
HP QuickTest Professional for
Business Process Testing

Software Version: 9.5

User’s Guide

Manufacturing Part Number: T6513-90035

Document Release Date: January 2008

Software Release Date: January 2008

2

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty
statements accompanying such products and services. Nothing herein should be construed as
constituting an additional warranty. HP shall not be liable for technical or editorial errors or
omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

Third-Party Web Sites

HP provides links to external third-party Web sites to help you find supplemental
information. Site content and availability may change without notice. HP makes no
representations or warranties whatsoever as to site content or availability.

Copyright Notices

© 1992 - 2008 Hewlett-Packard Development Company, L.P.

Trademark Notices

Adobe® and Acrobat® are trademarks of Adobe Systems Incorporated.

Intel®, Pentium®, and Intel® Xeon™ are trademarks of Intel Corporation in the U.S. and
other countries.

Java™ is a US trademark of Sun Microsystems, Inc.

Microsoft®, Windows®, Windows NT®, and Windows® XP are U.S registered trademarks of
Microsoft Corporation.

Oracle® is a registered US trademark of Oracle Corporation, Redwood City, California.

Unix® is a registered trademark of The Open Group.

SlickEdit® is a registered trademark of SlickEdit Inc.

3

Documentation Updates

This manual’s title page contains the following identifying information:

• Software version number, which indicates the software version

• Document release date, which changes each time the document is updated

• Software release date, which indicates the release date of this version of the software

To check for recent updates, or to verify that you are using the most recent edition of a
document, go to:

http://ovweb.external.hp.com/lpe/doc_serv/

http://ovweb.external.hp.com/lpe/doc_serv/

4

Support

You can visit the HP Software Support Web site at: www.hp.com/go/hpsoftwaresupport

HP Software online support provides an efficient way to access interactive technical support
tools. As a valued support customer, you can benefit by using the support site to:

• Search for knowledge documents of interest

• Submit and track support cases and enhancement requests

• Download software patches

• Manage support contracts

• Look up HP support contacts

• Review information about available services

• Enter into discussions with other software customers

• Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many
also require a support contract. To find more information about access levels, go to:
http://h20230.www2.hp.com/new_access_levels.jsp

To register for an HP Passport ID, go to:
http://h20229.www2.hp.com/passport-registration.html

http://www.hp.com/go/hpsoftwaresupport
http://h20230.www2.hp.com/new_access_levels.jsp
http://h20229.www2.hp.com/passport-registration.html

5

Table of Contents

Welcome to This Guide ...15
How This Guide Is Organized ...16
Who Should Read This Guide ...17
QuickTest Professional Online Documentation18
Additional Online Resources...20
Typographical Conventions..21

PART I: INTRODUCING BUSINESS PROCESS TESTING

Chapter 1: Introduction ..25
About Using QuickTest Professional for Business Process Testing27
Understanding Business Process Testing...28
Setting Required Access Permissions...37
Using the Sample Site..38
Modifying License Information ..39
Updating QuickTest Software..39

Table of Contents

6

Chapter 2: QuickTest at a Glance ...41
Starting QuickTest ...42
Connecting to Your Quality Center Project44
QuickTest Window..50
Keyword View..55
Application Area..56
Function Library..58
Start Page ...59
Information Pane ..61
Available Keywords Pane...62
Resources Pane ..63
Missing Resources Pane ...64
Process Guidance Panes...65
Debug Viewer Pane..66
Using QuickTest Commands...67
Browsing the QuickTest Professional Program Folder89
Viewing Product Information ...93

PART II : WORKING WITH TEST OBJECTS AND OBJECT REPOSITORIES

Chapter 3: Understanding the Test Object Model.............................99
About Understanding the Test Object Model.....................................99
Applying the Test Object Model Concept ..103
Viewing Object Properties and Methods Using the Object Spy108

Chapter 4: Working with Objects ...113
About Working with Objects ..114
Understanding Object Repository Types ..115
Understanding the Object Repository Window120
Viewing and Modifying Test Object Properties130
Mapping Repository Parameter Values ...152
Adding Test Objects to an Object Repository156
Defining New Test Objects..164
Copying, Pasting, and Moving Objects in the Object Repository....166
Deleting Objects from the Object Repository169
Locating Objects..170
Working with Test Objects During a Run Session177
Exporting Local Objects to a Shared Object Repository178

Chapter 5: Configuring Object Identification181
About Configuring Object Identification ...181
Understanding the Object Identification Dialog Box.......................183
Configuring Smart Identification..196
Mapping User-Defined Test Object Classes206

Table of Contents

7

Chapter 6: Managing Object Repositories209
About Managing Object Repositories..210
Understanding the Object Repository Manager212
Working with Object Repositories ..219
Managing Objects in Shared Object Repositories224
Working with Repository Parameters ...230
Modifying Object Details ..235
Locating Test Objects ..240
Performing Merge Operations...241
Performing Import and Export Operations.......................................242
Managing Object Repositories Using Automation245

Chapter 7: Merging Shared Object Repositories..............................247
About Merging Shared Object Repositories248
Understanding the Object Repository Merge Tool250
Using Object Repository Merge Tool Commands.............................256
Defining Default Settings ..261
Merging Two Object Repositories ...266
Updating a Shared Object Repository from Local Object

Repositories ...268
Viewing Merge Statistics..275
Understanding Object Conflicts ...276
Resolving Object Conflicts ..279
Filtering the Target Repository Pane ...281
Finding Specific Objects ..283
Saving the Target Object Repository ...284

Chapter 8: Comparing Shared Object Repositories289
About Comparing Shared Object Repositories..................................290
Understanding the Object Repository Comparison Tool291
Using Object Repository Comparison Tool Commands...................295
Understanding Object Differences ..299
Changing Color Settings ...300
Comparing Object Repositories ..301
Viewing Comparison Statistics..303
Filtering the Repository Panes...304
Synchronizing Object Repository Views ...305
Finding Specific Objects ..306

Table of Contents

8

PART II I: DEFINING FUNCTIONS AND OTHER PROGRAMMING TASKS

Chapter 9: Working in Function Library Windows...........................311
About Working in the Function Library Window............................312
Generating Statements in a Function Library...................................312
Navigating in Function Libraries ..317
Understanding Basic VBScript Syntax...325
Using Programmatic Descriptions...332
Running and Closing Applications Programmatically344
Using Comments, Control-Flow, and Other VBScript

Statements...345
Retrieving and Setting Test Object Property Values352
Accessing Run-Time Object Properties and Methods354
Running DOS Commands...356
Enhancing Your Tests and Function Libraries Using the

Windows API...356
Choosing Which Steps to Report During the Run Session...............360

Chapter 10: Customizing Function Library Windows363
About Customizing Function Library Windows...............................363
Customizing Editor Behavior ..364
Customizing Element Appearance..367
Personalizing Editing Commands...369

Chapter 11: Working with User-Defined Functions and
Function Libraries ...373

About Working with User-Defined Functions and
Function Libraries ...374

Managing Function Libraries ..375
Working with Associated Function Libraries387
Using the Function Definition Generator ..390
Registering User-Defined Functions as Test Object Methods404
Additional Tips for Working with User-Defined Functions409

Table of Contents

9

PART IV: WORKING WITH APPLICATION AREAS AND COMPONENTS

Chapter 12: Working with Application Areas...................................413
About Working with Application Areas..414
Creating an Application Area..417
Opening an Application Area..419
Defining General Settings ...421
Managing Function Libraries ..426
Managing Shared Object Repositories...432
Managing Keywords ..439
Defining Additional Settings...443
Saving an Application Area ...451
Deleting an Application Area ..453

Chapter 13: Working with Business Components............................455
About Working with Business Components.....................................456
Creating a New Business Component...458
Opening a Business Component...461
Saving a Business Component ..464
Working with Manual Components...467
Changing the Application Area Associated with a Component.......472
Printing a Component ..474

Chapter 14: Creating Scripted Components475
About Scripted Components ...476
Creating a Scripted Component ...478
Converting to Scripted Components ..481
Converting a Business Component to a Scripted Component.........482
Converting an Action to a Scripted Component..............................482

Chapter 15: Working with the Keyword View..................................507
About Working with the Keyword View...508
Understanding the Keyword View ..509
Adding a Step to Your Component...514
Adding Other Types of Steps to Your Component532
 Modifying the Parts of a Step ...532
Working with Parameters..533
Working with Comments ...541
Managing Component Steps...543
Using Keyboard Commands in the Keyword View544
Defining Keyword View Display Options ...545
Working with Breakpoints in the Keyword View551

Table of Contents

10

Chapter 16: Understanding Checkpoints ...553
About Understanding Checkpoints ..553
Adding New Checkpoints to a Component......................................554
 Understanding Types of Checkpoints..555

Chapter 17: Checking Object Property Values557
About Checking Object Property Values ..557
Creating Standard Checkpoints ..558
Understanding the Checkpoint Properties Dialog Box559
Modifying Checkpoints...564

Chapter 18: Checking Bitmaps ...565
About Checking Bitmaps ..565
Checking a Bitmap ..566

Chapter 19: Outputting Values...571
About Outputting Values ..571
Creating Output Values...572
Outputting Property Values ..573
Specifying the Output Type and Settings ...578

PART V: CONFIGURING SETTINGS

Chapter 20: Setting Global Testing Options581
About Setting Global Testing Options ..581
Using the Options Dialog Box ..582
Setting General Testing Options ...584
Setting Folder Testing Options..588
Setting Run Testing Options ...591

Chapter 21: Working with Business Component Settings597
About Working with Business Component Settings598
Using the Business Component Settings Dialog Box599
Working with Component Properties ..601
Defining a Snapshot for Your Component.......................................604
Viewing Application Settings ..606
Viewing Component Resources ..608
Defining Parameters for Your Component.......................................609
Viewing Recovery Scenario Settings..613

Table of Contents

11

PART VI: RUNNING AND ANALYZING COMPONENTS

Chapter 22: Running Components ...617
About Running Components..617
Running Your Entire Component...618
Running Part of Your Component..622

Chapter 23: Viewing Run Session Results ...625
About Viewing Run Session Results ..626
The Test Results Window ..627
Viewing the Results of a Run Session..633
Deleting Run Results ..651
Manually Submitting Defects Detected During a Run Session

to a Quality Center Project ...660
Customizing the Test Results Display ...661

Chapter 24: Analyzing Run Session Results665
Analyzing Smart Identification Information in the Test Results......665
Viewing Checkpoint Results ...670
Viewing Parameterized Values and Output Value Results

in the Test Results Window ..674

PART VII: MAINTAINING AND DEBUGGING COMPONENTS

Chapter 25: Debugging Components and Function Libraries681
About Debugging Components and Function Libraries...................682
Slowing a Debug Session ...683
Using the Single Step Commands...684
Using the Run to Step and Debug from Step Commands687
Pausing a Run Session ...689
Using Breakpoints ...690
Using the Debug Viewer..694
Handling Run Errors..696
Practicing Debugging a Function..698

Chapter 26: Maintaining Components ...701
Why Components Fail ..701
Running Components with the Maintenance Run Wizard704
Updating a Component Using the Update Run Mode Option720

PART VIII : WORKING WITH THE QUICKTEST IDE

Chapter 27: QuickTest Window Layout ..729
Modifying the QuickTest Window Layout729
Working With Multiple Documents ...738

Table of Contents

12

Chapter 28: Handling Missing Resources ...741
About Handling Missing Resources...742
 Handling Missing Environment Variables Files...............................745
Handling Missing Function Libraries..746
Handling Missing Shared Object Repositories748
Handling Missing Recovery Scenarios ..750
Handling Unmapped Shared Object Repository Parameter

Values..753

Chapter 29: Adding Keywords to Your Component755
Understanding the Available Keywords Pane755

Chapter 30: Managing Resources ...759
Understanding the Resources Pane...759

Chapter 31: Working with Process Guidance...................................763
Process Guidance Panes...764
Opening Process Guidance..766
Managing the List of Available Processes..767

PART IX: WORKING WITH ADVANCED FEATURES

Chapter 32: Defining and Using Recovery Scenarios773
About Defining and Using Recovery Scenarios774
Deciding When to Use Recovery Scenarios776
Defining Recovery Scenarios ...777
Understanding the Recovery Scenario Wizard781
Managing Recovery Scenarios ...806
Associating Recovery Scenarios with Your Application Areas811
Programmatically Controlling the Recovery Mechanism815

Chapter 33: Automating QuickTest Operations817
About Automating QuickTest Operations ..818
Deciding When to Use QuickTest Automation Scripts.....................819
Choosing a Language and Development Environment for

Designing and Running Automation Scripts820
Learning the Basic Elements of a QuickTest Automation Script822
Generating Automation Scripts ..823
Using the QuickTest Automation Reference.....................................824

Table of Contents

13

PART X: APPENDIX

Appendix A: Frequently Asked Questions...827
Creating Components ...827
Working with Function Libraries ..828
Working with Dynamic Content ..829
Advanced Web Issues ..831
Standard Windows Environment..833
Component Maintenance ...834
Improving QuickTest Performance ...835

Appendix B: Creating Custom Process Guidance Packages837
About Process Guidance Packages...837
Understanding the Package Configuration File838
Creating Data Files ..841
Installing Custom Process Guidance Packages in QuickTest842

Index..843

Table of Contents

14

15

Welcome to This Guide

Welcome to the QuickTest Professional for Business Process Testing User’s
Guide, which explains how to use QuickTest Professional when working
with HP Business Process Testing. This guide describes how to use QuickTest
to create and manage the application areas on which components are based,
including how to define the various resource files used by components. It
also describes how to work with keyword-driven business components and
scripted components for Business Process Testing in QuickTest Professional.

Business Process Testing is fully integrated with QuickTest and Quality
Center, and is enabled if your license includes Business Process Testing
support.

This chapter includes:

 ➤ How This Guide Is Organized on page 16

 ➤ Who Should Read This Guide on page 17

 ➤ QuickTest Professional Online Documentation on page 18

 ➤ Additional Online Resources on page 20

 ➤ Typographical Conventions on page 21

Welcome to This Guide

16

How This Guide Is Organized

This guide contains the following parts:

 Part I Introducing Business Process Testing

Provides an overview of QuickTest and the main stages of the testing process
when working with Business Process Testing.

 Part II Working with Test Objects and Object Repositories

Introduces the test object model and describes how QuickTest identifies
objects in your application. It describes how to work with objects, configure
object identification, and create Smart Identification definitions. It also
describes how to manage, merge, and compare object repositories.

 Part III Defining Functions and Other Programming Tasks

Describes how to enhance your components using function libraries, how to
customize the function library window, and how to work with user-defined
functions and function libraries in QuickTest.

 Part IV Working with Application Areas and Components

Describes how to create and manage application areas, which include all the
resources and settings used by components. This part also describes how to
create and work with business components, scripted components, and the
Business Component Keyword View, and how to work with checkpoints and
output values.

 Part V Configuring Settings

Describes how to modify QuickTest settings to meet your business process
testing needs.

 Part VI Running and Analyzing Components

Describes how to run components and their associated function libraries,
and how to view and analyze run results.

Welcome to This Guide

17

 Part VII Maintaining and Debugging Components

Describes how to control run sessions to identify and isolate bugs in your
components and function libraries.

 Part VIII Working with the QuickTest IDE

Describes how to modify the QuickTest layout, how to manage testing
resources, and how to work with process guidance.

 Part IX Working with Advanced Features

Describes how to work with recovery scenarios, and how to automate
QuickTest operations.

 Part X Appendix

Provides information on frequently asked questions about QuickTest and
describes how to create customized process guidance packages.

Who Should Read This Guide

This guide is intended for Automation Engineers who are using QuickTest
Professional to work with Business Process Testing. Automation Engineers
should be experts in automated testing using QuickTest Professional,
knowledgeable in keyword-driven testing methodology and processes, and
experienced in VBScript programming.

Automation Engineers work together with Subject Matter Experts to create
business process tests. Subject Matter Experts use the Business Components
module of Quality Center to create business process tests, using resources
created by the Automation Engineers. The Business Components module of
Quality Center is described in the HP Business Process Testing User’s Guide.

Welcome to This Guide

18

QuickTest Professional Online Documentation

QuickTest Professional includes the following online documentation:

Readme provides the latest news and information about QuickTest. Choose
Start > Programs > QuickTest Professional > Readme.

QuickTest Professional Installation Guide explains how to install and set up
QuickTest. Choose Help > Printer-Friendly Documentation > HP QuickTest
Professional Installation Guide.

QuickTest Professional Tutorial teaches you basic QuickTest skills and shows
you how to design tests for your applications. Choose Help > HP QuickTest
Professional Tutorial.

Product Feature Movies provide an overview and step-by-step instructions
describing how to use selected QuickTest features. Choose Help > Product
Feature Movies.

Printer-Friendly Documentation displays the complete documentation set in
Adobe portable document format (PDF). Online books can be viewed and
printed using Adobe Reader, which can be downloaded from the Adobe Web
site (http://www.adobe.com). Choose Help > Printer-Friendly Documentation.

QuickTest Professional Help includes:

➤ What’s New in QuickTest Professional describes the newest features,
enhancements, and supported environments in the latest version of
QuickTest.

➤ QuickTest User's Guide describes how to use QuickTest to test your
application.

➤ QuickTest for Business Process Testing User's Guide provides step-by-step
instructions for using QuickTest to create and manage assets for use with
Business Process Testing.

➤ QuickTest Professional Add-ins Guide describes how to work with
supported environments using QuickTest add-ins, and provides
environment-specific information for each add-in.

http://www.adobe.com

Welcome to This Guide

19

➤ QuickTest Object Model Reference describes QuickTest test objects, lists
the methods and properties associated with each object, and provides
syntax information and examples for each method and property.

➤ QuickTest Advanced References contains documentation for the
following QuickTest COM and XML references:

➤ QuickTest Automation provides syntax, descriptive information, and
examples for the automation objects, methods, and properties. It also
contains a detailed overview to help you get started writing QuickTest
automation scripts. The automation object model assists you in
automating test management, by providing objects, methods and
properties that enable you to control virtually every QuickTest feature
and capability.

➤ QuickTest Test Results Schema documents the test results XML
schema, which provides the information you need to customize your
test results.

➤ QuickTest Test Object Schema documents the test object XML schema
schema, which provides the information you need to extend test
object support in different environments.

➤ QuickTest Object Repository Schema documents the object repository
XML schema, which provides the information you need to edit an
object repository file that was exported to XML.

➤ QuickTest Object Repository Automation documents the Object
Repository automation object model, which provides the information
you need to manipulate QuickTest object repositories and their
contents from outside of QuickTest.

➤ VBScript Reference contains Microsoft VBScript documentation,
including VBScript, Script Runtime, and Windows Script Host.

To access the QuickTest Professional Help, choose Help > QuickTest
Professional Help. You can also access the QuickTest Professional Help by
clicking in selected QuickTest windows and dialog boxes and pressing F1.
Additionally, you can view a description, syntax, and examples for a
QuickTest test object, method, or property by placing the cursor on it and
pressing F1.

Welcome to This Guide

20

Additional Online Resources

Mercury Tours sample Web site is the basis for many examples in this guide.
The URL for this Web site is newtours.demoaut.com.

Knowledge Base opens directly to the Knowledge Base landing page on the
Mercury Customer Support Web site. Choose Help > Knowledge Base. The
URL for this Web site is support.mercury.com/cgi-bin/portal/CSO/kbBrowse.jsp.

Customer Support Web site accesses the HP Software Support Web site. This
site enables you to browse the Support Knowledge Base and add your own
articles. You can also post to and search user discussion forums, submit
support requests, download patches and updated documentation, and more.
Choose Help > Customer Support Web site. The URL for this Web site is
www.hp.com/go/hpsoftwaresupport.

Most of the support areas require that you register as an HP Passport user
and sign in. Many also require a support contract.

To find more information about access levels, go to:
http://h20230.www2.hp.com/new_access_levels.jsp

To register for an HP Passport user ID, go to:
http://h20229.www2.hp.com/passport-registration.html

Send Feedback enables you to send online feedback about QuickTest
Professional to the product team. Choose Help > Send Feedback.

HP Software Web site accesses the HP Software Web site. This site provides
you with the most up-to-date information on HP Software products. This
includes new software releases, seminars and trade shows, customer support,
and more. Choose Help > HP Software Web site. The URL for this Web site
is www.hp.com/go/software.

http://newtours.demoaut.com
http://support.mercury.com/cgi-bin/portal/CSO/kbBrowse.jsp
http://www.hp.com/go/hpsoftwaresupport
http://h20230.www2.hp.com/new_access_levels.jsp
http://h20229.www2.hp.com/passport-registration.html
http://www.hp.com/go/software

Welcome to This Guide

21

Typographical Conventions

This guide uses the following typographical conventions:

UI Elements and
Function Names

This style indicates the names of interface elements on
which you perform actions, file names or paths, and
other items that require emphasis. For example, “Click
the Save button.” It also indicates method or function
names. For example, "The wait_window statement has
the following parameters:"

Arguments This style indicates method, property, or function
arguments and book titles. For example, “Refer to the
HP User’s Guide.”

<Replace Value> Angle brackets enclose a part of a file path or URL
address that should be replaced with an actual value.
For example, <MyProduct installation folder>\bin.

Example This style is used for examples and text that is to be
typed literally. For example, “Type Hello in the edit
box.”

CTRL+C This style indicates keyboard keys. For example, “Press
ENTER.”

[] Square brackets enclose optional arguments.

{ } Curly brackets indicate that one of the enclosed values
must be assigned to the current argument.

... In a line of syntax, an ellipsis indicates that more items
of the same format may be included. In a
programming example, an ellipsis is used to indicate
lines of a program that were intentionally omitted.

| A vertical bar indicates that one of the options
separated by the bar should be selected.

Welcome to This Guide

22

Part I

Introducing Business Process Testing

24

25

1
Introduction

Welcome to QuickTest Professional for Business Process Testing. Business
Process Testing enables non-technical Subject Matter Experts (working in
Quality Center) to collaborate effectively with Automation Engineers
(working in QuickTest Professional). Together, you can build, document,
and run business process tests, without requiring programming knowledge
on the part of the Subject Matter Expert.

Note: QuickTest Professional is Unicode compliant, according to Unicode
Standard requirements (http://www.unicode.org/standard/standard.html). This
enables you to add and update VBScript statements for testing applications
developed in many international languages. Unicode represents the
required characters using 8-bit or 16-bit code values. You can test
non-English language applications, as long as the relevant Windows
language support is installed on the computer on which QuickTest
Professional is installed (Start > Settings > Control Panel > Regional Options
or similar).

http://www.unicode.org/standard/standard.html

Chapter 1 • Introduction

26

This guide describes the QuickTest Professional features and options that
enable you—the Automation Engineer—to create and modify the
automated resources required for Business Process Testing, as well as create
components, which are the building blocks of business process tests.

Note: Although you can also use QuickTest to create scripted components
for use in business process tests, this guide focuses on the functionality and
features associated primarily with business components. You can find
information on the differences between scripted components and business
components in QuickTest in Chapter 14, “Creating Scripted Components.”

This chapter includes:

 ➤ About Using QuickTest Professional for Business Process Testing on page 27

 ➤ Understanding Business Process Testing on page 28

 ➤ Setting Required Access Permissions on page 37

 ➤ Using the Sample Site on page 38

 ➤ Modifying License Information on page 39

 ➤ Updating QuickTest Software on page 39

Chapter 1 • Introduction

27

About Using QuickTest Professional for Business Process
Testing

Business Process Testing is a role-based testing model. It enables Automation
Engineers and Subject Matter Experts to work together to test an
application’s business processes during the application’s development life
cycle.

Automation Engineers are experts in automated testing. They use QuickTest
to define the resources and settings needed to create components, which are
the building blocks of business process tests.

Subject Matter Experts understand the various parts of the application being
tested, as well as the business processes that need to be tested, however they
may not necessarily have the programming knowledge needed to create
automated tests. They use the Business Components and Test Plan modules
in Quality Center to create keyword-driven business process tests.

Integration between QuickTest and Quality Center enables the Automation
Engineer to effectively create and maintain the required resources and
settings, while enabling Subject Matter Experts to create and implement
business process tests in a script-free environment, without the need for
programming knowledge.

Note: Each organization defines the roles of Automation Engineer and
Subject Matter Expert according to its needs. This guide assumes that you
are performing the role of the Automation Engineer as defined above, and
that the role of Subject Matter Expert is performed by other personnel in
your organization. However, these roles are flexible and depend on the
abilities and time resources of the personnel using Business Process Testing.
There are no product-specific rules or limitations controlling which roles
must be defined in a particular organization, or which types of users can do
which Business Process Testing tasks (provided that the users have the
correct permissions).

Chapter 1 • Introduction

28

Understanding Business Process Testing

Business Process Testing enables structured testing of an application by
combining test automation and automatically generated,
easy-to-understand test documentation. Business Process Testing is not
dependent on the completion of detailed testing scripts. This enables
applications to be tested manually before automated tests are ready. This
also enables business process tests to be created and implemented more
quickly than other automated tests, enabling potential performance issues
to be detected earlier in the development process, before downtime can
occur.

Components are easily-maintained, reusable units that perform a specific
task. They are the building blocks of business process tests. Each component
is comprised of several application steps that are logically performed
together in a specific order. For example, in a Web application, a login
component might be comprised of four steps. Its first step could be to open
the application. Its second step could be to enter a user name. Its third step
could be to enter a password, and its last step could be to click the Submit
button on the Web page. By creating and calling functions stored in
function libraries, you can enhance the component with additional logic to
test important details of the login task.

By design, each component tests a specific part of an application. When
combined, components are incorporated into a business process test in a
serial flow representing the main tasks performed within a particular
business process. For example, a business process test for a flight reservation
application may include a login component, a flight finder component, a
flight reservation component, a purchasing component, and a logout
component. The flight finder, flight reservation, and purchasing
components might be reused several times within the same business process
test to test multiple reservation scenarios. The test might also include a
component that resets the application between flight reservations, enabling
the test to perform multiple iterations of flight reservations. The task of
creating and running components and business process tests is generally
performed by Subject Matter Experts working in Quality Center.

Chapter 1 • Introduction

29

Due to the modularity and reusability of components, they can be used in
multiple business process tests. For example, the same login and logout
components could be used in conjunction with an analysis (report)
component that tests the report and graph generation process in the
application, or with a frequent flyer component that tests the business
process of subscribing to a frequent flyer program.

QuickTest provides two types of components: business components and
scripted components. Business components (also known as keyword-driven
components) are fully integrated with both QuickTest and Quality Center,
enabling both you and Subject Matter Experts to create, modify, and run
them. Scripted components are more complex components containing
programming logic. Due to their complexity, scripted components can be
created and modified only in QuickTest. Subject Matter Experts can view
scripted components in Quality Center and incorporate them in business
process tests, but they cannot modify them.

Note: Although you can also use QuickTest to create scripted components
for use in business process tests, this guide focuses on the functionality and
features associated with business components. For information on the
differences between scripted components and business components, as well
as information on working with scripted components, see Chapter 14,
“Creating Scripted Components.”

Before automated testing resources are available, Subject Matter Experts can
define manual steps in the Design Steps tab of each component (using the
Quality Center Business Components module). They can add these manual
components to a business process test and run the steps manually using the
Quality Center Manual Runner. As they define components, Subject Matter
Experts can add comments in the Discussion Area of the Details tab (in the
Quality Center Business Components module). This enables them to enter
any additional information or remarks that they want to communicate to
you, the Automation Engineer, such as requests for new operations, future
changes planned for the component, or alternative tests in which the
component can be used.

Chapter 1 • Introduction

30

During this design phase, you can work with the Subject Matter Experts to
define which resources and settings are needed for each component. You
can then create individual application areas for the various parts of your
application based on real testing needs. The application area specifies the
settings and resource files used by components when working with business
process tests. When a Subject Matter Expert creates a component, the
component is always associated with a particular application area, enabling
it to access these settings and resource files. After you create the application
area and define its settings and resource files, the Subject Matter Expert can
incorporate these automated testing resources in business component steps,
convert any existing manual components to automated components, and
create new automated components.

You can use QuickTest process guidance to guide you through the process of
creating a business component. For more information, see “Working with
Process Guidance” on page 763.

Understanding the Application Area

The application area is the foundation upon which components are built.
An application area provides a single point of maintenance for all elements
associated with the testing of a specific part of an application.

In the application area, you can define specific settings that are relevant for
testing a particular part of your application. For example, you can define
settings that instruct QuickTest to load specific add-ins at the start of a run
session, run a component only on specified applications, activate a recovery
scenario under particular conditions, and so forth. You can also specify the
keywords that are available to any component that is associated with that
particular application area.

An important aspect of application areas are the resource files that can be
used by a component. After you create these resource files you store them in
the same Quality Center project used by the Subject Matter Experts who
create and run the business process tests for the specific application. Typical
resource files include function libraries and shared object repositories.

Chapter 1 • Introduction

31

You create, populate, and maintain shared object repository files that are
used by QuickTest to identify the objects in your application. You define and
modify test object information in shared object repositories using the
QuickTest Object Repository Manager. After you associate shared object
repository files with the application area, you can prioritize them according
to relevance. By associating a shared object repository with an application
area, any component based on that application area will have access to all of
its test objects and other elements. For more information, see Chapter 4,
“Working with Objects,” and Chapter 6, “Managing Object Repositories.”

You also create function libraries that contain functions, or operations (also
known as keywords), that can be called by a component. These functions
contain programming logic that encapsulates the steps needed to perform a
particular task, and they enhance the functionality of the component that
calls them. You can use QuickTest to create these function libraries. You can
also use the QuickTest Function Definition Generator to insert basic
function definitions, and then complete each function by adding its code.

After you associate function library files with an application area, you can
prioritize them according to relevance. By associating a function library
with an application area, any component based on that application area will
have access to all public functions defined within that function library. For
more information on working with function libraries, see Chapter 11,
“Working with User-Defined Functions and Function Libraries.”

You can create multiple application areas—each one focusing on a particular
part (area) of the application being tested. For example, for a flight
reservation application, one application area could be created for the login
module, another application area for the flight search module, another for
the flight reservation module, and still another for the billing module. For
more information on application areas, see Chapter 12, “Working with
Application Areas.”

In addition to creating and maintaining the resource files associated with
the application areas, you can also use QuickTest to debug components and
their associated function libraries. You can also create components in
QuickTest, although this is more often done by Subject Matter Experts using
Quality Center. For more information, see Chapter 13, “Working with
Business Components.”

Chapter 1 • Introduction

32

You can use QuickTest process guidance to guide you through the process of
creating an application area. For more information, see “Working with
Process Guidance” on page 763.

Creating Components in the Quality Center Business
Components Module
The Subject Matter Expert creates new components and defines them in the
Quality Center Business Components module.

The Business Component module includes the following:

➤ Details tab. Provides a general summary of the component’s purpose or
goals, and the condition of the application before and after a component is
run (its pre-conditions and post-conditions).

➤ Snapshot tab. Displays an image that provides a visual cue or description of
the component’s purpose or operations.

➤ Parameters tab. Specifies the input and output component parameter values
for the business component. Implementing and using parameters enables a
component to receive data from an external source and to pass data to other
components in the business process test flow.

Business Components
module tabs

Quality Center
common toolbar

Components
tree

Menu bar

Toolbar

Quality Center
sidebar

Chapter 1 • Introduction

33

➤ Design Steps tab. Enables you to create or view the manual steps of your
business component, and to automate it if required.

➤ Automation tab. Displays or provides access to automated components. For
keyword-driven components, enables you to create and modify the steps of
your automated business component in a keyword-driven, table format, and
provides a plain-language textual description of each step of the
implemented component.

➤ Used by tab. Provides details about the business process tests that include
the currently selected component. The tab also includes a link to the
relevant business process test in the Test Plan module.

Creating Business Process Tests in the Quality Center Test
Plan Module
To create a business process test, the Subject Matter Expert selects (drags and
drops) the components that apply to the business process test and
configures their run settings.

Note: When you run a business process test from Quality Center, the test
run may also be influenced by settings in the QuickTest Remote Agent. For
more information on the QuickTest Remote Agent, refer to the QuickTest
Professional User's Guide.

Each component can be used differently by different business process tests.
For example, in each test the component can be configured to use different
input parameter values or run a different number of iterations.

If, while creating a business process test, the Subject Matter Expert realizes
that a component has not been defined for an element that is necessary for
the business process test, the Subject Matter Expert can submit a component
request from the Test Plan module.

Chapter 1 • Introduction

34

Understanding the Business Process Testing Workflow
The Business Process Testing workflow may differ according to your testing
needs. Following is an example of a common workflow:

The following steps can be performed simultaneously
and in any order, as required

Create manual components in Quality Center
with Business Process Testing

Add manual steps to components and convert to
automated QuickTest components

Configure application area and build
object repositories

Add programmatic testing functionality in
function libraries and compiled modules

Drag components to build business process tests

Insert steps in the Keyword View based on
defined manual steps

Debug components in QuickTest

Debug business process tests by running them
from Quality Center

Add business process tests to Quality Center test
sets and run tests (manual and automatic runs)

Subject Matter
Expert

Subject Matter
Expert or Automation

Engineer

Automation
Engineer

Subject Matter
Expert

Subject Matter
Expert

Automation
Engineer

Automation
Engineer

Subject Matter
Expert

Subject Matter
Expert

Chapter 1 • Introduction

35

Understanding QuickTest Professional for Business
Process Testing Terminology
The following terminology, specific to QuickTest Professional for Business
Process Testing, is used in this guide:

Application Area. A collection of resources and settings that are used for the
creation and implementation of business components. These include
function libraries, shared object repositories, keywords, testing preferences,
and other testing resources, such as recovery scenarios. An application area
provides a single point of maintenance for all elements associated with the
testing of a specific part of your application. You can define separate
application areas for each part of your application and then associate your
components with the appropriate application areas.

Business Component (or Component). An easily-maintained, reusable unit
comprising one or more steps that perform a specific task. Business
components may require input values from an external source or from other
components, and they can return output values to other components.

Also known as Keyword-Driven Component.

Manual Component. A non-automated business component created in
Quality Center. In QuickTest, you can view and work with manual
components only after converting them to automated business
components.

Scripted Component. An automated component that can contain
programming logic and can be edited in QuickTest using the Keyword View,
the Expert View, and other QuickTest tools and options.

Keyword View. A spreadsheet-like view that enables tests and components
to be created, viewed, and debugged using a keyword-driven, modular, table
format.

Function Library. A document containing VBScript functions, subroutines,
modules, and so forth. These functions can be used as operations (keywords)
in components. You can create and debug function library documents using
the QuickTest function library editor.

Chapter 1 • Introduction

36

Business Process Test. A scenario comprising a serial flow of business
components, designed to test a specific business process of an application.

Component Input Parameters. Variable values that a business component
can receive and use as the values for specific, parameterized steps in the
component.

Component Output Parameters. Values that a business component can
return. These values can be viewed in the business process test results and
can also be used as input for a component that is used later in the test.

Local Input Parameters. Variable values defined within a component. These
values can be received and used by a later parameterized step in the same
component.

Local Output Parameters. Values that an operation or a component step can
return for use within the same component. These values can be viewed in
the business process test results and can also be used as input for a later step
in the component.

Roles. The various types of users who are involved in Business Process
Testing.

Automation Engineer. An expert in QuickTest Professional automated
testing. The Automation Engineer defines and manages the resources that
are needed to create and work with business components. The Automation
Engineer creates application areas that specify all of the resources and
settings needed to enable Subject Matter Experts to create business
components and business process tests in Quality Center. The Automation
Engineer can create and modify function libraries, and populate a shared
object repository with test objects that represent the different objects in the
application being tested. The Automation Engineer can also create and
debug business components in QuickTest.

Subject Matter Expert. A person who has specific knowledge of the
application logic, a high-level understanding of the entire system, and a
detailed understanding of the individual elements and tasks that are
fundamental to the application being tested. The Subject Matter Expert uses
Quality Center to create and run components and business process tests.

Chapter 1 • Introduction

37

Setting Required Access Permissions

You must make sure the following access permissions are set in order to run
QuickTest Professional.

Permissions Required to Run QuickTest Professional

You must have the following file system permissions:

➤ Full read and write permissions for all the files and folders under the folder
in which QuickTest is installed

➤ Full read and write permissions to the Temp folder

➤ Read permissions to the Windows folder and to the System folder

You must have the following registry key permissions:

➤ Full read and write permissions to all the keys under
HKEY_CURRENT_USER\Software\Mercury Interactive

➤ Read and Query Value permissions to all the HKEY_LOCAL_MACHINE and
HKEY_CLASSES_ROOT keys

Permissions Required When Working with Quality Center

You must have the following Quality Center permissions:

➤ Full read and write permissions to the Quality Center cache folder

➤ Full read and write permissions to the QuickTest Add-in for Quality Center
installation folder

Chapter 1 • Introduction

38

Permissions Required When Working with Business Process
Testing

The Quality Center Project Administrator can control access to a project by
defining which users can log in to it and by specifying the types of tasks
each user may perform. The Quality Center Project Administrator can assign
permissions for adding, modifying, and deleting folders, components, steps,
and parameters in the Business Components module of a Quality Center
project.

Note: To modify application areas, you must have the required permissions
for modifying components, and adding, modifying, and deleting steps. All
four permissions are required. If one of these permissions is not assigned,
you can open application areas only in read-only format.

You need to make sure you have the required Quality Center permissions
before working with business components and application areas. For more
information on setting user group permissions in the Business Components
module, refer to the Business Process Testing User’s Guide.

Using the Sample Site

Many examples in this guide use the Mercury Tours sample Web site. The
URL for this Web site is: http://newtours.demoaut.com.

Note that you must register a user name and password to use this site.

A sample Flight Windows-based application is also provided with the
QuickTest Professional installation. You can access it from Start > Programs
> QuickTest Professional > Sample Applications > Flight.

http://newtours.demoaut.com

Chapter 1 • Introduction

39

Modifying License Information

Working with QuickTest requires a license. When you install QuickTest, you
select one of the following license types:

➤ a permanent seat license that is specific to the computer on which it is
installed

➤ a network-based concurrent license that can be used by multiple QuickTest
users

You can change your license type at any time (as long as you are logged in
with administrator permissions on your computer). For example, if you are
currently working with a seat license, you can choose to connect to a
concurrent license server, if one is available on your network.

For information on modifying your license information, refer to the
QuickTest Professional Installation Guide.

Updating QuickTest Software

By default, QuickTest automatically checks for online software updates each
time you start the application. You can also manually check for updates at
any time by choosing Help > Check for Updates from within QuickTest, or
by choosing Start > Programs > QuickTest Professional > Check for Updates.

If updates are available, you can choose which ones you want to download
and (optionally) install. Follow the on-screen instructions for more
information.

Tip: You can disable automatic checking for updates by clearing the Check
for software updates on startup check box in the General tab of the Options
dialog box. To open the Options dialog box, choose Tools > Options.

Chapter 1 • Introduction

40

41

2
QuickTest at a Glance

This chapter explains how to start QuickTest and introduces the QuickTest
window.

This chapter includes:

 ➤ Starting QuickTest on page 42

 ➤ Connecting to Your Quality Center Project on page 44

 ➤ QuickTest Window on page 50

 ➤ Keyword View on page 55

 ➤ Application Area on page 56

 ➤ Function Library on page 58

 ➤ Start Page on page 59

 ➤ Information Pane on page 61

 ➤ Available Keywords Pane on page 62

 ➤ Resources Pane on page 63

 ➤ Missing Resources Pane on page 64

 ➤ Process Guidance Panes on page 65

 ➤ Debug Viewer Pane on page 66

 ➤ Using QuickTest Commands on page 67

 ➤ Browsing the QuickTest Professional Program Folder on page 89

 ➤ Viewing Product Information on page 93

Chapter 2 • QuickTest at a Glance

42

Starting QuickTest

To start QuickTest, choose Programs > QuickTest Professional > QuickTest
Professional in the Start menu, or double-click the QuickTest Professional
shortcut on your desktop.

The first time you start QuickTest, the Add-in Manager dialog box opens,
displaying the currently installed add-ins. Select the add-ins you want to
load.

Tip: If you do not want this dialog box to open the next time you start
QuickTest, clear the Show on startup check box.

Chapter 2 • QuickTest at a Glance

43

Note: QuickTest remembers the add-ins you load so that the next time you
open QuickTest, the add-ins you selected in the previous session are selected
by default. For best performance, it is recommended to clear any add-ins
that are not needed for a particular session.

For more information on installing, loading, and working with add-ins, see
the HP QuickTest Professional Installation Guide and the HP QuickTest
Professional Add-ins Guide.

Click OK. The QuickTest Professional window opens displaying the Start
Page and a blank test. To access a blank test, click the Test tab.

Chapter 2 • QuickTest at a Glance

44

In the Start page, you can:

➤ Click a QuickTest process guidance link for best practices on working
with QuickTest. If your organization has its own custom process
guidance, you may be able to click the link for it in the Process Guidance
List.

➤ Click a shortcut button to open a new or existing test or function library.
If business process testing is enabled, you can also open a new or existing
business component or application area.

➤ Click the links in the What’s New section to learn more about the new
features provided with this version of QuickTest.

For more information on the Start Page, see “Start Page” on page 59.

Connecting to Your Quality Center Project

To work with business process testing, you must connect QuickTest to the
Quality Center server on which your Quality Center project is stored. This
server handles the connections between QuickTest and your Quality Center
project. For Business Process Testing, you can connect from QuickTest
Professional 9.0 or later only to Quality Center 9.0 or later.

Your Quality Center project stores component and run session information
for the application you are testing, including all of the resource files and
settings needed to create and run business process tests. The first time you
connect QuickTest to a Quality Center server and project, QuickTest sets up
default Business Process Testing folders and files in your project. This
enables you to prepare the resources and settings needed for business
components, as well as create, work with, and debug business components
using the intuitive, keyword-driven Keyword View.

Note: Quality Center projects are password protected, so you must provide a
user name and a password.

Chapter 2 • QuickTest at a Glance

45

To connect QuickTest to a Quality Center server:

 1 Choose File > Quality Center Connection or click the Quality Center
Connection toolbar button. The Quality Center Connection - Server
Connection dialog box opens.

 2 In the Server URL box, type the URL address of the Web server where
Quality Center is installed.

Note: You can choose a Quality Center server accessible via a Local Area
Network (LAN) or a Wide Area Network (WAN).

 3 To automatically reconnect to the Quality Center server the next time you
open QuickTest, select the Reconnect to server on startup check box.

Chapter 2 • QuickTest at a Glance

46

 4 Click Connect. The Quality Center Connection dialog box opens.

The Quality Center server name is displayed in read-only format in the
Server URL box.

 5 In the User name box, type your Quality Center user name.

 6 In the Password box, type your Quality Center password.

Chapter 2 • QuickTest at a Glance

47

 7 Click Authenticate to authenticate your user information against the
Quality Center server.

After your user information has been authenticated, the fields in the
Authenticate user information area are displayed in read-only format. The
Authenticate button changes to a Change User button.

Tip: You can log in to the same Quality Center server using a different user
name by clicking Change User, and then entering a new user name and
password and clicking Authenticate again.

 8 In the Domain box, select the domain that contains the Quality Center
project. Only those domains that you have permission to connect to are
displayed.

 9 In the Project box, select the project with which you want to work. Only
those projects that you have permission to connect to are displayed.

 10 Click Login.

 11 To automatically reconnect to the Quality Center server the next time you
open QuickTest, select the Reconnect to server on startup check box.

 12 If the Reconnect to server on startup check box is selected, then the
Authenticate on startup check box is enabled. To automatically authenticate
your user information the next time you open QuickTest, select the
Authenticate on startup check box.

 13 If the Authenticate on startup check box is selected, the Login to project on
startup check box is enabled. To log in to the selected project on startup,
select the Login to project on startup check box.

Note: The first time you connect to a Quality Center server, QuickTest sets
up default Business Process Testing folders and files in your Quality Center
project.

Chapter 2 • QuickTest at a Glance

48

 14 Click Close to close the Quality Center Connection dialog box. The Quality
Center icon is displayed on the status bar to indicate that QuickTest is
currently connected to a Quality Center project.

Tip: To view the current Quality Center connection, point to the Quality
Center icon on the status bar. A tooltip displays the Quality Center server
name and project to which QuickTest is connected. To open the Quality
Center Connection dialog box, double-click the Quality Center icon.

Disconnecting QuickTest from Quality Center
You can disconnect QuickTest from a Quality Center project or from a
Quality Center server at any time. Note that if you disconnect QuickTest
from a Quality Center server without first disconnecting from a project, the
QuickTest connection to that project database is automatically
disconnected. However, do not disconnect QuickTest from Quality Center
while a QuickTest component, application area, or shared resource (such as
a shared object repository) is opened from Quality Center, or while
QuickTest is using a shared resource from Quality Center.

Chapter 2 • QuickTest at a Glance

49

To disconnect QuickTest from Quality Center:

 1 Choose File > Quality Center Connection or click the Quality Center
Connection toolbar button. The Quality Center Connection dialog box
opens.

 2 To disconnect QuickTest from the selected project, in the Step 3: Login to
project area, click Logout.

 3 To disconnect QuickTest from the selected Quality Center server, in the
Step 1: Connect to server area, click Disconnect.

Tip: You can log in to the same Quality Center server using a different user
name by clicking Change User and then entering a new user name and
password and clicking Authenticate again.

 4 Click Close to close the Quality Center Connection dialog box.

Chapter 2 • QuickTest at a Glance

50

QuickTest Window

The QuickTest window displays your testing documents in the document
area.

You can work on one component or application area and one or more
function libraries simultaneously. (For your convenience, you can display
one active document in the document area, or you can cascade or tile your
open documents.) For more information, see “Working With Multiple
Documents” on page 738.

Document Area

The document area of the QuickTest window can display the following:

➤ Business Component. Enables you to create, view, and modify your business
component using keywords and operations. For more information, see
Chapter 15, “Working with the Keyword View.”

➤ Scripted Component. Enables you to create, view, and modify your scripted
component in Keyword View or Expert View (described below). For more
information on scripted components, see Chapter 14, “Creating Scripted
Components.” For more information on the Expert View, see the
HP QuickTest Professional User’s Guide.

➤ Application Area. Enables you to define resources and settings for your
components. For more information, see Chapter 12, “Working with
Application Areas.”

➤ Function Library. Enables you to create, view, and modify functions
(operations) for use with your component. For more information, see
Chapter 11, “Working with User-Defined Functions and Function Libraries.”

➤ Start Page. Welcomes you to QuickTest and provides links to Process
Guidance. You can use the shortcut buttons to open new and existing
documents. For more information, see “Start Page” on page 59.

Chapter 2 • QuickTest at a Glance

51

Key Elements in the QuickTest Window

In addition to the document area, the QuickTest window contains the
following key elements:

➤ QuickTest title bar. Displays the name of the active document. If changes
have been made since it was last saved, an asterisk (*) is displayed next to
the document name in the title bar.

➤ Menu bar. Displays menus of QuickTest commands.

➤ Standard toolbar. Contains buttons to assist you in managing your
document.

➤ Automation toolbar. Contains buttons to assist you in the testing process.

➤ Debug toolbar. Contains buttons to assist you in debugging your document.
(Not displayed by default)

➤ Edit toolbar. Contains buttons to assist you in editing your function library.

➤ Insert toolbar. Contains buttons to assist you when working with
statements in your function library.

➤ Tools toolbar. Contains buttons with tools to assist you in the testing
process.

➤ View toolbar. Contains buttons to assist you in viewing your document.

➤ Action toolbar. Contains buttons and a list of actions, enabling you to view
the details of an individual action or the entire test flow. (Not displayed by
default)

➤ Document tabs and scroll arrows. Enables you to navigate open documents
in the document area by selecting the tab of the document you want to
activate (bring into focus). When there is not enough space in the
document area to display all of the tabs simultaneously, you can use the left
and right arrows to scroll between your open documents.

➤ Keyword View. Contains each step, in a modular, icon-based table. For more
information, see Chapter 15, “Working with the Keyword View.”

➤ Status bar. Displays the status of the QuickTest application and other
relevant information.

Chapter 2 • QuickTest at a Glance

52

You can show or hide the following panes from the View menu:

➤ Debug Viewer pane. Assists you in debugging your document. The Debug
Viewer pane contains the Watch, Variables, and Command tabs.

➤ Information pane. Displays a list of syntax errors found in your function
library scripts.

➤ Missing Resources pane. Provides a list of the resources that are specified in
your component but cannot be found, such as unmapped shared object
repositories and parameters that are connected to shared object repositories.
The Missing Resources pane then enables you to locate or remove them
from your application area.

➤ Process Guidance panes. Displays two panes that provide procedures and
descriptions on how to best perform specific processes, such as creating a
component in QuickTest. The Process Guidance Activities pane lists the
activities that you can perform, such as adding steps to a component. The
Process Guidance Description pane describes the tasks that you need to
perform for a selected activity. Your organization may also provide you with
process guidance that is accessible from these panes.

➤ Available Keywords pane. Displays all the keywords available to your
component. Enables you to drag and drop objects or calls to functions into
your component.

➤ Resources pane. Displays all the resources associated with your current
component and enables you to view and open these resources.

Chapter 2 • QuickTest at a Glance

53

You can customize the layout of the QuickTest window by moving, resizing,
displaying, or hiding most of the elements. QuickTest remembers your
preferred layout settings and opens subsequent sessions with your
customized layout. For more information, see “Modifying the QuickTest
Window Layout” on page 729.

Title bar
Menu bar

Toolbars

Missing
Resources
Pane

Keyword
View

Document
tabs

Chapter 2 • QuickTest at a Glance

54

Changing the Appearance of the QuickTest Window
By default, the QuickTest window uses the Microsoft Office 2003 theme. You
can change the look and feel of the main QuickTest window, as required.

To change the appearance of the main QuickTest window:

In the QuickTest window, choose View > Window Theme, and then select
the way the window should appear from the list of available themes. For
example, you can apply a Microsoft Office 2000 or Microsoft Windows XP
theme.

Note: You can apply the Microsoft Windows XP theme to the QuickTest
window only if your computer is set to use a Windows XP theme.

Tip: You can also change the theme used for the Test Results window. For
more information, see “Changing the Appearance of the Test Results
Window” on page 632.

Chapter 2 • QuickTest at a Glance

55

Keyword View

The Keyword View enables you to create and view the steps of your
component in a keyword-driven, modular, table format. The Keyword View
is comprised of a table-like view, in which each step is a separate row in the
table, and each column represents different parts of the steps. You can
modify the columns displayed to suit your requirements.

You create and modify components by selecting items and operations in the
Keyword View and entering information as required. Each step is
automatically documented as you complete it, enabling you to view a
description of your test steps in understandable English.

Keyword View columns

Steps

Chapter 2 • QuickTest at a Glance

56

Application Area

Each business component is based on an application area that provides it
with settings and links to specific resource files, such as function library
files, shared object repositories (that contain the test objects used by the
application), associated add-ins, and recovery scenario files. You define
these assets in the application area window.

The application area window contains four panes that are accessed by the
buttons in the left sidebar:

General. Displays general information about the application area and
enables you to modify its general settings, such as specifying associated
add-ins, recovery scenarios, and other settings.

Function Libraries. Enables you to associate function libraries with this
application area and to prioritize them.

Object Repositories. Enables you to associate shared object repositories with
this application area and to prioritize them.

Keywords. Enables you to set the keywords that are available to this
application area and to view their individual properties.

Chapter 2 • QuickTest at a Glance

57

For more information, see Chapter 12, “Working with Application Areas.”

Title bar
Menu bar
Toolbars

Sidebar

Document
tabs

Application
Area pane
(General pane)

Chapter 2 • QuickTest at a Glance

58

Function Library

QuickTest provides a built-in editor that enables you to create and debug
function libraries using the same editing features that are available in the
Expert View. Each function library is a separate QuickTest document
containing VBscript functions, subroutines, classes, modules, and so forth.
Each function library opens in its own window, in addition to the
component that is already open. You can work on one or several function
libraries at the same time. After you finish editing a function library, you
can close it, leaving your QuickTest session open. You can also close all open
function libraries simultaneously. For more information, see Chapter 11,
“Working with User-Defined Functions and Function Libraries.”

Title bar
Menu bar

Toolbars

Debug Viewer
pane

Function
document
window

Document
tabs

Chapter 2 • QuickTest at a Glance

59

Start Page

The Start Page welcomes you to QuickTest and describes the new features in
this release—including links to more information about these features. It
also provides links to Process Guidance, a tool that offers best practices for
working with QuickTest. If your organization has descriptions for its own
custom processes, these processes may also be available from the Process
Guidance List. (For more information, see “Working with Process Guidance”
on page 763.)

Chapter 2 • QuickTest at a Glance

60

You can open a document from the list of Recently Used Files, or you can
click the buttons in the Welcome! area to open new or existing documents:

Tip: If you do not want QuickTest to display the Start Page when you next
open QuickTest, select the Don’t show the Start Page window on startup
check box. When you select this option, the Start Page is also automatically
hidden for the current QuickTest session as soon as you open another
QuickTest document. To display the Start Page again, choose View > Start
Page.

Click to...

Open a new test.

Open a new business component.

Open a new application area.

Open a new function library.

Open an existing test.

Open an existing business component.

Open an existing application area.

Open an existing function library.

Chapter 2 • QuickTest at a Glance

61

Information Pane

The Information pane provides a list of syntax errors in your function
library scripts. To show or hide the Information pane, choose
View > Information or click the Information button.

You can double-click a syntax error to locate the error in the function
library, and then correct it. For more information, see “Handling VBScript
Syntax Errors” on page 330.

Chapter 2 • QuickTest at a Glance

62

Available Keywords Pane

The Available Keywords pane enables you to drag and drop objects or calls
to functions into your component. When you drag and drop an object into
your component, QuickTest inserts a step with the default operation for that
object. When you drag and drop a function into your component,
QuickTest inserts a call to that function. To view the Available Keywords
pane, click the Available Keywords Pane button or choose View > Available
Keywords.

For more information, see “Understanding the Available Keywords Pane” on
page 755.

Chapter 2 • QuickTest at a Glance

63

Resources Pane

Components are associated with resources such as function libraries,
recovery scenarios, and object repositories (via an application area).
QuickTest displays all the resources associated with a component in the
Resources pane. The Resources pane enables you to view and open all of the
resources in your component. To view the Resources pane, click the
Resources Pane button or choose View > Resources.

For more information, see “Understanding the Resources Pane” on
page 759.

Chapter 2 • QuickTest at a Glance

64

Missing Resources Pane

The Missing Resources pane provides a list of the resources that are specified
in your test but cannot be found. Missing resources can include missing
function libraries, missing recovery scenarios, a missing XML file used to
store environment variables, unmapped shared object repositories, and
parameters that are connected to shared object repositories. To show or hide
the Missing Resources pane, choose View > Missing Resources or click the
Missing Resource button.

Each time you open your function library, QuickTest automatically checks
that all specified resources are accessible. If it finds any resources that are not
accessible, QuickTest lists them in the Missing Resources pane. If the Missing
Resources pane is not currently displayed, QuickTest automatically opens it
when a missing resource is detected.

You can double-click a missing resource to remap it or remove it. You can
also filter the pane to display a specific type of missing resource, such as
Missing Object Repository and hide the other types.

For more information, see “Handling Missing Resources” on page 741.

Chapter 2 • QuickTest at a Glance

65

Process Guidance Panes

Process guidance is a tool that provides procedures and descriptions on how
to best perform specific processes. You use process guidance to learn about
new processes and to learn the preferred methodology for performing
processes with which you are already familiar.

Process guidance is displayed in two panes: the Process Guidance Activities
pane and the Process Guidance Description pane. You display or hide these
panes by choosing View > Process Guidance or clicking the Process
Guidance panes toggle button.

The Process Guidance Activities pane (shown on the left) lists the activities
that are part of the selected process. The Process Guidance Description pane
(shown on the right) displays the topic (description), for the selected
activity. For more information, see Chapter 31, “Working with Process
Guidance.”

Chapter 2 • QuickTest at a Glance

66

Debug Viewer Pane

The Debug Viewer pane contains three tabs to assist you in debugging your
function library—Watch, Variables, and Command. To view the Debug
Viewer pane, choose View > Debug Viewer.

Watch

The Watch tab enables you to view the current value of any variable or
VBScript expression that you added to the Watch tab.

Variables

During a run session, the Variables tab displays the current value of all
variables that have been recognized up to the last step performed in the run
session.

Command

The Command tab enables you to run a line of script to set or modify the
current value of a variable or VBScript object in your function library. When
you continue the run session, QuickTest uses the new value that was set in
the command.

For more information on using the Debug Viewer pane, see Chapter 25,
“Debugging Components and Function Libraries.”

Chapter 2 • QuickTest at a Glance

67

Using QuickTest Commands

You can select QuickTest commands from the menu bar or from a toolbar.
QuickTest displays a different set of commands and toolbar buttons for
components and application areas. Each set is customized for the type of
document you are creating or modifying. You can also perform some
QuickTest commands by pressing shortcut keys or selecting commands from
context-sensitive (right-click) menus. The menus and toolbars are enabled
according to the active document type.

Most commands are available from the menu bar or by pressing shortcut
keys. You can perform frequently used QuickTest commands by clicking
buttons on the toolbars. For more information, see:

➤ “Clicking Commands on a Toolbar” on page 68

➤ “File Menu Commands” on page 71

➤ “Edit Menu Commands” on page 74

➤ “View Menu Commands” on page 77

➤ “Insert Menu Commands” on page 78

➤ “Automation Menu Commands” on page 79

➤ “Resources Menu Commands” on page 80

➤ “Debug Menu Commands” on page 81

➤ “Tools Menu Commands” on page 83

➤ “Window Menu Commands” on page 84

➤ “Help Menu Commands” on page 85

➤ “Data Table Menu Commands” on page 87

➤ “Other QuickTest Commands” on page 88

Chapter 2 • QuickTest at a Glance

68

Clicking Commands on a Toolbar
You can perform some QuickTest commands by clicking buttons on the
toolbars. QuickTest has the following built-in toolbars—the Standard
toolbar, the Edit toolbar, the Automation toolbar, the View toolbar, the
Insert toolbar, the Tools toolbar, and the Debug toolbar, and the Action
toolbar.

Notes:

➤ Not all toolbars are relevant for all document types. Only those toolbars
that are relevant for components, application areas, and function
libraries are described here.

➤ You can display, hide, or move the toolbars, but you cannot customize
them.

Standard Toolbar

The Standard toolbar contains buttons for managing a component,
application area, or function library.

For information on the Standard toolbar buttons, see “File Menu
Commands” on page 71 and “Resources Menu Commands” on page 80.

Note: The icons for the New and Open buttons change depending on the
type of active document, such as component, application area, or function
library.

Chapter 2 • QuickTest at a Glance

69

For more information on working with business components, see
Chapter 13, “Working with Business Components.” For more information
on working with scripted components, see Chapter 14, “Creating Scripted
Components.” For more information on working with application areas, see
Chapter 12, “Working with Application Areas.” For more information on
working with function libraries, see Chapter 11, “Working with User-
Defined Functions and Function Libraries.”

Automation Toolbar

The Automation toolbar contains buttons for recording and running your
component.

For information on the Automation toolbar buttons, see “Automation Menu
Commands” on page 79.

Debug Toolbar

The Debug toolbar contains buttons for the commands used when
debugging the steps in your component and any associated function library.

For information on the Debug toolbar buttons, see “Insert Menu
Commands” on page 78.

Edit Toolbar

The Edit toolbar contains buttons for the commands used when editing
your function library.

For information on the Edit toolbar buttons, see “Edit Menu Commands”
on page 74.

Chapter 2 • QuickTest at a Glance

70

Insert Toolbar

The Insert toolbar contains buttons for the commands used when working
with function libraries.

For information on the Insert toolbar buttons, see “Insert Menu
Commands” on page 78.

Note: Only the Step Generator and Function Definition Generator buttons
are relevant for function libraries. None of these buttons are relevant for
components.

Tools Toolbar

The Tools toolbar contains buttons for the commands used to access tools
that assist you when working with your test.

For information on the Tools toolbar buttons, see “Tools Menu Commands”
on page 83.

The Check Syntax button is relevant for only for function libraries (and
QuickTest tests), and not for components.

View Toolbar

The View toolbar contains buttons for viewing different elements of the
QuickTest window.

For information on the View toolbar buttons, see “View Menu Commands”
on page 77.

Chapter 2 • QuickTest at a Glance

71

Note: The Active Screen and Data Table buttons apply only to tests.

Performing QuickTest Commands

In addition to performing frequently-used commands by clicking toolbar
buttons, you can perform most QuickTest commands by choosing the
relevant menu option. You can also perform some QuickTest commands by
pressing the relevant shortcut keys.

File Menu Commands
You can manage your component, application area, or function library
using the following File menu commands:

Command Shortcut Key Function

New > Test CTRL+N Creates a new test.

New > Business
Component

CTRL+SHIFT+N Creates a new business
component.

New > Scripted
Component

Creates a new scripted
component.

New > Application
Area

CTRL+ALT+N Creates a new application area.

New > Function
Library

SHIFT+ALT+N Creates a new function library.

Open > Test CTRL+O Opens an existing test.

Open >
Business/Scripted
Component

CTRL+SHIFT+O Opens an existing business or
scripted component.

Open > Application
Area

CTRL+ALT+O Opens an existing application
area.

Open > Function
Library

SHIFT+ALT+O Opens an existing function
library.

Chapter 2 • QuickTest at a Glance

72

Close Closes the active function
library.

Close All Function
Libraries

Closes all open function
libraries.

Quality Center
Connection

Opens the Quality Center
Connection dialog box, enabling
you to connect to a Quality
Center project.

Tip: Double-click the Quality
Center icon on the status bar to
manage your connection.
Point to the Quality Center icon
on the status bar to view
connection information.

Save CTRL+S Saves the active document.

Save As Opens the relevant Save dialog
box so you can save the open
document.

Save All Saves all open documents.

Enable Editing Makes read-only function
libraries editable.

Export Test to Zip File CTRL+ALT+S Creates a zip file of the active
document.

Import Test from Zip
File

CTRL+ALT+I Imports a document from a zip
file.

Convert to Scripted
Component

CTRL+ALT+C Converts a business component
to a scripted component.

Print CTRL+P Prints the active document.

Command Shortcut Key Function

Chapter 2 • QuickTest at a Glance

73

Many of the File menu commands are also available from the Standard
toolbar (described on page 68).

Print Preview Displays the Keyword View as it
will look when printed and
enables you to modify the page
setup.

Process Guidance
Management

Opens the Process Guidance
Management dialog box,
enabling you to manage the list
of processes that are available in
QuickTest.

Settings Opens the Settings dialog box,
enabling you to define settings
for the open document. (Not
relevant for function libraries)

Change Application
Area

Enables you to associate the
component with a different
application area.

Associate Library
’<Function Library
Name>’ with
’<Document Name>’

Associates the active function
library with the open document.
(Available only from function
libraries)

Recent Files Lists the recently viewed files.

Exit Closes the QuickTest session.

Command Shortcut Key Function

Chapter 2 • QuickTest at a Glance

74

Edit Menu Commands
You can manage your component or function library steps using the
following Edit menu commands:

Command Shortcut Key Function

Undo CTRL+Z Reverses the last command or
deletes the last entry you typed.

Redo CTRL+Y Reverses the action of the Undo
command.

Cut CTRL+X Removes the selection from
your document.

Copy CTRL+C Copies the selection from your
document.

Paste CTRL+V Pastes the selection to your
document.

Delete DELETE Deletes the selection from your
document.

Copy Documentation
to Clipboard

Copies the content of the
Documentation column of the
Keyword View, enabling you to
paste it in an external
application.

Action > Split Action Separates an action into two
sibling actions or into parent-
child nested actions.

Action > Rename
Action

SHIFT+F2 Changes the name of an action.

Action > Delete
Action

Enables you to remove the
selected call to the action, or
delete the action and its calls
from the active test.

Chapter 2 • QuickTest at a Glance

75

Action > Action
Properties

Enables you to specify options,
parameters, and associated
object repositories for a stored
action.

Action > Action Call
Properties

Enables you to specify the
number of run iterations
according to the number of
rows in the Data Table, and to
define the values of input
parameters and the storage
location of output parameters.

Step Properties >
Comment Properties

CTRL+ENTER;
ALT+ENTER

Opens the Comment Properties
dialog box for a comment step.

Step Properties >
Object Properties

CTRL+ENTER;
ALT+ENTER

Opens the Object Properties
dialog box for a selected object.

Step Properties >
Checkpoint
Properties

Opens the relevant Checkpoint
Properties dialog box for a
selected object.

Step Properties >
Output Value
Properties

Opens the relevant Output
Value Properties dialog box for a
selected object.

Step Properties >
Report Properties

CTRL+ENTER;
ALT+ENTER

Displays the Report Properties
dialog box for a report step.

Find CTRL+F Searches for a specified string.

Replace CTRL+H Searches and replaces a specified
string.

Go To CTRL+G Moves the cursor to a particular
line in the component.

Bookmarks CTRL+B Creates bookmarks in your
script for easy navigation.

Advanced >
Comment Block

CTRL+M Comments out the current row,
or selected rows.

Command Shortcut Key Function

Chapter 2 • QuickTest at a Glance

76

Many of the Edit menu commands are also available from the Edit toolbar
(described on page 69).

Advanced >
Uncomment Block

CTRL+SHIFT+M Removes the comment
formatting from the current or
selected rows.

Advanced > Indent TAB Indents the step according to
the tab spacing defined in the
Editor Options dialog box.

Advanced > Outdent BACKSPACE Outdents the step (reduces the
indentation) according to the
tab spacing defined in the
Editor Options dialog box.

Advanced > Go to
Function Definition

ALT+G Navigates to the definition of
the selected function.

Advanced >
Complete Word

CTRL+SPACE Completes the word when you
type the beginning of a
VBScript method or object.

Advanced >
Argument Info

CTRL+SHIFT+
SPACE

Displays the syntax of a
method.

Advanced > Apply
“With” to Script

CTRL+W Generates With statements for
the action displayed in the
Expert View.

Advanced > Remove
“With” Statements

CTRL+SHIFT+W Converts any With statements
in the action displayed in the
Expert View to regular (single-
line) VBScript statements.

Optional Step Inserts an optional step (a step
that is not required to
successfully complete a run
session).

Command Shortcut Key Function

Chapter 2 • QuickTest at a Glance

77

View Menu Commands
You can manage the way that QuickTest is displayed on your screen using
the following View menu commands:

Some of the View menu commands are also available from the View toolbar
(described on page 70).

Command Function

Start Page Opens the Start Page. (Enabled only when the Start
Page is closed)

Active Screen Displays the Active Screen. (Relevant only for tests)

Data Table Displays the Data Table. (Relevant only for tests)

Debug Viewer Shows and hides the Debug Viewer Pane.

Information Shows and hides the Information Pane.

Missing Resources Shows and hides the Missing Resources Pane.

Process Guidance Shows and hides the Process Guidance Panes.

Available Keywords Shows and hides the Available Keywords Pane.

Test Flow Shows and hides the Test Flow Pane. (Relevant
only for tests)

Resources Shows and hides the Resources Pane.

Expand All Expands all steps in the Keyword View.

Collapse All Collapses all steps in the Keyword View.

Keyword View Displays the Keyword View if the Expert View is
displayed. (Relevant only for tests)

Expert View Displays the Expert View if the Keyword View is
displayed. (Relevant only for tests)

Toolbars Enables you to show and hide QuickTest toolbars.

Window Theme Enables you to select a theme to apply to your
QuickTest window.

Chapter 2 • QuickTest at a Glance

78

Insert Menu Commands
You can insert various types of component and function library steps using
the following Insert menu commands:

Some of the Insert menu commands are also available from the Insert
toolbar (described on page 70).

Command Shortcut Key Function

Checkpoint >
Standard Checkpoint

F12 Opens the Checkpoint
Properties dialog box, enabling
you to create a standard
checkpoint for an object.

Output Value >
Standard Output
Value

CTRL+F12 Opens the Output Value
Properties dialog box, enabling
you to create a standard output
value for an object.

Step Generator F7 Opens the Step Generator.
(Relevant only for function
libraries)

Function Definition
Generator

Opens the Function Definition
Generator. (Relevant only for
function libraries)

New Step F8; INSERT Inserts a new step in the
Keyword View.

Operation Inserts an operation (function)
step in a component.

Comment Inserts a Comment step in the
Keyword View.

Chapter 2 • QuickTest at a Glance

79

Automation Menu Commands
You can manage your record and run sessions using the following
Automation menu commands:

Command Shortcut Key Function

Record F3 Starts a recording session.

Run F5 Starts a run session from the
beginning or from the line at
which the session was paused.

Stop F4 Stops the recording or run
session.

Run Current Action Runs only the active action.

Run from Step CTRL+F5 Starts a run session from the
selected step.

Maintenance Run
Mode

Starts a run session during
which the Maintenance Run
Mode wizard opens for steps
that failed because an object was
not found in the application (if
applicable).

Update Run Mode Starts a run session to update
test object descriptions and
other options (if applicable).

Analog Recording SHIFT+ALT+F3 Starts recording in Analog
Recording mode. (Relevant only
for tests)

Low Level Recording CTRL+SHIFT

+F3
Starts recording in Low Level
Recording mode. (Relevant only
for tests)

Chapter 2 • QuickTest at a Glance

80

Some of the Automation menu commands are also available from the
Automation toolbar (described on page 69).

Resources Menu Commands
You can manage your object repositories and other resources using the
following Resources menu commands:

Record and Run
Settings

Opens the Record and Run
Settings dialog box, enabling
you to define browser
preferences for recording and
running your test. (Relevant
only for tests)

Process Guidance List Lists the processes that are
available for the current
document type and for the
currently loaded QuickTest
add-ins, enabling you to open
them.

Results Enables you to view results for a
component run session.

Command Shortcut Key Function

Object Repository CTRL+R Opens the Object Repository
window, which displays a tree
containing all objects in the
current test or component.

Object Repository
Manager

Opens the Object Repository
Manager dialog box, enabling
you to open and modify
multiple shared object
repositories.

Command Shortcut Key Function

Chapter 2 • QuickTest at a Glance

81

The Object Repository menu command is also available from the Standard
toolbar (described on page 68).

Debug Menu Commands
You can debug the steps in your component and any associated function
library using the following Debug menu commands:

Associate
Repositories

Opens the Associate Repositories
dialog box, enabling you to
manage the object repository
associations for the test.

Map Repository
Parameters

Opens the Map Repository
Parameters dialog box, enabling
you to map repository
parameters, as needed.

Recovery Scenario
Manager

Opens the Recovery Scenario
Manager dialog box.

Associated Function
Libraries

Lists the function libraries
associated with the active
document, enabling you to
open them.

Command Shortcut Key Function

Pause Pauses the debug session.

Step Into F11 Runs only the current line of the
script. If the current line calls a
method, the method is
displayed in the view but is not
performed.

Step Over F10 Runs only the current line of the
script. When the current line
calls a method, the method is
performed in its entirety, but is
not displayed in the view.

Command Shortcut Key Function

Chapter 2 • QuickTest at a Glance

82

Some of the Debug commands are also available from the Debug toolbar
(described on page 69).

Step Out SHIFT+F11 Runs to the end of the method
then pauses the run session.
(Available only after running a
method using Step Into.)

Run to Step CTRL+F10 Runs until the current step.

Debug from Step Runs from the selected step
instead of the start of the
component.

Add to Watch CTRL+T Adds the selected item to the
Watch tab.

Insert/Remove
Breakpoint

F9 Sets or clears a breakpoint in the
component.

Enable/Disable
Breakpoint

CTRL+F9 Enables or disables a breakpoint
in the component.

Clear All Breakpoints CTRL+SHIFT+
F9

Deletes all breakpoints in the
component.

Enable/Disable All
Breakpoints

Enables or disables all
breakpoints in the component.

Command Shortcut Key Function

Chapter 2 • QuickTest at a Glance

83

Tools Menu Commands
You can perform the following Tools menu commands:

Command Shortcut Key Function

Options Opens the Options dialog box,
enabling you to modify global
testing options.

View Options Opens the Editor Options dialog
box, enabling you to customize
how tests and function libraries
are displayed in the Expert View
and Function Library windows.

Check Syntax CTRL+7 Checks the syntax of the active
document.

Object Identification Opens the Object Identification
dialog box, enabling you to
specify how QuickTest identifies
a particular test object.

Object Spy Opens the Object Spy dialog
box, enabling you to view the
run-time or test object
properties and methods of any
object in an open application.

Web Event Recording
Configuration

Opens the Web Event Recording
Configuration dialog box,
enabling you to specify a
recording configuration level.
(Relevant for tests only)

Data Driver Opens the Data Driver dialog
box, which displays the default
Constants list for the action.
(Relevant for tests only)

Change Active
Screen

Replaces the previously recorded
Active Screen with the selected
Active Screen.

Chapter 2 • QuickTest at a Glance

84

Some of the Tools menu commands are also available from the Tools toolbar
(described on page 70).

Window Menu Commands

You can perform the following Window menu commands:

Virtual Objects >
New Virtual Object

Opens the Virtual Object
Wizard, enabling you to teach
QuickTest to recognize an area
of your application as a standard
test object.

Virtual Objects >
Virtual Object
Manager

Opens the Virtual object
Manager, enabling you to
manage all of the virtual object
collections defined on your
computer.

Command Function

Cascade Displays the open documents cascaded.

Tile Horizontally Displays the open documents one above the other.

Tile Vertically Displays the open documents side-by-side.

Close All Function Libraries Closes all open function libraries.

Open Files Lists the documents that are currently open in the
QuickTest session.

Windows Opens the Windows dialog box, enabling you to
manage your open document windows.

Command Shortcut Key Function

Chapter 2 • QuickTest at a Glance

85

Help Menu Commands

You can perform the following Help menu commands:

Command Shortcut Key Function

QuickTest Professional
Help

F1 Opens the QuickTest Professional
Help.

Printer-Friendly
Documentation

Opens a page that provides links
to printer-friendly versions of all
QuickTest documentation, in
Adobe Acrobat Reader (PDF)
format.

QuickTest Professional
Tutorial

Opens the QuickTest Professional
tutorial, which teaches you basic
QuickTest skills and shows you
how to start testing your
applications.

What’s New Opens the What’s New in
QuickTest Professional Help.

Product Feature Movies Enables you to view movies
illustrating various QuickTest
features.

Knowledge Base Opens the Knowledge Base area
of the HP Customer Support Site,
enabling you to view
product-specific knowledge base
articles. (Requires login)

Chapter 2 • QuickTest at a Glance

86

Customer Support Web
Site

Opens the HP Customer Support
Web site. This site enables you to
browse the HP Support
Knowledge Base and add your
own articles. You can also post to
and search user discussion
forums, submit support requests,
download patches and updated
documentation, and more.

The URL is:
www.hp.com/go/hpsoftwaresup
port

Send Feedback Opens the HP Customer Support
Site, enabling you to send
feedback about QuickTest
Professional.

Check for Updates Checks online for any available
updates to QuickTest
Professional. You can choose
which updates you want to
download and (optionally)
install.

HP Software web site Uses your default Web browser to
access the HP Software Web site.
This site provides you with the
most up-to-date information on
HP Software products. This
includes new software releases,
seminars and trade shows,
customer support, and more.

The URL is:
www.hp.com/managementsoftware

About QuickTest
Professional

Displays information about the
installed version of QuickTest
Professional.

Command Shortcut Key Function

http://www.hp.com/go/hpsoftwaresupport
http://www.hp.com/managementsoftware

Chapter 2 • QuickTest at a Glance

87

Data Table Menu Commands

You can perform the following Data Table menu commands by pressing the
corresponding shortcut keys when one or more cells are selected in the Data
Table:

Command Shortcut Key Function

Edit > Cut CTRL+X Cuts the table selection and puts it
on the Clipboard.

Edit > Copy CTRL+C Copies the table selection and puts
it on the Clipboard.

Edit > Paste CTRL+V Pastes the contents of the
Clipboard to the current table
selection.

Edit > Clear > Contents CTRL+DEL Clears the contents from the
current selection.

Edit > Insert CTRL+I Inserts empty cells at the location
of the current selection. Cells
adjacent to the insertion are shifted
to make room for the new cells.

Edit > Delete CTRL+K Deletes the current selection. Cells
adjacent to the deleted cells are
shifted to fill the space left by the
vacated cells.

Edit > Fill Right CTRL+R Copies data in the left-most cell of
the selected range to all cells to the
right of it, within the selected
range.

Edit > Fill Down CTRL+D Copies data in the top cell of the
selected range to all cells below it
within the selected range.

Edit > Find CTRL+F Finds a cell containing specified
text. You can search the table by
row or column and specify to
match case or find entire cells only.

Chapter 2 • QuickTest at a Glance

88

Other QuickTest Commands

You can perform the following special options using shortcut keys:

Edit > Replace CTRL+H Finds a cell containing specified
text and replaces it with different
text. You can search the table by
row or column and specify to
match case and/or to find entire
cells only. You can also replace all.

Data > Recalc F9 Recalculates the selected data in the
Data Table.

Switch between Data
Table sheets

CTRL+PAGE
UP/PAGE
DOWN

Switches through the Data Table
sheets when the Data Table is in
focus.

Option Shortcut Key Function

Switch between
Keyword View and
Expert View

CTRL+PAGE UP/PAGE
DOWN

Toggles between the Keyword
View and Expert View.

Switch between open
documents

CTRL+TAB Changes the display to
another open document type.

Open context menu SHIFT+F10,

or press the
Application Key ()
[Microsoft Natural
Keyboard only]

Opens the context menu for
the selected step data cell in
the Data Table.

Expand all branches *
[on the numeric
keypad]

Expands all branches in the
Keyword View.

Expand branch +
[on the numeric
keypad]

Expands the selected item
branch and all branches
below it in the Keyword View.

Command Shortcut Key Function

Chapter 2 • QuickTest at a Glance

89

Browsing the QuickTest Professional Program Folder

After the QuickTest Professional setup process is complete, the following
items are added to your QuickTest Professional program folder (Start >
Programs > QuickTest Professional).

Note: If you uninstalled a previous version of QuickTest Professional before
installing this version, you may have additional (outdated) items in your
QuickTest Professional program folder. In addition, if you have QuickTest
Professional add-ins installed, you may have items in your program folder
that relate specifically to these add-ins.

➤ Tools. Contains the following utilities and tools that assist you with the
testing process:

➤ Action Conversion Tool. Enables you to convert test actions that were
created using QuickTest Professional to scripted components for use in
business process testing. For more information, see “Converting an
Action to a Scripted Component” on page 482 or click the Help button in
the Action Conversion Tool window.

➤ Additional Installation Requirements. Opens the Additional Installation
Requirements dialog box, which displays any prerequisite software that
you must install or configure to work with QuickTest.

Collapse branch -
[on the numeric
keypad]

Collapses the selected item
branch and all branches
below it in the Keyword View.

Open the Item or
Operation list

SHIFT+F4 or SPACE,
when the Item or
Operation column is
selected in the
Keyword View.

Opens the Item or Operation
list in the Keyword View,
when the Item or Operation
column is selected.

Option Shortcut Key Function

Chapter 2 • QuickTest at a Glance

90

➤ Business Component Upgrade Tool. Opens the Business Component
Upgrade Tool. If you are connected to a Quality Center project, this tool
enables you to upgrade all of the business components in a Quality
Center project, from an earlier component version to the format required
by the current version. For more information, click the Help button in
the Business Component Upgrade Tool window.

➤ HP Micro Player. Opens the HP Micro Player, which enables you to view
captured movies of a run session without opening QuickTest. For more
information, click the Help button in the HP Micro Player window.

➤ License Validation Utility. Opens the License Validation utility, which
enables you to retrieve and validate license information. For more
information, click the Help button in the License Validation Utility
window.

➤ Password Encoder. Opens the Password Encoder dialog box, which
enables you to encode passwords. You can use the resulting strings as
method arguments or Data Table parameter values (tests only). For more
information, see “Inserting Encoded Passwords into Method Arguments”
on page 528.

➤ QuickTest Script Editor. Opens the QuickTest Script Editor, which enables
you to open and modify the scripts of multiple tests and function
libraries, simultaneously. For more information, see the HP QuickTest
Professional User’s Guide.

➤ Register New Browser Control. Opens the Register Browser Control
Utility, which enables you to register your browser control application so
that QuickTest Professional recognizes your Web object when recording
or running tests. For more information, see the section on registering
browser controls in the HP QuickTest Professional Add-ins Guide.

➤ Remote Agent. Activates the QuickTest Remote Agent, which enables you
to configure how QuickTest behaves when a component is run by a
remote application such as Quality Center. For more information, see the
HP QuickTest Professional User’s Guide.

➤ Save and Restore Settings. Opens the Save and Restore Settings dialog
box, which enables you to save your existing configurations before
uninstalling an old version, and then restore them after installing a new
version. For more information, see the HP QuickTest Professional User’s
Guide.

Chapter 2 • QuickTest at a Glance

91

➤ Silent Test Runner. (Relevant only for tests) Opens the Silent Test Runner
dialog box, which enables you to run a QuickTest test the way it is run
from LoadRunner and Business Availability Center. For more
information, see the HP QuickTest Professional User’s Guide.

➤ Test Batch Runner. (Relevant only for tests) Opens the Test Batch Runner
dialog box, which enables you to set up QuickTest to run several tests in
succession. For more information, see the HP QuickTest Professional User’s
Guide.

➤ Test Results Deletion Tool. Opens the Test Results Deletion Tool dialog
box, which enables you to delete unwanted or obsolete results from your
system according to specific criteria that you define. For more
information, see “Deleting Results Using the Test Results Deletion Tool”
on page 651.

➤ Documentation. Provides the following links to commonly used
documentation files:

➤ Printer-Friendly Documentation. Opens a page that provides links to
printer-friendly versions of all QuickTest documentation, in Adobe
Acrobat Reader (PDF) format.

➤ QuickTest Professional Code Samples Plus. Opens the QuickTest
Professional Code Samples Plus Help, which provides sample function
libraries, code, and SDK samples with accompanying explanations.

➤ QuickTest Professional Help. Opens a comprehensive help file containing
the HP QuickTest Professional User’s Guide, the HP QuickTest Professional for
Business Process Testing User’s Guide, HP QuickTest Professional Add-ins
Guide, the HP QuickTest Professional Object Model Reference (including the
relevant sections for any installed add-ins), QuickTest Advanced References
(Automation API and XML Schema references), and the Microsoft VBScript
Reference.

➤ Tutorial. Opens the QuickTest Professional tutorial, which teaches you
basic QuickTest skills and shows you how to start testing your
applications.

Chapter 2 • QuickTest at a Glance

92

➤ QuickTest Automation Reference. Opens the QuickTest Automation
Reference. The automation object model assists you in automating test
management, by providing objects, methods and properties that enable
you to control QuickTest features and configurations. The QuickTest
Automation Reference provides syntax, descriptive information, and
examples for the objects, methods, and properties. It also contains a
detailed overview to help you get started writing QuickTest automation
scripts.

➤ Sample Applications. Contains the following links to sample applications
that you can use to practice testing with QuickTest:

➤ Flight. Opens a sample flight reservation Windows application. To access
the application, enter any username and the password mercury.

➤ Mercury Tours Web Site. Opens a sample flight reservation Web
application. This Web application is used as a basis for the QuickTest
tutorial. For more information, see the HP QuickTest Professional Tutorial.

➤ QuickTest Professional. Opens the QuickTest Professional application.

➤ Readme. Opens the HP QuickTest Professional Readme, which provides the
latest news and information on QuickTest Professional and the QuickTest
Professional add-ins.

➤ Test Results Viewer. Opens the Test Results window, which enables you to
select a component or business process test and view information about the
steps performed during the run session. For more information, see “The Test
Results Window” on page 627.

➤ Check for Updates. Checks online for any available updates to QuickTest
Professional. You can choose which updates you want to download and
(optionally) install.

Chapter 2 • QuickTest at a Glance

93

Viewing Product Information

You can view information regarding the QuickTest add-ins and hotfixes
(patches) installed on your computer, as well as about your operating
system. This information is useful for troubleshooting and when dealing
with HP Customer Support.

To view the product information:

 1 In QuickTest, choose Help > About QuickTest Professional. The About
QuickTest Professional 9.5 window opens.

Chapter 2 • QuickTest at a Glance

94

The About QuickTest Professional 9.5 window displays the following
information:

➤ The version of QuickTest that is installed on your computer, its build
number, and Product ID number.

➤ The list of QuickTest add-ins that are installed on your computer. A check
mark next to the add-in name indicates that the add-in is currently
loaded. For more information on QuickTest add-ins, see the HP QuickTest
Professional Add-ins Guide.

Tip: To view details for, or modify, the QuickTest Professional licenses
installed on your computer, click the License button. For more information,
see the HP QuickTest Professional Installation Guide.

Chapter 2 • QuickTest at a Glance

95

 2 To view more detailed information on the QuickTest Professional products
installed on your computer, click the Product Information button. The
Product Information window opens.

The Product Information window displays the following information:

➤ The QuickTest Professional version, product ID, and build numbers
installed on your computer.

➤ Operating system. The operating system version installed on your
computer.

➤ Internet Explorer version. The version of Microsoft Internet Explorer
installed on your computer.

➤ Quality Center connectivity. The version of the Quality Center
connectivity add-in installed on your computer.

➤ Add-in Information. The QuickTest add-ins installed on your computer.

➤ Patch Information. The names of any QuickTest hotfixes or patches
installed on your computer, and links to their readme files.

Chapter 2 • QuickTest at a Glance

96

Part II

Working with Test Objects and
Object Repositories

98

99

3
Understanding the Test Object Model

This chapter describes how QuickTest learns and identifies objects in your
application, explains the concepts of test object and run-time object, and
explains how to view the available methods for an object and the
corresponding syntax. With the help of this information, you can add
statements to your script in the Expert View or use test objects and methods
in your functions, when creating operations for components.

This chapter includes:

 ➤ About Understanding the Test Object Model on page 99

 ➤ Applying the Test Object Model Concept on page 103

 ➤ Viewing Object Properties and Methods Using the Object Spy on page 108

About Understanding the Test Object Model

QuickTest tests your dynamically changing application by learning and
identifying test objects and their expected properties and values. To do this,
QuickTest analyzes each object in your application in much the same way
that a person would look at a photograph and remember its details.

The following sections introduce the concepts related to the test object
model and describe how QuickTest uses the information it gathers to test
your application.

Chapter 3 • Understanding the Test Object Model

100

Understanding How QuickTest Learns Objects
QuickTest learns objects just as you would. For example, suppose as part of
an experiment, Alex is told that he will be shown a photograph of a picnic
scene for a few seconds during which someone will point out one item in
the picture. Alex is told that he will be expected to identify that item again
in identical or similar pictures one week from today.

Before he is shown the photograph, Alex begins preparing himself for the
test by thinking about which characteristics he wants to learn about the
item that the tester indicates. Obviously, he will automatically note whether
it is a person, inanimate object, animal, or plant. Then, if it is a person, he
will try to commit to memory the gender, skin color, and age. If it is an
animal, he will try to remember the type of animal, its color, and so forth.

The tester shows the scene to Alex and points out one of three children
sitting on a picnic blanket. Alex notes that it is a Caucasian girl about 8
years old. In looking at the rest of the picture, however, he realizes that one
of the other children in the picture could also fit that description. In
addition to learning his planned list of characteristics, he also notes that the
girl he is supposed to identify has long, brown hair.

Now that only one person in the picture fits the characteristics he learned,
he is fairly sure that he will be able to identify the girl again, even if the
scene the tester shows him next week is slightly different.

Since he still has a few moments left to look at the picture, he attempts to
notice other, more subtle differences between the child he is supposed to
remember and the others in the picture—just in case.

If the two similar children in the picture appeared to be identical twins, Alex
might also take note of some less permanent feature of the child, such as the
child’s position on the picnic blanket. That would enable him to identify
the child if he were shown another picture in which the children were
sitting on the blanket in the same order.

QuickTest uses a very similar method when it learns objects.

Chapter 3 • Understanding the Test Object Model

101

First, it “looks” at the object being learned and stores it as a test object,
determining in which test object class it fits. In the same way, Alex
immediately checked whether the item was a person, animal, plant, or
inanimate object. QuickTest might classify the test object as a standard
Windows dialog box (Dialog), a Web button (WebButton), or a Visual Basic
scroll bar object (VbScrollBar), for example.

Then, for each test object class, QuickTest has a list of mandatory properties
that it always learns; similar to the list of characteristics that Alex planned to
learn before seeing the picture. When QuickTest learns an object, it always
learns these default property values, and then “looks” at the rest of the
objects on the page, dialog box, or other parent object to check whether this
description is enough to uniquely identify the object. If it is not, QuickTest
adds assistive properties, one by one, to the description, until it has
compiled a unique description; similar to when Alex added the hair length
and color characteristics to his list. If no assistive properties are available, or
if those available are not sufficient to create a unique description, QuickTest
adds a special ordinal identifier, such as the object’s location on the page or
in the source code, to create a unique description, just as Alex would have
remembered the child’s position on the picnic blanket if two of the children
in the picture had been identical twins.

Understanding How QuickTest Identifies Objects During
the Run Session
QuickTest also uses a very human-like technique for identifying objects
during the run session.

Suppose as a continuation to the experiment, Alex is now asked to identify
the same “item” he initially identified but in a new, yet similar
environment.

The first photograph he is shown is the original photograph. He searches for
the same Caucasian girl, about eight years old, with long, brown hair that he
was asked to remember and immediately picks her out. In the second
photograph, the children are playing on the playground equipment, but
Alex is still able to easily identify the girl using the same criteria.

Chapter 3 • Understanding the Test Object Model

102

Similarly, during a run session, QuickTest searches for a run-time object that
exactly matches the description of the test object it learned previously. It
expects to find a perfect match for both the mandatory and any assistive
properties it used to create a unique description while learning the object. As
long as the object in the application does not change significantly, the
description learned is almost always sufficient for QuickTest to uniquely
identify the object. This is true for most objects, but your application could
include objects that are more difficult to identify during subsequent run
sessions.

Consider the final phase of Alex’s experiment. In this phase, the tester
shows Alex another photograph of the same family at the same location, but
the children are older and there are also more children playing on the
playground. Alex first searches for a girl with the same characteristics he
used to identify the girl in the other pictures (the test object), but none of
the Caucasian girls in the picture have long, brown hair. Luckily, Alex was
smart enough to remember some additional information about the girl’s
appearance when he first saw the picture the previous week. He is able to
pick her out (the run-time object), even though her hair is now short and
dyed blond.

How is he able to do this? First, he considers which features he knows he
must find. Alex knows that he is still looking for a Caucasian female, and if
he were not able to find anyone that matched this description, he would
assume she is not in the photograph.

Once he has limited the possibilities to the four Caucasian females in this
new photograph, he thinks about the other characteristics he has been using
to identify the girl—her age, hair color, and hair length. He knows that
some time has passed and some of the other characteristics he remembers
may have changed, even though she is still the same person.

Thus, since none of the Caucasian girls have long, dark hair, he ignores
these characteristics and searches for someone with the eyes and nose he
remembers. He finds two girls with similar eyes, but only one of these has
the petite nose he remembers from the original picture. Even though these
are less prominent features, he is able to use them to identify the girl.

Chapter 3 • Understanding the Test Object Model

103

QuickTest uses a very similar process of elimination with its Smart
Identification mechanism to identify an object, even when the learned
description is no longer accurate. Even if the values of your test object
properties change, QuickTest maintains your component’s reusability by
identifying the object using Smart Identification. For more information on
Smart Identification, see Chapter 5, “Configuring Object Identification.”

The remainder of this guide assumes familiarity with the concepts presented
here, including test objects, run-time objects, object properties, mandatory
and assistive properties, and Smart Identification. An understanding of
these concepts will enable you to create well-designed, functional
components for your application.

Applying the Test Object Model Concept

The test object model is a large set of object types or classes that QuickTest
uses to represent the objects in your application. Each test object class has a
list of properties that can uniquely identify objects of that class and a set of
relevant methods that QuickTest can learn about it.

A test object is an object that QuickTest creates in the component to
represent the actual object in your application. QuickTest stores information
on the object that will help it identify and check the object during the run
session.

A run-time object is the actual object in your application on which methods
are performed during the run session.

QuickTest learns objects when it adds them to an object repository, which is
a storehouse for objects. You can add objects to an object repository in
several ways. For example, you can use the QuickTest Navigate and Learn
option, add objects manually, or perform an operation on your application
while recording. For more information on object repositories, see Chapter 6,
“Managing Object Repositories” and Chapter 10, “Creating Tests Using the
Keyword-Driven Methodology.”

Chapter 3 • Understanding the Test Object Model

104

When you add an object to an object repository, QuickTest:

➤ identifies the QuickTest test object class that represents the learned object
and creates the appropriate test object

➤ reads the current value of the object’s properties in your application and
stores the list of properties and values with the test object

➤ chooses a unique name for the object, generally using the value of one of its
prominent properties

For example, suppose you add a Search button with the following HTML
source code:

<INPUT TYPE="submit" NAME="Search" VALUE="Search">

QuickTest identifies the object as a WebButton test object. In the object
repository, QuickTest creates a WebButton object with the name Search, and
learns the following properties and values for the Search WebButton:

If you add an object to an object repository by recording on your
application, QuickTest records the operation that you performed on the
object using the appropriate QuickTest test object method. For example,
QuickTest records that you performed a Click method on the WebButton.

Suppose that clicking the Search button is the first step in your component,
QuickTest displays your step as follows:

Chapter 3 • Understanding the Test Object Model

105

When you run a component, QuickTest identifies each object in your
application by its test object class and its description (the set of test object
properties and values used to uniquely identify the object). The list of test
objects and their properties and values are stored in the object repository. In
the above example, QuickTest would search in the object repository during
the run session for the WebButton object with the name Search to look up
its description. Based on the description it finds, QuickTest would then look
for a WebButton object in the application with the HTML tag INPUT, of type
submit, with the value Search. When it finds the object, it performs the Click
method on it.

Understanding Test Object Descriptions
For each object class, QuickTest learns a set of properties when it learns an
object. QuickTest then uses this description to identify the object when it
runs the component.

For example, by default, QuickTest learns the image type (such as plain image
or image button), the html tag, and the Alt text of each Web image it learns.

If these three mandatory property values are not sufficient to uniquely
identify the object within its parent object, QuickTest adds some assistive
properties and/or an ordinal identifier to create a unique description.

test object name
test object class

default
properties

test object
name

image icon

Chapter 3 • Understanding the Test Object Model

106

When the component runs, QuickTest searches for the object that matches
the description it learned. If it cannot find any object that matches the
description, or if it finds more than one object that matches, QuickTest may
use the Smart Identification mechanism to identify the object.

You can configure the mandatory, assistive, and ordinal identifier properties
that QuickTest uses to learn the descriptions of the objects in your
application, and you can enable and configure the Smart Identification
mechanism. For more information, see Chapter 5, “Configuring Object
Identification.”

Understanding Test Object and Run-Time Object
Properties and Methods
The test object property set for each test object is created and maintained by
QuickTest. The run-time object property set for each run-time object is
created and maintained by the object creator (for example, Microsoft for
Microsoft Internet Explorer objects, Netscape for Netscape Browser objects,
the product developer for ActiveX objects, and so on).

Similarly, a test object method is a method (operation) that QuickTest
recognizes as applicable to a particular test object. For example, the Click
method is applicable to a WebButton test object. As you add steps to your
component, you specify which method to perform on each test object. If
you record steps, QuickTest records the relevant method as it is performed
on an object.

During a run session, QuickTest performs the specified test object method
on the run-time object. Run-time object methods are the methods of the
object in your application as defined by the object creator. You can access
and perform run-time object methods using the Object property.

For information on activating run-time methods using the Object property,
see “Retrieving and Setting Test Object Property Values” on page 352.

Test object properties are the properties whose values are captured from the
objects in your application when QuickTest learns the object. QuickTest uses
the values of these properties to identify run-time objects in your
application during a run session.

Chapter 3 • Understanding the Test Object Model

107

Property values of objects in your application may change dynamically each
time your application opens, or based on certain conditions. You may need
to modify the test object property values to match the run-time object
property values. You can modify test object properties manually while
designing your component, or use SetTOProperty statements during a run
session (via an operation defined in a function library). You can also use
regular expressions to identify property values based on conditions or
patterns you define. For more information on modifying object properties,
see Chapter 4, “Working with Objects.”

You can view or modify the test object property values that are stored with
your component in the Object Properties or Object Repository dialog box.
For more information, see “Modifying Test Object Properties” on page 134.

You can view the current test object property values of any object on your
desktop using the Properties tab of the Object Spy. For more information,
see “Viewing Object Properties and Methods Using the Object Spy” on
page 108.

You can view the syntax of the test object methods as well as the run-time
methods of any object on your desktop using the Methods tab of the Object
Spy. For more information, see “Viewing Object Properties and Methods
Using the Object Spy” on page 108.

Using operations defined in function libraries, you can retrieve or modify
property values of the test object during the run session by adding
GetTOProperty and SetTOProperty statements. You can retrieve property
values of the run-time object during the run session by adding
GetROProperty statements. For more information, see “Retrieving and
Setting Test Object Property Values” on page 352.

If the available test object methods or properties for an object do not
provide the functionality you need, you can access the internal methods
and properties of any run-time object using the Object property. You can
also use the attribute object property to identify Web objects in your
application according to user-defined properties. For information, see
“Accessing Run-Time Object Properties and Methods” on page 354.

For more information on test object methods and properties, see the
HP QuickTest Professional Object Model Reference.

Chapter 3 • Understanding the Test Object Model

108

Viewing Object Properties and Methods Using the Object
Spy

Using the Object Spy pointing hand mechanism, you can view the
supported properties and methods of any object in an open application. As
you move the pointing hand over the objects in the application, their
details are displayed in the Object Spy. These details may include the test
object’s hierarchy tree, its properties and values, and the methods associated
with the object. For methods, the syntax is also displayed. In most
environments, you can choose to view the test object properties and
methods or the run-time (native) properties and methods.

In some environments, the test object is also highlighted in the application
as you move the pointing hand over it. This enables you to visually
distinguish between the various test objects in the application.

To view test object or run-time object properties or methods:

 1 Open your application to the page containing the object on which you want
to spy.

 2 Choose Tools > Object Spy or click the Object Spy toolbar button to open
the Object Spy dialog box and display the Properties tab. Alternatively, click
the Object Spy button from the Object Repository dialog box. For more
information on the Object Repository dialog box, see “Understanding the
Object Repository Window” on page 120.

 3 Select the details you want to view for the object.

➤ Click Run-time Object Properties or Test Object Properties.

➤ To view the object’s available methods and syntax, click the Methods tab.
Otherwise, the Properties tab is displayed by default, enabling you to
view the object’s properties and their values.

 4 In the Object Spy dialog box, click the pointing hand. QuickTest is hidden.
As you move the pointing hand over the test objects in your application, the
test objects are highlighted, and you can view their test object properties or
methods in the Object Spy dialog box. You can also view their parent objects
in the object hierarchy tree area of the Object Spy dialog box. For tips on
changing the window focus, viewing partially or fully hidden windows, and
working with the Object Spy, see “Tips for Working with the Object Spy” on
page 111.

Chapter 3 • Understanding the Test Object Model

109

 5 Highlight or click the object whose properties or methods you want to view.
The Object Spy displays the object hierarchy tree and the properties or
methods of the object that is selected within the tree.

Note: The example above shows the object hierarchy tree after clicking an
object. While an object is highlighted, objects names, such as Atlanta to Las
Vegas and Featured Destinations, are not displayed.

object hierarchy tree

object type filter

object properties

selected property/value
or m ethod syntax box

object details tab

Chapter 3 • Understanding the Test Object Model

110

 6 Click the object whose associated methods you want to view. The Object
Spy displays the object hierarchy tree and details for the selected object
according to your selection. which can be the run-time object or test object
properties/values or methods associated with the object that is selected in
the tree.

 7 To view the properties or methods of the test object, click the Test Object
Properties radio button. To view the properties or methods of the run-time
object, click the Run-time Object Properties radio button.

Tips:

In a function, you can use the Object property to retrieve the values of the
run-time properties displayed in the Object Spy or to activate the run-time
object methods. For more information, see “Retrieving Run-Time Object
Properties” on page 354 and “Activating Run-Time Object Methods” on
page 355.

In a function, you can also use the GetTOProperty and SetTOProperty
methods to retrieve and set the value of test object properties for test
objects. You can use the GetROProperty to retrieve the current value of the
properties of objects in your application during the run session. For more
information, see “Retrieving and Setting Test Object Property Values” on
page 352.

 8 If you want to view properties, values, or methods for another object within
the displayed tree, highlight or click the object in the tree and select the
relevant options, as described in step3 on page 108.

 9 If you want to copy an object property or value, or a method’s syntax to the
Clipboard, click the property, value, or method to highlight it. The value is
displayed in the selected property/value or method syntax box (located
above the Description box). Highlight the text in the box and use CTRL + C
to copy the text to the Clipboard or right-click the highlighted text and
choose Copy from the menu.

Chapter 3 • Understanding the Test Object Model

111

Tips for Working with the Object Spy

➤ If the window on which you want to spy is partially hidden by another
window, hold the pointing hand over the partially hidden window for a few
seconds. The window comes into the foreground. You can now point and
click on the required object. You can configure the length of time required
to bring a window into the foreground using the General tab of the Options
dialog box. For more information, see Chapter 20, “Setting Global Testing
Options.”

➤ You can hold the left CTRL key to change the window focus.

➤ If the window on which you want to spy is fully hidden by another window,
or if the Object Spy dialog box is hidden behind a window, press the left
CTRL key and arrange the windows as needed.

➤ If the window containing the object you want to select is minimized, you
can display it by holding the left CTRL key, right-clicking the application in
the Windows task bar, and choosing Restore from the context menu.

➤ If the object on which you want to spy can be displayed only by performing
an event (such as right-clicking or moving the pointer over an object to
display a context menu), hold the left CTRL key. The pointing hand
temporarily turns into a standard pointer and you can perform the event.
When the object on which you want to spy is displayed, release the left CTRL
key. The pointer becomes a pointing hand again.

➤ You can view the properties and methods of the test objects in the object
hierarchy tree in the Object Spy dialog box by holding the left CTRL key, and
clicking the relevant test object.

➤ You can scroll through the properties and methods of a test object in the
Object Spy dialog box by holding the left CTRL key, and using the scroll bar.

➤ You can resize the Object Spy dialog box. This is useful if you have a deep
hierarchy, or long property names and values, enabling you view all the
information without scrolling.

Chapter 3 • Understanding the Test Object Model

112

113

4
Working with Objects

This chapter explains how to manage and maintain the objects in your
component. It describes how to modify object properties and how to modify
the way QuickTest identifies an object, which is useful when working with
objects that change dynamically.

This chapter includes:

 ➤ About Working with Objects on page 114

 ➤ Understanding Object Repository Types on page 115

 ➤ Understanding the Object Repository Window on page 120

 ➤ Viewing and Modifying Test Object Properties on page 130

 ➤ Mapping Repository Parameter Values on page 152

 ➤ Adding Test Objects to an Object Repository on page 156

 ➤ Defining New Test Objects on page 164

 ➤ Copying, Pasting, and Moving Objects in the Object Repository on page 166

 ➤ Deleting Objects from the Object Repository on page 169

 ➤ Locating Objects on page 170

 ➤ Working with Test Objects During a Run Session on page 177

 ➤ Exporting Local Objects to a Shared Object Repository on page 178

Chapter 4 • Working with Objects

114

About Working with Objects

When QuickTest runs a component, it simulates a human user by moving
the pointer over the application, clicking objects, and entering keyboard
input. Like a human user, QuickTest must learn the interface of an
application to be able to work with it. QuickTest does this by learning the
application’s objects and their corresponding property values and storing
these object descriptions in an object repository.

QuickTest also stores checkpoint objects and output objects in the object
repository.

As QuickTest learns the test objects, it stores them in the component’s local
object repository. You can choose to keep the stored test objects in the local
object repository, or you can choose to store the test objects in a shared
object repository. Storing the test objects in the local object repository
makes them available only to the specific component, but not to other
components. Storing the test objects in one or more shared object
repositories enables multiple components (via their application areas) to use
them.

You can export your local object repository to a shared object repository. For
more information on exporting and replacing local objects, see “Exporting
Local Objects to a Shared Object Repository” on page 178.

You can also work with a combination of local and shared object
repositories, as needed. For more information on local and shared object
repositories, see “Understanding Object Repository Types” on page 115.

If one or more of the property values of a test object in your application
differ from the property values QuickTest uses to identify the test object,
your component may fail. Therefore, when the property values of objects in
your application change, you should modify the corresponding test object
property values in the corresponding object repository so that you can
continue to use your existing components. For more information on
maintaining and updating your components, see “Maintaining
Components” on page 701.

Chapter 4 • Working with Objects

115

You can modify objects stored in a local object repository using the Object
Repository window, as described in this chapter. You can modify objects in a
shared object repository using the Object Repository Manager. For
information on the Object Repository Manager, see Chapter 6, “Managing
Object Repositories.” You can also copy objects from a shared object
repository to a local object repository and then modify the local copy of the
object using the Object Repository window, as described in this chapter.

You can also manage some aspects of a local object repository using the
QuickTest Object Repository automation object model. For example, you
can add, remove, and rename objects in the local object repository. For more
information, see “Managing Object Repositories Using Automation” on
page 245.

Understanding Object Repository Types

Objects can be stored in two types of object repositories—a shared object
repository and a local object repository. A shared object repository stores
objects in a file that can be accessed by multiple components (via their
application areas) in read-only mode. A local object repository stores objects
in a file that is associated with one specific component, so that only that
component can access the stored objects.

When you plan and create components, you must consider how you want
to store the objects in your components. You can store the objects for each
component in its corresponding local object repository, or you can store the
objects in your components in one or more shared object repositories. By
storing objects in shared object repositories and associating these
repositories with your components’ application areas, you enable multiple
components to use the objects. For each component, you can use a
combination of objects from your local and shared object repositories,
according to your needs. You can also transfer local objects to a shared
object repository, if required. This reduces maintenance and enhances the
reusability of your components because it enables you to maintain the
objects in a single, shared location instead of multiple locations. For more
information, see “Deciding Whether to Use Local or Shared Object
Repositories” on page 117.

Chapter 4 • Working with Objects

116

If you are new to using QuickTest, you may want to use local object
repositories. In this way, you can record and run components without
creating, choosing, or modifying shared object repositories because all
objects are automatically saved in a local object repository that can be
accessed by its corresponding component. If you modify an object in the
local object repository, your changes do not have any effect on any other
component.

If you are familiar with testing, it is probably most efficient to save objects
in a shared object repository. In this way, you can use the same shared object
repository for multiple components—if the components include the same
objects. Object information that applies to many components is kept in one
central location. When the objects in your application change, you can
update them in one location for all the components that use this shared
object repository.

If an object with the same name is located in both the local object
repository and in a shared object repository associated with the same
component, the component uses the local object definition. If an object
with the same name is located in more than one shared object repository
associated with the same component, the object definition is used from the
first occurrence of the object, according to the order in which the shared
object repositories are associated with the component. For more
information on associating shared object repositories, see “Managing Shared
Object Repositories” on page 432.

Local objects are saved locally with the component, and can be accessed
only from that component. When using a shared object repository, you can
use the same object repository for multiple components. You can also use
multiple object repositories for each component.

When you open and work with an existing component, it always uses the
object repositories that are specified in the application area with which the
component is associated. Shared object repositories are read-only when
accessed from components; you edit them using the Object Repository
Manager.

Chapter 4 • Working with Objects

117

Deciding Whether to Use Local or Shared Object
Repositories
To choose where to save objects, you need to understand the differences
between local and shared object repositories.

In general, the local object repository is easiest to use when you are creating
simple components, especially under the following conditions:

➤ You have only one, or very few, components that correspond to a given
application, interface, or set of objects.

➤ You do not expect to frequently modify object properties.

Conversely, the shared object repository is generally the preferred option
when:

➤ You are creating components using keyword-driven methodologies (not by
recording).

➤ You have several components that test elements of the same application,
interface, or set of objects.

➤ You expect the object properties in your application to change from time to
time and/or you regularly need to update or modify object properties.

Understanding the Local Object Repository

When you use a local object repository, QuickTest uses a separate object
repository for each component. (You can also use one or more shared object
repositories if needed. For more information, see “Understanding the Shared
Object Repository” on page 119.) The local object repository is fully editable
from within its component.

When working with a local object repository:

➤ QuickTest creates a new (empty) object repository for each component.

Chapter 4 • Working with Objects

118

➤ When QuickTest learns new objects (either because you add them to the
local object repository, or you record operations on objects in your
application), it automatically stores the information about those objects in
the corresponding local object repository (if the test objects do not already
exist in an associated shared object repository).

QuickTest adds all new objects to the local object repository even if one or
more shared object repositories are already associated with the component.
(This assumes that a object with the same description does not already exist
in one of the associated shared object repositories).

➤ If a child object is added to a local object repository, and its parents are in a
shared object repository, its parents are automatically moved to the local
object repository.

➤ Every time you create a new component, QuickTest creates a new,
corresponding local object repository and adds test objects to the repository
as it learn them.

➤ If QuickTest learns the same object in your application in two different
components, the test object is stored as a separate test object in each of the
local object repositories.

➤ When you save your component, the local object repository is automatically
saved with the it. The local object repository is not accessible as a separate
file (unlike the shared object repository).

Chapter 4 • Working with Objects

119

Understanding the Shared Object Repository

When you use shared object repositories, QuickTest uses the shared object
repositories you specified for the selected component’s application area. You
can use one or more shared object repositories. (You can also save some
objects in a local object repository for each component if you need to access
them only from the specific component. For more information, see
“Understanding the Local Object Repository” on page 117.)

After you begin creating your component, you can specify additional shared
object repositories. You can also create new ones and associate them with
your component. Before running the component, you must ensure that the
object repositories being used by the component contain all of the objects
in your component. Otherwise, the component may fail. For more
information, see “Adding Test Objects to an Object Repository” on
page 156.

You modify a shared object repository using the Object Repository Manager.
For more information, see Chapter 6, “Managing Object Repositories.”

When working with a shared object repository:

➤ If QuickTest Professional learns a test object that already exists in either the
shared or local object repository, QuickTest uses the existing information
and does not add the object to that object repository.

➤ If a child object is added to a local object repository, and its parents are in a
shared object repository, its parents are automatically moved to the local
object repository.

➤ When QuickTest learns a test object, it adds it to the local object repository
(not the shared object repository)—unless the same test object already exists
in an associated shared object repository. (In this case, QuickTest uses the
existing information in the shared object repository.)

Chapter 4 • Working with Objects

120

You can export objects from the local object repository to a shared object
repository. This enables you to make the local objects accessible to other
components. For more information, see “Exporting Local Objects to a
Shared Object Repository” on page 178.

You can also merge objects from the local object repository directly to a
shared object repository that is associated with the same component. This
can help reduce maintenance since you can maintain the objects in a single
shared location, instead of multiple locations. For more information, see
“Updating a Shared Object Repository from Local Object Repositories” on
page 268.

Understanding the Object Repository Window

You open the Object Repository window for a specific component by
choosing Resources > Object Repository or clicking the Object Repository
button.

Chapter 4 • Working with Objects

121

The Object Repository window displays a tree of all test objects and all
checkpoint and output objects in the current component (including all local
objects and all objects in any shared object repositories associated with the
selected component).

For each object you select in the tree, the Object Repository window displays
information on the object, its type, the repository in which it is stored, and
its object details. Local objects are editable (black); shared objects are in
read-only format (gray).

Note: Test objects of environments that are not installed with QuickTest will
be displayed with an unknown icon (question mark) in the object
repository.

Chapter 4 • Working with Objects

122

While the Object Repository window is open, you can continue using
QuickTest, and you can continue modifying objects and object repositories.
You can also resize the Object Repository window if needed. The Object
Repository window reflects any changes you make to an associated object
repository in realtime. For example, if you add objects to the local object
repository, or if you associate an additional object repository with the
current component, the Object Repository window immediately displays
the updated content.

Note: You can choose whether to show only the object repository tree, or
the object repository tree together with the object details area. For more
information, see “Showing and Hiding the Object Details Area” on
page 129.

You can use the Object Repository window to view the object description of
any object in the repository (in local and shared object repositories), to
modify local objects and their properties, and to add test objects to your
local object repository. You can also drag and drop test objects from the
Object Repository window to your component. When you drag and drop a
test object to your component, QuickTest inserts a step with the default
operation for that test object in your component. Checkpoint and output
objects cannot be dragged and dropped from the Object Repository window.

For example, if you drag and drop a button object to your component, a
step is added to your component using the button object, with a click
operation (the default operation for a button object).

Chapter 4 • Working with Objects

123

You can also drag and drop test objects from other locations. For more
information, see:

➤ “Understanding the Available Keywords Pane” on page 755.

➤ “Adding Test Objects to Your Component Using the Object Repository
Manager” on page 227.

For more information on viewing and modifying object properties, see
“Modifying Test Object Properties” on page 134.

Notes:

➤ All changes you make to a local object are automatically updated in all
steps that use the local object as soon as you make the change. You can
use the Edit > Undo and Edit > Redo options or Undo and Redo buttons
to cancel or repeat your changes. When you save the current component,
you cannot undo or redo operations that were performed before the save
operation.

➤ Even when steps containing an object are deleted from your component,
the objects remain in the object repository. You can delete objects from
the local object repository using the Object Repository window. You can
delete objects from a shared object repository using the Object
Repository Manager. For more information, see “Managing Object
Repositories” on page 209.

Chapter 4 • Working with Objects

124

The Object Repository window contains the following information:

Information Description

Business
Component

Indicates that the current testing document is a business
component.

Test Objects tree Contains all test objects in the current component (all
local test objects and all test objects in any shared object
repositories associated with the selected component).

Note: If there are test objects in different associated object
repositories with the same name, object class, and parent
hierarchy, the object repository tree shows only the first
one it finds based on the priority order defined. For
information on object repository priorities, see
“Managing Shared Object Repositories” on page 432.

You can filter the objects shown in the object repository
tree. For more information, see “Filtering the Object
Repository Window” on page 129.

Checkpoint and
Output Objects tree

Contains all the checkpoint and output objects in the
current component (all local checkpoint and output
objects and all checkpoint and output objects in any
shared object repositories associated with the selected
component).

Name The name that QuickTest assigns to the object. You can
change the name of a object in the local object repository.
For more information, see “Renaming Test Objects” on
page 140.

Class The class of the object.

Chapter 4 • Working with Objects

125

Understanding the Object Details Area
The object details area in the lower right side of the Object Repository
window enables you to view and modify the properties and property values
used to identify an object during a run session or the properties of a
checkpoint or output object.

Tip: You can choose whether to show or hide the object details area. For
more information, see “Showing and Hiding the Object Details Area” on
page 129.

In the Object Repository window, objects in a shared object repository are
displayed in the Object Properties pane (including the object details area) in
read-only format. To modify objects in a shared object repository, open the
shared object repository using the Object Repository Manager. For more
information, see Chapter 6, “Managing Object Repositories.” You can also
modify an object in a shared object repository by copying to the local object
repository and then modifying the local copy. For more information, see
“Copying an Object to the Local Object Repository” on page 131.

Repository The location (file name and path) of the object repository
in which the object is located. If the object is located in
the local object repository, Local is displayed.

Object details Enables you to view the properties and property values
used to identify a test object during a run session or the
properties of a checkpoint or output object. You can also
modify the object details for an object in the local object
repository. For more information, see “Understanding the
Object Details Area” on page 125. You can choose
whether to show or hide the object details area. For more
information, see “Showing and Hiding the Object Details
Area” on page 129.

Information Description

Chapter 4 • Working with Objects

126

Tips:

➤ You can view object properties and property values using the Object
Properties dialog box. For more information, see “Viewing Object
Properties and Property Values” on page 133.

➤ You can use the Object Spy at any time to view run-time or test object
properties and values of the objects in the application you are testing.
You open the Object Spy by choosing Tools > Object Spy or clicking the
Object Spy toolbar button. For more information, see “Viewing Object
Properties and Methods Using the Object Spy” on page 108.

You can modify test object details for objects saved in the local object
repository.

Chapter 4 • Working with Objects

127

You can also modify checkpoint and output value details for objects saved in
the local object repository.

You can also copy an object from a shared object repository to the local
object repository, and then modify it.

Note: All changes you make to a local object are automatically updated in
all steps that use the local object as soon as you make the change. You can
use the Edit > Undo and Edit > Redo options or Undo and Redo buttons to
cancel or repeat your changes. When you save the current component, you
cannot undo and redo operations that were performed before the save
operation.

Chapter 4 • Working with Objects

128

The object details area contains the following items for test objects:

Item Description

Description properties The properties and property values used to identify
the object during a run session.

You can add and remove properties to or from the
test object description. For more information, see
“Adding Properties to a Test Object Description” on
page 143.

You can specify a property value as a constant, or
you can parameterize the value. For more
information, see “Specifying or Modifying Property
Values” on page 136.

Ordinal identifier A numerical value that indicates the object’s order
or location relative to other objects with an
otherwise identical description (objects that have
the same values for all properties). For more
information, see “Specifying Ordinal Identifiers” on
page 150.

Additional details Contains the following options:

➤ Enable Smart Identification. Enables you to select
True or False to specify whether QuickTest should
use Smart Identification to identify the test
object during the run session if it is not able to
identify the object using the test object
description.

Note: This option is available only if Smart
Identification properties are defined for the test
object's class in the Object Identification dialog
box. For more information on Smart
Identification, see “Configuring Smart
Identification” on page 196.

➤ Comment. Enables you to add textual
information about the test object.

Chapter 4 • Working with Objects

129

For checkpoints and output objects, the object details area contains the
checkpoint or output value object properties. The object details area enables
you to modify these properties.

For more information, see:

➤ “Checking a Bitmap” on page 566

➤ “About Outputting Values” on page 571

Showing and Hiding the Object Details Area
You can choose to work with the Object Repository window in Compact
View mode or Full View mode. Compact View mode displays only the object
repository tree, while Full View mode displays the object repository tree
together with the object details area.

To change the Object Repository window view mode:

Perform one of the following, depending on the mode you want to show:

➤ Choose View > Compact View or click the Compact View button.

➤ Choose View > Full View or click the Full View button.

The Object Repository window switches to the selected view mode.

Filtering the Object Repository Window
You can use the Filter toolbar to filter the objects shown in the Object
Repository window.

You can choose to show objects that meet one of the following criteria:

➤ All objects in the current component

➤ Only the local objects in the current component

➤ Only the objects in a specific shared object repository associated with the
current component

Chapter 4 • Working with Objects

130

To filter the Object Repository window:

In the Filter toolbar list, select one of the following options:

➤ All Objects

➤ Local Objects

➤ The name of a specific shared object repository associated with the
current component

The object repository tree is filtered to display only the objects from the
location that you selected. The title bar of the Object Repository window
indicates the current filter.

Viewing and Modifying Test Object Properties

As applications change, you may need to change the property values of the
steps in your component. Suppose an object in your application is modified.
If that object is part of your component, you should modify its values so
that QuickTest can continue to identify it. For example, if a company Web
site contains a Contact Us hypertext link, and the text string in this link is
changed to Contact MyCompany, you need to update the object’s details in
the object repository so that QuickTest can continue to identify the link
properly.

You can view and modify test object properties in a number of ways. For an
object stored in a local object repository, you can modify its properties
directly from the Object Repository window. For an object stored in a shared
object repository, you can either open it in the Object Repository Manager
and modify its properties, or you can copy it to the local object repository
and then modify its properties.

Chapter 4 • Working with Objects

131

For more information on different ways in which you can view and modify
test object properties, see:

➤ “Copying an Object to the Local Object Repository” on page 131

➤ “Viewing Object Properties and Property Values” on page 133

➤ “Modifying Test Object Properties” on page 134

➤ “Specifying or Modifying Property Values” on page 136

➤ “Updating Test Object Properties from an Object in Your Application” on
page 138

➤ “Restoring Default Properties for a Test Object” on page 140

➤ “Renaming Test Objects” on page 140

➤ “Adding Properties to a Test Object Description” on page 143

➤ “Defining New Test Object Properties” on page 147

➤ “Removing Properties from a Test Object Description” on page 149

➤ “Specifying Ordinal Identifiers” on page 150

Copying an Object to the Local Object Repository
If you want to modify an object stored in a shared object repository, you can
modify it using the Object Repository Manager, or you can modify it locally
using the Object Repository window.

If you modify it using the Object Repository Manager, the changes you
make will be reflected in all components that use the shared object
repository. If you make a local copy of the object and modify it in the Object
Repository window, the changes you make will affect only the component
in which you make the change. If you later modify the same object in the
shared object repository, your changes will not affect the local copy of the
object in your component.

Chapter 4 • Working with Objects

132

When copying an object to the local object repository, consider the
following:

➤ When you copy an object to the local object repository, its parent objects are
also copied to the local object repository.

➤ If an object or its parent objects use unmapped repository parameters, you
cannot copy the object to the local object repository. You must make sure
that all repository parameters are mapped before copying an object to the
local object repository.

➤ If an object or its parent objects are parameterized using one or more
repository parameters, the repository parameter values are converted when
you copy the object to the local object repository. For example, if the
repository parameter is mapped to a local parameter, the property is
parameterized using a local parameter. If the value is a constant value, the
property receives the same constant value.

➤ If you are copying multiple objects to the local object repository, during the
copy process you can choose to skip a specific object if it has unmapped
repository parameters, or if it has mapped repository parameters whose
values you do not want to convert. You can then continue copying the next
object from your original selection.

To copy an object to the local object repository:

 1 In the Object Repository window, select an object from a shared object
repository that you want to copy to the local object repository. Objects in a
shared object repository are colored gray. You can select more than one
object to copy, as long as the selected objects have the same parent objects.

 2 Choose Object > Copy to Local or right-click the objects and choose Copy to
Local. The objects (and parent objects) are copied to the local object
repository and are made editable.

Chapter 4 • Working with Objects

133

Viewing Object Properties and Property Values
You can view test object properties and property values for objects in your
component steps.

To view object properties and property values:

In your component, click the step of the object whose properties you want
to view and choose Edit > Step Properties > Object Properties. The Object
Properties dialog box opens.

Note: There are slight differences in the Object Properties dialog box,
depending on whether the selected object is currently stored in the local
object repository, the shared object repository, or not stored in any object
repository associated with the current component. This section describes
options shown in the dialog box for options in the local object repository or
not in any associated object repository. For objects stored in a shared object
repository, this dialog box appears as for local objects (as shown above), but
is in read-only format.

Chapter 4 • Working with Objects

134

The Object Properties dialog box shows the name and class of the selected
object and enables you to:

➤ View the object’s properties and property values—its description properties,
ordinal identifier, and other settings.

➤ Modify the properties and property values used to identify the object (for
objects that are stored in the local object repository). You modify the
properties and values in the Object Properties dialog box in the same way as
you modify the test object details in the Object Repository window. For
more information, see “Modifying Test Object Properties” on page 134.

➤ Click the View in Repository button (for objects that are stored in the object
repository) to open the Object Repository window and display the selected
object in the object hierarchy.

➤ Click the Add to Repository button (for objects that are not stored in the
object repository) to add the selected object to the local object repository.

Modifying Test Object Properties
You can modify a test object by modifying one or more of the test object’s
property values or by changing the set of properties used to identify that
object. You can do this for test objects in the local object repository using
the Object Repository window, and for test objects in the shared object
repository using the Object Repository Manager.

You can also automatically update the description of one or more test
objects in your object repository based on the actual updated object
properties in your application. For more information, see “Updating Test
Object Properties from an Object in Your Application” on page 138.

Tip: You can use the Object Spy at any time to view run-time or test object
properties and values of the objects in the application you are testing. You
open the Object Spy by choosing Tools > Object Spy or clicking the Object
Spy toolbar button. For more information, see “Viewing Object Properties
and Methods Using the Object Spy” on page 108.

Chapter 4 • Working with Objects

135

To modify a test object property:

 1 Right-click the step containing the test object that changed, and choose
Object Properties or choose Edit > Step Properties > Object Properties from
the menu bar.

The Object Properties dialog box opens and displays the properties
QuickTest uses to identify the object.

Tips:

If you want to view all objects in the component, click the View in
Repository button. The Object Repository window opens and displays all
objects stored in the repository in a repository tree.

You can also open the object repository for the selected component by
choosing Resources > Object Repository or by clicking the Object
Repository toolbar button.

Chapter 4 • Working with Objects

136

 2 Modify the properties and values as required. You modify the properties and
values in the Object Properties dialog box in the same way as you modify
the test object details in the Object Repository window. For more
information, see “Understanding the Object Details Area” on page 125 and
“Viewing and Modifying Test Object Properties” on page 130.

 3 Click OK to close the dialog box.

Specifying or Modifying Property Values
You can specify or modify values for properties in the test object description.
You can specify a value using a constant value (either a simple value or a
constant value that includes regular expressions) or you can parameterize it.
You can do this for test objects in the local object repository using the
Object Repository window or Object Properties dialog box, and for test
objects in the shared object repository using the Object Repository Manager.

You can also find and replace specific test object property values. For more
information, see “Finding Objects in an Object Repository” on page 170.

Note: In some cases, the Smart Identification mechanism may enable
QuickTest to identify a test object, even when some of its property values
change. However, if you know about property value changes for a specific
test object, you should try to correct the test object definition so that
QuickTest can identify the test object from its basic object description. For
more information on the Smart Identification mechanism, see Chapter 5,
“Configuring Object Identification.”

Tip: You can use the Object Spy at any time to view run-time or test object
properties and values of the test objects in the application you are testing.
You open the Object Spy by choosing Tools > Object Spy or clicking the
Object Spy toolbar button. For more information, see “Viewing Object
Properties and Methods Using the Object Spy” on page 108.

Chapter 4 • Working with Objects

137

To specify a property value:

 1 Select the test object whose property value you want to specify.

 2 In the Test object details area, click in the value cell for the required
property.

Tip: For a test object in the local object repository, you can also select the
required test object and choose Edit > Step Properties > Object Properties,
and then make the following property value changes in the Object
Properties dialog box.

 3 Specify the property value in one of the following ways:

➤ If you want to specify a constant value, enter it in the value cell.

➤ If you want to parameterize the value or specify a constant value using a
regular expression, click the parameterization button in the value cell. If
you specify a constant value using a regular expression, the icon is
displayed next to the value. For information on parameterizing values,
see “Working with Parameters” on page 533.

 4 If you specified a constant value, it is shown in the Value column of the Test
object details area. If you parameterized the value, the parameter name is
shown with one of the following icons in the Value column.

Parameter Icon Description

Indicates that the value of the property is currently a
component parameter.

Indicates that the value of the property is currently a local
parameter.

Indicates that the value of the property is currently a
repository parameter (in a shared object repository).

Chapter 4 • Working with Objects

138

Updating Test Object Properties from an Object in Your
Application
You can update a test object in your object repository by selecting the
corresponding object in your application and relearning its properties and
property values from the application. When you update a test object
description in this way, all currently defined properties and values are
overwritten, including description properties and values, and ordinal
identifier and Smart Identification information. Any object-specific
comments that you may have entered are not removed.

This is useful if an object’s properties have changed since you added it to the
object repository, since QuickTest may not be able to recognize the object
unless you update its description.

You can also use this option to update an object that you defined (using the
Object > Define New Test Object option) before the application was
completely developed, and as a result some of the test object properties and
values are missing in the test object description, or are no longer sufficient
to identify the object. For more information on the Define New Test Object
option, see “Defining New Test Objects” on page 164.

You can do this for test objects in the local object repository using the
Object Repository window, and for test objects in the shared object
repository using the Object Repository Manager.

To update test object properties from an object in your application:

 1 In the object repository tree, select the test object whose description you
want to update.

 2 Choose Object > Update from Application or click the Update from
Application button. QuickTest is hidden, and the pointer changes into a
pointing hand.

 3 Find the object in your application whose properties you want to update in
the object repository and click it. You must choose an object of the same
object class as the test object you selected in the object repository tree.

Chapter 4 • Working with Objects

139

Notes:

➤ If the object you want to select is in a window that is partially hidden by
another window, hold the pointing hand over the partially hidden
window for a few seconds. The window comes into the foreground. You
can now point and click on the object you want. You can configure the
length of time required to bring a window into the foreground in the
General tab of the Options dialog box. For more information, see
Chapter 20, “Setting Global Testing Options.” You can also hold the left
CTRL key to change the window focus. Additionally, if the window
containing the object you want to select is minimized, you can display it
by holding the left CTRL key, right-clicking the application in the
Windows task bar, and choosing Restore from the context menu.

➤ If the object you want to select can only be displayed by performing an
event (such as right-clicking or moving the pointer over an object to
display a context menu), hold the left CTRL key. The pointing hand
temporarily changes into a standard pointer and you can perform the
event. When the object on which you want to spy is displayed, release
the left CTRL key. The pointer becomes a pointing hand again.

➤ If the location you click is associated with more than one object, the
Select an Object dialog box opens. Select an object from the object tree
and click OK.

The properties and property values for the selected object are updated in the
object repository, according to the properties and values required to identify
the object that were learned by QuickTest when you clicked the object in
your application. Note that all properties and property values in the Test
object details area are updated, together with the ordinal identifier and
Smart Identification selections. Any object-specific comments that you may
have entered are not removed.

Chapter 4 • Working with Objects

140

Restoring Default Properties for a Test Object
You can restore the default properties for a selected test object. When you
restore the default properties, it restores the mandatory property set defined
for the selected object class in the Object Identification dialog box. Any
changes that you have made to the description property set for the test
object will be overwritten. However, if property values were defined for any
of the mandatory properties they are not modified. In addition, restoring
the default mandatory property set does not change the values for the
ordinal identifier or Smart Identification settings for the test object.

To restore the mandatory property set:

 1 In the object repository tree, select the test object whose description you
want to restore.

 2 In the Test object details area, click the Restore mandatory property set
button.

 3 Click Yes to confirm the operation. The test object’s description properties
are restored to the mandatory property set for the selected object class.

Renaming Test Objects
When an object changes in your application, or if you are not satisfied with
the current name of a test object for any reason, you can change the name
that QuickTest assigns to the stored object. You can also provide test objects
with meaningful names to assist users in identifying them when using them
in component steps.

For example, suppose you have a graphics application in which all the tools
in the toolbar are saved as WinObjects in the object repository with the
names ToolChild1, ToolChild2, ToolChild3, and so forth. You may want to
rename all the buttons to their actual labels to make them easier to identify,
for example, Color_Picker, Eraser, Airbrush, and so forth.

You rename test objects in the local object repository using the Object
Repository window. You rename test objects in the shared object repository
using the Object Repository Manager.

If you are working with a shared object repository, your change applies to all
occurrences of the test object in all components that use this shared object
repository.

Chapter 4 • Working with Objects

141

If you are working with a local object repository, your change applies to all
occurrences of the test object in the selected component. If other
components in your business process test also include operations on the
local test object, you should modify the test object’s name in each relevant
component.

When you modify the name of a test object in the local object repository,
the name is automatically updated for all occurrences of the test object.
When you modify the name of a test object in a shared repository, the name
is automatically updated in all components open on the same computer
that use the object repository as soon as you make the change, even if you
have not yet saved the object repository with your changes. If you close the
object repository without saving your changes, the changes are rolled back
in any open components that were open at the time. Changes that are saved
are also automatically updated in components that use the object repository
as soon as you open them. To load and view saved changes in a component
or object repository that is currently open on a different computer, you
must open the object repository or lock it for editing on your computer.

Tip: If you do not want to automatically update test object names for all
occurrences of the test object, you can clear the Automatically update test
and component steps when you rename test objects check box in the
General tab of the Options dialog box (Tools > Options). If you clear this
option, you will need to manually change the test object names in all steps
in which they are used, otherwise your component run will fail.

Chapter 4 • Working with Objects

142

Note: If you rename test objects in a shared object repository and save the
changes, when you open another component using the same shared object
repository, that component updates the test object name in all of its
relevant steps. This process may take a few moments. If you save the
changes to the second component, the renamed steps are saved. However, if
you close the second component without saving, then the next time you
open the same component, it will again take a few moments to update the
test object names in its steps.

To rename a test object:

In the object repository tree, select the test object that you want to rename
and perform one of the following:

➤ Choose Edit > Rename and enter the new name for the test object in the
selected node in the tree. Then press ENTER or click anywhere else to
remove the focus from the test object.

➤ Press F2 and enter the new name for the test object.

➤ In the Name box in the Object Properties pane, enter the new name for
the test object. Then click anywhere else to remove the focus from the
object.

Note: The name you assign to the test object must be unique within the
same class and hierarchy in the object repository. Object names are not
case-sensitive.

Chapter 4 • Working with Objects

143

Adding Properties to a Test Object Description
You can add to the list of properties that QuickTest uses to identify an
object. For each object class, QuickTest has a default property set that it uses
for the object description for a particular test object. You can use the Add
Properties dialog box to change the properties that are included in the test
object description. You can do this for test objects in the local object
repository using the Object Repository window or Object Properties dialog
box, and for test objects in the shared object repository using the Object
Repository Manager.

Note: You can also add any valid test object property to a test object
description, even if it does not appear in the Add Properties dialog box. For
more information, see “Defining New Test Object Properties” on page 147.

Adding to the list of properties is useful when you want to create and run
components on an object that changes dynamically. An object may change
dynamically if it is frequently updated, or if its property values are set using
dynamic content (for example, from a database).

You can also change the properties that identify an object if you want to
reference objects using properties that QuickTest did not learn automatically
when it learned the object. For example, suppose you are testing a Web site
that contains an archive of newsletters. The archive page includes a
hypertext link to the current newsletter and additional hypertext links to all
past newsletters. The text in the first hypertext link on the page changes as
the current newsletter changes, but it always links to a page called
current.html. Suppose you want to create a step in your component in
which you always click the first hypertext link in your archive page. Since
the news is always changing, the text in the hypertext link keeps changing.
You need to modify how QuickTest identifies this hypertext link so that it
can continue to find it.

The default properties for a Link object (hypertext link) are text and HTML
tag. The text property is the text inside the link. The HTML tag property is
always A, which indicates a link.

Chapter 4 • Working with Objects

144

You can modify the default properties for a hypertext link for the learned
object so that QuickTest can identify it by its destination page, rather than
by the text in the link. You can use the href property to check the
destination page instead of using the text property to check the link by the
text in the link.

Tip: You can use the Object Spy at any time to view run-time or test object
properties and values of the objects in the application you are testing. You
open the Object Spy by choosing Tools > Object Spy or clicking the Object
Spy toolbar button. For more information, see “Viewing Object Properties
and Methods Using the Object Spy” on page 108.

Note: You can also modify the set of properties that QuickTest learns when
it learns objects from a particular object class using the Object Identification
dialog box. Such a change generally affects only those objects that QuickTest
learns after you make the change. For more information, see “Configuring
Object Identification” on page 181. You can also apply the changes you
make in the Object Identification dialog box to the descriptions of all
objects in an existing component using the Update Run Mode option. For
more information, see “Updating a Component Using the Update Run
Mode Option” on page 720.

Chapter 4 • Working with Objects

145

To add properties to a test object description:

 1 In the object repository tree, select the test object whose description you
want to modify.

 2 In the Test object details area, click the Add description properties button.

Tip: For a test object in the local object repository, you can also select the
required test object and choose Edit > Step Properties > Object Properties,
click the Add description properties button, and then perform the following
steps in the Add Properties dialog box.

The Add Properties dialog box opens listing the properties that can be used
to identify the object (properties that are not already part of the test object
description).

The value for each property is displayed in the Value column.

Chapter 4 • Working with Objects

146

Notes:

➤ Values for all properties are displayed only if the application that
contains the object is currently open. If the application is closed, only
values for properties that were part of the object description when the
object was learned are shown.

➤ You can resize the Add Properties dialog box to enable you to view long
property values.

➤ You can click the Define new property button to add valid test object
properties to this properties list. For more information, see “Defining
New Test Object Properties” on page 147.

 3 Select one or more properties to add to the test object description and
click OK. You can also double-click a property to add it to the test object
description. You can type the first letters of a property to highlight the first
property in the list that matches the pattern.

Tip: After you add a new property to the object description, you can modify
its value. For more information on modifying object property values, see
“Specifying or Modifying Property Values” on page 136.

Chapter 4 • Working with Objects

147

Defining New Test Object Properties
You can add any valid test object property to a test object description, even
if it does not appear in the Add Properties dialog box. You can do this for
test objects in the local object repository using the Object Repository
window or Add Properties dialog box, and for test objects in the shared
object repository using the Object Repository Manager. For example,
suppose you want QuickTest to use a specific property to identify your
object, but that property is not listed in the Add Properties dialog box. You
can open the Add Properties dialog box and add that property to the list.

Tip: You can use the Properties tab of the Object Spy to view a complete list
of valid test object properties for a selected object. You open the Object Spy
by choosing Tools > Object Spy or clicking the Object Spy toolbar button.
For more information, see “Viewing Object Properties and Methods Using
the Object Spy” on page 108.

To define a new test object property:

 1 In the object repository tree, select the test object for which you want to
define a new property.

 2 In the Test object details area, click the Add description properties button.

Tip: For a test object in the local object repository, you can also select the
required test object and choose Edit > Step Properties > Object Properties,
click the Add description properties button, and then perform the following
steps in the Add Properties dialog box.

Chapter 4 • Working with Objects

148

The Add Properties dialog box opens.

 3 Click the Define new property button. The New Property dialog box opens.

 4 Specify a valid test object property:

➤ Property name. Enter the property name.

➤ Property value. Enter the value for the property.

Note: You must enter a valid test object property. If you enter an invalid
property and then select it to be part of the object description, your run
session will fail.

Chapter 4 • Working with Objects

149

 5 Click OK to add the property to the list and close the New Property dialog
box. The new property is highlighted in the Add Properties dialog box.

 6 Click OK while the new property is highlighted to include it in the object
description and close the Add Properties dialog box.

Removing Properties from a Test Object Description
You can remove properties from the description of a test object if you no
longer want them to be part of the description. You can do this for test
objects in the local object repository using the Object Repository window or
Object Properties dialog box, and for test objects in the shared object
repository using the Object Repository Manager.

To remove a property from a test object description:

 1 In the object repository tree, select the test object whose description you
want to modify.

 2 In the Test object details area, select one or more properties that you want
to remove from the test object description.

Tip: For an object in the local object repository, you can also select the
required test object and choose Edit > Step Properties > Object Properties,
and then perform the following steps in the Object Properties dialog box.

 3 Click the Remove selected description properties button. The selected
properties are removed from the test object description.

Chapter 4 • Working with Objects

150

Specifying Ordinal Identifiers
An ordinal identifier assigns a numerical value to a test object that indicates
its order or location relative to other objects with an otherwise identical
description (objects that have the same values for all properties). This
ordered value provides a backup mechanism that enables QuickTest to
create a unique description to recognize an object when the defined
properties are not sufficient to do so. You can specify the ordinal identifier
for test objects in the local object repository using the Object Repository
window or Object Properties dialog box, and for test objects in the shared
object repository using the Object Repository Manager.

For more information on ordinal identifiers, see “Selecting an Ordinal
Identifier” on page 189.

To specify an ordinal identifier:

 1 Select the test object whose ordinal identifier you want to specify.

 2 In the Test object details area, click in the cell to the right of the Type, Value
cell under the Ordinal identifier row.

Tip: For an object in the local object repository, you can also select the
required test object and choose Edit > Step Properties > Object Properties,
click in the cell to the right of the Type, Value cell under the Ordinal
identifier row, and then perform the following steps in the Object Properties
dialog box.

 3 Click the browse button. The Ordinal Identifier dialog box opens.

Chapter 4 • Working with Objects

151

 4 In the Identifier type box, select one of the following options:

➤ Location. Indicates the order in which the object appears within the
parent window, frame, or dialog box relative to other objects with an
otherwise identical description.

➤ Index. Indicates the order in which the object appears in the application
code relative to other objects with an otherwise identical description.

➤ CreationTime (Browser objects only). Indicates the order in which the
browser was opened relative to other open browsers with an otherwise
identical description. This identifier type is only available if more than
one Browser object was open when the test object was learned.

➤ None. Does not specify an ordinal identifier. This is the default value if
QuickTest did not learn an ordinal identifier.

 5 In the Identifier value box, enter the numeric value of the ordinal identifier.

 6 Click OK. The ordinal identifier appears in the relevant row of the Test
object details area for the selected object.

Chapter 4 • Working with Objects

152

Mapping Repository Parameter Values

You can map repository parameters that are used in shared object
repositories that are associated with your component. Mapping a repository
parameter to a value or parameter specifies the property values used to
identify the test object during a run session. You can specify that the
property value is taken from a constant value, or parameterize it using a
local or component parameter.

You can map each repository parameter as required in each component that
has an associated object repository containing repository parameters. For
example, in one component you may want to retrieve the username object’s
text property value from an environment variable parameter, and in another
component you may want the same object property value to use a constant
value or a local parameter.

Before you map repository parameters, if you have more than one repository
parameter with the same name in different shared object repositories that
are associated with the same component, the repository parameter from the
shared object repository with the highest priority (as defined in the shared
object repositories list) is used. After you map repository parameters,
QuickTest uses the mappings you defined. In addition, changing the priority
or default values has no effect after the parameters are mapped.

When you open a component that uses an object repository with an object
property value that is parameterized using a repository parameter with no
default value, an indication that there is a repository parameter that needs
mapping is displayed in the Missing Resources pane. You can then map the
repository parameter as needed in the component. You can also map
repository parameters that have default values, and change mappings for
repository parameters that are already mapped.

If you do not map a repository parameter, the default value that was defined
with the parameter, if any, is used during the component run. If the
parameter is unmapped, meaning no default value was specified for it, the
component run may fail if a test object cannot be identified because it has
an unmapped parameter value.

Chapter 4 • Working with Objects

153

To map repository parameter values:

 1 Choose Resources > Map Repository Parameters. The Map Repository
Parameters dialog box opens.

Tip: If you have unmapped repository parameters (repository parameters
without a default value) in your component, you can also open this dialog
box by double-clicking the Repository Parameters row in the Missing
Resources pane. For more information, see Chapter 28, “Handling Missing
Resources.”

Chapter 4 • Working with Objects

154

The Map Repository Parameters dialog box contains the following options:

Option name Description

Map parameters
for filter

Enables you to filter the list of parameters that is displayed.
You can choose to display:

➤ All unmapped parameters. Displays all of the parameters in
your test with unmapped values.

➤ <Component name>. (For example, LogIn) Displays all of
the parameters in the specified component (with mapped
or unmapped values).

Name column The name of the repository parameter.

Value column The parameter’s current value, if any. This column shows
either the new value you defined, or the default value that was
defined when the parameter was created. If no default value
was defined, then the parameter is currently unmapped, and
the text {No default value} is shown.

You can perform one of the following:

➤ Enter a new constant value.

➤ Parameterize the value by clicking in the Value cell of the
relevant parameter and then clicking the parameterization
button .

➤ Reset a parameter to its default value by clicking in the
Value cell of the relevant parameter and then clicking the
Reset to Default Value button .

Description
column

A textual description of the parameter, if any.

Find in
Repository
button

Opens the Object Repository window and highlights the first
test object in the object repository tree that uses the selected
repository parameter. You can click this button again to find
the next occurrence of the selected parameter, and so forth.

Chapter 4 • Working with Objects

155

Note: The repository parameter names, default values, and descriptions are
defined in the Manage Repository Parameters dialog box. In addition, the
names and descriptions can only be modified there. For more information,
see “Managing Repository Parameters” on page 231.

 2 Click the Map parameters for arrow to select the list of parameter groups for
which you want to define values. You can choose to display:

➤ All unmapped parameters. Displays all of the parameters in your test
with unmapped values.

➤ <Component name>. (For example, LogIn) Displays all of the parameters
in the specified component (with mapped or unmapped values).

 3 Click in the Value cell of the parameter you want to map. You can choose to
map the value in one of the following ways:

➤ Enter a new constant value or modify an existing constant value by
typing directly in the Value cell. You can also enter a constant value in
the Value Configuration Options dialog box by clicking the
parameterization button. For information on using this dialog box, see
the HP QuickTest Professional User’s Guide.

➤ Parameterize the value by clicking the parameterization button. The
Value Configuration Options dialog box opens. You can parameterize the
value using a local or component parameter. For information on using
this dialog box, see the HP QuickTest Professional User’s Guide.

➤ Restore the default value by clicking the Clear Default Value button. The
default value, if any, that was defined in the Add Repository Parameter
dialog box is displayed in the cell. For information on the Add Repository
Parameter dialog box, see “Adding Repository Parameters” on page 233.

 4 Repeat step3 for any additional parameter values that you want to map.
Then click OK to close the Map Repository Parameter dialog box.

Chapter 4 • Working with Objects

156

Adding Test Objects to an Object Repository

When you create a shared object repository for your keyword-driven testing
infrastructure, you can add test objects to it in different ways. You can
choose to add only a selected test object, or to add all test objects of a certain
type, such as all button objects, or to add all test objects of a specific class,
such as all WebButton objects. In addition, if you record a component,
QuickTest adds each object on which you perform an operation to the local
object repository (for objects that do not already exist in an associated
shared object repository). You can also add test objects to the local object
repository while editing your component.

For example, you may find that users need to perform a step on an object
that is not in the object repository. You may also find that an additional
object was added to the application you are testing after you built the object
repository. You can add the object directly to a shared object repository
using the Object Repository Manager, so that it is available in all actions
that use this shared object repository. Alternatively, you can add it to the
local object repository of the component.

Note: You can add a test object to the local object repository only if that test
object does not already exist in a shared object repository that is associated
with the component. If a test object already exists in an associated shared
object repository, you can add it to the local object repository using the
Copy to Local option. For more information, see “Copying an Object to the
Local Object Repository” on page 131.

If needed, you can merge test objects from the local object repository into a
shared object repository. For more information, see Chapter 7, “Merging
Shared Object Repositories.”

Chapter 4 • Working with Objects

157

You can also add test objects to a shared object repository while navigating
through your application. For more information, see “Adding Test Objects
Using the Navigate and Learn Option” on page 228.

Tip: You can also add a test object to the local object repository by choosing
it from your application in the Select Object for Step dialog box (from a new
step in the Keyword View). For more information, see “Selecting an Item for
Your Step” on page 516.

Adding a Test Object Using the Add Objects to Local or
Add Objects Option
You can add test objects to a local or shared object repository directly from
your application. You can choose to add a specific test object either with or
without its descendants. You can also control which descendants to add,
according to their object and class types, based on selections that you define
in the object filter.

Note: You cannot add WinMenu objects directly to an object repository
using the Add Objects to Local button in the Object Repository window or
the Add Objects button in the Object Repository Manager. If you want to
add a WinMenu object to the object repository, you can use the Add Objects
or Add Objects to Local button to add its parent object and then select to
add the parent object together with its descendants, or you can record a step
on a WinMenu object and then delete the recorded step.

Chapter 4 • Working with Objects

158

To add test objects to the object repository using the Add Objects to Local
or Add Objects option:

 1 Perform one of the following:

➤ In the Object Repository window, choose Object > Add Objects to Local
or click the Add Objects to Local toolbar button. If you choose this
option, the test object is added to the local object repository and can
only be used by the current component.

➤ In the Object Repository Manager, choose Object > Add Objects or click
the Add Objects toolbar button. If you choose this option, the test object
is added to a shared object repository and can be used in multiple
components.

QuickTest and the Object Repository window or Object Repository Manager
are hidden, and the pointer changes into a pointing hand.

Note: If the window containing the object you want to add is partially
hidden by another window, hold the pointing hand over the partially
hidden window for a few seconds. The window comes into the foreground.
You can now point to and click the object you want. You can configure the
length of time required to bring a window into the foreground in the
General tab of the Options dialog box. For more information, see
Chapter 20, “Setting Global Testing Options.” You can also hold the left
CTRL key to temporarily deactivate the pointing hand mechanism while you
change the window focus. Additionally, if the window containing the object
you want to select is minimized, you can display it by holding the left CTRL
key, right-clicking the application in the Windows task bar, and choosing
Restore from the context menu.

 2 Click the object you want to add to your object repository.

 3 If the location you click is associated with more than one object, the Object
Selection dialog box opens. Select the object you want to add to the
repository and click OK.

Chapter 4 • Working with Objects

159

If the object you select in the Object Selection dialog box is a bottom-level
object in the test object hierarchy, for example, a WebButton object, it is
added directly to the object repository.

If the object you select in the Object Selection dialog box is a parent
(container) object, such as a browser or page in a Web environment, or a
dialog box in a standard Windows application, the Define Object Filter
dialog box opens. The Define Object Filter dialog box retains the settings
that you defined in the previous add object session.

You can choose from the following options:

➤ Selected object only (no descendants). Adds to the object repository the
previously selected object’s properties and values, without its descendant
objects.

➤ Default object types. Adds to the object repository the previously selected
object’s properties and values, with the properties and values of its
descendant objects according to the object types specified by the default
filter. You can see which objects are in the default filter by clicking the
Select button and then clicking the Default button.

Chapter 4 • Working with Objects

160

➤ All object types. Adds to the object repository the previously selected
object’s properties and values, together with the properties and values of
all of its descendant objects.

➤ Selected object types. Adds to the object repository the previously
selected object’s properties and values, as well as the properties and
values of its descendant objects according to the object types and classes
you specify in the object filter. You specify the objects and classes in the
filter by clicking the Select button and selecting the required items in the
Select Object Types dialog box. For more information on the Select
Object Types dialog box, see “Understanding the Select Object Types
Dialog Box” on page 162.

 4 Select the required option and click OK to close the Define Object Filter
dialog box and add the specified objects to the object repository according
to the selected object filter.

 5 The Object Repository window is redisplayed, showing the new local objects
and their properties and values in the object repository. If you chose to add
the objects from the Object Repository Manager, the objects are added to the
active shared object repository.

QuickTest also adds the new object’s parent objects if they do not already
exist in the object repository. Local objects are shown in black in the object
repository tree to indicate they are editable; shared objects are shown in
gray and can only be edited in the Object Repository Manager.

You can edit the new test object’s details just as you would edit any other
object in a local or shared object repository. For more information, see
“Viewing and Modifying Test Object Properties” on page 130.

Chapter 4 • Working with Objects

161

 Understanding the Define Object Filter Dialog Box
When adding a test object to the object repository, if the object you select to
add is typically a parent object, such as a browser or page in a Web
environment or a dialog box in a standard Windows application, the Define
Object Filter dialog box opens.

The object filter contains predefined settings that decide which objects
should be learned (while using the Navigate and Learn option or the Add
Objects option). The option you select in the Define Object Filter dialog box
is saved and used for each subsequent learn session.

You can choose from the following options:

➤ Selected object only (no descendants). Adds to the object repository the
previously selected object’s properties and values, without its descendant
objects.

➤ Default object types. Adds to the object repository the previously selected
object’s properties and values, with the properties and values of its
descendant objects according to the object types specified by the default
filter. You can see which objects are in the default filter by clicking the Select
button and then clicking the Default button.

Chapter 4 • Working with Objects

162

➤ All object types. Adds to the object repository the previously selected
object’s properties and values, together with the properties and values of all
of its descendant objects.

➤ Selected object types. Adds to the object repository the previously selected
object’s properties and values, as well as the properties and values of its
descendant objects according to the object types and classes you specify in
the object filter. You specify the objects and classes in the filter by clicking
the Select button and selecting the required items in the Select Object Types
dialog box. For more information on the Select Object Types dialog box, see
“Understanding the Select Object Types Dialog Box” on page 162.

Understanding the Select Object Types Dialog Box
The Select Object Types dialog box enables you to specify a custom object
filter for adding test objects to the object repository (while using the
Navigate and Learn option or the Add Objects option).

When you define an object filter, it is automatically saved for future add
object operations (performed from both the Navigate and Learn option and
the Add Objects option).

Chapter 4 • Working with Objects

163

You open the Select Object Types dialog box by clicking the Select button in
the Define Object Filter dialog box.

The object types in this list are a generic grouping of objects according to
the general object characteristics. For example, the List type contains list
and list view objects, as well as combo boxes; the Table type contains both
tables and grids.

The list shows all objects supported by the installed add-ins and is not
specific to the object you selected. For some add-ins, certain child objects
may be automatically filtered out and not added to the object repository
when you choose to add all descendants of a specific object, even if those
object types are selected in the list. If you want to add an object that is
automatically filtered out, you can add it by selecting it in the Object
Selection dialog box. To check whether your add-in automatically filters out
certain objects, see the HP QuickTest Professional Add-ins Guide.

Chapter 4 • Working with Objects

164

Tip: Click Select All or Clear All to select or clear all the check boxes in the
Select Object Types dialog box. Click Default to restore the check box
selections to their preset defaults. The preset defaults are equivalent to
choosing the Default object types option in the Define Object Filter dialog
box.

Make your selections and click OK to define your custom object filter and
close the Select Object Types dialog box.

Defining New Test Objects

You can define test objects in your object repository that do not yet exist in
your application. This enables you to prepare an object repository and build
components for your application before the application is ready for testing.

For example, you may already know the names, types, and descriptive
properties of some of the objects in your application, and know only the
types of other objects in your application. Before your application is ready,
you can create WebEdit objects for UserName and Password fields in your
Login page (plus the relevant parent Page and Browser objects). If you know
the property values for these objects, you can also add them. If not, you can
add them when your application is ready for testing.

When you define a new object in the object repository as described in this
section, the object is added to the local object repository and can only be
used by the current component. If you want to add the object to the shared
object repository so that it can be used in multiple components, you must
add it using the Object Repository Manager. For more information, see
Chapter 6, “Managing Object Repositories.”

After you have defined the new test object, if the properties of the object in
your application do not match the test object description that you defined,
or if an object has been updated in your application, you can update the
object description at any time. For more information, see “Updating Test
Object Properties from an Object in Your Application” on page 138.

Chapter 4 • Working with Objects

165

To define a new test object:

 1 Select the object under which you want to define the new object, according
to the correct object hierarchy.

 2 Click the Define New Test Object button or choose Object > Define New
Test Object. The Define New Test Object dialog box opens.

 3 In the Environment box, select the appropriate environment. The test object
classes associated with the selected environment are displayed in the Class
box.

Note: The environments included in the Environment box correspond to
the loaded add-in environments. For more information on loading add-ins,
see the HP QuickTest Professional Add-ins Guide.

 4 In the Class box, select the class of the test object you want to define.

 5 In the Name box, enter a name for the new test object. After you enter a
name, the Test object details area is enabled.

Chapter 4 • Working with Objects

166

 6 In the Test object details area, define the properties and values for your test
object. The Test object details area automatically contains the mandatory
properties defined for the object class in the Object Identification dialog
box. You can add or remove properties as required, and define values for the
properties. For more information, see “Viewing and Modifying Test Object
Properties” on page 130.

 7 Click Add. The new test object is added to the local object repository in the
selected location.

 8 Repeat step3 to step7 to define additional test objects, or click Close to close
the Define New Test Object dialog box.

Copying, Pasting, and Moving Objects in the Object
Repository

You can copy, paste, and move test objects and checkpoint and output
objects in the local object repository using the Object Repository window,
and copy, paste, and move objects both within a shared object repository
and between shared object repositories using the Object Repository
Manager. You can also copy objects from a shared object repository to the
local object repository to modify them locally. For more information, see
“Copying an Object to the Local Object Repository” on page 131.

Note: You can use the Edit > Undo and Edit > Redo options or Undo and
Redo buttons to cancel or repeat your changes. When you save the object
repository, you cannot undo and redo operations that were performed
before the save operation.

The following procedures describe the ways in which you can copy, paste,
and move objects:

To move an object to a different location within an object repository:

Drag the object up or down the tree and drop it at the required location.
When you drag an object, by default, any child objects are also moved with
it.

Chapter 4 • Working with Objects

167

To copy an object to a different location within an object repository:

Press the CTRL key while dragging the object and drop it at the required
location in the tree. When you drag an object, by default, any child objects
are also moved with it.

To move or copy an object without its child objects:

Drag the object using the right mouse button. When you drop the object at
the required location, you can choose whether to drop it with or without its
children. By default, when you drag an object, any child objects are also
moved or copied with it.

To cut, copy, and paste objects within an object repository:

Use the corresponding toolbar buttons or the options in the Edit menu.
When you cut, copy, and paste objects, the operation is performed also on
the child objects of the selected object, if any.

To cut, copy, and paste objects between shared object repositories:

In the Object Repository Manager, use the corresponding toolbar buttons or
the options in the Edit menu. When you cut, copy, and paste objects, the
operation is performed also on the child objects of the selected object, if
any.

To copy objects from one shared object repository to another:

In the Object Repository Manager, open the required shared object
repositories. Drag the object from one window and drop it at the required
location in the other window.

To move objects from one shared object repository to another:

In the Object Repository Manager, open the required shared object
repositories. Press the CTRL key while you drag the object from one window
and drop it at the required location in the other window. Note that moving
an object removes it from one shared object repository and adds it to the
other shared object repository.

Chapter 4 • Working with Objects

168

Guidelines for Copying, Pasting, and Moving Objects
When copying, pasting, or moving objects, consider the following
guidelines:

➤ You cannot modify the root node of an object repository.

➤ If you change the object hierarchy, ensure that the new hierarchy is valid.

➤ If you paste or move an object to a different hierarchical level, you can
choose whether to copy all objects up to the shared parent object (in the
message displayed when you perform such an operation).

➤ In the Object Repository window, when you copy, paste, and move objects
from a shared object repository associated with a component, the objects are
copied, pasted, or moved to the local object repository of the component.

➤ If you move an object to its immediate parent, QuickTest creates a copy of
the object (renamed with an incremental suffix) and pastes it as a sibling of
the original object.

➤ If you cut or copy an object, and then paste it on its parent object, QuickTest
creates copy of the object (renamed with an incremental suffix) and inserts
it at the same level as the original object.

➤ You cannot move an object to any of its descendants.

➤ You cannot copy or move an object to be a child of a bottom-level object (an
object that cannot contain a child object) in the object hierarchy.

➤ You cannot copy, paste, or move objects that have unmapped repository
parameters from a shared object repository to the local object repository. If
you copy, paste, or move an object from a shared object repository to the
local object repository and the object or one of its parent objects are
parameterized using one or more repository parameters, the repository
parameter values are converted when you copy, paste, or move the object.
For example, if the repository parameter is mapped to a local parameter, the
property is parameterized using a local parameter. If the value is a constant
value, the property receives the same constant value.

Chapter 4 • Working with Objects

169

Deleting Objects from the Object Repository

When you remove a step from your component, its corresponding object
remains in the object repository.

If you are working with a local object repository and the object in the step
you removed does not occur in any other steps within that component, you
can delete the object from the object repository.

If you are working with a shared object repository, confirm that the object
does not appear in any other component using the same shared object
repository before you choose to delete the object from the object repository.

You delete objects in the local object repository using the Object Repository
window, and objects in the shared object repository using the Object
Repository Manager.

Note: If your component contains references to an object that you deleted
from the object repository, your component run will fail.

To delete an object from the object repository:

 1 In the repository tree, select the object you want to delete.

 2 Click the Delete button or choose Edit > Delete.

 3 Click Yes to confirm that you want to delete the object. The object is deleted
from the object repository.

Tip: The Delete button enables you to delete any selected value or item in
the object repository, not just test objects. For example, you can use it to
delete part of an object name or a property value.

Chapter 4 • Working with Objects

170

Locating Objects

You can search for a specific object in your object repository in several ways.
You can search for an object according to its type. For example, you can
search for a specific edit box, or you can point to an object in your
application to automatically highlight that same object in your repository.
You can select an object in your object repository and highlight it in your
application to check which object it is. For local objects (and shared objects
in an editable shared object repository when using the Object Repository
Manager), you can also replace specific property values with other property
values. For example, you can replace the property value userName with
user name.

Finding Objects in an Object Repository
You can use the Find and Replace dialog box to find an object, property, or
property value in an object repository. You can also find and replace
specified property values.

You replace property values for objects in the local object repository using
the Object Repository window. You replace property values for objects in
shared object repositories using the Object Repository Manager.

Notes:

➤ The Find and Replace dialog box can only find checkpoint and output
values by searching for the object name.

➤ You cannot use the Find and Replace dialog box to replace property or
object names. You cannot replace property values in a read-only
component.

Chapter 4 • Working with Objects

171

To find an object, property, or property value in the object repository:

 1 Make sure that the relevant object repository is open (in the Object
Repository window or Object Repository Manager).

 2 Click the Find & Replace button or choose Edit > Find & Replace. The Find &
Replace dialog box opens.

Chapter 4 • Working with Objects

172

 3 Specify one or more criteria by which you want to search for the object,
property, or property value:

➤ Object name. Enter the name or partial name of the object you want to
find.

➤ Object type. Select the type of object you want to find, for example,
Button.

Note: The object types in this list are a generic grouping of objects
according to the general object characteristics. For example, the List type
contains list and list view objects, as well as combo boxes; the Table type
contains both tables and grids.

➤ Object class. Select the class of object you want to find, for example,
WebButton. The classes available depend on the selection you made in
the Object type box.

➤ Property name. Specify the name or partial name of the property you
want to find.

➤ Property value. Specify the property value or partial property value you
want to find.

 4 If you specified a property value and want to replace it with a different
value, enter the new property value in the New property value box.

 5 Specify the search parameters, as follows:

➤ If you want the search to distinguish between upper and lower case
letters, select Match case.

➤ If you want the search to find only complete words that exactly match
the single word you entered, select Match whole word.

➤ Specify the direction in which you want to search: Up or Down.

Chapter 4 • Working with Objects

173

 6 Perform the find or replace operation in one of the following ways. The
search is performed on the entire object repository, starting with the
currently selected object and in the direction you specified. To find the next
instance, click Find Next again.

➤ To find the specified object, property, or property value, click Find Next.
The first instance of the searched word is displayed.

➤ To individually find and replace each instance of the property value for
which you are searching, click Find Next. When an instance is found,
click Replace. The property value is replaced, and the next instance of the
property value, if any, is highlighted.

➤ To replace all instances of the specified property value with the new
property value, click Replace All. Instances in shared object repositories
that are not editable are not changed.

Highlighting an Object in Your Application
You can select a test object in your object repository and highlight it in the
application you are testing. When you choose to highlight a test object,
QuickTest indicates the selected object's location in your application by
temporarily showing a frame around the object and causing it to flash
briefly. The application must be open to the correct context so that the
object is visible.

For example, to locate the User Name edit box in a Web page, you can open
the relevant page in the Web browser and then select the User Name test
object in the object repository. When you choose the Highlight in
Application option, the User Name edit box in your browser is framed in the
Web page and flashes several times.

Note: Both the frame and the flashing behavior are temporary.

Chapter 4 • Working with Objects

174

To highlight an object in your application:

 1 Make sure your application is open to the correct window or page.

 2 Select the test object you want to highlight in your object repository.

 3 Click the Highlight in Application button or choose View > Highlight in
Application. The selected object is highlighted with a border in the
application.

Note: If the application is not open to the correct context, the object is not
highlighted and a message is displayed.

Locating a Test Object in the Object Repository
You can select an object in the application you are testing and highlight the
test object in the object repository.

For example, to locate a Find a Flight image in a Web page, you can select it
in your Web page using the pointing hand mechanism. After you select the
Find a Flight image object from the selection dialog box and click OK, the
parent hierarchy in the object repository tree expands and the Find a Flight
image test object is highlighted.

To locate an object in the object repository:

 1 Make sure your application is open to the correct window or page.

 2 Click the Locate in Repository button or choose View > Locate in Repository.
QuickTest is hidden, and the pointer changes into a pointing hand.

Chapter 4 • Working with Objects

175

 3 Use the pointing hand to click on the required object in your application.

Tip: You can hold the left CTRL key to change the window focus or perform
operations such as right-clicking or moving the pointer over an object to
display a context menu. If the window containing the object you want to
click is partially hidden by another window, you can also hold the pointing
hand over the partially hidden window for a few seconds until the window
comes into the foreground and you can point and click on the object you
want. Additionally, if the window containing the object you want to select
is minimized, you can display it by holding the left CTRL key, right-clicking
the application in the Windows task bar, and choosing Restore from the
context menu.

If the location you clicked is associated with more than one object, the
Select an Object dialog box opens.

Chapter 4 • Working with Objects

176

 4 Select the object you want to locate in the object repository and click OK.
The selected object is highlighted in the object repository.

Tip: If the relevant object repository is not open or the object cannot be
found, the object is not highlighted. In the Object Repository Manager, if
more than one shared object repository is open, and QuickTest cannot
locate the selected object in the active object repository, you can choose
whether to look for the object in all of the currently open object
repositories.

Chapter 4 • Working with Objects

177

Working with Test Objects During a Run Session

The first time QuickTest encounters an object during a run session, it creates
a temporary version of the test object for that run session. QuickTest uses
the object description to create this temporary version of the object. For the
remainder of the component, QuickTest refers to the temporary version of
the test object rather than to the test object in the object repository.

Note: The Object Repository window is read-only during record and run
sessions.

Creating Test Objects During a Run Session
You can use programmatic descriptions to create temporary versions of test
objects that represent objects from your application. You can perform
operations on those objects without referring to the object repository. For
example, suppose an edit box was added to a form on your Web site. You
can use a programmatic description to add a statement in a user-defined
function that enters a value in the new edit box. QuickTest could then
identify the object even though the object was never added to the object
repository. For more information on programmatic descriptions, see “Using
Programmatic Descriptions” on page 332.

Modifying Test Object Properties During a Run Session
You can modify the properties of the temporary version of the object during
the run session without affecting the permanent values in the object
repository by adding a SetTOProperty statement in a user-defined function.

Use the following syntax for the SetTOProperty method:

Object(description).SetTOProperty Property, Value

For information, see the HP QuickTest Professional Object Model Reference.

Chapter 4 • Working with Objects

178

Exporting Local Objects to a Shared Object Repository

You can export all of the test objects, checkpoint objects, and output value
objects contained in a component’s local object repository to a new shared
object repository in the file system or to a Quality Center project (if
QuickTest is connected to Quality Center). This enables you to make the
local objects accessible to other components. You export local objects to a
new shared object repository using the Object Repository window.

When you export local objects to a shared object repository, the parameters
of any parameterized objects are converted to repository parameters using
the same name as the source parameter. The default (mapped) value of each
repository parameter is the corresponding source parameter. You can modify
the mapping used within your component using the Map Repository
Parameters dialog box (described in “Mapping Repository Parameter Values”
on page 152). For more information on repository parameters, see
Chapter 6, “Managing Object Repositories.”

Tip: After you export the local objects, you can use the Object Repository
Merge Tool to merge the test objects from the shared object repository
containing the exported objects with another shared object repository. For
more information, see Chapter 7, “Merging Shared Object Repositories.”

To export local objects to a new shared object repository:

 1 Open the component that has the local objects you want to export.

 2 Open the Object Repository window by selecting Resources > Object
Repository or clicking the Object Repository button.

 3 Select File > Export Local Objects. The Export Object Repository dialog box
opens.

Chapter 4 • Working with Objects

179

Note: If you are connected to Quality Center, the dialog box that opens is
different from the standard file system dialog box. You can switch between
the two dialog box versions by clicking the File System and Quality Center
buttons in the Export Object Repository dialog box.

 4 Select the location in which to save the file, specify the File name or
Attachment Name, and click Save or OK (depending on whether you are
saving it to the file system or a Quality Center project).

If you chose Export Local Objects, the local objects are exported to the
specified shared object repository (a file with a .tsr extension). Your
component continues to use the objects in the local object repository, and
the new shared object repository is not associated with your test.

You can now use the new shared object repository like any other shared
object repository.

Chapter 4 • Working with Objects

180

181

5
Configuring Object Identification

When QuickTest learns an object, it learns a set of properties and values that
uniquely describe the object within the object hierarchy. In most cases, this
description is sufficient to enable QuickTest to identify the object during the
run session.

If you find that the description QuickTest uses for a certain object class is
not the most logical one for the objects in your application, or if you expect
that the values of the properties in the object description may change
frequently, you can configure the way that QuickTest learns and identifies
objects. You can also map user-defined objects to standard test object classes
and configure the way QuickTest learns objects from your user-defined
object classes.

This chapter includes:

 ➤ About Configuring Object Identification on page 181

 ➤ Understanding the Object Identification Dialog Box on page 183

 ➤ Configuring Smart Identification on page 196

 ➤ Mapping User-Defined Test Object Classes on page 206

About Configuring Object Identification

QuickTest has a predefined set of properties that it learns for each test
object. If these mandatory property values are not sufficient to uniquely
identify a learned object, QuickTest can add some assistive properties and/or
an ordinal identifier to create a unique description.

Mandatory properties are properties that QuickTest always learns for a
particular test object class.

Chapter 5 • Configuring Object Identification

182

Assistive properties are properties that QuickTest learns only if the
mandatory properties that QuickTest learns for a particular object in your
application are not sufficient to create a unique description. If several
assistive properties are defined for an object class, then QuickTest learns one
assistive property at a time, and stops as soon as it creates a unique
description for the object. If QuickTest does learn assistive properties, those
properties are added to the test object description.

Note: If the combination of all defined mandatory and assistive properties is
not sufficient to create a unique test object description, QuickTest also
learns the value for the selected ordinal identifier. For more information, see
“Selecting an Ordinal Identifier” on page 189.

When you run a component, QuickTest searches for the object that matches
the description it learned (without the ordinal identifier). If it cannot find
any object that matches the description, or if it finds more than one object
that matches, QuickTest uses the Smart Identification mechanism (if
enabled) to identify the object. In many cases, a Smart Identification
definition can help QuickTest identify an object, if it is present, even when
the learned description fails due to changes in one or more property values.
The test object description is used together with the ordinal identifier only
in cases where the Smart Identification mechanism does not succeed in
narrowing down the object candidates to a single object.

You use the Object Identification dialog box (Tools > Object Identification)
to configure the mandatory, assistive, and ordinal identifier properties that
QuickTest uses to learn descriptions of the objects in your application, and
to enable and configure the Smart Identification mechanism.

The Object Identification dialog box also enables you to configure new
user-defined classes and map them to an existing test object class so that
QuickTest can recognize objects from your user-defined classes when you
run your component.

Chapter 5 • Configuring Object Identification

183

Understanding the Object Identification Dialog Box

You use the main screen of the Object Identification dialog box to set
mandatory and assistive properties, to select the ordinal identifier, and to
specify whether you want to enable the Smart Identification mechanism for
each test object.

From the Object Identification dialog box, you can also define user-defined
object classes and map them to Standard Windows object classes, and you
can configure the Smart Identification mechanism for any object displayed
in the Test Object classes list for a selected environment.

Notes:

➤ Any changes you make in the Object Identification dialog box have no
effect on objects already added to the object repository.

➤ The learned and Smart Identification properties of certain test objects
cannot be configured, for example, the WinMenu, VbLabel, VbObject,
and VbToolbar objects. These objects are therefore not included in the
Test Object classes list for the selected environment.

For more information, see:

➤ “Configuring Mandatory and Assistive Properties” on page 184

➤ “Selecting an Ordinal Identifier” on page 189

➤ “Enabling and Disabling Smart Identification” on page 194

➤ “Restoring Default Object Identification Settings for Test Objects” on
page 195

➤ “Generating Automation Scripts for Your Object Identification Settings” on
page 195

Chapter 5 • Configuring Object Identification

184

Configuring Mandatory and Assistive Properties
If you find that the description QuickTest uses for a certain object class is
not the most logical one for the objects in your application, or if you expect
that the values of the properties currently used in the object description
may change, you can modify the mandatory and assistive properties that
QuickTest learns when it learns an object of a given class.

During the run session, QuickTest looks for objects that match all properties
in the test object description—it does not distinguish between properties
that were learned as mandatory properties and those that were learned as
assistive properties.

For example, the default mandatory properties for a Web Image object are
the alt, html tag, and image type properties. There are no default assistive
properties defined. Suppose your Web site contains several space holders for
different collections of rotating advertisements. You want to create a
component that clicks on the images in each one of these space holders.

However, since each advertisement image has a different alt value, one alt
value would be added when you create the component, and most likely
another alt value will be captured when you run the component, causing
the run to fail. In this case, you could remove the alt property from the Web
Image mandatory properties list. Instead, since each advertisement image
displayed in a certain space holder in your site has the same value for the
image name property, you could add the name property to the mandatory
properties to enable QuickTest to uniquely identify the object.

Also, suppose that whenever a Web image is displayed more than once on a
page (for example, a logo displayed on the top and bottom of a page), the
Web designer adds a special ID property to the Image tag. The mandatory
properties are sufficient to create a unique description for images that are
displayed only once on the page, but you also want QuickTest to learn the
ID property for images that are displayed more than once on a page. To do
this, you add the ID property as an assistive property, so that QuickTest
learns the ID property only when it is necessary for creating a unique test
object description.

Chapter 5 • Configuring Object Identification

185

To configure mandatory and assistive properties for a test object class:

 1 Choose Tools > Object Identification. The Object Identification dialog box
opens.

 2 Select the appropriate environment in the Environment list. The test object
classes associated with the selected environment are displayed
alphabetically in the Test Object classes list. (In Standard Windows, the
user-defined objects appear at the bottom of the list.)

Note: The environments included in the Environment list correspond to the
loaded add-ins. For more information on loading add-ins, see the section on
loading QuickTest add-ins in the HP QuickTest Professional Add-ins Guide.

 3 In the Test Object classes list, select the test object class you want to
configure.

Chapter 5 • Configuring Object Identification

186

 4 In the Mandatory Properties list, click Add/Remove. The Add/Remove
Properties dialog box for mandatory properties opens.

 5 Select the properties you want to include in the Mandatory Properties list
and/or clear the properties you want to remove from the list.

Note: You cannot include the same property in both the mandatory and
assistive property lists.

You can specify a new property by clicking New and specifying a valid
property name in the displayed dialog box.

Tip: You can also add property names to the set of available properties for
Web objects using the attribute/<PropertyName> notation. To do this, click
New. The New Property dialog box opens. Enter a valid property using the
format attribute/<PropertyName> and click OK. The new property is added to
the Mandatory Properties list. For example, to add a property called
MyColor, enter attribute/MyColor.

Chapter 5 • Configuring Object Identification

187

 6 Click OK to close the Add/Remove Properties dialog box. The updated set of
mandatory properties is displayed in the Mandatory Properties list.

 7 In the Assistive Properties list, click Add/Remove. The Add/Remove
Properties dialog box for assistive properties opens.

 8 Select the properties you want to include in the assistive properties list
and/or clear the properties you want to remove from the list.

Note: You cannot include the same property in both the mandatory and
assistive property lists.

Chapter 5 • Configuring Object Identification

188

You can specify a new property by clicking New and specifying a valid
property name in the displayed dialog box.

Tip: You can also add property names to the set of available properties for
Web objects using the attribute/<PropertyName> notation. To do this, click
New. The New Property dialog box opens. Enter a valid property in the
format attribute/<PropertyName> and click OK. The new property is added to
the Assistive Properties list. For example, to add a property called MyColor,
enter attribute/MyColor.

 9 Click OK to close the Add/Remove Properties dialog box. The properties are
displayed in the Assistive Properties list.

 10 Use the up and down arrows to set your preferred order for the assistive
properties. When QuickTest learns an object, and assistive properties are
necessary to create a unique object description, QuickTest adds the assistive
properties to the description one at a time until it has enough information
to create a unique description, according to the order you set in the Assistive
Properties list.

Chapter 5 • Configuring Object Identification

189

Selecting an Ordinal Identifier
In addition to learning the mandatory and assistive properties specified in
the Object Identification dialog box, QuickTest can also learn a backup
ordinal identifier for each test object. The ordinal identifier assigns the
object a numerical value that indicates its order relative to other objects
with an otherwise identical description (objects that have the same values
for all properties specified in the mandatory and assistive property lists).
This ordered value enables QuickTest to create a unique description when
the mandatory and assistive properties are not sufficient to do so.

Because the assigned ordinal property value is a relative value and is
accurate only in relation to the other objects displayed when QuickTest
learns an object, changes in the layout or composition of your application
page or screen could cause this value to change, even though the object
itself has not changed in any way. For this reason, QuickTest learns a value
for this backup ordinal identifier only when it cannot create a unique
description using all available mandatory and assistive properties.

In addition, even if QuickTest learns an ordinal identifier, it will use it
during the run session only if the learned description and the Smart
Identification mechanism are not sufficient to identify the object in your
application. If QuickTest can use other test object properties to identify the
object during a run session, the ordinal identifier is ignored.

QuickTest can use the following types of ordinal identifiers to identify an
object:

➤ Index. Indicates the order in which the object appears in the application
code relative to other objects with an otherwise identical description. For
more information, see “Identifying an Object Using the Index Property” on
page 190.

➤ Location. Indicates the order in which the object appears within the parent
window, frame, or dialog box relative to other objects with an otherwise
identical description. For more information, see “Identifying an Object
Using the Location Property” on page 191.

➤ CreationTime. (Browser object only.) Indicates the order in which the
browser was opened relative to other open browsers with an otherwise
identical description. For more information, see “Identifying an Object
Using the CreationTime Property” on page 192.

Chapter 5 • Configuring Object Identification

190

By default, an ordinal identifier type exists for each test object class. To
modify the default ordinal identifier, you can select the desired type from
the Ordinal identifier box.

Tip: While recording, if QuickTest successfully creates a unique test object
description using the mandatory and assistive properties, it does not learn
an ordinal identifier value. You can add an ordinal identifier to an object’s
test object properties at a later time using the Add/Remove option from the
Object Properties or Object Repository dialog box. For more information, see
Chapter 4, “Working with Objects.”

Identifying an Object Using the Index Property

While learning an object, QuickTest can assign a value to the test object’s
Index property to uniquely identify the object. The value is based on the
order in which the object appears within the source code. The first
occurrence is 0.

Index property values are object-specific. Therefore, if you use Index:=3 to
describe a WebEdit test object, QuickTest searches for the fourth WebEdit
object in the page. However, if you use Index:=3 to describe a WebElement
object, QuickTest searches for the fourth Web object on the page—regardless
of the type—because the WebElement object applies to all Web objects.

For example, suppose a page contains the following objects:

➤ an image with the name Apple

➤ an image with the name UserName

➤ a WebEdit object with the name UserName

➤ an image with the name Password

➤ a WebEdit object with the name Password

Chapter 5 • Configuring Object Identification

191

The following statement refers to the third item in the list, as this is the first
WebEdit object on the page with the name UserName:

WebEdit("Name:=UserName", "Index:=0")

In contrast, the following statement refers to the second item in the list, as
that is the first object of any type (WebElement) with the name UserName:

WebElement("Name:=UserName", "Index:=0")

Identifying an Object Using the Location Property

While learning an object, QuickTest can assign a value to the test object’s
Location property to uniquely identify the object. The value is based on the
order in which the object appears within the window, frame, or dialog box,
in relation to other objects with identical properties. The first occurrence of
the object is 0. Values are assigned in columns from top to bottom, and left
to right.

In the following example, the radio buttons in the dialog box are numbered
according to their Location property.

Chapter 5 • Configuring Object Identification

192

Location property values are object-specific. Therefore, if you use Location:=3
to describe a WinButton test object, QuickTest searches from top to bottom,
and left to right for the fourth WinButton object in the page. However, if
you use Location:=3 to describe a WinObject object, QuickTest searches from
top to bottom, and left to right for the fourth standard object on the page—
regardless of the type—because the WinObject object applies to all standard
objects.

For example, suppose a dialog box contains the following objects:

➤ a button object with the name OK

➤ a button object with the name Add/Remove

➤ a check box object with the name Add/Remove

➤ a button object with the name Help

➤ a check box object with the name Check spelling

The following statement refers to the third item in the list, as this is the first
check box object on the page with the name Add/Remove.

WinCheckBox("Name:=Add/Remove", "Location:=0")

In contrast, the following statement, refers to the second item in the list, as
that is the first object of any type (WinObject) with the name Add/Remove.

WinObject("Name:=Add/Remove", "Location:=0")

Identifying an Object Using the CreationTime Property

While learning a browser object, if QuickTest is unable to uniquely identify
the object according to its test object description, it assigns a value to the
CreationTime test object property. This value indicates the order in which
the browser was opened relative to other open browsers with an otherwise
identical description. The first browser that opens receives the value
CreationTime = 0.

During the run session, if QuickTest is unable to identify a browser object
based solely on its test object description, it examines the order in which the
browsers were opened, and then uses the CreationTime property to identify
the correct one.

Chapter 5 • Configuring Object Identification

193

For example, if you record a component on three otherwise identical
browsers that are opened at 9:01 pm, 9:03 pm, and 9:05 pm, QuickTest
assigns the CreationTime values, as follows: CreationTime = 0 to the
9:01 am browser, CreationTime = 1 to the 9:03 am browser, and
CreationTime = 2 to the 9:06 am browser.

At 10:30 pm, when you run your component, suppose the browsers are
opened at 10:31 pm, 10:33 pm, and 10:34 pm. QuickTest identifies the
browsers, as follows: the 10:31 pm browser is identified with the browser
test object with CreationTime = 0, 10:33 pm browser is identified with the
test object with CreationTime = 1, 10:34 pm browser is identified with the
test object with CreationTime = 2.

If there are several open browsers, the one with the lowest CreationTime is
the first one that was opened and the one with the highest CreationTime is
the last one that was opened. For example, if there are three or more
browsers open, the one with CreationTime = 2 is the third browser that was
opened. If seven browsers are opened during a recording session, the
browser with CreationTime = 6 is the last browser opened.

If a step was recorded on a browser with a specific CreationTime value, but
during a run session there is no open browser with that CreationTime value,
the step will run on the browser that has the highest CreationTime value.
For example, if a step was recorded on a browser with CreationTime = 6, but
during the run session there are only two open browsers, with
CreationTime = 0 and CreationTime = 1, then the step runs on the last
browser opened, which in this example is the browser with
CreationTime = 1.

Note: It is possible that at a particular time during a session, the available
CreationTime values may not be sequential. For example, if you open six
browsers during a record or run session, and then during that session, you
close the second and fourth browsers (CreationTime values 1 and 3), then at
the end of the session, the open browsers will be those with CreationTime
values 0, 2, 4, and 5.

Chapter 5 • Configuring Object Identification

194

Enabling and Disabling Smart Identification
Selecting the Enable Smart Identification check box for a particular test
object class instructs QuickTest to learn the property values of all properties
specified as the object’s base and/or optional filter properties in the Smart
Identification Properties dialog box.

By default, some test objects already have Smart Identification
configurations and others do not. Those with default configurations also
have the Enable Smart Identification check box selected by default.

You should enable the Smart Identification mechanism only for test object
classes that have defined Smart Identification configuration. However, even
if you define a Smart Identification configuration for a test object class, you
may not always want to learn the Smart Identification property values. If
you do not want to learn the Smart Identification properties, clear the
Enable Smart Identification check box.

Note: Even if you choose to learn Smart Identification properties for an
object, you can disable use of the Smart Identification mechanism for a
specific object in the Object Properties or Object Repository dialog box. For
more information, see Chapter 4, “Working with Objects.”

However, if you do not learn Smart Identification properties, you cannot
enable the Smart Identification mechanism for an object later.

For more information on the Smart Identification mechanism, see
“Configuring Smart Identification” on page 196.

Chapter 5 • Configuring Object Identification

195

Restoring Default Object Identification Settings for Test
Objects
You can restore the default settings for object identification and the Smart
Identification property settings for all loaded environments, for the current
environment only, or for a selected test object.

Only built-in object properties can be reset. When you reset the settings for
the Standard Windows environment, user-defined objects are also deleted.
For more information on user-defined objects, see “Mapping User-Defined
Test Object Classes” on page 206.

Note: Only currently loaded environments are listed in the Environments
box in the Object Identification dialog box.

By default, the Reset Test Object button is displayed, but you can click the
down arrow to select one of the following options:

➤ Reset Test Object. Resets the settings for the selected test object to the
system default.

➤ Reset Environment. Resets the settings for all the test objects in the current
environment to the system default.

➤ Reset All. Resets the settings for all currently loaded environments to the
system default.

Generating Automation Scripts for Your Object
Identification Settings
You can click the Generate Script button to generate an automation script
containing the current object identification settings. For more information,
see “Automating QuickTest Operations” on page 817, or see the QuickTest
Automation Reference (Help > QuickTest Professional Help > QuickTest
Advanced References > QuickTest Automation).

Chapter 5 • Configuring Object Identification

196

Configuring Smart Identification

Configuring Smart Identification properties enables you to help QuickTest
identify objects in your application, even if some of the properties in the
object’s learned description have changed.

When QuickTest uses the learned description to identify an object, it
searches for an object that matches all of the property values in the
description. In most cases, this description is the simplest way to identify
the object, and, unless the main properties of the object change, this
method will work.

If QuickTest is unable to find any object that matches the learned object
description, or if it finds more than one object that fits the description, then
QuickTest ignores the learned description, and uses the Smart Identification
mechanism to try to identify the object.

While the Smart Identification mechanism is more complex, it is more
flexible. Therefore, if configured logically, a Smart Identification definition
can probably help QuickTest identify an object, if it is present, even when
the learned description fails.

The Smart Identification mechanism uses two types of properties:

➤ Base Filter Properties. The most fundamental properties of a particular test
object class; those whose values cannot be changed without changing the
essence of the original object. For example, if a Web link’s tag was changed
from <A> to any other value, you could no longer call it the same object.

➤ Optional Filter Properties. Other properties that can help identify objects of
a particular class. These properties are unlikely to change on a regular basis,
but can be ignored if they are no longer applicable.

Chapter 5 • Configuring Object Identification

197

Understanding the Smart Identification Process

If QuickTest activates the Smart Identification mechanism during a run
session (because it was unable to identify an object based on its learned
description), it follows the following process to identify the object:

 1 QuickTest “forgets” the learned test object description and creates a new
object candidate list containing the objects (within the object’s parent
object) that match all of the properties defined in the Base Filter Properties
list.

 2 QuickTest filters out any object in the object candidate list that does not
match the first property listed in the Optional Filter Properties list. The
remaining objects become the new object candidate list.

 3 QuickTest evaluates the new object candidate list:

➤ If the new object candidate list still has more than one object, QuickTest
uses the new (smaller) object candidate list to repeat step 2 for the next
optional filter property in the list.

➤ If the new object candidate list is empty, QuickTest ignores this optional
filter property, returns to the previous object candidate list, and repeats
step 2 for the next optional filter property in the list.

➤ If the object candidate list contains exactly one object, then QuickTest
concludes that it has identified the object and performs the statement
containing the object.

 4 QuickTest continues the process described in steps 2 and 3 until it either
identifies one object, or runs out of optional filter properties to use.

If, after completing the Smart Identification elimination process, QuickTest
still cannot identify the object, then QuickTest uses the learned description
plus the ordinal identifier to identify the object.

If the combined learned description and ordinal identifier are not sufficient
to identify the object, then QuickTest stops the run session and displays a
Run Error message.

Chapter 5 • Configuring Object Identification

198

Reviewing Smart Identification Information in the Test Results

If the learned description does not enable QuickTest to identify a specified
object in a step, and a Smart Identification definition is defined (and
enabled) for the object, then QuickTest tries to identify the object using the
Smart Identification mechanism.

If QuickTest successfully uses Smart Identification to find an object after no
object matches the learned description, the step is assigned a Warning status
in the Test Results, and the result details for the step indicate that the Smart
Identification mechanism was used.

If the Smart Identification mechanism cannot successfully identify the
object, QuickTest uses the learned description plus the ordinal identifier to
identify the object. If the object is still not identified, the component fails
and a normal failed step is displayed in the results.

For more information, see “Analyzing Smart Identification Information in
the Test Results” on page 665.

Walking Through a Smart Identification Example

The following example walks you through the object identification process
for an object.

Suppose you have the following statement in your component:

Browser("Mercury Tours").Page("Mercury Tours").Image("Login").Click 22,17

When you created your component, QuickTest learned the following object
description for the Login image:

However, at some point after you created your component, a second login
button (for logging into the VIP section of the Web site) was added to the
page, so the Web designer changed the original Login button’s alt tag to:
basic login.

Chapter 5 • Configuring Object Identification

199

The default description for Web Image objects (alt, html tag, image type)
works for most images in your site, but it no longer works for the Login
image, because that image’s alt property no longer matches the learned
description. Therefore, when you run your component, QuickTest is unable
to identify the Login button based on the learned description. However,
QuickTest succeeds in identifying the Login button using its Smart
Identification definition.

The explanation below describes the process that QuickTest uses to find the
Login object using Smart Identification:

 1 According to the Smart Identification definition for Web image objects,
QuickTest learned the values of the following properties it learned the Login
image:

The learned values are as follows:

Base Filter Properties:

Property Value

html tag INPUT

Chapter 5 • Configuring Object Identification

200

Optional Filter Properties:

 2 QuickTest begins the Smart Identification process by identifying the five
objects on the Mercury Tours page that match the base filter properties
definition (html tag = INPUT). QuickTest considers these to be the object
candidates and begins checking the object candidates against the Optional
Filter Properties list.

 3 QuickTest checks the alt property of each of the object candidates, but none
have the alt value: Login, so QuickTest ignores this property and moves on
to the next one.

 4 QuickTest checks the image type property of the each of the object
candidates, but none have the image type value: Image Button, so QuickTest
ignores this property and moves on to the next one.

 5 QuickTest checks the name property of each of the object candidates, and
finds that two of the objects (both the basic and VIP Login buttons) have
the name: login. QuickTest filters out the other three objects from the list,
and these two login buttons become the new object candidates.

 6 QuickTest checks the file name property of the two remaining object
candidates. Only one of them has the file name login.gif, so QuickTest
correctly concludes that it has found the Login button and clicks it.

Property Value

alt Login

image type Image Button

name login

file name login.gif

class <null>

visible 1

Chapter 5 • Configuring Object Identification

201

Step-by-Step Instructions for Configuring a Smart
Identification Definition

You use the Smart Identification Properties dialog box, accessible from the
Object Identification dialog box, to configure the Smart Identification
definition for a test object class.

To configure Smart Identification properties:

 1 Choose Tools > Object Identification. The Object Identification dialog box
opens.

Chapter 5 • Configuring Object Identification

202

 2 Select the appropriate environment in the Environment list. The test object
classes associated with the selected environment are displayed in the Test
Object classes list.

Note: The environments included in the Environment list are those that
correspond to the loaded add-ins. For more information on loading add-ins,
see the section on loading QuickTest add-ins in the HP QuickTest Professional
Add-ins Guide.

 3 Select the test object class you want to configure.

 4 Click the Configure button next to the Enable Smart Identification check
box. The Configure button is enabled only when the Enable Smart
Identification option is selected. The Smart Identification Properties dialog
box opens.

Chapter 5 • Configuring Object Identification

203

 5 In the Base Filter Properties list, click Add/Remove. The Add/Remove
Properties dialog box for base filter properties opens.

 6 Select the properties you want to include in the Base Filter Properties list
and/or clear the properties you want to remove from the list.

Note: You cannot include the same property in both the base and optional
property lists.

You can specify a new property by clicking New and specifying a valid
property name in the displayed dialog box.

Tip: You can also add property names to the set of available properties for
Web objects using the attribute/<PropertyName> notation. To do this, click
New. The New Property dialog box opens. Enter a valid property in the
format attribute/<PropertyName> and click OK. The new property is added to
the Base Filter Properties list. For example, to add a property called MyColor,
enter attribute/MyColor.

Chapter 5 • Configuring Object Identification

204

 7 Click OK to close the Add/Remove Properties dialog box. The updated set of
base filter properties is displayed in the Base Filter Properties list.

 8 In the Optional Filter Properties list, click Add/Remove. The Add/Remove
Properties dialog box for optional filter properties opens.

 9 Select the properties you want to include in the Optional Filter Properties
list and/or clear the properties you want to remove from the list.

Note: You cannot include the same property in both the base and optional
property lists.

Chapter 5 • Configuring Object Identification

205

You can specify a new property by clicking New and specifying a valid
property name in the displayed dialog box.

Tip: You can also add property names to the set of available properties for
Web objects using the attribute/<PropertyName> notation. To do this, click
New. The New Property dialog box opens. Enter a valid property in the
format attribute/<PropertyName> and click OK. The new property is added to
the Optional Filter Properties list. For example, to add a property called
MyColor, enter attribute/MyColor.

 10 Click OK to close the Add/Remove Properties dialog box. The properties are
displayed in the Optional Filter Properties list.

 11 Use the up and down arrows to set your preferred order for the optional
filter properties. When QuickTest uses the Smart Identification mechanism,
it checks the remaining object candidates against the optional properties
one-by-one according to the order you set in the Optional Filter Properties
list until it filters the object candidates down to one object.

Chapter 5 • Configuring Object Identification

206

Mapping User-Defined Test Object Classes

The Object Mapping dialog box enables you to map an object of an
unidentified or custom class to a Standard Windows class. For example, if
your application has a button that cannot be identified, this button is
learned as a generic WinObject. You can teach QuickTest to identify your
object as if it belonged to a standard Windows button class. Then, when you
click the button while recording, QuickTest records the operation in the
same way as a click on a standard Windows button. When you map an
unidentified or custom object to a standard object, your object is added to
the list of Standard Windows test object classes as a user-defined test object
class. You can configure the object identification settings for a user-defined
test object class just as you would any other test object class.

You should map an object that cannot be identified only to a Standard
Windows class with comparable behavior. For example, do not map an
object that behaves like a button to the edit class.

Notes:

➤ You can define user-defined classes only when Standard Windows is
selected in the Environment box.

➤ If you click the down arrow on the Reset Test Object button and select
Reset Environment, when Standard Windows is selected in the
Environment box, all of the user-defined test object classes are deleted.

To map an unidentified or custom class to a standard Windows class:

 1 Choose Tools > Object Identification. The Object Identification dialog box
opens.

 2 Select Standard Windows in the Environment box. The User-Defined button
becomes enabled.

Chapter 5 • Configuring Object Identification

207

 3 Click User-Defined. The Object Mapping dialog box opens.

 4 Click the pointing hand and then click the object whose class you want to
add as a user-defined class. The name of the user-defined object is displayed
in the Class name box.

Tip: Hold the left CTRL key to change the window focus or perform
operations such as right-clicking or moving the pointer over an object to
display a context menu. If the window containing the object you want to
select is minimized, you can display it by holding the left CTRL key,
right-clicking the application in the Windows task bar, and choosing
Restore from the context menu.

 5 In the Map to box, select the standard object class to which you want to
map your user-defined object class and click Add. The class name and
mapping is added to the object mapping list.

 6 If you want to map additional objects to standard classes, repeat steps 4-5
for each object.

Chapter 5 • Configuring Object Identification

208

 7 Click OK. The Object Mapping dialog box closes and your object is added to
the list of Standard Windows test object classes as a user-defined test object.
Note that your object has an icon with a red U in the lower-right corner,
identifying it as a user-defined class.

 8 Configure the object identification settings for your user defined object class
just as you would any other object class. For more information, see
“Configuring Mandatory and Assistive Properties” on page 184, and
“Configuring Smart Identification” on page 196.

To modify an existing mapping:

 1 In the Object Mapping dialog box, select the class you want to modify from
the object mapping list. The class name and current mapping are displayed
in the Class name and Map to boxes.

 2 Select the standard object class to which you want to map the selected
user-defined class and click Update. The class name and mapping is updated
in the object mapping list.

 3 Click OK to close the Object Mapping dialog box.

To delete an existing mapping:

 1 In the Object Mapping dialog box, select the class you want to delete from
the object mapping list.

 2 Click Delete. The class name and mapping is deleted from the object
mapping list in the Object Mapping dialog box.

 3 Click OK. The Object Mapping dialog box closes and the class name is
deleted from the Standard Windows test object classes list in the Object
Identification dialog box.

209

6
Managing Object Repositories

The Object Repository Manager enables you to manage all of the shared
object repositories used in your organization from a single, central location,
including adding and defining objects, modifying objects and their
descriptions, parameterizing repositories to make them more generic,
maintaining and organizing repositories, merging repositories, and
importing and exporting repositories in XML format.

This chapter includes:

 ➤ About Managing Object Repositories on page 210

 ➤ Understanding the Object Repository Manager on page 212

 ➤ Working with Object Repositories on page 219

 ➤ Managing Objects in Shared Object Repositories on page 224

 ➤ Working with Repository Parameters on page 230

 ➤ Modifying Object Details on page 235

 ➤ Locating Test Objects on page 240

 ➤ Performing Merge Operations on page 241

 ➤ Performing Import and Export Operations on page 242

 ➤ Managing Object Repositories Using Automation on page 245

Chapter 6 • Managing Object Repositories

210

About Managing Object Repositories

The Object Repository Manager enables you to create and maintain shared
object repositories. You can work with object repositories saved both in the
file system and in a Quality Center project.

Each object repository contains the information that enables QuickTest to
identify the objects in your application. QuickTest enables you to maintain
the reusability of your components by storing all the information regarding
your test objects in a shared object repository. When objects in your
application change, the Object Repository Manager provides a single,
central location in which you can update test object information for
multiple components.

Note: Instead of, or in addition to, shared object repositories, you can
choose to store all or some of the objects in a local object repository for each
component. For more information on local object repositories, see
Chapter 4, “Working with Objects.”

If an object with the same name and description is located in both the local
object repository and in a shared object repository that is associated with
the same component, the component uses the local object definition. If an
object with the same name and description is located in more than one
shared object repository, and these shared object repositories are all
associated with the same component, QuickTest uses the object definition
from the first occurrence of the object, according to the order in which the
shared object repositories are associated with the component. For more
information on associating shared object repositories, see “Managing Shared
Object Repositories” on page 432.

You can use the same shared object repository with multiple components.
You can also use multiple object repositories with each component. In
addition, you can save objects directly with an component in a local object
repository. This enables them to be accessed only from that component.

Chapter 6 • Managing Object Repositories

211

If one or more of the property values of an object in your application differ
from the property values QuickTest uses to identify the object, your
component may fail. Therefore, when the property values of objects in your
application change, you should modify the corresponding test object
property values in the corresponding object repository so that you can
continue to use your existing components.

You can modify objects in a shared object repository using the Object
Repository Manager, as described in this chapter. You can modify objects
stored in a local object repository using the Object Repository window. For
information on the Object Repository window, see Chapter 4, “Working
with Objects.”

Chapter 6 • Managing Object Repositories

212

Understanding the Object Repository Manager

You open the Object Repository Manager by choosing Resources > Object
Repository Manager. The Object Repository Manager enables you to open
multiple shared object repositories and modify them as needed. You can
open shared object repositories both from the file system and from a Quality
Center project.

Tip: While the Object Repository Manager is open, you can continue
working with other QuickTest windows.

Chapter 6 • Managing Object Repositories

213

You can open as many shared object repositories as you want. Each shared
object repository opens in a separate document window. You can then
resize, maximize, or minimize the windows to arrange them as you require
to copy, drag, and move objects between different shared object repositories,
as well as perform operations on a single object repository. For more
information on the details shown in the shared object repository windows,
see “Understanding the Shared Object Repository Windows” on page 217.

You open shared object repositories from the Open Shared Object
Repository dialog box. In this dialog box, the Open in read-only mode check
box is selected, by default. If you clear this check box, the shared object
repository opens in editable mode. Otherwise, the shared object repository
opens in read-only mode and you must click the Enable Editing button to
modify it. For more information, see “Editing Object Repositories” on
page 226.

When you choose a menu item or click a toolbar button in the Object
Repository Manager, the operation you select is performed on the shared
object repository whose window is currently active (in focus). The name and
file path of the shared object repository is shown in the title bar of the
window. For more information on the Object Repository Manager toolbar
buttons, see “Using the Object Repository Manager Toolbar” on page 214.

Many of the shared object repository operations you can perform in the
Object Repository Manager are done in a similar way to how you modify
objects stored in a local object repository (using the Object Repository
window). For this reason, many of the procedures are actually described in
Chapter 4, “Working with Objects.” Most of the procedures apply equally to
the Object Repository Manager and the Object Repository window, but the
windows and options may differ slightly.

Chapter 6 • Managing Object Repositories

214

Using the Object Repository Manager Toolbar
You can access frequently performed operations using the Object Repository
Manager toolbar. The Object Repository Manager toolbar contains the
following buttons:

Button Description

Enables you to create a new shared object repository. For more
information, see “Creating New Object Repositories” on page 219.

Enables you to open a shared object repository from the file system or
from Quality Center. For more information, see “Opening Object
Repositories” on page 219.

Enables you to save the active shared object repository to the file
system or to Quality Center. For more information, see “Saving Object
Repositories” on page 221.

Enables you to edit the active shared object repository, by making the
shared object repository editable. For more information, see “Editing
Object Repositories” on page 226.

Enables you to undo the previous operation performed in the active
shared object repository. You do this in the same way as in a local
object repository. For more information, see “Copying, Pasting, and
Moving Objects in the Object Repository” on page 166.

Enables you to redo the operation that was previously undone in the
active shared object repository. You do this in the same way as in a
local object repository. For more information, see “Copying, Pasting,
and Moving Objects in the Object Repository” on page 166.

Enables you to cut the selected item or object in the active shared
object repository. You do this in the same way as in a local object
repository. For more information, see “Copying, Pasting, and Moving
Objects in the Object Repository” on page 166.

Enables you to copy the selected item or object to the Clipboard in the
active shared object repository. You do this in the same way as in a
local object repository. For more information, see “Copying, Pasting,
and Moving Objects in the Object Repository” on page 166.

Chapter 6 • Managing Object Repositories

215

Enables you to paste the data from the Clipboard to the active shared
object repository. You do this in the same way as in a local object
repository. For more information, see “Copying, Pasting, and Moving
Objects in the Object Repository” on page 166.

Enables you to delete the selected item or object in the active shared
object repository. You do this in the same way as in a local object
repository. For more information, see “Deleting Objects from the
Object Repository” on page 169.

Enables you to find an object, property, or property value in the active
shared object repository. You can also find and replace specified
property values. You do this in the same way as in a local object
repository. For more information, see “Finding Objects in an Object
Repository” on page 170.

Enables you to add objects to the active shared object repository. You
do this in the same way as in a local object repository. For more
information, see “Adding Test Objects to an Object Repository” on
page 156.

Enables you to update test object properties in the active shared object
repository according to the actual properties of the object in your
application. You do this in the same way as in a local object repository.
For more information, see “Updating Test Object Properties from an
Object in Your Application” on page 138.

Enables you to define a test object that does not yet exist in your
application and add it to the active shared object repository. You do
this in the same way as in a local object repository. For more
information, see “Defining New Test Objects” on page 164.

Enables you to select an object in the active shared object repository
and highlight it in your application. You do this in the same way as in
a local object repository. For more information, see “Highlighting an
Object in Your Application” on page 173.

Enables you to select an object in your application and highlight it in
the active shared object repository. You do this in the same way as in a
local object repository. For more information, see “Locating a Test
Object in the Object Repository” on page 174.

Button Description

Chapter 6 • Managing Object Repositories

216

Enables you to connect to Quality Center to work with object
repository files stored in a Quality Center project. You can connect to
Quality Center from the main QuickTest window or from the Object
Repository Manager. For more information, see “Connecting to Your
Quality Center Project” on page 44.

Enables you to open the Object Spy to view run-time or test object
properties and values of objects in your application. For more
information, see “Viewing Object Properties and Methods Using the
Object Spy” on page 108.

Enables you to add, edit, and delete repository parameters in the
active shared object repository. For more information, see “Managing
Repository Parameters” on page 231.

Button Description

Chapter 6 • Managing Object Repositories

217

Understanding the Shared Object Repository Windows
Each shared object repository that you open in the Object Repository
Manager is displayed in a standalone document window. Each shared object
repository window displays a tree of all the objects in the object repository,
together with object information for the selected object.

For each object you select in the tree, the Object Repository window displays
information about the selected object. You can view the object description
of any object in the shared object repository, modify objects and their
properties, and add test objects to the shared object repository.

Chapter 6 • Managing Object Repositories

218

Notes:

➤ You cannot add checkpoint or output value objects to a shared object
repository via the Object Repository Manager.

➤ Test objects of environments that are not installed with QuickTest are
displayed with an unknown icon (question mark) in the test object
tree.

For more information, see “Managing Objects in Shared Object
Repositories” on page 224 and “Modifying Object Details” on page 235.

Each object repository window contains the following information:

Note: Even when steps containing an object are deleted from your
component, the objects remain in the object repository. You can delete
objects from a shared object repository using the Object Repository
Manager, in much the same was as you delete objects from a local object
repository. For more information, see “Deleting Objects from the Object
Repository” on page 169.

Information Description

Object Repository
tree

Contains all objects in the shared object repository.

Name Specifies the name that QuickTest assigns to the selected
object. You can change the object name. For more
information, see “Renaming Test Objects” on page 140.

Class Specifies the class of the selected object.

Object details Enables you to view the properties and property values
used to identify a test object during a run session or the
properties of a checkpoint or output object. For more
information, see “Modifying Object Details” on page 235.

Chapter 6 • Managing Object Repositories

219

Working with Object Repositories

You can use the Object Repository Manager to create new object
repositories, open and modify existing object repositories, and save and
close them when you are finished.

Creating New Object Repositories
You can create a new object repository, add objects to it, and then save it.
You can then associate one or more components with the object repository
from within QuickTest. For more information on associating shared object
repositories, see “Managing Shared Object Repositories” on page 432.

To create a new object repository:

In the Object Repository Manager, choose File > New or click the New
button. A new object repository opens. You can now add objects to it,
modify it, and save it. For more information, see “Managing Objects in
Shared Object Repositories” on page 224 and “Saving Object Repositories”
on page 221.

Opening Object Repositories
You can open existing object repositories to view or modify them. You can
open object repositories from the file system or from a Quality Center
project.

You connect to a Quality Center project either from QuickTest or from the
Object Repository Manager by choosing File > Quality Center Connection or
clicking the Quality Center Connection button. For more information on
connecting to Quality Center, see “Connecting to Your Quality Center
Project” on page 44.

Chapter 6 • Managing Object Repositories

220

Note for users of previous QuickTest versions:

When you open an object repository that was created using a version of
QuickTest earlier than version 9.0, QuickTest converts it to the current
format when you make it editable.

If the object repository contains test objects from add-ins, the relevant
add-in must be installed to convert the object repository to the current
format. Otherwise, you can open it only in read-only format.

If you do not want to convert the object repository, you can view it in
read-only format. After the file is converted and you save it, you cannot use
it with earlier versions of QuickTest.

To open an object repository:

 1 In the Object Repository Manager, choose File > Open or click the Open
button. The Open Shared Object Repository dialog box opens.

Note: If you are connected to Quality Center, the dialog box that opens is
different from the standard file system dialog box. You can switch between
the two dialog box versions by clicking the File System and Quality Center
buttons in the Open Shared Object Repository dialog box.

 2 Select the object repository you want to open, and click Open or OK
(depending on whether you are opening it from the file system or a Quality
Center project). The object repository opens.

Chapter 6 • Managing Object Repositories

221

By default, the object repository opens in read-only mode. You can open it
in editable format by clearing the Open in read-only mode check box in the
Open Shared Object Repository dialog box. You can also enable editing for
an object repository as described in “Editing Object Repositories” on
page 226.

If the object repository is editable, you can add objects to it, modify it, and
save it. For more information, see “Managing Objects in Shared Object
Repositories” on page 224 and “Saving Object Repositories” on page 221.

Tip: You can also open an object repository from the Recent Files list in the
File menu.

Saving Object Repositories
After you finish creating or modifying an object repository, you should save
it. When you modify an object repository, an asterisk (*) is displayed in the
title bar until the object repository is saved.

You can save an object repository to the file system or to a Quality Center
project (if you are connected to a Quality Center project). If you want to
associate the shared object repository with an application area so that it can
be accessed by components, you must save it to your Quality Center project.
You connect to a Quality Center project either from QuickTest or from the
Object Repository Manager by choosing File > Quality Center Connection or
clicking the Quality Center Connection button. For more information on
connecting to Quality Center, see “Connecting to Your Quality Center
Project” on page 44.

All changes you make to an object repository are automatically updated in
all components open on the same computer that use the object repository as
soon as you make the change—even if you have not yet saved the object
repository with your changes. If you close the object repository without
saving your changes, the changes are rolled back in any open components
that were open at the time.

Chapter 6 • Managing Object Repositories

222

When you open a component on the same computer on which you
modified the object repository, the component is automatically updated
with all saved changes made in the associated object repository. To see saved
changes in a component or repository open on a different computer, you
must open the component or object repository file or lock it for editing on
your computer to load the changes.

To save an object repository:

 1 Make sure that the object repository you want to save is the active window.

 2 Choose File > Save or click the Save button. If the file has already been
saved, the changes you made are saved. If the file has not yet been saved,
the Save Shared Object Repository dialog box opens.

Note: If you are connected to Quality Center, the dialog box that opens is
different from the standard file system dialog box. You can switch between
the two dialog box versions by clicking the File System and Quality Center
buttons in the Open Shared Object Repository dialog box.

 3 Select the folder in which you want to save the object repository.

 4 Enter a name for the object repository in the File name or Attachment Name
box (depending on whether you are saving it to the file system or a Quality
Center project). Use a descriptive name that will help you easily identify the
file.

Note: You cannot use any of the following characters in the object
repository name:
\ / : * " ? < > | ’

Chapter 6 • Managing Object Repositories

223

 5 Click Save or OK (depending on whether you are saving it to the file system
or a Quality Center project).

Notes:

➤ When you save a path to a resource, QuickTest checks if the path, or a
part of the path, exists in the Folders tab of the Options dialog box
(Tools > Options > Folders). If the path exists, you are prompted to define
the path using only the relative part of the path you entered. If the path
does not exist, you are prompted to add the resource's location path to
the Folders tab and define the path relatively.

➤ For more information, see “Using Relative Paths in QuickTest” on
page 324.

QuickTest saves the object repository with a .tsr extension in the specified
location and displays the object repository name and path in the title bar of
the repository window.

Closing Object Repositories
After you finish modifying or using an object repository, you should close it.
While an object repository is being edited, it is locked so that it cannot be
modified by others. When you close the object repository, it is automatically
unlocked. You can also choose to close all open object repositories.

Note: If you close QuickTest, the Object Repository Manager also closes. If
you have made changes that are not yet saved, you are prompted to do so
before the Object Repository Manager closes.

Chapter 6 • Managing Object Repositories

224

To close an object repository:

 1 Make sure that the object repository you want to close is the active window.

 2 Choose File > Close or click the Close button in the object repository
window’s title bar. The object repository is closed and is automatically
unlocked. If you have made changes that are not yet saved, you are
prompted to do so before the file closes.

To close all open object repositories:

Choose File > Close All Windows, or Window > Close All Windows. All open
object repositories are closed and are automatically unlocked. If you have
made changes that are not yet saved, you are prompted to do so before the
files close.

Managing Objects in Shared Object Repositories

You can modify your shared object repositories in a variety of ways to either
prepare them for initial use or update them throughout the testing process.
You can add and modify objects and object properties in a shared object
repository, copy or move objects from one object repository to another, drag
objects to a different location in the hierarchy, delete objects, and rename
objects. You can also drag and drop test objects from the Object Repository
manager to your component. When you modify a shared object repository,
an asterisk (*) is displayed in the title bar until the object repository is saved.

Tip: You can use the Edit > Undo and Edit > Redo options or Undo and Redo
buttons to cancel or repeat your changes as necessary. The Undo and Redo
options are related to the active document. When you save an object
repository, you cannot undo and redo operations that were performed on
that file before the save operation.

Chapter 6 • Managing Object Repositories

225

If you opened the object repository in read-only mode, you must enable
editing for the object repository before you can modify it. This locks the
object repository and prevents it from being modified simultaneously by
multiple users.

Note: All changes you make to an object repository are automatically
updated in all components open on the same computer that use the object
repository as soon as you make the change—even if you have not yet saved
the object repository with your changes. If you close the object repository
without saving your changes, the changes are rolled back in any open
components that were open at the time. When you open a component on
the same computer on which you modified the object repository, the
component is automatically updated with all saved changes made in the
associated object repository. To see saved changes in a component or
repository open on a different computer, you must open the component or
object repository file or lock it for editing on your computer to load the
changes.

Tip: You can also modify a shared object repository by merging it with
another shared object repository. If you merge two shared object
repositories, a new shared object repository is created, containing the
content of both object repositories. If you merge a shared object repository
with a local object repository, the shared object repository is updated with
the content of the local object repository. For more information, see
Chapter 7, “Merging Shared Object Repositories.”

Chapter 6 • Managing Object Repositories

226

After making sure that your shared object repository is editable, and that it
is the active window, you can modify it in the same way as you modify a
local object repository. In addition to adding objects to a shared object
repository in the same manner as to a local repository, you can also add
objects to a shared object repository using the Navigate and Learn option.
For more information, see:

➤ “Editing Object Repositories” on page 226

➤ “Adding Test Objects to Your Component Using the Object Repository
Manager” on page 227

➤ “Adding Test Objects to an Object Repository” on page 156

➤ “Adding Test Objects Using the Navigate and Learn Option” on page 228

➤ “Copying, Pasting, and Moving Objects in the Object Repository” on
page 166

➤ “Deleting Objects from the Object Repository” on page 169

Editing Object Repositories
When you open an object repository, it is opened in read-only mode by
default. You can open it in editable format by clearing the Open in read-only
mode check box in the Open Shared Object Repository dialog box when you
open it.

If you opened the object repository in read-only mode, you must enable
editing for the object repository before you can modify it. You do not need
to enable editing for an object repository if you only want to view it or copy
objects from it to another object repository.

When you enable editing for an object repository, it locks the object
repository so that it cannot be modified by other users. To enable other users
to modify the object repository, you must first unlock it (by disabling edit
mode, or by closing it). If an object repository is already locked by another
user, if it is saved in read-only format, or if you do not have the permissions
required to open it, you cannot enable editing for it.

Chapter 6 • Managing Object Repositories

227

Note for users of previous QuickTest versions: If you want to edit an object
repository that was created using a version of QuickTest earlier than version
9.0, QuickTest must convert it to the current format before you can edit it. If
you do not want to convert it, you can view it in read-only format. After the
file is converted and saved, you cannot use it with earlier versions of
QuickTest.

To enable editing for an object repository:

 1 Make sure that the object repository you want to edit is the active window.

 2 Choose File > Enable Editing or click the Enable Editing button. The object
repository becomes editable.

Adding Test Objects to Your Component Using the Object
Repository Manager
You can drag and drop test objects from the Object Repository Manager to
your component. When you drag and drop a test object to your component,
QuickTest inserts a step with the default operation for that test object in
your component. You cannot drag and drop checkpoint or output objects
from the Object Repository Manager.

For example, if you drag and drop a button object to your component, a
step is added to your component using the button object, with a click
operation (the default operation for a button object).

You can also drag and drop test objects from other locations. For more
information, see:

➤ “Understanding the Available Keywords Pane” on page 755

➤ “Understanding the Object Repository Window” on page 120

Chapter 6 • Managing Object Repositories

228

Adding Test Objects Using the Navigate and Learn Option
The Navigate and Learn option enables you to add multiple test objects to a
shared object repository while navigating through your application.

Each time you select a window to learn, the selected window and its
descendant objects are added to the active shared object repository
according to a predefined object filter. You can change the object filter
definitions at any time to meet your requirements. The object filter is used
for both the Navigate and Learn option and the Add Objects option. The
settings you define are used in both places when you learn objects. For more
information on modifying the filter definitions, see “Understanding the
Define Object Filter Dialog Box” on page 161.

Note: The Navigate and Learn option is not supported for environments
with mixed hierarchies (object hierarchies that include objects from
different environments), for example,
Browser("Homepage").Page("Welcome").AcxButton("Save") or
Dialog("Edit").AcxEdit("MyEdit"). To add objects within mixed hierarchies, use
other options, as described in “Adding Test Objects to an Object Repository”
on page 156.

You can use the following keyboard shortcuts when learning objects using
the Navigate and Learn option:

➤ Learn Focused Window. ENTER

➤ Define Object Filter. CTRL+F

➤ Help. F1

➤ Return to Object Repository Manager. ESC

Note: Minimized windows are not learned when using the Navigate and
Learn option.

Chapter 6 • Managing Object Repositories

229

To add test objects using the Navigate and Learn option:

 1 In the Object Repository Manager, make sure that the object repository to
which you want to add objects is the active window and that it is editable.

 2 Choose Object > Navigate and Learn or press F6. The Navigate and Learn
toolbar opens.

Note: If this is the first time you are adding objects to the object repository,
you may want to change the filter definitions before you continue. You can
view the current filter definitions in the Define Object Filter button tooltip
(displayed in parentheses after the button name). You can change the filter
definitions at any time by clicking the Define Object Filter button or
pressing CTRL+F. For more information, see “Understanding the Define
Object Filter Dialog Box” on page 161.

 3 Click the parent object (for example, Browser, Dialog, Window) you want to
add to the object repository to focus it. The Learn button on the toolbar is
enabled.

 4 Click the Learn button or focus the Navigate and Learn toolbar and press
ENTER. A flashing highlight surrounds the focused window and the object
and its descendants are added to the object repository according to the
defined filter.

 5 Navigate in your application to the next window you want to add and then
repeat step 4.

 6 When you finish adding the required objects to the object repository, click
the Close button in the Navigate and Learn toolbar or press ESC. The
Navigate and Learn toolbar closes and the Object Repository Manager is
redisplayed, showing the objects you just added to the shared object
repository.

Chapter 6 • Managing Object Repositories

230

Working with Repository Parameters

Repository parameters enable you to specify that certain property values
should be parameterized, but leave the actual parameterization to be defined
in each component that is associated with the object repository that
contains the parameterized test object property values.

Repository parameters are useful when you want to create and run
components on an object that changes dynamically. An object may change
dynamically if it is frequently updated in the application, or if its property
values are set using dynamic content, for example, from a database.

For example, you may have a button whose text property value changes in a
localized application depending on the language of the user interface. You
can parameterize the name property value using a repository parameter, and
then in each component that uses the object repository you can specify the
location from which the property value should be taken. For example, in
one component that uses this object repository you can specify that the
property value comes from a component parameter, in another component
it can come from a local parameter, and in a third component you can
specify it as a constant value.

You define all the repository parameters for a specific object repository using
the Manage Repository Parameters dialog box. You define each repository
parameter together with an optional default value and meaningful
description. For more information, see “Managing Repository Parameters”
on page 231.

When you open a component that uses an object repository with a
repository parameter that has no default value, an indication that there is a
repository parameter that needs mapping is displayed in the Missing
Resources pane. You can then map the repository parameter as needed in
the component. You can also map repository parameters that have default
values, and change mappings for repository parameters that are already
mapped. For more information on mapping repository parameters, see
“Handling Unmapped Shared Object Repository Parameter Values” on
page 753.

Chapter 6 • Managing Object Repositories

231

Managing Repository Parameters
The Manage Repository Parameters dialog box enables you to add, edit, and
delete repository parameters for a single shared object repository.

To manage repository parameters:

 1 Make sure that the object repository whose parameters you want to manage
is the active window.

 2 If the object repository is in read-only format, choose File > Enable Editing
or click the Enable Editing button. The object repository becomes editable.

 3 Choose Tools > Manage Repository Parameters or click the Manage
Repository Parameters button. The Manage Repository Parameters dialog
box opens.

Chapter 6 • Managing Object Repositories

232

The Manage Repository Parameters dialog box contains the following
information and options:

Option Description

Repository name Displays the name and path of the object
repository whose repository parameters you are
managing.

Enables you to add a new repository parameter. For
more information, see “Adding Repository
Parameters” on page 233.

Enables you to delete the currently selected
repository parameters. For more information, see
“Deleting Repository Parameters” on page 235.

Parameter list
(Name, Default Value, and
Description)

Displays the list of repository parameters currently
defined in this object repository. You can modify a
parameter’s default value and description directly
in the parameter list. For more information, see
“Modifying Repository Parameters” on page 234.

Find in Repository button Searches for and highlights the first test object in
the object repository tree that uses the selected
repository parameter. You can click this button
again to find the next occurrence of the selected
parameter, and so forth.

Chapter 6 • Managing Object Repositories

233

Adding Repository Parameters
The Add Repository Parameter dialog box enables you to define a new
repository parameter. You can also specify a default value for the parameter,
and a meaningful description to help identify it when it is used in a
component step.

To add a repository parameter:

 1 In the Manage Repository Parameters dialog box, click the Add Repository
Parameter button. The Add Repository Parameter dialog box opens.

 2 In the Name box, specify a meaningful name for the parameter. Parameter
names must start with an English (Roman) letter and can contain only
English (Roman) letters, numbers, and underscores.

 3 In the Default value box, you can specify a default value to be used for the
repository parameter. This value is used if you do not map the repository
parameter to a value or parameter type in a component that uses this object
repository. If you do not specify a default value, the repository parameter
will appear as unmapped in any components that use this shared object
repository.

Tip: If you specify a default value, you can later remove it by clicking in the
Default Value cell of the relevant parameter in the Manage Repository
Parameters dialog box and then clicking the Clear Default Value button. The
text {No Default Value} is displayed in the cell.

Chapter 6 • Managing Object Repositories

234

 4 In the Description box, you can enter a description of the repository
parameter. The description will help you identify the parameter when
mapping repository parameters within a component.

 5 Click OK to add the parameter to the list of parameters in the Manage
Repository Parameters dialog box.

Modifying Repository Parameters
You can modify the default value of a repository parameter or modify a
repository parameter description directly in the Manage Repository
Parameters dialog box. However, you cannot modify a repository parameter
name.

To modify a repository parameter:

 1 In the Manage Repository Parameters dialog box, select the required
parameter.

 2 To modify the default value, click in the Default Value cell of the required
parameter. You can either modify the default value by entering a new value,
or you can remove the default value by clicking the Clear Default Value
button. If you remove the default value, the text {No Default Value} is
displayed in the cell. If you do not specify a default value, the repository
parameter will appear as unmapped in any components that use this shared
object repository.

Note: If you delete the text manually, it does not remove the default value.
It creates a default value of an empty string. You must click the Clear Default
Value button if you want to remove the default value.

 3 To modify the parameter description, click in the Description cell of the
required parameter and enter the required description.

Chapter 6 • Managing Object Repositories

235

Deleting Repository Parameters
You can delete a repository parameter definition if it is no longer needed.
When you delete a repository parameter that is used in a test object
definition, the test object property value remains mapped to the parameter,
even though the parameter no longer exists. Therefore, before deleting a
repository parameter, you should make sure that it is not used in any test
object descriptions, otherwise components that have steps using these test
objects will fail when you run them.

Tip: You can use the Find in Repository button in the Manage Repository
Parameters dialog box to see where a repository parameter is being used.

To delete a repository parameter:

 1 In the Manage Repository Parameters dialog box, select the repository
parameters that you want to delete by clicking in the selection area to the
left of the parameter name.

 2 Click the Delete Repository Parameter button. The selected repository
parameter is deleted.

Modifying Object Details

The object details area for shared object repositories in the lower right side
of the document window enables you to view and modify the properties
and property values used to identify an object during a run session or the
properties of a checkpoint or output object.

Chapter 6 • Managing Object Repositories

236

After making sure that your shared object repository is editable, and that it
is the active window, you modify object details for objects in a shared object
repository in the same way as you modify them for local objects. For more
information, see:

➤ “Adding Properties to a Test Object Description” on page 143

➤ “Defining New Test Object Properties” on page 147

➤ “Updating Test Object Properties from an Object in Your Application” on
page 138

➤ “Restoring Default Properties for a Test Object” on page 140

➤ “Removing Properties from a Test Object Description” on page 149

➤ “Specifying Ordinal Identifiers” on page 150

➤ “Renaming Test Objects” on page 140

Note: You can use the Edit > Undo and Edit > Redo options or Undo and
Redo buttons to cancel or repeat your changes as necessary. The Undo and
Redo options are related to the active document. When you save a
repository, you cannot undo and redo operations that were performed on
that file before the save operation.

You use the Object Repository Manager to specify property values for object
descriptions in a shared object repository. The options available when
specifying property values for objects in shared object repositories are
different from those available when specifying properties for objects in local
repositories. For more information on specifying property values for objects
in shared object repositories, see “Specifying a Property Value” on page 237.

Chapter 6 • Managing Object Repositories

237

Specifying a Property Value
You can specify or modify values for properties in the test object description.
You can specify a value using a constant value (either a simple value or a
constant value that includes regular expressions) or you can parameterize it
using a repository parameter. For more information on repository
parameters, see “Working with Repository Parameters” on page 230.

You can also specify or modify values for properties of a checkpoint or
output object.

Specifying and Modifying Values for Properties of a Test Object

You specify or modify the values for properties of a test object in the Test
object details area.

To specify a property value of a test object:

 1 Select the test object whose property value you want to specify.

 2 In the Test object details area, click in the Value cell for the required
property.

 3 Specify the property value in one of the following ways:

➤ If you want to specify a simple constant value, enter it in the Value cell.
The remaining steps in this procedure are not necessary if you specify a
constant value in the Value cell. You can also specify a constant value
using a regular expression in the Repository Parameter dialog box, as
described below.

Chapter 6 • Managing Object Repositories

238

➤ If you want to parameterize the value using a repository parameter, click
the parameterization button in the Value cell. The Repository Parameter
dialog box opens.

 4 Choose one of the following options to specify a value for the property:

➤ Select the Constant radio button and specify a constant value. You can
also enter a constant value directly in the Value cell of the Test object
details area. If you used a regular expression in the constant value, select
the Regular expression check box.

➤ Select the Parameter radio button and select a repository parameter from
the list of defined parameters. If a default value is defined for the
parameter, it is also shown.

Note: You define repository parameters using the Manage Repository
Parameters dialog box. For more information, see “Managing Repository
Parameters” on page 231.

Chapter 6 • Managing Object Repositories

239

 5 Click OK to close the Repository Parameter dialog box. If you parameterized
the value, the parameter name is shown with an icon in the Value column
of the Test object details area, as shown below. Otherwise, the constant
value you specified is shown in the Value column.

Specifying and Modifying Values for Properties of a Checkpoint
Object

You specify or modify the values for properties of a checkpoint object in the
Object Properties pane.

To specify or modify the values for properties of a checkpoint object:

 1 Select the checkpoint object whose property values you want to specify or
modify from the Checkpoint and Output Objects tree.

 2 Specify or modify the values for properties of a checkpoint object the same
way as you do in the relevant checkpoint properties dialog box.

For more information on specifying and modifying values for properties of a
checkpoint object, see:

➤ “Understanding the Checkpoint Properties Dialog Box” on page 559

➤ “Checking a Bitmap” on page 566

Chapter 6 • Managing Object Repositories

240

Specifying and Modifying Values for Properties of an Output
Object

You specify or modify the values for properties of an output object in the
Object Properties pane.

To specify or modify the values for properties of an output object:

 1 Select the output object whose property values you want to specify or
modify from the Checkpoint and Output Objects tree.

 2 Specify or modify the values for properties of an output object the same way
as you do in the relevant output value properties dialog box.

For more information on specifying and modifying values for properties of
an output object, see “Defining Standard Output Values” on page 575.

Locating Test Objects

You can search for a specific test object in your object repository in several
ways. You can search for a test object according to its type. For example, you
can search for a specific edit box, or you can point to an object in your
application to automatically highlight that same object in your repository.
You can replace specific property values with other property values. For
example, you can replace a property value userName with the value
user name. You can also select an object in your object repository and
highlight it in your application to check which object it is.

After making sure that your shared object repository is the active window,
you locate an object in a shared object repository in the same way as you
locate it in a local object repository. If you want to replace property values,
you must also make sure that the object repository is editable.

For more information, see:

➤ “Finding Objects in an Object Repository” on page 170

➤ “Highlighting an Object in Your Application” on page 173

➤ “Locating a Test Object in the Object Repository” on page 174

Chapter 6 • Managing Object Repositories

241

Performing Merge Operations

The Object Repository Merge Tool enables you to merge test objects from
the local object repository of one or more components to a shared object
repository using the Update from Local Repository option in the Object
Repository Manager (Tools > Update from Local Repository). For example,
you may have learned test objects locally in a specific component and want
to add them to the shared object repository so they are available to all
components that use that object repository. You can also use the Object
Repository Merge Tool to merge two shared object repositories into a single
shared object repository.

You open the Object Repository Merge Tool by choosing Tools > Object
Repository Merge Tool in the Object Repository Manager. For more
information on performing merge operations and updating object
repositories with local objects, see Chapter 7, “Merging Shared Object
Repositories.”

Notes:

➤ While the Object Repository Merge Tool is open, you cannot work with
the Object Repository Manager.

➤ The Object Repository Merge Tool does not merge checkpoint and output
objects.

Chapter 6 • Managing Object Repositories

242

Performing Import and Export Operations

You can import and export object repositories from and to XML files. XML
provides a structured, accessible format that enables you to make changes to
object repositories using the XML editor of your choice and then import
them back into QuickTest. You can view the required format for the object
repository in the QuickTest Object Repository Schema Help (Help >
QuickTest Professional Help > QuickTest Advanced References > QuickTest
Object Repository Schema), or by exporting a saved object repository.

You can import and export files either from and to the file system or a
Quality Center project (if QuickTest is connected to Quality Center).

You connect to a Quality Center project either from QuickTest or from the
Object Repository Manager by choosing File > Quality Center Connection or
clicking the Quality Center Connection button. For more information on
connecting to Quality Center, see “Connecting to Your Quality Center
Project” on page 44.

Importing from XML
You can import an XML file (created using the required format) as an object
repository. For information on the XML format, see “Understanding the
XML File Structure” on page 244. The XML file can either be an object
repository that you exported to XML format using the Object Repository
Manager, or an XML file created using a tool such as QuickTest Siebel Test
Express or a custom built utility. You must adhere to the XML structure and
format.

Tip: To view the required XML structure and format, see the QuickTest Object
Repository Schema Help (Help > QuickTest Professional Help > QuickTest
Advanced References > QuickTest Object Repository Schema). You can also
export an existing shared object repository to XML and then use the XML
file as a guide. For more information, see “Exporting to XML” on page 243.

ObjectRepositorySchema.chm::/ObjectRepositorySchema_xsd.html
ObjectRepositorySchema.chm::/ObjectRepositorySchema_xsd.html

Chapter 6 • Managing Object Repositories

243

To import from XML:

 1 Choose File > Import from XML. The Import from XML dialog box opens.

Notes:

➤ If you are connected to Quality Center, the dialog box that opens is
different from the standard file system dialog box. You can switch
between the two dialog box versions by clicking the File System and
Quality Center buttons in the Import from XML dialog box.

➤ Checkpoint and output objects are not included when importing the
contents of an object repository from an XML file.

 2 Select the XML file you want to import, and click Open or OK (depending
on whether you are opening it from the file system or a Quality Center
project).

 3 The XML file is imported and a summary message box opens showing
information regarding the number of objects, parameters, and metadata
that were successfully imported from the specified file.

 4 Click OK to close the message box. The imported XML file is opened as a
new object repository. You can now modify it as required and save it as an
object repository.

Exporting to XML
You can export the test objects in an object repository to an XML file. This
enables you to edit it using any XML editor, and also enables you to save it
in an accessible, versatile format.

To export to XML:

 1 Make sure that the object repository whose test objects you want to export is
the active window.

 2 Make sure that the object repository is saved.

Chapter 6 • Managing Object Repositories

244

 3 Choose File > Export Test Objects to XML. The Export to XML dialog box
opens.

Notes:

➤ If you are connected to Quality Center, the dialog box that opens is
different from the standard file system dialog box. You can switch
between the two dialog box versions by clicking the File System and
Quality Center buttons in the Export to XML dialog box.

➤ Checkpoint and output objects are not included when exporting the
contents of an object repository to an XML file.

 4 Select the location in which to save the file, specify the file or attachment
name, and click Save or OK (depending on whether you are saving it to the
file system or a Quality Center project).

 5 The test objects of the object repository are exported to the specified XML
file and a summary message box opens showing information regarding the
number of objects, parameters, and metadata that were successfully
exported to the specified file.

 6 Click OK to close the message box. You can now open the XML file and view
or modify it with any XML editor.

Understanding the XML File Structure
QuickTest uses a defined XML schema for object repositories. You must
follow this schema when creating or modifying object repository files in
XML format. The schema of this file is documented in the QuickTest Object
Repository Schema Help (Help > QuickTest Professional Help > QuickTest
Advanced References > QuickTest Object Repository Schema).

ObjectRepositorySchema.chm::/ObjectRepositorySchema_xsd.html
ObjectRepositorySchema.chm::/ObjectRepositorySchema_xsd.html

Chapter 6 • Managing Object Repositories

245

Managing Object Repositories Using Automation

QuickTest provides an Object Repository automation object model that
enables you to manage QuickTest shared object repositories and their
contents from outside of QuickTest. The automation object model enables
you to use a scripting tool to access QuickTest shared object repositories via
automation.

Just as you use the QuickTest Professional automation object model to
automate your QuickTest operations, you can use the objects and methods
of the Object Repository automation object model to write scripts that
manage shared object repositories, instead of performing these operations
manually using the Object Repository Manager. For example, you can add,
remove, and rename test objects; import from and export to XML; retrieve
and copy test objects; and so forth.

After you have retrieved a test object, you can manipulate it using the
methods and properties available for that test object class. For example, you
can use the GetTOProperty and SetTOProperty methods to retrieve and
modify its properties. For more information on available test object
methods and properties, see the HP QuickTest Professional Object Model
Reference.

Automation programs are especially useful for performing the same tasks
multiple times or on multiple object repositories. You can write your
automation scripts in any language and development environment that
supports automation. For example, you can use VBScript, JavaScript, Visual
Basic, Visual C++, or Visual Studio.NET. For general information on
controlling QuickTest using automation, see “Automating QuickTest
Operations” on page 817.

Chapter 6 • Managing Object Repositories

246

Using the QuickTest Professional Object Repository
Automation Reference
The QuickTest Professional Object Repository Automation Reference is a
Help file that provides detailed descriptions, syntax information, and
examples for the objects and methods in the QuickTest object repository
automation object model.

The Help topic for each automation object includes a list and description of
the methods associated with that object. Method Help topics include
detailed description, syntax, return value type, and argument value
information.

You can open the QuickTest Professional Object Repository Automation Reference
from the main QuickTest Help (Help > QuickTest Professional Help >
QuickTest Advanced References > QuickTest Object Repository Automation).

Note: The syntax and examples in the Help file are written in VBScript-style.
If you are writing your automation program in another language, the syntax
for some methods may differ slightly from what you find in the
corresponding Help topic. For information on syntax for the language you
are using, see the documentation included with your development
environment or to general documentation for the programming language.

ObjectRepositoryUtil.chm::/REPOSITORYUTILLib_P.html

247

7
Merging Shared Object Repositories

QuickTest Professional enables you to merge two shared object repositories
into a single shared object repository using the Object Repository Merge
Tool. You can also use this tool to merge objects from the local object
repository of one or more actions into a shared object repository.

This chapter includes:

 ➤ About Merging Shared Object Repositories on page 248

 ➤ Understanding the Object Repository Merge Tool on page 250

 ➤ Using Object Repository Merge Tool Commands on page 256

 ➤ Defining Default Settings on page 261

 ➤ Merging Two Object Repositories on page 266

 ➤ Updating a Shared Object Repository from Local Object Repositories
on page 268

 ➤ Viewing Merge Statistics on page 275

 ➤ Understanding Object Conflicts on page 276

 ➤ Resolving Object Conflicts on page 279

 ➤ Filtering the Target Repository Pane on page 281

 ➤ Finding Specific Objects on page 283

 ➤ Saving the Target Object Repository on page 284

Chapter 7 • Merging Shared Object Repositories

248

About Merging Shared Object Repositories

When you have multiple shared object repositories that contain test objects
from the same area of your application, it may be useful to combine those
test objects into a single object repository for easier maintenance. You could
do this by moving or copying objects in the Object Repository Manager.
However, if you have test objects in different object repositories that
represent the same object in your application, and the descriptions for these
objects in the different object repositories are not identical, it may be
difficult to recognize and handle these conflicts.

The Object Repository Merge Tool helps you to solve the above problem by
merging two selected object repositories for you and providing options for
addressing test objects with conflicting descriptions. Using this tool, you
merge two shared object repositories (called the primary object repository
and the secondary object repository), into a new third object repository,
called the target object repository. Objects in the primary and secondary
object repositories are automatically compared and then added to the target
object repository according to preconfigurable rules that define the defaults
for how conflicts between objects are resolved.

After the merge process, the Object Repository Merge Tool provides a
graphic presentation of the original objects in the primary and secondary
object repositories, which remain unchanged, as well as the objects in the
merged target object repository. Objects that had conflicts are highlighted.
The conflict of each object that you select in the target object repository is
described in detail. The Object Repository Merge Tool provides specific
options that enable you to keep the default resolution for each conflict, or
modify conflict resolutions individually, according to your requirements.

Chapter 7 • Merging Shared Object Repositories

249

The Object Repository Merge Tool also enables you to merge objects from
the local object repository of one or more actions into a shared object
repository. For example, if QuickTest learned objects locally in a specific
action in your test, you may want to add the objects to the shared object
repository, so that they are available to all actions in different tests that use
that object repository.

Notes:

➤ The Object Repository Merge Tool does not merge checkpoint or output
objects from the primary and secondary object repositories into the
target shared object repository. You can copy or manually move these
objects to your target object repository after you complete the merge
process, using the Object Repository Manager.

➤ When the Object Repository Merge Tool is open, you cannot work with
the Object Repository Manager or Object Repository Comparison Tool.
For more information on the Object Repository Manager, see Chapter 6,
“Managing Object Repositories.”

Chapter 7 • Merging Shared Object Repositories

250

Understanding the Object Repository Merge Tool

You open the Object Repository Merge Tool by choosing Tools > Object
Repository Merge Tool in the Object Repository Manager.

An example of the Object Repository - Merge Tool window is shown below:

Menu Bar
Toolbar

Status Bar

Target
Repository
Pane

Primary
Repository
Pane
Secondary
Repository
Pane

Resolution
Options
Pane

Chapter 7 • Merging Shared Object Repositories

251

The Object Repository - Merge Tool window contains the following key
elements:

➤ Menu bar. Displays menus of Object Repository Merge Tool commands.
These commands are described in various places throughout this chapter.
Shortcut keys for menu commands are described in “File Menu Commands”
on page 257.

➤ Toolbar. Contains buttons of commonly used menu commands to assist you
in merging, managing, and saving object repositories. Toolbar buttons are
described in “Using Toolbar Commands” on page 256.

➤ Target Repository Pane. Displays the objects that were merged from the
primary and secondary object repositories. You can also choose to show or
hide the Target Repository Object Properties pane, which displays the
properties of any object that is selected in the Target Repository pane. For
more information, see “Target Repository Pane” on page 252.

➤ Primary Repository Pane. Displays the objects in the primary object
repository. For more information, see “Primary and Secondary Repository
Panes” on page 254.

➤ Secondary Repository Pane. Displays the objects in the secondary object
repository. For more information, see “Primary and Secondary Repository
Panes” on page 254.

➤ Resolution Options Pane. Provides source, conflict, and resolution details
about the objects in the target object repository pane, and enables you to
modify how a selected conflict is resolved. For more information, see
“Resolution Options Pane” on page 254.

➤ Status Bar. Provides source, conflict, and resolution details about the object
selected in the target object repository pane, the filter status, and an icon
legend. For more information, see “Status Bar” on page 255.

Chapter 7 • Merging Shared Object Repositories

252

Changing the View
You can change the view presented by the Object Repository Merge Tool
according to your working preferences.

➤ Drag the edges of the panes to resize them in the Object Repository Merge
Tool window.

➤ Choose Primary Repository, Secondary Repository, Target Repository Object
Properties, or Resolution Options from the View menu to hide or show
these panes in the Object Repository Merge Tool.

➤ Choose View > Set as Default Layout to set your current view as the default
view, which displays each time you open the Object Repository Merge Tool.
You can choose View > Restore Default Layout to restore the view to the
default settings after you make changes.

Target Repository Pane
The target object repository pane displays a hierarchy of the objects, as well
as their respective properties and values, that were merged from the primary
and secondary object repositories. In the column to the left of the object
hierarchy, the pane displays the source file of each object (1 is displayed for
the primary file and 2 for the secondary file), and an icon representing the
type of conflict, if any.

When you save the target object repository, the file path is displayed above
the object hierarchy.

Note: To make it easier to see the status of an object at a glance, the text
colors of the object names in the target object repository can be set
according to their source and whether they caused a conflict. For more
information, see “Specifying Color Settings” on page 264.

Chapter 7 • Merging Shared Object Repositories

253

The target object repository pane provides the following functionality:

➤ When you select an object in the target object repository, the corresponding
object in the primary and/or secondary source file hierarchy is located and
indicated by a check mark.

➤ When you select an object in the target object repository, its properties and
values are displayed in the Object Properties - Target File area at the bottom
of the target object repository pane (View > Target Repository Object
Properties).

➤ If the merge results in a conflict, an icon is displayed to the left of the
conflicting object in the target object repository. You can see a tooltip
description of the conflict type by positioning your pointer over the icon.

➤ When you right-click an object, a context-sensitive menu opens. You can
choose an option to expand or collapse the entire hierarchy in the target
object repository, or, when applicable, to change the conflict resolution
method and result.

➤ You can expand or collapse the hierarchy of the node by double-clicking a
node. You can also expand or collapse the entire hierarchy in the target
object repository by choosing Collapse All or Expand All from the View
menu.

➤ You can jump directly to the next or previous conflict in the target object
repository hierarchy by choosing Next Conflict or Previous Conflict from the
Navigate menu, or by clicking the Next Conflict or Previous Conflict buttons
in the toolbar or Resolution Options pane.

➤ You can locate one or more objects in the target object repository by using
the Find dialog box. For more information, see “Finding Specific Objects”
on page 283.

➤ You can show or hide the target object repository object properties by
choosing View > Target Repository Object Properties.

Chapter 7 • Merging Shared Object Repositories

254

Primary and Secondary Repository Panes
The primary and secondary object repository panes display the hierarchies
of the objects, and their properties and values, in the original source object
repositories that you chose to merge. The file path is shown above each
object hierarchy.

The panes provide the following functionality:

➤ You can expand or collapse the hierarchy of a selected item by
double-clicking the item.

➤ You can view the properties and values of an object in the Test object details
area by selecting it in the relevant pane.

➤ You can show or hide the panes by selecting or clearing Primary Repository
or Secondary Repository in the View menu.

Resolution Options Pane
The Resolution Options pane provides information about any conflict
encountered during the merge for the object selected in the target object
repository. The pane also provides options that enable you to keep or
change the conflict resolution method that was applied using the default
resolution options.

The Resolution Options pane provides the following functionality:

➤ When you select a conflicting object in the target object repository, the pane
displays a textual description of the conflict and the resolution method used
by the Object Repository Merge Tool. A choice of alternative resolution
methods is offered.

➤ You can select a radio button to choose an alternative resolution method for
the conflict. Every time you make a change, the target object repository is
automatically updated and is redisplayed.

➤ You can jump directly to the next or previous conflict in the target object
repository hierarchy by clicking the Previous Conflict or Next Conflict
buttons.

Chapter 7 • Merging Shared Object Repositories

255

➤ For a local object repository merge, you can click the Ignore Object button
to exclude a specific local object repository object from the merge process.
The object remains in the action’s local object repository when the merge is
complete.

➤ You can show or hide the pane by selecting or clearing Resolution Options
in the View menu.

Status Bar
The status bar shows the following information about the merge process
and the results that are displayed:

➤ The conflict number (if any) of the object selected in the target object
repository pane.

➤ A progress bar, displayed during the merge process. Ready is displayed when
the process is complete.

➤ The the Quality Center icon, displayed when QuickTest is connected to a
Quality Center project.

➤ The filter status, shown next to the Filter icon: OFF indicates that the object
repositories are not filtered and all objects are shown. ON indicates a filter is
active and that some objects may have been filtered out of the display.

➤ A legend of the icons used in the target object repository pane. The
following icons may be displayed:

➤ Similar Description Conflict

➤ Same Name Different Description Conflict

➤ Same Description Different Name Conflict

For more information on conflict types, see “Understanding Object
Conflicts” on page 276.

Chapter 7 • Merging Shared Object Repositories

256

Tips:

➤ Position your pointer over a conflict icon in the status bar to see a tooltip
description of the conflict type.

➤ Click any of the conflict icons to view the Statistics dialog box. For more
information, see “Viewing Merge Statistics” on page 275.

➤ Click the Filter icon in the status bar to view the Filter dialog box. The
filter is shown as ON in the status bar when a filter is currently in use. For
more information, see “Filtering the Target Repository Pane” on
page 281.

Using Object Repository Merge Tool Commands

You can select Object Repository Merge Tool commands from the menu bar
or from the toolbar. You can perform certain commands by pressing
shortcut keys. You can also select an object in the target object repository
pane and choose commands from the context-sensitive (right-click) menu.

Using Toolbar Commands
You can perform frequently used commands by clicking buttons in the
Object Repository Merge Tool toolbar.

Description

New Merge (described in “File Menu Commands” on page 257)

Save (described in “File Menu Commands” on page 257)

Settings (described in “Tools Menu Commands” on page 260)

Statistics (described in “View Menu Commands” on page 258)

Filter (described in “Tools Menu Commands” on page 260)

Chapter 7 • Merging Shared Object Repositories

257

Performing Object Repository Merge Tool Commands
You can perform frequently-used commands by clicking toolbar buttons or
choosing the relevant menu option. You can also perform some commands
by pressing the relevant shortcut keys.

File Menu Commands

You can manage your merged object repository using the following File
menu commands:

Previous Conflict (described in “Navigate Menu Commands” on
page 260)

Next Conflict (described in “Navigate Menu Commands” on page 260)

Find (described in “Navigate Menu Commands” on page 260)

Find Previous (described in “Navigate Menu Commands” on page 260)

Find Next (described in “Navigate Menu Commands” on page 260)

Quality Center Connection (described in “File Menu Commands” on
page 257)

Command Shortcut Key Function

New Merge CTRL+N Enables you to specify two object
repositories with which to perform a
new merge operation.

Save CTRL+S Saves the merged shared object
repository.

Save As Opens the Save Shared Object
Repository dialog box, enabling you
to specify a name, file type, and
storage location for the merged
shared object repository.

Description

Chapter 7 • Merging Shared Object Repositories

258

View Menu Commands

You can manage the way that the Object Repository Merge Tool is displayed
on your screen using the following View menu commands:

Quality Center
Connection

Enables you to connect QuickTest to
a Quality Center project. For more
information, see “Connecting to
Your Quality Center Project” on
page 44.

Exit Closes the Object Repository - Merge
Tool window. (Also prompts you to
save the merged object repository if
you did not yet save it.)

Command Function

Primary Repository Displays the Primary Repository File pane,
containing a hierarchical view of the objects from
the first source object repository that you chose to
merge. Also displays the details for each object
selected in this pane. For more information, see
“Primary and Secondary Repository Panes” on
page 254 and “Merging Two Object Repositories”
on page 266.

Secondary
Repository

Displays the Secondary Repository File pane,
containing a hierarchical view of the objects from
the second source object repository that you chose
to merge. Also displays the details for each object
selected in this pane. For more information, see
“Primary and Secondary Repository Panes” on
page 254 and “Merging Two Object Repositories”
on page 266.

Target Repository
Object Properties

Displays the Object Properties - Target File pane,
which displays the details for each test object
selected in the target repository pane. For more
information, see “Target Repository Pane” on
page 252.

Command Shortcut Key Function

Chapter 7 • Merging Shared Object Repositories

259

Resolution Options Displays the Resolution Options pane, which
provides information about any conflict that
occurred during the merge. For more information,
see “Resolution Options Pane” on page 254 and
“Resolving Object Conflicts” on page 279.

Restore Default
Layout

Restores the view that you saved using the Set as
Default Layout option (described below). This is
useful if you resize a pane, or show or hide specific
panes and then want to restore your saved view.
For more information, see “Changing the View”
on page 252.

Set as Default Layout Enables you to save the current view so that each
time you open the Object Repository - Merge Too,
this view is displayed. If you later modify this view
by resizing panes, or showing or hiding them, you
can restore your default view using the Restore
Default Layout option (described above). For more
information, see “Changing the View” on
page 252.

Statistics Opens the Statistics dialog box, which describes
how the files were merged, and the number and
type of any conflicts that were resolved during the
merge. For more information, see “Viewing Merge
Statistics” on page 275.

Collapse All Collapses the entire hierarchy in the Target Object
Repository pane.

Tip: You can collapse a single node by
double-clicking it.

Expand All Expands the entire hierarchy in the Target Object
Repository pane.

Tip: You can expand a single node by
double-clicking it.

Command Function

Chapter 7 • Merging Shared Object Repositories

260

Navigate Menu Commands

You can perform the following Navigate menu commands:

Tools Menu Commands

You can perform the following Tools menu commands:

Command Shortcut Key Function

Next Conflict F4 Finds the next conflicting object in
the merged object repository.

Previous
Conflict

SHIFT+F4 Finds the previous conflicting object
in the merged object repository.

Find CTRL+F Opens the Find dialog box.

Find Next F3 Finds the next object in the merged
object repository according to the
search specifications in the Find
dialog box.

Find Previous SHIFT+F3 Finds the previous object in the
merged object repository according
to the search specifications in the
Find dialog box.

Command Function

Settings Opens the Settings dialog box, enabling you to:

➤ Configure how the Object Repository Merge Tool
deals with conflicting objects during a merge

➤ Specify the text color of the object names displayed
in the target object repository

For more information, see “Defining Default Settings”
on page 261.

Filter Opens the Filter dialog box, enabling you to show all of
the test objects in the Target Repository pane, or show
only the objects that had conflicts that were resolved
during the merge. For more information, see “Filtering
the Target Repository Pane” on page 281.

Chapter 7 • Merging Shared Object Repositories

261

Help Menu Command

You can perform the following Help menu command:

Defining Default Settings

The Object Repository Merge Tool is supplied with predefined settings that
are used when merging object repositories or when updating a shared object
repository from local object repositories. These are the default settings:

➤ Configure how the Object Repository Merge Tool deals with conflicting
objects in the primary and secondary object repositories (or local and shared
object repositories when updating a shared object repository from local
object repositories).

➤ Specify the text color of the object names that are displayed in the target
object repository.

You can change these settings at any time to create new default settings.
After you change the settings, all new merges are performed according to
the new default settings.

Tip: If you want to change the settings before merging two object
repositories, you must click Cancel to close the New Merge dialog box,
change the settings as described in the next sections, and then perform the
merge.

Command Shortcut Key Function

Object Repository
Merge Tool Help

F1 Opens the Object Repository Merge
Tool Help.

Chapter 7 • Merging Shared Object Repositories

262

Specifying Default Resolution Settings
You can configure how the Object Repository Merge Tool automatically
deals with conflicting objects during the merge process or when performing
an Update from Local Repository operation.

To specify default resolution settings:

 1 Choose Tools > Settings or click the Settings button. The Settings dialog box
opens.

 2 Click the Resolution tab.

Chapter 7 • Merging Shared Object Repositories

263

 3 Select the appropriate radio buttons to specify the default resolution settings
that the Object Repository Merge Tool applies when dealing with conflicting
objects.

➤ Take object description that is. Specifies how to resolve conflicts in
which two objects have the same name, but their descriptions differ. You
can specify that the target object repository takes the object description
that is more generic or less generic.

➤ More generic. Instructs the Object Repository Merge Tool to take the
object that has fewer identifying properties than the object with which
it conflicts, or uses regular expressions in its property values. This is
the default setting.

➤ Less generic. Instructs the Object Repository Merge Tool to take the
object that has all the identifying properties of the object with which
it conflicts, plus additional identifying properties.

➤ Take object name from. Specifies how to resolve conflicts where two
objects have the same or similar descriptions, but their names differ. You
can select the source from which the target object repository takes the
object name:

➤ Primary repository file. The target object repository takes the object
name from the object in the primary object repository. This is the
default setting. (When updating a shared object repository from a local
object repository, this option is for the Local object repository.)

➤ Secondary repository file. The target object repository takes the object
name from the object in the secondary object repository. (When
updating a shared object repository from a local object repository, this
option is for the Shared object repository.)

➤ Same file as the object description. The target object repository takes
the object name from the object in the same object repository from
which it took the object description.

Note: When updating a shared object repository from a local object
repository, the object repositories are referred to as the Local and Shared
object repository.

Chapter 7 • Merging Shared Object Repositories

264

 4 Click OK. The Object Repository Merge Tool will apply your selections when
resolving conflicts between objects in all future object repository merges.

Note: If you make any change to the resolution settings while a merged
object repository is open, you are asked whether you want to merge the
open files again with the new settings. Click Yes to merge the files again
with the new settings, or click No to keep the existing merge created with
the previous settings. If you click No, the new settings will apply only to
future merges.

Specifying Color Settings
You can specify the color in which object names are displayed in the target
object repository according to their source, and whether they caused a
conflict. This enables you to see the status of each object more easily.

Note: The options in the Colors tab of the Settings dialog box apply equally
to objects added from the local (primary) and shared (secondary) object
repositories, when performing an Update from Local Repository operation.

Chapter 7 • Merging Shared Object Repositories

265

To specify color settings:

 1 Choose Tools > Settings or click the Settings button. The Settings dialog box
opens.

 2 For each item in the Colors tab, click the down arrow next to the text
box and select an identifying color from the Custom, Web, or System tabs.

 3 Click OK. Object names in the target object repository are displayed in the
selected color according to your selections.

Chapter 7 • Merging Shared Object Repositories

266

Merging Two Object Repositories

Using the Object Repository Merge Tool, you can merge two source object
repositories to create a new shared object repository. Objects in the object
repositories are automatically compared and added to the new object
repository according to configurable rules that define how conflicts between
objects are resolved. The original source files are not changed.

Note: An object repository that is currently open by another user is locked.
If you try to merge the locked file, a warning message displays, but you can
still perform the merge because the merge process does not modify the
source files. Note that changes made to the locked file by the other user may
not be included in the merged object repository.

To merge two object repositories:

 1 In the Object Repository Manager, choose Tools > Object Repository Merge
Tool. The New Merge dialog box opens on top of the Object Repository -
Merge Tool window.

Chapter 7 • Merging Shared Object Repositories

267

Tips:

➤ If the Object Repository - Merge Tool window is already open, you can
choose File > New Merge or click the New Merge button to open the
New Merge dialog box.

➤ If you want to change the configured settings before merging the object
repositories, click Cancel to close the New Merge dialog box, change the
settings as described in “Defining Default Settings” on page 261, and
then perform the merge.

 2 In the Primary file and Secondary file boxes, enter (or browse to) the .tsr
object repositories that you want to merge into a single object repository.
You can click the down arrow next to each box to view and select
recently used files.

Notes:

➤ It is recommended that you select as your primary object repository the
object repository in which you have invested the most effort, meaning
the object repository with more objects, object properties, and values.

➤ A warning icon is displayed next to the relevant text box if you enter the
name of a file without a .tsr suffix, a file with an incorrect path, or a file
that does not exist. You can position your pointer over the icon to see a
tooltip explanation of the error. Enter or select an existing .tsr file with
the correct path.

➤ If you want to merge an object repository that was created using a
version of QuickTest earlier than version 9.0, you must first open and
save it in the Object Repository Manager to update it to the new format.

➤ If you are connected to Quality Center, you can enter (or browse to)
object repositories from Quality Center as well as from the file system.

Chapter 7 • Merging Shared Object Repositories

268

 3 Click OK. The Object Repository Merge Tool automatically merges the
selected object repositories into a new target object repository according to
the configured resolution settings, and displays the results in the Statistics
dialog box on top of the Object Repository - Merge Tool window.

 4 Review the merge statistics, as described in “Viewing Merge Statistics” on
page 275, and click Close.

In the Object Repository - Merge Tool window, you can:

➤ Modify any conflict resolutions between objects from the source object
repositories, if necessary, as described in “Resolving Object Conflicts” on
page 279.

➤ Filter the objects in the target object repository, as described in “Filtering
the Target Repository Pane” on page 281.

➤ Save the target object repository to the file system or to a Quality Center
project, as described in “Saving the Target Object Repository” on
page 284.

Updating a Shared Object Repository from Local Object
Repositories

You can update a shared object repository by merging local object
repositories associated with one or more components (via the application
area) into the shared object repository. The objects that are merged from the
local object repositories are then available to any components that use that
shared object repository.

In the merge process, the objects in the local object repository for the
selected component are moved to the target shared object repository. The
component then uses the objects from the updated shared object repository.

You can view or change how conflicting objects are dealt with during the
update process in the Settings dialog box. For more information, see
“Defining Default Settings” on page 261.

Chapter 7 • Merging Shared Object Repositories

269

If you choose to add local object repositories for more than one component,
QuickTest performs multiple merges, merging each component’s local object
repository with the target object repository one at a time, for all the
components in the list. You can view and modify the results of each merge if
necessary.

Notes:

The Object Repository Merge Tool does not merge checkpoint or output
objects from a local object repository into the target shared object
repository. You can export checkpoint or output objects from a local object
repository to a shared object repository and then manually move the
checkpoint and output objects from the exported object repository to your
target object repository after you complete the merge process, using the
Object Repository Manager.

You can merge local object repositories only from components whose
application areas are associated with the shared object repository you are
updating.

To update a shared object repository from a local object repository:

 1 Choose Resources > Object Repository Manager. The Object Repository
Manager opens.

Note: For more information on the Object Repository Manager, see
Chapter 6, “Managing Object Repositories.”

 2 In the Object Repository Manager, choose File > Open or click the Open
button. The Open Shared Object Repository dialog box opens.

If you are currently connected to a Quality Center project, the Open Shared
Object Repository dialog box displays the component tree for the project.
Select a component to view the shared object repositories attached to the
component.

Chapter 7 • Merging Shared Object Repositories

270

 3 Browse to the .tsr file that contains the shared object repository you want to
update, clear the Open in read-only mode check box, and click Open, or
click OK in the case of Quality Center attached files. The file opens with the
objects and properties displayed in editable format.

Tip: If you opened the object repository in read-only mode, choose File >
Enable Editing or click the Enable Editing button in the Object Repository
Manager toolbar. The object repository file is made editable.

 4 Choose Tools > Update from Local Repository. The Update from Local
Repository dialog box opens.

Chapter 7 • Merging Shared Object Repositories

271

 5 Make sure you are connected to your Quality Center project. Click the down
arrow next to the Add Tests button, and choose Browse for Component.
The Open QuickTest Component from Quality Center Project dialog box
opens.

Browse to the component whose local object repository you want to merge
into the shared object repository.

Note: You can only add a component whose application area is associated
with the shared object repository you are updating and whose local object
repository contains objects.

 6 Repeat step5 to add additional components if required.

Note: The local object repositories associated with all the components are
included in the merge. If you want to remove an component from the
merge, select it in the list and click Delete.

 7 Click Update All. QuickTest automatically merges the first component local
object repository into the shared object repository according to the
configured settings, and displays the results in the Statistics dialog box on
top of the Object Repository Merge Tool window.

Note: Before each merge, QuickTest checks whether the local object
repository is in use by another user. If so, the local object repository is
locked and the objects for the selected component cannot be moved to the
target shared object repository. A warning message is displayed. The merge
can be performed when the local object repository is no longer in use by the
other user.

Chapter 7 • Merging Shared Object Repositories

272

 8 Review the merge statistics, as described in “Viewing Merge Statistics” on
page 275, and click Close.

The Object Repository - Merge Tool window for a local object repository
merge displays the local object repository as the primary object repository,
and the shared object repository as the target object repository.

Chapter 7 • Merging Shared Object Repositories

273

At the left of each object in the target object hierarchy is an icon that
indicates the source of the objects:

 indicates that the object was added from the local object repository.

 indicates that the object already existed in the shared object repository.

Note: If you specified more than one component in the Update from Local
Repository dialog box, QuickTest performs multiple merges, merging each
component’s local object repository with the target object repository one at
a time. The Statistics dialog box and the Object Repository Merge Tool -
Multiple Merge window displayed after this step show the merge results of
the first merge (the local object repository of the first component being
merged into the shared object repository). QuickTest enables you to view,
and modify if necessary, the results of each merge in sequence. The number
of each merge set in a multiple merge is displayed in the title bar, for
example, [Set 2 of 3].

Chapter 7 • Merging Shared Object Repositories

274

 9 For each object merged into the shared object repository, you can accept the
automatic merge or use the Resolution Options pane to:

➤ Keep a specific object from the shared object repository and delete the
conflicting object from the local object repository.

➤ Keep a specific object from the local object repository and delete the
conflicting object from the shared object repository.

➤ Keep conflicting objects from both the shared object repository and the
local object repository.

➤ Exclude a specific local repository object from the merge process so that
it is not included in the shared object repository. Select the object in the
Shared Object Repository pane and click Ignore Object at the bottom of
the Resolution Options pane. The object is removed from the shared
object repository and grayed in the local object repository tree. It remains
in the action’s local object repository when the merge is complete.

Notes:

➤ The Ignore Object button is only visible in the Merge Tool window for a
local object repository merge, and is only enabled when an object in the
local object repository is selected.

➤ The Ignore Object operation cannot be reversed. To include the object
again in the merge process, you must repeat the merge by clicking Revert
to Original Merged Files in the toolbar.

For more information, see “Resolving Object Conflicts” on page 279.

 10 If you are performing multiple merges, click the Save and Merge Next
button in the Object Repository Merge Tool toolbar to perform the next
merge (the local object repository of the next component being merged into
the shared object repository).

 11 Click Yes to save your changes between merges. If you click No, the current
merge (objects merged from the last component) will not be saved.

 12 Repeat steps 8 through 11 to complete the multiple merges.

 13 Choose File > Exit, then click Yes to save the updated object repository.

Chapter 7 • Merging Shared Object Repositories

275

Viewing Merge Statistics

After you merge two object repositories, the Object Repository Merge Tool
displays the Statistics dialog box, which describes how the files were merged,
and the number and type of any conflicts that were resolved during the
merge.

Note: The Statistics dialog box shown after performing an Update from
Local Repository merge differs slightly from the dialog box shown above.

Tip: You can view the merge statistics in the Statistics dialog box at any time
by choosing View > Statistics in the Object Repository - Merge Tool window,
by clicking the Statistics button in the toolbar, or by clicking a conflict icon
in the status bar.

Chapter 7 • Merging Shared Object Repositories

276

The Statistics dialog box displays the following information:

➤ The number and type of any conflicts between the objects added to the
target object repository. Conflict types are described in “Resolving Object
Conflicts” on page 279.

➤ The number of items added to the target object repository that are
unique in each of the primary or secondary (or local) files, or are
identical in both files.

Tip: Select the Go to first conflict check box to jump to the first conflict in
the target object repository immediately after you close the Statistics dialog
box.

Understanding Object Conflicts

Merging two object repositories can result in conflicts arising from
similarities between the objects they contain. The Object Repository Merge
Tool identifies three possible conflict types:

➤ Similar Description Conflict. Two objects which have the same name and
the same object hierarchy, but which have slightly different descriptions. In
this conflict type, one of the objects always has a subset of the properties set
of the other object. These conflicts are described on page 277.

By default, the conflict resolution settings for conflicts of this type are
configured so that the target object repository takes the object that has
fewer identifying properties than the object with which it conflicts. For
information on changing the default settings, see “Defining Default
Settings” on page 261.

➤ Same Name Different Description Conflict. Two objects which have the
same name and the same object hierarchy, but differ somehow in their
description (for example, they have different properties, or the same
property with different values). These conflicts are described on page 278.

Chapter 7 • Merging Shared Object Repositories

277

By default, the conflict resolution settings for conflicts of this type are
configured so that the target object repository takes the object from both
files. The object that is added from the secondary file is renamed by adding
an incremental numeric suffix to the name, for example, Edit_1. For
information on changing the default settings, see “Defining Default
Settings” on page 261.

➤ Same Description Different Name Conflict. Two objects which have
identical descriptions, have the same object hierarchy, but differ in their
object names. These conflicts are described on page 279.

By default, the conflict resolution settings for conflicts of this type are
configured so that the target object repository takes the object name from
the primary source file. For information on changing the default settings,
see “Defining Default Settings” on page 261.

Note: Objects that do not have a description, such as Page or Browser
objects, are compared by name only. If the same object is contained in both
the source object repositories but with different names, they will be merged
into the target object repository as two separate objects.

Similar Description Conflict

An object in the primary object repository and an object in the secondary
object repository have the same name, and they have similar, but not
identical, description properties and values. One of the objects always has a
subset of the properties set of the other object. For example, an object
named Button_1 in the secondary object repository has the same description
properties and values as an object named Button_1 in the primary object
repository, but also has additional properties and values.

Chapter 7 • Merging Shared Object Repositories

278

You can resolve this conflict type by:

➤ Keeping the object added from the primary object repository only.

➤ Keeping the object added from the secondary object repository only.

➤ Keeping the objects from both object repositories. In this case, the Object
Repository Merge Tool automatically renames the object that is added from
the secondary file by adding an incremental numeric suffix to the name, for
example, Edit_1.

➤ Ignoring the object from the local object repository and keeping the object
from the shared object repository (when updating a shared object repository
from a local object repository).

Same Name Different Description Conflict

An object in the primary object repository and an object in the secondary
object repository have the same name, but completely different description
properties and values.

You can resolve this conflict type by:

➤ Keeping the object added from the primary object repository only.

➤ Keeping the object added from the secondary object repository only.

➤ Keeping the objects from both object repositories. In this case, the Object
Repository Merge Tool automatically renames the object that is added from
the secondary file by adding an incremental numeric suffix to the name, for
example, Edit_1.

➤ Ignoring the object from the local object repository and keeping the object
from the shared object repository (when updating a shared object repository
from a local object repository).

Chapter 7 • Merging Shared Object Repositories

279

Same Description Different Name Conflict

An object in the primary object repository and an object in the secondary
object repository have different names, but the same description properties
and values.

You can resolve this conflict type by:

➤ Taking the object name from the object in the primary object repository.

➤ Taking the object name from the object in the secondary object repository.

➤ Ignoring the object from the local object repository and keeping the object
from the shared object repository (when updating a shared object repository
from a local object repository).

Resolving Object Conflicts

Conflicts between objects in the primary and secondary object repositories
are resolved automatically by the Object Repository Merge Tool according to
the default resolution settings that you can configure before performing the
merge. For more information, see “Defining Default Settings” on page 261.

However, the Object Repository Merge Tool also allows you to change the
way the merge was performed for each individual object that causes a
conflict.

For example, an object in the primary object repository could have the same
name as an object in the secondary object repository, but have a different
description. You may have defined in the default settings that in this case,
the object with the more generic object description, meaning the object
with fewer properties, should be added to the target object repository.
However, when you review the conflicts after the automatic merge, you
could decide to handle the specific conflict differently, for example, by
keeping both objects.

Chapter 7 • Merging Shared Object Repositories

280

Note: Changes that you make to the default conflict resolution can
themselves affect the target object repository by causing new conflicts. In
the above example, keeping both objects would cause a name conflict.
Therefore, the target object repository is updated after each conflict
resolution change and redisplayed.

You can identify objects that caused conflicts, and the conflict type, by the
icon displayed to the left of the object name in the target object repository
pane of the Object Repository Merge Tool and the text color. When you
select a conflicting object, a full description of the conflict, including how it
was automatically resolved by the Object Repository Merge Tool, is
displayed in the Resolutions Options pane.

The Resolutions Options pane offers alternative resolution options. You can
choose to keep the default resolution if it suits your needs, or use the
alternative options to resolve the conflict in a different way. In addition, for
a local object repository merge, you can click the Ignore Object button to
exclude a specific local object repository object from the target shared object
repository.

Tip: You can also change the default resolution settings and merge the files
again. For more information, see “Defining Default Settings” on page 261.

To change the way in which object conflicts are resolved:

 1 In the target object repository, select an object that had a conflict, as
indicated by the icon to the left of the object name. The conflicting objects
are highlighted in the source object repositories.

A description of the conflict and the resolution method used by the Object
Repository Merge Tool is described in the Resolution Options pane. A radio
button for each possible alternative resolution method is displayed. For
information on each of the conflict types, see “Understanding Object
Conflicts” on page 276.

Chapter 7 • Merging Shared Object Repositories

281

 2 In the Resolution Options pane, select a radio button to choose an
alternative resolution method. The target object repository is updated
according to your selection and redisplayed.

 3 In the Resolution Options pane, click the Previous Conflict or Next Conflict
buttons to jump directly to the next or previous conflict in the target object
repository hierarchy.

 4 Repeat steps 1 through 3 to modify additional conflict resolutions, as
necessary.

 5 Save the target object repository, as described in “Saving the Target Object
Repository” on page 284.

Filtering the Target Repository Pane

Merging two object repositories can result in a target object repository
containing a large number of objects. To make navigation and the location
of specific objects easier in the target object repository pane, the Object
Repository Merge Tool enables you to filter the objects in the pane and show
only the objects that had conflicts that were resolved during the merge.

Note: The filter only affects which objects are displayed in the target object
repository pane. It does not affect which objects are included in the target
object repository.

Chapter 7 • Merging Shared Object Repositories

282

To filter the objects in the target object repository pane:

 1 Choose Tools > Filter or click the Filter button. The Filter dialog box opens.

Tip: You can also click the Filter icon in the status bar to view the Filter
dialog box. The Filter is shown as ON in the status bar when a filter is
currently in use.

 2 Select a radio button according to the objects you want to view in the target
object repository.

➤ Show all objects. Shows all objects in the target object repository

➤ Show only objects with conflicting descriptions. Shows only objects in
the target object repository that have description conflicts

 3 Click OK. The objects in the pane are filtered and the target object
repository displays only the requested object types. A progress bar is
displayed in the status bar during the filter process.

Chapter 7 • Merging Shared Object Repositories

283

Finding Specific Objects

You can use the Find feature in the Object Repository Merge Tool to locate
one or more objects in the target object repository whose name contains a
specified string. The located object is also highlighted in the relevant
primary and/or secondary object repositories.

To find an object:

 1 Choose Navigate > Find or click the Find button. The Find dialog box opens.

 2 In the Object name contains box, enter the full or partial name of the object
you want to find.

 3 In the Criteria box, refine your search by selecting which objects to search.
The following criteria are available:

➤ All objects

➤ Objects from one source

➤ Objects with conflicts

➤ Objects with conflicts or from one source

 4 Select one or both of the following options to help fine-tune your search:

➤ Match case. Distinguishes between upper-case and lower-case characters
in the search. When Match case is selected, QuickTest finds only those
occurrences in which the capitalization exactly matches the text you
entered in the Object name contains box.

➤ Match whole word. Searches for occurrences that are whole words only
and not part of larger words.

Chapter 7 • Merging Shared Object Repositories

284

 5 Specify the direction from the current cursor location in which you want to
search: Up or Down. The Find operation will continue to search the entire
object repository after it reaches the beginning or end of the file.

 6 Click Find Next to highlight the next object that matches the specified
criteria in the target object repository.

You can also close the Find dialog box and use the following commands:

➤ Click the Find Next button or choose Navigate > Find Next to highlight
the next object that matches the specified criteria.

➤ Click the Find Previous button or choose Navigate > Find Previous to
highlight the previous object that matches the specified criteria.

Saving the Target Object Repository

When you are sure that the object conflicts are resolved satisfactorily, you
can save the target object repository to the file system or to a Quality Center
project (if QuickTest is currently connected to the Quality Center project).

The file you can save depends on the types of object repositories that were
merged. If you merged two shared object repositories, you can save the new
target object repository file that was created. If you merged one or more
local object repositories with a shared object repository, you can save the
existing shared object repository file that now contains the objects and data
from the local object repositories.

Chapter 7 • Merging Shared Object Repositories

285

Saving the Object Repository to the File System
You can save the new merged shared object repository to the file system at
any time.

To save an object repository to the file system:

 1 Choose File > Save or click the Save button. If the file was saved previously,
the current changes you made are saved. If the file has not yet been saved,
the Save Shared Object Repository dialog box opens.

Note: If you are connected to Quality Center, the Save Shared Object
Repository dialog box is different from the standard file selection dialog
box. You can switch to save the file to the file system by clicking the File
System button in that dialog box.

 2 Browse to and select the folder in which you want to save the object
repository. Enter a name for the object repository in the File name box.

Use a descriptive name that will help you easily identify the file. You cannot
use the following characters in an object repository name:
\ / : " ? < > | * ’

 3 Click Save. QuickTest saves the object repository with a .tsr extension in the
specified location and displays the file name and path above the target
object repository in the Object Repository - Merge Tool window.

Chapter 7 • Merging Shared Object Repositories

286

Saving the Object Repository to a Quality Center Project
If you are connected to Quality Center, you can save your merged shared
object repository as an attachment in the test plan tree of your project.
Later, you can associate the object repository with the required application
areas so that the objects in the object repository can be accessed by
components. For more information, see HP QuickTest Professional for Business
Process Testing User’s Guide.

Note: You cannot overwrite an existing object repository in Quality Center.

To save an object repository in a Quality Center project:

 1 Choose File > Save or click the Save button. If the file was saved to Quality
Center previously, the current changes you made are saved to the object
repository. If the file has not yet been saved, the Save Shared Object
Repository dialog box opens.

Chapter 7 • Merging Shared Object Repositories

287

 2 In the test plan tree, select the folder in which you want to save the object
repository.

You can also click the New Folder button to create a new test folder in the
test plan tree in Quality Center.

Note: You can switch to save the file to the file system by clicking the File
System button in the Save Shared Object Repository dialog box. You can
switch back to the Save Shared Object Repository dialog box for Quality
Center by clicking the Quality Center button.

 3 Enter a name for the object repository in the Attachment Name box.

Use a descriptive name that will help you easily identify the object
repository. You cannot use the following characters in an object repository
name:
\ / : " ? < > | * ’

Note: You cannot overwrite an existing object repository.

 4 Click OK. QuickTest saves the object repository to Quality Center and
displays the file name and path above the target object repository in the
Object Repository - Merge Tool window. In Quality Center, the file is shown
in the Attachments tab of the relevant folder.

Chapter 7 • Merging Shared Object Repositories

288

289

8
Comparing Shared Object Repositories

QuickTest Professional enables you to compare two shared object
repositories using the Object Repository Comparison Tool, and view the
differences in their objects, such as different object names, different object
descriptions, and so on.

This chapter includes:

 ➤ About Comparing Shared Object Repositories on page 290

 ➤ Understanding the Object Repository Comparison Tool on page 291

 ➤ Using Object Repository Comparison Tool Commands on page 295

 ➤ Understanding Object Differences on page 299

 ➤ Changing Color Settings on page 300

 ➤ Comparing Object Repositories on page 301

 ➤ Viewing Comparison Statistics on page 303

 ➤ Filtering the Repository Panes on page 304

 ➤ Synchronizing Object Repository Views on page 305

 ➤ Finding Specific Objects on page 306

Chapter 8 • Comparing Shared Object Repositories

290

About Comparing Shared Object Repositories

QuickTest Professional enables you to compare existing assets from two
object repositories using the Object Repository Comparison Tool. The tool is
accessible from the Object Repository Manager, and enables you to compare
different object repository resources, or different versions of the same object
repository resource, and identify similarities, variations, or changes.

Differences between objects in the two object repository files, named the
First and Second files, are identified according to default rules. During the
comparison process, the object repository files remain unchanged. For more
information about the types of differences identified by the Object
Repository Comparison Tool, see “Understanding Object Differences” on
page 299.

After the compare process, the Comparison Tool provides a graphic
presentation of the objects in the object repositories, which are shown as
nodes in a hierarchy. Objects that have differences, as well as unique objects
that are included in one object repository only, can be identified according
to a color configuration that you can select. Objects that are included in one
object repository only are identified in the other object repository by the
text "Does not exist". You can also view the properties and values of each
object that you select in either object repository.

You can use the information displayed by the Object Repository
Comparison Tool when managing or merging object repositories. For more
information, see Chapter 8, “Comparing Shared Object Repositories,” or
Chapter 7, “Merging Shared Object Repositories.”

Notes:

➤ The Object Repository Merge Tool does not merge checkpoint or output
objects from a local object repository into the target shared object
repository.

➤ You cannot work with the Object Repository Manager or the Object
Repository Merge Tool when the Object Repository Comparison Tool is
open.

Chapter 8 • Comparing Shared Object Repositories

291

Understanding the Object Repository Comparison Tool

You open the Object Repository Comparison Tool by choosing Tools >
Object Repository Comparison Tool in the Object Repository Manager.

An example window of the Object Repository - Comparison Tool is shown
below:

Menu Bar
Toolbar

Status Bar

First
Repository
Pane

Second
Repository
Pane

Test Object
Details
Areas

Chapter 8 • Comparing Shared Object Repositories

292

The Object Repository - Comparison Tool window contains the following
key elements:

➤ Menu bar. Displays menus of Object Repository Comparison Tool
commands. These commands are described in various places throughout
this chapter. Shortcut keys for menu commands are described in
“Performing Object Repository Comparison Tool Commands Using Shortcut
Keys” on page 296.

➤ Toolbar. Contains buttons of commonly used menu commands to assist you
in comparing your object repositories and viewing the similarities and
differences in their objects. Toolbar buttons are described in “Using Toolbar
Commands” on page 295.

➤ Repository Panes. Display a hierarchical view of the objects in the object
repositories being compared. In the column to the left of the object
hierarchies, each pane displays icons representing the comparison of each
object. For more information, see “Understanding the Repository Panes” on
page 292.

➤ Test Object Details areas. Show the properties and values of the object
selected in an object repository pane. For more information, see
“Understanding the Repository Panes” on page 292.

➤ Status Bar. Shows the status of the comparison process and details of the
differences found during the object repository comparison. For more
information, see “Understanding the Status Bar” on page 294.

Understanding the Repository Panes
The object repository panes display the hierarchies of the objects, and their
properties and values, in the object repository files that you are comparing.
The file path is shown above each object hierarchy.

To make it easier to see the status of an object at a glance, the text and
background of object names in the object repositories are displayed using
different colors, according to the type of difference found.

You can change the default colors used in the object repositories to indicate
the difference type. For more information, see “Changing Color Settings” on
page 300.

Chapter 8 • Comparing Shared Object Repositories

293

Differences can also be identified by the icons used to the left of the objects
in the object repository panes, as follows:

➤ Objects that are unique to the first file

➤ Objects that are unique to the second file

➤ Objects in both the first and second file that are not identical but partially
match

For more information on all difference types, see “Understanding Object
Differences” on page 299.

The object repository panes provide the following functionality:

➤ When you select an object in one object repository pane, the corresponding
object in the other file hierarchy is located and highlighted. You can press
the CTRL button when you select an object to highlight only the selected
object without highlighting the corresponding object in the other file.

➤ When you select an object in an object repository pane, its properties and
values are displayed in the respective Test object details area at the bottom
of the pane.

➤ When you position your cursor over an icon to the left of an object in an
object repository pane, the comparison details are displayed as a tooltip, for
example, Partial match, or Unique to second file.

➤ You can expand or collapse the hierarchy of a parent node by
double-clicking the node, or by clicking the expand (+) or collapse (-)
symbol to the left of the node name. You can also expand or collapse the
entire hierarchy in the object repository pane by choosing Collapse All or
Expand All from the View menu.

➤ You can jump directly to the next or previous difference in the object
repository hierarchy by choosing Next Difference or Previous Difference
from the Navigate menu, by clicking the Next Difference or Previous
Difference buttons in the toolbar, or by using keyboard shortcuts. For more
information about shortcuts, see “Performing Object Repository
Comparison Tool Commands Using Shortcut Keys” on page 296.

Chapter 8 • Comparing Shared Object Repositories

294

➤ You can locate one or more objects in the object repository panes by using
the Find dialog box. For more information, see “Finding Specific Objects”
on page 306.

➤ You can drag the edges of the panes to resize them in the Object Repository
Comparison Tool window.

Understanding the Status Bar
The status bar shows information about the comparison process and the
results that are displayed:

➤ A progress bar is displayed on the left of the status bar during the
comparison process. Ready is displayed when the process is complete.

➤ The Quality Center icon is displayed when QuickTest is connected to a
Quality Center project.

➤ The filter status is shown next to the Filter icon: OFF indicates that the
object repositories are not filtered and all objects are shown. ON indicates a
filter is active and that some objects may have been filtered out of the
display. You can click the Filter icon to view the Filter dialog box. For more
information, see “Filtering the Repository Panes” on page 304.

➤ The number of differences found during the comparison are displayed, as
follows:

➤ The number of objects that are unique to the first file

➤ The number of objects that are unique to the second file

➤ The number of objects in the first and second file that are not identical
but partially match

For more information on all difference types, see “Understanding Object
Differences” on page 299.

Chapter 8 • Comparing Shared Object Repositories

295

Using Object Repository Comparison Tool Commands

You can select Object Repository Comparison Tool commands from the
menu bar or from the toolbar. You can also perform certain commands by
pressing shortcut keys.

Using Toolbar Commands
You can perform frequently used commands by clicking buttons in the
toolbar.

Description

New Comparison (described in “File Menu Commands” on page 296)

Color Settings (described in “File Menu Commands” on page 296)

Statistics (described in “View Menu Commands” on page 297)

Filter (described in “Tools Menu Commands” on page 298)

Synchronized Nodes (described in “Navigate Menu Commands” on
page 297)

Previous Difference (described in “Navigate Menu Commands” on
page 297)

Next Difference (described in “Navigate Menu Commands” on
page 297)

Find (described in “Navigate Menu Commands” on page 297)

Find Previous (described in “Navigate Menu Commands” on page 297)

Find Next (described in “Navigate Menu Commands” on page 297)

Quality Center Connection (described in “File Menu Commands” on
page 296)

Chapter 8 • Comparing Shared Object Repositories

296

Performing Object Repository Comparison Tool
Commands Using Shortcut Keys
You can perform frequently-used commands by clicking toolbar buttons or
choosing the relevant menu option. You can also perform some commands
by pressing the relevant shortcut keys.

File Menu Commands

You can manage your object repository comparison using the following File
menu commands:

Command Shortcut Key Function

New Comparison CTRL+N Enables you to specify two object
repositories on which to perform a
new comparison operation.

Quality Center
Connection

Enables you to connect QuickTest
to a Quality Center project. For
more information, see “Connecting
to Your Quality Center Project” on
page 44.

Exit Closes the Object Repository -
Comparison Tool window.

Chapter 8 • Comparing Shared Object Repositories

297

View Menu Commands

You can perform the following View menu commands:

Navigate Menu Commands

You can perform the following Navigate menu commands:

Command Function

Statistics Opens the Statistics dialog box, which describes
the comparison between the two repositories,
including the number and type of any differences
found. For more information, see “Viewing
Comparison Statistics” on page 303.

Collapse All Collapses the entire hierarchy in both comparison
panes.

Tip: Double-clicking an expanded node collapses it
in both panes simultaneously.

Expand All Expands the entire hierarchy in both comparison
panes.

Tip: Double-clicking a collapsed node expands it in
both panes simultaneously.

Command Shortcut Key Function

Next Difference F4 Finds the next difference between
objects in the object repositories.

Previous
Difference

SHIFT+F4 Finds the previous difference
between objects in the object
repositories.

Find CTRL+F Opens the Find dialog box.

Chapter 8 • Comparing Shared Object Repositories

298

Tools Menu Commands

You can perform the following Tools menu commands:

Help Menu Command

You can perform the following Help menu command:

Find Next F3 Finds the next object in the object
repositories according to the search
specifications in the Find dialog box.

Find Previous SHIFT+F3 Finds the previous object in the
object repositories according to the
search specifications in the Find
dialog box.

Command Function

Synchronized
Nodes

Enables you to navigate the two object repository panes
simultaneously or independently of one another. For
more information, see “Synchronizing Object
Repository Views” on page 305.

Filter Opens the Filter dialog box, enabling you to specify the
types of test object matches that you want to show. For
more information, see “Filtering the Repository Panes”
on page 304.

Color Settings Opens the Settings dialog box, enabling you to specify
the text color and background of the object names and
empty nodes displayed in the comparison panes.

For more information, see “Changing Color Settings”
on page 300.

Command Shortcut Key Function

Object Repository
Comparison Tool Help

F1 Opens the Object Repository
Comparison Tool Help.

Command Shortcut Key Function

Chapter 8 • Comparing Shared Object Repositories

299

Understanding Object Differences

The Comparison Tool automatically identifies objects during the
comparison process by classifying them into one of the following types:

➤ Identical. Objects that appear in both object repository files. There is no
difference in their name or in their properties.

➤ Matching description, different name. Objects that appear in both object
repository files that have different names, but the same description
properties and values.

➤ Similar description. Objects that appear in both object repository files that
have similar, but not identical, description properties and values. One of the
objects always has a subset of the properties set of the other object. This
implies that it is likely to be a less detailed description of the same object.
For example, an object named Button_1 in the second object repository has
the same description properties and values as an object named Button_1 in
the first object repository, but also has additional properties and values.

Objects that do not have a description, such as Page or Browser objects, are
compared by name only. If the same object is contained in both the object
repositories but with different names, they will be shown in the object
repositories as two separate objects.

Note: The Object Repository Comparison Tool gives precedence to matching
object descriptions over the matching of object names. For this reason,
certain object nodes may be linked during the comparison process and not
others.

➤ Unique to first file, or Unique to second file. Objects that appear in only one
of the object repository files.

Chapter 8 • Comparing Shared Object Repositories

300

Changing Color Settings

The text and background of object names, and empty nodes representing
objects that exist in the other object repository only, are displayed in the
Comparison Tool window in default colors, according to their difference
types. This enables you to see the status of each object in the object
repository panes. These text colors are also used in the Statistics dialog box.

You can change the default color settings if required.

To change color settings:

 1 Choose Tools > Color Settings or click the Color Settings button in the
toolbar. The Color Settings dialog box opens.

 2 For each difference type, click the down arrow next to the text box and
select an identifying text color and background color from the Custom,
Web, or System tabs.

 3 Click OK. After performing a comparison of object repositories, object
names and empty nodes in the respective object repository panes are
displayed according to your selections.

Chapter 8 • Comparing Shared Object Repositories

301

Comparing Object Repositories

Using the Object Repository Comparison Tool, you can compare two object
repositories according to predefined settings that define how differences
between objects are identified.

To compare two object repositories:

 1 In QuickTest Professional, choose Resources > Object Repository Manager.

 2 In the Object Repository Manager, choose Tools > Object Repository
Comparison Tool. The New Comparison dialog box opens on top of the
Object Repository - Comparison Tool window.

Tips:

➤ If the Object Repository - Comparison Tool window is already open, you
can choose File > New Comparison or click the New Comparison button
in the toolbar to open the New Comparison dialog box.

➤ If you want to change the color settings before comparing the object
repositories, click Cancel to close the New Comparison dialog box,
change the settings as described in “Changing Color Settings” on
page 300, and then perform the comparison.

Chapter 8 • Comparing Shared Object Repositories

302

 3 In the First file and Second file boxes, enter or browse to and select the .tsr
object repository files that you want to compare. By default, the boxes
display the last files selected for comparison using the Object Repository
Comparison Tool. You can click the down arrow next to each box to view
and select recently used files.

Notes:

➤ A warning icon is displayed next to the relevant text box if you enter the
name of a file without a .tsr suffix, a file with an incorrect path, or a file
that does not exist. You can position your pointer over the icon to see a
tooltip explanation of the error. Enter or select an existing .tsr file with
the correct path.

➤ If you want to compare an object repository that was created using a
version of QuickTest earlier than version 9.0, you must first open and
save it in the Object Repository Manager to update it to the new format.

➤ If you are connected to Quality Center, you can enter (or browse to)
object repositories from Quality Center as well as from the file system.

 4 Click OK. The Object Repository Comparison Tool compares the objects in
the selected object repositories and displays the results in the Statistics
dialog box on top of the Object Repository - Comparison Tool window.

 5 Review the statistics, as described in “Viewing Comparison Statistics” on
page 303, and click Close.

 6 In the Object Repository - Comparison Tool window, you can:

➤ Filter the objects in the object repositories, as described in “Filtering the
Repository Panes” on page 304.

➤ Find specific objects in the object repositories, as described in “Finding
Specific Objects” on page 306.

Chapter 8 • Comparing Shared Object Repositories

303

Viewing Comparison Statistics

After you compare two object repositories, the Object Repository
Comparison Tool displays the Statistics dialog box, which describes how the
files were compared, and the number and type of any differences found.

Tip: You can choose not to view the Statistics dialog box every time you
compare object repositories by clearing the Open this dialog box
automatically after comparisons check box. You can view the comparison
statistics in the Statistics dialog box at any time by choosing
View > Statistics in the Comparison Tool window, or by clicking the
Statistics button in the toolbar.

The Statistics dialog box displays the following information:

➤ The number and type of any differences between the objects in the
object repositories. Difference types are described in “Understanding
Object Differences” on page 299.

➤ The number of items that are unique to the first or the second file, or are
identical in both files.

Chapter 8 • Comparing Shared Object Repositories

304

The icons displayed for each difference type in the object statistics are the
same as those used in the object repository panes. For more information, see
“Understanding the Repository Panes” on page 292.

Tip: Select the Go to first difference check box to jump to the first difference
in the object repositories immediately after you close the Statistics dialog
box.

Filtering the Repository Panes

Object repositories can contain a large number of objects. To make
navigation and the location of specific objects easier in the object repository
panes, the Object Repository Comparison Tool enables you to filter the
objects and show only the objects that you want to view.

To filter the objects in the object repository panes:

 1 Choose Tools > Filter or click the Filter button in the toolbar. The Filter
dialog box opens.

Tip: The Filter button in the toolbar is surrounded by a border when a filter
is currently in use. In addition, the filter is shown as ON in the status bar.
You can click the Filter icon in the status bar to open the Filter dialog box.

Chapter 8 • Comparing Shared Object Repositories

305

 2 Select one or more check boxes according to the objects you want to view in
the object repositories.

➤ Identical Objects. Objects that appear in both object repository files and
have no differences in their name or in their properties

➤ Unique objects. Objects that appear only in the first object repository file
or only in the second object repository file

➤ Partial match objects. Objects in the object repository files that match
but have name or description differences

Tip: Select all the check boxes to view all the objects in both object
repositories.

 3 Click OK. The objects in the panes are filtered and the object repositories
display only the requested object types.

Synchronizing Object Repository Views

The Object Repository Comparison Tool enables you to navigate the two
object repositories independently. You can also resize the various panes to
display only some of the objects contained in the object repositories. When
using large object repositories, this can result in the various panes displaying
different areas of the object repository hierarchies, making it difficult to
locate and track specific objects affected by the comparison process.

To synchronize the object repositories to display the same object in both
views, select the object in the first or second object repository in which it is
currently visible and click the Synchronized Nodes button in the toolbar.
The matching node is highlighted in the other object repository and both
object repositories scroll simultaneously.

Chapter 8 • Comparing Shared Object Repositories

306

Tip: The Synchronized Nodes button in the toolbar is surrounded by a
border when the object repositories are currently synchronized. Click the
Synchronized Nodes button again to navigate the two object repositories
independently. When the object repositories are synchronized, you can also
press the CTRL button while selecting an object to highlight the selected
object only.

Finding Specific Objects

You can use the Find feature in the Object Repository Comparison Tool to
locate one or more objects in a selected object repository whose name
contains a specified string. The located object is also highlighted in the
other object repository if it exists there.

To find an object:

 1 Click the object repository pane that contains the required object.

 2 Choose Navigate > Find or click the Find button in the toolbar. The Find
dialog box opens.

 3 In the Object name contains box, enter the full or partial name of the object
you want to find. You can click the down arrow next to the box to view
and select a recently used string.

Chapter 8 • Comparing Shared Object Repositories

307

 4 In the Criteria box, refine your search by selecting which objects to search.
The following criteria are available:

➤ All objects

➤ Unique objects

➤ Partial match objects

➤ Unique or partial match objects

 5 Select one or both of the following options to help fine-tune your search:

➤ Match case. Distinguishes between upper-case and lower-case characters
in the search. When Match case is selected, QuickTest finds only those
occurrences in which the capitalization exactly matches the text you
entered in the Object name contains box.

➤ Match whole word. Searches for occurrences that are whole words only
and not part of larger words.

 6 Specify the direction from the current cursor location in which you want to
search: Up or Down. The Find operation will continue to search the entire
file after it reaches the beginning or end of the object repository.

 7 Click the Find Next button to highlight the next object that matches the
specified criteria in the object repository.

You can also close the Find dialog box and use the following commands:

➤ Click the Find Next button in the toolbar, choose Navigate > Find Next,
or press F3, to highlight the next object that matches the specified
criteria.

➤ Click the Find Previous button in the toolbar, choose Navigate > Find
Previous, or press SHIFT+F3, to highlight the previous object that matches
the specified criteria.

Chapter 8 • Comparing Shared Object Repositories

308

Part III

Defining Functions and Other
Programming Tasks

310

311

9
Working in Function Library Windows

You can use the QuickTest Function Library window to create function
libraries using VBScript. This chapter provides a brief introduction to
VBScript and shows you how to enhance your function libraries using a few
simple programming techniques.

This chapter includes:

 ➤ About Working in the Function Library Window on page 312

 ➤ Generating Statements in a Function Library on page 312

 ➤ Navigating in Function Libraries on page 317

 ➤ Understanding Basic VBScript Syntax on page 325

 ➤ Using Programmatic Descriptions on page 332

 ➤ Running and Closing Applications Programmatically on page 344

 ➤ Using Comments, Control-Flow, and Other VBScript Statements on page 345

 ➤ Retrieving and Setting Test Object Property Values on page 352

 ➤ Accessing Run-Time Object Properties and Methods on page 354

 ➤ Running DOS Commands on page 356

 ➤ Enhancing Your Tests and Function Libraries Using the Windows API
on page 356

 ➤ Choosing Which Steps to Report During the Run Session on page 360

Chapter 9 • Working in Function Library Windows

312

About Working in the Function Library Window

You can create and work with function libraries using the Function Library
window. To learn about working with VBScript, you can view the VBScript
documentation directly from the QuickTest Help menu (Help > QuickTest
Professional Help > VBScript Reference).

You can add statements that perform operations on objects or retrieve
information from your application. For example, you can add a step that
checks that an object exists, or you can retrieve the return value of a
method.

You can add steps to your function library either manually or using the Step
Generator. For more information on using the Step Generator, see the
HP QuickTest Professional User’s Guide.

You can print a function library at any time. You can also include additional
information in the printout. For more information on printing a function
library, see “Printing a Function Library” on page 384.

Generating Statements in a Function Library

You can generate statements in the following ways:

➤ You can use the Step Generator to add steps that use methods and functions.
For more information, see the HP QuickTest Professional User’s Guide.

➤ You can manually insert VBScript statements that use methods to perform
operations. QuickTest includes IntelliSense, a statement completion feature
that helps you select the method or property for your statement and to view
the relevant syntax as you type in a function library. For more information,
see “Generating a Statement for an Object” on page 313.

➤ When you start to type a VBScript keyword in a function library, QuickTest
automatically adds the relevant syntax or blocks to your script, if the
Auto-expand VBScript syntax option is enabled. For more information, see
“Automatically Completing VBScript Syntax” on page 315.

Chapter 9 • Working in Function Library Windows

313

Generating a Statement for an Object

When you type in a function library, IntelliSense (the statement completion
feature included with QuickTest) enables you to select the method or
property for your statement from a drop-down list and view the relevant
syntax.

Tip: Although IntelliSense in function library documents is supported as
described below to help generate test object statements, it is generally not
recommended to include a full object hierarchy statement in a function. It is
preferable to make your functions generic so that they can be used with
different objects.

The Statement Completion option is enabled by default. You can disable or
enable this option in the Editor Options dialog box. For more information,
see Chapter 10, “Customizing Function Library Windows.”

When the Statement Completion option is enabled:

➤ If you type a period after a test object in a statement, QuickTest displays a
list of the relevant methods, properties, and registered functions that you
can add after the object you typed.

➤ If you type the name of a method or property, QuickTest displays a list of
available methods and properties. Pressing CTRL+SPACE automatically
completes the word if there is only one option, or highlights the first
method or property (alphabetically) that matches the text you typed.

➤ If you type the name of a method or property, QuickTest displays the syntax
for it, including its mandatory and optional arguments. When you add a
step that uses a method or property, you must define a value for each
mandatory argument associated with the method or property.

Chapter 9 • Working in Function Library Windows

314

➤ If you press CTRL+SPACE, QuickTest displays a list of the relevant methods,
properties, VBScript functions, user-defined functions, VBScript constants,
and utility objects that you can add. If you use the Object property in your
statement, if the object data is currently available or the open application,
QuickTest displays native methods and properties of any run-time object in
your application. For more information on the Object property, see
“Accessing Run-Time Object Properties and Methods” on page 354.

To generate a statement using statement completion in a function library:

 1 Confirm that the Statement completion option is selected (Tools > View
Options > General tab).

 2 In the function library, type the full hierarchy of an object, for example:

Browser("Welcome: Mercury Tours").Page("Book a Flight:
Mercury).WebEdit("username").

 3 Type a period (.) after the object description, for example ("username").
QuickTest displays a list of the available methods and properties for the
object.

Tip: You can press CTRL+SPACE or choose Edit > Advanced > Complete Word
after a period, or after you have begun to type a method or property name.
QuickTest automatically completes the method or property name if only
one method or property matches the text you typed. If more than one
method or property matches the text, the first method or property
(alphabetically) that matches the text you typed is highlighted.

Chapter 9 • Working in Function Library Windows

315

 4 Double-click a method or property in the list or use the arrow keys to choose
a method or property and press ENTER. QuickTest inserts the method or
property into the statement. If the method or property contains arguments,
QuickTest displays the syntax of the method or property in a tooltip.

In the above example, the ReportEvent method has four arguments.

Tip: You can also place the cursor on any method or function that contains
arguments and press CTRL+SHIFT+SPACE or choose Edit > Advanced >
Argument Info to display the statement completion (argument syntax)
tooltip for that item.

 5 Enter the method arguments after the method.

For more details and examples of any QuickTest method, see the
HP QuickTest Professional Object Model Reference.

For more information on VBScript syntax, see “Understanding Basic
VBScript Syntax” on page 325.

Automatically Completing VBScript Syntax

When the Auto-expand VBScript syntax option is enabled and you start to
type a VBScript keyword in a function library, QuickTest automatically
recognizes the first two characters of the keyword and adds the relevant
VBScript syntax or blocks to the script. For example, if you enter the letters if
and then enter a space at the beginning of a line, QuickTest automatically
enters:

If Then
End If

Statement completion tooltip

Chapter 9 • Working in Function Library Windows

316

The Auto-expand VBScript syntax option is enabled by default. You can
disable or enable this option in the Editor Options dialog box. For more
information, see “Customizing Editor Behavior” on page 364.

If you enter two characters that are the initial characters of multiple
keywords, the Select a Keyword dialog box is displayed and you can select
the keyword you want. For example, if you enter the letters pr and then
enter a space, the Select a Keyword dialog box opens containing the
keywords private and property.

You can then select a keyword from the list and click OK. QuickTest
automatically enters the relevant VBScript syntax or block in the script.

For more information on VBScript syntax, see “Understanding Basic
VBScript Syntax” on page 325.

Chapter 9 • Working in Function Library Windows

317

Navigating in Function Libraries

You can use the Go To dialog box or bookmarks to jump to a specific line in
a function library. You can also find specific text strings in a function library,
and, if desired, replace them with different strings. These options make it
easier to navigate through sections of a long function.

Using the Go To Dialog Box
You can use the Go To dialog box to navigate to a specific line in a function
library.

Tip: By default, line numbers are displayed in function libraries. If they are
not displayed, you can select the Show line numbers option in the Tools >
View Options > General tab. For more information on the Editor options,
see Chapter 10, “Customizing Function Library Windows.”

To navigate to a line in a function library using the Go To dialog box:

 1 Activate the function library, if needed.

 2 Select Edit > Go To. The Go To dialog box opens.

 3 Enter the line to which you want to navigate in the Line number box and
click OK. The cursor moves to the beginning of the line you specify.

Working with Bookmarks
You can use bookmarks to mark important sections in your function library
so that you can navigate between the various parts more easily. Bookmarks
are not preserved when you navigate between documents, and they are not
saved with the function library.

Chapter 9 • Working in Function Library Windows

318

When you assign a bookmark, an icon is added to the left of the selected
line in the function library. You can then use the Go To button in the
Bookmarks dialog box to jump to the bookmarked rows.

Bookmarks look the same in tests and in function libraries. In the following
example, two bookmarks have been added to an action in a test.

To set bookmarks:

 1 Activate the function library, if needed.

 2 Click in the line to which you want to assign a bookmark.

Bookmarked lines

Chapter 9 • Working in Function Library Windows

319

 3 Choose Edit > Bookmarks. The Bookmarks dialog box opens.

 4 In the Bookmark name field, enter a unique name for the bookmark and
click Add. The bookmark is added to the Bookmarks dialog box, together
with the line number at which it is located and the textual content of the
line. In addition, a bookmark icon is added to the left of the selected line
in the function library.

 5 To delete a bookmark, select it in the list and click Delete.

To navigate to a specific bookmark:

 1 Activate the function library, if needed.

 2 Choose Edit > Bookmarks. The Bookmarks dialog box opens.

 3 Select a bookmark from the list and click the Go To button. QuickTest jumps
to the appropriate line in the function library.

Finding Text Strings
You can specify text strings to locate in a function library. You can either
search for literal text or use regular expressions for a more advanced search.
You can also use other options to further fine-tune your search results.

Chapter 9 • Working in Function Library Windows

320

To find a text string:

 1 In the function library, perform one of the following:

➤ Click the Find button.

➤ Choose Edit > Find.

The Find dialog box opens.

 2 In the Find what box, enter the text string you want to locate.

 3 If you want to use regular expressions in the string you specify, click the
arrow button () and select a regular expression. When you select a
regular expression from the list, it is automatically inserted in the Find what
box at the cursor location. For more information, see “Using Regular
Expressions in the Find and Replace Dialog Boxes” on page 323.

 4 Select any of the following options to help fine-tune your search:

➤ Match case. Distinguishes between upper-case and lower-case characters
in the search. When Match case is selected, QuickTest finds only those
occurrences in which the capitalization matches the text you entered in
the Find what box exactly.

➤ Match whole word. Searches for occurrences that are only whole words
and not part of longer words.

➤ Regular expression. Treats the specified text string as a regular
expression. This option is automatically selected when you select a
regular expression from the list.

Chapter 9 • Working in Function Library Windows

321

➤ Wrap at beginning/end. Continues the search from the beginning or end
of the function library text when either the beginning or end is reached,
depending on the selected search direction.

➤ Restrict to selection. Searches only within the selected part of the
function library text.

➤ Place cursor at end. Places the cursor at the end of the highlighted
occurrence when the search string is located.

 5 Specify the direction in which you want to search, from the current cursor
location in the function library: Up or Down

 6 Click Find Next to highlight the next occurrence of the specified string in
the active function library.

Replacing Text Strings
You can specify text strings to locate in the current function library, and
specify the text strings you want to use to replace them. You can either find
and replace literal text or use regular expressions for a more advanced
process. You can also use other options to further fine-tune your find and
replace process.

To replace a text string:

 1 In the function library, perform one of the following:

➤ Click the Replace button.

➤ Choose Edit > Replace.

Chapter 9 • Working in Function Library Windows

322

The Replace dialog box opens.

 2 In the Find what box, enter the text string you want to locate.

 3 In the Replace with box, enter the text string you want to use to replace the
found text.

 4 If you want to use regular expressions in the Find what or Replace with
string, click the arrow button () and select a regular expression. When
you select a regular expression from the list, it is automatically inserted in
the Find what or Replace with box at the cursor location. For more
information, see “Using Regular Expressions in the Find and Replace Dialog
Boxes” on page 323.

 5 Select any of the following options to help fine-tune your search:

➤ Match case. Distinguishes between upper-case and lower-case characters
in the search. When Match case is selected, QuickTest finds only those
occurrences in which the capitalization exactly matches the text you
entered in the Find what box.

➤ Preserve case. Checks each occurrence of the Find what string for all
lowercase, all uppercase, sentence caps or mixed case. The Replace with
string is converted to the same case as the occurrence found, except
when the occurrence found is mixed case. In this case, the Replace with
string is used without modification.

➤ Match whole word. Searches for occurrences that are whole words only
and not part of longer words.

Chapter 9 • Working in Function Library Windows

323

➤ Regular expression. Treats the specified text string as a regular
expression. This option is automatically selected when you select a
regular expression from the list.

➤ Wrap at beginning/end. Continues the search from the beginning or end
of the function library text when either the beginning or end is reached,
depending on the selected search direction.

➤ Restrict to selection. Searches only within the selected part of the
function library text.

➤ Place cursor at end. Places the cursor at the end of the highlighted
occurrence when the search string is located.

➤ Direction. Specifies the search direction.

➤ Up. Searches only from the current text up to the beginning of the
function library text.

➤ Down. Searches only from the current text down to the end of the
function library text.

 6 Click Find Next to highlight the next occurrence of the specified text string
in the active function library.

 7 Click Replace to replace the highlighted text with the text in the Replace
with box, or click Replace All to replace all occurrences specified in the Find
what box with the text in the Replace with box in the active function
library.

Using Regular Expressions in the Find and Replace Dialog Boxes

You can use regular expressions in the Find what and Replace with strings to
enhance your search. For a general understanding of regular expressions, see
“Understanding and Using Regular Expressions” on page 734. Note that
there are differences in the expressions supported by the Find and Replace
dialog boxes and the expressions supported in other parts of QuickTest.

Chapter 9 • Working in Function Library Windows

324

You display the regular expressions available for selection by clicking the
arrow button in the Find or Replace dialog boxes.

You can select from a predefined list of regular expressions. You can also use
tagged expressions. When you use regular expressions to search for a string,
you may want the string to change depending on what was already found.

For example, you can search for (save\:n)\1, which will find any occurrence
of save followed by any number, immediately followed by save, as well as
the same number that was already found (meaning that it will find
save6save6 but not save6save7).

You can also use tagged expressions to insert parts of what is found into the
replace string. For example, you can search for save(\:n) and replace it with
open\1. This will find save followed by any number, and replace it with
open and the number that was found.

Select Tag an Expression from the regular expressions list to insert
parentheses "()" to indicate a tagged expression in the search string.

Chapter 9 • Working in Function Library Windows

325

Select Match Tagged Expression and then select the specific tag group
number to specify the tagged expression you want to use, in the format '\'
followed by a tag group number 1-9. (Count the left parentheses '(' in the
search string to determine a tagged expression number. The first (left-most)
tagged expression is "\1" and the last is "\9".)

Understanding Basic VBScript Syntax

You write function libraries using VBScript, a powerful scripting language.

This section provides some basic guidelines to help you use VBScript
statements to enhance your QuickTest function library. For more detailed
information on using VBScript, you can view the VBScript documentation
from the QuickTest Help menu (Help > QuickTest Professional Help >
VBScript Reference).

Each VBScript statement has its own specific syntax rules. If you do not
follow these rules, errors will be generated when you run the problematic
step. You can check the syntax of the function library script at any time by
clicking the Check Syntax button, or by choosing Tools > Check Syntax.

When working in a function library, you should consider the following
general VBScript syntax rules and guidelines:

➤ Case-sensitivity. By default, VBScript is not case sensitive and does not
differentiate between upper-case and lower-case spelling of words, for
example, in variables, object and method names, or constants.

For example, the two statements below are identical in VBScript:

Browser("Mercury").Page("Find a Flight:").WebList("toDay").Select "31"
browser("mercury").page("find a flight:").weblist("today").select "31"

➤ Text strings. When you enter a value as a text string, you must add
quotation marks before and after the string. For example, in the above
segment of script, the names of the Web site, Web page, and edit box are all
text strings surrounded by quotation marks.

Note that the value 31 is also surrounded by quotation marks, because it is a
text string that represents a number and not a numeric value.

Chapter 9 • Working in Function Library Windows

326

In the following example, only the property name (first argument) is a text
string and is in quotation marks. The second argument (the value of the
property) is a variable and therefore does not have quotation marks. The
third argument (specifying the timeout) is a numeric value, which also does
not need quotation marks.

Browser("Mercury").Page("Find a Flight:").WaitProperty("items count",
Total_Items, 2000)

➤ Variables. You can specify variables to store strings, integers, arrays and
objects. Using variables helps to make your script more readable and
flexible. For more information, see “Using Variables” on page 327.

➤ Parentheses. To achieve the desired result and to avoid errors, it is
important that you use parentheses () correctly in your statements. For more
information, see “Using Parentheses” on page 328.

➤ Indentation. You can indent or outdent your script to reflect the logical
structure and nesting of the statements. For more information, see
“Formatting VB Script Text” on page 329.

➤ Comments. You can add comments to your statements using an apostrophe
('), either at the beginning of a separate line, or at the end of a statement. It
is recommended that you add comments wherever possible, to make your
scripts easier to understand and maintain. For more information, see
“Formatting VB Script Text” on page 329, and “Inserting Comments” on
page 345.

➤ Spaces. You can add extra blank spaces to your script to improve clarity.
These spaces are ignored by VBScript.

For more information on using specific VBScript statements to enhance
your function libraries, see “Using Comments, Control-Flow, and Other
VBScript Statements” on page 345.

Chapter 9 • Working in Function Library Windows

327

Using Variables
You can specify variables to store test objects or simple values in your
function library. When using a variable for a test object, you can use the
variable instead of the entire object hierarchy in other statements. Using
variables in this way makes your statements easier to read and to maintain.

To specify a variable to store an object, use the Set statement, with the
following syntax:

Set ObjectVar = ObjectHierarchy

In the example below, the Set statement specifies the variable UserEditBox to
store the full Browser > Page > WebEdit object hierarchy for the username
edit box. The Set method then enters the value John into the username edit
box, using the UserEditBox variable:

Set UserEditBox = Browser("Mercury Tours").Page("Mercury Tours").
WebEdit("username")

UserEditBox.Set "John"

Note: Do not use the Set statement to specify a variable containing a simple
value (such as a string or a number).

You can also use the Dim statement to declare variables of other types,
including strings, integers, and arrays. This statement is not mandatory, but
you can use it to improve the structure of your function library. In the
following example, the Dim statement is used to declare the actual_value
variable, which can then be used in different statements within the current
function library:

Dim actual_value
' Get the actual property value
actual_value = obj.GetROProperty(PropertyName)

Chapter 9 • Working in Function Library Windows

328

Using Parentheses
When programming in VBScript, it is important that you follow the rules for
using or not using parentheses () in your statements.

You must use parentheses around method arguments if you are calling a
method that returns a value and you are using the return value.

For example, use parentheses around method arguments if you are
returning a value to a variable, if you are using the method in an If
statement, or if you are using the Call keyword to call a function.

Tip: If you receive an Expected end of statement error message when
running a step in your function library, it may indicate that you need to add
parentheses around the arguments of the step's method.

Following are several examples showing when to use or not use parentheses.

The following example requires parentheses around the method arguments
for the ChildItem method because it returns a value to a variable.

Set WebEditObj = Browser("Mercury Tours").Page("Method of Payment").
WebTable("FirstName").ChildItem (8, 2, "WebEdit", 0)

WebEditObj.Set "Example"

The following example requires parentheses around the method arguments
because Call is being used.

Call MyFunction("Hello World")
...
...

The following example requires parentheses around the WaitProperty
method arguments because the method is used in an If statement.

If Browser("index").Page("index").Link("All kind of").
WaitProperty("attribute/readyState", "complete", 4) Then
Browser("index").Page("index").Link("All kind of").Click

End If

Chapter 9 • Working in Function Library Windows

329

The following example does not require parentheses around the Click
method arguments because it does not return a value.

Browser("Mercury Tours").Page("Method of Payment").WebTable("FirstName").
Click 3,4

Formatting VB Script Text
When working in a function library, it is important to follow accepted
VBScript practices for comments and indentation.

Use comments to explain sections of a script. This improves readability and
make function libraries easier to maintain and update. For more
information, see “Inserting Comments” on page 345.

Use indentation to reflect the logical structure and nesting of your
statements.

➤ Adding Comments. You can add comments to your statements by adding an
apostrophe ('), either at the beginning of a separate line, or at the end of a
statement.

Tips:

➤ You can comment a statement by clicking anywhere in the statement
and clicking the Comment Block button.

➤ You can comment a selected block of text by clicking the Comment Block
button, or by choosing Edit > Advanced > Comment Block. Each line in
the block will be preceded by an apostrophe.

➤ Removing Comments. You can remove comments from your statements by
deleting the apostrophe ('), either at the beginning of a separate line, or at
the end of a statement.

Chapter 9 • Working in Function Library Windows

330

Tip: You can remove the comments from a selected block or line of text by
clicking the Uncomment Block button, or by choosing Edit > Advanced >
Uncomment Block.

➤ Indenting Statements. You can indent your statements by selecting the text
and choosing Edit > Advanced > Indent or by press the TAB key. The text is
indented according to the tab spacing selected in the Editor Options dialog
box, as described in “Customizing Editor Behavior” on page 364.

Note: The Indent selected text when using the Tab key check box must be
selected in the Editor Options dialog box, otherwise pressing the TAB key
will delete the selected text.

➤ Outdenting Statements. You can outdent your statements by selecting
Edit > Advanced > Outdent or by deleting the space at the beginning of the
statements.

For more detailed information on formatting in VBScript, you can view the
VBScript documentation from the QuickTest Help menu (Help > QuickTest
Professional Help > VBScript Reference).

Handling VBScript Syntax Errors
You can check the syntax of the current function library at any time by
clicking the Check Syntax button, or by choosing Tools > Check Syntax. If
QuickTest finds any errors, it displays them in the Information pane.

You can view a description of each of the VBScript errors in the VBScript
Reference. For more information, choose Help > QuickTest Professional
Help > VBScript Reference > VBScript > Reference > Errors > VBScript Syntax
Errors.

Chapter 9 • Working in Function Library Windows

331

The Information pane lists the syntax errors found in your document, and
enables you to locate each syntax error so that you can correct it.

The Information pane shows the following information for each syntax
error:

Using the Information Pane

➤ Move the pointer over the description of a syntax error to display the
currently incorrect syntax.

➤ To navigate to the line containing a specific syntax error, double-click the
syntax error in the Information pane.

Pane Element Description

Details The description of the syntax error. For example, if you opened a
conditional block with an If statement but did not close it with
an End If statement, the description is Expected 'End If'.

Note: In certain cases, QuickTest is unable to identify the exact
error and displays a number of possible error conditions, for
example: Expected 'End Sub', or 'End Function', or 'End Property’.
Check the statement at the specified line to clarify which error is
relevant in your case.

Item The name of the function library containing the problematic
statement.

Action This column is not relevant for function libraries that are
associated with business components (via application areas).

Line The line containing the syntax error. Lines are numbered from
the beginning of each function library.

Chapter 9 • Working in Function Library Windows

332

➤ You can resize the columns in the Information pane to make the
information more readable by dragging the column headers.

➤ You can sort the details in the Information pane in ascending or descending
order by clicking the column header.

➤ You can press F1 on an error in the Information pane to display information
about VBScript syntax errors.

Using Programmatic Descriptions

When QuickTest learns an object in your application, it adds the appropriate
test object to the object repository. After the object exists in the object
repository, you can add statements in the Expert View to perform additional
methods on that object. To add these statements, you usually enter the
name (not case sensitive) of each of the objects in the object’s hierarchy as
the object description, and then add the appropriate method.

For example, in the statement below, username is the name of an edit box.
The edit box is located on a page with the name Mercury Tours, and the page
exists in a browser with the name Mercury Tours.

Browser("Mercury Tours").Page("Mercury Tours").WebEdit("username")

Because each object in the object repository has a unique name, the object
name is all you need to specify. During the run session, QuickTest finds the
object in the object repository based on its name and parent objects, and
uses the stored test object description for that test object to identify the
object in your application.

You can also instruct QuickTest to perform methods on objects without
referring to the object repository or to the object’s name. To do this, you
provide QuickTest with a list of properties and values that QuickTest can use
to identify the object or objects on which you want to perform a method.

Chapter 9 • Working in Function Library Windows

333

Such a programmatic description can be very useful if you want to perform
an operation on an object that is not stored in the object repository. You can
also use programmatic descriptions to perform the same operation on
several objects with certain identical properties, or to perform an operation
on an object whose properties match a description that you determine
dynamically during the run session.

In the Test Results, square brackets around a test object name indicate that
the test object was created dynamically during the run session using a
programmatic description or the ChildObjects method.

For example, suppose you are testing a Web site that generates a list of
potential employers based on biographical information you provide, and
offers to send your resume to the employer names you select from the list.
You want your test to select all the employers displayed in the list, but when
you design your test, you do not know how many check boxes will be
displayed on the page, and you cannot, of course, know the exact object
description of each check box. In this situation, you can use a programmatic
description to instruct QuickTest to perform a Set "ON" method for all
objects that fit the description: HTML TAG = input, TYPE = check box.

There are two types of programmatic descriptions:

➤ Static. You list the set of properties and values that describe the object
directly in a VBScript statement.

➤ Dynamic. You add a collection of properties and values to a Description
object, and then enter the Description object name in the statement.

Using the Static type to enter programmatic descriptions directly into your
statements may be easier for basic object description needs. However, in
most cases, using the Dynamic type provides more power, efficiency, and
flexibility.

Chapter 9 • Working in Function Library Windows

334

Entering Programmatic Descriptions Directly into
Statements
You can describe an object directly in a statement by specifying
property:=value pairs describing the object instead of specifying an object’s
name.

The general syntax is:

TestObject("PropertyName1:=PropertyValue1", "..." ,
 "PropertyNameX:=PropertyValueX")

TestObject. The test object class.

PropertyName:=PropertyValue. The test object property and its value. Each
property:=value pair should be separated by commas and quotation marks.

Note that you can enter a variable name as the property value if you want to
find an object based on property values you retrieve during a run session.
For example:

MyVar="some text string"
Browser("Hello").Page("Hello").Webtable("table").Webedit("name:=" & MyVar)

Note: QuickTest evaluates all property values in programmatic descriptions
as regular expressions. Therefore, if you want to enter a value that contains a
special regular expression character (such as *, ?, or +), use the \ (backslash)
character to instruct QuickTest to treat the special characters as literal
characters.

Chapter 9 • Working in Function Library Windows

335

The statement below specifies a WebEdit test object in the Mercury Tours
page with the Name author and an index of 3. During the run session,
QuickTest finds the WebEdit object with matching property values and
enters the text Mark Twain.

Browser("Mercury Tours").Page("Mercury Tours").WebEdit("Name:=Author",
 "Index:=3").Set "Mark Twain"

Note: When using programmatic descriptions from a specific point within
a test object hierarchy, you must continue to use programmatic descriptions
from that point onward within the same statement. If you specify a test
object by its object repository name after other objects in the hierarchy have
been specified using programmatic descriptions, QuickTest cannot identify
the object.

For example, you can use the following statement since it uses
programmatic descriptions throughout the entire test object hierarchy:

Browser("Title:=Mercury Tours").Page("Title:=Mercury Tours").
WebEdit("Name:=Author", "Index:=3").Set "Mark Twain"

You can also use the statement below, since it uses programmatic
descriptions from a certain point in the description (starting from the Page
object description):

Browser("Mercury Tours").Page("Title:=Mercury Tours").
WebEdit("Name:=Author", "Index:=3").Set "Mark Twain"

However, you cannot use the following statement, since it uses
programmatic descriptions for the Browser and Page objects but then
attempts to use an object repository name for the WebEdit test object:

Browser("Title:=Mercury Tours").Page("Title:=Mercury Tours").
WebEdit("Author").Set "Mark Twain"

QuickTest tries to locate the WebEdit object based on its name, but cannot
locate it in the repository because the parent objects were specified using
programmatic descriptions.

For more information on working with test objects, see Chapter 4, “Working
with Objects.”

Chapter 9 • Working in Function Library Windows

336

If you want to use the same programmatic description several times in a
function library, you may want to assign the object you create to a variable.

For example, instead of entering:

Window("Text:=Myfile.txt - Notepad").Move 50, 50
Window("Text:=Myfile.txt - Notepad").WinEdit("AttachedText:=Find what:").

Set "hello"
Window("Text:=Myfile.txt - Notepad").WinButton("Caption:=Find next").Click

You can enter:

Set MyWin = Window("Text:=Myfile.txt - Notepad")
MyWin.Move 50, 50
MyWin.WinEdit("AttachedText:=Find what:").Set "hello"
MyWin.WinButton("Caption:=Find next").Click

Using Description Objects for Programmatic Descriptions
You can use the Description object to return a Properties collection object
containing a set of Property objects. A Property object consists of a property
name and value. You can then specify the returned Properties collection in
place of an object name in a statement. (Each property object contains a
property name and value pair.)

Note: By default, the value of all Property objects added to a Properties
collection are treated as regular expressions. Therefore, if you want to enter
a value that contains a special regular expression character (such as *, ?, +),
use the \ (backslash) character to instruct QuickTest to treat the special
characters as literal characters.

You can set the RegularExpression property to False to specify a value as a
literal value for a specific Property object in the collection. For more
information, see the Utility section of the HP QuickTest Professional Object
Model Reference.

Chapter 9 • Working in Function Library Windows

337

To create the Properties collection, you enter a Description.Create statement
using the following syntax:

Set MyDescription = Description.Create()

Once you have created a Properties object (such as MyDescription in the
example above), you can enter statements to add, edit, remove, and retrieve
properties and values to or from the Properties object during the run session.
This enables you to determine which, and how many properties to include
in the object description in a dynamic way during the run session.

After you fill the Properties collection with a set of Property objects
(properties and values), you can specify the Properties object in place of an
object name in a test statement.

For example, instead of entering:

Window("Error").WinButton("text:=OK", "width:=50").Click

you can enter:

Set MyDescription = Description.Create()
MyDescription("text").Value = "OK"
MyDescription("width").Value = 50
Window("Error").WinButton(MyDescription).Click

Chapter 9 • Working in Function Library Windows

338

Note: When using programmatic descriptions from a specific point within a
test object hierarchy, you must continue to use programmatic descriptions
from that point onward within the same statement. If you specify a test
object by its object repository name after other objects in the hierarchy have
been described using programmatic descriptions, QuickTest cannot identify
the object.

For example, you can use Browser(Desc1).Page(Desc1).Link(desc3), since it
uses programmatic descriptions throughout the entire test object hierarchy.

You can also use Browser("Index").Page(Desc1).Link(desc3), since it uses
programmatic descriptions from a certain point in the description (starting
from the Page object description).

However, you cannot use Browser(Desc1).Page(Desc1).Link("Example1"),
since it uses programmatic descriptions for the Browser and Page objects but
then attempts to use an object repository name for the Link test object
(QuickTest tries to locate the Link object based on its name, but cannot
locate it in the repository because the parent objects were specified using
programmatic descriptions).

When working with Properties objects, you can use variable names for the
properties or values to generate the object description based on properties
and values you retrieve during a run session.

You can create several Properties objects in your test if you want to use
programmatic descriptions for several objects.

For more information on the Description and Properties objects and their
associated methods, see the HP QuickTest Professional Object Model Reference.

Chapter 9 • Working in Function Library Windows

339

Retrieving Child Objects
You can use the ChildObjects method to retrieve all objects located inside a
specified parent object, or only those child objects that fit a certain
programmatic description. To retrieve this subset of child objects, you first
create a description object and add the set of properties and values that you
want your child object collection to match using the Description object.

Note: You must use the Description object to create the programmatic
description for the ChildObjects description argument. You cannot enter the
programmatic description directly into the argument using the
property:=value syntax.

Once you have “built” a description in your description object, use the
following syntax to retrieve child objects that match the description:

Set MySubSet=TestObject.ChildObjects(MyDescription)

For example, the statements below instruct QuickTest to select all of the
check boxes on the Itinerary Web page:

Set MyDescription = Description.Create()
MyDescription("html tag").Value = "INPUT"
MyDescription("type").Value = "checkbox"

Set Checkboxes =
Browser("Itinerary").Page("Itinerary").ChildObjects(MyDescription)
NoOfChildObjs = Checkboxes.Count
For Counter=0 to NoOfChildObjs-1

Checkboxes(Counter).Set "ON"
Next

Chapter 9 • Working in Function Library Windows

340

In the Test Results, square brackets around a test object name indicate that
the test object was created dynamically during the run session using the
ChildObjects method or a programmatic description.

For more information on the ChildObjects method, see the HP QuickTest
Professional Object Model Reference.

Using the Index Property in Programmatic Descriptions

The index property can sometimes be a useful test object property for
uniquely identifying an object. The index test object property identifies an
object based on the order in which it appears within the source code, where
the first occurrence is 0.

Index property values are object-specific. Thus, if you use an index value
of 3 to describe a WebEdit test object, QuickTest searches for the fourth
WebEdit object in the page.

If you use an index value of 3 to describe a WebElement object, however,
QuickTest searches for the fourth Web object on the page regardless of the
type, because the WebElement object applies to all Web objects.

For example, suppose you have a page with the following objects:

➤ an image with the name Apple

➤ an image with the name UserName

➤ a WebEdit object with the name UserName

➤ an image with the name Password

➤ a WebEdit object with the name Password

Chapter 9 • Working in Function Library Windows

341

The description below refers to the third item in the list above, as it is the
first WebEdit object on the page with the name UserName:

WebEdit("Name:=UserName", "Index:=0")

The following description, however, refers to the second item in the list
above, as that is the first object of any type (WebElement) with the name
UserName.

WebElement("Name:=UserName", "Index:=0")

Note: If there is only one object, using index=0 will not retrieve it. You
should not include the index property in the object description.

Performing Programmatic Description Checks
You can compare the run-time value of a specified object property with the
expected value of that property using either programmatic descriptions or
user-defined functions.

Programmatic description checks are useful in cases in which you cannot
apply a regular checkpoint, for example, if the object whose properties you
want to check is not stored in an object repository. You can then write the
results of the check to the Test Results report.

For example, suppose you want to check the run-time value of a Web
button. You can use the GetROProperty or Exist methods to retrieve the
run-time value of an object or to verify whether the object exists at that
point in the run session.

The following examples illustrate how to use programmatic descriptions to
check whether the Continue Web button is disabled during a run session.

Chapter 9 • Working in Function Library Windows

342

Using the GetROProperty method:

ActualDisabledVal =
Browser(micClass:="Browser").Page(micClass:="Page").WebButton

(alt:=Continue").GetROProperty("disabled")

Using the Exist method:

While Not Browser(micClass:="Browser").Page(micClass:="Page").WebButton
(alt:=Continue").Exist(30)

Wend

By adding Report.ReportEvent statements, you can instruct QuickTest to send
the results of a check to the Test Results.

If ActualDisabledVal = True Then
Reporter.ReportEvent micPass, "CheckContinueButton = PASS", "The
Continue

button is disabled, as expected."
Else
Reporter.ReportEvent micFail, "CheckContinueButton = FAIL", "The Continue

button is enabled, even though it should be disabled."

Chapter 9 • Working in Function Library Windows

343

You can also create and use user-defined functions to check whether your
application is functioning as expected. The following example illustrates a
function that checks whether an object is disabled and returns True if the
object is disabled:

'@Description Checks whether the specified test object is disabled
'@Documentation Check whether the <Test object name> <test object type> is
enabled.
Public Function VerifyDisabled (obj)

Dim enable_property
' Get the disabled property from the test object
enable_property = obj.GetROProperty("disabled")
If enable_property = 1 Then ' The value is True (1)—the object is disabled

Reporter.ReportEvent micPass, "VerifyDisabled Succeeded", "The test
object is disabled, as expected."

VerifyDisabled = True
Else

Reporter.ReportEvent micFail, "VerifyDisabled Failed", "The test object is
enabled, although it should be disabled."

VerifyDisabled = False
End If

End Function

Note: For information on using the GetROProperty method, see “Retrieving
Run-Time Object Properties” on page 354. For information on using
While...Wend statements, see “While...Wend Statement” on page 350. For
information on specific test objects, methods, and properties, see the
HP QuickTest Professional Object Model Reference.

Chapter 9 • Working in Function Library Windows

344

Running and Closing Applications Programmatically

You can run any application from a specified location using a SystemUtil.Run
statement in a function library. This is especially useful if you want to
provide an operation (function) that opens an application from within a
component. You can specify an application and pass any supported
parameters, or you can specify a file name and the associated application
starts with the specified file open.

You can close most applications using the Close method. You can also use
SystemUtil statements to close applications. For more information, see the
HP QuickTest Professional Object Model Reference.

For example, you could use the following statements to open a file named
type.txt in the default text application (Notepad), type happy days, save the
file using shortcut keys, and then close the application:

SystemUtil.Run "C:\type.txt", "","",""
Window("Text:=type.txt - Notepad").Type "happy days"
Window("Text:=type.txt - Notepad").Type micAltDwn & "F" & micAltUp
Window("Text:=type.txt - Notepad").Type micLShiftDwn & "S" & micLShiftUp
Window("Text:=type.txt - Notepad").Close

For more information, see the HP QuickTest Professional Object Model
Reference.

Chapter 9 • Working in Function Library Windows

345

Using Comments, Control-Flow, and Other VBScript
Statements

QuickTest enables you to incorporate decision-making into your function
library by adding conditional statements that control the logical flow of
your function library. In addition, you can define messages in your test that
QuickTest sends to your test results. To improve the readability of your
function libraries, you can also add comments to them.

Note: The VBScript Reference (available from Help > QuickTest Professional
Help) contains Microsoft VBScript documentation, including VBScript,
Script Runtime, and Windows Script Host.

Inserting Comments
A comment is a line or part of a line in a script that is preceded by an
apostrophe ('). When you run a test, QuickTest does not process comments.
Use comments to explain sections of a script to improve readability and to
make function libraries easier to update.

The following example shows how a comment describes the purpose of the
statement below it:

‘Sets the word "mercury" into the "username" edit box.
Browser("Mercury Tours").Page("Mercury Tours").WebEdit("username").

Set "mercury"

Chapter 9 • Working in Function Library Windows

346

By default, comments are displayed in green in function libraries. You can
customize the appearance of comments in the Editor Options dialog box.
For more information, see “Customizing Element Appearance” on page 367.

Tips:

➤ You can comment a block of text by choosing Edit > Advanced >
Comment Block or by clicking the Comment Block button.

➤ To remove the comment, choose Edit > Advanced > Uncomment Block or
click the Uncomment Block button.

Note: You can also add a comment line using the VBScript Rem statement.
For more information, see the Microsoft VBScript Language Reference
(choose Help > QuickTest Professional Help > VBScript Reference >
VBScript).

Performing Calculations
You can write statements that perform simple calculations using
mathematical operators. For example, you can use a multiplication operator
to multiply the values displayed in two text boxes in your Web site. VBScript
supports the following mathematical operators:

Operator Description

+ addition

– subtraction

– negation (a negative number)

* multiplication

/ division

^ exponent

Chapter 9 • Working in Function Library Windows

347

In the following example, the multiplication operator is used to calculate
the maximum luggage weight of the passengers at 100 pounds each:

'Retrieves the number of passengers from the edit box using the GetROProperty
method

passenger = Browser ("Mercury_Tours").Page ("Find_Flights").
WebEdit("numPassengers").GetROProperty("value")

'Multiplies the number of passengers by 100

weight = passenger * 100

'Inserts the maximum weight into a message box.

msgbox("The maximum weight for the party is "& weight &"pounds.")

For...Next Statement
A For...Next loop instructs QuickTest to perform one or more statements a
specified number of times. It has the following syntax:

For counter = start to end [Step step]
statement

Next

Item Description

counter The variable used as a counter for the number of
iterations.

start The start number of the counter.

end The last number of the counter.

step The number to increment at the end of each loop.
Default = 1.
Optional.

statement A statement, or series of statements, to be performed
during the loop.

Chapter 9 • Working in Function Library Windows

348

In the following example, QuickTest calculates the factorial value of the
number of passengers using the For statement:

passengers = Browser("Mercury Tours").Page("Find Flights").
WebEdit("numPassengers").GetROProperty("value")

total = 1
For i=1 To passengers

total = total * i
Next
MsgBox "!" & passengers & "=" & total

For...Each Statement
A For...Each loop instructs QuickTest to perform one or more statements for
each element in an array or an object collection. It has the following syntax:

For Each item In array
statement

Next

The following example uses a For...Each loop to display each of the values in
an array:

MyArray = Array("one","two","three","four","five")
For Each element In MyArray

msgbox element
Next

Item Description

item A variable representing the element in the array.

array The name of the array.

statement A statement, or series of statements, to be performed
during the loop.

Chapter 9 • Working in Function Library Windows

349

Do...Loop Statement
The Do...Loop statement instructs QuickTest to perform a statement or series
of statements while a condition is true or until a condition becomes true. It
has the following syntax:

Do [{while} {until} condition]
statement

Loop

In the following example, QuickTest calculates the factorial value of the
number of passengers using the Do...Loop:

passengers = Browser("Mercury Tours").Page("Find Flights").
WebEdit("numPassengers").GetROProperty("value")

total = 1
i = 1
Do while i <= passengers

 total = total * i
 i = i + 1

Loop
MsgBox "!" & passengers & "=" & total

Item Description

condition A condition to be fulfilled.

statement A statement or series of statements to be performed
during the loop.

Chapter 9 • Working in Function Library Windows

350

While...Wend Statement
A While...Wend statement instructs QuickTest to perform a statement or
series of statements while a condition is true. It has the following syntax:

While condition
statement

Wend

In the following example, QuickTest performs a loop using the While
statement while the number of passengers is fewer than ten. Within each
loop, QuickTest increments the number of passengers by one:

passengers = Browser("Mercury Tours").Page("Find Flights").
WebEdit("numpassengers").GetROProperty("value")

While passengers < 10
passengers = passengers + 1

Wend

msgbox("The number of passengers in the party is " & passengers)

Item Description

condition A condition to be fulfilled.

statement A statement or series of statements to be executed during
the loop.

Chapter 9 • Working in Function Library Windows

351

If...Then...Else Statement
The If...Then...Else statement instructs QuickTest to perform a statement or a
series of statements based on specified conditions. If a condition is not
fulfilled, the next Elseif condition or Else statement is examined. It has the
following syntax:

If condition Then
statement

ElseIf condition2 Then
statement

Else
statement

End If

In the following example, if the number of passengers is fewer than four,
QuickTest closes the browser:

passengers = Browser("Mercury Tours").Page("Find Flights").
WebEdit("numpassengers").GetROProperty("value")

If (passengers < 4) Then
Browser("Mercury Tours").Close

Else
Browser("Mercury Tours").Page("Find Flights").Image("continue").Click 69,5

End If

Item Description

condition Condition to be fulfilled.

statement Statement to be perform.

Chapter 9 • Working in Function Library Windows

352

The following example uses If, ElseIf, and Else statements to check whether a
value is equal to 1, 2, or a different value:

value = 2
If value = 1 Then
 msgbox "one"
ElseIf value = 2 Then
 msgbox "two"
Else
 msgbox "not one or two"
End If

Retrieving and Setting Test Object Property Values

Test object properties are the set of properties defined by QuickTest for each
object. You can set and retrieve a test object’s property values, and you can
retrieve the values of test object properties from a run-time object.

When you run your test or component, QuickTest creates a temporary
version of the test object that is stored in the test object repository. You can
use the GetTOProperty, GetTOProperties, and SetTOProperty methods in your
function library to set and retrieve the test object property values of the test
object.

The GetTOProperty and GetTOProperties methods enable you to retrieve a
specific property value or all the properties and values that QuickTest uses to
identify an object.

The SetTOProperty method enables you to modify a property value that
QuickTest uses to identify an object.

Note: Because QuickTest refers to the temporary version of the test object
during the run session, any changes you make using the SetTOProperty
method apply only during the course of the run session, and do not affect
the values stored in the test object repository.

Chapter 9 • Working in Function Library Windows

353

For example, the following statements would set the Submit button’s name
value to my button, and then retrieve the value my button to the ButtonName
variable:

Browser("QA Home Page").Page("QA Home Page").
WebButton("Submit").SetTOProperty "Name", "my button"

ButtonName=Browser("QA Home Page").Page("QA Home Page").
WebButton("Submit").GetTOProperty("Name")

You use the GetROProperty method to retrieve the current value of a test
object property from a run-time object in your application.

For example, you can retrieve the target value of a link during the run
session as follows:

link_href = Browser("HP Technologies").Page("HP Technologies").
Link("Jobs").GetROProperty("href")

Tip: If you do not know the test object properties of objects in your
application, you can view them using the Object Spy. For information on
the Object Spy, see Chapter 3, “Understanding the Test Object Model.”

For a list and description of test object properties supported by each object,
and for more information on the GetROProperty, GetTOProperty,
GetTOProperties, and SetTOProperty methods, see the HP QuickTest
Professional Object Model Reference.

Chapter 9 • Working in Function Library Windows

354

Accessing Run-Time Object Properties and Methods

If the test object methods and properties available for a particular test object
do not provide the functionality you need, you can access the native
methods and properties of any run-time object in your application using the
Object property.

You can use the statement completion feature with object properties to view
a list of the available native methods and properties of an object. For more
information on the statement completion option, see “Generating
Statements in a Function Library” on page 312.

Tip: If the object is a Web object, you can also reference its native properties
in programmatic descriptions using the attribute/property notation. For
more information, see “Accessing User-Defined Properties of Web Objects”
on page 355.

Retrieving Run-Time Object Properties
You can use the Object property to access the native properties of any
run-time object. For example, you can retrieve the current value of the
ActiveX calendar’s internal Day property as follows:

Dim MyDay
Set MyDay=
Browser("index").Page("Untitled").ActiveX("MSCAL.Calendar.7").Object.Day

For more information on the Object property, see the HP QuickTest
Professional Object Model Reference.

Chapter 9 • Working in Function Library Windows

355

Activating Run-Time Object Methods
You can use the Object property to activate the internal methods of any run-
time object. For example, you can activate the native focus method of the
edit box as follows:

Dim MyWebEdit
Set MyWebEdit=Browser("Mercury Tours").Page("Mercury Tours").

WebEdit("username").Object
MyWebEdit.focus

For more information on the Object property, see the HP QuickTest
Professional Object Model Reference.

Accessing User-Defined Properties of Web Objects
You can use the attribute/<property name> notation to access native
properties of Web objects and use these properties to identify such objects
with programmatic descriptions.

For example, suppose a Web page has the same company logo image in two
places on the page:

You could identify the image that you want to click using a programmatic
description by including the user-defined property LogoID in the
description as follows:

Browser("Mercury Tours").Page("Find Flights").Image("src:=logo.gif",
"attribute/LogoID:=123").Click 68, 12

For more information on programmatic descriptions, see “Using
Programmatic Descriptions” on page 332.

Chapter 9 • Working in Function Library Windows

356

Running DOS Commands

You can run standard DOS commands in your QuickTest function using the
VBScript Windows Scripting Host Shell object (WSCript.shell). For example,
you can open a DOS command window, change the path to C:\, and run
the DIR command using the following statements:

Dim oShell
Set oShell = CreateObject ("WSCript.shell")
oShell.run "cmd /K CD C:\ & Dir"
Set oShell = Nothing

For more information, see the Microsoft VBScript Language Reference
(choose Help > QuickTest Professional Help > VBScript Reference >
VBScript).

Enhancing Your Tests and Function Libraries Using the
Windows API

Using the Windows API, you can extend testing abilities and add usability
and flexibility to your function libraries. The Windows operating system
provides a large number of functions to help you control and manage
Windows operations. You can use these functions to obtain additional
functionality.

The Windows API is documented in the Microsoft MSDN Web site, which
can be found at: http://msdn2.microsoft.com/en-us/library/Aa383750

A reference to specific API functions can be found at:
http://msdn2.microsoft.com/en-us/library/Aa383749

To use Windows API functions:

 1 In MSDN, locate the function you want to use in your function library.

 2 Read its documentation and understand all required parameters and return
values.

http://msdn2.microsoft.com/en-us/library/Aa383750
http://msdn2.microsoft.com/en-us/library/Aa383749

Chapter 9 • Working in Function Library Windows

357

 3 Note the location of the API function. API functions are located inside
Windows DLLs. The name of the DLL in which the requested function is
located is usually identical to the Import Library section in the function’s
documentation. For example, if the documentation refers to User32.lib, the
function is located in a DLL named User32.dll, typically located in your
System32 library.

 4 Use the QuickTest Extern object to declare an external function. For more
information, see the HP QuickTest Professional Object Model Reference.

The following example declares a call to a function called
GetForegroundWindow, located in user32.dll:

extern.declare micHwnd, "GetForegroundWindow", "user32.dll",
"GetForegroundWindow"

 5 Call the declared function, passing any required arguments, for example,
hwnd = extern.GetForegroundWindow().

In this example, the foreground window’s handle is retrieved. You can
enhance your function library if the foreground window is not in the object
repository or cannot be determined beforehand (for example, a window
with a dynamic title). You may want to use this handle as part of a
programmatic description of the window, for example:

Window("HWND:="&hWnd).Close

In some cases, you may have to use predefined constant values as function
arguments. Since these constants are not defined in the context of your
function, you need to find their numerical value to pass them to the called
function. The numerical values of these constants are usually declared in the
function’s header file. A reference to header files can also be found in each
function’s documentation under the Header section. If you have Microsoft
Visual Studio installed on your computer, you can typically find header files
under X:\Program Files\Microsoft Visual Studio\VC98\Include.

Chapter 9 • Working in Function Library Windows

358

For example, the GetWindow API function expects to receive a numerical
value that represents the relationship between the specified window and the
window whose handle is to be retrieved. In the MSDN documentation, you
can find the constants: GW_CHILD, GW_ENABLEDPOPUP,
GW_HWNDFIRST, GW_HWNDLAST, GW_HWNDNEXT, GW_HWNDPREV
and GW_HWNDPREV. If you open the WINUSER.H file, mentioned in the
GetWindow documentation, you will find the following flag values:

/*
 * GetWindow() Constants
 */
#define GW_HWNDFIRST0
#define GW_HWNDLAST 1
#define GW_HWNDNEXT2
#define GW_HWNDPREV 3
#define GW_OWNER 4
#define GW_CHILD 5
#define GW_ENABLEDPOPUP 6
#define GW_MAX 6

Chapter 9 • Working in Function Library Windows

359

Example

The following example retrieves a specific menu item's value in the Notepad
application.

' Constant Values:
const MF_BYPOSITION = 1024
' API Functions Declarations
Extern.Declare micHwnd,"GetMenu","user32.dll","GetMenu",micHwnd
Extern.Declare
micInteger,"GetMenuItemCount","user32.dll","GetMenuItemCount",micHwnd
Extern.Declare
micHwnd,"GetSubMenu","user32.dll","GetSubMenu",micHwnd,micInteger
Extern.Declare
micInteger,"GetMenuString","user32.dll","GetMenuString",micHwnd,micInteger,

micString+micByRef,micInteger,micInteger
' Notepad.exe
hwin = Window("Notepad").GetROProperty ("hwnd")' Get Window's handle
MsgBox hwin
' Use API Functions
men_hwnd = Extern.GetMenu(hwin)' Get window's main menu's handle
MsgBox men_hwnd
item_cnt = Extern.GetMenuItemCount(men_hwnd)
MsgBox item_cnt
hSubm = Extern.GetSubMenu(men_hwnd,0)
MsgBox hSubm
rc = Extern.GetMenuString(hSubm,0,value,64 ,MF_BYPOSITION)
MsgBox value

Chapter 9 • Working in Function Library Windows

360

Choosing Which Steps to Report During the Run Session

You can use the Report.Filter method to determine which steps or types of
steps are included in the Test Results. You can completely disable or enable
reporting of steps following the statement, or you can indicate that you
only want subsequent failed or failed and warning steps to be included in
the report. You can also use the Report.Filter method to retrieve the current
report mode.

The following report modes are available:

➤ To disable reporting of subsequent steps, enter the following statement:

Reporter.Filter = rfDisableAll

➤ To re-enable reporting of subsequent steps, enter:

Reporter.Filter = rfEnableAll

➤ To instruct QuickTest to include only subsequent failed steps in the Test
Results, enter:

Reporter.Filter = rfEnableErrorsOnly

Mode Description

0 or rfEnableAll All events are displayed in the Test Results.
Default.

1 or
rfEnableErrorsAndWarnings

Only events with a warning or fail status are
displayed in the Test Results.

2 or rfEnableErrorsOnly Only events with a fail status are displayed in
the Test Results.

3 or rfDisableAll No events are displayed in the Test Results.

Chapter 9 • Working in Function Library Windows

361

➤ To instruct QuickTest to include only subsequent failed or warning steps in
the Test Results, enter:

Reporter.Filter = rfEnableErrorsAndWarnings

➤ To retrieve the current report mode, enter:

MyVar=Reporter.Filter

For more information, see the HP QuickTest Professional Object Model
Reference.

Chapter 9 • Working in Function Library Windows

362

363

10
Customizing Function Library Windows

You can customize the way functions are displayed in the function library
windows. Any changes you make are applied globally to all function library
windows.

This chapter includes:

 ➤ About Customizing Function Library Windows on page 363

 ➤ Customizing Editor Behavior on page 364

 ➤ Customizing Element Appearance on page 367

 ➤ Personalizing Editing Commands on page 369

About Customizing Function Library Windows

QuickTest includes a powerful and customizable editor that enables you to
modify many aspects of function library windows.

The Editor Options dialog box enables you to change the way function
libraries are displayed in function library windows. You can also change the
font style and size of text in your function libraries, and change the color of
different elements, including comments, strings, QuickTest reserved words,
operators, and numbers. For example, you can display all text strings in red.

QuickTest includes a list of default keyboard shortcuts that enable you to
move the cursor, delete characters, and cut, copy, and paste information to
and from the Clipboard. You can replace these shortcuts with shortcuts you
prefer. For example, you could change the Line start command from the
default HOME to ALT + HOME.

Chapter 10 • Customizing Function Library Windows

364

You can also modify the way your function library is printed using options
in the Print dialog box. For more information, see “Printing a Function
Library” on page 384. For more information on working with function
libraries, see Chapter 11, “Working with User-Defined Functions and
Function Libraries.”

Customizing Editor Behavior

You can customize how function libraries are displayed in function library
windows. For example, you can show or hide character symbols, and choose
to display line numbers. For more information on working with function
libraries, see Chapter 11, “Working with User-Defined Functions and
Function Libraries.”

To customize editor behavior:

 1 When a function library window is active, choose Tools > View Options. The
Editor Options dialog box opens.

 2 Click the General tab.

Chapter 10 • Customizing Function Library Windows

365

 3 Choose from the following options:

Options Description

Show line numbers Displays a line number to the left of each line in the
function.

Auto-indent Causes lines following an indented line to
automatically begin at the same point as the
previous line. You can click the HOME key on your
keyboard to move the cursor back to the left
margin.

Indent selected text when
pressing Tab key

Pressing the TAB key indents the selected text.
When this option is not enabled, pressing the Tab
key replaces the selected text with a single Tab
character.

Statement completion When this option is selected, if you type:

➤ a dot after a test object. QuickTest displays a list
of available test objects and methods that you
can add after the object you typed.

➤ an open parenthesis after an object. QuickTest
displays a list of all test objects of this type in the
object repository. If there is only one object of
this type in the object repository, QuickTest
automatically enters its name in quotes after the
open parenthesis.

➤ a method. QuickTest displays the syntax for the
method, including its specific mandatory and
optional arguments.

➤ the Object property. If the object data is
currently available in the open application,
QuickTest displays native methods and
properties of any run-time object in your
application.

Draw box around current
line

Displays a box around the line of the test in which
the cursor is currently located.

Chapter 10 • Customizing Function Library Windows

366

 4 Click OK to apply the changes and close the dialog box.

Show all characters Displays all TAB, NEW LINE, and SPACE character
symbols. You can also select to display only some of
these characters by selecting or clearing the relevant
check boxes.

Auto-expand VBScript
syntax

Automatically recognizes the first two characters of
keywords and adds the relevant VBScript syntax or
blocks to the script, when you type the relevant
keyword.

For example, if you enter the letters if and then
enter a space at the beginning of a line in the Expert
View, QuickTest automatically enters:

If Then
End If

Use tab character Inserts a TAB character when the TAB key on the
keyboard is used. When this option is not enabled,
the specified number of space characters is inserted
when you press the TAB key.

Options Description

Chapter 10 • Customizing Function Library Windows

367

Customizing Element Appearance

QuickTest function libraries contain many different elements, such as
comments, strings, QuickTest and VBScript reserved words, operators, and
numbers. Each element of QuickTest function libraries can be displayed in a
different color. You can also specify the font style and size to use for all
elements. You can create your own personalized color scheme for each
element. For example, all comments could be displayed as blue letters on a
yellow background.

To set font and color preferences for elements:

 1 When a function library window is active, choose Tools > View Options. The
Editor Options dialog box opens.

 2 Click the Fonts and Colors tab.

Chapter 10 • Customizing Function Library Windows

368

 3 In the Fonts area, select the Font name and Size that you want to use to
display all elements. By default, the editor uses the Microsoft Sans Serif font,
which is a Unicode font.

Note: When testing in a Unicode environment, you must select a
Unicode-compatible font. Otherwise, elements in your function library may
not be correctly displayed in the function library windows. However, the
function library will still run in the same way, regardless of the font you
choose. If you are working in an environment that is not
Unicode-compatible, you may prefer to choose a fixed-width font, such as
Courier, to ensure better character alignment.

 4 Select an element from the Element list.

 5 Choose a foreground color and a background color.

 6 Choose a font style for the element (Normal, Bold, Italic, or Underline). An
example of your change is displayed in the Preview pane at the bottom of
the dialog box.

 7 Repeat steps4 to6 for each element you want to modify.

 8 Click OK to apply the changes and close the dialog box.

Chapter 10 • Customizing Function Library Windows

369

Personalizing Editing Commands

You can personalize the default keyboard shortcuts you use for editing.
QuickTest includes keyboard shortcuts that let you move the cursor, delete
characters, and cut, copy, or paste information to and from the Clipboard.
You can replace these shortcuts with your preferred shortcuts. For example,
you could change the Line end command from the default END to
ALT + END.

Note: The default QuickTest menu shortcut keys override any key bindings
that you may define. For example, if you define the Paste command key
binding to be CTRL+P, it will be overridden by the default QuickTest shortcut
key for opening the Print dialog box (corresponding to the File > Print
option). For a complete list of QuickTest menu shortcut keys, see
“Performing QuickTest Commands” on page 71.

Chapter 10 • Customizing Function Library Windows

370

To personalize editing commands:

 1 When a function library window is active, choose Tools > View Options. The
Editor Options dialog box opens.

 2 Click the Key Binding tab.

 3 Select a command from the Command list.

 4 Click in the Press new shortcut key box and then press the keys you want to
use for the selected command. For example, press and hold the CTRL key
while you press the number 4 key to enter CTRL+4.

Chapter 10 • Customizing Function Library Windows

371

 5 Click Add.

Note: If the key combination you specify is not supported, or if it is already
defined for another command, a message to this effect is displayed below
the shortcut key box.

 6 Repeat steps 3 - 5 for any additional commands.

 7 If you want to delete a key sequence from the list, select the command in
the Command list, then highlight the keys in the Uses keys list, and click
Delete.

 8 Click OK to apply the changes and close the dialog box.

Chapter 10 • Customizing Function Library Windows

372

373

11
Working with User-Defined Functions and
Function Libraries

In addition to the test objects, methods, and built-in functions supported by
the QuickTest Test Object Model, you can define your own function libraries
containing VBScript functions, subroutines, modules, and so forth, and
then use their functions as operations in your component.

Note: The terms function, method, and operation are used interchangeably
in this chapter. This is because functions and methods are known as
operations in the Business Component Keyword View, whereas in
QuickTest, the terms function and method are used.

This chapter includes:

 ➤ About Working with User-Defined Functions and Function Libraries
on page 374

 ➤ Managing Function Libraries on page 375

 ➤ Working with Associated Function Libraries on page 387

 ➤ Using the Function Definition Generator on page 390

 ➤ Registering User-Defined Functions as Test Object Methods on page 404

 ➤ Additional Tips for Working with User-Defined Functions on page 409

Chapter 11 • Working with User-Defined Functions and Function Libraries

374

About Working with User-Defined Functions and Function
Libraries

You can create user-defined functions to provide additional functionality for
your components. A user-defined function encapsulates an activity (or a
group of steps that require programming) into a keyword (also called an
operation). By using user-defined functions, your components are easier to
design, read, and maintain. You or a Subject Matter Expert can then call
user-defined functions from a component by inserting the relevant
keywords (or operations) into that component.

You can register a user-defined function as a method for a QuickTest test
object. A registered method can either override the functionality of an
existing test object method for the duration of a run session, or be registered
as a new method for a test object class. For more information on registering
user-defined functions, see “Using the Function Definition Generator” on
page 390 and “Registering User-Defined Functions as Test Object Methods”
on page 404.

Note: When you create a user-defined function, do not give it the same
name as a built-in function (for example, GetLastError, MsgBox, or Print).
Built-in functions take priority over user-defined functions, so if you call a
user-defined function that has the same name as a built-in function, the
built-in function is called instead. For a list of built-in functions, see the
Built-in functions list in the Step Generator (Insert > Step Generator).

Using QuickTest, you can define and store your user-defined functions in a
function library (saved as a .qfl file, by default). A function library is a Visual
Basic script containing VBscript functions, subroutines, modules, and so
forth. You can also use QuickTest to modify and debug any existing function
libraries (such as .vbs or .txt files). For information on using VBScript, see
“Handling VBScript Syntax Errors” on page 330.

Chapter 11 • Working with User-Defined Functions and Function Libraries

375

When you store a function in a function library and associate the function
library with an application area, any component associated with that
application area can call the public functions in that function library. For
more information, see “Working with Associated Function Libraries” on
page 387. Functions that are stored in an associated function library can be
accessed from the Step Generator (for function libraries) and the Operation
column in the Keyword View.

You can also define private functions and store them in a function library.
Private functions are functions that can be called only by other functions
within the same function library. This is useful if you to reuse segments of
code in your public functions.

You can define functions manually or using the Function Definition
Generator, which creates the basic function definition for you
automatically. Even if you prefer to define functions manually, you may still
want to use the Function Definition Generator to view the syntax required
to add header information, register a function to a test object, or set the
function as the default method for the test object. For more information, see
“Using the Function Definition Generator” on page 390.

Managing Function Libraries

You can create function libraries in QuickTest and call their functions from
your component after you associate the function library with the
component’s application area. A function library is a separate QuickTest
document containing VBscript functions, subroutines, modules, and so
forth. Each function library opens in a separate window, enabling you to
open and work on one or several function libraries at the same time. After
you finish editing a function library, you can close it, leaving your QuickTest
session open. You can also close all open function libraries simultaneously.

By implementing user-defined functions in function libraries and
associating them with your component via the application area, you enable
other users, such as Subject Matter Experts, to choose functions that
perform complex operations, such as adding if/then statements and loops to
component steps—without needing any programming knowledge. In
addition, you save time and resources by implementing and using reusable
functions.

Chapter 11 • Working with User-Defined Functions and Function Libraries

376

QuickTest provides tools that enable you to edit and debug any function
library, even if it was created using an external editor. For example,
QuickTest can check the syntax of your functions, and the function library
window provides the same editing features that are available in the Expert
View. For more information on the options available in the Expert View, see
the HP QuickTest Professional User’s Guide.

Creating a Function Library
You can create a new function library at any time.

To create a new function library in QuickTest:

Perform one of the following:

➤ Choose File > New > Function Library

➤ Click the New button down arrow and choose Function Library

A new function library opens.

You can now add content to your function library and/or save it. When you
add content to your function library, QuickTest applies the same formatting
it applies to content in the Expert View. You can modify the formatting, if
needed. For more information, see “Customizing Function Library
Windows” on page 363.

Opening a Function Library
In QuickTest, you can open any function library that is saved in the file
system or your Quality Center project—even if another document is already
open in QuickTest. You can only open a function library if you have read or
read-write permissions for the file.

Note: To enable a component or application area to use the functions
defined in a function library, the function library must be saved in your
Quality Center project and be associated with the application area. For more
information, see “Managing Function Libraries” on page 426.

Chapter 11 • Working with User-Defined Functions and Function Libraries

377

You can choose to open a function library in edit mode or read-only mode:

➤ Edit mode. Enables you to view and modify the function library. While the
function library is open on your computer, other users can view the file in
read-only mode, but they cannot modify it.

➤ Read-only mode. Enables you to view the function library but not modify it.
By default, when you open a function library that is currently open on
another computer, it opens in read-only mode. You can also choose to open
a function library in read-only mode if you want to review it, but you do not
want to prevent another user from modifying it.

Tip: You can also navigate directly from a function in your document to its
function definition in another function library. For more information, see
“Navigating to a Specific Function in a Function Library” on page 382.

To open an existing function library:

Perform one of the following:

➤ Choose File > Open > Function Library

➤ Click the Open button down arrow and choose Function Library

Tips:

➤ If the function library was recently created or opened, you can choose it
from the recent files list in the File menu.

➤ If the function library is associated with the open component or
application area, you can choose it from Resources > Associated Function
Libraries.

Chapter 11 • Working with User-Defined Functions and Function Libraries

378

The Open Function Library from Quality Center dialog box opens.

Tip: You can open the function library in read-only mode by selecting the
Open in read-only mode check box.

Browse to and select a function library, and click Open. QuickTest opens the
specified function library in a new window. You can now view and modify
its content. For more information, see “Editing a Function Library” on
page 382 and “Debugging a Function Library” on page 384.

Chapter 11 • Working with User-Defined Functions and Function Libraries

379

Saving a Function Library
After you create or edit a function library in QuickTest, you can save it to
your Quality Center project.

Tips:

➤ When you modify a function library, an asterisk (*) is displayed in the
title bar until the function library is saved.

➤ To save all open documents, choose File > Save All. QuickTest prompts
you to specify a location in which to save any new files that have not yet
been saved.

➤ To save multiple documents, choose Window > Windows. In the Window
dialog box, select the documents you want to save and click the Save
button. QuickTest prompts you for the save location for any new files
that have not yet been saved.

➤ You can also choose File > Save As to save the active function library
under a different name or using a different path.

To save a function library:

 1 Make sure that the function library you want to save is the active document.
(You can click the function library’s tab to bring it into focus.)

 2 Perform one of the following:

➤ Click the Save button.

➤ Choose File > Save.

➤ Right-click the function library document’s tab and choose Save.

Chapter 11 • Working with User-Defined Functions and Function Libraries

380

If the function library was previously saved, QuickTest saves it with your
changes. Otherwise, if this is the first time you are saving this function
library, the Save Function Library to Quality Center dialog box opens.

 3 Save the function library to your Quality Center project.

 4 In the Test Plan Tree box, choose the folder in which you want to save the
function library.

Note: You must save the function library in your Quality Center project (not
the file system).

 5 In the Attachment name box, type a name for the function library.

 6 Click OK.

QuickTest saves the function library with a .qfl extension (unless you specify
a different extension, such as .vbs or .txt, or remove the extension
altogether), and displays the function library name in the title bar.

Chapter 11 • Working with User-Defined Functions and Function Libraries

381

Navigating Between Open QuickTest Documents
You can open multiple function libraries while a component or application
area is open, and you can navigate between all of your open documents.

To navigate between open QuickTest documents:

Perform one of the following:

➤ Click the tab for the required document in the Document pane

Tip: If not all tabs are displayed due to lack of space, use the left and right
scroll arrows in the Document pane to display the required document’s tab.

➤ Press CTRL+TAB on your keyboard to scroll between open documents

➤ Choose the required document from the Window menu

➤ Choose Window > Windows, select the required document in the Windows
dialog box, and click the Activate button

Note: You can also choose Resources > Associated Function Libraries and
choose the required function library from the list. This also opens closed
function libraries that are associated with your component or application
area.

Chapter 11 • Working with User-Defined Functions and Function Libraries

382

Navigating to a Specific Function in a Function Library
After you insert a call to a function, you can navigate directly to its
definition in the source document. The function definition can be located
either in the same function library or in another function library that is
associated with your component (via its application area). If the document
containing the function definition is already open, QuickTest activates the
window (brings the window into focus). If the document is closed,
QuickTest opens it.

To navigate to a function's definition:

 1 In the function library, click in the step containing the relevant function.

 2 Perform one of the following:

➤ Choose Edit > Advanced > Go to Function Definition.

➤ Right-click the step and choose Go to Function Definition from the
context menu.

QuickTest activates the relevant document (if the function definition is
located in another function library) and positions the cursor at the
beginning of the function definition.

Editing a Function Library
You can edit a function library at any time using the QuickTest editing
features that are available in the Expert View.

You can drag and drop a function (or part of it) from one document to
another. (To do so, you must first separate the tabbed documents into
separate document panes by clicking the Restore Down button (located
below the QuickTest window’s Restore Down / Maximize button).)

Chapter 11 • Working with User-Defined Functions and Function Libraries

383

You can add steps to your function library manually or using the Step
Generator. The Step Generator enables you to add steps that contain
reserved objects (the objects that QuickTest supplies for enhancement
purposes, such as utility objects), VBScript functions (such as MsgBox),
utility statements (such as Wait), and user-defined functions that are defined
in the same function library. IntelliSense is available for all functions
defined in your component or for public functions defined in associated
function libraries.

Note: In function libraries, IntelliSense does not enable you to view test
object names or collections because function libraries are not connected to
object repositories.

You can instruct QuickTest to check syntax by clicking the Check Syntax
button, or by choosing Tools > Check Syntax.

Tip: For information on using VBScript, see “Understanding Basic VBScript
Syntax” on page 325.

Editing a Read-Only Function Library
If you open a function library in read-only mode and then decide to modify
it, you can convert the function library to an editable file—as long as the
function library is not locked by another user. For more information on the
options available when opening a function library, see “Opening a Function
Library” on page 376.

Note: During a debug session, all documents (such as components and
function libraries) are read-only. To edit a document during a debug session,
you must first stop the debug session.

Chapter 11 • Working with User-Defined Functions and Function Libraries

384

To edit a read-only function library:

Choose File > Enable Editing or click the Enable Editing button. You can
now edit the function library.

Debugging a Function Library
Before you can debug a function library, you must first associate it with a
component (via its application area) and then insert a call to at least one of
its functions. For example, you can use the Debug Viewer to view, set, or
modify the current value of objects or variables in your function library. You
can step into functions (including user-defined functions), set breakpoints,
stop at breakpoints, view expressions, and so forth. You can begin
debugging from a specific step, or you can instruct QuickTest to pause at a
specific step. For more information, see “Debugging Components and
Function Libraries” on page 681.

Note: During a debug session, all documents are read-only and cannot be
edited. To edit a document during a debug session, you must first stop the
debug session.

Printing a Function Library
You can print a function library at any time. You can also include additional
information in the printout.

Chapter 11 • Working with User-Defined Functions and Function Libraries

385

To print from the function library:

 1 Click the Print button or choose File > Print. The Print dialog box opens.

 2 Specify the print options that you want to use:

➤ Printer. Displays the printer to which the print job will be sent. You can
change the printer by clicking the Setup button.

➤ Selection only. Prints only the text that is currently selected (highlighted)
in the function library.

➤ Insert document name in header. Includes the name of the function
library at the top of the printout.

➤ Insert date in header. Includes today’s date at the top of the printout.
The date format is taken from your Windows regional settings.

➤ Page numbers. Includes page numbers on the bottom of the printout (for
example, page 1 of 3).

➤ Show line numbers every __ lines. Displays line numbers to the left of the
script lines, as specified.

➤ Number of copies. Specifies the number of times to print the document.

 3 If you want to print to a different printer or change your printer preferences,
click Setup to display the Print Setup dialog box.

 4 Click Print to print according to your selections.

Chapter 11 • Working with User-Defined Functions and Function Libraries

386

Closing a Function Library
You can close an individual function library, or if you have several function
libraries open, you can close some or all of them simultaneously. If any of
the function libraries are not saved, QuickTest prompts you to save them.

To close an individual function library:

Perform one of the following:

➤ Make sure that the function library you want to save is the active
document—you can click the function library’s tab to bring it into
focus—and choose File > Close.

➤ Right-click the function library document’s tab and choose Close.

➤ Click the Close button in the top right corner of the function library
window.

➤ Choose Window > Windows. In the Windows dialog box, select the
function library to close if it is not already selected, and click the Close
Window(s) button.

To close several function libraries:

Choose Window > Windows. In the Windows dialog box, select the function
libraries you want to close and click the Close Window(s) button.

To close all open function libraries:

Choose File > Close All Function Libraries, or Window > Close All Function
Libraries.

Chapter 11 • Working with User-Defined Functions and Function Libraries

387

Working with Associated Function Libraries

In QuickTest, you can create function libraries containing functions,
subroutines, modules, and so forth, and then associate the files with your
application area. This enables you or a Subject Matter Expert to insert a call
to a public function or subroutine in the associated function library from
any component associated with that application area. (Public functions
stored in function libraries can be called from any associated component
(via its application area), whereas private functions can be called only from
within the same function library.)

If a component can no longer access a function that was used in a step (for
example, if the function was deleted from the associated function library),
the icon is displayed adjacent to the step in the Keyword View. When
you run the component or business process test, an error will occur when it
reaches the step using the nonexistent function.

Note: Any text file written in standard VBScript syntax can be used as a
function library.

You can edit the list of associated function libraries for an existing
application area in the Function Libraries pane in an application area
(Application Area > Function Libraries sidebar button). For more
information, see “Managing Function Libraries” on page 426.

Working with Associated Function Libraries in Quality Center

When working with Quality Center and associated function libraries, you
must save the associated function library as an attachment in your Quality
Center project before you specify the associated file in the Function Libraries
pane of the application area. You can add a new or existing function library
to your Quality Center project.

Chapter 11 • Working with User-Defined Functions and Function Libraries

388

A component accesses the functions that are associated with its application
area. Therefore, any changes you make to a function library that is stored in
your Quality Center project and associated with an application area may
affect its associated components. When making changes to a function
library that is stored in your Quality Center project and associated with an
application area, consider the effect of the changes on the components that
use this application area.

Associating a Function Library with an Application Area
You can associate a function library with an open application area either
from the Resources pane or from the currently active function library.

You can also associate function libraries with the currently open application
area using the associated function libraries list. For more information, see
“Modifying Function Library Associations” on page 389.

To associate a function library with an application area using the Resources
pane:

 1 In the Resources pane, right-click the Associated Function Libraries node in
the tree, and select Associate Function Library. The Open Attachment dialog
box opens.

 2 Browse to and select the function library you want to associate.

 3 Click Open. The function library is associated with the test, and is displayed
as a function library link in the Associated Function Libraries node in the
tree.

To associate an open function library with an application area:

 1 Make sure that the application area with which you want to associate the
function library is open in QuickTest.

 2 Create or open a function library in QuickTest. (Before continuing to the
next step, make sure that the function library you want to associate with the
application area is the active document—you can click the function library’s
tab to bring it into focus.) For more information, see “Managing Function
Libraries” on page 375.

 3 Save the function library in your Quality Center project as an attachment.
For more information, see “Saving a Function Library” on page 379.

Chapter 11 • Working with User-Defined Functions and Function Libraries

389

 4 In QuickTest, choose File > Associate Library '<Function Library>' with
'<Application Area>' or right-click in the in the function library and choose
Associate Library '<Function Library>' with '<Application Area>'. QuickTest
associates the function library with the open application area.

Modifying Function Library Associations
You can modify the list of associated function libraries for an application
area. You can add or remove function libraries from the list, and change
their priorities.

To modify function library associations in your application area:

 1 In QuickTest, open your application area and click the Function Libraries
button on the sidebar.

 2 In the associated function libraries list, click the Add button. QuickTest
displays a browse button enabling you to browse to a function library in
your Quality Center project.

 3 Select the function library you want to associate with your application area
and click OK.

To remove an associated function library:

➤ In the Resources pane, right-click the function library and select Remove
Function Library, or select the function library and press the DELETE key.

➤ In the list of associated function libraries in the Function Libraries pane,
select the function library you want to remove and click the Remove button.
You can also prioritize associated function libraries by using the Up and
Down arrows.

For more information, see “Managing Function Libraries” on page 426.

Chapter 11 • Working with User-Defined Functions and Function Libraries

390

Using the Function Definition Generator

QuickTest provides a Function Definition Generator, which enables you to
generate definitions for new user-defined functions and add header
information to them. You can then register these functions to a test object,
if needed. You fill in the required information and the Function Definition
Generator creates the basic function definition for you. After you define the
function definition, you insert the definition in your function library and
associate it with your application area. Finally, you complete the function
by adding its content (code).

If you register the function to a test object, it can be called by that test
object, and is displayed in the list of available operations for that test object.

If you do not register the function to a test object, it becomes a global
operation and is displayed in the list of operations in the Operation box in
the Step Generator (for function libraries), in the Operation list when the
Operation item is selected in the Keyword View, and when using
IntelliSense. If you register a function, you can define it as the default
operation that is displayed in the Keyword View when the test object to
which it is registered is selected.

Finally, you can document your user-defined function by defining the
tooltip that displays when the cursor is positioned over the operation in the
Step Generator (for function libraries), in the Keyword View, and when
using IntelliSense. You can also add a sentence that describes what the step
that includes the user-defined function actually does. This sentence is then
displayed in the Documentation column.

As you add information to the Function Definition Generator, the Preview
area displays the emerging function definition. After you finish defining the
function, you insert the definition in the active QuickTest document. The
function will then be accessible to any associated component (via its
application area). Finally, you add the content (code) of the function.

The following section provides an overview of the steps you perform when
using the Function Definition Generator to create a function.

Chapter 11 • Working with User-Defined Functions and Function Libraries

391

To use the Function Definition Generator:

 1 Open the Function Definition Generator, as described in “Opening the
Function Definition Generator” on page 392.

 2 Define the function, as described in “Defining the Function Definition” on
page 393.

 3 Register the function to a test object, if needed, as described in “Registering
a Function Using the Function Generator” on page 394.

By default, functions that are not registered to a test object are automatically
defined as global functions that can be called by selecting the Functions
category in the Step Generator (for function libraries), the Operation item in
the Keyword View, or when using IntelliSense. Note that if you register the
function to a test object, you can also define the function (operation) as the
default operation for that selected test object.

 4 Add arguments to the function, as described in “Specifying Arguments for
the Function” on page 398.

 5 Document the function by adding header information to it, as described in
“Documenting the Function” on page 399.

 6 Preview the function before finalizing it, as described in “Previewing the
Function” on page 401.

 7 Generate another function definition, if needed, as described in “Generating
Another User-Defined Function” on page 401.

 8 Finalize each function by inserting it in your active document and adding
content to it, as described in “Finalizing the User-Defined Function” on
page 402.

Note: Each of the steps listed in this section assumes that you have
performed the previous steps.

Chapter 11 • Working with User-Defined Functions and Function Libraries

392

Opening the Function Definition Generator
You open the Function Definition Generator from QuickTest.

To open the Function Definition Generator:

 1 Make sure that the function library in which you want to insert the function
definition is the active document. (You can click the function library’s tab to
bring it into focus.) This is because the Function Definition Generator
inserts the function in the currently active document after you finish
defining it.

 2 Choose Insert > Function Definition Generator or click the Function
Definition Generator button. The Function Definition Generator opens.

After you open the Function Definition Generator, you can begin to define a
new function.

Chapter 11 • Working with User-Defined Functions and Function Libraries

393

Defining the Function Definition
After you open the Function Definition Generator, you can begin defining a
function.

For example, if you want to define a function that verifies the value of a
specified property, you might name it VerifyProperty and define it as a public
function so that it can be called from any associated component (as long as
the function library is associated with its application area). (If you define it
as private, the function can only be called from elsewhere in the same
function library. Private functions cannot be registered to a test object.)

To define a function:

 1 In the Name box, enter a name for the new function. The name should
clearly indicate what the operation does so that it can be easily selected
from the Step Generator (for function libraries) or the Keyword View.
Function names cannot contain non-English letters or characters. In
addition, function names must begin with a letter and cannot contain
spaces or any of the following characters:
! @ # $ % ^ & * () + = [] \ { } | ; ‘ : ““ , / < > ?

Note: Do not give the user-defined function the same name as a built-in
function (for example, GetLastError, MsgBox, or Print). Built-in functions take
priority over user-defined functions, so if you call a user-defined function
that has the same name as a built-in function, the built-in function is called
instead. For a list of built-in functions, see the Built-in functions list in the
Step Generator (Insert > Step Generator).

Chapter 11 • Working with User-Defined Functions and Function Libraries

394

 2 From the Type list, choose Function or Sub, according to whether you want
to define a function or a subroutine.

 3 From the Scope list, choose the scope of the function—either Public (to
enable the function to be called by any component whose application area
is associated with this function library), or Private (to enable the function to
be called only from elsewhere in the same function library). By default, the
scope is set to Public. (Only public functions can be registered to a test
object.)

Note: If you create a user-defined function manually and do not define the
scope as Public or Private, it will be treated as a public function, by default.

After you define a public function, you can register the function.
Alternatively, if you defined a private function, or if you do not want to
register the function, you can continue by specifying arguments for the
function. For more information, see “Specifying Arguments for the
Function” on page 398.

Registering a Function Using the Function Generator
You can register a public function to a test object to enable the function
(operation) to be performed on a test object. When you register a function
to a test object, you can choose to override the functionality of an existing
operation, or you can register the function as a new operation for the test
object.

After you register a function to a test object, it is displayed as an operation in
the Keyword View Operation list when that test object is selected from the
Item list, as well as in IntelliSense and in the general Operation list in the
Step Generator (for function libraries). When you register a function to a
test object, it can only be called by that test object.

Chapter 11 • Working with User-Defined Functions and Function Libraries

395

If you choose to register the function to a test object, the Function
Definition Generator automatically adds the argument, test_object, as the
first argument in the Arguments area in the top-right corner of the Function
Definition Generator. The Function Definition Generator also automatically
adds a RegisterUserFunc statement with the correct argument values
immediately after your function definition.

When you register a function to a test object, you can optionally define it as
the default operation for that test object. This instructs QuickTest to display
the function in the Operation column, by default, when you or the Subject
Matter Expert choose the associated test object in the Item list. When you
define a function as the default function for a test object, the value True is
specified as the fourth argument of the RegisterUserFunc statement.

If you do not register the function to a specific test object, the function is
automatically defined as a global function. Global functions can be called
by selecting the Functions category in the Step Generator (for function
libraries), or the Operation item in the Keyword View. A list of global
functions can be viewed alphabetically in the Operation box when the
Functions category is selected in the Step Generator (for function libraries),
in the Operation list when the Operation item is selected from the Item list
in the Keyword View and when using IntelliSense.

Chapter 11 • Working with User-Defined Functions and Function Libraries

396

QuickTest searches the function libraries in the order in which they are
listed in the Resources tab. If QuickTest finds more than one function that
matches the function name in a specific function library, it uses the last
function it finds in that function library. If QuickTest finds two functions
with the same name in two different function libraries, it uses the function
from the function library that has the higher priority. To avoid confusion, it
is recommended that you verify that within the resources associated with an
application area, each function has a unique name.

Tip: If you choose not to register your function at this time, you can
manually register it later by adding a RegisterUserFunc statement after your
function as shown in the following example:
RegisterUserFunc “WebEdit”, “MySet”, “MySetFunc”

In this example, the MySet method (operation) is added to the WebEdit test
object using the MySetFunc user-defined function. If you or the Subject
Matter Expert choose the WebEdit test object from the Item list in the
Keyword View, the MySet operation will then be displayed in the Operation
list (together with other registered and out of the box operations for the
WebEdit test object).

You can also register your function to other test objects by duplicating
(copying and pasting) the RegisterUserFunc statement and modifying the
argument values as needed when you save the function code in a function
library.

To define this function as the default function, you define the value of the
fourth argument of the RegisterUserFunc statement as True. For example:
RegisterUserFunc “WebEdit”, “MySet”, “MySetFunc”, True

Note: A registered or global function can only be called from a component
after it is added to a function library that is associated with the component’s
application area.

Chapter 11 • Working with User-Defined Functions and Function Libraries

397

To register the function to a test object:

 1 Select the Register to a test object check box. The options in this area are
enabled, and a new argument, test_object, is automatically added to the list
of arguments in the Arguments area in the top-right corner of the Function
Definition Generator. (The test_object argument receives the test object to
which you want to register the function.)

Note: If you clear the Register to a test object check box, the default
test_object argument is automatically removed from the Arguments area
(unless you renamed it).

 2 Choose a Test object from the list of available objects. For example, for the
sample VerifyProperty function, you might want to register it to the Link test
object.

 3 Specify the Operation that you want to add or override for the test object.

➤ To define a new operation, enter a new operation name in the Operation
box. For example, for the sample VerifyProperty function, you may want
to define a new VerifyProperty operation.

➤ To override the standard functionality of an existing operation, choose
an operation from the list of available operations in the Operation box.

Chapter 11 • Working with User-Defined Functions and Function Libraries

398

 4 If you want the function to be displayed as the default operation in the
Operation column when you or the Subject Matter Expert choose the
associated item, select the Register as default operation check box.

For example, if you were to define the VerifyProperty operation as the default
operation for the Link test object, the value True would be defined as the
fourth argument of the RegisterUserFunc statement, and the syntax would
appear as follows:

RegisterUserFunc "Link", "VerifyProperty", "VerifyProperty", True

After you specify the test object registration information, you specify
additional arguments for the function.

Specifying Arguments for the Function
After you define the basic function definition and specify the test object
registration information, if any, you can specify the function’s arguments.

For example, if you choose to register the function to a test object, as we did
the example described in “Registering a Function Using the Function
Generator” on page 394, you may want to assign the arguments prop_name
(the name of the property to check) and expected_value (the expected value
of the property), in addition to the first argument, test_object. You must
define the required arguments for your function to run correctly.

You can list the arguments in any order. However, if you are registering the
function to a test object, the first argument must always receive the test
object.

Chapter 11 • Working with User-Defined Functions and Function Libraries

399

To define the arguments for the function:

In the Arguments area, specify the arguments for the function. You can add
as many arguments as needed. To ensure clarity, the name for each
argument should indicate the value that needs to be entered.

➤ To add an argument, click and enter a name for the argument. The
argument name should clearly indicate the value that needs to be
entered for the argument. Argument names may not contain
non-English letters or characters. In addition, argument names must
begin with a letter and cannot contain spaces or any of the following
characters:
! @ # $ % ^ & * () + = [] \ { } | ; ‘ : ““ , / < > ?

By default, the Pass Mode is set as By value. This instructs QuickTest to
pass the argument to the function by value. If you want to pass the
argument by reference, choose By reference in the Pass Mode box.

➤ To remove an argument, select it and click . The argument is removed
from the Function Definition Generator.

➤ To set the order of the arguments, use the and arrows. The order
of the arguments only affects the readability of the function code (except
if you want to register the public function—in this case, the first
argument must receive the test object).

Documenting the Function
The Function Definition Generator enables you to add header information
to your user-defined function. You can add a description, which is displayed
as a tooltip when the cursor is positioned over the operation. You and
Subject Matter Experts can then use this tooltip to determine which
operation to choose from the list of available operations. (It is advisable to
keep the description text as brief and clear as possible.)

In addition, you can add documentation that specifies exactly what a step
using your function does. You can include the test object name, test object
type, and any argument values in the text. You can also add text manually,
as needed. This text that you add here is displayed in the Documentation
column. Therefore, the sentence must be clear and understandable.

Chapter 11 • Working with User-Defined Functions and Function Libraries

400

For example, if you were checking a link to “HP” from a search engine, you
might define the following documentation using the Function Definition
Generator:

‘@Documentation Check if the <Test object name> <Test object type>
<prop_name> value matches the expected value: <expected_value>.

After choosing values for the arguments in the Keyword View, the above
documentation might appear as follows: Check if the “Management Software”
link “text” value matches the expected value: “Business Technology Optimization
(BTO) Software”.

Tip: You can right-click on any column header in the Keyword View and
select the Documentation only option to view or print a list of steps. This
instructs QuickTest or Quality Center to display only the Documentation
column (and any comments for business components). You can also choose
Edit > Copy Documentation to Clipboard and then paste the documentation
in any application. Therefore, the sentence displayed for the step in this
column must also be clear enough to use for manual testing instructions.

To document the function:

 1 In the Description box, enter the text to be displayed as a tooltip when the
cursor is positioned over the function name in the Operation list in the Step
Generator (for function libraries), in the Operation column in the Keyword
View, and in IntelliSense.

For example, for the sample VerifyProperty function, you may want to enter:
Checks whether a property value matches the actual value.

 2 In the Documentation box, enter the text to be displayed in the
Documentation column of the Keyword View. You can use arguments in the
Documentation text by clicking and selecting the relevant argument.

Chapter 11 • Working with User-Defined Functions and Function Libraries

401

If you selected the Register to a test object check box, clicking also
enables you to add the Test object name and/or Test object type items to
the Documentation column from the displayed list. If you use these test
object and argument items in the Documentation text, they are replaced
dynamically by the relevant test object names and types or argument values.

Previewing the Function
The Preview area displays the function code as you define it, in read-only
format. You can review your function and make any changes, as needed, in
the various areas of the Function Definition Generator.

For example, for the sample VerifyProperty function, the Preview area
displays the following code.

After you review the code (before you insert it in the active document), you
can choose either to generate another function definition or to finalize the
code for the function you defined.

Generating Another User-Defined Function
After you preview the code—before you insert the function in the active
document—you can decide whether you want to generate an additional
function definition.

Note: If you do not want to define an additional function, continue to the
next section.

Chapter 11 • Working with User-Defined Functions and Function Libraries

402

To generate an additional user-defined function:

 1 Select the Insert another function definition check box and click Insert.
QuickTest inserts the function definition in the active document and clears
the data from the Function Definition Generator. The Function Definition
Generator remains open.

 2 Define the new function beginning from “Defining the Function
Definition” on page 393.

Finalizing the User-Defined Function
After you preview the code, you insert it in the active document. If you
insert it in a function library, any component associated with the function
library (via its application area) can access the function.

After you insert the code in the required location, you can finalize the
function. For example, for the VerifyProperty function, the following code
would be inserted in your function library:

‘@Description Checks whether a property matches its expected value
‘@Documentation Check whether the <Test object name> <Test object type>
<prop_name> value matches the expected value: <expected_value>.
Public Function VerifyProperty (test_object, prop_name, expected_value)

‘TODO: add function body here
End Function
RegisterUserFunc "Link", "VerifyProperty", "VerifyProperty"

Tip: The RegisterUserFunc statement (in the last line) registers the
VerifyProperty function to the Link test object. If you want to register the
function to more than one test object, you could copy this line and
duplicate it for each test object, changing the argument values, as required.

Chapter 11 • Working with User-Defined Functions and Function Libraries

403

To finalize the function, you add its content (replacing the TODO
comment). For example, if you want the function to verify whether the
expected value of a property matches the actual property value of a specific
test object, you might add the following to the body of the function:

Dim actual_value
' Get the actual property value
actual_value = obj.GetROProperty(prop_name)
' Compare the actual value to the expected value
If actual_value = expected_value Then

Reporter.ReportEvent micPass, "VerifyProperty Succeeded", "The " &
prop_name & " expected value: " & expected_value & " matches the actual
value"

VerifyProperty = True
Else

Reporter.ReportEvent micFail, "VerifyProperty Failed", "The " &
prop_name & " expected value: " & expected_value & " does not match the
actual value: " & actual_value

VerifyProperty = False
End If

To finalize the user-defined function:

 1 Click OK. QuickTest inserts the function definition in the active document
and closes the Function Definition Generator.

 2 In your function library, add content to the function code, as required, by
replacing the TODO line.

Tip: To display the function in the test results tree (Test Results window)
after a run session, add a Reporter.ReportEvent statement to the function
code (as shown in the example above).

Note that if your user-defined function uses a default test object method,
this step will appear in the Test Results window after the run session.
However, you can still add a Reporter.ReportEvent statement to the function
code to provide additional information and to modify the component or
business process test status, if required.

Chapter 11 • Working with User-Defined Functions and Function Libraries

404

 3 Associate the function library with an application area to enable access to
the user-defined functions. You also need to check its syntax to ensure that
components associated with that application area will have access to the
functions, and that you and the Subject Matter Expert will be able to see and
use the functions. For more information, see “Working with Associated
Function Libraries” on page 387.

Registering User-Defined Functions as Test Object Methods

In addition to using the QuickTest Function Definition Generator to register
a function, as described in “Registering a Function Using the Function
Generator” on page 394, you can also use the RegisterUserFunc statement to
add new methods to test objects or to change the behavior of an existing
test object method during a run session.

When you register a function to a test object, you can define it as the default
operation for that test object, if required. The default operation is displayed
by default in the Operation column in the Keyword View when the test
object to which it is registered is selected.

If you choose not to register a function to a test object, it becomes a global
function. Global functions can be called by selecting the Functions category
in the Step Generator (for function libraries), the Operation item in the
Keyword View, or when using IntelliSense. You use the UnregisterUserFunc
statement to disable new methods or to return existing methods to their
original QuickTest behavior.

To register a method, you first define a function in an associated function
library. You then enter a RegisterUserFunc statement at the end of the
function that specifies the test object class, the function to use, and the
method name that calls your function. You can register a new method for a
test object class, or you can use an existing method name to (temporarily)
override the existing functionality of the specified method.

Your registered method applies only to the function library in which you
register it. In addition, QuickTest clears all function registrations at the
beginning of each run session.

Chapter 11 • Working with User-Defined Functions and Function Libraries

405

Preparing the User-Defined Function
When you run a statement containing a registered method, it sends the test
object as the first argument. For this reason, your user-defined function
must have at least one argument. Your user-defined function can have any
number of arguments, or it can have only the test object argument. Make
sure that if the function overrides an existing method, it has the exact
syntax of the method it is replacing. This means that its first argument is the
test object and the rest of the arguments match all the original method
arguments.

Tip: You can use the parent test object property to retrieve the parent of the
object represented by the first argument in your function. For example:
ParentObj = obj.GetROProperty("parent")

When writing your function, you can use standard VBScript statements as
well as any QuickTest reserved objects, methods, functions, and any method
associated with the test object specified in the first argument of the
function.

For example, suppose you want to report the current value of an edit box to
the Test Results before you set a new value for it. You can override the
standard QuickTest Set method with a function that retrieves the current
value of an edit box, reports that value to the Test Results, and then sets the
new value of the edit box.

The function would look something like this:

Function MyFuncWithParam (obj, x)
dim y
y = obj.GetROProperty("value")
Reporter.ReportEvent micDone, "previous value", y
MyFuncWithParam=obj.Set (x)

End Function

Chapter 11 • Working with User-Defined Functions and Function Libraries

406

Note: This function defines a return value, so that each time it is used by the
component, the function returns the Set method argument value.

Registering User-Defined Test Object Methods
You can use the RegisterUserFunc statement to instruct QuickTest to use your
user-defined function as a method of a specified test object class for the
duration of a component run, or until you unregister the method.

To register a user-defined function as a test object method, use the
following syntax:

RegisterUserFunc TOClass, MethodName, FunctionName, SetAsDefault

Item Description

TOClass Any test object class.

MethodName The name of the method you want to register (and display
in QuickTest, for example, in the Keyword View and
IntelliSense). If you enter the name of a method already
associated with the specified test object class, your
user-defined function overrides the existing method. If
you enter a new name, it is added to the list of methods
that the object supports.

FunctionName The name of the user-defined function that you want to
call from your component. The function can be located in
any function library associated with your component’s
application area.

SetAsDefault Indicates whether the registered function is used as the
default method for the test object.

When you select a test object in the Keyword View, the
default method is automatically displayed in the
Operation column.

Chapter 11 • Working with User-Defined Functions and Function Libraries

407

Tip: It is recommended to include the RegisterUserFunc statement in the
function library so that the method will be immediately available for use in
any component using that function library.

For example, suppose that the Find Flights Web page contains a Country
edit box, and by default, the box contains the value USA. The following
example registers the Set method to use the MySet function to retrieve the
default value of the edit box before the new value is entered.

Function MySet (obj, x)
dim y
y = obj.GetROProperty("value")
Reporter.ReportEvent micDone, "previous value", y
MySet=obj.Set(x)

End Function

RegisterUserFunc "WebEdit", "Set", "MySet"
Browser("MercuryTours").Page("FindFlights").WebEdit("Country").Set "Canada"

For more information and examples, see the HP QuickTest Professional Object
Model Reference.

Chapter 11 • Working with User-Defined Functions and Function Libraries

408

Unregistering User-Defined Test Object Methods
When you register a method using a RegisterUserFunc statement, your
method becomes a recognized method of the specified test object while it is
being used by the component, or until you unregister the method. If your
method overrides a QuickTest method, unregistering the method resets the
method to its normal behavior. Unregistering other methods removes them
from the list of methods supported by the test object.

To unregister a user-defined method, use the following syntax:

UnRegisterUserFunc TOClass, MethodName

For example, suppose that the Find Flights Web page contains a Country
edit box, and by default, the box contains the value USA. The following
example registers the Set method to use the MySet function to retrieve the
default value of the edit box before the new value is entered. After using the
registered method in a WebEdit.Set statement for the Country edit box, the
UnRegisterUserFunc statement is used to return the Set method to its
standard functionality.

Function MySet (obj, x)
dim y
y = obj.GetROProperty("value")
Reporter.ReportEvent micDone, "previous value", y
MySet=obj.Set(x)

End Function

RegisterUserFunc "WebEdit", "Set", "MySet"
Browser("MercuryTours").Page("FindFlights").WebEdit("Country").Set "Canada"
UnRegisterUserFunc "WebEdit", "Set"

Item Description

TOClass The test object class for which your method is registered.

MethodName The method you want to unregister.

Chapter 11 • Working with User-Defined Functions and Function Libraries

409

Additional Tips for Working with User-Defined Functions

When working with user-defined functions, consider the following tips and
guidelines:

➤ For an in-depth view of the required syntax, you can define a function using
the Function Definition Generator and experiment with the various
options.

➤ When you register a function, it applies to an entire test object class. You
cannot register a method for a specific test object.

➤ If you want to call a function from additional test objects, you can copy the
RegisterUserFunc line, paste it immediately after another function and
replace any relevant argument values.

➤ It is recommended to include the RegisterUserFunc statement in the function
library so that the method will be immediately available for use in any
component using that function library.

➤ To use an Option Explicit statement in a function library associated with your
component, you must include it in all the function libraries associated with
the component. If you include an Option Explicit statement in only some of
the associated function libraries, QuickTest ignores all the Option Explicit
statements in all function libraries. You can use Option Explicit statements
directly in your action scripts without any restrictions.

➤ Each function library must have unique variables in its global scope. If you
have two associated function libraries that define the same variable in the
global scope using a Dim statement or define two constants with the same
name, the second definition causes a syntax error. If you need to use more
than one variable with the same name in the global scope, include a Dim
statement only in the last function library (since function libraries are
loaded in the reverse order).

➤ By default, steps that use user-defined functions are not displayed in the test
results tree of the Test Results window after a run session. If you want the
function to appear in the test results tree, you must add a
Reporter.ReportEvent statement to the function code. For example, you may
want to provide additional information or to modify the component status,
if required.

Chapter 11 • Working with User-Defined Functions and Function Libraries

410

➤ If you delete a function in use from an associated function library, the
component step using the function will display the icon. In subsequent
run sessions for the component or business process test, an error will occur
when the step using the non-existent function is reached.

➤ If another user modifies a function library that is referenced by a
component, or if you modify the function library using an external editor
(not QuickTest), the changes will take effect only after the component is
reopened.

➤ When more than one function with the same name exists in the function
library, the last function will always be called. To avoid confusion, make
sure that you verify that within the resources associated with an application
area or component, each function has a unique name.

➤ You can re-register the same method to use different user-defined functions
without first unregistering the method. However, when you do unregister
the method, it resets to its original QuickTest functionality (or is cleared
completely if it was a new method), and not to the previous registration.

For example, suppose you enter the following statements:

RegisterUserFunc "Link", "Click", "MyClick"
RegisterUserFunc "Link", "Click", "MyClick2"
UnRegisterUserFunc "Link", "Click"

After running the UnRegisterUserFunc statement, the Click method stops
using the functionality defined in the MyClick2 function, and returns to the
original QuickTest Click functionality, and not to the functionality defined
in the MyClick function.

➤ For more information on creating functions and subroutines using VBScript,
you can view the VBScript documentation from the QuickTest Help menu
(Help > QuickTest Professional Help > VBScript Reference).

Part IV

Working with Application Areas and
Components

412

413

12
Working with Application Areas

Application areas provide all of the resources and settings needed to create a
business component. Application area settings and any changes you make
to these settings are automatically applied to any business component with
which the application area is associated.

Note: In earlier QuickTest Professional versions, the application area was
known as a business component template. At that time, all business
components used the same template. Now, QuickTest enables you to create
multiple application areas that can be customized to suit the requirements
of each area of your application.

This chapter includes:

 ➤ About Working with Application Areas on page 414

 ➤ Creating an Application Area on page 417

 ➤ Opening an Application Area on page 419

 ➤ Defining General Settings on page 421

 ➤ Managing Function Libraries on page 426

 ➤ Managing Shared Object Repositories on page 432

 ➤ Managing Keywords on page 439

 ➤ Defining Additional Settings on page 443

 ➤ Saving an Application Area on page 451

 ➤ Deleting an Application Area on page 453

Chapter 12 • Working with Application Areas

414

About Working with Application Areas

When you create a set of components to test a particular area of your
application, you generally need to work with many of the same test objects,
keywords, testing preferences, and other testing resources, such as function
libraries and recovery scenarios. You define these files and settings in an
application area, which provides a single point of maintenance for all
elements associated with the testing of a specific part of your application.

An application area is a collection of settings and resources that are required
to create the content of a business component. Resources may include
shared object repositories containing the test objects in the application
tested by the component, function libraries containing user-defined
operations performed on that application by the component, and so forth.
Components are automatically linked to all of the resources and settings
defined in the associated application area.

You can create as many application areas as needed. For example, you may
decide to create an application area for each Web page, module, window, or
dialog box in your application. Alternatively, for a small application, one
application area may be all that is needed. Each component can have only
one associated application area.

Note: To work with application areas, you must have the required
permissions for modifying components, and adding, modifying, and
deleting steps. All four permissions are required. If one of these permissions
is not assigned, you can open application areas only in read-only format. For
more information on setting permissions in the Business Components
module, refer to the HP Business Process Testing User’s Guide.

Chapter 12 • Working with Application Areas

415

Planning an Application Area

Before you create an application area, consider the requirements of Subject
Matter Experts that will use the application area to create business
components. For example:

➤ What test objects will they need?

➤ How will you rename the test objects and other items so that their meanings
are clear to a wide range of users?

➤ What user-defined functions can you add to ensure that all required
operations are available?

To ensure availability, it is recommended that these function libraries be
saved in the Quality Center project before creating the application area,
although you can update an application area at any time. QuickTest also
provides you with a set of predefined resource files that you can associate
with the application area, for example, function libraries and a recovery
scenario file. Some of the sample function libraries are associated with all
new application areas by default. These sample files are located in the Test
Plan module of your Quality Center project under Subject/BPT Resources.

Creating an Application Area

When you create an application area to be used by components, you must
perform the following tasks:

➤ Provide a full description of the application area

➤ Specify associations to any QuickTest Professional add-ins

➤ Associate any required function libraries

➤ Associate any required shared object repositories

➤ Specify which keywords will be visible and available for use by Subject
Matter Experts when creating component steps

➤ Specify the Windows-based applications on which components associated
with the application area can record and run

➤ Associate any required recovery scenarios and define their settings

➤ Save the application area

Chapter 12 • Working with Application Areas

416

When you save the application area, make sure that you provide it with a
meaningful name and a clear description. When a Subject Matter Expert
creates a new business component, the name and description provide the
only indication of the intended use of the application area. For example, if
an application area is intended for components that test a login dialog box,
you might name it “LoginDialog”.

Working with an Application Area

After you create an application area, you can notify the Subject Matter
Experts so that they can begin using it to create business components. (If
necessary, Subject Matter Experts can start to create a component before the
application area is ready, and only later associate the application area with
the component.)

If you modify resources or settings in an application area, these changes are
reflected automatically in all of the business components associated with
the modified application area.

If resources are used in component steps, and you later modify these
resources, your component may not run correctly. For example, if a
component uses test objects from the MyRepository.tsr shared object
repository, and you remove this object repository from the application area,
the component will not be able to access the required test objects because
the object repository is no longer included in the application area.

For this reason, it is recommended to ensure that any changes you make to
an application area will not adversely affect the business components with
which the application area is associated.

Tip: You can associate a component with a different application area at any
time. For more information, see “Changing the Application Area Associated
with a Component” on page 472.

Chapter 12 • Working with Application Areas

417

Creating an Application Area

When you create a new application area, you define all of the application
area settings and resources needed to create a new business component.

Note: To create an application area, you must first connect to the Quality
Center project in which you want to save the application area. This is the
Quality Center project that will be used by Subject Matter Experts to define
business components and create business process tests. For more
information, see “Connecting to Your Quality Center Project” on page 44.

To create an application area:

Perform one of the following:

➤ Choose File > New > Application Area.

➤ Click the New button down arrow and choose Application Area.

Tip: If an application area is already open, clicking the New button opens a
new application area.

The application area window contains several panes that enable you to
specify the settings and resource files that you want business components
associated with the application area to use. By associating a component with
an application area, the component is automatically linked to these settings
and resource files.

You can now specify the application area settings and define its resources.
The table below displays information on the available options in each pane.

After you have defined the settings and resources, you can save the
application area. For more information, see “Saving an Application Area” on
page 451.

Chapter 12 • Working with Application Areas

418

The application area contains the following panes, which you access by
clicking the appropriate button in the sidebar:

Pane Contents

General Enables you to define the description and specify the
associated add-ins for your application area.

You can also:

➤ Specify the Windows-based applications with which
a component associated with the application area
can work.

➤ Set the browser time-out period.

➤ Define recovery scenarios that specify how a
component associated with the application area
recovers from unexpected events and errors during
a run session. For more information, see “Defining
General Settings” on page 421.

Function Libraries Enables you to associate function libraries with your
application area and to prioritize them. Also enables
you to create and modify associated function libraries.
For more information, see “Managing Function
Libraries” on page 426.

Object Repositories Enables you to associate shared object repositories
with your application area and to prioritize them. Also
enables you to create and modify associated object
repositories. For more information, see “Managing
Shared Object Repositories” on page 432.

Keywords Enables you to determine which built-in and
user-defined keywords (operations) are available to
Subject Matter Experts when creating components. For
more information, see “Managing Keywords” on
page 439.

Chapter 12 • Working with Application Areas

419

Opening an Application Area

After an application area is saved, you can open it for viewing or
modification. For example, you may want to update a recovery scenario or
add a function library with user-defined functions to the application area.

Notes:

To open an application area, you must first connect to the Quality Center
project in which the application area is saved. For more information, see
“Connecting to Your Quality Center Project” on page 44.

You cannot open an application area that was created with a later version of
QuickTest on a computer running an earlier version of QuickTest.
For example, you cannot open an application area created in QuickTest 9.2
on a computer running QuickTest 8.2.

To open an application area:

 1 View the application areas connected to the current Quality Center project.

➤ Choose File > Open > Application Area.

➤ Click the Open button down arrow and choose Application Area.

Tip: If another application area is already open, you can click the Open
button and then select the required application area.

Chapter 12 • Working with Application Areas

420

The Open Application Area dialog box opens and displays a list of the
defined application areas. You can select an application area to view its
description.

 2 Select an application area and click OK. The selected application area opens.

You can now view and modify the settings for the application area. For more
information, see:

➤ “Defining General Settings” on page 421

➤ “Managing Function Libraries” on page 426

➤ “Managing Shared Object Repositories” on page 432

➤ “Managing Keywords” on page 439

➤ “Defining Additional Settings” on page 443

Note: You can also delete an application area from this dialog box (as long
as it is not associated with any components). For more information, see
“Deleting an Application Area” on page 453.

Chapter 12 • Working with Application Areas

421

Defining General Settings

You can use the General pane to view and define general information about
your application area, including its description and any add-ins associated
with it. It is important to include a clear description of the application area
because the name and description are the only indications that a Subject
Matter Expert has when determining which application area to choose for a
specific business component.

The General pane includes the following items:

Item Description

Name Indicates the name of the application area. You assign a
name to the application area when you save it. For more
information, see “Saving an Application Area” on page 451.

Author Indicates the Windows user name of the person who
created the application area.

Chapter 12 • Working with Application Areas

422

Location Indicates the Quality Center path and file name of the
application area. If the application area is not yet saved, the
location indicates Not saved, and the Application Area
dialog box title bar contains an asterisk.

Description Indicates the description specified for your application area.

It is important that this mandatory field includes a clear
description of the application area. This is because the
Subject Matter Expert decides which application area to
choose when creating a new component in Quality Center
based on the Name and Description of the application area.
For more information, refer to the HP Business Process
Testing User’s Guide.

You can update the description, as needed. For example, if
you created an application area but have not finished
defining it, you can note this in the Description area. Later,
after you finalize the application area, you can update the
Description.

Note: If you do not enter a description here in the General
pane, you are prompted to do so when saving the
application area. For more information, see “Saving an
Application Area” on page 451.

Associated add-ins Displays the add-ins associated with the application area.
The associated add-ins are those loaded by QuickTest when
business components are accessed.

Note: When a business process test runs, QuickTest loads
the add-ins associated with the first component in the test.
Therefore, it is important to ensure that all required
QuickTest add-ins are associated with the application area
for the first component in the business process test.

For more information on associating add-ins, see
“Associating Add-ins with Your Component” on page 424.

For more information on QuickTest add-in environments,
see the HP QuickTest Professional Add-ins Guide.

Item Description

Chapter 12 • Working with Application Areas

423

Note: If you do not see the entire General pane when opening an
application area, you can resize the panes. For example, if the Information
pane covers the area below the associated add-ins, you can resize the
Information pane.

Additional Settings
button

Opens the Application Area Settings dialog box (described
on page 443), which is divided into several tabs.

➤ Applications. Enables you to specify the Windows-based
applications on which a component associated with the
application area can record and run. For more
information, see “Defining Application Settings for Your
Application Area” on page 443.

➤ Recovery. Enables you to define how a component
associated with the application area recovers from
unexpected events and errors that occur in your testing
environment during a run session. For more
information, see “Defining Recovery Scenario Settings
for Your Application Area” on page 447.

The Application Area Settings dialog box may also contain
additional tabs corresponding to any QuickTest add-ins that
are loaded, for example, Web, Java, or SAP. For information
on tabs related to add-ins, see the HP QuickTest Professional
Add-ins Guide.

Modify button Opens the Modify Associated Add-ins dialog box. This
dialog box enables you to associate add-ins with
components or remove associations. You may be required
to restart QuickTest for the changes to take effect. For more
information, see “Associating Add-ins with Your
Component” on page 424.

Item Description

Chapter 12 • Working with Application Areas

424

Associating Add-ins with Your Component
When you open QuickTest, you can select the add-ins to load from the
Add-in Manager dialog box. You can record on any environment for which
the necessary add-in is loaded.

Choosing to associate an add-in with an application area instructs QuickTest
to check that the associated add-in is loaded each time you open a
component that is associated with that application area. When you create a
new component, its associated add-ins are those defined in the component’s
application area.

When you open a component, QuickTest notifies you if an associated add-in
is not currently loaded, or if you have loaded add-ins that are not currently
associated with your component (via its application area). This process
reminds you to add the required add-ins to the associated add-ins list if you
plan to use them with the currently open component, thereby helping you
to ensure that your run session will not fail due to unloaded add-ins.

When a Subject Matter Expert opens a business process test in Quality
Center, the QuickTest Professional add-ins that are associated with the first
component in the business process test are loaded automatically. Add-ins
associated with other components in the business process test are not
loaded. Therefore, it is important to ensure that all required QuickTest
add-ins are associated with the application area of the first component in
the business process test.

Chapter 12 • Working with Application Areas

425

Modifying Associated Add-Ins

Click the Modify button in the General pane to associate or disassociate
add-ins with your application area (and its associated components). The
Modify Associated Add-ins dialog box opens.

This dialog box lists all the add-ins currently associated with your
application area, as well as any other add-ins that are currently loaded in
QuickTest. Add-ins that are associated with your application area but not
currently loaded are shown dimmed.

Note: This list might also include child nodes representing add-ins that you
or a third party developed to support additional environments or controls
using add-in extensibility. For more information, see the relevant Add-in
Extensibility Developer's Guide (available with the extensibility setup).

You can select the check boxes for add-ins that you want to associate with
your application area, or clear the check boxes for add-ins that you do not

Chapter 12 • Working with Application Areas

426

want to associate with your application area. If the Modify Associated
Add-ins dialog box contains a child add-in, and you select it, the parent
add-in is selected automatically. If you clear the check box for a parent
add-in, the check boxes for its children are also cleared.

In the above example:

➤ Web is loaded and associated with the application area.

➤ ActiveX is loaded, but not associated with the application area.

➤ Visual Basic is associated with the application area, but is not loaded.

Note: If a specific add-in is not currently loaded, but you want to associate it
with an application area, reopen QuickTest and load the add-in from the
Add-in Manager. If the Add-in Manager dialog box is not displayed when
you open QuickTest, you can choose to display it the next time you open
QuickTest. To do so, select Display Add-in Manager on startup from the
General tab of the Options dialog box. For more information, see “Setting
General Testing Options” on page 584.

Managing Function Libraries

In the Function Libraries pane, you can associate function library files, such
as QuickTest function libraries, VBScript function libraries, or text files, with
your application area. You associate function libraries with your application
areas to provide additional functionality in the form of user-defined
keywords that can be used when creating business components.

Chapter 12 • Working with Application Areas

427

All associated function libraries must be saved in your Quality Center
project.

The Function Libraries pane displays the list of function libraries currently
associated with your application area and enables you to associate
additional function libraries, and to modify, delete, and prioritize these files.
You can add existing function libraries or create new ones, as long as the
function libraries are stored in your Quality Center project.

Note: QuickTest provides you with sample function libraries containing
predefined functions. By default, these files are associated with all new
application areas. The default function libraries are located in your Quality
Center project, under Subject\BPT Resources\Libraries. For information on
creating user-defined functions in function libraries, see Chapter 11,
“Working with User-Defined Functions and Function Libraries.”

Chapter 12 • Working with Application Areas

428

You can add, modify, delete, and prioritize function libraries associated with
your component using the following buttons:

Note: You can right-click an associated function library and choose Open to
open it, or Remove to remove its association with the application area.

If an associated function library cannot be found, for example, if it was
removed from the Quality Center project, QuickTest indicates this by
displaying the Missing Function Library icon to the left of the function
library in the list. To handle the missing function library, right-click it and
choose Locate to browse to the required function library, or Remove to
remove the association to the missing function library.

Button Description

Enables you to create a new function library, save it to your Quality
Center project, and add it to the list.

Opens the selected function library for viewing or editing in a
function library window. Function libraries that are currently in use by
another QuickTest or Quality Center user are locked and can be
opened only in read-only mode. For more information, see
Chapter 11, “Working with User-Defined Functions and Function
Libraries.”

Enables you to browse to the test plan tree of your Quality Center
project and select an existing function library to associate with the
application area. For more information, see “Associating Existing
Libraries with Your Application Area” on page 429.

Removes the selected function library from the application area.

Moves the selected function library up in the list, giving it a higher
priority during the component run session.

Moves the selected function library down in the list, giving it a lower
priority during the component run session.

Chapter 12 • Working with Application Areas

429

Associating Existing Libraries with Your Application Area
You can add existing function libraries to your application area. This enables
all business components associated with application area to access the
functions defined in these function libraries as keywords.

To associate an existing function library with the application area:

 1 In QuickTest, open the application area (if it is not already open).

➤ Choose File > Open > Application Area.

➤ Click the Open button down arrow and choose Application Area.

Tip: If another application area is already open, you can click the Open
button and then select the required application area.

 2 Click Function Libraries in the sidebar. The list of function libraries currently
associated with the application area is displayed in the Function Libraries
pane.

 3 Click the Add Function Library button. A blank line is added to the list, as
well as a browse button.

 4 Click the browse button. The Add Function Library dialog box opens.

Chapter 12 • Working with Application Areas

430

The Add Function Library dialog box displays the test plan tree of the
current Quality Center project.

 5 Select the relevant item in the tree to display its attached function libraries.
Then select the function library that you want to associate with your
application area. The name is displayed in the Attachment Name box.

 6 Click OK. The Add Function Library dialog box closes and the selected file is
displayed in the Function Libraries pane of the application area. If the
function library contains syntax errors, a message opens stating that your
test will fail because of these syntax errors.

Creating New Function Libraries
You can create new function libraries directly from the Function Libraries
pane of the application area and associate them automatically to your
application area.

To create a new function library in your Quality Center project:

 1 In QuickTest, open the application area (if it is not open).

➤ Choose File > Open > Application Area.

➤ Click the Open button down arrow and choose Application Area.

Chapter 12 • Working with Application Areas

431

Tip: If another application area is already open, you can also click the Open
button and then select the application area you require.

 2 Click Function Libraries in the sidebar. The list of function libraries currently
associated with the application area is displayed in the Function Libraries
pane.

 3 In the Function Libraries pane, click the Create Function Library button. The
Add Function Library dialog box opens.

 4 In the test plan tree, navigate to the folder in which you want to store the
function library.

 5 In the Attachment Name box, enter a name for the function library and
click OK. A new empty function library is added to the selected location in
the test plan tree and listed in the Function Libraries pane.

Note: By default, function libraries are created in QuickTest as .qfl files if no
suffix is specified. You can also create .txt or .vbs files if needed.

 6 If you want to add content to the new function library or modify the file
directly from QuickTest, select the file in the Function Libraries pane and
click the Open Function Library button or double-click the function library
in the list. The file opens in a function library window and can be edited as
required. To save your changes, close the file and click Yes when prompted.

 7 If you want to rename the function library, you can click it twice, or select it
and press F2.

For more information on editing function libraries, see Chapter 11,
“Working with User-Defined Functions and Function Libraries.”

Chapter 12 • Working with Application Areas

432

Managing Shared Object Repositories

A shared object repository stores all of the test objects that may be used
when creating steps for a business component. After you associate a shared
object repository with an application area, it can be accessed by any
component that is associated with that application area.

The Object Repositories pane displays the list of shared object repositories
currently associated with your application area and enables you to associate
additional object repositories, and to modify, delete, and prioritize these
files. You can add existing object repositories or create new ones, as long as
the object repositories are stored in your Quality Center project.

You can add test objects to this shared object repository either by learning
objects in your application or by adding test objects manually using the
Object Repository Manager. For information on managing test objects in a
shared object repository, see Chapter 6, “Managing Object Repositories.”

Chapter 12 • Working with Application Areas

433

Note: Although QuickTest provides you with a default shared object
repository (located in the Subject/BPT Resources/Object Repositories
folder), it is strongly recommended not to use it. If you associate this default
shared object repository with an application area or a specific component,
any components using this shared object repository may not run correctly.

You can use existing shared object repositories that already contain your test
objects, or you can create new ones. All business components associated
with an application area that refers to these shared object repositories will
then access these shared object repository files. For more information, see
“Creating New Shared Object Repositories” on page 435.

After you add test objects to the shared object repository, you and Subject
Matter Experts can then use the test objects to add steps to business
components. For more information, see “Selecting an Item for Your Step” on
page 516.

Subject Matter Experts need to be able to distinguish between the various
test objects when they define steps for a business component. Therefore, it is
important that all test object names be self-explanatory. You can change the
name that QuickTest assigns automatically to a stored test object. For
example, if a test object is named Edit by default, you may want to rename it
to UserName (if that is what the user needs to enter in the edit box, of
course).

For container objects, it is recommended to specify their context, for
example, if you have several confirmation message boxes, you may want to
name one Login > Confirm, another ChangePassword > Confirm, and still
another BillingInfo > Confirm.

When you modify the name of an object, the name is automatically
updated in the QuickTest Keyword View and the Steps tab of the Quality
Center Business Components module for all occurrences of the object (also
in steps that were created using the old test object names). When you open
another component that uses the same shared object repository and has one
or more occurrences of the modified object, the names within that
component are updated. This may take a few moments.

Chapter 12 • Working with Application Areas

434

For more information on renaming test objects, see “Renaming Test
Objects” on page 140.

You can add, modify, delete, and prioritize object repositories associated
with an application area (and its associated components) using the
following buttons:

Button Description

Enables you to create a new object repository, save it to Quality
Center, and then add it to the list.

Opens the selected object repository for viewing or editing in the
Object Repository Manager. Object repositories that are currently
locked are opened in read-only format. For more information on the
Object Repository Manager, see Chapter 6, “Managing Object
Repositories.”

Enables you to browse to the test plan tree of your Quality Center
project and select an existing object repository to associate with the
application area. For more information, see “Adding Existing Shared
Object Repositories to Your Application Area” on page 437.

Removes the selected object repository from the application area.

Moves the selected object repository up in the list, giving it a higher
priority during the component run session.

Moves the selected object repository down in the list, giving it a lower
priority during the component run session.

Chapter 12 • Working with Application Areas

435

Note: You can right-click a shared object repository and choose Open to
open it in the Object Repository Manager, or Remove to remove its
association with the application area.

If a shared object repository cannot be found, QuickTest displays its name
and path in the Missing Resources pane when you open the application
area. To handle the missing shared object repository, right-click it in the list
of associated object repositories and choose Locate to browse to the required
shared object repository, or Remove to remove the association to the shared
object repository.

Creating New Shared Object Repositories
To enable a Subject Matter Expert to access the test objects from the
application when implementing component steps, the test objects must be
stored in a shared object repository located in your Quality Center project.
You can create new shared object repositories directly from the Object
Repositories pane of the Application Area and associate them automatically
to your application area.

To create a new shared object repository in your Quality Center project:

 1 In QuickTest, open the application area (if it is not open).

➤ Choose File > Open > Application Area.

➤ Click the Open button down arrow and choose Application Area.

Tip: If another application area is already open, you can also click the Open
button and then select the application area you require.

Chapter 12 • Working with Application Areas

436

 2 Click Object Repositories in the sidebar. The list of object repositories
currently associated with the application area is displayed in the Object
Repositories pane.

 3 In the Object Repositories pane, click the Create Object Repository button.
The Add Object Repository dialog box opens, showing the test plan tree of
the current project.

 4 In the test plan tree, navigate to the folder in which you want to store the
object repository.

 5 In the Attachment Name box, enter a name for the object repository and
click OK. A new object repository is added to the selected location in the test
plan tree and listed in the Object Repositories pane.

 6 If you want to add test objects to your shared object repository or modify
the file directly from QuickTest, select the file in the Object Repositories
pane and click Open Object Repository or double-click the object repository
in the list. The file opens in the Object Repository Manager and can be
edited as required.

 7 If you want to rename the object repository, you can click it twice, or select
it and press F2.

For more information on modifying object repositories in the Object
Repository Manager, see Chapter 6, “Managing Object Repositories.”

Chapter 12 • Working with Application Areas

437

Adding Existing Shared Object Repositories to Your
Application Area
You can add existing shared object repository files to your application area.
This enables all business components with which the application area is
associated to access the test objects that are stored in these files.

To add an existing shared object repository for the application area:

 1 In QuickTest, open the application area, (if it is not open).

➤ Choose File > Open > Application Area.

➤ Click the Open button down arrow and choose Application Area.

Tip: If another application area is already open, you can also click the Open
button and then select the application area you require.

 2 Click Object Repositories in the sidebar. The list of object repositories
currently associated with the application area is displayed in the Object
Repositories pane.

 3 Click the Add Object Repository button. A blank line is added to the list, as
well as a browse button.

Chapter 12 • Working with Application Areas

438

 4 Click the browse button. The Add Object Repository dialog box opens. The
dialog box displays the test plan tree of the current Quality Center project.

 5 Select the relevant item in the tree to display its attached object repositories.
Then select the object repository that you want to associate with your
application area. The name is displayed in the Attachment Name box.

 6 Click OK. The Add Object Repository dialog box closes and the selected file
is displayed in the Object Repositories pane of the application area.

 7 If you want to add test objects to your shared object repository or modify
the file directly from QuickTest, select the file in the Object Repositories
pane and click Open Object Repository or double-click the object repository
in the list. The file opens in the Object Repository Manager and can be
edited as required.

 8 If you want to rename the object repository, you can click it twice, or select
it and press F2.

Chapter 12 • Working with Application Areas

439

Managing Keywords

When creating a step in a business component, Subject Matter Experts select
the required operation to perform on the application being tested. These
operations are also known as keywords, and are derived from built-in
methods and properties, as well as user-defined functions associated with
the application area.

All of the built-in methods and properties, plus all of the functions in
user-defined function libraries, are displayed as keywords in the Keywords
pane. The Keywords pane enables you to manage the keywords and select
which of them should be available to Subject Matter Experts when creating
business components. Only selected built-in keywords are available by
default. However, all user-defined keywords are available to Subject Matter
Experts.

Note: The Keywords pane is not relevant for scripted components.

Chapter 12 • Working with Application Areas

440

To make keywords available to Subject Matter Experts from the lists of
operations in business component steps, click the relevant check boxes in
the Available column. To remove keywords from the lists of available
operations, clear the check boxes. Subject Matter Experts will not be able to
use keywords whose check boxes are cleared.

The Keywords pane displays information about the keywords in the
following columns:

Clicking a keyword in the list displays information about it in the Properties
area at the bottom of the pane. This includes a textual description of what
the keyword does, as well as the name and path of its function library (for
user-defined keywords). The location of a built-in keyword is defined as
Internal.

Column Description

Environment The name of the add-in for which the keyword is provided, for
example, Web or Visual Basic. The keywords available for all
currently loaded add-ins are displayed in the pane.

Notes:

➤ Keywords in user-defined functions that are registered to a
test object are displayed under the environment and object
class to which they are registered.

➤ Keywords in user-defined functions that are not registered to
a test object, plus built-in VBScript functions, are all
displayed under the Global environment.

Class The object class, for example, Image or Winbutton.

Keyword The displayed operation name, for example, Click or
VerifyProperty.

Type Whether the operation is Built-in (provided by QuickTest) or
User-Defined (contained in a function library).

Available Whether the keyword is available to Subject Matter Experts for
use in business component steps. You can select or clear each
check box as required.

Chapter 12 • Working with Application Areas

441

You can view, sort, and filter the data in the Keywords pane to make it easier
to locate the keywords that you want to make available to (or hide from) the
Subject Matter Experts.

Tips:

You can rearrange the order that columns are displayed in the Keywords
pane by dragging a column header to a new location. Red arrows are
displayed when the column is dragged to an available location.

If the data in a column is partially hidden because the column is too narrow,
you can resize the column using the mouse. Drag a column header divider
to adjust the width.

Filtering the Columns
You can filter the data in the Keywords pane to display only those keywords
with which you want to work. You can filter the data in a single column
only, or filter additional columns to further reduce the number of displayed
items.

For example, you may want to view only Web Add-in keywords that are
currently not available to Subject Matter Experts. You would filter the
Environment column to display only keywords from the Web Add-in, and
then filter the Available column to display only keywords whose check box
is cleared (select Unchecked from the Available column filter list).

The filter criteria and the number of keywords that match the current filter
are displayed below the columns.

Click the to the left of the filter criteria to clear the filter and show all
keywords.

Chapter 12 • Working with Application Areas

442

To filter the data in a column:

Click the arrow in a column header. A list of the unique items contained
in the column opens.

You can perform the following to filter the data in the column:

➤ Click an item in the list. You can use the CTRL key to select multiple items
from a filter list. The Keywords pane refreshes to show the data for keywords
with that item name only.

You can then click the arrow in another column header and choose an item
in that list. The filtered data is filtered again to show only the keywords that
match all selected filter criteria.

➤ In the Filter For box at the bottom of the filter list, you can enter a filter
pattern that includes wildcards such as ?, *, and #. Press ENTER to filter the
data according to the pattern. You can use ? to represent any single
character, * to represent zero or more occurrences of any character, and # to
represent any digit. You can also use | to specify items that match only one
of the options in the pattern. For example, Verify*|Check* shows all
keywords that start with Verify or Check.

➤ You can apply a multiple filters simultaneously. For example, if you want to
view keywords for only the Standard Windows and ActiveX environments,
and you want to display only built-in keywords (as opposed to user-defined
keywords), you can apply three filters: one filter for StandardWindows;
another filter for ActiveX; and a third filter for the type, Built-in.

Chapter 12 • Working with Application Areas

443

Sorting Column Content
You can arrange the data in a column into ascending or descending
alphabetical order by clicking the column header. The Available column is
sorted according to selected and cleared check boxes.

The sort direction is indicated by an arrow in the column header. Click the
column header again to sort the data in the other direction.

Defining Additional Settings

Clicking the Additional Settings button in the General pane opens the
Application Area Settings dialog box, which comprises several tabs. These
tabs enable you to define specific settings for your application area, such as
the applications on which the components associated with the application
area can record and run, and how a component recovers from unexpected
events during a run session.

Defining Application Settings for Your Application Area
In the Applications tab, you can specify the Windows-based applications on
which the components associated with this application area can record and
run. You can record component steps only on the specified applications.

Tip: To record on an application, you can either open it manually, or you
can use the OpenApp keyword (function) provided with QuickTest in the
Common.txt function library. There are no settings available for
automatically opening applications for components.

Chapter 12 • Working with Application Areas

444

The Other area displays the environments on which the application area’s
associated components can currently record (based on the currently loaded
add-ins).

You can use the Applications tab to set or modify your application
preferences in the following scenarios:

➤ You have already recorded one or more steps in an associated component
and you want to modify the settings before you continue recording.

➤ You want to record and run the component on a different application than
the one you previously used.

Chapter 12 • Working with Application Areas

445

Notes:

If you are recording a new component and have not yet set your application
settings in the Applications tab of the Application Area Settings dialog box,
the Applications dialog box opens when you start to record. The
Applications dialog box contains the same options as the Applications tab,
described in this section.

The Applications dialog box and Applications tab may also contain options
applicable to any QuickTest add-ins installed on your computer. For
information regarding these options, refer to the documentation provided
for the specific add-in.

The following options are available in the Applications tab:

Option Description

Windows
applications

Lists the details of the applications on which to record and run
components associated with this application area. For more
information on the details displayed, see “Specifying an
Application” on page 446.

If you do not want to record or run on Windows applications,
leave the application list blank. (This is the default setting.)

Adds an application to the application list. You can add up to
ten applications. For more information, see “Specifying an
Application” on page 446.

Removes the selected application from the application list.

Record and run
on any
applications
opened by
QuickTest

Records and runs on any applications invoked by QuickTest (as
child processes of QuickTest). For example, applications opened
during a record or run session using an OpenApp function, or
another operation containing a function that opens an
application.

Other Lists the add-in environments that correspond to the currently
loaded add-ins.

Chapter 12 • Working with Application Areas

446

Specifying an Application
When you click the Add button in the Applications tab, the Select
Application dialog box opens.

You can add up to ten applications to the application list displayed in the
Applications tab, and you can edit an existing application in the list. You
can also select whether to record and run on the application’s descendant
processes.

The details entered in the Select Application dialog box are displayed as a
single line for each application in the Windows applications area of the
Applications tab.

You can specify the following details for the application in the Select
Application dialog box:

Option Description

Executable file Instructs QuickTest to record and run on the specified
executable file.

Include
descendant
processes

Selecting this check box instructs QuickTest to record and run
on processes created by the specified application during the
record and run session. For example, a process that is used
only as a launcher may create another process that actually
provides the application functionality. This descendant
process must therefore be included when recording or running
tests on this application, otherwise the functionality will not
be recorded, or the run session will fail.

By default, this option is selected.

Chapter 12 • Working with Application Areas

447

Defining Recovery Scenario Settings for Your Application
Area
Recovery scenario settings enable you to specify how a business component
recovers from unexpected events and errors during a run session.

The Recovery tab displays a list of all recovery scenarios associated with the
current application area. It also enables you to associate additional recovery
scenarios with the application area, remove scenarios from the application
area, change the order in which they are applied to the run session, and
view a read-only summary of each scenario.

You can enable or disable specific scenarios or the entire recovery
mechanism for the application area. You can add existing recovery scenarios
or create new ones, as long as the recovery scenarios are stored in your
Quality Center project.

Note: QuickTest provides you with a sample recovery file for Web-related
testing. The file is located in your Quality Center project, under Subject\BPT
Resources\Recovery Scenarios\DefaultWeb.qrs.

Chapter 12 • Working with Application Areas

448

You define recovery scenarios for application areas in exactly the same way
as for tests. For more information on recovery scenarios, see Chapter 32,
“Defining and Using Recovery Scenarios.”

Chapter 12 • Working with Application Areas

449

The Recovery tab includes the following options:

Specifying Associated Recovery Scenarios

You can select or clear the check box next to each scenario to enable or
disable it for the current application area.

You can also edit the recovery scenario file path by clicking the path once to
highlight it, and then clicking it again to enter edit mode. If you modify a
recovery scenario file path, ensure that the recovery scenario exists in the
new path location before running components that are associated with this
application area.

Option Description

Scenarios Displays the name and recovery file path for each recovery
scenario associated with your application area. You can add,
delete, and prioritize the scenarios in the list, and you can edit
the file path for a selected file. For more information, see
“Specifying Associated Recovery Scenarios” on page 449.

Scenario
description

Displays the textual description of the scenario selected in the
Scenarios box.

Activate
recovery
scenarios

Instructs QuickTest to check when to run the associated
scenarios as follows:

➤ On every step. The recovery mechanism is activated after
every step. (Note that choosing On every step may result in
slower performance during the run session.)

➤ On error. The recovery mechanism is activated only after
steps that return an error return value.

➤ Never. The recovery mechanism is disabled.

Chapter 12 • Working with Application Areas

450

Scenario types are indicated by the following icons:

You can add, delete, and prioritize the recovery scenario files associated with
your component using the following buttons:

Icon Description

Indicates that the recovery scenario is triggered by a specific pop-up
window in an open application during the run session.

Indicates that the recovery scenario is triggered when the property
values of an object in an application match specified values.

Indicates that the recovery scenario is triggered when a step in the
component does not run successfully.

Indicates that the recovery scenario is triggered when a specified
application fails during the run session.

Indicates that the recovery scenario is no longer available for the
application area. This may be because the recovery file has been
renamed or moved, or can no longer be accessed by QuickTest. When
an associated recovery file is not available during a run session, a
message is displayed in the results.

Button Description

Opens the Add Recovery Scenario dialog box, which enables you to
associate one or more recovery scenarios with the component. For
more information, see Chapter 32, “Defining and Using Recovery
Scenarios.”

Removes the selected recovery scenario from the component.

Moves the selected scenario up in the list, giving it a higher priority
during the component run session.

Moves the selected scenario down in the list, giving it a lower priority
during the component run session.

Displays summary properties for the selected recovery scenario in
read-only format. For more information, see Chapter 32, “Defining
and Using Recovery Scenarios.”

Chapter 12 • Working with Application Areas

451

Saving an Application Area

You can save an application area before or after you define its settings and
resources.

When you save an application area, make sure that you provide a unique
name and description that clearly indicate its use. For example, if the
application area is intended to be used by components that test the Login
module, you might name it “Log In” and add a description that specifies its
intended use, such as, “Intended for use with business components that test the
Login module.”

To save an application area:

 1 In QuickTest, connect to a Quality Center server and project with Business
Process Testing support. For more information, see “Connecting to Your
Quality Center Project” on page 44.

 2 Create an application area and modify its settings as required. For more
information, see “Creating an Application Area” on page 417.

 3 Click Save or choose File > Save. The Save Application Area dialog box
opens.

Chapter 12 • Working with Application Areas

452

The Save Application Area dialog box includes the following:

 4 Enter the required information and click OK to save the application area.

Tip: If you are creating a new application area that is similar to an existing
one, you can use the Save As option. Then you can modify the application
area, as needed.

Option Description

Existing
application areas

Lists all defined application areas in the Quality Center
project. This enables you to see the names of the existing
application areas so that you can specify a unique name for
the application area that you want to save.

Name Indicates the name of the application area. Enter a
descriptive name that will enable Subject Matter Experts to
quickly identify the application area that is suitable for
their component.

Note: The name you enter cannot exceed 220 characters,
cannot contain begin or end with spaces, and cannot
contain the following characters:
\ / : " ? < > | * ! { } ‘ % ;

Description Displays the description you entered in the General pane of
the Application Area dialog box when you created the
application area. For more information, see “Creating an
Application Area” on page 417.

If you did not enter a description when you created the
application area, you must enter one now. You cannot save
an application area without a description.

You can also modify the existing description if you already
defined one in the General pane. The description you
provide enables Subject Matter Experts to easily
differentiate between the various application areas and
choose the one that is best suited for their component.

Chapter 12 • Working with Application Areas

453

Deleting an Application Area

If an application area is no longer needed, you can delete it. Before you
delete an application area, you must make sure that it is not being used by
any business components. You cannot delete an application area that is used
by a business component.

To delete an application area:

 1 In QuickTest, connect to the Quality Center project that contains the
application area that you want to delete. For more information, see
“Connecting to Your Quality Center Project” on page 44.

 2 In QuickTest, open the application area, (if it is not open).

➤ Choose File > Open > Application Area.

➤ Click the Open button down arrow and choose Application Area.

Tip: If another application area is already open, you can also click the Open
button and then select the application area you require.

The Open Application Area dialog box opens.

Chapter 12 • Working with Application Areas

454

 3 Select the application area that you want to delete and click the Delete
Application Area button. A warning message displays.

Note: You cannot delete the currently open application area, an application
area that is currently being used by another Automation Engineer, or an
application area that is associated with a component.

 4 Click Yes to confirm. The selected application area is deleted.

 5 Click OK to close the Open Application Area dialog box.

455

13
Working with Business Components

You can use the Business Component Keyword View to create, view, modify,
and debug a business component in QuickTest.

This chapter includes:

 ➤ About Working with Business Components on page 456

 ➤ Creating a New Business Component on page 458

 ➤ Opening a Business Component on page 461

 ➤ Saving a Business Component on page 464

 ➤ Working with Manual Components on page 467

 ➤ Changing the Application Area Associated with a Component on page 472

 ➤ Printing a Component on page 474

Chapter 13 • Working with Business Components

456

About Working with Business Components

Generally, business components are created and modified in Quality Center
by Subject Matter Experts. For more information, see the HP Business Process
Testing User’s Guide. However, you can use the Business Component
Keyword View to create, view, modify, and debug a business component in
QuickTest, if required.

In the Keyword View, business components are divided into steps in a
modular, keyword-driven, table format. Each step is a row that comprises
individual parts that you can easily modify. You create and modify steps by
selecting items and operations and entering additional information, as
required.

Each step in a business component is automatically documented as you
complete it. This enables you to view a description of the step in
understandable sentences. In addition, if you added a function library to the
application area associated with the business component, when you define a
step by selecting a user-defined operation (function), the documentation
that you added in the function library will be displayed for the step. For
more information, see “Documenting the Function” on page 399.

Before you create or open a business component, you connect QuickTest to
a Quality Center project, which is where business components and
application area resources and settings are stored. Connecting to your
Quality Center project enables QuickTest to create or open the business
component. This also enables the business component to access all of the
resources defined in the application area on which the component is based.

Note: You need to make sure you have the required Quality Center
permissions before working with business components and application
areas. For more information on setting user group permissions in the
Business Components module, refer to the HP Business Process Testing User’s
Guide.

Chapter 13 • Working with Business Components

457

If the application area you select does not yet contain all of the required
resources and settings, you can still add steps using the ManualStep function
or the Comment option. This enables you to type in manual steps as you
would in Quality Center or in another application, such as Microsoft Excel
or Microsoft Word. You can also use comments to add information about a
step or to separate sections of your business component. Each manual step
and comment appears as a separate row in the Keyword View. For more
information, see “Adding and Modifying Manual Steps for Components” on
page 471 and “Working with Comments” on page 541.

Notes:

If you want to delete a component, you can do so only in Quality Center,
regardless of whether it was created in QuickTest or in Quality Center. For
more information, refer to the HP Business Process Testing User’s Guide.

If needed, you can convert a business component to a scripted component.
For more information, see Chapter 14, “Creating Scripted Components.”

Chapter 13 • Working with Business Components

458

Creating a New Business Component

When QuickTest is connected to a Quality Center project, you can create a
new business component in that project.

Each business component is based on a specific application area, which is
stored in the Quality Center project in which you intend to save the
component. Each application area specifies the settings and resources for
the business component, including the location of shared object
repositories, function libraries, recovery scenarios, and other information.
There may be one or more application areas from which to choose. You
select the application area that is best suited for your business component.
For more information, see Chapter 12, “Working with Application Areas.”

Generally, business components are created in Quality Center by Subject
Matter Experts. For more information, refer to the HP Business Process Testing
User’s Guide. However, you can also create business components in
QuickTest, if needed. This section describes how to create a new component
in QuickTest.

Note: To create a new business component in QuickTest, you must have the
necessary permissions to create a business process test. For more
information, refer to the HP Quality Center Administrator's Guide.

To create a new business component:

 1 Connect to the Quality Center project in which you want to save the
business component. For more information, see “Connecting to Your
Quality Center Project” on page 44.

 2 Perform one of the following:

➤ Choose File > New > Business Component.

➤ Click the New button down arrow and choose Business Component.

Chapter 13 • Working with Business Components

459

The New Business Component dialog box opens, listing all available
application areas. You can click on an application area to view its
description. (These are the descriptions that Subject Matter Experts use to
determine which application area to choose when they create a new
business component.)

Note: If you have not yet defined an application area, a new, untitled
business component opens using the default settings that are supplied with
Business Process Testing. Later, after you define an application area, you can
base the business component on it. For more information, see Chapter 12,
“Working with Application Areas.”

 3 Select a suitable application area from the Application Area name box. For
example, if you want to create a business component for a Log In module,
select the application area that is defined for it. Click OK.

Chapter 13 • Working with Business Components

460

A new, untitled business component opens in the Keyword View. Although
the business component does not yet contain content, it does contain all of
the required settings and resources that were defined in the application area
on which it is based. You can view these settings in read-only format by
choosing File > Settings. If you later need to change these settings, you can
do so in the associated application area.

 4 You can now:

➤ Add steps and comments to your business component. For more
information, see “Adding a Step to Your Component” on page 514 and
“Working with Comments” on page 541.

➤ Save your component. (You can add steps later.) For more information,
see “Saving a Business Component” on page 464.

Chapter 13 • Working with Business Components

461

Opening a Business Component

When QuickTest is connected to a Quality Center project, you can open a
component that is stored in the project to view, modify, debug, or run it.
You find components according to their location in the component tree.

Components that are currently open in Quality Center or another QuickTest
session are locked and can be opened only in read-only format. To work
with these components, they must be closed everywhere else.

When you open a component, if the component’s associated application
area cannot be found, you are prompted to associate a different application
area with it.

Notes for users of previous QuickTest versions:

➤ When you open a business component or scripted component that was
created using an earlier version of QuickTest, you are asked whether you
want to convert it or view it in read-only format. If you choose to view it
in read-only format, it appears as it did previously, using all of its original
settings, but you cannot modify it. If you choose to convert it, it is
updated to the current format. When the component is updated, it uses
the associated application area’s current settings. If the component had
customized settings (settings that were defined directly in the Business
Component Settings dialog box), these settings are removed and the
associated application area’s current settings are applied instead.

➤ After you save a converted component, it cannot be used with earlier
versions of QuickTest.

➤ You cannot open a component that was created with a later version of
QuickTest on a computer running an earlier version of QuickTest.
For example, you cannot open a component created in QuickTest 9.2 on
a computer running QuickTest 8.2.

You open business components and scripted components in the same way.
For more information on scripted components, see “Creating Scripted
Components” on page 475.

Chapter 13 • Working with Business Components

462

To open an existing component:

 1 In QuickTest, connect to the Quality Center project in which your
component is saved. For information on connecting to Quality Center, see
“Connecting to Your Quality Center Project” on page 44.

 2 Choose File > Open > Business/Scripted Component, or click the Open
down arrow and choose Business/Scripted Component. The Open Business
Component dialog box opens showing the components stored in the
Quality Center project.

You can change the type of components displayed in the dialog box, as
described in step 3.

In the component tree, the status of each component is indicated by its
icon. For more information, refer to the HP Business Process Testing User’s
Guide.

Chapter 13 • Working with Business Components

463

Tip: You can also open a recently used component by selecting it from the
Recent Files list in the File menu. If you select a component when you are
not connected to the Quality Center project, or if you select a component
that is stored in a different Quality Center project, QuickTest displays a
message asking you if you want to connect to that project. For more
information, see “Opening Components from the Recent Files List” on
page 464.

 3 If required, filter the list of components shown in the Business Component
dialog box by selecting the component type you want to open from the
Component Type list. You can select one of the following component types:

➤ QuickTest Component: Displays components that were automated using
QuickTest Professional or the Business Process Testing Keyword View.

➤ Manual Component: Displays components that were created in Quality
Center and have not yet been converted to automated components. For
more information, see “Working with Manual Components” on
page 467.

➤ All Components: Displays all QuickTest automated components and
manual components.

 4 Click the relevant folder in the component tree. To expand the tree and
view the business components, double-click closed folders. To collapse the
tree, double-click open folders.

 5 Select a component. The component name is displayed in the read-only
Component Name box.

 6 Click OK to open the component.

As QuickTest downloads and opens the component, the operations it
performs are displayed in the status bar.

When the component opens, the QuickTest title bar displays Components,
the full path and the component name. For example, the title bar for a
flight_login component may be:

[Components\Flight\flight_login]

Chapter 13 • Working with Business Components

464

Opening Components from the Recent Files List
You can open components from the recent files list in the File menu. If you
select a component located in a Quality Center project, but QuickTest is
currently not connected to Quality Center or to the correct project for the
component, the Connect to Quality Center Project dialog box opens and
displays the correct server, project, and the name of the user who most
recently opened the component on this computer.

Log in to the project, and click OK.

The Connect to Quality Center Project dialog box also opens if you choose
to open a component that was last edited on your computer using a
different Quality Center user name. You can either log in using the
displayed name or you can click Cancel to stay logged in with your current
user name.

Saving a Business Component

After you create or modify a component, you can save it to your Quality
Center project. When you save a component, you give it a descriptive name
and save it to the relevant folder in the component tree in the Quality
Center project (Business Components module).

You can also save a copy of an existing component to any folder in the same
Quality Center project. To enable all users to differentiate between the
various components, you may want to rename a copy of a component, even
if you save it to a different folder.

Chapter 13 • Working with Business Components

465

Tip: If changes are made to a component, an asterisk is displayed in the title
bar until the component is saved.

You save business components and scripted components in the same way.
For more information on scripted components, see “Creating Scripted
Components” on page 475.

You can also convert a business component to a scripted component. For
more information, see “Converting a Business Component to a Scripted
Component” on page 482.

Note: For scripted components only, the data sheet name in the Data Table
is identical to the scripted component name. If you save a scripted
component with a new name (File > Save As), the data sheet is automatically
renamed. If you have a step that references the data sheet by name, the step
will fail during the run session because it references the former data sheet
name. If you save a scripted component with a new name, you must find
any references to the former data sheet name in the Expert View and replace
them with the new data sheet name.

To save a component to your Quality Center project:

 1 Save the component in one of the following ways:

➤ For a new component that has never been saved, choose File > Save or
click Save.

➤ To save a copy of an existing component, choose File > Save As.

Chapter 13 • Working with Business Components

466

The Save Business Component dialog box opens and displays the
component tree.

In the component tree, the status of each component is indicated by its
icon. For more information, refer to the HP Business Process Testing User’s
Guide.

 2 Select the folder in which you want to save the component. To expand the
tree and view a sublevel, double-click a closed folder. To collapse a sublevel,
double-click an open folder.

You can either save the component to an existing folder in your Quality
Center project or click the New Folder button to create a new folder in
which to save it. If you want to save a copy of an existing component with
same name, you must save it to a different folder.

 3 In the Component Name box, enter a name for the component. Use a
descriptive name that will help you and others identify the component
easily. The component name cannot exceed 220 characters (including its
path, for example, Components/CompFolder1/MyComponent), cannot
contain begin or end with spaces, and cannot contain the following
characters:
\ / : " ? < > | * ! { } ‘ % ;

Chapter 13 • Working with Business Components

467

 4 Accept the default Component Type—QuickTest Component.

 5 Click OK to save the component and close the dialog box. As QuickTest
saves the component, the operations that it performs are displayed in the
status bar.

The component is saved to the Quality Center project. You can now view
and modify it using QuickTest.

Note: Subject Matter Experts can also access the component from the
Quality Center Business Components module. For more information, refer
to the HP Business Process Testing User’s Guide.

Tip: If the component was saved previously, you can save it by choosing
File > Save, or clicking Save.

Working with Manual Components

In QuickTest, you can convert a manual component created in Quality
Center to an automated business component. You can then view, modify,
debug, or run it in the same way as any other business component.

After you convert a manual component to an automated business
component, you can still view its manual steps in Quality Center, and you
can run it as a manual component using the Quality Center Manual Runner.
In Quality Center, you can also modify or add additional steps to an
automated component in the Automation tab. These steps are then updated
automatically in the Design Steps tab, and in QuickTest.

Chapter 13 • Working with Business Components

468

Note: You can also convert a manual component to an automated
component from within Quality Center. For more information, refer to the
HP Business Process Testing User’s Guide.

Opening and Converting Manual Components
In QuickTest, you can open a manual component stored in your Quality
Center project and convert it to an automated business (keyword-driven)
component. When you open a manual component, QuickTest asks whether
you want to convert it to a business component.

Note: Components that are currently open in Quality Center or another
QuickTest session are locked and can be opened only in read-only format. To
work with these components, they must be closed everywhere else.

To open and convert a manual component:

 1 In QuickTest, connect to the Quality Center project in which your
component is saved. For information on connecting to Quality Center, see
“Connecting to Your Quality Center Project” on page 44.

 2 Perform one of the following:

➤ Choose File > Open > Business/Scripted Component.

➤ Click the Open down arrow and choose Business/Scripted Component.

The Open Business Component dialog box opens showing the components
stored in the Quality Center project.

Chapter 13 • Working with Business Components

469

You can change the type of components displayed in the dialog box, as
described in step 3.

In the component tree, the status of each component is indicated by its
icon. For more information, refer to the HP Business Process Testing User’s
Guide.

 3 If required, filter the list of components shown in the Business Component
dialog box by selecting the component type you want to open from the
Component Type list. By default, only QuickTest components are displayed.
(QuickTest components are components that were automated using
QuickTest Professional or the Business Process Testing Keyword View.)

Select one of the following component types:

➤ Manual Component: Shows components that were created in Quality
Center and have not yet been converted to automated components. If
you choose to open a manual component, it is converted to a QuickTest
component and its manual steps are converted to Keyword View steps.
Note that this conversion process is irreversible. (Although you can still
view and run the manual steps in Quality Center, if needed.)

➤ All Components: Shows all QuickTest automated components and
manual components.

Chapter 13 • Working with Business Components

470

 4 Click the relevant folder in the component tree. To expand the tree and
view the business components, double-click closed folders. To collapse the
tree, double-click open folders.

 5 Select a manual component. Manual components are represented by a
component icon with an M in the left corner of the icon. The component
name is displayed in the read-only Component Name box.

 6 Click OK to open the component. QuickTest asks whether you want to
convert the manual component to a business component.

 7 Click Yes to continue with the conversion. Note that this process is
irreversible.

 8 The New Business Component dialog box opens, in which you choose an
application area for your business component. Select an application area
and click OK. For more information on application areas, see Chapter 12,
“Working with Application Areas”.

As QuickTest downloads, opens, and converts the component, the
operations it performs are displayed in the status bar.

Each manual step from the manual component is converted into a
ManualStep operation in the Keyword View.

The name, description, and expected result of each manual step are added as
argument values for each ManualStep operation. Any defined input and
output parameters are converted into local parameters.

You can now work with the component like any other component. You can
also add additional manual steps, and modifying existing manual steps, so
that you can run your business component as a manual component using
the Manual Runner in Quality Center. For more information, see “Adding
and Modifying Manual Steps for Components” on page 471.

Chapter 13 • Working with Business Components

471

Adding and Modifying Manual Steps for Components
When you convert a manual component to an automated component, each
manual step from the manual component is converted into a ManualStep
operation in the Keyword View.

You can modify step names, step descriptions, and expected results by
changing the corresponding argument values in the relevant ManualStep
row of the Keyword View.

You can add new steps to the converted component in QuickTest (regular
business component steps and also ManualStep operations). You can also
add keyword-driven steps in the Automation tab in Quality Center. You can
also delete steps as needed.

All modifications you make in QuickTest to the component’s ManualStep
operations and regular keyword-driven steps are reflected in the Design
Steps tab and Automation tab of the component in Quality Center and vice
versa (after you save the changes). This means that you can update
components in either Quality Center or QuickTest and still continue to run
them manually using the Quality Center Manual Runner when needed.

For general information on adding steps in the Keyword View, see “Working
with the Keyword View” on page 507. For more information on the
ManualStep operation, refer to the Utility section of the QuickTest Professional
Object Model Reference.

For more information on adding steps in Quality Center, and on running
manual components using the Manual Runner in Quality Center, refer to
the HP Business Process Testing User’s Guide.

Chapter 13 • Working with Business Components

472

Changing the Application Area Associated with a
Component

When you create a business component in QuickTest, you must select the
application area to which you want to associate the component. There may
be one or more application areas available from which to choose. You
should select the one that is best suited for the component.

If changes are made to your application or to the resource files and settings
associated with the application area, the application area may become
unsuitable, and you may need to change the application area associated
with a specific component. For example, the object repository could have
been modified or removed from the application area. Alternatively, as your
application develops, it may include additional or different objects that are
not contained in the currently associated object repository. This could cause
the component or business process test to run incorrectly or to fail. If
another application area contains the required resource files and settings,
you should change the application area associated with the component.

Note: Each time you open a component, QuickTest verifies that the
resources specified for the component are available. If a component or
application area has resources that cannot be found, such as a missing
shared object repository, QuickTest indicates this in the Missing Resources
pane. For more information, see Chapter 28, “Handling Missing Resources.”

Chapter 13 • Working with Business Components

473

To change the application area:

 1 Open the component as described in “Opening a Business Component” on
page 461.

 2 Choose File > Change Application Area. The Change Application Area dialog
box opens.

 3 Select the application area you want to associate with the component. A
description of the application area is displayed in the Description area.

 4 Click OK to change the application area associated with the component.

Chapter 13 • Working with Business Components

474

Printing a Component

You can print your component in table format.

To print a component:

 1 Click the Print button or choose File > Print. A standard Print dialog box
opens.

 2 Click OK to print the content of the Keyword View to your default Windows
printer.

Tip: You can choose File > Print Preview to display the Keyword View on
screen as it will look when printed.

475

14
Creating Scripted Components

Scripted components are maintainable, reusable scripts that perform a
specific task. Scripted components share functionality with both test actions
and business components. You can use the Keyword View, the Expert View,
and other QuickTest tools and options to create, view, modify, and debug
scripted components in QuickTest. You can also convert existing business
components or existing actions into scripted components.

This chapter includes:

 ➤ About Scripted Components on page 476

 ➤ Creating a Scripted Component on page 478

 ➤ Converting to Scripted Components on page 481

 ➤ Converting a Business Component to a Scripted Component on page 482

 ➤ Converting an Action to a Scripted Component on page 482

Chapter 14 • Creating Scripted Components

476

About Scripted Components

You can utilize the full power of both the Keyword View and the Expert
View, as well as other QuickTest tools and options, when working with
scripted components. For example, you can use the Step Generator to guide
you through the process of adding methods and functions to your scripted
component. Using the Expert View, you can enhance the scripted
component flow by manually entering standard VBScript statements and
other programming statements using QuickTest objects and methods. You
can also incorporate user-defined functions in your scripted component
steps, parameterize selected items, and add checkpoints and output values
to your scripted component.

You can create scripted components for Subject Matter Experts, for example,
if they need components that contain more complex functionality, such as
loops or conditional statements. Subject Matter Experts working in Quality
Center can then include these scripted components in business process tests
to check that the application behaves as expected.

After you create a scripted component, Subject Matter Experts can view the
auto-documentation generated by the component (read-only) in the
Business Components module of the Quality Center project. They can run
the scripted component and add it to their business process tests, but you
remain responsible for maintaining the scripted component in QuickTest, if
any changes are needed. Scripted components cannot be modified in
Quality Center.

You save and open scripted components in the same way as you save and
open business components. For more information, see “Saving a Business
Component” on page 464 and “Opening a Business Component” on
page 461.

Chapter 14 • Creating Scripted Components

477

Similarities Between Scripted Components and Other Testing
Documents

Scripted components contain much of the same functionality as QuickTest
actions and tests. For example, you can:

➤ Work with programmatic statements in the Expert View (see Chapter 9,
“Working in Function Library Windows.”)

➤ Create checkpoints and output values.

➤ View the hierarchical Keyword View display.

➤ Create and work with virtual objects.

➤ Use the Data Table to run multiple iterations.

➤ Use the Active Screen to view a snapshot of your application as it appeared
when you performed a certain step during a recording session, and to
parameterize object values and insert checkpoints, methods, and output
values for any object in the page, even if your application is not available or
you do not have a step in your test corresponding to the selected object.

➤ Use random and environment parameters.

➤ Set applications to open at the start of a record or run session.

For general information on all of the functionality available for scripted
components, refer to the HP QuickTest Professional User’s Guide.

Scripted components are also similar to business components, in that
scripted components are:

➤ Associated with a specific application area. Note that all of the resources
must be stored in the Quality Center project and not the file system.

➤ Standalone modular units that can be incorporated in a business process
test.

➤ Linear within a business process test (not hierarchical).

➤ Not nested, meaning they cannot call another component.

Chapter 14 • Creating Scripted Components

478

Creating a Scripted Component

When QuickTest is connected to a Quality Center project, you can create a
new scripted component in that project.

Each scripted component is based on a specific application area, which
contains the resources and settings used by the component, such as the
location of the shared object repository and function libraries. You select the
application area that is best suited for your scripted component. You can
choose from any application area that is located in the Quality Center
project in which you intend to save the component. For more information,
see “Working with Application Areas” on page 413.

Tip: You can also convert a business component to a scripted component.
For more information, see “Converting a Business Component to a Scripted
Component” on page 482.

Note: If you have not yet created an application area, the scripted
component will be based on the default application area settings provided
with Business Process Testing.

To create a scripted component:

 1 Connect to the Quality Center project in which you want to save the
scripted component. For more information, see “Connecting to Your
Quality Center Project” on page 44.

 2 Perform one or the following:

➤ Choose File > New > Scripted Component.

➤ Click the New button down arrow and choose Scripted Component.

Chapter 14 • Creating Scripted Components

479

The New Business Component dialog box opens, listing all available
application areas.

Note: If you have not yet created an application area, a new, untitled
scripted component opens using the default settings that are supplied with
Business Process Testing.

Tip: If a scripted component is already open, you can also click the New
toolbar button to open a new scripted component.

 3 Select a suitable application area from the Application Area box. For
example, if you want to create a scripted component for a Flight Reservation
module, select the application area that is defined for it. Click OK.

Chapter 14 • Creating Scripted Components

480

A new, untitled scripted component opens. Although the scripted
component does not yet contain content, it does contain all of the required
settings and resources that were defined in the application area on which it
is based.

Chapter 14 • Creating Scripted Components

481

 4 You can now:

➤ Add content to your scripted component using the functionality and
options provided by QuickTest. For example, in the Expert View, you can
manually enter standard VBScript statements, as well as add statements
using QuickTest objects and methods. You can use the Step Generator to
add steps containing programming logic. You can also add checkpoints
and output values to your scripted component. For more information on
the functionality that can be used when creating a scripted component,
refer to the HP QuickTest Professional User’s Guide.

➤ Save your scripted component. (You can add content later.) You save a
scripted component in the same way as you save a business component.
For more information, see “Saving a Business Component” on page 464.

Note: In the Design Steps tab of the Quality Center Business Components
module, Subject Matter Experts can view and work with only the manual
steps defined for a scripted component (if any). They cannot view or modify
the automated steps unless they open the scripted component in QuickTest
by clicking the Launch button in the Automation tab (provided that
QuickTest is installed on the Quality Center client). For more information,
refer to the HP Business Process Testing User’s Guide.

Converting to Scripted Components

You can convert business components and actions to scripted components,
when required. When using Business Process Testing, it is generally
preferable to create new business components in Quality Center rather than
convert existing test actions or business components to scripted
components, as this enables Subject Matter Experts working in Quality
Center to maintain the components over time. In addition, because scripted
components can be modified only in QuickTest (and not in Quality Center),
Subject Matter Experts cannot view the automated steps in Quality Center,
although they can view and modify the manual steps, if any. The
conversion process is not reversible, meaning you cannot convert the
scripted component back to an action or business component.

Chapter 14 • Creating Scripted Components

482

Converting a Business Component to a Scripted Component

You can convert a single business component to a scripted component.

To convert a business component to a scripted component:

 1 Open the business component you want to convert to a scripted
component. For information on opening a business component, see
“Opening a Business Component” on page 461.

Note: A business component cannot be converted to a scripted component
if it is opened in read-only mode, or if it is locked.

 2 Choose File > Convert to Scripted Component.

 3 When prompted, click OK to proceed with the conversion.

Note: This operation replaces the existing business component with a
scripted component, and cannot be undone.

After the conversion is complete, QuickTest automatically opens the new
scripted component.

Converting an Action to a Scripted Component

You use the Action Conversion Tool (Start > QuickTest Professional > Tools >
Action Conversion Tool) to convert test actions that were created using
QuickTest Professional to scripted components for use in Business Process
Testing.

The Action Conversion Tool can convert only actions within tests that are
saved in a Quality Center server with Business Process Testing support
(license).

Chapter 14 • Creating Scripted Components

483

Every time you open the Action Conversion Tool, you connect to one
Quality Center project. If you want to convert actions in multiple projects,
you can close the Action Conversion Tool, reopen it, and connect to a
different project.

Before you begin using the Action Conversion Tool, make sure you have the
permissions required to add a component, and, optionally, a component
folder, to your Quality Center project.

For more information, see:

➤ “Understanding the QuickTest Professional Action Conversion Tool” on
page 483

➤ “QuickTest Professional Action Conversion Tool at a Glance” on page 485

➤ “Understanding Conversion Requirements” on page 488

➤ “Adding Actions to the Action Conversion Tool” on page 490

➤ “Where Do You Go From Here” on page 493

➤ “Modifying Actions Prior to Conversion” on page 494

➤ “Specifying a Name and Location for Your Scripted Component” on
page 498

➤ “Converting Actions to Scripted Components” on page 500

➤ “Understanding the Conversion Logs” on page 504

Understanding the QuickTest Professional Action
Conversion Tool
The Action Conversion Tool can help you convert your existing actions to
scripted components. A scripted component is a reusable script that
performs a specific task in your application. Scripted components can be
combined with business components to build business process tests in your
Quality Center project (with Business Process Testing support).

Chapter 14 • Creating Scripted Components

484

When using Business Process Testing, it is generally preferable to create new
business components in Quality Center rather than convert existing test
actions to scripted components, as this enables Subject Matter Experts
working in Quality Center to maintain the components over time. In
addition, scripted components can be modified only in QuickTest (and not
in Quality Center). Therefore, Subject Matter Experts cannot modify
scripted components, although they can view scripted components in
read-only mode.

You may need to perform additional tasks before conversion to enable the
scripted component to run correctly. For example, after you add an action to
the Action Conversion Tool, you may need to modify the action to make it
suitable for conversion. For more information, see “Understanding
Conversion Requirements” on page 488 and “Modifying Actions Prior to
Conversion” on page 494. After you convert test actions to scripted
components, you can plan and create your business process test.

The conversion process is only one stage in preparing your test actions for
use in Business Process Testing. After you convert an action to a scripted
component, the resources that were associated with the action (for example,
shared object repositories, function libraries, recovery scenarios, and
QuickTest add-ins) are no longer associated with the converted scripted
component. Therefore, after the conversion process, you must open each
scripted component in QuickTest and associate it with the application area
that can provide the component with the required resources and settings.

When you convert an action to a scripted component, you perform the
following steps:

➤ Choose a test or a test folder that contains the actions you want to convert
and add it to the Action Conversion Tool. When you add a test or a test
folder, the Action Conversion Tool analyzes the test(s) to determine if the
actions can be converted, or not. If an action cannot be converted, the
reason is listed in the Status box. For more information, see “Understanding
Conversion Requirements” on page 488.

You can generate a log file to view a list of all actions that can and cannot be
converted, together with an explanation of why a particular action cannot
be converted.

Chapter 14 • Creating Scripted Components

485

➤ Select the check box(es) for the actions that you want to convert. You can
modify the name and path of the target scripted component, if needed.

➤ Convert the action(s) to scripted components.

➤ View the conversion results.

After you convert an action, you can view it in both QuickTest and your
Quality Center project. Before you begin working with the component,
though, you need to associate it with application that can provide it with all
of the required resources and setting.

QuickTest Professional Action Conversion Tool at a Glance

The following illustrates the different parts of the Action Conversion Tool.

Action Conversion
Tool toolbar

Grid columns

Example of an
action that can
be converted

Status icons

Chapter 14 • Creating Scripted Components

486

The Action Conversion Tool window contains the following key elements:

Grid Columns

The Action Conversion Tool grid is divided into several columns. Each
column shows different information.

➤ Status icon. Displays the current status of an action. Possible statuses are:
 indicates that the action was converted successfully.
 indicates that the conversion failed.
 indicates that the action cannot be converted.

In addition, this column displays whether an action is selected or not:
 indicates that the action is selected and can be converted.
 indicates that the action is not currently selected and/or cannot be

converted.

➤ Source Test. Indicates the path of the test containing the action to be
converted. For more information, see “Adding Actions to the Action
Conversion Tool” on page 490.

➤ Source Action. Indicates the action to be converted. For more information,
see “Adding Actions to the Action Conversion Tool” on page 490.

➤ Target Scripted Component. Indicates the path and location in Quality
Center in which the converted action is to be saved as a scripted
component. When you add an action, the Action Conversion Tool provides
a default name and path for it that you can modify, if required. For more
information, see “Specifying a Name and Location for Your Scripted
Component” on page 498.

➤ Status. Indicates the current status of the action. If the Status box is empty,
the action either can be or is already converted to a scripted component. If
the Status box contains text, the message indicates why the action cannot
be converted to a scripted component. For more information, see
“Understanding the Conversion Logs” on page 504.

Chapter 14 • Creating Scripted Components

487

Toolbar

The Action Conversion Tool toolbar contains buttons to assist you in
converting your test actions to scripted components.

The following table lists the buttons in the Action Conversion Tool toolbar.

Button Name Description

Add Test Adds an individual test to the Action Conversion
Tool window.

Add Test Folder Adds all of the tests in the specified test folder to
the Action Conversion Tool window.

Remove From
List

Removes the highlighted action(s) from the list.
Clicking the down arrow provides the following
removal options:

➤ Remove Highlighted. Removes the actions that
are highlighted in the list.

➤ Remove All. Removes all actions from the list.

➤ Remove Converted. Removes all actions that are
already converted from the list.

➤ Remove Non-Convertible. Removes from the list
any action that cannot be converted.

➤ Remove Failed. Removes from the list all actions
that could not be successfully converted.

Edit Scripted
Component
Properties

Opens the Edit Scripted Component Properties
dialog box, enabling you to modify the path to
which the scripted file will be saved.

Generate
Convertible
Status Log

Generates a text file that specifies which actions are
convertible and which are not. Also specifies the
reason(s) why an action cannot be converted.

Check All Selects all of the actions in the window that are
suitable for conversion.

Uncheck All Clears all of the actions in the window so that
none are selected.

Chapter 14 • Creating Scripted Components

488

Understanding Conversion Requirements
You can use the Action Conversion Tool to convert actions that are suitable
for use as scripted components. These include actions that comply with the
requirements of Business Process Testing, as described in the HP Business
Process Testing User’s Guide (part of the Quality Center documentation set).

Some actions may need to be modified before they can be converted to
scripted components because QuickTest tests are designed and built
differently than business components or scripted components. If an action
requires extensive modification to convert it to a scripted component, you
may decide that it preferable to create a new business component, which
can be maintained in your Quality Center project.

Note: For information on modifying tests and actions in QuickTest, refer to
the HP QuickTest Professional User’s Guide.

Convert Checked
Actions

Converts the selected actions to scripted
components and saves them to your Quality
Center project, as specified in the Target Scripted
Component column.

Help Opens the online help for the Action Conversion
Tool.

Exit Closes the Action Conversion Tool window.

Button Name Description

Chapter 14 • Creating Scripted Components

489

You can use the following guidelines to determine whether an action is
suitable for conversion and to decide what preparatory steps you need to
perform prior to converting an action to a scripted component. Only
actions that meet these guidelines are suitable for conversion to scripted
components.

➤ The action name must contain only English characters.

➤ The action must be reusable.

➤ The action cannot call another action (a nested action).

➤ Action parameters cannot be defined with the value type, Any (in the
Parameters tab of the Action Properties dialog box).

➤ If the action uses a shared object repository, that repository must be saved in
the Quality Center project to which you are connected.

➤ If the action accesses external resource files, such as a function library file, a
recovery scenario file, and so forth, the files must be saved in your Quality
Center project.

➤ The action cannot refer to a global data sheet in the Data Table.

➤ If the test containing the action was created using an earlier version of
QuickTest, the test must be upgraded to the current version of QuickTest
before the action can be converted to a component. (You upgrade the test by
opening and saving the test using the current version of QuickTest.)

Note: The Action Conversion Tool may not recognize that an action refers
to the global data sheet in the following cases:

➤ If the global data sheet was renamed to something other than Global.

➤ If the action previously contained at least one local parameter, which was
changed to a global parameter (whose value is stored in the global data
sheet).

In these cases, the Action Conversion Tool may convert the action, but
when the scripted component runs, it will fail. (This is because components
can only access local data sheets.)

Chapter 14 • Creating Scripted Components

490

Adding Actions to the Action Conversion Tool
You add actions to the Action Conversion Tool by adding individual tests or
test folders that contain the actions that you want to convert. You can
choose to add one test at a time or to add all tests located in a specific folder.
All tests must be located in your Quality Center project.

To add a single test to the Action Conversion Tool:

 1 Click the Add Test button. The Select Test to Add dialog box opens.

Chapter 14 • Creating Scripted Components

491

 2 Browse to the test that you want to add and click OK. The Action
Conversion Tool analyzes the test to determine whether its actions can be
converted. It then adds the actions in the test to the Action Conversion Tool
window and displays each action and its details in a separate row in the grid.

The Status column shows the convertible status of each action:

➤ If the Status box is empty, the action is suitable for conversion.

➤ If the Status box contains a message, the action is not currently suitable
for conversion and the reason for this is displayed. You may need to
modify the action in QuickTest and re-add it to the Action Conversion
Tool before you can convert it to a scripted component. For more
information about whether an action can be converted, see
“Understanding Conversion Requirements” on page 488.

Note: Actions are sorted alphabetically according to the test path in the
Source Test column. If a test contains more than one action, the actions are
then sorted according to the action name in the Source Action column.

You can now perform a number of different operations. For more
information, see “Where Do You Go From Here” on page 493.

Chapter 14 • Creating Scripted Components

492

To add all of the tests in a folder to the Action Conversion Tool:

 1 Click the Add Test Folder button. The Select Test Folder to Add dialog box
opens.

 2 Browse to the test folder that you want to add and click OK. The Action
Conversion Tool analyzes all of the tests in the folder to determine whether
their actions can be converted. It then adds all of the actions in the tests to
the Action Conversion Tool window and displays each action and its details
in a separate row in the grid.

Chapter 14 • Creating Scripted Components

493

The Status column shows the convertible status of each action:

➤ If the Status box is empty, the action is suitable for conversion.

➤ If the Status box contains a message, the action is not currently suitable
for conversion and the reason for this is displayed. You may need to
modify the action in QuickTest and re-add it to the Action Conversion
Tool before you can convert it to a scripted component. For more
information about whether an action can be converted, see
“Understanding Conversion Requirements” on page 488.

Note: Actions are sorted alphabetically according to the test path in the
Source Test column. If a test contains more than one action, the actions are
then sorted according to the action name in the Source Action column.

You can now perform a number of different operations. For more
information, see “Where Do You Go From Here” on page 493.

Where Do You Go From Here
After you add actions to the Action Conversion Tool, you can:

➤ add more actions contained in tests or in test folders (see “Adding
Actions to the Action Conversion Tool” on page 490).

➤ generate and review the Conversion Logs, which provides details about
the status of the actions displayed in the Action Conversion Tool (see
“Understanding the Conversion Logs” on page 504).

➤ modify any actions that need updating before they can be converted and
then save and re-add them to the Action Conversion Tool (see
“Modifying Actions Prior to Conversion” on page 494 and “Adding
Actions to the Action Conversion Tool” on page 490).

➤ modify the name or location in the Quality Center project in which the
scripted component will be stored (see “Specifying a Name and Location
for Your Scripted Component” on page 498).

➤ convert checked actions to scripted components (see “Converting
Actions to Scripted Components” on page 500).

Chapter 14 • Creating Scripted Components

494

Modifying Actions Prior to Conversion
As you add actions to the Action Conversion Tool, they are analyzed to
determine if they are suitable for conversion. If an action is not suitable for
conversion, the Action Conversion Tool displays a status message (in the
Status column of the Action Conversion Tool window and in the log files)
that describes why the action is not suitable for conversion. (If an action is
suitable for conversion, no status message is displayed.)

The following table suggests solutions for status messages that may be
displayed for an action. After you make your changes, save the test and
re-add the action to the Action Conversion Tool.

Status Message Solution

The action is not reusable. Only reusable actions can be converted to scripted
components.

To make the action reusable:
1 Right-click the action name and select Action

Properties from the context menu. The Action
Properties dialog box opens.

2 In the General tab, select the Reusable action
check box.

The action is calling
another action.

Nested actions are not supported for components.

Modify the action so that it does not contain calls
to nested actions.

The action contains a
parameter of type “Any”.

The parameter value type, Any (defined in the
Parameters tab of the Action Properties dialog box),
is not supported for components.

Select another value type for the action parameter
or remove the parameter from the action.

Chapter 14 • Creating Scripted Components

495

The action uses a
parameter in a global data
sheet.

If the action uses a parameterized checkpoint, the
value must be stored in a local data sheet.

To modify the checkpoint to use a local (current
action) data sheet:
1 Open the Checkpoint Properties dialog box for

the parameterized checkpoint and click the
Parameter Options button. The Parameter
Options dialog box opens.

2 Select the Current action sheet (local) radio
button and click OK. The data sheet column from
the global data sheet is automatically copied to
the local data sheet. Note that only the data in
the first row is used by the scripted component.

3 Click OK to close the Checkpoint Properties
dialog box.

The action's script refers
to global data sheet.

Components cannot use global data sheets.
(Information cannot be passed between actions.)

Modify the test so that it uses a local (per-action)
data sheet (and not a global data sheet).

The action uses a shared
object repository that is
not saved in Quality
Center.

Components can use only shared object repository
files that are stored in the Quality Center project.

Save the shared object repository as an attachment
in the Test Plan module of your Quality Center
project (for example, Subject/BPT Resources/Object
Repositories). Then, in the source test, associate the
file with the action using the Associate Repositories
dialog box (Resources > Object Repository > Tools >
Associate Repositories).

After you convert the action to a scripted
component, you need to associate the component
with the application area that provides access to
this shared object repository. For more information,
see “Converting Actions to Scripted Components”
on page 500.

Status Message Solution

Chapter 14 • Creating Scripted Components

496

The source test uses a
function library that is not
saved in Quality Center.

Components can use only function library files that
are stored in the Quality Center project.

Save the function library file as an attachment in
the Test Plan module of your Quality Center project
(for example, Subject/BPT Resources/Libraries).
Then, in the source test, associate the file with the
test (using the Test Settings dialog box).

After you convert the action to a scripted
component, you need to associate the component
with the application area that provides access to
this function library. For more information, see
“Converting Actions to Scripted Components” on
page 500.

The source test uses an
environment file that is
not saved in Quality
Center.

Components can use only environment files that
are stored in the Quality Center project.

Save the environment file (as an attachment in .xml
format) to Subject/<folder name> in the Test Plan
module of your Quality Center project. Then, in the
source test, associate the file with the test (using the
Test Settings dialog box).

The source test uses a
recovery scenario file that
is not saved in Quality
Center.

Components can use only recovery scenario files
that are stored in the Quality Center project.

Save the recovery scenario file(s) in the Test Plan
module of your Quality Center project (for example,
Subject/BPT Resources/Recovery Scenarios). Then,
in the source test, associate the file with the test
(using the Test Settings dialog box).

After you convert the action to a scripted
component, you need to associate the component
with the application area that provides access to
this recovery scenario file. For more information,
see “Converting Actions to Scripted Components”
on page 500.

Status Message Solution

Chapter 14 • Creating Scripted Components

497

Note: The Action Conversion Tool may not recognize that an action refers
to the global data sheet in the following cases:

➤ If the global data sheet was renamed to something other than Global.

➤ If the action previously contained at least one local parameter, which was
changed to a global parameter (whose value is stored in the global data
sheet).

In these cases, the Action Conversion Tool may convert the action, but
when the scripted component runs, it will fail. (This is because components
can only access local data sheets.)

The source test uses a
Data Table that is not
saved in Quality Center.

Components can use only external Data Tables that
are stored in the Quality Center project.

Save the external Data Table (as an attachment in
.xls format) in the Test Plan module of your Quality
Center project (for example, Subject/BPT
Resources/Recovery Scenarios). Then, in the source
test, associate the file with the test (using the Test
Settings dialog box).

This test was created
using an earlier version of
QuickTest.

The Action Conversion Tool can only convert
actions from tests created using the current version
of QuickTest.

Before you can convert an action from this test, you
must open and save the test using the current
version of QuickTest. This upgrades the test to the
current version of QuickTest. Alternatively, if you
do not want to upgrade the test to the current
version, you can use an earlier version of the Action
Conversion Tool (installed with an earlier version of
QuickTest).

Status Message Solution

Chapter 14 • Creating Scripted Components

498

Specifying a Name and Location for Your Scripted
Component
All scripted components are stored in your Quality Center project. You can
specify the name and location for each component, or you can accept the
default name and location suggested by the Action Conversion Tool, which
has the following naming convention: Components/<Folder name>/<Test
name>/<Test name>_<Action name>. If you need to create a new folder in
which to store the scripted component, make sure you have the required
Business Process Testing permissions in your Quality Center project.

To modify the name and location of a scripted component:

 1 Open the Edit Scripted Component Properties dialog box in one of the
following ways:

➤ Select the row containing the target location for the scripted component
and click the Edit Scripted Component Properties button.

➤ Double-click anywhere in the row containing the target location for the
scripted component.

The Edit Scripted Component Properties dialog box opens.

Chapter 14 • Creating Scripted Components

499

 2 Modify the path in the Scripted component box manually or click the
browse button. If you click the browse button, the Select Path and Name for
Target Scripted Component dialog box opens, enabling you to select a path
and, in the Component Name box, enter a name.

 3 Click OK. The target path for the scripted component is updated.

Tip: In the Action Conversion Tool, you can also click the Target Scripted
Component cell and modify the path manually or by using the browse
button.

Chapter 14 • Creating Scripted Components

500

Converting Actions to Scripted Components
When you add actions to the Action Conversion Tool, the Status box
indicates whether or not each action can be converted. An empty Status box
indicates that the test can be converted. If the Status box displays a message,
then the action cannot currently be converted. Read the message and
modify the action accordingly. For example, if the message states that the
action is not reusable, you can open the test in QuickTest and make the
action reusable. (For information on working with QuickTest, refer to the
HP QuickTest Professional User’s Guide.)

After you modify and save the test, you can add it to the Action Conversion
Tool again. When you re-add a test, the Action Conversion Tool replaces the
test you added previously with the newly modified test. It also applies the
same target path that you defined previously. Therefore, if you chose a
different location to store the scripted component after it is converted, the
modified test will now use that path.

When the Action Conversion Tool converts an action, it:

➤ creates a new scripted component in your Quality Center project

➤ copies the source action’s steps and content to the scripted component

➤ copies the test settings for the source action’s parent test to the scripted
component’s settings (displayed in the Business Component Settings dialog
box)

➤ copies the source action’s parameterization data

➤ copies the first row from the data sheet to the Data Table that is used by the
scripted component

Note: You use the Test Settings dialog box (File > Settings > Resources) to
specify that a source action use an external data sheet. You use the Value
Configuration Options dialog box for a specific parameter to specify that a
source action use a local (current action) data sheet.

Chapter 14 • Creating Scripted Components

501

After you convert actions to scripted components, you must open each
scripted component in QuickTest and associate it with an application area
that provides all of the resources and settings needed by the component.

To convert actions to scripted components:

 1 Select the check boxes for the actions that you want to convert. You can
click the Check All button to select all actions that are suitable for
conversion.

 2 Click the Convert Checked Actions button to begin the conversion process.
The Convert Actions dialog box opens.

 3 Modify the location in which the Conversion Results log file will be saved, if
needed.

 4 Click OK. The Action Conversion Tool converts the selected actions to
scripted components. Note that this may take some time. As the actions are
converted, a progress bar is displayed. When the conversion is finished, the
Conversion Summary box opens and displays the number of actions that
were successfully converted and the number of conversions that failed.

Chapter 14 • Creating Scripted Components

502

 5 Click the Click here to view the detailed conversion results log link to open
the conversion results log text file, or click OK to close the Conversion
Summary box. If you clicked the link, a text file opens specifying:

➤ the number of actions that were converted successfully

➤ the number of actions that were not converted

➤ the names and details of the actions that were converted

➤ the names and details of the actions that were not converted and the
reason(s) why they were not converted

The Action Conversion Tool also displays the status of each of the actions.

 next to an action indicates that the action was converted successfully.
 next to an action indicates that the conversion failed.
 next to an action indicates that the action cannot be converted.

For more information on limitations that may appear in the Status column,
see “Modifying Actions Prior to Conversion” on page 494.

Chapter 14 • Creating Scripted Components

503

To associate a scripted component with an application area:

 1 In QuickTest, open the scripted component. For more information, see
“Opening a Business Component” on page 461.

 2 Choose File > Change Application Area. The Change Application Area dialog
box opens.

 3 Select a suitable application area from the Application Area name box. A
description of the application area is displayed in the Description area.

Note: After you associate the application area with the component, you may
need to modify the application area to ensure that it provides all of the
required resources and settings. For more information, see “Working with
Application Areas” on page 413.

 4 Click OK to associate the application area with the scripted component.

Chapter 14 • Creating Scripted Components

504

Understanding the Conversion Logs
When you use the Action Conversion Tool, you can generate printable log
files that specify the status of each action—both before and after you
convert your actions to scripted components. The following table describes
the details provided by each of these conversion log files:

Log File Name Description

ConvertibleStatus.txt Indicates the convertibility status of every action in
the Action Conversion Tool, prior to conversion:

➤ provides a summary of how many actions can be
converted and how many cannot be converted
(in total).

➤ for each source test, specifies which action(s) can
be converted and which action(s) cannot be
converted.

➤ for each action that cannot be converted,
specifies the reason(s) why the action cannot be
converted, for example, the action may not be
reusable.

ConversionResults.txt Indicates whether each action was converted
successfully. If an action was not converted
successfully, describes the reason(s) why not. It also:

➤ provides a summary of how many actions were
successfully converted and how many were not.

➤ for each source test, specifies the actions that
were (or were not) converted, and lists the
reason(s) why a particular action was not
converted.

Chapter 14 • Creating Scripted Components

505

Viewing the Convertible Status Log File

You can generate and view the convertible status log file
(ConvertibleStatus.txt) at any time.

To generate the convertible status log file:

 1 In the Action Conversion Tool, add the actions that you want to convert to
scripted components. For more information on adding actions, see “Adding
Actions to the Action Conversion Tool” on page 490.

 2 Click the Generate Convertible Status Log button. The Save As dialog box
opens.

 3 Browse to the location in which you want to save the log file (you can
rename it, if needed) and click Save. The file is saved to the specified
location.

Viewing the Conversion Results Log File

When you convert actions to scripted components, you specify the location
in which you want to save the conversion results log file. After the Action
Conversion Tool converts the selected actions to scripted components, it
generates the ConversionResults.txt log file automatically. You can view the
conversion results log file immediately by clicking the link. You can also
view the conversion results log file at a later time by browsing to the
location in which you stored it. For more information, see “Converting
Actions to Scripted Components” on page 500.

Chapter 14 • Creating Scripted Components

506

507

15
Working with the Keyword View

The Keyword View provides an easy way to create, view, and modify tests in
a graphical easy-to-use format.

This chapter includes:

 ➤ About Working with the Keyword View on page 508

 ➤ Understanding the Keyword View on page 509

 ➤ Adding a Step to Your Component on page 514

 ➤ Adding Other Types of Steps to Your Component on page 532

 ➤ Modifying the Parts of a Step on page 532

 ➤ Working with Parameters on page 533

 ➤ Working with Comments on page 541

 ➤ Managing Component Steps on page 543

 ➤ Using Keyboard Commands in the Keyword View on page 544

 ➤ Defining Keyword View Display Options on page 545

 ➤ Working with Breakpoints in the Keyword View on page 551

Chapter 15 • Working with the Keyword View

508

About Working with the Keyword View

The Business Component Keyword View enables you to create and view the
steps of a component in a modular, table format. Each step is a row in the
Keyword View that is comprised of individual, modifiable parts. You create
and modify steps by selecting items and operations in the Keyword View
and entering information as required. Each step is automatically
documented as you complete it, enabling you to view a description of your
component in understandable sentences. You can also use these descriptions
as instructions for manual testing, if required.

You can use the Keyword View to add new steps to a component and to
view, modify, and debug existing component steps. When you add or
modify a step, you select the test object or other step type you want for the
step, select the method operation you want to perform, and define any
necessary values for the selected operation or statement.

In general, the Subject Matter Expert uses the Automation tab in the Quality
Center Business Components module to add content to and modify
component steps. However, this can also be done in QuickTest. The Business
Component Keyword View that you see in QuickTest is the same as the
Automation tab that the Subject Matter Expert uses in Quality Center.

The Business Component Keyword View differs from the QuickTest Test
Keyword View in that it provides component-specific options that are
specially designed to facilitate the creation of business components. This
makes it easy and intuitive for Subject Matter Experts to create business
components in Quality Center.

The Business Component Keyword View can include comments, which
enable you to enter manual steps and informational separators in a business
component. All items (test objects and operations) in the Keyword View are
displayed at the same hierarchical level, even if they are child objects of the
previous step or operations to be performed. This makes it easier for Subject
Matter Experts to manage their business component steps.

To work with the Business Component Keyword View, QuickTest must be
connected to a Quality Center project with Business Process Testing support.

Chapter 15 • Working with the Keyword View

509

Understanding the Keyword View

The Business Component Keyword View is comprised of a table-like view, in
which each step is a separate row in the table, and each column represents
the different parts of the steps. The columns displayed vary according to
your selection. For more information, see “Defining Keyword View Display
Options” on page 545.

When you create a new business component, the Keyword View is empty, as
shown below.

As you add steps to a component, each step is defined as a single row in the
Keyword View. You can add a step below the currently selected step, at the
end of an existing component, or at the beginning of a new component.
You can also enter standard and bitmap checkpoints, output values, and
comments.

Chapter 15 • Working with the Keyword View

510

Steps. A step represents an operation to be performed. After you create a
step, you specify its contents. For example, you can choose the test object
on which the step is performed, specify the operation to be performed in the
step, and specify any relevant input or output values. When a business
process test is run in Quality Center, the steps defined in the associated
business components are performed. This section describes how to add a
step to your business component.

Comments. A comment is a free text entry that spans an entire row.
The icon indicates a comment. You use comments to define manual
steps or to provide information on adjacent steps in your business
component. Comments are not processed when a business process test is
run. For more information, see “Working with Comments” on page 541.

You can add steps to a component manually or by recording the steps you
perform on your application. Each step is inserted as a row in the Keyword
View. For example, the Keyword View could contain the following rows:

These rows show the following three steps that are all performed on the
Welcome: Mercury Tours page of the Mercury Tours sample web site:

➤ Mercury is entered in the userName edit box.

➤ The encrypted string 3ee35 is entered in the password edit box.

➤ The Sign-In image is clicked.

➤ The Documentation column translates each of the steps into
understandable sentences.

You can use the Keyword View to add steps at any point in your component.
After you add steps, you can modify or delete them using standard editing
commands and drag-and-drop functionality. You can print the contents of
the Keyword View to your Windows default printer (and even preview the
contents prior to printing). For more information, see “Printing a
Component” on page 474.

Chapter 15 • Working with the Keyword View

511

In the Keyword View, you can also view checkpoint and output value
properties.

The Business Component Keyword View can contain any of the following
columns: Item, Operation, Value, Output, and Documentation. A brief
description of each column is provided below.

Item Column
The item on which you want to perform the step—either a test object or a
user-defined function (Operation). You must select an option from the Item
column before you can add additional content to a step. For more
information, see “Selecting an Item for Your Step” on page 516.

Operation Column
The operation to be performed on the item. This column contains a list of
all available operations (methods, functions, and sub-procedures) that can
be performed on the item selected in the Item column, for example, Click
and Select. The most commonly used operation for the item selected in the
Item column is displayed by default. For more information, see “Selecting
the Operation for Your Step” on page 525. You can define additional
operations for a test object using the RegisterUserFunc method. For more
information, see “Working with User-Defined Functions and Function
Libraries” on page 373.

Value Column
The argument values for the selected operation. The Value cell is partitioned
according to the number of arguments of the selected option in the
Operation column. The value can be a constant, a local parameter, or a
component parameter, depending on the selected option.

Local parameter. A local parameter is specific to the business component
and can only be accessed by that component. It is intended for use in a
single step or between component steps, for example, as an output
parameter for one step and an input parameter for a later step. For more
information, see “Working with Parameters” on page 533.

Chapter 15 • Working with the Keyword View

512

Component parameter. A component parameter is a parameter that can be
accessed by any component in your Quality Center project. For more
information, see “Defining Parameters for Your Component” on page 609.

Output Column
The parameter in which output values for the step are stored. For example, if
you select an output parameter named cCols, the output value of the
current step would be stored in the cCols parameter. You can then use the
value stored in the output parameter later in the component as an input
parameter. As in the Value column, you can use two types of parameters
when specifying an output parameter—a local parameter or a component
parameter.

Documentation Column
Read-only auto-documentation of what the step does in an
easy-to-understand sentence, for example, Click the “Sign-in” image. or Select
“San Francisco” in the “toPort” list. If you want to print or view only the steps,
you can choose to display only this column. For example, you may want to
print or view manual testing instructions.

Tips:

➤ You can display only the Documentation column of a component by
right-clicking the column header row and choosing Documentation Only
from the displayed menu.

➤ You can also copy the documentation by selecting Edit > Copy
Documentation to Clipboard, or right-clicking the column header row
and choosing Copy Documentation to Clipboard from the displayed
menu, and then paste it into a different application, as required.

Chapter 15 • Working with the Keyword View

513

Note: If you do not see one or more of these columns in the Keyword View,
you can use the Keyword View Options dialog box to display them. For
more information, see “Defining Keyword View Display Options” on
page 545.

Tips for Working with the Keyword View

➤ You can use the left and right arrow keys to move the focus one cell to the
left or right, with the following exceptions:

➤ In the Item column, the left and right arrow keys collapse or expand the
item (if possible). If not possible, the arrow keys behave as in any other
column.

➤ When a cell is in edit mode, for example, when modifying a value or
comment, the left and right arrow keys move within the edited cell.

➤ When a Value cell is selected, press CTRL+F11 to open the Value
Configuration Options dialog box.

➤ When the entire step is selected (by clicking to its left), use the + key
(expands a specific branch), - key (collapses a specific branch), and * key
(expands all branches) to expand and collapse the Item tree.

➤ When a row is selected (not a specific cell), you can type a letter to jump to
the next row that starts with that letter.

Note: In addition to the above commands, you can also use QuickTest menu
shortcuts. For more information, see “Performing QuickTest Commands” on
page 71.

Chapter 15 • Working with the Keyword View

514

Adding a Step to Your Component

You can add a step at any point in your component. You can add a step
below the currently selected step, at the end of a component, or at the
beginning of a new component.

To add a step:

 1 Perform one of the following:

➤ Click anywhere in the Keyword View (below the existing steps, if any) to
add a step at the end of the component. If no steps are defined yet, this
adds the first step to the component.

➤ Choose Insert > New Step to add a new step after the existing steps (if
any). If the component does not contain any steps, this adds the first step
to the component.

➤ Select an existing step and choose Insert > New Step to add a new step
between existing steps. (If you select the last step, QuickTest adds a step
at the end of the component.)

➤ Right-click an existing step and choose Insert New Step from the
context-sensitive menu.

A new step is added to the Keyword View below the selected step.

Note: The Select an item list is generally expanded to display all applicable
test objects, as well as the Operation and Comment items.

Chapter 15 • Working with the Keyword View

515

 2 Define the step by clicking in the cell for the part of the step you want to
modify and specifying its contents, as described below. Each cell in the step
row represents a different part of the step. For each step, you can define the
following:

➤ Item. Either a test object on which you perform a step, or a user-defined
function (Operation). You must select an option from the Item column
before you can add additional content to a step. For more information,
see “Selecting an Item for Your Step” on page 516.

Alternatively, you can choose to add a Comment, which enables you to
add a manual step or other free text information between steps. For more
information, see “Working with Comments” on page 541.

➤ Operation. The operation to be performed on the item. For more
information, see “Selecting the Operation for Your Step” on page 525.

➤ Value. (If relevant.) The argument values for the selected operation. For
more information, see “Defining Values for Your Step Arguments” on
page 526.

➤ Comment. (If relevant.) Textual notes about the step. For more
information, see “Working with Comments” on page 541.

➤ Output. (If relevant.) The parameter in which output values for the step
are stored. For more information, see “Defining an Output Value for Your
Step” on page 529.

Note: The Documentation cell is read-only. This cell displays an explanation
of what the step does in an easy-to-understand sentence, for example, Click
the “Sign-in” image. or Select “San Francisco” in the “toPort” list. In most cases,
QuickTest can generate the description displayed in this cell.

If you created a function library and added (associated) it to the associated
application area, QuickTest can display documentation for it only if you
defined the relevant text in the function library. For more information, see
“Documenting the Function” on page 399 and “Managing Function
Libraries” on page 426.

Chapter 15 • Working with the Keyword View

516

Tip: You can use the standard editing commands (Cut, Copy, Paste, and
Delete) in the Edit menu or in the context-sensitive menu to make it easier
to define or modify your steps. You can also drag and drop steps to move
them to a different location within your component. For more information,
see “Managing Component Steps” on page 543 and “Using Keyboard
Commands in the Keyword View” on page 544.

 3 After you make your changes, save the component to your Quality Center
project. For more information, see “Saving a Business Component” on
page 464.

Selecting an Item for Your Step
An item can be a test object in the shared object repository or a user-defined
function—Operation. (The Operation item is available only if user-defined
functions were added to a function library that is associated with the
component’s application area. For more information, see “Managing
Function Libraries” on page 426 and “Working with User-Defined Functions
and Function Libraries” on page 373.)

This section describes:

➤ “Selecting a Test Object from the Item List” on page 517

➤ “Selecting a Test Object from the Shared Object Repository” on page 518

➤ “Selecting a Test Object from Your Application” on page 521

➤ “Selecting the Operation Item” on page 524

After you select an item, you specify an operation for it. For more
information, see “Selecting the Operation for Your Step” on page 525.

Chapter 15 • Working with the Keyword View

517

Note: In addition to selecting an item or Operation in the Item cell, you can
also select Comment. This instructs QuickTest to convert the selected step
into a free text cell that spans the entire row. After the step is converted into
a comment, it cannot be restored to a step. You use the Comment option to
enter manual steps or to provide information on adjacent steps. For more
information, see “Working with Comments” on page 541.

Selecting a Test Object from the Item List

The test objects available in the Item list are the sibling and child test
objects of the previous step’s test object, as defined in the shared object
repository. The example below shows the objects available for the step
following a userName test object.

To select a test object from the displayed Item list:

 1 Click in the Item cell, then click the arrow button to display the Item list. If
you have just created a new step, the list is displayed automatically as soon
as you create the new step.

 2 In the Item list, select the test object on which you want to perform the
step. The item you select is displayed in the Item cell. You now need to
specify an operation for the step. For more information, see “Selecting the
Operation for Your Step” on page 525.

Chapter 15 • Working with the Keyword View

518

Selecting a Test Object from the Shared Object Repository

The shared object repository includes all of the test objects that are defined
in the application area on which your component is based (including those
displayed in the Item list, above).

You can select any object in the object repository tree for your new step. If
the object repository is very large, you can search for the object. For
example, you may want to add a password object that you know is an Edit
box. You can search all the Edit type objects for one called password, or even
one containing the letter p.

For more information on the object repository, see Chapter 4, “Working
with Objects.” For more information on Object statements, see “Accessing
Run-Time Object Properties and Methods” on page 354.

To select a test object from the shared object repository:

 1 Click in the Item cell, then click the arrow button to display the Item list. If
you have just created a new step, the list is displayed automatically as soon
as you create the new step.

Chapter 15 • Working with the Keyword View

519

 2 In the Item list, choose Select another object. The Select Object for Step
dialog box opens.

 3 Select an object from the object repository tree. If the object repository is
very large, you can search for the object, as described below. If a search is
not required, proceed to step8.

Chapter 15 • Working with the Keyword View

520

 4 In the Name box, enter the name of the object, or any part of the name. For
example, you can enter p to search for all object names containing the
letter p.

Note: If the Name box is left empty, all objects of the selected object type are
considered matching criteria.

 5 In the Type box, select the type of object for which to search, or select <All>
to search for the object in all the object types.

Note: The object types in this list are a generic grouping of objects according
to the general object characteristics. For example, the List type contains list
and list view objects, as well as combo boxes; the Table type contains both
tables and grids; and the Miscellaneous type contains a variety of other
objects, such as WebElement and WinObject.

 6 Click the Find Next button. The search starts at the currently selected node,
and the number of objects that match your criteria is displayed. The first
object in the list that matches your criteria is highlighted.

 7 If required, click the Find Next button to navigate through all the objects
that match your search criteria. The search continues to the end of the tree,
then wraps to the beginning of the tree, and continues.

Tip: Press F3 to find the next object that matches your search criteria, or
SHIFT+F3 to find the previous match.

 8 Click OK. The object is displayed in the Item column of the Keyword View.
and is also added to the Item list. You can now specify the operation for the
selected object. For more information, see “Selecting the Operation for Your
Step” on page 525.

Chapter 15 • Working with the Keyword View

521

Selecting a Test Object from Your Application

If the shared object repository does not include the test object that you need
for this step, you can select it directly from your application and add it to
the shared object repository so that you can use it in this and other steps.

To add a test object from your application:

 1 Click in the Item cell, then click the arrow button to display the Item list. If
you have just created a new step, the list is displayed automatically as soon
as you create the new step.

 2 In the Item list, choose Object from repository. The Select Object for Step
dialog box opens.

Chapter 15 • Working with the Keyword View

522

 3 Click the pointing hand button. QuickTest is hidden.

 4 Use the pointing hand to click on the required object in your application.

Tip: You can hold the left CTRL key to change the window focus or perform
operations such as right-clicking or moving the pointer over an object to
display a context menu. If the window containing the object you want to
click is partially hidden by another window, you can also hold the pointing
hand over the partially hidden window for a few seconds until the window
comes into the foreground and you can point and click on the object you
want. Additionally, if the window containing the object you want to select
is minimized, you can display it by holding the left CTRL key, right-clicking
the application in the Windows task bar, and choosing Restore from the
context menu.

If the location you clicked is associated with more than one object, the
Object Selection dialog box opens.

 5 Select the object for the new step and click OK. The object is displayed in the
shared object repository tree in the Select Object for Step dialog box.

Chapter 15 • Working with the Keyword View

523

 6 Click OK. The object is displayed in the Item column in the Keyword View.
You can now specify the operation for the selected object. For more
information, see “Selecting the Operation for Your Step” on page 525.

Note: Subject Matter Experts working in Quality Center can select only
objects that are stored in the shared object repositories (in the component’s
application area).

Tips: If you select an object in your application that is not in the shared
object repository, a test object is added to the local object repository when
you insert the new step. After you add a new test object to the local object
repository, it is recommended to rename it, if its name does not clearly
indicate its use. For example, you may want to rename a test object named
Edit (that is used for entering a username) to UserName. This will enable
Subject Matter Experts to select the appropriate test object when adding
steps using test objects located in this shared object repository.

After you add the required objects to the local object repository, you can use
the Object Repository Merge Tool to update the shared object repository and
make the new objects available to other components. For more information,
see “Updating a Shared Object Repository from Local Object Repositories”
on page 268.

If you are adding a container test object, it is also recommended to specify
its context, for example, if you are adding a confirmation message box from
a Login page, you may want to name it Login > Confirm. For more
information, see “Renaming Test Objects” on page 140.

Chapter 15 • Working with the Keyword View

524

Selecting the Operation Item

If your business component is based on an application area that references
at least one function library, you can select the Operation item and select a
function for the step.

User-defined functions enable you to perform a variety of additional
operations, for example, open an application at the start of a business
component or check the value of a specific property.

Note: If the application area on which your component is based is not
associated with any function libraries, the Operation option does not appear
in the Item list.

To select an Operation item:

 1 Click in the Item cell, then click the arrow button to display the Item list. If
you have just entered a new step, the list is displayed automatically as soon
as you create the new step.

 2 In the Item list, choose Operation. The Operation item is displayed in the
Item cell. You now need to specify an operation for the step. For more
information, see “Selecting the Operation for Your Step” on page 525.

Chapter 15 • Working with the Keyword View

525

Selecting the Operation for Your Step
The Operation cell specifies the operation to be performed on the item listed
in the Item column. The available operations vary according to the item
selected in the Item column. When you select an item, all operations
(keywords) associated with that item (via the application area) are listed.

For example, if you selected a browser test object, such as a WebButton
object, the list contains all of the methods that were selected for the
WebButton object from the list of available keywords in the Keywords pane
of the component’s application area. If you selected Operation in the Item
column, the list contains the user-defined functions defined in the function
library or libraries associated with the business component (via its
application area).

You specify function libraries in the Function Libraries pane of the
Application Area. For more information, see “Managing Function Libraries”
on page 426.

To select an operation for the step:

Click in the Operation cell. Then click the down arrow button and select the
operation to be performed on the item. The operation can be either a
standard operation or a user-defined function. For more information on
user-defined functions, see “Working with User-Defined Functions and
Function Libraries” on page 373.

Note: When you position the cursor over an operation in the list, a tooltip
describes what this operation performs. For user-defined functions, the
tooltip is taken from the description that you provided in the associated
function library. For more information, see “Documenting the Function” on
page 399.

If you selected a test object in the Item column, all selected operations for
the test object item (as defined in the Keywords pane in the application
area) are automatically displayed in the Operation column. The Operation
list for that test object can include out-of-the-box operations and any
user-defined functions that were registered to that specific test object type.

Chapter 15 • Working with the Keyword View

526

If you selected Operation in the Item column, QuickTest displays the
functions that you defined in the function library, alphabetically. (You
manage the function libraries for components in the Function Libraries
pane of the Application Area. For more information, see “Managing
Function Libraries” on page 426.)

Defining Values for Your Step Arguments
The Value cell lists the values for each of the operation arguments. You can
insert a constant value or a parameter for each argument. If you insert a
parameter, it can be either a local parameter or a component parameter. For
more information, see “Working with Parameters” on page 533 and
“Defining Parameters for Your Component” on page 609.

You can also encode password values. For more information, see “Inserting
Encoded Passwords into Method Arguments” on page 528.

The Value cell is partitioned according to the number of possible arguments
of the selected operation. Each partition contains different options,
depending on the type of argument that can be entered in the partition, as
follows:

Argument
Partition

Argument Type Instructions

String Enables you to enter a string containing English
letters and numbers, enclosed by quotes. If you
do not enter the quotes, QuickTest adds them
automatically. If you modify a cell that contains
a string enclosed by quotes by removing the
quotes, QuickTest will not restore the quotes
and the value will be treated as a variable name.

Integer Enables you to enter any number, or use the up
and down arrows to select a number.

Boolean Enables you to select a True or False value from
the list.

Chapter 15 • Working with the Keyword View

527

To define or modify a value:

Click in each partition of the Value cell and enter the argument values for
the selected operation. Note that when you click in the Value cell, a tooltip
displays information for each argument. In the tooltip, the argument for the
partition that is currently highlighted is displayed in bold, and any optional
arguments are enclosed in square brackets.

To add multi-line arguments:

You can also add multi-line argument values by pressing SHIFT+ENTER to add
line breaks to your argument value. After you enter a multi-line argument
value, QuickTest automatically converts it to a string, and displays only the
first line of the argument, followed by an ellipsis (...). This format for
multi-line argument values is also displayed in the Documentation column
of the Keyword View.

Tip: Select the cell to display the entire argument value to be used in the
step. Note that the argument value is used during the run session exactly as
it appears in the step. For example, if you enter quotation marks as part of
the argument value, they will be included in the argument value used
during the run session. QuickTest automatically interprets a multi-line value
as a string, so you do not need to add quotation marks for this purpose.

Predefined
Constant

Enables you to select a predefined value from
the list.

Argument
Partition

Argument Type Instructions

Chapter 15 • Working with the Keyword View

528

To parameterize the value for an argument using a local or component
parameter:

Click the button in the required Value cell. For information on
parameterizing a local value, see “Working with Parameters” on page 533.
For information on parameterizing a component value, see “Defining
Parameters for Your Component” on page 609.

Inserting Encoded Passwords into Method Arguments
You can encode passwords to use the resulting strings as method arguments.
For example, your Web site may include a form in which the user must
supply a password. You may want to test how your site responds to different
passwords, but you also want to ensure the integrity of the passwords. The
Password Encoder enables you to encode your passwords.

To encode a password:

 1 From the Windows menu, choose Start > Programs > QuickTest Professional
> Tools > Password Encoder. The Password Encoder dialog box opens.

 2 Enter the password in the Password box.

 3 Click Generate. The Password Encoder encrypts the password and displays it
in the Encoded String box.

 4 Use the Copy button to copy and paste the encoded value into the Data
Table.

 5 Repeat the process for each password you want to encode.

 6 Click Close to close the Password Encoder.

Chapter 15 • Working with the Keyword View

529

Defining an Output Value for Your Step
You define the output type and settings for the output value in the Output
cell. These determine where the output value is stored and how it is used
during the component run session. When the output value step is reached,
QuickTest retrieves each value selected for output and stores it in the
specified location for use later in the run session.

When you create a new output value step, QuickTest assigns a default
definition to each value selected for output. When you output a value for a
step in a business component:

➤ If at least one output component parameter is defined in the component,
the default output type is Component parameter and the default output
name is the first output parameter displayed in the Parameters tab of the
Business Component Settings dialog box.

➤ If no output component parameter is defined in the component, the default
output type is Local parameter and the default name is p_Local.

You modify the output parameter, as required. If you select a local
parameter, you can modify it directly in the Output Options dialog box. If
you select a component parameter, the details for the output parameter are
read-only. You can modify the parameter details in the Parameters tab of the
Business Component Settings dialog box. For more information, see
“Defining Parameters for Your Component” on page 609.

If, after you specify an output value, you choose not to save the output
value, you can cancel it. For more information, see “Canceling Output to a
Parameter” on page 531.

Chapter 15 • Working with the Keyword View

530

To configure output to a parameter:

 1 Click in the Output cell to create or edit an output to a parameter. Click the
Output button or press CTRL + F11. The Output Options dialog box
opens.

 2 In the Output Types box, select either Component parameter or Local
parameter. The Details area displays the options available for the selected
component type.

Note: The Component parameter type is available only if an output
component parameter is defined for the component. If you select a
component parameter, the information displayed is read-only. For more
information, see “Defining Parameters for Your Component” on page 609.

Chapter 15 • Working with the Keyword View

531

 3 Select the required parameter from the Name box. If no local parameter is
defined, then p_Local is the default parameter name displayed.

➤ You can create a new local parameter, if needed. For more information,
see “Working with Parameters” on page 533.

➤ If you select a local parameter, specify the details for it. For more
information, see “Working with Parameters” on page 533.

➤ If you select a component parameter, its details are read-only.

 4 Click OK. The Output cell displays the parameter to which the output value
will be saved.

Tip: If you click in the Output cell after you specify an output parameter for
it, an icon specifying the type of parameter is displayed in the cell:

 Indicates a component parameter.

 Indicates a local parameter.

Canceling Output to a Parameter

If you do not want to store the output value for a component step, you can
cancel it.

To cancel output to a parameter:

Click in the Output cell. Then click the Cancel button or press the DELETE
key to cancel output to the parameter.

Chapter 15 • Working with the Keyword View

532

Adding Other Types of Steps to Your Component

In addition to adding standard steps to your component in the Keyword
View, you can also insert the following special types of steps using the
relevant options from the Insert menu. Each step is entered as a row in the
Keyword View, and you can then modify it as described in “Modifying the
Parts of a Step” on page 532.

➤ You can insert a checkpoint step. For more information, see “Understanding
Checkpoints” on page 553.

➤ You can insert an output value step. For more information, see “Outputting
Values” on page 571.

➤ You can insert comments in steps to separate parts of a component to add
details about a specific part. For more information, see “Adding Comments”
on page 786.

 Modifying the Parts of a Step

You can modify any part of a step in the Keyword View. For example, you
can change the test object on which the step is performed or change the
operation to be performed in the step.

When working in the Keyword View, you can use the standard editing
commands (Cut, Copy, Paste and Delete) in the Edit menu or in the
context-sensitive menu to make it easier to modify your steps.

Tip: You can copy and paste, or drag and drop steps to move them to a
different location in an action.

To modify a step, click in the cell containing the part of the step you want to
modify and specify the content of the cell. Each cell in the step row
represents a different part of the step. For more information, see “Adding a
Step to Your Component” on page 514.

Chapter 15 • Working with the Keyword View

533

Working with Parameters

You can define input parameters that pass values into your business
component and output parameters that pass values from your component
to external sources or from one step to another step. You can then use these
parameters to parameterize input and output values in steps.

You can define two types of parameters—local parameters and component
parameters.

Local parameter. Variable values defined within a component for use within
the same component.

Local input parameter values can be received and used by a later
parameterized step in the same component. Local output parameters can be
returned by an operation or component step for use within the same
component. Local parameter output values can be viewed in the business
process test results.

You define local parameters in the Business Component Keyword View
using the Configure Value Options dialog box for input parameters and the
Output Options dialog box for output parameters. You cannot delete local
parameters, but you can cancel the input or output to them.

Component parameter. Variable values defined within a component for use
in the same component or later components in the business process test.

Component input parameter values can be received and used as the values
for specific, parameterized steps in the component. Component output
parameter values can be returned as input parameters in components that
are used later in the test. These values can also be viewed in the business
process test results.

You define component parameters in the Parameters tab of the Business
Component Settings dialog box or in the Quality Center Business
Components module.

This section describes how to configure local parameters and parameterize
input and output values using local and component parameters. For
information on configuring component parameters, see “Defining
Parameters for Your Component” on page 609.

Chapter 15 • Working with the Keyword View

534

After you define a parameter you can use it to parameterize a value.
Alternatively, you can apply a constant value to the parameter by typing it
directly in the Value cell.

Parameterizing Input Values
In the Value cell, you can parameterize input values for a step using a local
parameter or a component parameter.

To parameterize an input value using a local parameter:

 1 In the Value cell, click the parameterization button or press CTRL + F11.
The Value Configuration Options dialog box opens.

Note: If at least one input component parameter is defined in the
component, the default input type is Component parameter and the default
input name is the first output parameter displayed in the Parameters tab of
the Business Component Settings dialog box.

Chapter 15 • Working with the Keyword View

535

 2 In the Parameter box, select Local parameter. The details for the local
parameter type are displayed.

 3 Specify the property details for the local parameter:

➤ Name. Enter a meaningful name (case sensitive) for the parameter or
choose one from the list.

➤ Value. Enter an input value for the parameter. If you do not specify a
value, QuickTest assigns a default value, as follows:

➤ Description. Enter a brief description for the parameter.

 4 Click OK. The local parameter is displayed in the Value cell of your step.
When the component is run, it will use the value specified in the parameter
for the step.

Type of Value QuickTest Default Value

String Empty string

Boolean True

Date The current date

Number 0

Password Empty string

Chapter 15 • Working with the Keyword View

536

Tips:

➤ You can cancel the parameterization of a value by selecting the Constant
option in the Value Configuration Options dialog box and entering a
constant value.

➤ If you click in the Value cell after you define a local parameter for it,
the icon is displayed in each part of the cell for which a local
parameter is defined.

To parameterize an input value using a component parameter:

 1 In the Value cell, click the parameterization button or press CTRL + F11.
The Value Configuration Options dialog box opens.

Chapter 15 • Working with the Keyword View

537

Note: If at least one input component parameter is defined in the
component, the default input type is Component parameter and the default
input name is the first input parameter displayed in the Parameters tab of
the Business Component Settings dialog box.
If no component parameter is defined, you must define one before you can
use it to parameterize an input value. For more information, see “Defining
Parameters for Your Component” on page 609.

 2 In the Parameter box, select the component parameter you want to use for
the parameterized value. The names and full descriptions of the available
component parameters are displayed as read-only. You can resize the
display, as needed, and, if the list of parameters is long, you can scroll
through the list.

 3 Click OK. The component parameter is displayed in the Value cell of your
step. When the component is run, it will use the value specified in the
parameter for the step.

Chapter 15 • Working with the Keyword View

538

Tips:

➤ You can cancel the parameterization of a value by selecting the Constant
option in the Value Configuration Options dialog box and entering a
constant value.

➤ If you click in the Value cell after you define a component parameter for
it, the icon is displayed in each part of the cell for which a
component parameter is defined.

Parameterizing Output Values
You can parameterize output values for a step using a local parameter or a
component parameter, in the step Output cell. You can then use the output
parameter value as an input value in a later step in the component, or in a
later component in the business process test.

To parameterize an output value using a local parameter:

 1 In the Output cell, click the output value button or press CTRL + F11. The
Output Options dialog box opens.

Chapter 15 • Working with the Keyword View

539

Note: If at least one output component parameter is defined in the
component, the default output type is Component parameter and the
default output name is the first output parameter displayed in the
Parameters tab of the Business Component Settings dialog box.

 2 In the Output Types box, select Local parameter. The details for the local
parameter type are displayed.

 3 Specify the property details for the local parameter:

➤ Name. Enter a meaningful name for the parameter or choose one from
the list.

➤ Description. Enter a brief description for the parameter.

 4 Click OK. The local parameter is displayed in the Output cell of your step.
When the component is run, it will output the value to the output
parameter specified for the step.

Tip: If you click in the Output cell after you define a local parameter for it,
the icon is displayed in each part of the cell for which a local parameter
is defined.

Chapter 15 • Working with the Keyword View

540

To parameterize an output value using a component parameter:

 1 In the Output cell, click the output value button or press CTRL + F11. The
Output Options dialog box opens.

Note: If at least one output component parameter is defined in the
component, the default output type is Component parameter and the
default output name is the first output parameter displayed in the
Parameters tab of the Business Component Settings dialog box.
If no component parameter is defined, you must define one before you can
use it to parameterize an output value. For more information, see “Defining
Parameters for Your Component” on page 609.

Chapter 15 • Working with the Keyword View

541

 2 In the Parameter box, select the component parameter in which to store the
output value. The names and full descriptions of the available component
parameters are displayed as read-only. You can resize the display, as needed,
and, if the list of parameters is long, you can scroll through the list.

 3 Click OK. The component parameter is displayed in the Output cell of your
step. When the component is run, it will output the value to the output
parameter specified for the step.

Tip: If you click in the Value cell after you define a local parameter for it,
the icon is displayed in each part of the cell for which a local parameter
is defined.

Working with Comments

A Comment is a free text entry that can be entered in a business component.
The icon indicates a comment in the Keyword View. You can use
comments for several purposes. For example, you may want to plan steps to
be included in a business component before your application is ready to be
tested. Then, when your application is ready to be tested, you can use your
plan to verify that every item that needs to be tested is included in the
component steps.

You may want to add comments to a component to improve readability and
make it easier to update. For example, you may want to add a comment
before each section of a component to specify what that section includes.

Chapter 15 • Working with the Keyword View

542

After you add a comment, it is always visible in your component, as long as
one or more columns are displayed. For information on selecting columns
to display, see “Defining Keyword View Display Options” on page 545. In
addition, as you scroll from side to side across the grid, the comment can
always be seen. QuickTest does not process comments when it runs a
component.

Note: After you insert a comment, you cannot change it to a step.

To add a comment to your component:

 1 Choose Insert > Comment, click in the Item cell and choose Comment from
the displayed list, or right-click on a component step and select Insert
Comment. A comment row is added below the selected step.

 2 Enter text in the Comment row. If you do not enter text, QuickTest deletes
the comment when the cursor focus is removed.

To modify an existing comment:

Double-click the comment in the Comment column. The text box becomes
a free text field. Alternatively, you can click the icon, which acts as a
toggle, making the comment either editable or read-only.

To delete a comment:

 1 Select the comment and choose Edit > Delete, press the DELETE key on your
keyboard, or right-click and select Delete from the context-sensitive menu.

 2 Click Delete Comment to confirm. The comment is permanently removed
from the business component.

Chapter 15 • Working with the Keyword View

543

Managing Component Steps

You can move a component step before or after any other step or comment
in a component. You can also delete it if it is no longer required.

Moving a Component Step
You can move a step to a different location within a component, as needed.

To move a step in the component:

➤ In the Item column, drag the step up or down and drop it at the required
location. When you drag a selected step, a line is displayed, enabling you to
see the location to which the step will be moved.

➤ Copy or cut the step to the Clipboard and then paste it in the required
location. You can use Edit > Copy or CTRL + C to copy the step, Edit > Cut or
CTRL + X to cut the step, and Edit > Paste or CTRL + V to paste the step.

Deleting a Component Step
You can delete a component step, if required. Before you delete a step, make
sure that removing it will not prevent the component from running
correctly.

Note: You cannot delete a step if one of its cells is in edit mode.

To delete a step:

 1 Select the step that you want to delete and choose Edit > Delete, press the
DELETE key, or right-click on the step and select Delete from the
context-sensitive menu. A warning message displays.

 2 Click Delete Step to confirm. The step is deleted from the component.

Chapter 15 • Working with the Keyword View

544

Using Keyboard Commands in the Keyword View

If you prefer to use your keyboard, you can use the following keyboard
commands to navigate within the Keyword View:

➤ Press F8 to add a new step below the currently selected step.

➤ Press SHIFT+F8 to add a new step after a conditional or loop block.

➤ Press F7 to use the Step Generator to add a new step below the selected step.

➤ The TAB and SHIFT+TAB keys move the focus left or right within a single row,
unless you are in a cell that is in edit mode. If so, press ENTER to exit edit
mode, and then you can use the TAB keys.

➤ When a cell containing a list is selected:

➤ You can press SHIFT+F4 to open the list for that cell.

➤ You can change the selected item by using the up and down arrow keys.
In the Item column, the list must be open before you can use the arrow
keys.

➤ You can type a letter or sequence of letters to move to a value that starts
with the typed letters. The typed sequence is highlighted in white.

Chapter 15 • Working with the Keyword View

545

Defining Keyword View Display Options

You can choose how you want to display the information in the Keyword
View using the Keyword View Options dialog box. You can customize the
display of the Keyword View columns, fonts, and colors. The options you set
remain in effect for all tests in all subsequent sessions on your computer.

Displaying Keyword View Columns
You can use the Columns tab of the Keyword View Options dialog box to
specify which columns you want to display in the Keyword View. You can
also specify the order in which the columns are displayed.

Tip: You can display only the Documentation column by right-clicking the
column header row and choosing Documentation Only from the displayed
menu. You can then print the Keyword View for use as instructions for
manual testing. For more information on printing from the Keyword View,
see “Printing a Test” on page 334.

Chapter 15 • Working with the Keyword View

546

To specify the Keyword View columns to display:

 1 Choose Tools > View Options. The Keyword View Options dialog box opens.

The Available columns list shows columns not currently displayed in the
Keyword View. The Visible columns list shows columns currently displayed
in the Keyword View.

 2 Double-click column names or choose column names and click the arrow
buttons (> and <) to move them between the Available columns and Visible
columns lists.

Tip: Click the double arrow buttons (>> and <<) to move all the column
names from one list to the other. Select multiple column names (using the
SHIFT and/or CONTROL keys) and click the arrow buttons (> and <) to move
only the selected column names from one list to the other.

Chapter 15 • Working with the Keyword View

547

 3 In the Visible columns list, set the order in which columns appear in the
Keyword View by selecting one or more columns and then using the up and
down arrow buttons.

Note: The order of the columns in the Keyword View does not affect the
order in which the cells need to be completed for each step. For example, if
you choose to display the Operation column to the left of the Item column,
you still need to select the item first, and only then is the Operation column
list refreshed to match the selection you made in the Item column.

 4 Click OK to close the dialog box and apply the new column display.

Setting Keyword View Fonts and Colors
You can use the Fonts and Colors tab of the Keyword View Options dialog
box to specify different text and color display options for different elements
in the Keyword View.

Chapter 15 • Working with the Keyword View

548

The Fonts and Colors tab includes the following options:

Option Description

Element You can specify different font and color options for
each of these Keyword View elements. Select one of
the following elements to see the current
definitions and modify them:

➤ Alternate Rows. The background color of every
other row. The font and text color for the
alternate rows is the same as the font and text
color defined for the Default element.

➤ Comment. The row and text of comment lines.
Note that all of the available formatting options
apply to entire comment rows, not to comments
within a regular step row. For comments within
a step row, only the specified Foreground color
applies (all other settings are taken from the
Alternate Rows, Default, or Selected Row
settings, as appropriate).

➤ Default. All rows and text in the Keyword View
(except for the elements listed below).

➤ Selected Row. The row and text currently
selected (highlighted).

Font Name Enables you to modify the font used for text in the
selected element. You cannot change the font for
Alternate Rows or Selected Row elements.

Note: When testing in a Unicode environment,
you must select a Unicode-compatible font.
Otherwise, elements in your component may not
be correctly displayed in the Keyword View.
However, the component will still run in the same
way, regardless of the font you choose.

Size Enables you to modify the font size used for text in
the selected element. You cannot change the font
size for Alternate Rows or Selected Row elements.

Chapter 15 • Working with the Keyword View

549

Style Enables you to modify the font style used for text
in the selected element. You can select Regular,
Bold, Italic, or Underline font styles. You cannot
change the font style for Alternate Rows or
Selected Row elements.

Foreground Enables you to modify the text color for the
selected element. You cannot change the
foreground color for Alternate Rows.

Background Enables you to modify the row color for the
selected element.

Foreground for read-only Enables you to modify the text color for rows that
are read-only. This option cannot be changed for
Alternate Rows.

Reset all Resets all Fonts and Colors tab options to the
default settings.

Option Description

Chapter 15 • Working with the Keyword View

550

Tips for Working with the Keyword View

➤ You can display or hide specific columns by right-clicking the column
header row in the Keyword View and then selecting or deselecting the
required column name from the displayed menu.

You can display only the Documentation column, for example, if you want
to print the steps for use as instructions for manual testing, by selecting
Documentation Only. The Documentation column and any comments
defined in the component are displayed.

➤ You can rearrange columns by dragging a column header to its new location
in the Keyword View. Red arrows are displayed when the column header is
dragged to an available location.

Chapter 15 • Working with the Keyword View

551

Working with Breakpoints in the Keyword View

You can insert and remove breakpoints in the Keyword View.

To insert a breakpoint in the Keyword View:

➤ Click in the left margin at the point where you want to insert the
breakpoint.

➤ Select a step and press F9.

➤ Choose Debug > Insert/Remove Breakpoint.

A red breakpoint icon is displayed.

To remove a breakpoint from the Keyword View:

➤ Click the breakpoint icon.

➤ Select a step and press F9.

➤ Choose Debug > Insert/Remove Breakpoint.

For more information on breakpoints, see “Using Breakpoints” on page 690.

Chapter 15 • Working with the Keyword View

552

553

16
Understanding Checkpoints

You can check objects in your application to ensure that they function
properly.

This chapter includes:

 ➤ About Understanding Checkpoints on page 553

 ➤ Adding New Checkpoints to a Component on page 554

 ➤ Understanding Types of Checkpoints on page 555

About Understanding Checkpoints

QuickTest enables you to add checks to your test or component. A
checkpoint is a verification point that compares a current value for a
specified property with the expected value for that property. This enables
you to identify whether your application is functioning correctly. You can
perform standard checkpoints and bitmap checkpoints on component steps.

When you add a checkpoint, QuickTest adds a checkpoint to the current
row in the Keyword View. By default, the checkpoint name receives the
name of the test object on which the checkpoint was created. You can
choose to specify a different name for the checkpoint or accept the default
name.

Chapter 16 • Understanding Checkpoints

554

When you run the component, QuickTest compares the expected results of
the checkpoint to the current results. If the results do not match, the
checkpoint fails. You can view the results of the checkpoint in the Test
Results window.

You insert a checkpoint step by choosing the relevant checkpoint
option from the Insert menu while creating or modifying your component.
(You can insert bitmap checkpoints only during a recording session.) When
you create a checkpoint in a component, the displayed Checkpoint
Properties dialog box opens in Simple Mode, which shows only the
properties and values that can be viewed in Quality Center. For more
information on this dialog box, see “Understanding the Checkpoint
Properties Dialog Box” on page 559.

You can view or edit advanced checkpoint properties by clicking the
Advanced Mode button. However, if the checkpoint contains advanced
properties, and a Quality Center user views its properties in Quality Center,
a disclaimer opens indicating that some properties are checked but not
shown. The Quality Center user does not have the option to view or edit the
advanced properties.

Adding New Checkpoints to a Component

You can add checkpoints while creating or editing your component. It is
generally more convenient to define checkpoints after creating the initial
component.

To add new checkpoints while recording your component:

Use the commands in the Insert > Checkpoint menu, or click the Insert
Checkpoint button on the toolbar. This displays a menu of checkpoint
options that are relevant to the selected step.

Chapter 16 • Understanding Checkpoints

555

 Understanding Types of Checkpoints

You can insert the following checkpoint types to check various objects in an
application.

➤ Standard Checkpoint checks the property value of an object in your
application. The standard checkpoint checks a variety of objects such as
buttons, radio buttons, combo boxes, lists, and so forth. For example, you
can check that a radio button is activated after it is selected or you can check
the value of an edit box.

Standard checkpoints are supported for all add-in environment.

For more information on standard checkpoints, see Chapter 17, “Checking
Object Property Values.”

➤ Bitmap Checkpoint checks an area of your application as a bitmap. For
example, suppose you have a Web site that can display a map of a city the
user specifies. The map has control keys for zooming. You can record the
new map that is displayed after one click on the control key that zooms in
the map. Using the bitmap checkpoint, you can check that the map zooms
in correctly.

You can create a bitmap checkpoint for any area in your application,
including buttons, text boxes, and tables.

Bitmap checkpoints are supported for all add-in environments.

For more information on bitmap checkpoints, see Chapter 18, “Checking
Bitmaps.”

Chapter 16 • Understanding Checkpoints

556

557

17
Checking Object Property Values

By adding standard checkpoints to your components, you can compare
object property values in your application with the expected values.

This chapter includes:

 ➤ About Checking Object Property Values on page 557

 ➤ Creating Standard Checkpoints on page 558

 ➤ Understanding the Checkpoint Properties Dialog Box on page 559

 ➤ Modifying Checkpoints on page 564

About Checking Object Property Values

You can check the object property values in your application using standard
checkpoints. Standard checkpoints compare the expected values of object
properties to the object’s current values during a run session. You can create
standard checkpoints for all supported testing environments (as long as the
appropriate add-ins are loaded).

Note: Users in Quality Center cannot create, edit, or rename checkpoints in
components.

Chapter 17 • Checking Object Property Values

558

Creating Standard Checkpoints

You can check that a specified object in your application has the property
values you expect, by adding a standard checkpoint step to your component
while recording or editing the component. To set the options for a standard
checkpoint, you use the Checkpoint Properties dialog box.

Note: You cannot create image, table, or (Web) page checkpoints in a
keyword component. These special checkpoint types are only available for
tests. However, if you select a Web page or any table object when creating a
standard checkpoint for your component, you will be able to check their
object properties just like any other object.

To add a standard checkpoint while recording:

 1 While in a recording session, choose Insert > Checkpoint > Standard
Checkpoint, or click the Insert Checkpoint or Output Value toolbar button.

The QuickTest window is hidden, and the pointer changes into a pointing
hand.

Note: You can hold the left CTRL key to change the pointing hand into a
standard pointer, and then change the window focus or perform operations
such as right-clicking or moving the pointer over an object to display a
context menu. If the window containing the object you want to select is
minimized, you can display it by holding the left CTRL key, right-clicking
the application in the Windows task bar, and choosing Restore from the
context menu.

 2 Click the object you want to check. The Object Selection - Checkpoint
Properties dialog box opens. .

 3 Select the item you want to check from the displayed object tree. The tree
item name corresponds to the object’s class.

 4 Click OK. The Checkpoint Properties dialog box opens.

Chapter 17 • Checking Object Property Values

559

 5 Specify the settings for the checkpoint. For more information, see
“Understanding the Checkpoint Properties Dialog Box” on page 559.

 6 Click OK to close the dialog box. A checkpoint statement is added for the
selected object in the Keyword View.

To add a standard checkpoint while editing:

 1 Select the step where you want to add the checkpoint and choose Insert >
Checkpoint > Standard Checkpoint.

The Checkpoint Properties dialog box opens.

 2 Specify the settings for the checkpoint. For more information, see
“Understanding the Checkpoint Properties Dialog Box” on page 559.

 3 Click OK to close the dialog box. A checkpoint statement is added for the
selected object in the Keyword View.

Understanding the Checkpoint Properties Dialog Box

In the Checkpoint Properties dialog box, you can specify which properties
of the object to check, and edit the values of these properties. The
Checkpoint Properties dialog box for keyword components has two modes,
Simple Mode and Advanced Mode. The mode that opens is dependent on
whether any advanced properties are selected in the checkpoint.

Chapter 17 • Checking Object Property Values

560

For more information, see:

➤ “Understanding the Checkpoint Properties Dialog Box - Simple Mode” on
page 560

➤ “Editing the Expected Value of an Object Property” on page 563

➤ “Understanding the Checkpoint Properties Dialog Box - Advanced Mode”
on page 563

Understanding the Checkpoint Properties Dialog Box -
Simple Mode
For new checkpoints, the Checkpoint Properties dialog box always opens in
Simple Mode. If you open the dialog box for an existing checkpoint and no
advanced checkpoint properties are selected, the Checkpoint Properties
dialog box also opens in Simple Mode. In Simple Mode, only the basic
properties and expected values of the object are shown. To view or edit
advanced checkpoint properties, click the Advanced Mode button.

Note: The advanced properties of checkpoints cannot be viewed or edited in
Quality Center. Therefore, if one or more advanced properties are selected in
a checkpoint, and a Quality Center user views its properties in Quality
Center, the dialog box displays text indicating that some properties selected
for checking are not shown.

Chapter 17 • Checking Object Property Values

561

Identifying the Checkpoint

The top part of the dialog box displays information on the checkpoint:

Selecting the Object Property to Check

The properties for the object are listed in the Properties pane of the dialog
box. The pane includes the properties, their values, and their types:

Information Description

Name The name of the checkpoint. By default, the checkpoint
name is the same as the name of the test object on which
the checkpoint was created. You can specify a different
name for the checkpoint or accept the default name.

If you rename the checkpoint, make sure that the name is
unique, does not begin or end with a space, and does not
contain the following character/combination of
characters:
" := @@

Class The type of object. The Class of the object is not displayed
in Quality Center for keyword components.

Pane Element Description

Check box For each object class, QuickTest recommends default
property checks. You can accept the default checks or
modify them accordingly.

To check a property, select the corresponding check box.

To exclude a property check, clear the corresponding
check box.

Type The icon indicates that the value of the property is
currently a constant.

The icon indicates that the value of the property is
currently a parameter.

Chapter 17 • Checking Object Property Values

562

Inserting the Checkpoint in Your Component

The Insert statement option specifies when to perform the checkpoint in
the component.

➤ Choose Before current step if you want to check the value of the object
property before the highlighted step is performed.

➤ Choose After current step if you want to check the value of the property
after the highlighted step is performed.

Note: The Insert statement option is not available when adding a
checkpoint during recording or when modifying an existing object
checkpoint. It is available only when adding a new checkpoint to an
existing component while editing it.

Property The name of the property.

Value The expected value of the property. For more information
on modifying the value of a property, see “Editing the
Expected Value of an Object Property” on page 563.

Pane Element Description

Chapter 17 • Checking Object Property Values

563

Editing the Expected Value of an Object Property
When you click the Browse button for a property in the Checkpoint
Properties dialog box, the Parameterization / Properties dialog box opens, in
which you can set the property value as a Constant or a Parameter. The
default is Constant.

➤ Constant. A value that is defined directly in the step and remains
unchanged when the component runs.

If you select Constant, you can edit the value directly in the Constant box.

➤ Parameter. A value that is defined or generated separately from the step and
is retrieved when the specific step runs.

If you select Parameter for a value that is already parameterized, the
Parameter box displays the current parameter definition for the value. If
you select Parameter for a value that is not yet parameterized, you can click
the Parameter Options button to open the Parameter Options dialog box.

Specify the property details for the parameter by selecting a different
parameter type or modifying the parameter value settings. For more
information on using parameters in your components, see “Working with
Parameters” on page 533.

Understanding the Checkpoint Properties Dialog Box -
Advanced Mode
If advanced checkpoint properties are selected, the Checkpoint Properties
dialog box opens in Advanced Mode, in which all the supported properties
and expected values of the object are shown. To view or edit simple
checkpoint properties, click the Simple Mode button.

Chapter 17 • Checking Object Property Values

564

The bottom part of the Checkpoint Properties dialog box in Advanced Mode
contains the following additional options:

➤ Checkpoint timeout. Specifies the time interval (in seconds) during which
QuickTest attempts to perform the checkpoint successfully. QuickTest
continues to perform the checkpoint until it passes or until the timeout
occurs. If the checkpoint does not pass before the timeout occurs, the
checkpoint fails.

For example, suppose it takes some time for an object to achieve an
expected state. Increasing the checkpoint timeout value in this case can help
ensure that the object has sufficient time to achieve that state, enabling the
checkpoint to pass (if the data matches) before the maximum timeout is
reached.

If you specify a checkpoint timeout other than 0, and the checkpoint fails,
the Test Results window displays information on the checkpoint timeout.

➤ Find in Repository. To view the checkpoint in its repository, click the Find in
Repository button. (This option is not available when creating a new
checkpoint. It is available only when editing an existing checkpoint.)

For more information, see “Understanding the Object Repository Window”
on page 120.

Modifying Checkpoints

You can modify the settings of existing checkpoints.

To modify a checkpoint:

 1 Select the step containing the checkpoint and choose
Edit > Step Properties > Checkpoint Properties. The relevant checkpoint
dialog box opens.

 2 Modify the properties and click OK. For more information, see
“Understanding the Checkpoint Properties Dialog Box” on page 559.

565

18
Checking Bitmaps

QuickTest enables you to compare objects in an application by matching
captured bitmaps.

This chapter includes:

 ➤ About Checking Bitmaps on page 565

 ➤ Checking a Bitmap on page 566

About Checking Bitmaps

You can check an area of an application as a bitmap. QuickTest captures the
visible part of the specified object as a bitmap (QuickTest does not capture
any part that is scrolled off of the screen, for example), and inserts a
checkpoint in the component.

When you run the component, QuickTest compares the object in the
application with the bitmap stored in the checkpoint. If there are
differences, QuickTest captures a bitmap of the actual object and displays it
with the expected bitmap in the details portion of the Test Results window.
By comparing the two bitmaps (expected and actual), you can identify the
nature of the discrepancy. For more information on test results of a
checkpoint, see “Viewing Checkpoint Results” on page 670.

For example, suppose you have a Web site that can display a map of a city
the user specifies. The map has control keys for zooming. You can record the
new map that is displayed after one click on the control key that zooms in
the map. Using the bitmap checkpoint, you can check that the map zooms
in correctly.

Chapter 18 • Checking Bitmaps

566

You can create bitmap checkpoints for all supported testing environments
(as long as the appropriate add-ins are loaded).

Note: The results of bitmap checkpoints may be affected by factors such as
operating system, screen resolution, and color settings.

Checking a Bitmap

You insert bitmap checkpoints while recording a component.

To create a bitmap checkpoint while recording:

 1 Choose Insert > Checkpoint > Bitmap Checkpoint, or click the Insert
Checkpoint or Output Value button and choose Bitmap Checkpoint.

The QuickTest window is hidden, and the pointer turns into a pointing
hand.

Tip: You can hold the left CTRL key to change the pointing hand into a
standard pointer, and then change the window focus or perform operations
such as right-clicking or moving the pointer over an object to display a
context menu. If the window containing the object you want to select is
minimized, you can display it by holding the left CTRL key, right-clicking
the application in the Windows task bar, and choosing Restore from the
context menu.

Chapter 18 • Checking Bitmaps

567

 2 Click an object to check in your application. If the location you click is
associated with more than one object, the Object Selection - Bitmap
Checkpoint Properties dialog box opens.

 3 Select an object from the tree on which to create a bitmap checkpoint.

Tip: If you want to create a bitmap checkpoint that contains multiple
objects, you should select the highest level object that includes all the
objects to include in the bitmap checkpoint.

Chapter 18 • Checking Bitmaps

568

 4 Click OK. The Bitmap Checkpoint Properties dialog box opens in Simple
Mode.

A bitmap of the object you selected in the previous step is displayed in the
dialog box.

Advanced Mode enables you to select a specific sub-area of the bitmap, set
RGB and pixel tolerances, set a checkpoint timeout, and view the
checkpoint in its repository. To view or edit bitmap properties, click the
Advanced Mode button. For more information, see “Understanding the
Bitmap Checkpoint Properties Dialog Box - Advanced Mode” on page 569.

Note: Quality Center users do not have the option to view or edit bitmap
properties. Therefore, if one or more bitmap properties are selected in a
checkpoint, and a Quality Center user views its properties in Quality Center,
the dialog box displays text indicating that some properties selected for
checking are not shown.

Chapter 18 • Checking Bitmaps

569

 5 In the Name box, either accept the name that QuickTest assigns to the
checkpoint or specify another name for it. By default, the checkpoint name
is the same as the name of the test object on which the checkpoint was
created.

If you rename the checkpoint, make sure that the name is unique, does not
begin or end with a space, and does not contain the following
character/combination of characters:
" := @@

Note: The Class area displays the type of test object on which the
checkpoint was created.

 6 Click OK to add the bitmap checkpoint to your component. A checkpoint
statement is added for the selected object in the Keyword View.

Understanding the Bitmap Checkpoint Properties Dialog
Box - Advanced Mode
Advanced Mode in the Bitmap Checkpoint Properties dialog box includes
the following buttons and options:

➤ Select Area. Enables you to check a specific area of the object. Click the
button and use the crosshairs pointer to specify the area you want to select.
This instructs QuickTest to check only the selected area and to ignore the
remainder of the bitmap.

➤ Save only selected area. Enables you to save only the selected area of the
object (to save disk space).

➤ RGB tolerance. Enables you to define a tolerance for the RGB (Red, Green,
Blue) properties of a bitmap checkpoint. Defining a tolerance determines
the percent by which the RGB values of the actual object are allowed to be
different from those of the expected object and allow the checkpoint to
pass.

Chapter 18 • Checking Bitmaps

570

➤ Pixel tolerance. Enables you to define a pixel tolerance that determines the
amount by which the pixels of the actual object can differ from those of the
expected object and allow the checkpoint to pass. You can choose to define
the pixel tolerance as a specific number of pixels or as a percentage of the
total pixels in the object.

➤ Checkpoint Timeout. Enables you to define the time interval (in seconds)
during which QuickTest attempts to perform the checkpoint successfully.
QuickTest continues to perform the checkpoint until it passes or until the
timeout occurs. If the checkpoint does not pass before the timeout occurs,
the checkpoint fails.

➤ Find in Repository. To view the checkpoint in its repository, click the Find in
Repository button. (This option is not available when creating a new
checkpoint. It is available only when editing an existing checkpoint.)

571

19
Outputting Values

QuickTest enables you to retrieve values in your component and store them
in output value objects. You can subsequently retrieve these values and use
them as input at a different stage in the run session.

This chapter includes:

 ➤ About Outputting Values on page 571

 ➤ Creating Output Values on page 572

 ➤ Outputting Property Values on page 573

 ➤ Specifying the Output Type and Settings on page 578

About Outputting Values

An output value step is a step in which one or more values are captured at a
specific point in your component and stored for the duration of the run
session. The values can later be used as input at a different point in the run
session.

When you create output value steps, you can determine where the values
are stored during the run session and how they can be used. During the run
session, QuickTest retrieves each value at the specified point and stores it in
the specified location. When the value is needed later in the run session,
QuickTest retrieves it from this location and uses it as required.

Chapter 19 • Outputting Values

572

Output values are stored only for the duration of the run session. When the
run session is repeated, the output values are reset.

Note: After the run session, you can view the output values retrieved during
the session as part of the session results. For more information, see “Viewing
Parameterized Values and Output Value Results in the Test Results Window”
on page 674.

When you create an output value in a keyword component, the Output
Value Properties dialog box opens in Simple Mode, which shows only the
properties and values that can be viewed in Quality Center. For more
information on this dialog box, see “Defining Standard Output Values” on
page 575.

You can view or select advanced output properties by clicking the Advanced
Mode button. However, the user in Quality Center does not have the option
to view or edit the advanced properties. Therefore, if the output value object
is set to retrieve advanced properties, and a Quality Center user views its
setting in Quality Center, the Output Value Properties dialog box displays
text indicating that some properties are selected for output but not shown.

Creating Output Values

You can use standard output values to output the property values of most
objects. For example, you can use standard output values to output text
strings by specifying the text property of the object as an output value.

For more information on standard output values, see “Outputting Property
Values” on page 573.

Chapter 19 • Outputting Values

573

Viewing and Editing Output Values
When you insert an output value step in your test, the Keyword View shows
the step with Output displayed in the Operation column and CheckPoint
displayed in the Value column, followed by the name assigned to the output
value.

Outputting Property Values

You can use standard output values to output the property values of most
objects.

You can create standard output values while recording or editing your
component.

Note: You cannot create image, table or (Web) page output values in a
component. These special output value types are only available for tests.
However, if you select a Web page or any table object when creating a
standard output value for your component, you will be able to check their
object properties just like any other object.

To create standard output values while recording:

 1 Choose Insert > Output Value > Standard Output Value. Alternatively, you
can click the arrow beside the Insert Checkpoint or Output Value button on
the toolbar and select Standard Output Value. The pointer changes into a
pointing hand.

Chapter 19 • Outputting Values

574

Tip: You can hold the left CTRL key to change the pointing hand into a
standard pointer, and then change the window focus or perform operations
such as right-clicking or moving the pointer over an object to display a
context menu. If the window containing the object you want to select is
minimized, you can display it by holding the left CTRL key, right-clicking
the application in the Windows task bar, and choosing Restore from the
context menu.

 2 In your application, click the object for which you want to specify an output
value. If the location you clicked is associated with more than one object,
the Object Selection – Output Value Properties dialog box opens.

 3 In the Object Selection dialog box, select the object for which you want to
specify an output value, and click OK. The Output Value Properties dialog
box opens for the selected object.

 4 Specify the property values to output and their settings. For more
information, see “Defining Standard Output Values” on page 575.

 5 When you finish defining the output value details, click OK. QuickTest
inserts an output value step in your component.

Chapter 19 • Outputting Values

575

Defining Standard Output Values
The Output Value Properties dialog box enables you to choose which
property values to output and to define the settings for each value that you
select. The Output Value Properties dialog box has two modes, Simple Mode
and Advanced Mode. The mode that opens is dependent on whether any
advanced properties are selected for output.

When inserting a new output value step, the dialog box always opens in
Simple mode. If you open the dialog box for an existing output value object
and no advanced checkpoint properties are selected, the Output Value
Properties dialog box opens in Simple Mode. In Simple mode, only the basic
properties are shown. To view or select advanced properties, click the
Advanced Mode button.

Note: The user in Quality Center does not have the option to view or edit
the advanced properties. Therefore, if the output value has advanced
properties selected, and a user views its properties in Quality Center, the
Output Value Properties dialog box displays text that indicates that some
properties are selected but not shown.

You can select a number of properties to output for the same object and
define the output settings for each property value before closing the dialog
box. When the output value step is reached during the run session,
QuickTest retrieves all of the specified property values.

Chapter 19 • Outputting Values

576

Identifying the Output Value

The top part of the dialog box displays information on the output value:

Selecting the Property Values to Output

The upper part of the dialog box contains a pane that lists the properties of
the selected object, with their values and types. This pane contains the
following items:

Item Description

Name The name that QuickTest assigns to the output value. By
default, the output value name is the name of the test
object for which you are performing the output value
step. You can specify a different name for the output
value or accept the default name.

If you rename the output value, make sure that the
name is unique, does not begin or end with a space, and
does not contain the following character/combination
of characters:
" := @@

Class The type of test object.

Pane Element Description

Check box To specify a property to output, select the corresponding
check box. You can select more than one property for
the object and specify the output options for each
property value you select.

Type The icon indicates that the value of the property is
currently a constant.

The icon indicates that the value of the property is
currently a parameter.

Chapter 19 • Outputting Values

577

Specifying the Output Settings for a Property Value

When you click the Browse button for a selected property in the Output
Value Properties dialog box, the Parameterization / Properties dialog box
opens, in which the output definition for the selected property value is
displayed.

When you select a property value to output, you can:

➤ change the output type and/or settings for the selected value by clicking the
Modify button. The Output Options dialog box opens and displays the
current output type and settings for the value. For more information, see
“Specifying the Output Type and Settings” on page 578.

➤ accept the displayed output definition by clicking OK.

Specifying the Location for the Output Value Step

If the Insert statement area is displayed at the bottom of the dialog box, you
can specify where the new output value step should be inserted in your test.
For more information, see “Selecting the Location for the Output Value
Step” on page 578.

Property The name of the property.

Value The current value of the property. For more information,
see “Specifying the Output Settings for a Property Value”
on page 577.

Pane Element Description

Chapter 19 • Outputting Values

578

Find in Repository

To view the output value in its repository, click the Find in Repository
button. (This option is not available when creating a new output value. It is
available only when editing an existing output value.)

Specifying the Output Type and Settings

The output type and settings that you define for each value determine
where it is stored and how it can be used during the run session. When the
output value step is reached, QuickTest retrieves each value selected for
output and stores it in the specified location for use later in the run session.
For more information, see “Selecting the Location for the Output Value
Step” on page 578.

Selecting the Location for the Output Value Step
When you create output values while editing a component, the
Insert statement area is displayed at the bottom of the dialog box.

By default, QuickTest inserts the new output value step before the current
step (the step you selected when you chose the Output Value option). You
can instruct QuickTest to insert the new output value step after the current
step, by selecting the After current step option.

Note: This option is not available while recording. QuickTest automatically
inserts the new output value step after the previously recorded step. It is also
not available when modifying an existing output value step.

Part V

Configuring Settings

580

581

20
Setting Global Testing Options

You can control how QuickTest works with components by setting global
testing options.

This chapter includes:

 ➤ About Setting Global Testing Options on page 581

 ➤ Using the Options Dialog Box on page 582

 ➤ Setting General Testing Options on page 584

 ➤ Setting Folder Testing Options on page 588

 ➤ Setting Run Testing Options on page 591

About Setting Global Testing Options

Global testing options affect how you record and run components, as well
as the general appearance of QuickTest. For example, you can choose not to
display the Start Page when QuickTest starts, or you can set the timing-
related settings used by QuickTest when running a component. The values
you set remain in effect for all components and for subsequent testing
sessions. You can set global testing options using the Options dialog box
(described on page 582) or by inserting statements in the Expert View.

You can also set testing options that affect only the component currently
open in QuickTest. For more information, see Chapter 21, “Working with
Business Component Settings.”

Chapter 20 • Setting Global Testing Options

582

Using the Options Dialog Box

You can use the Options dialog box to modify your global testing options.
The values you set remain in effect for all subsequent QuickTest sessions.

To set global testing options:

 1 Choose Tools > Options or click the Options toolbar button. The Options
dialog box opens. It is divided by subject into several tabbed pages.

 2 Select the required tab and set the options as necessary. For information on
the available options in each tab, see the table below.

 3 Click Apply to apply your changes and keep the dialog box open, or click OK
to save your changes and close the dialog box.

Chapter 20 • Setting Global Testing Options

583

The Options dialog box contains the following tabbed pages:

The Options dialog box may contain additional tabs, depending on the
add-ins that are currently loaded. For more information, see the relevant
section in the HP QuickTest Professional Add-ins Guide.

Tab Heading Contains

General Options for general component settings. For
more information, see “Setting General Testing
Options” on page 584.

Folders Options for entering the folders (search paths)
in which QuickTest searches for components or
files that are specified as relative paths in dialog
boxes and statements. For components, all files
must be stored in the Quality Center subject
path. For more information, see “Setting Folder
Testing Options” on page 588.

Run Options for running components. For more
information, see “Setting Run Testing Options”
on page 591.

Windows Applications Options for configuring how QuickTest records
and runs components for Windows
applications. For more information, see the
section on testing Windows-based applications
in the HP QuickTest Professional Add-ins Guide.

Chapter 20 • Setting Global Testing Options

584

Setting General Testing Options

The General tab options affect the general appearance of QuickTest and
other general testing options.

Chapter 20 • Setting Global Testing Options

585

The General tab includes the following options:

Option Description

Display Add-in Manager on
startup

Determines whether the Add-in Manager is
displayed when starting QuickTest. For information
on working with the Add-in Manager, see the
section on loading QuickTest add-ins in the
HP QuickTest Professional Add-ins Guide.

Display Start Page on
startup

Determines whether the Start Page is displayed
when starting QuickTest.

Check for software updates
on startup

Instructs QuickTest to automatically check for
software updates each time it starts up. For more
information, see the HP QuickTest Professional
User’s Guide.

Disable recognition of
virtual objects while
recording

Determines whether the defined virtual objects
stored in the Virtual Object Manager are recognized
while recording. This option is relevant only for
tests.

Automatically update test
and component steps
when you rename test
objects

Determines whether to automatically update test
and component steps when you rename test
objects in the local or shared object repository. For
more information, see “Renaming Test Objects” on
page 140.

When pointing at a
window, activate it after __
tenths of a second

Specifies the time (in tenths of a second) that
QuickTest waits before it sets the focus on an
application window when using the pointing hand
to point to an object in the application (for Object
Spy, Recovery Scenario Wizard, and so forth).
Default = 5

Chapter 20 • Setting Global Testing Options

586

Use text recognition
mechanisms in this order

Specifies the text recognition mechanism that
QuickTest uses when capturing text for a text/text
area checkpoint or output value step.

Possible values:

First Windows API then OCR. (Default) Instructs
QuickTest to first try to retrieve text directly from
the object using the Windows API-based
mechanism. If no text can be retrieved (for
example, because the text is part of a picture),
QuickTest tries to retrieve text using the OCR
(optical character recognition) mechanism. (Highly
recommended when working with CJK languages.)

First OCR then Windows API. Instructs QuickTest to
first try to retrieve text from the object using the
OCR mechanism. If no text can be retrieved, then
QuickTest uses its Windows API-based mechanism
to retrieve text from the object.

Use Only Windows API. Instructs QuickTest to use
only the Windows API-based mechanism (and not
the OCR mechanism) to retrieve text from the
object.

Use Only OCR. Instructs QuickTest to use only the
OCR mechanism (and not the Windows API-based
mechanism) to retrieve text from the object.
(Required when working with Windows Vista.)

For more information on text recognition support
in Windows-based environments, see the
HP QuickTest Professional Readme.

Option Description

Chapter 20 • Setting Global Testing Options

587

Customizing the QuickTest Window Layout
QuickTest works in several different modes: view/edit, record, and run. You
may want to modify the QuickTest layout to match the functionality of a
mode. For example, when recording, it is often convenient to have
QuickTest partially visible. This enables you to watch steps being added as
you record your component without viewing the Active Screen. When
running a component, it is often convenient to minimize QuickTest so that
you can view your application during the component run. When viewing or
editing a component, it may be convenient to maximize the QuickTest
window, with all panes showing.

QuickTest remembers the size and location of its main window and all of its
panes for each mode. When QuickTest enters a mode, the layout reverts to
the most recently used layout for that mode. This means that the main
QuickTest window and each of its panes are maximized, minimized, or
resized, based on the previous layout of the current mode.

Restore Layout Restores the layout of the QuickTest window so
that it displays the panes and toolbars in their
default sizes and positions.

Note: QuickTest recalls your most recent window
layout for each of its operating modes: view/edit,
record, and run. For more information, see
“Customizing the QuickTest Window Layout” on
page 587.

Generate Script Generates an automation script containing the
current global testing options. For more
information, see “Automating QuickTest
Operations” on page 817, or see the QuickTest
Automation Reference (Help > QuickTest Professional
Help > QuickTest Advanced References > QuickTest
Automation).

Option Description

Chapter 20 • Setting Global Testing Options

588

To set the QuickTest layout for each mode:

 1 Open a new or existing component.

 2 Start a recording session.

 3 Record one step.

 4 Set all of your layout preferences for the recording mode.

 5 Stop the recording session.

 6 Enter a breakpoint before the first step in the test. This enables you to
arrange the layout during the run session. For information on how to set a
breakpoint, see “Setting Breakpoints” on page 691.

 7 Run your component.

 8 When QuickTest reaches the breakpoint, set all of your layout preferences
for the run mode.

 9 Stop the run session.

 10 Set all of your layout preferences for the view/edit mode.

The layouts for all of these modes are now set. QuickTest applies the
relevant layout each time it enters one of these modes.

Setting Folder Testing Options

The Folders tab enables you to enter the folders (search paths) in which
QuickTest searches for components or files. All files must be stored in the
Quality Center subject path.

Notes:

➤ The current component is listed in the Search list by default. It cannot be
deleted.

➤ For more information on relative or absolute paths, see the section on
using relative paths in the HP QuickTest Professional User’s Guide.

Chapter 20 • Setting Global Testing Options

589

QuickTest searches for the specified component or file in the order in which
the folders are displayed in the search list. If the same file name exists in
more than one folder, QuickTest uses the first instance it finds.

Chapter 20 • Setting Global Testing Options

590

The Folders tab includes the following options:

Option Description

Search list Indicates the folders in which QuickTest searches for
components or files. If you define folders here, you do not
need to designate the full path of a component or file in
other dialog boxes. The order of the search paths in the
list determines the order in which QuickTest searches for a
specified file.

Adds a new folder to the search list.

Tips:

➤ To add a Quality Center path when connected to
Quality Center, click this button. QuickTest adds
[QualityCenter], and displays a browse button so that
you can locate the Quality Center path.

➤ When not connected to Quality Center, hold the SHIFT
key and click this button. QuickTest adds
[QualityCenter], and you enter the path. You can also
type the entire Quality Center path manually. If you
do, you must add a space after [QualityCenter]. For
example: [QualityCenter] Subject\Tests.

➤ Note that QuickTest searches Quality Center project
folders only when you are connected to the
corresponding Quality Center project.

Deletes the selected folder from the search list.

Moves the selected folder up in the list.

Moves the selected folder down in the list.

Remind me to use
relative paths when
specifying a path to
a resource

When saving a resource, you can choose to be prompted
to use a relative path. For more information, see the
section on using relative paths in the HP QuickTest
Professional User’s Guide.

Chapter 20 • Setting Global Testing Options

591

Setting Run Testing Options

The Run tab options affect how QuickTest runs components and displays
run session results in the Test Results window.

Chapter 20 • Setting Global Testing Options

592

The Run tab includes the following options:

Option Description

Run mode Instructs QuickTest how to run your
component:

➤ Normal (displays execution marker). Runs
your component with the execution arrow to
the left of the Keyword View, marking each
step as it is performed.

Delay each step execution by. You can specify
the time in milliseconds that QuickTest
should wait before running each consecutive
step (up to a maximum of 10000 ms.)

The Normal run mode option requires more
system resources than the Fast option,
described below.

Note: You must have Microsoft Script
Debugger installed to enable this mode. For
more information, see the HP QuickTest
Professional Installation Guide.

➤ Fast. Runs your component without the
execution arrow to the left of the Keyword
View. This option requires fewer system
resources.

Note: When running a test set from Quality
Center, tests are automatically run in Fast
mode, even if Normal mode is selected.

Submit a defect to Quality
Center for each failed step

Relevant only for tests.

View results when run session
ends

Instructs QuickTest to display the results
automatically following the run session.

Allow other HP products to
run tests and components

Enables other HP products such as Quality
Center to run QuickTest components.

Note: This option is not required to enable
WinRunner to run QuickTest components.

Chapter 20 • Setting Global Testing Options

593

Save still image captures to
results

Instructs QuickTest when to capture and save
still images of the application during the run
session to display them in the test results.

Choose an option from the list:

➤ Always. Captures images for all steps in the
run.

➤ For errors. Captures images only for failed
steps. This is the default setting.

➤ For errors and warnings. Captures images
only for steps that return a failed or warning
status.

For more information, see “Capturing and
Viewing Still Images and Movies of Your
Application” on page 640.

Save movie to results Instructs QuickTest when to capture and save a
movie of the application during the run session
to display it in the test results. This option is
disabled by default.

Choose an option from the list:

➤ Always. Captures a movie of all steps in the
run.

➤ For errors. Captures movies only for failed
steps.

➤ For errors and warnings. Captures movies
only for steps that return a failed or warning
status.

For more information, see “Capturing and
Viewing Still Images and Movies of Your
Application” on page 640.

Option Description

Chapter 20 • Setting Global Testing Options

594

Save movie segment up to __
KB prior to each error and
warning

(Enabled only when For
errors or For errors and
warnings is selected in the
Save movie to results option.)

When selected, QuickTest saves movie segments
for each error (or warning). Each segment
contains the specified number of kilobytes of
the movie prior to the failed (or warning) step.
You can enter any value from 400 (0.4 MB) to
2097152 (2 GB). If more than one segment is
captured for a test run, QuickTest stores a single
movie with the test results that is comprised of
all the relevant movie segments.

Save movie of entire run

(Enabled only when For
errors or For errors and
warnings is selected in the
Save movie to results option.)

When selected, QuickTest saves a movie of the
entire run if at least one error (or warning)
occurs.

Advanced

(Enabled only when Save
movie to results is selected.)

Provides advanced options for the Screen
Recorder that affect the movie file size and
appearance.

Option Description

Chapter 20 • Setting Global Testing Options

595

Understanding the Screen Recorder Options Dialog Box
The Screen Recorder Options dialog box enables you to set options for the
Screen Recorder that affect the movie file size, appearance, and recording
performance. Any settings that affect Windows functionality are restored
when the session is completed.

Chapter 20 • Setting Global Testing Options

596

The Screen Recorder Options dialog box includes the following options:

Note for Vista users: In addition to the options described above, if your
Vista Windows color scheme is set to Aero, QuickTest automatically sets it to
Vista Basic while capturing movies of a run session to maximize
performance. The color scheme is returned to its previous settings when the
run session ends.

For information on working with captured movies, see “Viewing Movies of
Your Run Session” on page 642.

Option Description

Record sound Instructs QuickTest to save sound with the movie of
your application.

Set plain wallpaper Sets the wallpaper of your desktop to a solid blue
color for the duration of the run session.

Do not show window
contents when dragging
windows

Instructs Windows to display only the outline of a
window, without its contents, whenever the
window is dragged during the run session.

Install/Uninstall Installs or uninstalls the Screen Recorder Capture
Driver. The Screen Recorder Capture Driver
improves the performance of the Screen Recorder
during movie recording.

Note: The Screen Recorder Capture Driver cannot
be installed or uninstalled when running QuickTest
via a remote connection.

597

21
Working with Business Component
Settings

Before you create or debug a business component, you can use the Business
Component Settings dialog box to view the settings already defined for the
component in its associated application area. You can also define some
additional settings for the component in the Business Component Settings
dialog box.

This chapter includes:

 ➤ About Working with Business Component Settings on page 598

 ➤ Using the Business Component Settings Dialog Box on page 599

 ➤ Working with Component Properties on page 601

 ➤ Defining a Snapshot for Your Component on page 604

 ➤ Viewing Application Settings on page 606

 ➤ Viewing Component Resources on page 608

 ➤ Defining Parameters for Your Component on page 609

 ➤ Viewing Recovery Scenario Settings on page 613

Note: For more information on defining component settings in application
areas, see Chapter 12, “Working with Application Areas.”

Chapter 21 • Working with Business Component Settings

598

About Working with Business Component Settings

When you create a new application area, you define the settings and
resources needed to create a new business component. The settings include
associated add-ins, the Windows-based applications on which the
components can record and run, and the location of any function libraries
and shared object repositories to use with the components.

When you (or a Subject Matter Expert) create a new component, the
component is automatically linked to the settings defined in its associated
application area. The Business Component Settings dialog box displays
these settings in read-only format.

You can define some additional settings, such as input and output
parameters, and the component status, in the Business Component Settings
dialog box.

Note: You can also set testing options that affect all components. For more
information, see Chapter 20, “Setting Global Testing Options.”

Chapter 21 • Working with Business Component Settings

599

Using the Business Component Settings Dialog Box

The Business Component Settings dialog box enables you to view settings
and define specific options for a component.

To open the Business Component Settings dialog box:

 1 Open the component whose settings you want to view or define.

 2 Choose File > Settings, or click the Settings toolbar button. The Business
Component Settings dialog box opens. It is divided by subject into tabbed
pages.

 3 Select the required tab to view or set the options as required. See the table
below for more information on the available settings and options in each
tab.

Chapter 21 • Working with Business Component Settings

600

 4 Click Apply to apply your changes and keep the dialog box open, or click OK
to save your changes and close the dialog box.

The Business Component Settings dialog box contains the following tabs:

In addition to these tabs, the Business Component Settings dialog box may
contain additional tabs for scripted components. For information on these
tabs, refer to the HP QuickTest Professional User’s Guide. There may also be
other tabs depending on the add-ins that are currently loaded, for example,
SAP or Web Services. For information on tabs related to add-ins, see the
relevant section of the HP QuickTest Professional Add-ins Guide.

Tab Heading Tab Contents

Properties The properties of the business component, for
example, its description and associated add-ins. You
can also set the status of the component. For more
information, see “Working with Component
Properties” on page 601.

Snapshot Options for capturing or loading a snapshot image to
be saved with the component for display in Quality
Center. For more information, see “Defining a
Snapshot for Your Component” on page 604.

Applications The Windows-based applications on which the
component can record and run. For more information,
see “Viewing Application Settings” on page 606.

Resources The resources associated with the component,
including the location of any function libraries and
the shared object repository. For more information, see
“Viewing Component Resources” on page 608.

Parameters Options for specifying input and output parameters
for the component. For more information, see
“Defining Parameters for Your Component” on
page 609.

Recovery How the component recovers from unexpected events
and errors that occur in your testing environment
during a run session. For more information, see
“Viewing Recovery Scenario Settings” on page 613.

Chapter 21 • Working with Business Component Settings

601

Working with Component Properties

You can use the Properties tab of the Business Component Settings dialog
box to view general information about your component, including its
description and any add-ins associated with it. You can also set or modify its
status.

Chapter 21 • Working with Business Component Settings

602

The Properties tab includes the following items:

For information on defining general information for the application area on
which your component is based, see “Defining General Settings” on
page 421.

Setting Description

Name Indicates the name of the component. You assign a name to
the component when you save it.

Author Indicates the Windows user name of the person who
created the component.

Application Area Indicates the name of the application area which is
associated with the component. For more information, see
“Creating a New Business Component” on page 458.

Note: If the component was created in Quality Center and
no application area was selected, this is indicated by Not
selected. Before business component steps can be
implemented, an application area must be selected.

Created by Indicates the version of QuickTest used to create the test.

Last modified by Indicates the version of QuickTest last used to modify the
test.

Location Indicates the Quality Center path and filename of the
component.

Note: If the component is not yet saved, the location
indicates Not saved.

Description Displays the description specified for your component. This
field can be entered or modified only in Quality Center.

Associated add-ins Displays the add-ins associated with the component (via its
associated application area). The associated add-ins are
loaded by business components when they are accessed.

Business
Component Status

Specifies the status of the component. You can change the
status of the component by selecting a different option
from the list. For more information on status options, see
“Understanding Component Statuses” on page 603.

Chapter 21 • Working with Business Component Settings

603

Understanding Component Statuses
Business components can be assigned statuses either in QuickTest or in
Quality Center. A business component status can either be manually
specified, or in certain cases may be automatically assigned by Quality
Center. For example, you can use a Ready status to indicate that a business
component is ready to be run in a business process test, or an Error status
may be automatically assigned to a component that has errors that prevent
it being successfully run in a business process test.

Knowing the status of a business component is important because it affects
the status of any business process tests of which it is a part. In general, the
component with the most severe status determines the status of the entire
business process test. For example, a component with an Error status causes
every business process test of which it is a part to have an Error status.

A component can be assigned one of the following statuses:

➤ Error. The component contains errors that need to be fixed. For example,
this may occur due to a change in the application. When a business process
test contains a component with this status, the status of the entire business
process test is also Error.

➤ Maintenance. The component is currently being developed and tested and
is not yet ready to run, or it was previously implemented and is now being
modified to adapt it for changes that have been made in the application.

➤ Ready. The component is fully implemented and ready to be run. It answers
the requirements specified for it and has been tested according to the
criteria defined for your specific system.

➤ Under Development. The component is currently under development. This
status is automatically assigned to:

➤ New components created in the Business Components module of Quality
Center with Business Process Testing support.

➤ Component requests dragged into the component tree in Quality Center
with Business Process Testing support.

Chapter 21 • Working with Business Component Settings

604

➤ Not Implemented. The component has been requested in the Test Plan
module of Quality Center. The status changes automatically from Not
Implemented to Under Development when the request is moved from the
Component Requests folder in the component tree in the Business
Components module.

Defining a Snapshot for Your Component

The Snapshot tab of the Business Component Settings dialog box enables
you to capture or load an image and save it with the component. The image
provides a visual indication of the component’s main purpose. The Subject
Matter Expert can view the image in Quality Center, in the component and
in any business process test in which the component is included.

Chapter 21 • Working with Business Component Settings

605

Note: The snapshot image can also be captured and saved with the
component from the Snapshot tab in Quality Center when installed with
Business Process Testing support. For information on capturing a snapshot
for a component in Quality Center, refer to the HP Business Process Testing
User’s Guide.

The Snapshot tab contains the following options:

When you click Apply or OK, the image is saved with the component and is
displayed in the business process tests containing this component in
Quality Center.

Option Description

Capture snapshot from
application

Enables you to define the image to be captured by
clicking the Capture Snapshot button. You can then
drag the crosshairs pointer to select the area to be
captured. When you release the mouse button, the
captured area is displayed in the Snapshot pane.

Load from file Specifies the .png or .bmp file containing the
required image. You can enter the path and
filename or use the browse button to locate the file.

Chapter 21 • Working with Business Component Settings

606

Viewing Application Settings

The Applications tab of the Business Component Settings dialog box
displays a read-only list of the Windows-based applications on which the
component can record and run (based on its current application area). You
can record steps only on the specified applications.

It also displays the environments on which the component can currently
record (based on the currently loaded add-ins).

Chapter 21 • Working with Business Component Settings

607

You specify the Windows-based applications on which the component can
record and run in the associated application area settings. For more
information, see “Defining Application Settings for Your Application Area”
on page 443.

Notes:

➤ If you are recording a new component and have not yet set your
application settings in the Applications tab of the Application Area
Settings dialog box, the Applications dialog box opens when you start to
record. The Applications dialog box contains the same options as the
Applications tab, described in “Defining Application Settings for Your
Application Area” on page 443.

➤ The Applications dialog box and Applications tab may also contain
options applicable to any QuickTest add-ins installed on your computer.
For information regarding these options, refer to the documentation
provided for the specific add-in.

The Applications tab includes the following items:

Setting Description

Application Lists the details of the applications on which to record and run
the component.

The application list is left blank if you do not want to record or
run on Windows applications. (This is the default setting.)

Record and run
on any
applications
opened by
QuickTest

Records and runs on any applications invoked by QuickTest (as
child processes of QuickTest). For example, applications opened
during a record or run session using an OpenApp function, or
another operation containing a function that opens an
application.

Other Lists the add-in environments that correspond to the currently
loaded add-ins.

Chapter 21 • Working with Business Component Settings

608

Viewing Component Resources

The Resources tab of the Business Component Settings dialog box displays a
read-only list of the function libraries and object repositories associated with
your component (via its associated application area). All specified resources
files must be saved in your Quality Center project.

Chapter 21 • Working with Business Component Settings

609

The Resources tab includes the following items:

Defining Parameters for Your Component

In the Parameters tab of the Business Component Settings dialog box, you
can define input component parameters that pass values into your
component and output component parameters that pass values from your
component to external sources. You can also use the Parameters tab to
modify or delete existing component parameters.

Component parameters are parameters that can be used to parameterize
input and output values in component steps. For information on using
parameter values in component steps, see the section on working with
parameters in the HP QuickTest Professional User’s Guide. For information on
working with component parameters in steps, see “Using Component
Parameters in Steps” on page 613.

Setting Area Description

Associated
function
libraries

Displays the list of function libraries currently associated with
your component (via its associated application area). For more
information on associating function libraries, see “Managing
Function Libraries” on page 426, and “Working with Associated
Function Libraries” on page 387.

Object
Repositories

Displays the list of shared object repositories currently associated
with your component via its associated application area (in
addition to the local object repository). Components use shared
object repository files stored in Quality Center. For more
information on associating object repositories with application
areas, see “Managing Shared Object Repositories” on page 432.

Chapter 21 • Working with Business Component Settings

610

The Subject Matter Expert can also define component parameters in Quality
Center. For information, refer to the HP Business Process Testing User’s Guide.

The Parameters tab contains two parameter lists:

➤ Input parameters. Specifies the parameters that the component can receive
from the source that runs or calls it.

➤ Output parameters. Specifies the parameters that the component can pass
to the source that runs or calls it.

Chapter 21 • Working with Business Component Settings

611

You can edit an existing parameter by selecting it in the appropriate list and
modifying its details (except for its name which cannot be modified).

Note: The input and output parameter lists can also be modified in the
Quality Center Business Components module. For more information, refer
to the HP Business Process Testing User’s Guide.

You can add and remove input and output parameters for your business
component using the following buttons:

Option Description

Adds a parameter to the appropriate parameter list. Enter a name (case
sensitive) for the new parameter and select the parameter type.
Possible types are String, Boolean, Date, Number, or Password. You
can enter a description for the parameter, for example, the purpose of
the parameter in the component.

If you are defining an input parameter, a default value for the specified
parameter type is automatically entered. You can enter or modify the
default value for the parameter in the Default Value column. For more
information, see “Defining Default Values for Input Component
Parameters”, below.

Removes the selected parameter from the component.

Chapter 21 • Working with Business Component Settings

612

Defining Default Values for Input Component Parameters
When a business component runs, the actual values used for parameters are
generally those sent by the application calling the component (either
QuickTest or Quality Center) as described in the table below:

If, during a component run, a value is not supplied by QuickTest or Quality
Center for one or more input parameters, QuickTest uses the default value
for the parameter.

When you define a new parameter in the Parameters tab of the Business
Components Settings dialog box, you can specify the default value for the
parameter or you can keep the default value that QuickTest assigns for the
specified parameter type as follows:

Business Component
Called From:

Parameter Values Specified In:

QuickTest Input Parameters tab of the Run dialog box. For
more information, see “Understanding the Input
Parameters Tab” on page 621.

Quality Center Component Iterations dialog box (Test Plan
module). For more information, refer to the HP
Business Process Testing User’s Guide.

Value Type QuickTest Default Value

String Empty string

Boolean True

Date The current date

Number 0

Password Empty string

Chapter 21 • Working with Business Component Settings

613

Using Component Parameters in Steps
After you define component parameters, you can use them to parameterize
values in the steps of your component by selecting input component
parameters in the Value Configuration Options dialog box, or by selecting
output component parameters in the Output Options dialog box. You can
also use local parameters in steps. For more information on using
component and local parameters in steps, see the section on working with
parameters in the HP QuickTest Professional User’s Guide.

Viewing Recovery Scenario Settings

Recovery scenario settings enable you to specify how a business component
recovers from unexpected events and errors during a run session.

The Recovery tab of the Business Component Settings dialog box displays a
read-only list of all the recovery scenarios associated with the current
component’s associated application area.

Chapter 21 • Working with Business Component Settings

614

You define the recovery scenario settings for a component in its associated
application area. For more information, see “Defining Recovery Scenario
Settings for Your Application Area” on page 447.

The Recovery tab includes the following items:

Setting Area Description

Scenarios Displays the name and recovery file path for each recovery
scenario associated with your component (via its associated
application area). The scenario type is indicated by an icon. For
more information, see “Specifying Associated Recovery
Scenarios” on page 449.

Scenario
description

Displays the textual description of the scenario selected in the
Scenarios box.

Activate
recovery
scenarios

Displays the setting that instructs QuickTest to check whether
to run the associated scenarios as follows:

➤ On every step. The recovery mechanism is activated after
every step.

➤ On error. The recovery mechanism is activated only after
steps that return an error return value.

➤ Never. The recovery mechanism is disabled.

Part VI

Running and Analyzing Components

616

617

22
Running Components

After you create a component, you can run it to check the behavior of your
application.

This chapter includes:

 ➤ About Running Components on page 617

 ➤ Running Your Entire Component on page 618

 ➤ Running Part of Your Component on page 622

About Running Components

When you run a component, QuickTest performs the steps it contains. If
you have defined component parameters, QuickTest prompts you to enter
values for them. When the run session is complete, QuickTest displays a
report detailing the results. For more information on viewing the results, see
Chapter 23, “Viewing Run Session Results.”

You can run the entire component from the beginning, or you can run part
of it. You can update your component to change the test object descriptions.
You can run components on objects with dynamic descriptions. For more
information, see Chapter 4, “Working with Objects.”

Chapter 22 • Running Components

618

Running Your Entire Component

QuickTest always runs a component from the first step, unless you specify
otherwise. To run a component from or to a selected step you can use the
Run from Step or Run to Step options. These features are useful if you want
to check a specific section of the component, without running the
component from the beginning or to the end. For more information, see
“Running Part of Your Component” on page 622.

When you start to run a component, the Run dialog box opens, to enable
you to specify the location for the results and to enter the values for any
component parameters you have defined.

To run a component:

 1 If your component is not already open, choose File > Open >
Business/Scripted Component or click the Open button to open it.

Tip: If you recently opened your component, you can also choose it from
the recent files list in the File menu.

 2 Click the Run button on the toolbar, or choose Automation > Run. The Run
dialog box opens.

Chapter 22 • Running Components

619

 3 Specify the results location and the input parameter values (if applicable) for
the run session. For more information, see “Understanding the Results
Location Tab” on page 620, and “Understanding the Input Parameters Tab”
on page 621.

 4 Click OK. The Run dialog box closes and the run session starts. By default,
when the run session ends, the Test Results window opens. For more
information on viewing the run session results, see Chapter 23, “Viewing
Run Session Results.”

Note: If you cleared the View results when run session ends check box in
the Run tab of the Options dialog box, the Test Results window does not
open at the end of the run session. For more information on the Options
dialog box, see Chapter 20, “Setting Global Testing Options.”

Tip: If you want to interrupt a run session, do either of the following:

➤ Click the Pause button in the Debug toolbar or choose Debug > Pause.
The run pauses. To resume running a paused run session, click the Run
button or choose Automation > Run.

➤ Click the Stop button or choose Automation > Stop. The run session
stops and the Test Results window opens.

The run session is also interrupted if you perform a file operation (for
example, open a different component or create a new component).

Chapter 22 • Running Components

620

Understanding the Results Location Tab
The Results Location tab enables you to specify the location in which you
want to save the run session results.

Select one of the following options:

➤ New run results folder. This option displays the default path and folder
name in which the results are saved. By default, the results for components
are stored in a Quality Center cache folder on your computer.

Accept the default settings, or enter a new path by typing it in the text box
or clicking the browse button to locate a different folder. The folder must be
new, empty, or contain only QuickTest test or component files.

➤ Temporary run results folder. Saves the run results in a temporary folder.
This option overwrites any results previously saved in this folder.

Chapter 22 • Running Components

621

Note: QuickTest stores temporary results for all components in <System
Drive>\Documents and Settings\<user name>\Local Settings\Temp\
TempResults. The path in the text box of the Temporary run results folder
option cannot be changed. Additionally, if you save results to an existing
results folder, the contents of the folder are deleted when the run session
starts.

Understanding the Input Parameters Tab
The Input Parameters tab enables you to specify the run-time values of input
parameters to be used during the run session.

The Input Parameters tab displays the input parameters that were defined
for the component (using the File > Settings > Parameters tab).

Chapter 22 • Running Components

622

To set the value of a parameter to be used during the run session, click in the
Value field for the specific parameter and enter the value, or select a value
from the list. If you do not enter a value, QuickTest uses the default value
from the Business Component Settings dialog box during the run session.

For more information on setting component parameters, see “Defining
Parameters for Your Component” on page 609. For more information on
using parameters, see the section on working with parameters in the
HP QuickTest Professional User’s Guide.

Running Part of Your Component

You can use the Run from Step option to run a selected part of your
component from the selected step to the end of the component. This
enables you to check a specific section of your application or to confirm that
a certain part of your component runs smoothly.

Note: You can also use the Debug > Run to Step option if you want to run a
component in debug mode from the start of the component to a selected
step. For more information, see “Using the Run to Step and Debug from Step
Commands” on page 687.

To run a component from a selected step:

 1 Open your application to the location matching the step you want to run.

 2 Select the step where you want to start running the component.

Make sure that the step you choose is not dependent on previous steps.

 3 Choose Automation > Run from Step.

 4 In the Run dialog box, choose where to save the run session results, and any
input parameters you want to use, as described in “Understanding the
Results Location Tab” on page 620, and “Understanding the Input
Parameters Tab” on page 621.

 5 Click OK. The Run dialog box closes and the run session starts.

Chapter 22 • Running Components

623

By default, when the run session ends, the Test Results window opens. For
more information on viewing the run session results, see Chapter 23,
“Viewing Run Session Results.”

The Test Results summary displays a note indicating that the component
was run using the Run from Step option.

Note: If you cleared the View results when run session ends check box in
the Run tab of the Options dialog box, the Test Results window does not
open at the end of the run session. For more information on the Options
dialog box, see Chapter 20, “Setting Global Testing Options.”

Chapter 22 • Running Components

624

625

23
Viewing Run Session Results

After running a component, you can view a report of major events that
occurred during the run session.

Note: You cannot view business process test run results when you open the
Test Results window from QuickTest. To view run results for a business
process test, select the results for the iteration you want to view and open
them from within Quality Center.

This chapter includes:

 ➤ About Viewing Run Session Results on page 626

 ➤ The Test Results Window on page 627

 ➤ Viewing the Results of a Run Session on page 633

 ➤ Deleting Run Results on page 651

 ➤ Manually Submitting Defects Detected During a Run Session to a Quality
Center Project on page 660

 ➤ Customizing the Test Results Display on page 661

Chapter 23 • Viewing Run Session Results

626

About Viewing Run Session Results

When a run session ends, you can view the run session results in the Test
Results window. By default, the Test Results window opens automatically at
the end of a run. If you want to change this behavior, clear the View results
when run session ends check box in the Run tab of the Options dialog box.

The Test Results window contains a description of the steps performed
during the run session. It displays a single run iteration.

After you run a component, the Test Results window displays all aspects of
the run session and can include:

➤ a high-level results overview report (pass/fail status)

➤ the data used in all runs

➤ an expandable tree of the steps, specifying exactly where application failures
occurred

➤ the exact locations in the component where failures occurred

➤ a still image of the state of your application at a particular step

➤ a movie clip of the state of your application at a particular step or of the
entire component

➤ detailed explanations of each step pass or failure, at each stage of the
component

Note: The Test Results window can show results with up to 300 levels in the
tree hierarchy. If you have results with more than 300 nested levels, you can
view the entire report by manually opening the results.xml file.

Chapter 23 • Viewing Run Session Results

627

The Test Results Window

After a run session, you view the results in the Test Results window. By
default, the Test Results window opens when a run session is completed. For
information on changing the default setting, see “Setting Run Testing
Options” on page 591.

The left pane of the Test Results window contains the run results tree. The
right pane of the Test Results window contains the details for a selected step
in the run results tree. The details for a selected step may include a
component summary, step details, a still image of your application, or a
movie of your application.

You can open the Test Results window as a standalone application from the
Start menu. To open the Test Results window, choose Start > Programs >
QuickTest Professional > Test Results Viewer.

Chapter 23 • Viewing Run Session Results

628

Below is an example of the run results for a component:

Note: In this example, the component failed due to a run error in an
associated function library. If the run error had not occurred, the Result
would indicate Done.

Run results
toolbar

Run results
tree

Run results
details for
selected step
in component

Chapter 23 • Viewing Run Session Results

629

The Test Results window contains the following key elements:

➤ Test results title bar. Displays the name of the component.

➤ Menu bar. Displays menus of available commands.

➤ Run results toolbar. Contains buttons for viewing run session results (choose
View > Test Results Toolbar to display the toolbar). For more information,
see “Run Results Toolbar” on page 632.

➤ Run results tree. Contains a graphic representation of the run results in the
run results tree. The run results tree is located in the left pane of the Test
Results window. For more information, see “Run Results Tree” on page 629.

➤ Result Details tab. Contains details of the selected node in the run results
tree. The Result Details tab is located in the right pane of the Test Results
window. For more information, see “Run Results Details” on page 630.

➤ Screen Recorder tab. Contains the recorded movie associated with the test
results. The screen recorder tab is located in the right pane of the Test
Results window. For more information, see “Capturing and Viewing Still
Images and Movies of Your Application” on page 640.

➤ Status bar. Displays the status of the currently selected command (choose
View > Status Bar to view the status bar).

You can change the appearance of the Test Results window. For more
information, see “Changing the Appearance of the Test Results Window” on
page 632.

Run Results Tree
The left pane in the Test Results window displays the run results tree—a
graphical representation of the run session results:

➤ indicates a step that succeeded. This icon is displayed only if the
component step contains one of the following:

➤ Verify operations (functions), such as VerifyProperty

➤ AddToTestResults (or its equivalent) with a micPass status

➤ indicates a step that failed. Note that this causes all parent steps (up to
the root component) to fail as well.

Chapter 23 • Viewing Run Session Results

630

➤ indicates a warning, meaning that the step did not succeed, but it did
not cause the component to fail.

➤ indicates a step that failed unexpectedly, such as when an object is not
found for a checkpoint.

➤ indicates that the Smart Identification mechanism successfully found
the object.

➤ indicates that a recovery scenario was activated.

➤ indicates that the run session was stopped before it ended.

➤ square brackets around a test object name indicate
that the test object was created dynamically during the run session. A
dynamic test object is created either using programmatic descriptions or by
using an object returned by a ChildObjects method, and is not saved in the
object repository.

➤ displays the Maintenance Mode Update Result, a table that describes the
Action taken by Maintenance Run Wizard on a failed step, and the Details of
that action. Displayed only for components run in Maintenance Run Mode.
For more information on Maintenance Run Mode, see Chapter 26,
“Maintaining Components.”

You can collapse or expand a branch in the run results tree to change the
level of detail that the tree displays.

Run Results Details
By default, when the Test Results window opens, a component summary is
displayed in the Result Details tab in the right pane of the window.

The right pane of the Test Results Window contains tabs labeled Result
Details and Screen Recorder. When you select the top node of the run
results tree, the Result Details tab contains a summary of the results for your
component. When you select a branch or step in the tree, the Result Details
tab contains the details for that step. The Result Details tab may also include
a still image of your application for the highlighted step.

The Screen Recorder tab contains the movie associated with your test results.
If there is no movie associated with your test results, the Screen Recorder tab
contains the message: No movie is associated with the results.

Chapter 23 • Viewing Run Session Results

631

For more information on viewing still images and movies of your
application, see “Capturing and Viewing Still Images and Movies of Your
Application” on page 640.

When you select the top node of the run results Tree, the Result Details tab
indicates the component name, product name (for a component), results
name, the start and end date and time of the run session, and whether an
iteration passed or failed. For a component, the possible results are Done or
Failed.

In addition, if the Web Services Add-in is installed and was loaded during
the run session, the Web Services run toolkit is displayed in the Result
Details tab. The run toolkit is displayed even if the component does not
include any Web Services steps.

If the component was run in Maintenance Run Mode, the Results Details tab
contains a Maintenance Summary. The Maintenance Summary lists the
number of objects that were updated and added in your component. It also
lists the number of updated and commented steps in your component. The
Object Repository Changes Report lists the specific changes that the
Maintenance Run Wizard made to the object repository and contains the
following sections:

➤ Added Objects. Lists the objects that were added to the object repository by
the Maintenance Run Wizard.

➤ Object with Changed Descriptions. Describes the changes to object
properties carried out by the Maintenance Run Wizard.

For more information on Maintenance Run Mode, see “Maintaining
Components” on page 701.

Chapter 23 • Viewing Run Session Results

632

Run Results Toolbar
The Run Results toolbar contains buttons for viewing test results.

Changing the Appearance of the Test Results Window
By default, the Test Results window has the same look and feel as the
QuickTest window, using the Microsoft Office 2003 theme. You can change
the look and feel of the Test Results window, as required.

To change the appearance of the Test Results window:

In the Tests Results window, choose View > Window Theme, and then select
the way the window should appear from the list of available themes. For
example, you can apply a Microsoft Office 2000 or Microsoft Windows XP
theme.

Note: You can apply the Microsoft Windows XP theme to the Tests Results
window only if your computer is set to use a Windows XP theme.

Tip: You can also change the theme used for the main QuickTest window.
For more information, see “Changing the Appearance of the QuickTest
Window” on page 54.

Go to
Previous

Node

Find
Next

Filters

Print Quality
Center

Connection

Add
Defect

Find
Previous

Find

Open
Help

Topics

Go to Next
Node

Chapter 23 • Viewing Run Session Results

633

Viewing the Results of a Run Session

By default, at the end of the run session, the results are displayed in the Test
Results window. (You can change the default setting in the Options dialog
box. For more information, see “Setting Run Testing Options” on page 591.)

In addition, you can view the results of previous runs of the current
component, and results of other components. You can also preview run
session results on screen and print them to your default Windows printer, as
well as export them to an HTML file.

For more information, see:

➤ “Opening Test Results to View a Selected Run” on page 634

➤ “Working with the Test Results Window” on page 636

➤ “Viewing Results of Components Run From Quality Center” on page 640

➤ “Capturing and Viewing Still Images and Movies of Your Application” on
page 640

➤ “Finding Results Steps” on page 645

➤ “Printing Run Session Results” on page 646

➤ “Previewing Test Results” on page 647

➤ “Exporting Test Results” on page 649

Chapter 23 • Viewing Run Session Results

634

Opening Test Results to View a Selected Run
You can view the saved results for the current component, or you can view
the saved results for other components.

You select the run results to open for viewing from the Open Test Results
dialog box, which opens when:

➤ You choose File > Open from within the Test Results window.

➤ You click the Results button in the QuickTest window or choose
Automation > Results, when there are several results, or no results, for the
current component.

The results of run sessions for the current component are listed. To view one
of the results sets, select it and click Open.

Tip: To update the results list after you change the specified component
path, click Refresh.

Chapter 23 • Viewing Run Session Results

635

To view results of runs for other components, you can search by component
result file.

Note: You cannot view business process test run results when you open the
Test Results window from QuickTest. To view run results for a business
process test, select the results for the iteration you want to view and open
them from within Quality Center.

Searching for Results in the File System

By default, the results for component runs are stored in a Quality Center
cache folder on your computer. When you run your component, you can
specify a different location to store the results, using the Results Location
tab of the Run dialog box. Specifying your own location for the results file
can make it easier for you to locate the results file in the file system. For
more information, see “Understanding the Results Location Tab” on
page 620.

You can search for results in the file system by component or by result file.

To search for results in the file system by component:

 1 In the Open Test Results dialog box, enter the path of the folder that
contains the results file for your component, or click the browse button to
open the Open Test dialog box.

 2 Find and highlight the component whose results you want to view, and
click Open.

 3 In the Open Test Results dialog box, highlight the component result set you
want to view, and click Open. The Test Results window displays the selected
results.

To search for results in the file system by result file:

 1 In the Open Test Results dialog box, click the Open File button to open the
Select Results File dialog box.

 2 Browse to the folder where the component results file is stored.

Chapter 23 • Viewing Run Session Results

636

 3 Highlight the results (.xml) file you want to view, and click Open. The Test
Results window displays the selected results.

 Working with the Test Results Window
The Test Results window contains a graphic and text summary of the results
of a run as well as details of each step in the run.

To view the results of a run:

 1 If the Test Results window is not already open, click the Results button or
choose Automation > Results.

Tip: You can open the Test Results window as a standalone application from
the Start menu. To open the Test Results window, choose Start > Programs >
QuickTest Professional > Test Results Viewer.

➤ If there are run session results for the current component, they are
displayed in the Test Results window. For information on the Test Results
window, see “The Test Results Window” on page 627.

➤ If there are no run session results for the current component, the Open
Test Results dialog box opens. You can select the run session results for
any component, or you can search for the run session results
(results.xml) file anywhere in the file system. Click Open to display the
selected results in the Test Results window. For more information on
viewing run session results, see “Viewing the Results of a Run Session” on
page 633.

 2 You can collapse or expand a branch in the run results Tree to select the
level of detail that the tree displays.

➤ To collapse a branch, select it and click the collapse (–) sign to the left of
the branch icon, or press the minus key (–) on your keyboard number
pad. The details for the branch disappear in the results tree, and the
collapse sign changes to expand (+).

➤ To collapse all of the branches in the run results tree, choose View >
Collapse All or right click a branch and select Collapse All.

Chapter 23 • Viewing Run Session Results

637

➤ To expand a branch, select it and click the expand (+) sign to the left of
the branch icon, or press the plus key (+) on your keyboard number pad.
The tree displays the details for the branch and the expand sign changes
to collapse.

If you just opened the Test Results window, the tree expands one level at
a time. If the tree was previously expanded, it reverts to its former state.

➤ To expand a branch and all branches below it, select the branch and press
the asterisk (*) key on your keyboard number pad.

➤ To expand all of the branches in the run results tree, choose View >
Expand All; right click a branch and select Expand All; or select the top
level of the tree and press the asterisk (*) key on your keyboard number
pad.

 3 You can view the results of an iteration or a step. When you select a step in
the run results tree, the right side of the Test Results window contains the
details of the selected step. Depending on your settings in the Run tab of the
Options dialog box, the right side of the Test Results window may be split
into two panes, with the bottom pane containing a still image (or in selected
cases, other data) of the selected step. The right pane may also contain a
movie of your application. For more information, see “Capturing and
Viewing Still Images and Movies of Your Application” on page 640 and
“Setting Run Testing Options” on page 591.

The results can be one of the following types:

➤ Steps that were not successful, but did not cause the component to stop
running, are marked Warning in the right part of the Test Results window
and are identified by the icon or .

Note: A component containing a step marked Warning may still be labeled
Done.

Chapter 23 • Viewing Run Session Results

638

 4 To filter the information displayed in the Test Results window, click the
Filters button or choose View > Filters. The Filters dialog box opens.

The default filter options are displayed in the image above. The Filters dialog
box contains the following options:

Status area:

➤ Fail. Displays the run results for the steps that failed.

➤ Warning. Displays the run results for the steps with the status Warning
(steps that did not pass, but did not cause the component to fail).

➤ Pass. Displays the run results for the steps that passed.

➤ Done. Displays the run results for the steps with the status Done (steps
that were performed successfully but did not receive a pass, fail, or
warning status).

Note: The Iterations and Content areas are not relevant for components.

Chapter 23 • Viewing Run Session Results

639

 5 To find specific steps within the Test Results, click the Find button or choose
Tools > Find. For more information, see “Finding Results Steps.”

 6 To move between previously selected nodes within the run results tree, click
the Go to Previous Node or Go to Next Node buttons.

 7 To view the results of other run sessions, click the Open button or choose
File > Open. For more information, see “Opening Test Results to View a
Selected Run” on page 634.

 8 To print run results, click the Print button or choose File > Print. For more
information, see “Printing Run Session Results” on page 646.
(You can preview the run results before you print them. For more
information, see “Previewing Test Results” on page 647.)

Note: If you have Quality Center installed, you can add a defect to a Quality
Center project. For more information, see “Manually Submitting Defects
Detected During a Run Session to a Quality Center Project” on page 660.

 9 To export the run results to an HTML file, choose File > Export to HTML File.
For more information, see “Exporting Test Results” on page 649.

 10 Choose File > Exit to close the Test Results window.

Chapter 23 • Viewing Run Session Results

640

Viewing Results of Components Run From Quality Center
When you run business process tests containing QuickTest components
from Quality Center, the Quality Center server opens QuickTest on the host
computer and runs the components from that computer. All run results are
then saved to the default location for those components.

You can view the results of QuickTest components run from Quality Center.
If your results include a movie of your application, the movie can be viewed
in Quality Center. The run results contain the same information described
in “The Test Results Window” on page 627 plus the following additional
fields:

➤ Test set. Specifies the location of the business process test.

➤ Test instance. Specifies the instance number of the test in the business
process test. For example, if the same test is included twice in the business
process test, you can view the results of Test instance 1 and Test instance 2.

Capturing and Viewing Still Images and Movies of Your
Application
QuickTest Professional can capture still images and movies of your
application during a run session. These captured files can be viewed in the
Test Results window. The right pane of the Test Results window contains
tabs labeled Result Details and Screen Recorder. These tabs enable you to
view either still images and text details, or a movie of your application.

Chapter 23 • Viewing Run Session Results

641

Viewing Still Images of Your Application

By default, QuickTest saves a still image of your application for failed steps.
When you select a failed step in the run results tree and select the Result
Details tab, the bottom right pane of the Test Results window displays a
screen capture of your application corresponding to the highlighted step in
the run results tree.

If the highlighted step does not contain an error, the right pane contains the
result details with no screen capture.

Chapter 23 • Viewing Run Session Results

642

You can customize the criteria QuickTest uses to save still images by
selecting Always, For errors, or For errors and warnings in the Save still
image captures to results list in the Run tab of the Options dialog box. For
more information, see “Setting Run Testing Options” on page 591.

Viewing Movies of Your Run Session

QuickTest can save a movie of your application during a run session. This
can be useful to help you see how your application behaved under test
conditions or to debug your component. You can view the entire movie or
select a particular segment to view. When you select a step in the run results
tree and click the Screen Recorder tab, the right pane of the Test Results
window displays the frame in the movie corresponding to the highlighted
step in the run results tree.

You can customize the criteria QuickTest uses to save movies by selecting
Always, For errors, or For errors and warnings in the Save movies to results
list in the Run tab of the Options dialog box. For more information, see
“Setting Run Testing Options” on page 591.

Chapter 23 • Viewing Run Session Results

643

The top of the Screen Recorder tab contains controls that enable you to play,
pause, stop, jump to the first frame of the movie, jump to the last frame of
the movie, and control the volume. You can also drag the slider bar to scroll
through the movie.

Tips:

➤ You can double-click the right pane of the Test Results window to expand
the Screen Recorder and hide the run results tree. Double-clicking again
restores the Screen Recorder to its previous size and displays the run
results tree. When the Screen Recorder is expanded, the playback
controls at the top of the Screen Recorder automatically hides after
approximately three seconds with no mouse activity, or when you click
anywhere on the Screen Recorder. They reappear when you move the
mouse again.

➤ The Screen Recorder saves a movie of your entire desktop. You can
prevent the QuickTest window from partially obscuring your application
while capturing the movie by minimizing QuickTest during the run
session. For information on how to minimize QuickTest during run
sessions, see “Customizing the QuickTest Window Layout” on page 587.

Removing a Movie from the Test Results

You can remove a stored movie from the results of a run. This reduces the
size of the run results file. To remove a movie from the run results, choose
File > Remove Movie from Results.

Exporting Captured Movie Files

You can export a captured Screen Recorder movie to a file. The file is saved
as an .fbr file. You can view .fbr files in the HP Micro Recorder (as described
in “Viewing Screen Recorder Movie Files in the HP Micro Player” on
page 644). You can also attach .fbr files to defects in Quality Center. Quality
Center users who have the QuickTest Add-in for Quality Center installed can
view the movies from Quality Center.

Chapter 23 • Viewing Run Session Results

644

To export a Screen Recorder movie:

 1 Choose File > Export Movie to File. The Save As dialog box opens, enabling
you to change the default destination folder and rename the file, if required.
By default, the file is named <component name> [<name of run results>],
and is saved in the run results folder.

 2 Click Save to save the exported (.fbr) file and close the dialog box.

Viewing Screen Recorder Movie Files in the HP Micro Player

When you capture a movie of your run session using the Screen Recorder,
the movie is saved as an .fbr file in your test results folder. You can export
.fbr files to any location in your file system (as described in “Exporting
Captured Movie Files” on page 643). You can also view these .fbr files
without opening the QuickTest Test Results window, using the HP Micro
Player.

To play a Screen Recorder movie in the HP Micro Player:

 1 Perform one of the following:

➤ Double-click any .fbr file in Windows Explorer.

➤ Choose Start > Programs > QuickTest Professional > Tools > HP Micro
Player and then choose File > Open in the Micro Player to select any .fbr
file.

The movie opens in the HP Micro Player and begins playing.

 2 Use the controls at the top of the window to access a particular location in
the movie or to modify the volume settings.

Chapter 23 • Viewing Run Session Results

645

Finding Results Steps
The Find dialog box enables you to find specified steps such as errors or
warnings from within the Test Results. You can select a combination of
statuses to find, for example steps that are both Passed and Done.

The following options are available:

Option Description

Failed Finds a failed step in the Test Results.

Warning Find a step where a warning was issued.

Passed Finds a passed step in the Test Results.

Done Finds a step that has finished its run.

Direction Indicates whether to search up or down within the steps
of the Test Results.

Chapter 23 • Viewing Run Session Results

646

Printing Run Session Results
You can print run results from the Test Results window. You can select the
type of report you want to print, and you can also create and print a
customized report.

To print the run results:

 1 Click the Print button or choose File > Print. The Print dialog box opens.

 2 Select a Print range option:

➤ All. Prints the results for the entire component.

➤ Selection. Prints the run results for the selected branch in the run results
tree.

 3 Specify the Number of copies of the run results that you want to print.

Chapter 23 • Viewing Run Session Results

647

 4 Select a Print format option:

➤ Short. Prints a summary line (when available) for each item in the run
results tree. This option is only available if you selected All in step 2.

➤ Detailed. Prints all available information for each item in the run results
tree, or for the selected branch, according to your selection in step 2.

➤ User-defined XSL. Enables you to browse to and select a customized .xsl
file. You can create a customized .xsl file that specifies the information to
be included in the printed report, and the way it should appear. For more
information, see “Customizing the Test Results Display” on page 661.

Note: The Print format options are available only for run results created
with QuickTest version 8.0 and later.

 5 Click Print to print the selected run results information to your default
Windows printer.

Previewing Test Results
You can preview run results on screen before you print them. You can select
the type and quantity of information you want to view, and you can also
display the information in a customized format.

Note: The Print Preview option is available only for run results created with
QuickTest version 8.0 and later.

Chapter 23 • Viewing Run Session Results

648

To preview the run results:

 1 Choose File > Print Preview. The Print Preview dialog box opens.

 2 Select a Print range option:

➤ All. Previews the run results for the entire component.

➤ Selection. Previews run results information for the selected branch in the
run results tree.

 3 Select a Print format option:

➤ Short. Previews a summary line (when available) for each item in the run
results tree. This option is only available if you selected All in step 2.

➤ Detailed. Previews all available information for each item in the run
results tree, or for the selected branch, according to your selection in
step 2.

➤ User-defined XSL. Enables you to browse to and select a customized .xsl
file. You can create a customized .xsl file that specifies the information to
be included in the preview, and the way it should appear. For more
information, see “Customizing the Test Results Display” on page 661.

Chapter 23 • Viewing Run Session Results

649

 4 Click Preview to preview the appearance of your run results on screen.

Tip: If some of the information is cut off in the preview, for example, if
checkpoint names are too long to fit in the display, click the Page Setup
button in the Print Preview window and change the page orientation from
Portrait to Landscape.

Exporting Test Results
You can export the run results details to an HTML file. This enables you to
view the run results even if the QuickTest environment is unavailable. For
example, you can send the file containing the run results in an e-mail to a
third-party who does not have QuickTest installed. You can select the type
of report you want to export, and you can also create and export a
customized report.

To export the run results:

 1 Choose File > Export to HTML File. The Export to HTML File dialog box
opens.

Chapter 23 • Viewing Run Session Results

650

 2 Select an Export range option:

➤ All. Exports the results for the entire component.

➤ Selection. Exports run result information for the selected branch in the
run results tree.

 3 Select an Export format option:

➤ Short. Exports a summary line (when available) for each item in the run
results tree. This option is only available if you selected All in step 2.

➤ Detailed. Exports all available information for each item in the run
results tree, or for the selected branch, according to your selection in
step 2.

➤ User-defined XSL. Enables you to browse to and select a customized .xsl
file. You can create a customized .xsl file that specifies the information to
be included in the exported report, and the way it should appear. For
more information, see “Customizing the Test Results Display” on
page 661.

Note: The Export format options are available only for run results created
with QuickTest 8.0 and later.

 4 Click Export. The Save As dialog box opens, enabling you to change the
default destination folder and rename the file, if required. By default, the file
is named <name of component> [<name of run results>], and is saved in the
run results folder.

 5 Click Save to save the HTML file and close the dialog box.

Chapter 23 • Viewing Run Session Results

651

Deleting Run Results

You can use the Test Results Deletion Tool to remove unwanted or obsolete
run results from your system, according to specific criteria that you define.
This enables you to free up valuable disk space.

You can use this tool with a Windows-style user interface, or you can use the
Windows command line to run the tool in the background (silently) to
directly delete results that meet criteria that you specify.

Deleting Results Using the Test Results Deletion Tool
You can use the Test Results Deletion Tool to view a list of all the run session
results in a specific location in your file system or in a Quality Center
project. You can then delete any run results that you no longer require.

The Test Results Deletion Tool enables you to sort the run results by name,
date, size, and so forth, so that you can more easily identify the results you
want to delete.

Chapter 23 • Viewing Run Session Results

652

To delete run results using the Test Results Deletion Tool:

 1 Choose Start > Programs > QuickTest Professional > Tools > Test Results
Deletion Tool from the Start menu. The Tests Results Deletion Tool window
opens.

 2 In the Test or folder box, specify the folder or specific test from which you
want to delete test results. You can specify a full file system path or a full
Quality Center path.

You can also browse to a test or folder as follows:

➤ To navigate to a specific test, click the Browse button or click the arrow
to the right of the Browse button and select Tests.

➤ To navigate to a specific folder, click the arrow to the right of the Browse
button and select Folders.

Chapter 23 • Viewing Run Session Results

653

Note: To delete test results from a Quality Center database, click Connect to
connect to Quality Center before browsing or entering the test path. Specify
the Quality Center test path in the format [Quality Center] Subject\<folder
name>\<test name>. For more information, see “Connecting to Your Quality
Center Project” on page 44.

 3 Select Include test results found in subfolders if you want to view all tests
results contained in subfolders of the specified folder.

Note: The Include test results found in subfolders check box is available
only for folders in the file system. It is not supported when working with
tests in Quality Center.

The test results in the specified test or folder are displayed in the Test Results
box, together with descriptive information for each one. You can click a
column's title in the Test Results box to sort test results based on the entries
in that column. To reverse the order, click the column title again.

The Delete Test Results window status bar shows information regarding the
displayed test results, including the number of results selected, the total
number of results in the specified location and the size of the files.

 4 Select the test results you want to delete. You can select multiple test results
for deletion using standard Windows selection techniques.

 5 Click Delete. The selected test results are deleted from the system and the
Quality Center database.

Tip: You can click Refresh at any time to update the list of test results
displayed in the Test Results box.

Chapter 23 • Viewing Run Session Results

654

Deleting Results Using the Windows Command Line
You can use the Windows command line to instruct the Test Results
Deletion Tool to delete test results according to criteria you specify. For
example, you may want to always delete test results older than a certain date
or over a minimum file size.

To run the Test Results Deletion Tool from the command line:

Open a Windows command prompt and type <QuickTest installation
path>\bin\TestResultsDeletionTool.exe, then type a space and type the
command line options you want to use.

Note: If you use the -Silent command line option to run the Test Results
Deletion Tool, all test results that meet the specified criteria are deleted.
Otherwise, the Delete Test Results window opens.

Command Line Options

You can use command line options to specify the criteria for the test results
that you want to delete. Following is a description of each command line
option.

Note: If you add command line options that contain spaces, you must
specify the option within quotes, for example:
TestResultsDeletionTool.exe -Test "F:\Tests\Keep\web objects"

Chapter 23 • Viewing Run Session Results

655

-Domain Quality_Center_domain_name

Specifies the name of the Quality Center domain to which you want to
connect. This option should be used in conjunction with the -Server,
-Project, -User, and -Password options.

-FromDate results_creation_date

Deletes test results created after the specified date. Results created on or
before this date are not deleted. The format of the date is MM/DD/YYYY.

The following example deletes all results created after November 1, 2005.

TestResultsDeletionTool.exe -Silent -Test "C:\tests\test1" -FromDate "11/1/2005"

-Log log_file_path

Creates a log file containing an entry for each test results file in the folder or
component you specified. The log file indicates which results were deleted
and the reasons why other results were not. For example, results may not be
deleted if they are smaller than the minimum file size you specified.

You can specify a file path and name or use the default path and name. If
you do not specify a file name, the default log file name is
TestResultsDeletionTool.log in the folder where the Test Results Deletion
Tool is located.

The following example creates a log file in C:\temp\Log.txt.

TestResultsDeletionTool.exe -Silent -Log "C:\temp\Log.txt" -Test "C:\tests\test1"

The following example creates a log file named TestResultsDeletionTool.log
in the folder where the Test Results Deletion Tool is located.

TestResultsDeletionTool.exe -Silent -Log -Test "C:\tests\test1"

Chapter 23 • Viewing Run Session Results

656

-MinSize minimum_file_size

Deletes test results larger than or equal to the specified minimum file size.
Specify the size in bytes.

Note: The -MinSize option is available only for test results in the file system.
It is not supported when working with components in Quality Center.

The following example deletes all results larger than or equal to 10000 bytes.
Results that are smaller than 10000 bytes are not deleted.

TestResultsDeletionTool.exe -Silent -Test "C:\tests\test1" -MinSize "10000"

-Name result_file_name

Specifies the names of the result files to be deleted. Only results with the
specified names are deleted.

You can use regular expressions to specify criteria for the result files you
want to delete. For more information on regular expressions and regular
expression syntax, see the HP QuickTest Professional User’s Guide.

The following example deletes results with the name Res1.

TestResultsDeletionTool.exe -Silent -Test "C:\tests\test1" -Name "Res1"

The following example deletes all results whose name starts with Res plus
one additional character. (For example, Res1 and ResD would be deleted.
ResDD would not be deleted.)

TestResultsDeletionTool.exe -Silent -Test "C:\tests\test1" -Name "Res."

Chapter 23 • Viewing Run Session Results

657

-Password Quality_Center_password

Specifies the password for the Quality Center user name. This option should
be used in conjunction with the -Domain, -Server, -Project, and -User options.

The following example connects to the Default Quality Center domain,
using the server located at http://QCServer/qcbin, with the project named
Quality Center_Demo, using the user name Admin and the password
PassAdmin.

TestResultsDeletionTool.exe -Domain "Default" -Server "http://QCServer/qcbin"
-Project "Quality Center_Demo" -User "Admin" -Password "PassAdmin"

-Project Quality_Center_project_name

Specifies the name of the Quality Center project to which you want to
connect. This option should be used in conjunction with the -Domain,
-Server, -User, and -Password options.

-Recursive

Deletes test results from all tests in a specified file system folder and its
subfolders. When using the -Recursive option, the -Test option should
contain the path of the folder that contains the tests results you want to
delete (and not the path of a specific test).

The following example deletes all results in the F:\Tests folder and all of its
subfolders.

TestResultsDeletionTool.exe -Test "F:\Tests" -Recursive

Note: The -Recursive option is available only for folders in the file system. It
is not supported when working with components stored in Quality Center.

Chapter 23 • Viewing Run Session Results

658

-Server Quality_Center_server_path

Specifies the full path of the Quality Center server to which you want to
connect. This option should be used in conjunction with the -Domain,
-Project, -User, and -Password options.

-Silent

Instructs the Test Results Deletion Tool to run in the background (silently),
without the user interface.

The following example instructs the Test Results Deletion Tool to run
silently and delete all results located in C:\tests\test1.

TestResultsDeletionTool.exe -Silent -Test "C:\tests\test1"

-Test component_or_folder_path

Sets the component or component path from which the Test Results
Deletion Tool deletes test results. You can specify a component name and
path, file system path, or full Quality Center path.

This option is available only when used in conjunction with the -Silent
option.

Note: The -Domain, -Server, -Project, -User, and -Password options must be
used to connect to Quality Center.

The following example opens the Test Results Deletion Tool with a list of the
results in the F:\Tests\Keep\webobjects folder.

TestResultsDeletionTool.exe -Test "F:\Tests\Keep\webobjects"

Chapter 23 • Viewing Run Session Results

659

The following example deletes all results in the Quality Center
Tests\webobjects test:

TestResultsDeletionTool.exe -Domain "Default" -Server "http://QCServer/qcbin"
-Project "Quality Center_Demo592" -User "Admin" -Password "PassAdmin"
-Test "Subject\Tests\webobjects"

Tip: The -Test option can be combined with the -Recursive option to delete
all test results in the specified file system folder and all its subfolders.

-UntilDate results_creation_date

Deletes test results created before the specified date. Results created on or
after this date are not deleted. The format of the date is MM/DD/YYYY.

This option is available only when used in conjunction with the -Silent
option.

The following example deletes all results created before November 1, 2005.

TestResultsDeletionTool.exe -Silent -Test "C:\tests\test1" -UntilDate "11/1/2005"

-User Quality_Center_user_name

Specifies the user name for the Quality Center project to which you want to
connect. This option should be used in conjunction with the -Domain,
-Server, -Project, and -Password options.

This option is available only when used in conjunction with the -Silent
option.

Chapter 23 • Viewing Run Session Results

660

Manually Submitting Defects Detected During a Run
Session to a Quality Center Project

When viewing the results of a run session, you can submit any defects
detected to a Quality Center project directly from the Test Results window.

For more information on working with Quality Center and QuickTest, see
the HP QuickTest Professional User’s Guide. For more information on Quality
Center, see the HP Quality Center User’s Guide.

To manually submit a defect to Quality Center:

 1 Ensure that the Quality Center client is installed on your computer. (Enter
the Quality Center Server URL in a browser and ensure that the Login screen
is displayed.)

 2 Choose Tools > Quality Center Connection or click the Quality Center
Connection button to connect to a Quality Center project. For more
information on connecting to Quality Center, see “Connecting to Your
Quality Center Project” on page 44.

Note: If you do not connect to a Quality Center project before proceeding to
the next step, QuickTest prompts you to connect before continuing.

 3 Choose Tools > Add Defect or click the Add Defect button to open the Add
Defect dialog box in the specified Quality Center project. The Add Defect
dialog box opens.

 4 You can modify the defect information if required. Basic information on the
component is included in the description:

 5 Click Submit to add the defect information to the Quality Center project.

 6 Click Close to close the Add Defect dialog box.

Chapter 23 • Viewing Run Session Results

661

Customizing the Test Results Display

The results of each QuickTest run session are saved in a single .xml file
(called results.xml). This .xml file stores information on each of the test
result nodes in the display. The information in these nodes is used to
dynamically create .htm files that are shown in the top-right pane of the
Test Results window.

Each node in the run results tree is an element in the results.xml file. In
addition, there are different elements that represent different types of
information displayed in the test results. You can take test result
information from the .xml file and use XSL to display the information you
require in a customized format (either when printing from within the
QuickTest Test Results window, when displaying test results in your own
customized results viewer, or when exporting the test results to an HTML
file).

Chapter 23 • Viewing Run Session Results

662

The diagram below shows the correlation between some of the elements in
the .xml file and the items they represent in the test results.

Tip: You can change the appearance (look and feel) of the Test Results
window. For more information, see “Changing the Appearance of the Test
Results Window” on page 632.

XSL provides you with the tools to describe exactly which test result
information to display and exactly where and how to display, print or
export it. You can also modify the .css file referenced by the .xsl file, to
change the appearance of the report (for example, fonts, colors, and so
forth).

Report element

Alter element
Action element

Tname element

Step element

Res element

sTime and

eTime attributes
of Summary
element

Component
Run Summary
attributes

Chapter 23 • Viewing Run Session Results

663

For example, in the results.xml file, one element tag contains the name of
an action, and another element tag contains information on the time at
which the run session is performed. Using XSL, you could tell your
customized test results viewer that the action name should be displayed in a
specific place on the page and in a bold green font, and that the time
information should not be displayed at all.

You may find it easier to modify the existing .xsl and .css files provided with
QuickTest, instead of creating your own customized files from scratch. The
files are located in <QuickTest Installation Folder>\dat, and are named as
follows:

➤ PShort.xsl. Specifies the content of the test results report printed, or
exported to an HTML file, when you select the Short option in the Print or
Export to HTML File dialog boxes.

➤ PDetails.xsl. Specifies the content of the test results report printed, or
exported to an HTML file, when you select the Detailed option in the Print
or Export to HTML File dialog boxes.

➤ PSelection.xsl. Specifies the content of the test results report printed, or
exported to an HTML file, when you select the Selection option in the Print
or Export to HTML File dialog boxes.

➤ PResults.css. Specifies the appearance of the test results print preview. This
file is referenced by all three .xsl files.

For more information on printing test results using a customized .xsl file, see
“Printing Run Session Results” on page 646.

For more information on exporting the test results to an HTML file using a
customized .xsl file, see “Exporting Test Results” on page 649.

For information on the structure of the XML schema, and a description of
the elements and attributes you can use to customize the test results reports,
see the XML Report Help (Help > QuickTest Professional Help > QuickTest
Advanced References > QuickTest Test Results Schema).

XMLReport.chm::/XmlReport_xsd.html

Chapter 23 • Viewing Run Session Results

664

665

24
Analyzing Run Session Results

You can analyze the results of a run session using the report of major events
that occurred during the run session.

Note: You cannot view business process test run results when you open the
Test Results window from QuickTest. To view run results for a business
process test, select the results for the iteration you want to view and open
them from within Quality Center.

This chapter includes:

 ➤ Analyzing Smart Identification Information in the Test Results on page 665

 ➤ Viewing Checkpoint Results on page 670

 ➤ Viewing Parameterized Values and Output Value Results in the Test Results
Window on page 674

Analyzing Smart Identification Information in the Test
Results

If the recorded description does not enable QuickTest to identify the
specified object in a step, and a Smart Identification definition is defined
(and enabled) for the object, then QuickTest tries to identify the object using
the Smart Identification mechanism. The following examples illustrate two
possible scenarios.

Chapter 24 • Analyzing Run Session Results

666

Smart Identification—No Object Matches the Recorded
Description

If QuickTest successfully uses Smart Identification to find an object after no
object matches the recorded description, the Test Results receive a warning
status and include the following information:

For more information on the Smart Identification mechanism, see
Chapter 5, “Configuring Object Identification.”

In the results tree: In the results details:

A description mismatch icon for the
missing object. For example:

An indication that the object (for example,
the userName WebEdit object) was not
found.

A Smart Identification icon for the
missing object. For example:

An indication that the Smart Identification
mechanism successfully found the object,
and information on the properties used to
find the object. You can use this
information to modify the recorded test
object description, so that QuickTest can
find the object using the description in
future run sessions.

The actual step performed. For
example:

Normal result details for the performed
step.

Chapter 24 • Analyzing Run Session Results

667

The image below shows the results for a component in which Smart
Identification was used to identify the userName WebEdit object after one of
the recorded description property values changed.

Smart Identification—Multiple Objects Match the Recorded
Description

If QuickTest successfully uses Smart Identification to find an object after
multiple objects are found that match the recorded description, QuickTest
shows the Smart Identification information in the Test Results window. The
step still receives a passed status, because in most cases, if Smart
Identification was not used, the test object description plus the ordinal
identifier could have potentially identified the object.

Chapter 24 • Analyzing Run Session Results

668

In such a situation, the Test Results show the following information:

In the results tree: In the results details:

A Smart Identification icon for the
missing object. For example:

An indication that the Smart Identification
mechanism successfully found the object,
and information on the properties used to
find the object. You can use this
information to create a unique object
description for the object, so that
QuickTest can find the object using the
description in future run sessions.

The actual step performed. For
example:

Normal result details for the performed
step.

Chapter 24 • Analyzing Run Session Results

669

The image below shows the results for a component in which Smart
Identification was used to uniquely identify the Home object after the
recorded description resulted in multiple matches.

If the Smart Identification mechanism cannot successfully identify the
object, the component fails and a normal failed step is displayed in the Test
Results.

Chapter 24 • Analyzing Run Session Results

670

Viewing Checkpoint Results

By adding checkpoints to your component, you can compare expected
values in, for example, Web pages, text strings, and object properties to the
values of these elements in your application. This enables you to ensure that
your application functions as desired.

When you run the component, QuickTest compares the expected results of
the checkpoint to the current results. If the results do not match, the
checkpoint fails, which causes the component to fail. You can view the
results of the checkpoint in the Test Results window.

To view the results of a checkpoint:

 1 Display the test results for your component in the Test Results window. For
more information, see “Viewing the Results of a Run Session” on page 633.

 2 In the left pane of the Test Results window, expand the branches of the run
results tree and click the branch for the checkpoint whose results you want
to view. The checkpoint results are displayed in the Test Results window.

Note: By default, the bottom right part of the Test Results window displays
information on the selected checkpoint only if it has the status Failed. You
can change the conditions for when a step’s image is saved, in the Run tab
of the Options dialog box. For more information, see “Setting Run Testing
Options” on page 591.

The information in the Test Results window and the available options are
determined by the type of checkpoint you selected. For more information,
see:

➤ “Analyzing Standard Checkpoint Results” on page 671

➤ “Analyzing Bitmap Checkpoint Results” on page 672

 3 Choose File > Exit to close the Test Results window.

For more information on checkpoints, see Chapter 16, “Understanding
Checkpoints.”

Chapter 24 • Analyzing Run Session Results

671

Analyzing Standard Checkpoint Results
By adding standard checkpoints to your components, you can compare the
expected values of object properties to the object’s current values during a
run session. If the results do not match, the checkpoint fails. For more
information on standard checkpoints, see “Checking Object Property
Values” on page 557.

You can view detailed results of the standard checkpoint in the Test Results
window. For information on displaying the results for a checkpoint, see
“Viewing Checkpoint Results” on page 670.

Chapter 24 • Analyzing Run Session Results

672

The top right pane displays detailed results of the selected checkpoint,
including its status (Passed or Failed), the date and time the checkpoint was
run, and the portion of the checkpoint timeout interval that was used (if
any). It also displays the values of the object properties that are checked,
and any differences between the expected and actual property values.

The bottom right pane displays the image capture for the checkpoint step (if
available).

In the above example, the details of the failed checkpoint indicate that the
expected results and the current results do not match. The expected value of
the agent name is Agent2, but the actual value is Agent1.

Analyzing Bitmap Checkpoint Results
By adding bitmap checkpoints to your components, you can check the
appearance of elements in your application by matching captured bitmaps.
When you run your component, QuickTest compares the expected results of
the checkpoint to the actual results of the run session. If the results do not
match, the checkpoint fails. For more information on bitmap checkpoints,
see Chapter 18, “Checking Bitmaps.”

Chapter 24 • Analyzing Run Session Results

673

You can view detailed results of the bitmap checkpoint in the Test Results
window. For information on displaying the results for a checkpoint, see
“Viewing Checkpoint Results” on page 670.

The top right pane displays the checkpoint step results, including its status
(Passed or Failed), the date and time the checkpoint was run and the
portion of the checkpoint timeout interval that was used (if any).

The bottom right pane shows the expected and actual bitmaps that were
compared during the run session.

Chapter 24 • Analyzing Run Session Results

674

Viewing Parameterized Values and Output Value Results in
the Test Results Window

You can view information on parameterized values and the results of output
value steps in the Test Results window.

Viewing Parameterized Values in the Test Results Window
A parameter is a variable that is assigned a value from within a component.
You can view the values for the parameters defined in your component in
the Test Results window.

To view parameterized values:

 1 Display the run results for your component in the Test Results window. For
more information, see “Viewing the Results of a Run Session” on page 633.

 2 In the left pane of the Test Results window, select the root node, which
contains the name of the component.

Chapter 24 • Analyzing Run Session Results

675

The name and value of the input parameters are displayed at the bottom of
the right pane.

The example above shows the input parameter UserName defined for the
component with the value Mercury.

For more information on defining and using parameters in your
components, see “Working with Parameters” on page 533.

Chapter 24 • Analyzing Run Session Results

676

Viewing Output Value Results in the Test Results Window
An output value is a step in which one or more values are captured during
the run session for use at another point in the run. When one of the values
is needed later in the run as input, QuickTest retrieves it from the specified
output location.

To view the results of an output value step:

 1 Display the run results for your component in the Test Results window. For
more information, see “Viewing the Results of a Run Session” on page 633.

 2 In the left pane of the Test Results window, expand the branches of the run
results tree and click the branch for the output value step whose results you
want to view. The output value results are displayed in the Test Results
window.

Chapter 24 • Analyzing Run Session Results

677

The right pane displays detailed results of the selected output value step,
including its status, and the date and time the output value step was run. It
also displays the details of the output value, including the value that was
captured during the run session, its type, and its name.

For more information on output values, see Chapter 19, “Outputting
Values.”

Chapter 24 • Analyzing Run Session Results

678

Part VII

Maintaining and Debugging Components

680

681

25
Debugging Components and Function
Libraries

By controlling and debugging your run sessions, you can identify and
handle defects in your components, function libraries, and registered user
functions.

Note: Before you can debug components in QuickTest, you must enable
integration between QuickTest and your Quality Center project by selecting
the Allow other HP products to run tests and components check box (from
QuickTest, choose Tools > Options > Run).

This chapter includes:

 ➤ About Debugging Components and Function Libraries on page 682

 ➤ Slowing a Debug Session on page 683

 ➤ Using the Single Step Commands on page 684

 ➤ Using the Run to Step and Debug from Step Commands on page 687

 ➤ Pausing a Run Session on page 689

 ➤ Using Breakpoints on page 690

 ➤ Using the Debug Viewer on page 694

 ➤ Handling Run Errors on page 696

 ➤ Practicing Debugging a Function on page 698

Chapter 25 • Debugging Components and Function Libraries

682

About Debugging Components and Function Libraries

After you create a component or function library (including registered user
functions), you should check that they run smoothly, without errors in
syntax or logic. To debug a function library, you must first associate it with a
component via its application area and then debug it from that component.

To detect and isolate defects in a component or function library, you can
control the run session using the Pause command as well as various step
commands that enable you to step into, over, and out of a specific step.

You can use the Debug from Step command to begin your debug session at
a specific point in your component. You can also use the Run to Step
command to pause the run at a specific point in your component. You can
set breakpoints, and then enable and disable them as you debug different
parts of your component or function library.

When the component or function library run stops at a breakpoint, you can
use the Debug Viewer to check and modify the values of VBScript objects
and variables. Also, if QuickTest displays a run error message during a run
session, you can click the Debug button on the error message to suspend the
run and debug the component or function library.

You can also use the Run from Step command to run your component or
function library from a selected step to the end. This enables you to check a
specific section of your application or to confirm that a certain part of your
component or function library runs smoothly. For more information, see
“Running Part of Your Component” in the HP QuickTest Professional User’s
Guide.

Tip: You can use the Screen Recorder to capture a movie of your application
as it is being tested. For more information, see “Capturing and Viewing Still
Images and Movies of Your Application” on page 640.

Chapter 25 • Debugging Components and Function Libraries

683

Notes:

➤ While the component and function libraries are running in debug mode,
they are read-only. You can modify the content after you stop the debug
session (not when you pause it). If needed, you can enable the function
library for editing (File > Enable Editing) after you stop the session. For
more information, see “Editing a Read-Only Function Library” on
page 383. After you implement your changes, you can continue
debugging your component and function libraries.

➤ If you perform a file operation (for example, open a different component
or create a new component), the debug session is stopped.

➤ In QuickTest, when you open a component, QuickTest creates a local
copy of the external resources that are saved to your Quality Center
project. Therefore, any changes you apply to any external resource that is
saved in your Quality Center project, such as a function library, will not
be implemented in the component until the component is closed and
reopened. (An external resource is any resource that was not created
using QuickTest, such as, a function library created in an external editor.)

Slowing a Debug Session

During a run session, QuickTest normally runs steps quickly. While you are
debugging a component or function library, you may want QuickTest to run
the steps more slowly so you can pause the run when needed or perform
another task. You can specify the time (in milliseconds) QuickTest pauses
between each step by modifying the Delay each step execution by option in
the Run tab of the Options dialog box (Tools > Options). For more
information on the Run tab options, see “Setting Run Testing Options” on
page 591.

Chapter 25 • Debugging Components and Function Libraries

684

Using the Single Step Commands

You can run a single step of a component or function library using the Step
Into, Step Out, and Step Over commands.

Tip: To display the Debug toolbar, choose View > Toolbars > Debug.

Step Into

Choose Debug > Step Into, click the Step Into button, or press F11 to run
only the current line of the active component or function library. If the
current line of the active component or function library calls a function, the
called function is displayed in the QuickTest window, and the function
library pauses at the first line of the called function.

Step Out

Choose Debug > Step Out, click the Step Out button, or press SHIFT+F11
only after using Step Into to enter a user-defined function. Step Out runs to
the end of the user-defined function, then returns to the calling component
or function library and pauses the run session.

Step Over

Choose Debug > Step Over, click the Step Over button, or press F10 to run
only the current step in the active component or function library. When the
current step calls a user-defined function, the called function is executed in
its entirety, but the called function script is not displayed in the QuickTest
window.

Chapter 25 • Debugging Components and Function Libraries

685

Using the Single Step Commands - An Example
Follow the instructions below to create a sample function library and run it
using the Step Into, Step Out, and Step Over commands.

To create the sample function library:

 1 Choose File > New > Application Area. A new application area opens. (For
more information, see “Creating an Application Area” on page 417.)

 2 Create a new function library named SampleFL.qfl and save it to your
Quality Center project. (For more information, see “Managing Function
Libraries” on page 426.)

 3 Open SampleFL.qfl and enter the following lines exactly:

public Function myfunc()
msgbox "one"
msgbox "two"
msgbox "three"
End Function

 4 Associate the function library with the component’s application area by
choosing File > Associate Library '<Function Library Name>' with
'<Application Area Name>', or right-clicking and choosing Associate Library
'<Function Library Name>' with '<Application Area Name>'. QuickTest
associates the function library with your application area.

To run the component using the Step Into, Step Out, and Step Over
commands:

 1 Create a new component based on the application area you created in the
previous section.

 2 Insert three identical steps. For each step:

➤ In the Item cell, select Operation.

➤ In the Operation cell, select myfunc.

 3 Open the SampleFL.qfl function library, if it is not already open, or click the
tab for the SampleFL.qfl function library to bring it into focus.

Chapter 25 • Debugging Components and Function Libraries

686

 4 Add a breakpoint on the first line of the component (the first call to the
myfunc function) by pressing F9 (Insert/Remove Breakpoint). The
breakpoint symbol is displayed in the left margin. For more information, see
“Setting Breakpoints” on page 691.

 5 Run the component. The component pauses at the breakpoint.

 6 Press F11 (Step Into). The execution arrow points to the first line within the
function (msgbox "one").

 7 Press F11 (Step Into) again. A message box displays the text one.

 8 Click OK to close the message box. The execution arrow moves to the next
line in the function.

 9 Continue pressing F11 (Step Into) until the execution arrow leaves the
function and is pointing to the eighth line in the script (the second call to
the myfunc function).

 10 Press F11 (Step Into) to enter the function again. The execution arrow
points to the first msgbox line within the function.

 11 Press SHIFT+F11 (Step Out). Three message boxes open. The execution arrow
continues to point to the first line in the function until you close the last of
the three message boxes. After you close the third message box, the
execution arrow points to the last line in the test.

 12 Press F10 (Step Over). The three message boxes open again. The execution
arrow remains on the last line in the test.

Chapter 25 • Debugging Components and Function Libraries

687

Using the Run to Step and Debug from Step Commands

In addition to stepping into, out of, and over a step while debugging, you
can use the Run to Step and Debug from Step commands to instruct
QuickTest to run a component (including any associated function library)
until it reaches a particular step, or to begin debugging from a specific step.

Run to Step

You can instruct QuickTest to run from the beginning of the component—or
from the current location in the component—and to stop at a particular
step. This is similar to adding a temporary breakpoint to a step. For example,
if you are running a component and any associated function library in
debug mode, one step at a time, you may want to run four consecutive steps
and then stop at the fifth step.

You can use this option while editing or debugging your component.

To instruct QuickTest to run to a particular step:

➤ Insert your cursor in the step in which you want QuickTest to stop the
run and choose Debug > Run to Step or press CTRL+F10, or

➤ Right-click in the step in which you want QuickTest to stop the run and
choose Run to Step from the context menu.

Note: If while editing your component, you use the Run to Step option, the
Run dialog box opens, enabling you to specify the results location and the
input parameter values for the debug run session. For more information, see
step2 in the “Debug from Step” section, below.

Chapter 25 • Debugging Components and Function Libraries

688

Debug from Step

You can instruct QuickTest to begin your debug session from a particular
step instead of beginning the run at the start of the component. Before you
start debugging from a specific step, make sure that the application is open
to the location from which you want to begin debugging. You can begin
debugging from a specific step in your component when editing a
component.

To instruct QuickTest to run from a particular step:

 1 Select the step from which you want to begin debugging:

➤ Insert your cursor in the step where you want QuickTest to start the run
and choose Debug > Debug from Step, or

➤ Right-click in the step where you want QuickTest to start the run and
choose Debug from Step from the context menu.

The Run dialog box opens.

 2 If applicable, specify the results location and the input parameter values for
the debug run session. By default, the Temporary run results folder option is
selected.

Chapter 25 • Debugging Components and Function Libraries

689

For more information on the tabs in the Run dialog box, see
“Understanding the Results Location Tab” on page 620, and
“Understanding the Input Parameters Tab” on page 621.

 3 Click OK. The Run dialog box closes and the debug run session starts. You
can use any of the QuickTest debugging options, such as Step Into, Step
Over, and Run to Step.

By default, when the run session ends, the Test Results window opens. For
more information on viewing the run results, see Chapter 23, “Viewing Run
Session Results.”

Note: If you cleared the View results when run session ends check box in
the Run tab of the Options dialog box, the Test Results window does not
open at the end of the run session. For more information on the Options
dialog box, see Chapter 20, “Setting Global Testing Options.”

Pausing a Run Session

You can temporarily suspend a run session by choosing Debug > Pause or
clicking the Pause button. A paused component or function library stops
running when all previously interpreted steps have been run.

To resume running a paused run, click the Run button, choose Automation >
Run, or press F5. The run continues from the point it was suspended.

Tip: You can also stop a run session by clicking the Stop button or choosing
Automation > Stop. After the run session stops, the Test Results window
opens (unless you selected not to view results at the end of a run session
(Tools > Options > Run tab)).

Chapter 25 • Debugging Components and Function Libraries

690

Using Breakpoints

You can use breakpoints to instruct QuickTest to pause a run session at a
predetermined place in a component or function library. QuickTest pauses
the run when it reaches the breakpoint, before executing the step. You can
then examine the effects of the run up to the breakpoint, make any
necessary changes, and continue running the component or function
library from the breakpoint.

You can use breakpoints to:

➤ suspend a run session and inspect the state of your application

➤ mark a point from which to begin stepping through a component or
function library using the step commands

You can set breakpoints, and you can temporarily enable and disable them.
After you finish using them, you can remove them from your component or
function library.

Note: Breakpoints are applicable only to the current QuickTest session and
are not saved with your component or function library.

Chapter 25 • Debugging Components and Function Libraries

691

Setting Breakpoints
By setting a breakpoint, you can pause a run session at a predetermined
place in a component or function library. A breakpoint is indicated by a
filled red circle icon in the left margin adjacent to the selected step.

To set a breakpoint:

Perform one of the following:

➤ Click in the left margin of a step in the component or function library
where you want the run to stop, or

➤ Click a step and then:

➤ Click the Insert/Remove Breakpoint button

➤ Choose Debug > Insert/Remove Breakpoint

The breakpoint symbol is displayed in the left margin of the component or
function library.

Tip: You can also use the Enable/Disable Breakpoint option to add a
breakpoint to a step. For more information, see “Enabling and Disabling
Breakpoints” on page 692.

Chapter 25 • Debugging Components and Function Libraries

692

Enabling and Disabling Breakpoints
You can instruct QuickTest to ignore an existing breakpoint during a debug
session by temporarily disabling the breakpoint. Then, when you run your
component or function library, QuickTest runs the step containing the
breakpoint, instead of stopping at it. When you enable the breakpoint
again, QuickTest pauses there during the next run. This is particularly useful
if your component or function library contains many steps, and you want to
debug a specific part of it.

You can enable or disable breakpoints individually or all at once. For
example, suppose you add breakpoints to various steps throughout your
component or function library, but for now you want to debug only a
specific part of your document. You could disable all breakpoints in your
component or function library, and then enable breakpoints only for
specific steps. After you finish debugging that section of your document,
you could disable the enabled breakpoints, and then enable the next set of
breakpoints (in the section you want to debug). Because the breakpoints are
disabled and not removed, you can find and enable any breakpoint, as
needed.

An enabled breakpoint is indicated by a filled red circle icon in the left
margin adjacent to the selected step.

A disabled breakpoint is indicated by an empty circle icon in the left
margin adjacent to the selected step.

To enable/disable a specific breakpoint:

 1 Click in the line containing the breakpoint you want to disable/enable.

 2 Choose Debug > Enable/Disable Breakpoint or press CTRL+F9. The
breakpoint is either disabled or enabled (depending on its previous state).

To enable/disable all breakpoints:

Choose Debug > Enable/Disable All Breakpoints or click the Enable/Disable
All Breakpoints button. If at least one breakpoint is enabled, QuickTest
disables all breakpoints in the component or function library. Alternatively,
if all breakpoints are disabled, QuickTest enables them.

Chapter 25 • Debugging Components and Function Libraries

693

Removing Breakpoints
You can remove a single breakpoint or all breakpoints defined for the
current component or function library.

To remove a single breakpoint:

Perform one of the following:

➤ Click the breakpoint.

➤ Click the line in your component or function library with the breakpoint
symbol and:

➤ Click the Insert/Remove Breakpoint button.

➤ Choose Debug > Insert/Remove Breakpoint.

The breakpoint symbol is removed from the left margin of the QuickTest
window.

To remove all breakpoints:

Click the Clear All Breakpoints button, or choose Debug > Clear All
Breakpoints. All breakpoint symbols are removed from the left margin of the
QuickTest window.

Chapter 25 • Debugging Components and Function Libraries

694

Using the Debug Viewer

You use the Debug Viewer pane to view, set, or modify the current value of
objects or variables in your function library, when it stops at a breakpoint, or
when a step fails and you select the Debug option. The Debug Viewer is
useful for debugging operations (functions) in a business component, but is
not intended for use with other types of component steps.

To open the Debug Viewer pane:

Choose View > Debug Viewer or click the Debug Viewer button. The Debug
Viewer pane opens.

Debug Viewer

Chapter 25 • Debugging Components and Function Libraries

695

The Debug Viewer tabs are used to display the values of variables and objects
in the main script of the selected subroutine.

Watch Tab
You can view the current value of any variable or VBScript object in your
function library by adding it to the Watch tab. As you continue stepping
into the subsequent steps in your function library, QuickTest automatically
updates the Watch tab with the current value for any object or variable
whose value changes. You can also change the value of the variable
manually when the function library pauses at a breakpoint.

To add an expression to the Watch tab:

Perform one of the following:

➤ Click the expression and choose Debug > Add to Watch.

➤ Click the expression and press CTRL+T.

➤ Right-click the expression and choose Add to Watch from the context
menu.

➤ In the Watch tab, paste or type the name of the object or variable into
the Name column and press ENTER to view the current value in the Value
column.

Note: You can add an expression to the Watch tab from a function library
(and not from a business component).

Chapter 25 • Debugging Components and Function Libraries

696

Variables Tab
QuickTest automatically displays the current value of all variables in the
current function in the Variables tab—up to the point where the function
library is stopped or paused. For example, if you are stepping through a
function, as you step into each step, QuickTest adds the current value for
any step variable to the Variables tab grid. As you continue stepping into the
subsequent steps, QuickTest automatically updates the value displayed in
the Variables tab for any variable whose value changes. You can also change
the value of the variable manually, during the breakpoint pause.

Command Tab
Use the Command tab to execute a line of script to set or modify the current
value of a variable or VBScript object in your function library. When the run
continues, QuickTest uses the value that you set.

Handling Run Errors

There are two types of Run Error message boxes that can be displayed during
a run session. One is displayed if the problem is a pure VBScript syntax error.
When a syntax run error message box is displayed, click OK in the message
box and address the error in your step.

The other message box can be displayed in a number of situations, and
offers information about the error and a number of buttons for dealing with
errors encountered:

Chapter 25 • Debugging Components and Function Libraries

697

➤ Stop. Stops the run session. The run results are displayed if QuickTest is
configured to show run results after the run.

➤ Retry. QuickTest attempts to perform the step again. If the step succeeds, the
run continues.

➤ Skip. QuickTest skips the step that caused the error, and continues the run
from the next step.

➤ Debug. QuickTest suspends the run, enabling you to debug the component
and any associated function library that contains a function called by the
component.

You can perform any of the debugging operations described in this chapter.
After debugging, you can continue the run session from the step where the
component or function library stopped, or you can use the step commands
to control the remainder of the run session.

➤ Help. Opens the QuickTest troubleshooting Help for the displayed error
message. After you review the Help topic, you can select another button in
the error message box.

The message box also recommends that you consider using Maintenance
Mode if you think the error is due to intentional changes in your
application and requires that you update multiple steps in your component
or objects in your repository. For more information, see “Running
Components with the Maintenance Run Wizard” on page 704.

Chapter 25 • Debugging Components and Function Libraries

698

Practicing Debugging a Function

Suppose you create a function that defines variables that will be used in
other parts of your function library. You can add breakpoints to the function
to see how the value of the variables changes as the function library runs. To
see how the function library handles the new value, you can also change the
value of one of the variables during a breakpoint.

Step 1: Create a New Function

Open a new function library and create a new function called SetVariables.
For more information on working with functions, see Chapter 11, “Working
with User-Defined Functions and Function Libraries.”

Enter the VBScript code, as follows:

Step 2: Associate the Function Library with an Application Area

 1 Make sure the function library is in focus. (If it is not in focus, activate it by
clicking the function library’s tab or choosing it from the Window menu.)

 2 Choose File > Associate Library '<Function Library Name>' with
'<Application Area Name>', or right-click and choose Associate Library
'<Function Library Name>' with '<Application Area Name>'. QuickTest
associates the function library with your application area.

Step 3: Add a Call to the Function in the Component

Add a call to the function by inserting a new operation and choosing
SetVariables from the Operation list.

Chapter 25 • Debugging Components and Function Libraries

699

Step 4: Add Breakpoints

Add breakpoints at the lines containing the text b=”me” and MsgBox a. For
more information on adding breakpoints, see “Setting Breakpoints” on
page 691.

Step 5: Begin Running the Component

Run the component. The component or function library stops at the first
breakpoint, before executing that step (line of script).

Step 6: Check the Value of the Variables in the Debug Viewer
Pane

 1 Choose View > Debug Viewer to open the Debug Viewer pane, if it is not
already open. Then select the Watch tab on the Debug Viewer pane.

 2 In the document pane, select the variable a and choose Debug > Add to
Watch. QuickTest adds the variable a to the Watch tab. The Value column
indicates that the value of a is currently hello, because the breakpoint
stopped after the value of variable a was initiated.

 3 In the document pane, select the variable b and choose Debug > Add to
Watch. QuickTest adds the variable b to the Watch tab. The Value column
indicates Variable is undefined: 'b', because the component stopped before
variable b was declared.

 4 Select the Variables tab in the Debug Viewer pane. Both SetVariables (with
the value Empty) and variable a (with the value hello) are displayed.
Variable b is not displayed because the component stopped before variable b
was declared.

Step 7: Check the Value of the Variables at the Next Breakpoint

Click the Run button to continue running the component. The component
stops at the next breakpoint. Note that the values of variables a and b have
both been updated in the Watch and Variables tabs.

Step 8: Modify the Value of a Variable Using the Command Tab

Select the Command tab in the Debug Viewer pane.

Chapter 25 • Debugging Components and Function Libraries

700

Type: a="This is the new value of a" at the command prompt, and press ENTER
on the keyboard. Click the Run button to continue running the component.
The message box that appears displays the new value of a.

701

26
Maintaining Components

QuickTest provides tools that enable you to maintain your components as
the application you are testing changes. For example, your application’s
objects may change their properties or descriptions, or they may no longer
exist. The expected values of your component’s checkpoints may also need
updating based on changes in your application. This chapter describes how
you can use QuickTest’s tools to update and maintain your components.

This chapter includes:

 ➤ Why Components Fail on page 701

 ➤ Running Components with the Maintenance Run Wizard on page 704

 ➤ Updating a Component Using the Update Run Mode Option on page 720

Why Components Fail

Components fail when QuickTest encounters conditions in a component it
did not expect. In many cases this is due to the application being tested not
functioning properly. QuickTest then provides you with test results that
assist you in understanding how to fix your application.

Sometimes a component fails because the application being tested has
changed from when the component was created and the QuickTest
component needs to be updated to reflect those changes. QuickTest provides
tools that help identify and resolve some of these issues.

Chapter 26 • Maintaining Components

702

Object Changes
When QuickTest runs a step in a component, it looks for the object referred
to by that step, in the object repositories associated with that component.
Using the description of the object in the repository, QuickTest attempts to
identify that object in the application.

QuickTest may not be able to identify the object in the application for a
number of reasons.

The Object Does Not Exist in the Application

QuickTest cannot find an object in the application that matches the
description of the object in the object repository. Maintenance Mode
enables you to identify the object that you want your component to use.

The Parent Object Changed

QuickTest cannot find an object in the application that matches and has the
same hierarchy as the object in the object repository. Maintenance Mode
enables you to identify the object that you want your component to use.

The Object Description Property Values Changed

QuickTest cannot find an object in the application that is similar to, and has
the same description property values as the object in the object repository.
Maintenance Mode enables you to identify the object that you want your
component to use.

The Object Does Not Exist in the Object Repository

QuickTest looks for the object to which the component refers, in the
associated object repositories before attempting to identify that object in the
application. If the object cannot be found in any associated object
repository, QuickTest raises the Run Error dialog box, informing you that the
object does not exist in the object repository. The missing object needs to be
added manually to the object repository or you need to change your step.

Chapter 26 • Maintaining Components

703

The Description Set of the Object Needs to Change

QuickTest uses a set of properties to identify objects in the application. If the
set of identification properties for the object in the object repository does
not provide a unique description matching an object in the application,
QuickTest will be unable to find the object. Update Run Mode enables you
to update the set of identification properties for the objects in your
component to match those defined in the Object Repository dialog box.

Checkpoint Changes
Checkpoints fail when they encounter conditions in the application being
tested that are unexpected. In many cases this is due to the application not
functioning properly. QuickTest provides you with test results that assist you
in understanding how to fix your application.

Sometimes checkpoints fail because the application has changed since the
component was created and the QuickTest checkpoints need to be updated
to reflect those changes. Update Run Mode enables you to update the
checkpoints in your component to reflect changes in the application.

For example, suppose your application has an edit box whose label is Name
and whose value should be Michael. You can create one checkpoint to check
if the edit box’s label is Name, and another checkpoint to check if the edit
box has the value Michael. If the checkpoint that checks the value of the edit
box fails, (it contains Suzy) the application is not functioning properly and
you can use QuickTest’s test results to determine how to fix the application.
If the edit box label changes to ID it will cause the checkpoint that checks
that the edit box’s label is Name to fail. Your application has changed and
you need to update your component to reflect those changes. Update Run
Mode enables you to update the checkpoint to reflect the change in the
application.

Chapter 26 • Maintaining Components

704

Running Components with the Maintenance Run Wizard

Maintenance Run Mode enables you to update your component to reflect
changes in the application you are testing.

When you run a component in Maintenance Run Mode, QuickTest runs
your component, and then guides you through the process of updating your
steps and object repository. It does this each time it encounters a step it
cannot perform due to a discrepancy between the property values of the
object in the object repository and the property values of the object in the
test.

When you run a component in Maintenance Mode, the Maintenance Run
wizard opens for steps that failed because an object was not found in the
application. You have the choice of using the wizard to point to the object
in the application that you want your component to use or adding a
comment to your component before the failed step. If you point to an
object in the application being tested, Maintenance Mode will compare that
object to the objects in the associated object repositories.

Depending on how the property values of the object to which you point
compare to the property values of the objects in the associated repositories,
Maintenance Mode will suggest one of a several options for updating your
component to reflect the changes in the application. At each point in the
wizard you can click the Reset button and point to a different object from
the application for use in the failed step.

When the Maintenance Run Mode ends, Maintenance Mode wizard
provides a summary of the changes it made to your component. The main
Test Results window also contains a Maintenance Summary which displays
details of the changes made to your component, including updated and
added objects, updated and commented steps, and a summary of changes to
the object repository.

Chapter 26 • Maintaining Components

705

Notes:

➤ You must have the Microsoft Script Debugger installed to run the
components in Maintenance Mode. If it is not installed, you can use the
QuickTest Additional Installation Requirements Utility to install it.
(Select Start > Programs > QuickTest Professional > Tools > Additional
Installation Requirements.)

➤ You can run in Maintenance Run Mode only when QuickTest is set to use
the Normal (displays execution marker) run mode. It cannot run in Fast
mode. For more information, see “Setting Run Testing Options” on
page 591.

➤ You cannot run in Maintenance Run Mode on applications that do not
have a user interface, such as Web services.

Tip: After Maintenance Run Mode finishes, you may want to reset this
setting to its previous value for regular runs.You can also update individual
test object descriptions from the object in your application using the
Update from Application option in the Object Repository window or Object
Repository Manager. For more information, see “Updating Test Object
Properties from an Object in Your Application” on page 138.

To run a component in Maintenance Mode:

 1 Open the component and select Automation > Maintenance Run Mode or
click the down arrow next to the Run button on the toolbar and select
Maintenance Run Mode. The Run dialog box opens.

 2 Specify the results location and the input parameter values (if applicable) for
the Maintenance Run Mode session. For more information, see
“Understanding the Results Location Tab” on page 620, and
“Understanding the Input Parameters Tab” on page 621.

Chapter 26 • Maintaining Components

706

 3 Click OK. The Run dialog box closes and the Maintenance Run Mode session
starts. By default, when the run session ends, the Test Results window opens.
For more information on viewing the run session results, see Chapter 23,
“Viewing Run Session Results.”

Note: If you cleared the View results when run session ends check box in
the Run tab of the Options dialog box, the Test Results window does not
open at the end of the run session. For more information on the Options
dialog box, see Chapter 20, “Setting Global Testing Options.”

If an object in your component cannot be found in the application, the
Maintenance Run Wizard opens and guides you through the steps of
resolving the issue. After you resolve the issue the run continues.

Chapter 26 • Maintaining Components

707

The Object Not Found Screen
If an object in your component cannot be found in the application you are
testing, the Object Not Found screen opens. The Object Not Found screen
identifies the Object that could not be found and the Step QuickTest was
trying to perform.

Chapter 26 • Maintaining Components

708

Notes:

The Suggestion pane is displayed only if the Maintenance Run wizard
cannot find an object in the application that was not found earlier in the
run session as well.

The point and commenting options are disabled in the Maintenance Run
wizard for objects that were not found when:

➤ The test is open in read-only mode.

➤ The object is used within a function library function.

➤ The object's method is defined as a registered user function.

The Object Not Found screen assists you in resolving the problem by
providing the following options:

➤ Point to the Object. Click the Point button and point to the object in the
application that should be used in the step. Use this option if you know the
application has changed and identifying a new object for use in the step will
resolve the issue.

If the location to which you point is associated with several objects, the
Object Selection dialog box opens. Select the correct object from the tree
and click OK.

One of the following screens opens depending on the object to which you
pointed:

➤ “The Update Step with Existing Object Screen” on page 714

➤ “The Add Object to Repository Screen” on page 716

➤ “The Change Object Property Values Screen” on page 711

➤ Add a Comment. Use this option if you want to add a comment to your test
as a reminder to fix the failed step.

Chapter 26 • Maintaining Components

709

➤ Suggestion. Displayed only if Maintenance Mode cannot find an object in
the application that was not found earlier in the Maintenance Mode run as
well. If, when the object was first not found you chose to replace it with a
different object, Maintenance Mode will suggest replacing it with the same
object now.

➤ Use as default. If, in subsequent steps the same object cannot be found,
Maintenance Mode will automatically replace the object not found with
the object you added to the object repository. Maintenance Mode will
not open on these subsequent steps.

The Object Not Found screen contains the following navigation buttons:

➤ Skip. Skips the current step in the component and continues to run
Maintenance Mode on the remainder of the component. This can be used
when the problem is in the application being tested and not the QuickTest
component.

Note: When selecting Skip, ensure that the application is ready for the next
step in the component.

➤ Retry. Retries the current step.

➤ Stop. Stops the Maintenance Run and opens the Maintenance Mode
Summary screen.

➤ Help. Opens this Help topic.

Chapter 26 • Maintaining Components

710

The Add Comment Screen
The Add Comment screen enables you to add a comment to your
component before the current step. This can be used when identifying the
object in the application will not solve the problem or you want to fix the
component manually.

The Add Comment screen creates a comment in your component beginning
with the word TODO along with text you add, as a reminder to fix the step
at a later time.

Chapter 26 • Maintaining Components

711

The Change Object Property Values Screen
The Change Object Property Values screen opens when an object of the
same class as the object to which you pointed exists in an associated object
repository, but with different description property values.

The Change Object Property Values screen suggests updating the property
values of the object in the associated object repository to match the
property values of the object to which you pointed in the application.

Note: If the Maintenance Run wizard does not recommend a regular
expression for the new property value, the Change Object Property Value
screen will not display the message and suggested regular expression below
the table. The Update the <property name> property to use the regular
expression and rerun the step radio button will also not be displayed.

Chapter 26 • Maintaining Components

712

The central area Change Object Property Values screen can contain the
following information:

Depending on the object to which you pointed, the Change Object Property
Value screen may include a message that a regular expression can be used to
update the property value of the object in the associated object repository.
The Update the <property name> property to use the regular expression
and rerun the step radio button will also be displayed. You can modify the
suggested regular expression in the edit box. For more information on
regular expressions, see “Understanding and Using Regular Expressions” on
page 734.

Note: In a situation where more than one property can use a regular
expression, the Maintenance Mode wizard will only suggest a regular
expression for the first property value.

Section Description

Object The object in an associated object repository that
is of the same class as the object to which you
pointed in the application.

Object Properties A table displaying the changes that will be made
to the property values of the object in the object
repository.

Property The name of the property whose value will be
changed.

Original Value The original property value of the object in the
object repository.

New Value The new property value for the object in the
object repository, based on the object to which
you pointed in the application.

Chapter 26 • Maintaining Components

713

The Change Object Property Values screen provides the following options:

➤ Update the object property and rerun the step. Updates the property values
of the object in the object repository to match those of the object to which
you pointed in the application, and reruns the step. The new property
values are shown under New Value.

➤ Update the <property name> property to use the regular expression and
rerun the step. Displayed only if the property value can be updated to use a
regular expression. Updates the property value of the object in the object
repository with the regular expression as shown in the edit box, and reruns
the step.

➤ Add the object as a new object in the local object repository, and then
update and rerun the step. Depending on the object to which you pointed
one of the following screens will open:

➤ The Update Step with Existing Object screen. This screen will open if the
object you want to add exists in an associated object repository.

➤ The Add Object to Repository screen. This screen will open if the object
you want to add does not exist in an associated object repository.

➤ Keep the original object properties, add a comment, and continue to the
next step. Keeps the original object properties of the object in the object
repository. Opens the Add Comment screen, enabling you to add a
comment before the step, and then continues to the next step.

Chapter 26 • Maintaining Components

714

The bottom of the screen contains the Reset button which enables you to
return to the Object Not Found screen, where you can point to a different
object in the application or choose a different course of action for this step.

Notes:

➤ If the object to which you point has a different parent object than the
one in the object repository and has different property values, the
Change Object Property Values screen opens twice. The first time it
enables you to update the parent object of the object in the object
repository to match the parent object of the object to which you pointed.
The second time it enables you to update the object in the object
repository to match the object to which you pointed.

➤ Maintenance Mode makes changes to the local object repository only. If
you want the new object to appear in a shared object repository, use the
Object Repository Manager. For more information, see “Performing
Merge Operations” on page 241.

The Update Step with Existing Object Screen
The Update Step with Existing Object screen opens if the object to which
you pointed in the Object Not Found screen exists in an associated object
repository and:

➤ No object of the same class as the object to which you pointed exists in an
associated object repository with different description property values.

Or

➤ In the Change Object Property Values screen you chose Add the object as a
new object in the local object repository, and then update and rerun the
step.

Chapter 26 • Maintaining Components

715

The Update Step with Existing Object screen suggests updating the step in
your test to use an object that already exists in an associated object
repository.

The central area of the Update Step with Existing Object screen contains the
following sections:

Section Description

Object The object in an associated object repository that
is the same as the object to which you pointed in
the application.

Object Properties The properties and property values of the object
to which you pointed in the test application.

Chapter 26 • Maintaining Components

716

The Update Step with Existing Object screen provides the following options:

➤ Update the step and rerun it. Updates the failed step as shown under New
Step and reruns the step.

Note: Maintenance Mode does not remove the original step from your
component. The original step is converted into a comment and the updated
step is added below it.

➤ Keep the original step and continue to the next step. Keeps the original step
and continues to run Maintenance Mode on the remainder of the
component.

The bottom of the screen contains the Reset button which enables you to
return to the Object Not Found screen, where you can point to a different
object in the application or choose a different course of action for this step.

The Add Object to Repository Screen
The Add Object to Repository screen opens if the object to which you
pointed does not exist in any associated object repository and:

➤ No object of the same class as the object to which you pointed exists in an
associated object repository with different description property values.

Or

➤ In the Change Object Property Values screen you chose Add the object as a
new object in the local object repository, and then update and rerun the
step.

Original Step The failed original step, with the object that
could not be found.

New Step The new step as it would appear updated to refer
to the object which already exists in an
associated object repository.

Section Description

Chapter 26 • Maintaining Components

717

The Add Object to Repository screen suggests adding the object to which
you pointed to the object repository.

The central area of the Add Object to Repository screen contains the
following sections:

Section Description

Object The object to which you pointed in the test
application.

Object Properties The properties and property values of the object
to which you pointed in the test application.

Original Step The failed original step, with the object that
could not be found.

New Step The new step as it would appear updated to refer
to the object being added to the object
repository.

Chapter 26 • Maintaining Components

718

The Add Object to Repository screen provides the following options:

➤ Add the object and then update and rerun the step. Adds the new object to
the object repository, updates the failed step as shown under New Step and
reruns the step.

➤ Keep the original object and step, and continue to the next step. Keeps the
original step containing the original object and continues to run
Maintenance Mode on the remainder of the component.

The bottom of the screen contains the Reset button which enables you to
return to the Object Not Found screen, where you can point to a different
object in the application or choose a different course of action for this step.

Notes:

➤ Maintenance Mode makes changes to the local object repository only. If
you want the new object to appear in a shared object repository use the
Object Repository Manager. For more information, see “Performing
Merge Operations” on page 241.

➤ Maintenance Mode does not remove the original step from your
component. The original step is converted into a comment and the
updated step is added below it.

Chapter 26 • Maintaining Components

719

Understanding the Maintenance Mode Summary Screen
When Maintenance Run Mode is finished, the Maintenance Mode Summary
screen opens.

The Maintenance Mode Summary Screen displays the number of objects
that were added to the local object repository, the number of object
properties that were updated, the number of steps that were modified, and
the number of comments that were added to the test.

Chapter 26 • Maintaining Components

720

Click Finish to end the Maintenance Run. By default, when the run session
ends, the Test Results window opens and includes details about the steps
and objects that were updated during the run. For more information on
viewing the run session results, see Chapter 23, “Viewing Run Session
Results.”

Note: If you cleared the View results when run session ends check box in
the Run tab of the Options dialog box, the Test Results window does not
open at the end of the run session. For more information on the Options
dialog box, see Chapter 20, “Setting Global Testing Options.”

Updating a Component Using the Update Run Mode Option

When you run a component in Update Run mode, QuickTest runs the
component to update the test object descriptions and/or the expected
checkpoint values. After you save the component, the updated data is used
for subsequent runs.

Note: When QuickTest updates components, it always saves the updated
objects in the local object repository, even if the objects being updated were
originally from a shared object repository. The next time you run the
component, QuickTest uses the objects from the local object repository, as
the local object repository has a higher priority than any shared object
repositories.

Chapter 26 • Maintaining Components

721

Tip: After using Update Run Mode to update the component, you may want
to use the Update from Local Repository option in the Object Repository
Manager to merge the objects from the local repository back to a shared
object repository. For more information, see Chapter 6, “Managing Object
Repositories.”

 1 Open the test, and select Choose Automation > Update Run Mode, or click
the down arrow next to the Run button on the toolbar and select Update
Run Mode.

The Update Run dialog box opens.

 2 Specify the settings for the update run process. For more information, see
“Understanding the Update Options Tab” on page 723, and “Understanding
the Input Parameters Tab” on page 621.

Note: The run results for an update run session are always saved in a
temporary location.

Chapter 26 • Maintaining Components

722

 3 Click OK. The Update Run dialog box closes and QuickTest begins running
in Update Run mode. The text Update Run flashes in the status bar while
the component is being updated.

QuickTest runs the component and updates the test object descriptions
and/or the expected checkpoint values, depending on your selections.
When the run session ends, the Test Results window opens.

For information on viewing the results, see Chapter 23, “Viewing Run
Session Results.”

Note: If you cleared the View results when run session ends check box in
the Run tab of the Options dialog box, the Test Results window does not
open at the end of the update run session. For more information on the
Options dialog box, see Chapter 20, “Setting Global Testing Options.”

When the update run ends, the Test Results window can show:

➤ Updated values for checkpoints.

➤ Updated test object descriptions.

Chapter 26 • Maintaining Components

723

Understanding the Update Options Tab
The Update Options tab enables you to specify which aspects of your
component you want to update, such as test object descriptions and/or
expected checkpoint values. After you save the component, the results of
the updated component are used for subsequent runs.

You can specify one or more of the following information types to update:

➤ Update test object descriptions. QuickTest updates the set of properties for
each object class in your associated object repositories according to the
properties currently defined in the Object Identification dialog box. You can
use this option to modify the set of properties used to identify an object of a
certain type.

Note: If the property set you select in the Object Identification dialog box
for an object class is not ideal for a particular object, the new object
description may cause future runs to fail. Therefore, it is recommended that
you save a copy of your object repository before updating it, so that you can
return to the previously saved version, if necessary.

Chapter 26 • Maintaining Components

724

This option can be especially useful when you want to record and debug
your component using property values that are easy to recognize in your
application (such as object labels), but may be language or operating system
dependent. After you debug your component, you can use the Update Run
Mode option to change the object descriptions to use more universal
property values.

For example, suppose you design a component for the English version of a
part of your application. The test objects are recognized according to the test
object property values in the English version, some of which may be
language dependent. You now want to use the same component for the
French version of this part of your application.

To do this, you define properties that are non-language dependent. These
properties will be used for object identification. For example, you can
identify a link object by its target property value instead of its text property
value. You can then perform an update run on the English version of this
part of your application using these new properties. This will modify the test
object descriptions so that you can later run the component successfully on
the French version of your application.

Tip: If you have a component that runs successfully, but in which certain
objects are identified using Smart Identification, you can change the set of
properties used for object identification and then use the Update test object
descriptions option to update the test object description to use the set of
properties that Smart Identification used to identify the object.

Chapter 26 • Maintaining Components

725

When you run the component with Update test object descriptions
selected, QuickTest finds the test object specified in each step based on its
current test object description. If QuickTest cannot find the test object based
on its description, it uses the Smart Identification properties to identify the
test object (if Smart Identification is enabled). After QuickTest finds the test
object, it then updates its description based on the mandatory and assistive
properties that you define in the Object Identification dialog box.

Note: Test objects that cannot be identified during the update process are
not updated. As in any run session, if an object cannot be found during the
update run, the run session fails, and information on the failure is included
in the Test Results. In these situations, you may want to use Maintenance
Mode to resolve these problems.

Any properties that were used in the previous test object description and are
no longer part of the description for that test object class, as defined in the
Object Identification dialog box, are removed from the new description,
even if the values were parameterized or defined as regular expressions.

If the same property appears both in the test object’s new and previous
descriptions, one of the following occurs:

➤ If the property value in the previous description is parameterized or
specified as a regular expression and matches the new property value,
QuickTest keeps the property’s previous parameterized or regular
expression value. For example, if the previous property value was defined
as the regular expression button.*, and the new value is button1, the
property value remains button.*.

➤ If the property value in the previous description does not match the new
property value, but the object is found using Smart Identification,
QuickTest updates the property value to the new, constant property
value. For example, if the previous property value was button.*, and the
new value is My button, if a Smart Identification definition enabled
QuickTest to find the object, My button becomes the new property value.
In this case, any parameterization or use of regular expressions is
removed from the test object description.

Chapter 26 • Maintaining Components

726

➤ Update checkpoint properties and output property values. QuickTest
updates the expected values of your checkpoints to reflect any changes that
may have occurred in your application since you created the test and
updates the list of items that can be retrieved in your output value steps.

For example, suppose you defined a text checkpoint as part of your test, and
the text in your application has changed since you created your test. You
can update the test to update the checkpoint properties to reflect the new
text.

The output value option is mainly relevant for XML output value steps used
with Web services component. For more information, see the section
describing Web services in the HP QuickTest Professional Add-ins Guide.

Notes:

➤ If checkpoint property values are parameterized or include regular
expressions, they are not updated when using this option.

➤ If you selected the Save only selected area check box when creating a
bitmap checkpoint, the Update Run Mode option updates only the saved
area of the bitmap; it does not update the original, full size object. To
include more of the object in the checkpoint, create a new checkpoint.
For more information, see “Checking Bitmaps” on page 565.

Part VIII

Working with the QuickTest IDE

728

729

27
QuickTest Window Layout

This chapter describes how to customize the QuickTest window and work
with QuickTest documents.

This chapter includes:

 ➤ Modifying the QuickTest Window Layout on page 729

 ➤ Working With Multiple Documents on page 738

Modifying the QuickTest Window Layout

You can modify the layout of the QuickTest window. For example, you can
move and resize panes, select to show or auto-hide panes, create tabbed
panes, and select which toolbars to display. If needed, you can also restore
the default layout.

You can also resize the QuickTest window to suit your needs for each type of
QuickTest session (view/edit, record, and run sessions). For example, you
can display QuickTest in full view when creating or editing a component or
application area, and minimize the QuickTest window during a run session.
For more information, see “Customizing the QuickTest Window Layout” on
page 587.

When you customize or restore the QuickTest window layout, QuickTest
applies the changes to all document types and session types.

Chapter 27 • QuickTest Window Layout

730

Moving Panes
You can move the QuickTest window panes to suit your own personal
preferences. You can rearrange the panes, and you can also change a pane to
a tabbed pane, and vice versa.

While dragging a pane, markers are displayed on the QuickTest window. If
you hold the cursor over one of these markers, the area represented by the
marker is shaded, enabling you to preview the window layout if the pane is
moved to the selected position.

Tip: To move a dockable pane without snapping it into place, press CTRL
while dragging it to the required location.

To move panes:

 1 In the QuickTest window, drag the title bar or tab of the pane you want to
move. (If the required pane is not displayed in the QuickTest window, you
can select it from the View menu.)

Chapter 27 • QuickTest Window Layout

731

For example, you can move the Missing Resources pane located in the
middle of the window to be a new tabbed pane at the bottom of the
window. As you drag the pane, markers are displayed in the active pane and
on each edge of the QuickTest window.

Tips:

➤ To move a single tabbed pane, drag the tab label. Once you start dragging
the tabbed pane, the tab is removed, and its title bar is displayed.

➤ To move all the tabbed panes, drag the title bar of the active tabbed pane.

Drag an active
tabbed pane
title bar to
move all the
tabbed panes

Drag a tab
label to move
a tabbed pane

Drag a
document tab
right or left to
change its
location

Drag a pane
title bar or tab
label to move
the pane to
the left side
of the
QuickTest
window

Drag a pane
title bar or tab
label to move
the pane to
the left side of
this pane

Drag a pane
title bar to
move the pane

Window pane markerCurrent pane marker

Chapter 27 • QuickTest Window Layout

732

The following markers are displayed:

Type Marker Description

Current pane
markers

Enables you to:

➤ position the pane as a new pane in the top,
bottom, left or right half, or middle of the
active pane, according to the arrow marker
selected when you release the mouse button.

➤ position the pane as a new tabbed pane in the
active window, by releasing the mouse button
while selecting the center marker.

Note: The center marker is displayed only if you
are dragging a pane onto an existing pane (other
than the document pane).

Window pane
markers

Enables you to position the pane across the top of
the QuickTest window.

Enables you to position the pane across the right
side of the QuickTest window.

Enables you to position the pane across the
bottom of the QuickTest window.

Enables you to position the pane across the left
side of the QuickTest window.

Chapter 27 • QuickTest Window Layout

733

 2 Drag the Missing Resources pane and hold the cursor over the active pane
right-arrow marker, as shown below. A shaded area is displayed, indicating
the new location of the pane, as shown below.

Chapter 27 • QuickTest Window Layout

734

 3 Release the mouse button. The Missing Resources pane snaps into place and
is displayed as a new pane in the shaded area.

Tip: You can also leave the pane as a floating pane anywhere on the
QuickTest window, or on your screen. For more information on floating
panes, see “Showing and Hiding Panes” on page 735.

 4 Repeat this procedure for each pane you want to move.

Chapter 27 • QuickTest Window Layout

735

Showing and Hiding Panes
After you move the panes to their default positions, you can decide whether
these panes should be displayed at all times, or whether you want to
auto-hide them, and only display them as required.

Panes can have one of the following states—docked or floating:

➤ Docked panes. Docked panes are fixed in a set position relative to the rest of
the application. For example, when you move a pane to a position indicated
by a marker, the pane is docked in that position.

You can decide whether to continuously display the docked panes in the
QuickTest window, or to auto-hide them. Auto-hiding means that the pane
is displayed as a side-tab on the edge of the QuickTest window, and is
displayed only when you hold the cursor over the tab. After you select a
different pane or side-tab, the auto-hidden pane closes and is displayed as a
side-tab.

Note: If you auto-hide the Information pane, it is automatically displayed
when syntax errors are detected in a test script.

By default, auto-hidden panes open across the QuickTest window, according
to their position in the QuickTest window. For example, if the docked pane
was positioned on the right side of the QuickTest window, it is displayed as a
side tab on the right edge of the QuickTest window, and is displayed across
the right side of the QuickTest window when selected.

Tip: To auto-hide all the tabbed panes, select the title bar of the active
tabbed pane, right-click and choose Auto Hide. The tabbed panes are
displayed as a group of side-tabs on the edge of the QuickTest window, and
each pane is displayed only when you hold the cursor over that side-tab.

Chapter 27 • QuickTest Window Layout

736

➤ Floating panes. Floating panes are displayed on top of all other windows.
They can be dragged to any position on your screen, even outside the
QuickTest window. Floating panes have their own title bars.

Note: You cannot auto-hide floating panes or individual tabbed panes.

To show or hide panes:

In the QuickTest window, select the pane you want to auto-hide, and display
as a side-tab on one of the edges of the QuickTest window. The following
buttons may be displayed on the title bar:

Button Description

The Menu button enables you to select any of the
following:

➤ Floating. Opens the pane on top of all the other
windows and panes, with its own title bar

➤ Docking. Docks the pane to the QuickTest window.

➤ Auto-hide. Displays the pane as a side-tab either at the
top or bottom of the QuickTest window, or on one of
the edges, according to its position in the QuickTest
window.

➤ Hide. Closes the pane.

The Auto Hide button hides the pane.

The pane is displayed as a side-tab either at the top or
bottom of the QuickTest window, or on one of the edges,
according to its position in the QuickTest window.

To display the pane, hold the cursor over the side-tab. The
button toggles to the Dock button, shown below.

Chapter 27 • QuickTest Window Layout

737

Tips:

➤ To auto-hide all the tabbed panes, select the title bar of the active tabbed
pane, right-click and choose Auto Hide. The tabbed panes are displayed
as a group of side-tabs on the edge of the QuickTest window, and each
pane is displayed only when you hold the cursor over that side-tab.

➤ You can float a pane by right-clicking the title bar, and choosing Floating
from the context menu. The pane opens on top of all the other windows
and panes, with its own title bar. To dock the pane, double-click the title
bar, or right-click the title bar and choose Docking. The pane returns to
its previous position in the QuickTest window.

The Dock button docks the pane to the QuickTest
window.

The pane returns the position it was in before it was
hidden, and the button toggles to the Auto Hide button,
shown above.

The Close button closes the pane.

The pane is removed from the QuickTest window. To
reopen the pane, select it from the View menu.

Tip: You can also close a pane by right-clicking and
choosing Hide from the context menu.

Button Description

Chapter 27 • QuickTest Window Layout

738

Showing and Hiding Toolbars
You can show or hide toolbars using the View > Toolbars menu options.

You can float a toolbar by moving your cursor over the toolbar handle on
the left of the toolbar and then dragging the toolbar to the required
position. The toolbar is displayed with a title bar.

You can double-click the title bar of the menu to dock the menu and return
it to its previous position in the QuickTest window, or you can close it by
clicking the Close button.

Restoring the Default Layout of the QuickTest Window
You can restore the default QuickTest window layout for all document types
at any time.

To restore the default layout:

 1 Choose Tools > Options. The Options dialog box is displayed.

 2 In the General tab, click the Restore Layout button. The panes and toolbars
of all document types are restored to their default size and location.

For more information on the Options dialog box, see Chapter 20, “Setting
Global Testing Options.”

Working With Multiple Documents

QuickTest enables you to open and work on one component or application
area at a time. In addition, you can open and work on multiple function
libraries simultaneously. You can open any function library, regardless of
whether it is associated with the currently open component or application
area.

The Windows menu options enable you to locate and activate (bring into
focus) an open document window, select how the open document windows
are arranged in the QuickTest window, or close all the open function library
windows.

Chapter 27 • QuickTest Window Layout

739

You can also use the Windows dialog box to manage your open QuickTest
document windows.

To work with multiple documents using the Windows dialog box:

 1 Choose Window > Windows. The Windows dialog box opens.

The Windows dialog box displays a list of the open document windows,
including the open test, component, or application area, as well as all the
currently open function library windows.

Chapter 27 • QuickTest Window Layout

740

 2 The Windows dialog box contains the following buttons, enabling you to
manage your open documents:

 3 Click OK to close the Windows dialog box.

Button Description

Activate Brings the selected document into focus in the QuickTest
window.

OK Closes the Windows dialog box.

Save Saves the selected documents.

Close Window(s) Closes the selected function libraries.

Cascade Arranges the selected documents in a cascading order that
overlaps.

Tile Horizontally Arranges the selected documents side-by-side
horizontally, without overlapping.

Tile Vertically Arranges the selected documents side-by-side vertically,
without overlapping.

Minimize Minimizes the selected documents.

Help Displays the QuickTest Professional Help topic for this
dialog box.

741

28
Handling Missing Resources

If a component or application area has resources that cannot be found, such
as missing shared object repositories, or if it uses a repository parameter that
does not have a defined value, QuickTest indicates this in the Missing
Resources pane. If one of the resources listed in this pane is unavailable
during a run session, the test may fail. You can map a missing resource, or
you can remove it from the component or application area, as required.

This chapter includes:

 ➤ About Handling Missing Resources on page 742

 ➤ Handling Missing Environment Variables Files on page 745

 ➤ Handling Missing Function Libraries on page 746

 ➤ Handling Missing Shared Object Repositories on page 748

 ➤ Handling Missing Recovery Scenarios on page 750

 ➤ Handling Unmapped Shared Object Repository Parameter Values
on page 753

Chapter 28 • Handling Missing Resources

742

About Handling Missing Resources

Each time you open a component or application area, QuickTest verifies that
the resources specified for the component or application area are available.

If one or more resources cannot be found, QuickTest opens the Missing
Resources pane, if the pane is not already open. The Missing Resources pane
provides a list of all resources that are currently unavailable, along with the
location where QuickTest expected to find the resource, when available. The
Missing Resources pane then enables you to locate or remove them from
your application area.

Note: The Missing Resources pane does not allow missing resources in
components to be resolved from the keyword view. With the exception of
unmapped repository parameters, all missing resources must be resolved
through the application area.

After you successfully handle a missing resource, QuickTest removes it from
the pane.

Chapter 28 • Handling Missing Resources

743

The Missing Resources pane may list any of the following types of missing
resources:

➤ Missing environment variable file. If a component or application area loads
user-defined environment variables from an external file that cannot be
found, QuickTest specifies the path it uses to search for the missing XML
file. For more information see, “Handling Missing Environment Variables
Files” on page 744.

➤ Missing function library. If a component or application area is associated
with a function library that cannot be found, QuickTest specifies the path it
uses to search for the missing function library. For more information see,
“Handling Missing Function Libraries” on page 746.

➤ Missing object repository. If a component or application area is associated
with a shared object repository that cannot be found, QuickTest specifies the
path it uses to search for the missing object repository. For more
information, see “Handling Missing Shared Object Repositories” on
page 748.

➤ Missing recovery scenario. If a component or application area is associated
with a recovery scenario that cannot be found, QuickTest specifies the path
it uses to search for the missing function library. For more information see,
“Handling Missing Recovery Scenarios” on page 750.

➤ Repository parameters. If a component or application area has at least one
test object with a property value that is parameterized using a repository
parameter that does not have a default value, QuickTest adds this generic
item to the Missing Resources pane. For more information, see “Handling
Unmapped Shared Object Repository Parameter Values” on page 753.

Note: In the various screens where a missing resource is used (for example,
the keyword view and test settings) QuickTest indicates that a resource is
missing with a special icon or text.

Chapter 28 • Handling Missing Resources

744

Filtering the Missing Resources Pane
You can choose to display all missing resources in the Missing Resources
pane, or only one type of missing resource.

To filter the list of displayed missing resources:

Right-click in the Missing Resources pane and choose one of the following:

➤ All. Displays a list of all missing resources in your component or
application area.

➤ Environment Variable File. Displays the external XML file QuickTest uses
to store user-defined environment variables.

➤ Function Libraries. Displays a row for each function library that cannot
be found, specifying the path QuickTest uses to search for the function
library.

➤ Object Repositories. Displays a row for each shared object repository that
cannot be found, specifying the path QuickTest uses to search for the
shared object repository.

➤ Recovery Scenarios. Displays a row for each recovery scenario that
cannot be found, specifying the path QuickTest uses to search for the
recovery scenario.

➤ Repository Parameters. Displays a generic row indicating that at least
one test object in the repository has at least one property value that uses
a repository parameter that does not have a default value.

The Missing Resources pane is filtered according to the selected resource
type and an indication of the applied filter is shown at the bottom of the
pane:

You can cancel the filter and show all missing resources again by clicking
the icon on the left of the filter indication.

Chapter 28 • Handling Missing Resources

745

 Handling Missing Environment Variables Files

When you open a component or application area that uses an external
environment variables file, QuickTest verifies that the file is accessible. If an
external environment variables file cannot be found, QuickTest displays its
name and path in the Missing Resources pane when you open your
component or application area.

The Missing Resources pane enables you to resolve a missing external
environment variables file by locating or removing it.

Note: The Missing Resources pane does not allow missing resources in
components to be resolved from the keyword view. With the exception of
unmapped repository parameters, all missing resources must be resolved
through the application area.

To locate a missing external environment variables file:

 1 Right-click the missing environment variable file you want to locate and
select Locate from the context-sensitive menu or double-click the missing
environment variable file you want to locate.

Chapter 28 • Handling Missing Resources

746

The Locate Environment Variable File dialog box opens.

 2 Browse to the environment variable file you want to use with your test and
click Open. The selected environment variable file is used with your test and
the missing environment variable file is removed from the Missing
Resources pane.

To remove a missing environment variable file, right-click the missing
environment variable file you want to remove and select Remove from the
context-sensitive menu. A confirmation dialog is displayed. Click OK to
remove the missing environment variable. The missing environment
variable file is removed from your test and from the Missing Resources pane.

Handling Missing Function Libraries

When you open a component or application area that has associated
function libraries, QuickTest verifies that the libraries you specified are
accessible. If a function library cannot be found, QuickTest displays its name
and path in the Missing Resources pane when you open your component or
application area.

Chapter 28 • Handling Missing Resources

747

The Missing Resources pane enables you to resolve a missing function
library by locating or removing it.

Note: The Missing Resources pane does not allow missing resources in
components to be resolved from the keyword view. With the exception of
unmapped repository parameters, all missing resources must be resolved
through the application area.

To locate a missing function library:

 1 Right-click the missing function library you want to locate and select Locate
from the context-sensitive menu or double-click the missing function
library you want to locate.

The Locate Library dialog box opens.

 2 Browse to the function library you want to associate with your test and click
Open. The selected function library is associated with your test and the
missing function library is removed from the Missing Resources pane.

Chapter 28 • Handling Missing Resources

748

To remove a missing function library, right-click the missing function
library you want to remove and select Remove from the context-sensitive
menu. A confirmation dialog is displayed. Click OK to remove the function
library. The missing function library is removed from your test and from the
Missing Resources pane.

Note: When a function library is removed from your component or
application area calls to those functions are not removed from your
component or application area.

Handling Missing Shared Object Repositories

When you associate a shared object repository with an application area,
QuickTest verifies that the repository you specified is accessible. In addition,
QuickTest checks that all associated shared object repositories are accessible
each time you open a component or application area. If a shared object
repository cannot be found, QuickTest displays its name and path in the
Missing Resources pane when you open your component or application
area.

Chapter 28 • Handling Missing Resources

749

For example, if you modify the name of the shared object repository or the
folder in which it is stored, you will need to map the shared object
repository to the associated application area.

Note: You use the Associate Repositories dialog box to resolve a missing
object repository by associating a new object repository with your test. The
missing object repository will still be associated with your test and will still
appear in the Missing Resources pane. To remove the missing object
repository from the Missing Resources pane and your test, you must use the
Remove Repository feature of the Associate Repository dialog box.

The Missing Resources pane does not allow missing resources in
components to be resolved from the keyword view. With the exception of
unmapped repository parameters, all missing resources must be resolved
through the application area.

For a component, if you double-click the line displaying the missing object
repository, QuickTest displays a message explaining that the object
repository must be mapped to the associated application area. You or the
Automation Engineer needs to open the application area and correct the
association of the shared object repository in the Object Repositories pane.

For an application area, if you double-click the line displaying the missing
object repository, QuickTest opens the Object Repositories pane of the
application area, enabling you to correct the object repository association or
remove it, as needed. For more information, see “Managing Shared Object
Repositories” on page 432.

Chapter 28 • Handling Missing Resources

750

Handling Missing Recovery Scenarios

When you open a component or application area that has associated
recovery scenarios, QuickTest verifies that the scenarios you specified are
accessible. If a recovery scenario cannot be found, QuickTest displays its
name and path in the Missing Resources pane when you open your
component or application area.

Note: The Missing Resources pane does not allow missing resources in
components to be resolved from the keyword view. With the exception of
unmapped repository parameters, all missing resources must be resolved
through the application area.

The Missing Resources pane enables you to resolve missing recovery
scenarios by:

➤ Locating Missing Recovery Scenarios

➤ Removing Missing Recovery Scenarios

Locating Missing Recovery Scenarios
The Missing Resources pane enables you to locate missing recovery scenarios
in your test. If your test contains more than one missing recovery scenario,
when you locate the missing scenario in a recovery file, QuickTest may
identify additional missing scenarios in that file. You can instruct QuickTest
to locate these missing recovery scenarios simultaneously, or you can handle
each missing scenario individually.

Chapter 28 • Handling Missing Resources

751

To locate a missing recovery scenario:

 1 In the Missing Resources pane, right-click the recovery scenario you want to
locate and select Locate from the context-sensitive menu or double-click the
recovery scenario you want to locate.

The Locate Recovery Scenario dialog box opens.

 2 Click the Browse button to select the recovery file. The Scenarios area
displays all the scenarios contained in the selected recovery file.

 3 Select the missing recovery scenario from the list of recovery scenarios. Click
OK. The selected recovery scenario is associated with your test and the
missing recovery scenario is removed from the Missing Resources pane.

Chapter 28 • Handling Missing Resources

752

Note: If your test contains additional missing recovery scenarios that can be
located in the same recovery file, QuickTest opens a message box asking you
if you want to map these recovery scenarios as well. Click Yes to map all
missing recovery scenarios, or click No to map only the scenario you
specified.

Removing Missing Recovery Scenarios
You can remove a missing recovery scenario from a test if it is not needed.

To remove a missing recovery scenario, in the Missing Resources pane,
right-click the recovery scenario you want to remove and select Remove
from the context-sensitive menu. A confirmation dialog is displayed. Click
OK to remove the recovery scenario. The missing recovery scenario is
removed from your test and from the Missing Resources pane.

Chapter 28 • Handling Missing Resources

753

Handling Unmapped Shared Object Repository Parameter
Values

Every repository parameter used in your component must have a specified
value. This can be a either a default value that was specified when the
parameter was created, or it can be a value that you specify in your
component. (For more information on repository parameters, see “Working
with Repository Parameters” on page 230.)

When you open a component that uses an object repository that contains
an object property whose value is parameterized using a repository
parameter that does not have a value, QuickTest indicates this by displaying
Repository Parameters in the Missing Resources pane.

For example, suppose your application contains an edit box whose name
property changes depending on a selection made in a previous screen. If you
parameterized the value of the name property in the object repository using
a repository parameter, but a default value was not defined for the
repository parameter, you need to define a value for it. You can map it to or
a local or component parameter. You can also define a constant value for it,
and so forth.

If you right-click the line displaying Repository Parameters and select
Resolve or double-click the line displaying Repository Parameters, the Map
Object Repository Parameters dialog box opens, enabling you to specify
values for any unmapped object repository parameter. You can filter the
dialog box to display only unmapped parameters or all of the parameters in
the specified component (with mapped or unmapped values). For more
information, see “Mapping Repository Parameter Values” on page 152.

Chapter 28 • Handling Missing Resources

754

755

29
Adding Keywords to Your Component

QuickTest enables you to view and add the available keywords to your
component in one pane.

This chapter includes:

 ➤ Understanding the Available Keywords Pane on page 755

Understanding the Available Keywords Pane

The Available Keywords pane displays the keywords available to your
component. It enables you to view and drag and drop objects or calls to
functions into your component. When you drag and drop an object into
your component, QuickTest inserts a step with the default operation for that
object. When you drag and drop a function into your component,
QuickTest inserts a call to that function.

For example, if you drag and drop a button object into your component, a
step is added using the button object, with a click operation (the default
operation for a button object).

If you drag and drop a function into your component, a comment and call
to that function is added. The comment indicates that a call to the function
was added to your test and indicates any necessary arguments. You need to
provide the arguments for that function to your component. In the
Keyword view, a tooltip displays the required arguments for the function. In
the Expert view, IntelliSense displays the required arguments for the
function.

Chapter 29 • Adding Keywords to Your Component

756

You can also drag and drop test objects from other locations. For more
information, see:

➤ “Understanding the Object Repository Window” on page 120

➤ “Adding Test Objects to Your Component Using the Object Repository
Manager” on page 227

To view the Available Keywords pane click the Available Keywords Pane
button or select View > Available Keywords.

The Available Keywords pane can display the keywords available to your
component sorted by resource or sorted by keyword.

Keywords Sorted by Resource
You can display the keywords sorted by resource by clicking the Sort by
Resource button. Keywords are grouped by their type (library functions,
local functions, objects) and then by the specific resource for that type.

➤ Functions in each function library are sorted alphabetically.

➤ Objects in each object repository are grouped by the page or window in
which they appear in the application, then by the object type. They are then
sorted alphabetically.

➤ Right-clicking a keyword enables you to open the keyword’s resource or
copy the selected keyword to the clipboard.

➤ Double-clicking a keyword opens the keyword’s resource and points to the
selected keyword.

Chapter 29 • Adding Keywords to Your Component

757

Keywords Sorted by Keyword
You can display the keywords sorted by keyword by clicking the Sort by
Keyword button. Keywords are grouped by their type (library functions,
local functions, objects) regardless of their resource.

➤ All available functions are sorted alphabetically.

➤ All available objects are grouped by the page or window in which they
appear in the application, then by the object type. They are then sorted
alphabetically.

Note: If two keywords have the same name, they are displayed according to
the priority of their resources.

➤ Right-clicking a keyword enables you to open the keyword’s resource or
copy the selected keyword to the clipboard.

➤ Double-clicking a keyword opens the keyword’s resource and points to the
selected keyword.

Chapter 29 • Adding Keywords to Your Component

758

759

30
Managing Resources

QuickTest enables you to view and open the resources associated with your
component in one pane.

This chapter includes:

 ➤ Understanding the Resources Pane on page 759

Understanding the Resources Pane

Components are associated with resources such as function libraries,
recovery scenarios, and object repositories. QuickTest displays many of the
resources associated with a component (via its application area) in the
Resources pane. The Resources pane enables you to view and open all the
resources in your component.

Chapter 30 • Managing Resources

760

You open the Resources pane by clicking the Resources Pane button, or
selecting View > Resources.

The resources in the Resources pane are displayed for the current
component. Function libraries and recovery scenarios are grouped by
resource type. Object repositories are grouped by component.

The Resources pane is displayed as a tree structure. Right-clicking a node in
the tree opens the context menu for that resource. Some options are
accessible through the context menu of the root node for a resource and
some options are accessible through the context menu of the specific
resource.

Associated Function Libraries
The Associated Function Libraries node represents all the function libraries
currently associated with your test.

The context menu for the Associated Function Libraries root node contains:

➤ Associate Function Library. This option is disabled for components.

Chapter 30 • Managing Resources

761

The context menu for a specific function library contains:

➤ Open Function Library. Displays the selected function library in a function
library window in the display area. You can also double-click to open a
function library.

➤ Remove Function Library from List. This option is disabled for components.

➤ Move Up or Move Down. This option is disabled for components.

For more information see Chapter 11, “Working with User-Defined
Functions and Function Libraries.”

Associated Recovery Scenarios

The Associated Recovery Scenarios root node represents all the recovery
scenarios currently associated with your test.

The context menu for the Associated Recovery Scenarios root node
contains:

➤ Associate Recovery Scenario. This option is disabled for components.

The context menu for a recovery scenario contains:

➤ Recovery Scenario Properties. This option is disabled for components.

➤ Remove Recovery Scenario from List. This option is disabled for
components.

➤ Disable Recovery Scenario or Enable Recovery Scenario. This option is
disabled for components.

➤ Move Resource Up or Move Resource Down. This option is disabled for
components.

Double-clicking a recovery scenario opens the Recovery Scenario Manager
dialog box.

For more information, see Chapter 32, “Defining and Using Recovery
Scenarios.”

Chapter 30 • Managing Resources

762

Associated Repositories for Component
Actions are grouped under the Associated Repository for Component node
into Internal Actions and External Actions. Displayed beneath the Internal
Actions and External Actions are the local object repository and any shared
object repositories associated with that component.

Note: The Resources Pane lists all the actions stored with your component
even when they are not called by your component. For more information
on how actions are stored with your component, see “Using the Action
Toolbar in the Keyword View” on page 426.

The context menu for an component contains:

➤ Open Repository. This option is disabled for components.

➤ Remove Repository from List. This option is disabled for components.

➤ Move Up or Move Down. This option is disabled for components.

For more information on working with object repositories, see Chapter 4,
“Working with Objects.”

763

31
Working with Process Guidance

Process guidance is a tool that provides procedures and descriptions on how
to best perform specific processes. You use process guidance to learn about
new processes and to learn the preferred methodology for performing
processes with which you are already familiar. For this reason, process
guidance is applicable to both new and experienced users.

A process is a collection of activities, or sub-processes. Each process walks
you step-by-step through the activities that are required for that process. As
you navigate through the activities for each process and perform the tasks
described in each activity, you become acquainted with the way in which a
particular process should be performed.

QuickTest provides a built-in package that comprises several processes.
These processes provide introductory information and tips on how to
perform the most common QuickTest tasks, such as planning and creating
an application area or business component.

Your organization can also create its own custom processes to guide users
through specific requirements and best practices relevant to your
organization.

This chapter includes:

 ➤ Process Guidance Panes on page 764

 ➤ Opening Process Guidance on page 766

 ➤ Managing the List of Available Processes on page 767

Chapter 31 • Working with Process Guidance

764

Process Guidance Panes

In QuickTest, process guidance is displayed in two panes: the Process
Guidance Activities pane and the Process Guidance Description pane.

You display or hide these panes by choosing View > Process Guidance or
clicking the Process Guidance panes toggle button.

Process Guidance Activities Pane

The Process Guidance Activities pane (shown on the left) lists the activities
that are part of the selected process. Activities are often grouped, enabling
you to navigate directly to the sub-process that interests you. The example
above illustrates some of the groups and activities in the Keyword-Driven
Testing process. For example, the Determine Testing Needs group contains
three activities: Define Testing Environment, Analyze Your Application, and
Plan Your Actions.

Chapter 31 • Working with Process Guidance

765

In the Process Guidance Activities pane, you can:

➤ Click an activity to open the relevant topic in the Process Guidance
Description pane.

➤ Check which activity is displayed in the Process Guidance Description pane.
(An arrow points to the currently selected activity.)

➤ Use the Back and Next buttons to navigate up and down between activities
and to display the topic for the previous or next activity in the Process
Guidance Description pane.

➤ Position the cursor over the Up and Down arrows to scroll through the list
of activities. (The up arrow is located directly below the Process Guidance
Activities title bar; the down arrow is located directly above the Back and
Next buttons.)

Process Guidance Description Pane

The Process Guidance Description pane (shown on the right in the example
above) displays the topic (description), for the selected activity.

Each description introduces you to a specific activity and provides links to
locations in which you can find more information about how to perform
that activity. Additionally, many of the descriptions include interactive links
that open dialog boxes or other relevant features, enabling you to directly
access the features that are being described.

Chapter 31 • Working with Process Guidance

766

Opening Process Guidance

You can open a process from the Start Page, from the Automation menu, or
from the Process Guidance Activities pane.

Start Page

The Process Guidance List on the Start Page displays all available processes.
Some processes may be available only under certain conditions. For
example, the Business Components process guidance is available only if you
are connected to a Quality Center project that supports business process
testing. Additionally, some processes may be visible only if you have a
specific add-in loaded. For example, the Testing SAP Gui for Windows
built-in process is visible only if the SAP add-in is loaded.

When you select a QuickTest process from the list, the relevant document
type opens. For example, if a test document is open and you select the
Application Areas process, a new application area opens, enabling you to
navigate through the application area as you navigate through the selected
process (provided that you are connected to a Quality Center project with
business process testing support).

To open a specific process from the Start Page:

 1 In QuickTest, click the Start Page tab to display the Start Page. (If the Start
Page tab is not visible, choose View > Start Page to open the Start Page.)

 2 In the Process Guidance List, click the link for the process you want to open.
The list of activities is displayed in the Process Guidance Activities pane, and
a description of the first activity in the list is displayed in the Process
Guidance Description pane.

Tip: If the Process Guidance List is empty, choose File > Process Guidance
Management and select at least one process in the Process Guidance
Management dialog box.

Chapter 31 • Working with Process Guidance

767

Automation Menu Command

You can open any process that is available for a currently open document
type or for a loaded QuickTest add-in by choosing Automation > Process
Guidance List and then choosing a process from the list.

If the Process Guidance List is empty, choose File > Process Guidance
Management and select at least one process in the Process Guidance
Management dialog box. Then reopen the current document or open a new
document to refresh the list of available processes in the Process Guidance
List menu.

(If you want to open a process that is not relevant for the current testing
document or loaded QuickTest add-in, you need to open the process from
Process Guidance List in the Start Page.)

If the currently open testing document has more than one process available,
you can navigate between these process by selecting the required process
from the drop-down list in the process title.

Managing the List of Available Processes

Processes are stored in process guidance packages. QuickTest provides a
built-in package containing several processes. This package is listed by
default in the Process Guidance Management dialog box.

Your organization may provide additional packages that include processes
that are specific to your organization, your team, your role in your
organization, and so on.

Chapter 31 • Working with Process Guidance

768

You use the Process Guidance Management dialog box to manage the list of
processes that are available in QuickTest.

Including and Excluding Packages

You can select to include or exclude a package in the set of packages
available in QuickTest.

When you select to include a package, QuickTest adds all of the processes in
that package to the Process Guidance List on the Start Page (excluding
processes for QuickTest add-ins that are not currently loaded). The processes
that are available for the currently open document type and for the
currently loaded QuickTest add-ins are also added to the Process Guidance
List in the Automation menu, and can be opened after you refresh the list by
closing and reopening the current document or by opening a new
document of the same type.

You cannot include or exclude individual processes from within a package.

Chapter 31 • Working with Process Guidance

769

To include or exclude a package in the set of packages available in
QuickTest:

 1 Choose File > Process Guidance Management. The Process Guidance
Management dialog box opens.

 2 Select the check box adjacent to the package whose processes you want to
include, or clear the check box adjacent to the package whose processes you
want to exclude.

 3 Click Close. QuickTest adds or removes the relevant processes in the Process
Guidance List.

Adding Process Guidance Packages

If your organization has its own processes, you can add them to the Process
Guidance List on the Start Page. You do this by adding the relevant package
to the Process Guidance Management dialog box and selecting to show it.

To add a package to the list:

 1 Choose File > Process Guidance Management. The Process Guidance
Management dialog box opens.

 2 In the Process Guidance Management dialog box, click Add. The Open
dialog box opens.

 3 Browse to the process guidance package file and click Open. The package is
added to the list of available packages.

Chapter 31 • Working with Process Guidance

770

Part IX

Working with Advanced Features

772

773

32
Defining and Using Recovery Scenarios

You can instruct QuickTest to recover from unexpected events and errors
that occur in your testing environment during a run session.

This chapter includes:

 ➤ About Defining and Using Recovery Scenarios on page 774

 ➤ Deciding When to Use Recovery Scenarios on page 776

 ➤ Defining Recovery Scenarios on page 777

 ➤ Understanding the Recovery Scenario Wizard on page 781

 ➤ Managing Recovery Scenarios on page 806

 ➤ Associating Recovery Scenarios with Your Application Areas on page 811

 ➤ Programmatically Controlling the Recovery Mechanism on page 815

Chapter 32 • Defining and Using Recovery Scenarios

774

About Defining and Using Recovery Scenarios

Unexpected events, errors, and application crashes during a run session can
disrupt your run session and distort results. This is a problem particularly
when components run unattended—the component pauses until you
perform the operation needed to recover. To handle situations such as these,
QuickTest enables you to create recovery scenarios and associate them with
specific components. Recovery scenarios activate specific recovery
operations when trigger events occur. For information on when to use
recovery scenarios, see “Deciding When to Use Recovery Scenarios” on
page 776.

The Recovery Scenario Manager provides a wizard that guides you through
the process of defining a recovery scenario, which includes a definition of
an unexpected event and the operations necessary to recover the run
session. For example, you can instruct QuickTest to detect a Printer out of
paper message and recover the run session by clicking the OK button to
close the message and continue the component.

A recovery scenario consists of the following:

➤ Trigger Event. The event that interrupts your run session. For example, a
window that may pop up on screen, or a QuickTest run error.

➤ Recovery Operations. The operations to perform to enable QuickTest to
continue running the component after the trigger event interrupts the run
session. For example, clicking an OK button in a pop-up window, or
restarting Microsoft Windows.

➤ Post-Recovery Test Run Option. The instructions on how QuickTest should
proceed after the recovery operations have been performed, and from which
point in the component QuickTest should continue, if at all. For example,
you may want to restart a component from the beginning, or skip a step
entirely and continue with the next step in the component.

Recovery scenarios are saved in recovery scenario files. A recovery scenario
file is a logical collection of recovery scenarios, grouped according to your
own specific requirements.

Chapter 32 • Defining and Using Recovery Scenarios

775

To instruct QuickTest to perform a recovery scenario during a run session,
you must first associate the recovery scenario with that component (via its
application area). A component can have any number of recovery scenarios
associated with it. You can prioritize the scenarios associated with your
component to ensure that trigger events are recognized and handled in the
required order. For more information, see “Defining Recovery Scenario
Settings for Your Application Area” on page 447.

When you run a component for which you have defined recovery scenarios
and an error occurs, QuickTest looks for the defined trigger events that
caused the error. If a trigger event has occurred, QuickTest performs the
corresponding recovery and post-recovery operations.

You can also control and activate your recovery scenarios during the run
session by inserting Recovery statements into your component. For more
information, see “Programmatically Controlling the Recovery Mechanism”
on page 815.

Note: If you choose On error in the Activate recovery scenarios box in the
Recovery tab of the Application Area Settings dialog box, the recovery
mechanism does not handle triggers that occur in the last step of a
component. If you chose this option and need to recover from an
unexpected event or error that may occur in the last step of a component,
you can do this by adding an extra step to the end of your component.

Chapter 32 • Defining and Using Recovery Scenarios

776

Deciding When to Use Recovery Scenarios

Recovery scenarios are intended for use only with events that you cannot
predict in advance, or for events that you cannot otherwise synchronize
with a specific step in your component. For example, you could define a
recovery scenario to handle printer errors. Then if a printer error occurs
during a run session, the recovery scenario could instruct QuickTest to click
the default button in the Printer Error message box.

You would use a recovery scenario in this example because you cannot
handle this type of error directly in your component. This is because you
cannot know at what point the network will return the printer error. Even if
you try to handle this event by adding an If statement in a user-defined
function immediately after a step that sends a file to the printer, your
component may progress several steps before the network returns the actual
printer error.

If you can predict that a certain event may happen at a specific point in
your component, it is highly recommended to handle that event directly
within your component by adding steps such as If statements in user-
defined functions, rather than depending on a recovery scenario. For
example, if you know that an Overwrite File message box may open when a
Save button is clicked during a run session, you can handle this event with
an If statement in a user-defined function that clicks OK if the message box
opens.

Handling an event directly within your component enables you to handle
errors more specifically than recovery scenarios, which by nature are
designed to handle a more generic set of unpredictable events. It also
enables you to control the timing of the corrective operation with minimal
resource usage and maximum performance. By default, recovery scenario
operations are activated only after a step returns an error. This can
potentially occur several steps after the step that originally caused the error.
The alternative, checking for trigger events after every step, may slow
performance. For this reason, it is best to handle predictable errors directly
in your component.

Chapter 32 • Defining and Using Recovery Scenarios

777

Defining Recovery Scenarios

You create recovery scenarios using the Recovery Scenario Wizard (accessed
from the Recovery Scenario Manager dialog box). The Recovery Scenario
Wizard leads you through the process of defining each of the stages of a
recovery scenario. As you create your recovery scenarios, you save them in a
recovery file. A recovery file is a convenient way to organize and store
multiple recovery scenarios together.

Using the Recovery Scenario Manager dialog box, you can then select any
recovery file to manage all of the recovery scenarios stored in that file. This
enables you to edit a selected recovery scenario, associate specific recovery
scenarios with specific components to instruct QuickTest to implement the
recovery scenarios when specified trigger events occur, and so forth.

Creating a Recovery File
You create recovery files to store your recovery scenarios. You can create a
new recovery file or edit an existing one.

Chapter 32 • Defining and Using Recovery Scenarios

778

To create a recovery file:

 1 Choose Resources > Recovery Scenario Manager. The Recovery Scenario
Manager dialog box opens.

 2 By default, the Recovery Scenario Manager dialog box opens with a new
recovery file. You can either use this new file, or click the Open button to
choose an existing recovery file. Alternatively, you can click the arrow next
to the Open button to select a recently-used recovery file from the list.

You can now create recovery scenarios using the Recovery Scenario Wizard
and save them in your recovery file, as described in the following sections.

Chapter 32 • Defining and Using Recovery Scenarios

779

Understanding the Recovery Scenario Manager Dialog
Box
The Recovery Scenario Manager dialog box enables you to create and edit
recovery files, and create and manage the recovery scenarios stored in those
files.

The Recovery Scenario Manager dialog box displays the name of the
currently open recovery file, a list of the scenarios saved in the recovery file,
and a description of each scenario.

Chapter 32 • Defining and Using Recovery Scenarios

780

The Recovery Scenario Manager dialog box contains the following toolbar
buttons:

Note: Each recovery scenario is represented by an icon that indicates its
type. For more information, see “Managing Recovery Scenarios” on
page 806.

Option Description

Creates a new recovery file. For more information, see “Creating a
Recovery File” on page 777.

Opens an existing recovery file. You can also click the arrow to select a
recovery file from the list of recently-used recovery files.

Saves the current recovery file. For more information, see “Saving the
Recovery Scenario in a Recovery File” on page 805.

Opens the Recovery Scenario Wizard, in which you define a new
recovery scenario. For more information, see “Understanding the
Recovery Scenario Wizard” on page 781.

Opens the Recovery Scenario Wizard for the selected recovery
scenario, in which you can modify the recovery scenario settings. For
more information, see “Modifying Recovery Scenarios” on page 809.

Displays summary properties for the selected recovery scenario in
read-only format. For more information, see “Viewing Recovery
Scenario Properties” on page 807.

Copies a recovery scenario from the open recovery file to the
Clipboard. This enables you to paste a recovery scenario into another
recovery file. For more information, see “Copying Recovery Scenarios
between Recovery Scenario Files” on page 810.

Pastes a recovery scenario from the Clipboard into the open recovery
file. For more information, see “Copying Recovery Scenarios between
Recovery Scenario Files” on page 810.

Deletes a recovery scenario. For more information, see “Deleting
Recovery Scenarios” on page 809.

Chapter 32 • Defining and Using Recovery Scenarios

781

Understanding the Recovery Scenario Wizard

The Recovery Scenario Wizard leads you, step-by-step, through the process
of creating a recovery scenario. The Recovery Scenario Wizard contains the
following main steps:

➤ defining the trigger event that interrupts the run session

➤ specifying the recovery operations required to continue

➤ choosing a post-recovery test run operation

➤ specifying a name and description for the recovery scenario

You open the Recovery Scenario Wizard by clicking the New Scenario
button in the Recovery Scenario Manager dialog box (Resources > Recovery
Scenario Manager).

Welcome to the Recovery Scenario Wizard Screen
The Welcome to the Recovery Scenario Wizard screen provides general
information on the different options in the Recovery Scenario Wizard, and
provides an overview of the stages involved in defining a recovery scenario.

Chapter 32 • Defining and Using Recovery Scenarios

782

Click Next to continue to the Select Trigger Event Screen (described on
page 782).

Select Trigger Event Screen
The Select Trigger Event screen enables you to define the event type that
triggers the recovery scenario, and the way in which QuickTest recognizes
the event.

Select a type of trigger and click Next. The next screen displayed in the
wizard depends on which of the following trigger types you select:

➤ Pop-up window. QuickTest detects a pop-up window and identifies it
according to the window title and textual content. For example, a message
box may open during a run session, indicating that the printer is out of
paper. QuickTest can detect this window and activate a defined recovery
scenario to continue the run session.

Select this option and click Next to continue to the Specify Pop-up Window
Conditions Screen (described on page 784).

Chapter 32 • Defining and Using Recovery Scenarios

783

➤ Object state. QuickTest detects a specific test object state and identifies it
according to its property values and the property values of all its ancestors.
Note that an object is identified only by its property values, and not by its
class.

For example, a specific button in a dialog box may be disabled when a
specific process is open. QuickTest can detect the object property state of the
button that occurs when this problematic process is open and activate a
defined recovery scenario to close the process and continue the run session.

Select this option and click Next to continue to the Select Object Screen
(described on page 786).

➤ Test run error. QuickTest detects a run error and identifies it by a failed
return value from a method. For example, QuickTest may not be able to
identify a menu item specified in the method argument, due to the fact that
the menu item is not available at a specific point during the run session.
QuickTest can detect this run error and activate a defined recovery scenario
to continue the run session.

Select this option and click Next to continue to the Select Test Run Error
Screen (described on page 789).

➤ Application crash. QuickTest detects an application crash and identifies it
according to a predefined list of applications. For example, a secondary
application may crash when a certain step is performed in the run session.
You want to be sure that the run session does not fail because of this crash,
which may indicate a different problem with your application. QuickTest
can detect this application crash and activate a defined recovery scenario to
continue the run session.

Select this option and click Next to continue to the Recovery Operations
Screen (described on page 792).

Chapter 32 • Defining and Using Recovery Scenarios

784

Notes:

➤ The set of recovery operations is performed for each occurrence of the
trigger event criteria. For example, suppose you define a specific object
state, and two objects match this state, the set of recovery operations is
performed two times, once for each object that matches the specified
state.

➤ The recovery mechanism does not handle triggers that occur in the last
step of a component. If you need to recover from an unexpected event or
error that may occur in the last step of a component, you can do this by
adding an extra step to the end of your component.

Specify Pop-up Window Conditions Screen
If you chose a Pop-up window trigger in the Select Trigger Event Screen
(described on page 782), the Specify Pop-up Window Conditions screen
opens.

Chapter 32 • Defining and Using Recovery Scenarios

785

Perform one of the following to specify how the pop-up window should be
identified:

➤ Choose whether you want to identify the pop-up window according to
its Window title and/or Window text and then enter the text used to
identify the pop-up window. You can use regular expressions in the
window title or textual content by selecting the relevant Regular
expression check box and then entering the regular expression in the
relevant location. For information on regular expressions, see the
HP QuickTest Professional User’s Guide.

➤ Click the pointing hand. Then click the pop-up window to capture the
window title and textual content of the window.

Note: Using the first option (Window title and/or Window text) instructs
QuickTest to identify any pop-up window that contains the relevant title
and/or text. Using the second option (pointing hand) instructs QuickTest to
identify only pop-up windows that match the object property values of the
window you select.

Tip: Hold the left CTRL key to change the window focus or perform
operations such as right-clicking or moving the pointer over an object to
display a context menu. If the window containing the object you want to
select is minimized, you can display it by holding the left CTRL key,
right-clicking the application in the Windows task bar, and choosing
Restore from the context menu.

Click Next to continue to the Recovery Operations Screen (described on
page 792).

Chapter 32 • Defining and Using Recovery Scenarios

786

Select Object Screen
If you chose an Object state trigger in the Select Trigger Event Screen
(described on page 782), the Select Object screen opens.

Click the pointing hand and then click the object whose properties you
want to specify.

Tip: Hold the left CTRL key to change the window focus or perform
operations such as right-clicking or moving the pointer over an object to
display a context menu. If the window containing the object you want to
select is minimized, you can display it by holding the left CTRL key,
right-clicking the application in the Windows task bar, and choosing
Restore from the context menu.

Chapter 32 • Defining and Using Recovery Scenarios

787

If the location you click is associated with more than one object, the Object
Selection–Object State Trigger dialog box opens.

Select the object whose properties you want to specify and click OK. The
selected object and its parents are displayed in the Select Object screen.

Note: The hierarchical object selection tree also enables you to select an
object that QuickTest would not ordinarily learn (a non-parent object), such
as a Web table.

Click Next to continue to the Set Object Properties and Values Screen
(described on page 788).

Chapter 32 • Defining and Using Recovery Scenarios

788

Set Object Properties and Values Screen
After you select the object whose properties you want to specify in the Select
Object Screen (described on page 786), the Set Object Properties and Values
screen opens.

For each object in the hierarchy, in the Edit property value box, you can
modify the property values used to identify the object. You can also click the
Add/Remove button to add or remove object properties from the list of
property values to check. Note that an object is identified only by its
property values, and not by its class.

Select the Regular expression check box if you want to use regular
expressions in the property value. For information on regular expressions,
see the HP QuickTest Professional User’s Guide.

Click Next to continue to the Recovery Operations Screen (described on
page 792).

Chapter 32 • Defining and Using Recovery Scenarios

789

Select Test Run Error Screen
If you chose a Test run error trigger in the Select Trigger Event Screen
(described on page 782), the Select Test Run Error screen opens.

In the Error list, choose the run error that you want to use as the trigger
event:

➤ Any error. Any error code that is returned by a test object method.

➤ Item in list or menu is not unique. Occurs when more than one item in the
list, menu, or tree has the name specified in the method argument.

➤ Item in list or menu not found. Occurs when QuickTest cannot identify the
list, menu, or tree item specified in the method argument. This may be due
to the fact that the item is not currently available or that its name has
changed.

➤ More than one object responds to the physical description. Occurs when
more than one object in your application has the same property values as
those specified in the test object description for the object specified in the
step.

Chapter 32 • Defining and Using Recovery Scenarios

790

➤ Object is disabled. Occurs when QuickTest cannot perform the step because
the object specified in the step is currently disabled.

➤ Object not found. Occurs when no object within the specified parent object
matches the test object description for the object.

➤ Object not visible. Occurs when QuickTest cannot perform the step because
the object specified in the step is not currently visible on the screen.

Click Next to continue to the “Recovery Operations Screen” on page 792.

Select Processes Screen
If you chose an Application crash trigger in the Select Trigger Event Screen
(described on page 782), the Select Processes screen opens.

The Running processes list displays all application processes that are
currently running. The Processes list displays the application processes that
will trigger the recovery scenario if they crash.

You can add application processes to the Processes list by typing them in
the Processes list or by selecting them from the Running processes list.

Chapter 32 • Defining and Using Recovery Scenarios

791

➤ To add a process from the Running processes list, double-click a process
in the Running processes list or select it and click the Add button. You
can select multiple processes using standard Windows multiple selection
techniques (CTRL and SHIFT keys).

➤ To add a process directly to the Processes list, click the Add New Process
button to enter the name of any process you want to add to the list.

➤ To remove a process from the Processes list, select it and click the
Remove Process button.

Tip: You can modify the name of a process by selecting it in the Processes
list and clicking the process name to edit it.

Click Next to continue to the Recovery Operations Screen (described on
page 792).

Chapter 32 • Defining and Using Recovery Scenarios

792

Recovery Operations Screen
The Recovery Operations screen enables you to manage the collection of
recovery operations in the recovery scenario. Recovery operations are
operations that QuickTest performs sequentially when it recognizes the
trigger event.

You must define at least one recovery operation. To define a recovery
operation and add it to the Recovery operations list, click Next to continue
to the Recovery Operation Screen (described on page 793).

If you define two or more recovery operations, you can select a recovery
operation and use the Move Up or Move Down buttons to change the order
in which QuickTest performs the recovery operations. You can also select a
recovery operation and click the Remove button to delete a recovery
operation from the recovery scenario.

Chapter 32 • Defining and Using Recovery Scenarios

793

Note: If you define a Restart Microsoft Windows recovery operation, it is
always inserted as the last recovery operation, and you cannot change its
position in the list.

After you have defined at least one recovery operation, the Add another
recovery operation check box is displayed.

➤ Select the check box and click Next to define another recovery operation.

➤ Clear the check box and click Next to continue to the Post-Recovery Test
Run Options Screen (described on page 801).

Recovery Operation Screen
The Recovery Operation screen enables you to specify the operations
QuickTest performs after it detects the trigger event.

Select a type of recovery operation and click Next. The next screen displayed
in the wizard depends on which recovery operation type you select.

Chapter 32 • Defining and Using Recovery Scenarios

794

You can define the following types of recovery operations:

➤ Keyboard or mouse operation. QuickTest simulates a click on a button in a
window or a press of a keyboard key. Select this option and click Next to
continue to the Recovery Operation - Click Button or Press Key Screen
(described on page 795).

➤ Close application process. QuickTest closes specified processes. Select this
option and click Next to continue to the Recovery Operation - Close
Processes Screen (described on page 797).

➤ Function call. QuickTest calls a VBScript function. Select this option and
click Next to continue to the Recovery Operation - Function Call Screen
(described on page 798).

➤ Restart Microsoft Windows. QuickTest restarts Microsoft Windows. Select
this option and click Next to continue to the Recovery Operations Screen
(described on page 792).

Note: If you use the Restart Microsoft Windows recovery operation, you
must ensure that any component associated with this recovery scenario is
saved before you run it. You must also configure the computer on which the
component is run to automatically log in on restart.

Chapter 32 • Defining and Using Recovery Scenarios

795

Recovery Operation - Click Button or Press Key Screen
If you chose a Keyboard or mouse operation recovery operation in the
Recovery Operation Screen (described on page 793), the Recovery Operation
– Click Button or Press Key screen opens.

Specify the keyboard or mouse operation that you want QuickTest to
perform when it detects the trigger event:

➤ Click Default button / Press the ENTER key. Instructs QuickTest to click the
default button or press the ENTER key in the displayed window when the
trigger occurs.

➤ Click Cancel button / Press the ESCAPE key. Instructs QuickTest to click the
Cancel button or press the ESCAPE key in the displayed window when the
trigger occurs.

Chapter 32 • Defining and Using Recovery Scenarios

796

➤ Click button with label. Instructs QuickTest to click the button with the
specified label in the displayed window when the trigger occurs. If you select
this option, click the pointing hand and then click anywhere in the trigger
window.

Tip: Hold the left CTRL key to change the window focus or perform
operations such as right-clicking or moving the pointer over an object to
display a context menu. If the window containing the object you want to
select is minimized, you can display it by holding the left CTRL key,
right-clicking the application in the Windows task bar, and choosing
Restore from the context menu.

All button labels in the selected window are displayed in the list box. Select
the required button from the list.

➤ Press key or key combination. Instructs QuickTest to press the specified
keyboard key or key combination in the displayed window when the trigger
occurs. If you select this option, click in the edit box and then press the key
or key combination on your keyboard that you want to specify.

Click Next. The Recovery Operations Screen reopens, showing the keyboard
or mouse recovery operation that you defined.

Chapter 32 • Defining and Using Recovery Scenarios

797

Recovery Operation - Close Processes Screen
If you chose a Close application process recovery operation in the Recovery
Operation Screen (described on page 793), the Recovery Operation – Close
Processes screen opens.

The Running processes list displays all application processes that are
currently running. The Processes to close list displays the application
processes that will be closed when the trigger is activated.

➤ To add a process from the Running processes list, double-click a process
in the Running processes list or select it and click the Add button. You
can select multiple processes using standard Windows multiple selection
techniques (CTRL and SHIFT keys).

➤ To add a process directly to the Processes to close list, click the Add New
Process button to enter the name of any process you want to add to the
list.

Chapter 32 • Defining and Using Recovery Scenarios

798

➤ To remove a process from the Processes to close list, select it and click the
Remove Process button.

Tip: You can modify the name of a process by selecting it in the Processes to
close list and clicking the process name to edit it.

Click Next. The Recovery Operations Screen reopens, showing the close
processes recovery operation that you defined.

Recovery Operation - Function Call Screen
If you chose a Function call recovery operation in the Recovery Operation
Screen (described on page 793), the Recovery Operation – Function Call
screen opens.

Chapter 32 • Defining and Using Recovery Scenarios

799

Select a recently specified function library in the Function Library box.
Alternatively, click the browse button to navigate to an existing function
library.

Note: The function library must be stored in the Quality Center project.

After you select a function library, choose one of the following options:

➤ Select function. Choose an existing function from the function library you
selected.

Only functions that match the prototype syntax for the trigger type selected
in the “Select Trigger Event Screen” on page 782 are displayed.

Following is the prototype for each trigger type:

Test run error trigger
OnRunStep
(
[in] Object as Object: The object of the current step.
[in] Method as String: The method of the current step.
[in] Arguments as Array: The actual method's arguments.
[in] Result as Integer: The actual method's result.
)

Pop-up window and Object state triggers
OnObject
(
[in] Object as Object: The detected object.
)

Application crash trigger
OnProcess
(
[in] ProcessName as String: The detected process's Name.
[in] ProcessId as Integer: The detected process' ID.
)

Chapter 32 • Defining and Using Recovery Scenarios

800

➤ Define new function. Create a new function by specifying a unique name for
it, and defining the function in the Function Name box according to the
displayed function prototype. The new function is added to the function
library you selected.

Note: If more than one scenario uses a function with the same name from
different function libraries, the recovery process may fail. In this case,
information regarding the recovery failure is displayed during the run
session.

Click Next. The Recovery Operations Screen (described on page 792)
reopens, showing the function operation that you defined.

Chapter 32 • Defining and Using Recovery Scenarios

801

Post-Recovery Test Run Options Screen
When you clear the Add another recovery operation check box in the
Recovery Operations Screen (described on page 792) and click Next, the
Post-Recovery Test Run Options screen opens. Post-recovery test run options
specify how to continue the run session after QuickTest has identified the
event and performed all of the specified recovery operations.

QuickTest can perform one of the following run session options after it
performs the recovery operations you defined:

➤ Repeat current step and continue

The current step is the step that QuickTest was running when the recovery
scenario was triggered. If you are using the On error activation option for
recovery scenarios, the step that returns the error is often one or more steps
later than the step that caused the trigger event to occur.

Thus, in most cases, repeating the current step does not repeat the trigger
event. For more information, see “Enabling and Disabling Recovery
Scenarios” on page 813.

Chapter 32 • Defining and Using Recovery Scenarios

802

➤ Proceed to next step

Skips the step that QuickTest was running when the recovery scenario was
triggered. Keep in mind that skipping a step that performs operations on
your application may cause subsequent steps to fail.

➤ Proceed to next action or component iteration

Stops performing steps in the current action or component iteration and
begins the next iteration from the beginning (or from the next action or
component if no additional iterations of the current action or component
are required).

➤ Proceed to next test iteration

Stops performing steps in the current action or component and begins the
next QuickTest test or business process test iteration from the beginning (or
stops running the test if no additional iterations of the test are required).

➤ Restart current test run

Stops performing steps and re-runs the component from the beginning.

➤ Stop the test run

Stops running the component.

Note: If you chose Restart Microsoft Windows as a recovery operation, you
can choose from only the last two test run options listed above.

Select a test run option and click Next to continue to the Name and
Description Screen (described on page 803).

Chapter 32 • Defining and Using Recovery Scenarios

803

Name and Description Screen
After you specify a test run option in the Post-Recovery Test Run Options
Screen (described on page 801), and click Next, the Name and Description
screen opens.

In the Name and Description screen, you specify a name by which to
identify your recovery scenario. You can also add descriptive information
regarding the scenario.

Enter a name and a textual description for your recovery scenario, and click
Next to continue to the Completing the Recovery Scenario Wizard Screen
(described on page 804).

Chapter 32 • Defining and Using Recovery Scenarios

804

Completing the Recovery Scenario Wizard Screen
After you specify a recovery scenario name and description in the Name and
Description Screen (described on page 803) and click Next, the Completing
the Recovery Scenario Wizard screen opens.

In the Completing the Recovery Scenario Wizard screen, you can review a
summary of the scenario settings you defined.

Note: You associate a recovery scenario for a component with the
component’s application area. You can also define the default recovery
scenarios for all new components associated with a specific application area.
For more information, see “Working with Application Areas” on page 413.

Click Finish to complete the recovery scenario definition.

Chapter 32 • Defining and Using Recovery Scenarios

805

Saving the Recovery Scenario in a Recovery File
After you create or modify a recovery scenario in a recovery file using the
Recovery Scenario Wizard, you need to save the recovery file.

Tip: If you have not yet saved the recovery file, and you click the Close
button in the Recovery Scenario Manager dialog box, QuickTest prompts
you to save the recovery file. Click Yes, and proceed with step 2 below. If
you added or modified scenarios in an existing recovery file, and you click
Yes to the message prompt, the recovery file and its scenarios are saved.

To save a new or modified recovery file:

 1 Click the Save button. If you added or modified scenarios in an existing
recovery file, the recovery file and its scenarios are saved. If you are using a
new recovery file, the Save Attachment dialog box opens.

Tip: You can also click the arrow to the right of the Save button and select
Save As to save the recovery file under a different name.

 2 Choose the folder in which you want to save the file.

 3 Type a name for the file in the File name box and click Save.

Note: When you save a path to a resource, QuickTest checks if the path,
or a part of the path, exists in the Folders tab of the Options dialog box
(Tools > Options > Folders). If the path exists, you are prompted to define
the path using only the relative part of the path you entered. If the path
does not exist, you are prompted to add the resource's location path to
the Folders tab and define the path relatively.

 For more information, see “Using Relative Paths in QuickTest” on
page 324.

The recovery file is saved in the specified location with the file extension
.qrs.

Chapter 32 • Defining and Using Recovery Scenarios

806

Managing Recovery Scenarios

Once you have created recovery scenarios, you can use the Recovery
Scenario Manager to manage them.

Chapter 32 • Defining and Using Recovery Scenarios

807

The Recovery Scenario Manager contains the following recovery scenario
icons:

The Recovery Scenario Manager enables you to manage existing scenarios
by:

➤ Viewing Recovery Scenario Properties

➤ Modifying Recovery Scenarios

➤ Deleting Recovery Scenarios

➤ Copying Recovery Scenarios between Recovery Scenario Files

Viewing Recovery Scenario Properties
You can view properties for any defined recovery scenario.

To view recovery scenario properties:

 1 In the Scenarios box, select the recovery scenario whose properties you want
to view.

Icon Description

Indicates that the recovery scenario is triggered when a window pops
up in an open application during the run session.

Indicates that the recovery scenario is triggered when the property
values of an object in an application match specified values.

Indicates that the recovery scenario is triggered when a step in the
component does not run successfully.

Indicates that the recovery scenario is triggered when an open
application fails during the run session.

Chapter 32 • Defining and Using Recovery Scenarios

808

 2 Click the Properties button. Alternatively, you can double-click a scenario in
the Scenarios box. The Recovery Scenario Properties dialog box opens.

The Recovery Scenario Properties dialog box displays the following
read-only information about the selected scenario:

➤ General tab. Displays the name and description defined for the recovery
scenario, plus the name and path of the recovery file in which the scenario
is saved.

➤ Trigger Event tab. Displays the settings for the trigger event defined for the
recovery scenario.

➤ Recovery Operation tab. Displays the recovery operations defined for the
recovery scenario.

➤ Post-Recovery Operation tab. Displays the post-recovery operation defined
for the recovery scenario.

Chapter 32 • Defining and Using Recovery Scenarios

809

Modifying Recovery Scenarios
You can modify the settings for an existing recovery scenario.

To modify a recovery scenario:

 1 In the Scenarios box, select the scenario that you want to modify.

 2 Click the Edit button. The Recovery Scenario Wizard opens, with the
settings you defined for the selected recovery scenario.

 3 Navigate through the Recovery Scenario Wizard and modify the details as
needed. For information on the Recovery Scenario Wizard options, see
“Defining Recovery Scenarios” on page 777.

Note: Modifications you make are not saved until you click Save in the
Recovery Scenario Manager dialog box. If you have not yet saved your
modifications, and you click the Close button in the Recovery Scenario
Manager dialog box, QuickTest prompts you to save the recovery file. Click
Yes to save your changes.

Deleting Recovery Scenarios
You can delete an existing recovery scenario if you no longer need it. When
you delete a recovery scenario from the Recovery Scenario Manager, the
corresponding information is deleted from the recovery scenario file.

Note: If a deleted recovery scenario is associated with a component,
QuickTest ignores it during the run session.

Chapter 32 • Defining and Using Recovery Scenarios

810

To delete a recovery scenario:

 1 In the Scenarios box, select the scenario that you want to delete.

 2 Click the Delete button. The recovery scenario is deleted from the Recovery
Scenario Manager dialog box.

Note: The scenario is not actually deleted until you click Save in the
Recovery Scenario Manager dialog box. If you have not yet saved the
deletion, and you click the Close button in the Recovery Scenario Manager
dialog box, QuickTest prompts you to save the recovery file. Click Yes to
save the recovery scenario file and delete the scenarios.

Copying Recovery Scenarios between Recovery Scenario
Files
You can copy recovery scenarios from one recovery scenario file to another.

To copy a recovery scenario from one recovery scenario file to another:

 1 In the Scenarios box, select the recovery scenario that you want to copy.

 2 Click the Copy button. The scenario is copied to the Clipboard.

 3 Click the Open button and select the recovery scenario file to which you
want to copy the scenario, or click the New button to create a new recovery
scenario file in which to copy the scenario.

 4 Click the Paste button. The scenario is copied to the new recovery scenario
file.

Chapter 32 • Defining and Using Recovery Scenarios

811

Notes:

If a scenario with the same name already exists in the recovery scenario file,
you can choose whether you want to replace it with the new scenario you
have just copied.

Modifications you make are not saved until you click Save in the Recovery
Scenario Manager dialog box. If you have not yet saved your modifications,
and you click the Close button in the Recovery Scenario Manager dialog
box, QuickTest prompts you to save the recovery file. Click Yes to save your
changes.

Associating Recovery Scenarios with Your Application Areas

After you create recovery scenarios, you associate them with selected
components (via the application area) so that QuickTest will perform the
appropriate scenarios during the run sessions if a trigger event occurs. You
can prioritize the scenarios and set the order in which QuickTest applies the
scenarios during the run session. You can also choose to disable specific
scenarios, or all scenarios, that are associated with an application area.

Note: You define recovery scenarios for components in the application area.
For more information, see “Working with Application Areas” on page 413.

Chapter 32 • Defining and Using Recovery Scenarios

812

Viewing Recovery Scenario Properties
You can view properties for any recovery scenario associated with your
application area.

Note: You modify recovery scenario settings from the Recovery Scenario
Manager dialog box. For more information, see “Modifying Recovery
Scenarios” on page 809.

To view recovery scenario properties:

 1 In the General pane of the application area, click the Additional Settings
button. The Application Area Settings dialog box opens.

 2 Click the Recovery tab.

 3 In the Scenarios box, select the recovery scenario whose properties you want
to view.

 4 Click the Properties button. Alternatively, you can double-click a scenario in
the Scenarios box. The Recovery Scenario Properties dialog box opens,
displaying read-only information regarding the settings for the selected
scenario. For more information, see “Viewing Recovery Scenario Properties”
on page 807.

Setting Recovery Scenario Priorities
You can specify the order in which QuickTest performs associated scenarios
during a run session. When a trigger event occurs, QuickTest checks for
applicable recovery scenarios in the order in which they are displayed in the
Recovery tab of the Application Area Settings dialog box.

To set recovery scenario priorities:

 1 In the General pane of the application area, click the Additional Settings
button. The Application Area Settings dialog box opens.

 2 Click the Recovery tab.

 3 In the Scenarios box, select the scenario whose priority you want to change.

Chapter 32 • Defining and Using Recovery Scenarios

813

 4 Click the Up or Down button. The selected scenario’s priority changes
according to your selection.

 5 Repeat steps 3-4 for each scenario whose priority you want to change.

Removing Recovery Scenarios from Your Application Area
You can remove the association between a specific scenario and an
application area using the Application Area Settings dialog box. After you
remove a scenario from an application area, the scenario itself still exists,
but QuickTest will no longer perform the scenario during a run session.

To remove a recovery scenario from your application area:

 1 In the General pane of the application area, click the Additional Settings
button. The Application Area Settings dialog box opens.

 2 Click the Recovery tab.

 3 In the Scenarios box, select the scenario you want to remove.

 4 Click the Remove button. The selected scenario is no longer associated with
the application area.

Enabling and Disabling Recovery Scenarios
You can enable or disable specific scenarios and determine when QuickTest
activates the recovery scenario mechanism in the Recovery tab of the
Application Area Settings dialog box. When you disable a specific scenario,
it remains associated with the application area, but is not performed by
QuickTest during the run session. You can enable the scenario at a later
time.

You can also specify the conditions for which the recovery scenario is to be
activated.

Chapter 32 • Defining and Using Recovery Scenarios

814

To enable/disable specific recovery scenarios:

 1 In the General pane of the application area, click the Additional Settings
button. The Application Area Settings dialog box opens.

 2 Click the Recovery tab.

 3 In the Scenarios box, perform one of the following:

➤ Select the check box to the left of one or more individual scenarios to
enable them.

➤ Clear the check box to the left of one or more individual scenarios to
disable them.

To define when the recovery mechanism is activated:

Select one of the following options in the Activate recovery scenarios box:

➤ On every step. The recovery mechanism is activated after every step.
Note that choosing On every step may result in slower performance
during the run session.

➤ On error. The recovery mechanism is activated only after steps that
return an error return value.

Note that the step that returns an error is often not the same as the step
that causes the exception event to occur.

For example, a step that selects a check box may cause a pop-up dialog
box to open. Although the pop-up dialog box is defined as a trigger
event, QuickTest moves to the next step because it successfully
performed the check box selection step. The next several steps could
potentially perform checkpoints, functions or other conditional or
looping statements that do not require performing operations on your
application. It may only be ten statements later that a step instructs
QuickTest to perform an operation on the application that it cannot
perform due to the pop-up dialog box. In this case, it is this tenth step
that returns an error and triggers the recovery mechanism to close the
dialog box. After the recovery operation is completed, the current step is
this tenth step, and not the step that caused the trigger event.

Chapter 32 • Defining and Using Recovery Scenarios

815

➤ Never. The recovery mechanism is disabled.

Tip: You can also enable or disable specific scenarios or all scenarios
associated with an application area programmatically during the run
session. For more information, see “Programmatically Controlling the
Recovery Mechanism” on page 815.

Setting Default Recovery Scenario Settings for All New
Components
You define the default recovery scenarios for all new components in the
component’s application area. For more information, see “Working with
Application Areas” on page 413.

Programmatically Controlling the Recovery Mechanism

You can use the Recovery object to control the recovery mechanism
programmatically during the run session. For example, you can enable or
disable the entire recovery mechanism or specific recovery scenarios for
certain parts of a run session, retrieve status information about specific
recovery scenarios, and explicitly activate the recovery mechanism at a
certain point in the run session.

By default, QuickTest checks for recovery triggers when an error is returned
during the run session. You can use the Recovery object’s Activate method to
force QuickTest to check for triggers after a specific step in the run session.
For example, suppose you know that an object property checkpoint will fail
if certain processes are open when the checkpoint is performed. You want to
be sure that the pass or fail of the checkpoint is not affected by these open
processes, which may indicate a different problem with your application.

However, a failed checkpoint does not result in a run error. So by default, the
recovery mechanism would not be activated by the object state. You can
define a recovery scenario that looks for and closes specified open processes
when an object’s properties have a certain state. This state shows the object’s
property values as they would be if the problematic processes were open.

Chapter 32 • Defining and Using Recovery Scenarios

816

You can instruct QuickTest to activate the recovery mechanism if the
checkpoint fails so that QuickTest will check for and close any problematic
open processes and then try to perform the checkpoint again. This ensures
that when the checkpoint is performed the second time it is not affected by
the open processes.

For more information on the Recovery object and its methods, see the
HP QuickTest Professional Object Model Reference.

817

33
Automating QuickTest Operations

Just as you use QuickTest to automate the testing of your applications, you
can use the QuickTest Professional automation object model to automate
your QuickTest operations. Using the objects, methods, and properties
exposed by the QuickTest automation object model, you can write scripts
that configure QuickTest options and run components instead of
performing these operations manually using the QuickTest interface.

Automation scripts are especially useful for performing the same tasks
multiple times or on multiple components, or quickly configuring
QuickTest according to your needs for a particular environment or
application.

This chapter includes:

 ➤ About Automating QuickTest Operations on page 818

 ➤ Deciding When to Use QuickTest Automation Scripts on page 819

 ➤ Choosing a Language and Development Environment for Designing and
Running Automation Scripts on page 820

 ➤ Learning the Basic Elements of a QuickTest Automation Script on page 822

 ➤ Generating Automation Scripts on page 823

 ➤ Using the QuickTest Automation Reference on page 824

Chapter 33 • Automating QuickTest Operations

818

About Automating QuickTest Operations

You can use the QuickTest Professional automation object model to write
scripts that automate your QuickTest operations. The QuickTest automation
object model provides objects, methods, and properties that enable you to
control QuickTest from another application.

What is Automation?
Automation is a Microsoft technology that makes it possible to access
software objects inside one application from other applications. These
objects can be created and manipulated using a scripting or programming
language such as VBScript or VC++. Automation enables you to control the
functionality of an application programmatically.

An object model is a structural representation of software objects (classes)
that comprise the implementation of a system or application. An object
model defines a set of classes and interfaces, together with their properties,
methods and events, and their relationships.

What is the QuickTest Automation Object Model?
Essentially all configuration and run functionality provided via the
QuickTest interface is in some way represented in the QuickTest automation
object model via objects, methods, and properties. Although a one-on-one
comparison cannot always be made, most dialog boxes in QuickTest have a
corresponding automation object, most options in dialog boxes can be set
and/or retrieved using the corresponding object property, and most menu
commands and other operations have corresponding automation methods.

You can use the objects, methods, and properties exposed by the QuickTest
automation object model, along with standard programming elements such
as loops and conditional statements to design your script.

Automation scripts are especially useful for performing the same tasks
multiple times or on multiple components, or quickly configuring
QuickTest according to your needs for a particular environment or
application.

Chapter 33 • Automating QuickTest Operations

819

For example, you can create and run an automation script from Microsoft
Visual Basic that loads the required add-ins for a component, starts
QuickTest in visible mode, opens the component, configures settings that
correspond to those in the Options, Business Component Settings, and
Record and Run Settings dialog boxes, runs the component, and saves the
component.

You can then add a simple loop to your script so that your single script can
perform the operations described above for multiple components.

You can also create an initialization script that opens QuickTest with specific
configuration settings. You can then instruct all of your testers to open
QuickTest using this automation script to ensure that all of your testers are
always working with the same configuration.

Deciding When to Use QuickTest Automation Scripts

Creating a useful QuickTest automation script requires planning, design
time, and testing. You must always weigh the initial investment with the
time and human-resource savings you gain from automating potentially
long or tedious tasks.

Any QuickTest operation that you must perform many times in a row or
must perform on a regular basis is a good candidate for a QuickTest
automation script.

The following are just a few examples of useful QuickTest automation
scripts:

➤ Initialization scripts. You can write a script that automatically starts
QuickTest and configures the options and the settings required for testing a
specific environment.

Chapter 33 • Automating QuickTest Operations

820

➤ Maintaining your components. You can write a script that iterates over your
collection of components to accomplish a certain goal. For example:

➤ Updating values. You can write a script that opens each component with
the proper add-ins, runs it in update run mode against an updated
application, and saves it when you want to update the values in all of
your components to match the updated values in your application.

➤ Applying new options to existing components. When you upgrade to a
new version of QuickTest, you may find that the new version offers
certain options that you want to apply to your existing components. You
can write a script that opens each existing component, sets values for the
new options, then saves and closes it.

➤ Calling QuickTest from other applications. You can design your own
applications with options or controls that run QuickTest automation scripts.
For example, you could create a Web form or simple Windows interface
from which a product manager could schedule QuickTest runs, even if the
manager is not familiar with QuickTest.

Choosing a Language and Development Environment for
Designing and Running Automation Scripts

You can choose from a number of object-oriented programming languages
for your automation scripts. For each language, there are a number of
development environments available for designing and running your
automation scripts.

Writing Your Automation Script

You can write your QuickTest automation scripts in any language and
development environment that supports automation. For example, you can
use: VBScript, JavaScript, Visual Basic, Visual C++, or Visual Studio .NET.

Some development environments support referencing a type library. A type
library is a binary file containing the description of the objects, interfaces,
and other definitions of an object model.

Chapter 33 • Automating QuickTest Operations

821

If you choose a development environment that supports referencing a type
library, you can take advantage of features like Microsoft IntelliSense,
automatic statement completion, and status bar help tips while writing your
script. The QuickTest automation object model supplies a type library file
named QTObjectModel.dll. This file is stored in <QuickTest installation
folder>\bin.

If you choose an environment that supports it, be sure to reference the
QuickTest type library before you begin writing or running your automation
script. For example, if you are working in Microsoft Visual Basic, choose
Project > References to open the References dialog box for your project.
Then select QuickTest Professional <Version> Object Library (where
<Version> is the current installed version of the QuickTest automation type
library).

Chapter 33 • Automating QuickTest Operations

822

Running Your Automation Script

There are several applications available for running automation scripts. You
can also run automation scripts from the command line using Microsoft's
Windows Script Host.

For example, you could use the following command line to run your
automation script:

WScript.exe /E:VBSCRIPT myScript.vbs

Learning the Basic Elements of a QuickTest Automation
Script

Like most automation object models, the root object of the QuickTest
automation object model is the Application object. The Application object
represents the application level of QuickTest. You can use this object to
return other elements of QuickTest such as the Test object (which represents
a component document), Options object (which represents the Options
dialog box), or Addins collection (which represents a set of add-ins from the
Add-in Manager dialog box), and to perform operations like loading add-ins,
starting QuickTest, opening and saving components, and closing QuickTest.

Each object returned by the Application object can return other objects,
perform operations related to the object and retrieve and/or set properties
associated with that object.

Every automation script begins with the creation of the QuickTest
Application object. Creating this object does not start QuickTest. It simply
provides an object from which you can access all other objects, methods
and properties of the QuickTest automation object model.

Note: You can also optionally specify a remote QuickTest computer on
which to create the object (the computer on which to run the script). For
more information, see the Running Automation Programs on a Remote
Computer section of the online QuickTest Automation Object Model Reference.

Chapter 33 • Automating QuickTest Operations

823

The structure for the rest of your script depends on the goals of the script.
You may perform a few operations before you start QuickTest such as
retrieving the associated add-ins for a component, loading add-ins, and
instructing QuickTest to open in visible mode.

After you perform these preparatory steps, if QuickTest is not already open
on the computer, you can open QuickTest using the Application.Launch
method. Most operations in your automation script are performed after the
Launch method.

For information on the operations you can perform in an automation
program, see the online HP QuickTest Professional Object Model Reference. For
more information on this Help file, see “Using the QuickTest Automation
Reference” on page 824.

When you finish performing the necessary operations, or you want to
perform operations that require closing and restarting QuickTest, such as
changing the set of loaded add-ins, use the Application.Quit method.

Generating Automation Scripts

The General tab of the Options dialog box and the Object Identification
dialog box each contain a Generate Script button. Clicking this button
generates an automation script file (.vbs) containing the current settings
from the corresponding dialog box.

You can run the generated script as is to open QuickTest with the exact
configuration of the QuickTest application that generated the script, or you
can copy and paste selected lines from the generated files into your own
automation script.

Chapter 33 • Automating QuickTest Operations

824

For example, the generated script for the Options dialog box may look
something like this:

Dim App 'As Application
Set App = CreateObject("QuickTest.Application")
App.Launch
App.Visible = True
App.Options.DisableVORecognition = False
App.Options.AutoGenerateWith = False
App.Options.WithGenerationLevel = 2
App.Options.TimeToActivateWinAfterPoint = 500
...
...
App.Options.WindowsApps.NonUniqueListItemRecordMode = "ByName"
App.Options.WindowsApps.RecordOwnerDrawnButtonAs = "PushButtons"
App.Folders.RemoveAll

For more information on the Generate Script button and for information
on the options available in the Options and Object Identification dialog
boxes, see Chapter 5, “Configuring Object Identification” and Chapter 20,
“Setting Global Testing Options”.

Using the QuickTest Automation Reference

The QuickTest Automation Reference is a Help file that provides detailed
descriptions, syntax information, and examples for the objects, methods,
and properties in the QuickTest automation object model.

You can open the QuickTest Automation Reference from:

➤ QuickTest program folder (Start > Programs > QuickTest Professional >
Documentation > QuickTest Automation Reference)

➤ Main QuickTest Help (Help > QuickTest Professional Help > QuickTest
Advanced References > QuickTest Automation)

Part X

Appendix

826

827

A
Frequently Asked Questions

This chapter answers some of the questions that are asked most frequently
by advanced users of QuickTest. The questions and answers are divided into
the following sections:

This chapter includes:

 ➤ Creating Components on page 827

 ➤ Working with Function Libraries on page 828

 ➤ Working with Dynamic Content on page 829

 ➤ Advanced Web Issues on page 831

 ➤ Standard Windows Environment on page 833

 ➤ Component Maintenance on page 834

 ➤ Improving QuickTest Performance on page 835

Creating Components

➤ How can I record on objects or environments not supported by QuickTest?

You can do this in a number of ways:

➤ Install and load any of the add-ins that are available for QuickTest
Professional. QuickTest supports many developmental environments
including Java, Oracle, .NET, SAP Solutions, Siebel, PeopleSoft, terminal
emulators, and Web services.

➤ You can map objects of an unidentified or custom class to standard
Windows classes. For more information on object mapping, see
“Mapping User-Defined Test Object Classes” on page 206.

Chapter A • Frequently Asked Questions

828

➤ QuickTest provides add-in extensibility that you can use to extend
QuickTest built-in support for various objects. This enables you to direct
QuickTest to recognize an object as belonging to a specific test object
class, and to specify the behavior of the test object. You can also extend
the list of available test object classes that QuickTest recognizes. This
enables you to create components that fully support the specific behavior
of your custom objects.

➤ How can I open an application from a component?

To add a step that opens an application, select Operation from the Item
column, select OpenApp from the Operation column, and then enter the
the full path in the Value column, for example:

C:\Program Files\HP\QuickTest Professional\samples\flight\app\flight4a.exe

➤ How does QuickTest capture user processes in Web pages?

QuickTest hooks the Microsoft Internet Explorer browser. As the user
navigates the Web-based application, QuickTest records the user actions.
(For information on modifying which user actions are recorded, see the
section on configuring Web event recording in the HP QuickTest Professional
Add-ins Guide.) QuickTest can then run the component by running the steps
as they originally occurred.

Working with Function Libraries

➤ Can I store functions and subroutines in a function library?

You can create one or more VBScript function libraries containing your
functions, and then use them in any component by associating them with
the component’s associated application area. You can use the QuickTest
function library editor to create and debug your function libraries.

You can register your functions as methods for QuickTest test objects. Your
registered methods can override the functionality of an existing test object
method for the duration of a run session, or you can register a new method
for a test object class.

For more information, see Chapter 11, “Working with User-Defined
Functions and Function Libraries” and Chapter 12, “Working with
Application Areas.”

Chapter A • Frequently Asked Questions

829

➤ How can I enter information during a run session?

You can insert the VBScript InputBox function into an associated function
library to create a user-defined function that enables you to display a dialog
box that prompts the user for input and then continues running the
component. You can use the value that was entered by the user later in the
run session. For more information on the InputBox function, see the VBScript
Reference.

➤ How do I customize the Test Results?

You can send messages to the run results report by using the ReportEvent
method, for example:

Reporter.ReportEvent 1, "Custom Step", "The user-defined step failed"

The results of each QuickTest run session are saved in a single .xml file
(called results.xml). You can modify this file, as needed. You can use the
QuickTest Test Results Schema (available from the QuickTest Professional
Help) to help you customize your test results.

Working with Dynamic Content

➤ How can I create and run components on objects that change dynamically
from viewing to viewing?

Sometimes the content of objects in an application changes due to dynamic
content. You can create dynamic descriptions of these objects so that
QuickTest will recognize them when it runs the component using regular
expressions, the Description object, repository parameters, or
SetTOProperty steps.

➤ How can I check that a child window exists (or does not exist)?

Sometimes a link in one window creates another window.

You can use the Exist property to check whether or not a window exists. For
example:

If Window("Main").ActiveX("Slider").Exist Then
. . .

XMLReport.chm::/XmlReport_xsd.html

Chapter A • Frequently Asked Questions

830

You can also use the ChildObjects method to retrieve all child objects (or the
subset of child objects that match a certain description) on the Desktop or
within any other parent object.

Example:

Set oDesc = Description.Create
oDesc("Class Name").Value = "Window"

ser coll = Desktop.ChildObjects(oDesc)
For i = 0 to coll.count -1

msgbox coll(i).GetROProperty("text")
Next

For more information on the Exist property and ChildObjects method, see
the HP QuickTest Professional Object Model Reference.

➤ How does QuickTest record on dynamically generated URLs and Web
pages?

QuickTest actually clicks links as they are displayed on the page. Therefore,
QuickTest records how to find a particular object, such as a link on the page,
rather than the object itself. For example, if the link to a dynamically
generated URL is an image, then QuickTest records the “IMG” HTML tag,
and the name of the image. This enables QuickTest to find this image in the
future and click on it.

➤ How does QuickTest handle tabs in browsers?

QuickTest provides several methods that you can use with the Browser test
object to manage tabs in your Web browser.

OpenNewTab opens a new tab in the current Web browser.

IsSiblingTab indicates whether a specified tab is a sibling of the current tab
object in the same browser window.

Close closes the current tab if more than one tab exists, and closes the
browser window if the browser contains only one tab.

CloseAllTabs closes all tabs in a browser and closes the browser window.

For more information on these Browser-related methods, see the Web
section of the HP QuickTest Professional Object Model Reference.

Chapter A • Frequently Asked Questions

831

Advanced Web Issues

➤ How does QuickTest handle cookies?

Server side connections, such as CGI scripts, can use cookies both to store
and retrieve information on the client side of the connection.

QuickTest stores cookies in the memory for each user, and the browser
handles them as it normally would.

➤ Where can I find a Web page's cookie?

The cookie used by the Internet Explorer browser can be accessed through
the browser's Document Object Model (DOM) using the .Object property in
a function. In the following example the cookie collection is returned the
from the browser.

Browser("Flight reservations").Page("Flight reservations").Object.Cookie

➤ How does QuickTest handle session IDs?

The server, not the browser, handles session IDs, usually by a cookie or by
embedding the session ID in all links. This does not affect QuickTest.

➤ How does QuickTest handle server redirections?

When the server redirects the client, the client generally does not notice the
redirection, and misdirections generally do not occur. In most cases, the
client is redirected to another script on the server. This additional script
produces the HTML code for the subsequent page to be viewed. This has no
effect on QuickTest or the browser.

➤ How does QuickTest handle meta tags?

Meta tags do not affect how the page is displayed. Generally, they contain
information only about who created the page, how often it is updated, what
the page is about, and which keywords represent the page's content.
Therefore, QuickTest has no problem handling meta tags.

➤ Does QuickTest work with .asp and .jsp?

Dynamically created Web pages utilizing Active Server Page technology have
an .asp extension. Dynamically created Web pages utilizing Java Server Page
technology have a .jsp extension. These technologies are completely
server-side and have no bearing on QuickTest.

Chapter A • Frequently Asked Questions

832

➤ Does QuickTest work with COM?

QuickTest complies with the COM standard.

QuickTest supports COM objects embedded in Web pages (which are
currently accessible only using Microsoft Internet Explorer) and you can
drive COM objects in VBScript.

➤ Does QuickTest work with XML?

XML is eXtensible Markup Language, a pared-down version of SGML for
Web documents, that enables Web designers to create their own customized
tags. QuickTest supports XML and recognizes XML tags as objects.

For more information, see the HP QuickTest Professional User’s Guide, and the
XMLUtil object in the Utility section of the HP QuickTest Professional Object
Model Reference.

➤ How can I access HTML tags directly?

QuickTest provides direct access to the Internet Explorer’s Document Object
Model (DOM) through which you can access the HTML tags directly. Access
to the DOM is performed using the .Object notation.

The function below demonstrates how to iterate over all the tags in an
Internet Explorer page. The function then outputs the inner-text of the tags
(the text contained between the tags) to the Test Results using the Reporter
object.

' Use the on error option because not all the elements have inner-text.
On Error Resume Next
Set Doc = Browser("CNN Interactive").Page("CNN Interactive").Object

' Loop through all the objects in the page.
For Each Element In Doc.all

TagName = Element.TagName ' Get the tag name.
InnerText = Element.innerText ' Get the inner text.

' Write the information to the test results.
Reporter.ReportEvent 0, TagName, InnerText

Next

Chapter A • Frequently Asked Questions

833

➤ Where can I find information on the Internet Explorer Document Object
Model?

For information on the Internet Explorer DOM, browse to the following
Web sites:

Document object:
http://msdn2.microsoft.com/en-us/library/ms531073.aspx

Other DHTML objects:
http://msdn2.microsoft.com/en-us/library/ms533054.aspx

General DHTML reference:
http://msdn2.microsoft.com/en-us/library/ms533050.aspx

➤ How can I send keyboard key commands (such as shortcut commands) to
objects that do not support the Type method?

For objects that do not support the Type method, use the Windows
Scripting SendKeys method. For more information, see the Microsoft
VBScript Language Reference (choose Help > QuickTest Professional Help >
VBScript > Windows Script Host).

Standard Windows Environment

➤ How can I record on nonstandard menus?

You can modify how QuickTest behaves when it records menus. The options
that control this behavior are located in the Advanced Windows
Applications Options dialog box.
(Tools > Options > Windows Applications > Advanced).

For more information, see the HP QuickTest Professional Add-ins Guide.

http://msdn2.microsoft.com/en-us/library/ms533050.aspx
http://msdn2.microsoft.com/en-us/library/ms531073.aspx
http://msdn2.microsoft.com/en-us/library/ms533054.aspx

Chapter A • Frequently Asked Questions

834

Component Maintenance

➤ How do I maintain my component when my application changes?

The way to maintain a component when your application changes depends
on how much your application changes. This is one of the main reasons you
should create a small group of components rather than one large
component for your entire application.

If you have many components that contain the same test objects, it is
recommended to work with shared object repositories so that you can
update object information in a centralized location.

You can use the Update Run Mode option to update changed information
for checkpoints or to change the set of test object properties used to identify
the objects in your application. For more information, see “Updating a
Component Using the Update Run Mode Option” on page 720.

If there is a discrepancy between the test object property values saved in the
object repository and the object property values in the application, you can
use the Maintenance Run Mode to help correct this. When you run a
component in Maintenance Run Mode, QuickTest runs your component,
and then guides you through the process of updating your steps and object
repository each time it encounters a step it cannot perform due to an object
repository discrepancy. For more information, see “Running Components
with the Maintenance Run Wizard” on page 704.

➤ How can I remove test result files from old components?

You can use the Test Results Deletion Tool to view a list of all of the test
results in a specific location in your file system or in your Quality Center
project. You can then delete any test results that you no longer require.

The Test Results Deletion Tool enables you to sort the test results by name,
date, size, and so forth, so that you can more easily identify the results you
want to delete.

To open this utility, choose Start > Programs > QuickTest Professional >
Tools > Test Results Deletion Tool.

Chapter A • Frequently Asked Questions

835

Improving QuickTest Performance

You can improve the working speed of QuickTest by doing any of the
following:

➤ In the Add-in Manager, load only the add-ins you need for a specific
QuickTest session when QuickTest starts. This will improve performance
while learning objects and during run sessions. For more information on
loading add-ins, see the HP QuickTest Professional Add-ins Guide.

➤ Try to use the same application area for all components in a business
process test, as this improves performance.

➤ Run your components in "fast mode." From the Run tab in the Options
dialog box, select the Fast option. This instructs QuickTest to run your
component without displaying the execution arrow for each step,
enabling the component to run faster. For more information on the Run
tab of the Options dialog box, see “Setting Run Testing Options” on
page 591.

➤ Decide when you want to capture and save images and/or movies of the
application for the run session results. From the Run tab in the Options
dialog box, select an option from the Save still image captures to results
box and/or select the Save movie to results check box and specify the
required settings. You can improve run time and reduce disk space by
saving screen captures and movie segments only in certain situations,
such as when errors occur, or by not saving them at all. For more
information on the Run tab of the Options dialog box, see “Setting Run
Testing Options” on page 591.

➤ Save the test results report to a temporary folder to overwrite the results
from the previous run session every time you run a component. For more
information, see “Running Your Entire Component” on page 618.

➤ Use the Results Deletion Tool to remove unwanted or obsolete run results
from your system, according to specific criteria that you define. This
enables you to free up valuable disk space. For more information, see
“Deleting Results Using the Test Results Deletion Tool” on page 651. You
can also use the

Chapter A • Frequently Asked Questions

836

837

B
Creating Custom Process Guidance
Packages

This chapter guides you through the process of creating custom process
guidance packages. You can distribute your custom packages to the
QuickTest users in your organization. QuickTest users can then display the
processes from your package in QuickTest while they work, to assist them in
following your organization’s processes and standards.

This chapter includes:

 ➤ About Process Guidance Packages on page 837

 ➤ Understanding the Package Configuration File on page 838

 ➤ Creating Data Files on page 841

 ➤ Installing Custom Process Guidance Packages in QuickTest on page 842

About Process Guidance Packages

A Process Guidance Package is comprised of two entities: the package
configuration file and the data files.

➤ Package Configuration file. This XML file defines the Processes included in
the package and the structure of the Groups and Activities in each process.

➤ Data Files. A set of HTML files. Each HTML file contains the content for a
single activity.

Chapter B • Creating Custom Process Guidance Packages

838

Understanding the Package Configuration File

To create a new package, you first create an XML file that describes the
processes included in the package and sets the structure of the groups and
activities in each process. This structure is displayed as a table of contents
for a selected process in the QuickTest Process Guidance Activities pane.

Important: Save the configuration file with the name: Configuration.xml

The following is an example of a package configuration file that contains
two processes:

<?xml version="1.0" encoding="UTF-8"?>
<ProcessGuidance Name="MyCustomPackage">

<Process Name="My Process" ID="Process1" DocType="test" Addin="web"
SortLevel="4" >

<Group Name="New User Overview">
<Activity Name="Step 1" Address="Step1.html" />
<Activity Name="Step 2" Address="Step2.html" />

</Group>
</Process>
<Process Name="Important Processes" ID="Process2" DocType="test|AA"

SortLevel="3">
<Group Name="Getting Started">

<Activity Name="Open" Address="F:\ProcessData\open.html" />
<Activity Name="Create" Address="F:\ProcessData\create.html" />
<Activity Name="Test" Address="F:\ProcessData\test.html" />
<Activity Name="Debug" Address="F:\ProcessData\debug.html" />

</Group>
<Group Name="Finish">

<Activity Name="Save" Address="F:\ProcessData\save.html" />
<Activity Name="Close" Address="F:\ProcessData\close.html" />
<Activity Name="Exit" Address="F:\ProcessData\exit.html" />

</Group>
</Process>

</ProcessGuidance>

Chapter B • Creating Custom Process Guidance Packages

839

XML Details
The elements and attributes you can use in your package configuration file
are described in this section.

➤ <Process> Element. Defines a new process. This element supports the
following attributes:

➤ Name. The name of the process as you want it to appear in the QuickTest
Process Guidance pane.

➤ ID. A unique identification name. This name is used to distinguish
between two processes with the same name.

➤ DocType. Indicates the QuickTest document types for which this process
is applicable. If specified, the process is available only when the relevant
document type is open.

In the example above, if a QuickTest user opens a test document, both
processes will be available, but if an application area document is
opened, only the second process will be available.

Possible values:

➤ test. A test document.

➤ AA. An application area document.

➤ BC. A business component document.

➤ SBC. A scripted component document.

➤ Addin. Indicates the QuickTest add-ins for which this process is
applicable. If specified, the process is available only when the relevant
add-in is loaded.

In the example above, the first process will be available only if the Web
Add-in is loaded. The second process will always be visible.

Specify the add-in value using the add-in name as displayed in the
Add-in Manager.

➤ SortLevel. Determines the location of the process within the process list.
This list is displayed in the Process Guidance Management dialog box
and in the QuickTest Automation > Process Guidance List menu.

Chapter B • Creating Custom Process Guidance Packages

840

➤ <Group> Element. Defines a new group in the process. This element
supports the following attributes:

➤ Name. Same as the Name attribute for the <Process> element, as
described above.

➤ ID. Same as the ID attribute for the <Process> element, as described
above.

➤ Addin. Same as the Addin attribute for the <Process> element, as
described above.

➤ <Activity> Element. Defines an activity within the group.

➤ Name. Same as the Name attribute for the <Process> element, as
described above.

➤ ID. Same as the ID attribute for the <Process> element, as described
above.

➤ Addin. Same as the Addin attribute for the <Process> element, as
described above.

➤ Address. The path where the relevant HTML data file is located. This can
be a local or network path on the file system or an HTTP address. If you
specify a relative path, the location is resolved relative to the
configuration file location.

Chapter B • Creating Custom Process Guidance Packages

841

Creating Data Files

Each data file contains the HTML content for a single process guidance
activity. When an activity link is clicked in the Process Guidance Activities
pane, the HTML content is displayed in a browser control in the QuickTest
Process Guidance Description pane.

The package data files can include reference to a .css file to display content
in your organization’s standard style, and can contain any content that can
be displayed by a browser.

The HTML files, and any folders or files that the HTML files reference can be
stored on the user’s local hard drive in a network location on the file system
or on a Web server. The package configuration file (the Address attribute of
each Activity element) provides HTML links for each activity.

It is recommended that the HTML file for each activity be written such that
there will be minimum scrolling when the content is displayed in the
Process Guidance Description pane at its default size.

If you find that your HTML files are too long, you may want to break them
up into multiple process guidance activities to make it easier for your
QuickTest users to reference while they work.

Chapter B • Creating Custom Process Guidance Packages

842

Installing Custom Process Guidance Packages in QuickTest

There are two ways to distribute and install custom process guidance
packages:

➤ Install the process guidance package from a zip file

➤ Install the process guidance package via registry key

Install the process guidance package from a zip file

 1 Create a folder that contains the Configuration.xml file and all the HTML
data files (as well as any files or folders referenced from the HTML files).

 2 Zip the folder and then send the .zip file to all relevant QuickTest users or
store it in a location that they can access.

 3 In QuickTest, choose File > Process Guidance Management. The Process
Guidance Management dialog box opens.

 4 Click the Add button and browse to the .zip file. The package is added and
its processes are displayed in the dialog box.

Install the process guidance package via registry key

 1 Prepare the Configuration.xml file and the data files.

 2 Place the data files in a local or shared network folder or on a Web server.
Ensure that the Address attribute of the Activity elements in the
Configuration.xml file point to this location.

 3 Copy the Configuration.xml to a local drive on the QuickTest computer.

 4 Open the Registry Editor and find the key:

HKEY_LOCAL_MACHINE\SOFTWARE\Mercury Interactive\QuickTest
Professional\MicTest\ProcessGuidance\ConfFiles

 5 Add a value to this key with the path to the Configuration.xml file. The next
time QuickTest is opened, it will include the new package.

843

A

About QuickTest Professional window 93
access permissions

required for Quality Center 37
required to run QuickTest 37

action calls
missing 741

Action Conversion Tool, about 483
actions

adding to Action Conversion Tool
490

requirements for conversion to
scripted components 488

Active Server Page technology 831
Add Object to Object Repository dialog box

159
Add Repository Parameter dialog box 233
Add Test button 487
Add Test Folder button 487
Add/Remove dialog box, object

identification 185, 201
Add/Remove Properties dialog box 143
adding actions and tests 490
add-ins

associating with a component 424
modifying selection 425

analyzing run results. See run results
API, using Windows 356
application areas 413

about 414
Application Area Settings dialog box

443
changing for component 472
choosing shared object repository 437
creating 417
definition of 35

deleting 453
description 56
Function Libraries pane 426
General pane 421
Keywords pane 439
Object Repositories pane 432
opening 419
recovery scenarios, removing 813
recovery scenarios, setting 447
saving 451
settings 421, 443

Application crash trigger 782
application, sample 38
applications

associated with a component 606
closing 344
running 344
specifying for a component 443

arguments, defining 393
ASP files 831
assistive properties, configuring 184
associating

add-ins with a component 424
function libraries 387, 388, 389

attribute/<property name> notation 355
auto-expand VBScript syntax 366
automation

Application object 822
definition 818
development environment 820
language 820
object model 817
object repository 245
type library 820

Automation Engineer, role in Business
Process Testing 27, 36

Index

Index

844

Automation toolbar, QuickTest window 51,
69

Available Keywords pane 62, 755

B

Bitmap Checkpoint Properties dialog box
566

bitmap checkpoints 565
analyzing results for 672

bookmarks 317
breakpoints

about 690
deleting 693
setting 691
using in Keyword View 551

Business Component Settings dialog box 597
Applications tab 606
opening 599
Parameters tab 609
Properties tab 601
Recovery tab 613
Resources tab 608
Snapshot tab 604

business components. See components
Business Process Testing 482

workflow 34
business process tests 36

C

calculations
in function libraries 346

CGI scripts 831
character set support, Unicode 25
Check All button 487
Checkpoint Properties dialog box

for checking objects 559
checkpoints

about 553
adding new 554
bitmaps 565
definition 553
fail 701
modifying 564

objects 558
types 555

Close method 344
closing application process 344, 793, 797
collection, properties. See programmatic

descriptions
colors

setting in Keyword View 547
setting in Object Repository

Comparison Tool 300
setting in Object Repository Merge

Tool 264
columns, displaying in Keyword View 545
COM 832
command line options

deleting test results using 654
Domain 655
FromDate 655
Log 655
MinSize 656
Name 656
Password 657
Project 657
Recursive 657
Server 658
Silent 658
Test 658
UntilDate 659
User 659

commands
Object Repository Comparison Tool

296
Object Repository Merge Tool 257

comments
components 510, 541
function libraries 345

compact view, Object Repository window
129

comparing
shared object repositories 289

Completing the Recovery Scenario Wizard
screen 804

component parameters 512, 526, 529, 533
defining default values for 612
input 36

Index

845

output 36
parameterizing input 534
parameterizing output 538
using in steps 613

component resources, missing 741
component run results. See run results
component settings

 See Business Component Settings
dialog box

 See also application areas and
Application Area settings dialog
box

components 455
associated function libraries 608
changing application area 472
converting business components to

scripted components 482
creating 458
debugging 681
defining settings for 597
definition of 35
Keyword View 456
manual 35, 467
opening 461
pausing runs 689
printing 474
run results. See run results
running 617
running from a step 622
saving 464
scripted. See scripted components
status of 603
steps, adding 514
steps, deleting 543
steps, managing 543
steps, moving 543
updating 720

conflict resolution
in merged object repository 279
settings, Object Repository Merge

Tool 262
connecting QuickTest to Quality Center 44
conventions, typographical 21
conversion logs 504
Conversion Results log 504
Conversion Summary dialog box 500

Convert Actions dialog box 500
Convert Checked Actions button 488
Convertible Status log 504
converting actions to scripted components

500
cookies 831
creation time identifier. See ordinal identifier
CreationTime property, using to identify an

object 192
custom objects, mapping 206

D

Data Table 66
Debug from Step 687
Debug toolbar, QuickTest window 50, 69
Debug Viewer 66, 694
debugging

breakpoints
deleting 693
disabling/enabling 692
setting 691

components 681
Debug from Step 687
function libraries 384, 681
pausing runs 689
Run to Step 687
tests 681

default object identification settings 195
default properties, modifying 99, 113
defects, reporting 660

from Test Results 660
Define Object Filter dialog box 161
deleting

objects from the object repository 169
repository parameters 235

description, test objects 103
See also test objects

descriptive programming. See programmatic
descriptions

development environment 820
difference types

Object Repository Comparison Tool
299

Dim statement, in function libraries 327
disconnecting from Quality Center 48

Index

846

disk space, saving 835
Do...Loop statement, in function libraries

349
docked panes 735
Documentation Only option 550
documentation, online 17
documenting a function 399
Domain command line option 655
DOS commands, run within tests 356
dynamic Web content 829
dynamically generated URLs and Web pages

830

E

Edit Scripted Component Properties button
487

Edit toolbar, QuickTest window 69
Editor Options dialog box 364
encoding passwords 528
End Transaction button 70
environments

 See also associating add-ins with
components

environments, viewing for a component 606
errors in VBScript syntax 330
Exist property 829
Exit button 488
Expert View

finding text 319
general customization options 364
replacing text 321

export and replace local objects 178
Export to HTML File dialog box 649
Exporting 178
exporting

local objects to shared object
repository 178

object repository to XML file 243
Screen Recorder movies 643

expressions, using in function libraries 323
eXtensible Markup Language (XML) 832

F

FAQs 827
filter

defining for objects 161
Filter dialog box

Object Repository Comparison Tool
304

Object Repository Merge Tool 282
filter properties (Smart Identification) 196
filtering

objects in Object Repository window
129

repositories in Object Repository
Comparison Tool 304

target repository 281
Find & Replace dialog box, object

repositories 170
Find dialog box

function libraries 319
Object Repository Comparison Tool

306
Object Repository Merge Tool 283
Test Results 645

Find in Repository button 564, 570, 578
floating panes 736
fonts, setting in Keyword View 547
For...Each statement, in function libraries

348
For...Next statement, in function libraries

347
frequently asked questions 827
FromDate command line option 655
full view, Object Repository window 129
function calls

dragging and dropping 62, 755
Function Definition Generator 393

about 390
defining a function 393
documenting a function 399
opening 392
previewing function code 401
registering a function 394

Index

847

function libraries 373
application areas 429, 430
associated with a component 608
associating current 388
closing applications 344
creating 376
customizing appearance of 363
debugging 384, 681
definition of 35
description 58
editing 382
finding text 319
highlighting elements 367
managing 375
modifying associated 389
navigating 381
opening 376, 386
pausing runs 689
programming in 311
read-only, editing 383
replacing text 321
running applications 344
saving 379
working with associated 387

Function Libraries pane, application area 426
functions

code, finalizing 402
code, inserting 402
user-defined 373

G

general options 364
General pane, application areas 421
Generate Convertible Status Log button 487
Generate Script option 823
generating

Conversion Results log 504
Conversion Status log 504
scripted component from action 500

GetROProperty method 353
global component options 581
glossary of terms 35
Go To dialog box 317
grid columns 486

guidelines
user-defined functions 409

guidelines for using the Action Conversion
Tool 488

H

Help button 488
HP Software Web site 20

I

If...Then...Else statement, in function
libraries 351

image, capturing for a component 604
importing

object repository from XML file 242
index identifier. See ordinal identifier
Index property

programmatic descriptions 340
using to identify an object 190

Information Pane 50, 61
initialization scripts 819
Insert toolbar, QuickTest window 70
IntelliSense 312, 365
Item cell 516
Item column, Keyword View 511
Item list 517
item, selecting

from Item list 517
from shared object repository 518
from your application 521

J

JavaScript 820

K

key assignments
in Expert View 369
in function libraries 369

keyboard commands, sending to Web
objects 833

Index

848

keyboard shortcuts
in Expert View 369
in function libraries 369
in Keyword View 544

Keyword View 55, 507, 509
columns, description of 511
columns, displaying 545
definition of 35
display options 545
fonts and colors 547
keyboard keys 544
steps, deleting 543
steps, modifying 532

Keyword View tab 55
keywords

managing (application area) 439
Keywords pane 439
Keywords pane (in application area)

filtering columns 441
sorting column content 443

Knowledge Base 19

L

language 820
language support, Unicode 25
layout

customizing QuickTest window 729
moving panes 730
moving tabs 730
restoring default 738

learning objects 228
library files. See function libraries
license information 39
local object repositories 115, 117

copying objects to 131
merging 268

local object repositories, exporting and
replacing 178

local objects, exporting to shared object
repository 178

local parameter 511, 526, 529, 533
definition of input parameter 36
definition of output parameter 36
parameterizing input 534
parameterizing output 538

location identifier. See ordinal identifier
Location property, using to identify an

object 191
Log command line option 655
logs

Convertible Results 504
Convertible Status 504

M

maintaining tests 701
Maintenance Run Mode 704
Manage Repository Parameters dialog box

231
mandatory properties, configuring 184
manual component 35
manual steps 467, 510, 541
manual tests 550
Map Shared Object Repository Parameters

dialog box 152
mapping

custom objects 206
repository parameters 152
unmapped object repositories 748
unmapped repository parameters 753

menu bar, QuickTest window 50
Mercury Customer Support Web site 19
Mercury Micro Player 644
Mercury Screen Recorder. See movies of your

run session
Mercury Tours 19
Mercury Tours, sample application 38
merging

local object repositories 268
shared object repositories 247

meta tags 831
methods

adding new or changing behavior of
404

run-time objects 354
user-defined 404
viewing test objects 99

MinSize command line option 656
missing resources 741

Index

849

Missing Resources pane 64
about 742
filtering 744
unmapped repository parameters 753
unmapped shared object repositories

748
modifying

actions 494
name and location of scripted

component 498
your license 39

movies of your run session
capturing and viewing 642
exporting 643
removing from the test results 643
setting options to capture 591
viewing results in Quality Center 640

moving a step 543
multiple documents, working with 738

N

Name and Description screen 803
Name command line option 656
names

modifying for test objects 140
Navigate and Learn option 228
New Business Component dialog box 458
New Merge dialog box 266

O

object identification
generating automation scripts 195
restoring defaults 195

Object Identification dialog box 183
Object Mapping dialog box 206
object model

automation 817
definition 818

object property values
restoring default 138, 140
specifying or modifying 136
viewing 133

Object property, run-time methods 355

object repositories
adding objects 156
adding to application area 435
closing 223
converting from earlier version 219
copying, pasting, and moving objects

166
creating 219
deleting objects 169
exporting local objects 178
exporting to XML 243
importing from XML 242
local 117
locating objects 174
managing 210
managing using automation 245
missing 741
modifying 226
opening 219
saving 221
shared 119
unmapped 748

Object Repositories pane, application area
432

object repositories, exporting local and
replacing 178

Object Repository Comparison Tool 289
color settings 300
difference types 299
filtering the repositories 304
repository panes 292
statistics 303
synchronizing repositories 305
window 291

Object Repository Manager 212
Object Repository Merge Tool 247

changing the view 252
color settings 264
conflict resolution settings 262
conflicts 276
filtering the target repository 281
primary repository pane 254
resolution options pane 254
resolving conflicts 279
secondary repository pane 254

Index

850

target repository pane 252
window 250

object repository mode
choosing 117

object repository types 115
Object Repository window 120

compact view and full view 129
filtering objects 129
test object details 130

Object Selection dialog box 521
Object Spy 108

tips for working with 111
Object state trigger 782
objects

adding using navigate and learn 228
deleting from object repository 169
dragging and dropping 62, 755
identification 181
identifying 99
methods, run-time 354
properties, run-time 354
viewing methods 99
See also test objects

online documentation 18
online resources 19
Open Application Area button 419
Open Application Area dialog box 453
Open Business Component dialog box 461
Open Shared Object Repository dialog box

437
operation

arguments 526
selecting for step 525
selecting from Item list 516, 517, 524

Operation cell 525
Operation column, Keyword View 511
Option Explicit statement 409
Options dialog box 582

Folders tab 588
General tab 584
Generate Script option 584, 823
Run tab 591

ordinal identifiers 189
specifying for test objects 150

Output cell 529
Output column, Keyword View 512

Output Options dialog box 529, 538
output types 578
Output Value Properties dialog box 575
output values

definition 571
editing 573
object properties 575
standard 573
viewing 573
viewing results 676

output, canceling 531
outputting

property values 573
values 571

P

panes
auto-hiding 735
customizing layout 730
Debug Viewer 66
docked 735
floating 736
Information 61
Missing Resources 64
moving 730

Parameter Options button 563
parameter types

component parameters 533
local parameters 533

parameterized values, viewing in test results
674

parameterizing
property values using repository

parameters 237
parameters

canceling output to 531
component. See component

parameters
handling unmapped object repository

753
local. See local parameters
repository 230

adding 233
deleting 235
managing 231

Index

851

mapping 152
missing in 741
modifying 234

specifying for components 609
working with 533

Password command line option 657
Password Encoder dialog box 528
passwords, encoding 528
pausing run sessions 689
performance, improving 835
permissions

required for Quality Center 37
required to run QuickTest 37

Pop-up window trigger 782
post-recovery test run options 774
Post-Recovery Test Run Options screen 801
power users, advanced features 827
previewing function code 401
primary repository 248
primary repository pane 254
Print dialog box, Test Results window 646
Print Preview dialog box 647
printing

components 474
function libraries 384

priority
setting for recovery scenarios 812

process guidance 767
starting 766

Process Guidance panes 764
process guidance panes 65
Product Information button 93
Product Information window 93
programmatic descriptions 177, 332

description objects 336
Index property 340
performing checks on objects 341
statement 334
variables 334

programming
function libraries 311
VBScript 325

project (Quality Center)
connecting to 44
disconnecting from 48

Project command line option 657

properties
adding for test object descriptions 143
CreationTime 192
default 99, 113
defining new for test object 147
deleting from a test object description

149
Index 190
Location 191
modifying for test objects 134
run-time objects 354
viewing for recovery scenarios 807,

812
viewing for steps in Keyword View

551
property collection. See programmatic

descriptions
property values

specifying in the test object
description 237

Q

Quality Center
associated function libraries 387
capturing a snapshot for a component

604
connecting QuickTest to 44
disconnecting from 48
reporting defects manually 660

QuickTest
access permissions, required 37
automation object model 817
getting started 41
layout 729
layout, customizing 729
product information 93
starting 42
updating software 39
window. See QuickTest window

QuickTest Automation Reference 824
QuickTest window

auto-hiding panes 735
Automation toolbar 51, 69
customizing layout 729
Debug toolbar 50

Index

852

Edit toolbar 69
Information Pane 50, 61
Insert toolbar 70
look and feel 54
menu bar 50
Missing Resources 64
moving panes 730
moving tabs 730
multiple documents 738
restoring default layout 738
Standard toolbar 68
status bar 51
theme 54
Tools toolbar 70
View toolbar 70

R

Readme 17
recording

time, improving 835
recovery operations 774

Close application process 793
Function call 793
Keyboard or mouse operation 793
Restart Microsoft Windows 793

Recovery Scenario Manager Dialog Box 777
Recovery Scenario Wizard 781

Click Button or Press Key screen 795
Close Processes screen 797
Completing the Recovery Scenario

Wizard screen 804
Function screen 798
Name and Description screen 803
Post-Recovery Test Run Options

screen 801
Recovery Operation - Click Button or

Press Key screen 795
Recovery Operation - Close Processes

screen 797
Recovery Operation - Function Call

screen 798
Recovery Operation screen 793
Recovery Operations screen 792
Select Object screen 786
Select Processes screen 790

Select Test Run Error screen 789
Select Trigger Event screen 782
Set Object Properties and Values

screen 788
Specify Pop-up Window Conditions

screen 784
recovery scenarios 773

copying 810
deleting 809
disabling 813
files 777
locating missing 750
modifying 809
removing from application areas 813
removing missing 752
saving 805
setting in application areas 447
setting priority 812
viewing properties 807, 812

Recursive command line option 657
redirection of server 831
registering functions 394
registering methods 404
RegisterUserFunc statement 394, 404, 406
regular expressions

using in function libraries 323
using in the Expert View and function

libraries 323
Remove From List button 487
Replace dialog box

Expert View 321
function libraries 321

reporting defects
automatically 660
manually 660

reports, filter 360
repositories. See object repositories
Repository Parameter dialog box 237
repository parameters 230

adding 233
deleting 235
managing 231
mapping 152
modifying 234
parameterizing values 237

repository types 115

Index

853

requirements for converting actions 488
reserved objects 387
Resolution Options pane, Object Repository

Merge Tool 254
resolving conflicts, Object Repository Merge

Tool 279
Resources pane 63, 759
resources, managing 63, 759
resources, missing in component 741
resources, missing in test 741
restoring QuickTest default layout 584
Result Details tab, Test Results window 630,

642
Results Remover Utility, running from the

command line 654
results. See run results
roles, definition of 36
Run dialog box 618
run options, in the Options dialog box 591
run results 625

checkpoints 670
customizing display 661
deleting with command line options

654
deleting with Test Results Deletion

Tool 651
enabling and filtering 360
exporting to HTML 649
filtering 638
finding 639, 645
output values 676
parameterized values 674
previewing before printing 647
printing 646
reporting defects manually 660
schema 661
Test Results window 627
viewing for a selected run 634

run sessions
creating test objects programmatically

177
deleting results 651
disabling recovery scenarios 813
modifying test object properties 177
pausing 689

printing results 646
working with test objects 177

Run to Step 687
running components 617

advanced issues 827
from a step 622
Run dialog box 618
to update expected results 720
Update Run dialog box 723
viewing results 633

running tests
from a step 622
Run dialog box 618
to update expected results 720
Update Run dialog box 723

run-time
objects 354

S

sample application, Mercury Tours 38
Save Application Area dialog box 451
Save Business Component dialog box 464
Save Shared Object Repository dialog box

285, 286
scenarios. See recovery scenarios
schema, for run results 661
Screen Recorder Options dialog box 595
Screen Recorder tab, Test Results window 642
screen shot. See snapshot
scripted component name 498
scripted component path 498
scripted components 35, 475, 476

converting from business
components 481, 482

creating 478
scripted components, using Action

Conversion Tool 482
secondary object repository 248
secondary repository pane 254
Select Application dialog box 446
Select Object for Step dialog box 518
Select Object screen 786
Select Path and Name for Target Scripted

Component dialog box 498

Index

854

Select Processes screen 790
Select Test Folder to Add dialog box 490
Select Test Run Error screen 789
Select Test to Add dialog box 490
Select Trigger Event screen 782
selecting a test object

from Item list 517
from shared object repository 518
from your application 521

Send Feedback 20
server

Quality Center, disconnecting from
48

redirections 831
server-side connections 831

Server command line option 658
session IDs 831
Set Object Properties and Values screen 788
Set statement, in function libraries 327
SetTOProperty method 177
SGML 832
shared object repositories 115, 119

adding to Quality Center 435
choosing 437
comparing 289
managing 432
merging 247
unmapped 748
Update from Local Repository 268

shared object repository window 217
shortcut keys

in Keyword View 544
in QuickTest 71

shortcuts
for menu items 71
in function libraries 369
in QuickTest 71
Object Repository Comparison Tool

296
Object Repository Merge Tool 257

Silent command line option 658
Smart Identification

analyzing information 665
configuring 196
enabling from the Object

Identification dialog box 194, 195

Smart Identification Properties dialog box
201

snapshots
capturing for a component 604
Test Results window 626

software updates 39
Source Action column 486
Source Test column 486
Specify Pop-up Window Conditions screen

784
specifying name and location for scripted

component 498
Spy. See Object Spy
standard checkpoints

analyzing results 671
standard output values

creating 573
specifying 575

Standard toolbar, QuickTest window 68
Start Page 59
starting QuickTest 42
statement completion 312, 365
statements, using in Keyword View 532
Statistics dialog box 275

Comparison Tool 303
status bar

Object Repository Comparison Tool
294

Object Repository Merge Tool 255
QuickTest window 51

Status column 486
status icon column 486
status messages, descriptions of 494
status, component 603
Step commands 684
steps

adding 514
deleting 543
deleting from Keyword View 543
managing for component 543
manual 510, 541
modifying in Keyword View 532
moving 543
viewing properties in Keyword View

551

Index

855

still images of your application, capturing
and viewing 641

Subject Matter Expert, role in Business
Process Testing 27, 36

Summary column, Keyword View 512
synchronizing repositories

Object Repository Comparison Tool
305

syntax errors, VBScript 330
SystemUtil.Run method 344

T

target repository 248
saving 284

target repository pane 252
Target Scripted Component column 486
terminology, QuickTest Professional 35
Test command line option 658
test database, maintaining 819
test object properties 99
test objects

adding
description properties 143
shared object repository to project 435
to object repository 156

choosing shared object repository 437
copying to local repository 131
copying, pasting, and moving in

object repository 166
creating in run sessions 177
creating using programmatic

descriptions 177
defining new 164
defining new properties 147
deleting description properties 149
dragging and dropping 120, 227
finding 170
highlighting in an application 173
identifying 99
in run sessions 177
locating in object repository 170, 174
managing 113
managing shared object repository for

432

modifying
in run sessions 177
names 140
properties 130, 134
properties during run sessions 177

property values, replacing 170
property values, retrieving and setting

352
renaming 140
selecting

from application 521
from Item list 517
from shared object repository 518

specifying ordinal identifiers 150
viewing properties 133

test resources, missing 741
Test Results Deletion Tool 651
Test Results toolbar, Test Results window 632
Test Results tree 629
Test Results window 627

look and feel 632
Result Details tab 630
run results toolbar 632
run results tree 629
Screen Recorder and Result Details

tabs 642
theme 632

test results. See run results
Test run error trigger 782
test run time, improving 835
Test Settings dialog box

Generate Script option 823
testing options

setting for all tests 581
tests

debugging 681
disabling recovery scenarios 813
maintaining 701
pausing runs 689
removing recovery scenarios from 813
running from a step 622
See also run results

tests, adding to Action Conversion Tool 490
toolbar 487

Index

856

toolbars
Object Repository Comparison Tool

295
Object Repository Merge Tool 256
QuickTest window

Automation 69
Debug 50, 69
Edit 69
Insert 70
Standard 68
Testing 51
Tools 70
View 70

Tools toolbar, QuickTest window 70
Tree View. See Keyword View
trigger

Application crash 782
events 774
Object state 782
Pop-up window 782
test run error 782

type library 820
typographical conventions 21

U

Uncheck All button 487
Unicode 25
unregistering methods, using the

UnregisterUserFunc statement 408
UnregisterUserFunc statement 404
UntilDate command line option 659
Update Run dialog box 723
User command line option 659
user-defined

functions. See user-defined functions
methods 404
properties, accessing 355
test objects, mapping 206

user-defined functions 373
adding a tooltip to 399
documenting 399
finalizing 402
Function Definition Generator 390
generating additional 401
guidelines for 409

previewing code in Function
Definition Generator 401

registering 394

V

Value cell 526
Value column, Keyword View 511
Value Configuration Options dialog box 534
values

canceling output 531
input 526
output 529
outputting 571
parameterizing input 534
parameterizing output 538
restoring default for object properties

138, 140
specifying for object properties 136
viewing for object properties 133

variables
unique in global scope 409

VBScript 820
associated function libraries

with Quality Center 387
auto-expand syntax 366
documentation 345
formatting text 329
syntax 325
syntax errors 330

View toolbar 70
viewing

Conversion Results log 504
Conversion Status log 504

Visual Basic 820
Visual C++ 820
Visual Studio.NET 820

W

Web
sending keyboard commands to Web

objects 833
Web content, dynamic 829
While statement, in function libraries 350
window, description of 485

Index

857

Windows API 356
Windows command line options 654
Windows dialog box 738
workflow in Business Process Testing 34
wscript.exe 822

X

XML
exporting from object repository 243
importing as object repository 242

Index

858

	HP QuickTest Professional for Business Process Testing User’s Guide
	Table of Contents
	Welcome to This Guide
	How This Guide Is Organized
	Who Should Read This Guide
	QuickTest Professional Online Documentation
	Additional Online Resources
	Typographical Conventions

	Introducing Business Process Testing
	Introduction
	About Using QuickTest Professional for Business Process Testing
	Understanding Business Process Testing
	Creating Components in the Quality Center Business Components Module
	Creating Business Process Tests in the Quality Center Test Plan Module
	Understanding the Business Process Testing Workflow
	Understanding QuickTest Professional for Business Process Testing Terminology

	Setting Required Access Permissions
	Using the Sample Site
	Modifying License Information
	Updating QuickTest Software

	QuickTest at a Glance
	Starting QuickTest
	Connecting to Your Quality Center Project
	Disconnecting QuickTest from Quality Center

	QuickTest Window
	Changing the Appearance of the QuickTest Window

	Keyword View
	Application Area
	Function Library
	Start Page
	Information Pane
	Available Keywords Pane
	Resources Pane
	Missing Resources Pane
	Process Guidance Panes
	Debug Viewer Pane
	Using QuickTest Commands
	Clicking Commands on a Toolbar
	File Menu Commands
	Edit Menu Commands
	View Menu Commands
	Insert Menu Commands
	Automation Menu Commands
	Resources Menu Commands
	Debug Menu Commands
	Tools Menu Commands
	Window Menu Commands
	Help Menu Commands
	Data Table Menu Commands
	Other QuickTest Commands

	Browsing the QuickTest Professional Program Folder
	Viewing Product Information

	Working with Test Objects and Object Repositories
	Understanding the Test Object Model
	About Understanding the Test Object Model
	Understanding How QuickTest Learns Objects
	Understanding How QuickTest Identifies Objects During the Run Session

	Applying the Test Object Model Concept
	Understanding Test Object Descriptions
	Understanding Test Object and Run-Time Object Properties and Methods

	Viewing Object Properties and Methods Using the Object Spy
	Tips for Working with the Object Spy

	Working with Objects
	About Working with Objects
	Understanding Object Repository Types
	Deciding Whether to Use Local or Shared Object Repositories

	Understanding the Object Repository Window
	Understanding the Object Details Area
	Showing and Hiding the Object Details Area
	Filtering the Object Repository Window

	Viewing and Modifying Test Object Properties
	Copying an Object to the Local Object Repository
	Viewing Object Properties and Property Values
	Modifying Test Object Properties
	Specifying or Modifying Property Values
	Updating Test Object Properties from an Object in Your Application
	Restoring Default Properties for a Test Object
	Renaming Test Objects
	Adding Properties to a Test Object Description
	Defining New Test Object Properties
	Removing Properties from a Test Object Description
	Specifying Ordinal Identifiers

	Mapping Repository Parameter Values
	Adding Test Objects to an Object Repository
	Adding a Test Object Using the Add Objects to Local or Add Objects Option
	Understanding the Define Object Filter Dialog Box
	Understanding the Select Object Types Dialog Box

	Defining New Test Objects
	Copying, Pasting, and Moving Objects in the Object Repository
	Guidelines for Copying, Pasting, and Moving Objects

	Deleting Objects from the Object Repository
	Locating Objects
	Finding Objects in an Object Repository
	Highlighting an Object in Your Application
	Locating a Test Object in the Object Repository

	Working with Test Objects During a Run Session
	Creating Test Objects During a Run Session
	Modifying Test Object Properties During a Run Session

	Exporting Local Objects to a Shared Object Repository

	Configuring Object Identification
	About Configuring Object Identification
	Understanding the Object Identification Dialog Box
	Configuring Mandatory and Assistive Properties
	Selecting an Ordinal Identifier
	Enabling and Disabling Smart Identification
	Restoring Default Object Identification Settings for Test Objects
	Generating Automation Scripts for Your Object Identification Settings

	Configuring Smart Identification
	Mapping User-Defined Test Object Classes

	Managing Object Repositories
	About Managing Object Repositories
	Understanding the Object Repository Manager
	Using the Object Repository Manager Toolbar
	Understanding the Shared Object Repository Windows

	Working with Object Repositories
	Creating New Object Repositories
	Opening Object Repositories
	Saving Object Repositories
	Closing Object Repositories

	Managing Objects in Shared Object Repositories
	Editing Object Repositories
	Adding Test Objects to Your Component Using the Object Repository Manager
	Adding Test Objects Using the Navigate and Learn Option

	Working with Repository Parameters
	Managing Repository Parameters
	Adding Repository Parameters
	Modifying Repository Parameters
	Deleting Repository Parameters

	Modifying Object Details
	Specifying a Property Value

	Locating Test Objects
	Performing Merge Operations
	Performing Import and Export Operations
	Importing from XML
	Exporting to XML
	Understanding the XML File Structure

	Managing Object Repositories Using Automation
	Using the QuickTest Professional Object Repository Automation Reference

	Merging Shared Object Repositories
	About Merging Shared Object Repositories
	Understanding the Object Repository Merge Tool
	Changing the View
	Target Repository Pane
	Primary and Secondary Repository Panes
	Resolution Options Pane
	Status Bar

	Using Object Repository Merge Tool Commands
	Using Toolbar Commands
	Performing Object Repository Merge Tool Commands

	Defining Default Settings
	Specifying Default Resolution Settings
	Specifying Color Settings

	Merging Two Object Repositories
	Updating a Shared Object Repository from Local Object Repositories
	Viewing Merge Statistics
	Understanding Object Conflicts
	Resolving Object Conflicts
	Filtering the Target Repository Pane
	Finding Specific Objects
	Saving the Target Object Repository
	Saving the Object Repository to the File System
	Saving the Object Repository to a Quality Center Project

	Comparing Shared Object Repositories
	About Comparing Shared Object Repositories
	Understanding the Object Repository Comparison Tool
	Understanding the Repository Panes
	Understanding the Status Bar

	Using Object Repository Comparison Tool Commands
	Using Toolbar Commands
	Performing Object Repository Comparison Tool Commands Using Shortcut Keys

	Understanding Object Differences
	Changing Color Settings
	Comparing Object Repositories
	Viewing Comparison Statistics
	Filtering the Repository Panes
	Synchronizing Object Repository Views
	Finding Specific Objects

	Defining Functions and Other Programming Tasks
	Working in Function Library Windows
	About Working in the Function Library Window
	Generating Statements in a Function Library
	Navigating in Function Libraries
	Using the Go To Dialog Box
	Working with Bookmarks
	Finding Text Strings
	Replacing Text Strings

	Understanding Basic VBScript Syntax
	Using Variables
	Using Parentheses
	Formatting VB Script Text
	Handling VBScript Syntax Errors

	Using Programmatic Descriptions
	Entering Programmatic Descriptions Directly into Statements
	Using Description Objects for Programmatic Descriptions
	Retrieving Child Objects
	Performing Programmatic Description Checks

	Running and Closing Applications Programmatically
	Using Comments, Control-Flow, and Other VBScript Statements
	Inserting Comments
	Performing Calculations
	For...Next Statement
	For...Each Statement
	Do...Loop Statement
	While...Wend Statement
	If...Then...Else Statement

	Retrieving and Setting Test Object Property Values
	Accessing Run-Time Object Properties and Methods
	Retrieving Run-Time Object Properties
	Activating Run-Time Object Methods
	Accessing User-Defined Properties of Web Objects

	Running DOS Commands
	Enhancing Your Tests and Function Libraries Using the Windows API
	Choosing Which Steps to Report During the Run Session

	Customizing Function Library Windows
	About Customizing Function Library Windows
	Customizing Editor Behavior
	Customizing Element Appearance
	Personalizing Editing Commands

	Working with User-Defined Functions and Function Libraries
	About Working with User-Defined Functions and Function Libraries
	Managing Function Libraries
	Creating a Function Library
	Opening a Function Library
	Saving a Function Library
	Navigating Between Open QuickTest Documents
	Navigating to a Specific Function in a Function Library
	Editing a Function Library
	Editing a Read-Only Function Library
	Debugging a Function Library
	Printing a Function Library
	Closing a Function Library

	Working with Associated Function Libraries
	Associating a Function Library with an Application Area
	Modifying Function Library Associations

	Using the Function Definition Generator
	Opening the Function Definition Generator
	Defining the Function Definition
	Registering a Function Using the Function Generator
	Specifying Arguments for the Function
	Documenting the Function
	Previewing the Function
	Generating Another User-Defined Function
	Finalizing the User-Defined Function

	Registering User-Defined Functions as Test Object Methods
	Preparing the User-Defined Function
	Registering User-Defined Test Object Methods
	Unregistering User-Defined Test Object Methods

	Additional Tips for Working with User-Defined Functions

	Working with Application Areas and Components
	Working with Application Areas
	About Working with Application Areas
	Creating an Application Area
	Opening an Application Area
	Defining General Settings
	Associating Add-ins with Your Component

	Managing Function Libraries
	Associating Existing Libraries with Your Application Area
	Creating New Function Libraries

	Managing Shared Object Repositories
	Creating New Shared Object Repositories
	Adding Existing Shared Object Repositories to Your Application Area

	Managing Keywords
	Filtering the Columns
	Sorting Column Content

	Defining Additional Settings
	Defining Application Settings for Your Application Area
	Specifying an Application
	Defining Recovery Scenario Settings for Your Application Area

	Saving an Application Area
	Deleting an Application Area

	Working with Business Components
	About Working with Business Components
	Creating a New Business Component
	Opening a Business Component
	Opening Components from the Recent Files List

	Saving a Business Component
	Working with Manual Components
	Opening and Converting Manual Components
	Adding and Modifying Manual Steps for Components

	Changing the Application Area Associated with a Component
	Printing a Component

	Creating Scripted Components
	About Scripted Components
	Creating a Scripted Component
	Converting to Scripted Components
	Converting a Business Component to a Scripted Component
	Converting an Action to a Scripted Component
	Understanding the QuickTest Professional Action Conversion Tool
	QuickTest Professional Action Conversion Tool at a Glance
	Understanding Conversion Requirements
	Adding Actions to the Action Conversion Tool
	Where Do You Go From Here
	Modifying Actions Prior to Conversion
	Specifying a Name and Location for Your Scripted Component
	Converting Actions to Scripted Components
	Understanding the Conversion Logs

	Working with the Keyword View
	About Working with the Keyword View
	Understanding the Keyword View
	Item Column
	Operation Column
	Value Column
	Output Column
	Documentation Column
	Tips for Working with the Keyword View

	Adding a Step to Your Component
	Selecting an Item for Your Step
	Selecting the Operation for Your Step
	Defining Values for Your Step Arguments
	Inserting Encoded Passwords into Method Arguments
	Defining an Output Value for Your Step

	Adding Other Types of Steps to Your Component
	Modifying the Parts of a Step
	Working with Parameters
	Parameterizing Input Values
	Parameterizing Output Values

	Working with Comments
	Managing Component Steps
	Moving a Component Step
	Deleting a Component Step

	Using Keyboard Commands in the Keyword View
	Defining Keyword View Display Options
	Displaying Keyword View Columns
	Setting Keyword View Fonts and Colors
	Tips for Working with the Keyword View

	Working with Breakpoints in the Keyword View

	Understanding Checkpoints
	About Understanding Checkpoints
	Adding New Checkpoints to a Component
	Understanding Types of Checkpoints

	Checking Object Property Values
	About Checking Object Property Values
	Creating Standard Checkpoints
	Understanding the Checkpoint Properties Dialog Box
	Understanding the Checkpoint Properties Dialog Box - Simple Mode
	Editing the Expected Value of an Object Property
	Understanding the Checkpoint Properties Dialog Box - Advanced Mode

	Modifying Checkpoints

	Checking Bitmaps
	About Checking Bitmaps
	Checking a Bitmap
	Understanding the Bitmap Checkpoint Properties Dialog Box - Advanced Mode

	Outputting Values
	About Outputting Values
	Creating Output Values
	Viewing and Editing Output Values

	Outputting Property Values
	Defining Standard Output Values

	Specifying the Output Type and Settings
	Selecting the Location for the Output Value Step

	Configuring Settings
	Setting Global Testing Options
	About Setting Global Testing Options
	Using the Options Dialog Box
	Setting General Testing Options
	Customizing the QuickTest Window Layout

	Setting Folder Testing Options
	Setting Run Testing Options
	Understanding the Screen Recorder Options Dialog Box

	Working with Business Component Settings
	About Working with Business Component Settings
	Using the Business Component Settings Dialog Box
	Working with Component Properties
	Understanding Component Statuses

	Defining a Snapshot for Your Component
	Viewing Application Settings
	Viewing Component Resources
	Defining Parameters for Your Component
	Defining Default Values for Input Component Parameters
	Using Component Parameters in Steps

	Viewing Recovery Scenario Settings

	Running and Analyzing Components
	Running Components
	About Running Components
	Running Your Entire Component
	Understanding the Results Location Tab
	Understanding the Input Parameters Tab

	Running Part of Your Component

	Viewing Run Session Results
	About Viewing Run Session Results
	The Test Results Window
	Run Results Tree
	Run Results Details
	Run Results Toolbar
	Changing the Appearance of the Test Results Window

	Viewing the Results of a Run Session
	Opening Test Results to View a Selected Run
	Working with the Test Results Window
	Viewing Results of Components Run From Quality Center
	Capturing and Viewing Still Images and Movies of Your Application
	Finding Results Steps
	Printing Run Session Results
	Previewing Test Results
	Exporting Test Results

	Deleting Run Results
	Deleting Results Using the Test Results Deletion Tool
	Deleting Results Using the Windows Command Line

	Manually Submitting Defects Detected During a Run Session to a Quality Center Project
	Customizing the Test Results Display

	Analyzing Run Session Results
	Analyzing Smart Identification Information in the Test Results
	Viewing Checkpoint Results
	Analyzing Standard Checkpoint Results
	Analyzing Bitmap Checkpoint Results

	Viewing Parameterized Values and Output Value Results in the Test Results Window
	Viewing Parameterized Values in the Test Results Window
	Viewing Output Value Results in the Test Results Window

	Maintaining and Debugging Components
	Debugging Components and Function Libraries
	About Debugging Components and Function Libraries
	Slowing a Debug Session
	Using the Single Step Commands
	Using the Single Step Commands - An Example

	Using the Run to Step and Debug from Step Commands
	Pausing a Run Session
	Using Breakpoints
	Setting Breakpoints
	Enabling and Disabling Breakpoints
	Removing Breakpoints

	Using the Debug Viewer
	Watch Tab
	Variables Tab
	Command Tab

	Handling Run Errors
	Practicing Debugging a Function

	Maintaining Components
	Why Components Fail
	Object Changes
	Checkpoint Changes

	Running Components with the Maintenance Run Wizard
	The Object Not Found Screen
	The Add Comment Screen
	The Change Object Property Values Screen
	The Update Step with Existing Object Screen
	The Add Object to Repository Screen
	Understanding the Maintenance Mode Summary Screen

	Updating a Component Using the Update Run Mode Option
	Understanding the Update Options Tab

	Working with the QuickTest IDE
	QuickTest Window Layout
	Modifying the QuickTest Window Layout
	Moving Panes
	Showing and Hiding Panes
	Showing and Hiding Toolbars
	Restoring the Default Layout of the QuickTest Window

	Working With Multiple Documents

	Handling Missing Resources
	About Handling Missing Resources
	Filtering the Missing Resources Pane

	Handling Missing Environment Variables Files
	Handling Missing Function Libraries
	Handling Missing Shared Object Repositories
	Handling Missing Recovery Scenarios
	Locating Missing Recovery Scenarios
	Removing Missing Recovery Scenarios

	Handling Unmapped Shared Object Repository Parameter Values

	Adding Keywords to Your Component
	Understanding the Available Keywords Pane
	Keywords Sorted by Resource
	Keywords Sorted by Keyword

	Managing Resources
	Understanding the Resources Pane
	Associated Function Libraries
	Associated Recovery Scenarios
	Associated Repositories for Component

	Working with Process Guidance
	Process Guidance Panes
	Opening Process Guidance
	Managing the List of Available Processes

	Working with Advanced Features
	Defining and Using Recovery Scenarios
	About Defining and Using Recovery Scenarios
	Deciding When to Use Recovery Scenarios
	Defining Recovery Scenarios
	Creating a Recovery File
	Understanding the Recovery Scenario Manager Dialog Box

	Understanding the Recovery Scenario Wizard
	Welcome to the Recovery Scenario Wizard Screen
	Select Trigger Event Screen
	Specify Pop-up Window Conditions Screen
	Select Object Screen
	Set Object Properties and Values Screen
	Select Test Run Error Screen
	Select Processes Screen
	Recovery Operations Screen
	Recovery Operation Screen
	Recovery Operation - Click Button or Press Key Screen
	Recovery Operation - Close Processes Screen
	Recovery Operation - Function Call Screen
	Post-Recovery Test Run Options Screen
	Name and Description Screen
	Completing the Recovery Scenario Wizard Screen
	Saving the Recovery Scenario in a Recovery File

	Managing Recovery Scenarios
	Viewing Recovery Scenario Properties
	Modifying Recovery Scenarios
	Deleting Recovery Scenarios
	Copying Recovery Scenarios between Recovery Scenario Files

	Associating Recovery Scenarios with Your Application Areas
	Viewing Recovery Scenario Properties
	Setting Recovery Scenario Priorities
	Removing Recovery Scenarios from Your Application Area
	Enabling and Disabling Recovery Scenarios
	Setting Default Recovery Scenario Settings for All New Components

	Programmatically Controlling the Recovery Mechanism

	Automating QuickTest Operations
	About Automating QuickTest Operations
	What is Automation?
	What is the QuickTest Automation Object Model?

	Deciding When to Use QuickTest Automation Scripts
	Choosing a Language and Development Environment for Designing and Running Automation Scripts
	Learning the Basic Elements of a QuickTest Automation Script
	Generating Automation Scripts
	Using the QuickTest Automation Reference

	Appendix
	Frequently Asked Questions
	Creating Components
	Working with Function Libraries
	Working with Dynamic Content
	Advanced Web Issues
	Standard Windows Environment
	Component Maintenance
	Improving QuickTest Performance

	Creating Custom Process Guidance Packages
	About Process Guidance Packages
	Understanding the Package Configuration File
	XML Details

	Creating Data Files
	Installing Custom Process Guidance Packages in QuickTest

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /JPXEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG2000
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 100
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /JPXEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG2000
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 100
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f0062006500200050004400460020658768637b2654080020005000440046002f0058002d00310061003a0032003000300031002089c4830330028fd9662f4e004e2a4e1395e84e3a56fe5f6251855bb94ea46362800c52365b9a7684002000490053004f0020680751c6300251734e8e521b5efa7b2654080020005000440046002f0058002d00310061002089c483037684002000500044004600206587686376848be67ec64fe1606fff0c8bf753c29605300a004100630072006f00620061007400207528623763075357300b300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef67b2654080020005000440046002f0058002d00310061003a00320030003000310020898f7bc430025f8c8005662f70ba57165f6251675bb94ea463db800c5c08958052365b9a76846a196e96300295dc65bc5efa7acb7b2654080020005000440046002f0058002d003100610020898f7bc476840020005000440046002065874ef676848a737d308cc78a0aff0c8acb53c395b1201c004100630072006f00620061007400204f7f7528800563075357201d300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006600f800720073007400200073006b0061006c00200073006500730020006900670065006e006e0065006d00200065006c006c0065007200200073006b0061006c0020006f0076006500720068006f006c006400650020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e00670020006100660020006700720061006600690073006b00200069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002000660069006e006400650072002000640075002000690020006200720075006700650072006800e5006e00640062006f00670065006e002000740069006c0020004100630072006f006200610074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061003a0032003000300031002d006b006f006d00700061007400690062006c0065006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002e0020005000440046002f0058002d003100610020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020006600fc0072002000640065006e002000410075007300740061007500730063006800200076006f006e0020006700720061006600690073006300680065006e00200049006e00680061006c00740065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200034002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f00620065002000710075006500200073006500200064006500620065006e00200063006f006d00700072006f0062006100720020006f002000710075006500200064006500620065006e002000630075006d0070006c006900720020006c00610020006e006f0072006d0061002000490053004f0020005000440046002f0058002d00310061003a00320030003000310020007000610072006100200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200073006f0062007200650020006c0061002000630072006500610063006900f3006e00200064006500200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020006c00610020006e006f0072006d00610020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000710075006900200064006f006900760065006e0074002000ea0074007200650020007600e9007200690066006900e900730020006f0075002000ea00740072006500200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061003a0032003000300031002c00200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200070006c007500730020006400650020006400e9007400610069006c007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061002c00200076006f006900720020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200034002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
 /JPN <FEFF30b030e930d530a330c330af30b330f330c630f330c4306e590963db306b5bfe3059308b002000490053004f00206a196e96898f683c306e0020005000440046002f0058002d00310061003a00320030003000310020306b6e9662e03057305f002000410064006f0062006500200050004400460020658766f830924f5c62103059308b305f3081306b4f7f75283057307e30593002005000440046002f0058002d0031006100206e9662e0306e00200050004400460020658766f84f5c6210306b306430443066306f3001004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200034002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020c791c131d558b294002000410064006f0062006500200050004400460020bb38c11cb2940020d655c778c7740020d544c694d558ba700020adf8b798d53d0020cee8d150d2b8b97c0020ad50d658d558b2940020bc29bc95c5d00020b300d55c002000490053004f0020d45cc900c7780020005000440046002f0058002d00310061003a0032003000300031c7580020addcaca9c5d00020b9dec544c57c0020d569b2c8b2e4002e0020005000440046002f0058002d003100610020d638d65800200050004400460020bb38c11c0020c791c131c5d00020b300d55c0020c790c138d55c0020c815bcf4b2940020004100630072006f0062006100740020c0acc6a90020c124ba85c11cb97c0020cc38c870d558c2edc2dcc624002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200034002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200073006b0061006c0020006b006f006e00740072006f006c006c0065007200650073002c00200065006c006c0065007200200073006f006d0020006d00e50020007600e6007200650020006b006f006d00700061007400690062006c00650020006d006500640020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e006400610072006400200066006f007200200075007400760065006b0073006c0069006e00670020006100760020006700720061006600690073006b00200069006e006e0068006f006c0064002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020007300650020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200063006100700061007a0065007300200064006500200073006500720065006d0020007600650072006900660069006300610064006f00730020006f0075002000710075006500200064006500760065006d00200065007300740061007200200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061003a0032003000300031002c00200075006d0020007000610064007200e3006f002000640061002000490053004f002000700061007200610020006f00200069006e007400650072006300e2006d00620069006f00200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400ed007600650069007300200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000750073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200034002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b00610020007400610072006b0069007300740065007400610061006e00200074006100690020006a006f006900640065006e0020007400e400790074007900790020006e006f00750064006100740074006100610020005000440046002f0058002d00310061003a0032003000300031003a007400e400200065006c0069002000490053004f002d007300740061006e006400610072006400690061002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e00200073006900690072007400e4006d00690073007400e4002000760061007200740065006e002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0064006f006b0075006d0065006e0074007400690065006e0020006c0075006f006d0069007300650073007400610020006f006e0020004100630072006f0062006100740069006e0020006b00e400790074007400f6006f0070007000610061007300730061002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200034002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200073006b00610020006b006f006e00740072006f006c006c006500720061007300200065006c006c0065007200200073006f006d0020006d00e50073007400650020006d006f0074007300760061007200610020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e00200020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d00200068007500720020006d0061006e00200073006b00610070006100720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00610020005000440046002d0064006f006b0075006d0065006e0074002000660069006e006e00730020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e002000740069006c006c0020004100630072006f006200610074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200034002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings when submitting to HP. These settings require font embedding.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

