuser scripts.

About Microsoft .NET Filters

Recording filters indicate which assemblies, interfaces, namespaces, classes,
or methods to include or exclude during the recording and script
generation.

By default, VuGen provides built-in system filters for .NET Remoting,
ADO.NET, Enterprise Services, and WCF (Windows Communication
Foundation). These filters were designed to include the relevant interfaces
for standard ADO.NET, Remoting, Enterprise Services, and WCF. VuGen also
allows you to design custom filters.
513

Chapter 33 • Setting Filters for .NET Vuser Scripts
Custom filters provide several benefits:

➤ Remoting. When working with .NET Remoting, it is important to include
certain classes that allow you to record the arguments passed to the remote
method.

➤ Missing Objects. If your recorded script did not record a specific object
within your application, you can use a filter to include the missing interface,
class or method.

➤ Debugging. If you receive an error, but you are unsure of it’s origin, you can
use filters to exclude methods, classes, or interfaces in order to pin-point the
problematic operation.

➤ Maintainability. You can record script in higher level, make script more easy
to maintain and to correlate.

A filter manager lets you manipulate existing custom filters. It displays the
assemblies, namespaces, classes, methods, and properties in a color-coded
tree hierarchy.

The bottom pane provides a description of the assembly, namespace, class,
method, property, or event. It also indicates whether or not it is included or
excluded and a reason for the inclusion or exclusion.
514

Chapter 33 • Setting Filters for .NET Vuser Scripts
The following sections describe when and how to customize a filter:

➤ Guidelines for Setting Filters

➤ Setting a Recording Filter

➤ Working with the Filter Manager

Guidelines for Setting Filters

When testing your .NET application, your goal is determining how the
server reacts to requests from the client. When load testing, you want to see
how the server responds to a load of many users.

When recording a .NET application, your script may include calls to
methods that do not affect the server, such as calls to a local utility or the
GUI interface. These calls are usually not relevant to your testing goals, and
it would be correct to filter them out.

The built-in filters, .NET Remoting, ADO.NET, Enterprise Services, and WCF,
were designed to record only the server related traffic relevant to your
testing goals. In some instances, however, you may need to customize filters
to capture your .NET application’s calls or exclude unnecessary calls. Using
the Filter Manager, you can design custom filters to exclude the irrelevant
calls and capture the server related calls.

Before creating a test, it is recommended that you become familiar with
your application and determine its primary classes and methods, so that you
will know which ones to include in your recording.

If you are not familiar with your application’s classes, you can use Visual
Studio or a Stack Trace to help you determine which methods are being
called by your application in order to include them in the filter. VuGen
allows you to record with a stack trace that logs all of the methods that were
called by your application.

Once you determine the required methods and classes, you include them
using the Filter Manager. When preparing a script, you may need to
customize the filter several times in order to achieve the optimal filter. An
optimal filter records the relevant methods without introducing a large
number of irrelevant calls to the script.
515

Chapter 33 • Setting Filters for .NET Vuser Scripts
Tip: Strive to modify the filter so that your script will compile (Shift+F5)
inside VuGen—a test with correct syntax. Then customize the filter further
to create a functional script that runs inside VuGen.

Note that if you plan to add manual code to your script such as control flow
or message statements, make sure to do so after you have a functional script
that runs inside VuGen. The reason for this is that if you rerecord a script or
regenerate the script, you will lose all of the manual changes.

Determining which Elements to Include or Exclude
When designing a custom filter, it is recommended that you start by
choosing the appropriate built-in filter as a base filter. You can then
customize the filter using one of the following approaches:

➤ Top Down Approach. An approach in which you include the relevant
namespace and exclude specific classes that are not part of the client-server
activity. This is recommended if you are familiar with your application and
you can identify a well-defined assembly which implements all client-server
activity without involving any GUI elements, such as
MyDataAccessLayer.dll.

➤ Bottom up Approach. An approach in which you use the default filter and
refine it by adding individual methods or classes. Use this approach if you
cannot identify a well-defined layer or if you are not familiar with your
application. Do not add all AUT assemblies and then try to remove extra
component one by one.

The following section provides guidelines on when to include or exclude
elements.

➤ If, as a result of your including a class, your script has many unrelated
method calls, try modifying the filter to exclude the irrelevant methods.

➤ If you identify a non-client/server call in your script, exclude its method in
the filter.

516

Chapter 33 • Setting Filters for .NET Vuser Scripts
➤ During recording, VuGen may detect an unknown input argument, for
example, an argument whose construction it had never encountered before.
If this argument supports serialization, VuGen serializes it by saving it to a
file in a special format. During replay, VuGen reconstructs the argument by
deserializing it.

➤ VuGen serializes objects passed as arguments that were not included by the
filter. It is recommended that you include this object in the filter in order to
track its construction and activity instead of using it in its serialized form.
You can identify serialized objects in the script by searching for calls to the
LrReplayUtils.GetSerializedObject method or, in WCF environments,
LrReplayUtils.GetSerializedDataContract. VuGen stores serialized objects in
the script’s \data\SerializedObjects directory as XML files with indexes:
Serialization_1.xml, Serialization_2.xml and so forth.

➤ When no rules are specified for a method, it is excluded by default.
However, when the remoting environment is enabled, all remote calls are
included by default, even if they are not explicitly included. To change the
default behavior, you can add a custom rule to exclude specific calls which
are targeted to the remote server.

➤ Arguments passed in remoting calls whose types are not included by the
filter, are handled by the serialization mechanism. To prevent the arguments
from being serialized, you can explicitly include such types in order to
record the construction and the activity of the arguments.

➤ Exclude all activity which involves GUI elements.

➤ Add assemblies for utilities that may be required for the script to be
compiled.

For information on how to include and exclude elements, see “Including
and Excluding Elements” on page 525.

Defining an Effective Filter
When preparing a script, you may need to customize the filter several times
in order to achieve the optimal filter. An optimal filter records the relevant
methods without introducing a large number of irrelevant calls to the script.
517

Chapter 33 • Setting Filters for .NET Vuser Scripts
To define an effective filter:

 1 Create a new filter based on one of the built-in filters. If you know that the
AUT (Application Under Test) does not use ADO.NET, Remoting, WCF, or
Enterprise Services, clear that option since unnecessary filters may slow
down the recording.

 2 Set the Stack Trace option to true for both recording and code generation.
Open the Recording Options (CTRL+F7) and select the Recording node.
Enable Debug Options: Stack Trace and Code Generation: Show Stack
Trace.

 3 Record your application. Click Start Record (CTRL + R) to begin and Stop
(CTRL + F5) to end.

 4 View the script’s steps. If you can determine the business logic from the
steps and apply correlation, you may not need to create custom filters. If,
however, the script is very long or hard to maintain or correlate, you should
customize the script’s filter.

 5 Try to identify the high-level method in the call that captures or wraps one
or more client server calls. You can do this by opening the AUT source files
(if they are available) in Visual Studio or by viewing a Stack Trace of the
script.

 6 Set the filter to include the relevant methods—you may need to add their
assembly beforehand. For tips about including and excluding elements in
the filter, see “Determining which Elements to Include or Exclude” on
page 516.

 7 Record the application again. You should always rerecord the application
after modifying the filter.

 8 Repeat steps 4 through 7 until you get a simple script which can be easily
maintained and correlated.

 9 After creating an optimal script, turn off the Stack Trace options and
regenerate the script. Open the Recording Options (CTRL+F7) and select the
Recording node. Disable Debug Options: Stack Trace and Code Generation:
Show Stack Trace. This will improve the performance of subsequent
recordings.
518

Chapter 33 • Setting Filters for .NET Vuser Scripts
 10 Correlate the script. In order for your test to run properly, you may need to
insert a correlation to capture a value and use it at a later point in the script.
For more information about the built-in correlation mechanism, see
“Correlating Microsoft .NET Scripts” on page 497.

Setting a Recording Filter

The built-in filters, .NET Remoting, ADO.NET, Enterprise Services, and WCF
(Windows Communication Foundation), were designed to include the
standard interfaces for those environments. For information on the benefits
of filters, see “Guidelines for Setting Filters” on page 515.

When you decide to apply a filter to your recording, your first step is
choosing an appropriate filter. You can use one or more of the environment
filters or create a new one using the Filters recording options.

➤ New Filter. Indicates that you want to create a new filter.
519

Chapter 33 • Setting Filters for .NET Vuser Scripts
➤ Environment Filter. Lists the available environment filters: .NET Remoting,
ADO.NET, Enterprise Services, and WCF (Windows Communication
Foundation of Framework 3.0).

➤ Custom Filter. Shows the filters that you created earlier on the current
machine.

After creating a filter, you can modify the properties of the filter using the
Filter Manager. For more information, see “Including and Excluding
Elements” on page 525.

To specify a filter:

 1 Open the Filters recording option. Choose Tools > Recording Options and
select the Microsoft .NET:Filters node.

 2 Choose a filter option: New Filter, Environment Filter, or Custom Filter.

 3 For a new filter, click Create. The Create a New Filter dialog box opens.

 4 Select one of the filter options. To base your new filter on an environment
filter, select the check box adjacent to one or more of the filters.

 5 Click OK. The Filter Manager opens.

For existing filters, click on the Filter Manager button in the main recording
options dialog box to open the Filter Manager.

Make the desired modifications to the filters and save the filter. For more
information, see below.
520

Chapter 33 • Setting Filters for .NET Vuser Scripts
Working with the Filter Manager

The Filter Manager lets you view and modify your filters, with the exception
of Environment filters which can only be viewed—not modified as they are
read-only.

You manage and manipulate your filters using the Filter Manager toolbar.

Managing Filters

➤ New. Opens the Create a New Filter dialog box, in which you create an
empty filter or a new filter based on an existing one

➤ Save. Saves the changes you made to filter.

➤ Delete. Deletes the selected custom filter. The Filter Manager prompts you
for a confirmation.

Manipulating Filters

➤ Add Reference. Opens the Add Reference dialog box with a list of .NET
Framework components or assemblies in the Public Assemblies folder. You
can also browse the computer to locate a component that is not on the list.
For more information, see “Adding References” on page 523.

➤ Remove Reference. Removes the assembly that is selected in the Filter
Manager and all of the elements associated with it. The Filter Manager
prompts you for a confirmation.

➤ Include, Exclude, and Reset. Includes or excludes an assembly, namespace,
class, or method. You can also reset the inclusion or exclusion rule to its
default state. For more information, see “Including and Excluding
Elements” on page 525.

➤ Back and Forward. Navigates to the previous or next tree node visited by the
user.

➤ View Impact Log. Opens the Impact log for the selected filter. The Impact
log shows which nodes in the tree were affected by recent actions. For more
information, see “Viewing an Impact Log” on page 527.
521

Chapter 33 • Setting Filters for .NET Vuser Scripts
In addition, you can copy, paste, and rename filters using the standard
Windows key combinations and right-click menu.

The Filter Manager tree uses symbols to illustrate the elements and their
status:

➤ Element icons represent the type of element—assembly, namespace, class,
method, structure, property, events, or interfaces.

➤ A check mark or X adjacent to the element icon, indicates whether or not
the element is included or excluded.

➤ A bolded element indicates that it was explicitly included or excluded. This
may be a result of being manually included or excluded by the user or by a
pre-defined rule in the environment filter. If you reset a bolded node, it
returns to its original, unbolded state.
522

Chapter 33 • Setting Filters for .NET Vuser Scripts
The following table shows the icons that represent the various elements.

Adding References
When you create a new filter, you must add assembly references to the filter
to indicate its behavior. In addition, you can add references to pre-existing
custom filters.

assembly interface

assembly that
couldn't be loaded

method

assembly that was
partially loaded

static
method

class namespace

constructor property

static constructor static
property

event

structure

static event
523

Chapter 33 • Setting Filters for .NET Vuser Scripts
When you open the Add Reference dialog box, the Filter Manager lists all of
the public assemblies in the GAC (Global Assembly Cache). You can add
references that are not listed using the Browse button.

In the bottom pane, the Type column differentiates between the references.
References that reside in the GAC are of the .NET type and references that do
not reside in the GAC are of File type.

The list of references may include different versions of the same assembly. In
this case, choose the version that is most appropriate for your test.

To add a reference through the Filter Manager:

 1 Click the Add Reference button on the toolbar. The Add Reference dialog
box opens.

 2 To add one of the listed items, choose it and click Select. You can choose
multiple components using CTRL-CLICK. The bottom pane shows the selected
references.

 3 To add an assembly that is not in the list, click Browse and locate the
reference on your file system or network.

 4 Repeat the above steps for all of the references you want to add to your filter.
524

Chapter 33 • Setting Filters for .NET Vuser Scripts
 5 Review the list of references displayed in the bottom pane. To clear an item
from the list, select it in the bottom pane and click Remove.

 6 When you finish creating your list of references, click OK to close the dialog
box and add the references to the filter. VuGen adds it to the end of the list
of elements in the Filter Manager’s tree. If any of the references you chose
are not valid assemblies, VuGen will issue an error message.

 7 To remove a reference from the Filter Manager’s tree, select the parent
assembly node and choose Remove Reference from the right-click menu, or
click the Remove Reference button on the toolbar.

After you add a reference, you should view it in the Filter Manager and
determine if all the correct nodes are included or excluded. If necessary, you
can include or exclude specific namespaces, classes, or methods. For more
information, see below, Including and Excluding Elements.

Including and Excluding Elements
After you add references to the filter, you can view all of its nodes in the
Filter Manager’s tree. You can choose to exclude specific namespaces, classes,
or methods, or include those that were excluded by default or by other rules.
The description in the Filter Manager’s lower pane, indicates the reason for
the inclusion or exclusion of the element.

The Filter Manager’s toolbar provides the following buttons for including or
excluding elements:

➤ Include. Indicated by a check mark, includes the selected element. If you
manually include a parent node, the Filter Manager includes the child
elements below it, provided that no other rule exists. For example, if you
include a class, it will include all its methods unless you specifically
excluded a method.
525

Chapter 33 • Setting Filters for .NET Vuser Scripts
➤ Exclude. Indicated by an X, excludes the selected element. The child
elements are also excluded unless they were included by another rule. By
default, when you exclude a class, the Filter Manager applies the Exclude
attribute to the class, but it allows the recording engine to record activity
within the methods of the excluded class. When you exclude a method,
however, the Filter Manager applies Totally Exclude, preventing the
recording engine from recording any activity within the methods of the
excluded class. Advanced users can modify these setting in the filter file. For
more information, see “Advanced Information About Filter Files” on
page 528.

➤ Reset. Removes the manual inclusion or exclusion rule. In this case, the
element may be impacted by other parent elements.

The inclusion and exclusion rules have the following properties:

➤ The rules are hierarchical—if you add an include or exclude rule to a class,
then the derived classes will follow the same rule unless otherwise specified.

➤ A rule on a class only affects its public methods, derived classes, and inner
classes.

➤ A rule on a namespace affects all the classes and their public methods.

➤ Note that adding or removing assemblies does not necessarily affect the
classes that they contain—you can remove an assembly, yet its methods
may be recorded due to the hierarchical nature of the filter.

➤ As part of the filter design, several methods, such as .cctor() and
Dispose(bool), do not follow the standard hierarchal rules.

Note: The resetting of a parent node does not override a manual inclusion
or exclusion applied to a child node. For example, if you manually exclude a
method, and then reset its class, which by default included all sub-nodes,
your method will remain excluded.

Properties and events are view-only and cannot be included or excluded
through the Filter Manager. In addition, several system related elements are
protected and may not be altered.
526

Chapter 33 • Setting Filters for .NET Vuser Scripts
For tips about including and excluding elements in the filter, see
“Determining which Elements to Include or Exclude” on page 516.

To add or remove assemblies, use the Add and Remove Reference buttons as
described in “Adding References” on page 523. The following section
describes how to include namespaces, classes, and methods.

To include or exclude an element:

 1 Expand the tree hierarchy and choose a namespace, class, or method.

 2 To include an element, select it and click the Include button or use the
Include command on the right-click menu.

 3 To exclude an element, click the Exclude button or use the Exclude
command on the right-click menu.

 4 To reset an element to its default settings, click the Reset button or choose
Reset from the right-click menu.

To verify that the change took effect, select the component and view the
bottom pane.

Viewing an Impact Log
The Impact Log indicates what your last changes were and how they
affected your filter. The user actions are listed in descending order, with the
latest changes at the top.

For each element affected by your manual inclusion or exclusion, the log
indicates how it affected the element. It also provides a link to that element
in the Filter Manager.
527

Chapter 33 • Setting Filters for .NET Vuser Scripts
To view the Impact Log, click the Impact Log button on the Filter Manager’s
toolbar or choose Actions > View Impact Log in the Filter Manager window.

Advanced Information About Filter Files
In the Filter Manager’s tree hierarchy, it only displays public classes and
methods. It does not show non-public classes or delegates.

You can add classes or methods that are not public by manually entering
them in the filter’s definition file.

The filter definition files, <filter_name>.xml reside in the dat\DotnetFilters
folder of your installation. The available Action properties for each element
are: Include, Exclude, or Totally Exclude. For more information, see
“Including and Excluding Elements” on page 525.
528

Chapter 33 • Setting Filters for .NET Vuser Scripts
By default, when you exclude a class, the Filter Manager applies Exclude,
excluding the class, but including activity generated by the excluded class.
When you exclude a method, however, it applies Totally Exclude, excluding
all referenced methods.

For example, suppose Function A calls function B. If Function A is Excluded,
then when the service calls Function A, the script will include a call to
Function B. However, if function A is Totally Excluded, the script will not
include a call to Function B. Function B would only be recorded if called
directly—not through Function A.

VuGen saves a backup copy of the filter as it was configured during the
recording, RecordingFilterFile.xml, in the script’s data folder. This is useful if
you made changes to the filter since your last recording and you need to
reconstruct the environment.
529

Chapter 33 • Setting Filters for .NET Vuser Scripts
530

34
Creating Web Vuser Scripts

You use VuGen to develop Web Vuser scripts based on your actions while
you operate a client browser.

This chapter includes:

 ➤ About Developing Web Level Vuser Scripts on page 531

 ➤ Introducing Web Vusers on page 532

 ➤ Understanding Web Vuser Technology on page 533

 ➤ Choosing a Web Vuser Type on page 533

 ➤ Getting Started with Web Vuser Scripts on page 537

 ➤ Recording a Web Session on page 539

 ➤ Converting Web Vuser Scripts into Java on page 540

The following information applies to Web (Click and Script) and Web
(HTTP/HTML) Vuser scripts.

About Developing Web Level Vuser Scripts

You use VuGen to develop Web Vuser scripts. While you navigate through a
site performing typical user activities, VuGen records your actions and
generates a Vuser script. When you run the script, the resulting Vuser
emulates a user accessing the Internet.

After you create a Vuser script, you run the script in stand-alone mode using
VuGen. When the execution is successful, you are ready to integrate the
Vuser script into a scenario. For details on how to integrate a Vuser script
into a scenario, refer to the HP LoadRunner Controller User’s Guide.
531

Chapter 34 • Creating Web Vuser Scripts
For certain Vuser types, you can create a Business Process Report for
Microsoft Word that provides information about the script and the events
that were recorded. For more information, see “Creating Business Process
Reports” in Volume I-Using VuGen.

Introducing Web Vusers

Suppose you have a Web site that displays product information for your
company. The site is accessed by potential customers. You want to ensure
that the response time for any customer query is less than a specified value
(for example, 20 seconds)—even when a large number of users (for example,
200) access the site simultaneously. You use Vusers to emulate this case,
where the Web server services simultaneous requests for information. Each
Vuser could do the following:

➤ Load a home page

➤ Navigate to the page containing the product information

➤ Submit a query

➤ Wait for a response from the server

You can distribute several hundred Vusers among the available testing
machines, each Vuser accessing the server by using its API. This enables you
to measure the performance of the server under the load of many users.

The program that contains the calls to the server API is called a Vuser script.
It emulates a browser application and all of the actions performed by the
browser. Using the Controller, you assign the script to multiple Vusers. The
Vusers execute the script and emulate user load on the Web server.
532

Chapter 34 • Creating Web Vuser Scripts
Understanding Web Vuser Technology

VuGen creates Web Vuser scripts by recording the activity between a
browser and a Web server. VuGen monitors the client (browser) end of the
system and traces all the requests sent to, and received from, the server.

When you run a recorded Vuser script, the Vuser communicates directly
with the server without relying on client software. Instead, the Vuser script
executes calls directly to the Web server via API functions.

Choosing a Web Vuser Type

When creating a new Web Vuser script, you can choose from two types of
Web Vusers:

➤ Web (Click and Script)

➤ Web (HTTP/HTML)

533

Chapter 34 • Creating Web Vuser Scripts
Web (Click and Script)

The Web (Click and Script) Vuser is a solution for recording Web sessions on
a user-action GUI level. VuGen creates a GUI-level script that intuitively
represents actions in the Web interface. For example, it generates a
web_button function when you click a button to submit information, and
generates a web_edit_field function when you enter text into an edit box.

Web (Click and Script) Vusers support non-HTML code such as Javascript on
the client side. VuGen creates an intuitive script that accurately emulates
your actions on the Web page. In contrast, Web (HTTP/HTML) scripts do not
support Javascript. Instead, VuGen includes the Javascript as a sub-resource
of the page’s web_url function.

Web (Click and Script) Vusers handle most correlations automatically,
reducing the scripting time. In most cases, you do not need to define rules
for correlations or perform manual correlations after the recording.

Web (Click and Script) Vusers also allow you to generate detailed Business
Process Reports which summarize the script and its replay results.

For example, when you click a button to submit data, VuGen generates
web_button. If the button is an image, VuGen generates
web_image_submit. In the following example, a user clicked the login
button.

…
web_image_submit("Login",

"Snapshot=t4.inf",
DESCRIPTION,
"Alt=Login",
"Name=login",
"FrameName=navbar",
ACTION,
"ClickCoordinates=31,6",
LAST);}
534

Chapter 34 • Creating Web Vuser Scripts
The next section illustrates a user navigating to the Asset ExpressAdd process
under the Manage Assets branch. The user navigates by clicking the text
links of the desired branches, generating web_text_link functions.

In the following example, web_list emulates the selection of a list item.

web_text_link("Manage Assets_2",
DESCRIPTION,
"Text=Manage Assets",
"Ordinal=2",
"FrameName=main",
LAST);

web_text_link("Use",
DESCRIPTION,
"Text=Use",
"FrameName=main",
LAST);

web_text_link("Asset ExpressAdd",
DESCRIPTION,
"Text=Asset ExpressAdd",
"FrameName=main",
LAST);

…
web_list("Year",

DESCRIPTION,
"Name=Year",
"FrameName=CalFrame",
ACTION,
"Select=2000",
LAST);
535

Chapter 34 • Creating Web Vuser Scripts
When you click on an image that is associated with an image map, VuGen
generates a web_map_area function.

Note: Web (Click and Script) Vusers do not support Applets or VB Script. If
the Web site under test contains these items, use the Web (HTTP/HTML)
user.

Web (HTTP/HTML)

When recording a Web (HTTP/HTML) script, VuGen records the HTTP traffic
and server response over the Internet. The scripts contain detailed
information about your actions in the browser.

The Web (HTTP/HTML) Vuser provides two recording levels: HTML-based
script and URL-based script. These levels lets you specify what information
to record and which functions to use when generating a Vuser script. For
more information about selecting a Recording level, see “Selecting a
Recording Level” on page 598.

This Vuser type does not natively support Javascript—instead it stores it as a
resource of the Web page.

Tip: For most applications, including those with JavaScript, use Web (Click
and Script) Vusers. For browser applications with applets and VB Script or
for non-browser applications, use the Web (HTTP/HTML) Vuser.

web_map_area("map2_2",
DESCRIPTION,
"MapName=map2",
"Ordinal=20",
"FrameName=CalFrame",
LAST);
536

Chapter 34 • Creating Web Vuser Scripts
Getting Started with Web Vuser Scripts

This section provides an overview of the process of developing Web Vuser
scripts.

To develop a Web Vuser script:

 1 Create a new script using VuGen.

Click on VuGen’s Start Page tab and click on File > New. Choose Web (Click
and Script) or Web (HTTP/HTML) Vuser script from the e-business category,
in either single or multiple protocol mode.

For details about creating a new script, see “Recording with VuGen” in
Volume I-Using VuGen.

 2 Set the recording options.

Set the recording options. For information about setting common Internet
recording options, see Chapter 38, “Setting Recording Options for Internet
Protocols.”

For details about selecting a recording level, see Chapter 39, “Setting
Recording Options for Web Vusers.”

For Web (Click and Script) specific options, see Chapter 37, “Recording with
Click and Script.”

 3 Record a browser session.

Record your actions while you navigate your Web site.

For details about creating a new script, see “Recording with VuGen” in
Volume I-Using VuGen.

 4 Enhance the recorded Vuser script.

Enhance the Vuser script by inserting transactions, rendezvous points,
checks, and service steps.

For details, see Chapter 42, “Verifying Web Pages Under Load”, Chapter 43,
“Modifying Web and Wireless Vuser Scripts”, and Chapter 44, “Setting
Correlation Rules for Web Vuser Scripts.”
537

Chapter 34 • Creating Web Vuser Scripts
 5 Define parameters (optional).

Define parameters for the fixed values recorded into your script. By
substituting fixed values with parameters, you can repeat the same Vuser
action many times using different values.

For details, see “Creating Parameters” in Volume I-Using VuGen.

 6 Configure the run-time settings.

The run-time settings control Vuser behavior during script execution. These
settings include general run-time settings (iteration, log, think time, and
general information), and Web-related settings (proxy, network, and HTTP
details).

For details, see “Configuring Run-Time Settings” in Volume I-Using VuGen.

 7 Perform correlation.

For Web (HTTP/HTML) scripts, Scan your Vuser script for correlations and
use one of VuGen’s mechanisms to implement them.

For details on setting up automatic correlation, see Chapter 44, “Setting
Correlation Rules for Web Vuser Scripts.” For information on correlation
after the recording, see Chapter 45, “Correlating Vuser Scripts After
Recording.”

 8 Run and debug the Vuser script using VuGen.

Run the Vuser script from VuGen to verify that it runs correctly.

For details, see “Running Vuser Scripts in Standalone Mode” in Volume I-
Using VuGen and “Viewing Test Results” in Volume I-Using VuGen.

After you create a script, you integrate it into your environment: a
LoadRunner scenario, Performance Center load test, or Business Process
Monitor profile. For more information, refer to the HP LoadRunner Controller,
Performance Center, or HP Business Availability Center documentation.
538

Chapter 34 • Creating Web Vuser Scripts
Recording a Web Session

When you record a Web session, VuGen monitors all the actions that you
perform in your Web browser. Your activities can include hyperlink jumps
(both hypertext and hypergraphic) and form submissions. While recording,
VuGen saves the recorded actions in a Web Vuser script.

Each Vuser script that you create contains at least three sections: vuser_init,
one or more Actions, and vuser_end. During recording, you can select the
section of the script into which VuGen will insert the recorded functions.
The vuser_init and vuser_end sections are generally used for recording server
logon and logoff procedures, which are not repeated when you run a Vuser
script with multiple iterations.

You should therefore record a Web session into the Actions sections so that
the complete browser session is repeated for each iteration.
539

Chapter 34 • Creating Web Vuser Scripts
Converting Web Vuser Scripts into Java

VuGen provides a utility that enables you to convert a script created for a
Web Vuser into a script for Java Vusers. This also allows you to create a
hybrid Vuser script for both Web and Java.

To convert a Web Vuser script into a Java Vuser script:

 1 Create an empty Java Vuser script and save it.

 2 Create an empty Web Vuser script and save it.

 3 Record a Web session using standard HTML/HTTP recording.

 4 Replay the Web Vuser script. When it replays correctly, cut and paste the
entire script into a text document and save it as a text .txt file. In the text
file, modify any parameter braces from the Web type, "{ }" to the Java type,
"< >".

 5 Open a DOS command window and go to your product’s dat directory.

 6 Type the following command:

<application_directory>\bin\sed -f web_to_java.sed filename > outputfilename

where filename is the full path and filename of the text file you saved
earlier, and outputfilename is the full path and filename of the output file.

 7 Open the output file, and copy its contents into your Java Vuser script
action section at the desired location. If you are pasting the contents into an
empty custom Java template (Java Vuser type), modify the line containing
public int action() as follows:

public int action() throws Throwable

This change is done automatically for recorded Java users (RMI and CORBA).

Parameterize and correlate the Vuser script as you would with an ordinary
Java script and run it.
540

35
Tips for Web (Click and Script) Vusers

The Record, Replay and Enhancement tips provide guidelines for developing
Web (Click and Script) scripts.

This chapter includes:

 ➤ Recording Issues on page 541

 ➤ Recording Tips on page 543

 ➤ Replay Problems on page 545

 ➤ Replay Tips on page 547

 ➤ Miscellaneous Problems on page 548

 ➤ Miscellaneous Tips on page 550

 ➤ Enhancing Your Web (Click and Script) Vuser Script on page 551

The following information applies to the Web (Click and Script), Oracle
Web Applications 11i, and PeopleSoft Enterprise protocols.

Recording Issues

The following section lists the most common recording problems:

Application behaves differently while being recorded
If your application behaves differently during recording, than it does
without recording, you should determine if the recording problem is unique
to Web (Click and Script). The effect may be that a Web page will not load,
part of the content is missing, a popup window does not open, and so forth.
541

Chapter 35 • Tips for Web (Click and Script) Vusers
Create a new Web (HTTP/HTML) script and repeat the recording.

In the event that the recording is OK in Web (HTTP/HTML), it is
recommended to disable socket level recording (see “Disable socket level
recording” on page 544). The problem may be the result of an event listener.
Use trial and error to disable event listeners in the Web Event Configuration
Recording Options, and then re-record your session as a Web (Click and
Script) user.

To disable an event listener:

➤ Open the Recording Options. Choose Tools > Recording Options and select
the GUI Properties:Web Event Configuration node.

➤ Click Custom Settings and expand the Web Objects node. Select an object.

➤ Choose Disabled from the list in the Record column for the relevant Web
object. If the recording still does not work, enable the listener you
previously disabled, and try disabling another one. Repeat these steps until
your recording succeeds.

Dynamic menu navigation was not recorded
A dynamic menu is a menu that dynamically changes depending on where
you select it. If the dynamic menu navigation was not recorded, record
again using “high” event configuration mode.

To set the configuration level to high:

➤ Open the Recording Options. Choose Tools > Recording Options and select
the GUI Properties:Web Event Configuration node.

➤ Move the slider to High.

Certain user actions were not recorded
Check if there is a Java applet running inside the browser. If not, record the
script with the Web (HTTP/HTML) protocol.
542

Chapter 35 • Tips for Web (Click and Script) Vusers
Recording Tips

Use the mouse and not the keyboard
It is preferable to click on an object with the mouse rather then using the
keyboard. During recording, use only GUI objects that are within the
browser's pane. Do not use any browser icons, controls, the Stop button, or
menu items, such as View > Refresh. You may, however, use the Refresh,
Home, Back and Forward buttons and the address bar.

Do not record over an existing script
It is best to record into a newly created script—not an existing one.

Avoid context menus
Avoid using context menus during recording. Context menus are menus
which pop up when clicking an item in a graphical user interface, such as
right-click menus.

Avoid working in a browser while recording
During recording, do not work in any browser window other than the
browser windows opened by VuGen.

Wait for downloads
Wait for all downloads to complete before doing any action, such as clicking
on a button or filling in a text field.

Wait for pages to load
During recording, it is best to wait for the page to load completely before
doing the next step. If you did not wait for all of the pages to load, record
the script again.
543

Chapter 35 • Tips for Web (Click and Script) Vusers
Navigate to start page
If the last page in an action does not contain the links and buttons that were
available at the start of the iteration, then the next iteration will fail. For
example, if the first page has a text link Book A Flight, make sure to navigate
to the appropriate page at the end of your recording, so that the same link
will be visible at the end of the business process.

Use a higher event configuration level
Record the business process again the High Event Configuration level. For
more information on changing the Event Configuration level, see “Dynamic
menu navigation was not recorded” on page 542.

Disable socket level recording
In certain cases, the capturing of the socket level messages disrupts the
application. For most recordings, socket level data is not required. To
prevent the recording of socket level data, disable the option in the
recording options. For more information, see “Recording Settings” on
page 571.

Enable the record rendering-related property values
If the client-side scripts of the application use a lot of styling activities,
enable the Record rendering-related property values option before
recording the script. For example, enable this option to record additional
DOM objects such as offsetTop. Note that enabling this option may decrease
the replay speed.

To enable record rendering-related property values:

➤ Open the Recording Options. Choose Tools > Recording Options and
select the GUI Properties:Advanced node.
544

Chapter 35 • Tips for Web (Click and Script) Vusers
Replay Problems

GUI object not found

Is the problematic step at the beginning of the second iteration?

If the error occurs at the beginning of the second iteration’s Action section,
it is probably the result of a starting page that was present for the first
iteration, but missing for the second one. If the last page in an action does
not contain the links and buttons that were available at the start of the
iteration, then the next iteration will fail. For example, if the first page has a
text link Book A Flight, make sure to navigate to the appropriate page, so
that the same link will be visible at the end of the business process.

Is it a text link containing non-ASCII characters?

If the problem occurs with non-ASCII characters, you should instruct VuGen
to covert the data toa suitable character set.

To enable data conversion on Windows machines:

 1 Open the Run-Time settings. Choose Vuser > Run-Time Settings and select
the Internet Protocol:Preferences node.

 2 Click Options to open the Advanced Options dialog box.

 3 Locate Charset Conversions by HTTP in the Web (Click and Script) > General
options, and set it to Yes.

To enable UTF-8 conversion for UNIX machines:

 1 Open the Run-Time settings. Choose Vuser > Run-Time Settings and select
the Internet Protocol:Preferences node.

 2 Click Options to open the Advanced Options dialog box.

 3 Locate Convert from/to UTF-8 in the General options and set it to Yes.

Alternatively, view the list of alternatives that are displayed when a link is
not found. Enter the displayed text as-is, such as hex escape sequences \xA0
or any other non-standard format.
545

Chapter 35 • Tips for Web (Click and Script) Vusers
Can you run the same sequence of actions twice in the application?

In some cases, you can only perform a certain process once, such as deleting
a user from the database. Replay will fail after the first iteration, because the
action is no longer valid. Verify that your business process can be repeated
in the application more than once with the same data, without recording
again.

Were the image properties 'Id', 'Name' and 'Alt' empty?

In Tree view, double click on the previous image step to open its properties.
If the Id, Name, and Alt properties are empty, provide further identification
of the image, such as its file name in the Src property.

Alternatively, you add an Ordinal argument to specify the occurrence
number of the image on that page. The Ordinal argument uniquely
identifies each image on the page where all other identification arguments
are not unique. For more information, see the Online Function Reference (Help
> Function Reference).

Did the step’s description change?

Check the Replay Log in the Output window, for a list of the objects in the
problematic step. In some cases, the object description changes slightly from
run to run.

There are several solutions:

➤ If the new value is stable, open the Script View and manually modify the
value of the step’s DESCRIPTION argument.

➤ If the description changes from run to run, you can use a regular expression
in the DESCRIPTION argument. For more information, see the Online
Function Reference (Help > Function Reference).

➤ Alternatively, replace the problematic object description property, such as
Name, with the Ordinal property For more information, see the Online
Function Reference (Help > Function Reference).

Did the page load completely during recording?

During recording, it is best to wait for the page to load completely before
doing the next step. If you did not wait for all of the pages to load, record
the script again.
546

Chapter 35 • Tips for Web (Click and Script) Vusers
Replay Tips

The following tips may help you in troubleshooting your problems:

Do not reorder
Do not reorder the statements within a recorded script. Also, copying
segments of code from one Action to another is not recommended.

Convert non-ASCII characters
If your links contain non-ASCII characters, you should instruct VuGen to
convert the data to or from the UTF-8 format.

To enable UTF-8 conversion:

➤ Open the Recording Options. Choose Vuser > Run-Time Settings and select
the Internet Protocol:Preferences node.

➤ Click Options to open the Advanced Options dialog box.

➤ Locate the Convert from/to UTF-8 option and set it to Yes.

Alternatively, view the list of alternatives that are displayed when a link is
not found. Enter the displayed text as-is, such as the hex escape sequences
\xA0 or any other non-standard format.

Run same sequence of actions twice
In some cases, you can only perform a certain process once, such as deleting
a user from the database. Replay will fail after the first iteration, because the
action in no longer valid. Verify that your business process can be repeated
in the application more than once with the same data, without recording.

Set unique image properties
In Tree view, double click on the previous image step to open its properties.
If the Id, Name, and Alt properties are empty, provide further identification
of the image, such as its file name in the Src property.
547

Chapter 35 • Tips for Web (Click and Script) Vusers
Alternatively, you add an Ordinal argument to specify the occurrence
number of the image on that page. The Ordinal argument uniquely
identifies each image on the page where all other identification arguments
are not unique. For more information, see the Online Function Reference
(Help > Function Reference).

Check the step’s description
If you receive an error GUI Object is not found, check the Replay Log in the
Output window, for a list of the objects in the problematic step. In some
cases, the object description changes slightly from run to run.

There are several solutions:

➤ If the new value is stable, open the Script View and manually modify the
value of the step’s DESCRIPTION argument.

➤ If the description changes from run to run, you can use a regular expression
in the DESCRIPTION argument. For more information, see the Online
Function Reference (Help > Function Reference).

➤ Alternatively, replace the problematic object description property, such as
Name, with the Ordinal property For more information, see the Online
Function Reference (Help > Function Reference).

Miscellaneous Problems

Out of memory error in JavaScript
Increase the JavaScript memory in the Run-Time settings.

To increase the JavaScript memory size:

 1 Open the Recording Options. Choose Vuser > Run-Time Settings and select
the Internet Protocol:Preferences node.

 2 Click Options to open the Advanced Options dialog box.

 3 Locate the Memory Management JavaScript Runtime Memory Size (Kb) and
Memory Management JavaScript Stack Memory Size (Kb) options.

 4 Increase the memory sizes to 512 or higher.
548

Chapter 35 • Tips for Web (Click and Script) Vusers
VuGen displays JavaScript errors
If VuGen displays JavaScript errors in the Replay Log, verify that the
Javascript itself does not contain errors, by enabling IE (Internet Explorer)
script errors.

To show script errors:

 1 Open Internet Explorer. Choose Tools > Internet Options and select the
Advanced tab.

 2 Enable the Display a notification about every script error under the
Browsing section.

 3 Rerun the application in IE. If IE displays script errors, then there is a
problem with the JavaScript application. If it is not possible to fix the
application, you can safely ignore the corresponding replay errors.

Problems following parameterization
If you encounter problems only after you have parameterized values, verify
that the values are valid for your application. Perform business process with
the value of the parameter and verify that the application accepts it.

Problems with applications that utilize styling actions
If the client-side scripts of the application use a lot of styling activities, you
should record the script again after enabling the Record rendering-related
property values option. This enables the recording of additional DOM
objects.

To enable record rendering-related property values:

 1 Open the Recording Options. Choose Tools > Recording Options and select
the GUI Properties:Advanced node.

 2 Enable the Record rendering-related property values option. Re-record the
script.
549

Chapter 35 • Tips for Web (Click and Script) Vusers
Miscellaneous Tips

The following additional tips may help you in troubleshooting your
problems:

Search for warnings
Search for warnings or alerts in the Replay Log.

Verify the response
Verify the response of the previous step is correct using web_reg_find. For
more information, see the Online Function Reference (Help > Function
Reference).

Use alternate navigation
For problematic steps or those using Java applets, Use Alternative
Navigation to replace the Web (Click and Script) step with an HTTP level
step. Note that the HTTP level steps may require manual correlations. To
perform Alternative Navigation, select a step in Tree View, or the text in
Script View, and choose Replace with alternative navigation from the right-
click menu.
550

Chapter 35 • Tips for Web (Click and Script) Vusers
Enhancing Your Web (Click and Script) Vuser Script

The following section describes several enhancements that can assist you in
creating your script.

Most of the features described below are enhancements to the API functions.
For detailed information about the functions and their arguments, see the
Online Function Reference (Help > Function Reference) or click F1 on any
function.

Adding conditional steps
The Web (Click and Script) functions, web_xxxx, allow you to specify
conditional actions during replay. Conditions are useful, for example, if you
need to check for an element and perform an action only if the element is
found.

For example, suppose you perform an Internet search and you want to
navigate to all of the result pages by clicking Next. Since you do not know
how many result pages there will be, you need to check if there is a Next
button, indicating another page, without failing the step. The following
code adds a verification step with a notification—if it finds the Next button,
it clicks on it.

For details about the syntax and use of the VERIFICATION section, see the
Online Function Reference (Help > Function Reference).

Checking a page title
In web_browser steps, you can use the title verification recording option to
check if a title is present on a page. You can instruct the Vuser to perform
this check automatically for every step or every navigation to a new top

While (web_text_link("Next",
DESCRIPTION,
"Text=Next",
VERIFICATION,
"NotFound=Notify",
ACTION,
"UserAction=Click",
LAST) == LR_PASS);
551

Chapter 35 • Tips for Web (Click and Script) Vusers
level window.

In addition, you can manually add title verifications to your script at the
desired locations, using both exact and regular expression matches.

For more information, see the Online Function Reference (Help > Function
Reference).

You can set title verification options directly from within the Recording
options. For more information, see “Setting Advanced GUI Properties” on
page 571.

web_browser("test_step",
DESCRIPTION,
…
VERIFICATION,

"BrowserTitle=Title",
ACTION,]

,
LAST);
552

Chapter 35 • Tips for Web (Click and Script) Vusers
Text check verification
Using text checkpoints, you can verify that a text string is displayed in the
appropriate place on a Web page or application and then perform an action
based on the findings. You can check that a text string exists, ContainsText,
or that it does not exist DoesNotContainText, using exact or regular
expression matching.

For example, suppose a Web page displays the sentence "Flight departing
from New York to San Francisco". You can create a text checkpoint that
checks that the words "New York" are displayed between "Flight departing
from" and "to San Francisco". (In this example, you would need to use
regular expression criteria.)

To implement these checkpoints, you add the Text Check related arguments
to the VERIFICATION section of the step. During replay, Vusers search the
innerText of the browser’s HTML document and any child frames. The
NotFound argument specifies the action to take if verification fails, either
because the object was not found or because the text verification failed:
Error, Warning, or Notify.

You can manually add text verifications to your script for existing steps.
Place the text verification after the step that generated the element.

The text validation arguments are valid for the following Action functions:
web_browser, web_element, web_list, web_text_link, web_table, and
web_text_area.
553

Chapter 35 • Tips for Web (Click and Script) Vusers
Note: You can only use the same type of text verification once per step (for
example, ContainsText twice). If you want to check for multiple texts,
separate them into several steps. You can, however, use different
verifications in the same step (for example, ContainsText &
DoesNotContainText). In this case, all conditions have to be met in order for
the step to pass.

In the following example, the verification arguments check that we were
not directed from www.acme.com to the French version of the website,
acme.com/fr.

web_browser("www.acme.com",
ACTION,
"Navigate=http://www.acme.com/",

LAST);

web_browser("Verify",
VERIFICATION,
"ContainsText=Go to Acme France",
"DoesNotContainText=acme.com in English",

LAST);
554

Chapter 35 • Tips for Web (Click and Script) Vusers
Saving a Java script value to a parameter
The EvalJavaScript argument lets you evaluate Java Script on the Web page.

Suppose you want to click on a link which has the same name as the page
title. The following example evaluates the document title and uses it in the
next web_text_link function.

web_browser("GetTitle",
ACTION,
"EvalJavaScript=document.title;",
"EvalJavaScriptResultParam=title",
LAST);

web_text_link("Link",
DESCRIPTION,
"Text={title}",
LAST);
555

Chapter 35 • Tips for Web (Click and Script) Vusers
Working with custom descriptions
Suppose you want to randomly click a link that belongs to some group. For
example, on hp.com you want to randomly select a country. Regular
description matching will not allow this type of operation. However, using a
custom description argument, you can identify the group with an attribute
that is common to all the links in the group.

Using the DESCRIPTION argument, you specify any attribute of the
element, even those that are not predefined for that element. During replay,
the Vuser searches for those attributes specified in the DESCRIPTION
section. Replay will not fail on any unknown argument in the
DESCRIPTION section.

For example, to find the following hyperlink:

Yahoo, use:

In the following example, since all the relevant links have the same class
name, newmerc-left-ct, you can perform a random click using the following
code:

The following functions do not support the DESCRIPTION argument:
web_browser, web_map_area, web_radio_group, and web_reg_dialog.

web_text_link("yahoo",
DESCRIPTION,
"Text=yahoo",
"my_attribute=bar",
LAST);

web_text_link("Click",
 DESCRIPTION,
 "Class=newmerc-left-ct",
 "Ordinal=random",
 LAST);
556

36
Using Web Vuser Functions

VuGen helps you create Web Vuser scripts that describe user actions on Web
sites. Each script contains functions that correspond directly to each of the
actions taken.

This chapter includes:

 ➤ About Web Vuser Functions on page 558

 ➤ Adding and Editing Functions on page 559

 ➤ General API Notes on page 561

 ➤ Using Values Stored in the Cache on page 563

The following information applies to Web (Click and Script), Web
(HTTP/HTML), Oracle Web Applications 11i, PeopleSoft Enterprise, and
Wireless Vuser scripts.
557

Chapter 36 • Using Web Vuser Functions
About Web Vuser Functions

The functions developed to emulate Internet communication between a
browser or toolkit and a Web server are called Web Vuser functions. Each
Web Vuser function has a web prefix. Some functions are generated when
you record a script; others you must manually insert into the script.

The Web functions are categorized as follows:

➤ Action Functions

➤ Authentication Functions

➤ Check Functions

➤ Connection Definition Functions

➤ Concurrent Group Functions

➤ Cookie Functions

➤ Correlation Functions

➤ Filter Functions

➤ Header Functions

➤ Proxy Server Functions

➤ Replay Functions

➤ Miscellaneous Functions

Web (Click and Script) Vusers use other functions to emulate user actions.

Most functions which are not Action functions, may be used in Web (Click
and Script) Vuser scripts. However, the web_concurrent_start and
web_concurrent_end functions are specific to Web (HTTP/HTML) Vuser
scripts.

For detailed information and examples of the Web Protocol functions, refer
to the Online Function Reference (Help > Function Reference).

For more information on adding general Vuser functions to scripts, see
“Enhancing Vuser Scripts” in Volume I-Using VuGen.
558

Chapter 36 • Using Web Vuser Functions
Adding and Editing Functions

Many of the Web Vuser functions are recorded during the browser or toolkit
session. You can also manually add and edit Web Vuser functions during
and after recording in both the Tree view and Script view.

When you choose a new step to add to your script, VuGen categorizes the
steps in the following types:

Step Type Description

Service A Service step is a function that does not make any changes in the
Web application context. Rather, service steps perform
customization tasks such as setting proxies, providing
authorization information, and issuing customized headers.

URL A URL step is generated when you type a URL into the browser or
use a bookmark to access a specific Web page. Each URL icon
represents a web_url function in the Vuser script. The default
label of a URL icon is the last part of the URL of the target page.

Link VuGen adds a Link step when you click a hypertext link while
recording. Each Link step represents a web_link function in the
Vuser script. The default label of the step is the text string of the
hypertext link (only recorded for the HTML-based recording level).

Image VuGen adds an Image step to the Vuser script when you click a
hypergraphic link during recording. Each Image step represents a
web_image function in the Vuser script. If the image in the
HTML code has an ALT attribute, then this attribute is used as the
default label of the icon. If the image in the HTML code does not
have an ALT attribute, then the last part of the SRC attribute is
used as the icon’s label (only recorded for the HTML-based
recording level).

Submit
Form /
Submit
Data

VuGen adds a Submit Form or Submit Data step when you submit
a form while recording. The default label of the step is the name of
the executable program used to process the form (Submit Form
only recorded for the HTML-based recording level).

Custom
Request

VuGen adds a Custom Request step to a Vuser script when you
record an action that VuGen cannot recognize as any of the
standard actions (i.e., URL, link, image, or form submission). This
is applicable to non-standard HTTP applications.
559

Chapter 36 • Using Web Vuser Functions
To add a new function to an existing Vuser script:

 1 Choose Insert > New Step. The Add Step dialog box opens.

 2 Select the desired function and click OK. Most Web Vuser functions are
under the Services category. The Properties dialog box for that function
opens. This dialog box lets you specify the function’s arguments.

 3 Specify the properties and click OK. VuGen inserts the function with its
arguments at the location of the cursor.

You can edit existing steps by opening the Properties dialog box and
modifying the argument values. This is only valid for protocols that support
tree view (not available for WAP).
560

Chapter 36 • Using Web Vuser Functions
To edit an existing step:

 1 In the tree view, select Properties from the right-click menu. The Properties
dialog box for that function opens.

 2 Modify the argument values as necessary and click OK.

You can manually add general Vuser functions such as transactions,
rendezvous, comments, and log functions during recording. For more
information, see “Enhancing Vuser Scripts” in Volume I-Using VuGen.

General API Notes

This section lists general notes about the Web (Click and Script) functions.
Note that you can specify a regular expression for most object descriptions,
by preceding the text with "/RE" before the equals sign. See the Function
Reference (Help > Function Reference) for more details. For example:

web_text_link("Manage Assets",
DESCRIPTION,
"Text/RE=(Manage Assets)|(Configure Assets)",

LAST);
561

Chapter 36 • Using Web Vuser Functions
Ordinals

The Ordinal attribute is a one-based index to distinguish between multiple
occurrences of identical argument values. In the following example, the two
recorded web_text_link functions have identical arguments, except for the
ordinal. The ordinal value of 2, indicates the second occurrence.

Empty Strings

There is a difference between not specifying an argument and specifying it
as an empty string. When you do not specify an argument, VuGen uses the
default value or ignores it. When you list an argument, but assign it an
empty string as a value, VuGen attempts to find a match with an empty
string or no string at all. For example, omitting the id argument instructs
VuGen to ignore the id property of the HTML element. Specifying "ID="
searches for HTML elements with no id property or with an empty ID.

web_text_link("Manage Assets",
DESCRIPTION,
"Text=Manage Assets",
"FrameName=main",
LAST);

web_text_link("Manage Assets_2",
DESCRIPTION,
"Text=Manage Assets",
"Ordinal=2",
"FrameName=main",
LAST);

web_text_link("Manage Assets_2",
DESCRIPTION,
"Text=Manage Assets",
"Id=",
"FrameName=main",
LAST);
562

Chapter 36 • Using Web Vuser Functions
Using Values Stored in the Cache

You can store data into your browser’s cache, and load it at a later point in
the script.

To implement caching within your script, you manually add the
web_dump_cache and web_load_cache functions.

Dumping Information to the Cache

The first step in implementing caching, is dumping the information to a
cache file. You run the web_dump_cache function to create a cache file in
the location specified in the FileName argument. You only need to run this
function once to generate the cache file.

In the following example, the web_dump_cache function creates a cache file
in C:\temp for each VuserName parameter running the script.

If you run a single Vuser user ten times, VuGen creates ten cache files in the
following format, where the prefix is the VuserName value:

You can modify the first and second arguments (paycheckcache and
paycheck in this example) to reflect the current transaction name. Place this
function at the end of your script, after you have loaded all of the resources.

Loading Information from the Cache

The final step in implementing caching, is loading the information stored in
the cache file. The web_load_cache function loads a cache file whose
location is specified in the FileName argument. Note that the
web_load_cache function requires the cache file to exist. Therefore, you
can only run this function after running web_dump_cache.

web_dump_cache("paycheckcache","FileName=c:\\temp\\{Vuser
Name}paycheck", "Replace=yes", LAST)

Ku001paycheck.cache
Ku002paycheck.cache
Ku003paycheck.cache
…

563

Chapter 36 • Using Web Vuser Functions
In the following example, the web_load_cache function loads the paycheck
cache files from C:\temp.

Inserting the Caching Functions

To implement caching in your script, you must first store the information to
a cache file. During replay, each Vuser calls this information.

To use the caching functions:

 1 Insert the web_dump_cache function at the beginning of your script.

 2 Run the script at least once.

 3 Insert the web_load_cache function into your script, before the Vuser
actions.

 4 Comment out the web_dump_cache function.

 5 Run and save the script.

web_load_cache("ActionLoad","FileName=c:\\temp\\{VuserName}paycheck",LAST)
564

Chapter 36 • Using Web Vuser Functions
Caching Example

The following example illustrates a PeopleSoft Enterprise Vuser viewing the
details of his paycheck.

Action()
{
//web_add_cookie("storedCookieCheck=true; domain=pbntas05; path=/");

web_load_cache("ActionLoad","FileName=c:\\temp\\{VuserName}paycheck",LAST);

web_browser("signon.html",
DESCRIPTION,
ACTION,
"Navigate=http://pbntas05:8200/ps/signon.html",
LAST);

lr_think_time(35);

web_edit_field("userid",
"Snapshot=t1.inf",
DESCRIPTION,
"Type=text",
"Name=userid",
ACTION,
"SetValue={VuserName}",
LAST);
565

Chapter 36 • Using Web Vuser Functions

web_edit_field("pwd",

"Snapshot=t2.inf",
DESCRIPTION,
"Type=password",
"Name=pwd",
ACTION,
"SetValue=HCRUSA_KU0007",
LAST);

lr_start_transaction("login");
web_button("Sign In",

"Snapshot=t3.inf",
DESCRIPTION,
"Type=submit",
"Tag=INPUT",
"Value=Sign In",
LAST);

lr_end_transaction("login", LR_AUTO);

web_image_link("CO_EMPLOYEE_SELF_SERVICE",
"Snapshot=t4.inf",
DESCRIPTION,
"Alt=",
"Name=CO_EMPLOYEE_SELF_SERVICE",
"Ordinal=1",
LAST); …

web_text_link("Sign out",
"Snapshot=t7.inf",
DESCRIPTION,
"Text=Sign out",
"FrameName=UniversalHeader",
LAST);

web_dump_cache("paycheck","FileName=c:\\{VuserName}paycheck", "Replace=yes",
LAST);
return 0;

}

566

37
Recording with Click and Script

The Click and Script solution lets you record Web sessions on a user-action
GUI level for Web, AJAX, and SAP.

This chapter includes:

 ➤ About Recording with Click and Script on page 567

 ➤ Viewing Web (Click and Script) Vuser Scripts on page 568

 ➤ Setting Click and Script Recording Options on page 569

 ➤ Setting Advanced GUI Properties on page 571

 ➤ Configuring Web Event Recording on page 574

The following information applies to the AJAX (Click and Script), Web
(Click and Script), SAP (Click and Script), Oracle Web Applications 11i,
and PeopleSoft Enterprise protocols.

About Recording with Click and Script

The Click and Script mechanism lets you record Web sessions on a user-
action GUI level. VuGen creates a GUI-level script that intuitively represents
actions in the Web interface. For example, it generates a web_button
function when you click a button to submit information, and generates a
web_edit_field function when you enter text into an edit box. For SAP
applications, VuGen records a sap_button function.

For pure Web sessions, the Web (HTTP/HTML) Vuser type create a lower
level script. For more information about choosing a script type for your Web
session, see “Choosing a Web Vuser Type” on page 533.
567

Chapter 37 • Recording with Click and Script
Viewing Web (Click and Script) Vuser Scripts

Click and Script Vuser scripts typically contain several actions which make
up a business process. By viewing the recorded functions that were
generated on a GUI level, you can determine the user’s exact actions during
the recorded session.

For example, in a typical recording, the first stage may contain a sign-in
process. The browser opens on the sign-in page, and a user signs in by
submitting a user name and password and clicking Sign In.
568

Chapter 37 • Recording with Click and Script
For the Web (Click and Script) Vuser, VuGen generates a web_edit_field
function that represents the data entered into an edit field. In the example
that follows, a user entered text into the userid field, and a password into
the pwd field which is encrypted.

Setting Click and Script Recording Options

Before recording a script, you can set options that indicate what to record
and how to generate the script after the recording.

You can set common recording options in the following areas: General,
HTTP Properties, and Network.

vuser_init()
{
web_browser("WebTours",

DESCRIPTION,
ACTION,
"Navigate=http://localhost:1080/WebTours/",
LAST);

web_edit_field("username",
"Snapshot=t2.inf",
DESCRIPTION,
"Type=text",
"Name=username",
"FrameName=navbar",
ACTION,
"SetValue=jojo",
LAST);

web_edit_field("password",
"Snapshot=t3.inf",
DESCRIPTION,
"Type=password",
"Name=password",
"FrameName=navbar",
ACTION,
"SetEncryptedValue=440315c7c093c20e",
LAST);…
569

Chapter 37 • Recording with Click and Script
The following sections discuss the GUI Properties recording options that are
specific for all Vuser types that use the Click and Script mechanism: AJAX
(Click and Script), Web (Click and Script), SAP (Click and Script), Oracle
Applications, and PeopleSoft Enterprise Vusers. These recording options let
you indicate the events to be recorded and which properties to include for
each object.

➤ Setting Advanced GUI Properties

➤ Configuring Web Event Recording

For information on the other Recording Options, see the appropriate
section:

➤ General: Script. See “Setting Script Generation Preferences” in Volume I-
Using VuGen.

➤ General: Recording. See Chapter 39, “Setting Recording Options for Web
Vusers.”

➤ Network: Port Mapping. See “Configuring the Port Mappings” in Volume I-
Using VuGen.

➤ HTTP Properties: Advanced. See “Setting Advanced Recording Options” on
page 588. Note that the Save snapshot resources locally and Generate
web_reg_find functions for page titles options do not apply to GUI-based
scripts (see explanation of GUI-based scripts below).

➤ HTTP Properties: Correlation. See Chapter 44, “Setting Correlation Rules for
Web Vuser Scripts.” Note that there are built-in rules for the Oracle and
PeopleSoft servers. To enable them, select the check box adjacent to your
server name.

Several additional HTTP properties are only configurable for Web
(HTTP/HTML) scripts.
570

Chapter 37 • Recording with Click and Script
Setting Advanced GUI Properties

VuGen lets you set Click and Script advanced options in the following areas:

➤ Recording Settings

➤ Code Generation Settings

Recording Settings
The Recording settings instruct VuGen what to record. You can enable or
disable the following features:

Record rendering-related property values

Records the values of the rendering-related properties of DOM objects (e.g.
offsetTop), so that they can be used during replay. Note that this may
significantly decrease the replay speed (disabled by default).

Record ‘click’ by mouse events

Records mouse clicks by capturing mouse events instead of capturing the
click() method. Enable when the recorded application uses the DOM click()
method, to prevent the generation of multiple functions for the same user
action (enabled by default).

Record socket level data

Enables the recording of socket level data. If you disable this option you will
need to manually add the starting URL before recording. In addition, you
will be unable to regenerate the script on an HTML level. (enabled by
default).

Code Generation Settings
The Code Generation settings instruct VuGen how to generate the script
after the recording. You can enable or disable the following features:
571

Chapter 37 • Recording with Click and Script
Enable generation of out-of-context steps

You can instruct VuGen to create a URL-based script for ActiveX controls
and Java applets, so that they will be replayed. Since these functions are not
part of the native recording, they are referred to as out-of-context recording
(disabled by default).

In the following example, the script was regenerated with the out-of-context
recording option enabled.

web_image_link("Search Flights Button",
"Snapshot=t5.inf",
DESCRIPTION,
"Alt=Search Flights Button",
"FrameName=navbar",
ACTION,
"ClickCoordinates=58,9",
LAST);

web_add_cookie("MSO=SID&1141052844; DOMAIN=localhost");

web_add_cookie("MTUserInfo=hash&47&firstName&Joseph&expDate&%0A&creditCa
rd&&address1&234%20Willow%20Drive&lastName&Marshall%0A&address2&San%2
0Jose%2FCA%2F94085&username&jojo; DOMAIN=localhost");

web_url("FormDateUpdate.class",
"URL=http://localhost:1080/WebTours/FormDateUpdate.class",
"Resource=0",
"RecContentType=text/html",
"Referer=",
"UserAgent=Mozilla/4.0 (Windows 2000 5.0) Java/1.4.2_08",
"Mode=HTTP",
LAST);

…

572

Chapter 37 • Recording with Click and Script
If you disable this option, VuGen does not generate code for the ActiveX
controls and Java applets. In the following example, VuGen only generated
the web_image_link function—not the web_url functions containing the
class files.

Enable automatic browser title verification

Enables automatic browser title verification (disabled by default).

You can also customize the type of title verification.

➤ Perform a title verification for.

each navigation. Performs a title verification only after a navigation.
When a user performs several operations on the same page, such as
filling out a multi-field form, the title remains the same and
verification is not required.

each step. Performs a title verification for each step to ensure that no
step modified the browser title. A modified browser title may cause
the script to fail.

➤ Perform a title verification using the URL if the title is missing. For
browser windows without a title, perform a title verification for each
step using its URL.

web_image_link("Search Flights Button",
"Snapshot=t5.inf",
DESCRIPTION,
"Alt=Search Flights Button",
"FrameName=navbar",
ACTION,
"ClickCoordinates=58,9",
LAST);
573

Chapter 37 • Recording with Click and Script
Configuring Web Event Recording

VuGen creates a script by recording HTML object events triggered by user
actions, such as clicking the mouse or pressing a key while viewing the
document.

You may find that you need to record more or fewer events than VuGen
automatically records by default. You can modify the default event
recording settings by using the Web Event Recording Configuration dialog
box to select one of three standard configurations, or you can customize the
individual event recording configuration settings to meet your specific
needs.

This section describes how to configure VuGen’s handling of Web Events:

➤ Selecting a Standard Event Recording Configuration

➤ Customizing the Event Recording Configuration

➤ Adding and Deleting Listening Events for an Object

➤ Modifying the Listening and Recording Settings for an Event

➤ Resetting Event Recording Configuration Settings

For example, VuGen does not generally record mouseover events on link
objects. If, however, you have a mouseover handler connected to a link, it
may be important for you to record the mouseover event. In this case, you
could customize the configuration to record mouseover events on link
objects whenever they are connected to a handler.
574

Chapter 37 • Recording with Click and Script
Note: Event configuration is a global setting and therefore affects all tests
that are recorded after you change the settings.

Changing the event configuration settings does not affect tests that have
already been recorded. If you find that VuGen recorded more or less than
you need, change the event recording configuration and then re-record the
part of your test that is affected by the change.

Changes to the custom Web event recording configuration settings do not
take effect on open browsers. To apply your changes for an existing test,
make the changes you need in the Web Event Recording Configuration
dialog box, refresh any open browsers, and then start a new recording
session.

Selecting a Standard Event Recording Configuration
The Web Event Recording Configuration dialog box offers three standard
event configuration levels, Basic, Medium, or High. By default, VuGen uses
the Basic configuration level. If VuGen does not record all the events you
need, you may require a higher event configuration level.

Level Description

Basic Default

➤ Always records click events on standard Web
objects such as images, buttons, and radio
buttons.

➤ Always records the submit event within forms.

➤ Records click events on other objects with a
handler or behavior connected.
For more information on handlers and
behaviors, see “Listening Criteria” on page 581.

➤ Records the mouseover event on images and
image maps only if the event following the
mouseover is performed on the same object.
575

Chapter 37 • Recording with Click and Script
To set a standard event-recording configuration:

 1 Open the Recording Options dialog box. Choose Tools > Recording Options.

 2 Select the GUI Properties:Web Event Configuration node.

 3 Use the slider to select your preferred standard event recording
configuration: Basic, Medium, or High.

Medium In addition to the objects recorded in the Basic
level, it records click events on the <DIV>, ,
and <TD> HTML tag objects.

High In addition to the objects recorded in the Medium
level, it records mouseover, mousedown, and
double-click events on objects with handlers or
behaviors attached.

For more information on handlers and behaviors,
see “Listening Criteria” on page 581.

Level Description
576

Chapter 37 • Recording with Click and Script
Tip: Click the Custom Settings button to open the Custom Web Event
Recording dialog box where you can customize the event recording
configuration. For more information, see “Customizing the Event Recording
Configuration” below.

 4 Click OK.

Customizing the Event Recording Configuration

If the standard event configuration levels do not exactly match your
recording needs, you can customize the event recording configuration using
the Custom Web Event Recording Configuration dialog box.

You can customize Web events for standard Web elements, such as an
image, link, WebArea, WebButton, and so forth. You can also set the
recording behavior for any HTML tag that you choose. You add the desired
HTML tag object and then set its recording behavior. For example, you can
configure VuGen to record all mouseover events for all DIV tags.

The Custom Web Event Recording Configuration dialog box enables you to
customize event recording in several ways. You can:

➤ Enable or disable objects to which VuGen should apply special listening or
recording settings

➤ Add or remove events for which VuGen should listen

➤ Modify the listening and recording settings for an event
577

Chapter 37 • Recording with Click and Script
You can modify the event recording configuration using the following
options:

To customize the recording configuration for an event:

 1 Open the Recording Options dialog box. Choose Tools > Recording Options.

 2 Select the GUI Properties:Web Event Configuration node.

Option Description

Event Name Displays a list of events associated with the object.

➤ To add an event to the Events pane, choose Event > Add.
Select the desired event.

➤ To delete an event, click on the event in the Event Name
columns, and choose Event > Delete.

For more information, see “Adding and Deleting Listening
Events for an Object” on page 580.

Listen The criteria for when VuGen listens to the event.

➤ Always. Always listens to the event.

➤ If Handler. Listens to the event if a handler is attached
to it. A handler is code in a Web page, typically a
function or routine written in a scripting language, that
receives control when the corresponding event occurs.

➤ If Behavior. Listens to the event if a DHTML behavior is
attached to it. A DHTML behavior encapsulates specific
functionality or behavior on a page. When applied to a
standard HTML element on a page, a behavior enhances
that element's default behavior.

➤ If Handler or Behavior. Listens to the event if a handler
or behavior is attached to it.

➤ Never. Never listens to the event.

For more information, see “Modifying the Listening and
Recording Settings for an Event” on page 581.

Record Enables or disables recording of the event for the selected
object, or enables recording of the event only if the
subsequent event occurs on the same object.

Reset Resets your settings to a pre-configured level: Basic,
Medium, or High.
578

Chapter 37 • Recording with Click and Script
 3 Click the Custom Settings button. The Custom Web Event Recording
Configuration dialog box opens.

 4 Specify an object:

➤ To configure one of the built-in Web objects, select it in the left pane.

➤ To specify a different HTML tag object, choose Object > Add and enter
the name of the HTML tag whose event you want to record.

 5 In the right pane, specify the Listen and Record behavior for each event as
described above. If the event you want to record does not appear in the right
pane, choose Event > Add to add the event, as described below.

 6 Click OK to save the customization.

 7 Click Reset to reset your settings to a pre-configured level: Basic, Medium, or
High.
579

Chapter 37 • Recording with Click and Script
Adding and Deleting Listening Events for an Object
You can modify the list of events that trigger VuGen to listen to an object.

To add listening events for an object:

 1 In the Custom Web Event Recording Configuration dialog box, select the
object to which you want to add an event—one of the built-in Web objects
or an HTML tag object.

 2 Choose Event > Add. A list of available events opens.

 3 Select the event you want to add. The event is displayed in the Event Name
column in alphabetical order. By default, VuGen listens to the event when a
handler is attached and always records the event (as long as it is listened to
at some level).

For more information on listening and recording settings, see “Modifying
the Listening and Recording Settings for an Event” below.

To delete listening events for an object:

 1 In the Custom Web Event Recording Configuration dialog box, select the
object from which you want delete an event in the left pane.

 2 In the Event Name column, select the event you want to delete.

 3 Choose Event > Delete. The event is deleted from the Event Name column.
580

Chapter 37 • Recording with Click and Script
Modifying the Listening and Recording Settings for an Event

You can select the listening criteria and set the recording status for each
event listed for each object.

Note: The listen and record settings are mutually independent. This means
that you can choose to listen to an event for a particular object, but not
record it, or you can choose not to listen to an event for an object, but still
record the event. For more information, see “Tips for Working with Event
Listening and Recording” on page 583.

Listening Criteria

For each event, you can instruct VuGen when to listen for an event:

➤ Always. Listen every time the event occurs on the object.

➤ If Handler. Listen only if an event handler is attached to the event.

➤ If Behavior. Listen only if a DHTML behavior is attached to the event.

➤ If Handler or Behavior. Listen if an event handler or a DHTML behavior is
attached to the event.

➤ Never. Never listen to the event.

An event handler is code in a Web page, typically a function or routine
written in a scripting language, that receives control when the
corresponding event occurs.

A DHTML behavior encapsulates specific functionality or behavior on a
page. When applied to a standard HTML element on a page, a behavior
enhances that element's default behavior.
581

Chapter 37 • Recording with Click and Script
To specify the listening criterion for an event:

 1 From the Custom Web Event Recording Configuration dialog box, select the
object for which you want to modify the listening criterion.

 2 In the row of the event you want to modify, select the listening criterion
you want from the Listen column.

Select a listening criteria from the list: Always, If Handler, If Behavior,
If Handler or Behavior, or Never.

Recording Status

For each event, you can enable recording, disable recording, or enable
recording only if the next event is dependent on the selected event.

➤ Enabled. Records the event each time it occurs on the object as long as
VuGen listens to the event on the selected object, or on another object to
which the event bubbles.

Bubbling is the process whereby, when an event occurs on a child object,
the event can travel up the chain of hierarchy within the HTML code until it
encounters an event handler to process the event.

➤ Disabled. Does not record the specified event and ignores event bubbling
where applicable.
582

Chapter 37 • Recording with Click and Script
➤ Enabled on next event. (only applicable to the Image and WebArea objects)
Same as Enabled, except that it records the event only if the subsequent
event occurs on the same object. For example, suppose a mouseover
behavior modifies an image link. You may not want to record the
mouseover event each time you happen to move the mouse over this image.
Because only the image that is displayed after the mouseover event enables
the link event, however, it is essential that the mouseover event is recorded
before a click event on the same object.

To set the recording status for an event:

 1 In the Custom Web Event Recording Configuration dialog box, select the
object for which you want to modify the recording status. Select Any Web
Object to set the recording status for all Web objects in the recorded pages.

 2 In the row of the event you want to modify, select a recording status from
the Record column.

Tips for Working with Event Listening and Recording

It can sometimes be difficult to find the ideal listen and recording settings.
When defining these settings, keep in mind the following guidelines:

➤ To record an event on an object, you must instruct VuGen to listen for the
event, and to record the event when it occurs. You can listen for an event on
a child object, even if a parent object contains the handler or behavior, or
you can listen for an event on a parent object, even if the child object
contains the handler or behavior.

However, you must enable recording for the event on the source object (the
one on which the event actually occurs, regardless of which parent object
contains the handler or behavior).
583

Chapter 37 • Recording with Click and Script
For example, suppose a table cell with an onmouseover event handler
contains two images. When a user touches either of the images with the
mouse pointer, the event also bubbles up to the cell, and the bubbling
includes information on which image was actually touched. You can record
this mouseover event by:

➤ Setting Listen on the WebTable mouseover event to If Handler (so that
VuGen "hears" the event when it occurs), while disabling recording on it,
and then setting Listen on the Image mouseover event to Never, while
setting its recording status to Enable (to record the mouseover event on
the image after it is listened to at the WebTable level).

➤ Setting Listen on the Image mouseover event to Always (to listen for the
mouseover event even though the image tag does not contain a behavior
or handler), and setting the recording status on the Image object to
Enabled (to record the mouseover event on the image).

➤ Instructing VuGen to listen for many events on many objects may lower
performance, so try to limit listening settings to the required objects.

➤ In rare situations, listening to the object on which the event occurs (the
source object) may interfere with the event.

Resetting Event Recording Configuration Settings
After you set custom settings, you can restore standard settings by
instructing VuGen to use the default Web Event configuration settings.

Note: When you choose to reset standard settings, your custom settings are
cleared completely.

To restore basic level configuration settings:

 1 In the Recording Options, select the GUI Properties:Web Event
Configuration node.

 2 Click Use Defaults. The standard configuration slider is displayed again and
all event settings are restored to the Basic event recording configuration
level.
584

Chapter 37 • Recording with Click and Script
You can also restore the settings to a specific (base) custom configuration:
Basic, Medium, or High.

To reset the settings to a custom level:

 1 In the Recording Options, select the GUI Properties:Web Event
Configuration node.

 2 Click the Custom Settings button. The Custom Web Event Recording
Configuration dialog box opens.

 3 In the Reset to box, select the standard event recording level you want.

 4 Click Reset. All event settings are restored to the defaults for the level you
selected.
585

Chapter 37 • Recording with Click and Script
586

38-

Setting Recording Options for Internet
Protocols

For protocols that work over the Internet, you can customize the Internet-
related recording options.

This chapter includes:

 ➤ About Setting Recording Options for Internet Protocols on page 587

 ➤ Setting Advanced Recording Options on page 588

 ➤ Setting a Recording Scheme on page 590

The following information only applies to Web, Wireless, and Oracle NCA
protocols.

About Setting Recording Options for Internet Protocols

VuGen creates Vuser scripts that emulate a true Internet environment.

Before recording, you can configure VuGen’s script generation preferences.
You can also set protocol specific recording options for Web Vuser scripts.

For more information, see the Recording Options chapter for your protocol.
You can open the Recording Options dialog box in several ways:

➤ The toolbar button:

➤ The keyboard shortcut: Ctrl+F7

➤ The Tools menu: choose Tools > Recording Options.
587

Chapter 38 • Setting Recording Options for Internet Protocols
Setting Advanced Recording Options

Use the HTTP Properties:Advanced settings to set the recording options in
the following areas:

➤ Internet Preferences Recording Options

➤ Selecting a Recording Engine

➤ Setting a Recording Scheme

Internet Preferences Recording Options
The Internet Preference options allow the customization of code generation
settings in the area of think time, resetting contexts, saving snapshots, and
the generation of web_reg_find functions. Note that some of these options
are not available in multi-protocol mode.

➤ Record think time. (Wireless only) This setting, enabled by default, tells
VuGen to record the think times and generate lr_think_time functions. You
can also set a Think-time Threshold value—if the actual think-time is less
than the threshold, VuGen does not generate a lr_think_time function.

➤ Reset context for each action. (Web, Oracle NCA only) This setting, enabled
by default, tells VuGen to reset all HTTP contexts between actions. Resetting
contexts allows the Vuser to more accurately emulate a new user beginning
a browsing session. This option resets the HTML context, so that a
contextless function is always recorded in the beginning of the action. It
also clears the cache and resets the user names and passwords.

➤ Save snapshot resources locally. This option instructs VuGen to save a local
copy of the snapshot resources during record and replay. This feature lets
VuGen create snapshots more accurately and display them quicker.

➤ Generate web_reg_find functions for page titles. (Web, Oracle NCA only)
This option enables the generation of web_reg_find functions for all HTML
page titles. VuGen adds the string from the page’s title tag and uses it as an
argument for web_reg_find.

➤ Generate web_reg_find functions for sub-frames. Enables the generation
of web_reg_find functions for page titles in all sub-frames of the
recorded page.
588

Chapter 38 • Setting Recording Options for Internet Protocols
➤ Add comment to script for HTTP errors while recording. This option adds a
comment to the script for each HTTP request error. An error request is
defined as one that generated a server response value of 400 or greater
during recording.

➤ Support charset.

➤ UTF-8. This option enables support for UTF-8 encoding. This instructs
VuGen to convert non-ASCII UTF-8 characters to the encoding of your
locale’s machine in order to display them properly in VuGen. You should
enable this option only on non-English UTF-8 encoded pages. The
recorded site's language must match the operating system language. You
cannot record non-English Web pages with different encodings (e.g. UTF-
8 together with ISO-8859-1 or shift_jis) within the same script.

➤ EUC-JP. For users of Japanese Windows, select this option to enable
support for Web sites that use EUC-JP character encoding. This instructs
VuGen to convert EUC-JP strings to the encoding of your locale’s
machine in order to display them properly in VuGen. VuGen converts all
EUC-JP (Japanese UNIX) strings to the SJIS (Japanese Windows) encoding
of your locale’s machine, and adds a web_sjis_to_euc_param function to
the script. (Kanji only)

Selecting a Recording Engine
By default, for Web(HTTP/HTML) Vusers, VuGen uses the multi-protocol
recording engine for all recordings, even if you are only recording a single
protocol.

To use the single-protocol recording engine for backward compatibility,
select the Record script using earlier recording engine option in the
Advanced Recording Options. If you enable this option, VuGen will use the
single-protocol engine the next time you record a Web(HTTP/HTML)
session.
589

Chapter 38 • Setting Recording Options for Internet Protocols
Setting a Recording Scheme

You can further customize the recording by specifying a recording scheme in
the following areas:

➤ Recording Custom Headers

➤ Filtering Content Type

➤ Specifying Non-Resource Content Types

Recording Custom Headers
Web Vusers automatically send several standard HTTP headers with every
HTTP request submitted to the server. Click Headers to instruct VuGen to
record additional HTTP headers. You can work in three modes: Do not
Record headers, Record headers in list, or Record headers not in list. When
you work in the first mode, VuGen does not record any headers. In the
second mode, VuGen only records the checked custom headers. If you
specify Record headers not in list, VuGen records all custom headers except
for those that are checked and other risky headers.

The following standard headers are known as risky headers: Authorization,
Connection, Content-Length, Cookie, Host, If-Modified-Since, Proxy-
Authenticate, Proxy-Authorization, Proxy-Connection, Referer, and
WWW-Authenticate. They are not recorded unless selected in the Header
list. The default option is Do not record headers.

In the Record headers in list mode, VuGen inserts a web_add_auto_header
function into your script for each of the checked headers that it detects. This
mode is ideal for recording risky headers that are not recorded unless
explicitly stated.

In the Record headers not in list mode, VuGen inserts a
web_add_auto_header function into your script for each of the unchecked
headers that it detects during recording.

To determine which custom headers to record, you can perform a recording
session indicating to VuGen to record all headers (see procedure below).
Afterwards, you can decide which headers to record and which to exclude.

590

Chapter 38 • Setting Recording Options for Internet Protocols
In this example, the Content-type header was specified in the Record
headers in list mode. VuGen detected the header and added the following
statement to the script:

indicating to the server that the Content-type of the application is
x-www-form-urlencode.

To control the recording of custom headers:

 1 In the Recording Options tree, select the HTTP Properties:Advanced node.

 2 Click Headers. The Headers dialog box opens.

 3 Use one of the following methods:

➤ To instruct VuGen not to record any Headers, choose Do not record
headers.

➤ To record only specific headers, select Record headers in list and select
the desired custom headers in the header list. Note that standard headers
(such as Accept), are selected by default.

➤ To record all headers, select Record headers not in list and do not select
any items in the list.

web_add_auto_header("Content-Type",
"application/x-www-form-urlencoded");
591

Chapter 38 • Setting Recording Options for Internet Protocols
➤ To exclude only specific headers, select Record headers not in list and
select the headers you want to exclude.

 4 Click Restore List to restore the list to the corresponding default list. The
Record headers in list and Record headers not in list each have a
corresponding default list.

 5 Click OK to accept the settings and close the Headers dialog box.

Filtering Content Type
VuGen allows you to filter the content type for your recorded script. You
specify the type of the content you want to record or exclude from your
script. You can work in three modes: Do not filter content types, Exclude
content types in list, or Exclude content types not in list. When you work in
the first mode, VuGen does not filter any content type. In the second mode,
VuGen only excludes the selected content types. If you specify Exclude
content types not in list, VuGen filters all content type except for the ones
that are checked. By default, no filters are active.

For example, if you are only interested in the text and images on your Web
site, you select Exclude content types not in list and specify the types
text/html, image/gif, and image/jpeg. VuGen will record all HTML pages
and images, and exclude resources such as text/css, application/x-javascript,
or other resources that appear on the site.
592

Chapter 38 • Setting Recording Options for Internet Protocols
To filter content during recording:

 1 In the Recording Options tree, select the HTTP Properties:Advanced node.

 2 Click Content Types. The Content Type Filters dialog box opens.

 3 Use one of the following methods:

➤ To instruct VuGen not to filter any content, choose Do not filter content
types.

➤ To exclude only specific content types, select Exclude content types in list
and select the desired content types from the list.

➤ To include only specific content types, select Exclude content types not
in list and select the content types you want to include.

 4 Click Restore List to restore the list to the corresponding default list. The
Exclude content types in list and Exclude content types not in list each have
a corresponding default list.

 5 Click OK to accept the settings and close the Content Type Filters dialog
box.
593

Chapter 38 • Setting Recording Options for Internet Protocols
Specifying Non-Resource Content Types
When you record a script, VuGen indicates whether or not it will retrieve
the resource during replay using the Resource attribute in the web_url
function. If the Resource attribute is set to 0, the resource is retrieved during
script execution. If the Resource attribute is set to 1, the Vuser skips the
resource type.

You can exclude specific content types from being handled as resources. For
example, you can indicate to VuGen that gif type resources should not be
handled as a resource and therefore be downloaded unconditionally. When
VuGen encounters a gif type resource, it sets the Resource attribute to 0,
indicating to VuGen to download gifs unconditionally during replay.

web_url("WebTours",
"URL=http://localhost/WebTours/",
"Resource=0",
"RecContentType=text/html",
"Referer=",
"Snapshot=t1.inf",
"Mode=HTML",
LAST);
594

Chapter 38 • Setting Recording Options for Internet Protocols
To specify which content should not be recorded as resources:

 1 In the Recording Options tree, select the HTTP Properties:Advanced node.

 2 Click Non-Resources to open the dialog box and display the list of content
types which should not be recorded as resources.

 3 Click the "+" sign to add a content type to the list. Click the "-" sign to
remove an existing entry.

 4 Select the check boxes adjacent to the items you want to enable.

 5 Click Restore List to restore the list to the default list.

 6 Click OK to accept the settings and close the Non-Resources list.
595

Chapter 38 • Setting Recording Options for Internet Protocols
596

39
Setting Recording Options for Web
Vusers

Before recording a Web session, you can customize the recording options.

This chapter includes:

 ➤ About Setting Recording Options on page 597

 ➤ Selecting a Recording Level on page 598

 ➤ Setting the Recording Level on page 611

The following information applies to Web (HTTP/HTML), Web (Click and
Script), Web/WinSocket, Oracle Web Applications 11i, and PeopleSoft
Enterprise Vuser scripts.

About Setting Recording Options

VuGen enables you to generate Web Vuser scripts by recording typical
processes that users perform on your Web site.

Before recording, you can configure the Recording Options and specify the
information to record, the browser or client with which to record, and
designate the content for your scripts.

You can set the common HTTP Properties recording options, such as proxy
settings and other advanced settings. For more information see Chapter 38,
“Setting Recording Options for Internet Protocols.”

You can also set Correlation recording options for Web Vuser scripts. For
more information, see Chapter 44, “Setting Correlation Rules for Web Vuser
Scripts.”
597

Chapter 39 • Setting Recording Options for Web Vusers
Selecting a Recording Level

VuGen lets you specify what information to record and which functions to
use when generating a Vuser script, by selecting a recording level. The
recording level you select, depends on your needs and environment. The
available levels are GUI-based script, HTML-based script, and URL-based
script. For Web HTTP/HTML Vusers, only the two latter options are
available.

Use the following guidelines to decide which recording level to choose:

➤ For most applications, including those with JavaScript, use a GUI-based
script. This level is also recommended for PeopleSoft Enterprise and Oracle
Web Applications 11i Vusers.

➤ For browser applications with applets and VB Script, create an HTML-based
script.

➤ For non-browser applications, use a URL-based script.
598

Chapter 39 • Setting Recording Options for Web Vusers
The GUI-based script option instructs VuGen to record HTML actions as
context sensitive GUI functions such as web_text_link.

/* GUI-based mode - CS type functions with JavaScript support*//
vuser_init()
{
web_browser("WebTours",

DESCRIPTION,
ACTION,
"Navigate=http://localhost:1080/WebTours/",
LAST);

web_edit_field("username",
"Snapshot=t2.inf",
DESCRIPTION,
"Type=text",
"Name=username",
"FrameName=navbar",
ACTION,
"SetValue=jojo",
LAST);

…

599

Chapter 39 • Setting Recording Options for Web Vusers
The HTML-based script level generates a separate step for each HTML user
action. The steps are also intuitive, but they do not reflect true emulation of
the JavaScript code.

/* HTML-based mode - a script describing user actions*/
...
web_url("WebTours",

"URL=http://localhost/WebTours/",
"Resource=0",
"RecContentType=text/html",
"Referer=",
"Snapshot=t1.inf",
"Mode=HTML",
LAST);

web_link("Click Here For Additional Restrictions",
"Text=Click Here For Additional Restrictions",
"Snapshot=t4.inf",
LAST);

web_image("buttonhelp.gif",
"Src=/images/buttonhelp.gif",
"Snapshot=t5.inf",
LAST);

…

600

Chapter 39 • Setting Recording Options for Web Vusers
The URL-based script mode option instructs VuGen to record all browser
requests and resources from the server that were sent due to the user's
actions. It automatically records every HTTP resource as URL steps (web_url
statements). For normal browser recordings, it is not recommended to use
the URL-based mode since is more prone to correlation related issues. If,
however, you are recording pages such as applets and non-browser
applications, this mode is ideal.

URL-based scripts are not as intuitive as the HTML-based scripts, since all
actions are recorded as web_url steps instead of web_link, web_image, and
so on.

You can switch recording levels and advanced recording options while
recording, provided that you are not recording a multi-protocol script. The
option of mixing recording levels is available for advanced users for
performance testing.

You can also regenerate a script after recording, using a different method
than the original recording. For example, if your record a script on an
HTML-based level, you can regenerate it on a URL-based level. To regenerate
a script, choose Tools > Regenerate Script and click Options to set the
recording options for the regeneration.

/* URL-based mode - only web_url functions */
…
web_url("spacer.gif",

"URL=http://graphics.hplab.com/images/spacer.gif",
"Resource=1",
"RecContentType=image/gif",
"Referer=",
"Mode=HTTP",
LAST);

web_url("calendar_functions.js",
"URL=http://www.im.hplab.com/travelp/calendar_functions.js",
"Resource=1",
"RecContentType=application/x-javascript",
"Referer=",
"Mode=HTTP",
LAST);

…

601

Chapter 39 • Setting Recording Options for Web Vusers
Setting Advanced HTML-Based Options
The HTML-based option, which is the default recording level for Web
(HTTP/HTML) Vusers, instructs VuGen to record HTML actions in the
context of the current Web page. It does not record all resources during the
recording session, but downloads them during replay.

VuGen lets you set advanced options for HTML-based script in the following
areas:

➤ Specifying Script Types

➤ Handling Non HTML-Generated Elements
602

Chapter 39 • Setting Recording Options for Web Vusers
Specifying Script Types

For HTML-based scripts, you can specify the type of script:

➤ A script describing user actions

➤ A script containing explicit URLs only

The first option, A script describing user actions, is the default option. It
generates functions that correspond directly to the action taken. It creates
URL (web_url), link (web_link), image (web_image), and form submission
(web_submit_form) functions. The resulting script is very intuitive and
resembles a context sensitive recording.

/* HTML-based mode - a script describing user actions*//
...
web_url("WebTours",

"URL=http://localhost/WebTours/",
"Resource=0",
"RecContentType=text/html",
"Referer=",
"Snapshot=t1.inf",
"Mode=HTML",
LAST);

web_link("Click Here For Additional Restrictions",
"Text=Click Here For Additional Restrictions",
"Snapshot=t4.inf",
LAST);

web_image("buttonhelp.gif",
"Src=/images/buttonhelp.gif",
"Snapshot=t5.inf",
LAST);

…

603

Chapter 39 • Setting Recording Options for Web Vusers
The second option, A script containing explicit URLs only, records all links,
images and URLs as web_url statements, or in the case of forms, as
web_submit_data. It does not generate the web_link, web_image, and
web_submit_form functions. The resulting script is less intuitive. This
mode is useful for instances where many links within your site have the
same link text. If you record the site using the first option, it records an
ordinal (instance) for the link, but if you record using the second option,
each link is listed by its URL. This facilitates parameterization and
correlation for that step.

The following segment illustrates a session recorded with a script containing
explicit URLs only selected:

/* A HTML-based script containing explicit URLs only*//
…
web_url("Click Here For Additional Restrictions",

"URL=http://www.hplab.com/restrictions.html",
"TargetFrame=",
"Resource=0",
"RecContentType=text/html",
"Referer=http://www.hplab.com/home?…
"Snapshot=t4.inf",
"Mode=HTML",
LAST);

web_url("buttonhelp.gif",
"URL=http://www.hplab.com/home?com/rstr?BV_EngineID...,
"TargetFrame=main",
"Resource=0",
"RecContentType=text/html",
"Referer=http://www.hplab.com/home?…
"Snapshot=t5.inf",
"Mode=HTML",
LAST);

…
604

Chapter 39 • Setting Recording Options for Web Vusers
Handling Non HTML-Generated Elements

Many Web pages contain non-HTML elements, such as applets, XML,
ActiveX elements, or JavaScript. These non-HTML elements usually contain
or retrieve their own resources. For example, a JavaScript js file, called from
the recorded Web page, may load several images. An applet may load an
external text file. Using the following options, you can control how VuGen
records non HTML-generated elements.

The following options are available:

➤ Record within the current script step (default)

➤ Record in separate steps using concurrent groups

➤ Do not record

The first option, Record within the current script step, does not generate a
new function for each of the non HTML-generated resources. It lists all
resources as arguments of the relevant functions, such as web_url, web_link,
and web_submit_data. The resources, arguments of the Web functions, are
indicated by the EXTRARES flag. In the following example, the web_url
function lists all of the non HTML-generated resources loaded on the page:

web_url("index.asp",
"URL=http://www.daisy.com/index.asp",
"TargetFrame=",
"Resource=0",
"RecContentType=text/html",
"Referer=",
"Snapshot=t2.inf",
"Mode=HTML",
EXTRARES,
"Url=http://www.daisy.com/ScrollApplet.class", "Referer=", ENDITEM,
"Url=http://www.daisy.com/board.txt", "Referer=", ENDITEM,
"Url=http://www.daisy.com/nav_login1.gif", ENDITEM,
…
LAST);
605

Chapter 39 • Setting Recording Options for Web Vusers
The second option, Record in separate steps using concurrent groups,
creates a new function for each one of the non HTML-generated resources—
it does not include them as items in the page’s functions (such as web_url,
web_link, and so on). All of the web_url functions generated for a resource,
are placed in a concurrent group (surrounded by web_concurrent_start and
web_concurrent_end).

In the following example, the above session was recorded with this option
selected. A web_url function was generated for the applet and text file
loaded with the applet:

web_url("index.asp",
"URL=http://www.daisy.com/index.asp",
"Resource=0",
"RecContentType=text/html",
"Referer=",
"Snapshot=t2.inf",
"Mode=HTML",
LAST);

web_concurrent_start(NULL);
web_url("ScrollApplet.class",

"URL=http://www.daisy.com/ScrollApplet.class",
"Resource=1",
"RecContentType=application/octet-stream",
"Referer=",
LAST);

web_url("board.txt",
"URL=http://www.daisy.com/board.txt",
"Resource=1",
"RecContentType=text/plain",
"Referer=",
LAST);

web_concurrent_end(NULL);
606

Chapter 39 • Setting Recording Options for Web Vusers
The third option, Do not record, instructs VuGen not to record any of the
resources generated by non-HTML elements.

Note that when you work in HTML-Based mode, VuGen inserts the
TargetFrame attribute in the web_url statement. VuGen uses this
information to display the Web page correctly in the run-time browser and
Test Result report.

When you record the URL-based mode, VuGen records the content of all
frames on the page and therefore omits the TargetFrame attribute.

web_url("buttonhelp.gif",
"URL=http://www.hplab.com/home?com/rstr?BV_EngineID...,
"TargetFrame=main",
"Resource=0",
"RecContentType=text/html",
"Referer=http://www.hplab.com/home?…
"Snapshot=t5.inf",
"Mode=HTML",
LAST);
607

Chapter 39 • Setting Recording Options for Web Vusers
Setting Advanced URL-Based Options
The URL-based mode option instructs VuGen to record all requests and
resources from the server. It automatically records every HTTP resource as
URL steps (web_url statements), or in the case of forms, as
web_submit_data. It does not generate the web_link, web_image, and
web_submit_form functions, nor does it record frames.

VuGen lets you set advanced options for the URL recording mode in the
following area:

➤ Resource Handling

➤ Custom HTTP Requests

Resource Handling

In URL-based recording, VuGen captures all resources downloaded as a
result of a browser request. By default, this option is enabled and VuGen
records the resources in a concurrent group (enclosed by
web_concurrent_start and web_concurrent_end statements) after the
URL. Resources include files such as images, and js files. If you disable this
option, the resources are listed as separate web_url steps, but not marked as
a concurrent group.
608

Chapter 39 • Setting Recording Options for Web Vusers
The following segment illustrates a session recorded with the Create
concurrent groups for resources after their source HTML page option
enabled.

Note that the script includes gif, and js files. This mode also includes other
graphic files and imported file such as imp, txt, and cascading style sheet
(css) files.

web_concurrent_start (NULL);
…
web_url("Click Here For Additional Restrictions",

"URL=http://www.hplab.com/restrictions.html",
"Resource=0",
"RecContentType=text/html",
"Referer=http://www.hplab.com/home?…
"Snapshot=t4.inf",
"Mode=HTTP",
LAST);

web_url("buttonhelp.gif",
"URL=http://www.hplab.com/home?com/rstr?BV_EngineID...,
"Resource=0",
"RecContentType=text/html",
"Referer=http://www.hplab.com/home?…
"Snapshot=t5.inf",
"Mode=HTTP",
LAST);

…
web_concurrent_end (NULL);
609

Chapter 39 • Setting Recording Options for Web Vusers
Generating Custom HTTP Requests

When recording non-browser applications, you can instruct VuGen to
record all HTTP requests as custom requests. VuGen generates a
web_custom_request function for all requests, regardless of their content:

Enabling EUC-Encoded Web Pages

(This option is only for Japanese Windows.) When working with non-
Windows standard character sets, you may need to perform a code
conversion. A character set is a mapping from a set of characters to a set of
integers. This mapping forms a unique character-integer combination, for a
given alphabet. Extended UNIX Code (EUC) and Shift Japan Industry
Standard (SJIS) are non-Windows standard character sets used to display
Japanese writings on Web sites.

Windows uses SJIS encoding, while UNIX uses EUC encoding. When a Web
server is on a UNIX machine and the client is Windows, the characters in a
Web site are not displayed on the client machine properly due to the
difference in the encoding methods. This affects the display of EUC-
encoded Japanese characters in a Vuser script.

During recording, VuGen detects the encoding of a Web page through its
HTTP header. If the information on the character set is not present in the
HTTP header, it checks the HTML meta tag. If the page does not send the
character set information to the HTTP header or meta tag, VuGen does not
detect the EUC encoding.

If you know in advance that a Web page is encoded in EUC, you can instruct
VuGen to use the correct encoding during record. To record a page in EUC-
encoding, enable the EUC option in the Recording Options Recording tab
(only visible for Japanese Windows).

web_custom_request("www.hplab.com",
"URL=http://www.hplab.com/",
"Method=GET",
"Resource=0",
"RecContentType=text/html",
"Referer=",
"Snapshot=t1.inf",
"Mode=HTTP",
LAST);
610

Chapter 39 • Setting Recording Options for Web Vusers
Enabling the EUC option, forces VuGen to record a Web page in EUC
encoding, even when it is not EUC-encoded. You should, therefore, only
enable this option when VuGen cannot detect the encoding from the HTTP
header or the HTML meta tag, and when you know in advance that the page
is EUC-encoded.

During recording, VuGen receives an EUC-encoded string from the Web
server and converts it to SJIS. The SJIS string is saved in the script’s Action
function. However, for replay to succeed, the string has to be converted back
to EUC before being sent back to the Web server. Therefore, VuGen adds a
web_sjis_to_euc_param function before the Action function, which
converts the SJIS string back to EUC.

In the following example, the user goes to an EUC-encoded Web page and
clicks a link. VuGen records the Action function and adds the
web_sjis_to_euc_param function to the script before the Action function.

Setting the Recording Level

This section describes the procedure for setting the recording levels and
their advanced options.

To set the recording options:

 1 Choose Tools > Recording Options to open the Recording Options.

 2 Select the General:Recording node in the Recording Options tree.

 3 Select a recording mode: GUI-based (when available), HTML-based, or URL-
based.

 4 For GUI-based recording, open the recording options (Ctrl + F7) and select
the GUI Properties:Advanced node to set additional options for capturing
events during recording.

For more information, see “Setting Advanced GUI Properties” on page 571.

 5 For HTML-based recording, click HTML Advanced to set additional options
for script types and the handling of non-HTML elements.

web_sjis_to_euc_param("param_link","Search");
web_link("LinkStep","Text={param_link}");
611

Chapter 39 • Setting Recording Options for Web Vusers
Select a script type.

Select a method for handling non-HTML resources. For more information,
see “Setting Advanced HTML-Based Options” on page 602.

 6 For URL-based recording, click URL Advanced to set additional script
options for resource handling and cache enabling.

Select Create concurrent groups for resources after their source HTML page
to enable the recording of resources and marking them as a concurrent
group (surrounded by web_concurrent_start and web_concurrent_end).

Select Enable cache to use the browser cache during recording. If you enable
this option, clear the Clear cache before recording check box to instruct
VuGen not to clear the cache and use previously accessed pages.

Select Use web_custom_request only to generate all HTTP requests as
web_custom_request functions. For more information about these options,
see “Setting Advanced URL-Based Options” on page 608.

 7 For users of Japanese Windows, select the EUC option to instruct VuGen to
use EUC encoding.

If you are recording a Web site whose pages use only the EUC Encoding
(Japanese content), select the EUC option. VuGen converts the EUC string to
SJIS and adds a web_sjis_to_euc_param function. If the server sends this
information to the browser (in an HTTP header or an HTML Meta tag), you
do not need to enable this option.
612

40
Configuring Internet Run-Time Settings

After you record an Internet protocol Vuser script, you configure its run-
time settings.

This chapter includes:

 ➤ About Internet Run-Time Settings on page 613

 ➤ Setting Proxy Options on page 615

 ➤ Setting Browser Emulation Properties on page 620

 ➤ Setting Internet Preferences on page 625

 ➤ Filtering Web Sites on page 633

 ➤ Obtaining Debug Information on page 635

 ➤ Performing HTML Compression on page 636

The following information applies to all Internet Protocol Vuser types such
as Web and Wireless.

About Internet Run-Time Settings

After developing a Internet protocol Vuser script, you set the run-time
settings.

For information about the general run-time settings that apply to all Vusers,
see “Configuring Run-Time Settings” in Volume I-Using VuGen. For
information about the network speed run-time settings, see “Configuring
Network Run-Time Settings” in Volume I-Using VuGen.
613

Chapter 40 • Configuring Internet Run-Time Settings
The Internet run-time settings let you configure your Internet environment
so that Vusers can accurately emulate real users. You can set Internet run-
time settings for Proxy, Browser, and other advanced preferences.

You set the Internet-related run-time settings from the Run-Time Settings
dialog box. You click the appropriate node to specify the desired settings.

You can also modify the run-time settings directly from the LoadRunner
Controller. For more information, refer to the HP LoadRunner Controller
User’s Guide.

Note: A run-time setting assigned a value through a Vuser function,
overrides the corresponding setting set via the Run-Time Settings dialog
box. For more information on using Vuser functions, see Chapter 36, “Using
Web Vuser Functions.”

614

Chapter 40 • Configuring Internet Run-Time Settings
Setting Proxy Options

You use the Internet Protocol:Proxy node of the Run-Time Settings tree, to
set the proxy-related settings.

The following proxy options are available in the Run-Time settings.

➤ No proxy. All Vusers should use direct connections to the Internet. This
means that the connection is made without using a proxy server.

➤ Obtain the proxy settings from the default browser. All Vusers use the
proxy settings of the default browser from the machine upon which they
are running.
615

Chapter 40 • Configuring Internet Run-Time Settings
➤ Use custom proxy. All Vusers use a custom proxy server. You can supply
the actual proxy server details or the path of a proxy automatic
configuration script (.pac file) that enables automatic configuration. (See
“Setting the Automatic Proxy Configuration” on page 617.)

To supply the details of the server, you specify its IP address or name and
port. You can specify one proxy server for all HTTP sites, and another
proxy server for all HTTPS (secure) sites.

After providing the proxy information, you can specify Authentication
information for the proxy server, and indicate Exceptions to the proxy
rules.

Note: To instruct the Vusers to wait for the proxy response during replay,
and not to assume that the proxy supports basic authentication, add the
following statement:
web_set_sockets_option("PROXY_INITIAL_BASIC_AUTH", "0");

Authentication
If the proxy server requires authentication for each Vuser, use this dialog
box to enter the relevant password and user name.

➤ User Name. Enter the user name that Vusers will use to access the proxy
server.

➤ Password. Enter the password required by Vusers to access the proxy server.

Note: To add authentication dynamically during recording, or to add
authentication for multiple proxy servers, use the web_set_user function.
For more information, see the Online Function Reference (Help > Function
Reference).
616

Chapter 40 • Configuring Internet Run-Time Settings
Exceptions
You can specify that all Vusers use a specified proxy server. In such a case, if
there are any URLs that you want Vusers to access directly, that is, without
using the proxy server, enter the list of these URLs in the text box.

➤ Do not use proxy server for addresses beginning with. Enter the addresses
you want to exclude from the proxy server. Use semicolons to separate
entries.

➤ Do not use proxy server for local (intranet) addresses. Select this check box
to exclude local addresses, such as those from an Intranet, from the proxy
server.

Setting the Automatic Proxy Configuration
Automatic Proxy Configuration is a feature supported by most browsers.
This feature allows you to specify a JavaScript file (usually with a .pac
extension) containing proxy assignment information. This script tells the
browser when to access a proxy server and when to connect directly to the
site, depending on the URL. In addition, it can instruct the browser to use a
specific proxy server for certain addresses and another server for other
addresses.

You can instruct VuGen or your Internet Explorer browser to work with a
configuration script. You specify a file for the automatic proxy
configuration, so that when the Vuser runs the test, it uses the rules from
the proxy file.

To specify a configuration script in VuGen:

 1 Choose Vuser > Run-TIme Settings, and select the Internet Protocol:Proxy
node.

 2 Select Use custom proxy and select the Use automatic configuration script
option. Specify the location of the script.
617

Chapter 40 • Configuring Internet Run-Time Settings
To specify a configuration script in Internet Explorer (IE):

 1 Choose Tools > Internet Options, and select the Connections tab.

 2 Click the LAN Settings button. The LAN Settings dialog box opens.

 3 Select the Use automatic configuration script option, and specify the
location of the script.

To track the behavior of the Vusers, generate a log during text execution and
view the Execution Log tab or the mdrv.log file. The log shows the proxy
servers that were used for each URL. In the following example, VuGen used
a direct connection for the URL australia.com, but the proxy server aqua, for
the URL http://www.google.com.

Action1.c(6): t=1141ms: FindProxyForURL returned DIRECT
Action1.c(6): t=1141ms: Resolving australia.com
Action1.c(6): t=1141ms: Connecting to host 199.203.78.255:80
…
Action1.c(6): t=1281ms: Request done "http://australia.com/GetElementByName.htm"

…
Action1.c(6): web_url was successful, 357 body bytes, 226 header bytes
Action1.c(15): web_add_cookie was successful
Action1.c(17): t=1391ms: FindProxyForURL returned PROXY aqua:2080
Action1.c(17): t=1391ms: Auto-proxy configuration selected proxy aqua:2080
Action1.c(17): t=1391ms: Resolving aqua
Action1.c(17): t=1391ms: Connecting to host 199.203.139.139:2080
…
Action1.c(17): t=1578ms: 168-byte request headers for "http://www.google.com/"
(RelFrameId=1)
Action1.c(17): GET http://www.google.com/ HTTP/1.1\r\n
618

Chapter 40 • Configuring Internet Run-Time Settings
Setting Proxy Run-Time Settings
The following section discusses the steps required for configuring the proxy
Run-Time settings.

To set the proxy settings:

 1 Open the Run-Time settings. Click the Run-Time Settings button on the
VuGen toolbar or choose Vuser > Run-Time Settings.

 2 Click the Internet Protocol:Proxy node.

 3 Select the desired proxy option: No proxy, Obtain the proxy settings from
the default browser, or Use custom proxy.

 4 If you specified a custom proxy:

➤ indicate the IP addresses for the HTTP and HTTPS proxy servers

➤ To use a pac or JavaScript file to indicate the proxy, select the Use
automatic configuration script option and specify the script location.
You can specify either a web location beginning with http:// (for
example, http://hostname/proxy.pac), or a location on the file server, for
example, C:\temp\proxy.pac.

 5 To specify URLs that you want Vusers to access directly, without the proxy
server, click Exceptions and then supply the list of these URLs. In the
Exceptions dialog box, you can also specify direct access to local (intranet)
addresses.

 6 If the proxy server requires authentication, click Authentication, and then
supply the relevant password and user name.

 7 Select the Use the same proxy server for all protocols check box to instruct
the Vusers to use the same proxy server for all Internet protocols (HTTP,
HTTPS) rather than specifying a specific server for secure sites.
619

Chapter 40 • Configuring Internet Run-Time Settings
Setting Browser Emulation Properties

You use the Browser:Browser Emulation node in the Run-Time Settings tree
to set the browser properties of your testing environment.

Browser Properties
You can set the browser properties in the following areas:

➤ User-Agent (browser to be emulated)

➤ Simulate browser cache

➤ Download non-HTML resources

➤ Simulate a new user each iteration

You can also set advanced options for caching and checking for newer
resources.
620

Chapter 40 • Configuring Internet Run-Time Settings
User-Agent (browser to be emulated)
Whenever a Vuser sends a request to a Web server, the request includes an
HTTP header. The first line of text contains a verb (usually "GET" or "POST"),
the resource name (for example "pclt/default.htm"), and the version of the
protocol (for example "HTTP/1.0"). Subsequent lines contain "header
information" in the form of an attribute name, a colon, and some value. The
request ends with a blank line.

All Internet Vuser headers include a User-Agent header that identifies the
type of browser (or toolkit for Wireless) that is being emulated. For example,

User-Agent: Mozilla/3.01Gold (WinNT; I)

identifies the Browser as Netscape Navigator Gold version 3.01 running
under Windows NT on an Intel machine.

Click Change from the Browser emulation node, to specify the browser
information to include in the header. You can specify that a Web Vuser
emulate any of the standard browsers. Alternatively, for non-browser HTTP
applications, you can specify the HTTP client to match a specific user’s
application. In this case, you must supply a Custom User Agent string that is
included in all subsequent HTTP headers. By default, the user-agent
emulates the Microsoft Internet Explorer 5.5 browser agent.

Simulate browser cache

This option instructs the Vuser to simulate a browser with a cache. A cache
is used to keep local copies of frequently accessed documents and thereby
reduces the time connected to the network. By default, cache simulation is
enabled. When the cache is disabled, Vusers will ignore all caching
functionality and download all of the resources for every request.

Note that even if you disable the cache simulation, each resource is only
downloaded once for each page, even if it appears multiple times. A resource
can be an image, a frame, or another type of script file.

When running multiple Vusers as in LoadRunner and Performance Center,
every Vuser uses its own cache and retrieves images from the cache. If you
disable this option, all Vusers emulate a browser with no cache available.
621

Chapter 40 • Configuring Internet Run-Time Settings
You can modify your Run-Time settings to match your browser settings for
Internet Explorer, as follows:

You can also set the following two browser cache options:

➤ Cache URLs requiring content (HTML). This option instructs VuGen to
cache only the URLs that require the HTML content. The content may be
necessary for parsing, verification, or correlation. When you select this
option, HTML content is automatically cached. This option is enabled by
default.

Tip: To decrease the memory footprint of the virtual users, disable this
option, unless it is an explicit requirement for your test.

To add more content types to the list of cached types, click Advanced. For
more information, see “Cache URLs Requiring Content - Advanced” on
page 624. Note that if you enable the parent option Simulate browser cache,
but disable this option, VuGen nevertheless stores the graphic files.

Browser Setting Run-Time Setting

Every visit to the page Select Simulate Browser Cache and
enable Check for newer versions of
stored pages every visit to the
page.

Every time you start Internet Explorer Select Simulate Browser Cache only

Automatically Select Simulate Browser Cache only

Never Select Simulate Browser Cache and
disable Check for newer versions of
stored pages every visit to the
page.
622

Chapter 40 • Configuring Internet Run-Time Settings
➤ Check for newer versions of stored pages every visit to the page. This
setting instructs the browser to check for later versions of the specified URL,
than those stored in the cache. When you enable this option, VuGen adds
the "If-modified-since" attribute to the HTTP header. This option brings up
the most recent version of the page, but also generates more traffic during
the scenario or session execution. By default, browsers do not check for
newer resources, and therefore this option is disabled. Configure this option
to match the settings in the browser that you want to emulate.

Download non-HTML resources

Instructs Vusers to load graphic images when accessing a Web page during
replay. This includes both graphic images that were recorded with the page,
and those which were not explicitly recorded along with the page. When
real users access a Web page, they wait for the images to load. Therefore,
enable this option if you are trying to test the entire system, including end-
user time (enabled by default). To increase performance and not emulate
real users, disable this option.

Tip: Disable this option if you experience discrepancies in image checks,
since some images vary each time you access a Web page (for example,
advertiser banners).

Simulate a new user each iteration

Instructs VuGen to reset all HTTP contexts between iterations to their states
at the end of the init section. This setting allows the Vuser to more
accurately emulate a new user beginning a browsing session. It deletes all
cookies, closes all TCP connections (including keep-alive), clears the
emulated browser’s cache, resets the HTML frame hierarchy (frame
numbering will begin from 1) and clears the user-names and passwords. This
option is enabled by default.

➤ Clear cache on each iteration. Clears the browser cache for each iteration in
order to simulate a user visiting a Web page for the first time. Clear the
check box to disable this option and allow Vusers to use the information
stored in the browser’s cache, simulating a user who recently visited the
page.
623

Chapter 40 • Configuring Internet Run-Time Settings
Cache URLs Requiring Content - Advanced
The Advanced dialog box lets you specify the URL content types that you
want to store in the cache. This dialog box is accessible from the Run-time
Settings - Browser:Browser Emulation node.

Note that changes to the advanced settings for multiple groups
simultaneously, are not supported—edit each group’s settings individually.

To add a content type:

 1 Enable the Specify URLs requiring content in addition to HTML page
option.

 2 Click the plus sign to add additional content types, such as text/plain,
text/xml, image/jpeg, and image/gif. Enter the content name in the text box.

 3 To remove a content type from the list, select it and click the minus sign.
624

Chapter 40 • Configuring Internet Run-Time Settings
Setting Internet Preferences

You use the Internet Protocol:Preferences node in the Run-Time Settings
tree, to set the settings related to the following areas:

➤ Image and Text Checks

➤ Generating Web Performance Graphs

➤ Advanced Web Run-Time Options

Image and Text Checks

The Enable image and text checks option allows the Vuser to perform
verification checks during replay by executing the verification functions:
web_find or web_image_check. This option only applies to statements
recorded in HTML-based mode. Vusers running with verification checks use
more memory than Vusers who do not perform checks (disabled by default).
625

Chapter 40 • Configuring Internet Run-Time Settings
Generating Web Performance Graphs

Instructs a Vuser to collect data used to create Web Performance graphs. You
view the Hits per Second, Pages per Second, and Response Bytes per
Second (Throughput) graphs during test execution using the online
monitors and after test execution using the Analysis. You view the
Component Breakdown graph after test execution using the Analysis. Select
the types of graph data for the Vuser to collect.

Note: If you do not use the Web performance graphs, disable these options
to save memory.

Advanced Web Run-Time Options

➤ WinInet Replay. Instructs VuGen to use the WinInet replay engine instead of
the standard Sockets replay. VuGen has two HTTP replay engines: Sockets-
based (default) or WinInet based. The WinInet is the engine used by Internet
Explorer and it supports all of the features incorporated into the IE browser.
The limitations of the WinInet replay engine are that it is not scalable, nor
does it support UNIX. In addition, when working with threads, the WinInet
engine does not accurately emulate the modem speed and number of
connections.

VuGen’s proprietary sockets-based replay is a lighter engine that is scalable
for load testing. It is also accurate when working with threads. The
limitation of the sockets-based engine is that it does not support SOCKS
proxy. If you are recording in that type of environment, use the WinInet
replay engine.

➤ File and line in automatic transaction names. Creates unique transaction
names for automatic transactions by adding file name and line number to
the transaction name (enabled by default).

Note: This option places additional information in the log file, and
therefore requires more memory.
626

Chapter 40 • Configuring Internet Run-Time Settings
➤ Non-critical item errors as warnings. This option returns a warning status
for a function which failed on an item that is not critical for load testing,
such as an image or Java applet that failed to download. This option is
enabled by default. If you want a certain warning to be considered an error
and fail your test, you can disable this option. You can set a content-type to
be critical by adding it to the list of Non-Resources. For more information,
see “Specifying Non-Resource Content Types” on page 594.

➤ Save snapshot resources locally. Instructs VuGen to save the snapshot
resources to files on the local machine. This feature lets the Run-Time viewer
create snapshots more accurately and display them quicker.

Additional Options for Internet Preferences
Click the Options button in the Advanced section of the Preferences node to
set advanced options in the following areas: DNS caching, HTTP version,
Keep-Alive HTTP connections, Accept server-side compression, Accept-
Language headers, HTTP-request connect timeout, HTTP-request receive
timeout, Network buffer size, and Step download timeout.

HTTP

➤ HTTP version. Specifies which version HTTP to use: version 1.0 or 1.1. This
information is included in the HTTP request header whenever a Vuser sends
a request to a Web server. The default is HTTP 1.1. HTTP 1.1 supports the
following features:

➤ Persistent Connections—see "Keep-Alive HTTP connections" below.

➤ HTML compression—see “Performing HTML Compression” on page 636.

➤ Virtual Hosting—multiple domain names sharing the same IP address.

➤ Keep-Alive HTTP connections. Keep-alive is a term used for an HTTP
extension that allows persistent or continuous connections. These long-
lived HTTP sessions allow multiple requests to be sent over the same TCP
connection. This improves the performance of the Web server and clients.

The keep-alive option works only with Web servers that support keep-alive
connections. This setting specifies that all Vusers that run the Vuser script
have keep-alive HTTP connections enabled (enabled by default).
627

Chapter 40 • Configuring Internet Run-Time Settings
➤ Accept-Language request header. Provides a comma-separated list of
accepted languages. For example, en-us, fr, and so forth.

➤ HTTP errors as warnings. Issues a warning instead of an error upon failing to
download resources due to an HTTP error.

➤ HTTP-request connect timeout (seconds). The time, in seconds, that a Vuser
will wait for the connection of a specific HTTP request within a step before
aborting. Timeouts provide an opportunity for the server to stabilize and
respond to the user (default value is 120 seconds). Note that this timeout
also applies to the time the Vuser will wait for a WAP connection, initiated
by the wap_connect function.

➤ HTTP-request receive timeout (seconds). The time, in seconds, that a Vuser
will wait to receive the response of a specific HTTP request within a step
before aborting. Timeouts provide an opportunity for the server to stabilize
and respond to the user (default value is 120 seconds).

➤ Request Zlib Headers. Sends request data to the server with the zlib
compression library headers. By default, requests sent to the server include
the zlib headers. This option lets you emulate non-browser applications that
do not include zlib headers in their requests. To exclude these headers, set
this option to No (default is Yes).

➤ Accept Server-Side Compression. Indicate to the server that the replay can
accept compressed data. The available options are: None (no compression),
gzip (accept gzip compression), gzip, deflate (accept gzip or deflate
compression), and deflate (accept deflate compression). Note that by
accepting compressed data, you may significantly increase the CPU
consumption. The default is to accept gzip, deflate compression.

General

➤ DNS caching. Instructs the Vuser to save a host’s IP addresses to a cache after
resolving its value from the Domain Name Server. This saves time in
subsequent calls to the same server. In situations where the IP address
changes, as with certain load balancing techniques, be sure to disable this
option to prevent Vuser from using the value in the cache (enabled by
default).
628

Chapter 40 • Configuring Internet Run-Time Settings
➤ Convert from/to UTF-8. Converts received HTML pages and submitted data
from and to UTF-8. You enable UTF-8 support in the recording options. For
more information, see “Setting Advanced Recording Options” on page 588
(No by default).

➤ Step timeout caused by resources is a warning. Issues a warning instead of
an error when a timeout occurs due to a resource that did not load within
the timeout interval. For non-resources, VuGen issues an error (disabled by
default).

➤ Parse HTML Content-Type. When expecting HTML, parse the response only
when it is the specified content-type: HTML, text\html, TEXT any text, or
ANY, any content-type. Note that text/xml is not parsed as HTML. The
default is TEXT.

The timeout settings are primarily for advanced users who have determined
that acceptable timeout values should be different for their environment.
The default settings should be sufficient in most cases. If the server does not
respond in a reasonable amount of time, check for other connection-related
issues, rather than setting a very long timeout which could cause the scripts
to wait unnecessarily.

➤ Step download timeout (sec). The time that the Vuser will wait before
aborting a step in the script. This option can be used to emulate a user
behavior of not waiting for more than x seconds for a page.

➤ Network buffer size. Sets the maximum size of the buffer used to receive the
HTTP response. If the size of the data is larger than the specified size, the
server will send the data in chunks, increasing the overhead of the system.
When running multiple Vusers from the Controller, every Vuser uses its own
network buffer. This setting is primarily for advanced users who have
determined that the network buffer size may affect their script’s
performance. The default is 12K bytes. The maximum size is 0x7FFF FFFF.

➤ Max number of error matches issued as ERRORS. Limits the number of error
matches issued as ERRORS for content checks using a LB or RB (left
boundary or right boundary). This applies to matches where a failure occurs
when the string is found (Fail=Found). All subsequent matches are listed as
informational messages. The default is 10 matches.

➤ Maximum number of META Refresh to the same page. The maximum
number of times that a META refresh can be performed per page. The default
is 2.
629

Chapter 40 • Configuring Internet Run-Time Settings
Authentication

➤ Fixed think time upon authentication retry (msec). Automatically adds a
think time to the Vuser script for emulating a user entering authentication
information (username and password). This think time will be included in
the transaction time (default is 0).

➤ Disable NTLM2 session security. Use full NTLM 2 handshake security instead
of the more basic NTLM 2 session security response (default is No).

➤ Enable integrated Authentication. Enable Kerberos-based authentication.
When the server proposes authentication schemes, use Negotiate in
preference to other schemes (default is No).

➤ Induce heavy KDC load. Do not reuse credentials obtained in previous
iterations. Enabling this setting will increase the load on the KDC (Key
Distribution Server). To lower the load on the server, set this option to Yes in
order to reuse the credentials obtained in previous iterations. This option is
only relevant when Kerberos authentication is used (default is No).

Log

➤ Print buffer line length. Line length for printing request/response
header/body and/or JavaScript source, disabling wrapping.

➤ Print buffer escape only binary zeros.

➤ Yes. Escape only binary zeros when printing request/response
headers/body and/or JavaScript source.

➤ No. Escape any unprintable/control characters.

Web (Click and Script) Specific

➤ General

➤ Home Page URL. The URL of the home page that opens with your
browser (default is about:blank).

➤ DOM-based snapshots. Instructs VuGen to generate snapshots from the
DOM instead of from the server responses (Yes by default).

➤ Charset conversions by HTTP. Perform charset conversions by the
‘Content-Type:....; charset=...’ HTTP response header. Overrides ‘Convert
from /to UTF-8.’
630

Chapter 40 • Configuring Internet Run-Time Settings
➤ Reparse when META changes charset. Reparse HTML when a META tag
changes the charset. Effective only when Charset conversions by HTTP is
enabled. Auto means reparsing is enabled only if it used in the first
iteration.

➤ Fail on JavaScript error. Fails the Vuser when a JavaScript evaluation error
occurs. The default is No, issuing a warning message only after a
JavaScript error, but continuing to run the script.

➤ Timers

➤ Optimize timers at end of step. When possible, executes a
setTimeout/setInterval/<META refresh> that expires at the end of the step
before the expiration time (default is Yes).

➤ Single setTimeout/setInterval threshold (seconds). Specifies an upper
timeout for the window.setTimeout and window.setInterval methods. If
the delay exceeds this timeout, these methods will not invoke the
functions that are passed to them. This emulates a user waiting a
specified time before clicking on the next element (default is 5 seconds).

➤ Accumulative setTimeout/setInterval threshold (seconds). Specifies a
timeout for the window.setTimeout and window.setInterval methods. If
the delay exceeds this timeout, additional calls to window.setTimeout
and window.setInterval will be ignored. The timeout is accumulative per
step (default is 30 seconds).

➤ Reestablish setInterval at end of step. 0 = No; 1 = Once; 2 = Yes.

➤ ActiveX Support

➤ Support ActiveX controls. Create and execute ActiveX objects in the
DOM (Windows OS only). The default is No.

➤ Support ActiveX objects. Execute ActiveX controls created in the
JavaScript (Windows OS only). The default is Yes.

➤ Force WinInet for asynchronous ActiveX navigations. Force using
WinInet for asynchronous Active X navigations where currently the
Replay’s network mechanism is used.

➤ Force WinInet for synchronous ActiveX navigations. Force using WinInet
for synchronous Active X navigations where currently the Replay’s
network mechanism is used.
631

Chapter 40 • Configuring Internet Run-Time Settings
➤ Add cookies to ActiveX WinInet navigations. Add cookies received by
HTTP turbo-replay to ActiveX WinInet navigations.

➤ Applet Support

➤ Run Java applets. Run Java applets—for example, when encountering an
APPLET tag or an OBJECT tag without classid.

➤ Force WinInet for Java Applets navigations. Force using WinInet for Java
Applets navigations where currently the Replay’s network mechanism is
used.

➤ History

➤ History support. Enables support for the window.history object for the
test run. The options are Enabled, Disabled, and Auto. The Auto option
(default) instructs Vusers to support the window.history object only if it
was used in the first iteration. Note that by disabling this option, you
improve performance.

➤ Maximum history size. The maximum number of steps to keep in the
history list (default is 100 steps).

➤ Navigator Properties

➤ navigator.browserLanguage. The browser language set in the navigator
DOM object’s browserLanguage property. The default is the recorded
value. Scripts created with older recording engines, use en-us by default.

➤ navigator.systemLanguage. The system language set in the navigator
DOM object’s systemLanguage property. The default is the recorded
value. Scripts created with older recording engines, use en-us by default.

➤ navigator.userLanguage. The user language set in the navigator DOM
object’s userLanguage property. The default is the recorded value. Scripts
created with older recording engines, use en-us by default.

➤ Memory Management

➤ Default block size for DOM memory allocations. Sets the default block
size for DOM memory allocations. If the value is too small, it may result
in extra calls to malloc, slowing the execution times. Too large a block
size, may result in an unnecessarily big footprint (default is 16384 bytes).

➤ JavaScript Runtime memory size (KB). Specifies the size of the JavaScript
runtime memory in kilobytes (default is 256 KB).
632

Chapter 40 • Configuring Internet Run-Time Settings
➤ JavaScript Stack memory size (KB). Specifies the size of the JavaScript
stack memory in kilobytes (default is 32 KB).

Filtering Web Sites

You can specify the Web sites from which Vusers should download resources
during replay. You can indicate either the sites to exclude or the sites to
include. You control the allowed or disallowed sources, by specifying a URL,
host name, or host suffix name.

A URL is the complete URL address of a Web site, beginning with http:// or
https://. Host is the name of the host machine with its domain, such as
www.hp.com.

Host suffix is the common suffix for several host names, such as hp.com.
This is useful where you have several Web sites on a common domain.
633

Chapter 40 • Configuring Internet Run-Time Settings
If you specify the sites to exclude, VuGen downloads resources from all Web
sites except for those specified in the list. If you specify the sites to include,
VuGen filters out resources from all Web sites except for those in the Include
list.

To create a list of filtered Web sites:

 1 Click the Internet Protocol:Download Filters node.

 2 Select the desired option: Include only addresses in list or Exclude addresses
in list.
634

Chapter 40 • Configuring Internet Run-Time Settings
 3 Add entries to the list. To add an entry, click Add. The Add filter dialog box
opens.

Choose a filter type: URL, Host, or Host Suffix, and enter the filter data, such
as a URL. When entering a URL, make sure to enter a complete URL
beginning with http:// or https://. Click OK.

 4 To edit an entry, select it and click Edit.

 5 To delete and entry, select it and click Remove. To delete all entries, click
Remove All.

Obtaining Debug Information

When you run a Vuser script, the execution information is displayed in the
Output window or log file. You control the amount of information sent to
the Output window and log files, using the Log node of the General run-
time settings. For more information, see “Configuring the Log Run-Time
Settings” in Volume I-Using VuGen.

Debug information includes:

➤ log information

➤ transaction failures

➤ the connection status with the gateway—connecting, disconnecting, and
redirecting. (WAP only)
635

Chapter 40 • Configuring Internet Run-Time Settings
To obtain more information for debugging, edit the default.cfg file. Locate
the WEB section and set the LogFileWrite flag to 1. The resulting trace file
documents all events in the execution of the script.

When performing load testing, make sure to clear the LogFileWrite flag to
prevent the Vusers from wasting resources by creating a large trace file.

Performing HTML Compression

Browsers that support HTTP 1.1 can decompress HTML files. The server
compresses the files for transport, substantially reducing the bandwidth
required for the data transfer. You can enable compression automatically or
manually.

To automatically enable compression in VuGen, use the Internet Protocol >
Preferences node of the Run-Time settings. Click Options to open the
Advanced Options and enable the Accept Server-Side compression option.
Note that this option is enabled by default. For more information, see
“Additional Options for Internet Preferences” on page 627.

To manually add compression, enter the following function at the
beginning of the script:

web_add_auto_header("Accept-Encoding", "gzip");

To verify that the server sent compressed data, search for the string
Content -Encoding: gzip in the section of the server’s responses of the
Execution log. The log also shows the data size before and after
decompression.

Compression has a greater effect on large data transfers—the larger the data,
the greater effect the compression will have. When working with larger data,
you can also increase the network buffer size (see the Network Buffer Size
option) to get the data in single chunks.
636

41
Checking Web Page Content

After you record a Web Vuser script, you can configure run-time settings to
check the page content.

This chapter includes:

 ➤ About Checking Web Page Content on page 637

 ➤ Setting the ContentCheck Run-Time Settings on page 638

The following information only applies to Web Vuser types.

About Checking Web Page Content

VuGen’s Content Check mechanism allows you to check the contents of a
page for a specific string. This is useful for detecting non-standard errors. In
normal operations, when your application server fails, the browser displays
a generic HTTP error page indicating the nature of the error. The standard
error pages are recognized by VuGen and treated as errors, causing the script
to fail. Some application servers, however, issue their own error pages that
are not detected by VuGen as error pages. The page is sent by the server and
it contains a formatted text string, stating that an error occurred.

For example, suppose that your application issues a custom page when an
error occurs, containing the text ASP Error. You instruct VuGen to look for
this text on all returned pages. When VuGen detects this string, it fails the
replay. Note that VuGen searches the body of the pages—not the headers.
637

Chapter 41 • Checking Web Page Content
Setting the ContentCheck Run-Time Settings

You use the Internet Protocol:ContentCheck Run-Time setting to specify the
content for which you want to search. You can define content for several
applications with multiple rules. The following sections discuss:

➤ Understanding Content Rules

➤ Defining ContentCheck Rules

Understanding Content Rules
You use the ContentCheck run-time options to check the contents of a page
for a specific string. This is useful for detecting non-standard errors. In
normal operations, when your application server fails, the browser displays
a generic HTTP error page indicating the nature of the error. The standard
error pages are recognized by VuGen and treated as errors, causing the script
to fail. Some application servers, however, issue their own error pages that
are not detected by VuGen as error pages. The page is sent by the server and
it contains a formatted text string, stating that an error occurred.

638

Chapter 41 • Checking Web Page Content
For example, suppose that your application issues a custom page when an
error occurs, containing the text ASP Error. You instruct VuGen to look for
this text on all returned pages. When VuGen detects this string, it fails the
replay. Note that VuGen searches the body of the pages—not the headers.

➤ Enable ContentCheck during replay. Enable content checking during replay
(enabled by default). Note that even after you define applications, you can
disable it for a specific test run, by disabling this option.

Rule Information

This right pane contains the matching criteria for the text you want to find.
You can specify either the actual text or a prefix and suffix of the text.

➤ Search for Text. The text of the string for which you want to search.

➤ Search by Prefix and Suffix. The prefix and suffix of the string for which you
want to search.

➤ Match case. Perform a case sensitive search.

➤ Search JavaScript alert box text. Only search for text within JavaScript alert
boxes (Web (Click and Script), PeopleSoft Enterprise, and Oracle Web
Applications 11i Vusers only).

Adding and Removing Applications and Rules

➤ New Application. Automatically adds a new application to the list of
applications in the left pane. The default name is Application_index,
beginning with Application_1. After you create a new application, click New
Rule to add a rule to this application. To modify the name of an application,
double-click on it.

➤ New Rule. Displays the rule criteria in the right pane, allowing you to enter
a new rule for the currently selected application. The rules are stored with
the script in standard xml files. You can export your rule files and share
them with other users or import them to other machines.

➤ Delete. Deletes the selected rule or application.
639

Chapter 41 • Checking Web Page Content
Importing and Exporting Rules

➤ Import/Export. Imports or exports a rule file. The rule file with an xml
extension, stores the applications and rules. You can export the file to use
on other machines. You can also import other rule files. If you import a rule
and the selected rule conflicts with an existing rule, VuGen issues a warning
indicating that it is a Conflicting Rule. You can then choose to merge the
rules you created on a former script with the one you are importing or
overwrite the current rules. When you click Export, VuGen opens the
Choose Application to Export dialog box.

Setting Rules as Default

➤ Set as Default. There are three types of rules for Content Checks:
Installation, Default, and per script. Installation rules are provided
automatically during installation of the product. Default rules, apply to all
scripts executed on your machine. The per script rules are the ones defined
for the current script. When you modify or add rules, these changes only
apply to the current script. To instruct VuGen to add a rule to the list of
Default rules so that it will apply to all scripts on that machine, click Set as
Default.

When working on multiple scripts, or when performing a product upgrade,
a conflict may arise between the default rules and the script rules. VuGen
asks you if you want to merge the rules. When you merge the rules
(recommended), the rule is added to the list of rules for the application.

This action only effects applications that are enabled in the Application list
(the left pane). If no applications were marked as Enabled in the current
script, no application will be marked as Enabled in the Defaults file. Click
Yes to overwrite the Defaults file. Click No to cancel the operation and
retain the original Defaults file.

The rules are stored in standard xml files. You can export your rule files and
share them with other users or import them to other machines.
640

Chapter 41 • Checking Web Page Content
When you click Set as Defaults (and confirm the overwriting), VuGen
performs the following actions:

 1 Marks all applications in the Defaults File as Disabled.

 2 For applications marked as Enabled in the current script, it performs a merge
or copy, depending on whether the application exists. If the application
exists, it merges the rules of the current script with those of the Defaults file.
If the application did not exist in the Defaults file, then VuGen just copies
the rules to the Defaults file.

 3 Marks the applications that were enabled in the script, as Enabled in the
Defaults file. If no application is marked as Enabled in the current script, no
application will be marked as Enabled in the Defaults file.

Use Defaults

Imports rules from the Defaults file. When you click this button, VuGen
opens a dialog box with a list of the applications and their default settings.
You can choose to import these rules or modify them. If this conflicts with
one of the existing rules, VuGen issues a warning indicating that it is a
Conflicting Rule. You can also merge the rules defined in the Defaults file
with the ones currently defined.

To use the default settings for all of your applications, click Use Defaults
which imports the definitions from the Defaults file. It opens a dialog box
with a list of the applications and their default settings. You can choose to
import these definitions or modify them. If this conflicts with one of the
rules, VuGen issues a warning indicating that it is a Conflicting Rule. You
can merge or overwrite the rules defined in the Defaults file with the active
ones.

Defining ContentCheck Rules
You use the Internet Protocol:ContentCheck node in the Run-Time Setting
tree, to define the rules for checking Web page content.

To define a ContentCheck rule:

 1 Open the Run-Time settings and select the Internet Protocol:ContentCheck
node.

 2 Select the Enable ContentCheck during replay option.
641

Chapter 41 • Checking Web Page Content
 3 Click New Application to add a new entry to the list of applications whose
content to check.

 4 Click New Rule to add rules for existing applications. Each application
server may have one or more rules. Enable or disable the relevant rules by
clearing or selecting the check boxes adjacent to the rule in the left pane.

 5 To search for the actual text string, select Search for Text and specify the text
for which you want to search. It is recommended that you be as specific as
possible. For example, do not use the term Error, rather ASP Error or text
specific to the application.

 6 To search for the text preceding and following your string, select Search by
Prefix and specify the prefix and suffix.

 7 To indicate a case sensitive search, select the Match case check box.

 8 To set a rule as a default, indicating that it should apply to all scripts on that
machine, select the rule or application and click Set as Default.

 9 To export the rule file click Export and specify a save location.

 10 To import a rule file, click Import and locate the file.

 11 To remove an application or rule, select it and click Delete.

 12 To use the default settings for all of your applications, click Use Defaults. A
dialog box opens with a list of the applications and their default settings.
You can choose to overwrite or merge the rules if there are conflicts.
642

42
Verifying Web Pages Under Load

You can add Web checks to your Web Vuser scripts to determine whether or
not the correct Web pages are returned by the server when you run the
Vuser script.

This chapter includes:

 ➤ About Verification Under Load on page 643

 ➤ Adding a Text Check on page 646

 ➤ Understanding Text Check Functions on page 649

 ➤ Adding an Image Check on page 654

 ➤ Defining Additional Properties on page 657

The following information only applies to Web Vuser scripts.

About Verification Under Load

VuGen enables you to add Web checks to your Web Vuser scripts. A Web
check verifies the presence of a specific object on a Web page. The object can
be a text string or an image.

Web checks enable you to determine whether or not your Web site is
functioning correctly while it is being accessed by many Vusers—that is,
does the server return the correct Web pages? This is particularly important
while your site is under the load of many users, when the server is more
likely to return incorrect pages.
643

Chapter 42 • Verifying Web Pages Under Load
For example, assume that your Web site displays information on the
temperatures in major cities around the world. You use VuGen to create a
Vuser script that accesses your Web site.

The Vuser accesses the site and executes a text check on this Web page. For
example, if the word Temperature appears on the page, the check passes. If
Temperature does not appear because, for example, the correct page was not
returned by the server, the check fails. Note that the text check step appears
before the URL step. This is because VuGen registers, or prepares in advance,
the search information relevant for the next step. When you run the Vuser
script, VuGen conducts the check on the Web page that follows.

Although the server may display the correct page when you record the script
and when a single Vuser executes the script, it is possible that the correct
page will not be returned when the server is under the load of many Vusers.
The server may be overloaded and may therefore return meaningless or
incorrect HTML code. Alternatively, in some instances when a server is
overloaded, the server may return a 500 Server Error page. In both of these
cases, you can insert a check to determine whether or not the correct page is
returned by the server.

Note: Web checks increase the work of a Vuser, and therefore you may need
to run fewer Vusers per load generator. You should use Web checks only
where experience has shown that the server sometimes returns an incorrect
page.

You can define Web checks during or after recording a Vuser script. It is
generally more convenient to define checks while recording—when the Web
page that you want to check is visible.
644

Chapter 42 • Verifying Web Pages Under Load
VuGen uses several different Web check icons, each one representing a
different check type:

This chapter describes how to use VuGen to add Web checks in the tree
view. For information about adding checks to the script in the text-based
script view, see the Online Function Reference (Help > Function Reference).

Web Check Icon Description

Text A text check, searching for a specific string in the next action
function (web_reg_find) or in the entire business process
(web_global_verification) step.

Text A text check, searching for a specific string in the next action
function using the web_find step. For more information, see
“Understanding Text Check Functions” on page 649.

Image An image check, searching for a specific image on a Web
page. For more information, see “Understanding Text Check
Functions” on page 649.
645

Chapter 42 • Verifying Web Pages Under Load
Adding a Text Check

VuGen allows you to add a check that searches for a text string on a Web
page. You can add the text check either during or after recording.

When you create a text check, you define the name of the check, the scope
of the check, the text you want to check for, and the search conditions.

To add a text check during recording:

 1 If the VuGen main window or application is minimized, restore it. In the
application or Web browser window, select the desired text.

 2 Click the Insert Text check button on the recording toolbar. VuGen adds a
web_reg_find function to the script.

To add a text check after recording:

 1 Go to the snapshot of the step whose text you want to check.

 2 In the snapshot, select the text you want to verify.

 3 Choose Add a Text Check (web_reg_find) from the right-click menu. The
Find Text properties dialog box opens.
646

Chapter 42 • Verifying Web Pages Under Load
Note: For certain protocols, VuGen issues a message indicating that you
should add text checks from the Server Response tab—not from the
snapshot. Click the Server Response tab and select the HTML Document tab.
Expand the body node and then continue as described below.

The following attributes are available for web_reg_find:

➤ Search for specific Text. The text string to search for. This attribute must
be a non-empty, null-terminated character string.
647

Chapter 42 • Verifying Web Pages Under Load
➤ Search for Text by start and end of string

➤ Start string. The prefix of the text string for which you are searching.
To ignore the case, add "/IC" after the boundary. Specify "/BIN" after
the text to specify binary data. Use the format "TextPfx=string".

➤ End string. The suffix of the text string for which you are searching. To
ignore the case, add "/IC" after the boundary. Specify "/BIN" after the
text to specify binary data. Use the format "TextSfx=string".

After specifying a search method—specific text or a beginning or end string,
you can specify the search options:

➤ To perform a case -sensitive search, select Match case. To indicate binary
data, select Binary data. To indicate any digit as a match, use a hash (#) in
the text string and select Use # for any digit.

➤ Use ^ as a wildcard for all/lowercase/uppercase alphanumerical
characters. Allows a wildcard search for alphanumerical characters—
either all, uppercase, or lowercase characters. You specify a wildcard with
the ^ character.

➤ Search in. Where to search for the text. The available values are Headers,
Body, or All. The default is Body.

➤ Save count. The number of matches that were found. To use this
attribute, select Save count and specify a parameter name in which to
store the number of matches. The variable will be a null-terminated
ASCII value.

➤ Fail if. The handling method when the string is not found. The available
values are Found and Not Found. Found indicates that a failure occurs
when the text is found (e.g. "Error"). Not Found indicates that a failure
occurs when the text is not found.

To view or modify the properties of the text check after it has been created,
click the Tree View tab and double-click on the new Services: Reg Find step.
In the Find Text dialog box, you can view or modify all of the step’s
attributes.
648

Chapter 42 • Verifying Web Pages Under Load
Understanding Text Check Functions

When you add a text check, VuGen adds a web_reg_find function to your
script. This function registers a search for a text string on an HTML page.
Registration means that it does not execute the search immediately—it
performs the check only after executing the next Action function, such as
web_url. Note that if you are working with a concurrent functions group,
the web_reg_find function is only executed at the end of the grouping.

In the following example, web_reg_find function searches for the text
string "Welcome". If the string is not found, the next action function fails
and the script execution stops.

web_reg_find("Text=Welcome", "Fail=Found", LAST);
web_url("Step", "URL=...", LAST);

In addition to the web_reg_find function, you can use other functions to
search for text within an HTML page:

Several additional functions can be used for searching for text:

➤ web_find

➤ web_global_verification

The web_find function, primarily used for backward compatibility, differs
from the web_reg_find function in that web_find is limited to an HTML-
based script (see Recording Options > Recording tab). It also has less
attributes such as instance, allowing you to determine the number of times
the text appeared. When performing a standard text search, web_reg_find is
the preferred function.

The web_global_verification function allows you to search the data of an
entire business process. In contrast to web_reg_find, which only applies to
the next Action function, this function applies to all subsequent Action
functions such web_url. By default, the scope of the search is
NORESOURCE, searching only the HTML body, excluding headers and
resources.

The web_global_verification function is ideal for detecting application
level errors that are not included the HTTP status codes. This function is not
limited to an HTML-Based script (see Recording Options > Recording tab).
649

Chapter 42 • Verifying Web Pages Under Load
To add additional functions to your script:

 1 In the VuGen main window, click at the point where you want to add the
text check. Choose Insert > New Step.

 2 For the web_find functions, expand the Web Checks node and select Text
Check. For the web_global_verification function, expand the Services node
and choose the function name. The Properties dialog box opens.

 3 Set the properties for these functions (see description below).

 4 Click OK. VuGen inserts a new function into the script.
650

Chapter 42 • Verifying Web Pages Under Load
Setting web_find Properties

You can set the following properties for the web_find function:

➤ Search for. The string you want to verify. An ABC icon indicates that the
string in the Search for box has not been assigned a parameter. For details
on assigning parameters, see “Creating Parameters” in Volume I-Using VuGen.

➤ Right of / Left of. The position of the search string relative to adjacent text.
Type the text in the appropriate field. For example, to verify that the string
support@hp.com appears to the right of the word
e-mail:, select Right of and then type e-mail: in the Right of box.

➤ Step Name. The name of the text check. Click the General tab and type a
name for the text check in the box. Use a name that you can recognize and
identify later on.
651

Chapter 42 • Verifying Web Pages Under Load
Note: A Vuser conducts Web checks during script execution only if checks
are enabled, and if the script runs in HTML mode. To enable checks, select
the Enable image and text check option in the Preferences tab in the Run-
Time Settings dialog box. For details, see “Configuring Run-Time Settings”
in Volume I-Using VuGen.

Setting web_global_verification Properties

You can set the following properties for the web_find function:

➤ Search for specific text. The string whose presence you want to verify. An
ABC icon indicates that the string in the Search for box has not been
assigned a parameter. For details on assigning parameters, see “Creating
Parameters” in Volume I-Using VuGen.

➤ Search for Text by Start and End of String. The boundaries, also known as
Start and End strings that surround the text. Select the appropriate options
to indicate if you want to Match case or if you are searching for binary data.
652

Chapter 42 • Verifying Web Pages Under Load
➤ Fail if. Fails the script if the condition is met. You can also indicate the
failure condition: if the text is Found or Not found. Select the desired
behavior in the Fail if box.

Text Flags
When specifying search text using a registered search, web_reg_find, you
can add flags to control the scope of the search:

/IC to ignore the case.

/BIN to specify binary data.

/DIG to interpret the pound sign (#) as a wildcard for a single digit. The DIG
flag does not match a literal pound sign.

/ALNUM<case> to interpret the caret sign (^) as a wildcard for a single US-
ASCII alphanumeric character. There are three syntaxes: ALNUMIC to ignore
case, ALNUMLC to match only lower case, and ALNUMUC to match only
upper case. The ALNUM flag does not match a literal caret.

To use flags, you enter the attribute TEXT, followed by a forward slash and
the flag name. For example, to search for a string ignoring the case, use
"Text/IC=search_text'".
653

Chapter 42 • Verifying Web Pages Under Load
Adding an Image Check

VuGen allows you to add a user-defined check that searches for an image on
a Web page. The image can be identified by the ALT attribute, the SRC
attribute, or both.

You can add user-defined image checks either during or after recording.
After recording, you can edit any existing image checks in your script.

To add an image check:

 1 In the VuGen main window, right-click the step corresponding to the Web
page on which you want to perform a check. Select Insert After from the
pop-up menu. The Add Step dialog box opens.

Note: During a Web browser recording session, the VuGen main window
may be minimized. To add an image check during recording, restore the
VuGen main window.

 2 Expand Web Checks in the Step Type tree.
654

Chapter 42 • Verifying Web Pages Under Load
 3 Select Image Check, and click OK. The Image Check Properties dialog box
opens. Ensure that the Specification tab is visible.

 4 Select a method to identify the image:

➤ Alternative image name (ALT attribute). Identifies the image using its
ALT attribute. Type the ALT attribute text in the text box. When you run
the script, the Vuser searches for an image that has the specified ALT
attribute.

➤ Image server file name (SRC attribute). Identifies the image using the
SRC attribute. Type the SRC attribute text into the text box. When you
run the script, the Vuser searches for an image that has the specified SRC
attribute.

An ABC icon indicates that the ALT or SRC attribute has not been assigned a
parameter. For details on assigning parameters, see “Creating Parameters” in
Volume I-Using VuGen.
655

Chapter 42 • Verifying Web Pages Under Load
Note: If you select both the ALT attribute and SRC attribute check boxes, the
Vuser searches for an image that has both the specified ALT attribute and the
specified SRC attribute.

 5 To name the image check, click the General tab. In the Step Name box, type
a name for the image check. Use a name that you can recognize later on.

 6 The properties table displays additional properties that define the check.

Clear the View only the active properties check box to view active and non-
active properties. To enable a property, click the cell to the left of the
property name. Assign the property a value in the Value column.

For details on assigning property values, see “Defining Additional
Properties” on page 657.
656

Chapter 42 • Verifying Web Pages Under Load
 7 Click OK to accept the settings. An icon representing the new image check is
added to the associated step in the Vuser script.

Defining Additional Properties

You can specify additional properties for each Web check that you insert
into a Vuser script. You set additional options in the properties table on the
General tab of the check properties dialog boxes. The following is only
relevant for web_find and web_image_check functions—not
web_reg_find.

To set additional properties:

 1 Right-click the Web check whose properties you want to edit, and select
Properties from the pop-up menu. The appropriate check properties dialog
box opens. Ensure that the General tab is visible.

 2 Clear the View only the active properties check box to view all the available
properties.

 3 To enable a property, click the cell to the left of the property name. A red
check mark appears beside the property.

 4 Assign the property a value in the Value column:

➤ Frame. Type the name of the frame where the check object is located.

➤ AssignToParam. Select YES to enable assigning to a parameter. Select NO
to disable this capability. The default value is NO.

➤ MatchCase. Select YES to conduct a case-sensitive search. Select NO to
conduct a non case-sensitive search. The default value is NO.
657

Chapter 42 • Verifying Web Pages Under Load
➤ OnFailure. Select Abort to abort the entire Vuser script if the check fails.
VuGen aborts the Vuser script regardless of the error-handling method
that has been set in the run-time settings. Select Continue to have the
error-handling method defined in the run-time settings determine
whether or not the script is aborted if the check fails.

The default value is Continue. For details on defining the error handling
method, see “Configuring Run-Time Settings” in Volume I-Using VuGen.

➤ Expect. Select NotFound to indicate that the check is successful if the
Vuser does not find the specified check object. Select Found to indicate
that the check is successful if the Vuser finds the specified check object.
The default value is Found.

➤ Repeat. Select YES to search for multiple occurrences of the specified
check object. Select NO to end the check as soon as one occurrence of the
specified check object is found. The Vuser script continues with the next
step. This option is useful when searching through a Web page that may
have multiple occurrences of the check object. The default value is YES.

➤ Report. Select Always to always view a detailed description of the check
results in the Execution Log. Select Failure to view detailed check results
only when the check fails. Select Success to view detailed check results
only when the check succeeds. The default value is Always.

An ABC icon indicates that the property value has not been assigned a
parameter. Click the icon to assign a parameter. For more information, see
“Creating Parameters” in Volume I-Using VuGen.
658

43
Modifying Web and Wireless Vuser
Scripts

After recording a Web or Wireless Vuser script, you use VuGen to modify the
recorded script. You can add new steps, and edit, rename, and delete
existing steps.

This chapter includes:

 ➤ About Modifying Web and Wireless Vuser Scripts on page 660

 ➤ Adding a Step to a Vuser Script on page 661

 ➤ Deleting Steps from a Vuser Script on page 662

 ➤ Modifying Action Steps on page 663

 ➤ Modifying Control Steps on page 680

 ➤ Modifying Service Steps on page 683

 ➤ Modifying Web Checks (Web only) on page 684

The following information applies to Web and Wireless Vuser scripts.
659

Chapter 43 • Modifying Web and Wireless Vuser Scripts
About Modifying Web and Wireless Vuser Scripts

After recording a browser or toolkit session, you can modify the recorded
script in VuGen by editing a step’s properties or adding and deleting steps.

You can do the modifications either in the icon-based tree view or in the
text-based script view. For details on the two viewing modes, see Chapter 34,
“Creating Web Vuser Scripts.”

This chapter describes how to use VuGen to modify the script in the tree
view. For information about modifying the script in the text-based script
view, refer to the Online Function Reference (Help > Function Reference).

Adding Binary Data
To include binary coded data in the body of an HTTP request, use the
following format:

\x[char1][char2]

This represents the hexadecimal value that is represented by [char1][char2].

For example, \x24 is 16*2+4=36, is a $ sign, and \x2B is a + sign.

Do not use single-character hexadecimal sequences. For example, \x2 is not a
valid sequence but \x02 is.
660

Chapter 43 • Modifying Web and Wireless Vuser Scripts
Adding a Step to a Vuser Script

In addition to the steps that VuGen records during the browser or toolkit
recording session, you can add steps to a recorded script.

To add a step to a Vuser script:

 1 In the tree view of the script, select the step before or after which you want
to add the new step.

 2 Select Insert > New Step to insert a step after the selected step, or select
Insert After or Insert Before from the right-click menu. The Add Step dialog
box opens.

 3 Select the type of step you want to add from the Step Type tree or from the
Find Function list.

 4 Click OK. An additional dialog box opens, prompting for information about
the step to add. This dialog box varies, depending on the type of step that
you are adding.
661

Chapter 43 • Modifying Web and Wireless Vuser Scripts
For details on using these dialog boxes, see the appropriate section, as listed
below:

Deleting Steps from a Vuser Script

After recording a browser or toolkit session, you can use VuGen to delete
any step from the Vuser script.

To delete a step from a Vuser script:

 1 In the tree view of the Vuser script, right-click the step you want to delete,
and select Delete from the pop-up menu.

 2 Click OK to confirm that you want to delete the step.

The step is deleted from the script.

To add this… See…

Vuser API function “Enhancing Vuser Scripts” in Volume I-Using VuGen

Service step “Modifying Service Steps” on page 683

Web Check “Modifying Web Checks (Web only)” on page 684

Transaction “Modifying a Transaction” on page 680

Rendezvous point “Modifying a Rendezvous Point” on page 681

Think time step “Modifying Think Time” on page 682

URL step “Modifying a URL Step” on page 663

Link step “Modifying a Hypertext Link Step (Web only)” on
page 665

Image step “Modifying an Image Step (Web only)” on page 667

Submit form step “Modifying a Submit Form Step (Web only)” on
page 669

Submit data step “Modifying a Submit Data Step” on page 673

Custom request step “Modifying a Custom Request Step” on page 677

User-defined step “Enhancing Vuser Scripts” in Volume I-Using VuGen

662

Chapter 43 • Modifying Web and Wireless Vuser Scripts
Modifying Action Steps

An action step represents a user action during recording, that is, a jump to a
new URL or a change in the Web context.

Action steps, represented in the tree view of the Vuser script by Action icons,
are added to your script automatically during recording. After recording,
you can modify the recorded action steps.

This section includes:

➤ Modifying a URL Step

➤ Modifying a Hypertext Link Step (Web only)

➤ Modifying an Image Step (Web only)

➤ Modifying a Submit Form Step (Web only)

➤ Modifying a Submit Data Step

➤ Modifying a Custom Request Step

Modifying a URL Step
A URL step is added to the Vuser script when you type in a URL or use a
bookmark to access a specific Web page.

The properties that you can modify are the name of the step, the address of
the URL, target frame, and record mode.

By default, VuGen runs the URL step, based on the mode in which it was
recorded: HTML, or HTTP (without resources). For information on the
recording modes, see “Selecting a Recording Level” on page 598.
663

Chapter 43 • Modifying Web and Wireless Vuser Scripts
Setting the Replay Mode

In the URL step’s Properties dialog box, you can modify the mode settings to
instruct Vusers to execute the script in a mode other than the recorded
mode. To customize the replay mode, select the Record mode check box.
The available replay modes are:

➤ HTML. Automatically download all resources and images and store the
required HTTP information for the steps that follow. This is ideal for script
with Web links.

➤ HTTP. Do not download any resources for this step during replay. Download
only resources that are explicitly represented by functions.

You can also indicate that a certain step should not be counted as a resource.
For example, if you have a step that represents a specific image that you
want to skip, you can instruct VuGen to exclude that resource type. For
more information, see the “Resource Handling” on page 608.

To modify the properties of a URL step:

 1 In the tree view of the Vuser script, select the URL step you want to edit.
URL steps are shown using the URL icon.

 2 Click the Properties button on the VuGen toolbar. The URL Step Properties
dialog box opens.
664

Chapter 43 • Modifying Web and Wireless Vuser Scripts
 3 To change the step name, type a new name in the Step name box. The
default name during recording is the last part of the URL.

 4 In the URL box, type the Web address (URL) of the Web page that is accessed
by the URL step. An ABC icon indicates that the URL has not been assigned
a parameter. For details on assigning parameters, see “Creating Parameters”
in Volume I-Using VuGen.

 5 In the Target frame list, select one of the following values:

➤ SELF. Replaces the last (changed) frame.

➤ PARENT. Replaces the parent of the last (changed) frame.

➤ TOP. Replaces the whole page.

➤ BLANK. Opens a new window.

 6 To customize the replay mode, select the Record mode check box.

Choose the desired mode: HTML or HTTP.

 7 To exclude an item from being downloaded as a resource, clear the Resource
check box.

 8 Click OK to close the URL Step Properties dialog box.

Modifying a Hypertext Link Step (Web only)
A hypertext link step is added to the Web Vuser script when you click a
hypertext link. This step is only recorded when you select the option to
record in HTML based script mode. For more information, see Chapter 39,
“Setting Recording Options for Web Vusers.”

The properties that you can modify are the name of the step, how the
hypertext link is identified, and where it is located.
665

Chapter 43 • Modifying Web and Wireless Vuser Scripts
To modify the properties of a hypertext link step:

 1 In the tree view of the Vuser script, select the hypertext link step you want
to edit. Hypertext link steps are shown using the Hypertext Link icon.

 2 Select Properties from the right-click menu. The Link Step Properties dialog
box opens.

 3 To change the step name, type a new name in the Step Name box. The
default name during recording is the text string of the hypertext link.

 4 The properties table displays the properties that identify the link.

Clear the View only the active properties check box to view active and non-
active properties. To enable a property, click the cell to the left of the
property name. Assign the property a value in the Value column:

➤ Text. The exact string of the hypertext link.

➤ Frame. The name of the frame where the link is located.

➤ TargetFrame. The target frame:

➤ TOP. Replaces the whole page.
666

Chapter 43 • Modifying Web and Wireless Vuser Scripts
➤ BLANK. Opens a new window.

➤ PARENT. Replaces the parent of the last (changed) frame.

➤ SELF. Replaces the last (changed) frame.

➤ Ordinal. a number that uniquely identifies the link when all the other
property attributes are identical to one or more other links on the Web
page. Refer to the Online Function Reference for details.

An ABC icon indicates that the link property value has not been assigned a
parameter. For details on assigning parameters, see “Creating Parameters” in
Volume I-Using VuGen.

 5 Click OK to close the Link Step Properties dialog box.

Modifying an Image Step (Web only)
An image step is added to the Vuser script when you click a hypergraphic
link. This step is only recorded when you select the option to record in
HTML (context-sensitive) mode. For more information, see Chapter 39,
“Setting Recording Options for Web Vusers.”

The properties that you can modify are the name of the step, how the
hypergraphic link is identified, and where it is located.
667

Chapter 43 • Modifying Web and Wireless Vuser Scripts
To modify the properties of an image step:

 1 In the tree view of the Vuser script, select the image step you want to edit.
Image steps are shown using the Image icon.

 2 Select Properties from the right-click menu. The Image Step Properties
dialog box opens.

 3 To change the step name, type a new name in the Step Name box. The
default name during recording is the image’s ALT attribute. If the image does
not have an ALT attribute, then the last part of the SRC attribute is used as
the default name.

 4 The properties table displays the properties that identify the link.

Clear the View only the active properties check box to view active and non-
active properties. To enable a property, click the cell to the left of the
property name. Assign the property a value in the Value column:

➤ ALT. The ALT attribute of the image.
668

Chapter 43 • Modifying Web and Wireless Vuser Scripts
➤ SRC. The SRC attribute of the image.

➤ MapName. The name of the map related to the image. Applies to client-
side image maps only.

➤ AreaAlt. The ALT attribute of the area to click. Applies to client-side
image maps only.

➤ AreaOrdinal. The serial number of the area to click. Applies to client-side
image maps only.

➤ Frame. The name of the frame where the image is located.

➤ TargetFrame.The target frame:

➤ _TOP. Replaces the whole page.

➤ _BLANK. Opens a new window.

➤ _PARENT. Replaces the parent of the last (changed) frame.

➤ _SELF. Replaces the last (changed) frame.

➤ Ordinal. a number that uniquely identifies the image when all other
property attributes are identical to one or more other images on the Web
page. Refer to the Online Function Reference for details.

➤ XCoord, YCoord. The coordinates of the mouse-click on the image.

An ABC icon indicates that the link property value has not been assigned a
parameter. For details on assigning parameters, see “Creating Parameters” in
Volume I-Using VuGen.

 5 Click OK to close the Image Step Properties dialog box.

Modifying a Submit Form Step (Web only)
A submit form step is added to the Vuser script when you submit a form.
This step is only recorded when you select the option to record in HTML
(context-sensitive) mode. For more information, see Chapter 39, “Setting
Recording Options for Web Vusers.”

The properties that you can modify are the name of the step, the form
location, how the form submission is identified, the form data, and the
resources for the step.
669

Chapter 43 • Modifying Web and Wireless Vuser Scripts
To modify the properties of a submit form step:

 1 In the tree view of the Vuser script, select the submit form step you want to
edit. Submit form steps are shown using the Submit Form icon.

 2 Select Properties from the right-click menu. The Submit Form Step
Properties dialog box opens. Click the Data tab.

➤ The Name column lists all the data arguments on the form.

➤ The Value column displays the corresponding value input for a data
argument.

➤ The type column contains an icon. Initially, all values are constants or
non-parameterized values and have an ABC icon. If you assign a
parameter to the data value, as described in “Creating Parameters” in
Volume I-Using VuGen, the ABC icon changes to a table icon.

 3 To edit a data argument, double-click on it to activate the cursor within the
cell and type the new value in the editable box.
670

Chapter 43 • Modifying Web and Wireless Vuser Scripts
 4 To add a new data argument to the form submission, click Add. The Add
Data dialog box opens.

 5 Type a Name and Value for the data argument, and click OK.

 6 To delete an argument, select it and click Delete.

 7 To change the name of the submit form step, click the General tab.

 8 To change the step name, type a new name in the Step Name box. The
default name during recording is the name of the executable program used
to process the form.
671

Chapter 43 • Modifying Web and Wireless Vuser Scripts
 9 The properties table displays the properties that identify the form
submission.

Clear the View only the active properties option to view active and non-
active properties. To enable a property, click the cell to the left of the
property name. Assign the property a value in the Value column:

➤ Action. The address to be used to carry out the action of the form.

➤ Frame. The name of the frame where the form submission is located.

➤ TargetFrame. The target frame:

➤ _TOP. Replaces the whole page.

➤ _BLANK. Opens a new window.

➤ _PARENT. Replaces the parent of the last (changed) frame.

➤ _SELF. Replaces the last (changed) frame.

➤ Ordinal. a number that uniquely identifies the form when all other
property attributes are identical to one or more other forms on the same
Web page. Refer to the Online Function Reference for details (Help >
Function Reference).

An ABC icon indicates that the submit form step property value has not
been assigned a parameter. For details on assigning parameters, see
“Creating Parameters” in Volume I-Using VuGen.
672

Chapter 43 • Modifying Web and Wireless Vuser Scripts
 10 To specify resources for the step, click the Resources tab. Click Add to add a
resource’s URL and Referer page.

 11 Click OK to close the Submit Form Step Properties dialog box.

Modifying a Submit Data Step
A submit data step represents the submission of a form of data to your Web
site for processing. This is different from a Submit Form step because you do
not need to have a form context to execute this request.

The properties that you can modify are the name of the step, the method,
the action, the target frame, and the data items on the form.

To modify the properties of a submit data step:

 1 In the tree view of the Vuser script, select the submit data step you want to
edit. Submit data steps are represented by the Submit Data icon.
673

Chapter 43 • Modifying Web and Wireless Vuser Scripts
 2 Select Properties from the right-click menu. The Submit Data Step Properties
dialog box opens. Click the Data tab.

➤ The Name column lists all the data arguments on the form. This includes
all hidden fields.

➤ The Value column displays the corresponding value input for a data
argument.

➤ The type column contains an icon. Initially, all values are constants or
non-parameterized values and have an ABC icon. If you assign a
parameter to the data value, as described in “Creating Parameters” in
Volume I-Using VuGen, the ABC icon changes to a table icon.

 3 To edit a data argument, double-click on it to activate the cursor within the
cell. Then type the new value.
674

Chapter 43 • Modifying Web and Wireless Vuser Scripts
 4 To add new data, click Add. The Add Data dialog box opens.

 5 Type a Name and Value for the data argument, and click OK.

 6 To delete an argument, select it and click Delete.

 7 To change the name of the submit data step, click the General tab.

 8 To change the step name, type a new name in the Step name box.

 9 Under Method, click POST or GET. The default method is POST.
675

Chapter 43 • Modifying Web and Wireless Vuser Scripts
 10 In the Action box, type the address to be used to carry out the action of the
data submission. An ABC icon indicates that the action has not been
assigned a parameter. For details on assigning parameters, see “Creating
Parameters” in Volume I-Using VuGen.

 11 Select a Target frame from the list:

➤ TOP. Replaces the whole page.

➤ BLANK. Opens a new window.

➤ PARENT. Replaces the parent of the last (changed) frame.

➤ SELF. Replaces the last (changed) frame.

 12 To customize the replay mode, select the Record mode option. Choose the
desired mode: HTML, or HTTP. For more information, see “Setting the
Replay Mode” on page 664.

 13 To specify an encoding type, such as multipart/www-urlencoded, select the
Encoding type check box and specify the encoding method.

 14 To encode the "@" in the URL, select Encode "at" sign as ASCII.

 15 Click OK to close the Submit Data Step Properties dialog box.
676

Chapter 43 • Modifying Web and Wireless Vuser Scripts
 16 To specify resources for the step, click the Resources tab. Click Add to add a
resource’s URL and Referer page.

Modifying a Custom Request Step
A custom request represents a custom HTTP request for a URL, with any
method supported by HTTP. A custom request step is contextless.

The properties that you can modify are the name of the step, method, URL,
target frame, and body.

VuGen has a feature that lets you convert a custom request body string to C
format. For example, if you copy an XML tree or a large amount of data into
the Body area of the custom request, you can convert the strings to C format
in order that it may be incorporated into the current function. VuGen
inserts the necessary escape sequence characters and removes the line breaks
in the string.

To modify the properties of a custom request step:

 1 In the tree view of the Vuser script, select the custom request step you want
to edit. Custom request steps are shown using the Custom Request icon.
677

Chapter 43 • Modifying Web and Wireless Vuser Scripts
 2 Select Properties from the right-click menu. The Custom Request Properties
dialog box opens.

 3 To change the step name, type a new name in the Step name box. The
default name during recording is the last part of the URL.

 4 In the Method box, type any method supported by HTTP. For example, GET,
POST or HEAD.

 5 In the URL box, type the URL being requested.

 6 Select a Target frame from the list:

➤ TOP. Replaces the whole page.

➤ BLANK. Opens a new window.

➤ PARENT. Replaces the parent of the last (changed) frame.

➤ SELF. Replaces the last (changed) frame.
678

Chapter 43 • Modifying Web and Wireless Vuser Scripts
 7 In the Body attribute box, type the body of the request or paste in the
desired text. If you select the Binary data check box, the text is treated as
binary and not as ASCII. For details on using binary data, refer to the Online
Function Reference (Help > Function Reference).

VuGen replaces a Body attribute whose length exceeds 100K, with a variable
in the Body variable name box. The variable is defined in the
lrw_custom_body.h file located in the include folder.

 8 For strings that you pasted into the Body box, select the text and choose
Convert to C format from the right-click menu.

 9 To customize the replay mode, select the Record mode option. Choose the
desired mode: HTML or HTTP. For more information, see “Setting the Replay
Mode” on page 664.

 10 To exclude an item from being downloaded as a resource, clear the Resource
option.

 11 To specify an encoding type, such as multipart/www-urlencoded, select
Encoding type and specify the encoding method.

 12 Click OK to close the Custom Request Properties dialog box.
679

Chapter 43 • Modifying Web and Wireless Vuser Scripts
Modifying Control Steps

A control step represents a non-action step used during load testing. Control
steps include transactions, rendezvous points, and think time.

You add control steps, represented in the tree view of the Vuser script by
Control icons, to your script during and after recording.

This section includes:

➤ Modifying a Transaction

➤ Modifying a Rendezvous Point

➤ Modifying Think Time

Modifying a Transaction
A transaction is a task or set of actions whose server response time you want
to measure.

The properties that you can modify are the name of the transaction (start
transaction and end transaction) and its status (end transaction only).

To modify a start transaction control step:

 1 In the tree view of the Vuser script, select the start transaction control step
you want to edit. Start transaction control steps are shown using the Start
Transaction icon.

 2 Select Properties from the right-click menu. The Start Transaction dialog
box opens.

 3 To change the transaction name, type a new name in the Transaction Name
box, and click OK.
680

Chapter 43 • Modifying Web and Wireless Vuser Scripts
To modify an end transaction control step:

 1 In the tree view of the Vuser script, select the end transaction control step
you want to edit. End transaction control steps are shown using the End
Transaction icon.

 2 Select Properties from the right-click menu. The End Transaction dialog box
opens.

 3 Select the name of the transaction you want to end from the Transaction
Name list.

 4 Select a transaction status from the Transaction Status list:

➤ LR_PASS. Returns a "succeed" return code.

➤ LR_FAIL. Returns a "fail" return code.

➤ LR_STOP. Returns a "stop" return code.

➤ LR_AUTO. Automatically returns the detected status.

For more information, refer to the Online Function Reference (Help > Function
Reference).

 5 Click OK to close the End Transaction dialog box.

Modifying a Rendezvous Point
Rendezvous points enable you to synchronize Vusers to perform a task at
exactly the same moment.

The property that you can modify is the name of the rendezvous point.

To modify a rendezvous point:

 1 In the tree view of the Vuser script, select the rendezvous point you want to
edit. Rendezvous points are shown using the Rendezvous icon.
681

Chapter 43 • Modifying Web and Wireless Vuser Scripts
 2 Select Properties from the right-click menu. The Rendezvous dialog box
opens.

 3 To change the rendezvous name, type a new name in the Rendezvous Name
box, and click OK.

Modifying Think Time
Think time emulates the time that a real user waits between actions. During
recording, VuGen automatically adds think time to the Vuser script after
each user action—if the time between that action and the subsequent action
exceeds a predefined threshold of about four seconds.

The property that you can modify is the think time, in seconds.

To modify the think time:

 1 In the tree view of the Vuser script, select the think time step you want to
edit. Think time steps are shown using the Think Time icon.

 2 Select Properties from the right-click menu. The Think Time dialog box
opens.

 3 Type a think time in the Time To Think box, and click OK.
682

Chapter 43 • Modifying Web and Wireless Vuser Scripts
Note: When you run a Web Vuser script, you can instruct the Vuser to replay
think time as recorded or ignore the recorded think time. For details, see
“Configuring Run-Time Settings” in Volume I-Using VuGen.

Modifying Service Steps

A service step is a function that performs customization tasks such as setting
proxies, submitting authorization information, and issuing customized
headers. Service steps do not make any changes to the Web site context.

You add service steps to your script during and after recording.

To modify the properties of a service step:

 1 In the tree view of the Vuser script, select the service step you want to edit.
Service steps are shown using the Service icon.

 2 Select Properties from the right-click menu. The appropriate service step
properties dialog box opens. This dialog box varies, depending on the type
of service step that you are modifying. A description of the service step is
displayed in the title bar of the dialog box.

Note: Some service step functions have no arguments. In these cases, the
Properties menu item is disabled.

 3 Type or select the arguments required for the service step. Refer to the Online
Function Reference for details of each function (Help > Function Reference).

 4 Click OK to close the service step properties dialog box.
683

Chapter 43 • Modifying Web and Wireless Vuser Scripts
Modifying Web Checks (Web only)

A Web check is a function that verifies the presence of a specific object on a
Web page. The object can be a text string or an image.

You add Web checks to your script during and after recording.

To modify the properties of a Web check:

 1 In the tree view of the Vuser script, select the Web check you want to edit.
Web checks are shown using Web Check icons.

 2 Select Properties from the right-click menu. The appropriate Web check
properties dialog box opens. This dialog box varies, depending on the type
of check that you are modifying.

 3 Type or select the properties required for the check. For details, see
Chapter 42, “Verifying Web Pages Under Load.”

 4 Click OK to close the check properties dialog box.

Icon Description

Image Check
icon

Text Check
icon
684

44
Setting Correlation Rules for Web Vuser
Scripts

VuGen’s correlation feature allows you to link Vuser functions by using the
results of one statement as input for another.

This chapter includes:

 ➤ About Correlating Statements on page 685

 ➤ Understanding the Correlation Methods on page 687

 ➤ Using VuGen’s Correlation Rules on page 688

 ➤ Setting Correlation Rules on page 694

 ➤ Testing Rules on page 696

 ➤ Setting the Correlation Recording Options on page 697

The following information applies to Web and PeopleSoft Enterprise Vuser
scripts.

About Correlating Statements

HTML pages often contain dynamic data, which is data that changes each
time you access a site. For example, certain Web servers use links comprised
of the current date and time.

When you record a Web Vuser script, dynamic data may be recorded into
the script. Your script tries to present the recorded variables to the Web
server, but they are no longer valid. The Web server rejects them and issues
an error. These errors are not always obvious, and you may only detect them
by carefully examining Vuser log files.
685

Chapter 44 • Setting Correlation Rules for Web Vuser Scripts
If you encounter an error when running your Vuser, examine the script at
the point where the error occurred. Often, correlation will solve the problem
by enabling you to use the results of one statement as input for another.

The dynamic data in an HTML page can be in the form of:

➤ a URL that changes each time you access the associated Web page

➤ a field (sometimes hidden) recorded during a form submission

➤ JavaScript cookies

Case 1

Suppose a Web page contains a hypertext link with text: "Buy me now!"
When you record a script with HTTP data, the URL is recorded by VuGen as:

"http://host//cgi-bin/purchase.cgi?date=170397&ID=1234"

Since the date "170397" and ID "1234" are created dynamically during
recording, each new browser session recreates the date and ID. When you
run the script, the link "Buy me now!" is no longer associated with the same
URL that was recorded—but with a new one. The Web server is therefore
unable to retrieve the URL.
686

Chapter 44 • Setting Correlation Rules for Web Vuser Scripts
Case 2

Consider a case where a user fills in his name and account ID into a form,
and then submits the form.

When the form is submitted, a unique serial number is also sent to the
server together with the user’s data. Although this serial number is
contained in a hidden field in the HTML code, it is recorded by VuGen into
the script. Because the serial number changes with each browser session,
Vusers were unable to successfully replay the recorded script.

You can use correlated statements to resolve the difficulties in both of the
above cases. Replace the dynamic data in the recorded script with one or
more parameters. When the script runs, it assigns values to each of the
parameters.

Understanding the Correlation Methods

This chapter discusses automatic correlation using built-in or user-defined
rules. To manually correlate statements, or to perform correlation for
Wireless Vuser scripts, see “Performing Manual Correlation” on page 711.

When recording a browser session, you should first try recording in HTML
mode. This mode decreases the need for correlation. For more information
about the various recording modes, see “Selecting a Recording Level” on
page 598.

You can instruct VuGen to correlate the statements in your script either
during or after recording. The recording-time solutions described in this
chapter automatically correlate the statements in your script during
recording time. You can also use VuGen’s snapshot correlation to correlate
scripts after recording. For more information on correlating after recording,
see Chapter 45, “Correlating Vuser Scripts After Recording.”
687

Chapter 44 • Setting Correlation Rules for Web Vuser Scripts
Using VuGen’s Correlation Rules

VuGen’s correlation engine allows you to automatically correlate dynamic
data during your recording session using one of the following mechanisms:

➤ Built-in Correlation

➤ User-Defined Rule Correlation

For additional information, see “Adding Match Criteria” on page 692 and
“Advanced Correlation Rules” on page 692.

Built-in Correlation

The Built-in correlation detects and correlates dynamic data for supported
application servers. Most servers have clear syntax rules, or contexts, that
they use when creating links and referrals.

For example, BroadVision servers create session IDs that are always placed
between the same delimiters: ”BV_SessionID=” on the left, and ”&” on the
right.

BV_SessionID=@@@@1303778278.0969956817@@@@&

688

Chapter 44 • Setting Correlation Rules for Web Vuser Scripts
If you are recording a session with a supported application server, you can
use one of the existing rules built into VuGen. An application server may
have more than one rule. You can enable or disable a specific rule by
selecting or clearing the check box adjacent to the rule. VuGen displays the
rule definitions in the right pane.

If you are recording a session on an unsupported application server whose
context is not known, and you cannot determine any correlation rules, you
can use VuGen’s snapshot comparison method. This method guides you
through the correlation procedure after you finish recording. For more
information, see Chapter 45, “Correlating Vuser Scripts After Recording.”

User-Defined Rule Correlation

If your application has unique rules and you are able to determine them
clearly, you can define new rules using the Recording Options.

User-defined rule correlation requires you to define correlation rules before
you record a session. You create the correlation rules in the Recording
Options dialog box. The rules include information such as the boundaries of
the dynamic data you want to correlate and other specifications about the
match such as binary, case matching, and the instance number.
689

Chapter 44 • Setting Correlation Rules for Web Vuser Scripts
You instruct VuGen where to search for the criteria:

➤ All Body Text

➤ Link/Form Actions

➤ Cookie Headers

➤ Form Field Value

➤ Insert Cookie Function

Note that by default, the maximum size of a string that you can save for a
rule is 4096 characters. If necessary, you can modify this value by increasing
the value of the MaxParamLen attribute in the CorrelationSettings.xml file,
located in the Windows Installation directory.

All Body Text

The Search for Parameters in all of the Body Text option instructs the
recorder to search the entire body—not just links, form actions or cookies. It
searches the text for a match using the borders that you specify.

Link/Form Actions

The Search for parameters in links and form actions method instructs
VuGen to search within links and form type actions for the text to
parameterize. This method is for application servers where you know the
context rules. You define a left boundary, a right boundary, an alternate
right boundary, and an instance (occurrence) of the left boundary within
the current link.

For example, suppose you want to replace any text between the second
occurrence of the string "sessionid=" and "@" with a parameter. Specify
sessionid= as a left boundary in the Left Boundary box, and @ as a right
boundary in the Right Boundary box. Since you are looking for the second
occurrence, choose second in the Instance box.

If the right boundary is not consistent, you can specify an alternate right
boundary in the Alternate right boundary box. It uses this value when it
cannot uniquely determine the specified right boundary.
690

Chapter 44 • Setting Correlation Rules for Web Vuser Scripts
For example, suppose the Web page contains links in the following formats:

"SessionID=122@page.htm"
"Page.htm@SessionID=122&test.htm"

Specifying the right boundary alone is not sufficient, since it is not
consistent—sometimes it is "@" and other times it is "&". In this case, you
specify "&" as the alternate right boundary.

The left and right boundaries should uniquely identify the string. Do not
include dynamic data in the boundaries. You can also specify End of String
or Newline Character as a right boundary, available as options in the drop-
down menu.

Note that for this option, the left and right boundaries must appear in the
string that appears in the script—it is not sufficient for the boundaries to be
returned by the server. This limitation does not apply to the other action
types.

Cookie Headers

The Search for Parameters from Cookie Header method is similar to the
previous rule, except that the value is extracted from cookie text (exactly as
it appears in the recording log) instead of from a link or form action.

In addition, the link/form action rule parameterizes only the part of URL
that matches the rule boundaries. The cookie rule looks for the extracted
value in links and action form fields and replaces it with a parameter
automatically, without having to display the boundaries in the script.

Form Field Value

The Parameterize form field value method instructs the recorder to save the
named form field to a parameter. It creates a parameter and places it in the
script before the form’s action step. For this option, you need to specify the
field name.
691

Chapter 44 • Setting Correlation Rules for Web Vuser Scripts
Insert Cookie Function

The Text to enter a web_reg_add_cookie function by method inserts a
web_reg_add_cookie function if it detects a certain string in the buffer. It
only adds the function for those cookies with the specified prefix. For this
option, you need to specify the search text and the cookie prefix.

Adding Match Criteria
In addition to the above rules, you can further define the type of match for
your correlation by specifying the following items for the string:

➤ Parameter Prefix. Uses a prefix in all automatically generated parameters
based on this rule. Prefixes prevent you from overwriting existing user
parameters. In addition, prefixes allow you to recognize the parameter in
your script. For example, in Siebel-Web, one of the built-in rules searches for
Siebel_row_id prefix.

➤ Match Case. Matches the case when looking for boundaries.

➤ Use "#" for any digit. Replaces all digits with a hash sign. The hash signs
serve as wildcard, allowing you to find text strings with any digit. For
example, if you enable this option and specify HP### as the left boundary,
HP193 and HP284 will be valid matches.

Adding Comments

You can instruct VuGen to insert descriptive comments to the correlation
steps within your script. To enable this option, select the Add Comments to
script option.

Advanced Correlation Rules
VuGen lets you specify the following advanced correlation rules:

➤ Always create new parameter. Creates a new parameter for this rule even if
the value replaced by the parameter has not changed from the previous
instance. This option should be set if the Web server assigns a different value
for each page. For example, NetDynamics servers may change the session ID
from page to page to minimize fraud.
692

Chapter 44 • Setting Correlation Rules for Web Vuser Scripts
➤ Replace with parameter only for exact matches. Replace the recorded value
with a parameter only when the text between the boundaries exactly
matches the found value (from the first snapshot). If there are additional
characters either before or after the string, it will not replace the parameter.

For example, in a form submission, VuGen recorded the characters 1234
between the boundaries aaa and bbb, aaa1234bbb. In subsequent
submissions of this form, VuGen only replaces the recorded value with a
parameter if it finds the characters 1234, Name=1234. If another value is
entered, even if it contains the first string, for example, Name=12345,
VuGen will not replace the value with a parameter. Instead, it will use the
value 12345.

➤ Reverse Search. Searches for the left boundary from the end of the string
backwards.

➤ Left boundary Instance. The number of occurrence of the left boundary
within the string (not the body) for it to be considered a match.

➤ Offset. The offset of a sub-string of the found value to save to the parameter.
The default is the beginning of the matched string. Note that you must
specify a non-negative value.

➤ Length. The length from its offset of a sub-string of the matched string to
save to the parameter. If you disable this option, the default saves the string
from the specified offset until the end of the match.

➤ Alternate Right Boundary. An alternative criteria for the right boundary if
the previously specified boundary is not found. You can specify text, End of
String, or Newline Character.
693

Chapter 44 • Setting Correlation Rules for Web Vuser Scripts
Setting Correlation Rules

You can add, modify, or remove rules using the Correlation Recording
options. Note that you can also edit rules that were created automatically for
application server environments.

In addition to creating rules using the recording options before recording,
you can create rules after recording. After running your script, you scan it
for correlations (CTRL+F8). You select one of the correlation results, and
create a rule based on its properties. For more information, see “Performing
a Scan for Correlations” on page 707.

To define correlation rules:

 1 Click on an existing rule or click New Rule in the left pane. The Correlation
Rules are displayed in the right pane.

 2 Select a type of action: link or form action, cookie, all body, form field, or
web_reg_add_cookie.

 3 For the first three types, specify boundaries of the data in the Left Boundary
and Right Boundary boxes.
694

Chapter 44 • Setting Correlation Rules for Web Vuser Scripts
 4 For form field type actions, specify the field name.

 5 Select the desired options: Match Case and/or Parameter Prefix. Specify a
parameter prefix. To convert all digits to hash signs (#), select Use # for any
digit.

 6 To set advanced rules, click Advanced in the Correlation node. The
Advanced Correlation Properties dialog box opens.

➤ Select Always create new parameter to create a new parameter for this
rule even if the value replaced by the parameter has not changed from
the previous instance.
695

Chapter 44 • Setting Correlation Rules for Web Vuser Scripts
➤ Select Replace with parameter only for exact matches to replace a value
with a parameter only when the text exactly matches the found value.

➤ Select Reverse Search to perform a backward search.

➤ Select the Left Boundary Instance box and specify the desired instance.

➤ Select Offset to specify an offset for the string within the match.

➤ Select Length to specify the length of the matched string to save to the
parameter. This option may be used in conjunction with the Offset
option.

➤ Specify another right boundary in the Alternate right boundary box or
choose End of String or NewLine Character from the drop-down menu.

 7 Click Test Rule to test the rule you just defined. For information, see
“Testing Rules” on page 696.

 8 Click OK to save the rules and close the dialog box.

Testing Rules

This section applies to user-defined rules that you created for a server with a
known context. After you define a new rule in the Correlation Rule dialog
box, you can test it before recording your session by applying the rules to a
sample string. You test the rules in the Token Substitution Testpad. To use
the testpad:

 1 Select a rule from the left pane and click Test. The Token Substitution
Testpad dialog box opens.

696

Chapter 44 • Setting Correlation Rules for Web Vuser Scripts
 2 Enter text in the Source String for Substitution box.

 3 Click Test.

If substitution occurred, you will see the parameterized source text in the
Substitution Result box and a list of rules that were applied to it in the
Applied Rules box.

Setting the Correlation Recording Options

To instruct VuGen to correlate your statements during recording, you set the
Correlation recording options. You set these options after opening a Web
Vuser script but before you begin recording the session.

To set the correlation recording options:

 1 After you create a script, but before you begin recording, select Tools >
Recording Options and select the HTTP Properties:Correlation node in the
Recording Options tree.

 2 Select the Enable correlation during recording option.
697

Chapter 44 • Setting Correlation Rules for Web Vuser Scripts
 3 Indicate the servers to which you want to apply the correlation rules. Select
the check boxes adjacent to the server names to enable the rules for that
server. To enable specific rules within a server group, click the plus sign to
expand the tree and select the desired rules.

 4 To add a new rule to an existing server, select one of the existing entries and
click New Rule. Set the properties for the rule in the right pane. For more
information, see “Setting Correlation Rules” on page 694.

 5 To add a set of rules for a new application, click New Application. Then click
New Rule to create a rule for the application.

 6 To modify the properties of an existing rule, select the rule in the left pane
and modify the rules in the right pane.

 7 To delete an application or rule, select it and click Delete. VuGen prompts
you to confirm your choice before deleting the selection.

 8 To export a set of correlation rules, click Export and save the .cor file to the
desired location. To import a set of correlation rules created during an earlier
session, click Import and open the file from its location.

 9 Click OK.
698

45
Correlating Vuser Scripts After Recording

When correlation was not performed during recording, VuGen’s built-in
Web Correlation mechanism allows you to correlate Vuser scripts after a
recording session.

This chapter includes:

 ➤ About Correlating with Snapshots on page 700

 ➤ Viewing the Correlation Results Tab on page 701

 ➤ Setting Up VuGen for Correlations on page 704

 ➤ Performing a Scan for Correlations on page 707

 ➤ Performing Manual Correlation on page 711

 ➤ Defining a Dynamic String’s Boundaries on page 716

The following information applies only to Web, Wireless, SAP-Web, and
Siebel-Web Vuser scripts.
699

Chapter 45 • Correlating Vuser Scripts After Recording
About Correlating with Snapshots

VuGen provides several correlation mechanisms for Web Vuser scripts. The
automatic method discussed in Chapter 44, “Setting Correlation Rules for
Web Vuser Scripts” detects dynamic values during recording and allows you
to correlate them right away. If you disabled automatic correlation, or if the
automatic method did not detect all of the differences, you can use VuGen’s
built-in correlation mechanism, described in this chapter, to find differences
and correlate the values. You can also use this mechanism for scripts that
were only partially correlated.

The correlation mechanism uses snapshots to track the results of script
execution. Snapshots are graphical representations of Web pages.
VuGen captures snapshots of the Web pages during record and replay. You
compare the recorded snapshot to any of the replay snapshots to determine
which values you need to correlate to successfully run the script. For more
information about Record and Replay snapshots, see “Understanding
Snapshots” on page 41.

The Web correlation mechanism has a built-in comparison utility that
allows you to view the text or binary differences between the snapshots. You
can then correlate the differences one-by-one or all at once.

If VuGen’s correlation mechanisms are insufficient, or for protocols that do
not support these mechanisms, such as Wireless, use manual correlation. For
more information, see “Performing Manual Correlation” on page 711.
700

Chapter 45 • Correlating Vuser Scripts After Recording
Viewing the Correlation Results Tab

The Correlation Results tab displays the differences between the Record and
Replay snapshots.

When you instruct VuGen to scan the script for correlations, it opens the
Output window and displays the differences between the recording and
replayed snapshots in the Correlation Results tab.

You can display all the differences in the script or only those for the current
step or action, by selecting the desired option from the Show Differences In
list box.

Differences that were correlated are indicated by a check mark in the
Correlated column. The next two columns, Text in Recording, Text in
Replay show the text differences between the snapshots. The next column,
First occurs in, indicates the Action in which the correlation was first
detected.

After you detect the differences between the snapshots, you correlate them
one at a time by selecting the correlation and clicking Correlate. VuGen also
allows you to undo a specific correlation using the Remove Correlation
button. If you expect one of the detected correlations to occur in subsequent
recordings, you can create a new correlation rule. By creating rules, you
enable VuGen to recognize differences during recording and automatically
correlate them. For more information, see “Creating a Rule” on page 702.
701

Chapter 45 • Correlating Vuser Scripts After Recording
When you correlate a value using the this mechanism, VuGen inserts a
web_reg_save_param function and a comment into your script indicating
that a correlation was done for the parameter. It also indicates the original
value.

Creating a Rule

You can create a rule directly from the list of Correlated Results. Creating a
rule, enables VuGen to recognize the difference during recording and
automatically correlate it.

// [WCSPARAM WCSParam_Diff1 14 reserveFlights] Parameter {WCSParam_Diff1}
created by Correlation Studio
web_reg_save_param("WCSParam_Diff1", "LB= NAME=\"", "RB=\"", "Ord=5",

"Search=Body", "RelFrameId=1", LAST);
web_submit_form("reservations.pl",

"Snapshot=t4.inf",
ITEMDATA,
"Name=depart", "Value=Denver", ENDITEM,
"Name=departDate", "Value=06/25/2004", ENDITEM,
"Name=arrive", "Value=Los Angeles", ENDITEM,
"Name=returnDate", "Value=06/26/2004", ENDITEM,
"Name=numPassengers", "Value=1", ENDITEM,
"Name=roundtrip", "Value=<OFF>", ENDITEM,
"Name=seatPref", "Value=None", ENDITEM,
"Name=seatType", "Value=Coach", ENDITEM,
"Name=findFlights.x", "Value=44", ENDITEM,
"Name=findFlights.y", "Value=12", ENDITEM,
LAST);

lr_think_time(12);

702

Chapter 45 • Correlating Vuser Scripts After Recording
To create a rule from one of the detected correlations:

Select the correlation and click Create Rule. You can also create a rule by
selecting a correlation and choosing Create Correlation Rule from the right-
click menu.

VuGen adds this rule to the list of Correlation rules. You can view this rule
in the Recording Options Correlation node. In the following example,
VuGen added the rule as CSRule_1.
703

Chapter 45 • Correlating Vuser Scripts After Recording
Setting Up VuGen for Correlations

You set the global Correlation setting under the General options. These
options instruct the Vusers to save correlation information during replay, to
be used at a later stage. You can specify the type of comparison to perform
when comparing snapshots: HTML or text. In the Advanced options, you
can indicate which characters should be treated as delimiters.

➤ Enable Scripting and Java applets on Snapshots viewer. Allows VuGen to
run applets and JavaScript in the snapshot window. This is disabled by
default because it uses a lot of resources.

➤ Download images on Snapshots viewer. Instructs VuGen to display graphics
in the Snapshot view. If you find that the displaying of images in the viewer
is very slow, you can disable this option. This option is enabled by default.

➤ Scan for differences between snapshots using. Choose a comparison
method:

➤ HTML Comparison. Only display the differences in HTML code.

➤ Text Comparison. Display all text, HTML, and binary differences.
704

Chapter 45 • Correlating Vuser Scripts After Recording
Note: In most cases, it is recommended that you work with the default
HTML comparison method. If your script contains non-HTML tags, you can
use the Text comparison method.

➤ Advanced. Opens the Advanced Correlation dialog box.

Advanced Correlation dialog box
This dialog box lets you specify the characters to be treated as delimiters.

➤ Characters that should be treated as delimiters. Specifies one or more non-
standard delimiters.

➤ Additional Delimiters. You can specify standard delimiters such as Carriage
Return, New line and Tab characters. To change this setting, clear the check
box next to the delimiter.

➤ Ignore differences shorter than … characters. Allows you to specify a
threshold for performing correlation. When VuGen compares the recorded
script with the executed script during the scanning process, it detects
differences. It will not correlate the differences unless the number of
different characters is greater than or equal to the threshold value. The
default value is 4 characters.

➤ Issue a warning for large correlations. Issues a warning if you try to correlate
a string whose size is 10 KB or larger.

Setting the Correlation Preferences
Before recording a session, you configure the correlation preferences.

To set the correlation preferences:

 1 Choose Options > General and select the Correlation tab.

 2 Select Enable Scripting and Java applets on Snapshots viewer to allow
VuGen to run applets and JavaScript in the snapshot window.

 3 To instruct VuGen to display graphics in the Snapshot view, select the
Download images on Snapshots viewer option.
705

Chapter 45 • Correlating Vuser Scripts After Recording
 4 Choose the comparison method: HTML comparison or Text Comparison (for
non-HTML elements only).

 5 To set the delimiter characters, click Advanced to open the Advanced
Correlation dialog box.

 6 In the Characters that should be treated as delimiters box, specify all
characters that are to be treated as delimiters.

 7 Select the desired options in the Additional delimiters section, to specify one
or more standard delimiters.

 8 Specify a threshold for the correlation in the Ignore differences shorter than
box. When VuGen compares the recorded script with the executed script
during the scanning process, it detects differences. It will not correlate the
differences unless the number of different characters is greater than or equal
to the threshold value.

 9 To issue a warning for large correlations, select the option’s check box.

 10 Click OK to accept the Advanced Correlation settings and close the dialog
box.

 11 Click OK in the General Options dialog box to accept the Correlation setting
and close the dialog box.
706

Chapter 45 • Correlating Vuser Scripts After Recording
Performing a Scan for Correlations

You can use VuGen’s snapshot window to determine which values within
your script are dynamic and require correlation. The following section
describes how to automatically scan the script for differences and use VuGen
to perform the necessary correlations.

To scan your script for correlations:

 1 Open a script and view it in Tree view (View > Tree View). Display the
snapshots (View > Snapshot > View Snapshot).

 2 Select a script step in the Tree view from the left pane. A snapshot opens in
the right pane.

 3 To display both the recording snapshot and the first replay snapshot, click
View > Snapshot > Recorded and Replayed.
707

Chapter 45 • Correlating Vuser Scripts After Recording
 4 To use a snapshot other than the first, click View > Snapshot > Select
Iteration. A dialog box opens, displaying the folders that contain snapshot
files. These are usually the result and Iteration folders below the script’s
folder.

 5 To select a snapshot file in a folder other than the one in the subfolders of
the script, click Select Folder. Browse to the desired location, and click OK.

 6 To view the HTML code, click the Server Response tab. Expand the Body
branch.

To return to the page view, click the Page View tab.
708

Chapter 45 • Correlating Vuser Scripts After Recording
 7 Choose Vuser > Scan for Correlations or click the Find Correlations button.
VuGen scans the script for dynamic values that need to be correlated and
displays them in the Correlation Results tab.

 8 View all differences or choose a filter method in the Show Differences In list
box. The options are All Actions, Current Action, or Current Step Only.

Determining the Differences to Correlate
Once you generate a list of differences, you need to determine which ones to
correlate. If you mistakenly correlate a difference that did not require
correlation, your replay may be adversely affected.

The following strings most probably require correlation:

➤ Login string. A login string with dynamic data such as a session ID or a
timestamp.

➤ Date/Time Stamp. Any string using a date or time stamp, or other user
credentials.

➤ Common Prefix. A common prefix, such as SessionID or CustomerID,
followed by a string of characters.

If you are in doubt whether a difference should be correlated, correlate only
that difference and then run your script. Check the Replay log to see if the
issue was resolved.

You should also correlate differences in which some of the recorded and
replayed strings are identical, but others differ. For example, SessionID
strings with identical prefixes and suffixes, but different characters in
between, should be correlated.
709

Chapter 45 • Correlating Vuser Scripts After Recording
Once you determine that a difference needs to be correlated, you instruct
VuGen to correlate it.

To correlate the differences:

 1 View the differences in the Correlation tab, and select the one you want to
correlate. It is recommended that you correlate only one difference at a
time.

 2 Click Correlate. VuGen places a green check mark next to differences that
were correlated and inserts a web_reg_save_param function into the script.

Repeat this step for all differences you want to correlate.

 3 To create a rule from one of the detected correlations, select the correlation
and click Create Rule. This is also available from the right-click menu.
VuGen issues a message confirming that your rule was created.
710

Chapter 45 • Correlating Vuser Scripts After Recording
To view this rule, open the Recording Options (CTRL +F7) and select the
Correlation node. Expand the Correlation Studio entry and select your rule.

 4 To undo a correlation, select the difference and click Remove Correlation.

 5 Choose File > Save to save the changes to your script.

Performing Manual Correlation

For Web Vusers, VuGen’s automatic or rule-based correlation usually
correlates the scripts dynamic functions so that you can run the script
successfully. You can also perform correlation after the recording session
using VuGen’s snapshot comparison.

For Wireless Vusers and other Vuser scripts for which automatic correlation
did not apply, VuGen also allows you to manually correlate your scripts. You
manually correlate a script by adding the code correlation functions. The
function that allows you to dynamically save data to a parameter is
web_reg_save_param.

When you run the script, the web_reg_save_param function scans the
subsequent HTML page that is accessed. You specify a left and/or right
boundary and VuGen searches for text between those boundaries. When
VuGen finds the text, it assigns it to a parameter.
711

Chapter 45 • Correlating Vuser Scripts After Recording
The function’s syntax is as follows:

The following table lists the available attributes. Note that the attribute
value strings (for example, Search=all) are not case sensitive.

int web_reg_save_param (const char *mpszParamName, <List of Attributes>, LAST);

NotFound The handling method when a boundary is not found and
an empty string is generated. "ERROR," the default,
indicates that VuGen should issue an error when a
boundary is not found. When set to "EMPTY," no error
message is issued and script execution continues. Note
that if Continue on Error is enabled for the script, then
even when NOTFOUND is set to "ERROR," the script
continues when the boundary is not found, but it writes
an error message to the Extended log file.

LB The left boundary of the parameter or the dynamic data.
This parameter must be a non-empty, null-terminated
character string. Boundary parameters are case sensitive;
to ignore the case, add "/IC" after the boundary. Specify
"/BIN" after the boundary to specify binary data.

RB The right boundary of the parameter or the dynamic data.
This parameter must be a non-empty, null-terminated
character string. Boundary parameters are case sensitive;
to ignore the case, add "/IC" after the boundary. Specify
"/BIN" after the boundary to specify binary data.

RelFrameID The hierarchy level of the HTML page relative to the
requested URL. The possible values are ALL or a number.

Search The scope of the search—where to search for the
delimited data. The possible values are Headers (search
only the headers), Body (search only Body data, not
headers), or ALL (search Body and headers). The default
value is ALL.

ORD This optional parameter indicates the ordinal or
occurrence number of the match. The default ordinal is 1.
If you specify "All," it saves the parameter values in an
array.
712

Chapter 45 • Correlating Vuser Scripts After Recording
To manually correlate your script:

 1 Identify the statement that contains dynamic data and the patterns that
characterize the boundaries of the data. See “Defining a Dynamic String’s
Boundaries” on page 716.

 2 In the script, replace the dynamic data with your own parameter name. See
below for more details.

 3 Add the web_reg_save_param function into the script before the statement
that contains the dynamic data. See “Adding a Correlation Function” on
page 714 or the Online Function Reference (Help > Function Reference).

Replacing Dynamic Data with a Parameter
Identify the actual dynamic data in the recorded statement, then search the
entire script for the dynamic data and replace it with a parameter. Give the
parameter any name and enclose it with braces: {param_name}. You can
include a maximum of 64 parameters per script.

To replace dynamic data with a parameter:

Select Edit > Replace from the VuGen main window to display the Search
and Replace dialog box. Search the entire script for the dynamic data and
replace it with a parameter.

SaveOffset The offset of a sub-string of the found value, to save to the
parameter. The default is 0. The offset value must be non-
negative.

Savelen The length of a sub-string of the found value, from the
specified offset, to save to the parameter. The default is -1,
indicating until the end of the string.

Convert The conversion method to apply to the data:

HTML_TO_URL: convert HTML-encoded data to a URL-
encoded data format

HTML_TO_TEXT: convert HTML-encoded data to plain
text format
713

Chapter 45 • Correlating Vuser Scripts After Recording
Adding a Correlation Function
You insert the web_reg_save_param statement to save dynamic data in a
script. This function tells VuGen to create a parameter that saves the run-
time value of the dynamic data during replay.

When you run the script, the web_reg_save_param function scans the
subsequent HTML page that is accessed. It searches for an occurrence of the
left boundary, followed by any string, followed by the right boundary.
When such an occurrence is found, VuGen assigns the string between the
left and right boundaries to the parameter named in the function’s
argument. After finding the specified number of occurrences,
web_reg_save_param does not search any more HTML pages. The Vuser
continues with the next step in the script.

Sample Correlation for Web Vusers
Suppose the script contains a dynamic session ID:

You insert a web_reg_save_param statement before the above statement:

web_url("FirstTimeVisitors",
"URL=/exec/obidos/subst/help/first-time-visitors.html/002-8481703-

4784428>Buy books for a penny ",
"TargetFrame=",
"RecContentType=text/html",
"SupportFrames=0",
LAST);

web_req_save_param ("user_access_number", "NOTFOUND=ERROR", "LB=first-
time-visitors.html/","RB=>Buy books for a penny", "ORD=6", LAST);
714

Chapter 45 • Correlating Vuser Scripts After Recording
After implementing correlated statements, the modified script looks like
this, where user_access_number is the name of the parameter representing
the dynamic data.

Note: Each correlation function retrieves dynamic data once, for the
subsequent HTTP request. If another HTTP request at a later point in the
script generates new dynamic data, you must insert another correlation
function.

Sample Correlation for Wireless Vusers
Suppose your script contains a dynamic session ID for a WAP connection:

web_url("FirstTImeVisitors",
"URL=/exec/obidos/subst/help/first-time-”

"visitors.html/{user_access_number}Buy books for a penny",
"TargetFrame=",
"RecContentType=text/html",
"SupportFrames=0",
LAST);

web_url("login.po;sk=IuZSuuRlHUMnpF-wpK8PzEpy(1YOSBSMy)",
"URL=http://room33.com/portal/login.po;sk=IuZSuuRlHUMnpF-

wpK8PzEpy(1YOSBSMy)",
"Resource=0",
"RecContentType=text/vnd.wap.wml",
"Mode=HTML",
LAST);
715

Chapter 45 • Correlating Vuser Scripts After Recording
You insert a web_reg_save_param statement before the above statement and
replace the dynamic value with the parameter. In the following example,
the web_reg_save_param functions saves the login ID string to a variable
called SK. It saves binary data, denoted by the RB/BIN attribute, and sets the
left boundary as "sk=".

Defining a Dynamic String’s Boundaries

Use these guidelines to determine and set the boundaries of the dynamic
data:

➤ Always analyze the location of the dynamic data within the HTML code
itself, and not in the recorded script.

➤ Identify the string that is immediately to the left of the dynamic data. This
string defines the left boundary of the dynamic data.

➤ Identify the string that is immediately to the right of the dynamic data. This
string defines the right boundary of the dynamic data.

web_reg_save_param(
 "SK",

 "LB=sk=",
 "RB/BIN=#login\\x00\\x01\\x03",
 "Ord=1",
 LAST);

web_url("login.po;sk={SK}",
"URL=http://room33.com/portal/login.po;sk={SK}",
"Resource=0",
"RecContentType=text/vnd.wap.wml",
"Mode=HTML",
LAST);
716

Chapter 45 • Correlating Vuser Scripts After Recording
➤ web_reg_save_param looks for the characters between (but not including)
the specified boundaries and saves the information beginning one byte after
the left boundary and ending one byte before the right boundary.
web_reg_save_param does not support embedded boundary characters.
For example, if the input buffer is {a{b{c} and "{" is specified as a left
boundary, and "}" as a right boundary, the first instance is c and there are no
further instances—it found the right and left boundaries but it does not
allow embedded boundaries, so "c" is the only valid match.

By default, the maximum length of any boundary string is 256 characters.
Include a web_set_max_html_param_len function in your script to increase
the maximum permitted length. For example, the following function
increases the maximum length to 1024 characters:

web_set_max_html_param_len("1024");
717

Chapter 45 • Correlating Vuser Scripts After Recording
718

46
Testing XML Pages

VuGen’s Web Vusers support Web pages containing XML code.

This chapter includes:

 ➤ About Testing XML Pages on page 719

 ➤ Viewing XML as URL Steps on page 720

 ➤ Inserting XML as a Custom Request on page 723

 ➤ Viewing XML Custom Request Steps on page 724

The following information applies to Web and Web Services Vuser scripts.

About Testing XML Pages

VuGen supports record and replay for XML code within Web pages.

The XML code can appear in the script as a regular URL step or as a custom
request. VuGen detects the HTML and allows you to view each document
type definition (DTD), its entities, and its attributes. VuGen can interpret
the XML when the MIME type displayed in the RecContentType attribute or
the MIME type returned by the server during replay, ends with xml, such as
application/xml or text/xml. The DTD is color coded, allowing you to
identify each one of the elements. You can also expand and collapse the tree
view of the DTD.

When you expand the DTD, you can parameterize the attribute values. You
can also save the values in order to perform correlation using the standard
correlation functions. For more information about the correlation
functions, refer to the Online Function Reference (Help > Function Reference).
719

Chapter 46 • Testing XML Pages
Note: VuGen cannot display a DTD with XML islands, segments of XML
embedded inside an HTML page. VuGen only displays pages that are
entirely XML.

Viewing XML as URL Steps

One way to test a page with XML code, is to record it with VuGen. You
record the XML pages as you would record a standard Web page. VuGen
records the DTD and all of the XML elements. It does not create a snapshot
for the XML page. Instead, for each XML step it displays the XML code in
the snapshot frame under the Server Response tab.

720

Chapter 46 • Testing XML Pages
VuGen creates a color-coded expandable hierarchy of the DTD in the
snapshot frame. Click on the "+" to expand an item, and click on the "-" to
collapse it. VuGen displays all XML tags in brown, and values in black.

To replace any of the constant values with a parameter, select a value,
perform a right-click, and select Replace with a Parameter. Follow the
standard procedure for parameterization. For more information, see
“Creating Parameters” in Volume I-Using VuGen.
721

Chapter 46 • Testing XML Pages
You can also view the Server response and Client request for the XML page
by clicking the appropriate tab. The following example shows the Server
response of an XML page. Note that you can expand and collapse all
branches of the XML tree.

The following example shows the Client Request for the header of an XML
page:

722

Chapter 46 • Testing XML Pages
Inserting XML as a Custom Request

You can also test your XML pages by inserting the XML code as a custom
request. In this mode, the Custom Request properties box displays the
elements of the DTD in either text or XML format.

To add XML code as a Custom Request:

 1 View the script in tree view mode, place the cursor at the desired location,
and choose Insert > Add Step. The Add Step dialog box opens.

 2 Scroll to the bottom of the list and select Custom Request. Click OK. The
Custom Request Properties dialog box opens.

 3 Enter a step name, method (GET or POST), URL, and target frame (optional).

 4 Copy the XML code from your browser or editor and paste it into the Body
section of the Custom Request Properties box.
723

Chapter 46 • Testing XML Pages
 5 Select the applicable replay options: Record mode, Resource, or Binary data.
For more information, see Chapter 43, “Modifying Web and Wireless Vuser
Scripts.”

 6 Click OK. VuGen places the custom request step into your script.

Viewing XML Custom Request Steps

You can view or modify the XML code implemented as a custom request
step, at any time. VuGen provides a viewer that allows you to view the
hierarchy of the DTD, and expand and collapse the elements as needed.

To view the XML code of a custom request step:

 1 View the script in tree view mode, and select the desired step.

 2 Choose Properties from the right-click menu. The Custom Request
Properties dialog box opens.
724

Chapter 46 • Testing XML Pages
The bottom section of the dialog box displays the XML code. If the
RecContentType attribute is set to text/xml, by default VuGen displays the
code in an XML format hierarchy. In this mode, the XML code is not
editable.

If the RecContentType attribute is set to any type other than text/xml,
VuGen displays the code in plain text format. In this mode, the XML code is
editable.

 3 To switch between the text and XML views, choose XML view or Text view
from the right-click menu.
725

Chapter 46 • Testing XML Pages
 4 When you are in XML view, you can view the code in a larger window.
Choose Extended view from the right-click menu. To switch back to the
dialog box view, choose Normal view from the right-click menu.
726

Part IX

Enterprise Java Bean Protocols

728

47
Performing EJB Testing

The Enterprise Java Beans (EJB) testing tool generates scripts for testing EJB
objects.

This chapter includes:

 ➤ About EJB Testing on page 730

 ➤ Working with the EJB Detector on page 731

 ➤ Creating an EJB Testing Vuser on page 735

 ➤ Setting EJB Recording Options on page 739

 ➤ Understanding EJB Vuser Scripts on page 740

 ➤ Running EJB Vuser Scripts on page 746

The following information only applies to EJB Testing Vuser scripts.
729

Chapter 47 • Performing EJB Testing
About EJB Testing

VuGen provides several tools for developing a script that tests Java
applications. For generating a Vuser script through recording, use the
Jacada, CORBA or RMI Vusers. For creating a script through programming,
use the custom Java Vusers.

EJB Testing Vusers differ from the standard Java Vusers in that VuGen
automatically creates a script to test or tune EJB functionality without
recording or programming. Before you generate a script, you specify the
JNDI properties and other information about your application server.
VuGen’s EJB Detector scans the application server and determines which
EJBs are available. You select the EJB that you want to test or tune, and
VuGen generates a script that emulates each of the EJB’s methods.

It creates transactions for each method so that you can measure its
performance and locate problems. In addition, each method is wrapped in a
try and catch block for exception handling.

Note that in order to create EJB testing scripts, the EJB Detector must be
installed and active on the application server host. The Detector is described
in the following sections.

VuGen also has a built-in utility for inserting methods into your script.
Using this utility, you display all of the available packages, select the desired
methods, and insert them into your script. For more information, see
“Running EJB Vuser Scripts” on page 746.
730

Chapter 47 • Performing EJB Testing
Working with the EJB Detector

The EJB Detector is a separate agent that must be installed on each machine
that is being scanned for EJBs. This agent detects the EJBs on the machine.
Before installing the EJB Detector, verify that you have a valid JDK
environment on the machine.

Installing the EJB Detector
The EJB Detector can be installed and invoked on the application server's
machine or alternatively, on the client machine. To run the EJB Detector on
the client machine you must have a mounted drive to the application server
machine.

To install the EJB detector agent:

 1 Create a home directory for the EJB Detector on the application server
machine, or on the client machine (and mount the file systems as
mentioned).

 2 Unzip the <LR_root>\ejbcomponent\ejbdetector.jar file into the EJB
Detector directory.

Running the EJB Detector
The EJB Detector must be running before you start the EJB script generation
process in VuGen. You can either run the EJB detector on the application
server or on the client machine (in this case, make sure to mount to the
application server from the EJB Detector (client) machine, specify the
mount directory in the search root directory, and change the generated
script to connect to the mounted machine, instead of the local machine).

The EJB Detector can run from the command-line, or from a batch file.

To run the EJB Detector from the command line:

 1 Before running the EJB Detector from the command line, add the
DETECTOR_HOME\classes and the DETECTOR_HOME\classes\xerces.jar to
the CLASSPATH environment variable.

 2 If you are working with EJB1.0 (Weblogic 4.x, WebSphere 3.x), add the
classes of EJBs that are being tested as well as the following vendor EJB
classes to the CLASSPATH:
731

Chapter 47 • Performing EJB Testing
For WebLogic 4.x: <WebLogic directory>\lib\weblogicaux.jar

For WebSphere 3.x: <WebSphere directory>\lib\ujc.jar

 3 If your EJBs use additional classes directory or .jar files, add them to the
CLASSPATH.

 4 To run the EJB Detector from the command-line, use the following string:

java EJBDetector [search root dir] [listen port]

search root dir One or more directories or files in which to search for EJBs
(separated by semicolons). Follow these guidelines:

BEA WebLogic Servers 4.x and 5.x. Specify the application
server root directory.
BEA WebLogic Servers 6.x. Specify full path of the domain
folder.
WebSphere Servers 3.x. Specify the full path of the
deployed EJBs folder.
WebSphere Servers 4.0. Specify the application server
root directory.
Oracle OC4J. Specify the application server root directory.
Sun J2EE Server. Specify the full path to the deployable
.ear file or directory containing a number of .ear files.

If unspecified, the classpath will be searched.

listen port The listening port of the EJB Detector.The default port is
2001. If you change this port number, you must also
specify it in the Host name box of the Generate EJB Test
dialog box.

For example, if your host is metal, if you are using the
default port, you can specify metal. If you are using a
different port, for example, port 2002, enter metal:2002.
732

Chapter 47 • Performing EJB Testing
To run the EJB Detector from a batch file:

You can launch the EJB detector using a batch file, EJB_Detector.cmd. This
file resides in the root directory of the EJB Detector installation, after you
unzip ejbdetector.jar.

 1 Open env.cmd in the EJB Detector root directory, and modify the following
variables according to your environment:

 2 Save env.cmd.

 3 If you are working with EJB1.0 (Weblogic 4.x, WebSphere 3.x), add the
classes of EJBs that are being tested, as well as the following vendor EJB
classes, to the CLASSPATH in the env file:

➤ For WebLogic 4.x: <WebLogic directory>\lib\weblogicaux.jar

➤ For WebSphere 3.x: <WebSphere directory>\lib\ujc.jar

JAVA_HOME the root directory of JDK installation

DETECTOR_INS_DIR the root directory of the Detector installation

APP_SERVER_DRIVE the drive hosting the application server installation

APP_SERVER_ROOT Follow these guidelines:
BEA WebLogic Servers 4.x and 5.x. Specify the
application server root directory.
BEA WebLogic Servers 6.x. Specify full path of the
domain folder.
WebSphere Servers 3.x. Specify the full path of the
deployed EJBs folder.
WebSphere Servers 4.0. Specify the application server
root directory.
Oracle OC4J. Specify the application server root
directory.
Sun J2EE Server. Specify the full path to the deployable
.ear file or directory containing a number of .ear files.

EJB_DIR_LIST
(optional)

list of directories/files, separated by ‘;’ and containing
deployable .ear/.jar files, and any additional classes
directory or .jar files or used by your EJBs under test.
733

Chapter 47 • Performing EJB Testing
 4 Run the EJB_Detector.cmd or EJB_Detector.sh (Unix platforms) batch file to
collect information about the deployable applications containing EJBs, for
example:

where listen_port is an optional argument specifying a port number on
which the EJB Detector will listen for incoming requests (default is 2001).

EJB Detector Output and Log Files
You can examine the output of the EJB Detector to see if it has detected all
the active EJBs. The output log shows the paths being checked for EJBs. At
the end of the scan, it displays a list of the EJBs that were found, their names
and locations. For example:

If no EJBs were detected (that is, "Found 0 EJBs"), check that the EJB jar files
are listed in the "Checking EJB Entry:…" lines. If they are not listed, check
that the search root dir path is correct. If they are being inspected but still
no EJBs are detected, check that these EJB jar files are deployable (can be
successfully deployed into an application server). A deployable jar file
should contain the Home Interface, Remote Interface, Bean
implementation, the Deployment Descriptor files (xml files, or .ser files),
and additional vendor-specific files.

If you still encounter problems, set the debug properties in the
detector.properties file, located in the DETECTOR_HOME\classes directory,
to retrieve additional debug information.

C:\>EJB_Detector [listen_port]

Checking EJB Entry: f:/weblogic/myserver/ejb_basic_beanManaged.jar…
Checking EJB Entry: f:/weblogic/myserver/ejb_basic_statefulSession.jar…
Checking EJB Entry: f:/weblogic/myserver/ejb_basic_statelessSession.jar…
------------------------- Found 3 EJBs ---------------------------
** PATH: f:/weblogic/myserver/ejb_basic_beanManaged.jar
- BEAN: examples.ejb.basic.beanManaged.AccountBean
** PATH: f:/weblogic/myserver/ejb_basic_statefulSession.jar
- BEAN: examples.ejb.basic.statefulSession.TraderBean
** PATH: f:/weblogic/myserver/ejb_basic_statelessSession.jar
- BEAN: examples.ejb.basic.statelessSession.TraderBean
734

Chapter 47 • Performing EJB Testing
After the EJBs are detected, the HTTP Server is initialized and waits for
requests from the VuGen EJB-Testing Vuser. If there are problems in this
communication process, enable the property webserver.enableLog in the
webserver.properties file located in the DETECTOR_HOME\classes
directory.

This enables printouts of additional debug information, and other
potentially important error messages in the webserver.log file.

Creating an EJB Testing Vuser

To create an EJB Vuser script:

 1 Choose File > New or click the New button. The New Virtual User dialog box
opens.
735

Chapter 47 • Performing EJB Testing
 2 Select EJB Testing from the Enterprise Java Beans category and click OK.
VuGen opens a blank Java Vuser script and opens the Generate EJB Script
dialog box.

 3 Specify a machine on which VuGen’s EJB Detector is installed. Note that the
Detector must be running in order to connect. Click Connect. The JNDI
properties section is enabled.
736

Chapter 47 • Performing EJB Testing
 4 The EJB Detector automatically detects the default JNDI properties. You can
manually modify these properties in the appropriate edit boxes. The
properties you can modify are a string for the Initial Context Factory and the
Provider URL.

If your application server requires authentication, enter the user name in
the Security Principal box and a password in the Security Credentials box.

Here are the default values of the two JNDI mandatory properties:

 5 To set advanced properties for the JNDI, click Advanced to open the JNDI
Advanced Properties dialog box.

Type Initial Context Factory Provider URL

WebLogic weblogic.jndi.WLInitialContextFactory t3://<appserver_host>:7001

WebSphere
3.x

com.ibm.ejs.ns.jndi.CNInitialContextF
actory

iiop://<appserver_host>:900

WebSphere
4.x

com.ibm.websphere.naming.WsnInitia
l
ContextFactory

iiop://<appserver_host>:900

Sun J2EE com.sun.enterprise.naming.
SerialInitContextFactory

N/A

Oracle com.evermind.server.
AppplicationClientInitialContextFactor
y

ormi://<appserver_host>/
<application_name> (the
app. name of the EJB in
<oc4j>/config/server.xml)
737

Chapter 47 • Performing EJB Testing
Specify the desired properties: Object Factory, State Factory, URL Package
Prefixes, Security Protocol, and Security Authentication. Click OK.

 6 In the EJB section of the dialog box, click Select to choose the EJB for which
you want to create a test. A dialog box opens with a list of all the EJBs
currently available to you from the application server.

 7 Highlight the EJB you want to test and click Select.

 8 In the Generate EJB Script dialog box, click Generate. VuGen creates a script
with Java Vuser functions. The script contains code that connects to the
application server and executes the EJB’s methods.

 9 Save the script.

Note that you cannot generate test code for an additional EJB, within an
existing script. To create a test for another EJB, open a new script and repeat
steps 2-9.
738

Chapter 47 • Performing EJB Testing
Setting EJB Recording Options

The recording options that are available for EJB Vusers are in the areas of
Classpath and Code Generation. For information on the Classpath options,
see Chapter 12, “Setting Java Recording Options.”

The EJB Code Generation options allow you to set properties in the area of
automatic transactions and value checks. You can also indicate where to
store the initialization method.

To set the EJB Code Generation recording options:

 1 Click Options in the Start Recording dialog box. Select the EJB Options:Code
Generation Options node in the Recording Options tree to edit the code
generation options.

 2 Enable the Auto Transaction option to automatically mark all EJB methods
as transactions. This encloses all methods with lr.start_transaction and
lr.end_transaction functions. By default, this option is enabled (true).

 3 Enable the Insert Value Check option to automatically insert an
lr.value_check function after each EJB method. This function checks for the
expected return value for primitive values and strings.

 4 Choose an EJB Initialization Method. This is the method to which the
EJB/JNDI initialization properties are written. The available methods are init
(default) and action.
739

Chapter 47 • Performing EJB Testing
Understanding EJB Vuser Scripts

VuGen generates a script that tests your EJB, based on the JNDI (Java
Naming and Directory Interface) properties you specified when creating the
Vuser script. JNDI is Sun’s programming interface used for connecting Java
programs to naming and directory services such as DNS and LDAP.

Each EJB Vuser script contains three primary parts:

➤ Locating the EJB Home Using JNDI

➤ Creating an Instance

➤ Invoking the EJB Methods

Locating the EJB Home Using JNDI
The first section of the script contains the code that retrieves the JNDI
properties. Using the specified context factory and provider URL, it connects
to the application server, looks up the specified EJB and locates the EJB
Home.
740

Chapter 47 • Performing EJB Testing
In the following example, the JNDI Context Factory is
weblogic.jndi.WLInitialContextFactory, the URL of the provider is
t3://dod:7001 and the JNDI name of the selected EJB is
carmel.CarmelHome.

Note: If the script is generated with an EJB Detector running on the client
rather than an application server, you must manually modify the URL of the
provider. For example, in the following line, the provider specifies dod as
the EJB detector host name:
p.put(javax.naming.Context.PROVIDER_URL, "t3://dod:7001")
Replace the recorded host name with the application server name, for
example:
p.put(javax.naming.Context.PROVIDER_URL, "t3://bealogic:7001")
You can specify the provider URL before recording, so you don’t have to
modify it manually, in the JDNI Properties section of the Generate EJB Script
dialog.

public class Actions
{

public int init() {
CarmelHome _carmelhome = null;
try {

// get the JNDI Initial Context
java.util.Properties p = new java.util.Properties();
p.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY,

"weblogic.jndi.WLInitialContextFactory");
p.put(javax.naming.Context.PROVIDER_URL, "t3://dod:7001");
javax.naming.InitialContext _context = new javax.naming.InitialContext(p);

// lookup Home Interface in the JNDI context and narrow it
Object homeobj = _context.lookup("carmel.CarmelHome");
_carmelhome =

(CarmelHome)javax.rmi.PortableRemoteObject.narrow(homeobj, CarmelHome.class);

} catch (javax.naming.NamingException e) {
e.printStackTrace();

}

741

Chapter 47 • Performing EJB Testing
Creating an Instance
Before executing the EJB methods, the script creates a Bean instance for the
EJB. The creation of the instance is marked as a transaction to allow it to be
analyzed after the script is executed. In addition, the process of creating an
instance is wrapped in a try and catch block providing exception handling.

For Session Beans. Use the EJB home 'create' method to get a new EJB
instance.

In the following example, the script creates an instance for the Carmel EJB.

For Entity Beans - use the findByPrimaryKey method to locate the EJB
instance in an existing database, and if not found, then use the create
method, to create it there.

// create Bean instance
Carmel _carmel = null;
try {

lr.start_transaction("create");
_carmel = _carmelhome.create();
lr.end_transaction("create", lr.AUTO);

} catch (Throwable t) {
lr.end_transaction("create", lr.FAIL);
t.printStackTrace();

}

742

Chapter 47 • Performing EJB Testing
In the following example, the script attempts to locate an instance for the
account EJB, and if it fails then creates it.

You may choose to use other find… methods supplied by your Entity Bean,
to locate the EJB instance. For example:

// find Bean instance
try {
com.ibm.ejs.doc.account.AccountKey _accountkey = new

com.ibm.ejs.doc.account.AccountKey();
_accountkey.accountId = (long)0;

lr.start_transaction("findByPrimaryKey");
_account = _accounthome.findByPrimaryKey(_accountkey);
lr.end_transaction("findByPrimaryKey", lr.AUTO);

} catch (Throwable thr) {

lr.end_transaction("findByPrimaryKey", lr.FAIL);
lr.message("Couldn't locate the EJB object using a primary key. Attempting to manually

create the object... ["+thr+"]");

// create Bean instance
try {

lr.start_transaction("create");
_account = _accounthome.create((com.ibm.ejs.doc.account.AccountKey)null);
lr.end_transaction("create", lr.AUTO);

} catch (Throwable t) {
lr.end_transaction("create", lr.FAIL);
t.printStackTrace();

}

}

// get an enumeration list of all Email EJB instances that represents
// the name 'John' in the database.
Enumeration enum = home.findByName("John");
while (enum.hasMoreElements()) {

 Email addr = (Email)enum.nextElement();
...

}

743

Chapter 47 • Performing EJB Testing
Invoking the EJB Methods
The final part of the script contains the actual methods of the EJB. Each
method is marked as a transaction to allow it to be analyzed after running
the script. In addition, each method is wrapped in a try and catch block
providing exception handling. When there is an exception, the transaction
is marked as failed, and the script continues with the next method. VuGen
creates a separate block for each of the EJB methods.

VuGen inserts default values for the methods, for example, 0 for an integer,
empty strings ("") for Strings, and NULL for complex Java objects. If
necessary, modify the default values within the generated script.

The following example shows how to change the default value of a non-
primitive type using parameterization:

// ------- Methods ------------

int _int1 = 0;
try {

lr.start_transaction("buyTomatoes");
_int1 = _carmel.buyTomatoes((int)0);
//lr.value_check(_int1, 0, lr.EQUALS);
lr.end_transaction("buyTomatoes", lr.AUTO);

} catch (Throwable t) {
lr.end_transaction("buyTomatoes", lr.FAIL);
t.printStackTrace();

}

_int1 = _carmel.buyTomatoes((int)0);

Detail details = new Details(<city>,<street>,<zip>,<phone>);
JobProfile job = new JobProfile(<department>,<position>,<job_type>);
Employee employee=new Employee(<first>,<last>, details, job, <salary>);
_int1 = _empbook.addEmployee((Employee)employee);
744

Chapter 47 • Performing EJB Testing
For methods that return a primitive, non-complex value or string, VuGen
inserts a commented method lr.value_check. This method allows you to
specify an expected value for the EJB method. To use this verification
method, remove the comment marks (//) and specify the expected value. For
example, the carmel.buyTomatoes method returns an integer.

If you expect the method to return a value of 500, modify the code as
follows:

If you want to check if the method does not return a certain value, modify
the code as follows:

If the expected value is not detected, an exception occurs and the
information is logged in the output window.

EJB Vuser scripts support all of the standard Java conventions. For example,
you can insert a comment by preceding the text with two forward slashes
"//".

The Java Vuser script runs as a scalable multi-threaded application. If you
include a custom class in your script, ensure that the code is thread-safe.
Code that is not thread-safe may cause inaccurate results. For code that is
not thread-safe, run the Java Vusers as processes. (see Run-Time settings)
This creates a separate Java Virtual Machine for each process, resulting in a
script that is less scalable.

_int1 = _carmel.buyTomatoes((int)0);
//lr.value_check(_int1, 0, lr.EQUALS);

_int1 = _carmel.buyTomatoes((int)0);
lr.value_check(_int1, 500, lr.EQUALS);

_int1 = _carmel.buyTomatoes((int)0);
lr.value_check(_int1, 10, lr.NOT_EQUALS);

System.err: java.lang.Exception: lr.value_check failed.[Expected:500 Actual:5000]
745

Chapter 47 • Performing EJB Testing
Running EJB Vuser Scripts

After you generate a script for your EJB testing, and make the necessary
modifications, you are ready to run your script. The EJB script allows you to
perform two types of testing: functional and load. The functional testing
verifies that the EJB, functions properly within your environment. The load
testing allows you to evaluate the performance of the EJB when executing
many users at one time.

To run a functional test:

 1 Modify the default values that were automatically generated.

 2 Insert value checks using the lr.value_check method. These methods were
generated as comments in the script (see “Invoking the EJB Methods” on
page 744).

 3 Insert additional methods, and modify their default values. For more
information, refer to the section on inserting Java functions in Chapter 10,
“Recording Java Language Vuser Scripts.”

 4 Set the general run-time settings for the script. For more information, see
“Configuring Run-Time Settings” in Volume I-Using VuGen.

 5 Set the Java VM run-time settings: Specify all additional classpaths and
additional VM parameters. Make sure to include your application server EJB
classes. The actual classes of the EJB under test are saved in the Vuser
directory and retrieved automatically during replay. For information about
specifying additional classpaths and setting the Java VM run-time settings,
see Chapter 14, “Configuring Java Run-Time Settings.”

 6 For Websphere 3.x users:

Using the IBM JDK 1.2 or higher:

➤ Add the <WS>\lib\ujc.jar to the classpath.

Using the Sun JDK 1.2.x:

➤ Remove the file <JDK>\jre\lib\ext\iiimp.jar

➤ Copy the following files from the <WS>\jdk\jre\lib\ext folder to the
<JDK>\jre\lib\ext directory: iioprt.jar, rmiorb.jar.

➤ Copy the 'ujc.jar' from the <WS>\lib folder, to <JDK>\jre\lib\ext.
746

Chapter 47 • Performing EJB Testing
➤ Copy the file <WS>\jdk\jre\bin\ioser12.dll to the <JDK>\jre\bin folder.

where <WS> is the home folder of the WebSphere installation and <JDK> is
the home folder of the JDK installation.

Clear the Use -Xbootclasspath VM parameter check box to turn off this
option.

 7 For WebSphere 4.0 users:

Make sure that you have valid Java environment on your machine of IBM
JDK1.3. Open the Run-Time Settings dialog box and select the Java VM
node. Add the following entries to the Additional Classpath section:

Where <WS> is the home directory of the WebSphere installation.

Clear the Use -Xbootclasspath VM parameter check box to turn off this
option.

Note: If your application server is installed on a UNIX machine or if you are
using WebSphere 3.0.x, you must install IBM JDK 1.2.x on the client
machine to obtain the required files.

 8 For Oracle OC4J users:

Make sure that you have valid Java environment on your machine of JDK1.2
or higher (JDK1.3 preferable). Open the Run-Time Settings dialog box and
select the Java VM node. Add the following entries to the Additional
Classpath section:

where <OC4J> is the home folder of the application server installation.

<WS>/lib/webshpere.jar;
<WS>/lib/j2ee.jar;

<OC4J>/orion.jar;<OC4J>/ejb.jar;<OC4J>/jndi.jar; ;<OC4J>/xalan.jar;
<OC4J>/crimson.jar
747

Chapter 47 • Performing EJB Testing
 9 For Sun J2EE users:

Make sure that you have valid Java environment on your machine of JDK1.2
or higher. Open the Run-Time Settings dialog box and select the Java VM
node. Add the following entries to the Additional Classpath section:

where <J2EE> is the home folder of the application server installation and
<AppClientJar> is the full path to the application client jar file created
automatically by the sdk tools during the deployment process.

 10 For WebLogic 4.x - 5.x Users:

Make sure that you have valid Java environment on your machine (path &
classpath). Open the Run-Time Settings dialog box and select the Java VM
node. Add the following two entries to the Additional Classpath section:

where <WL> is the home folder of the WebLogic installation.

 11 For WebLogic 6.x and 7.0 users:

Make sure that you have valid Java environment on your machine (path &
classpath). WebLogic 6.1 requires JDK 1.3. Open the Run-Time Settings
dialog box and select the Java VM node. Add the following entry to the
Additional Classpath section:

where <WL> is the home folder of the WebLogic installation.

Clear the Use -Xbootclasspath VM parameter check box to turn off this
option.

 12 Run the script. Click the Run button or choose Vuser > Run. View the
Execution Log node to view any run-time errors. The execution log is stored
in the mdrv.log file in the script’s folder. A Java compiler (Sun’s javac),
checks it for errors and compiles the script.

<J2EE>/j2ee.jar;<AppClientJar>

<WL>/classes;<WL>/lib/weblogicaux.jar

<WL>/lib/weblogic.jar; // Weblogic 6.x
<WL>/server/lib/weblogic.jar // Weblogic 7.x
748

Chapter 47 • Performing EJB Testing
After you create a script, you integrate it into your environment: a
LoadRunner scenario, Performance Center load test, or Business Process
Monitor profile. For more information, refer to the HP LoadRunner Controller,
Performance Center, or HP Business Availability Center documentation.
749

Chapter 47 • Performing EJB Testing
750

Part X

ERP/CRM Protocols

752

48
Creating Oracle NCA Vuser Scripts

You can use VuGen to create scripts that emulate an Oracle NCA user. You
record typical NCA business processes with VuGen. You then run the script
to emulate users interacting with your system.

This chapter includes:

 ➤ About Creating Oracle NCA Vuser Scripts on page 754

 ➤ Getting Started with Oracle NCA Vusers on page 755

 ➤ Recording Guidelines on page 756

 ➤ Enabling the Recording of Objects by Name on page 758

 ➤ Oracle Applications via the Personal Home Page on page 761

 ➤ Using Oracle NCA Vuser Functions on page 762

 ➤ Understanding Oracle NCA Vusers on page 763

 ➤ Configuring Oracle NCA Run-Time Settings on page 764

 ➤ Testing Oracle NCA Applications on page 767

 ➤ Correlating Oracle NCA Statements for Load Balancing on page 771

 ➤ Additional Recommended Correlations on page 772

 ➤ Recording in Pragma Mode on page 774

The following information applies only to the Oracle NCA protocol.
753

Chapter 48 • Creating Oracle NCA Vuser Scripts
About Creating Oracle NCA Vuser Scripts

Oracle NCA is a Java-based database protocol. Using your browser, you
launch the database client, an applet viewer. You perform actions on the
NCA database through its applet viewer.

This eliminates the need for client software and allows you to perform
database actions from all platforms that support the applet viewer. There is a
Vuser type specifically designed to emulate an Oracle NCA client.

The NCA environment is a three-tier environment. The user first sends an
http call from his browser to a Web server. This call accesses the startup
HTML page which invokes the Oracle Applications applet. The applet runs
locally on the client machine—all subsequent calls are communicated
between the client and the Forms server through the proprietary NCA
protocol.

The client (applet viewer) communicates with the application server (Oracle
Forms server) which then submits information to the database server.

VuGen records and replays the NCA communication between the client and
the Forms server (application server).

When you record an Oracle NCA session, VuGen records all of the NCA and
Web actions, even if you only created a single protocol script. If you know in
advance that the Web functions are important for your test, create a multi-
protocol script from the beginning for the Oracle NCA and Web protocols.

If you initially created a single protocol script for Oracle NCA, and at a later
stage you require the Web functions for testing, you can regenerate your
script in VuGen to add the Web functions, without having to re-record the
754

Chapter 48 • Creating Oracle NCA Vuser Scripts
session. You indicate this from the Protocols node in the Regenerate Script
dialog box. For more information, see “Recording with VuGen” in Volume I-
Using VuGen.

Getting Started with Oracle NCA Vusers

The following procedure outlines how to create an Oracle NCA Vuser script.

 1 Ensure that the recording machine is properly configured.

Make sure that your machine is configured to run the Oracle NCA applet
viewer, before you start VuGen. You must also make sure VuGen supports
your version of Oracle Forms. For more information, see “Recording
Guidelines” on page 756 and the Readme file.

 2 Create a skeleton Oracle NCA Vuser script.

Use VuGen to create a skeleton Oracle NCA Vuser script. For details, see
“Recording with VuGen” in Volume I-Using VuGen.

 3 Record typical user actions.

Begin recording, and perform typical actions and business processes from
the applet viewer. VuGen records your actions and generates a Vuser script.
For details, see “Recording with VuGen” in Volume I-Using VuGen.

 4 Enhance the Vuser script.

Use the Insert menu to add transactions, rendezvous points, comments, and
messages in order to enhance the Vuser script. For details, see “Enhancing
Vuser Scripts” in Volume I-Using VuGen.

 5 Parameterize the script.

Replace recorded constants with parameters. For details, see “Creating
Parameters” in Volume I-Using VuGen.

 6 Set the run-time properties for the script.

Configure run-time settings for the Vuser script. The run-time settings
define certain aspects of the script execution. For details, see “Configuring
Run-Time Settings” in Volume I-Using VuGen.
755

Chapter 48 • Creating Oracle NCA Vuser Scripts
 7 Save and run the Vuser script.

Run the script from VuGen and view the execution log for run-time
information. For details, see “Running Vuser Scripts in Standalone Mode” in
Volume I-Using VuGen.

Recording Guidelines

When recording an Oracle NCA Vuser script, follow these guidelines:

➤ Specify which browser VuGen should use when recording an Oracle NCA
session. In the Start Recording dialog box, select the desired browser in the
Program to Record list. The list contains all of the available browsers.

➤ Close all browsers before you begin recording.
756

Chapter 48 • Creating Oracle NCA Vuser Scripts
➤ Record the login procedure in the vuser_init section. Record a typical
business process in the Actions section. When you run the script, you can
then specify multiple iterations for a specific business process. For more
information, see “Creating New Virtual User Scripts” on page 78.

➤ Due to a Netscape limitation, you cannot launch an Oracle NCA session
within Netscape when another Netscape browser is already running on the
machine.

➤ VuGen supports the recording of Oracle Forms applications using the Forms
Listener Servlet in multi--protocol mode. The application server uses the
Forms Listener Servlet to create a runtime process for each client. The
runtime process, Forms Server Runtime, maintains a persistent connection
with the client and sends information to and from the server.

To support Forms 4.5 in replay, set the following in the mdrv.dat file:

To restore Forms 6 or 9 support, restore the original values.

vuser_init()
{
nca_set_connect_opt(SCALE_INFO, 11, 18);
nca_connect_server("labm1orcl05.devlab.ad", "9000",

"module=/opt/applvis/visappl/fnd/11.5.0/forms/US/FNDSCSGN
userid=APPLSYSPUB/PUB@VIS fndnam=APPS record=names ");
nca_set_window("Oracle Applications");
nca_edit_set("SIGNON_USERNAME_0", "OPERATIONS");
nca_obj_type("SIGNON_USERNAME_0", '\t', 0);
nca_edit_set("SIGNON_PASSWORD_0", lr_decrypt("4768d647f4f1840f2e46d5"));
nca_button_press("SIGNON_CONNECT_BUTTON_0");

return 0;
}

[Oracle_NCA]
ExtPriorityType=protocol
WINNT_EXT_LIBS=ncarp110.dll
WIN95_EXT_LIBS=ncarp110.dll
LINUX_EXT_LIBS=liboranca.so
SOLARIS_EXT_LIBS=liboranca.so
HPUX_EXT_LIBS=liboranca.sl
AIX_EXT_LIBS=liboranca.so
LibCfgFunc=oracle_gui_configure
UtilityExt=lrun_api
757

Chapter 48 • Creating Oracle NCA Vuser Scripts
Enabling the Recording of Objects by Name

When recording an Oracle NCA script, you must record the session using
object names instead of the standard object ID. If the script is recorded using
the object ID, replay will fail because the ID is generated dynamically by the
server and differs between record and replay. You can verify that your script
is being recorded with object names by examining the nca_connect_server
statement.

If the record=names argument does not appear in the nca_connect_server
function, you are recording object IDs. You can instruct VuGen to record
object names in by modifying one of the following:

➤ Startup HTML File

➤ URL to Record

➤ Forms Configuration File

Note that the ability to capture the developer name for all objects was
introduced in Oracle Forms6i Patch 9 (Oracle Forms Version: 6.0.8.18.3).
Test Starter Kit scripts that were written before the release of Oracle Forms 6i
Patch 9 will not have the developer name as part of an object's physical
description, except for the edit fields.

Startup HTML File
If you have access to the startup HTML file, you instruct VuGen to record
object names instead of its object ID by setting the record=names flag in the
startup file, the file that is loaded when you start the Oracle NCA
application.

Edit the startup file that is called when the applet viewer begins. Modify the
line:

nca_connect_server("199.35.107.119","9002"/*version=11i*/,"module=/d1/oracle/visap
pl/fnd/11.5.0/forms/US/FNDSCSGN userid=APPLSYSPUB/PUB@VIS fndnam=apps
record=names ");

<PARAM name="serverArgs … fndnam=APPS">
758

Chapter 48 • Creating Oracle NCA Vuser Scripts
and add the Oracle key "record=names":

URL to Record
If you do not have access to the startup HTML file, you can still have Oracle
NCA record object names instead of its object ID by modifying the URL to
record. The following solution only works if the startup HTML file does not
reference another file while loading.

For this solution, you add "?record=names" after the URL in the Start
Recording dialog box, after the URL name to record. This allows VuGen to
record object names for the session.

Forms Configuration File
If the application has a startup HTML file that references a Forms Web CGI
configuration file formsweb.cfg (a common reference), you may encounter
problems if you add record=names to the Startup file.

In this situation, you should modify the configuration file.

To modify the configuration file to record object names:

 1 Go to the Forms Web CGI configuration file.

<PARAM name="serverArgs … fndnam=APPS record=names">
759

Chapter 48 • Creating Oracle NCA Vuser Scripts
 2 Define a new parameter in this file (see sample Web CGI configuration file
below for this change).

 3 Open the startup HTML file and locate PARAM NAME="serverArgs".

 4 Add the variable name as an argument to the ServerArgs parameter, for
example, record=%xrecord%.

 5 Alternatively, you can edit the basejini.htm file in Oracle Forms installation
directory. This file is the default HTML file for running a form on the web
using JInitiator-style tags to include the Forms applet. In the basejinin.hmt
file add the following line to the parameter definitions:

In the <EMBED> tag, add the following line:

The drawback in editing this file instead of the servlet configuration file
formsweb.cfg, is that this file is replaced when you reinstall Oracle Forms.
To avoid this, you can create a copy of the basejini.htm file and store it at
another location. In the servlet configuration file, edit the
baseHTMLJinitiator parameter to point to the new file.

serverApp=forecast
serverPort=9001
serverHost=easgdev1.dats.ml.com
connectMode=socket
archive=f60web.jar
archive_ie=f60all.cab
xrecord=names

<PARAM NAME="serverArgs" VALUE="module=%form% userid=%userid%
%otherParams% record=%xrecord%">

<PARAM NAME="recordFileName" VALUE="%recordFileName%">

serverApp="%serverApp%"
logo="%logo%"
imageBase="%imageBase%"
formsMessageListener="%formsMessageListener%"
recordFileName="%recordFileName%"
760

Chapter 48 • Creating Oracle NCA Vuser Scripts
Oracle Applications via the Personal Home Page

When launching Oracle Forms 6i applications by logging in through the
Personal Home Page, you must set several system profile options at the user
level. It is desirable to pass such variables at the user level, and not at the site
level, where it will affect all users.

To configure the "ICX: Forms Launcher" profile:

 1 Sign on to the application and select the "System Administrator"
responsibility.

 2 Select Profile/System from the Navigator menu.

 3 Within the Find System Profile Values form:

 a Select the Display:Site option

 b Users = <your user logon> (i.e. operations, mfg, and so on)

 c Enter Profile =%ICX%Launch%

 d Click Find.

 4 Update the User value to the ICX:Forms Launcher profile:

➤ If no parameter has been passed to the URL, append the following string
to the end of the URL of the user value: ?play=&record=names

➤ If a parameter has been passed to the URL, append the following string to
the end of the URL of the user value: &play=&record=names

 5 Save the transaction.

 6 Log out of the Oracle Forms session.

 7 Log out of the Personal Home Page session.

 8 Sign on again via the Personal Home Page using your username.

If you were unable to update the ICX: Forms Launcher profile option at the
user level, open the Application Developer responsibility and select the
Updatable option for the ICX_FORMS_LAUNCHER profile.
761

Chapter 48 • Creating Oracle NCA Vuser Scripts
The first parameter passed to the URL, must begin with a question mark (?).
You pass all subsequent parameters with an ampersand (&). In most cases,
the URL already contains parameters, which you can identify by searching
for a question mark.

Using Oracle NCA Vuser Functions

VuGen records typical NCA business processes and generates Oracle NCA-
specific functions. The functions use an nca prefix.

The NCA functions are divided into the following categories: Button Object,
Connection, Combo Box Object, Edit and Edit Box Object, Flexfield
Window, Java Object, List Object, Menu Object, Message Object, Object,
Response Object, Scroll Object, Session, Tab Object, Tree Object, and
Window Object Functions.

You can also manually program any of the functions into your Vuser script.
In text view, you can manually add new functions utilizing the Intellisense
and Complete Function features. In Tree view, choose Insert > New Step and
select the desired step.

For more information about the Oracle NCA Vuser functions, refer to the
Online Function Reference (Help > Function Reference).

You can further enhance your script with C Vuser functions such as
lr_output_message and lr_rendezvous. For information on using these
functions, see “Enhancing Vuser Scripts” in Volume I-Using VuGen.
762

Chapter 48 • Creating Oracle NCA Vuser Scripts
Understanding Oracle NCA Vusers

When you create an Oracle NCA Vuser script, VuGen records all of the NCA
communication between the client and the application server. While you
record, VuGen generates context sensitive functions. These functions
describe your actions on the database in terms of GUI objects (such as
windows, lists, and buttons). As you record, VuGen inserts the context
sensitive functions into the Vuser script.

After you finish recording, you can modify the functions in your script, or
add additional functions to enhance it. For information about enhancing
Vuser script, see “Enhancing Vuser Scripts” in Volume I-Using VuGen. For a
list of the available Oracle NCA Vuser functions, see “Using Oracle NCA
Vuser Functions” on page 762. For details of these functions, see the Online
Function Reference (Help > Function Reference).

In the following segment, the user selected an item from a list
(nca_list_activate_item), pressed a button (nca_button_press), retrieved a
list value (nca_lov_retrieve_items), and performed a click in an edit field
(nca_edit_click). The logical names of the objects are the parameters of
these functions.

…
nca_lov_select_item("Responsibilities","General Ledger, Vision Operations");
nca_list_activate_item("FNDSCSGN.NAVIGATOR.LIST.0","+ Journals");
nca_list_activate_item("FNDSCSGN.NAVIGATOR.LIST.0"," Enter");
nca_button_press("GLXJEENT.TOOLBAR.LIST.0");
nca_lov_find_value("Batches","");
nca_lov_retrieve_items("Batches",1,9);
nca_lov_select_item("Batches","AR 1020 Receivables 2537: A 1020");
nca_edit_click("GLXJEENT.FOLDER_QF.BATCH_NAME.0");
…

763

Chapter 48 • Creating Oracle NCA Vuser Scripts
In certain tests, such as those performed on Oracle Configurator
applications, information returned by one function is required throughout
the session. VuGen automatically saves the dynamic information to a
parameter, by inserting a web_reg_save_param function into the script. In
the following example, the connection information is saved to a parameter
called NCAJServSessionID.

In the above example, the right boundary is \r. The actual right boundary
may differ between systems.

Configuring Oracle NCA Run-Time Settings

Before running your script, you can set the run-time settings to allow the
script to accurately emulate a real user. For information on the general run-
time settings for all protocols, such as think time, pacing, and logging, see
“Configuring Run-Time Settings” in Volume I-Using VuGen. For network
speed related settings, see “Configuring Network Run-Time Settings” in
Volume I-Using VuGen.

The following section describes the run-time settings specific to Oracle NCA
Vusers. These run-time setting allow you to indicate the communication
parameters.

web_reg_save_param ("NCAJServSessionId", "LB=\r\n\r\n", "RB=\r",
LAST);

web_url("f60servlet",
"URL=http://usscifforms05.sfb.na/servlet/f60servlet\?config
=mult", LAST);
764

Chapter 48 • Creating Oracle NCA Vuser Scripts
Configuring Oracle NCA Client Emulation Run-Time
Settings
You can configure several network settings to accurately emulate an Oracle
NCA client.

You can set the following options:

Socket Mode

The communication to and from the client is performed on a socket level—
not on the higher HTTP level.

Timeout (seconds): The time that an Oracle NCA Vuser waits for a response
from the server. The default value of -1 disables the timeout and the client
waits indefinitely.
765

Chapter 48 • Creating Oracle NCA Vuser Scripts
Pragma Mode

In Pragma mode, communication is carried out in the Oracle-defined
Pragma mode. This communication level, above the HTTP and Servlet
levels, is characterized by the periodic sending of messages. In this mode,
the client recognizes that the server cannot respond with data immediately.
The server sends messages at given intervals until it is able to send the
requested data.

➤ Max Retries. Indicates the maximum number of IfError messages the
client will accept from the server before issuing an error. IfError messages
are the periodic messages the server sends to the client, indicating that it
will respond with the data as soon as it is able.

➤ Retry Interval. Defines the interval between retries in the case of IfError
messages.

➤ Include retry intervals in transaction. Includes the interval between
retires time, as part of the transaction duration time.

For information about recording in Pragma mode, see “Recording in Pragma
Mode” on page 774.

Heartbeat

You can enable or disable the heartbeat sent to the Oracle server. The
heartbeat verifies that there is proper communication with the server. If you
are experiencing a heavy load on the Oracle NCA server, disable the
heartbeat. If you enable the heartbeat, you can set the frequency of how
often heartbeat messages are sent to the server.

➤ Enable Heartbeat. By default, a heartbeat signal is sent to the server. To
disable it, clear the check box.

➤ Frequency. The frequency of the heartbeat signal. The default is 120
seconds.

Forms

You can specify the version of the Oracle Forms server detected during
recording.

➤ Version. Modify this setting only if the server was upgraded since the
recording.
766

Chapter 48 • Creating Oracle NCA Vuser Scripts
Diagnostic

This section lets you provide information about diagnostic modules for the
database layer of Oracle Applications.

➤ Application version. The version of Oracle Application. This option is
relevant when using Oracle Application—not a custom Oracle NCA
application. It is only required when using Oracle database breakdown.

To set the Client Emulation settings:

 1 Open the Run-Time Settings dialog box. Choose Vuser > Run-Time Settings
or click the Run-Time Settings button on the VuGen toolbar.

 2 Select the Oracle NCA:Client Emulation node from the Run-Time settings
tree.

 3 Set the network timeout value in seconds. To instruct the client to wait
indefinitely for a server response, use the default value of -1.

 4 When working in Pragma mode, specify the number of retries Max Retries,
(IfError messages) for the client to accept before issuing an error. The default
is 5.

 5 To enable the sending a a heartbeat to the Oracle NCA server, select the
Enable Heartbeat option. In the next line, specify a frequency in seconds for
the sending of the heartbeat. The default is 120 seconds.

 6 Click OK to accept the settings and run the script.

Testing Oracle NCA Applications

The following sections contain several tips for testing secure Oracle NCA
applications and servlets.

Testing Secure Oracle NCA Applications

➤ When selecting the protocols to record, you only need to select Oracle
NCA—not Web Protocol from the protocol list. VuGen records the security
information internally and therefore does not need the explicit Web
functions.
767

Chapter 48 • Creating Oracle NCA Vuser Scripts
➤ In the Port Mapping recording options, delete any existing entries for port
443 and create a new entry for the Oracle server name:

Service ID: HTTP
Target Server: Oracle Forms Server IP address or long host name
Target Port: 443
Connection Type: SSL
SSL Version: Active SSL version. If in doubt, select SSL 2/3.

For more information, see “Configuring the Port Mappings” in Volume I-
Using VuGen.

➤ If you encounter problems when replaying an NCA HTTPS script during the
nca_connect_server command, insert the following function at the
beginning of the script.

web_set_sockets_option("SSL_VERSION","3");

Testing Servlets and other Oracle NCA Applications
Certain NCA sessions use servlets:

➤ the Forms Listener servlet

➤ applications or modules that use both NCA and HTTP communications,
such as the Oracle Configurator

➤ the initializing of the NCA application (downloading the applet, jar, and
gif files)
768

Chapter 48 • Creating Oracle NCA Vuser Scripts
When recording servlets, you must record both Oracle NCA and Web
functions. You can do this by initially creating a multi-protocol script.
Alternatively, if you created a single protocol script for Oracle NCA, open
the General:Protocols node in the Recording Options, and enable the Web
protocol. Then you can begin recording.

If you are unsure whether your application uses servlets, check the
default.cfg file in the script directory. Locate the entry

UseServletMode=

If the value is 1 or 2, then servlets are being used and you must enable HTTP
recording in addition to Oracle NCA.

If you already recorded a script, you can regenerate the code automatically
to include the Web functions without having to re-record. Choose Tools >
Regenerate Script, and select the Web protocol in the Protocols section.

Determining the Recording Mode
When recording Oracle NCA scripts: VuGen automatically determines the
correct connection mode: HTTP or Socket mode. Generally, you are not
required to modify any of the recording settings as VuGen auto-detects the
system configuration. In systems where the standard port mapping are
reserved by other applications, you may need to modify the Port Mapping
settings, depending on the recording mode.
769

Chapter 48 • Creating Oracle NCA Vuser Scripts
You can determine the recording mode in one of the following ways:

➤ When using the NCA application, open the Java Console.

The connectMode entry indicates HTTP, HTTPS, or socket.

➤ After recording an NCA session, open the default.cfg file in the Vuser
directory and check the value of the UseHttpConnectMode entry.

When defining a new port mapping int he Server Entry dialog box, use a
Service ID of HTTP for HTTP or HTTPS modes. For Socket mode, use a
Service ID of NCA.

For more information about Port Mapping settings, see “Configuring the
Port Mappings” in Volume I-Using VuGen.

Recording Trace Information for Oracle DB
To debug your script, you can use the Oracle DB breakdown graphs. To
gather data for this graph, you turn on the trace mechanism before running
the script.

To manually turn on the tracing mechanism, use the
nca_set_custom_dbtrace function. For more information, see the Online
Function Reference (Help > Function Reference).

proxyHost=null
proxyPort=0
connectMode=HTTP
Forms Applet version is: 60812

[HttpConnectMode]
UseHttpConnectMode= 2
// 0 = socket 1 = http 2 = https
770

Chapter 48 • Creating Oracle NCA Vuser Scripts
Correlating Oracle NCA Statements for Load Balancing

VuGen supports load balancing for multiple application servers. You
correlate the HTTP return values with the nca_connect_server parameters.
The Vuser then connects to the relevant server during test execution,
applying load balancing.

To correlate statements for load balancing:

 1 Record a multi-protocol script.

Record a multi-protocol script for Oracle NCA and Web Protocols. Perform
the desired actions and save the script.

 2 Define parameters for host and host arguments.

Define two variables, serverHost and serverArgs, for parameterization:

 3 Assign values to serverHost and serverArgs:

web_url("step_name", "URL=http://server1.acme.com/test.htm", LAST);

 4 Modify the nca_connect_server statement from:

nca_connect_server("199.203.78.170",
9000"/*version=107*/, "module=e:\\appsnca…fndnam=apps ");

to:

nca_connect_server("< serverHost >", "9000"/*version=107*/, "<
serverArgs >");

web_set_max_html_param_len("512");
web_reg_save_param("serverHost", "NOTFOUND=ERROR",
"LB=<PARAM name=\"serverHost\" value=\"","RB=\">", LAST);

web_reg_save_param("serverArgs", "NOTFOUND=ERROR",
"LB=<PARAM name=\"serverArgs\" value=\"","RB=\">", LAST);
771

Chapter 48 • Creating Oracle NCA Vuser Scripts
The script should now look like this:

Additional Recommended Correlations

When recording an Oracle NCA session, VuGen records dynamic values—
values that change for each record and replay session. Two common
dynamic arguments are icx_ticket and JServSessionIdroot.

icx_ticket
The icx_ticket variable, is part of the information sent in the web_url and
nca_connect_server functions:

web_set_max_html_param_len("512");
web_reg_save_param("serverHost", "NOTFOUND=ERROR",
"LB=<PARAM name=\"serverHost\" value=\"","RB=\">", LAST);

web_reg_save_param("serverArgs", "NOTFOUND=ERROR",
"LB=<PARAM name=\"serverArgs\" value=\"","RB=\">", LAST);
web_url("step_name", "URL=http://server1.acme/test.htm", LAST);

nca_connect_server("<serverHost>","9000"/*version=107*/,"<serverArgs>");

web_url("fnd_icx_launch.runforms",
"URL=http://ABC-
123:8002/pls/VIS/fnd_icx_launch.runforms\?ICX_TICKET=5843A55058947ED3&RES
P_APP=AR&RESP_KEY=RECEIVABLES_MANAGER&SECGRP_KEY=STANDARD",
LAST);
772

Chapter 48 • Creating Oracle NCA Vuser Scripts
This icx_ticket value is different for each recording. It contains cookie
information sent by the client. To correlate your recording, add
web_reg_save_param before the first occurrence of the recorded icx_ticket
value:

Note: The left and right boundaries of web_reg_save_param may differ
depending on your application setup.

JServSessionIdroot
The JServSessionIdroot value is a cookie that the application sets to store the
session ID. In most cases, VuGen automatically correlates this value and
inserts a web_reg_save_param function. If VuGen did not add this function
automatically, you add it manually, replacing all of its occurrences with the
parameter name.

To identify the value that you need to correlate, open the Execution log
(View > Output Window) and locate the response body.

web_reg_save_param("icx_ticket", "LB=TICKET=", "RB=&RES", LAST);

…

web_url("fnd_icx_launch.runforms",
"URL=http://ABC-
123:8002/pls/VIS/fnd_icx_launch.runforms\?ICX_TICKET=<icx_ticket>&RESP_APP=
AR&RESP_KEY=RECEIVABLES_MANAGER&SECGRP_KEY=STANDARD", LAST);

vuser_init.c(8): Set-Cookie: JServSessionIdroot=my1sanw2n1.JS4; path=/\r\n
vuser_init.c(8): Content-Length: 79\r\n
vuser_init.c(8): Content-Type: text/plain\r\n
vuser_init.c(8): \r\n
vuser_init.c(8): 81-byte response body for "http://ABC-
123/servlet/oracle.forms.servlet.ListenerServlet?ifcmd=getinfo&ifhost=mercury&ifip=12
3.45.789.12" (RelFrameId=1)
vuser_init.c(8):
/servlet/oracle.forms.servlet.ListenerServlet?JServSessionIdroot=my1sanw2n1.JS4\r\n
773

Chapter 48 • Creating Oracle NCA Vuser Scripts
To correlate this dynamic value, insert a web_reg_save_param function
before the first occurrence and then replace the variable value with the
parameter name throughout the script. In this example, the right and left
boundaries are \r and \n, but you should check your specific environment
to determine the exact boundaries in your environment.

Recording in Pragma Mode

The client side of the Oracle NCA Vuser can be configured to send an
additional header to the server named Pragma. The header is a counter that
behaves in the following way: the initial message of the NCA handshake has
a value of 1.

The messages that follow the handshake are counted, beginning with 3. The
counter is incremented by 1 for each message sent by the client.

If the message received from the server is the type plain\text and the body of
the message begins with ifError:#/#00, the client sends a 0 byte message to
the server and the Pragma value changes its sign to a minus. This sign
changes back after the client succeeds in receiving the information from the
server.

web_reg_save_param("NCAJServSessionId","LB=\r\n\r\n","RB=\r","ORD=1",LAST)
;

web_url("f60servlet",
"URL= http://ABC-"123/servlet/oracle.forms.servlet.ListenerServlet?ifcmd=getinfo&"

"ifhost=mercury&ifip=123.45.789.12", LAST);

web_url("oracle.forms.servlet.ListenerSer",
"URL=http://ABC-123<NCAJServSessionId>?ifcmd=getinfo&"

"ifhost=mercury&ifip=123.45.789.12", LAST);
774

Chapter 48 • Creating Oracle NCA Vuser Scripts
Recording of the Pragma header is only supported in the multi-protocol
mode (Oracle NCA and Web). You can identify the Pragma mode within the
script’s default.cfg file. When operating in Pragma mode, the
UseServletMode is set to 2.

For information on the Pragma related run-time settings, see “Configuring
Oracle NCA Client Emulation Run-Time Settings” on page 765.

To identify the Pragma mode, you can perform a WinSocket level recording
and check the buffer contents. In the first example, the buffer contains the
Pragma values as a counter:

[HttpConnectMode]
UseHttpConnectMode=1
RelativeURL=<NCAJServSessionId>
UseServletMode=2

send buf108
"POST /ss2servlet/oracle.forms.servlet.ListenerServlet?JServSessionIdss2ser"
"vlet=gk5q79uqy1 HTTP/1.1\r\n"
"Pragma: 1\r\n"
...

send buf110
"POST /ss2servlet/oracle.forms.servlet.ListenerServlet?JServSessionIdss2ser"
"vlet=gk5q79uqy1 HTTP/1.1\r\n"
"Pragma: 3\r\n"
...
775

Chapter 48 • Creating Oracle NCA Vuser Scripts
In the following example, the buffer contains the Pragma values as an error
indicator:

recv buf129 281
"HTTP/1.1 200 OK\r\n"
"Date: Tue, 21 May 2002 00:03:48 GMT\r\n"
"Server: Oracle HTTP Server Powered by Apache/1.3.19 (Unix) mod_fastcgi/2.2"
".10 mod_perl/1.25 mod_oprocmgr/1.0\r\n"
"Content-Length: 13\r\n"
"Content-Type: text/plain\r\n"
"\r\n"
"ifError:8/100"

send buf130
"POST /ss2servlet/oracle.forms.servlet.ListenerServlet?JServSessionIdss2ser"
"vlet=gk5q79uqy1 HTTP/1.1\r\n"
"Pragma: -12\r\n"
...
776

49
Developing SAPGUI Vuser Scripts

In the growing field of ERP (Enterprise Resource Planning), SAP provides
solutions allowing companies to manage all of their business processes. HP
provides tools for testing SAP solution modules on both functional and load
testing levels. This chapter discusses the solution for testing the SAPGUI for
Windows client (SAPGUI Vuser). For information on testing solutions for
mySAP Workplace and Portal clients, see Chapter 51, “Developing SAP-Web
Vuser Scripts.”

This chapter includes:

 ➤ About Developing SAPGUI Vuser Scripts on page 778

 ➤ Checking your Environment for SAPGUI Vusers on page 779

 ➤ Creating a SAPGUI Vuser Script on page 790

 ➤ Recording a SAPGUI Vuser Script on page 791

 ➤ Setting the SAPGUI Recording Options on page 794

 ➤ Inserting Steps Interactively into a SAPGUI Script on page 797

 ➤ Understanding a SAPGUI Vuser Script on page 799

 ➤ Enhancing a SAPGUI Vuser Script on page 803

The following information only applies to the SAPGUI protocol.
777

Chapter 49 • Developing SAPGUI Vuser Scripts
About Developing SAPGUI Vuser Scripts

This chapter discusses the solution for testing the SAPGUI for Windows
client (SAPGUI Vuser). To test the SAPGUI user operating only on the client,
use the SAPGUI Vuser type. To test a SAPGUI user that also uses a Web
browser, use the SAP (Click and Script) protocol.

Before recording a session, verify that your modules and client interfaces are
supported by VuGen. The following table describes the SAP client modules
for SAP Business applications and the relevant tools:

Version 6.20 and later:

➤ For Functional Testing. Use the QuickTest Professional Add-in for
mySAP.com client.

➤ For Load Testing. Use the SAPGUI or SAP (Click and Script) protocol to
create a script in VuGen and run a scenario in the Controller.

You use VuGen to record typical business processes. VuGen records SAPGUI
for Windows client activity during SAP business processes, and generates a
Vuser script. When you perform actions within the SAPGUI for Windows
client, VuGen generates functions that describe this activity. Each function
begins with a sapgui prefix.

SAP module VuGen support

SAP Web Client or
mySAP.com.

Use the SAP-Web Vuser
type.

SAPGUI for Windows. A Windows-based client,
emulated by the SAPGUI
Vuser. This also supports
APO module recording
(requires patch level 24 for
APO 3.0).

SAPGUI for Windows and
a web browser.

Use the SAP (Click and
Script) protocol.

SAPGUI for Java. This client is not
supported.
778

Chapter 49 • Developing SAPGUI Vuser Scripts
Checking your Environment for SAPGUI Vusers

The basic steps in checking and setting up your system for the recording of
SAPGUI Vusers, are Checking the Patch Level and Enabling Scripting. Once
your environment is configured properly, you can record a typical SAP
session and replay it in VuGen.

Checking the Patch Level
You can check the patch level of your SAPGUI for Windows client from the
About box. The lowest patch level supported is 32.

To check the patch level:

 1 Invoke the SAPGUI logon window. Click the top left corner of the SAP
Logon dialog box and choose About SAP Logon from the menu.
779

Chapter 49 • Developing SAPGUI Vuser Scripts
 2 The SAP version information dialog box opens. Verify that the Patch Level
entry is 32 or higher.

Enabling Scripting
VuGen support for the SAPGUI for Windows client, is based on SAP's
Scripting API. This API allows Vusers to interact with the SAPGUI client,
receive notifications, and perform operations.

The Scripting API is only available in recent versions of the SAP Kernel. In
kernel versions that support scripting, the option is disabled by default. In
order to use VuGen, first ensure that the SAP servers support the Scripting
API, and enable the API on both the server and clients. For more
information and to download patches, refer to the SAP OSS note #480149.

VuGen provides a utility that checks if your system supports scripting. The
utility, VerifyScript.exe, is located on DVD in the Additional
Components\SAP_Tools\VerifySAPGUI folder. For more information, refer
to the file VerifyScripting.htm provided with this utility.

The following sections describe how to enable scripting.

➤ Checking the Configuration

➤ Enabling Scripting on the SAP Application Server

➤ Enabling Scripting on SAPGUI 6.20 Client

780

Chapter 49 • Developing SAPGUI Vuser Scripts
Checking the Configuration

The first step in enabling scripting is ensuring that the right kernel version is
installed, and updating it if required.

Check the table below, for the minimum kernel patch level required for your
version of the SAP Application Server. If required, download and install the
latest patch.

Software
Component

 Release
 Package
Name

 Kernel Patch
Level

SAP_APPL 31I SAPKH31I96 Kernel 3.1I
level 650

SAP_APPL 40B SAPKH40B71 Kernel 4.0B
level 903

SAP_APPL 45B SAPKH45B49 Kernel 4.5B
level 753

SAP_BASIS 46B SAPKB46B37 Kernel 4.6D
level 948

SAP_BASIS 46C SAPKB46C29 Kernel 4.6D
level 948

SAP_BASIS 46D SAPKB46D17 Kernel 4.6D
level 948

SAP_BASIS 610 SAPKB61012 Kernel 6.10
level 360
781

Chapter 49 • Developing SAPGUI Vuser Scripts
To check the kernel patch level:

 1 Log in to the SAP system

 2 Select System > Status

 3 Click the Other kernel information button (with the yellow arrow).
782

Chapter 49 • Developing SAPGUI Vuser Scripts
 4 In the Kernel Information section, check the value of the Sup. Pkg. lvl.

If the level is lower than 948, you must download the latest kernel version
and upgrade your existing one. Refer to the SAP OSS note #480149 for
detailed instructions on how to perform this upgrade.
783

Chapter 49 • Developing SAPGUI Vuser Scripts
To check the R/3 support packages:

 1 Log on to the SAP system and run the SPAM transaction.

 2 In the Directory section, select All Support Packages, and click the Display
button.
784

Chapter 49 • Developing SAPGUI Vuser Scripts
 3 Verify that SAPKB46C29 is installed for SAP_BASIS, 4.6C. If it is installed, a
green circle appears in the Status column.

If you do not have the OCS package installed, download it the from the
www.sap.com Web site and install it. For more information, refer to the SAP
OSS note #480149.
785

Chapter 49 • Developing SAPGUI Vuser Scripts
Enabling Scripting on the SAP Application Server

A user with administrative permissions enables scripting by setting the
sapgui/user_scripting profile parameter to TRUE on the application server.
To enable scripting for all users, set this parameter on all application servers.
To enable scripting for a specific group of users, only set the parameter on
application servers with the desired access restrictions.

To change the profile parameter:

 1 Open transaction rz11. Specify the parameter name sapgui/user_scripting
and click Display. The Display Profile Parameter Attributes window opens.

If Parameter name is unknown appears in the status bar, this indicates that
you are missing the current Support Package. Import the Support Package
that corresponds to the SAP BASIS and kernel versions of the application
server, as described in “Checking the Configuration” on page 781.
786

Chapter 49 • Developing SAPGUI Vuser Scripts
 2 If Profile Val is FALSE, you need to modify its value. Click the Change value
button in the toolbar. The Change Parameter Value window opens. Enter
TRUE in the ProfileVal box and click the Save button.

When you save the change, the window closes and ProfileVal is set to TRUE.

 3 Restart the application server, since this change only takes effect when you
log onto the system.

If the updated ProfileVal did not change, even after restarting the server,
then the kernel of the application server is outdated. Import the required
kernel patch, as specified in the section “Checking the Configuration” on
page 781.
787

Chapter 49 • Developing SAPGUI Vuser Scripts
Note that the Profile Value may be dynamically activated in the following
kernel versions, using transaction rz11, without having to restart the
application server.

Enabling Scripting on SAPGUI 6.20 Client

To allow VuGen to run scripts, you must also enable scripting on the
SAPGUI client. You should also configure the client not to display certain
messages, such as when a connection is established, or when a script is
attached to the GUI process.

To configure the SAPGUI client to work with VuGen:

➤ During installation. While installing the SAPGUI client, enable the SAP GUI
Scripting option.

 Release
Kernel
Version

 Patch Level

 4.6B, 4.6C, 4.6D 4.6D 972

 6.10 6.10 391

 6.20 all versions all levels
788

Chapter 49 • Developing SAPGUI Vuser Scripts
➤ After installation. Suppress warning messages. Open the Options dialog box
in the SAPGUI client. Select the Scripting tab and clear the following
options:

 1 Notify when a script attaches to a running GUI

 2 Notify when a script opens a connection

You can also prevent these messages from popping up by setting the values
WarnOnAttach and WarnOnConnection in the following registry key to 0:

HKCU\SOFTWARE\SAP\SAPGUI Front\SAP Frontend Server\Security.
789

Chapter 49 • Developing SAPGUI Vuser Scripts
Creating a SAPGUI Vuser Script

The first step in creating a SAPGUI Vuser script is choosing the Vuser and
script type. The SAP Vuser type, SAPGUI is under the ERP/CRM category. You
can create either a single or multi-protocol Vuser script.

To create a SAPGUI Vuser script:

 1 Invoke VuGen and choose File > New.

 2 To record a standard SAPGUI client session (with no browser controls),
create a single-protocol Vuser script using the SAPGUI type Vuser.

 3 To record a SAPGUI session that uses browser controls, create a multi-
protocol Vuser script. Specify both the SAPGUI and SAP-Web Vuser types.
This allows VuGen to record Web-specific functions when encountering the
browser controls.

 4 Click OK to open the Vuser script.
790

Chapter 49 • Developing SAPGUI Vuser Scripts
Recording a SAPGUI Vuser Script

After creating an empty script, you set the recording options and then
record your SAPGUI session. VuGen generates a script corresponding to your
actions within the client.

To begin recording a SAPGUI script:

 1 If the Start Recording dialog box was not opened, click the Start Recording
button. The Start Recording dialog box opens.

 2 VuGen detects and fills in the relevant information:

➤ Program to record. VuGen locates the saplogon.exe file in the SAP client
installation.

➤ Working Directory. For applications that require you to specify a working
directory, specify it here. The required information differs, depending on
the type of Vuser script.

➤ Record into Action. Select the section into which you want to record.
Initially, the available sections are vuser_init, Action1, and vuser_end

 3 Click OK and begin recording.
791

Chapter 49 • Developing SAPGUI Vuser Scripts
Recording at the Cursor
VuGen also allows you to record actions into an existing script. You may
choose to record into an existing script for several reasons:

➤ You made a mistake in the actions that you performed during recording.

➤ Your actions were correct, but you need to add additional information such
as the handling of popup windows. For example the SAP server may issue an
inventory warning, which did not apply during the recording session.

This feature, called Recording at the Cursor, lets you insert new actions or
replace existing actions. When you begin Recording at the Cursor, VuGen
prompts you with two options:

➤ Insert steps into action. Inserts the newly recorded steps at the cursor
without overwriting any existing steps. The new segment is enclosed
with comments indicating the beginning and end of the added section.
This option is ideal for handling occasional popup windows that were
not present during the recording

➤ Overwrite the rest of the script. Replaces all steps from the point of the
cursor onward. This option overwrites the remainder of the current
Action and deletes all other Actions. It does not affect the vuser_init or
vuser_end sections.

After you choose one of the Recording at the Cursor options, VuGen replays
the script from the beginning until the cursor location. Then it opens the
Recording floating toolbar and begins recording. If you use the Recording at
the Cursor feature, the Regenerate Script tool becomes disabled.

Note: To record at the cursor, you need to click in the left margin of the
VuGen editor, immediately before an existing function.

// Recording at the cursor - Begin
sapgui_select_active_connection("con[0]");
sapgui_select_active_session("ses[0]");
sapgui_select_active_window("wnd[0]");

//Recording at the cursor - End
792

Chapter 49 • Developing SAPGUI Vuser Scripts
To Record at the Cursor:

 1 Open Script view (View > Script view) and click in the left margin adjacent
to an existing function.

 2 Click the Recording at the Cursor button. VuGen prompts you to make a
selection.

 3 Select Insert steps into action or Overwrite the rest of the script. Click OK.
VuGen replays the script until the point of the cursor.

 4 Wait for the Recording floating toolbar to open. Then begin performing
actions in the SAPGUI client, switching between sections and actions as
required.

 5 Click the Stop button to end the recording session.
793

Chapter 49 • Developing SAPGUI Vuser Scripts
Setting the SAPGUI Recording Options

You use the recording options to set your SAP-related preferences for the
recording session. To open the Recording Options dialog box, choose Tools >
Recording Options or click Options in the Start Recording dialog box. The
keyboard shortcut is CTRL+F7.

You can set recording options in the following areas:

➤ SAPGUI General Recording Options

➤ SAPGUI Code Generation Recording Options

➤ SAPGUI Auto Logon Recording Options

If you are recording a multi-protocol Vuser script with a SAP-Web Vuser
type, see Chapter 38, “Setting Recording Options for Internet Protocols” for
additional recording options.

SAPGUI General Recording Options
You use these recording options to set your general preferences during the
recording session in the following areas:

➤ Capture Screen Snapshots. Indicates how to save the snapshots of the
SAPGUI screens as they appear during recording: ActiveScreen snapshots,
Regular snapshots, or None. ActiveScreen snapshots provide more
interactivity and screen information after recording, but they require more
resources.
794

Chapter 49 • Developing SAPGUI Vuser Scripts
➤ Process Context menus by text. Instructs VuGen to process context menus
by their text, generating a
sapgui_toolbar_select_context_menu_item_by_text function. When
disabled, VuGen processes context menus by their IDs, an advantage when
working with Japanese characters. In the latter case, VuGen generates a
sapgui_toolbar_select_context_menu_item for context menus.

To set the General recording options:

 1 Open the Recording Options dialog box and select the SAPGUI:General
node.

 2 For the Capture screen snapshots option, indicate how to save the
snapshots of the SAPGUI screens.

 3 Select the method by which to process context menus: Enable Process
context menus by text, or disable it to process context menus by their IDs.

 4 Click OK to accept the settings and close the dialog box.

SAPGUI Code Generation Recording Options
The following recording options indicate your code generation preferences.

To set the Code Generation recording options:

 1 Open the Recording Options dialog box and select the SAPGUI:Code
Generation node.
795

Chapter 49 • Developing SAPGUI Vuser Scripts
 2 Select Generate logon operation as a single step to instruct VuGen to
generate a single sapgui_logon method for all of the logon operations. This
helps simplify the code. If you encounter login problems, disable this
option.

 3 To generate Fill Data steps for table and grid controls—instead of separate
steps for each cell, select Generate Fill Data Steps.

 4 To create a more compact and cleaner script, select Always generate Object
IDs in header file which places the Object IDs in a separate header file
instead of in the script. When you disable this option, VuGen generates the
IDs according to the specified string length in the general script setting.
Note that disabling this option only increases readability—there is no
difference in overhead.

 5 Click OK to accept the settings and close the dialog box.

SAPGUI Auto Logon Recording Options
You set these recording options to log on automatically when you begin
recording. The logon functions are placed in the vuser_init section of the
script. The server name list contains all of the servers on the SAP Logon
description list

To enable and set the Auto Logon recording options:

 1 Open the Recording Options dialog box and select the SAPGUI:Auto Logon
node.

 2 Select Enable Auto logon.

 3 Enter the Login information:
796

Chapter 49 • Developing SAPGUI Vuser Scripts
➤ the SAP Server name

➤ the User name for the SAP server

➤ the Password for the SAP server

➤ the Client name by which the SAP server identifies the client

➤ the interface Language

 4 Click OK to accept the settings and close the dialog box.

Inserting Steps Interactively into a SAPGUI Script

After recording, you can manually add steps to the script in either Script
view and Tree View. For information about adding steps from the various
views, see “Introducing Service Test” in Volume I-Using VuGen.

In addition to manually adding new functions, you can add new steps
interactively for SAPGUI Vusers, directly from the snapshot. Using the right-
click menu, you can add object-related steps.

When adding a step from within a snapshot, VuGen uses the Active Screen
capability and determines the ID of each object in the SAPGUI client
window (unless you disabled Active Screen snapshots in the SAPGUI
General Recording Options).
797

Chapter 49 • Developing SAPGUI Vuser Scripts
To determine which objects were recognized by VuGen, you move the
mouse over the snapshot. VuGen draws a box around the objects as you pass
over them and displays a tool tip with the object’s Control ID. In the
following example, the selected active object is the NORMAL CENTER button.

When you add a step while holding the mouse over a recognized object,
VuGen automatically inserts the Control ID of that object into the relevant
field of the Properties dialog box. For example, if you add a Press Button
step, for the NORMAL CENTER button as shown above, the Properties box
displays the following ID:

To insert a step interactively for a specific object:

 1 Click within the Snapshot window.

 2 Move the mouse over the object for which you want to add a function.
Make sure that VuGen recognizes the object and encloses it with a box.
798

Chapter 49 • Developing SAPGUI Vuser Scripts
 3 Select Insert New Step from the right-click menu. The Insert Step box opens.

 4 Choose a step from the menu. The step’s Properties dialog box opens, with
the Control ID of the object when relevant.

 5 Enter a name for the object in the Description box. Click OK. VuGen inserts
the new step after the selected step.

 6 To get the Control ID of the object for the purpose of pasting it into a
specific location, select Copy Control ID from the right-click menu. VuGen
places it on the clipboard. You can past it into a Properties box or directly
into the code from the Script view.

Understanding a SAPGUI Vuser Script

The SAPGUI Vuser script typically contains several SAP transactions which
make up a business process. A business process consists of functions that
emulate user actions. Open the tree view to see each user action as a Vuser
script step.

The following example shows a typical recording of a SAPGUI client. The
first section, vuser_init, contains the opening of a connection and a logon.
799

Chapter 49 • Developing SAPGUI Vuser Scripts
Note that the Open Connection step uses one of the connection names in
the SAP Logon Descriptions list. If the specified connection name is not in
the list, the Vuser looks for a server with that name.

In the following section, the functions emulate typical user operations such
as menu selection and the setting of a check box.
800

Chapter 49 • Developing SAPGUI Vuser Scripts
The final section, vuser_end, illustrates the logoff procedure.

When recording a multi- protocol script for both SAPGUI and Web, VuGen
generates steps for both protocols. In the Script view, you can view both
sapgui and web functions.
801

Chapter 49 • Developing SAPGUI Vuser Scripts
The following example illustrates a multi-protocol recording in which the
SAPGUI client opens a Web control. Note the switch from sapgui to web
functions.

sapgui_tree_double_click_item("Use as general WWW browser, REPTITLE",
"shellcont/shell",
"000732",
"REPTITLE",
BEGIN_OPTIONAL,

"AdditionalInfo=sapgui1020",
END_OPTIONAL);

...
sapgui_set_text("",
"http:\\\\yahoo.com",
"usr/txtEDURL",
BEGIN_OPTIONAL,

"AdditionalInfo=sapgui1021",
END_OPTIONAL);

...
web_add_cookie("B=7pt5cisv1p3m2&b=2; DOMAIN=www.yahoo.com");

web_url("yahoo.com",
"URL=http://yahoo.com/",
"Resource=0",
"RecContentType=text/html",
"Referer=",
"Snapshot=t1.inf",
"Mode=HTML",
EXTRARES,

"URL=http://srd.yahoo.com/hpt1/ni=17/ct=lan/sss=1043752588/t1=1043752575385/d1
=1251/d2=1312/d3=1642/d4=4757/0.4097009487287739/*1",
"Referer=http://www.yahoo.com/", ENDITEM,

LAST);
802

Chapter 49 • Developing SAPGUI Vuser Scripts
Enhancing a SAPGUI Vuser Script

After you examine the recorded Vuser script, you enhance it in the
following ways:

➤ Transactions. Inserting transactions, rendezvous points, and control-flow
structures into the script. For details, see “Enhancing Vuser Scripts” in
Volume I-Using VuGen.

➤ Verification. Insert SAPGUI verification functions to verify the current state
of SAPGUI objects. For details, see Adding Verification Functions.

➤ Retrieve information. Insert SAPGUI functions to verify the current value of
SAPGUI objects. You use the sapgui_get_xxx functions to retrieve
information. For more information, see “Retrieving Information” on
page 804.

Define parameters (optional). Define parameters for the fixed-values
recorded into your Vuser script. By substituting fixed-values with
parameters, you can repeat the same business process many times using
different values. For details, see “Creating Parameters” in Volume I-Using
VuGen.

Adding Verification Functions
When working with optional or dynamic windows or frames, you can use
verification functions to determine if the window or object is available. An
optional window is a window that does not consistently open during the
SAP session. This function allow the Vuser script to continue running even if
an optional window opens or an exception occurs.

The first example checks if a window is available. If the window is available,
the Vuser closes it before continuing.

if (!sapgui_is_object_available("wnd[1]"))
sapgui_call_method("{ButtonID}",

"press",
LAST,
AdditionalInfo=info1011");

sapgui_press_button(.....)
803

Chapter 49 • Developing SAPGUI Vuser Scripts
The next example illustrates a dynamic object in the ME51N transaction.
The Document overview frame is optional, and can be opened/closed by the
Document overview on/off button.

The code checks the text on the Document overview button. If the text on
the button shows Document overview on, we click the button to close the
Document overview frame.

Retrieving Information
When working with SAGUI Vusers, you can retrieve the current value of a
SAPGUI object using the sapgui_get_<xxx> functions. You can use this
value as input for another business process, or display it in the output log.

Retrieving Status Bar Information

The following example illustrates how to save part of a status bar message in
order to retrieve the order number.

To retrieve the order number from the status bar:

 1 Navigate to the point where you want to check the status bar text, and select
Insert > New Step. Choose the sapgui_status_bar_get_type function. This
verifies that the Vuser can successfully retrieve text from the status bar.

 2 Insert an if statement that checks if the previous statement succeeded. If so,
save the value of the argument using sapgui_status_bar_get_param.

if(sapgui_is_object_available("tbar[1]/btn[9]"))
{

sapgui_get_text("Document overview on/off button",
"tbar[1]/btn[9]",
"paramButtonText",
LAST);

if(0 == strcmp("Document overview off", lr_eval_string("{paramButtonText}")))
sapgui_press_button("Document overview off",

"tbar[1]/btn[9]",
BEGIN_OPTIONAL,

"AdditionalInfo=sapgui1013",
END_OPTIONAL);

}

804

Chapter 49 • Developing SAPGUI Vuser Scripts
This sapgui_status_bar_get_param function saves the order number into a
user-defined parameter. In this case, the order number is the second index of
the status bar string.

During test execution, the Execution log indicates the value and parameter
name:

Saving Date Information

When creating scripts that use dates, your script may not run properly. For
example, if you record the script on June 2, and replay it on June 3, the date
fields will be incorrect. Therefore, you need to save the date to a parameter
during text execution, and use the stored value as input for other date fields.
To save the current date or time during script execution, use the
lr_save_datetime function. Insert this function before the function
requiring the date information. Note that the format of the date is specific
to your locale. Use the relevant format within the lr_save_datetime
function. For example, for month.day.year, specify "%m.%d.%Y".

sapgui_press_button("Save (Ctrl+S)",
"tbar[0]/btn[11]",
BEGIN_OPTIONAL,

"AdditionalInfo=sapgui1038",
END_OPTIONAL);

sapgui_status_bar_get_type("Status");
if(0==strcmp(lr_eval_string("{Status}"),"Success"))
 sapgui_status_bar_get_param("2", " Order_Number ");

Action.c(240): Pressed button " Save (Ctrl+S)"
Action.c(248): The type of the status bar is "Success"
Action.c(251): The value of parameter 2 in the status bar is "33232"
805

Chapter 49 • Developing SAPGUI Vuser Scripts
In the following example, lr_save_datetime saves the current date. The
sapgui_set_text function uses this value to set the delivery date for two days
later.

lr_save_datetime("%d.%m.%Y", DATE_NOW + (2 * ONE_DAY),
"paramDateTodayPlus2");

sapgui_set_text("Req. deliv.date",
"{paramDateTodayPlus2}",
"usr/ctxtRV45A-KETDAT",
BEGIN_OPTIONAL,

"AdditionalInfo=sapgui1025",
END_OPTIONAL);
806

50
Developing SAP (Click and Script) Vusers

VuGen allows you to create scripts that emulate SAP applications over the
Web.

This chapter includes:

 ➤ About Developing SAP (Click and Script) Vuser Scripts on page 807

 ➤ Recording a SAP (Click and Script) Session on page 808

 ➤ Understanding SAP (Click and Script) Scripts on page 808

The following information applies only to SAP (Click and Script) Vuser
scripts.

About Developing SAP (Click and Script) Vuser Scripts

VuGen can create test scripts for SAP Enterprise portal7 and SAP ITS
6.20/6.40 environments using specialized test objects and methods that
have been customized for SAP. The objects are APIs based on HP QuickTest
support for SAP.

As you record a test or component on your SAP application, VuGen records
the operations you perform. VuGen recognizes special SAP Windows objects
such as frames, table controls, iViews, and portals.

VuGen supports recording for the following SAP controls: button, checkbox,
drop-down menu, edit field, iview, list, menu, navigation bar, OK code,
portal, radio group, status bar, tab strip, table, and tree view.
807

Chapter 50 • Developing SAP (Click and Script) Vusers
Recording a SAP (Click and Script) Session

To create a Vuser script that emulates SAP Web applications, you choose the
SAP (Click and Script) protocol type from the ERP category. To begin
recording, click the Record button and perform typical actions in your SAP
Web application. You should record your sign-in information in the
vuser_init section, and the sign off process in the vuser_end section. For
further information about creating and recording a script, see “Recording
with VuGen” in Volume I-Using VuGen.

You can set event related recording options. For more information, see
Chapter 37, “Recording with Click and Script.”

If you require a lower level script, or if you need to record on unsupported
SAP control, use the SAP-Web protocol in the ERP category.

After you create a script, you integrate it into your environment: a
LoadRunner scenario, Performance Center load test, or Business Process
Monitor profile. For more information, refer to the HP LoadRunner Controller,
Performance Center, or HP Business Availability Center documentation.

Understanding SAP (Click and Script) Scripts

VuGen uses the control handler layer to create the effect of an operation on
a GUI control. During recording, when encountering one of the supported
SAP objects, VuGen generates a function with an sap_xxx prefix.
808

Chapter 50 • Developing SAP (Click and Script) Vusers
In the following example, a user selected the User Profile tab. VuGen
generated a sap_portal function.

Note: When you record a SAP (Click and Script) session, VuGen generates
standard Web (Click and Script) functions for objects that are not SAP-
specific. You do not need to explicitly specify the Web protocol. In the
example above, VuGen generated a web_text_link function when the user
clicked the Personalize button.

web_browser("Close_2",
"Snapshot=t7.inf",
DESCRIPTION,
"Ordinal=2",
ACTION,
"UserAction=Close",
LAST);

lr_think_time(7);

web_text_link("Personalize",
"Snapshot=t8.inf",
DESCRIPTION,
"Text=Personalize",
ACTION,
"UserAction=Click",
LAST);

lr_think_time(6);

sap_portal("Sap Portal_2",
"Snapshot=t9.inf",
DESCRIPTION,
"BrowserOrdinal=2",
ACTION,
"DetailedNavigation=User Profile",
LAST);
809

Chapter 50 • Developing SAP (Click and Script) Vusers
810

51
Developing SAP-Web Vuser Scripts

You use VuGen’s SAP-Web Vuser type, to record the activity in SAP
Workplace or SAP Portal clients.

This chapter includes:

 ➤ About Developing SAP-Web Vuser Scripts on page 812

 ➤ Creating a SAP-Web Vuser Script on page 812

 ➤ Setting SAP-Web Recording Options on page 814

 ➤ Understanding a SAP-Web Vuser Script on page 815

 ➤ Replaying a SAP-Web Vuser Script on page 817

The following information only applies to the SAP-Web protocol.
811

Chapter 51 • Developing SAP-Web Vuser Scripts
About Developing SAP-Web Vuser Scripts

You use VuGen to record typical SAP business processes. VuGen records SAP
Workplace or Portal activity during the business processes, and generates a
Vuser script. When you perform actions within your browser, VuGen
generates functions that describe this activity. Each function begins with a
web prefix.

During replay, these functions emulate user activity on the SAP Workplace
or Portal clients. For example, web_url navigates to the PageBuilder.

Creating a SAP-Web Vuser Script

The first step in creating a SAP-Web Vuser script, is choosing the Vuser and
script type. The SAP-Web Vuser is under the ERP/CRM category. You can
create either a single or multi-protocol Vuser script. In addition, you can use
the single-protocol SAP (Click and Script) Vuser type. The SAP (Click and
Script) Vuser generates a higher level, more intuitive script.

To create a SAP-Web Vuser:

 1 Invoke VuGen and choose File > New.

 2 To record a session that does not incorporate any SAPGUI controls within
the Workplace or Portal clients, create a single-protocol Vuser script using
the SAP-Web Vuser type.

web_url("PageBuilder[myPage]",
"URL=http://sonata.hplab.com/hrnp$30001/sonata.hplab.co.il:80/Action/PageBuilder[m
yPage]?pageName=com.sapportals.pct.home.mynews",

"Resource=0",
"RecContentType=text/html",
"Referer=http://sonata.hplab.co.il/sapportal",
"Snapshot=t2.inf",
"Mode=HTML",
EXTRARES,
"Url=/irj/services/laf/themes/portal/sap_mango_polarwind/.., ENDITEM,
LAST);
812

Chapter 51 • Developing SAP-Web Vuser Scripts
 3 To record a session that uses SAPGUI controls, create either:

➤ a single-protocol Vuser script, specifying the SAP (Click and Script)
protocol.

➤ a multi-protocol Vuser script, specifying both the SAP-Web and SAPGUI
Vuser types.
813

Chapter 51 • Developing SAP-Web Vuser Scripts
Setting SAP-Web Recording Options

You use the recording options to set your preferences for how VuGen
generates the Vuser script.

The recommended settings for the General:Recording node are:

For SAP Workplace recordings: URL-based script

For SAP Portal recordings: HTML-based script (the default)

For information about the other Web related recording options, see
Chapter 38, “Setting Recording Options for Internet Protocols.”

814

Chapter 51 • Developing SAP-Web Vuser Scripts
Understanding a SAP-Web Vuser Script

The SAP-Web Vuser script typically contains several SAP transactions which
make up a business process. The business process consists of functions that
emulate user actions. For information about these functions, see the Web
functions in the Online Function Reference (Help > Function Reference).

The following example shows a typical recording for a SAP Portal client:

vuser_init()
{
web_reg_find("Text=SAP Portals Enterprise Portal 5.0",

LAST);

web_set_user("junior{UserNumber}",
lr_decrypt("3ed4cfe457afe04e"),
"sonata.hplab.com:80");

web_url("sapportal",
"URL=http://sonata.hplab.com/sapportal",
"Resource=0",
"RecContentType=text/html",
"Snapshot=t1.inf",
"Mode=HTML",
EXTRARES,

"Url=/SAPPortal/IE/Media/sap_mango_polarwind/images/header/branding_image.jpg",
"Referer=http://sonata.hplab.com/hrnp$30001/sonata.hplab.coml:80/Action/26011[hea
der]", ENDITEM,

"Url=/SAPPortal/IE/Media/sap_mango_polarwind/images/header/logo.gif",
"Referer=http://sonata.hplab.com/hrnp$30001/sonata.hplab.com:80/Action/26011[head
er]", ENDITEM,
…

LAST);
815

Chapter 51 • Developing SAP-Web Vuser Scripts
The following section illustrates a multi-protocol recording in which the
Portal client opens a SAP control. Note the switch from web_xxx to
sapgui_xxx functions.

web_url("dummy",

"URL=http://sonata.hplab.com:1000/hrnp$30000/sonata.hplab.com:1000/Action/dumm
y?PASS_PARAMS=YES&dummyComp=dummy&Tcode=VA01&draggable=0&CompF
Name=VA01&Style=sap_mango_polarwind",

"Resource=0",
"RecContentType=text/html",
"Referer=http://sonata.hplab.com/sapportal",
"Snapshot=t9.inf",
"Mode=HTML",
LAST);

sapgui_open_connection_ex(" /H/Protector/S/3200 /WP",
"",
"con[0]");

sapgui_select_active_connection("con[0]");

sapgui_select_active_session("ses[0]");

/*Before running script, enter password in place of asterisks in logon function*/

sapgui_logon("JUNIOR{UserNumber}",
"ides",
"800",
"EN",
BEGIN_OPTIONAL,

"AdditionalInfo=sapgui102",
END_OPTIONAL);
816

Chapter 51 • Developing SAP-Web Vuser Scripts
Replaying a SAP-Web Vuser Script

After creating and enhancing your SAP-Web Vuser script, you configure its
run-time settings and run it from VuGen to check its functionality.

Run-Time settings let you control the Vuser behavior during replay. You
configure these settings before running the Vuser script. You can set both
General and Web related run-time settings.

The General settings include the run logic, pacing, logging, think time, and
performance preferences. For information about the General run-time
settings, see “Configuring Run-Time Settings” in Volume I-Using VuGen. For
SAP-Web specific settings, see Chapter 40, “Configuring Internet Run-Time
Settings.”

Once you configure the Run-Time settings, you save the Vuser script and
run it from VuGen as a standalone test, to verify that it runs correctly. For
further information, see “Running Vuser Scripts in Standalone Mode” in
Volume I-Using VuGen.

After verifying that your Vuser script is functional, you integrate it into your
environment: a LoadRunner scenario, Performance Center load test, or
Business Process Monitor profile. For more information, refer to the HP
LoadRunner Controller, Performance Center, or HP Business Availability Center
documentation.
817

Chapter 51 • Developing SAP-Web Vuser Scripts
818

52
Running SAPGUI Vuser Scripts

After creating a SAPGUI script through recording and manual
enhancements, you replay it in VuGen to test its functionality.

This chapter includes:

 ➤ About Replaying SAPGUI Vuser Scripts on page 819

 ➤ Replaying SAPGUI Optional Windows on page 820

 ➤ Setting SAPGUI Run-Time Settings on page 821

 ➤ SAPGUI Functions on page 824

 ➤ Tips for SAPGUI Vuser Scripts on page 825

 ➤ Troubleshooting SAPGUI Vuser Scripts on page 830

 ➤ Additional Resources on page 832

The following information only applies to the SAPGUI and the SAP (Click
and Script) protocols.

About Replaying SAPGUI Vuser Scripts

This chapter discusses the running of a SAPGUI Vuser script. You can set
run-time settings to control the Vuser’s behavior during the test or
monitoring session.

This chapter also contains several guidelines for working with SAPGUI
Vusers, as well as a troubleshooting section for solving common issues.

The SAPGUI Vuser script emulates a typical business processes using SAPGUI
functions that begin with a sapgui prefix.
819

Chapter 52 • Running SAPGUI Vuser Scripts
During replay, these functions emulate user activity on SAPGUI objects.

For example, sapgui_select_radio_button selects the radio button Blue.

Replaying SAPGUI Optional Windows

When working with SAPGUI Vuser Scripts, you may encounter optional
windows in the SAPGUI client—windows that were present during
recording, but do not exist during replay. If you try to replay your recorded
script as is, it will fail when it attempts to find the missing windows.

VuGen’s optional window mechanism performs the actions on a window
only after verifying that it exists. The Vuser checks if the window indicated
in the Select active window step exists. If the window is found during
replay, it performs the actions as they were recorded in the script. If it does
not exist, the Vuser ignores all window actions until the next Select active
window step. Note that only SAPGUI steps (beginning with a sapgui prefix)
are ignored.

To use this feature, in Tree view select the appropriate Select Active Window
step and choose Run steps for window only if it exists from the right-click
menu.

To disable this feature and attempt to run these steps at all times, regardless
of whether the Vuser finds the window or not, choose Always run steps for
this window from the right-click menu.

sapgui_select_radio_button("Blue",
 "usr/radRB7",
 BEGIN_OPTIONAL,
 "AdditionalInfo=sapgui1027",
 END_OPTIONAL);
820

Chapter 52 • Running SAPGUI Vuser Scripts
Setting SAPGUI Run-Time Settings

After creating and enhancing your SAPGUI Vuser script, you configure its
run-time settings and run it from VuGen to check its functionality. Run-
Time settings let you control the Vuser behavior during replay. You
configure these settings before running the Vuser script. You can set both
general and SAPGUI-specific run-time settings.

The general settings include the run logic, pacing, logging, think time, and
performance preferences. For information about the general run-time
settings, see “Configuring Run-Time Settings” in Volume I-Using VuGen.For
SAPGUI- specific settings, see the following sections.

Once you configure the Run-Time settings, you save the Vuser script and
run it from VuGen to verify that it runs correctly. For details about running
the Vuser script as a standalone test, see “Running Vuser Scripts in
Standalone Mode” in Volume I-Using VuGen.

After you create a script, you integrate it into your environment: a
LoadRunner scenario, Performance Center load test, or Business Process
Monitor profile. For more information, refer to the HP LoadRunner Controller,
Performance Center, or HP Business Availability Center documentation.

You can configure the SAPGUI specific Run-Time settings in the following
areas:

➤ SAPGUI General Run-Time Settings

➤ SAPGUI Advanced Run-Time Settings
821

Chapter 52 • Running SAPGUI Vuser Scripts
SAPGUI General Run-Time Settings
General run-time settings let you set the general settings for a SAPGUI Vuser
script. VuGen uses these settings when running the script.

The Log run-time settings specify the information a Vuser sends to the
Execution log whenever an error occurs.

➤ Send status bar text. Send the text from the status bar to the log file.

➤ Send active window title. Send the active window title text to the log file.

The Performance run-time settings allow you to indicate whether or not to
display the SAP client during replay.

➤ Show SAP Client during replay. Shows an animation of the actions in the
SAP client during replay. The benefit of displaying the user interface (UI) is
that you can see how the forms are filled out and closely follow the actions
of the Vuser. This option, however, requires additional resources and may
affect the performance of your load test.

822

Chapter 52 • Running SAPGUI Vuser Scripts
➤ Take ActiveScreen snapshots during replay. Captures replay snapshots with
the Control ID information for all active objects. ActiveScreen snapshots
differ from regular ones, in that they allow you to see which objects were
recognized by VuGen in the SAPGUI client. As you move your mouse across
the snapshot, VuGen highlights the detected objects. You can then add new
steps to the script directly from within the snapshot. It also allows you to
add steps interactively from within the snapshot for a specific object. For
more information, see “Inserting Steps Interactively into a SAPGUI Script”
on page 797.

Advanced options let you set a timeout for the SAPfewgsvr.exe process, save
a snapshot on error, and configure VuGen to use SAPlogon during replay.
For more information, see “SAPGUI Advanced Run-Time Settings” on
page 823.

To set the SAPGUI Run-Time Settings:

 1 Open the Run-Time settings dialog box. Click the Run-Time Settings button
on the VuGen toolbar, or choose Vuser > Run-Time Settings.

 2 Select the SAPGUI:General node.

 3 In the Log messages on error section, select one or more message sources:
Send status bar text or Send active window title.

 4 In the Performance section, select the Show SAP client during replay check
box to show the SAPGUI user interface during replay.

 5 Click Options to set a timeout for the SAPfewgsvr.exe process.

SAPGUI Advanced Run-Time Settings
Each Vuser invokes a separate SAPfewgsvr.exe process during test execution.
In some instances, the process stays active even after the replay session has
ended. You can check the Windows Task Manager to see if the process is still
active.
823

Chapter 52 • Running SAPGUI Vuser Scripts
The Advanced SAPGUI settings let you set a timeout for this application.
When the timeout is reached, VuGen closes any SAPfewgsvr processes not
previously terminated.

➤ Replay using running SAPlogon application. Instructs the Vusers to use the
SAPlogon application that is currently running for replay.

➤ Set SAPfewgsvr application timeout. Allows you to modify the
SAPfewgsvr.exe process timeout.

➤ Timeout to SAPfewgsvr. The SAPfewgsvr.exe process timeout in seconds.
The default is 300 seconds.

SAPGUI Functions

During a SAPGUI recording session, VuGen generates functions that
emulate user interaction with the SAPGUI client. When you record the
SAPGUI for Windows client, VuGen generates functions with a sapgui
prefix. This section lists all of the sapgui functions.

When you record a SAP session using a Web interface such as SAP Workplace
or Portal, or if the SAPGUI client opens a Web control, VuGen generates
functions with a web prefix.
824

Chapter 52 • Running SAPGUI Vuser Scripts
While most of the functions are recorded, you can manually insert any
function into your script. The functions that are not recorded are the data
retrieval functions beginning with sapgui_get, and those used for
verification, beginning with sapgui_is.

There are several categories of sapgui functions: Connection and Session
Functions, Method and Property Functions, Verification and Data Retrieval
Functions, and Object functions. Object functions are those which perform
an action within a SAPGUI object such as Calendar Functions, Grid
Functions, APO Grid Functions, Status Bar Functions, Table Functions, Tree
Functions, Window Functions, and General Object Functions.

For more information about the sapgui and web functions, use the Show
Function Syntax feature from the Edit menu, or refer to the Online Function
Reference (Help > Function Reference).

Tips for SAPGUI Vuser Scripts

The following sections provides Recording Tips, Replay Tips, and Tips for
Replaying in a Scenario for SAPGUI Vusers. In addition, you can obtain
information directly from the SAP support site.

Recording Tips
This section provides recording tips for a SAPGUI Vuser script.

➤ Make sure to record the actions into the appropriate sections: Record the
logon procedure into the vuser_init section, the actions that you want to
repeat in the Actions sections, and the logoff procedure in the vuser_end
section.

➤ When recording a multi-protocol script in which the SAPGUI client
contains Web controls, close the SAPLogon application before recording.
825

Chapter 52 • Running SAPGUI Vuser Scripts
➤ Use modal dialog boxes for F1. Instruct the SAPGUI client to open the F1
help in a modal dialog box. Choose Help >Settings. Click the F1 Help tab
and select the in modal dialog box option in the Display section.

➤ Use modal dialog boxes for F4. Instruct the SAPGUI client to open the F4
help in a modal dialog box.
826

Chapter 52 • Running SAPGUI Vuser Scripts
The following procedure must be performed by a SAP administrator:

To open F4 help in modal dialog boxes:

 1 Ensure that all users have logged off from the server.

 2 Choose Help > Settings. Click the F4 Help tab.

 3 In the Display section (bottom left), choose System defaults.

 4 In the Display portion of the System defaults section (bottom right), select
Dialog.

 5 Save the changes—click Copy initial system setting or CTRL+S.

 6 Verify that the status bar displays the message Data was saved.

 7 Close the session.

 8 Restart the service through the SAP Management Console.
827

Chapter 52 • Running SAPGUI Vuser Scripts
Replay Tips
Follow these guidelines before replaying your script in standalone-mode:

➤ Replace the encrypted password in the sapgui_logon function generated
during recording, with the real password. It is the second argument of the
function, after the user name: sapgui_logon("user", "pswd", "800", "EN"); For
additional security, you can encrypt the password within the code. Select
the password text (the actual text, not *****) and choose Encrypt string from
the right-click menu. VuGen inserts an lr_decrypt function at the location
of the password: sapgui_logon("user", lr_decrypt("3ea037b758"), "800", "EN");.

➤ When running a script for the first time, configure VuGen to show the
SAPGUI user interface during replay, in order to see the operations being
performed through the UI. To show the user interface during replay, open
the run-time settings (F4) and select the Show SAP Client During Replay
option in the SAPGUI:General node. During a load scenario, disable this
option, since it uses a large amount of system resources in displaying the UI
for multiple Vusers.

Tips for Replaying in a Scenario
The following sections provide configuration tips for running the script on a
Controller or Load Generator machine.

Controller Settings

When working with a LoadRunner scenario, set the following values when
running your script in a load test configuration:

➤ Ramp-up. One by one (to insure proper logon) in the Scheduler.

➤ Think time. Random think time in the Run-Time settings.

➤ Users per load generator. 50 Vusers for machine with 512 MB of memory in
the Load Generators dialog box.

Load Generator Settings

When running your script in a scenario, check the agent mode and
configure the terminal sessions on the Load Generator machines.

➤ Agent Mode. Make sure that the LoadRunner (or Performance Center)
Remote Agent is running in Process mode. Service mode is not supported.
828

Chapter 52 • Running SAPGUI Vuser Scripts
To check this, move your mouse over the agent’s icon in the Windows task
bar area, and read the description. If the description reads LoadRunner
Agent Service, it is running as a service.

To restart the agent as a process:

 1 Stop the agent. Right-click the LoadRunner Agent icon and select Close.

 2 Run magentproc.exe, located in the launch_service\bin directory, under the
LoadRunner installation.

 3 To ensure that the correct Agent is launched the next time you start your
machine, change the Start type of the Agent Service from Automatic to
Manual. Then add a shortcut to magentproc.exe to the Windows Startup
folder.

Terminal Sessions. Machines running SAPGUI Vusers may be limited in the
number of Vusers that can run, due to the graphic resources available to that
machine. To increase the number of Vusers per machine, open additional
terminal server sessions on the Load Generator machines. Choose Agent
Configuration from Start > Programs > <product_name> > Advanced
Settings, and select the Enable Terminal Service option. You specify the
number of terminal sessions in the Load generator machine properties. For
more information, refer to Configuring Terminal Services in the HP
LoadRunner Controller User’s Guide.

Note: When the LoadRunner Agent is running in a terminal session, and the
terminal session’s window is minimized, no snapshots will be captured on
errors.
829

Chapter 52 • Running SAPGUI Vuser Scripts
Troubleshooting SAPGUI Vuser Scripts

Question 1: I was able to record a script, but why does replay fail?

Answer: In LoadRunner, make sure that the LoadRunner Remote Agent is
running in Process mode. Service mode is not supported. For more
information, see “Replay Tips” on page 828.

Question 2: Why were certain SAPGUI controls not recorded?

Answer: Some SAPGUI controls are only supported in their menu or toolbar
contexts. Try performing the problematic task using a different means—
through a menu option, context menu, toolbar, and so on.

Question 3: Why can’t I record or replay any scripts in VuGen?

Answer:

 a Verify that you have the latest patch of SAPGUI 6.20 installed. The lowest
allowed patch level is patch 32.

 b Make sure that scripting is enabled. See the “Checking your Environment
for SAPGUI Vusers” on page 779.

 c Verify that notifications are disabled in the SAPGUI for Windows client.
Click the Customizing of Local Layout button or press ALT+F12. Click
Options and select the Scripting tab. Clear both Notify options.

Question 4: What is the meaning of the error popup messages that are
issued when I try to run the script?

Answer: Certain SAP applications store the last layout for each user (such as
which frames are visible or hidden). If the stored layout was changed since
the script was recorded, this may cause replay problems. For Example, in the
ME52N transaction, the Document overview Off/On button will change the
number of visible frames.

If this occurs:

 1 Navigate the transaction to the same point as it was during recording, before
starting replay. You can use the Snapshot viewer to see the layout in which it
was recorded.
830

Chapter 52 • Running SAPGUI Vuser Scripts
 2 Add statements to the script that bring the transaction to the desired layout
during replay. For example, if an optional frame interferes with your replay,
insert a verification function that checks if the frame is open. If it is open,
click a button to close it. For verification examples, see “Adding Verification
Functions” on page 803.

Question 5: Can I use the single sign-on mechanism when running a script
on a remote machine?

Answer: No, VuGen does not support the single sign-on connection
mechanism. In your SAPGUI client, open the Advanced Options and clear
the Enable Secure Network Communication feature. Note that you must re-
record the script after you modify the Connection preferences.

Question 6: Can VuGen record all SAP objects?

Answer: Recording is not available for objects not supported by SAPGUI
Scripting. See your recording log for information about those objects.

Question 7: Are all business processes supported?

Answer: VuGen does not support business processes that invoke Microsoft
Office module controls, nor those that require the use of GuiXT. You can
disable GuiXT from the SAPGUI for Windows client Options menu.
831

Chapter 52 • Running SAPGUI Vuser Scripts
Additional Resources

LoadRunner

For Online Help on dialog boxes, press F1 within a dialog box. You can also
choose Help > Contents and Index to manually open the Help. In the Index
tab, locate the SAPGUI Vuser scripts entry and click the appropriate sub-
entry.

For Online Help with a function, click within the function or step, and click
F1 to open the Online Function Reference.

SAP

For more information, refer to the SAP website at www. sap.com or one of
the following locations:

➤ SAP Notes - https://websmp103.sap-ag.de/notes

Note #480149: New profile parameter for user scripting on the front end

Note #587202: Drag & Drop is a known limitation of the SAPGUI interface

➤ SAP Patches - https://websmp104.sap-ag.de/patches

SAP GUI for Windows - SAPGUI 6.20 Patch (the lowest allowed level is 32)
832

53
Developing Siebel-Web Vuser Scripts

You use VuGen to record the activity in a Siebel Web environment and
generate a Vuser script. When you run the script, Vusers emulate the actions
within your Siebel environment.

This chapter includes:

 ➤ About Developing Siebel-Web Vuser Scripts on page 833

 ➤ Recording a Siebel-Web Session on page 834

 ➤ Correlating Siebel-Web Scripts on page 835

 ➤ Correlating SWECount, ROWID, and SWET Parameters on page 842

 ➤ Troubleshooting Siebel-Web Vuser Scripts on page 844

The following information only applies to Siebel-Web Vuser scripts.

About Developing Siebel-Web Vuser Scripts

The Siebel-Web protocol is similar to the standard Web Vuser, with several
changes in the default settings to allow it to work with the Siebel Customer
Relationship Management (CRM) application.

You record typical activities in your Siebel session. VuGen records the
actions and generates functions with a web_ prefix, that emulate the
actions.

The sections below provide tips for working with Siebel-Web recorded Vuser
Scripts and provide samples of the parameters that need to be correlated.
833

Chapter 53 • Developing Siebel-Web Vuser Scripts
Recording a Siebel-Web Session

When recording a Siebel-Web session, use the following guidelines:

To record a Siebel-Web Vuser script:

 1 Create a Siebel-Web type Vuser script from the ERP category.

 2 Set the following Recording Options:

➤ Record node: HTML based script

Advanced HTML - Script options: a script containing explicit URLs only

Advanced HTML - Non HTML-generated elements: Do not record

➤ Advanced node: Clear the Reset context for each action option.

 3 Record the login in the vuser_init section.

 4 Record the Business Process in Action1.

 5 Record the logout in the vuser_end section.

 6 In the Run-Time settings, clear the Simulate a new user on each iteration
option in the Browser Emulation node.

For more information on how to configure the Recording Options and Web
related Run-Time settings, see Chapter 38, “Setting Recording Options for
Internet Protocols”, and Chapter 40, “Configuring Internet Run-Time
Settings.”
834

Chapter 53 • Developing Siebel-Web Vuser Scripts
Correlating Siebel-Web Scripts

When creating a test script for a Siebel session, you will most probably need
to use correlation in your script. Correlation is the mechanism by which
VuGen saves dynamic values to parameters during record and replay, for use
at a later point in the script. If you replayed the recorded script as is, without
correlation, it would fail, since the values of the arguments differ each time
the script runs. An example of such variables are SWECount and SWEBMC.

When you use correlation, VuGen saves the dynamic variables during both
record and replay, and uses them at the appropriate points within the script.
You can instruct VuGen to apply correlation during recording using one of
the following methods:

➤ Siebel Correlation Library

The Siebel correlation library automatically correlates most of the dynamic
values, creating a concise script that you can replay without major
modifications. This is the recommended method for correlation.

➤ VuGen Native Siebel Correlation

The native, built-in rules, work on a low level, allowing you to debug your
script and understand the correlations in depth.

Siebel Correlation Library
To assist you with correlation, Siebel has released a correlation library file as
part of the Siebel Application Server version 7.7. This library is available
only through Siebel. The library file, ssdtcorr.dll, is located under the
siebsrvr\bin folder for Windows and under siebsrvr/lib for UNIX
installations.

The library file, ssdtcorr.dll, must be available to all machines where a Load
Generator or Controller reside. Support for this library requires VuGen 8.0
and higher.

To enable correlation with this library:

 1 Copy the DLL file into the bin directory of the product installation.

 2 Open a multi-protocol script using the Siebel-Web Vuser type.
835

Chapter 53 • Developing Siebel-Web Vuser Scripts
 3 Enable UTF-8 support in the recording options. For more information, see
“Setting Advanced Recording Options” on page 588.

 4 Open the recording option’s Correlation node and click Import. Import the
rules file, WebSiebel77Correlation.cor, from the
\dat\webrulesdefaultsetting directory. If you are prompted with warnings,
click Override. For more information, see “Setting the Correlation Recording
Options” on page 697.

To revert back to the default correlation, delete all of the Siebel rules and
click Use Defaults.

When using the Siebel correlation library, verify that the SWE count rules
(where the left boundary contains the SWEC string) are not disabled. For
more information, see “Disabling and Enabling Rules” on page 840.

VuGen Native Siebel Correlation
VuGen’s native built-in rules for the Siebel server detect the Siebel server
variables and strings, automatically saving them for use at a later point
within the script.

You can view these rules in the list of correlation rules (see “Using VuGen’s
Correlation Rules” on page 688). The rules list the boundary criteria that are
unique for Siebel server strings.

When VuGen detects a match using the boundary criteria, it saves the value
between the boundaries to a parameter. The value can be a simple variable
or a public function.

You can also create your own rules by entering unique boundary criteria in
the Correlation Recording Options (see Chapter 44, “Setting Correlation
Rules for Web Vuser Scripts”) or after the recording from the Correlation
Results tab (see “Performing a Scan for Correlations” on page 707).

836

Chapter 53 • Developing Siebel-Web Vuser Scripts
In the Replay Log tab, VuGen indicates when it registers, saves, or uses the
parameters. Note that to display this information, you need to enable
Extended logging. For more information, see “Configuring the Log Run-
Time Settings” on page 228.

Simple Variable Correlation

In the following example, the left boundary criteria is _sn=. For every
instance of _sn= in the left boundary and ; in the right, VuGen creates a
parameter with the Siebel_sn_cookie prefix.
837

Chapter 53 • Developing Siebel-Web Vuser Scripts
In the following example, VuGen detected the _sn boundary. It saved the
parameter to Siebel_sn_cookie6 and used it in the web_url function.

Function Correlation

In certain instances, the boundary match is a function. Functions generally
use an array to store the run-time values. In order to correlate these values,
VuGen parses the array and saves each argument to a separate parameter
using the following format:

<parameter_name> = <recorded_value> (display_name)

The display name is the text that appears next to the value, in the Siebel
Application.

/* Registering parameter(s) from source
web_reg_save_param("Siebel_sn_cookie6",
"LB/IC=_sn=",
"RB/IC=;",
"Ord=1",
"Search=headers",
"RelFrameId=1",
LAST);

…

web_url("start.swe_3",
"URL=http://cannon.hplab.com/callcenter_enu/start.swe?SWECmd=GotoPostedAction
&SWEDIC=true&_sn={Siebel_sn_cookie6}&SWEC={Siebel_SWECount}&SWEFrame
=top._sweclient&SWECS=true",
"TargetFrame=",
"Resource=0",
"RecContentType=text/html",
"Referer=http://cannon.hplab.com/callcenter_enu/start.swe?SWECmd=GetCachedFra
me&_sn={Siebel_sn_cookie6}&SWEC={Siebel_SWECount}&SWEFrame=top._swe",
"Snapshot=t4.inf",
"Mode=HTML",
LAST);
838

Chapter 53 • Developing Siebel-Web Vuser Scripts
VuGen inserts a comment block with all of the parameter definitions.

In addition, when encountering a function, VuGen generates a new
parameter for web_reg_save_param, AutoCorrelationFunction. VuGen also
determines the prefix of the parameters and uses it as the parameter name.
In the following example, the prefix is Siebel_Star_Array_Op33.

/* Registering parameter(s) from source task id 159
// {Siebel_Star_Array_Op33_7} = ""
// {Siebel_Star_Array_Op33_6} = "1-231"
// {Siebel_Star_Array_Op33_2} = ""
// {Siebel_Star_Array_Op33_8} = "Opportunity"
// {Siebel_Star_Array_Op33_5} = "06/26/2003 19:55:23"
// {Siebel_Star_Array_Op33_4} = "06/26/2003 19:55:23"
// {Siebel_Star_Array_Op33_3} = ""
// {Siebel_Star_Array_Op33_1} = "test camp"
// {Siebel_Star_Array_Op33_9} = ""
// {Siebel_Star_Array_Op33_rowid} = "1-6F"
// */

web_reg_save_param("Siebel_Star_Array_Op33",
"LB/IC=`v`",
"RB/IC=`",
"Ord=1",
"Search=Body",
"RelFrameId=1",
"AutoCorrelationFunction=flCorrelationCallbackParseStarArray",
LAST);
839

Chapter 53 • Developing Siebel-Web Vuser Scripts
VuGen uses the parameters at a later point within the script. In the
following example, the parameter is called in web_submit_data.

During replay, Vusers do a callback to the public function, using the array
elements that were saved as parameters.

Note: Correlation for the SWEC parameter is not done through the
correlation rules. VuGen handles it automatically with a built-in detection
mechanism. For more information, see “SWEC Correlation” on page 841.

Disabling and Enabling Rules

In normal situations, you do not need to disable any rules. In some cases,
however, you may choose to disable rules that do not apply. For example,
disable Japanese content check rules when testing English-only applications.

Another reason to disable a rule is if the Controller explicitly requires an
error condition to be generated. View the rule properties in the recording
options and determine the conditions necessary for your application.

web_submit_data("start.swe_14",
"Action=http://cannon.hplab.com/callcenter_enu/start.swe",
"Method=POST",
"RecContentType=text/html",
"Referer=",
"Snapshot=t15.inf",
"Mode=HTML",
ITEMDATA,
"Name=SWECLK", "Value=1", ENDITEM,
"Name=SWEField", "Value=s_2_1_13_0", ENDITEM,
"Name=SWER", "Value=0", ENDITEM,
"Name=SWESP", "Value=false", ENDITEM,
"Name=s_2_2_29_0", "Value={Siebel_Star_Array_Op33_1}", ENDITEM,
"Name=s_2_2_30_0", "Value={Siebel_Star_Array_Op33_2}", ENDITEM,
"Name=s_2_2_36_0", "Value={Siebel_Star_Array_Op33_3}", ENDITEM,

…

840

Chapter 53 • Developing Siebel-Web Vuser Scripts
To disable rules:

 1 Open the Correlation recording options. Choose Tools > Recording Options
and click the Correlation node.

 2 Select the Enable correlation during recording option. The dialog box
displays the supported servers.

 3 Expand the rules under Siebel and view their properties.

 4 Clear the check box adjacent to the rule for each rule you want to disable.

SWEC Correlation
SWEC is a parameter used by Siebel servers representing the number of user
clicks. The SWEC parameter usually appears as an argument of a URL or a
POST statement. For example:

or

VuGen handles the changes of the SWEC by incrementing a counter before
each relevant step. VuGen stores the current value of the SWEC in a separate
variable (Siebel_SWECount_var). Before each step, VuGen saves the
counter’s value to a VuGen parameter (Siebel_SWECount).

GET /callcenter_enu/start.swe?SWECmd=GetCachedFrame&_sn=2-
mOTFXHWBAAGb5Xzv9Ls2Z45QvxGQnOnPVtX6vnfUU_&SWEC=1&SWEFrame=top
._swe._sweapp HTTP/1.1

POST /callcenter_enu/start.swe HTTP/1.1
…
\r\n\r\n
SWERPC=1&SWEC=0&_sn=2-
mOTFXHWBAAGb5Xzv9Ls2Z45QvxGQnOnPVtX6vnfUU_&SWECmd=InvokeMethod
…

841

Chapter 53 • Developing Siebel-Web Vuser Scripts
In the following example, web_submit_data uses the dynamic value of the
SWEC parameter, Siebel_SWECount.

Note that the SWEC parameter may also appear in the referrer URL.
However, its value in the referrer URL usually differs from its value in the
requested URL. VuGen handles this automatically.

Correlating SWECount, ROWID, and SWET Parameters

This section provides tips for correlating several special parameters:

➤ SWECount

➤ Row ID Length

➤ SWETS (Timestamps)

Siebel_SWECount_var += 1;

lr_save_int(Siebel_SWECount_var, "Siebel_SWECount");

web_submit_data("start.swe_8",
"Action=http://cannon.hplab.com/callcenter_enu/start.swe",
"Method=POST",
"TargetFrame=",
"RecContentType=text/html",
"Referer=",
"Snapshot=t9.inf",
"Mode=HTML",
"EncodeAtSign=YES",
ITEMDATA,
"Name=SWERPC", "Value=1", ENDITEM,
"Name=SWEC", "Value={Siebel_SWECount}", ENDITEM,
"Name=SWECmd", "Value=InvokeMethod", ENDITEM,
"Name=SWEService", "Value=SWE Command Manager", ENDITEM,
"Name=SWEMethod", "Value=BatchCanInvoke", ENDITEM,
"Name=SWEIPS",…
LAST);
842

Chapter 53 • Developing Siebel-Web Vuser Scripts
SWECount

The SWECount parameter value is usually a small number consisting of one
or two digits. It is often difficult to determine where to replace the recorded
value with a parameter.

In the web_submit_data function, VuGen only replaces it in the SWEC
field.

In URLs, VuGen only replaces the value when it appears after the strings
"SWEC=" or "SWEC`".

The parameter name for all the SWECount correlations is the same.

Row ID Length

In certain cases, the rowid is preceded by its length, encoded in hexadecimal
format. Since this length can change, this value must be correlated.

For example, the following string is comprised of a length value and RowID,
xxx6_1-4ABCyyy, where 6 is the length, and 1-4ABC is the RowID.

If you define parameters to correlate the string as

xxx{rowid_Length}_{rowid}yyy

then using this enhanced correlation, VuGen generates the following
function before the string:

web_save_param_length("rowid", LAST);

This function gets the value of rowid, and saves its length into the
parameter rowid_length in hexadecimal format.

SWETS (Timestamps)

The SWETS value in the script, is the number of milliseconds since midnight
January 1st, 1970.

VuGen replaces all non-empty timestamps in the script, with the parameter
{SiebelTimeStamp}. Before saving a value to this parameter, VuGen generates
the following function:

web_save_timestamp_param("SiebelTimeStamp", LAST);
843

Chapter 53 • Developing Siebel-Web Vuser Scripts
This function saves the current timestamp to the SiebelTimeStamp
parameter.

Troubleshooting Siebel-Web Vuser Scripts

This section provides information about errors you might encounter when
creating a script, and the breakdown diagnostic tool.

➤ Typical Errors

➤ Recording Breakdown Information

Typical Errors
You may encounter one or more of the following errors while creating a
Siebel-Web Vuser script:

➤ Back or Refresh Error

➤ Same Values

➤ No Content HTTP Response

➤ Restoring the Context

➤ Cannot Locate Record

➤ End of File

➤ Unable to Retrieve Search Categories

Back or Refresh Error

An error message relating to Back or Refresh typically has the following text:

We are unable to process your request. This is most likely because you used the
browser BACK or REFRESH button to get to this point.

Cause: The possible causes of this problem may be:

➤ The SWEC was not correlated correctly for the current request.

➤ The SWETS was not correlated correctly for the current request.

➤ The request was submitted twice to the Siebel server without the SWEC
being updated.
844

Chapter 53 • Developing Siebel-Web Vuser Scripts
➤ A previous request should have opened a frame for the browser to
download. This frame was not created on the server probably because the
SWEMethod has changed since the recording.

Same Values

A typical Web page response to the Same Values error is:

@0`0`3`3``0`UC`1`Status`Error`SWEC`10`0`1`Errors`0`2`0`Level0`0`ErrMsg`Th
e same values for 'Name' already exist. If you would like to enter a new record,
please ensure that the field values are unique.`ErrCode`28591`

Cause: The possible cause of this problem may be that one of the values in
the request (in the above example, the value of the Name field) duplicates a
value in another row of the database table. This value needs to be replaced
with a unique value to be used for each iteration per user. The
recommended solution is to replace the row ID with its parameter instead
insuring that it will be unique.

No Content HTTP Response

A typical HTTP response for a No Content HTTP Response type error is:

HTTP/1.1 204 No Content
Server: Microsoft-IIS/5.0
Date: Fri, 31 Jan 2003 21:52:30 GMT
Content-Language: en
Cache-Control: no-cache

Cause: The possible causes of this problem may be that the row ID is not
correlated at all or that it is correlated incorrectly.

Restoring the Context

The typical Web page response to the Restoring the Context type error is:

@0`0`3`3``0`UC`1`Status`Error`SWEC`9`0`1`Errors`0`2`0`Level0`0`ErrMsg`An
error happened during restoring the context for requested
location`ErrCode`27631`

Cause: The possible causes of this problem may be that the rowid is not
correlated or that it is correlated incorrectly.
845

Chapter 53 • Developing Siebel-Web Vuser Scripts
Cannot Locate Record

The typical Web page response to the Cannot locate record type error is:

@0`0`3`3``0`UC`1`Status`Error`SWEC`23`0`2`Errors`0`2`0`Level0`0`ErrMsg`Ca
nnot locate record within view: Contact Detail - Opportunities View applet:
Opportunity List Applet.`ErrCode`27573`

Cause: The possible causes of this problem may be that the input name
SWERowId does not contain a row ID for a record on the Web page. This
input name should have been parameterized. The parameter's source value
may have changed its location.

End of File

The typical Web page response to the End of File type error is:

@0`0`3`3``0`UC`1`Status`Error`SWEC`28`0`1`Errors`0`2`0`Level0`0`ErrMsg`An
end of file error has occurred. Please continue or ask your systems administrator
to check your application configuration if the problem persists.`ErrCode`28601`

Cause: The possible causes of this problem may be that the input name
SWERowId does not contain a row ID for a record on the Web page. This
input name should have been parameterized. The parameter's source value
may have changed its location.

Unable to Retrieve Search Categories

The typical Web page response to the Unable to Retrieve Search Categories
type error is:

Cause: A possible cause of this problem may be that the search frame was
not downloaded from the server. This occurs when the previous request did
not ask the server to create the search frame correctly.
846

Chapter 53 • Developing Siebel-Web Vuser Scripts
Recording Breakdown Information
VuGen provides a diagnostic tool for understanding the transaction
components in your test—transaction breakdown. Using transaction
breakdown, you can determine where the bottlenecks are and the issues that
need to be resolved.

When preparing your script for transaction breakdown, it is recommended
that you add think time at the end of each transaction using the ratio of one
second per hour of testing. For more information on entering think time,
see “Enhancing Vuser Scripts” in Volume I-Using VuGen.

In order to record the transaction breakdown information, you need to
modify your the parameterization functions in your script.

To prepare your script for transaction breakdown:

 1 Identify the script parameterization replacement of the Session ID.

 2 Mark the next web_submit_data function as a transaction by enclosing it
with lr_start_transaction and lr_end_transaction functions.

/* Registering parameter(s) from source task id 15
// {Siebel_sn_body4} = "28eMu9uzkn.YGFFevN1FdrCfCCOc8c_"
// */
web_reg_save_param("Siebel_sn_body4",

"LB/IC=_sn=",
"RB/IC=&",
"Ord=1",
"Search=Body",
"RelFrameId=1",
LAST);
847

Chapter 53 • Developing Siebel-Web Vuser Scripts
 3 Before the end of the transactions, add a call to
lr_transaction_instance_add_info, where the first parameter, 0 is
mandatory and the session ID has a SSQLBD prefix.

Note: To avoid session ID conflicts, make sure that the Vusers log off from
the database at the end of each session.

lr_start_transaction("LoginSQLSync");
web_submit_data("start.swe_2",

"Action=http://design/callcenter_enu/start.swe",
"Method=POST",
"RecContentType=text/html",
"Referer=http://design/callcenter_enu/start.swe",
"Snapshot=t2.inf",
"Mode=HTML",
ITEMDATA,
"Name=SWEUserName", "Value=wrun", ENDITEM,
"Name=SWEPassword", "Value=wrun", ENDITEM,
"Name=SWERememberUser", "Value=Yes", ENDITEM,
"Name=SWENeedContext", "Value=false", ENDITEM,
"Name=SWEFo", "Value=SWEEntryForm", ENDITEM,
"Name=SWETS", "Value={SiebelTimeStamp}", ENDITEM,
"Name=SWECmd", "Value=ExecuteLogin", ENDITEM,
"Name=SWEBID", "Value=-1", ENDITEM,
"Name=SWEC", "Value=0", ENDITEM,
LAST);

lr_transaction_instance_add_info(0,lr_eval_string("SSQLBD:{Siebel_sn_body4}"));
lr_end_transaction("LoginSQLSync", LR_AUTO);
848

Part XI

Legacy Protocols

850

54
Introducing RTE Vuser Scripts

RTE Vusers operate terminal emulators in Windows environments. This
chapter describes how to develop Windows-based RTE Vuser scripts.

This chapter includes:

 ➤ About Developing RTE Vuser Scripts on page 851

 ➤ Introducing RTE Vusers on page 852

 ➤ Understanding RTE Vuser Technology on page 852

 ➤ Getting Started with RTE Vuser Scripts on page 853

 ➤ Using TE Functions on page 854

 ➤ Mapping Terminal Keys to PC Keyboard Keys on page 857

The following information applies only to RTE (Windows) Vuser scripts.

About Developing RTE Vuser Scripts

RTE Vusers operate terminal emulators in order to load test client/server
systems.

You record a terminal emulator session with VuGen to represent a true user’s
actions. You can then enhance your recorded script with transaction and
synchronization functions.

This chapter describes how to develop Windows-based RTE Vuser scripts.
851

Chapter 54 • Introducing RTE Vuser Scripts
Introducing RTE Vusers

An RTE Vuser types character input into a terminal emulator, submits the
data to a server, and then waits for the server to respond. For instance,
suppose that you have a server that maintains customer information for a
maintenance company. Every time a field service representative makes a
repair, he accesses the server database by modem using a terminal emulator.
The service representative accesses information about the customer and
then records the details of the repair that he performs.

You could use RTE Vusers to emulate this case. An RTE Vuser would:

 1 Type 60 at the command line to open an application program.

 2 Type F296, the field service representative’s number.

 3 Type NY270, the customer number.

 4 Wait for the word "Details" to appear on the screen. The appearance of
"Details" indicates that all the customer details are displayed on the screen.

 5 Type Changed gasket P249, and performed Major Service the details of the
current repair.

 6 Type Q to close the application program.

You use VuGen to create RTE Vuser scripts. The script generator records the
actions of a human user in a terminal emulator. It records the keyboard
input from the terminal window, generates the appropriate statements, and
inserts them into the Vuser script. While you record, the script generator
automatically inserts synchronization functions into the script. For details,
see Chapter 57, “Synchronizing RTE Vuser Scripts.”

Understanding RTE Vuser Technology

An RTE Vuser emulates the actions of a real user. Human users use terminals
or terminal emulators to operate application programs.

 TerminalApplication Human User
EmulatorProgram
852

Chapter 54 • Introducing RTE Vuser Scripts
In the RTE Vuser environment, a Vuser replaces the human. The Vuser
operates PowerTerm, a terminal emulator.

PowerTerm works like a standard terminal emulator, supporting common
protocols such as IBM 3270 & 5250, VT100, VT220, and VT420-7.

Getting Started with RTE Vuser Scripts

This section provides an overview of the process of developing RTE Vuser
scripts using VuGen.

To develop an RTE Vuser script:

 1 Record the basic script using VuGen.

Use the Virtual User Generator (VuGen) to record the operations that you
perform in a terminal emulator. VuGen records the keyboard input from the
terminal window, generates the appropriate statements, and then inserts
these statements into the Vuser script.

For details, see Chapter 55, “Recording RTE Vuser Scripts.”

 2 Enhance the script.

Enhance the Vuser script by inserting transactions, rendezvous points,
synchronization functions, and control-flow structures into the script.

For details, see “Enhancing Vuser Scripts” in Volume I-Using VuGen.

 3 Define parameters (optional).

Define parameters for the fixed-values recorded into your script. By
substituting fixed-values with parameters, you can repeat the same business
process many times using different values.

For details, see “Creating Parameters” in Volume I-Using VuGen.

PowerTerm
Application

VuserProgram
853

Chapter 54 • Introducing RTE Vuser Scripts
 4 Configure the run-time settings.

The run-time settings control the Vuser behavior during script execution.
These settings include loop, log, and timing information.

For details, see “Configuring Run-Time Settings” in Volume I-Using VuGen.

 5 Run the script from VuGen.

Run the script from VuGen to verify that it runs correctly. View the standard
output to verify that the program is communicating properly with the
server.

For details, see “Running Vuser Scripts in Standalone Mode” in Volume I-
Using VuGen.

After you create a script, you integrate it into your environment: a
LoadRunner scenario, Performance Center load test, or Business Process
Monitor profile. For more information, refer to the HP LoadRunner Controller,
Performance Center, or HP Business Availability Center documentation.

Using TE Functions

The functions developed to emulate a terminal communicating with a
server are called TE Vuser functions. Each TE Vuser function has a TE prefix.
VuGen automatically records most of the TE functions listed in this section
during an RTE session. You can also manually program any of the functions
into your script.

The TE functions are divided into the following categories: Terminal
Emulator Connection, Text Retrieval, Cursor, System Variable, Error Code,
Typing, and Synchronization Functions.

You can also manually program any of the functions into your Vuser script.
In text view, you can manually add new functions utilizing the Intellisense
and Complete Function features. In Tree view, choose Insert > New Step and
select the desired step.

For syntax and examples of the TE functions, refer to the Online Function
Reference (Help > Function Reference).
854

Chapter 54 • Introducing RTE Vuser Scripts
Working with Ericom Terminal Emulation

VuGen supports record and replay with Ericom Terminal Emulators.

The Ericom support handles escape sequences during record and replay.
Ericom’s PowerTerm lets you map PC keys to custom escape sequences. For
information about mapping, refer to the PowerTerm help.

When a user presses mapped keys while recording an Ericom VT session,
VuGen generates TE_send_text functions instead of the standard TE_type.
This allows the script to handle custom escape sequences in a single step.
For more information, refer to the Online Function Reference (Help > Function
Reference) for the TE_send_text function.

SSL and SSH Support for Ericom

VuGen also supports SSL/SSH record and replay for the RTE Ericom library.
To work with SSL or SSH, you select the type in the Security section of the
Connect dialog box.
855

Chapter 54 • Introducing RTE Vuser Scripts
When working with SSH Security, by default VuGen opens a popup dialog
box prompting you for more information. It is recommended that you
disable the Show options to prevent the popups from being issued. If you
enable these popups, it may affect the replay. You can access the advanced
security options by clicking the Details button.
856

Chapter 54 • Introducing RTE Vuser Scripts
Mapping Terminal Keys to PC Keyboard Keys

Because you are using a terminal emulator, you will be using a PC keyboard
in place of a terminal keyboard. Many keys that are found on the terminal
keyboard are not available on a PC keyboard. Examples of such keys are
HELP, AUTOR, and PUSH, which are found on the IBM 5250 keyboard. To
successfully operate the terminal emulator and any associated application
programs, you may have to map certain terminal keys to keys on the PC
keyboard.

To map a terminal key to a key on the PC keyboard:

 1 In the terminal emulator, select Options > Keyboard Map, or click the
Keyboard Mapping button. The Keyboard Mapping dialog box opens.
857

Chapter 54 • Introducing RTE Vuser Scripts
 2 Click the Keyboard Mapping button on the toolbar. To map a terminal key
to a PC key, drag a key from the upper terminal keyboard to a PC key on the
lower keyboard.

You can click the Shift and/or Control keys on the upper keyboard to display
additional key functions that can be viewed only by first selecting either of
these keys. You can then drag the required key from the upper terminal
keyboard to a key on the lower PC keyboard.

To cancel a definition, drag the PC key definition to the wastebasket. This
restores the default function of the PC key.

To restore the default mappings, click Defaults.
858

55
Recording RTE Vuser Scripts

You use VuGen to record Windows-based Remote Terminal Emulation (RTE)
Vuser scripts.

This chapter includes:

 ➤ About Recording RTE Vuser Scripts on page 860

 ➤ Creating a New RTE Vuser Script on page 860

 ➤ Recording the Terminal Setup and Connection Procedure on page 861

 ➤ Recording Typical User Actions on page 865

 ➤ Recording the Log Off Procedure on page 866

 ➤ Setting RTE Configuration Options on page 867

 ➤ Setting the RTE Recording Options on page 868

 ➤ Typing Input into a Terminal Emulator on page 871

 ➤ Generating Unique Device Names on page 874

 ➤ Setting the Field Demarcation Characters on page 875

The following information applies only to Terminal Emulation (RTE)
Vuser scripts.
859

Chapter 55 • Recording RTE Vuser Scripts
About Recording RTE Vuser Scripts

You use VuGen to record Windows-based RTE Vuser scripts. VuGen uses the
PowerTerm terminal emulator to emulate a wide variety of terminal types.
You use PowerTerm to perform a typical terminal connection, followed by
typical business processes. Thereafter, you perform the log off procedure.
While you perform typical user actions in the terminal emulator, VuGen
generates the appropriate statements, and inserts them into a Vuser script.
You can view and edit the script while recording.

Before recording an RTE Vuser script, ensure that the recording options are
set correctly. The recording options allow you to control how VuGen
generates certain functions while you record a Vuser script. VuGen applies
the recording options during all subsequent recording sessions.

Creating a New RTE Vuser Script

Before recording a user’s actions into a Vuser script, you must open one. You
can open an existing script, or create a new one. You use VuGen to create a
new Vuser script.

To create a new RTE Vuser script:

 1 Select Virtual User Generator from your product’s start menu. The VuGen
window opens.

 2 Click the New button. The New Virtual User dialog box opens:

 3 Select the Legacy protocol type, and choose Terminal Emulator (RTE). Click
OK. VuGen generates and displays an empty RTE script, with the cursor
positioned to begin recording in the vuser_init section.
860

Chapter 55 • Recording RTE Vuser Scripts
Recording the Terminal Setup and Connection Procedure

After you create a skeleton Vuser script, you record the terminal setup and
connection procedure into the script. VuGen uses the PowerTerm terminal
emulator when you record an RTE Vuser script.

To record the terminal setup and connection procedure:

 1 Open an existing RTE Vuser script, or create a new one.

 2 In the Sections box, select the section into which you want VuGen to insert
the recorded statements. The available sections are vuser_init, Actions, and
vuser_end.

Note: Always record the terminal setup and connection procedure into the
vuser_init section. The vuser_init section is not repeated when you run
multiple iterations of a Vuser script—only the Actions section is repeated.
For more information on the iteration settings, see “Configuring Run-Time
Settings” in Volume I-Using VuGen.
861

Chapter 55 • Recording RTE Vuser Scripts
 3 In the Vuser script, place the cursor at the location where you want to begin
recording.

 4 Click the Record button. The PowerTerm main window opens.

 5 From the PowerTerm menu bar, select Terminal > Setup to display the
Terminal Setup dialog box.

 6 Select the type of emulation from the VT Terminal and IBM Terminal types,
and then click OK.

Note: Select an IBM terminal type to connect to an AS/400 machine or an
IBM mainframe; select a VT terminal type to connect to a UNIX
workstation.
862

Chapter 55 • Recording RTE Vuser Scripts
 7 Select Communication > Connect to display the Connect dialog box.

 8 Under Session Type, select the type of communication to use.

 9 Under Parameters, specify the required options. The available parameters
vary depending on the type of session that you select. For details on the
parameters, click Help.

Tip: Click Save As to save the parameter-sets for re-use in the future. The
parameter-sets that you save are displayed in the Sessions List box.
863

Chapter 55 • Recording RTE Vuser Scripts
 10 Click Connect. PowerTerm connects to the specified system, and VuGen
inserts a TE_connect function into the script, at the insertion point. The
TE_connect statement has the following form:

The inserted TE_connect statement is followed by an if statement that
checks whether or not the TE_connect function succeeds during replay.

Note: Do not record more than one connection to a server (TE_connect) in
a Vuser script.

The terminal setup and connection procedure is complete. You are now
ready to begin recording typical user actions into the Vuser script, as
described below.

/* *** The terminal type is VT 420-7 */
TE_connect(

"comm-type = telnet;"
"host-name = alfa;"
"telnet-port = 992;"
"terminal-id = ;"
"set-window-size = true;"
"security-type = ssl;"
"ssl-type = tls1;"
"terminal-type = vt420-7;"
"terminal-model = vt220;"
"login-command-file = ;"
"terminal-setup-file = ;"
 60000);

if (TE_errno != TE_SUCCESS)
 return -1;
TE_wait_text("lt-alfa-kubuntu login: ",90);
TE_wait_cursor(24, 2, 100, 90);
lr_think_time(2);
TE_type("alfa<kReturn>");
TE_wait_text("Password: ",90);
TE_wait_cursor(11, 3, 100, 90);
lr_think_time(2);
TE_type("adServpw<kReturn>");
 return 0;
864

Chapter 55 • Recording RTE Vuser Scripts
Recording Typical User Actions

After recording the setup procedure, you perform typical user actions or
business processes. You record these processes into the Actions section of the
Vuser script. Only the Actions section of a Vuser script is repeated when you
run multiple iterations of the script. For details on setting iterations, see
“Configuring Run-Time Settings” in Volume I-Using VuGen.

When recording a session, VuGen records the text strokes and not the text.
Therefore, it is not recommended that you copy and paste commands into
the PowerTerm window—instead, type them in directly.

To record user actions:

 1 Open an existing RTE Vuser script, and then click Actions in the Section
box.

 2 Proceed to perform typical user actions in the terminal emulator. VuGen
generates the appropriate statements, and inserts them into the Vuser script
while you type. If necessary, you can edit the recorded statements while you
record the script.

Note: By default, VuGen waits a maximum of 5 seconds between successive
keystrokes before generating the appropriate TE_type function. To change
the waiting time, see “Setting the RTE Recording Options” on page 868.

When you finish recording the typical user actions, proceed to record the
log off procedure, as described in the next section.
865

Chapter 55 • Recording RTE Vuser Scripts
Recording the Log Off Procedure

You record the Vuser log off process into the vuser_end section of the Vuser
script. The vuser_end section is not repeated when you run many iterations
of the script. For details on setting iterations, see “Configuring Run-Time
Settings” in Volume I-Using VuGen.

To record the log off procedure:

 1 Ensure that you have performed and recorded the typical user actions as
described in the previous section.

 2 In the VuGen main window, click vuser_end in the Section box.

 3 Perform the log off procedure. VuGen records the procedure into the
vuser_end section of the script.

 4 Click Stop Recording on the Recording toolbar. The main VuGen window
displays all the recorded statements.

 5 Click Save to save the recorded session. The Save As dialog box opens (for
new Vuser scripts only). Specify a script name. After recording a script, you
can manually edit it in VuGen’s main window.
866

Chapter 55 • Recording RTE Vuser Scripts
Setting RTE Configuration Options

You can set the recording options to match the character set used during
terminal emulation. The default character set is ANSI. For Kanji and other
multi-byte platforms, you can specify DBCS (Double-byte Character Set).

To open the Configuration Recording Options, click the Recording Options
button on the toolbar or select Tools > Recording Options. Select the
RTE:Configuration node.
867

Chapter 55 • Recording RTE Vuser Scripts
Setting the RTE Recording Options

By setting the recording options, you can customize the code that VuGen
generates for RTE functions. You use the Recording Options dialog box to set
the recording options.

To open the Recording Options dialog box, click the Recording Options
button on the toolbar, or select Tools > Recording Options. Select the
RTE:RTE node.

You can set the following recording options:

➤ Automatic Synchronization Commands

➤ Automatic Screen Header Comments (IBM terminals only)

➤ Automatic X-System Transactions (IBM terminals only)

➤ Keyboard Recording Timeout
868

Chapter 55 • Recording RTE Vuser Scripts
Automatic Synchronization Commands
VuGen can automatically generate a number of TE-synchronization
functions, and insert them into the script while you record.

 1 You can specify that VuGen generate a TE_wait_sync function each time a
new screen is displayed while recording. To do so, select the X-System check
box in the Recording Options dialog box.

By default, VuGen does automatically generate a TE_wait_sync function
each time a new screen is displayed while recording.

Note: VuGen generates TE_wait_sync functions when recording IBM block
mode terminals only.

 2 You can specify that VuGen generate a TE_wait_cursor function before each
TE_type function. To do so, select the Cursor check box in the Recording
Options dialog box.

By default, VuGen does not automatically generate TE_wait_cursor
functions.

 3 You can specify that VuGen generate a TE_wait_text function before each
TE_type function (where appropriate). To do so, select the Prompt check box
in the Recording Options dialog box.

By default, VuGen does not automatically generate a TE_wait_text function
before each TE_type function.

Note: VuGen generates meaningful TE_wait_text functions when recording
VT type terminals only. Do not use automatic TE_wait_text function
generation when recording block-mode (IBM) terminals.
869

Chapter 55 • Recording RTE Vuser Scripts
Automatic Screen Header Comments (IBM terminals only)
You can instruct VuGen to automatically generate screen header comments
while recording a Vuser script, and insert the comments into the script.

Generated comments make a recorded script easier to read by identifying
each new screen as it is displayed in the terminal emulator. A generated
comment contains the text that appears on the first line of the terminal
emulator window. The following generated comment shows that the Office
Tasks screen was displayed in the terminal emulator:

To ensure that VuGen automatically generates comments while you record a
script, select Generate screen header comments in the Recording Options
dialog box.

By default, VuGen does not automatically generate screen comments.

Note: You can generate comments automatically only when using block-
mode terminal emulators such as the IBM 5250.

Automatic X-System Transactions (IBM terminals only)
You can specify that VuGen record the time that the system was in the
X SYSTEM mode during a scenario run. To do so, VuGen inserts a
TE_wait_sync_transaction function after each TE_wait_sync function.
Each TE_wait_sync_transaction function creates a transaction with the
name "default". Each TE_wait_sync_transaction function records the time
that the system spent in the previous X SYSTEM state.

To instruct VuGen to insert TE_wait_sync_transaction statements while
recording, select the Generate automatic X SYSTEM transactions check box
in the Recording Options dialog box.

By default, VuGen does not automatically generate transactions.

/* OFCTSK Office Tasks */
870

Chapter 55 • Recording RTE Vuser Scripts
Keyboard Recording Timeout
When you type text into a terminal emulator while recording, VuGen
monitors the text input. After each keystroke, VuGen waits up to a specified
amount of time for the next key stroke. If there is no subsequent keystroke
within the specified time, VuGen assumes that the command is complete.
VuGen then generates and inserts the appropriate TE_type function into
the script.

To set the maximum amount of time that VuGen waits between successive
keystrokes, enter an amount in the Keyboard record timeout box.

By default, VuGen waits a maximum of 5 seconds between successive
keystrokes before generating the appropriate TE_type function.

Typing Input into a Terminal Emulator

Two TE Vuser functions enable Vusers to "type" character input into the
PowerTerm terminal emulator:

➤ TE_type sends characters to the terminal emulator. When recording, the
VuGen automatically generates TE_type functions for keyboard input to
the terminal window. For details, see “Using the TE_type Function” on
page 872.

➤ TE_typing_style determines the speed at which the Vuser types. You can
manually define the typing style by inserting a TE_typing_style function
into the Vuser script. For details, see “Setting the Typing Style” on
page 873. Alternatively, you can set the typing style by using the run-
time settings. For details, see Chapter 56, “Configuring RTE Run-Time
Settings.”

Note: While recording an RTE Vuser script, do not use the mouse to relocate
the cursor within the terminal emulator window. VuGen does not record
these cursor movements.
871

Chapter 55 • Recording RTE Vuser Scripts
Using the TE_type Function
When you record a script, the VuGen records all keyboard input and
generates appropriate TE_type functions. During execution, TE_type
functions send formatted strings to the terminal emulator.

Keyboard input is defined as a regular text string (including blank spaces).
For example:

Input key names longer than one character are represented by identifiers
beginning with the letter k, and are bracketed within greater-than/less-than
signs (< >).

For example, the following function depicts the input of the Return key
followed by the Control and y keys:

Some other examples include: <kF1>, <kUp>, <kF10>, <kHelp>, <kTab>.

To determine a key name, record an operation on the key, and then check
the recorded statement for its name.

Note: When you program a TE_type statement (rather than recording it),
use the key definitions provided in the Online Function Reference (Help >
Function Reference).

Setting the Timeout Value for TE_type

If a Vuser attempts to submit a TE_type statement while the system is in
X SYSTEM (or input inhibited) mode, the Vuser will wait until the
X SYSTEM mode ends before typing. If the system stays in X SYSTEM mode
for more than TE_XSYSTEM_TIMEOUT milliseconds, then the TE_type
function returns a TE_TIMEOUT error.

TE_type ("hello, world");

TE_type("<kReturn><kControl-y>");
872

Chapter 55 • Recording RTE Vuser Scripts
You can set the value of TE_XSYSTEM_TIMEOUT by using TE_setvar. The
default value for TE_XSYSTEM_TIMEOUT is 30 seconds.

Allowing a Vuser to Type Ahead

Under certain circumstances you may want a Vuser to submit a keystroke
even though the system is in X SYSTEM (or input inhibited) mode. For
example, you may want the Vuser to press the Break key. You use the
TE_ALLOW_TYPEAHEAD variable to enable the Vuser to submit a keystroke
even though the system is in X SYSTEM mode.

Set TE_ALLOW_TYPEAHEAD to zero to disable typing ahead, and to any
non-zero number to permit typing ahead. You use TE_setvar to set the value
of TE_ALLOW_TYPEAHEAD. By default, TE_ALLOW_TYPEAHEAD is set to
zero, preventing keystrokes from being sent during X SYSTEM mode.

For more information about the TE_type function and its conventions, refer
to the Online Function Reference (Help > Function Reference).

Setting the Typing Style
You can set two typing styles for RTE Vuser: FAST and HUMAN. In the FAST
style, the Vuser types input into the terminal emulator as quickly as
possible. In the HUMAN style, the Vuser pauses after typing each character.
In this way, the Vuser more closely emulates a human user typing at the
keyboard.

You set the typing style using the TE_typing_style function. The syntax of
the TE_typing_style function is:

int TE_typing_style (char *style);

where style can be FAST or HUMAN. The default typing style is HUMAN. If
you select the HUMAN typing style, the format is:

HUMAN, delay [,first_delay]
873

Chapter 55 • Recording RTE Vuser Scripts
The delay indicates the interval (in milliseconds) between keystrokes. The
optional parameter first_delay indicates the wait (in milliseconds) before
typing the first character in the string. For example,

means that the Vuser will wait 0.5 seconds before typing the letter A; it will
then wait 0.1 seconds before typing "B" and then a further 0.1 seconds
before typing "C".

For more information about the TE_typing_style function and its
conventions, refer to the Online Function Reference (Help > Function
Reference).

In addition to setting the typing style by using the TE_typing_style
function, you can also use the run-time settings. For details, see Chapter 56,
“Configuring RTE Run-Time Settings.”

Generating Unique Device Names

Some protocols, such as APPC, require a unique device name for each
terminal that logs on to the system. Using the run-time settings, you can
specify that the TE_connect function generate a unique 8-character device
name for each Vuser, and connect using this name. Although this solves the
requirement for uniqueness, some systems have an additional requirement:
The device names must conform to a specific format. For details about the
run-time settings, see Chapter 13, “Configuring Run-Time Settings.”

To define the format of the device names that the TE_connect function uses
to connect a Vuser to the system, add an RteGenerateDeviceName function
to the Vuser script. The function has the following prototype:

void RteGenerateDeviceName(char buf[32])

The device name should be written into buf.

TE_typing_style ("HUMAN, 100, 500");
TE_type ("ABC");
874

Chapter 55 • Recording RTE Vuser Scripts
If an RteGenerateDeviceName function exists in a Vuser script, the Vuser
calls the function each time a new device name is needed. If no
RteGenerateDeviceName function is defined in the script—and unique
device names are required—the TE_connect function generates the required
names.

In the following example, the RteGenerateDeviceName function generates
unique device names with the format "TERMx". The first name is TERM0,
followed by TERM1, TERM2, and so forth.

Setting the Field Demarcation Characters

Some terminal emulators use demarcation characters to mark the beginning
and the end of each field. These demarcation characters are not visible—
appearing on the screen as spaces. In the terminal emulator shown below,
the colors in the middle section of the screen have been inverted to display
the field demarcation characters. These characters are surrounded by
ellipses.

RteGenerateDeviceName(char buf[32])
{
static int n=0;
sprintf(buf, "TERM%d", n);
n=n+1;

}

875

Chapter 55 • Recording RTE Vuser Scripts
The TE_wait_text, TE_get_text, and TE_find_text functions operate by
identifying the characters in a specified portion of the screen. If a field
demarcation character is located within the specified section, you can
choose to identify the character either as a space, or as an ASCII character.
You use the TE_FIELD_CHARS system variable to specify the method of
identification. You can set TE_FIELD_CHARS to 0 or 1:

➤ 0 specifies that the character in the position of the field demarcation
characters is returned as a space.

➤ 1 specifies that the character in the position of the field demarcation
characters is returned as an ascii code (ascii 0 or ascii 1).

By default, TE_FIELD_CHARS is set to 0.

You retrieve and set the value of TE_FIELD_CHARS by using the TE_getvar
and TE_setvar functions.
876

56
Configuring RTE Run-Time Settings

After you record a Terminal Emulator script, you configure its run-time
settings.

This chapter includes:

 ➤ About Terminal Emulator Run-Time Settings on page 878

 ➤ Modifying Connection Attempts on page 879

 ➤ Specifying an Original Device Name on page 880

 ➤ Setting the Typing Delay on page 880

 ➤ Configuring the X-System Synchronization on page 881

The following information only applies to Terminal Emulator (TE) type
Vusers.
877

Chapter 56 • Configuring RTE Run-Time Settings
About Terminal Emulator Run-Time Settings

After developing a Terminal Emulator Vuser script, you set the run-time
settings. These settings let you control the behavior of the Vuser when
running the script. Terminal Emulator run-time settings allow you to
configure your TE Vusers so that they accurately emulate real users
performing remote terminal emulation. You can configure settings for the
number of connection attempts, device names, typing delay, and X-System
synchronization.

You set the Terminal Emulator related run-time settings through the RTE
node in the Run-Time Settings dialog box.

To display the Run-Time Settings dialog box, click the Run-Time Settings
button on the VuGen toolbar. You can also modify the run-time settings
from the LoadRunner Controller. For more information, refer to the HP
LoadRunner Controller User’s Guide.

878

Chapter 56 • Configuring RTE Run-Time Settings
Note: This chapter only discusses the Run-Time settings for Terminal
Emulator Vusers. For information about run-time settings that apply to all
Vusers, see “Configuring Run-Time Settings” in Volume I-Using VuGen.

Modifying Connection Attempts

The TE_connect function is generated by VuGen when you record a
connection to a host. When you replay an RTE Vuser script, the TE_connect
function connects the terminal emulator to the specified host. If the first
attempt to connect is not successful, the Vuser retries a number of times to
connect successfully. Details of each connection are recorded in the report
file output.txt.

To set the maximum number of times that a Vuser will try to connect, enter
a number in the Maximum number of connection attempts box in the RTE
Run-Time settings.

By default, a Vuser will try to connect 5 times.

For more information about the TE_connect function, refer to the Online
Function Reference (Help > Function Reference).
879

Chapter 56 • Configuring RTE Run-Time Settings
Specifying an Original Device Name

In certain environments, each session (Vuser) requires a unique device
name. The TE_connect function generates a unique 8-character device
name for each Vuser, and connects using this name. To connect using the
device name (that is contained within the com_string parameter of the
TE_connect function), select the Use original device name option in the
RTE Run-Time settings.

Note: The original device name setting applies to IBM block-mode terminals
only.

By default, Vusers use original device names to connect.

For details about the TE_connect function, refer to the Online Function
Reference (Help > Function Reference).

Setting the Typing Delay

The delay setting determines how Vusers execute TE_type functions.

To specify the amount of time that a Vuser waits before entering the first
character in a string, enter a value in the First key box, in milliseconds.

To specify the amount of time that a Vuser waits between submitting
successive characters, enter a value in the Subsequent keys box, in
milliseconds.

If you enter zero for both the first key and the subsequent key delays, the
Vuser will send characters as a single string, with no delay between
characters.

You can use the TE_typing_style function to override the Delay settings for
a portion of a Vuser script.

For details about the TE_type and TE_typing_style functions, refer to the
Online Function Reference (Help > Function Reference).
880

Chapter 56 • Configuring RTE Run-Time Settings
Configuring the X-System Synchronization

RTE Vuser scripts use the TE_wait_sync function for synchronization. You
can set a timeout value and a stable-time value that VuGen applies to all
TE_wait_sync functions. For details about the TE_wait_sync function, refer
to the Online Function Reference (Help > Function Reference).

Timeout

When you replay a TE_wait_sync function, if the system does not stabilize
before the synchronization timeout expires, the TE_wait_sync function
returns an error code. To set the synchronization timeout, enter a value (in
seconds) in the Timeout section of the RTE Run-Time settings.

The default timeout value is 60 seconds.

Stable Time

After a Vuser executes a TE_wait_sync function, the Vuser waits until the
terminal is no longer in the X-SYSTEM mode. After the terminal returns
from the X-SYSTEM mode, the Vuser still monitors the system for a short
time. This makes sure that the terminal has become stable, that is, that the
system has not returned to the X-SYSTEM mode. Only then does the
TE_wait_sync function terminate.

To set the time that a Vuser continues to monitor the system after the
system has returned from the X-SYSTEM mode, enter a value (in
milliseconds) in the Stable time box of the RTE Run-Time settings.

The default stable time is 1000 milliseconds.
881

Chapter 56 • Configuring RTE Run-Time Settings
882

57
Synchronizing RTE Vuser Scripts

Synchronization functions in an RTE Vuser script help you synchronize the
input that a Vuser submits to a terminal emulator with the responses from
the server.

This chapter includes:

 ➤ About Synchronizing Vuser Scripts on page 883

 ➤ Synchronizing Block-Mode (IBM) Terminals on page 885

 ➤ Synchronizing Character-Mode (VT) Terminals on page 888

The following information applies only to Terminal Emulation (RTE)
Vuser scripts.

About Synchronizing Vuser Scripts

Depending on the system you are testing, you may need to synchronize the
input that a Vuser sends to a terminal emulator with the subsequent
responses from the server. When you synchronize input, you instruct the
Vuser to suspend script execution and wait for a cue from the system, before
the Vuser performs its next action. For instance, suppose that a human user
wants to submit the following sequence of key strokes to a bank application:

 1 Type 1 to select "Financial Information" from the menu of a bank
application.

 2 When the message "What information do you require?" appears, type 3 to
select "Dow Jones Industrial Average" from the menu.

 3 When the full report has been written to the screen, type 5 to exit the bank
application.
883

Chapter 57 • Synchronizing RTE Vuser Scripts
In this example, the input to the bank application is synchronized because
at each step, the human user waits for a visual cue before typing.
This cue can be either the appearance of a particular message on the screen,
or stability of all the information on the screen.

You can synchronize the input of a Vuser in the same way by using the TE-
synchronization functions, TE_wait_sync, TE_wait_text, TE_wait_silent,
and TE_wait_cursor. These functions effectively emulate a human user who
types into a terminal window and then waits for the server to respond,
before typing in the next command.

The TE_wait_sync function is used to synchronize block-mode (IBM)
terminals only. The other TE-synchronization functions are used to
synchronize character-mode (VT) terminals.

When you record an RTE Vuser script, VuGen can automatically generate
and insert TE_wait_sync, TE_wait_text, and TE_wait_cursor statements
into the script. You use VuGen’s recording options to specify which
synchronization functions VuGen should insert.

Note: Do not include any synchronization statements in the Vuser_end
section of a Vuser script. Since a Vuser can be aborted at any time, you
cannot predict when the Vuser_end section will be executed.
884

Chapter 57 • Synchronizing RTE Vuser Scripts
Synchronizing Block-Mode (IBM) Terminals

The TE_wait_sync function is used for synchronization RTE Vusers
operating block-mode (IBM) terminals. Block-mode terminals display the
"X SYSTEM" message to indicate that the system is in Input Inhibited mode.
When a system is in the Input Inhibited mode no typing can take place
because the terminal emulator is waiting for a transfer of data from the
server.

When you record a script on a block-mode terminal, by default, VuGen
generates and inserts a TE_wait_sync function into the script each time the
"X SYSTEM" message appears. You use VuGen’s recording options to specify
whether or not VuGen should automatically insert TE_wait_sync functions.

When you run a Vuser script, the TE_wait_sync function checks if the
system is in the X SYSTEM mode. If the system is in the X SYSTEM mode,
the TE_wait_sync function suspends script execution. When the "X
SYSTEM" message is removed from the screen, script execution continues.

Note: You can use the TE_wait_sync function only with IBM block-mode
terminals emulators (5250 and 3270).

In general, the TE_wait_sync function provides adequate synchronization
for all block-mode terminal emulators. However, if the TE_wait_sync
function is ineffective in a particular situation, you can enhance the
synchronization by including a TE_wait_text function. For more
information on the TE_wait_text function, see “Waiting for Text to Appear
on the Screen” on page 890, and the Online Function Reference (Help >
Function Reference).

The syntax of the TE_wait_sync function is:

TE_wait_sync ();
885

Chapter 57 • Synchronizing RTE Vuser Scripts
In the following script segment, the Vuser logs on with the user name
"QUSER" and the password "HPLAB". The Vuser then presses Enter to submit
the login details to the server. The terminal emulator displays the X SYSTEM
message while the system waits for the server to respond.

The TE_wait_sync statement causes the Vuser to wait until the server has
responded to the login request, that is, for the X SYSTEM message to be
removed—before executing the next line of the script.

When a TE_wait_sync function suspends the execution of a script while an
X SYSTEM message is displayed, the Vuser continues to monitor the
system—waiting for the X SYSTEM message to disappear. If the X SYSTEM
message does not disappear before the synchronization timeout expires, the
TE_wait_sync function returns an error code. The default timeout is 60
seconds.

To set the TE_wait_sync synchronization timeout:

 1 Select Vuser > Run-Time Settings. The Run-Time Settings dialog box appears.

 2 Select the RTE:RTE node in the Run-Time setting tree.

 3 Under X SYSTEM Synchronization, enter a value (in seconds) in the Timeout
box.

 4 Click OK to close the Run-Time Settings dialog box.

TE_type("QUSER");
lr_think_time(2);
TE_type("<kTab>HPLAB");
lr_think_time(3);
TE_type("<kEnter>");
TE_wait_sync();
....
886

Chapter 57 • Synchronizing RTE Vuser Scripts
After a Vuser executes a TE_wait_sync function, the Vuser waits until the
terminal is no longer in the X SYSTEM mode. When the terminal returns
from the X SYSTEM mode, the Vuser continues to monitor the system for a
short period to verify that the terminal is fully stable, that is, that the system
does not return to the X SYSTEM mode. Only then does the TE_wait_sync
function terminate and allow the Vuser to continue executing its script. The
period that the Vuser continues to monitor the system, after the system has
returned from the X SYSTEM mode, is known as the stable time. The default
stable time is 1000 milliseconds.

You may need to increase the stable time if your system exhibits the
following behavior:

When a system returns from the X SYSTEM mode, some systems "flickers" to
and from the X SYSTEM for a short period of time until the system
stabilizes. If the system remains out of the X SYSTEM mode for more than
one second, and then returns to the X SYSTEM mode, the TE_wait_sync
function will assume that the system is stable. If a Vuser then tries to type
information to the system, the system will shift into keyboard-locked mode.

Alternatively, if your system never flickers when it returns from the
X SYSTEM mode, you can reduce the stable time to less than the default
value of one second.

To change the stable time for TE_wait_sync functions:

 1 Choose Vuser > Run-Time Settings. The Run-Time Settings dialog box
appears.

 2 Select the RTE:RTE node.

 3 Under X SYSTEM Synchronization, enter a value (in milliseconds) in the
Stable time box.

 4 Click OK to close the Run-Time Settings dialog box.

For more information on the TE_wait_sync function, refer to the Online
Function Reference (Help > Function Reference).
887

Chapter 57 • Synchronizing RTE Vuser Scripts
You can instruct VuGen to record the time that the system remains in the
X SYSTEM mode each time that the X SYSTEM mode is entered. To do so,
VuGen inserts a TE_wait_sync_transaction function after each TE_wait_sync
function, as shown in the following script segment:

Each TE_wait_sync_transaction function creates a transaction with the
name "default." This allows you to analyze how long the terminal emulator
waits for responses from the server during a scenario run. You use the
recording options to specify whether VuGen should generate and insert
TE_wait_sync_transaction statements.

To instruct VuGen to insert TE_wait_sync_transaction statements:

 1 Choose Vuser > Recording Options. The Recording Settings dialog box
appears.

 2 Select the Generate Automatic X SYSTEM transactions option, and then
click OK.

Synchronizing Character-Mode (VT) Terminals

There are three types of synchronization that you can use for character-
mode (VT) terminals. The type of synchronization that you select depends
on:

➤ the design of the application that is running in the terminal emulator

➤ the specific action to be synchronized

Waiting for the Cursor to Appear at a Specific Location
The preferred method of synchronization for VT type terminals is cursor
synchronization. Cursor synchronization is particularly useful with full-
screen or form-type applications, as opposed to scrolling or TTY-type
applications.

TE_wait_sync();
TE_wait_sync_transaction("syncTrans1");
888

Chapter 57 • Synchronizing RTE Vuser Scripts
Cursor synchronization uses the TE_wait_cursor function. When you run
an RTE Vuser script, the TE_wait_cursor function instructs a Vuser to
suspend script execution until the cursor appears at a specified location on
the screen. The appearance of the cursor at the specified location means that
the application is ready to accept the next input from the terminal emulator.

The syntax of the TE_wait_cursor function is:

int TE_wait_cursor (int col, int row, int stable, int timeout);

During script execution, the TE_wait_cursor function waits for the cursor to
reach the location specified by col, row.

The stable parameter specifies the time (in milliseconds) that the cursor
must remain at the specified location. If you record a script using VuGen,
stable is set to 100 milliseconds by default. If the client application does not
become stable in the time specified by the timeout parameter, the function
returns TIMEOUT. If you record a script using VuGen, timeout is set by
default to the value of TIMEOUT, which is 90 seconds. You can change the
value of both the stable and timeout parameters by directly editing the
recorded script.

The following statement waits for the cursor to remain stable for three
seconds. If the cursor doesn’t stabilize within 10 seconds, the function
returns TIMEOUT.

For more information on the TE_wait_cursor function, refer to the Online
Function Reference (Help > Function Reference).

You can instruct VuGen to automatically generate TE_wait_cursor
statements, and insert them into a script, while you record the script. The
following is an example of a TE_wait_cursor statement that was
automatically generated by VuGen:

TE_wait_cursor (10, 24, 3000, 10);

TE_wait_cursor(7, 20, 100, 90);
889

Chapter 57 • Synchronizing RTE Vuser Scripts
To instruct VuGen to automatically generate TE_wait_cursor statements,
and insert them into a script while recording:

 1 Select Vuser > Recording Options. The Recording Settings dialog box
appears.

 2 Under Generate Automatic Synchronization Commands select the Cursor
check box, and then click OK.

Waiting for Text to Appear on the Screen
You can use text synchronization to synchronize an RTE Vuser running on a
VT terminal emulator. Text synchronization uses the TE_wait_text
function. During script execution, the TE_wait_text function suspends
script execution and waits for a specific string to appear in the terminal
window before continuing with script execution. Text synchronization is
useful with those applications in which the cursor does not consistently
appear in a predefined area on the screen.

Note: Although text synchronization is designed to be used with character
mode (VT) terminals, it can also be used with IBM block-mode terminals. Do
not use automatic text synchronization with block-mode terminals.

The syntax of the TE_wait_text function is:

int TE_wait_text (char *pattern, int timeout, int col1, int row1, int col2, int row2,
int *retcol, int *retrow, char *match);

This function waits for text matching pattern to appear within the rectangle
defined by col1, row1, col2, row2. Text matching the pattern is returned to
match, and the actual row and column position is returned to retcol and
retrow. If the pattern does not appear before the timeout expires, the
function returns an error code. The pattern can include a regular expression.
Refer to the Online Function Reference for details on using regular expressions.
Besides the pattern and timeout parameters, all the other parameters are
optional.
890

Chapter 57 • Synchronizing RTE Vuser Scripts
If pattern is passed as an empty string, the function will wait for timeout if it
finds any text at all within the rectangle. If there is no text, it returns
immediately.

If the pattern does appear, then the function waits for the emulator to be
stable (finish redrawing, and not display any new characters) for the interval
defined by the TE_SILENT_SEC and TE_SILENT_MILLI system variables.
This, in effect, allows the terminal to become stable and emulates a human
user.

If the terminal does not become stable within the interval defined by
TE_SILENT_TIMEOUT, script execution continues. The function returns 0
for success, but sets the TE_errno variable to indicate that the terminal was
not silent after the text appeared.

To modify or retrieve the value of any of the TE_SILENT system variables,
use the TE_getvar and TE_setvar functions. For more information, refer to
the Online Function Reference (Help > Function Reference).

In the following example, the Vuser types in its name, and then waits for
the application to respond.

You can instruct VuGen to automatically generate TE_wait_text statements,
and insert them into a script, while you record the script.

/* Declare variables for TE_wait_text */
int ret_row;
int ret_col;
char ret_text [80];

/* Type in user name. */
TE_type ("John");

/* Wait for teller to respond. */
TE_wait_text ("Enter secret code:", 30, 29, 13, 1, 13, &ret_col, &ret_row,

ret_text);
891

Chapter 57 • Synchronizing RTE Vuser Scripts
To instruct VuGen to automatically generate TE_wait_text statements, and
insert them into a script while recording:

 1 Select Vuser > Recording Options. The Recording Settings dialog box
appears.

 2 Under Generate Automatic Synchronization Commands, select the Prompt
check box, and then click OK.

The following is an example of a TE_wait_text statement that was
automatically generated by VuGen. The function waits up to 20 seconds for
the string "keys" to appear anywhere on the screen. Note that VuGen omits
all the optional parameters when it generates a TE_wait_text function.

Waiting for the Terminal to be Silent
In instances when neither cursor synchronization nor text synchronization
are effective, you can use "silent synchronization" to synchronize the script.
With "silent synchronization," the Vuser waits for the terminal emulator to
be silent for a specified period of time. The emulator is considered to be
silent when it does not receive any input from the server for a specified
period of time.

Note: Use silent synchronization only when neither cursor synchronization
nor text synchronization are effective.

You use the TE_wait_silent function to instruct a script to wait for the
terminal to be silent. You specify the period for which the terminal must be
silent. If the terminal is silent for the specified period, then the
TE_wait_silent function assumes that the application has stopped printing
text to the terminal screen, and that the screen has stabilized.

The syntax of the function is:

TE_wait_text("keys", 20);

int TE_wait_silent (int sec, int milli, int timeout);
892

Chapter 57 • Synchronizing RTE Vuser Scripts
The TE_wait_silent function waits for the terminal emulator to be silent for
the time specified by sec (seconds) and milli (milliseconds). The emulator is
considered silent when it does not receive any input from the server. If the
emulator does not become silent (i.e. stop receiving characters) during the
time specified by the time timeout variable, then the function returns an
error.

For example, the following statement waits for the screen to be stable for
three seconds. If after ten seconds, the screen has not become stable, the
function returns an error.

For more information, refer to the Online Function Reference (Help > Function
Reference).

TE_wait_silent (3, 0, 10);
893

Chapter 57 • Synchronizing RTE Vuser Scripts
894

58
Reading Text from the Terminal Screen

RTE Vusers can read text from the user interface of a terminal emulator, and
then perform various tasks with that text.

This chapter includes:

 ➤ About Reading Text from the Terminal Screen on page 895

 ➤ Searching for Text on the Screen on page 896

 ➤ Reading Text from the Screen on page 896

The following information applies only to RTE (Windows) Vuser scripts.

About Reading Text from the Terminal Screen

There are several Vuser functions that RTE Vusers can use to read text from
the terminal screen. You can use these functions, TE_find_text and
TE_get_text_line, to check that the terminal emulator is responding
correctly, or to enhance the logic in your scripts.

After recording, you can manually insert TE_find_text and TE_get_text_line
statements directly into your RTE Vuser scripts.
895

Chapter 58 • Reading Text from the Terminal Screen
Searching for Text on the Screen

The TE_find_text function searches for a line of text on the screen. The
syntax of the function is:

int TE_find_text (char *pattern, int col1, int row1, int col2, int row2,
int *retcol, int *retrow, char *match);

This function searches for text matching pattern within the rectangle
defined by col1, row1, col2, row2. Text matching the pattern is returned to
match, and the actual row and column position is returned to retcol and
retrow. The search begins in the top-left corner. If more than one string
matches pattern, the one closest to the top-left corner is returned.

The pattern can include a regular expression. Refer to the Online Function
Reference for details on using regular expressions.

You must manually type TE_find_text statements into your Vuser scripts. For
details on the syntax of the TE_find_text function, refer to the Online
Function Reference (Help > Function Reference).

Reading Text from the Screen

The TE_get_text_line function reads a line of text from the area of the screen
that you designate. The syntax of the function is:

char *TE_get_text_line (int col, int row, int width, char *text);

This function copies a line of text from the terminal screen to a buffer text.
The first character in the line is defined by col, row. The column coordinate
of the last character in the line is indicated by width. The text from the
screen is returned to the buffer text. If the line contains tabs or spaces, the
equivalent number of spaces is returned.
896

Chapter 58 • Reading Text from the Terminal Screen
In addition, the TE_get_cursor_position function can be used to retrieve the
current position of the cursor on the terminal screen. The
TE_get_line_attribute function returns the character formatting (for
instance, bold or underline) of a line of text.

You must manually type TE_get_text_line statements into your Vuser
scripts. For details on the syntax of the TE_get_text_line function, refer to
the Online Function Reference (Help > Function Reference).
897

Chapter 58 • Reading Text from the Terminal Screen
898

Part XII

Mailing Services Protocols

900

59
Developing Vuser Scripts for Mailing
Services

VuGen allows you to test several mailing services on a protocol level. It
emulates the sending of mail, and most of the standard operations
performed against a mail server.

This chapter includes:

 ➤ About Developing Vuser Scripts for Mailing Services on page 902

 ➤ Getting Started with Mailing Services Vuser Scripts on page 902

 ➤ Understanding IMAP Scripts on page 904

 ➤ Understanding MAPI Scripts on page 905

 ➤ Understanding POP3 Scripts on page 906

 ➤ Understanding SMTP Scripts on page 907

The following information applies only to IMAP, MAPI, POP3, and SMTP
Viuser scripts.
901

Chapter 59 • Developing Vuser Scripts for Mailing Services
About Developing Vuser Scripts for Mailing Services

The Mailing Service protocols emulate a user working with an email client,
viewing and sending emails. The following mailing services are supported:

➤ Internet Messaging (IMAP)

➤ MS Exchange (MAPI)

➤ Post Office Protocol (POP3)

➤ Simple Mail Transfer Protocol (SMTP)

The mail protocols support both record and replay, with the exception of
MAPI that only supports replay.

When you record an application using one of the mail protocols, VuGen
generates functions that emulate the mail client’s actions. You can indicate
the programming language in which to create a Vuser script —either C or
Visual Basic scripting. For more information, see “Setting Script Generation
Preferences” in Volume I-Using VuGen. If the communication is performed
through multiple protocols, you can record both of them. You can record
several mail protocols, or a mail protocol together with HTTP or WinSock.
For instructions on specifying multiple protocols, see “Recording with
VuGen” in Volume I-Using VuGen.

All Mailing Service functions come in pairs—one for global sessions and one
where you can indicate a specific mail session. For example, imap_logon
logs on to the IMAP server globally, while imap_logon_ex logs on to the
IMAP server for a specific session.

Getting Started with Mailing Services Vuser Scripts

This section provides an overview of the process of developing Vuser scripts
for Mailing Services using VuGen.

To develop a Mailing Service Vuser script:

 1 Create a basic script using VuGen.

Invoke VuGen and create a new Vuser script for either a single mail protocol
or multiple protocols.
902

Chapter 59 • Developing Vuser Scripts for Mailing Services
 2 Record the basic script using VuGen. (Except MAPI)

Choose an application to record. Perform typical operations in your
application. For details, see “Recording with VuGen” in Volume I-Using
VuGen.

For MAPI, recording is not supported. Instead, you create an empty MAPI
script and manually insert mapi functions into it. For examples, refer to the
Online Function Reference (Help > Function Reference).

 3 Enhance the script.

Enhance the script by inserting transactions, rendezvous points, and
control-flow structures into the script.

For details, see “Enhancing Vuser Scripts” in Volume I-Using VuGen.

 4 Define parameters (optional).

Define parameters for the fixed-values recorded into your script. By
substituting fixed-values with parameters, you can repeat the same business
process many times using different values.

For details, see “Creating Parameters” in Volume I-Using VuGen.

 5 Correlate statements (optional).

Correlating statements enables you to use the result of one business process
in a subsequent one.

For details, see “Correlating Statements” in Volume I-Using VuGen.

 6 Configure the run-time settings.

The run-time settings control the Vuser behavior during script execution.
These settings include loop, log, and timing information.

For details, see “Configuring Run-Time Settings” in Volume I-Using VuGen.

 7 Run the script from VuGen.

Save and run the script from VuGen to verify that it runs correctly.

For details, see “Running Vuser Scripts in Standalone Mode” in
Volume I-Using VuGen.
903

Chapter 59 • Developing Vuser Scripts for Mailing Services
After you create a script, you integrate it into your environment: a
LoadRunner scenario, Performance Center load test, or Business Process
Monitor profile. For more information, refer to the HP LoadRunner Controller,
Performance Center, or HP Business Availability Center documentation.

Understanding IMAP Scripts

IMAP Vuser script functions record the Internet Mail Application Protocol.
Each IMAP function begins with an imap prefix.

For detailed syntax information on these functions, refer to the Online
Function Reference (Help > Function Reference).

In the following example, the imap_create function creates several new
mailboxes: Products, Solutions, and FAQs.

Actions()
{
imap_logon("ImapLogon",

"URL=imap://johnd:letmein@exchange.mycompany.com",
LAST);

imap_create("CreateMailboxes",
"Mailbox=Products",
"Mailbox=Solutions",
"Mailbox=FAQs",
LAST);

imap_logout();

return 1;
}

904

Chapter 59 • Developing Vuser Scripts for Mailing Services
Understanding MAPI Scripts

MAPI Vuser script functions record activity to and from an MS Exchange
server. Each MAPI function begins with an mapi prefix.

For detailed syntax information on these functions, refer to the Online
Function Reference (Help > Function Reference).

In the following example, the mapi_send_mail function sends a sticky note
through an MS Exchange server.

Actions()
{
mapi_logon("Logon",

"ProfileName=John Smith",
"ProfilePass=Tiger",
LAST);

//Send a Sticky Note message
mapi_send_mail("SendMail",

"To=user1@techno.merc-int.com",
"Cc=user0002t@techno.merc-int.com",
"Subject=<GROUP>:<VUID> @ <DATE>",
"Type=Ipm.StickyNote",
"Body=Please update your profile today.",
LAST);

mapi_logout();
return 1;

}

905

Chapter 59 • Developing Vuser Scripts for Mailing Services
Understanding POP3 Scripts

POP3 Vuser script functions emulate actions using the Post Office Protocol,
POP3. Each function begins with a pop3 prefix.

For detailed syntax information on these functions, refer to the Online
Function Reference (Help > Function Reference).

In the following example, the pop3_retrieve function retrieves five
messages from the POP3 server.

Actions()
{
pop3_logon("Login", "

URL=pop3://user0004t:my_pwd@techno.merc-int.com",
LAST);

// List all messages on the server and receive that value
totalMessages = pop3_list("POP3", LAST);

// Display the received value (It is also displayed by the pop3_list function)
lr_log_message("There are %d messages.\r\n\r\n", totalMessages);

// Retrieve 5 messages on the server without deleting them
pop3_retrieve("POP3", "RetrieveList=1:5", "DeleteMail=false", LAST);
pop3_logoff();
return 1;

}

906

Chapter 59 • Developing Vuser Scripts for Mailing Services
Understanding SMTP Scripts

SMTP Vuser script functions emulate the Single Mail Transfer Protocol
traffic. Each SMTP function begins with an smtp prefix.

For detailed syntax information on these functions, refer to the Online
Function Reference (Help > Function Reference).

In the following example, the smtp_send_mail function sends a mail
message, through the SMTP mail server, techno.

Actions()
{
smtp_logon("Logon",

 "URL=smtp://user0001t@techno.merc-int.com",
 "CommonName=Smtp Test User 0001",

 NULL);

smtp_send_mail("SendMail",
"To=user0002t@merc-int.com",
"Subject=MIC Smtp: Sample Test",
"MAILOPTIONS",
"X-Priority: 3",
"X-MSMail-Priority: Medium",
"X-Mailer: Microsoft Outlook Express 5.50.400\r\n",
"X-MimeOLE: By Microsoft MimeOLE V5.50.00\r\n",
"MAILDATA",
"MessageText="

"Content-Type: text/plain;\r\n"
"\tcharset=\"iso-8859-1\"\r\n"
"Test,\r\n"
"MessageBlob=16384",

NULL);

smtp_logout();

return 1;
}

907

Chapter 59 • Developing Vuser Scripts for Mailing Services
908

Part XIII

Middleware Protocols

910

60
Developing Tuxedo Vuser Scripts

You use VuGen to record communication between a Tuxedo client
application and a Tuxedo application server. The resulting script is called a
Tuxedo Vuser script.

This chapter includes:

 ➤ About Tuxedo Vuser Scripts on page 912

 ➤ Getting Started with Tuxedo Vuser Scripts on page 913

 ➤ Understanding Tuxedo Vuser Scripts on page 914

 ➤ Viewing Tuxedo Buffer Data on page 917

 ➤ Defining Environment Settings for Tuxedo Vusers on page 918

 ➤ Debugging Tuxedo Applications on page 919

 ➤ Correlating Tuxedo Scripts on page 919

The following information applies only to PeopleSoft-Tuxedo, Tuxedo 6
and Tuxedo Vuser scripts.
911

Chapter 60 • Developing Tuxedo Vuser Scripts
About Tuxedo Vuser Scripts

When you record a Tuxedo application, VuGen generates LRT functions that
describe the recorded actions. These functions emulate communication
between a Tuxedo client and a server. Each LRT function begins with an lrt
prefix.

In addition to the lrt prefix, certain functions use an additional prefix of tp,
tx or F. These sub-prefixes indicate the function type, similar to the actual
Tuxedo functions. The tp sub-prefix indicates a Tuxedo client tp session. For
example, lrt_tpcall sends a service request and awaits its reply. The tx sub-
prefix indicates a global tx session. For example, lrt_tx_begin begins a
global transaction. The F sub-prefix indicates an FML buffer related
function. For example, lrt_Finitialize initializes an existing buffer.

Functions without an additional prefix emulate standard C functions. For
example, lrt_strcpy copies a string, similar to the C function strcpy.

You can view and edit the recorded script from VuGen’s main window. The
LRT functions that are recorded during the session are displayed in the
VuGen window, allowing you to visually track your network activities.

Before You Record
Before you record, verify that the Tuxedo directory, %TUXDIR%\bin is in
the path.

If the environment variables have changed since the last time you restarted
VuGen, VuGen may record the original variable value rather than the
current value.

To avoid any inconsistencies, you should restart VuGen before recording
Tuxedo applications.
912

Chapter 60 • Developing Tuxedo Vuser Scripts
Getting Started with Tuxedo Vuser Scripts

This section provides an overview of the process of developing Tuxedo Vuser
scripts using VuGen.

To develop a Tuxedo Vuser script:

 1 Record the basic script using VuGen.

Invoke VuGen and create a new Vuser script. Specify Tuxedo 6 (for recording
Tuxedo Version 6.x) or Tuxedo (for recording Tuxedo Version 7.x) as the
type of Vuser. Choose an application to record. Record typical operations on
your application.

For details, see “Recording with VuGen” in Volume I-Using VuGen.

 2 Enhance the script.

Enhance the script by inserting transactions, rendezvous points, and
control-flow structures into the script.

For details, see “Enhancing Vuser Scripts” in Volume I-Using VuGen.

 3 Define parameters (optional).

Define parameters for the fixed-values recorded into your script. By
substituting fixed-values with parameters, you can repeat the same business
process many times using different values.

For details, see “Creating Parameters” in Volume I-Using VuGen.

 4 Correlate statements (optional).

Correlating statements enables you to use the result of one business process
in a subsequent one.

For details, see “Correlating Statements” in Volume I-Using VuGen.

 5 Configure the run-time settings.

The run-time settings control the Vuser behavior during script execution.
These settings include loop, log, and timing information.

For details, see “Configuring Run-Time Settings” in Volume I-Using VuGen.

 6 Run the script from VuGen.

Save and run the script from VuGen to verify that it runs correctly.
913

Chapter 60 • Developing Tuxedo Vuser Scripts
For details, see “Running Vuser Scripts in Standalone Mode” in Volume I-
Using VuGen.

After you create a script, you integrate it into your environment: a
LoadRunner scenario, Performance Center load test, or Business Process
Monitor profile. For more information, refer to the HP LoadRunner Controller,
Performance Center, or HP Business Availability Center documentation.

Understanding Tuxedo Vuser Scripts

VuGen records typical Tuxedo sessions and generates Tuxedo-specific
functions. The functions use an lrt prefix. For example, lrt_tpacall sends a
service request.

The LRT functions are divided into the following categories: Buffer
Manipulating, Client/Server Session, Communication, Environment
Variable, Error Processing, Transaction Handling, and Correlation functions.

You can also manually program any of the functions into your script. For
syntax and examples of the LRT functions, refer to the Online Function
Reference (Help > Function Reference).

After you record a session, VuGen’s built-in editor lets you view the recorded
code. You can scroll through the script, see Tuxedo statements that were
generated by your application, and examine the data that was returned by
the server. The VuGen window provides you with valuable information
about the recorded Tuxedo session. When you view the script in the main
window, you see the sequence in which VuGen recorded your activities.

In the following example, VuGen recorded a client’s actions in a Tuxedo
bank application. The client performed an action of opening a bank account
and specifying all the necessary details. The session was aborted when the
client specified a zero opening balance.

lrt_abort_on_error();
lr_think_time(65);
tpresult_int = lrt_tpbegin(30, 0);
data_0 = lrt_tpalloc("FML", "", 512);
lrt_Finitialize((FBFR*)data_0);

914

Chapter 60 • Developing Tuxedo Vuser Scripts
Using Parameters in Tuxedo Scripts
You can define parameters in Tuxedo scripts, as described in “Creating
Parameters” in Volume I-Using VuGen.Note that Tuxedo scripts contain
strings of type "name=..." or "value=...". You can only define parameters for
the portion of the string following the equal sign (=). For example:

/* Fill the data buffer data_0 with new account information */
lrt_Fadd_fld((FBFR*)data_0, "name=BRANCH_ID", "value=8",
LRT_END_OF_PARMS);
lrt_Fadd_fld((FBFR*)data_0, "name=ACCT_TYPE", "value=C",
LRT_END_OF_PARMS);
lrt_Fadd_fld((FBFR*)data_0, "name=MID_INIT", "value=Q", LRT_END_OF_PARMS);
lrt_Fadd_fld((FBFR*)data_0,"name=PHONE","value=123-456-7890",

LRT_END_OF_PARMS);

lrt_Fadd_fld((FBFR*)data_0, "name=ADDRESS", "value=1 Broadway
New York, NY 10000", LRT_END_OF_PARMS);

lrt_Fadd_fld((FBFR*)data_0,"name=SSN","value=111111111", LRT_END_OF_PARMS);

lrt_Fadd_fld((FBFR*)data_0,"name=LAST_NAME",
"value=Doe",LRT_END_OF_PARMS);

lrt_Fadd_fld((FBFR*)data_0,"name=FIRST_NAME",
"value=BJ",LRT_END_OF_PARMS);

lrt_Fadd_fld((FBFR*)data_0, "name=SAMOUNT",
"value=0.00",LRT_END_OF_PARMS);

/* Open a new account */
tpresult_int = lrt_tpcall("OPEN_ACCT", data_0, 0, &data_0, &olen_2, 0);
lrt_tpabort(0);
lrt_tpcommit(0);
lrt_tpfree(data_0);
lrt_tpterm();

lrt_Fadd_fld((FBFR*)data_0,"name=PHONE","value=<parameter_1>",
LRT_END_OF_PARMS);
915

Chapter 60 • Developing Tuxedo Vuser Scripts
Note: In general, it is recommended to use lrt_save_parm to save a portion
of a character array to a parameter. Use lrt_save_searched_string when you
want to save information, relative to the position of a particular string in a
character array. For PeopleSoft Vusers, it is recommended to use
lrt_save_searched_string, since the reply buffers returned from the
PeopleSoft server often differ in size during replay from what was seen
during recording.

Running Tuxedo Scripts
If you encounter problems recording or running Tuxedo applications, check
that the Tuxedo application runs without VuGen, and that the environment
variables have been defined correctly. For more information, see “Viewing
Tuxedo Buffer Data” below. Note that after you set or modify the Tuxedo
variables, you should restart VuGen and your application, in order for the
changes to take effect. If your application is 16-bit, then you also need to kill
the NTVDM process.

If you experience problems during execution, check the Tuxedo log file on
the side of the server for error messages. By default, this file is found in the
directory indicated by the environment variable APPDIR. The file name has
the form ULOG.mmddyy, where mmddyy indicates the current month, day,
and year. The file for March 12, 1999 would be ULOG.031299. The default
location of this file can be changed by setting the environment variable
ULOGPFX on the server. A log file can also be found on the client side, in
the current directory, unless the ULOGPFX variable changes its location.
916

Chapter 60 • Developing Tuxedo Vuser Scripts
Viewing Tuxedo Buffer Data

When you use VuGen to create a Tuxedo Vuser script, your actions are
recorded into the three sections of the script: vuser_init, Actions, and
vuser_end.

The data that is received or transmitted is stored in data buffers, which can
be very large. In order to simplify the appearance of the script, the actual
data is stored in external files—not in the C file. When a data transfer
occurs, the data is copied from the external file into a temporary buffer.

The external file is called replay.vdf, and it contains the contents of all the
temporary buffers. The buffers’ contents are stored as sequential records.
The records are marked by identifiers indicating whether the data was sent
or received, and the buffer descriptor. The LRT functions use the buffer
descriptors to access the data.

You can use VuGen to view the contents of the data file by selecting the
replay.vdf file in the left pane’s tree view.

The option to view a data file is available by default for Tuxedo scripts.
917

Chapter 60 • Developing Tuxedo Vuser Scripts
Defining Environment Settings for Tuxedo Vusers

The following section describes the system variable settings for Tuxedo
Vusers running on Windows and UNIX platforms. You define the system
variables in your Control Panel/System dialog box (NT) or .cshrc or .login
file (UNIX).

For example:

You must define the following system variables for Tuxedo clients using
Tuxedo/WS workstation extensions during execution:

TUXDIR the root directory for Tuxedo sources.

FLDTBLDIR list of directories containing FML buffer information. In
Windows, separate the names of directories with semi-
colons. On UNIX platforms, separate the names of the
directories with a colon.

FIELDTBLS list of files containing FML buffer information. On both
Windows and UNIX platforms, separate the file names
with commas.

SET FLDTBLDIR=%TUXDIR%\udataobj;%TUXDIR%\APPS\WS (PC)
SET FIELDTBLS=bankflds,usysflds (PC)
setenv FLDTBLDIR $TUXDIR/udataobj:$TUXDIR/apps/bankapp (Unix)
setenv FIELDTBLS bank.flds,Usysflds (Unix)

WSNADDR specifies the network address of the workstation listener
process. This enables the client application to access
Tuxedo. Note that to define multiple addresses in a
WSNADDR statement, each address must be separated by
a comma.

WSDEVICE specifies the device that accesses the network. Note that
you do not need to define this variable for some network
protocols.
918

Chapter 60 • Developing Tuxedo Vuser Scripts
For example:

Debugging Tuxedo Applications

In general, use Tuxedo 6 to record applications using Tuxedo 6.x or earlier,
and use Tuxedo to record applications using Tuxedo 7.1 and higher.

If you encounter problems recording or replaying Tuxedo applications, or
the script is missing a call to lrt_tpinitialize, contact Customer Support to
check which DLLs are used with the application.

If the application uses wtuxws32.dll, instead of libwsc.dll, contact Customer
Support to obtain a patch to enable the recording.

Correlating Tuxedo Scripts

VuGen supports correlation for Vuser scripts recorded with Tuxedo
applications. Correlated statements enable you to link statements by saving
a portion of a buffer and use it in subsequent statements.

To correlate statements, you modify your recorded script within the VuGen
editor using one of the following LRT functions:

➤ lrt_save[32]_fld_val saves the current value of an FML or FML32 buffer (a
string in the form "name=<NAME>" or "id=<ID>") to a parameter.

➤ lrt_save_parm saves a portion of a character array (such as a STRING or
CARRAY buffer) to a parameter.

➤ lrt_save_searched_string searches for an occurrence of a string in a buffer
and saves a portion of the buffer, relative to the string occurrence, to a
parameter.

For additional information about the syntax of these functions, refer to the
Online Function Reference.

SET WSNADDR=0x0002ffffc7cb4e4a (PC)
setenv WSNADDR 0x0002ffffc7cb4e4a (Unix)
setenv WSDEVICE /dev/tcp (Unix)
919

Chapter 60 • Developing Tuxedo Vuser Scripts
Correlating FML and FML32 Buffers
Use lrt_save_fld_val or lrt_save32_fld_val to save the contents of the FML or
FML32 buffer.

To correlate statements using lrt_save_fld_val:

 1 Insert the lrt_save_fld_val statement in your script where you want to save
the contents of the current FML (or FML32) buffer.

lrt_save_fld_val (fbfr, "name", occurrence, "param_name");

 2 Reference the parameter.

Locate the lrt statements with the recorded values that you want to replace
with the contents of the saved buffer. Replace all instances of the recorded
values with the parameter name in angle brackets.

In the following example, a bank account was opened and the account
number was stored to a parameter, account_id.

/* Fill the data_0 buffer with new account information*/
data_0 = lrt_tpalloc("FML", "", 512);
lrt_Finitialize((FBFR*)data_0);
lrt_Fadd_fld((FBFR*)data_0, "name=BRANCH_ID", "value=1",
LRT_END_OF_PARMS);
lrt_Fadd_fld((FBFR*)data_0, "name=ACCT_TYPE", "value=S",
LRT_END_OF_PARMS);
…

LRT_END_OF_PARMS);
lrt_Fadd_fld((FBFR*)data_0, "name=LAST_NAME", "value=Doe", …);
lrt_Fadd_fld((FBFR*)data_0, "name=FIRST_NAME", "value=John", …);
lrt_Fadd_fld((FBFR*)data_0, "name=SAMOUNT", "value=234.12", …);

/* Open a new account and save the new account number*/
tpresult_int = lrt_tpcall("OPEN_ACCT", data_0, 0,&data_0, &olen_2, 0);
lrt_abort_on_error();
lrt_save_fld_val((FBFR*)data_0, "name=ACCOUNT_ID", 0, "account_id");

/* Use result from first query to fill buffer for the deposit*/
lrt_Finitialize((FBFR*)data_0);
lrt_Fadd_fld((FBFR*)data_0, "name=ACCOUNT_ID", "value=<account_id>",
LRT_END_OF_PARMS);
lrt_Fadd_fld((FBFR*)data_0, "name=SAMOUNT", "value=200.11", …);
920

Chapter 60 • Developing Tuxedo Vuser Scripts
In the above example, the account ID was represented by a field name,
ACCOUNT_ID. Some systems represent a field by an ID number rather than
a field name during recording.

You can correlate by field ID as follows:

lrt_save_fld_val((FBFR*)data_0, "id=8302", 0, "account_id");

Correlating Character Strings
Use lrt_save_parm or lrt_save_searched_string to correlate character strings.

➤ In general, it is recommended to use lrt_save_parm to save a portion of a
character array to a parameter.

➤ Use lrt_save_searched_string when you want to save information, relative
to the position of a particular string in a character array. If the Vuser is for
PeopleSoft, it is recommended to use lrt_save_searched_string, since the
reply buffers returned from the PeopleSoft server often differ in size during
replay from what was seen during recording.

Determining Which Values to Correlate
When working with CARRAY buffers, VuGen generates log files during
recording (with the .rec extension) and during replay (with the .out
extension) which you can compare using the Wdiff utility. You can look at
the differences between the recording and replay logs to determine which
portions of CARRAY buffers require correlation.
921

Chapter 60 • Developing Tuxedo Vuser Scripts
To compare the log files:

 1 Select View > Output to display the execution log and recording log for your
script.

 2 Examine the Replay Log tab.

The error message should be followed by a statement beginning with the
phrase: Use wdiff to compare.

 3 Double-click on the statement in the execution log to start the Wdiff utility.

WDiff opens and the differences between the record and replay files are
highlighted in yellow. For more details about the Wdiff utility, see
“Correlating Statements” in Volume I-Using VuGen.

To correlate statements using lrt_save_parm:

Once you decide which value to correlate, you can use lrt_save_parm to
save a portion of a character array (such as a STRING or CARRAY buffer) to a
parameter.

 1 Insert the lrt_save_parm statement in your script at the point where you
want to save the contents of the current buffer.

lrt_save_parm (buffer, offset, length, "param_name");

 2 In the replay.vdf file, locate the buffer data that you want to replace with the
contents of the saved buffer.

View the buffer contents by selecting the replay.vdf file in the Data Files box
of the main VuGen window.

 3 Replace all instances of the value with the parameter name in angle
brackets.
922

Chapter 60 • Developing Tuxedo Vuser Scripts
In the following example, an employee ID from a CARRAY buffer must be
saved for later use. The recorded value was "G001" as shown in the output.

Insert lrt_save_parm using the offset, 123, immediately after the request
buffer that sends "PprLoad" and 227 bytes.

In the replay.vdf file, replace the recorded value, "G001", with the
parameter, empid.

lrt_tpcall:227, PprLoad, 1782
Reply Buffer received.
…
123"G001"
126"…"
134"Claudia"

/* Request CARRAY buffer 57 */
lrt_memcpy(data_0, buf_143, 227);
tpresult_int = lrt_tpcall("PprLoad",

data_0, 227, &data_1, &olen, TPSIGRSTRT);
lrt_save_parm(data_1, 123, 9, "empid");

char buf_143[] = "\xf5\x0\x0\x0\x4\x3\x2\x1\x1\x0\x0\x0\xbc\x2\x0\x0\x0\x0\x0\x0"
 "X"
"\x89\x0\x0\x0\xb\x0"
 "SPprLoadReq"
 "\xff\x0\x10\x0\x0\x4\x3\x6"
 ”<empid>” // G001
 "\x7"
 ”Claudia”
 "\xe"
 "LAST_NAME_SRCH"
...
923

Chapter 60 • Developing Tuxedo Vuser Scripts
This function can also be used to save a portion of a character array within
an FML buffer. In the following example, the phone number is a character
array, and the area code is the first three characters. First, the lrt_save_fld_val
statement saves the phone number to a parameter, phone_num. The
lrt_save_parm statement uses lr_eval_string to turn the phone number into
a character array and then saves the area code into a parameter called
area_code.

To correlate statements using lrt_save_searched_string:

Use lrt_save_searched_string to search for a string in a buffer, and save a
portion of the buffer, relative to the string occurrence, to a parameter.

 1 Insert the lrt_save_searched_string statement in your script where you
want to save a portion of the current buffer.

lrt_save_searched_string (buffer, buf_size, occurrence, string, offset,
length, "param_name");

Note that offset is the offset from the beginning of the string.

 2 In the replay.vdf file, locate the buffer data that you want to replace with the
contents of the saved buffer.

View the buffer contents by selecting the replay.vdf file in the Data Files box
of the main VuGen window.

 3 Replace all instances of the value with the parameter name in angle
brackets.

In the following example, a Certificate is saved to a parameter for a later use.
The lrt_save_searched_string function saves 16 bytes from the specified
olen buffer, to the parameter cert1. The saved string location in the buffer, is
9 bytes past the first occurrence of the string "SCertRep".

This application is useful when the buffer’s header information is different
depending on the recording environment.

lrt_save_fld_val((FBFR*)data_0, "name=PHONE", 0, "phone_num");
lrt_save_parm(lr_eval_string("<phone_num>"), 0, 3, "area_code");
lr_log_message("The area code is %s\n", lr_eval_string("<area_code>"));
924

Chapter 60 • Developing Tuxedo Vuser Scripts
The certificate will come 9 bytes past the first occurrence of "SCertRep", but
the length of the information before this string varies.

/* Request CARRAY buffer 1 */
lrt_memcpy(data_0, sbuf_1, 41);
lrt_display_buffer("sbuf_1", data_0, 41, 41);
data_1 = lrt_tpalloc("CARRAY", "", 8192);
tpresult_int = lrt_tpcall("GetCertificate",
data_0,
41,
&data_1,
&olen,
TPSIGRSTRT);

/* Reply CARRAY buffer 1 */
lrt_display_buffer("rbuf_1", data_1, olen, 51);
lrt_abort_on_error();

lrt_save_searched_string(data_1, olen, 0, "SCertRep", 9, 16, "cert1");
925

Chapter 60 • Developing Tuxedo Vuser Scripts
926

Part XIV

Streaming Data Protocols

928

61
Developing Streaming Data Vuser Scripts

Streaming media is a rapidly growing market that allows for the delivery of
audio/visual content over the Internet. The idea behind streaming media is
that the audio/video content can be transmitted to the end user without
having to first download the file in its entirety. Streaming works by having
the server continuously stream the content to the client as it displays it.

RealPlayer is an application that display streaming content.

You use VuGen to record communication between a client application and a
server that communicate using the RealPlayer protocol. The resulting script
is called a Real Vuser script.

This chapter includes:

 ➤ About Recording Streaming Data Virtual User Scripts on page 930

 ➤ Getting Started with Streaming Data Vuser Scripts on page 930

 ➤ Using RealPlayer LREAL Functions on page 931

 ➤ Using Media Player MMS Functions on page 932

The following information applies only to the Real and Media Player
(MMS) protocols.
929

Chapter 61 • Developing Streaming Data Vuser Scripts
About Recording Streaming Data Virtual User Scripts

The Streaming Data protocols allows you to emulate a user playing media or
streaming data files.

When you record an application using a streaming data protocol, VuGen
generates functions that describe your actions. For RealPlayer sessions,
VuGen generates functions with an lreal prefix. For Media Player sessions,
VuGen uses functions with an mms prefix. Note that recording is not
supported for Media Player mms functions—only replay.

Getting Started with Streaming Data Vuser Scripts

This section provides an overview of the process of developing RealPlayer
and Media Player streaming data Vuser scripts using VuGen.

To develop a Real or Media Player Vuser script:

 1 Record the basic script using VuGen. (Real only)

Invoke VuGen and create a new Vuser script. Choose an application to
record, and record typical operations on your application. For details, see
“Recording with VuGen” in Volume I-Using VuGen.

 2 Enhance the script.

Enhance the script by inserting transactions, rendezvous points, and
control-flow structures into the script.

For details, see “Enhancing Vuser Scripts” in Volume I-Using VuGen.

 3 Define parameters (optional).

Define parameters for the fixed-values recorded into your script. By
substituting fixed-values with parameters, you can repeat the same business
process many times using different values.

For details, see “Creating Parameters” in Volume I-Using VuGen.

 4 Correlate statements (optional).

Correlating statements enables you to use the result of one business process
in a subsequent one.

For details, see “Correlating Statements” in Volume I-Using VuGen.
930

Chapter 61 • Developing Streaming Data Vuser Scripts
 5 Configure the run-time settings.

The run-time settings control the Vuser behavior during script execution.
These settings include loop, log, and timing information.

For details, see “Configuring Run-Time Settings” in Volume I-Using VuGen.

 6 Run the script from VuGen.

Save and run the script from VuGen to verify that it runs correctly.

For details, see “Running Vuser Scripts in Standalone Mode” in Volume I-
Using VuGen.

After you create a script, you integrate it into your environment: a
LoadRunner scenario, Performance Center load test, or Business Process
Monitor profile. For more information, refer to the HP LoadRunner Controller,
Performance Center, or HP Business Availability Center documentation.

Using RealPlayer LREAL Functions

The functions developed to emulate communication between a client and a
server by using the RealPlayer protocol are called Real Player functions. Each
Real Player function has an lreal prefix.

VuGen automatically records most of the LREAL functions listed in this
section during a Real Player session. You can also manually program any of
the functions into your script.

For example, the lreal_play function takes the form:

To play the clip until the end, use any negative value for mulTimeToPlay. To
play the clip for a specific duration number of milliseconds, specify the
number of milliseconds. miplayerID represents a unique ID of a RealPlayer
instance.

For more information about the LREAL functions, refer to the Online
Function Reference (Help > Function Reference).

int lreal_play (int miplayerID, long mulTimeToPlay);
931

Chapter 61 • Developing Streaming Data Vuser Scripts
Using Media Player MMS Functions

The functions developed to emulate client/server communication for Media
Player’s MMS protocol, are called MMS Virtual User functions—each
function has an mms prefix.

All MMS functions come in pairs—one for global sessions and one for a
specific session. For example, mms_close closes the Media Player globally,
while mms_close_ex closes the Media Player for a specific session.

A typical function, mms_play, takes the following form:

In the following example, the mms_play function plays an asf file for
different durations:

For detailed syntax information on these functions, refer to the Online
Function Reference (Help > Function Reference).

int mms_play (char message, <List of Attributes>, LAST);

//Play for a duration of 10 seconds.
mms_play("Welcome","URL=mms://server/welcome.asf","
duration=10",
LAST);

//Play the clip until its completion, after waiting 5 seconds.
mms_play ("Welcome","URL=mms://server/welcome.asf",
"duration=-1",
"starttime=5",
LAST);
932

Part XV

Wireless Protocols

934

62
Recording Wireless Vuser Scripts

VuGen enables you to generate Wireless Vuser scripts by recording typical
Wireless sessions. When you run a script, the resulting Vuser emulates
activity between your toolkit or phone and Web server (or gateway for
WAP).

This chapter includes:

 ➤ Understanding the WAP Protocol on page 935

 ➤ Getting Started with Wireless Vuser Scripts on page 937

 ➤ Using Wireless Vuser Functions on page 939

 ➤ Push Support on page 940

 ➤ VuGen Push Support on page 942

The following information only applies to all Wireless protocols.

Understanding the WAP Protocol

The Wireless Application Protocol (WAP) is an open, global specification
that enables mobile users with wireless devices to instantly access and
interact with information and services.

The WAP protocol specifies a microbrowser thin-client using a new standard
called WML that is optimized for wireless handheld mobile terminals. WML
is a stripped-down version of XML.
935

Chapter 62 • Recording Wireless Vuser Scripts
WAP also specifies a proxy server that:

➤ acts as a gateway between the wireless network and the wire-line Internet

➤ provides protocol translation

➤ optimizes data transfer for the wireless handset

WAP architecture closely resembles the WWW model. All content is
specified in formats that are similar to the standard Internet formats.
Content is transported using standard protocols in the WWW domain and
an optimized HTTP-like protocol in the wireless domain (Wireless Session
Protocol). You locate all WAP content using WWW standard URLs.

WAP uses many WWW standards, including authoring and publishing
methods. WAP enhances some of the WWW standards in ways that reflect
the device and network characteristics. WAP extensions are added to support
Mobile Network Services such as Call Control and Messaging. It accounts for
the memory and CPU processing constraints that are found in mobile
terminals. WAP also supports low bandwidth and high latency networks.

WAP assumes the existence of a gateway that is responsible for encoding and
decoding data transferred to and from the mobile client. The purpose of
encoding content delivered to the client is to minimize the size of data sent
to the client over-the-air, as well as to minimize the computational energy
required by the client to process that data. The gateway functionality can be
added to origin servers, or placed in dedicated gateways as illustrated below.
936

Chapter 62 • Recording Wireless Vuser Scripts
WAP Toolkits
To assist developers in producing WAP applications and services, the leading
companies such as Nokia, Ericsson, and Phone.com, have developed
toolkits. The WAP Toolkit provides an environment for developers who
want to provide Internet services and content for mobile terminals. It allows
developers to write, test, debug, and run applications on a PC-based
simulator phone. The toolkit allows users to browse WAP sites through an
HTTP connection or a WAP gateway.

A mobile phone communicates with a gateway in WSP protocol; a toolkit
can communicate with the gateway, or directly with the server. VuGen
automatically detects the communication mode that is configured in the
toolkit: WSP or HTTP. If you are interested in the traffic to the gateway, you
record in WSP mode. If you want to check the server and the content
providers, you can record your toolkit session in HTTP mode, and bypass
the gateway.

VuGen uses custom API functions to emulate a user session. Most functions
are the standard Web protocol functions utilizing the HTTP protocol. Several
WAP functions emulate actions specific to WAP Vusers. For a list of the
supported functions, see “Using Wireless Vuser Functions” on page 939.

Getting Started with Wireless Vuser Scripts

Wireless Vuser Scripts emulate a user using a wireless browser. You record the
user browsing on a PC-based simulator phone (toolkit). You can then
distribute several hundred Vusers among the available testing machines,
each Vuser accessing the server by using its API. This enables you to measure
the performance of the server under the load of many users.

This section provides an overview of the process of developing Wireless
Vuser scripts using VuGen.

To develop a Wireless script:

 1 Create a new script using VuGen.

Select File > New or click the New button to create a new script in either
single or multiple protocol mode.
937

Chapter 62 • Recording Wireless Vuser Scripts
For details about creating a new script, see “Recording with VuGen” in
Volume I-Using VuGen.

 2 Record the actions using VuGen.

Record the actions over the toolkit session. VuGen automatically detects the
toolkit settings and uses those settings during recording.

For information about recording, see “Recording with VuGen” in Volume I-
Using VuGen.

 3 Enhance the Vuser script.

Enhance the Vuser script by inserting transactions, rendezvous points, and
control-flow structures into the script.

For details, see “Enhancing Vuser Scripts” in Volume I-Using VuGen.

 4 Define parameters (optional).

Define parameters for the fixed-values recorded into your Vuser script. By
substituting fixed-values with parameters, you can repeat the same business
process many times using different values. For details, see “Creating
Parameters” in Volume I-Using VuGen.

 5 Configure the run-time settings.

The run-time settings control the Vuser behavior during script execution.
These settings include the run logic, pacing, logging, think time,
performance preferences, and gateway settings.

For information about the General run-time settings, see “Configuring Run-
Time Settings” in Volume I-Using VuGen.

For information about common Internet protocol run-time settings, see
Chapter 40, “Configuring Internet Run-Time Settings.”

For information about WAP specific run-time settings, see Chapter 63,
“Configuring WAP Run-Time Settings.”

 6 Perform correlation.

Check your script to determine if there are dynamic values that require
correlation. For Wireless protocols, you perform manual correlation by
adding web_reg_save_param functions.

For more information, see “Performing Manual Correlation” on page 711.

938

Chapter 62 • Recording Wireless Vuser Scripts
 7 Save and run the Vuser script from VuGen.

Save and run the Vuser script from VuGen to verify that it runs correctly.
While you record, VuGen creates a series of configuration, data, and source
code files. These files contain Vuser run-time and setup information. VuGen
saves these files together with the script.

For details about running the Vuser script as a standalone test, see “Running
Vuser Scripts in Standalone Mode” in Volume I-Using VuGen.

After you create a script, you integrate it into your environment: a
LoadRunner scenario, Performance Center load test, or Business Process
Monitor profile. For more information, refer to the HP LoadRunner Controller,
Performance Center, or HP Business Availability Center documentation.

Using Wireless Vuser Functions

The functions developed to emulate communication between a wireless
instrument and Web server (or gateway for WAP), are called Vuser functions.
Some functions are generated when you record a script; others you must
manually insert into the script. You can also add Vuser message functions
and custom C functions to your Vuser scripts after recording.

General Vuser functions begin with an lr prefix. The functions representing
standard HTTP actions, have a web prefix.

Functions that are specific to WAP, have a wap prefix. For example,
wap_connect connects to a WAP gateway. WAP functions are divided into
the following categories: Bearer, Connection, Formatting, Gateway, Push,
and Radius functions.

Functions that emulate a RAS or NAS server during a WAP session, have a
radius prefix. For example, radius_account authenticates a user to a
RADIUS server.

For a complete list of all VuGen functions, refer to the Online Function
Reference (Help > Function Reference).
939

Chapter 62 • Recording Wireless Vuser Scripts
For WAP Vusers running scripts in Wireless Session Protocol (WSP) mode,
only the following functions are supported:

Push Support

In the normal client/server model, a client requests information or a service
from a server. The server responds by transmitting information or
performing a service to the client. This is known as pull technology—the
client pulls information from the server.

In contrast to this, there is also push technology. The WAP push framework
transmits information to a device without a previous user action. This
technology is also based on the client/server model, but there is no explicit
request from the client before the server transmits its content.

To perform a push operation in WAP, a Push Initiator (PI) transmits content
to a client. However, the Push Initiator protocol is not fully compatible with
the WAP Client—the Push Initiator is on the Internet, and the WAP Client is
in the WAP domain. Therefore, we need to insert a translating gateway to
serve as an intermediary between the Push Initiator and the WAP Client.
The translating gateway is known as the Push Proxy Gateway (PPG).

The access protocol on the Internet side is called the Push Access Protocol
(PAP).

Action Functions web_custom_request, web_submit_data, and
web_url

Authentication Functions All—web_set_user, web_set_certificate[_ex]

Cookie Functions All—web_add_cookie, web_cleanup_cookie,
web_remove_cookie

Header Functions All —web_add_auto_header, web_add_header,
web_cleanup_auto_headers, web_save_header

Correlation Functions All—web_create_html_param[_ex],
web_reg_save_param,
web_set_max_html_param_len
940

Chapter 62 • Recording Wireless Vuser Scripts
The protocol on the WAP end is called the Push Over-The-Air (OTA)
protocol.

The Push Initiator contacts the Push Proxy Gateway (PPG) over the Internet
using the PAP Internet protocol. PAP uses XML messages that may be
tunneled through various well-known Internet protocols such as HTTP. The
PPG forwards the pushed content to the WAP domain. The content is then
transmitted using the OTA protocol over the mobile network to the
destination client. The OTA protocol is based on WSP services.

In addition to providing basic proxy gateway services, the PPG is capable of
notifying the Push Initiator about the final status of the push operation. In
two-way mobile networks, it can also wait for the client to accept or reject
the content.

Push Services Types
Push services can be of the SL or SI type:

➤ SL. The Service Loading (SL) content type provides the ability to cause a user
agent on a mobile client to load and execute a service—for example, a WML
deck. The SL contains a URI indicating the service to be loaded by the user
agent without user intervention when appropriate.

➤ SI. The Service Indication (SI) content type provides the ability to send
notifications to end-users in an asynchronous manner. For example, the
notifications may be about new e-mails, changes in stock price, news
headlines, and advertising.

In its most basic form, an SI contains a short message and a URI indicating a
service. The message is presented to the end-user upon reception, and the
user is given the choice to either start the service indicated by the URI
immediately, or postpone the SI for later handling. If the SI is postponed,
the client stores it and the end-user is given the ability to act upon it at a
later point of time.
941

Chapter 62 • Recording Wireless Vuser Scripts
VuGen Push Support

Push support for VuGen is divided into three parts:

➤ Push support at the client end—the ability to accept push messages.

➤ Push support to WAP HTTP Vusers—emulating Push Initiators.

➤ Push messages (SI & SL) format services—formatting push messages.

Client Push Support
At the client end, VuGen supports both push services (SL and SI) for all
replay modes (CO and CL). The wap_wait_for_push function instructs the
Vuser to wait for a push message to arrive. You set the timeout for this
function in the run-time settings.

When a push message arrives, the Vuser parses it to determine its type and
to retrieve its attributes. If parsing was successful, it generates and executes a
pull transaction to retrieve the relevant data. You can disable the pull event,
indicating to the Vuser not to retrieve the message data by configuring the
Run-Time settings. For more information, see Chapter 63, “Configuring
WAP Run-Time Settings.”

Emulating a Push Initiator
Push support for WAP HTTP Vusers enables you to perform load testing of
the PPG. Push support allows Vusers to function as Push Initiators
supporting the Push Access Protocol (PAP). The PAP defines the following
sets of operations between the PI and the PPG:

➤ Submit a Push request.

➤ Cancel a Push request.

➤ Submit a query for the status of a push request.

➤ Submit a query for the status of a wireless device’s capabilities.

➤ Initiate a result notification message from the PPG to the PI.
942

Chapter 62 • Recording Wireless Vuser Scripts
All operations are request/response—for every initiated message, a response
is issued back to the PI. PI operations are based on the regular HTTP POST
method supported by VuGen. Currently, only the first two operations are
supported through wap_push_submit and wap_push_cancel.

You can submit data to a Web server using the web_submit_data function.
It is difficult, however, to send long and complex data structures using this
function. To overcome this difficulty and provide a more intuitive API
function, several new API functions were added to properly format the XML
message data: wap_format_si_msg and wap_format_sl_msg. For more
information about these functions, refer to the Online Function Reference.
943

Chapter 62 • Recording Wireless Vuser Scripts
944

63
Configuring WAP Run-Time Settings

After you record a WAP Vuser script, you configure the WAP specific run-
time settings.

This chapter includes:

 ➤ About WAP Run-Time Settings on page 945

 ➤ Configuring Gateway Options on page 946

 ➤ Configuring Radius Connection Data on page 950

The following information applies to the WAP Vuser Scripts.

For information on setting the common Internet protocol run-time settings
for WAP and all Wireless protocols, see Chapter 40, “Configuring Internet
Run-Time Settings.”

About WAP Run-Time Settings

After developing a WAP Vuser script, you set the WAP specific run-time
settings. These settings configure the behavior of the WAP Vusers to
accurately emulate real users on a WAP device. You can configure WAP run-
time settings in the areas of Gateway and Radius settings.

For information about the general run-time settings that apply to all wireless
Vusers, see Chapter 40, “Configuring Internet Run-Time Settings.”
945

Chapter 63 • Configuring WAP Run-Time Settings
Configuring Gateway Options

You use the WAP:Gateway node in the Run-Time Settings tree to set the
Gateway settings.

Connection Options

The connection options specify the method that the Vuser uses to connect
to the WAP gateway.

WAP Gateway. Run the Vusers accessing a Web server via a WAP Gateway.

HTTP Direct. Run the Vusers run in HTTP mode, accessing a Web server
directly.

Note: If you choose the HTTP Direct connection mode, the remaining WAP
Gateway options are not applicable.

946

Chapter 63 • Configuring WAP Run-Time Settings
Gateway Settings

If the Vusers connect through a gateway, the IP, Port, and WAP Versions
options specify the Gateway connection.

IP. Specify the IP address of the gateway.

Port. Specify the port of the gateway. When running your Vusers through a
WAP gateway, VuGen automatically sets default port numbers, depending
on the selected mode. However, you can customize the settings and specify
a custom IP address and port for the gateway.

Wap version. Select the appropriate WAP version, 1.x (WSP) or 2.0 (HTTP
proxy). If you recorded in WAP 1.x (WSP), you can run the Vuser in either
1.x (WSP), or 2.0 (HTTP proxy) mode. If you recorded in WAP 2.0 (HTTP
proxy), then you can only run the Vuser in the same mode.

If you are running the script in WAP 1.x (WSP), you can specify several
connection and advanced options.

Gateway Connection Mode
The connection mode settings apply to WAP version 1.x (WSP) connections.

Connection-oriented Mode. Set the connection mode for the WSP session to
Connection-Oriented.

Connectionless Mode. Set the connection mode for the WSP session to
Connectionless.

Enable security. Enable a secure connection to the WAP gateway.
947

Chapter 63 • Configuring WAP Run-Time Settings
Advanced Gateway Options
Expand the Advanced option in the Gateway node to configure the WAP
Capabilities and other advanced gateway options.

➤ Confirm Push support. In CO mode, if a push message is received, this
option instructs the Vuser to confirm the receipt of the message (disabled by
default). For more information, see “Push Support” on page 940.

➤ Push support. Enables push type messages across the gateway (disabled by
default).

➤ CAPSessionResume. Enables requests for session suspend or resume.

➤ Acknowledge headers. Returns standard headers that provide information
to the gateway (disabled by default).

➤ Server SDU buffer size. The largest transaction service data unit that may
be sent to the server during the session (4000 by default).

➤ Client SDU buffer size. The largest transaction service data unit that may
be sent to the client during the session (4000 by default).

➤ MethodMOR. The number of outstanding methods that can occur
simultaneously.

➤ PushMOR. The number of outstanding push transactions that can occur
simultaneously.

➤ BearerType. The type of bearer used as the underlying transport.
948

Chapter 63 • Configuring WAP Run-Time Settings
➤ Retrieve messages. When a push messages is received, this option
instructs the Vuser to retrieve the message data from the URL indicated
in the push message (disabled by default).

➤ Support Cookies. Provide support for saving and retrieving cookies (disabled
by default).

➤ WTP Segmentation and Reassembly. Enables segmentation and reassembly
(SAR) in WTP, Wireless Transport Protocol. (True by default).

➤ WTP Retransmission Time. The time in seconds that the WTP layer waits
before resending the PDU if it did not receive a response. (5000 by
default).

➤ WTLS Abbreviated Handshake. Use an abbreviated handshake instead of a
full one, when receiving a redirect message. (False by default).

➤ WTLS Deffie Hellman. Use the Deffie Hellman encryption scheme for WTLS
(Wireless Transport Layer Security) instead of the default scheme, RSA. (False
by default).

➤ WTLS Deffie Hellman identifier. An identifier for the Deffie Hellman
encryption scheme. This identifier is required for the abbreviated
handshake with the Operwave gateway that uses the Deffie Hellman
encryption scheme.

➤ Network MTU Size. the maximum size in bytes, of the network packet.
(4096 by default).

Setting the Gateway Options
The following section describes the procedure for setting the WAP Gateway
options.

To set the WAP gateway options:

 1 Click the Run-Time Settings button or select Vuser > Run-Time Settings to
display the Run-Time Settings dialog box. Select the WAP:Gateway node.

 2 To replay the script in WSP mode (not HTTP), select WAP Gateway.

 3 Specify an IP address and port for the gateway. You can also use the default
port indicated by VuGen.

 4 Select a WAP version: WAP 1.x (WSP) or WAP 2.0 (HTTP).
949

Chapter 63 • Configuring WAP Run-Time Settings
 5 For WAP 1.x (WSP), select a connection mode—Connection-oriented or
Connectionless. To indicate a secure connection mode, select the Enable
Security option.

 6 For WAP 1.x (WSP), expand the Advanced node to set the client capabilities
and other advanced gateway options. For more information about the
Advanced options, see above.

Configuring Radius Connection Data

RADIUS (Remote Authentication Dial-In User Service) is a client/server
protocol and software that enables remote access servers to communicate
with a central server to authenticate dial-in users and authorize their access
to the requested system or service.

RADIUS allows a company to maintain user profiles in a central database
that all remote servers can share. It provides better security, allowing a
company to set up a policy that can be applied at a single administered
network point. Using a central service makes it easier to track usage for
billing and store network statistics.

RADIUS has two sub-protocols:

➤ Authentication. Authorizes and controls user access.

➤ Accounting. Tracks usage for billing and for keeping network statistics.

In VuGen, the RADIUS protocol is only supported for WSP replay for both
Radius sub-protocols—authentication and accounting.

You supply the dial-in information in the Run-Time Settings’ Radius node:

Property Value

Network Type Accounting network type: GPRS (General Packet
Radio Service) or CSD (Circuit-Switched Data).

IP Address IP address of the Radius server.

Authentication port number Authentication port of the Radius server.

Accounting port number Accounting port of the Radius server.
950

Chapter 63 • Configuring WAP Run-Time Settings
To set the WAP Radius options:

 1 Click the Run-Time Settings button or select Vuser > Run-Time Settings to
display the Run-Time Settings dialog box. Click the Radius node.

 2 Choose an accounting Network type: GPRS (General Packet Radio Service)
or CSD (Circuit-Switched Data).

 3 Enter the IP address of the Radius server in dot form.

Secret Key The secret key of the Radius server.

Connection Timeout (sec) The time in seconds to wait for the Radius server
to respond. The default is 120 seconds.

Retransmission retries The number of times to retry after a failed
transmission. The default is 0.

Store attributes returned by
the server to parameters

Allow Vusers to save attributes returned by the
server as parameters, which can be used at a later
time. The default is False.

Radius client IP Radius packets source IP, usually used to
differentiate between packets transmitted on
different NIC cards on a single Load Generator
machine.
951

Chapter 63 • Configuring WAP Run-Time Settings
 4 Enter the Authentication Port number and Accounting Port number of the
Radius server.

 5 Type in the Secret key for Radius or Accounting Authentication.

 6 Enter a Connection Timeout value.

 7 Specify the number of Retransmission retries.

 8 Specify whether you want VuGen to store attributes returned by the server
to parameters.

 9 Click OK to accept the settings and close the dialog box.
952

64
Developing MMS Vuser Scripts

You can create MMS (Multimedia Messaging Service) Vuser scripts to
emulate MMS activity.

This chapter includes:

 ➤ About MMS (Multimedia Messaging Service) Vuser Scripts on page 953

 ➤ Configuring MMS Run-Time Settings on page 954

 ➤ Running an MMS Scenario in the Controller on page 956

The following information applies to Multimedia Messaging Service
(MMS) Vuser scripts.

About MMS (Multimedia Messaging Service) Vuser Scripts

MMS (Multimedia Messaging Service) is an extension of the SMS protocol.
Whereas SMS messages can only contain text, MMS allows you to send and
receive messages with a wide range of content to MMS capable handsets.
This content can be in the form of text, sound, e-mail messages, images,
video clips, and even streaming data. It is also possible to send multimedia
messages from a mobile phone to an email address.

An MMS message typically includes a collection of attachments. While SMS
messages are limited to 160 bytes, an MMS message could be several MBs in
size. MMS usually requires a third generation (3G) network to enable such
large messages to be delivered.
953

Chapter 64 • Developing MMS Vuser Scripts
To receive an MMS message, a mobile phone receives an MMS notification
over SMS. The SMS message can be received over various SMS protocols such
as SMPP, UCP, CIMD2, etc. The SMS message contains a unique path to the
MMS message stored in the MMSC server’s database and the mobile phone
uses this path to download the message from the SMSC. The current version
of VuGen supports the receiving of MMS notifications over the SMPP
interface.

Multimedia Messaging Service Vuser scripts support the 1.0 and 1.1 versions
of the MMS protocol, as defined by OMA (Open Mobile Alliance
organization). Using MMS Vusers, you can send MMS messages to the
MMSC server directly over the HTTP protocol, or over the WAP protocol
through a WAP gateway.

Multimedia Messaging Service functions emulate the sending and receiving
of MMS messages. Each function begins with an mm prefix. For detailed
syntax information for these functions, refer to the Online Function Reference
(Help > Function Reference).

Configuring MMS Run-Time Settings

Before running your script, you can set the run-time settings to allow the
script to accurately emulate a real user. For information on the general run-
time settings for all protocols, such as think time, pacing, and logging, see
“Configuring Run-Time Settings” in Volume I-Using VuGen.

The following section describes the run-time settings specific to MMS
(Multimedia Messaging Service) Vusers. These run-time setting allow you to
configure the server and protocol settings.
954

Chapter 64 • Developing MMS Vuser Scripts
You can set the following options:

➤ MMSC URL. The URL of the MMSC (Multimedia Messaging Center) server.

➤ MMS Version. The version of the MMS protocol used by the script.

➤ Timeout (seconds). The time that the server waits for incoming messages.
The default value is 60 seconds.

➤ SMSC IP. The IP address of the SMSC server used for sending MMS
notifications over SMPP.

➤ SMSC Port. The IP port of the SMSC server used for sending MMS
notifications over SMPP.

➤ Automatic WAP Connections. Defines when to connect and disconnect from
a WAP gateway. This setting is only relevant when a WAP gateway is used.
The possible values are:

➤ Per Iteration. Connect at the beginning of each iteration and disconnect
at the end of each iteration. (default)

➤ Per Send or Receive. Connect and disconnect at the beginning and end
of each message.

➤ None. Do not use automatic WAP connections.

➤ Default Sender address. The default address sent in the Sender header. The
default is +999999.
955

Chapter 64 • Developing MMS Vuser Scripts
To set the MMS Server and Protocol settings:

 1 Open the Run-Time Settings dialog box. Choose Vuser > Run-Time Settings
or click the Run-Time Settings button on the VuGen toolbar.

 2 Select the MMS:Server and Protocol node from the Run-Time settings tree.

 3 Select the desired values as explained above.

 4 Select General:Miscellaneous from the Run-Time settings tree.

 5 Under Multithreading, select Run Vuser as a process.

 6 Click OK to accept the settings and run the script.

Running an MMS Scenario in the Controller

An MMS (Multimedia Messaging Service) scenario requires a command line
setting.

To set the MMS command line setting:

 1 From the Scenario Schedule screen, click Details. The Group Information
dialog is displayed.

 2 If the Command line box is not visible, click the More button.

 3 Add the following to the end of the Command line text: -usingwininet yes

 4 Click OK to accept the Command line switch.
956

Index
A

abstract types 98
accept Server-Side compression 628
Accept-Language request header 628
Action

method (Java) 388
Action steps

modifying - Web 663
Actions class 387
ActiveX, enabling support 631
Add Rule 707
Advanced GUI dialog box 571
Advanced recording options 588
agent, for Citrix 277
AJAX (Click and Script) Vuser Scripts

about 437
recording 439

AJAX controls 437
ALNUM flag 653
AMF Call Properties dialog box 455
AMF terms 443
AMF Vuser scripts

about 441
call properties 455
correlating 450
envelope header set properties 457
functions 449
header set properties 456
recording scripts 441
setting recording mode 443
understanding 454
viewing 454

ANSI 867
ANSI C support, in custom scripts 379
append snapshot 301
Application Deployment Solution, Citrix

Vuser type 239–276

application server, Oracle NCA 756
arrays, Web Services arguments 96
arrays, XML 96
assemblies, adding in .NET 523
AssignToParam property (Web) 657
asynchronous messages 128
attachments, WSDL 108
AUT Configuration 493
authentication for WSDLs 42
authentication retry think time 630
automatic proxy configuration script 617
automatic transactions

Web and Wireless protocols 626
automation compliant 376

B

base 64 encoding 103
Basic event recording configuration level 575
behavior, DHTML 581
BIN flag 653
binary coded data 660
binary view of data (WinSock) 347
bitmap mismatch 268, 300
bookmarks

in data (WinSock) 350
boundaries, defining for correlation 716
browser

cache (Web, Wireless) 623
Browser Emulation settings, Web 620
bubbling 582
buffer navigator (WinSock) 348
buffer size on network (Internet) 629
BytesMessage 140

C

957

Index
C language support
conventions 379

C Vusers 377
cache

check for newer versions 623
clear each iteration 623
loading and dumping 563

capture file
generating 74

CARRAY buffers 921
certificates

SSL for server traffic 80
character set, RTE 867
Check Properties dialog box 684
checkpoints

expected values 121
parameterizing 124
setting 119
viewing results 124
Web Services scripts 119

checks (Web)
defining properties for 657
image checks 654
modifying in scripts 684
overview 643
text 646
types of 645

choice element, optional argument 102
choice elements 94
choose iteration, Web Services 86
Citrix agent 277
Citrix server, disconnecting 243
Citrix Vuser scripts 239–276

client version 242
disconnecting from server 243
display settings 256
editing 260
function 270
getting started 241
recording options 255
run-time settings 257
synchronizing replay 261
tips for record and replay 271

Classpath
run-time settings 235

client emulation

Oracle NCA 765
client for Citrix 242
clipboard, in RDP 296
code generation options (EJB) 739
Code Generation recording option (RDP)

289
COM

data types 408
overview and interfaces 406

COM Vuser scripts
class context 407
creating object instances 425
developing 405
error checking 424
getting started 408
IDispatch interface 428
instantiating objects 425
interface pointers 422
log files for debugging 409
recording options 412
retrieving an interface 426
scanning for correlations 430
script structure 422
selecting COM objects to record 409
type libraries 407
understanding 422

command line arguments
reading in Java Vuser scripts 396

comments
adding to correlation steps 692
screen header comments (RTE) 870

comparing
XML files 53

comparison method
HTML vs. text 705

comparison options, WSDL/XML 50
comparison reports 51
compression for HTML (gzip) 636
compression headers, requesting 628
concurrency settings, Web Services 494
configuration files

SAML security 157
user handler, mmdrv 157

configuration levels
customizing 577–585
standard 575–577
958

Index
Configuration run-time settings (RDP) 293
configuring

application security and permissions
500

Connect dialog box (RTE) 863
connection attempts, modifying (RTE) 879
connection pooling 494
connection settings 42
connections, closing open ones (.NET) 482
content check

limit errors 629
settings (Web) 638

content type filtering (Web) 592
Content type filters dialog box 593
Control steps

modifying (Web) 680
converting

custom request to C 677
Web functions to Java 540

coordinate shifting (RDP) 306
copy and paste

advanced for WinSock Vusers 353
RTE Vusers 865

Corba Recording Options dialog box 219
Correlated Query tab

COM 431
Database 330

correlating
advanced properties 695
after recording (Web, Wireless) 699
built-in detection 688
COM Vusers 430
for known contexts (Web) 688
HTML statements (Web) 685
Java statements 221
maximum parameter size 689
Microsoft .NET scripts 497
recording options-Java 216
rules for Web Vusers 689
scanning Database Vuser script 330
Siebel-Web 835
SWECount 843
Tuxedo 924
with snapshots (Web) 699

Correlation Results tab 707
Correlation tab 697

Create Rule 702
CtLib

options 316
result set errors 327

custom event-recording configuration
577–585

adding listening events 580
procedure 578
specifying listening criteria 581

custom headers, for Web and Wireless 590
Custom Request dialog box (Web) 678
Custom Request step

defined 559
for XML 723
modifying (Web) 677

custom requests 610
Custom Vuser types

C Vusers 377
Java Vusers 381
JavaScript Vusers 384
VB Vusers 382
VBScript Vusers 383

Custom Web Event Recording Configuration
dialog box 578

D

data buffers
Tuxedo Vuser scripts 917
WinSock Vuser scripts 359

data files
Windows Sockets Vuser scripts 360

data grids
viewing 496

Database recording options 314
Database Vuser scripts

correlating 329
developing 309
getting started 313
handling errors 325
return codes 324
row information 320
using lrd functions 318
viewing grids 322

DB2-CLI 309
DBCS 867
959

Index
DbLib 309
DCOM tab 414
Debug recording settings (Java) 217
debugging

obtaining information (WAP) 635
decode to file 107
deep correlation (Java) 223
defining properties, text checks 646
deleting steps

from Web scripts 662
derived types 98
detector, EJB 731
device name (RTE) 880
DIG flag 653
disabling functions (SAPGUI) 820
distinguished names 478
DN (LDAP) 478
DNS caching

Web 628
DNS Vusers

functions 336
overview 335

DOM memory allocation 632
download filter 633
duplex communication 504
dynamic ports 369

E

EBCDIC translation 362
EJB

code generation options 739
instance 742
method 744
Vuser scripts 729

EJB Detector
about 741
command-line 732
log files 734
setup 731

encoding
EUC 610

encrypted data for Web Services security 144
end method 388
engine, recording 589
Environment run-time settings, .NET 493

environment settings
Java 397
Tuxedo Vusers 918

Ericom 855
error handling

COM Vuser scripts 424
modifying globally 325
modifying locally (severity level) 326

error matches, limiting 629
escape sequence 365
EUC encoded pages 610
EUC encoding 612
EUC-JP encoding

recording option 589
event-recording configuration 574–585

customizing levels 577
resetting 584
standard levels 575

Expect property, Web checks 658
expected values in checkpoints 121
extended result set 316
externalizable objects 448, 464

F

failed bitmap synchronization
RDP 268, 300

fetching data 320
field demarcation characters 875
FIELDTBLS environment setting 918
filter files, editing for .NET 528
Filter Manager, working with 521
filtering

.NET Vusers 485
content type (Web, Wireless) 592
downloaded resources 633
Java methods 198
server traffic scripts 79

filters in .NET
benefits 485
defining 517
determining elements to include 516
guidelines for setting 515
Impact log 521
managing 521
manipulating 521
960

Index
selecting 519
setting 519

flags, text search 653
Flash remoting 441
FLDTBLDIR environment setting 918
Flex Vuser scripts

about 461
correlating 465
functions 463
recording scripts 461
understanding 473
viewing 470
XML tree query 471

format
of data in display buffer 365

Forms Listener 768
Frame property, for object checks (Web) 657
FTP protocol

functions 460
recording 459

functions
AMF 449
ctrx (Citrix) 270
DNS 336
Flex 463
FTP 460
imap 904
Java 389
lrc (COM) 421
lrd (Database) 318
lreal (Real Player) 931
lrs (WinSock) 343
mapi 905
mms 932
pop3 906
sapgui (SAP) 824
smtp 907
te (RTE) 854
Web Services 163

G

Gateway settings (WAP) 946
General options

Citrix display 256
Correlation tab 704

generate
automatic sync points (RDP) 290
mouse movement calls 290

Get Text tool, Citrix Vuser scripts 281
Global Unique Identifier (GUID) 407
graphs

enabling for Web 626
grids

enabling in .NET 497
hiding in .NET 497
viewing 322, 496

GUID 407
gzip 636

H

handler 581
handler routine, Web Services 154
headers

custom 590
risky 590
SOAP 111

High event recording configuration level 576
history object, support for 632
hook files 202
host suffix, filtering by 633
hosted by client, server 511
HTML

maximum parameter length 717
HTML tag object 577
HTML-based mode 598
HTTP

buffer size (Web) 629
HTTP recording mode, WAP 946
hypergraphic link step, Web Vusers 559
hypertext link step

defined 559
modifying 665

I

IC flag 653
ica files 269
IDispatch interface 428
If-Modified-Since header

Web 623
961

Index
ignore assemblies 490
ignore namespaces 50
IIOP 179
image checks

modifying (Web) 667
Web Vuser scripts 654

Image Step Properties dialog box 668
image synchronization 291
IMAP protocol 902
Impact log, .NET filter 521
importing

SOAP requests into script 65
importing services 43
include command, .NET filters 525
incoming traffic 78
Informix 309
init method 388
input arguments, Web Services 92
Instantiating COM objects 425
Internet Messaging (IMAP) 902
IUnknown interface 407

J

Jacada Vuser scripts
recording 180

Java
custom filters 198

Java plug-in 181
Java virtual machine

recording options 209
run-time settings 234

Java Vuser scripts 183
CORBA recording options 219
correlation options 216
debug options 217
Recorder options 212
recording 178
serialization options 214

Java Vusers
Classpath run-time settings 235
correlating statements 221
editing Java methods 387
environment settings 397
inserting rendezvous points 392
Java VM run-time settings 234

programming 385
recording options, correlation 216
recording options, Java VM 209
recording options, serialization 214
recording tips 181

Java Vusers (all)
run-time settings 233–236

Java Vusers (custom)
creating template 387
using Java code 381

JavaScript Vusers 384
JMS

for Web Services 137
functions 137
message type 140
run-time settings 162
transport method 137
understanding 137

JNDI properties
advanced, context factory 737
locating EJB home 740
specifying 736

K

keep-alive connections, Web 627
Kerebros

authentication 630
keyboard mapping (RTE) 857

L

LDAP protocol
functions 476
recording 475
via WinSock 337

level of script generation, RDP 289
libc functions, calling 380
Link Step Properties dialog box 665
load balancing, Oracle NCA 771
lrc functions 421
lrd (Database) functions 318
lreal functions 931
lrs functions 343

M

962

Index
Mailing Services protocols
IMAP 904
MAPI 905
POP3 906
recording 902
SMTP 907

managing
Web Services in VuGen 37

MAPI
working with functions 905

mapping keyboard 857
MatchCase property 657
maximum length of HTML parameters 717
Media Player 932
Medium event recording cfg level 576
memory allocation for DOM 632
memory management 632
message signatures 144
META refresh 629
methods, Java 387
Microsoft .NET Vuser scripts

correlating 497
getting started 483
limitations 482
managing filters 521
manipulating filters 521
overview 482, 513
recording 481
recording options 485
run-time settings 493
troubleshooting 500
viewing data grids 496

MMS functions (MS Media Player) 932
MMS Multimedia Messaging 953
MMS Vuser scripts

run-time settings 954
modifier keys 289
modifying Web scripts

image steps 667
rendezvous points 681
submit data steps 673
submit form steps 669
think time 682
transactions 680
URL steps 663

MS

Exchange protocol (MAPI) 905
SQL Server, recording on 309

MTS components 417
multilingual support See Volume I - Using

VuGen

N

namespaces, ignore 50
navigating through WinSock data 348
NCA Vusers, see Oracle NCA
.NET Vusers, see Microsoft .NET Vuser scripts
NET Filters 156
New button 860
New Virtual User dialog box

RTE 860
non-printable characters 366
non-resources 594
NTLM

security 630

O

ODBC recording 309
offset of data in buffer (WinSock) 362
OnFailure property, Web checks 658
Operations tab 41
optional parameters 99
optional windows 803
optional windows (SAPGUI) 820
options

CtLib 316
general See Volume I - Using VuGen
lrd log 316
recording (RTE) 868

Oracle
recording 2-tier database 309

Oracle Configurator 768
Oracle NCA Vuser scripts

check connection mode 769
correlating 771
creating 753
recording guidelines 756
run-time settings 764
secure applications 767
servlet testing 768
963

Index
using Vuser functions 762
Oracle Web Applications 11i Vuser scripts

advanced GUI-based options 571
OrbixWeb 179
OTA, Over-The-Air 941
outgoing traffic 78
output arguments, Web Services 95
Output window 393

P

PAP, Push Access Protocol 940
parameterization

 See Also Volume I - Using VuGen
Tuxedo scripts 915
Web Services 35

parameters
optional 99

PeopleSoft Enterprise Vuser scripts
advanced GUI-based options 571

persistent connections, Web 627
policy files 148
pooling of connections 494
POP3 (Post Office) protocol 906
ports, multiple in Web Service 62
PPG, Push Proxy Gateway 940
Pragma mode 765
Preferences run-time settings 625
properties

AssignToParam (Web) 657
Expect (Web) 658
Frame (Web) 657
get and set for Web Services 155
MatchCase (Web) 657
OnFailure (Web) 658
Repeat (Web) 658
Report (Web) 658
text checks 657

protocols, See Vusers
proxy server

for WSDLs 42
run-time settings (Internet) 615

push support
Wireless and WAP 940

Q

Quality Center
importing from 46
Web service integration 69

R

Radius
run-time settings (WAP) 950
support 950

radius, for synchronization 290
raise tolerance 303
raw keyboard and mouse calls (RDP) 290
RDP Vuser scripts

recording 291
run-time settings 293
synchronizing replay 298

read only WinSock buffers 346
RealPlayer 929
recording

status, options 582
Web Services 56

recording at the cursor 792
recording engine 589
recording options

 See Also Volume I - Using VuGen
.NET Vusers 485
Advanced (Web, Wireless) 588
Code Generation (Citrix) 251
Code Generation, AMF 448
Code Generation, Flex 464
Code Generation, RDP 289
Corba Options 219
Database 314
Debug (Java) 217
Internet protocols 587
Java language 207–218
Login (Citrix) 252
Recorder (Java) 212
Recording (Web) 611
Recording .NET 486
RTE 868
RTE Configuration 867
Web 597
WinSock 340

recording Vuser scripts
AJAX 439
964

Index
AMF 441
Corba-Java 178
Database 313
DNS 335
Flex 461
FTP 459
LDAP 475
Mailing services 901
Oracle NCA 755
SAP (Click and Script) 808
SAPGUI 777
SAP-Web 811
Tuxedo 911
Window Sockets 337
Wireless 935

recursive elements, in WSDL 102
reduce tolerance 304
references, adding for .NET 523
regression testing, WSDL 49
rendezvous points

Java Vusers 392
modifying in Web scripts 681

Repeat property, Web Vusers 658
Report property, Web checks 658
reports

comparison of XML 51
Web Services scripts 163

resources
excluding in Web recordings 594

Results Summary report
Web Services Vusers 163

return codes
database 324

RMI-Java Vuser scripts
correlation options 216
debug options 217
Recorder options 212
recording 180
recording over IIOP 179
serialization options 214

row information, Database Vusers 320
RTE Vuser scripts

getting started 853
introducing 852
mapping PC keyboard 857
overview 851

reading text from screen 895
recording 859
run-time settings 878
steps in creating 853
synchronizing 883
using te functions 854

rules
adding from Correlation tab 707
advanced correlation 692
creating from correlation results 702
defining for correlation 694
testing in correlation 696

run-time settings
 See Also Volume I - Using VuGen
.NET environment 493
Browser Emulation node 620
Client Emulation (Oracle NCA) 765
Configuration (RDP) 293
ContentCheck node (Web) 637
debug information (WAP) 635
Gateway node (WAP) 946
Internet protocols (Web etc.) 613
Java 233–236
JMS 161
MMS 954
Oracle NCA 764
Preferences - Advanced 626
Preferences (Internet prtcls) 625
Proxy (Internet prtcls) 615
Radius (WAP) 950
RDP 293
RTE 878
Synchronization (RDP) 294
WAP 945

S

safearray log (COM) 420
SAML options 147
SAP (Click and Script) Vuser Scripts

about 807
SAPGUI Vuser scripts

auto logon recording options 796
code generation recording options

795
functions 824
965

Index
general recording options 794
inserting steps 797
recording 777
recording at the cursor 792
replaying 819
run-time settings 820
setting recording options 794
snapshots 797
using sapgui functions 824

SAPGUI/SAP-Web dual protocol 777
SAP-Web Vuser scripts

recording 811
recording options 814
run-time settings 817

Scan for Correlations command
Database Vusers 330

Script Generator, See VuGen
script level, RDP 289
script view

Web Services scripts 34
searching for text on screen (RTE) 896
security

attributes for Web Services Vusers 141
for importing WSDLs 42
policies for Web Services 141
setting for Web Services 145
tokens and encryption 141

security exceptions, .NET 500
SED utility 540
serialization (Java correlation) 226
Serialization options 215
server traffic

creating basic script 76
getting started with scripts 73

Service steps
modifying in tree view (Web) 683
properties dialog box 683

Service Test Management 69
services

deleting from list 49
management 38

Shift Japan Industry Standard (SIJS) 610
shifted coordinates 306
Siebel correlation library 835
Siebel-Web

correlating 688, 835

recording 834
troubleshooting 844

signatures, Web Service messages 144
SMTP protocol 907
snapshots

choosing which to display 86
Citrix Vusers 260
multiple RDP 302
SAPGUI Vusers 797
save replay snapshot locally 627
saving in Citrix recording 250
Web Services scripts 84
Winsock buffer 346
XML Vusers 720

SOA scripts
getting started 28

SOA tests
creating 27
parameterizing 35
running 159
viewing and editing 32

SOAP headers 111
SOAP requests, importing 65
SOAP response, saving 114
Solaris

ASCII translations 341
SSL

certificates for server traffic script 80
standard event-recording configuration

575–577
streaming data protocols

mms functions 932
RealPlayer functions 931
recording 930

Submit Data step
defined 559
dialog box (Web) 674
modifying-Web 673

Submit Form step
defined 559
dialog box 670
modifying 669

SWECount, correlating 843
synchronization failure

Citrix 268
RDP 300
966

Index
synchronization functions
generating for Citrix text 251
generating for RDP 298

Synchronization run-time settings (RDP) 294
synchronizing images 291
synchronizing Vuser scripts

block-mode (IBM) terminals 885
character-mode (VT) terminals 888
overview (RTE) 883
waiting for terminal to be silent 892
waiting for text to appear (RTE) 890
waiting for the cursor to appear 888

system variables
RTE 890
Tuxedo 918

T

te (RTE) functions 854
TE system variables 890
template

Java Vuser 387
Terminal Emulation 859
Terminal Services

Citrix Vusers 273
Terminal Setup dialog box 862
test results

Web Services Vusers 163
text

reading text from screen (RTE) 896
searching for text on screen (RTE) 896

text checks
defined 645
defining additional properties 657
flags 653

text synchronization
Citrix 251
RDP 298

text view (WinSock) 346
think time

dialog box (Web treeview) 682
modifying in Web scripts 682
recommended ratio for Siebel 847
threshold, Database 315
threshold, WinSock 343

thread, main (Java programming) 401

thread-safe code 400
threshold for setTimeout, setInterval 631
timeouts

Citrix connection 259
HTTP request 628
WAP connection 628

timestamp (Database) 316
tips

recording RDP 286
Token Substitution Testpad dialog box 696
token, parameterizing 690
tolerance level (RDP) 303, 304
toolkit

selecting for Web Services 45
traffic information, providing 78
traffic on server 71
transactions

modifying in Web scripts 680
Translation table settings 341
translation, ASCII on UNIX 341
transport layer, configuring 128
tree view

SOA tests 32
Web Services scripts 32

troubleshooting, .NET 500
TUXDIR environment setting 918
Tuxedo Vuser scripts

data buffers 917
developing 911
environment settings 918
log file 916
running 916
system variables 918
understanding 914
versions 919
viewing data files 917

typing style (RTE Vusers) 873

U

UDDI
information 43
search 45
specifying server information 45

undo buffer, emptying (WinSock) 353
URL Step Properties dialog box
967

Index
Web 664
URL steps

defined (Web Vusers) 559
modifying 663

URL-based mode 598
user handler, Web Services 154
user-agent browser emulation 621
UTF-8 conversion

in run-time settings 629
recording option 589

V

VB Vusers 382
VBScript Vusers 383
verification checks

RTE 895
sapgui 803
Web 625
Web (Click and Script) 551

virtual machine settings 161
Visigenic 179
Visual Studio

viewing scripts 492
VM (virtual machine) 209
VM run-time settings, Web Services 161
Vuser functions

AMF 449
ctrx (Citrix) 270
DNS 336
Flex 463
FTP 460
imap 904
Java 389
lrc (COM) 424
lrd (Database) 318
lreal 931
lrs (WinSock) 343
mapi 905
mms (MS Media Player) 932
Oracle NCA 762
pop3 906
sapgui (SAP) 824
smtp 907
te (RTE) 854
Web Services 163

Vuser Generator, See VuGen
Vuser information, obtaining (Java) 393
Vuser scripts

C support 379
custom 375
Java language recording 171
programming 375
run-time settings-Java 233–236
server traffic 71
SOA testing 27
streaming data 929
Web Services scripts 31

Vuser types
COM 424
Corba-Java 183
EJB testing 729
Java (programming) 385
list of 22
Media Player 929
Real Player 929

W

waiting, for terminal to stabilize(RTE) 892
WAP Vuser scripts

debug information 635
run-time settings 945

Web (Click and Script)
ActiveX support 631
Applet support 632
general options 630
history options 632
memory management 632
Navigator properties 632
timers 631

Web (Click and Script) Vuser scripts
about 534
adding steps 661
advanced GUI-based options 571
checking Web page content 637
content filtering 592
custom headers 590
deleting steps 662
Internet recording options 587
modifying 659
run-time settings 613
968

Index
selecting a recording level 598
setting recording options 569
troubleshooting tips 550
verifying text and images 643
viewing recorded functions 568

Web correlation 685
Web Event Recording Configuration dialog

box 576
Web performance graphs

generating for Web Vusers 626
Web Service calls

adding 87
adding new 62
properties 87
snapshots 84
viewing snapshot and properties 83

Web Services Vuser scripts
adding content 55
creating new scripts 27
functions 163
getting started 28
managing services 37
message signatures 144
parameterizing 35
recording 56
reporting tool 163
running 159
security policies 141
snapshots 84
user handlers 150
viewing and editing 32

Web to Java converter 540
Web Vuser scripts

adding steps 661
checks 643
content filtering 592
correlating 688
custom headers 590
custom request steps 677
deleting steps 662
functions 557
image checks 654
Internet recording options 587
introducing 531
modifying 659
recording options 597

run-time settings 613
sections 539
understanding 533
verifying text and images 643

Web-event-recording configuration
574–585

customizing 577–585
standard 575–577

wildcards, Citrix window names 271
window names, Citrix 249
Windows Sockets Vuser scripts

data buffers 359
data files 360
excluding sockets 342
getting started 338
recording 337
script and tree view 338
using lrs functions 343
viewing data files 359
working with data 345

WinInet engine (Internet protocols) 626
WinSock recording options 340
Wireless Vuser scripts

custom headers 590
getting started 937
Internet recording options 587
recording 935

workflow
for Web services 61

WS-Addressing 131
WSDL

list of operations 41
refreshing 49
viewing 54

WSDL documents
attachments 108
comparing 50
regression testing 49

WSxxx Tuxedo variables 918

X

XML
comparing files 53
custom requests 723
editing tree in Web Services 112
969

Index
parameterizing elements 35
testing 719

XML arrays 96
XP window style, Citrix 247
X-SYSTEM message (RTE) 885

Z

zlib headers 628
970

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /JPXEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG2000
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 100
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /JPXEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG2000
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 100
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f0062006500200050004400460020658768637b2654080020005000440046002f0058002d00310061003a0032003000300031002089c4830330028fd9662f4e004e2a4e1395e84e3a56fe5f6251855bb94ea46362800c52365b9a7684002000490053004f0020680751c6300251734e8e521b5efa7b2654080020005000440046002f0058002d00310061002089c483037684002000500044004600206587686376848be67ec64fe1606fff0c8bf753c29605300a004100630072006f00620061007400207528623763075357300b300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef67b2654080020005000440046002f0058002d00310061003a00320030003000310020898f7bc430025f8c8005662f70ba57165f6251675bb94ea463db800c5c08958052365b9a76846a196e96300295dc65bc5efa7acb7b2654080020005000440046002f0058002d003100610020898f7bc476840020005000440046002065874ef676848a737d308cc78a0aff0c8acb53c395b1201c004100630072006f00620061007400204f7f7528800563075357201d300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006600f800720073007400200073006b0061006c00200073006500730020006900670065006e006e0065006d00200065006c006c0065007200200073006b0061006c0020006f0076006500720068006f006c006400650020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e00670020006100660020006700720061006600690073006b00200069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002000660069006e006400650072002000640075002000690020006200720075006700650072006800e5006e00640062006f00670065006e002000740069006c0020004100630072006f006200610074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061003a0032003000300031002d006b006f006d00700061007400690062006c0065006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002e0020005000440046002f0058002d003100610020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020006600fc0072002000640065006e002000410075007300740061007500730063006800200076006f006e0020006700720061006600690073006300680065006e00200049006e00680061006c00740065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200034002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f00620065002000710075006500200073006500200064006500620065006e00200063006f006d00700072006f0062006100720020006f002000710075006500200064006500620065006e002000630075006d0070006c006900720020006c00610020006e006f0072006d0061002000490053004f0020005000440046002f0058002d00310061003a00320030003000310020007000610072006100200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200073006f0062007200650020006c0061002000630072006500610063006900f3006e00200064006500200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020006c00610020006e006f0072006d00610020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000710075006900200064006f006900760065006e0074002000ea0074007200650020007600e9007200690066006900e900730020006f0075002000ea00740072006500200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061003a0032003000300031002c00200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200070006c007500730020006400650020006400e9007400610069006c007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061002c00200076006f006900720020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200034002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
 /JPN <FEFF30b030e930d530a330c330af30b330f330c630f330c4306e590963db306b5bfe3059308b002000490053004f00206a196e96898f683c306e0020005000440046002f0058002d00310061003a00320030003000310020306b6e9662e03057305f002000410064006f0062006500200050004400460020658766f830924f5c62103059308b305f3081306b4f7f75283057307e30593002005000440046002f0058002d0031006100206e9662e0306e00200050004400460020658766f84f5c6210306b306430443066306f3001004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200034002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020c791c131d558b294002000410064006f0062006500200050004400460020bb38c11cb2940020d655c778c7740020d544c694d558ba700020adf8b798d53d0020cee8d150d2b8b97c0020ad50d658d558b2940020bc29bc95c5d00020b300d55c002000490053004f0020d45cc900c7780020005000440046002f0058002d00310061003a0032003000300031c7580020addcaca9c5d00020b9dec544c57c0020d569b2c8b2e4002e0020005000440046002f0058002d003100610020d638d65800200050004400460020bb38c11c0020c791c131c5d00020b300d55c0020c790c138d55c0020c815bcf4b2940020004100630072006f0062006100740020c0acc6a90020c124ba85c11cb97c0020cc38c870d558c2edc2dcc624002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200034002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200073006b0061006c0020006b006f006e00740072006f006c006c0065007200650073002c00200065006c006c0065007200200073006f006d0020006d00e50020007600e6007200650020006b006f006d00700061007400690062006c00650020006d006500640020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e006400610072006400200066006f007200200075007400760065006b0073006c0069006e00670020006100760020006700720061006600690073006b00200069006e006e0068006f006c0064002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020007300650020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200063006100700061007a0065007300200064006500200073006500720065006d0020007600650072006900660069006300610064006f00730020006f0075002000710075006500200064006500760065006d00200065007300740061007200200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061003a0032003000300031002c00200075006d0020007000610064007200e3006f002000640061002000490053004f002000700061007200610020006f00200069006e007400650072006300e2006d00620069006f00200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400ed007600650069007300200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000750073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200034002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b00610020007400610072006b0069007300740065007400610061006e00200074006100690020006a006f006900640065006e0020007400e400790074007900790020006e006f00750064006100740074006100610020005000440046002f0058002d00310061003a0032003000300031003a007400e400200065006c0069002000490053004f002d007300740061006e006400610072006400690061002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e00200073006900690072007400e4006d00690073007400e4002000760061007200740065006e002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0064006f006b0075006d0065006e0074007400690065006e0020006c0075006f006d0069007300650073007400610020006f006e0020004100630072006f0062006100740069006e0020006b00e400790074007400f6006f0070007000610061007300730061002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200034002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200073006b00610020006b006f006e00740072006f006c006c006500720061007300200065006c006c0065007200200073006f006d0020006d00e50073007400650020006d006f0074007300760061007200610020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e00200020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d00200068007500720020006d0061006e00200073006b00610070006100720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00610020005000440046002d0064006f006b0075006d0065006e0074002000660069006e006e00730020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e002000740069006c006c0020004100630072006f006200610074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200034002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings when submitting to HP. These settings require font embedding.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

