
 LoadRunner®

Creating GUI Virtual User Scripts
UNIX

Version 6.0

LoadRunner® Creating GUI Virtual User Scripts (UNIX), Version 6.0

© Copyright 1994–2001 by Mercury Interactive Corporation

All rights reserved. All text and figures included in this publication are the exclusive property of
Mercury Interactive Corporation, and may not be copied, reproduced, or used in any way without the
express permission in writing of Mercury Interactive. Information in this document is subject to
change without notice and does not represent a commitment on the part of Mercury Interactive.

Mercury Interactive may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents except as
expressly provided in any written license agreement from Mercury Interactive.

WinRunner, XRunner, LoadRunner, TestDirector, TestSuite, and WebTest are registered trademarks of
Mercury Interactive Corporation in the United States and/or other countries. Astra, Astra
SiteManager, Astra SiteTest, RapidTest, QuickTest, Visual Testing, Action Tracker, Link Doctor, Change
Viewer, Dynamic Scan, Fast Scan, and Visual Web Display are trademarks of Mercury Interactive
Corporation in the United States and/or other countries.

This document also contains registered trademarks, trademarks and service marks that are owned by
their respective companies or organizations. Mercury Interactive Corporation disclaims any
responsibility for specifying which marks are owned by which companies or organizations.

If you have any comments or suggestions regarding this document, please send them via e-mail to
documentation@mercury.co.il.

Mercury Interactive Corporation
1325 Borregas Avenue
Sunnyvale, CA 94089 USA

LRGUIUXUG6.0/03

Table of Contents

Welcome to LoadRunner
Online Resources ...v
LoadRunner Documentation Set..vi
Using the LoadRunner Documentation Set ..vii
Typographical Conventions...ix

PART I: UNDERSTANDING GUI VUSERS

Chapter 1: Introduction..3
Working with GUI Virtual Users...3
GUI Virtual User Technology..4
Creating Virtual User Scripts ...6
The LoadRunner Testing Process...7
Getting Started with GUI Virtual Users ..8

Chapter 2: Virtual User Development Environment (VUDE)11
Creating the Vuser Development Environment (VUDE)....................13
Closing the VUDE ...14

PART II : WORKING WITH VXRUNNER

Chapter 3: Recording GUI Virtual User Scripts17
Recording a GUI Vuser script ..18
Guidelines for Recording...19
Converting Existing XRunner Scripts ..20

Chapter 4: Replaying GUI Virtual User Scripts...............................21
Replaying a GUI Vuser script ..22
Stopping Script Execution ...22
Pausing Script Execution ...23

Chapter 5: Synchronizing GUI Vuser Script Execution25
Synchronizing Script Execution Using wait_window.........................26
Synchronizing Script Execution Using wait_text................................29
i

Creating GUI Virtual User Scripts (UNIX)
Chapter 6: Reading Text from the Screen35
About Text Recognition ..35
Reading Text..36
Searching for Text ...37
Comparing Text ..39

Chapter 7: Invoking Applications with VXRunner41
About Running Applications from within VXRunner........................41
Using the System Command to Start an Application.........................42

Chapter 8: Viewing Execution Reports ...43
About Execution Reports...43
Displaying Execution Reports ...45
Viewing Reports During Script Execution...46
Adding Messages to Reports ..46

PART III : DEBUGGING GUI VUSER SCRIPTS

Chapter 9: Debugging GUI Vuser Scripts ..49
Running a Single Line of a GUI Vuser Script50
Running a Section of a GUI Vuser Script ..50
Pausing Script Execution...51

Chapter 10: Using Breakpoints ..53
Setting and Removing Breakpoints ...55
Modifying Breakpoints..58
Deleting a Breakpoint ...58

Chapter 11: Monitoring Variables..61
Adding a Variable or Expression to the Watch List62
Adding an Array to the Watch List ...63
Modifying an Expression in the Watch List64
Assigning a Value to a Variable...65
Deleting Expressions and Variables from the Watch List...................66

PART IV: USING LOADRUNNER FUNCTIONS

Chapter 12: Measuring System Performance Using Transactions 69
Declaring Transactions..70
Marking the Start of a Transaction ..70
Marking the End of a Transaction ...71
A Sample Transaction..71
ii

Table of Contents
Chapter 13: Emulating Server Load: Rendezvous Points...............73
About Synchronizing Multiple Vusers ..73
Declaring a Rendezvous ..74
Specifying the Point of Rendezvous in a GUI Vuser Script.................74
A Sample Rendezvous..75

Chapter 14: Enhancing Scripts using LoadRunner Functions77
Sending Messages from Vuser scripts..77
Obtaining Virtual User Information ...78
Specifying Your Own Data for Analysis ..79

PART V: PROGRAMMING WITH TSL

Chapter 15: Introducing TSL ..83
Constants...84
Variables ..84
Operators ...84
Control-Flow Statements...86
Built-in Functions..87
Comments ...88

Chapter 16: Creating User-Defined Functions................................89
Function Syntax ..90
Return Statement...93

Chapter 17: Creating Compiled Modules..95
Compiled Module Contents..96
Creating a Module...97
Loading and Unloading a Compiled Module97
Incremental Compilation..100
Compiled Module Example...100

Chapter 18: Calling Scripts ...103
Using the Call Statement ..103
Returning to the Calling Script ...104
Setting the Search Path..105
Defining Parameters ..106

PART VI: ADVANCED VXRUNNER FEATURES

Chapter 19: Creating Initialization Scripts113
Types of Initialization Scripts..113

Chapter 20: Using Regular Expressions...115
Regular Expression Syntax ..115
iii

Creating GUI Virtual User Scripts (UNIX)
Chapter 21: Setting System Variables ..119
Setting System Variables from within the Script119
The Controls Dialog Box ..122
The Test Environment Dialog Box..123
System Variables..123

Chapter 22: Synchronizing Problematic Windows......................129
How System Variables Affect wait_window Functions130
Adjusting the Timeout Interval...131
Setting the Delay ...131

PART VII: GUI VUSER SCRIPT PROGRAMMING REFERENCE

Chapter 23: Function Reference...135
Return Values ..135

PART VIII : APPENDICES

Appendix A:
VXRunner Configuration Files ..161
Configuration Parameters ...162
Configuration File Contents ...168

Appendix B:
Command Softkeys ...173

Index
.. 175
iv

Welcome to LoadRunner

Welcome to LoadRunner, Mercury Interactive’s tool for testing the
performance of applications. LoadRunner stresses your application to isolate
and identify potential client, network, and server bottlenecks.

LoadRunner enables you to test your system under controlled and peak load
conditions. To generate load, LoadRunner runs thousands of Virtual Users
that are distributed over a network. Using a minimum of hardware
resources, these Virtual Users provide consistent, repeatable, and measurable
load to exercise your application just as real users would. LoadRunner’s in-
depth reports and graphs provide the information that you need to evaluate
the performance of your application.

Online Resources

LoadRunner includes the following online tools:

Read Me First provides last-minute news and information about
LoadRunner.

Books Online displays the complete documentation set in PDF format.
Online books can be read and printed using Adobe Acrobat Reader, which is
included in the installation package. Check Mercury Interactive’s Customer
Support Web site for updates to LoadRunner online books. The URL for this
Web site is http://support.mercuryinteractive.com.

LoadRunner Online Function Reference gives you online access to all of
LoadRunner’s functions that you can use when creating Vuser scripts,
including examples of how to use the functions. Check Mercury
Interactive’s Customer Support Web site for updates to the LoadRunner
Online Function Reference.
v

Creating Vuser Scripts
LoadRunner Context Sensitive Help provides immediate answers to
questions that arise as you work with LoadRunner. It describes dialog boxes,
and shows you how to perform LoadRunner tasks. To activate this help,
click in a window and press F1. Check Mercury Interactive’s Customer
Support Web site for updates to LoadRunner help files.

Technical Support Online uses your default web browser to open Mercury
Interactive’s Customer Support web site. The URL for this Web site is
http://support.mercuryinteractive.com.

Support Information presents the locations of Mercury Interactive’s
Customer Support web site and home page, and a list of Mercury
Interactive’s offices around the world.

Mercury Interactive on the Web uses your default Web browser to open
Mercury Interactive’s home page. The URL for this Web site is
http://www.mercuryinteractive.com.

LoadRunner Documentation Set

LoadRunner is supplied with a set of documentation that describes how to:

➤ install LoadRunner

➤ create Vuser scripts

➤ use the LoadRunner Controller
vi

Welcome to LoadRunner
Using the LoadRunner Documentation Set

The LoadRunner documentation set consists of one installation guide, a
Controller user’s guide, and three guides for creating Virtual User scripts.

Installation Guide

For instructions on installing LoadRunner, refer to the LoadRunner
Installation Guide. The installation guide explains how to install:

➤ the LoadRunner Controller—on a Windows-based machine

➤ Virtual User components—for both Windows and UNIX platforms

Controller User’s Guide

The LoadRunner documentation pack includes one Controller user’s guide:

The LoadRunner Controller User’s Guide (Windows) describes how to create and
run LoadRunner scenarios using the LoadRunner Controller in a Windows
environment. The Vusers can run on UNIX and Windows-based platforms.
The Controller user’s guide presents an overview of the LoadRunner testing
process.

Guides for Creating Vuser Scripts

The LoadRunner documentation pack has three guides that describe how to
create Vuser scripts:

➤ The Creating Vuser Scripts guide describes how to create all types of Vuser
scripts. When necessary, supplement this document with the LoadRunner
Online Function Reference and one or more of the following guides:

➤ The WinRunner User’s Guide describes in detail how to use WinRunner to
create GUI Vuser scripts. The resulting Vuser scripts run on Windows
platforms. The TSL Online Reference should be used in conjunction with
this document.

➤ The Creating GUI Virtual User Scripts (UNIX) guide describes how to create
GUI Vuser scripts using VXRunner, the enhanced version of XRunner.
vii

Creating Vuser Scripts
The resulting Vuser scripts run on UNIX platforms. The TSL Online
Reference should be used in conjunction with this document.

For information on Look here...

Installing LoadRunner LoadRunner Installation Guide

The LoadRunner testing
process

LoadRunner Controller User’s Guide (Windows)

Creating Vuser scripts Creating Vuser Scripts guide

Creating and running scenarios, and analyzing results using a:

Windows-based Controller LoadRunner Controller User’s Guide (Windows)
viii

Welcome to LoadRunner
Typographical Conventions

This book uses the following typographical conventions:

1, 2, 3 Bold numbers indicate steps in a procedure.

➤ Bullets indicate options and features.

> The greater than sign separates menu levels (for
example, File > Open).

Stone Sans The Stone Sans font indicates names of interface
elements in a procedure (for example, “Click the Run
button.”).

Italics Italic text indicates names (for example, names of
variables or books).

Helvetica The Helvetica font is used for examples and strings that
are to be typed in literally.

<> Angle brackets enclose a part of a URL address that
needs to be typed in.

[] Square brackets enclose optional parameters.

... In a line of syntax, an ellipsis indicates that more items
of the same format may be included.
ix

Creating Vuser Scripts
x

Chapter •
Part I

Understanding GUI Vusers
1

Creating GUI Virtual User Scripts (UNIX) •
2

1
Introduction

LoadRunner emulates an environment in which thousands of users work
with a client/server system concurrently. To do this, LoadRunner replaces
the human user with a virtual user (Vuser). While a machine can
accommodate only a single human user, large numbers of virtual users can
work on the same machine at the same time. Any remote machine can be
used as a host for still more virtual users.

LoadRunner provides the following Virtual User technologies:

➤ GUI Vusers, to operate X Windows and Microsoft Windows applications.

➤ DB Vusers, to run C programs that access servers directly using API calls.

➤ RTE Vusers, to operate remote terminal emulator applications (UNIX only).

These Vuser types can be used alone or in combination in order to create
effective load testing scenarios.

This guide describes how to develop GUI Virtual User scripts for X Windows
applications. For information about developing load testing scenarios, refer
to your LoadRunner Controller User’s Guide.

Working with GUI Virtual Users

GUI Vuser technology is specially designed to test client/server systems
using graphical user interface (GUI) applications. GUI Vusers emulate the
actions of human users. Like a human user, a GUI Vuser submits input to,
and receives output from, your applications. Many Vusers interact with the
system concurrently, generating load on the server. This enables you to
measure the performance of your server under the load of many users and to
test the interaction of the server with your software.
3

Creating GUI Virtual User Scripts (UNIX) • Understanding the GUI Virtual User
The actions of each Vuser are described in a Virtual User script. For instance,
to test a bank server that services many automatic teller machines (ATMs),
you could create a Virtual User script that:

➤ opens the ATM application

➤ enters an account number

➤ enters the amount of cash to be withdrawn

➤ withdraws cash from the account

➤ checks the balance of the account

➤ closes the ATM application

A Virtual User script includes statements that measure system performance
during a load-testing session. For example, you can measure how long it
takes to check the balance of a bank account. Following a scenario run, you
can view performance analysis and other data in reports and graphs.

You can monitor and manage all the virtual users from the LoadRunner
Controller. You can run, pause, or view Vusers, and monitor scenario status.
Following a scenario run, you can view performance analysis and other data
in reports and graphs.

GUI Virtual User Technology

A Vuser emulates the complete UNIX/X environment of a real user. The
actual environment for a human user would consist of:

➤ an X Server

➤ a client application

➤ a window manager (optional)
4

Chapter 1 • Introduction
The virtual user environment consists of:

➤ VXRunner, an enhanced XRunner, which operates the client application

➤ a “virtual X Server,” which emulates an X server

➤ the client application

➤ a window manager (optional)

In the virtual user environment, the person using the client application is
replaced by VXRunner, which runs a Virtual User script. VXRunner has no
user interface; it is controlled remotely from LoadRunner.

The Virtual X Server is the server on which the client application is
activated. The Virtual X Server is an optimized X server that offers a

Human User
X Server

Input

 Output

Input

The UNIX environment of a human user.

Client Application

VXRunner
Client Applicationxgate

Input

 Output

A LoadRunner GUI Vuser

Input
5

Creating GUI Virtual User Scripts (UNIX) • Understanding the GUI Virtual User
background mode of operation. In this mode, the Virtual X server receives
input from VXRunner only, and none of its X clients appear on the display.

Mercury Interactive’s X server technology enables you to run several virtual
users simultaneously on a single machine—independent from, and without
disturbing one another—while leaving your current display, keyboard and
mouse free for regular work. Any time you wish to view a virtual user,
LoadRunner can display it on your local host, regardless of the machine on
which the Vuser is actually running.

Creating Virtual User Scripts

You create GUI Virtual User scripts in the Virtual User Development
Environment (VUDE). This completely independent environment runs in a
separate window on your display, and provides all of the benefits offered by
Mercury Interactive’s Virtual X Server. In this way you can develop Virtual
User scripts in the same environment in which you will run them.

V

6

Chapter 1 • Introduction
The Virtual User Development Environment contains VXRunner, an
enhanced version of XRunner, Mercury Interactive’s single-user testing tool.
In addition to all of the basic test development tools such as recording,
programming, and debugging, VXRunner also supports functions designed
especially for multi-user testing.

Virtual User scripts are written in TSL—Mercury Interactive’s Test Script
Language. TSL is a C-like programming language that is high-level and easy
to use. It combines the power and flexibility of a conventional
programming language with functions designed specifically for testing. For
additional information about TSL, see Chapter 15, “Introducing TSL.”

The LoadRunner Testing Process

The following illustration shows the LoadRunner testing process. This guide
describes Step II—creating the Vuser scripts. For details on Step I and Steps
III–V, refer to your LoadRunner Controller User’s Guide.

������

�������

��������

�������

������

Analyzing Test Results

Running the Scenario

Creating the Scenario

Creating Vuser Scripts

Planning the Test
7

Creating GUI Virtual User Scripts (UNIX) • Understanding the GUI Virtual User
Getting Started with GUI Virtual Users

The following procedure outlines how to develop a GUI Virtual User script
and integrate it into a scenario:

 1 Open the Virtual User Development Environment.

The Virtual User Development Environment contains a command tool
(XTerm) and VXRunner. For more information about the Virtual User
Development Environment, see Chapter 2, “Virtual User Development
Environment (VUDE).”

 2 Invoke your X Windows applications.

Using the command tool inside the Virtual User Development
Environment, invoke the applications that the Vuser will use. For more
information on invoking your application, see Chapter 2, “Virtual User
Development Environment (VUDE).”

 3 Create the Virtual User script.

Using VXRunner, create the Virtual User script—using a combination of
recording and programming. For more information about creating Virtual
User scripts, see Chapter 3, “Recording GUI Virtual User Scripts” and
Chapter 15, “Introducing TSL.”

 4 Insert transactions into the Virtual User script.

Transactions enable LoadRunner to measure system performance during a
scenario run. For more information about transactions, see Chapter 12,
“Measuring System Performance Using Transactions.”

 5 Add rendezvous points to the Virtual User script.

Rendezvous points control the execution of Virtual User scripts to emulate
intense user load on the server. For more information, see Chapter 13,
“Emulating Server Load: Rendezvous Points.”

 6 Replay the Virtual User script.

You replay the script to validate that it is functional. If necessary, debug the
script. For more information, see Chapter 4, “Replaying GUI Virtual User
Scripts” and Chapter 9, “Debugging GUI Vuser Scripts.”
8

Chapter 1 • Introduction
 7 Save the Virtual User script and exit the Virtual User Development
Environment.

 8 Integrate the Vuser script into a scenario.

You incorporate the script into a LoadRunner scenario by defining the name
and path of the Virtual User script that you developed, and the type of GUI
Vuser that will run the Virtual User script.

You also set additional attributes, such as the host on which the Vuser runs,
the display on which it can be viewed and the window manager that the
client application will use.

For more information, refer to your LoadRunner Controller User’s Guide.

Execute the scenario—Load, Run, and Stop the Vusers.

Use the LoadRunner Controller to manipulate the Vusers.

View reports and graphs.

After running a scenario, view the performance analysis reports and graphs.
9

Creating GUI Virtual User Scripts (UNIX) • Understanding the GUI Virtual User
10

2
Virtual User Development Environment
(VUDE)

A Vuser script describes the actions of a Vuser. You create GUI Vuser scripts
using the Virtual User Development Environment (VUDE).

This chapter describes:

➤ Creating the Vuser Development Environment (VUDE)

➤ Closing the VUDE

About the Virtual User Development Environment

You use LoadRunner’s Virtual User Development Environment (VUDE) to
create GUI Vuser scripts that run on UNIX platforms. The VUDE is a window
on your display that runs its own, independent environment, based on
Mercury Interactive’s Virtual X Server technology.

The VUDE window includes the following components:

➤ a window manager

➤ xterm, a command tool to invoke applications

➤ VXRunner, a version of XRunner modified specifically for use with
LoadRunner.
11

Creating GUI Virtual User Scripts (UNIX) • Understanding the GUI Virtual User
Introducing xterm

The xterm command tool is included in the VUDE so that you can invoke
applications for development purposes. If you plan to access a command
tool from within a Vuser script, be sure to invoke a separate instance of the
command tool. You can do this in either of two ways:

➤ From within the Vuser script using the system function. For more
information about the TSL system function, see the TSL Online Reference.

Introducing VXRunner

VXRunner is a complete Vuser script development tool that has been
specially adapted for client/server load testing.

V

xterm command
tool

VXRunner

Window
Manager
12

Chapter 2 • Virtual User Development Environment (VUDE)
Note: VXRunner supports Analog recording only. Unlike XRunner,
VXRunner does not support Context Sensitive recording. However, you can
take advantage of the full functionality of XRunner in a scenario by
designating XRunner as a virtual user in your scenario script. For more
information, refer to the XRunner User’s Guide.

Using VXRunner, you can:

➤ Record: Operate an application. Your actions are recorded and transcribed
as TSL statements in a Vuser script. For details, see Chapter 3, “Recording
GUI Virtual User Scripts.”

➤ Program: Program a Vuser script from scratch or enhance a recorded script.
For more information on programming, see Chapter 15, “Introducing TSL.”

➤ Replay: Replay the Vuser script in the VUDE to ensure that it executes
properly. If necessary, debug the script. For details, see Chapter 4,
“Replaying GUI Virtual User Scripts” and Chapter 9, “Debugging GUI Vuser
Scripts.”

Creating the Vuser Development Environment (VUDE)

To create the VUDE:

 1 Start an xgate process. At the UNIX prompt, type:

xgate -bypass : &

The machine issues a message indicating the listening port. For example:

@XGateListens:5975:tiger:1000

 2 Start the window manager, providing a display name and the port. Use the
port number issued in the previous message. For example, to start the mwm
window manager on the host tiger on port 1000, type:

mwm -display tiger:1000 &

A virtual display window opens with the display ID in the title bar.
13

Creating GUI Virtual User Scripts (UNIX) • Understanding the GUI Virtual User
 3 Create an xterm window specifying the host and port. For the above host,
type:

xterm -display tiger:1000 &

A moveable xterm opens inside the virtual display window.

 4 Start VXRunner by typing the following in the xterm:

vxrun_ui

Closing the VUDE

To close the VUDE, choose File > Exit in the VXRunner window.
14

Part I

Working with VXRunner
15

Creating GUI Virtual User Scripts (UNIX)
16

3
Recording GUI Virtual User Scripts

To create a GUI Virtual User script you can use recording, programming, or a
combination of both. Usually, you begin by recording a basic script and
then enhance the script by programming additional TSL statements.

This chapter describes:

➤ Recording a GUI Vuser script

➤ Guidelines for Recording

➤ Converting Existing XRunner Scripts

For more information about programming, see Chapter 15, “Introducing
TSL.”

About Recording GUI Virtual User Scripts

When you record a GUI Virtual User script, VXRunner creates a script
consisting of TSL statements. These statements describe the sequence of
commands and data that VXRunner sends to an application when you
replay the script.

VXRunner records keyboard input, mouse clicks, and the precise
coordinates traveled by the mouse across the screen. For example, when
select the File > Open in an application, VXRunner records the movements
of the pointer on the screen. When you replay the script, VXRunner returns
the mouse pointer to the same coordinates.
17

Creating GUI Virtual User Scripts (UNIX) • Working with VXRunner
Note: VXRunner supports Analog recording only. Unlike XRunner,
VXRunner does not support Context Sensitive recording. However, you can
take advantage of the full functionality of XRunner in a scenario by
designating XRunner as a virtual user in your scenario script. For more
information, refer to the XRunner User’s Guide.

Recording a GUI Vuser script

To record a Vuser script:

 1 Open the Virtual User Development Environment (VUDE).

 2 Invoke your application using the command tool provided with the VUDE.

 3 Select Record > Start Recording, or press the corresponding softkey (F4).
VXRunner starts recording the Vuser script.

 4 Position your application window. Record its location by pressing the
WAIT_WINDOW softkey. (See the last page of this manual for a list of the
default softkey definitions.)

 5 Using the keyboard and mouse, perform the sequence of operations you
want the Vuser to perform on your application.

Note: VXRunner records mouse and keyboard input only from within the
VUDE. If you move the mouse out of the window, VXRunner does not
record any actions.

 6 To stop recording, select Record > Stop Recording, or press the STOP softkey.
(See the last page of this manual for a list of the default softkey definitions.)
VXRunner stops recording the Vuser script.

 7 Select File > Save to save the script.
18

Chapter 3 • Recording GUI Virtual User Scripts
Note: If you do not save a script and you quit the VUDE, all unsaved
changes to all open Vuser scripts are discarded.

When you have stopped recording, you can edit your Vuser script and
program additional TSL statements. For instance, you can enhance a Vuser
script using loops and other control-flow structures. You will also want to
program statements that define transactions and mark synchronization
points. For more information, see Chapter 12, “Measuring System
Performance Using Transactions”, and Chapter 13, “Emulating Server Load:
Rendezvous Points.”

Guidelines for Recording

Consider the following guidelines when recording a GUI Vuser script:

➤ Before you start recording, close all applications not required for the test.

➤ You can invoke applications from within the GUI Vuser script by using the
system function. For more information, see Chapter 7, “Invoking
Applications with VXRunner.”

➤ Create your script so that it “cleans up” after itself. When the script is
completed, the environment should be as it was at the beginning of the
script. For example, if you started with the application window closed, then
the script should also close the window—and not minimize it to an icon.
This helps ensure accurate replay.

➤ If the size of your application window can change, resize the window to
ensure a consistent size and placement during replay.

➤ The first time an application window appears on the screen, press the WAIT
WINDOW softkey. (See the last page of this manual for a list of the default
softkey definitions.) This ensures that during replay, VXRunner moves the
window to the correct location and waits for it to be completely redrawn
before continuing the replay.

➤ Avoid typing ahead. For example, when you want to open a window, wait
until it is completely redrawn before continuing work.
19

Creating GUI Virtual User Scripts (UNIX) • Working with VXRunner
➤ Avoid holding down the mouse when this results in a repeated action (for
example, using the scroll bar to move the screen display). Doing so can
initiate a time-sensitive operation that cannot be precisely recreated.
Instead, use discrete, multiple clicks to achieve the same results.

Converting Existing XRunner Scripts

In addition to creating Vuser scripts specifically for LoadRunner, you can use
existing XRunner scripts. The following limitations apply to XRunner
scripts that are replayed by VXRunner:

➤ Context Sensitive functions may not be used.

➤ Vuser scripts must be created using XRunner version 2.0 or later.

➤ All check_window statements are treated as wait_window statements.

If you designate XRunner as a Vuser, you can run unconverted XRunner
scripts as part of a scenario. For more information, see your LoadRunner
Controller User’s Guide.
20

4
Replaying GUI Virtual User Scripts

Once you have developed a basic GUI Virtual User script, you replay the
script to check that it functions as you planned.

This chapter describes:

➤ Replaying a GUI Vuser script

➤ Stopping Script Execution

➤ Pausing Script Execution

About Replaying GUI Virtual User Scripts

Once you have created all or part of a Virtual User script, replay it in order to
see that it runs properly, and debug it if necessary.

You can replay a GUI Vuser script in either of two modes: Replay and Verify.

➤ Replay mode is used to execute a Vuser script without performing any
verification.

➤ Verify mode is used to compare the current behavior of an application to its
behavior during a previous run.

Note: The Verify mode is included in VXRunner solely for reasons of
compatibility with XRunner. When developing GUI Vuser scripts for load
testing purposes, there is no reason to execute a script in the Verify mode.
21

Creating GUI Virtual User Scripts (UNIX) • Working with VXRunner
Replaying a GUI Vuser script

To replay a GUI Vuser script:

 1 Open the script.

 2 Move the execution marker to the first line of the script by clicking the left
mouse button in the left margin next to the first line of the script.

 3 Select Replay > Animate or Replay > Run, or press the corresponding
softkeys. (See the last page of this manual for a list of the default softkey
definitions.)

The Run command executes the script in the VXRunner window, starting
from the line marked by the execution marker. If you do not interrupt the
run (by pressing the PAUSE or STOP softkey), execution stops when the script
is completed.

The Animate command is the same as the Run command, but the
execution marker indicates the line that VXRunner is currently processing.
If the script calls another script, the called script is displayed in the
VXRunner window. Once the called script is completely processed, the
calling script is displayed again.

To debug a script, you can also replay line by line and define breakpoints.
For details, see Chapter 9, “Debugging GUI Vuser Scripts”, and Chapter 10,
“Using Breakpoints.”

Stopping Script Execution

You can stop script execution by pressing the STOP softkey. This terminates
execution immediately. (See the last page of this manual for a list of the
default softkey definitions.)

When you stop script execution, all values stored for script variables and
arrays are lost, as are functions not loaded using the load function. These
functions must be recompiled. For more information, see Chapter 17,
“Creating Compiled Modules.”

The values for system variables, however, are retained when a script
execution is stopped. Before running the script again, you can restore the
22

Chapter 4 • Replaying GUI Virtual User Scripts
default values of system variables by clicking Default in the Controls dialog
box, which you open using the Options menu.

Pausing Script Execution

When you use the PAUSE softkey to stop execution of a GUI Vuser script, the
script continues running until all previously interpreted TSL statements are
executed. Test variables are not initialized. During a pause, you can access all
VXRunner menus. (See the last page of this manual for a list of the default
softkey definitions.)

To resume execution of a paused script, select the desired replay command
using its softkey. Execution resumes from the point that you paused the
script.
23

Creating GUI Virtual User Scripts (UNIX) • Working with VXRunner
24

5
Synchronizing GUI Vuser Script Execution

Synchronizing your scripts ensures that during execution, VXRunner
performs two functions: VXRunner checks the position of a window and
relocates it if necessary; VXRunner also delays execution until the window is
redrawn or until a specified text string appears.

This chapter describes:

➤ Synchronizing Script Execution Using wait_window

➤ Synchronizing Script Execution Using wait_text

About Synchronizing Vuser Script Execution

You use synchronization functions to control the timing of script execution.
By inserting synchronization points in your Vuser scripts, you ensure that
VXRunner performs operations on your applications at the right time. For
instance, assume that your Vuser script opens a terminal window and types
in a command at the prompt. A human user would naturally wait for the
window to open up, redraw, and come into focus, and for the prompt to
appear before typing in the command. Using synchronization functions,
you can instruct LoadRunner to wait in order to ensure accurate replay.

Another important use of synchronization functions is in transactions.
Transactions measure the amount of time it takes for a Vuser to perform a
specific task. Suppose you want to measure the amount of time it takes for
the bank to accept a deposit from an automatic teller. The Vuser types in $50
and presses the confirm button. You know that the operation is completed
when the message “Done” appears. You use the synchronization functions
to control the execution of the transaction in a precise way; LoadRunner
25

Creating GUI Virtual User Scripts (UNIX) • Working with VXRunner
measures only the interval between the click and the appearance of the
message.

For more information about defining transactions, see Chapter 12,
“Measuring System Performance Using Transactions.”

While developing a Vuser script, you can define synchronization points
using the wait_window and wait_text functions.

➤ The wait_window function instructs VXRunner to wait for the appearance
of a specified window before continuing script replay. For more information
about the wait_window function, see “Synchronizing Script Execution
Using wait_window” below.

➤ The wait_text function instructs VXRunner to wait for the specified text to
appear in a given window before continuing script replay. It provides a
method of synchronizing transactions whose beginning or end result is text.
For more information, see “Synchronizing Script Execution Using
wait_text,” on page 29.

Synchronizing Script Execution Using wait_window

The wait_window function tells VXRunner to wait for a specific window to
appear before continuing script execution.

The syntax of the wait_window function is:

wait_window (time, image, window, width , height, x, y);

➤ time is the interval between the previous input event and the generation of
the wait_window statement, in seconds. This parameter is added to the
timeout variable during replay.

➤ image is always an empty string.

➤ window is a string expression indicating the name in the window banner.

➤ width, height are the size of the window, in pixels.

➤ x, y are the position of the upper left corner of the active window.

In GUI Vuser scripts, the wait_window function waits for a window to
appear on the screen and remain stable for the interval defined by the delay
26

Chapter 5 • Synchronizing GUI Vuser Script Execution
system variable. The function also checks the position of the window. If the
window does not appear at the coordinates specified in the wait_window
statement, VXRunner moves the window to the correct position.

Note that VXRunner does not capture or compare bitmap images. The value
of the image parameter is always a null string (""). Rather, only data related
to the window is saved. During replay, VXRunner uses this data to identify
and position the window to be redrawn before continuing execution—the
contents of the window are not evaluated.

For more information about the wait_window function, see the TSL Online
Reference.

In the following example, a wait_window statement is used to delay script
execution until the specified window is redrawn. After the window is
redrawn, a text string is typed into the window.

Note: The execution of the wait_window function is affected by the current
values specified for the following system variables: timeout, delay,
move_windows, and raise_windows. These values can be modified using the
Controls dialog box or from within the script using the setvar statement.
For information on how these variables affect the wait_window function,
see Chapter 22, “Synchronizing Problematic Windows.”

Generating wait_window Statements

You can generate a wait_window statement in the following ways:

➤ automatically, by pressing the WAIT_WINDOW softkey.

move_locator_abs(391, 196, 0);
rc = wait_window(4, "","cmdtool -
/usr/local/bin/tcsh",855,802,292,88);
If (rc == 0)

type ("<t6>ls \-l<kReturn>");
else

texit;
27

Creating GUI Virtual User Scripts (UNIX) • Working with VXRunner
➤ manually, by typing the statement into your Vuser script.

To generate a wait_window statement automatically:

 1 If you are not currently in the Record mode, select Record > Start Recording.

 2 Place your mouse pointer anywhere within the desired window.

 3 Press the WAIT WINDOW softkey. (See the last page of this manual for a list of
the default softkey definitions.) A wait_window statement is generated in
your script.

For example, if you place the mouse pointer in the window of the DrawTool
drawing application after the zoomed object is displayed and press the
WAIT WINDOW softkey, the resulting wait_window statement might be:

During Replay

When the script is played back and a wait_window statement is
interpreted, VXRunner performs the following operations:

➤ Waits for a window to appear that has a DrawTool banner, a width of 800,
and a height of 600 pixels. (Note that if you assign a negative value to the
width and height parameters, VXRunner ignores the window size.)

➤ Checks that the window is brought up in the same position as during
recording (coordinates 100, 120), and repositions the window if necessary.

Unnamed Windows

If the window you instruct VXRunner to wait for has no banner, the window
parameter will be an empty string, as follows:

wait_window (time, image, "", width, height, x, y,);

During replay VXRunner waits for an unnamed window image with the
specified width and height to appear at the x, y coordinates.

Note that if the window captured is not recognized by the server, or if an
icon is captured, the syntax of the wait_window statement will be:

wait_window (time, image);

wait_window (35, "", "DrawTool", 800, 600, 100, 120);
28

Chapter 5 • Synchronizing GUI Vuser Script Execution
Windows with Varying Names

If the window to wait for has a name that varies from run to run, you may
edit the window parameter so that the window name is a regular expression,
rather than a string. For more details see Chapter 20, “Using Regular
Expressions.”

Synchronizing Script Execution Using wait_text

The wait_text function instructs VXRunner to wait for text to appear at a
given location before continuing script replay. The function has the
following syntax:

wait_text (pattern, timeout, [ret_text, ret_index, x1, y1, x2, y2, ret_bbox]);

➤ pattern is the text VXRunner waits for. This can be a text or null string, or a
regular expression.

➤ timeout is the number of seconds that VXRunner waits for the text to appear.
By default the timeout is equal to the timeout system variable.

➤ ret_text is an output variable that stores the actual string that LoadRunner
identified as matching the pattern.

➤ ret_index is the index of the subexpression that was matched. If pattern is a
string ret_index will equal one when matched. However, if pattern is a regular
expression it may include a number of or operators. In these cases, ret_index
contains the index of the matched or subexpression.

➤ x1,y1,x2,y2 are the coordinates of a rectangle that encloses the text to be
read. The pairs of coordinates designate the two diagonally opposite corners
of the rectangle.

➤ ret_bbox is an optional array that describes the exact location of the text
string within the enclosed rectangle. The array also follows the format x1,
y1, x2, y2.

Note: Note: When using the wait_text function:

The spaces returned by the wait_text function are dependent on the
application being run. To see the results that a wait_text statement will
29

Creating GUI Virtual User Scripts (UNIX) • Working with VXRunner
return, preview the text when you generate a wait_text statement. To
preview the string that will be captured, press the middle mouse button. The
string is displayed directly beneath the selected text.

If the text specified in the pattern parameter appears on the display for only
a very short time, the VXRunner may not be able to locate the text.

Waiting for Single Strings

In the following example, the wait_text statement waits for the appearance
of the message “Done” within a certain location on the screen. The timeout
is set to five seconds.

You can also generate wait_text statements to wait for empty (null) strings.
This enables you to instruct the VXRunner to pause script execution until
text is erased. For instance, you could program a wait_text statement to
record the end of a transaction when the “Done” message is erased. To
instruct VXRunner to wait for an empty string you set the pattern parameter
to "".

In the following example, the wait_text statement waits for an empty string
to appear at a specified location. The timeout is set to five seconds.

Waiting for Multiple Strings

You can instruct VXRunner to wait for one or more strings by using logical
operators. Logical operators may be included in the pattern parameter if the
parameter is a regular expression.

For example, the function call:

Wait for the string “Done” to appear.
r = wait_text ("Done", 5, ret_text, ret_index, 0, 0, 500, 500);

Wait for text to disappear.
r = wait_text ("", 5, ret_text, ret_index, 0, 0, 500, 500);

wait_text ("!OK\| Error", 10, ret_text, ret_index);
30

Chapter 5 • Synchronizing GUI Vuser Script Execution
sets the ret_index parameter if either the “OK” or the “Error” string is found.
The exclamation point is specific to LoadRunner and is not part of the
regular expression. If the OK string is found, the ret_text is assigned the
string “OK”, and ret_index is assigned the value 1. If the “Error” string is
found, ret_text is assigned the string “Error”, and ret_index is assigned the
value 2.

The following is a more complex example:

In this case, the wait_text expression will return a value if any of the
following strings appear:

The or operator separating the “xrunner” and “lrunner” is not counted as a
subexpression for the ret_index value.

The grouping operators "\(" and "\)" are limited to a maximum of 10 pairs in
each wait_text statement. The or operator is not limited.

Generating wait_text Statements

You can generate a wait_text statement in either of the following ways:

➤ automatically, by pressing the WAIT_TEXT softkey

➤ manually, by typing a wait_text statement into your Vuser script.

To generate a wait_text statement automatically:

 1 Place the mouse pointer in the Vuser script at the place where you want the
wait_text statement.

 2 Press the WAIT_TEXT softkey. (See the last page of this manual for a list of the
default softkey definitions.) The mouse pointer becomes a cross-hairs.

 3 Drag the cross-hairs to enclose the text in a rectangle.

pattern = "!\\(\xrunner\|lrunner\) error\)\|OK";
wait_text (pattern, 10, ret_text, ret_index);

"xrunner error": (ret_text == "xrunner error", ret_index ==1)
"lrunner error": (ret_text == "lrunner error", ret_index ==1)
"OK" : (ret_text == "OK", , ret_index ==2)
31

Creating GUI Virtual User Scripts (UNIX) • Working with VXRunner
To preview the string that will be captured, press the middle mouse button.
The string is displayed directly beneath the text. However, if there is not
enough space to the right, the string to be captured is displayed in the upper
left corner of the screen.

 4 Click the right mouse button. VXRunner inserts a wait_text statement in
your Vuser script.

Waiting for the Re-appearance of a Specified String

The expect_text function ensures that wait_text statements accurately
synchronize transactions. The wait_text function monitors all strings in the
given rectangle. If the string you defined in the pattern parameter is
already displayed, wait_text will return a result immediately and continue
script replay. The transaction you measure will not accurately reflect the
time taken to perform this task.

Suppose you create a Vuser script that deposits $50 and then withdraws $50
from an ATM. The text window in the ATM application is not refreshed after
the Vuser makes the deposit. When the Vuser selects the withdraw option
the message “Done” is still displayed in the ATM window. However, the
wait_text function sees the message “Done” and instructs LoadRunner to
stop measuring the “withdraw” transaction before the action has been
performed.

By inserting expect_text statements into your Vuser script you can ensure
that wait_text function waits for the re-appearance of the specified string.
The expect_text function instructs VXRunner to ignore all the text
currently displayed. The syntax of the expect_text function is:

expect_text ();

Note that inserting an expect_text statement before a wait_text statement
that waits for an empty string is meaningless.

A Sample Synchronized Transaction

In the following example, the deposit transaction is defined to measure how
long it takes for a Vuser to deposit fifty dollars using the ATM application.
The expect_text statement instructs VXRunner to ignore all text currently
displayed. The wait_text function instructs VXRunner to wait for the
32

Chapter 5 • Synchronizing GUI Vuser Script Execution
“Done” message to appear. When the message appears, script replay resumes
and the duration of the deposit transaction is recorded.

Ignore the text in the ATM window.
expect_text ();

Mouse pointer moved to deposit button.
move_locator_abs (10, 10, 0);

Start measuring deposit operation.
start_transaction ("deposit");

Click left mouse button on deposit button.
click ("Left");

Wait for “Done” to appear in the ATM window.
r = wait_text ("Done", 5, ret_text, ret_index, 0, 0, 500, 500, ret_bbox);

End Deposit transaction.
if (r == 0)

end_transaction ("deposit", PASS);
else

end_transaction ("deposit", FAIL);
33

Creating GUI Virtual User Scripts (UNIX) • Working with VXRunner
34

6
Reading Text from the Screen

VXRunner can read text from the graphical user interface (GUI) of an
application, and then perform various tasks with the text that is read.

This chapter describes how to develop a GUI Virtual User script that
includes:

➤ Reading Text

➤ Searching for Text

➤ Comparing Text

About Text Recognition

Text recognition allows you to:

➤ read text from the screen, using the get_text function.

➤ search for text on the screen, using the find_text function.

➤ compare two text strings, using the compare_text function.

You read text from the screen using the get_text function. The get_text
function returns one line of text from a specified area of the screen, and
assigns the text to a variable.

To search for text, you use the find_text function. The find_text function
performs the reverse process of get_text. Whereas get_text accesses any text
found in the designated area, find_text looks for a specified string and
returns its location on the screen. This location is expressed as a pair of x,y
coordinates that delineate a rectangle.
35

Creating GUI Virtual User Scripts (UNIX) • Working with VXRunner
The compare_text function compares two strings, ignoring any specified
differences. It may be used in conjunction with the get_text function, or
separately.

Reading Text

You read text from the screen using the get_text function. The get_text
function returns one line of text from a specified area of the screen, and
assigns the text to a variable.

Generating get_text Statements

You can generate a get_text statement in the following ways:

➤ automatically, by pressing the GET TEXT softkey.

(See the last page of this manual for a list of the default softkey definitions.)

➤ manually, by typing the statement into your Virtual User script.

Manually programming a get_text statement

The get_text function can be programmed into the script, using either of
the following two syntax formats:

variable = get_text(x,y);

The x and y parameters define the coordinates of a single pixel on the
screen. The variable is assigned the value of the string closest to this pixel.
(The search radius around the specified point is defined by the
XR_TEXT_SEARCH_RADIUS parameter. For details, see Appendix A, “VXRunner
Configuration Files.”)

variable = get_text ();

When no parameter is specified (the parentheses are empty), the string
closest to the position of the mouse pointer is read. (The search radius is
defined by the XR_TEXT_SEARCH_RADIUS configuration parameter. For details,
see Appendix A, “VXRunner Configuration Files.”)
36

Chapter 6 • Reading Text from the Screen
Example Using get_text

The following script segment searches an application for the input name
(read from an array). When the name is found, VXRunner reads the
contents of the field containing the associated address. The address is read
from the application window using the get_text function.

Both the input name and address are then printed to an external report file.
This search and print operation is repeated until the script fails to find an
address for the last input name.

Searching for Text

To search for text, you can use the find_text function, which performs the
opposite function of get_text. Whereas get_text accesses any text found in
the designated area, find_text looks for a specified string and returns its
location on the screen. This location is expressed as a pair of x,y coordinates
that delineate a rectangle.

i = 0;
do {

mouse is brought to Search Address command
move_locator_track(5);
mtype ("<kLeft>");

name is input from the name array
type (name[i]);

input name is searched for
type ("<kCR>);

acquire contents of address field
AddressForName = get_text (100,34,150,50);
printf ("Name : %s, Address : %s \n",

 name[i],
 AddressForName) >> "u/bart/srch_res.rep";

i++;
} while (SearchResult != "");
close ("u/bart/srch_res.rep");
37

Creating GUI Virtual User Scripts (UNIX) • Working with VXRunner
The find_text function must be programmed in the script, using the
following syntax:

find_text (regular_expression, identifier, area);

The parameters included in this statement are:

➤ regular expression specifies a literal, case-sensitive string (in which case it
must be enclosed between quotation marks), or the name of a string
variable. In the latter case, the value of the string variable can include a
regular expression.

The regular expression should not include blank spaces. The regular
expression does not have to begin with a quotation mark.

➤ identifier is the name assigned to the four-element array in which the
location of the found string is stored.

➤ x and y specify the region of the screen in which the search is to be
executed. The area is defined as a pair of coordinates. The values x1,y1,x2,y2
can specify any two diagonally opposite corners of the region to be
searched.

The find_text function returns a Boolean value indicating whether the
search was successful (1 no, 0 yes). In addition, the function generates the
coordinates of the rectangle which bounds the string matching the regular
expression. These coordinates are stored in a four-element array specified by
the identifier parameter in the find_text statement.

The elements of the array are numbered 1 to 4. Elements 1 and 2 store the x
and y coordinates of the upper left corner of the rectangle; elements 3 and 4
store these coordinates for the lower right corner of this rectangle.

Moving the Pointer to a String

The move_locator_text function searches for the specified string in the
indicated area of the screen. The position of the string is specified in terms
of the rectangle that encloses it. Once the text is located, the mouse pointer
is moved to the center of the rectangle. For more information, see the TSL
Online Reference.
38

Chapter 6 • Reading Text from the Screen
Clicking on a Specified Text String

The click_on_text function searches for a specified string in the indicated
area of the screen, moves the mouse pointer to the center of the string, and
enters a sequence of mouse button clicks. For more information, see the TSL
Online Reference.

Comparing Text

The compare_text function compares two strings, ignoring any specified
differences. It may be used in conjunction with the get_text function, or
separately.

The compare_text function has the following syntax:

variable = compare_text (str1, str2[,chars1, chars2]);

➤ str1 and str2 represent the literal strings or string variables to compare.

➤ The optional parameters chars1 and chars2 represent the literal characters or
string variables to be ignored during comparison. Note that chars1 and
chars2 may specify multiple characters.

The compare_text function returns the value 1 when the compared strings
are judged to be the same, and 0 when the strings are different.

For example, a portion of your script compares the text string "File" returned
by the get_text function. Because the lowercase "l" character has the same
shape as the uppercase "I", you specify that these two characters be ignored.

t = get_text (10, 10, 90, 30);
if (compare_text (t, "File", "l", "I"))

move_locator_abs (10, 10);
39

Creating GUI Virtual User Scripts (UNIX) • Working with VXRunner
40

7
Invoking Applications with VXRunner

You can run an application from within VXRunner by including its
command line in your Virtual User script.

This chapter describes the system function that is used to invoke
applications.

About Running Applications from within VXRunner

You can run applications from within VXRunner by using the system
function. The system function has the following syntax:

system ("expression [&]");

The expression parameter designates the system command to be executed
(including command line options). For example, the script line

causes the contents of the current directory to be written to the file filelist.

Note that you can run the invoked application in the background by adding
an ampersand (&) character to the system statement. This means that after
the system statement is processed, VXRunner will continue processing the
TSL script, even if the application has not yet been invoked. If no
ampersand is added, processing of the remainder of the TSL script pauses
until the system function is completed.

It is recommended to run an application in the background when the
application being invoked is interactive.

system ("ls > filelist");
41

Creating GUI Virtual User Scripts (UNIX) • Working with VXRunner
The system statement is interpreted by a Bourne shell, and therefore can
include only Bourne shell commands.

Using the System Command to Start an Application

By including the appropriate command line options within a system
statement, you can specify the exact location at which the application
window is displayed. For example, the TSL statement

invokes the calculator application so that the upper left corner of its
window is located at screen coordinates 300, 400. By immediately following
this script line with the statement

you can instruct VXRunner to wait until the window is completely redrawn
before continuing execution.

system ("calctool -Wp 300 400&");

wait_window (3,"", "calculator",123, 234, 300, 400)
42

8
Viewing Execution Reports

Every time you run a GUI Vuser script, VXRunner generates an execution
report that details the major events that occurred during the run.

This chapter describes:

➤ Displaying Execution Reports

➤ Viewing Reports During Script Execution

➤ Adding Messages to Reports

About Execution Reports

An execution report contains details about script execution. The exact
nature of the information in the report depends on whether the script was
run in Replay or in Verify mode.

An execution report includes the following sections:

➤ A report header which details the name of the script; the date of execution;
operator name; and miscellaneous comments included in the Test Header.

➤ A report summary with details on the success and duration of execution, and
data pertinent to window or file captures performed.

➤ A detailed description of the major events that occurred during the execution
run. These can include the start and termination times of the test; windows,
or files captured; calls to other scripts; changes to system variables; instances
of displayed report messages; and run-time errors.
43

Creating GUI Virtual User Scripts (UNIX) • Working with VXRunner
Execution Report Format

The following information can appear in an execution report:

Report Header Section

To: A free text field.

From: Author of the script (supplied by the system).

CC: A free text field.

To: Arthur
From: Ford
CC: Marvin

Date: Mon June 16 12:03:07 1996

Subject:Test Report

Test name: /home/qa/calculator/mode tst
Test Results name: ver 4
Date: Mon June 16 12:03:07 1996
Operator name: Charlie
Operator notes: Third run on June 16

Summary:

Process termination: OK
Total number of checked windows: 1
Process duration time: 00:00:41
Total windows sync time: 3 sec 764 milli sec

Detailed Results Description

Event Result Name Test Line
Time

1 start-run --- --- mode tst 1
00:00:00
2 Message:The time is Mon Nov 18 09:31:50
3 wait-window not found Win 1 mode_tst 6
00:00:17
44

Chapter 8 • Viewing Execution Reports
Date: Report print date and time.

Test Name: The name of the executed script.

Test Results name: The name assigned to the verification results generated
for the current execution run.

Date: The date and time of the script run.

Operator name: Name of the user who ran the script.

Operator notes: A free text field.

Report Summary Section

Process Termination: Indicates whether the script was executed to
completion (OK) or prematurely terminated (ABORT).

Total number of checked windows: Number of captured windows (for a
Replay run).

Process duration time: The total time (in hr:min:sec) that elapsed from
start to finish of the current script run.

Total windows sync time: The total time (in seconds and milliseconds) that
was spent on synchronizing window events.

Detailed Description Section

Detailed Results Description: Each major Event in the execution of the
script is accompanied by its Result; the object involved in the event (for
example, a called script) is designated by its Name; the Script and Line
number in which the event occurred are indicated; Time is the amount of
time (in hr:min:sec) that elapsed from the start of the run until the
occurrence of the event.

Displaying Execution Reports

To display an execution report:

 1 Select Utilities > Reports. The View Report dialog box appears.
45

Creating GUI Virtual User Scripts (UNIX) • Working with VXRunner
By default, the “Get Report From” text area displays the directory of the last
run, and the “Report Type Full” is selected.

 2 Click OK.

The Report is displayed. You can edit the report as desired.

Viewing Reports During Script Execution

During execution of a script, you can view the report currently generated for
the script. Simply pause the script and select Utilities > Reports. The name of
the current script appears in the Test Name field of the Reports dialog box.
The displayed report includes only the Detailed Results Description section.

Adding Messages to Reports

You can include your own message in an execution report by inserting a
report_msg statement in the script:

report_msg (message);

The message can be a string, variable, or both. For example, the following
report_msg statement gets the current value of the searchpath system
variable, and enters a statement in the execution report containing your
message and the current value of searchpath:

x = getvar ("searchpath");
report_msg ("The current searchpath is" & x);
46

Part II

Debugging GUI Vuser Scripts
47

Creating GUI Virtual User Scripts (UNIX)
48

9
Debugging GUI Vuser Scripts

VXRunner provides several line-by-line replay commands that enable you
to debug your GUI Vuser scripts.

This chapter describes:

➤ Running a Single Line of a GUI Vuser Script

➤ Running a Section of a GUI Vuser Script

➤ Pausing Script Execution

About Debugging GUI Vuser Scripts

VXRunner lets you replay scripts line-by-line in order to isolate and
eliminate defects in your scripts. You can use three commands to control
replay of statements and functions: Step, Step Into and Step Out. Another
controlled replay command is Step to Cursor. This lets you replay segments
of your scripts between two specified points.

You can also control script execution by setting breakpoints. A breakpoint
pauses a script run at a predetermined point. For more information, see
Chapter 10, “Using Breakpoints.”

To help you debug your tests, VXRunner allows you to monitor variables in
a script. You define the variables you want to monitor in a Watch List. As the
test runs, you can view the values that are assigned to the variables. For
more information see Chapter 11, “Monitoring Variables.”
49

Creating GUI Virtual User Scripts (UNIX) • Debugging GUI Virtual User Scripts
Running a Single Line of a GUI Vuser Script

You can perform controlled execution by selecting the Step, Step Into, or the
Step Out commands from the Replay Menu, or by pressing the
corresponding softkeys. (See the last page of this manual for a list of the
default softkey definitions.)

➤ The Step command executes the current line of the script (the line indicated
by the execution marker). When the current line calls another script or user-
defined function, the called script or function is executed in its entirety, but
is not displayed in the VXRunner window.

➤ The Step Into command, like Step, processes a single line of the current
script. However, when the current line of the executed script calls another
script or a user-defined function, the called script or function is displayed in
the VXRunner window. The individual lines of the called script or function
can then be executed using either Step or Step Into.

➤ The Step Out command is used after a called script or function was entered
using the Step Into command. Step Out animates to the end of the called
script or function and then pauses. Step Out eliminates the need to execute
a called script or function line-by-line using the Step command.

Running a Section of a GUI Vuser Script

The Step to Cursor command allows you to perform an animated replay of
one section of a script.

To use the Step to Cursor command:

 1 Move the execution marker to the line of the script where you want execution
to begin. Then execute one line by selectiong Replay > Step (or by pressing
the STEP softkey [F7]).

 2 Move the insertion point to the line where you want execution to stop.

 3 Select Replay > Step to Cursor. VXRunner executes the script up to the line
you marked in step 2.

 4 To resume execution, select a command from the Replay menu or press the
appropriate softkey. (See the last page of this manual for a list of the default
softkey definitions.)
50

Chapter 9 • Debugging GUI Vuser Scripts
Pausing Script Execution

You can interactively stop the execution of a script by using the Pause
command. To pause script execution, select Replay > Pause, or press the
PAUSE softkey. To resume execution of a paused script, activate the desired
replay command using its softkey. The execution continues from the point
that you invoked Pause, or from the position of the execution marker if you
moved it while the script was suspended.
51

Creating GUI Virtual User Scripts (UNIX) • Debugging GUI Virtual User Scripts
52

10
Using Breakpoints

A breakpoint stops script execution at any point in a script. You can use
breakpoints together with the controlled execution commands to identify
flaws in your scripts.

This section describes:

➤ Setting and Removing Breakpoints

➤ Modifying Breakpoints

➤ Deleting a Breakpoint

About Breakpoints

Setting a breakpoint tells VXRunner to stop execution at a specified line or
function in a Vuser script. During replay, VXRunner halts before executing
the specified line. The script execution can be restarted from that point.
Once restarted, it continues to run until it is completed or the next
breakpoint is reached. Breakpoints can be set in any script, compiled
module, or function.

Breakpoints are created, modified, and deleted using the Breakpoints dialog
box. They can also be set using the mouse, the Toggle Breakpoints
command, or the Break in Function command.
53

Creating GUI Virtual User Scripts (UNIX) • Debugging GUI Virtual User Scripts
Breakpoints are indicated by markers that appear in the left margin of the
VXRunner window.

You can set a pass counter for each breakpoint to define how many times
the breakpoint is passed before execution stops. For example, suppose you
create a loop that performs a command fifty times. The pass counter is set by
default to zero so VXRunner stops execution each time the loop is
performed. If you set the pass counter to 25, execution stops only after the
twenty-fifth iteration of the loop.

There are two types of breakpoints: Break at Line and Break in Function.

A Break at Line breakpoint is defined by a script name and a line number.
The breakpoint marker appears in the left margin of the VXRunner window,
next to the designated line. For example, a Break at Line breakpoint could be
listed in the Breakpoint dialog box as:

The breakpoint appears in the script, my_test, at line 137. The number
following the colon is the pass counter, here set to zero.

A Break in Function breakpoint is defined by the name of a function or a
compiled module in the script. The breakpoint marker appears in the left
margin of the VXRunner window next to the first line of the function

my_test[137]:0

Breakpoint
54

Chapter 10 • Using Breakpoints
definition. VXRunner halts execution each time the specified function is
called. For example, a Break in Function breakpoint could be listed in the
Breakpoints dialog box as:

The function appears in the script derick. The breakpoint appears in the line
containing the function my_func, in this case line 25. The pass counter is
set to ten.

Setting and Removing Breakpoints

You can set breakpoints in a variety of ways, as described below.

To set a Break at Line breakpoint using the mouse:

 1 Move the mouse pointer to the left margin of the line of the script where
you want execution to stop.

 2 Click the right mouse button. The breakpoint symbol appears in the left
margin of the VXRunner window.

 3 Click the right mouse button again to remove the breakpoint.

To set a Break at Line breakpoint using the Toggle Breakpoint command:

 1 Move the insertion point to the line of the script where you want execution
to stop.

 2 Select Debug > Toggle Breakpoint, or press the BREAKPOINT softkey. (See the
last page of this manual for a list of the default softkey definitions.) The
breakpoint symbol appears in the left margin of the VXRunner window.

 3 Select Toggle Breakpoint again to remove the breakpoint.

my_func[derick:25]:10
55

Creating GUI Virtual User Scripts (UNIX) • Debugging GUI Virtual User Scripts
To set a Break in Function breakpoint Using the Break in Function
Command:

 1 Select Debug > Break in Function (or press CTRL+B.) The New Breakpoint
dialog box opens.

 2 Enter a function name in the Function text box. The function must be one
already compiled by VXRunner.

 3 Type a value in the Pass Count text box.

 4 Close the dialog box by clicking OK. The breakpoint symbol appears in the
left margin of the VXRunner window.

To set a Break at Line breakpoint using the Breakpoints dialog box:

 1 Select Debug > Breakpoints.The Breakpoints dialog box opens.

 2 Click New. The New Breakpoint dialog box opens.
56

Chapter 10 • Using Breakpoints
 3 The Break box is set to At Line, by default. The script name is set to the
current active script, by default. The At Line box is set to the line number of
the insertion point. The Pass Counter is set to zero. You can change any of
these values. See “Modifying Breakpoints” on page 58.

 4 Click OK to set the breakpoint and close the New Breakpoint dialog box.
The breakpoint appears in the Break at Line list. The breakpoint marker
appears in the left margin of the VXRunner window, next to the selected
line.

To set a Break in Function breakpoint using the Breakpoints dialog box:

 1 Select Debug > Breakpoints. The Breakpoint dialog box opens.

 2 Click New. The New Breakpoint dialog box opens.

 3 In the Break list, click In Function. The dialog box changes in order to let
you type in a function name and a pass count value.

 4 Type a function name in the In Function text box. The function must be
one already compiled by VXRunner.

 5 Type a value in the Pass Count text box.

6 Close the dialog box by clicking OK. The breakpoint appears in the Break in
Function list. The breakpoint symbol appears in the left margin of the
VXRunner window.
57

Creating GUI Virtual User Scripts (UNIX) • Debugging GUI Virtual User Scripts
Modifying Breakpoints

You can modify breakpoints by using the Breakpoints dialog box.

To modify a breakpoint:

 1 Open the Breakpoints dialog box. Click on a breakpoint in one of the list
boxes. The breakpoint is highlighted.

 2 Click Modify. The Modify breakpoint dialog box opens.

 3 To change the type of Breakpoint, click the Break list and then click a
breakpoint type.

 4 To select another script, click the In Test list. Click another script in the calls
chain.

 5 To change the location of the Breakpoint, type a new line number in the At
Line Text box.

 6 To change the Pass Count, type a new number in the Pass Count text box.

 7 Click OK to close the dialog box.

Deleting a Breakpoint

You can delete a single breakpoint or all the breakpoints listed in the
Breakpoints dialog box.

To delete a single breakpoint:

 1 Open the Breakpoints dialog box.

 2 Click a breakpoint in either of the two breakpoint lists. The breakpoint is
highlighted.
58

Chapter 10 • Using Breakpoints
 3 Click Delete. The breakpoint is removed from the list.

4 Click OK to close the Breakpoints dialog box.

To delete all the breakpoints listed in the Breakpoints dialog box:

 1 Open the Breakpoints dialog box.

 2 Click Delete All. All the breakpoints are deleted from both lists.

3 Click OK to close the dialog box.
59

Creating GUI Virtual User Scripts (UNIX) • Debugging GUI Virtual User Scripts
60

11
Monitoring Variables

The Watch List monitors specified variables and expressions during
debugging. Use this feature to check the value of variables and to observe
how they influence script execution. The Watch List can be used with any
variable, array, or TSL expression.

This chapter describes:

➤ Adding a Variable or Expression to the Watch List

➤ Adding an Array to the Watch List

➤ Modifying an Expression in the Watch List

➤ Assigning a Value to a Variable

➤ Deleting Expressions and Variables from the Watch List

About Monitoring Variables

The Watch List helps you to debug scripts by monitoring the value of
variables, arrays and array elements, and legal TSL expressions. The variables
in the Watch List are updated each time VXRunner stops execution (after a
Step command, stop on a breakpoint, etc.) You can modify the expressions
in the Watch List, and assign new values to variables. In the following script,
the Watch List is used to measure and track the value of the variable a.

for (i = 1; i < 10; i++){
a = i;
b = a + 1;
c = a + b;
}

61

Creating GUI Virtual User Scripts (UNIX) • Debugging GUI Virtual User Scripts
The following expressions and values appear in the Watch List:

a:1
a+1:2
b+a:3

After the script is run the Watch List shows the following results:

a:9
a + 1:10
b + a:19

If a test script has several variables with the same name but different scopes,
the variable is evaluated according to the current scope of the interpreter.
For example, suppose both test_a and test_b use a static variable x, and test_a
calls test_b. If you include the variable x in the Watch List, the value of x dis-
played at any time depends on whether VXRunner is interpreting test_a or
test_b.

Selecting a script from the Calls List also changes the context of watch
variables and expressions, and updates the Watch List.

Adding a Variable or Expression to the Watch List

You can add variables to the Watch List by selecting Debug > Add Watch, or
by using the Watch List dialog box. Variables can include expressions,
arrays, and array elements.

To add a variable to the Watch List using the Add Watch Command:

 1 Select Debug > Add Watch (or press Ctrl-W). The Add Watch dialog box
opens.

 2 Type the variable name in the Expression box. Click Evaluate to see the
current value of the variable.
62

Chapter 11 • Monitoring Variables
If the variable has not been executed or contains an error, the message
“<cannot evaluate>” appears in the Value box.

 3 Click OK. The Add Watch dialog box closes and the expression appears in
the Watch List.

Note: Do not add expressions to the Watch List that assign or increment the
value of variables, because this can affect script execution.

To add a variable to the Watch List using the Watch List dialog box:

 1 Select Debug > Watch List to open the Watch List dialog box.

 2 Click the Add button to open the Add Watch dialog box.

 3 Type the variable name in the Expression box. Click Evaluate to see the
current value of the variable.

If the variable was not executed or contains an error, the message “<cannot
evaluate>” appears in the Value field.

 4 To close the Add Watch dialog box, click OK. The dialog box closes and the
expression appears in the Watch List.

Adding an Array to the Watch List

To add an array to the Watch List:

 1 Select Debug Add Watch (or press Ctrl-W). The Add Watch dialog box opens.
63

Creating GUI Virtual User Scripts (UNIX) • Debugging GUI Virtual User Scripts
 2 Type the array variable in the Expression box. Type the value of the array in
the Value box.

 3 To close the Add Watch dialog box, click OK.

 4 Select Debug > Watch List. The Watch List dialog box opens with the array
variable displayed.

 5 To view the array elements, double-click the item containing the array
variable. Click the array to return to the array variable.

Modifying an Expression in the Watch List

You can modify variables and expressions using the Modify Watch dialog
box. For example, you can turn variable b into the expression b + 1. The
64

Chapter 11 • Monitoring Variables
Watch List is automatically updated to produce a new value for the
expression.

To modify an expression in the Watch List:

 1 Open the Watch List.

 2 Click on an expression.

 3 Click Modify to open the Modify Watch dialog box.

 4 Type changes in the Expression box. Click Evaluate to see the value of the
modified expression. The expression is evaluated again and the new value
appears in the Value field.

 5 Click OK to close the dialog box. The modified value appears in the Watch
List.

Assigning a Value to a Variable

You can assign new values to variables. For example, you can change the
value of variable b from 2 to 10. Values can be assigned only to variables or
array subscripts, not to TSL expressions.

To assign a value to a variable:

 1 Open the Watch List.

 2 Click on an expression in the Watch List.
65

Creating GUI Virtual User Scripts (UNIX) • Debugging GUI Virtual User Scripts
 3 Click Assign to open the Assign Variable dialog box.

 4 Type the new value in the New Value box.

 5 To close the dialog box, click OK. The new value appears in the Add Watch
dialog box.

Deleting Expressions and Variables from the Watch List

To delete an expression or variable:

 1 Open the Watch List.

 2 Click on an expression in the Watch List. The expression is highlighted.

 3 Click Delete to remove the expression from the list.

4 Click Close to close the Watch List.

Deleting All Expressions and Variables

To delete all expressions and variables in the Watch List:

 1 Open the Watch List.

 2 Click Delete All. All expressions are deleted from both lists.

3 Click Close to close the dialog box.
66

Part III

Using LoadRunner Functions
67

Creating GUI Virtual User Scripts (UNIX)
68

12
Measuring System Performance Using
Transactions

LoadRunner measures server performance by measuring the time taken to
perform certain tasks or transactions. In the GUI Vuser script, you define the
transactions to be measured.

This chapter describes:

➤ Declaring Transactions

➤ Marking the Start of a Transaction

➤ Marking the End of a Transaction

About Measuring System Performance

When you develop a GUI Vuser script you insert transaction statements into
the script. LoadRunner uses the transactions to measure the time it takes for
a Vuser to perform a specific task. This enables you to measure how your
system performs under various load conditions.

A transaction may be a single task—such as a deleting a file—or it may
include multiple tasks. Within a script, you can mark an unlimited number
of transactions for analysis, each with a different name, and starting and
ending in different places. Transactions can be nested.

To use the transactions to measure intense server load, you can define
rendezvous points. For more information, see Chapter 13, “Emulating Server
Load: Rendezvous Points.”
69

Creating GUI Virtual User Scripts (UNIX) • Using LoadRunner Functions
You can analyze system performance using a variety of graphs and reports.
For more information about analyzing system performance, refer to the
LoadRunner Controller User’s Guide.

Declaring Transactions

You must declare all the transactions in a Vuser script in the beginning of
the script. To declare a transaction, you use the declare_transaction
function. The syntax of this functions is:

declare_transaction (transaction_name);

The transaction_name parameter can be any string. It must be a literal string
constant, and not a variable or an expression.

In the following example, the declare_transaction function is used to
declare the transactions “deposit”, “withdraw” and “balance”:

Marking the Start of a Transaction

To indicate the start of the transaction, you insert a start_transaction
statement into your Vuser script—immediately before the action you want
to measure. The syntax of this function is:

start_transaction (transaction_name [, when]);

➤ transaction_name can be any transaction that you declared using the
declare_transaction function.

➤ when determines when LoadRunner begins to measure the transaction, and
can be set to NOW or ONINPUT. NOW, the default, causes LoadRunner to
begin measuring as soon as the start_transaction statement is interpreted.
ONINPUT causes LoadRunner to begin measuring the transaction only
when the first mouse or keyboard input is submitted to the application.

declare_transaction ("deposit");
declare_transaction ("withdraw");
declare_transaction ("balance");
70

Chapter 12 • Measuring System Performance Using Transactions
In the following example, start_transaction is used to mark the start of the
transaction “deposit”. LoadRunner begins to measure the transaction as
soon as the start_transaction statement is interpreted:

Marking the End of a Transaction

To indicate the end of a transaction, you insert an end_transaction
statement into your Vuser script—after the action you want to measure. The
syntax of this function is:

end_transaction (transaction_name [, status]);

➤ transaction_name can be any transaction that you declared using the
declare_transaction function.

➤ status can be set to PASS or FAIL. This tells LoadRunner if the transaction
passed or failed. The default is PASS.

In the following example, end_transaction is used to mark the end of the
transaction “deposit”.

A Sample Transaction

In the following sample Vuser script, the “deposit” transaction is defined to
measure how long it takes for a Vuser to deposit $50 at an ATM. LoadRunner
starts measuring the transaction as soon as the Vuser clicks the OK button.

start_transaction ("deposit", NOW);

end_transaction ("deposit", PASS);
71

Creating GUI Virtual User Scripts (UNIX) • Using LoadRunner Functions
The transaction passes if the message “Done” appears in the ATM display. If
any other message appears, the transaction fails.

Declare the transaction name.
declare_transaction ("deposit");

Move mouse to deposit button.
move_locator_abs (127, 198, 0);

Click left mouse button.
click ("Left");

Move to amount field.
move_locator_abs (141, 350,0);

Type in $50.
type ("50");

Move to the OK button.
move_locator_abs (135, 378, 0);

Define a Deposit transaction.
start_transaction ("deposit", ONINPUT);

Click on the OK button.
click ("Left");

Wait for “Done” to appear in the ATM window.
rc=wait_text ("Done", 5, ret_text, ret_index, 0, 0, 500, 500, ret_bbox);

End Deposit transaction.
if (rc == 0)

end_transaction ("deposit", PASS);
else

end_transaction ("deposit" , FAIL);
72

13
Emulating Server Load: Rendezvous
Points

By inserting rendezvous points into your Vuser scripts you can control the
actions of multiple Virtual Users. This allows you to emulate specific and
peak load conditions on the server.

This chapter describers:

➤ Declaring a Rendezvous

➤ Specifying the Point of Rendezvous in a GUI Vuser Script

About Synchronizing Multiple Vusers

When designing a scenario, you will want to synchronize the actions of two
or more virtual users. You can do this by creating inter-user synchronization
points in your Vuser scripts. An inter-user synchronization point is called a
rendezvous. A rendezvous is used to:

➤ emulate interaction between Vusers (for example, two users access the same
account at the same time).

➤ create a specific or peak load (for example, fifty users try to withdraw cash
simultaneously from automatic teller machines).

To create a rendezvous in a scenario:

 1 Declare the rendezvous at the start of the Vuser script.

 2 Designate the point at which the rendezvous will take place in the Vuser
script.
73

Creating GUI Virtual User Scripts (UNIX) • Using LoadRunner Functions
For information on how to synchronize the execution of a Vuser script with
the responses from an application, see Chapter 5, “Synchronizing GUI Vuser
Script Execution.”

Declaring a Rendezvous

You must declare all the rendezvous points in a Vuser script at the beginning
of the script. This tells LoadRunner which rendezvous points are included in
a script before interpreting the entire script.

To declare a rendezvous, you use the declare_rendezvous function. The
syntax of this functions is:

declare_rendezvous (rendezvous_name);

where rendezvous_name is the name that you defined in the scenario script
for the rendezvous point.

In the following example, the declare_rendezvous function is used to
declare the rendezvous points “load_10” and “load_20.”

Specifying the Point of Rendezvous in a GUI Vuser Script

You designate the point at which the rendezvous will take place, you insert a
rendezvous statement into the Vuser script. The function has the following
syntax:

rendezvous (rendezvous_name);

where rendezvous_name is the name of the rendezvous that you declared at
the beginning of the script.

declare_rendezvous ("load_10");
declare_rendezvous ("load_20");
74

Chapter 13 • Emulating Server Load: Rendezvous Points
A Sample Rendezvous

Suppose that while testing the sample bank application, you want to see
what happens when ten Vusers simultaneously deposit, and then withdraw,
cash from automatic teller machines. In the scenario script you create a
rendezvous named “load_10” and define a Vuser rendezvous list of ten
Vusers.

In the Vuser script, you would insert the following in the section where the
deposit and withdrawal are performed:

Declare rendezvous
declare_rendezvous ("load_10");

Define rendezvous points
rendezvous ("load_10");
deposit (50);
rendezvous ("load_10");
withdraw (100);
75

Creating GUI Virtual User Scripts (UNIX) • Using LoadRunner Functions
76

14
Enhancing Scripts using LoadRunner
Functions

Once you have developed a GUI Vuser script, you can enhance your script
with LoadRunner functions.

This chapter describes:

➤ Sending Messages from Vuser scripts

➤ Obtaining Virtual User Information

➤ Specifying Your Own Data for Analysis

About Enhancing Vuser Scripts with LoadRunner Functions

LoadRunner provides many functions that you can use to enhance your
Vuser scripts. For example, you can send messages from Vuser scripts, obtain
Virtual User information, and specify your own data for analysis.

For details of all functions specific to LoadRunner GUI Vuser scripts, see
Chapter 23, “Function Reference.”

Sending Messages from Vuser scripts

You can use the print and printf functions in Vuser scripts to write to the
Vuser standard output. The information in the Vuser standard output is
saved in a file called stdout in the directory scenario/result_dir/group/vuser.
You can view this file during scenario execution in the Controller’s Output
window. For more information on the print and printf functions, see the
TSL Online Reference.
77

Creating GUI Virtual User Scripts (UNIX) • Using LoadRunner Functions
During scenario execution, the LoadRunner Output window displays
valuable information about scenario status. In addition to the messages
automatically sent by LoadRunner, you can send messages from Vuser
scripts to the Output window. Note that only messages relating to scenario
execution status should be sent to the LoadRunner output window rather
than to standard output.

The following functions enable a Vuser script to send information to the
LoadRunner Output window:

➤ The error_message function is used to send an error message.

➤ The output_message function is used to send a special notification that is
not an error message.

For more information about each of these functions, see Chapter 23,
“Function Reference.”

Obtaining Virtual User Information

When you execute a scenario, many Vusers may run the same Vuser script.
You may want to know which Vuser is running a particular instance of a
script. For instance, consider a Group consisting of 100 Vusers. Every Vuser
needs to log in to a remote machine using its own name and password.

LoadRunner provides several functions that enable a Vuser script to obtain
information about the Vuser that is running the script. These functions
include:

➤ lr_whoami: returns the Vuser, Group, and scenario ID for a Vuser.

➤ get_host_name: returns the name of the host machine for a Vuser.

➤ get_master_host_name: returns the name of the LoadRunner Controller
host machine.

For more information about each of these functions, see Chapter 23,
“Function Reference.”

In the following script segment, the Vuser enters a secret code and then
deposits $50 in an automatic teller machine (ATM). The Vuser’s secret code
78

Chapter 14 • Enhancing Scripts using LoadRunner Functions
is equal to its ID number plus 100. The lr_whoami function is used to
determine the ID number of the Vuser currently running the script.

Specifying Your Own Data for Analysis

User data points instruct LoadRunner to record the value of specified
variables. For example, you could define a user data point to measure CPU
utilization over a period of time.

You define a user data point by inserting a user_data_point statement into
your Vuser script. Every time LoadRunner interprets a user_data_point

Insert bank card.
move_locator_abs(127, 198, 0);

Click on the Card_in button.
click ("Left");

Secret code is Vuser id no + 100. Get Vuser id number.
lr_whoami(id, group);
code = id + 100;

Type the secret code.
type (code & "<kReturn>");

Move mouse to deposit button.
move_locator_abs(127, 198, 0);

Click the deposit button.
click ("Left");

Move to amount field.
move_locator_abs(141, 350, 0);

Type in $50.
type ("50" "<kReturn>");

Move to the OK button.
move_locator_abs(135, 378, 0);

Click on the OK button.
click ("Left");
79

Creating GUI Virtual User Scripts (UNIX) • Using LoadRunner Functions
statement, an event is created in the Vuser event file, and the following
information is recorded:

➤ the name of the data point

➤ the value of the data point

➤ the time that the data was recorded

You can use LoadRunner’s User Defined report and graph facilities to
analyze this data. The syntax of the user_data_point function is:

user_data_point (sample_name, value);

➤ sample_name is a string that contains the name of the data point.

➤ value contains the value to be recorded.

In the following example, a user data point checks the CPU every minute,
and records the utilization.

for (i=0;i<100;i++) {
cpu_val=cpu_check();
user_data_point("cpu", cpu_val);
sleep(60);

}

80

Part IV

Programming with TSL
81

Creating GUI Virtual User Scripts (UNIX)
82

15
Introducing TSL

GUI Vuser scripts are composed of statements coded in Mercury Interactive’s
Test Script Language (TSL). These statements are either generated
automatically (recorded), or are programmed manually.

This chapter describes:

➤ Constants

➤ Variables

➤ Operators

➤ Control-Flow Statements

➤ Built-in Functions

➤ Comments

About TSL

TSL combines general-purpose programming language features (variables,
control-flow statements, arrays, user-defined functions), and built-in
functions specifically designed for script creation. Certain words are
therefore reserved by TSL and may not be used as variable names. Note that
TSL is a case sensitive language.

This chapter provides a brief overview of TSL. For more information, see the
TSL Online Reference.
83

Creating GUI Virtual User Scripts (UNIX) • Programming with TSL
Constants

TSL supports two types of constants, strings and numbers. Strings are
enclosed within quotes; numbers are either an integer or floating point type.
VXRunner identifies the constant type according to its context.

Variables

Variables are the basic data objects manipulated in a script. As with
constants, variables can be either a string or a number.

TSL supports the use of static variables. A static variable is local to the script
in which it is declared and does not affect a variable having the same name
belonging to another script.

Operators

TSL supports six types of operators:

➤ arithmetical

➤ string

➤ relational

➤ logical

➤ conditional

➤ assignment

Arithmetical Operators

The signs used to represent each of the four binary arithmetical operators
are:

+ addition
- subtraction
* multiplication
/ division
84

Chapter 15 • Introducing TSL
In addition, TSL provides modulus and exponentiation operators. Their
signs are:

% modulus
^ or ** exponentiation

TSL also supports increment and decrement operators for variables:

++ adds 1 to its operand (incremental)
- - subtracts 1 from its operand (decremental)

The increment and decrement operators may be placed before the variable
(++n), or after the variable (n++). As a result, the variable is incremented or
decremented either before or after the value is used.

String Operator

The ampersand (&) character is used by TSL to concatenate adjacent strings.
For example, the statement

X = "ab" & "cd";

assigns the value abcd to variable X.

Relational Operators

The relational operators used in TSL are:

> greater than
>= greater than or equal to
< less than
<= less than or equal to
= = equal to
!= not equal to

Logical Operators

Logical operators are used to create logical expressions by combining two or
more basic expressions. TSL supports the following logical operators:

&& and
|| or
! not
85

Creating GUI Virtual User Scripts (UNIX) • Programming with TSL
When evaluated, a logical expression is assigned the value 1 if true and 0 if
false.

Conditional Operator

In TSL, the question mark (?) character is the conditional operator.
Conditional expressions have the format:

expression1 ? expression2 : expression3

First, expression1 is evaluated, and if it is true, expression2 is evaluated and
becomes the value of the expression. If expression1 is false (zero or null),
then expression3 is evaluated.

Assignment Operators

The following assignment operators can be used to assign a value to a
variable:

Sign Example Meaning
= a = b assign the value of b to a
+= a += b assign the value of a plus b to a
-= a -= b assign the value of a minus b to a
*= a *= b assign the value of a times b to a
/= a /= b assign the value of a divided by b to a
%= a %= b assign the value of a modulus b to a
^= or ** a ^ =b assign the value of a to the power of b, to a

Control-Flow Statements

Control-flow statements determine the sequence and conditions in which
script statements are interpreted. The control-flow elements supported by
TSL include:

➤ brackets for creating a compound statement from an enclosed list of simpler
statements

➤ if ... else, and switch statements for decision making

➤ while, for, and do statements for looping
86

Chapter 15 • Introducing TSL
The following is a summary of the TSL control-flow statements:

{ statements }
Compound statement.

if (expression) statement;
If expression is true, execute statement.

if (expression) statement1;else statement2;
If expression is true, execute statement1; otherwise execute
statement2.

while (expression) statement;
If expression is true, execute statement; then repeat.

for (expression1; expression2; expression3) statement;
Implement expression1. If expression2 is true, execute the statement
and evaluate expression3. Repeat loop until expression2 is false.

do statement while expression;
Execute statement; while expression is true.

switch (expression) {
case case_expr1: statements
case case_expr2: statements
case case_exprn: statements
[default: statements]}

Evaluate the case expressions until one is found to be equal to the
expression, and execute statements. If no case is equal to the
expression, then execute the optional default statements.

break;
Causes an exit from within a loop or a switch.

continue;
Causes the next cycle of a loop to begin.

Built-in Functions

TSL provides an assortment of built-in functions. These are described in
detail in the TSL Online Reference.
87

Creating GUI Virtual User Scripts (UNIX) • Programming with TSL
Comments

A number sign (#) in a line of a TSL script indicates that all text located
between this sign and the end of the line is a comment. The VXRunner
interpreter does not process comments.
88

16
Creating User-Defined Functions

You can expand VXRunner’s capabilities by creating your own, user-defined
TSL functions. Functions can appear in a script or a compiled module.

This chapter describes:

➤ Function Syntax

➤ Variable, constant, and array declarations

➤ Return Statement

About User-Defined Functions

In addition to its built-in functions, TSL allows you to design and
implement your own functions. The following main options are available:

➤ You can create user-defined functions in a script. Once the function is
replayed, it can be called from anywhere within a script.

➤ You can create user-defined functions in a compiled module. Once the
module is loaded, the function can be called from any script. For more
information, see Chapter 17, “Creating Compiled Modules.”

User-defined functions are convenient in situations when you want to
perform the same operation in a script several times. Instead of repeating
the code over and over, you can write a single function that performs the
operation. As a result your scripts are modular, more readable, and easier to
debug and maintain.

A function can be called from anywhere in the script. Since it is already
compiled, execution time is faster. For instance, suppose you create a script
that opens a number of files and checks their contents. Instead of recording
89

Creating GUI Virtual User Scripts (UNIX) • Programming with TSL
or programming the sequence that opens the file several times, you could
write a function and call it each time you want to open a file.

Function Syntax

A user-defined function has the following structure:

[class] function name ([mode] parameter...)
{
declarations;
statements;
}

Class

The class of a function may be either static or public. A static function is
available only to the script or module within which the function was
defined.

Once you replay a public function, it is available to all scripts, as long as the
script containing the function remains open. This is convenient when you
want the function to be accessible from called scripts. However, if you want
to create a function that will be available to many scripts, you should place
it in a compiled module.

If no class is explicitly declared, the function is assigned the default class,
public.

Parameters

Function parameters can be of mode in, out, or inout. For all non-array
parameters, the default mode is in. The significance of each of these
parameter types is as follows:

in: A parameter that is assigned a value from outside the function.

out: A parameter that is assigned a value from inside the function.

inout: A parameter that can be assigned a value from outside the function,
as well as pass on a value to the outside.
90

Chapter 16 • Creating User-Defined Functions
Array parameters are designated by square brackets. For example, the
following parameter list would indicate that variable a is an array:

function my_func (a[], b, c){
 ...
}

Array parameters can be either out or inout. If no class is specified, the
default inout is assumed.

While variables used within a function must be explicitly declared, this is
not the case for parameters.

Declarations

Normally in TSL, declaration is optional. In functions, however, variables,
constants, and arrays must all be declared. The declaration can be within the
function itself, or anywhere else within the script or module. Additional
information about declarations can be found in the TSL Online Reference.

Variables

Variable declarations have the following syntax:

class variable [= init_expression];

The init_expression assigned to a declared variable can be any valid
expression. If an init_expression is not set, the variable is assigned an empty
string. The variable class can be one of the following:

auto: An auto variable may be declared only within a function. It is limited
in scope to the function within which it is defined, and exists only as long
as the function is still running. Note that a recursive call of the function
creates a new copy of an auto variable.

static: A static variable is limited in scope to the function, script, or module
within which it is defined.

public: A public variable may be declared only outside a function. Such a
variable is available to all scripts.
91

Creating GUI Virtual User Scripts (UNIX) • Programming with TSL
extern: An extern variable is defined outside of the function, script, or
module in which it appears. An extern declaration cannot initialize the
variable.

With the exception of the auto variable, all variables continue to exist until
the Abort command is executed. The following table summarizes the scope,
lifetime, and availability (where the declaration can appear) of each type of
variable:

Note: In compiled modules, the Abort command initializes static and public
variables. For more information about compiled modules, Chapter 17,
“Creating Compiled Modules.”

Constants

The const specifier indicates that the declared value cannot be modified. The
syntax of this declaration is:

[class] const name [= expression];

The class of a constant may be either public or static. (If no class is explicitly
declared, the constant is assigned the default class public.) Once a constant
is defined, it remains in existence until you exit VXRunner.

For example, defining the constant TMP_DIR using the declaration:

const TMP_DIR = "/tmp";

Declaration Scope Lifetime Availability

auto local end of function within function only

static local until abort function, script, or module

public global until abort script or module only

extern global until abort function, script, or module
92

Chapter 16 • Creating User-Defined Functions
means that the assigned value /tmp cannot be modified. (This value can
only be changed by explicitly making a new constant declaration for
TMP_DIR.)

Arrays

The following syntax is used to define the class and the initial expression of
an array. Array size need not be defined in TSL.

class array_name [] [=init_expression]

The array class may be any of the classes listed under Variable Declarations,
above.

An array can be initialized using the C language syntax. For example:

public hosts [] = {"lithium", "silver", "bronze"};

This statement creates an array with the following elements:

hosts[0]="lithium"
hosts[1]="silver"
hosts[2]="bronze"

Note that like in C, arrays with the class auto cannot be initialized.

In addition, an array can be initialized using a string subscript for each
element. The string subscript may be any legal TSL expression. Its value is
evaluated during compilation.

Statements

Any valid statement used within a TSL script can be used within a function,
except for the treturn statement.

Return Statement

The return statement is used exclusively in functions. The syntax is:

return [expression];
93

Creating GUI Virtual User Scripts (UNIX) • Programming with TSL
This statement halts execution of the called function and passes control
back to the calling function or script. It also returns the value of the
evaluated expression to the calling function or script. If no expression is
assigned to the return statement, an empty string is returned.
94

17
Creating Compiled Modules

Compiled modules enhance your TSL programming capabilities, providing
all the advantages of a compiled environment within your interpreted
script.

This chapter describes:

➤ Compiled Module Contents

➤ Creating a Module

➤ Loading and Unloading a Compiled Module

➤ Incremental Compilation

About Compiled Modules

A compiled module contains user-defined functions that you want to call
frequently from within many different scripts. When you load the module,
the functions are compiled and remain in memory. You can call them
directly from within any script.

For instance, you might want to create a module which includes functions
that:

➤ initialize an application: position it, and resize the window.

➤ compare the size of two files.

➤ handle error messages that your application displays in a popup window.

Using compiled modules, you can improve the organization and
performance of your scripts. Compiled modules are libraries of frequently-
used functions. Your scripts can use functions from libraries instead of
95

Creating GUI Virtual User Scripts (UNIX) • Programming with TSL
creating new ones each time. Since you debug compiled modules before
using them, your scripts will require less error-checking. In addition, calling
a function that is already compiled is significantly faster than interpreting a
function in a script.

You can compile a module in one of two ways. You can use the TSL load
function, or you can replay the function interactively using any of the
VXRunner replay commands. If you need to debug a module or make
changes, you can use the Step command to perform incremental
compilation. You only need to replay the part of the module that was
changed in order to update the entire module.

Compiled Module Contents

A compiled module is similar to any regular script you create in TSL: it can
be opened, edited, and saved. You indicate that a script is a compiled
module by clicking Compiled Module in the Test Header dialog box (see
“Creating a Module,” in this chapter).

In terms of its content, a compiled module is different from an ordinary
script in that it has no database: it cannot include screen captures or any
other analog input such as mouse tracking. Remember that the purpose of a
compiled module is to store those functions that you use most in a module
so that they can be quickly and conveniently accessed from other scripts.

Unlike in a regular script, all data objects (variables, constants, arrays) must
be declared before use. The structure of a compiled module is similar to a C
program file, in that it may contain the following elements:

➤ function definitions and declarations for variables, constants and arrays (For
more information, Chapter 16, “Creating User-Defined Functions.”)

➤ prototypes of external functions (For more information, see the TSL Online
Reference.)

➤ load statements to other modules (see “Loading and Unloading a Compiled
Module” on page 97)

Note that when user-defined functions appear in compiled modules:
96

Chapter 17 • Creating Compiled Modules
➤ A public function is available to all modules and scripts, while a static
function is available only to the module within which it was defined.

➤ The loaded module remains resident in memory even when execution is
aborted. However, all variables defined within the module (whether static or
public) are initialized.

Creating a Module

To create a compiled module:

 1 Open a new script.

 2 Write the module script.

 3 Open the Header dialog box (select File > Header), and click Compiled
Module. Click OK.

 4 Select File > Save.

 5 Save your modules in a location that is readily available to all your scripts.
When a module is loaded, VXRunner locates it according to the Search Path.

 6 Compile the module by choosing one of the Replay commands or using the
load function.

Loading and Unloading a Compiled Module

In order to access the functions in a compiled module you need to load the
module. You can load it from within any script; all scripts can then access
the function until you quit VXRunner or unload the module.

If you create a module that contains frequently-used functions (such as the
ones described at the beginning of this chapter), you can load the module
from your initialization script. For more information, see Chapter 19,
“Creating Initialization Scripts.”

You may load a module either as a system module or as a user module. A
system module is generally a closed module that is “invisible” to the user. It
is not animated when it is loaded and it is not stopped by a pause
97

Creating GUI Virtual User Scripts (UNIX) • Programming with TSL
command. A system module is not unloaded when you execute an unload()
statement with no parameters (global unload).

A user module is the opposite of a system module in these respects.
Generally, a user module is one that is still being developed. In such a
module you might want to make changes and incrementally compile them.

load

The load function has the following syntax:

load (module_name, [,1|0] [,1|0]);

The module_name is the name of an existing compiled module.

Two additional, optional parameters indicate the type of module. The first
parameter indicates whether the module is a system module or a user
module. 1 indicates a system module. 0 indicates a user module. (Default=0)

The second optional parameter indicates whether the module will appear in
the Switch To menu. 1 indicates that the module will not appear in the
menu. 0 indicates that the module will appear in the menu. (Default=0)

When the load function is executed the first time, the module is compiled
and stored in memory. This module is now ready for use by any script and
need not be interpreted again.

A loaded module remains resident in memory even when execution is
aborted. However, all variables defined within the module (whether static or
public) are initialized.

unload

The unload function removes a loaded module or selected functions from
memory, and has the following syntax:

unload (module|test [,function_name]);

For example, the following statement removes all functions loaded within
the script named my_test.

unload ("my_test");
98

Chapter 17 • Creating Compiled Modules
An unload statement with empty parentheses removes all modules loaded
within all scripts during the current session, except for system modules.

reload

If you make changes to a module, you can reload it. The reload function
removes a loaded module from memory, and reloads it (combining the
functions of unload and load).

The syntax of the reload function is:

reload (module_name, [,1|0] [,1|0});

The module_name is the name of an existing compiled module.

Two additional optional parameters indicate the type of module. The first
parameter indicates whether the module is a system module or a user
module. 1 indicates a system module. 0 indicates a user module. (Default=0)

The second optional parameter indicates whether the module will appear in
the “Switch to” menu. 1 indicates that the module will not appear in the
menu. 0 indicates that the module will appear in the menu. (Default=0)

Note: Do not load a module more than once. To recompile a module, use
unload followed by load, or the reload function.

If you try to load a module that has already been loaded, VXRunner does
not load it again. Instead, it initializes variables and increments a load
counter. If a module has been loaded several times, then the unload
statement does not unload the module, but rather decrements the counter.
For instance, suppose that script A loads a module math_functions, and then
calls script B. Script B also loads math_functions, and then unloads it at the
end of the script. VXRunner does not unload the function; it decrements
the load counter. When execution returns to script A, math_functions is still
loaded.
99

Creating GUI Virtual User Scripts (UNIX) • Programming with TSL
Incremental Compilation

You can also compile a module by replaying it. This is especially useful when
you are developing or modifying a module. If a module has already been
loaded, and you modify or add just a few lines, you can replay those
statements step by step. The compiled version of the module is
automatically updated. Note that if you make a change within a function,
you must replay the entire function.

To compile a module by replaying it:

 1 If the module is not already open, open it.

 2 To load an entire module, move the execution marker to the first line of the
script, and select Animate or Run.

 3 To incrementally compile part of a module, replay the necessary statements
using the Step command.

 4 Save the module if required, and close it.

Compiled Module Example

The following module contains two simple functions that you can call from
any script. The modules receive a pair of numbers and returns the number
with the maximum and minimum value.

return maximum of two values
function max (x,y){
if (x>=y)

return x;
else

return y;
}

100

Chapter 17 • Creating Compiled Modules
return minimum of two values
function min (x,y){
if (x<y)

return x;
else

return y;
}

101

Creating GUI Virtual User Scripts (UNIX) • Programming with TSL
102

18
Calling Scripts

The GUI Vuser scripts you create with VXRunner can call, or be called by,
any other GUI Vuser script. This is done by means of the call statement.
Using this statement, a script can be invoked from within another script,
and parameter values can be passed to the called script.

This chapter discusses:

➤ Using the Call Statement

➤ Returning to the Calling Script

➤ Setting the Search Path

➤ Defining Parameters

Using the Call Statement

A script is invoked from within another script by means of a call statement.
A call statement has the following syntax:

call script_name ([parameter1, parameter2, ...parametern]);

Parameters are optional. However, when one script calls another, the call
statement should designate a value for each parameter defined for the called
script. If no parameters were defined for the called script, the call statement
must include an empty set of parentheses.

Any called script must be stored in a directory specified in the search path,
or else must include a full pathname within quotation marks.

While replaying a called script, you can pause execution and view the
current call chain. To do so, select Debug > Calls.
103

Creating GUI Virtual User Scripts (UNIX) • Programming with TSL
Returning to the Calling Script

The treturn and texit statements are used to stop execution.

➤ The treturn statement stops the current script, and returns control to the
calling script.

➤ The texit statement stops execution entirely.

Both functions provide a return value for the called script. If treturn or texit
is not used, or if no value is specified, then the return value of the call
statement is 0.

The treturn statement terminates execution of the called script and returns
control to the calling script. The syntax is:

treturn [(expression)];

The optional expression is the value returned to the call statement used to
invoke the script. For example:

Here, if the screen comparison in script_b is successful, then the string
“success” is returned to the calling script, script_a. If there is a mismatch,
then script_b returns the string “failure” to script_a.

script a
if (call script b() == "success")

report_msg("script b succeeded");

script b
if
check_window(3,"Win_2","Calc",
20,35,35,45);

treturn("success");
else

treturn("failure");
104

Chapter 18 • Calling Scripts
Setting the Search Path

The search path determines the directories searched for a called script. To set
the search path, select Options > Search Path. The directories are searched in
the order of their appearance in the Search Path dialog box.

To add a directory:

 1 Type the directory name in the Pathname box. Alternatively, click a
directory in the list, click Copy to copy it to the Pathname box, and edit as
needed.

 2 Click a directory in the Directories list.

 3 Click either Add after or Add before to indicate where to place the directory.

To change a directory:

 1 Click a directory in the Directories list.

 2 Click Copy to copy the directory to the Pathname text box.

 3 Make the desired changes.

 4 Click Change.

To delete a directory:

 1 Click a directory in the Directories list.

 2 Click Delete.
105

Creating GUI Virtual User Scripts (UNIX) • Programming with TSL
Defining Parameters

A parameter is a variable that is assigned a value from outside the script in
which it is defined. You can define one or more parameters for a script; any
calling script must then supply values for these parameters.

For example, you might define two parameters (starting_x and starting_y) for
a script. The intended function of these parameters is to assign a value to the
initial mouse position when the script is called. Subsequently, two values
supplied by a calling script would supply the x and y coordinates of the
mouse pointer.

Parameters are defined for a script using the Test Header dialog box. The
parameter list displays the names of all parameters defined for the script.

The Test Header dialog box includes the following fields and buttons:

Parameter Name: A text box where you can type in the name of new or
changed parameters.

Author: The name of the script developer.

Date: The day, date and time of script creation (system-supplied).

AUT Function: A text box that you can use to specify the name of the AUT
function.

Functional Spec Traceback: A text box that you can use to reference the
relevant section in the AUT functional specifications.

Parameter list displays all
available parameters.
106

Chapter 18 • Calling Scripts
Description: A text box that you can use to describe the current script in
detail.

Add After/Add Before: Adds the parameter in the text box immediately
before or after the highlighted parameter in the list.

Delete button: Deletes the highlighted parameter in the Parameter list.

To define a new parameter:

 1 Type the name of the parameter in the Parameter Name box.

 2 Click one of the parameters in the list and then click either Add After or Add
Before.

 3 Note that the order in which parameters are listed determines which value is
assigned to a parameter by the calling script, since parameter values are
assigned sequentially.

 4 Click OK to complete the operation and close the dialog box.

To delete a parameter from the parameter list:

 1 Click the name of the parameter to delete.

 2 Click Delete.

 3 Click OK to complete the operation and close the dialog box.

Parameter Scope

The parameter defined in the called script is known as a formal parameter.
Test parameters can be constants, variables, expressions, array elements, or
complete arrays.

Parameters that are expressions, variables, or array elements are evaluated
and then passed to the called script by value. This means that a copy is
passed to the called script. This copy is local; if its value is changed in the
107

Creating GUI Virtual User Scripts (UNIX) • Programming with TSL
called script, the original value in the calling script is not affected. For
example:

In the calling script (script_1), the variable i is assigned the value 5. This
value is passed on to the called script (script_2) as the value for the formal
parameter x. Note that when a new value (8) is assigned to x in script_2, this
change does not affect the value of i in script_1.

Complete arrays are passed by reference. This means that, unlike array
elements, variables, or expressions, they are not copied. Any change made
to the array in the called script influences the corresponding array in the
calling script. For example,

In the calling script (script_q), element 1 of array a is assigned the value 17.
Array a is then passed to the called script (script_r), which has a formal
parameter x. In script_r, the first element of array x is assigned the value 104.
Unlike the previous example, this change to the parameter in the called
script does affect the value of the parameter in the calling script, because the
parameter is an array.

Once again, with the exception of arrays, formal test parameters are local to
the script for which they are defined. Changes made to them do not affect

script 1 (calling_script)
i = 5;
call script 2(i);
print(i); # prints "5"

script 2 (called script), with
formal parameter x
x = 8;
print (x); # prints "8"

script q
a[1] = 17;
call script r(a);
print(a[1]); # prints "104"

script r, with parameter x
x[1] = 104;
108

Chapter 18 • Calling Scripts
variables of the same name outside of the script, and their values are lost
when the script is completed. For example:

The value of variable c in script_z is changed. However, since this variable is
a formal parameter of script_z, it is local. Therefore, the value of variable c in
script_y is not affected.

All undeclared variables that are not on the formal parameter list of a called
script are global and may be accessed and altered from another called, or
calling script. If a parameter list is defined for a script, and that script is not
called but is run directly, then the parameters function as global variables
for the run. For more information about variables, refer to the TSL Online
Reference.

The script segments below summarize the difference between local and
global variables. Note that script_a is not called but is run directly.

script y
c = 12;
call script z(c);
print(c); # prints "12"

script z, with parameter c
c = 42;

script a, with parameter k
i = 1;
j = 2;
k = 3;
call script b(i);
print(j & k & l);
prints ’2 5 6’

script b, with parameter j
j = 4;
k = 5;
l = 6;
print (i & j & k);
prints ’1 4 5’
109

Creating GUI Virtual User Scripts (UNIX) • Programming with TSL
110

Part V

Advanced VXRunner Features
111

Creating GUI Virtual User Scripts (UNIX)
112

19
Creating Initialization Scripts

Using initialization scripts, you can ensure that each time VXRunner is
invoked, it is configured correctly for your scripts. This saves time and
guarantees uniform conditions.

This chapter describes how to use initialization scripts.

About Initialization Scripts

You can use initialization scripts to customize VXRunner to your
requirements. The types of data inserted into an initialization script can
include load statements that load compiled modules containing user-
defined functions.

By creating an initialization script, each time you invoke VXRunner all
needed functions are compiled. You can create an initialization script for a
group of users, or you can create initialization scripts for each individual
user.

Types of Initialization Scripts

The different types of initialization scripts are as follows:

➤ The first level initialization script is named tslinit. This is a system-wide
initialization script provided with VXRunner which resides under
$M_ROOT/dat. This script contains internal information needed by
VXRunner, and should not be changed (any modifications will be erased
when you install the next VXRunner).
113

Creating GUI Virtual User Scripts (UNIX) • Advanced VXRunner Features
➤ The second level initialization script is optional. You define the
environment variable XR_TSL_INIT so it points to the full path of this script.
This script can be used to customize VXRunner for a group of users using the
same application. For example:

setenv XR_TSL_INIT /qa/share/qinit

➤ The third level initialization script (also optional) is the tslinit script stored
in your home directory. This script can be used to tailor VXRunner to your
individual needs.

Each time VXRunner is started, the three scripts are searched for and are run
sequentially before the VXRunner window is displayed.
114

20
Using Regular Expressions

You can use regular expressions in many different ways to increase the
flexibility and adaptability of your scripts.

This chapter describes:

➤ Using regular expressions

➤ Regular Expression Syntax

About Regular Expressions

Regular expressions can be used in several different ways:

➤ For synchronization wait_window TSL statement: to indicate the window
name.

➤ For text recognition with the find_text function: to indicate the string to
locate.

VXRunner regular expressions include options similar to some of those
offered by the UNIX grep command. For additional information, see the
UNIX manpages for ed(1).

Regular Expression Syntax

All regular expressions must begin with an exclamation point (!). Any
character that is not one of the special characters described below is
searched for literally. When a special character is preceded by a backslash,
VXRunner searches for the literal character.
115

Creating GUI Virtual User Scripts (UNIX) • Advanced VXRunner Features
The following options can be used to create regular expressions:

Matching Any Single Character

A period (.) instructs VXRunner to search for any single character. For
example,

welcome.

matches welcomes, welcomed, or welcome followed by a space or any other
single character. A series of periods indicates a range of unspecified
characters.

Matching Any Single Character within a Range

In order to match a single character within a range, you can use square
brackets ([]). For example, to search for a date which is either 1968 or 1969,
write:

196[89]

You can use a hyphen (-) to indicate an actual range. For instance, to match
any year in the 1960s, write:

196[0-9]

Brackets can be used in a physical description to specify the label of a static
text object that may vary.

A hyphen does not signify a range if it appears as the first or last character
within brackets, or after a caret (^).

A caret (^) instructs VXRunner to match any character except for the ones
specified in the string. For example:

[^A-Za-z]

matches any non-alphabetic character. The caret has this special meaning
only when it appears first within the brackets.

Note that within brackets, the characters “.”, “*”, “[“ and “\” are literal. If
the right bracket is the first character in the range, it is also literal. For
example:
116

Chapter 20 • Using Regular Expressions
[]g-m]

matches the right bracket, and g through m.

Matching One or More Specific Characters

An asterisk (*) instructs VXRunner to match zero or more occurrences of the
preceding character. For example:

Q*

causes VXRunner to match Q, QQ, QQQ, etc. In the following
wait_window statement, the regular expression causes VXRunner to find
any text editor window.

Because the asterisk follows a period, VXRunner locates any combination of
characters. You could also use a combination of brackets and an asterisk to
limit the window banner name to a combination of non-numeric characters
only:

wait_window (3, "", "!Text Editor.*", 560, 560, 30, 30);

wait_window (3, "", "!clock-\[[a-zA-Z]*\]", 560, 560, 30, 30);
117

Creating GUI Virtual User Scripts (UNIX) • Advanced VXRunner Features
118

21
Setting System Variables

VXRunner provides several ways to view and set the system variables that
affect script replay.

This chapter describes:

➤ Setting System Variables from within the Script

➤ The Controls Dialog Box

➤ The Test Environment Dialog Box

➤ System Variables

About System Variables

VXRunner system variables affect various aspects of script replay.

Each system variable has a default value, listed in the system configuration
file. System variables can be set before or during script execution. You can
set system variables in two ways:

➤ through the Controls dialog box

➤ with the setvar function

Setting System Variables from within the Script

The getvar and setvar built-in functions allow you to read and assign values
of system variables from within a script. Using these functions, you can
locally modify parameter values during execution as required. For example,
you might want to conditionally set different replay speeds for certain
119

Creating GUI Virtual User Scripts (UNIX) • Advanced VXRunner Features
sections of the script, depending on the value returned to some user-defined
variable. Note that some variables are read-only. The list under setvar
indicates the variables that can be set.

getvar

The getvar function is used to retrieve the current value of a system
variable. The syntax of this statement is:

user_variable = getvar (system_variable);

In this function, system_variable may specify any one of the following:

For example:

assigns the current value of the replay speed to the user-defined variable,
nowspeed.

setvar

The setvar function is used to set the current value of a system variable from
within the script. This function has the syntax:

setvar (system_variable, value);

nowspeed = getvar ("speed");

beep
click_delay
curr_dir
dblclk_time
delay
exp
fast_replay
focus_delay

kbd_delay
key_editing
line_no
mismatch_break
move_windows
raise_windows
result
searchpath

synchronize
speed
sync_mode
sync_time
sysmode
testname
timeout
120

Chapter 21 • Setting System Variables
In this function, system_variable may specify any one of the following:

For example:

Sets the break on mismatch system variable to off. A variable retains a value
until it is reassigned from within the script, or from the Controls dialog box.

You can use a combination of getvar and setvar statements to control script
execution. For example, in the following script fragment, VXRunner checks
the image win_2. The getvar and setvar functions are used to control the
value of the timeout and delay system variables. The getvar statement is used
to retrieve the values of timeout and delay, and setvar is used to assign values
to these variables. After the window is checked, setvar is used to return
timeout and delay to their original values.

setvar ("mismatch_break", "off");

t = getvar ("timeout");
d = getvar ("delay");

setvar ("timeout", 30);
setvar ("delay", 3);

wait_window (2,"","calculator",261,269,93,42);

setvar ("timeout", t);
setvar ("delay", d);

beep
click_delay
curr_dir
dblclk_time
delay
exp
fast_replay

focus_delay
kbd_delay
key_editing
mismatch_break
move_windows
raise_windows
result

searchpath
synchronize
speed
sync_mode
sync_time
timeout
121

Creating GUI Virtual User Scripts (UNIX) • Advanced VXRunner Features
The Controls Dialog Box

The Controls dialog box allows you to set values for system variables. You
can set values before script execution. Note that certain system variables
cannot be set from the Controls dialog box.

The Controls dialog box appears when you select Options > Controls.
Changes made in the dialog box are implemented after you click the OK
button.

You can return all system variables to their default values by clicking
Defaults and then clicking OK. The default values are determined by the
configuration parameters in the system configuration file.
122

Chapter 21 • Setting System Variables
The Test Environment Dialog Box

The Test Environment dialog box contains a list of read-only fields that
provide general information about the current script. To view the System
Variables dialog box, select Options > Test Environment.

System Variables

The following section describes VXRunner’s system variables in detail. The
default value for each system variable is listed in Appendix A, “VXRunner
Configuration Files.”

beep
Causes VXRunner to issue a beep each time a window is checked. The
default value is set by the XR_BEEP configuration parameter.

click_delay
Determines the amount of time that VXRunner waits after interpreting a
single click of a mouse button. During fast replay, using a longer click_delay
ensures that two consecutive single clicks are not misinterpreted as a
double-click. Note: This does not apply to double-clicks. If a double-click is
recorded, it replays as a double-click regardless of the value of the click_delay.
The click_delay is expressed in tenths of a second. The click_delay default
value is set by the XR_CLICK_DELAY parameter.

curr_dir
Indicates the current working directory for the test. There is no default value
for this variable.
123

Creating GUI Virtual User Scripts (UNIX) • Advanced VXRunner Features
dblclk_time
Defines the maximum interval (in tenths of a second) that can constitute a
pause between consecutive clicks of a double-click. It is advised to make the
dblck_time consistent with your system default. The dblck_time system
variable is listed as double click time on the Controls dialog box. The
dblck_time default value is set by the XR_DBLCLK_TIME parameter.

delay
During replay when VXRunner reads a check_window statement, it
captures the window only when it determines that the window is stable. For
example, when delay is two seconds, and timeout is ten seconds, VXRunner
checks the AUT window every two seconds until two consecutive checks
produce the same results, or until ten seconds have elapsed. The delay
default value is set by the XR_RETRY_DELAY parameter. Setting the delay
variable to 0 disables all image checking.

exp
The full pathname of the expected results directory associated with the
current execution of the test. There is no default value for this parameter.

fast_replay
Replays tests at the fastest speed at which the AUT is capable of receiving
input. Selecting fast_replay disables the speed bar in the Controls dialog box.
The fast_replay default value is set by the XR_FAST_REPLAY parameter.

focus_delay
Determines the interval (in tenths of second) that VXRunner waits from the
time the mouse is moved to a new window until input is entered during
replay. This variable is particularly important during fast replay. Focus_delay
ensures that VXRunner does not send keystrokes to the new window before
this window is ready to receive them. The focus_delay default value is set by
the XR_FOCUS_DELAY parameter.

key_editing
Generates more concise type statements so that they represent only the net
result of pressing and releasing input keys. This makes your test script easier
to read. Whenever the exact order of keystrokes is important for your test,
you should disable key_editing.

For example, typing the letter “A” with key_editing off, produces the
following statement:
124

Chapter 21 • Setting System Variables
type ("<kShift>-a-<kShift>+a+");

With key_editing on, the statement is:

type ("A");

For more information on key_editing, see the type function in the TSL Online
Reference. The default value is set by the configuration parameter
XR_KEY_EDITING.

kbd_delay
Defines the delay (in tenths of a second) that VXRunner waits after
replaying keyboard input. The keyboard_delay system variable is listed as

KEYBOARD DELAY on the Controls dialog box. The keyboard_delay default value
is set by the XR_KBD_DELAY parameter.

line_no
Displays the current line of the execution marker in the test script. There is
no default value for this variable.

move_windows
Causes VXRunner to automatically return a window to the location
specified in a wait_window statement.

If you deactivate move_windows, you must take measures to ensure that
during replay, each AUT window opens at the same screen location as when
the test was recorded. The default value is set by the XR_MOVE_WINDOW
parameter.

raise_windows
Brings the window to be checked to the front of the screen display during
replay. The default value is set by the XR_RAISE_WINDOW parameter.

result
The full pathname of the results directory during a verification run. There is
no default value for this variable.

searchpath
The path(s) which VXRunner searches for called tests. The searchpath value
is set by the XR_SEARCH_PATH parameter.
125

Creating GUI Virtual User Scripts (UNIX) • Advanced VXRunner Features
speed
The speed at which a test script is replayed. At 0, the test is played back
using the time parameters recorded in the script. If the speed is set to +5, the
test is played back approximately five times faster than the speed at which it
was recorded. Setting the speed to -5 causes the test to be executed at
approximately one fifth the specified speed.

To set execution speed, either drag the square marker on the speed bar in the
Controls dialog box or type the desired value in the Replay Speed field. The
values displayed on the Speed Bar can be configured using the
XR_SPEED_RANGE parameter.

synchronized
Causes VXRunner to monitor X Server messages and send input to the AUT
only when it is ready to receive it. This ensures that even if VXRunner’s
replay speed is modified, or the AUT responds more slowly during replay
than during recording, input will not be lost.

By default, test replay is synchronized (the box is checked). When
synchronized is not checked, VXRunner ignores synchronization information
and replays the test at the speed at which it was recorded. The default value
for synchronize is set by the XR_SYNCHRONIZED parameter.

sync_time
VXRunner synchronizes test execution by monitoring communication
between the AUT and the X Server. When an event is not received,
VXRunner waits up to the predefined sync_time (in seconds) and then
continues execution. The sync_time default value is set by the XR_SYNC_TIME
parameter.

sysmode
The current mode: either Replay or Verify.

testname
The full pathname of the current test. There is no default value for this
parameter.

timeout
The maximum time that VXRunner waits for the execution of
wait_window statements during replay, before proceeding to the next
126

Chapter 21 • Setting System Variables
statement. The maximum time is calculated by adding the time parameter of
the statement to the timeout variable.

For example, in the statement:

if the timeout variable is 10 seconds, this operation takes a maximum of 12
(2+10) seconds. The default value for the timeout variable is set by the
XR_TIMEOUT parameter in the system configuration file.

wait_window (2, "", "calculator", 120, 240, 85, 150);
127

Creating GUI Virtual User Scripts (UNIX) • Advanced VXRunner Features
128

22
Synchronizing Problematic Windows

Some windows that are redrawn slowly require the adjusting of one or more
system variables in order to ensure reliable script replay.

This chapter describes:

➤ How System Variables Affect wait_window Functions

➤ Adjusting the Timeout Interval

➤ Setting the Delay

About Synchronizing Problematic Windows

Some “problematic” windows— such as large windows that are redrawn
slowly—require the adjusting of one or more system variables in order to
ensure reliable execution of wait_window statements.

The execution of wait_window functions is affected by the values you set
for the following system variables:

➤ timeout

➤ delay

➤ move_windows

➤ raise_windows

The values of system variables can be modified either using the Controls
dialog box or from within a script by using the setvar statement. For a
detailed description of each of these variables and how they can be set, see
Chapter 21, “Setting System Variables.”
129

Creating GUI Virtual User Scripts (UNIX) • Advanced VXRunner Features
The following examples demonstrate how system variables affect the
execution of the wait_window function. For each example, assume that the
following values are assigned to the VXRunner configuration parameters:

How System Variables Affect wait_window Functions

The following example illustrates how various system variables affect the
execution of a wait_window function.

When this statement is executed, VXRunner first sets a time limit of 17
seconds for the wait_window operation. (This is the value of the time
parameter plus the timeout system variable.) VXRunner then waits for the
appearance of a window named calctool having a width of 400 and a height
of 300 pixels.

Suppose that the calctool window takes 3 seconds to come up on the screen.
When it appears, VXRunner repositions the window so that its upper left
corner is located at screen coordinate 120, 180. VXRunner now monitors
the calctool window to determine if it is stable. If no input is sent to the
window for the delay period (2 seconds), then the window is stable and
VXRunner moves on to the next line of the script. If there have been
changes to the calctool window, VXRunner waits a further 2 seconds before
rechecking the window. VXRunner repeats this process until either the
window is stable or the time limit (17 seconds) is reached.

Configuration Parameter Value

TIMEOUT 10 (seconds)

DELAY 2 (seconds)

MOVE_WINDOWS "on"

RAISE_WINDOWS "on"

wait_window(7, "", "calctool", 400, 300, 120, 180);
130

Chapter 22 • Synchronizing Problematic Windows
Adjusting the Timeout Interval

Drawing applications such as DrawTool allow you to issue a “zoom”
command. When you give this command, the program starts a complex and
lengthy calculation and the enlarged image is gradually displayed. The
content of the window changes continuously until the zoom operation is
completed.

In your script, you may want execution to wait until the final zoomed image
is displayed before entering any further input to the application. To do this,
when recording the script, move the pointer into the window after the
zoomed image is displayed and press the WAIT WINDOW softkey. (See the last
page of this manual for a list of the default softkey definitions.) A statement
like the following is generated in the TSL script:

When the script is played back, this statement fails if the value recorded for
the time parameter (56 seconds) is too small to allow the lengthy calculation
to be completed and the desired image to be displayed.

To ensure that the screen has sufficient time to come up, increase the
specified time to 100 seconds. Note that this does not waste time, since
VXRunner continues to the next statement as soon as the window is stable.

Setting the Delay

Suppose that you want to wait for a window of DrawTool to be redrawn.You
can use the WAIT REDRAW softkey to produce a statement such as the
following:

During script replay, you may discover that VXRunner samples the window
twice and then moves on to the next line before the window is redrawn.
This occurs if the intervals between consecutive samplings are too short. For
example, if the redraw starts after 20 seconds and VXRunner samples the

wait_window (56, "", "DrawTool", 800, 600, 100, 100);

wait_window (150, "", "DrawTool", 900, 700, 125, 116);
131

Creating GUI Virtual User Scripts (UNIX) • Advanced VXRunner Features
window every two seconds, then after the first two samplings VXRunner
concludes that the window is stable and has been completely redrawn.

VXRunner allows you to adapt the script to the behavior of a specific
window by controlling the delay system variable. For a window that is
redrawn slowly, you can use the getvar and setvar functions from within
the script to temporarily increase the delay. For example:

In the above example, VXRunner samples the window every thirty seconds.
This is enough time for a change to appear in the window. VXRunner
therefore concludes that the window is redrawn if no input is sent to the
DrawTool window for a 30 second period.

old_delay = getvar("delay");

sample window every 30 seconds
setvar("delay", 30);
wait_window(150,"", "DrawTool",900,700,125,116);

revert to previous value
setvar("delay", old_delay);
132

Part VI

GUI Vuser Script Programming Reference
133

Creating GUI Virtual User Scripts (UNIX)
134

23
Function Reference

The following pages provide an alphabetical reference of all TSL functions
specific to LoadRunner GUI Vuser scripts. These functions are defined in the
vxrlib module, which is loaded automatically by the tslinit startup script. For
a full list of TSL functions, see the TSL Online Reference.

The name of each function, along with a brief description, appears at the
top of the page. The following information is also provided for each
function:

➤ complete syntax

➤ parameter definitions

➤ details on how the function works

➤ an example of the function

➤ return value

Return Values

All LoadRunner functions return one of the following return values. These
constants are predefined in the system initialization script.

Code Name Description

0 E_OK Operation successful.

-10001 E_GENERAL_ERROR A general error. For example, memory
allocation has failed.

-10002 E_NOT_FOUND Object was not found.
135

Creating GUI Virtual User Scripts (UNIX) • GUI Vuser Script Programming Reference
-10003 E_NOT_UNIQUE More than one object has the same
name.

-10007 E_FILE_OPEN Could not open file.

-10008 E_WRITE_ERROR Could not perform write operation.

-10014 E_OPERATION_ABORTED The operation was aborted.

-10016 E_TIMEOUT Timeout was reached before
operation could be performed.

-10017 E_COMM Operation did not succeed due to
communication problems.

-10201 E_SG_NF The specified Group could not be
found.

-10202 E_VU_NF The specified Vuser could not be
found.

-10203 E_ATTR The set attribute is not legal.

-10204 E_VU_LOST The system has lost the Vuser.

-10205 E_HOST_NF The given host could not be found.

-10206 E_SHADOWS_NF The given shadow server could not be
found.

-10207 E_PATH_NF The executable file could not be
located.

-10208 E_PARTIAL_ERROR The operation partially succeeded.

-10209 E_SC_NF The scenario object could not be
found.

-10210 E_NAME_IL The name is illegal.

-10211 E_PARAMETER_IL The specified parameter is illegal.

-10212 E_OP_IL The operation is illegal. For example,
deleting a running Vuser or running a
Vuser which is not loaded.

Code Name Description
136

Chapter 23 • Function Reference
-10213 E_RANGE The provided value is out of range.

-10214 E_FAIL The operation failed.

-10215 E_APP_NOT_FOUND The application object was not
found.

-10216 E_APP_EXIST The application object already exists.

-10217 E_NO_LICENSE The appropriate license was not
found.

-10218 E_REND_NF No such rendezvous was defined in
the current scenario.

-10219 E_REND_NOT_MEM The Vuser was not defined as a
participant in the designated
rendezvous.

-10220 E_REND_INVALID The specified rendezvous is currently
in the invalid state (valid = off).

Code Name Description
137

Creating GUI Virtual User Scripts (UNIX) • GUI Vuser Script Programming Reference
declare_rendezvous
declares a rendezvous.

declare_rendezvous (rendezvous_name);

rendezvous_name A string that is the name of a rendezvous created in the
scenario script. The rendezvous_name must be a string
constant and not a variable or an expression.

Each rendezvous in the Vuser script must be declared at the beginning of the
Vuser script.

Example

In the following example, the rendezvous “load_10” is declared:

declare_rendezvous ("load_10");

See Also

rendezvous
138

Chapter 23 • declare_transaction
declare_transaction
declares a transaction.

declare_transaction (transaction_name);

transaction_name A string that is the name of a transaction created in the
scenario script. The transaction_name must be a string
constant and not a variable or an expression.

Each transaction in the Vuser script must be declared at the beginning of the
Vuser script.

Example

In the following example, two transactions are declared:

declare_transaction ("deposit");
declare_transaction ("withdraw");

See Also

start_transaction, end_transaction
139

Creating GUI Virtual User Scripts (UNIX) • GUI Vuser Script Programming Reference
end_transaction
marks the end of a transaction for performance analysis.

end_transaction (transaction_name, [status]);

transaction_name A string expression that names the transaction. The
string cannot contain any spaces.

status Optional parameter that tells LoadRunner to measure
the transaction if it either passed or failed. Set this
parameter to PASS, (0) or to FAIL (any non-zero value).
The default value is PASS.

To indicate a transaction to analyze, use the start_transaction and
end_transaction functions. These are inserted immediately before and after
the transaction, and enable LoadRunner to measure the time it takes for the
transaction to be performed.

Transactions can be nested, but each end_transaction statement must be
associated with a start_transaction statement or it will be interpreted as an
illegal command. Remember that for the transaction time to be meaningful,
you should include a synchronization function before the end of the
transaction.

The transaction time is written once the end_transaction statement is
interpreted. If you do not end the transaction, then no duration time will be
recorded. The next time a start_transaction statement with the same
transaction name is interpreted, the timing restarts at 0.

Note that each transaction in the Vuser script must be declared at the
beginning of the Vuser script. You declare transactions using the
declare_transaction function.

Example

In the following example, the deposit “transaction” measures the time it
takes for a Vuser to deposit fifty dollars at an ATM. Once the deposit is
completed and returns a value to the variable status, the transaction is
completed.
140

Chapter 23 • end_transaction
#Declare the transaction name.
declare_transaction ("deposit");

Move mouse to Deposit button.
move_locator_abs (127, 198, 0);

Click left mouse button.
click ("Left");

Move to amount field.
move_locator_abs (141, 350,0);

Type in $50.
type ("50");

Move to the OK button.
move_locator_abs (135, 378, 0);

Define a Deposit transaction.
start_transaction ("deposit", ONINPUT);

Click on the OK button.
click ("Left");

Wait for “Done” to appear in the ATM window.
wait_text ("Done", 5, ret_text, ret_index, 0, 0, 500, 500, ret_bbox);

End Deposit transaction.
if (rc == 0)

end_transaction ("deposit", PASS);
else

end_transaction ("deposit" , FAIL);

Return Values

This function returns 0 if the operation is successful or a non-zero value if
the operation fails. For more information, see the Return Values table on
page 135.

See Also

start_transaction, declare_transaction
141

Creating GUI Virtual User Scripts (UNIX) • GUI Vuser Script Programming Reference
error_message
sends an error message to the Output window.

error_message (message);

message Any string.

This function enables a Vuser script to send an error message to the
LoadRunner Controller. The message is displayed in the Output window
during execution, and will be stored with the Virtual User test results. The
message appears in the Execution report if the errors option is selected.

Example

In the following example, the Vuser script sends an error message if a
specific value is not met.

if (ret_code < 0){
lr_whoami(vu_num, grp_name);
mess = sprintf("Vuser %s from Group %s can’t read the file: %s",vu_num,

grp_name,
file_name);
error_message(mess);
texit(1);

}

Return Values

This function returns 0 if the operation is successful or a non-zero value if
the operation fails. For more information, see the Return Values table on
page 135.

See Also

output_message
142

Chapter 23 • expect_text
expect_text
ignores all the text currently displayed.

expect_text ();

The expect_text function is used in conjunction with the wait_text
function to synchronize script replay. The expect_text function instructs
VXRunner to ignore all the text currently displayed in the active window
and wait for the string defined in the wait_text statement to appear.

Example

In the following example, the deposit transaction is defined to measure how
long it takes for a Vuser to deposit fifty dollars using an ATM application.
The expect_text statement instructs VXRunner to ignore all strings
currently displayed in the ATM window. The wait_text function instructs
VXRunner to wait for the “Done” message to appear. When the message
appears, script replay is resumed and the time taken to perform the deposit
transaction is recorded.

Ignore the text in the ATM window.
expect_text ();

Mouse pointer moved to deposit button.
move_locator_abs (10, 10, 0);

Start measuring deposit operation.
start_transaction ("deposit", ONINPUT);

Click left mouse button on deposit button.
click ("left");

Wait for the string “Done” to appear.

Wait for “Done” to appear in the ATM window.
rc = wait_text ("Done", 5, ret_text, ret_index, 0, 0, 500, 500, ret_bbox);

End Deposit transaction.
if (rc == 0)

end_transaction ("deposit", PASS);
else

end_transaction ("deposit", FAIL);
143

Creating GUI Virtual User Scripts (UNIX) • GUI Vuser Script Programming Reference
Return Values

This function returns 0 if the operation is successful or a non-zero value if
the operation fails. For more information, see the Return Values table on
page 135.

See Also

wait_text, start_transaction, end_transaction
144

Chapter 23 • get_host_name
get_host_name
returns the name of the host that is replaying the current Vuser script.

get_host_name ();

This function returns the name of the host that is running the current
script. Any Virtual User or scenario script can use this function to determine
the name of its host.

Example

In the following example the my_host_name statement gets the host name
and displays it in the Output window and in the execution report.

my_host_name = get_host_name();
pause("my local host name is:" & my_host_name);

Return Values

This function returns the host name if the operation is successful or null if
the operation fails.

See Also

lr_whoami, get_master_host_name
145

Creating GUI Virtual User Scripts (UNIX) • GUI Vuser Script Programming Reference
get_master_host_name
returns the name of the LoadRunner host machine.

get_master_host_name ();

This function enables a Vuser script to determine the host machine of the
LoadRunner Controller.

Example

In the following example, the Vuser script reads the Vuser host and the
LoadRunner Controller host names. The print function sends this
information to the standard output file.

my_host_name = get_host_name()
master_hostname = get_master_host_name();
print("my local host name is: " & my_host_name);
print("The LoadRunner Controller is running on host: " & master_hostname);

Return Values

This function returns the host name if the operation is successful or null if
the operation fails.

See Also

get_host_name
146

Chapter 23 • lr_whoami
lr_whoami
returns information about the Vuser currently executing the script.

lr_whoami (vuser, group, scenario_id);

vuser The output variable that stores the id of the Vuser.

group The output variable that stores the name of the Group.

scenario_id The output variable that stores the internal id of the
scenario.

This function returns information about the Vuser currently executing a
Vuser script. In the Virtual User Development Environment, the function
will always return the value 0 for vuser, "dev_group" for group, and the actual
scenario id. If you are not interested in one of the values, place a NULL
parameter in its place.

Example

In the following example, the Vuser script reads the Vuser information and
prints this information to standard output before calling a login function.
The pause statement displays this information in a popup window.

lr_whoami (vuser, group, NULL);
print ("Virtual User:"& vuser & "Group:"& group &“ starting login...");

Return Values

This function returns 0 if the operation is successful or a non-zero value if
the operation fails. For more information, see the Return Values table on
page 135.

See Also

get_host_name, get_master_host_name
147

Creating GUI Virtual User Scripts (UNIX) • GUI Vuser Script Programming Reference
output_message
sends a message to the Output window.

output_message (message);

message Any string.

This function enables a Vuser script to send a message to LoadRunner. The
message will be displayed in the Output window during execution, and will
be stored with the Vuser test results. The message will appear in the
Execution report, if the errors option is selected.

Example

In the following example, the Vuser script sends a message if a specific value
is met.

if (ret_code ==0){
lr_whoami(vu_num, grp_name);
mess = sprintf("Vuser %s from Group %s is OK: %s",vu_num, grp_name);
output_message(mess);
texit(1);

}

Return Values

This function returns 0 if the operation is successful or a non-zero value if
the operation fails. For more information, see the Return Values table on
page 135.

See Also

lr_whoami, error_message
148

Chapter 23 • rendezvous
rendezvous
sets a rendezvous point in a Vuser script.

rendezvous (rendezvous_name);

rendezvous_name A string that is the name of a rendezvous created in the
scenario script.

This statement indicates a rendezvous point in a Vuser script. When this
statement is interpreted, the Vuser script will stop and the Vuser will wait for
permission from LoadRunner to continue.

Note that in the Virtual User development environment, rendezvous will
not have any effect. It is not possible to test a rendezvous in the Virtual User
Development Environment since the environment contains only a single
Vuser, which is not part of a scenario. For more information, refer to the
LoadRunner Controller User’s Guide.

Example

In the following example, a rendezvous begins immediately before a deposit
transaction.

Start monitoring ATM window for strings.
expect_text ();

Set the rendezvous point.
rendezvous ("multi_deposit");

Define a Deposit transaction.
start_transaction ("deposit");

.

.

.

End transaction.
end_transaction ("deposit")
149

Creating GUI Virtual User Scripts (UNIX) • GUI Vuser Script Programming Reference
Return Values

This function returns 0 if the operation is successful, or one of the following
error codes if it fails:

See Also

declare_rendezvous

Code Name Description

0 E_OK Operation successful.

-10016 E_TIMEOUT Timeout was reached before
operation could be performed.

-10218 E_REND_NF No such rendezvous was defined in
the current scenario.

-10219 E_REND_NOT_MEM The Vuser was not defined as a
participant in the designated
rendezvous.

-10220 E_REND_INVALID The specified rendezvous is currently
in the invalid state (valid = off).
150

Chapter 23 • start_transaction
start_transaction
marks the beginning of a transaction for performance analysis.

start_transaction (transaction_name [, when]);

transaction_name A string expression that names the transaction. The
string must not contain any spaces.

when Determines when the function begins to measure the
transaction time. The possible values are NOW and
ONINPUT. When you select NOW (the default), trans-
action measurement begins as soon as the function is
interpreted. When you select ONINPUT, transaction
measurement begins when the first input after the
start_transaction command is generated.

To indicate a transaction to be analyzed, use the start_transaction and
end_transaction functions. These are inserted immediately before and after
the transaction, and enable LoadRunner to measure the time it takes for the
transaction to be performed.

Transactions can be nested, but each end_transaction statement must be
associated with a start_transaction statement or it will be interpreted as an
illegal command. Remember that for the transaction time to be meaningful,
you should include a synchronization function before the end of the
transaction.

The transaction time is written once the end_transaction statement is
interpreted. If you do not end the transaction, then no duration time will be
recorded. The next time a start_transaction statement with the same
transaction name is interpreted, the timing restarts at 0.

Note that each transaction in the Vuser script must be declared at the
beginning of the Vuser script. You declare transactions using the
declare_transaction function. For more information, see Chapter 12,
“Measuring System Performance Using Transactions.”
151

Creating GUI Virtual User Scripts (UNIX) • GUI Vuser Script Programming Reference
Example

In the following example, the deposit “transaction” measures the time it
takes for a Vuser to deposit fifty dollars at an ATM. Once the deposit is
completed and returns a value to the variable status, the transaction is
completed.

#Declare the transaction name.
declare_transaction ("deposit");

Move mouse to deposit button.
move_locator_abs (127, 198, 0);

Click left mouse button.
click ("Left");

Move to amount field.
move_locator_abs (141, 350,0);

Type in $50.
type ("50");

Move to the OK button.
move_locator_abs (135, 378, 0);

Define a Deposit transaction.
start_transaction ("deposit" ,ONINPUT);

Click on the OK button.
click ("Left");

Wait for “Done” to appear in the ATM window.
wait_text ("Done", 5, ret_text, ret_index, 0, 0, 500, 500, ret_bbox);

End Deposit transaction.
if (rc == 0)

end_transaction ("deposit", PASS);
else

end_transaction ("deposit", FAIL);
152

Chapter 23 • start_transaction
Return Values

This function returns 0 if the operation is successful or a non-zero value if
the operation fails. For more information, see the Return Values table on
page 135.

See Also

declare_transaction, end_transaction
153

Creating GUI Virtual User Scripts (UNIX) • GUI Vuser Script Programming Reference
user_data_point
records a user-defined data sample.

user_data_point (sample_name, value);

sample_name A string indicating the name of the sample type.

value The value to be recorded.

This function allows you to record your own data for performance analysis.
Each time you want to record a piece of data, use this function to record the
sample name, and the value. LoadRunner automatically records the time
that the sample is recorded. After scenario execution, you can use
LoadRunner’s User Defined graph to analyze the results. For more
information, see Chapter 12, “Measuring System Performance Using
Transactions.”

Example

In the following example the user data point checks the CPU every second,
and records the result.

for (i=0;i<100;i++) {
cpu_val=cpu_check();
user_data_point (“cpu”, cpu_val);
sleep(1);

}

Return value

This function returns 0 if it succeeds, and -1 if it fails to write the sample
data.

See Also

declare_transaction, start_transaction, end_transaction
154

Chapter 23 • wait_text
wait_text
waits for a string to appear in a rectangle at a given location.

wait_text (pattern, timeout [, ret_text, ret_index, x1, y1, x2, y2,
ret_bbox]);

pattern The text that VXRunner waits for. This can be a text or
NULL string, or a regular expression. If pattern is a
NULL string, VXRunner waits for timeout if there is any
text within the specified rectangle. If there is no text
within the specified rectangle, VXRunner returns
immediately.

timeout The number of seconds that VXRunner waits for the
text to appear.

ret_text An output variable that stores the actual string that
LoadRunner identified as matching the pattern.

ret_index The index of the subexpression that was matched. If
pattern is a string ret_index will equal one when
matched. However, if pattern is a regular expression it
may include a number of or operators. In these cases,
ret_index contains the index of the matched or
subexpression. For more information, see below.

x1,y1,x2,y2 The coordinates of a rectangle that encloses the text to
be read. The pairs of coordinates designate the two
diagonally opposite corners of the rectangle.

ret_bbox An optional array that describes the exact location of
the text string within the enclosed rectangle. The array
also follows the format x1, y1, x2, y2.

Logical operators may be included in the pattern if it is a regular expression.
The logical operator or (\ |) is also supported. For example, the function
call:

wait_text ("!OK\| Error", 10, ret_text, ret_index);

sets the ret_index parameter if either the “OK” or “Error” strings are found.
The exclamation point is specific to LoadRunner and is not part of the
155

Creating GUI Virtual User Scripts (UNIX) • GUI Vuser Script Programming Reference
regular expression. If the OK string is found, the ret_text is assigned the
string “OK”, and ret_index is assigned the value 1. If the “Error” string is
found, ret_text is assigned the string “Error”, and ret_index is assigned the
value 2.

The wait_text function is often used in conjunction with the expect_text
function. The expect_text function instructs VXRunner to ignore all the
text currently displayed in the active window and wait for the string defined
in the wait_text statement to appear. For more information about these two
functions, see Chapter 13, “Emulating Server Load: Rendezvous Points.”

Example

In the following example, the deposit transaction is defined to measure how
long it takes for a Vuser to deposit fifty dollars using the ATM application.
The expect_text statement instructs VXRunner to ignore all strings
currently displayed in the ATM window. The wait_text function instructs
VXRunner to wait for the “Done” message to appear. When the message
appears script replay is resumed and the time taken to perform the deposit
transaction is recorded.

Find the window id.
win_find ("ATM", 210, 100, win_no);

Ignore the text in the ATM window.
expect_text ();

Mouse pointer moved to deposit button.
move_locator_abs (10, 10, 0);

Start measuring deposit operation.
start_transaction ("deposit", ONINPUT);

Click left mouse button on deposit button.
click ("Left");

Wait for “Done” to appear in the ATM window.
rc = wait_text ("Done", 5, ret_text, ret_index, 0, 0, 500, 500, ret_bbox);

End Deposit transaction.
if (rc == 0)

end_transaction ("deposit", PASS);
156

Chapter 23 • wait_text
else
end_transaction ("deposit", FAIL);

Return Values

This function returns 0 if the operation is successful or a non-zero value if
the operation fails. For more information, see the Return Values table on
page 135.

See Also

expect_text, start_transaction, end_transaction
157

Creating GUI Virtual User Scripts (UNIX) • GUI Vuser Script Programming Reference
158

Part VII

Appendices
159

A
VXRunner Configuration Files

In the VXRunner configuration files, you assign values to the parameters
which affect specific VXRunner functions. This appendix describes the
VXRunner configuration parameters—including their syntax and default
values.

About VXRunner Configuration Files

You can set three levels of configuration files for VXRunner:

➤ The bottom-level configuration file is vrunner.cfg. This is a system-wide
configuration file which is created by the LoadRunner installation program
and which is normally maintained by the system administrator. The file
resides in the directory $M_LROOT/dat.

Included with vrunner.cfg is machine.cfg—a file which holds all platform-
dependent items (such as keyboard configuration). This file is automatically
copied to the correct machine version by the LoadRunner installation script.

➤ The middle-level configuration file (optional) is vrunner.cfg. A system
environment variable, XR_CFG_FILE, designates the location of this file.
This file can be used to set values specific to a group of users testing the
same application.

➤ The top-level configuration file (optional) is the .vrunner file stored in your
home directory. This file can be used to tailor VXRunner to your individual
needs.

When you invoke VXRunner, these configuration files are loaded in the
order listed above. If the same system variable is assigned a value by more
than one of these files, the value set for this variable is the one specified in
the highest level configuration file.
161

Creating GUI Virtual User Scripts (UNIX) • GUI Vuser Script Programming Reference
Configuration Parameters

This section describes the function of each of the system parameters.

File Storage Parameters

XR_FILE_LOCKING = {TRUE|FALSE}
Activates VXRunner file locking.

(Default = TRUE)

XR_SEARCH_PATH = directory pathname(s)
Sets a search path for the tests stored in your LoadRunner database. Any test
stored in a directory specified by this parameter can be opened or called
using its private name.

Each directory must be designated by its full logical pathname. A space
serves as the delimiter between the pathnames of two different directories.
The order in which directories are specified determines the order in which
they are checked for the specified test.

Note that the search path must be set separately for the Scenario Script
window and for the Vuser Development Environment. In the Scenario Script
window, the search path only affects calls to other TSL scripts, and does not
affect the location of Vuser Test scripts. The full path of Vuser test scripts
must be specified.

(Default = Current Directory and $M_LROOT/lib)

XR_TMPDIR = pathname
Sets the directory in which LoadRunner will store temporary tests. Each
such test is assigned a name having the format: nonam*******, where each
asterisk is a letter or digit. These tests are created when you select File > New,
and are automatically deleted unless explicitly saved. The directory
designated by this parameter should have at least 5 megabytes of storage
available for these temporary tests.

(Default = /tmp)
162

Chapter • VXRunner Configuration Files
Input Device Parameters

XR_INP_KBD_NAME = file pathname
Designates the path and name of the keyboard definition file. This file
specifies what string will be generated in the TSL script when each key of the
system keyboard is pressed.

(Default = platform-dependent. Specified within the machine.cfg file.)

XR_INP_MKEYS = mouse_button_code string
Assigns a unique name (string) to each of the mouse buttons. When a test is
recorded, this name is the expression enclosed in the TSL mtype statement
generated whenever the specified button is activated. For example, the
default names assigned to each of the three mouse buttons (when pressed
alone as well as in conjunction with the SHIFT key) are as follows:

XR_INP_MKEYS = x01 Right S_Right \
 x02 Middle S_Middle \

 x04 Left S_Left

Note that button codes are specified here in hexadecimal notation. When
defining your mouse keys, be sure to use hexadecimal notation.

Record/Replay Command Softkeys

XR_SOFT_ABORT = softkey
Defines the ABORT softkey. Pressing this softkey is equivalent to selecting
Replay > Abort.

(Default is platform-dependent. See the Installing LoadRunner guide.)

XR_SOFT_ANIMATE = softkey
Defines the ANIMATE softkey. Pressing this softkey is equivalent to selecting
Replay > Animate.

(Default is platform-dependent. See the Installing LoadRunner guide.)

XR_SOFT_BREAKPOINT = softkey
Defines the BREAKPOINT softkey. Pressing this softkey is equivalent to
selecting Replay > Breakpoint.

(Default is platform-dependent. See the Installing LoadRunner guide.)
163

Creating GUI Virtual User Scripts (UNIX) • GUI Vuser Script Programming Reference
XR_SOFT_MARKLOCATOR = softkey
Defines the MARK LOCATOR softkey used to record the absolute coordinate
position (in pixels) of the screen pointer.

(Default is platform-dependent. See the Installing LoadRunner guide.)

XR_SOFT_PAUSE = softkey
Defines the PAUSE softkey. Pressing this softkey is Equivalent to selecting
Replay > Pause.

(Default is platform-dependent. See the Installing LoadRunner guide.)

XR_SOFT_RECORD = softkey
Defines the RECORD softkey. Pressing this softkey is Equivalent to selecting
Replay > Record.

(Default is platform-dependent. See the Installing LoadRunner guide.)

XR_SOFT_RUN = softkey
Defines the RUN softkey. Pressing this softkey is equivalent to selecting
Replay > Run.

(No default defined)

XR_SOFT_STEP = softkey
Defines the STEP softkey. Pressing this softkey is equivalent to selecting
Replay > Step.

(Default is platform-dependent. See the Installing LoadRunner guide.)

XR_SOFT_STEP_INTO = softkey
Defines the STEP INTO softkey. Pressing this softkey is equivalent to selecting
Replay > Step Into.

(Default is platform-dependent. See the Installing LoadRunner guide.)

Synchronization Softkeys

XR_SOFT_LOCATOR_WAIT_REDRAW = softkey
Defines the LOCATOR WAIT REDRAW softkey.

(Default is platform-dependent. See the Installing LoadRunner guide.)
164

Chapter • VXRunner Configuration Files
XR_SOFT_WAIT_REDRAW = softkey
Defines the WAIT REDRAW softkey.

(Default is platform-dependent. See the Installing LoadRunner guide.)

XR_SOFT_WAIT_STRING = softkey
Defines the WAIT STRING softkey.

(Default is platform-dependent. See the Installing LoadRunner guide.)

Test Execution Parameters

XR_CLICK_DELAY = integer
Sets the interval, in tenths of a second, that VXRunner waits after inputting
a single click during replay. The value assigned to this parameter in the
system configuration file can be overridden using Click Delay in the
Controls dialog box or the setvar TSL function.

(Default = 3 [tenths of a second])

XR_DBLCLK_TIME = integer
Defines the maximum permitted interval, in tenths of a second, that can
elapse between two clicks that constitute a double-click. The value assigned
to this parameter in the system configuration file can be overridden using
Double Click Time in the Controls dialog box or the setvar TSL function.
The minimum value is 10 (tenths of a second).

(Default = 10 [tenths of a second])

XR_FAST_REPLAY = {TRUE|FALSE}
Sets the default value for the Fast Replay check box in the Controls dialog
box. The value assigned to this parameter in the system configuration file
can be overridden using the Fast Replay check box in the Controls dialog
box or using the setvar TSL function. When you select this option, the
Synchronize option is automatically turned on.

(Default = FALSE, regular replay)

XR_FOCUS_DELAY = integer
Defines the interval, in tenths of a second, that VXRunner waits for a
window to come into focus when that window becomes the active window.
The value assigned to this parameter in the system configuration file can be
165

Creating GUI Virtual User Scripts (UNIX) • GUI Vuser Script Programming Reference
overridden using the Focus Delay check box in the Controls dialog box or
the setvar TSL function.

(Default = 3 [tenths of a second])

XR_KEY_EDITING = {TRUE|FALSE}
Activates or deactivates key editing. When activated, VXRunner generates
TSL type statements that are more concise. The value assigned to this
parameter in the system configuration file can be overridden using the Key
Editing check box in the Controls dialog box.

(Default = TRUE)

XR_KBD_DELAY = integer
Sets the interval, in tenths of a second, that XRunner waits after inputting a
single keyboard event during replay.

(Default = 0)

XR_MOVE_WINDOWS = {TRUE|FALSE}
Determines whether, after opening a window at some different location
during test replay, VXRunner will automatically move the window to the
position recorded in the TSL script. The value assigned to this parameter in
the system configuration file can be overridden using the Move Windows
check box in the Controls dialog box.

Note: If you set this parameter to FALSE, you will have to take measures to
ensure that, during replay, windows are opened in the correct, previously-
recorded position.

(Default = TRUE)

XR_RAISE_WINDOWS = {TRUE|FALSE}
Sets whether LoadRunner will automatically raise a moved window to the
front of the screen display. The value assigned to this parameter in the
system configuration file can be overridden using the Raise Windows check
box in the Controls dialog box.

(Default = TRUE)
166

Chapter • VXRunner Configuration Files
XR_RETRY_DELAY = integer
Sets the interval the VXRunner will wait for a window to be silent before
considering it fully redrawn and entering input. The value assigned to this
parameter in the system configuration file can be overridden using Delay in
the Controls dialog box or the setvar TSL function.

(Default = 2 [seconds])

XR_SPEED_RANGE = integer
Sets the outer limits (minimum and maximum speeds) displayed on the
speed bar control. When the default value (5) is active, you can adjust the
replay speed from one fifth to five times the speed at which the test was
recorded. (Activating Fast Replay will play back the test at the fastest rate
possible.) Note: If the value you enter for this parameter is too high, events
may be lost during test execution.

(Default = 5)

XR_SYNC_TIME = integer
Determines the maximum amount of time (in seconds) that the system
waits for an expected synchronization event before giving up and
continuing execution of the test. If this time is exceeded, replay continues
after a slight delay. The value assigned to this parameter in the system
configuration file can be overridden using Sync Time in the Controls dialog
box or the setvar TSL function.

(Default = 10 [seconds])

XR_SYNCHRONIZED = {TRUE|FALSE}
Sets whether test execution will utilize synchronization data stored in the
test database. If you set this parameter to FALSE, the reliability of test
execution may be impaired. The value assigned to this parameter in the
system configuration file can be overridden using the Synchronize check
box in the Controls dialog box or the setvar TSL function.

(Default = TRUE)

XR_TIMEOUT = integer
Sets the global timeout (in seconds) used by LoadRunner. This value is added
to the time parameter imbedded in wait_window statements to determine
the maximum amount of time that VXRunner will search for the specified
window.
167

Creating GUI Virtual User Scripts (UNIX) • GUI Vuser Script Programming Reference
(Default = 30 [seconds])

Script Display Parameters

XR_INSERT_NEWLINES = {TRUE|FALSE}
Sets whether or not VXRunner will insert a blank line before and after
check_window and wait_window statements.

(Default = TRUE)

XR_EDITOR_MAX_CHARS = integer
Determines the maximum number of characters that can be written per line
in the VXRunner window. When, during a Record session, a generated script
statement extends beyond this maximum length, the script line is split
between two or more lines.

(Default = 80)

Text Editor Parameter

XR_TEXTEDIT = text editor name
Specifies the text editor in which execution reports will be loaded. By
default, this parameter is commented. It should be uncommented only if a
text editor other than the OpenWindows textedit program is to be used.

In such a case set this parameter so that it points to the name of a script
which will activate your editor. This script should receive two parameters:
(1) the name of the X display to use and (2) the name of the file to be edited.
The script should invoke the user-specified editor. Note that the referenced
script must open a window and execute the command in the background.

(Default = textedit)

Configuration File Contents

System configuration files are text files that can include the following types
of data:

➤ assignment statements

➤ directives
168

Chapter • VXRunner Configuration Files
➤ blank lines

➤ comments

Assignment Statements

The main purpose of a configuration file is to allow the assignment of values
to VXRunner system parameters. The values assigned to these parameters
determine how the program will run. Most of these values will be defined by
the top-level (~/.vrunner) configuration file located in the $M_ROOT/dat
directory following system installation. Other parameters point to system
locations.

In addition to assignment statements used to set values for parameters, you
can assign values to user-defined variables. A typical use would be to assign
an arbitrary shorthand name to a path which may appear any number of
times in the configuration file. For example, the line

P153T = /project_15/ver_3/tests

assigns the specified pathname to the variable P153T. Whenever the name
of this variable subsequently appears in the configuration file, the associated
path will be understood. Thus if the location of the search path is specified
by the line

XR_search_path = $(P153T)/..

LoadRunner will understand that this directory resides under the pathname
/project_15/ver_3.

Note the following points:

➤ The equal sign (=) is always used to assign a value to a variable, whether this
variable is a system parameter or a user-defined variable.

➤ Whenever a user-defined variable is initiated in the file, the name of this
variable must be enclosed within parentheses; the enclosed variable name is
preceded by a dollar sign ($). Note that environmental variables may also be
accessed using the same convention.

➤ If the same item appears more than once in the configuration file, the last
value assigned to this item will be used by the system.

Regarding case sensitivity of names, note the following points:
169

Creating GUI Virtual User Scripts (UNIX) • GUI Vuser Script Programming Reference
➤ Names of variables and system parameters appearing in the configuration
file are not case sensitive.

➤ Boolean values assigned to variables or parameters are not case sensitive.

➤ Values assigned to certain system variables may be case sensitive, depending
on the nature of the variable.

Directives

The configuration file can contain one or more include directives. An
include directive is used to integrate the entire contents of the specified file
in the configuration data processed by LoadRunner. An include directive
consists of:

➤ the at sign @ in the first column of the file line

➤ the label include

➤ the @ character, followed by the name of the file (enclosed between
quotation marks) to be integrated at this point. For example:

@include "@loc_file"
.
.
@include "@/file2"

Note that each file to be integrated in the configuration data must be
specified by its own include entry.

Include directives can be nested: A file that is referenced by an include
entry in the configuration file may in turn contain its own include
directives to other files. Such nesting is supported up to ten levels. When a
relative name is used to specify the file to be integrated, the specified name
must express the location of this file relative to the file in which the calling
include directive appears.

Blank Lines and Comments

As it processes a configuration file, LoadRunner ignores blank lines and
comments. Comments may be inserted in a file using the number sign (#).
All text that appears between a number sign and the end of a line is
understood to be a comment.
170

Chapter • VXRunner Configuration Files
Line Format

When a record in the configuration file extends beyond a single line, the
backslash character (\) indicates that the record continues on the next line.

XR_INP_MKEYS = 0 x01 Right S_Right \
 0 x02 Middle S_Middle \
 0 x04 Left S_Left

In the above example, the XR_INP_MKEYS parameter is used to assign a
unique name (string) to each of the mouse buttons when pressed alone as
well as in conjunction with the SHIFT key.

When more than one value is assigned to the same parameter or user-
defined variable, the delimiter between the values is a blank space.

Special Characters

The backslash character (\) can also be used within a configuration file as an
escape character. If a record must include a special character which has a
different, reserved function, precede the special character with a backslash.
The character that follows will then be read literally by the LoadRunner
interpreter. (For example, in order that a backslash be understood as a literal
backslash, type in a double backslash [\\].)

The backslash character is also used to indicate literal carriage return
(ENTER) and tab characters in the configuration file:

Quotation marks (") can be used to indicate that two or more string
segments constitute a single value.
171

Creating GUI Virtual User Scripts (UNIX) • GUI Vuser Script Programming Reference
172

Command Softkeys
B
Command Softkeys

When you are recording and replaying GUI Vuser scripts, it is often
convenient to use softkeys instead of selecting menu options with the
mouse. The table below shows the default softkey combinations for the Sun,
IBM, HP, and DEC platforms.

Softkey combinations are configurable. If any of the default combinations
interfere with a softkey that another application uses, you can reconfigure
the LoadRunner command to another combination. For details, refer to the
Installing LoadRunner guide.

Command SUN HP IBM DEC

RECORD F4 F4 F4 F4

ANIMATE F8 F8 F8 F8

RUN Unbound Unbound Unbound Unbound

STEP F7 F7 F7 F7

STEP INTO F9 Ctrl_L+F7 F9 Ctrl_L+F7

ABORT/ STOP STOP F10 F1 Alt_L+F1

PAUSE PAUSE F11 F10 F10

BREAKPOINT F5 F5 F5 Alt_L+F7

MARK LOCATOR F6 F6 F6 F6

WAIT WINDOW F3 F3 F3 F2

GET TEXT Shift_L + F6 Shift_L + F6 Shift_L + F6 F11

WAIT TEXT Shift_L + F5 Shift_L + F5 Shift_L + F5 F1
173

A

Abort command 22
Acrobat Reader v
Add Watch command 62
Add Watch dialog box 62
Adjusting system variables 129–132
Animate command 22

B

beep system variable 123
Books Online v
Breakpoints 53–59

deleting 58
modifying 58
setting and removing 55

Built-in functions 87

C

call statement 103
Calling tests 103–109

defining parameters 106
returning to tests 104
setting the search path 105
treturn statement 104

click_delay system variable 123
compare_text function 39
Compiled modules 95–99

creating 97
incremental compilation 100
loading 97
reloading 99
structure 96
unloading 98

Configuration parameters

Index
175

176

Index
XR_CLICK_DELAY 165
XR_DBLCLK_TIME 165
XR_EDITOR_MAX_CHARS 168
XR_FAST_REPLAY 165
XR_FILE_LOCKING 162
XR_FOCUS_DELAY 165
XR_INP_KBD_NAME 163
XR_INP_MKEYS 163
XR_KEY_EDITING 166
XR_MOVE_WINDOWS 166
XR_RAISE_WINDOWS 166
XR_RETRY_DELAY 167
XR_SEARCH_PATH 162
XR_SOFT_ABORT 163
XR_SOFT_ANIMATE 163
XR_SOFT_BREAKPOINT 163
XR_SOFT_LOCATOR_WAIT_REDRAW 164
XR_SOFT_MARKLOCATOR 164
XR_SOFT_PAUSE 164
XR_SOFT_RECORD 164
XR_SOFT_RUN 164
XR_SOFT_STEP 164
XR_SOFT_STEP_INTO 164
XR_SOFT_WAIT_REDRAW 165
XR_SPEED_RANGE 167
XR_SYNCHRONIZE 167
XR_TEXTEDIT 168
XR_TIMEOUT 167
XR_TSL_INIT 114

Context Sensitive Help vi
Controls dialog box 122
curr_dir system variable 123

D

dblclk_time system variable 124
declare_rendezvous function 138
declare_transaction function 139
delay system variable 124
documentation set vi

E

end_transaction function 140
error_message function 142
exp system variable 124
177

Creating GUI Virtual User Scripts (UNIX)
expect_text function 143

F

fast_replay system variable 124
find_text function 37
focus_delay system variable 124
Functions, See User-defined functions

G

get_host_name function 78, 145
get_master_host_name function 78, 146
get_text function 35, 36
getvar function 120

H

Header command 106–107

I

image_mode system variable 124
Incremental compilation 100
Initialization tests 113–114

K

kbd_delay system variable 125
key_editing system variable 124

L

line_no system variable 125
load function 98
LoadRunner configuration files 161–171
LoadRunner testing process 7
lr_whoami function 78, 147

M

machine.cfg file 161
Monitoring array variables 63
Monitoring variables 61–66
move_windows system variable 125
178

Index
O

Online Function Reference v
Output window 77
output_message function 78, 148

P

Parameters, defining for a test 106–109
Pause command 23

R

raise_windows system variable 125
Recording Tests 17–20
Regular expressions 115–117

in find_text function 35, 36, 38
syntax 115

reload function 99
Rendezvous

declaring 74
specifying 74

rendezvous function 74, 149
Replaying Tests 21–23

Abort command 22
Animate command 22
Pause command 23
Run command 22

report_msg function 46
Reports, see test reports
result system variable 125
return statement 93
Run command 22

S

Search path, setting 105
searchpath system variable 125
setvar function 120
shared_checklist_dir system variable 126
speed system variable 126
start_transaction function 151
Step command 50
Step Into command 50
Step Out command 50
STOP softkey 18
Support Information vi
179

Creating GUI Virtual User Scripts (UNIX)
Support Online vi
sync_time system variable 126
Synchronization 73–75

test execution 26, 29
synchronized system variable 126
sysmode system variable 126
System Configuration files, see Configuration files
system function 41
System perfomance

measuring 69–80
specifying your own data for analysis 77, 79

System variables 119–127, 129–132
setting through the Controls dialog box 122
setting with setvar statement 119

T

Test Environment dialog box 123
Test Header dialog box 106
Test reports 43–46

adding messages to 46
viewing during execution 46

Test Script Language, see TSL
testname system variable 126
Text recognition 35–39

comparing text 39
reading text 36
searching for text 37

timeout system variable 126, 130
Transactions

declaring 70
marking the end of 69, 71
marking the start of 70

treturn statement 104
TSL 7
TSL overview 83–88
180

Index
arithmetical operators 84
assignment operators 86
built-in functions 87
comments 88
conditional operators 86
constants 84
control flow statements 86
logical operators 85
relational operators 85
string operators 85
variables 84

tslint test 113

U

unload function 98
user_data_point function 79, 154
User-defined functions 89–94

class 90
declaration of variables, constants and arrays 91
parameters 90
syntax 90–93

V

variables
monitoring 61
scope 108

Variables, see System variables
Virtual user, see Vuser
Virtual X Server 5
Virtual XRunner, see VXRunner
Vuser Development Environment 7, 77–80

closing 14
opening 13

Vuser scripts
converting XRunner scripts 20
creating 77–80
specifying a rendezvous 74

Vuser tests, see Vuser scripts
Vusers

GUI Vusers 3
obtaining information 77, 78
synchronizing 73–75
Vuser technology 4

VXRunner 5
181

Creating GUI Virtual User Scripts (UNIX)
W

WAIT_REDRAW softkey 18
wait_text function 155
wait_window function 26
Watch List 61–66

Adding an array 63
Assigning a value to a variable 65
Deleting expressions from the Watch List 66
Modifying a Watch List expression 64

X

xr_cfg_file 161
XRunner

converting XRunner scripts 20
running applications from within 41

xrunner.cfg file 161
182

 •

183

Mercury Interactive Corporation
1325 Borregas Avenue
Sunnyvale, CA 94089 USA
Main Telephone: (408) 822-5200
Sales & Information: (800) TEST-911
Customer Support: (877) TEST-HLP
Fax: (408) 822-5300
Home Page: www.mercuryinteractive.com
Customer Support: support.mercuryinteractive.com

	LoadRunner®
	Welcome to LoadRunner
	Online Resources
	LoadRunner Documentation Set
	Using the LoadRunner Documentation Set
	Installation Guide
	Controller User’s Guide
	Guides for Creating Vuser Scripts

	Typographical Conventions

	Understanding GUI Vusers
	Introduction
	Working with GUI Virtual Users
	GUI Virtual User Technology
	Creating Virtual User Scripts
	The LoadRunner Testing Process
	Getting Started with GUI Virtual Users

	Virtual User Development Environment (VUDE)
	Introducing xterm
	Introducing VXRunner
	Creating the Vuser Development Environment (VUDE)
	Closing the VUDE

	Working with VXRunner
	Recording GUI Virtual User Scripts
	Recording a GUI Vuser script
	Guidelines for Recording
	Converting Existing XRunner Scripts

	Replaying GUI Virtual User Scripts
	Replaying a GUI Vuser script
	Stopping Script Execution
	Pausing Script Execution

	Synchronizing GUI Vuser Script Execution
	Synchronizing Script Execution Using wait_window
	Generating wait_window Statements
	Unnamed Windows
	Windows with Varying Names

	Synchronizing Script Execution Using wait_text
	Waiting for Single Strings
	Waiting for Multiple Strings
	Generating wait_text Statements
	Waiting for the Re-appearance of a Specified String
	A Sample Synchronized Transaction

	Reading Text from the Screen
	About Text Recognition
	Reading Text
	Generating get_text Statements
	Example Using get_text

	Searching for Text
	Moving the Pointer to a String
	Clicking on a Specified Text String

	Comparing Text

	Invoking Applications with VXRunner
	About Running Applications from within VXRunner
	Using the System Command to Start an Application

	Viewing Execution Reports
	About Execution Reports
	Execution Report Format
	Report Header Section
	Report Summary Section
	Detailed Description Section

	Displaying Execution Reports
	Viewing Reports During Script Execution
	Adding Messages to Reports

	Debugging GUI Vuser Scripts
	Debugging GUI Vuser Scripts
	Running a Single Line of a GUI Vuser Script
	Running a Section of a GUI Vuser Script
	Pausing Script Execution

	Using Breakpoints
	Setting and Removing Breakpoints
	Modifying Breakpoints
	Deleting a Breakpoint

	Monitoring Variables
	Adding a Variable or Expression to the Watch List
	Adding an Array to the Watch List
	Modifying an Expression in the Watch List
	Assigning a Value to a Variable
	Deleting Expressions and Variables from the Watch List
	Deleting All Expressions and Variables

	Using LoadRunner Functions
	Measuring System Performance Using Transactions
	Declaring Transactions
	Marking the Start of a Transaction
	Marking the End of a Transaction
	A Sample Transaction

	Emulating Server Load: Rendezvous Points
	About Synchronizing Multiple Vusers
	Declaring a Rendezvous
	Specifying the Point of Rendezvous in a GUI Vuser Script
	A Sample Rendezvous

	Enhancing Scripts using LoadRunner Functions
	Sending Messages from Vuser scripts
	Obtaining Virtual User Information
	Specifying Your Own Data for Analysis

	Programming with TSL
	Introducing TSL
	Constants
	Variables
	Operators
	Arithmetical Operators
	String Operator
	Relational Operators
	Logical Operators
	Conditional Operator
	Assignment Operators

	Control-Flow Statements
	Built-in Functions
	Comments

	Creating User-Defined Functions
	Function Syntax
	Class
	Parameters
	Declarations

	Return Statement

	Creating Compiled Modules
	Compiled Module Contents
	Creating a Module
	Loading and Unloading a Compiled Module
	load
	unload
	reload

	Incremental Compilation
	Compiled Module Example

	Calling Scripts
	Using the Call Statement
	Returning to the Calling Script
	Setting the Search Path
	Defining Parameters
	Parameter Scope

	Advanced VXRunner Features
	Creating Initialization Scripts
	Types of Initialization Scripts

	Using Regular Expressions
	Regular Expression Syntax
	Matching Any Single Character
	Matching Any Single Character within a Range
	Matching One or More Specific Characters

	Setting System Variables
	Setting System Variables from within the Script
	getvar
	setvar

	The Controls Dialog Box
	The Test Environment Dialog Box
	System Variables

	Synchronizing Problematic Windows
	How System Variables Affect wait_window Functions
	Adjusting the Timeout Interval
	Setting the Delay

	Programming Reference
	Function Reference
	Return Values
	declare_rendezvous
	declare_transaction
	end_transaction
	error_message
	expect_text
	get_host_name
	get_master_host_name
	lr_whoami
	output_message
	rendezvous
	start_transaction
	user_data_point
	wait_text

	Appendices
	VXRunner Configuration Files
	Configuration Parameters
	File Storage Parameters
	Input Device Parameters
	Record/Replay Command Softkeys
	Synchronization Softkeys
	Test Execution Parameters
	Script Display Parameters
	Text Editor Parameter

	Configuration File Contents
	Assignment Statements
	Directives
	Blank Lines and Comments
	Line Format
	Special Characters

	Command Softkeys
	Index

