

Programmer’s Guide

Version 4.2.1

Bristol Technology Inc.
39 Old Ridgebury Road
Danbury, CT 06810-5113
USA
(203) 798-1007

Bristol Technology BV
Plotterweg 2A
3821 BB Amersfoort
The Netherlands
+31 (0)33 450 50 50

Printed April 3, 2005

This manual supports TransactionVision Release 4.2.1 SupportPac A.
No part of this manual may be reproduced in any form or by any means without written permission of:

Bristol Technology Inc.
39 Old Ridgebury Road
Danbury, CT 06810-5113 U.S.A.

Copyright © Bristol Technology Inc. 2000 — 2004

RESTRICTED RIGHTS

The information contained in this document is subject to change without notice.

For U.S. Government use:
Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause at 52.227-7013.

All rights reserved. Printed in the U.S.A.

The information in this publication is believed to be accurate in all respects; however, Bristol Technology
Inc. cannot assume responsibility for any consequences resulting from its use. The information contained
herein is subject to change. Revisions to this publication or a new edition of it may be issued to incorporate
such changes.

Bristol Technology® and TransactionVision® are registered trademarks of Bristol Technology Inc. The IBM
e-business logo, zSeries, z/OS, S/390, OS/390, OS/400 and WebSphere MQ are all trademarks of IBM
Corporation. All other trademarks herein are the property of their respective holders.

General Notice: Some of the product names used herein have been used for identification purposes only
and may be trademarks of their respective companies.

Part No. TV15050331 SupportPac A

Contents

1. Introduction ... 1
1.1. Changes in TransactionVision 4.2.1 SupportPac A .. 1
1.2. Changes in TransactionVision 4.2.1.. 1
1.3. Changes in TransactionVision 4.2... 2
1.4. Changes in TransactionVision 4.1... 2
1.5. Prerequisites .. 3

2. Architecture Overview .. 5
2.1. System Components .. 5
2.2. Database .. 6
2.3. User Interface Framework... 7

3. Tutorial - Extending the Analyzer ... 9
3.1. How to Handle XML Message Data in Events ... 9
3.1.1. Step 1: Modify the Beans.xml file to use the DefaultModifierBean 10
3.1.2. Step 2: Verify that XML data is extracted correctly.. 10

3.2. How to Handle Custom Message Data Formats in Events.. 10
3.2.1. Step 1: Document message format(s) layout ... 10
3.2.2. Step 2: Document the target XML format... 11
3.2.3. Step 3: Implement the bean to do the format conversion 11
3.2.4. Step 4: Modify the Beans.xml file to use the custom bean 15
3.2.5. Step 5: Test the custom bean in the Analyzer environment 16

3.3. Overview of XDM Files .. 16
3.4. How to Map Custom Message Data Fields to Database Tables 16
3.4.1. Step 1: Determine which fields in the XML event document need to be mapped to
database columns .. 16
3.4.2. Step 2: Determine the database column names for these fields............................. 17
3.4.3. Step 3: Construct XDM file entries ... 18
3.4.4. Step 4: Recreate your project database schema... 19
3.4.5. Step 5: Verify that the XDM mapping works correctly .. 19

3.5. Additional XDM File Examples.. 19
3.6. How to classify business transactions and map transaction attributes to database tables

... 21
3.6.1. Overview of Transaction Classification: ... 22
3.6.2. Task Description:... 22
3.6.3. Implementation:... 23

3.6.3.1. Step 1: Determine the event attributes that apply to a business transaction .. 23
3.6.3.2. Step 2: Determine database column names for these fields........................... 23
3.6.3.3. Step 3: Extract transaction attributes from event data 24
3.6.3.4. Step 4: Construct XDM file entries for transaction attributes 26
3.6.3.5. Step 5: Determine the transaction classes and their classification criteria 27
3.6.3.6. Step 6: Implement classification rules... 27
3.6.3.7. Step 7: Recreate the project database schema ... 28
3.6.3.8. Step 8: Enable classification in the Analyzer .. 28

TransactionVision Programmer’s Guide i

Contents

ii TransactionVision Programmer’s Guide

3.6.3.9. Step 9: Verify that the transaction classification works correctly and the
transaction attributes are written correctly ... 29

3.7. How to perform custom correlation of related events ... 29
3.7.1. Overview of Custom Event Correlation: ... 29
3.7.2. Task Description:... 30
3.7.3. Implementation:... 30

3.7.3.1. Step 1: Determine correlation requirements .. 30
3.7.3.2. Step 2: Determine which events need to be correlated and common
correlation data between the events.. 30
3.7.3.3. Step 3: Implement the correlation bean... 30
3.7.3.4. Step 4: Enable the Analyzer to invoke the correlation bean.......................... 35
3.7.3.5. Step 5: Test the correlation bean ... 35

4. Reference - Extending the Analyzer.. 36
4.1. Using the Beans.xml File .. 36
4.2. Unmarshalling Message Data.. 36
4.2.1. The Default Modifier Bean ... 36
4.2.2. Adding a Message Data Unmarshal Bean ... 37
4.2.3. IEventModifier Interface ... 37
4.2.4. XML Related Classes .. 37

4.2.4.1. Class XMLEvent ... 37
4.2.4.2. Class XPathSearch... 39
4.2.4.3. Class XMLParser... 41
4.2.4.4. Other Utility Classes.. 42
• Interface DOMElement ... 43
• Class EventElement... 43
• Class TextElement... 43
• Class ByteElement... 44
• Class ByteStringElement... 45
• Class IntElement.. 45
• Class IntHexElement ... 46
• Class LongElement.. 46
• Class LongHexElement ... 47
• Class StringElement .. 47
• Class RawStringElement ... 48

4.2.5. Sample Usage of the IEventModifier Interface ... 48
4.3. Trimming Data From an Event.. 51
4.3.1. Interface IDBWriteExit ... 51

4.4. XML-Database mapping Using XDM Files.. 52
4.5. Performing Event Analysis.. 54
4.5.1. Event Analysis Utility Classes and Interface .. 55

4.5.1.1. Interface Cache.. 55
4.5.1.2. Class ConnectionInfo .. 57
4.5.1.3. Class EventID.. 57
4.5.1.4. Class TechEventID.. 58

4.5.2. Event Analysis Classes.. 58
4.5.2.1. Interface IAnalyze ... 58
4.5.2.2. Class AnalyzeEventCtx ... 59
4.5.2.3. Class AnalyzeEventBean... 59

4.5.3. Adding Custom Correlation Analysis Beans... 59
4.5.3.1. Interface IEventCorrelation ... 62

Contents

4.5.3.2. Class CorrelationTechHelperBean .. 63
4.5.3.3. Class MQCorrelationData ... 63
4.5.3.4. Class JMSCorrelationData .. 64
4.5.3.5. Class LookupKey .. 65
4.5.3.6. Class EventRelation... 65
4.5.3.7. Class MQRelationDBService .. 66
4.5.3.8. Class JMSRelationDBService ... 67
4.5.3.9. Sample Custom Event Correlation Bean ... 68

4.5.4. Custom Business Transaction Attributes and Classification 70
4.5.4.1. Transaction Classification ... 72
4.5.4.2. Transaction Classification with the Standard Classification Bean 72
4.5.4.3. Classification Action Rules ... 75
4.5.4.4. The ClassifyTransactionCtx and the IClassifyTransaction Interface 76
4.5.4.5. Writing a Custom Classification Bean .. 77
4.5.4.6. The Transaction Class Table ... 78
4.5.4.7. Business Groups .. 80

4.6. Extending the System Model... 81
4.7. Generating Application Events to Tivoli Enterprise Console (TEC) 82
4.7.1. Class MonitoringEvent.. 82
4.7.2. SlotMap.properties .. 83
4.7.3. Example Usage:... 83
4.7.4. BTV Class Definitions and Rulebase .. 83

5. Using the Query Services .. 85
5.1. Sample Usage .. 85
5.2. Class QueryServices .. 86
5.2.1. Methods: .. 87

5.3. Class QueryDoc... 95
5.3.1. Constructors... 96
5.3.2. Methods ... 97

5.4. Class QueryDoc.WhereClause .. 104
5.4.1. Fields ... 104
5.4.2. Constructors... 104
5.4.3. Methods ... 106
5.4.4. Example... 106

5.5. Interface Query.. 107
5.5.1. Methods ... 107

5.6. Interface Cursor ... 107
5.6.1. Methods ... 107

5.7. Class DataManagerException.. 112
5.7.1. Constructors... 112
5.7.2. Methods ... 113

6. Extending the User Interface ... 115
6.1. Writing TransactionVision Reports... 115
6.1.1. Report Interfaces ... 117

6.1.1.1. IReportData ... 117
6.1.1.2. IReportAction .. 117
6.1.1.3. BaseReportBean .. 118

6.1.2. TransactionClass.. 119
6.1.3. JSP Custom Tag Library ... 119

6.1.3.1. The Report Tag.. 119
6.1.3.2. The Form Tag .. 120

TransactionVision Programmer’s Guide iii

Contents

iv TransactionVision Programmer’s Guide

6.1.3.3. Tag Reference.. 120
6.1.3.4. Migrating the Form Tag from TransactionVision 4.0 122
6.1.3.5. Deprecated Tags .. 123
6.1.3.6. Report Example ... 129

6.1.4. Adding a Report to the Framework ... 132
6.1.4.1. Required Configuration Information ... 133
6.1.4.2. Optional Configuration Information.. 133
6.1.4.3. Adding Actuate Reports .. 134

6.2. Adding Query Pages.. 136
6.3. User Interface Utility Classes .. 138
6.3.1. Class TVisionServlet ... 138

6.3.1.1. Methods ... 138
6.3.2. Class TypeConvService... 139

6.3.2.1. Methods ... 139
6.4. Using Job Beans .. 141
6.4.1. JobBean ... 142
6.4.2. IJob Interface ... 142
6.4.3. Creating Jobs at Project Creation .. 143

7. Database Schema... 145
7.1. System Object Model Tables... 145
7.2. Event Tables .. 148
7.3. Event Relationship Tables... 152
7.4. Transaction Tables... 153
7.5. Statistics Tables ... 156
7.6. User Preference Tables.. 157
7.7. Administration (System) Tables.. 159

8. Event XML Schema .. 165
8.1. Basic Types ... 165
8.2. Event Schema Description .. 166

9. The Data Manager ... 169
9.1. Using the DataManager to Access the Database ... 169
9.2. XML-Database Mapping Using XDM Files ... 172
9.3. The XDM Syntax .. 173
9.3.1. Creating the XDM database tables .. 175
9.3.2. Properties of the TransactionVision Document Types.. 176

9.3.2.1. The /Event Document Type... 176
9.3.2.2. The /Transaction Document Type ... 176
9.3.2.3. The /TransactionClass Document Type .. 176

9.4. The XMLDatabaseMapper Interface... 176
9.5. Extending the /Event Document Type... 178
9.6. Extending the /Transaction and /TransactionClass Document Type...... 179
Adding New Document Types .. 179

1. Introduction

This guide provides details of how the TransactionVision platform can be extended and
programmed against to achieve better control over its various functions. This manual
presents an architecture overview of the TransactionVision system and documents the
different methods available to use and extend the analyzer service, the query service,
project manager services and the TransactionVision user interface.

1.1. Changes in TransactionVision 4.2.1 SupportPac A

A new column "timerule_status" has been added to the business_transaction table. This
column indicates if a start or end time rule has fired during during transaction
classification. The possible values are: 0=no rule fired, 1=start time rule fired, 2=end
time rule fired, 3=both time rules fired. This column is used internally by the Analyzer
and should not be modified by the user.

1.2. Changes in TransactionVision 4.2.1

• In TransactionVision 4.2.1, the key definition for the business_trans_id key column has
changed. In earlier releases, this key definition was as follows:
<Key name="business_trans_id" type="INTEGER"
generated="true"
description="TransactionId">
 <Path>/Transaction/BusinessTransId</Path>
</Key>

The new definition in TransactionVision 4.2.1 is as follows:
<Key name="business_trans_id" type="INTEGER"
generateSequence="true" description="TransactionId">
 <Path>/Transaction/BusinessTransId</Path>
</Key>

If you have a custom transaction XDM file that uses the old definition, you will
encounter the following error:
TransactionVision Error (XDMInconsistentDefForKeyColumn):
Inconsistent Key definition in XDM file 'Transaction.XDM'.

This error indicates that the definition for a key column is not exactly the same for
two (or more) XDM files.

• You can use the IAnalyzerAction interface to specify custom actions to be
performed for specific classification values. For more information, see 4.5.4.3,
Classification Action Rules.

TransactionVision Programmer’s Guide 1

Chapter 1 • Introduction
Changes in TransactionVision 4.2

• State and Result constants in the following file have changed
<TVISION_HOME>/config/technologyconst/TransactionConst.xml

1.3. Changes in TransactionVision 4.2
The following changes in TransactionVision 4.2 may require existing custom beans or
reports to be changed accordingly.

• The DeleteEvents utility and job uses an optimized fast deletion scheme based
on timestamp columns, resulting in changes to the TransactionVision database
schema. See Chapter 7 for updated schema table diagrams.

• In order for the new deletion scheme to delete user defined transaction XDM tables,
it is necessary to write the transaction end time into each new XDM table. See
Chapter 9 for more information.

• Two new options have been added to to the DeleteEvents utility:
-threadcount and –nosplit (only valid for the –older option). For more
information, see the TransactionVision Administrator's Guide.

• A business group table has been added to allow grouping of transaction classes into
business groups. See Chapter 3 for more information.

• A CICS lookup table has been added to store CICS event related data. See Chapter 7
for more information.

• In the report framework, the TransactionClassLookup class, which gets access to the
transaction classification definitions, has been replaced with
com.bristol.tvision.datamgr.dbtypes.TransactionClass.
This class is similar to the previous class, but its usage is slightly different. See
Chapter 5 for information about this class.

1.4. Changes in TransactionVision 4.1
The following public interfaces changed in TransactionVision 4.1. Any exiting custom
beans that use these interfaces must be changed accordingly. For detailed information,
see section 3.5.3.

• Interface com.bristol.tvision.services.analysis.eventanalysis.IEventCorrelation

• Constructor of class
com.bristol.tvision.services.analysis.eventanalysis.CorrelationTechHelperBean

• Constructor of class com.bristol.tvision.datamgr.dbtypes.LookupKey

In addition, changes have been made to the JSP custom tag library used to create
TransactionVision reports. For detailed information, see section 5.1.2.

2 TransactionVision Programmer’s Guide

Introduction

1.5. Prerequisites
To use this guide to customize TransactionVision requires knowledge of some of the
following technologies and APIs:

• The Java programming language

• The Java Database Connectivity (JDBC) API

• J2EE concepts related to JSPs and servlets

• Relational database and SQL knowledge

This guide is designed to explain common programming tasks to extend
TransactionVision. It is not a comprehensive guide and your customization needs may
go beyond what this guide defines. In that case, please contact Bristol Technology
technical support for assistance.

Important! This documentation is related to the internals of the TransactionVision
product; incorrect changes could break the functioning of the product.

TransactionVision Programmer’s Guide 3

Chapter 1 • Introduction
Prerequisites

4 TransactionVision Programmer’s Guide

2. Architecture Overview

2.1. System Components
TransactionVision consists of the following logical components:
• The Sensor component generates events based on the technology being sensed. The sensor

gets configuration and filtering messages from the configuration queue and sends events into
the event queue. The event and configuration queues are represented by the “communication
infrastructure” box in the diagram on the following page.

• The Analyzer component is responsible for retrieving and analyzing events from the
communication link. It contains a chain of Java bean contexts, each performing a particular
function on the event data. Each bean context can hold multiple chained beans to perform
technology specific or other custom processing of the event data. The beans in each bean
context are controlled by the <TVISION_HOME>/config/services/Beans.xml file. The
main components of the Analyzer include:

• The EventModifier bean context is responsible for converting raw event data from its
binary format into XML. This bean context provides an environment for user message
data unmarshaller beans to be plugged in.

• The DBWriteExit bean context allows a custom bean to trim or cut down on the data
written into the database. This gives a user flexibility to cut down on storage size.
Typically this is an XSLT which processes the XML tree generated by the unmarshaller
context.

• The Database write context is responsible for mapping the XML tree generated by the
unmarshaller and trim contexts to database tables and writing the tree into the database.
This context uses the XML data mapper component to map the XML tree to relational
database tables.

• The Analysis context performs event correlation, local and business transaction analysis,
transaction classification, statistics analysis and any other custom data analysis.

• The XML data mapper and database query services components provide a means of
mapping XML data to relational tables and a XML based query to an SQL statements based
on relational tables.

The following diagram shows the TransactionVision architecture layout:

TransactionVision Programmer’s Guide 5

Chapter 2 • Architecture Overview
Database

User

Analyzer

Configuration
Repository

(TVISION schema)

Data Access

Operator DeveloperAdministrator

Communication Infrastructure
(event and confiuguration queues)

Event/Transaction Data Store
(project schema)

Event
Unmarshalling

Sensoring
and Event
Capturing

Sensoring
and Event
Capturing

Sensoring
and Event
Capturing

AppServer based
user interface framework

Event/
Transaction

Analysis
Configuration

Control

Configuration /
Project Setup

Security
Management

Event
Warehousing

RMI

RMI

LDAP repository

Figure 1 TransactionVision Architecture

2.2. Database

The general table organization consists of a TVISION schema, where project,
communication links, filter, queries and other administration related information is
stored, and project-specific schemas, where events collected by a project are stored.
Each project schema consists of an event table, where the event identifier and the XML
event are stored, and several lookup tables that provide indexes to the event. In addition

6 TransactionVision Programmer’s Guide

Chapter 2 • Architecture Overview
User Interface Framework

there are several other tables in a project schema storing event correlation, local
transaction, business transaction and other WebSphere MQ objects related information.

2.3. User Interface Framework

The Presentation, User and Session management components interact with the user
interface, transferring requests for data into calls into the database component and
returning the results of the requests back to views in the user interface. The framework
consists of servlets and JSPs running under a web application server such as WebSphere.
This framework also manages user login into the system and all aspects of the user’s
access rights to the TransactionVision system. Users can create new views and reports to
be plugged into this framework.

The Security Management component gets user rights, that control what view and data is
accessible to a user, from an LDAP server. This component allows administrators to
assign rights to users and groups of users to aspects of TransactionVision functionality
and data collected. This includes defining policies for starting and stopping data
collection, changing data collection filters and access rights to collected data. Refer to
the Administration Guide for setting up these user rights.

The Configuration and Administration component manages administration of the
TransactionVision system. This includes starting/stopping data collection and event
processing, changing data collection filters, providing system status, and administering
security policies on the Analyzer service. The Analyzer is controlled using embedded
RMI and can run on systems different from the application server.

This programmer's guide provides the details of extending TransactionVision. It is
important to note that since this documentation is related to the internals of the product,
incorrect changes could break the functioning of the product.

.

TransactionVision Programmer’s Guide 7

3. Tutorial - Extending the Analyzer

The Analyzer reads in binary event packets from the TransactionVision Event Queue
and processes them through a chain of bean contexts. Each bean context performs a
specific function to analyze and write data from the event into the database. Many of
these operations can be extended and customized to perform transformations based on
your systems or application needs. This chain of beans is defined by the Beans.xml
file. The sequence of bean contexts includes:

• The event modifier context, which allows users to write custom beans to modify the
incoming event, such as convert binary message data into XML.

• The data writer context, which contains beans to write the data into various
relational database tables.

• The analysis context, which contains various beans to perform event analysis,
transaction analysis and correlation of events to create a business transaction.

Each context holds beans that perform a default function and can be replaced or added
on to perform further actions on the data being processed. The following sections
document common tasks related to extending the Analyzer.

3.1. How to Handle XML Message Data in Events

Task Description:
When your message data is already composed of XML, a custom bean is not required to
have the XML processed by the Analyzer. Instead, TransactionVision provides a default
modifier that can be used to attach the message data XML contents to the
TransactionVision event.

Implementation:
This section describes how to set up the TransactionVision DefaultModifierBean,
which detects XML data in the message field and appends it to the XML event. The
default event modifier bean,
“com.bristol.tvision.services.analysis.eventmodifier.
DefaultModifierBean” scans the user data for any XML data and, if found, simply
adds it to the Event XML document at the position
“/Event/UserData/Chunk[@seqNo=’n’]” wher n is the number of the data
range (defined in the data collection filter).

TransactionVision Programmer’s Guide 9

Chapter 3 • Tutorial - Extending the Analyzer
How to Handle Custom Message Data Formats in Events

3.1.1. Step 1: Modify the Beans.xml file to use the DefaultModifierBean

Edit the file Beans.xml under the <TVISION_HOME>/config/services
directory to uncomment the following line of XML:

<!--Module type="Bean"
class="com.bristol.tvision.services.analysis.eventmodifier.DefaultMo
difierBean"/-->

The changed line is:

<Module type="Bean"
class="com.bristol.tvision.services.analysis.eventmodifier.DefaultMo
difierBean"/>
Refer to Section 4.1, “Using the Beans.xml File” on the layout and format of the
Beans.xml file.

3.1.2. Step 2: Verify that XML data is extracted correctly

Re-start the Analyzer after making the changes in Step 1. Collect events using the
TransactionVision sensors from your application. For each event that generates XML
message data, go to the event detail view and verify that the XML data shows up in the
user data panel.

Once this task is done, the XML message data can be mapped to custom database
tables based on the kind of analysis that is required to be performed on the message
data. Section 3.4 describes how to implement this mapping.

3.2. How to Handle Custom Message Data Formats in Events
Task Description:
Typically, event data from applications may contain binary, text or XML data embedded
within the message. This data is often in custom and proprietary formats that are not
known to the TransactionVision Analyzer. A common task is to convert these custom
formats into XML within the Analyzer for later use in reports, for analysis, browsing or
querying. The TransactionVision Analyzer allows for embedding a Java bean that
implements the IEventModifier interface to perform the format conversion. This bean
can modify the event being currently processed to do any kind of format conversion on
the event data.

Implementation:
This section describes the steps to write a custom event modifier bean in Java to extract
and convert binary message data and insert it into the event data as XML. A custom
bean that converts a text message into XML will be used as an example. The sample
code used below is from the CICS Accounting sample shipped with TransactionVision.
The source code can be found at “<TVISION_HOME>/samples/CICSAccounting”.

3.2.1. Step 1: Document message format(s) layout

The first step in the process of writing a bean to handle custom event data is to know
the layout of all message formats in the event data and document them.

10 TransactionVision Programmer’s Guide

Chapter 3 • Tutorial - Extending the Analyzer
How to Handle Custom Message Data Formats in Events

Consider the sample message to contain the following text layout, with fields Account
Number, Last Name, First Name and Account Type:

In the above layout, the first 5 bytes are the AccountNumber field, while the remaining
fields of “LastName”, “FirstName” and “AccountType” are separated by a space
separator “S”. The “LastName” and “FirstName” fields are variable length fields. The
“AccountType” field is one character and can be either “S” (Savings), “M” (Money
Market) or “C” (Checking). The remaining fields are ignored and not required to be
processed by TranactionVision.

3.2.2. Step 2: Document the target XML format

First design the target XML document to be created from the above text message. The
following is a sample resulting XML structure:

<Event sort="false">
...
 <Data>
 <Chunk blobType="2" ccsid="0" from="0" seqNo="0" to="382">
 <Account>
 <AccountNo>11111</AccountNo>
 <LastName>DOE</LastName>
 <FirstName>JOHN</FirstName>
 <AccountType>Saving</AccountType>
 </Account>
 </Chunk>
 </Data>
...

Here, an “Account” node is created under the item “/Event/Data/Chunk”. This is the
point where TransactionVision stores references to message data. Hence, this is a good
point, though not the only point, where any XML converted message data can be
added. Under the “Account” node, nodes for “AccountNo”, “LastName”,
“FirstName” and “AccountType” are created and their values filled in.

The XPath values of each of the above fields are as follows:

AccountNo – “/Event/Data/Chunk/Account/AccountNo”
LastName – “/Event/Data/Chunk/Account/LastName”
FirstName – “/Event/Data/Chunk/Account/ FirstName”
AccountType – “/Event/Data/Chunk/Account/AccountType”

3.2.3. Step 3: Implement the bean to do the format conversion

This section describes the implementation of the Java bean to perform the format
conversion described in Steps 1 and 2.

S AccountType AccountNumber FirstName SLastName . . .
(1 character-S/M/C) (5 characters)

TransactionVision Programmer’s Guide 11

Chapter 3 • Tutorial - Extending the Analyzer
How to Handle Custom Message Data Formats in Events

1. A Java class, CICSAccountingModifierBean, extends from the base class
EventModifierBean and implements the modify method of the IEventModifier
interface. This modify method is invoked by the Analyzer framework to perform
any custom data conversion tasks.

 public class CICSAccountingModifierBean extends EventModifierBean {

 ...

 /** Creates new CICSAccountingModifierBean */
 public CICSAccountingModifierBean() {
 ...
 }

 public void modify(XMLEvent event) throws EventModifyException {
 …

 The above code defines the CICSAccountingModifierBean class with a method
modify. This method accepts the current XML event object as its input and is
allowed to modify this object in any way, typically for transforming data from
proprietary formats to XML.

2. The following code fragment from the modify method first verifies whether this is

the right CICS event whose message data needs to be processed, and then processes
chunks of message data.

00055 String tech =
event.getDocumentValue(XPathConstants.TECH_NAME);
00056 if (tech == null || !tech.equalsIgnoreCase("CICS"))
00057 return;
00058
00059 String eventType =
event.getDocumentValue(XPathConstants.CICS_COMMON_EVENTTYPE);
00060 if (eventType == null)
00061 return;
00062
00063 int type = Integer.parseInt(eventType);
00064 if (type != CICSConstants.B_CICS_TYPE_FC)
00065 return;
00066

 In the above code, the constant XPathConstants.TECH_NAME contains the value to the

technology XPath expression. The XPathConstants class contains various other
commonly used XPath expression values. Hence, line 55 extracts the value of the
technology name from the event document. Line 56 ignores all events that are not from
the CICS sensor (ie. are not of technology CICS). Line 59-64 lookup the event type of
the CICS event. Only file control APIs (CICSConstants.B_CICS_TYPE_FC) are
considered for further processing. The method getDocumentValue returns the value of
any XPath location in the DOM tree in the XMLEvent object. This method is further
documented in Section Error! Reference source not found..

3. The following code fragment shows how to obtain pieces of user data from the

XMLEvent object.

00067 XPathSearch lookup = new XPathSearch(event);

12 TransactionVision Programmer’s Guide

Chapter 3 • Tutorial - Extending the Analyzer
How to Handle Custom Message Data Formats in Events

00068
00069 /*
00070 * get user data chunks by retrieving all
/Event/Data/Chunk nodes
00071 */
00072 NodeList dataChunks =
lookup.getNodes(XPATH_DATACHUNK);
00073 if (dataChunks == null || dataChunks.getLength() ==
0)
00074 return;
00075
00076 int chunkNum = dataChunks.getLength();
00077
00078 /*
00079 * process each user data chunk
00080 */
00081 for (int i = 0; i < chunkNum; i++) {
00082 try {
00083 processUserData(event, lookup,
(Element)(dataChunks.item(i)));
00084 }
00085 catch (XMLException xmlEx) {
00086 throw new EventModifyException(xmlEx);
00087 }
00088 }

Line 67 creates an XPathSearch object, whose function is to perform lookups on the
XMLEvent document. The getNodes and getValues methods on the XPathSearch class
enable lookups based on given XPath expressions. Section 4.2.4.2 has the
documentation on this class and its methods.

The message data in a TransactionVision event is stored as a series of chunks. This is
done since the message data from TransactionVision Sensors can be broken up based
on data ranges specified in the data collection filter. The XMLEvent document contains
the location and byte count of each of these chunks and can be looked up using the
XPath expression “/Event/Data/Chunk”. Typically, if no data range is specified in the
data collection filters, only one chunk is created.

Line 72 gets a list of data chunk nodes. For each of the data chunks, the method
processUserData is called to perform the format conversion.

4. The following code fragment is from the processUserData method which converts

the text message into XML.

00104 private void processUserData(XMLEvent event, XPathSearch
lookup, Element owner) throws XMLException {
00105
00106 int chunkId =
Integer.parseInt(owner.getAttribute(ATTR_CHUNK_ID));
00107
00108 /*
00109 * find the XMLEvent.Blob which has the same chunk ID
00110 */
00111 XMLEvent.Blob chunkBlob = null;
00112
00113 Iterator it = event.blobIterator();
00114 while (it.hasNext() && (chunkBlob == null)) {
00115 XMLEvent.Blob blob = (XMLEvent.Blob)it.next();
00116 if (blob.id == chunkId)

TransactionVision Programmer’s Guide 13

Chapter 3 • Tutorial - Extending the Analyzer
How to Handle Custom Message Data Formats in Events

00117 chunkBlob = blob;
00118 }
00119
00120 if (chunkBlob == null)
00121 return;
00122
00123 int ccsid = chunkBlob.ccsid;
00124
00131 /*
00132 * if ccsid <=0 use ccsid in standard header
00133 */
00134 if (ccsid <= 0) {
00135 ccsid =
Integer.parseInt(lookup.getValue(XPATH_EVENT_CCSID));
00136 }
00137
00138 String strBuf =
Translator.instance(ccsid).translate(chunkBlob.blob);
00139
00142
00143 /*
00144 * parse XML document, and if succeeds, append it to
owner node,
00145 * then change the data type of the chunk.
00146 */
00147 Element acctRoot = event.createElement("Account");
00148 owner.appendChild(acctRoot);
00149
00150 StringElement acctNo = new StringElement("AccountNo");
00151 StringElement lastName = new StringElement("LastName");
00152 StringElement firstName = new
StringElement("FirstName");
00153 StringElement acctType = new
StringElement("AccountType");
00154
00155 StringTokenizer tokens = new StringTokenizer(strBuf);
00156 int cnt = tokens.countTokens();
00157 if (cnt < 3)
00158 return;
00159
00160 String[] tokenStrs = new String[cnt];
00161 for (int i = 0; i < cnt; i++) {
00162 tokenStrs[i] = tokens.nextToken();
00164 }
00165
00166 // check for numeric value
00167 char c = tokenStrs[0].charAt(0);
00168 if (!Character.isDigit(c))
00169 return;
00170
00171 acctNo.value = tokenStrs[0].substring(0, 5);
00172 lastName.value = tokenStrs[0].substring(5);
00173 firstName.value = tokenStrs[1];
00174
00175 int idx = strBuf.indexOf("FSR");
00176 acctType.value = strBuf.substring(idx + 3, idx + 4);
00177 if (acctType.value.equalsIgnoreCase("M"))
00178 acctType.value = "Money Market";
00179 else if (acctType.value.equalsIgnoreCase("S"))
00180 acctType.value = "Saving";
00181 else
00182 acctType.value = "Checking";
00183
00184 acctNo.toDOM(event, acctRoot);

14 TransactionVision Programmer’s Guide

Chapter 3 • Tutorial - Extending the Analyzer
How to Handle Custom Message Data Formats in Events

00185 lastName.toDOM(event, acctRoot);
00186 firstName.toDOM(event,acctRoot);
00187 acctType.toDOM(event, acctRoot);
00188
00189 chunkBlob.type = TVisionCommon.XMLEVENT_BLOB_XML;
00190
00191 owner.setAttribute(ATTR_BLOBTYPE,
00192 Integer.toString(TVisionCommon.XMLEVENT_BLOB_XML)
00193);
00194 }
00195 }

The method processUserData converts one chunk of message data text into XML. Line
106 obtains the id of the current chunk of message data being processed.

Lines 111-119 access the array of message data binary objects (BLOB) that are stored in
a separate table in the same sequence as the chunks in the XML document. Typically,
there is just one object, but there could be more depending on whether data ranges
have been set in the data collection filter. Hence, a chunk in the XML document with
the ID 1 will have its equivalent BLOB in the user data table at the sequence number 1.
The chunk id from the XML document is matched with the message data BLOB ID.

Lines 134-138 find the codepage of the message data and convert it to the code page
the Analyzer is using. This is required because the message data is from CICS and needs
to be converted from EBCDIC to ASCII.

Lines 147-148 create new nodes in the XMLEvent document to hold the Account
related data.

Lines 150-154 create new objects of type StringElement. This class is a
TransactionVision utility class that has the ability to generate XML DOM nodes from
input values. Refer to Section 4.2.4.4 for details on this class. The toDOM method of
this class creates and appends XML DOM nodes to a DOM tree at a specified location.

Lines 155-183 is Java code which parses the message data string buffer and extracts
values for Account, LastName, FirstName and AccountType based on the format
defined in Step 2.

Lines 184-188 convert the parsed message data from their StringElement values into
DOM nodes attached to the XMLEvent DOM tree at location
“/Event/Data/Chunk/Account”.

3.2.4. Step 4: Modify the Beans.xml file to use the custom bean

The event modifier bean implemented in the previous steps needs to be enabled in the
event modifier context of the Beans.xml file. Change the Beans.xml file to add the
following line:

 <Module type="Context" name="EventModifierCtx">

<Module type="Bean" class=
"com.bristol.tvision.samples.accounting.CICSAccountingModifi
erBean"/>

 </Module>

The Analyzer needs to be re-started after this change.

TransactionVision Programmer’s Guide 15

Chapter 3 • Tutorial - Extending the Analyzer
Overview of XDM Files

3.2.5. Step 5: Test the custom bean in the Analyzer environment

To verify that the above data extraction is working correctly, check the right events user
data buffer in the event detail view. In the example above, check the user data for the
file control READ API.

3.3. Overview of XDM Files
Certain pieces of information in the message data may be useful to be queried upon by
custom reports or analysis modules. In that case, these fields need to be extracted from
the message data and mapped to database columns by the Analyzer. Before these fields
can be written to a database column by the Analyzer, they need to be extracted from the
message and converted to XML (if not already in the XML format). Section 3.2
describes how to extract binary message data and convert it to XML and Section 3.1
describes how to handle XML message data.

The TransactionVision database schema is made extensible through the XML to
Database Mapping (XDM) files. As message data specific columns are added to the
database, the XDM files can be updated to describe the new schema. Hence XML to
Database mapping serves several purposes:
• To describe to the CreateSqlScript program the layout of the project database

schema tables.

• To describe to the Analyzer the fields that are to be extracted from the XML event
data and stored in event lookup tables for fast searching and retrieval.

• To describe to the Analyzer the fields that are to be extracted from the transaction
XML document and stored in the transaction lookup tables.

• To describe the database schema to the query services for use in TransactionVision
user interface views and reports.

3.4. How to Map Custom Message Data Fields to Database Tables

Task Description:
The task in this section describes how to map event XML data to database fields using
TransactionVision’s XDM (XML to Database Mapping) module.

3.4.1. Step 1: Determine which fields in the XML event document need to be mapped to
database columns

Consider a WebSphere MQ MQPUT request event which has the following XML
segment in its message data:

<Event>
 <Data>
 <Order>
 <ID>123456</ID>
 <Branch>Danbury</Branch>
 <Account></Account>
 <Ticker>MSFT</Ticker>
 <Price>88.88</Price>
 <Shares>1000</Shares>

16 TransactionVision Programmer’s Guide

Chapter 3 • Tutorial - Extending the Analyzer
How to Map Custom Message Data Fields to Database Tables

 </Order>
 </Data>
</Event>

Consider a WebSphere MQ MQPUT reply event in response to the above request that
contains the following XML segment in its message data:

<Event>
 <Data>
 <Result>
 <ID>123456</ID>
 <Type>Stock</Type>
 <Status>Success</Status>
 </Result>
 </Data>
</Event>

3.4.2. Step 2: Determine the database column names for these fields

The mapping of message data to database columns enables custom business reports and
queries to be written to view and analyze the contents of the message data.

Consider that the following fields need to be mapped to database columns from the
message data described in Step (1).

For the MQPUT request message data, a TRADE_ORDER table can be defined as
follows:

Field Name SQL Type Length
ORDERID VARCHAR 16
BRANCH VARCHAR 16

ACCOUNT VARCHAR 8
TICKER VARCHAR 8
PRICE VARCHAR 8

SHARES VARCHAR 8
PROGINST_ID INTEGER 4

SEQUENCE_NO INTEGER 4

For the MQPUT reply message data, a TRADE_RESULT table can be defined as
follows:

Field Name SQL Type Length
ORDERID VARCHAR 16

TYPE VARCHAR 8
STATUS VARCHAR 12

PROGINST_ID INTEGER 4
SEQUENCE_NO INTEGER 4

In both the above tables, PROGINST_ID and SEQUENCE_NO are event
identification fields that are required to join with the TransactionVision EVENT table,

TransactionVision Programmer’s Guide 17

Chapter 3 • Tutorial - Extending the Analyzer
How to Map Custom Message Data Fields to Database Tables

while the remaining columns contain business content to be extracted from the message
data.

3.4.3. Step 3: Construct XDM file entries

Now that we have determined the format and contents of the message data in Step 1
and which database tables need to be populated in Step 2, a mapping can be created
from the XML message data contents to the database columns.

Consider the following XML segment:

<Event>
 <Data>
 <Order>
 <ID>123456</ID>
 ...
 </Order>
 </Data>
</Event>

The XPath to the Order ID field can be written as: “/Event/Data/Order/ID”.

The value at this XPath needs to be written to the ORDERID column of the
TRADE_ORDER table.

This mapping can be done in an XDM file as follows:

<Table name="TRADE_ORDER" category="MQSERIES,JMS">
 <Column name="ORDERID" type="VARCHAR" size="16"
description="OrderID">
 <Path>/Event/Data/Order/ID</Path>
 </Column>
 ...

The above XDM file segment defines a table name TRADE_ORDER in the “Table”
element. The table contains a column ORDERID, defined by the “Column” element,
of type VARCHAR and size 16 bytes. The “Column” of name ORDERID has an
XPath mapping, defined by the “Path” element to be “/Event/Data/Order/ID”.

The table definition part of the XDM segment is applied when a new project schema is
created either by CreateSqlScript or the project creation web pages. The XPath
mapping part of the XDM segment is applied by the Analyzer when processing events.
When an event contains data at the XPath value “/Event/Data/Order/ID”, the
Analyzer extracts the value and writes a row to the mapped column ORDERID
belonging to table TRADE_ODER for that event. The “category” attribute for the
“Table” element, indicates that this mapping is applied only to MQSeries and JMS
events.

The complete mapping of the MQPUT request message to the TRADE_ORDER table
is as follows:

 <Table name="TRADE_ORDER" category="MQSERIES,JMS">
 <Column name="orderid" type="VARCHAR" size="16"
description="OrderID">
 <Path>/Event/Data/Order/ID</Path>
 </Column>

18 TransactionVision Programmer’s Guide

Chapter 3 • Tutorial - Extending the Analyzer
Additional XDM File Examples

 <Column name="branch" type="VARCHAR" size="16"
description="Branch">
 <Path>/Event/Data/Order/Branch</Path>
 </Column>
 <Column name="account" type="VARCHAR" size="8"
description="AccountNumber">
 <Path>/Event/Data/Order/Account</Path>
 </Column>

 <Column name="ticker" type="VARCHAR" size="8"
description="Ticker">

 <Path>/Event/Data/Order/Ticker</Path>
</Column>

 <Column name="price" type="VARCHAR" size="8"
description="Price">

 <Path>/Event/Data/Order/Price</Path>
</Column>

 <Column name="shares" type="VARCHAR" size="8"
description="NumberOfShares">

 <Path>/Event/Data/Order/Shares</Path>
</Column>

 </Table>

3.4.4. Step 4: Recreate your project database schema

The TransactionVision Analyzer and Web component need to be restarted for the
modified XDM files to have effect. Once the Web component is restarted, when new
project schemas are created, they will contain the newly defined tables or columns.
However, existing database project schemas need to be updated to create the newly
added tables or columns. This can be done using options in the CreateSqlScript utility.

For example:

CreateSqlScript –c –e –n –p TEST –t TRADE_ORDER

The above command creates the table TRADE_ORDER as defined in the XDM file in
the TEST database schema.

3.4.5. Step 5: Verify that the XDM mapping works correctly

Start Analyzer collection for the project that has the custom XDM mapping. Generate
events containing the message data with the expected XPath entries. Verify that rows are
written into the TRADE_ORDER table for every event containing the expected message
data.

3.5. Additional XDM File Examples

The XDM mappings can be technology or platform specific. The common mapping
defined in the file <TVISION_HOME>/config/xdm/Event.xdm (data in the standard
event header) will be written for every event, but the mappings defined in the other
XDM files will only be applied if the current event matches the mapping’s “category’
(technology or platform) definition. The XML schema format of XDM files is defined
in <TVISION_HOME>/config/xmlschema/XDM.xsd. The following code is an extract

om the file fr Event.xdm.
<?xml version="1.0"?>

TransactionVision Programmer’s Guide 19

Chapter 3 • Tutorial - Extending the Analyzer
Additional XDM File Examples

<Mapping documentTable="event" documentColumn="event_data">
 <Key name="proginst_id" type="INTEGER"
description="ProgramInstanceId">
 <Path>/Event/EventID/@programInstID</Path>
 </Key>
 <Key name="sequence_no" type="INTEGER"
description="SequenceNumber">
 <Path>/Event/EventID/@sequenceNum</Path>
 </Key>
 <Table name="EVENT_LOOKUP" category="COMMON">
 <Column name="host_id" type="INTEGER" description="Host"
isObject="true">
 <Path>/Event/StdHeader/Host/@objectId</Path>
 </Column>
 <Column name="program_id" type="INTEGER"
description="Program" isObject="true">
 <Path>/Event/StdHeader/ProgramName/@objectId</Path>
 </Column>
 ...
 </Table>
</Mapping>

The above snippet from Event.xdm defines a table EVENT containing the XML
document and a table EVENT_LOOKUP, containing various indexed columns of data from
the XML document. The key columns proginst_id and sequence_no are integer
types and mapped to XPath expressions /Event/EventID/@programInstID and
/Event/EventID/@sequenceNum. These key columns are primary keys common to
the EVENT and EVENT_LOOKUP tables. Similarly, the columns host_id and program_id
are mapped to XPath expressions /Event/StdHeader/Host/@objectId and
/Event/StdHeader/ProgramName/@objectId respectively.

The preceeding XDM file specifies that when an XML event is written to the database
by the DBWrite module in the Analyzer, these fields are extracted and written into the
database columns mapped to in the XDM file. Similarly, when the database is queried
using the QueryServices XML interface, these XDM files are used to construct the
corresponding SQL query.

The isObject attribute for a Column tag in the XDM file refers to that column being
an identifier for an object in the system model table. The documentTable and
documentColumn tags are the table and column where the actual XML document is
stored. The key is the primary key and is common to the document table and the
lookup tables. Each lookup column is indexed.

The queryOnly attribute for a Column tag indicates that the value is not written by the
Analyzer in the DBWrite module, but maybe written in the analysis phase of the
Analyzer or by some other application. Hence, this field is for queries only.

<Column name="local_trans_id" type="INTEGER"
description="LocalTransactionId" queryOnly="true">

<Path>/Event/LocalTransactionId</Path>
</Column>

The generated attribute for a Column tag means that column is a database generated id.

20 TransactionVision Programmer’s Guide

Chapter 3 • Tutorial - Extending the Analyzer
How to classify business transactions and map transaction attributes to database tables

<Column name="sequential_id" type="INTEGER" generated="true"
description="SequentialId">

<Path>/Event/SequentialId</Path>
</Column>

The conversionType attribute for a Column tag means that field requires a formatting
conversion before writing to the database. The TypeConvService is called into before
writing that field into the database. This is typically used for writing date/time or
enumeration fields.

<Column name="entrytime" type="CHAR" size="20"
description="EntryTime" conversionType="Date">

<Path>/Event/StdHeader/EntryTime</Path>
</Column>

The category attribute on the Table tag contains either COMMON or the technology
string or the platform string for the event data that should be written into this table.
The string COMMON indicates that this table contains data common to every event
and should be written for every event going through the Analyzer. A technology or
platform name like “MQSERIES” or “OS390_BATCH” used in the category field
indicates that this table should only be filled for events of that technology or platform.

<Table name="EVENT_LOOKUP" category="COMMON">
...
</Table>
<Table name="OS390_LOOKUP"
category="OS390_BATCH,OS390_CICS,OS390_IMS">
...
</Table>

A column can map to multiple XPath expressions, as in the following sample code. This
assumes that only one of the XPaths will exist in a given event document.
<Column name="datasize" type="INTEGER" description="DataSize">
 <Path>/Event/Technology/MQSeries/MQGET/MQGETExit/DataLength
 </Path>
 <Path>/Event/Technology/MQSeries/MQPUT/MQPUTExit/BufferLength
 </Path>
 <Path>/Event/Technology/MQSeries/MQPUT1/MQPUT1Exit/BufferLength
 </Path>
</Column>

Additionally, business transaction attributes (as opposed to event attributes) can also be
mapped to transaction based XDM files. Section 3.6 describes how to map transaction
attributes to transaction XDM tables.

Refer to Section 9.2 for details on the XDM file layout.

3.6. How to classify business transactions and map transaction attributes to database
tables

TransactionVision Programmer’s Guide 21

Chapter 3 • Tutorial - Extending the Analyzer
How to classify business transactions and map transaction attributes to database tables

3.6.1. Overview of Transaction Classification:

Transaction classification allows users to partition their business transactions into
different transaction classes and set transaction attributes based on event data. These
classes may be created based on data in the messages flowing through the business
system. A transaction is classified to a transaction class when attributes in one or more
events in the transaction match the criteria defined in the TransactionDefinition.xml.
This file supports creating simple rules to classify transactions. This file also allows
setting of attributes on transactions. These attribute values can be extracted from one or
more events belonging to that transaction. These attributes then can be mapped to
database tables using XDM files.

Consider a business system consisting of a JSP/servlet based user interface, a middle-
tier based on EJBs and a mainframe based backend. The following sample classification
criteria may be applied to such a system:
• Based on the types of business systems these transactions involve. For example, if

the 3-tier system described above supports financial transactions such those dealing
with stocks and bonds, transaction classes may be created based on this.

• Based on statistics that need to be collected for each class. Such statistics may
include service level and response time requirements for different classes of
transactions. In the 3-tier system described earlier, aggregate response times could
be measured for each tier of the system.

• Actions or rules fired for different classes of transactions. In the 3-tier system
described, email alerts may need to be fired to different administrators based on
response times exceeding a threshold. Once, transaction classification has been
performed, these kind of alerts can be fired based on which class a transaction
belongs to.

The Transaction Tracking Report lists transaction classes and attributes automatically
along with common attributes such as start time, response time etc. For more
information about this report, see Chapter 7, "Using Reports," in the TransactionVision
User’s Guide.

3.6.2. Task Description:

The task in this section describes the following:
• How to extract event data and map that data to transaction attributes.
• How to map transaction attributes to database tables using transaction XDM files.
• How to write rules in the TransactionDefinition.xml file to perform transaction

classification.

The sample message data used in this section is from the TRADE demo system, for
which the project and event databases are shipped with TransactionVision. Refer to the
TransactionVision Administration Guide on how to setup the TRADE demo database.

The previous sections in this chapter have discussed mapping event attributes to
database tables. This section describes how to map business transaction attributes to
database tables. This involves extracting attributes from events that apply to the

22 TransactionVision Programmer’s Guide

Chapter 3 • Tutorial - Extending the Analyzer
How to classify business transactions and map transaction attributes to database tables

business transaction the event belongs to and writing them to business transaction
XDM tables.

3.6.3. Implementation:

3.6.3.1.

3.6.3.2.

 Step 1: Determine the event attributes that apply to a business transaction

Consider a request event which has the following XML segment in its message data:

<Event>
 <Data>
 <Order>
 <Account>123456</Account>
 <Transaction>Danbury</Transaction>
 <Type></Type>
 <Product>MSFT</Product>
 <Quantity>88.88</Quantity>
 <!—- present in FX transactions -->
 <Currency>1000</Currency>
 <RecvAccount>1000</RecvAccount>
 <!—- present in Bond transactions -->
 <Maturity>1000</Maturity>
 <Issue>1000</Issue>
 <!—- present in Equity transactions -->
 <Symbol>1000</Symbol>
 </Order>
 </Data>
</Event>

Three kinds of transactions flow through this TRADE system: Bond, Equity and FX
(foreign exchange). Besides a common header, each transaction type has data specific to
that transaction.

Consider the reply event in response to the above request that contains the following
XML segment in its message data:

<Event>
 <Data>
 <Order>
 <ID>123456</ID>
 <Region>Stock</UnitPrice>
 <Status>Success</Status>
 <Reason>Success</Reason>
 <!—- present in Bond transactions -->
 <Yield>5.94</Yield>
 </Order>
 </Data>
</Event>

 Step 2: Determine database column names for these fields

The mapping of message data to transaction database columns enables custom business
reports and queries to be written to view and analyze the contents of the business
transaction. Consider that the following fields need to be mapped to database columns
from the message data described in Step 1.

TransactionVision Programmer’s Guide 23

Chapter 3 • Tutorial - Extending the Analyzer
How to classify business transactions and map transaction attributes to database tables

The TRADE_BUSINESS_TRANSACTION table is defined as below:

Field Name SQL Type Length
ORDERID VARCHAR 20
REGION VARCHAR 12
ACCOUNT VARCHAR 12
TRADETYPE VARCHAR 12
TRADEACTION VARCHAR 12
AMOUNT DOUBLE 8
STATUS VARCHAR 12
REASON VARCHAR 32
BONDISSUE VARCHAR 12
BONDMATURITY INTEGER 4
EQUITYSYMBOL VARCHAR 8
VALUE DOUBLE 8
CUSTOMER VARCHAR 32
BUSINESS_TRANS_ID INTEGER 4

In the above table, the BUSINESS_TRANS_ID column is a transaction identification
field that is required to join with the TransactionVision BUSINESS_TRANSACTION
table, while the remaining columns contain business content that are extracted from the
message data.

3.6.3.3. Step 3: Extract transaction attributes from event data

Now that we have determined the format and contents of the message data in Step 1,
these event fields need to be set as transaction attributes. This is done in the
TransactionDefinition.xml rules file with the help of “Attribute” elements with
“ValueRule” elements to set values into attributes. A transaction XML document is
created by the Analyzer in memory as attributes are set and this document is then
mapped to database tables defined in the transaction XDM file.

Consider the mapping rule below from the TransactionDefinition.xml file for the
TRADE sample database:

<Attribute name="OrderID">
 <Path>/Transaction/OrderID</Path>
 <ValueRule name="SetOrderID">
 <Value type="XPath">
/Event/Technology/Servlet/Response/Headers/Header[@name='orderid']/@
value</Value>
 </ValueRule>
</Attribute>

Here a transaction attribute called “OrderID” has been defined, with an XPath location
of “/Transaction/OrderID”. A “ValueRule” of name “SetOrderID” sets the value of
the transaction attribute at XPath “/Transaction/OrderID” from the attribute value in
the event data at XPath
“/Event/Technology/Servlet/Response/Headers/Header[@name='orderid']”.

24 TransactionVision Programmer’s Guide

Chapter 3 • Tutorial - Extending the Analyzer
How to classify business transactions and map transaction attributes to database tables

The two important pieces of information in the above attribute rule are the event
XPath, which is the source of the data, and the transaction XPath, which is the
destination to which the source data is copied into.

Value rules can also set constant values into transaction attributes. In the following
XML snippet, a constant value of “Completed” is set into the transaction attribute
“State” at XPath location “/Transaction/State”.

<Attribute name="State">
 <Path>/Transaction/State</Path>
 <ValueRule name="SetState">
 <Value type="Constant">Completed</Value>
 </ValueRule>
</Attribute>

The attribute rules can be used in the context of class rules, which determine that the
attribute rules are applied only for certain classes. Consider the example below:

<?xml version="1.0"?>
<TransactionDefinition>
 <Class name="Bond" dbschema="TRADE">
 <Classify id="1">
 <Match xpath="/Event/StdHeader/ProgramName"
operator="EQUAL" value="TradeServlet"/>
 <Match
xpath="/Event/Technology/Servlet/Request/Parameters/Parameter[@name=
'product']/@value" operator="EQUAL" value="Bond"/>
 <Attribute name="OrderID">
 <Path>/Transaction/OrderID</Path>
 <ValueRule name="SetOrderID">
 <Value type="XPath">
/Event/Technology/Servlet/Response/Headers/Header[@name='orderid']/@
value</Value>
 </ValueRule>
 </Attribute>
...

Here, the attribute rule of name “OrderID” is applied only for already classified
transactions of class “Bond”.

Attribute rules also can have match criteria such that the rules are applied to every event
when a match criteria is successful. Consider the XML snippet below:
 <Attribute name="Amount">
 <Path>/Transaction/Amount</Path>
 <ValueRule name="SetAmount">
 <Match xpath="/Event/Technology/JMS/Caller"
operator="EQUAL" value="TradeServlet"/>
 <Match xpath="/Event/Technology/JMS/Method"
operator="EQUAL" value="receive"/>
 <Match xpath="/Event/Technology/JMS/Data/DataSize"
operator="UNEQUAL" value=""/>
 <Match xpath="/Event/Technology/JMS/Data/DataSize"
operator="UNEQUAL" value="0"/>
 <Value
type="XPath">/Event/Data/Chunk/Order/Amount</Value>
 </ValueRule>
 </Attribute>

TransactionVision Programmer’s Guide 25

Chapter 3 • Tutorial - Extending the Analyzer
How to classify business transactions and map transaction attributes to database tables

Here, the value rule to set the value of “Amount” at XPath location
“/Transaction/Amount” from the event XPath
”/Event/Data/Chunk/Order/Amount”, is fired when the logical AND of the Match
criteria evaluate to True.

Refer to Section 4.5.4 for details on the syntax of the classification rules.

3.6.3.4. Step 4: Construct XDM file entries for transaction attributes

Now that we have determined the contents of the transaction attributes and extracted
them from the event data as in Step (1) and (3) and determined which database tables
need to be populated as in Step (2), a mapping can be created from the XML
transaction attributes to the database columns.

Consider the below transaction document created by rules set XML segment:
<Transaction>
 <OrderID>123456</OrderID>
 <Account> </Account>
 <Region> </Region>
 <TradeType> </ TradeType >
 <TradeAction> </TradeAction>
 <Amount> </Amount>
 ...
</Transaction>

The XPath to the OrderID field can be written as: “/Transaction/OrderID”.

The value at this XPath is to be written to the ORDERID column of the
TRADE_BUSINESS_TRANSACTION table for the business transactions for which
this value is set.

This mapping can be done in an XDM file as follows:

<Mapping documentType="/Transaction">
 <DBSchema>Trade</DBSchema>
 <Key name="business_trans_id" type="INTEGER"
generateSequence="true" description="TransactionId">
 <Path>/Transaction/BusinessTransId</Path>
 </Key>
 <Table name="TRADE_BUSINESS_TRANSACTION">
 <Column name="orderid" type="VARCHAR" size="20"
description="OrderID">
 <Path>/Transaction/OrderID</Path>
 </Column>
 <Column name="account" type="VARCHAR" size="12"
description="Account">
 <Path>/Transaction/Account</Path>
 </Column>
 ...

The above XDM file segment, the “Table” element defines a table name
TRADE_BUSINESS_TRANSACTION. The table contains a column ORDERID,
defined by the “Column” element, of type VARCHAR and size 20 bytes. The
“Column” of name ORDERID has an XPath mapping, defined by the “Path” element
to be “/Transaction/OrderID”. The key for the
TRADE_BUSINESS_TRANSACTION is defined by the “Key” element to be
business_trans_id column of type INTEGER.

26 TransactionVision Programmer’s Guide

Chapter 3 • Tutorial - Extending the Analyzer
How to classify business transactions and map transaction attributes to database tables

The table definition part of the XDM segment is applied when a new project schema is
created either by the CreateSqlScript or the project creation web pages. The XPath
mapping part of the XDM segment is applied by the Analyzer when processing events.
When a transaction contains data at the XPath value “/Transaction/OrderID” set by
the classification rules, the Analyzer extracts the value from the transaction document
and writes a row to the mapped column ORDERID belonging to table
TRADE_BUSINESS_TRANSACTION for that transaction. The “DBSchema”
attributes indicates that this mapping is applied only to transactions being written to the
“Trade” schema.

3.6.3.5.

3.6.3.6.

 Step 5: Determine the transaction classes and their classification criteria

Transaction classification can be based on a variety of different criteria based on the
transactions flowing through your business systems. In the sample TRADE system,
transaction classification is performed based on the type of financial transactions
flowing through the system, namely Equity, Bonds and FX (Foreign Exchange). Hence,
the next step would be to identify fields in the message data which identify the event
and its transaction to be one of these three types. For this system, this field is an
attribute “Product” in the XPath element
"/Event/Technology/Servlet/Request/Parameters/Parameter”. The next section
describes how to build a classification rule using this XPath value.

 Step 6: Implement classification rules

Consider the below XML segment from the TransactionDefinition.xml sample file for
the TRADE sample:

<Class name="Bond" dbschema="TRADE">
 <Classify id="1">
 <Match xpath="/Event/StdHeader/ProgramName" operator="EQUAL"
 value="TradeServlet"/>
 <Match
xpath="/Event/Technology/Servlet/Request/Parameters/Parameter[@name=
'product']/@value" operator="EQUAL" value="Bond"/>
 ...

In the above segment, the element “Class” defines a transaction class called “Bond”,
which applies to the database schema “TRADE”. Following the “Class” element is a
“Classify” element, which specifies one or more classification rules for the “Bond”
transaction class. The “Match” elements specify the rule criteria. The first “Match”
element has a rule which evaluates to True when the XPath value of
"/Event/StdHeader/ProgramName" in an event equals the value of “TradeServlet”.
Multiple “Match” elements are logically AND’d together. The second “Match” criteria
evaluates to True if a servlet event with the XPath element
"/Event/Technology/Servlet/Request/Parameters/Parameter” whose attribute
“product” has a value of “Bond”. In other words, any event with the program name
“TradeServlet” and a request parameter value of “Bond” is classified to be in the
“Bond” transaction class.

TransactionVision Programmer’s Guide 27

Chapter 3 • Tutorial - Extending the Analyzer
How to classify business transactions and map transaction attributes to database tables

Similarly, the below set of classification rules classify transactions to classes “Equity”
and “FX”.

<Class name="Equity" dbschema="TRADE">
 <Classify id="2">
 <Match xpath="/Event/StdHeader/ProgramName" operator="EQUAL"
 value="TradeServlet"/>
 <Match xpath="/Event/Technology/Servlet/Request/Parameters/
Parameter[@name='product']/@value" operator="EQUAL" value="Equity"/>

...

<Class name="FX" dbschema="TRADE">
 <Classify id="3">
 <Match xpath="/Event/StdHeader/ProgramName" operator="EQUAL"
 value="TradeServlet"/>
 <Match xpath="/Event/Technology/Servlet/Request/Parameters/
Parameter[@name='product']/@value" operator="EQUAL" value="FX"/>
 ...

Once a transaction is classified, attributes are attached to the transaction based on the
“Attribute” rules in the TransactionDefinition.xml file. The rules for setting and writing
attributes are described in Steps 3 and 4.

3.6.3.7.

3.6.3.8.

 Step 7: Recreate the project database schema

Existing database project schemas need to be updated to create the newly added tables
or columns. This can be done using options in the CreateSqlScript utility.

For example:

CreateSqlScript –c –e –n –p TRADE –t TRADE_BUSINESS_TRANSACTION

The above command creates the table TRADE_BUSINESS_TRANSACTION as
defined in the XDM file in the TRADE database schema.

 Step 8: Enable classification in the Analyzer

By default, TransactionVision does not classify the business transactions it processes.

To enable transaction classification, the following steps are required:
• Enable classification in the Beans.xml file by removing the comments around the

“ClassifyTransactionCtx” section. The following section is to be un-commented by
changing from:
 <!--Module type="Context" name="ClassifyTransactionCtx">
 <Module type="Bean"
class="com.bristol.tvision.services.analysis.eventanalysis.Standar
dClassifyTransactionBean"/>
 </Module-->

 To:
 <Module type="Context" name="ClassifyTransactionCtx">
 <Module type="Bean"
class="com.bristol.tvision.services.analysis.eventanalysis.Standar
dClassifyTransactionBean"/>
 </Module>

28 TransactionVision Programmer’s Guide

Chapter 3 • Tutorial - Extending the Analyzer
How to perform custom correlation of related events

• Define your classification rules in the file TransactionDefinition.xml. This has
been completed in the previous steps.

• Insert each class name into the database table “TRANSACTION_CLASS”. This table
must be populated before any transactions are processed by the Analyzer. For
example, for the three transaction classes discussed in the previous steps, the strings
“Bond”, “Equity” and “FX” need to be inserted into this table.

INSERT INTO <schema>.TRANSACTION_CLASS (class_id,

 class_name) VALUES(1, ‘Bond’)
INSERT INTO <schema>.TRANSACTION_CLASS (class_id,

class_name) VALUES(2, ‘Equity’)
INSERT INTO <schema>.TRANSACTION_CLASS (class_id,

class_name) VALUES(3, ‘FX’)
where <schema> is the database schema into which these transactions are written
to. Additional attributes of the transaction class, such as SLA thresholds, costs
per transaction etc. can also be populated into this table.

The TransactionVision Analyzer and Web component need to be restarted, after the
changes in above steps, so that when new projects are created, the XDM file changes are
applied to create the TRADE_BUSINESS_TRANSACTION table.

3.6.3.9. Step 9: Verify that the transaction classification works correctly and the transaction
attributes are written correctly

The results of the above steps can be verified by looking at the “Transaction Tracking
Report”, which can be accessed by going to the report “Where are my transactions?”
from the Reports page. For each business transaction, this report will show you the
class of the transaction and any custom attributes that have been set for that
transaction. Other custom reports may be written based on the transaction attributes
collected.

3.7. How to perform custom correlation of related events

3.7.1. Overview of Custom Event Correlation:

By default, the TransactionVision Analyzer correlates WebSphere MQ MQPUT and
MQGET events or JMS send and receive events based on certain criteria such as
message id, correlation id, put time and other fields in these events. However, at times
these criteria may not be sufficient to perform event correlation and these criteria may
either need to be expanded to include other data fields, such as those from the message
data, or may need to be relaxed to exclude some of the standard fields or may need to
be modified. This can be done by implementing a custom event correlation Java bean.
Here are some scenarios where a custom correlation bean may need to be implemented:
• TransactionVision Sensors may not be installed on some systems, such as those

belonging to external sensors. Hence, the messages going out to the un-sensored
systems would need to be correlated with the replies coming back from these
systems.

TransactionVision Programmer’s Guide 29

Chapter 3 • Tutorial - Extending the Analyzer
How to perform custom correlation of related events

• Unique message ids or correlation ids are not used by the applications. In this
scenario, custom fields from the message data may need to be used to correlate
message PUTs and GETs.

• An application that replies to a message swaps the message id and correlation id
fields and this application is not monitored by TranactionVision sensors.

3.7.2. Task Description:

This task walks through the creation of a simple event correlation bean. The requirement
for the bean is to correlate WebSphere MQ events for which the message id and
correlation ids have been swapped.

3.7.3. Implementation:

3.7.3.1.

3.7.3.2.

3.7.3.3.

 Step 1: Determine correlation requirements

Consider two applications A and B, where application A is monitored by a
TransactionVision sensor while application B is not. The sequence of events for this
system is as follows:
• Application A performed an MQPUT on a queue q1, with message id m1 and

correlation id c1.
• Application B read the message using an MQGET from queue q1 and processed

the message.
• Application B then placed a reply message using MQPUT on the reply-to queue q2,

with message id c1 and correlation id m1. Hence, the message ids and correlation
ids were swapped by application B.

• Application A performed an MQGET to read this message.

Now, because application B is not sensor’d and its MQGET/MQPUT are not received,
this transaction path remains un-correlated and no message flow arc is drawn between
application A’s MQPUT and application A’s MQGET. The custom event correlation
bean seeks to complete this path.

 Step 2: Determine which events need to be correlated and common correlation data
between the events

For this task, the requirement is to correlate a MQPUT event from application A with a
MQGET event from the same application A, which have their message id and
correlation ids swapped.

 Step 3: Implement the correlation bean

Writing a correlation bean involves implementing the IEventCorrelation Java interface.
This interface is described in Section 4.5.3.1

30 TransactionVision Programmer’s Guide

Chapter 3 • Tutorial - Extending the Analyzer
How to perform custom correlation of related events

Implementing this interface requires writing code which implements two methods,
“createLookupKeys” and “correlateEvents”. The class “CorrelateTechHelperBean”
serves as the base class for any class implementing this interface.

The correlation process in the Analyzer is divided into two phases:
• The first phase involves generating lookup keys based on the characteristics of the

current event. This lookup key is then inserted into the database and then used to
match up with other correlated events as they arrive into the Analyzer. This phase is
implemented by the “createLookupKeys” method of the event correlation bean.
Hence, for application A for a MQPUT event, a lookup key comprising of the
message id needs to be created, while for an MQGET event from application A, a
lookup key comprising of the correlation id should be created.

• The second phase involves relation generation. Specifically, a set of events is passed
as potential candidate for matching with the current event. This set is composed of
the events that have the same lookup key as the current event. The purpose of this
phase is to further narrow down set of event matches based on additional criteria
which have not been covered by the lookup key data. For example, for application
A, the correlation should only be performed between MQPUTs and MQGETs and
not between APIs of the same type. This phase is implemented by the
“correlateEvents” method of the event correlation bean.

The following steps walk through the implementation of the event correlation bean.
Refer to the sample code shipped with the TransactionVision at
<TVISION_HOME>/samples/stock for the complete source code listing.
• The following code fragment shows how the event correlation bean class is defined.

public class StockTradeRelationshipBean extends
CorrelationTechHelperBean {

 // user defined correlation types should be >= 100
 public static final int REQUEST_REPLY_TYPE = 100;

 /**
 * Creates a new instance.
 */
 public StockTradeRelationshipBean() {
 super(TVisionCommon.TECH_NAME_MQSERIES,
REQUEST_REPLY_TYPE);
 }
 …
}

The class StockTradeRelationshipBean extends from the base class
CorrelationTechHelperBean. The constructor sets the technology name to be of
type “MQSeries”, since MQSeries events will be processed by this bean. The type
of the bean can be any number greater than or equal to 100 and is defined by the
constant “REQUEST_REPLY_TYPE”.

• The below code fragment implements the “createLookupKeys” method.

00065 /**
00066 * Generates lookup key for relation lookup table.

TransactionVision Programmer’s Guide 31

Chapter 3 • Tutorial - Extending the Analyzer
How to perform custom correlation of related events

00067 *
00068 * @param conInfo The database connection setup
00069 * @param event Event's XML doc
00070 * @param lookupKeys The generated lookup keys
00071 * @throws AnalyzeEventException Pass along caught exception
to the caller.
00072 */
00073 public void createLookupKeys(ConnectionInfo conInfo, XMLEvent
event, List lookupKeys)
00074 throws AnalyzeEventException {
00075
00076 try {
00077 XPathSearch lookup = new XPathSearch(event);
00078 String correlId;
00079
00080 /* for StockTrade->MQPUT call (request event), use
MQMD.MsgID as the
00081 lookup key, for StockTrade->MQGET call (reply
event), use
00082 MQMD.CorrelId as the lookup key */
00083 switch (StockTradeHelper.getEventType(lookup)) {
00084 case StockTradeHelper.MQSERIES_REQUEST_EVENT:
00085 correlId =
lookup.getValue(XPathConstants.MSGID);
00086 if (correlId == null)
00087 return;
00088 break;
00089 case StockTradeHelper.MQSERIES_REPLY_EVENT:
00090 if
(Integer.parseInt(lookup.getValue(XPathConstants.COMPCODE)) !=
00091 MQDefs.MQCC_FAILED)
00092 return;
00093 correlId =
lookup.getValue(XPathConstants.CORRELID);
00094 if (correlId == null)
00095 return;
00096 break;
00097 default:
00098 return;
00099 }
00100
00101 /* create a new lookup key and add it to the list */
00102 LookupKey key = new LookupKey(correlId,
REQUEST_REPLY_TYPE);
00103 lookupKeys.add(key);
00104 }
00105 catch (XMLException ex) {
00106 throw new AnalyzeEventException(ex);
00107 }
00108 }

The following describes the implementation of this method:
1. The “createLookupKeys” method implements the first phase of the correlation

algorithm, which is to generate lookup keys based on the event. This method accepts
input parameters of a database connection object, which holds information to
connect and access the database, an XMLEvent object, which holds the current
event being processed and an output list of lookup keys which are created by this
method based on data in the current event. The database connection object can be
used to make additional SQL calls to read or write data.

32 TransactionVision Programmer’s Guide

Chapter 3 • Tutorial - Extending the Analyzer
How to perform custom correlation of related events

2. On line 77, the XPathSearch class is used to look for fields in the event XML
document. This class supports XPath based searches on the XMLEvent class and on
XML DOM trees in general. Refer to Section 4.2.4.2 for details on the usage of this
class.

3. On line 83, the helper function “getEventType” performs several XPath lookup
calls on the event object to determine whether the event is a request or a reply event
or an event that does not need to be correlated. MQSeries MQPUT events are
determined to be REQUEST events, while MQSeries MQGET events are
determined to be REPLY events.

4. Line 85 performs a lookup of the message id in the event using an XPath search.
The variable “XPathConstants.MSGID” is a constant value set to the XPath
expression “/Event/Technology/MQSeries/*/*Exit/MQMD/MsgId". This
expression accesses the message id field in the MQMD of the MQPUT event.
Similarly on line 90, the completion code for an MQGET event is looked up and
unsuccessful events are not further processed. The XPath constant
“XPathConstants.CORRELID” holds the correlation id in the MQGET event,
which is extracted from the event.

5. Lines 102 and 103 set the message id for an MQPUT event or the correlation id of
the MQGET event as the lookup key for that event. This lookup key is used by the
Analyzer to insert into the database and for correlating with corresponding matching
events.

The XPathConstants.java file is shipped with TransactionVision and can be used for
obtaining XPath values for some commonly used event fields.

• The following code fragment implements the “correlateEvents” method.

00110 /**
00111 * Generates relations between two events if there is one.
00112 * @param conInfo The database connection setup
00113 * @param id Current event id.
00114 * @param idToMatch Event id needs to be matched with
current event.
00115 * @param eventRelations A list of relations between the two
events.
00116 * @throws AnalyzeEventException Pass along caught exception
to the caller.
00117 */
00118 public void correlateEvents(ConnectionInfo conInfo,
TechEventID id,
00119 TechEventID idToMatch, List eventRelations) throws
AnalyzeEventException {
00120
00121 try {
00122 /* Retrieve data relevant for event correlation. */
00123 Cache cache =
AnalysisCacheManager.instance().getCorrelationCache(conInfo.schema);
00124
00125 MQCorrelationData data = (MQCorrelationData)
cache.get(id);
00126
00127 if (data == null) {
00128 data =
MQRelationDBService.instance(conInfo.schema).getCorrelationData(

TransactionVision Programmer’s Guide 33

Chapter 3 • Tutorial - Extending the Analyzer
How to perform custom correlation of related events

00129
conInfo.con, id);
00130 if (data != null)
00131 cache.insert(id, data);
00132 else
00133 return;
00134 }
00135
00136 MQCorrelationData dataToMatch = (MQCorrelationData)
cache.get(idToMatch);
00137
00138 if (dataToMatch == null) {
00139 dataToMatch =
MQRelationDBService.instance(conInfo.schema).getCorrelationData(
00140
conInfo.con, idToMatch);
00141 if (dataToMatch != null)
00142 cache.insert(idToMatch, dataToMatch);
00143 else
00144 return;
00145 }
00146
00147 int apiId = data.apiCode;
00148 int apiIdToMatch = dataToMatch.apiCode;
00149
00150 if (apiId != apiIdToMatch) {
00151 EventRelation eventRelation = new EventRelation();
00152
00153 eventRelation.relation =
EventRelation.MESSAGE_PATH | EventRelation.BIDIRECTION;
00154
00155 eventRelation.direction =
EventRelation.RELATION_UNKNOWN;
00156 eventRelation.confidence =
EventRelation.STRONG_RELATION;
00157
00158 eventRelations.add(eventRelation);
00159 }
00160 }
00161 catch (DataManagerException ex) {
00162 throw new AnalyzeEventException(ex);
00163 }
00164 }
00165 }

The following describes the implementation of this method:
1. The “correlateEvents” method implements the second phase of the correlation

algorithm, which is to validate the event pair matches by performing further checks
on the pair of events. This method accepts input parameters of a database
connection, the current event id, the event id to match against and an output
parameter of containing a list of event relationships.

2. Line 123 retrieves a reference to the correlation data cache. This cache keeps event
data fields available in memory for access using the event id. Line 125 then gets the
correlation data from the cache using the event id. Similarly, line 136 gets data
from the cache for the event to be matched against.

3. If the data is not present in the memory cache, it needs to be retrieved from the
database. The method “getCorrelationData” on lines 128 and 139 does that. If the

34 TransactionVision Programmer’s Guide

Chapter 3 • Tutorial - Extending the Analyzer
How to perform custom correlation of related events

data is retrieved from the database, it is inserted into the cache on lines 131 and
142.

4. Line 150 performs a check that two events of the same API are not correlated
together.

5. Lines 150-158 involve creating an EventRelation object and adding it to the
method output list “eventRelations”. When this list is returned to the Analyzer, the
Analyzer creates database entries relating these two events.

Note that each class and method referenced above is described further in Section 3.5.3.

While implementing this bean, care needs to be taken that the custom lookup key
created is unique and not repeated between transactions. Not doing so will result in
multiple, unrelated transactions correlated into one business transaction. This could also
slow down the Analyzer performance.

3.7.3.4.

3.7.3.5.

 Step 4: Enable the Analyzer to invoke the correlation bean

This involves editing the Beans.xml file to add the correlation bean. The following line in
old needs to be added in the Beans.xml file, with the line in bold to be replaced with the
correlation bean class being implemented:

 <Module type="Context" name="CorrelationTechHelperCtx">

 ...
 <Module type="Context" name="CorrelationMQHelperCtx"
class="com.bristol.tvision.services.analysis.eventanalysis.Correlatio
nMQHelperCtx">

 <!-- This context contains beans that perform MQ specific
event correlation. -->
 <!-- For each MQ event the bean that matches the
technology of the event to correlate with will be called. -->

 <Module type="Bean"
class="com.bristol.tvision.services.analysis.eventanalysis.MQToMQRela
tionshipBean"/>
 <Module type="Bean"
class="com.bristol.tvision.demo.stock.StockTradeRelationshipBean"/>
 </Module>
 </Module>

 Step 5: Test the correlation bean

The correlation bean can be verified by checking the transaction path in the transaction
analysis view. A completely correlated path will have message path flows between local
transactions.

TransactionVision Programmer’s Guide 35

Chapter 4 • Reference - Extending the Analyzer
Using the Beans.xml File

4. Reference - Extending the Analyzer

4.1. Using the Beans.xml File
The file Beans.xml located in the <TVISION_HOME>/config/services directory
controls the beans loaded by the Analyzer framework for event processing.

IMPORTANT: This file is used by the Analyzer internally. Modifying sections that are
not documented here could break the correct functioning of the Analyzer.

Each module listed in the Beans.xml file has a type and a name. The type can be a
“Context”, which can hold other modules or a “Bean” type, which is loaded by a
“Context”. A module of type “Bean” contains the class that implements an interface
which is used by its context. Each context defines a known interface for the beans it
contains, loads the bean and calls into the interface implemented by the bean to perform
its function. In the example segment below, the EventModifierCtx is a bean context
which holds the DefaultModifierBean bean.
<Module type=”Context” name=” EventModifierCtx”>

<Module type=”Bean” class=”com.bristol.tvision.services.analysis.
eventmodifier.DefaultModifierBean”/>

</Module>

Each context uses its own rules to determine how its beans are invoked. The following
contexts can be modified or added to:

• EventModifierCtx
• DBWriteExitCtx
• CorrelationTechHelperCtx

The following sections will document how each of the above contexts can be modified.

4.2. Unmarshalling Message Data

Typically, binary message data has a proprietary, user-defined format. The EventModifierCtx
context allows a user to add a bean to “unmarshal” this binary data; that is, convert the binary
data to XML for later use by TransactionVision in reports, for analysis or querying. To help
converting binary data to XML, TransactionVision provides a set of utility classes.

4.2.1. The Default Modifier Bean

The TransactionVision installation comes with a default event modifier bean, the
“com.bristol.tvision.services.analysis.eventmodifier.DefaultModifierBean”. This bean scans the
user data for any XML data and, if found, simply adds it to the Event XML document at the
position “/Event/UserData/Chunk[@seqNo=’n’]” wher ‘n’ is the number of the data range
(defined in the data collection filter).

36 TransactionVision Programmer’s Guide

Chapter 4 • Reference - Extending the Analyzer
Unmarshalling Message Data

4.2.2. Adding a Message Data Unmarshal Bean

Adding a custom message or user data unmarshal bean involves modifying the Beans.xml file to
replace the default class with one or more custom written classes.

 <Module type="Context" name="EventModifierCtx">

<Module type="Bean"
class="com.bristol.tvision.demo.stock.StockTradePayloadProc
essingBean"/>

 </Module>

For example, in the code snippet above, a bean
com.bristol.tvision.demo.stock.StockTradePayloadProcessingBean processes
any “stock trade” related custom data. If no event modifier bean is plugged in, the binary data
will be saved into tables as a BLOB. The bean invoked by the EventModifierCtx context
needs to implement the IEventModifier interface.

4.2.3. IEventModifier Interface

The method modify() of the IEventModifier interface is invoked by the
EventModifierCtx context when it receives an event. This interface contains one method
modify() defined as below.
 public void modify(XMLEvent event)
 throws EventModifyException
Description:
The method modify() is called to convert the BLOB set stored in the XMLEvent object into the
user-data section of the XML tree or modify the event’s XML data. The BLOB set contains the
event’s binary message data.
IMPORTANT: data should typically be added in the XML event tree. Removing certain nodes
from the tree could break the analysis and database write operations in later contexts.
Parameters:

event - The XML event to which the XML format of the message data is appended to.
The XMLEvent class is documented in detail in Section 4.2.4.

Throws:
EventModifyException – This exception represents a failure in the bean performing the
XMLEvent modification.

4.2.4. XML Related Classes

This section documents the relevant public methods of the classes XMLEvent, XPathSearch and
XMLParser. Class XMLEvent contains the incoming event converted to an XML DOM tree.
Class XPathSearch is a utility class to search a DOM tree using XPath queries. Class XMLParser
is a wrapper class around the Apache DOM parser, with better error handling facilities.
TransactionVision event and event collection filter information is saved in XML document
format. To retrieve values of different fields, an XPath expression is used to specify the location
of the field. TransactionVision provides the file XPathConstants.java, which contains XPath
expression constants used to locate different fields in the event. This file is useful for writing
plug-in beans and reports and can be found at <TVISION_HOME>/java/src.

4.2.4.1. Class XMLEvent
package com.bristol.tvision.services.analysis
public class XMLEvent
extends com.bristol.tvision.util.xml.XMLDocument
implements java.io.Serializable

TransactionVision Programmer’s Guide 37

Chapter 4 • Reference - Extending the Analyzer
Unmarshalling Message Data

The class XMLEvent contains event data in XML DOM representation. It also holds a set of
cached properties to carry inter-module communication information, and a list of BLOBs to hold
application data which cannot be placed in the XML DOM tree. Note, that all the public methods
of the class org.w3c.dom.Document are available to users of XMLEvent. The following
methods are defined in the XMLEvent class.

Methods:

• getAttribute
public java.lang.Object getAttribute(java.lang.String key)

• setAttribute
public void setAttribute(java.lang.String key,
 java.lang.Object value)

• removeAttribute
public java.lang.Object removeAttribute(java.lang.String key)

The above three methods allow the user to set a cached value at one stage of event processing,
which can be used at another point of event processing without parsing the XML document. For
example during the unmarshal message data phase values can be stored which may later be used
during analysis. Typically, the key would be an XPath into the XML document and the value
would be the XML element value. The user of the above APIs must ensure that
TransactionVision internal values are not overwritten or deleted. This can be done by using
unique XPaths to message data as the key.

• getBlobCount
public int getBlobCount()

Returns the number of BLOBs available, using the blobIterator() method.

• blobIterator
public java.util.Iterator blobIterator()

Typically, event message data is stored into one BLOB field in the XMLEvent object. However,
if data ranges are used in the data collection filter an array of BLOBs is created, one BLOB for
each data range. This method returns an Iterator for instances of type XMLEvent.Blob.

• deleteBlob
public void deleteBlob(int seqNo, boolean deleteUserDataRef,
 boolean delteDataChunk)
 throws TVisionException

This method is used to delete the binary message data from XMLEvent. This method should
typically be called if an EventModifier plugin bean converts binary data to XML. In that case,
the binary data may no longer be required to be stored in the database and should be deleted
using this method. If the message data is unmarshalled into the technology tree under, for
example, the /Event/Technology/MQSeries/MQPUTEntry/Buffer subtree, the
deleteUserDataRef and deleteDataChunk flags should be set to true. If the message data is
unmarshalled into /Event/Data/Chunk, then both flags should be set to false. Also, if you
want to replace a chunk with a different BLOB, call this method with both flags set to false and
then call addBlob() to add a new BLOL into the XMLEvent.

Parameters:

38 TransactionVision Programmer’s Guide

Chapter 4 • Reference - Extending the Analyzer
Unmarshalling Message Data

seqNo - 0-based BLOB index

deleteUserDataRef – true if /Event//UserDataRef[@chunk=n] should be removed

deleteDataChunk – true if /Event/Data/Chunk[@seqNo=n] should be removed

• getPiiId
public int getPiiId()

• getEventSeqNo
public int getEventSeqNo()

The PiiId (Program Instance Id) and the SeqNo (Sequence Number) together form a
unique identifier to an event. They may be used to access event data from database
tables.

• Inner Class XMLEvent.Blob

Instances of this class are returned by the method ‘blobIterator()’ and represent the data
ranges for the message data:

 public static class Blob {

 public int id; // id of the blob, starting with 0
 public int from; // data range start
 public int to; // data range end
 public int type; // type of BLOB data

// (Binary, String, or XML,
 // defined in TVisionCommon.java)
 public int ccsid; // the character set id
 public byte[] blob; // the data

 public Blob(int ID, int from, int to, int type, int ccsid,

byte[] blob);

 }

4.2.4.2. Class XPathSearch

package com.bristol.tvision.util.xml
public class XPathSearch
extends XPathSearchBase

The helper class XPathSearch allows access to elements of an XML document using the
XPath syntax.

Constructor:

• XPathSearch
XPathSearch(org.w3c.dom.Document doc)
Creates an XPathSearch object from a DOM document or derived class like XMLEvent.

TransactionVision Programmer’s Guide 39

Chapter 4 • Reference - Extending the Analyzer
Unmarshalling Message Data

• XPathSearch
XpathSearch(java.io.InputStream stream) throws XMLException

Creates an XPathSearch object from an InputStream.
The InputStream is parsed into a DOM document without validation

• XPathSearch
XPathSearch(java.io.InputStream stream, boolean validate)
throws XMLException

Creates an XPathSearch object from an InputStream.
The InputStream is parsed into a DOM document.
Parameters:
stream - The InputStream conatining the XML data
validate - Use parser validation

• XPathSearch
XPathSearch(java.io.InputStream stream, String schemaFile) throws
XMLException

Creates an XPathSearchobject from an InputStream.
The InputStream is parsed into a DOM document with validation turned on.
Parameters:
stream - The <CODE>InputStream</CODE> conatining the XML data
schemaFile - The xml schema file to use for validation

Methods:

• getNodes
public org.w3c.dom.NodeList getNodes(java.lang.String xpath)
 throws XMLException

This method returns a list of all nodes in the XML document matching the XPath query.
The elements in the array are ordered according to the order of the elements in the DOM
tree.
Overrides:

getNodes in class XPathSearchBase
Parameters:

xpath - The XPath expression for the query
Returns:

A list of all nodes matching the query
Throws:

XMLException - Signals error during retrieving the values from the document

• getValues
public java.lang.String[] getValues(java.lang.String xpath)
 throws XMLException

This method returns the value of all text elements in the XML document matching
the XPath query. The elements in the array are ordered according to the order of the
elements in the DOM tree.

Overrides:
getValues in class XPathSearchBase

Parameters:
xpath - The XPath expression for the query

40 TransactionVision Programmer’s Guide

Chapter 4 • Reference - Extending the Analyzer
Unmarshalling Message Data

Returns:
The value of all text elements matching the query

Throws:
XMLException - Signals error during retrieving the values from the document

• getValue
public java.lang.String getValue(java.lang.String xpath)
 throws XMLException

This method returns the value of the first text element in the XML document
matching the XPath query.

Overrides:
getValue in class XPathSearchBase

Parameters:
xpath - The XPath expression for the query

Returns:
The value of the first matching text element

Throws:
XMLException - Signals error during retrieving the values from the document

4.2.4.3. Class XMLParser

package com.bristol.tvision.util.xml
public class XMLParser

implements org.xml.sax.ErrorHandler

This class is a wrapper around the Apache DOM parser and is a utility useful to parse
XML files or convert binary streams containing XML data into a DOM tree.

Constructor:

• XMLParser
XMLParser(boolean validation)
Creates a parser instance
Parameters:

validation – whether to create a validating parser or not

Methods:

• parse
public org.w3c.dom.Document parse(java.lang.String systemId)
 throws XMLException

Parses a XML file
Parameters:
systemId - The system id for the XML source
Returns:
The parsed document as a DOM tree
Throws:
XMLException - Signals errors during parsing

TransactionVision Programmer’s Guide 41

Chapter 4 • Reference - Extending the Analyzer
Unmarshalling Message Data

• parse
public org.w3c.dom.Document parse(java.lang.String systemId,
 java.lang.String schema)
 throws XMLException

Parses a XML file and uses the specified XML schema rather than a schema reference in the
document itself for schema validation
Parameters:
systemId - The system id for the XML source
schema - The schema to use for validation
Returns:
The parsed document as a DOM tree
Throws:
XMLException - Signals errors during parsing

• parse
public org.w3c.dom.Document parse(java.io.InputStream stream)
 throws XMLException

Parses a XML document from an input stream
Parameters:
stream - The input stream for the document
Returns:
The parsed document as a DOM tree
Throws:
XMLException - Signals an error during parsing

• parse
public org.w3c.dom.Document parse(java.io.InputStream stream,
 java.lang.String schema)
 throws XMLException

Parses a XML document from an input stream and uses the specified XML schema rather
than a schema reference in the document itself for schema validation
Parameters:
stream - The input stream for the document
schema - The schema to use for validation
Returns:
The parsed document as a DOM tree
Throws:
XMLException - Signals an error during parsing

4.2.4.4. Other Utility Classes

Often, binary structures embedded in the message data will need to be converted to XML.
This can be accomplished with a two step process, first extract the binary data into Java data
types and then convert these data types to appropriate XML elements. The Java class
java.io.DataInputStream could be used to walk through a binary stream, extract and
convert data into Java basic types. Also, the class “Translator” can be used to convert raw
binary data into a Java UTF String with code page conversion:
package com.bristol.tvision.util.charmapper

public class Translator {

42 TransactionVision Programmer’s Guide

Chapter 4 • Reference - Extending the Analyzer
Unmarshalling Message Data

 public static Translator instance(int srcCcsid);
 public String translate(byte[] rawData);

}

Once Java basic types have been extracted from the binary stream these values need to be
converted to XML data. This can be done using the utility “XML builder” classes in the
package com.bristol.tvision.util.xml. These classes allow a user to set values of
native Java types, a element name and get the XML tag output appended to a DOM tree
using the toDOM() method. These classes implement the DOMElement interface.

• Interface DOMElement

public interface DOMElement
This class defines a common interface for classes which output XML into a DOM tree.

Methods:

• toDOM
public void toDOM(org.w3c.dom.Document doc,
 org.w3c.dom.Node root)

This method appends nodes to the DOM tree doc at node location root.

• Class EventElement
public abstract class EventElement
implements DOMElement

This class is the super class of all XML builder classes that output XML elements into a DOM
tree.

Methods:

• Constructor
public EventElement(java.lang.String name)

The constructor of the EventElement class takes in the element name as a parameter. The
element name is used by the toDOM method to output the node of element name to the XML
DOM tree.

• toDOM
public abstract void toDOM(org.w3c.dom.Document doc,
 org.w3c.dom.Node root)

This is the same method as in the interface DOMElement.

• Class TextElement

public abstract class TextElement
extends EventElement

This class is a super class for those XML element classes which have only one text node as a
child. This class allows adding attributes to the XML element.

TransactionVision Programmer’s Guide 43

Chapter 4 • Reference - Extending the Analyzer
Unmarshalling Message Data

Methods:

• Constructor
public TextElement(java.lang.String elementName)

The constructor takes in the element name of the node to be inserted into the XML DOM tree.

• toDOM
public void toDOM(org.w3c.dom.Document doc,
 org.w3c.dom.Node root)
Overrides:

toDOM in class EventElement

• addAttribute
public void addAttribute(java.lang.String name,
 java.lang.String value)

This method allows adding a name-value pair of attributes to the XML element.

• hasNonNullValue
public abstract boolean hasNonNullValue()

This method returns true if this element has a non-null value and false otherwise.

• Class ByteElement

public class ByteElement
extends TextElement

Fields:

• value
public byte value

This field holds the byte value to be converted to an XML DOM tree node by the toDOM method.

Methods:

• Constructor
public ByteElement(java.lang.String elementName)

The constructor takes in the element name of the tag to be output in the XML DOM tree node.

• toDOM
public void toDOM(org.w3c.dom.Document doc,
 org.w3c.dom.Node root)

This method appends a node containing the byte value held by the field value to the DOM tree
doc at node location root with the element name elementName specified in the constructor of
this object.

• toString
public java.lang.String toString()

Overrides:
toString in class java.lang.Object

This method converts the byte held in the field value to a string representation.

44 TransactionVision Programmer’s Guide

Chapter 4 • Reference - Extending the Analyzer
Unmarshalling Message Data

• hasNonNullValue
public boolean hasNonNullValue()

Overrides:
hasNonNullValue in class TextElement
This method returns true if this element has a non-null value and false otherwise.

• Class ByteStringElement

public class ByteStringElement
extends TextElement

Fields:

• value
public byte[] value

This field holds the byte array value to be converted to an XML DOM tree node by the toDOM
method.

Methods:

• Constructor
public ByteStringElement(java.lang.String elementName)

The constructor takes in the element name of the tag to be output into the XML DOM tree node.

• toDOM
public void toDOM(org.w3c.dom.Document doc,
 org.w3c.dom.Node root)

This method appends a node containing the byte array value held by value to the DOM tree doc
at node location root with the element name elementName specified in the constructor of this
object.

• toString
public java.lang.String toString()

Overrides:
toString in class java.lang.Object

This method converts a byte array held in the value field to a string representation.

• hasNonNullValue
public boolean hasNonNullValue()

Overrides:
hasNonNullValue in class TextElement
This method returns true if this element has a non-null value and false otherwise.

• Class IntElement

public class IntElement
extends TextElement

TransactionVision Programmer’s Guide 45

Chapter 4 • Reference - Extending the Analyzer
Unmarshalling Message Data

Fields:

• value
public int value

This field holds the integer value to be converted to an XML DOM tree node by the toDOM
method.

Methods:

• Constructor
public IntElement(java.lang.String elementName)

The constructor takes in the element name of the tag to be output into the XML DOM tree node.

• toDOM
public void toDOM(org.w3c.dom.Document doc,
 org.w3c.dom.Node root)

This method appends a node containing the integer value held by field value to the DOM
tree doc at node location root with the element name elementName specified in the
constructor of this object.

• toString
public java.lang.String toString()

Overrides:
toString in class java.lang.Object

This method converts an integer to a string representation.

• hasNonNullValue
public boolean hasNonNullValue()

Overrides:
hasNonNullValue in class TextElement

This method returns true if this element has a non-null value and false otherwise.

• Class IntHexElement

public class IntHexElement
extends IntElement

This class’s toDOM method outputs an integer value to a XML DOM node element as a
hexadecimal string.

• Class LongElement

public class LongElement
extends TextElement

Fields:

• value
public long value

This field holds the integer long value to be converted to an XML DOM tree node by the toDOM
method.

46 TransactionVision Programmer’s Guide

Chapter 4 • Reference - Extending the Analyzer
Unmarshalling Message Data

Methods:

• Constructor
public LongElement(java.lang.String elementName)

The constructor takes in the element name of the tag to be output into the XML DOM tree node.

• toDOM
public void toDOM(org.w3c.dom.Document doc,
 org.w3c.dom.Node root)

This method appends a node containing the integer long value held by the field value to the
DOM tree doc at node location root with the element name elementName specified in the
constructor of this object.

• toString
public java.lang.String toString()

Overrides:
toString in class java.lang.Object

This method converts the integer long held in the field value to a string representation.

• hasNonNullValue
public boolean hasNonNullValue()

Overrides:
hasNonNullValue in class TextElement

This method returns true if this element has a non-null value and false otherwise.

• Class LongHexElement

public class LongHexElement
extends LongElement

This class’s toDOM method outputs an integer long value to a XML DOM node element as a
hexadecimal string.

• Class StringElement

public class StringElement
extends TextElement

Fields:

• value
public String value

This field holds the String value to be converted to an XML DOM tree node by the toDOM
method.

Methods:

• Constructor
public StringElement(java.lang.String elementName)

The constructor takes in the element name of the tag to be output into the XML DOM tree node.

TransactionVision Programmer’s Guide 47

Chapter 4 • Reference - Extending the Analyzer
Unmarshalling Message Data

• toDOM
public void toDOM(org.w3c.dom.Document doc,
 org.w3c.dom.Node root)

This method appends a node containing the String value held by the field value to the DOM tree
doc at node location root with the element name elementName specified in the constructor of
this object.

• toString
public java.lang.String toString()

Overrides:
toString in class java.lang.Object

This method converts the String held in the field value to a string representation.

• hasNonNullValue
public boolean hasNonNullValue()

Overrides:
hasNonNullValue in class TextElement

This method returns true if this element has a non-null value and false otherwise.

• Class RawStringElement

public class RawStringElement
extends TextElement

This class’s toDOM method outputs a String value to a XML DOM node element as a string
whose non-ASCII characters are converted to hexadecimal values.

4.2.5. Sample Usage of the IEventModifier Interface

Refer to the code in the directory <TVISION_HOME>/samples/stock/beans to see the usage
of the IEventModifier interface.
Two Java beans have been developed for processing stock trade simulation under
TransactionVision 3.0 - StockTradePayloadProcessingBean and StockTradeAnalysisBean.
StockTradePayloadProcesingBean is a message data processing bean. It looks for the
MQPUT/MQPUT1 and MQGET events from a StockTrade program (which initiates a trade).
MQPUT/MQPUT1 and MQGET events mark the beginning and end of a stock trade transaction.
For the MQPUT/MQPUT1 calls, the bean retrieves the message data blob, passes it to the XML
parser, and attaches the resultant DOM tree (/Order) to the event document under /Event/Data.
For the MQGET calls, the bean performs the same XML parsing on the message data blob,
creates a new XML document (Event/Data/Result) reflecting the trade result.
The following code fragment is the change to the Beans.xml file. It tells the Analyzer framework
to load the StockTradePayloadProcessingBean bean as a part of the EventModifierCtx
context. The payload processing bean’s IEventModifierCtx interface’s modify() method is
invoked by the context.
<Module type="Context" name="EventModifierCtx">
<!--
This context contains beans that modify XML event, which is
unmarshalled from raw event stream.
-->

48 TransactionVision Programmer’s Guide

Chapter 4 • Reference - Extending the Analyzer
Unmarshalling Message Data

<Module type="Bean"
class="com.bristol.tvision.demo.stock.StockTradePayloadProcessingBean"/
>
</Module>
The following code fragment is the implementation of the IEventModifierCtx interface. The
class StockTradePayloadProcessingBean is derived from EventModifierBean and
needs to implement the method modify(). The method modify() receives an XMLEvent as its
parameter. This sample looks for a particular type of event namely MQPUTs, MQPUT1s and
MQGETs APIs from certain programs.

public class StockTradePayloadProcessingBean extends
EventModifierBean {
/** Creates new StockTradePayloadProcessingBean */
 public StockTradePayloadProcessingBean() {
 }
 /**
 * Processing the event data and generate stock trade payload
document
 * @param event completed event document for the current event
 * @throws EventModifyException when processing failed
 */
 public void modify(XMLEvent event) throws EventModifyException
{
 try {
 XPathSearch lookup = new XPathSearch(event);
 int type = StockTradeHelper.getEventType(lookup);
 switch (type) {
 case StockTradeHelper.MQSERIES_REQUEST_EVENT:
 case StockTradeHelper.MQSERIES_REPLY_EVENT:
 processMQSeriesEvent(event, lookup,
type);
 break;
 case StockTradeHelper.DONT_CARE_EVENT:
 default:
 break;
 }
 }
 catch (XMLException e) {
 if (Logging.debug)
EventReader.log.debug("StockTradePayloadProcessingBean-process: " +
 "XML exception encountered");
 }
 }
}

The method getEventType()in the file StockTradeHelper.java does a lookup on certain parts
of the XML event document using the class XPathSearch. For example, in the segment below
the value of the event technology name and the program name is being accessed from the DOM
tree using the class XPathSearch’s getValue method. XPathConstants.TECH_NAME and
XPathConstants.PROGRAM_NAME map to the XPath expressions
"/Event/StdHeader/TechName" and "/Event/StdHeader/ProgramName" respectively.
Refer to the event XML schema at <TVISION_HOME>/config/xmlschema/Event.xsd for
the schema layout of the XML event packet.

XPathSearch lookup = new XPathSearch(event);
String techName = lookup.getValue(XPathConstants.TECH_NAME);
if (techName.equalsIgnoreCase(TVisionCommon.TECH_NAME_MQSERIES)) {
 /* we are only interested in the initiating program events */

TransactionVision Programmer’s Guide 49

Chapter 4 • Reference - Extending the Analyzer
Unmarshalling Message Data

 String programName =
lookup.getValue(XPathConstants.PROGRAM_NAME);
 if (!programName.equalsIgnoreCase(INIT_PROGRAM))
 ………
}

Once the right event has been identified, its message data is converted to XML by the
getUserDataXML() method called from the processMQSeriesEvent method. The BLOB
list is first obtained from the XMLEvent object using the blobIterator() method. The
obtained BLOB is converted to an XML DOM tree using the XMLParser class. The method
getUserDataXML is as below.
 /**
 * Return the XML document for event user data blob
 * @param event TransactionVision event document
 * @return the byte array representing the event user data
 */
 public static Document getUserDataXML(XMLEvent event) throws
XMLException {

 byte[] blob;
 Iterator blobs = event.blobIterator();

 if (blobs.hasNext())
 blob = ((XMLEvent.Blob) blobs.next()).blob;
 else
 return null;

 XMLParser parser = new XMLParser(false);
 return parser.parse(new ByteArrayInputStream(blob));
 }
Note that the parse() method of the XMLParser class will throw an exception if the BLOB is
not a XML document. Once the XML document is obtained, the document tree is inserted under
the node /Event/Data of the XMLEvent DOM tree. The method getDataNode() as below
returns the location of the message data node in the event DOM tree.
 /**
 * Return the /Event/Data node in the event document
 * @param lookup The XPathSearch lookup object of the
corresponding event document.
 * @return the /Event/Data node in the event document
 */
 public static Node getDataNode(XPathSearch lookup) throws
XMLException {

 NodeList nodes =
lookup.getNodes(StockTradeHelper.XPATH_EVENT_DATA);
 if (nodes.getLength() < 1)
 return null;
 return nodes.item(0);
 }
Once the binary data has been converted to an XML tree and the message data node has
been identified, the next step is inserting the message data XML tree into the XML event.
The code below from file StockTradePayloadProcessingBean.java shows how to
append data into the XMLEvent DOM tree. Here payloadDoc is of type
org.w3c.dom.Document. A call into getDocumentElement returns an object of type

50 TransactionVision Programmer’s Guide

Chapter 4 • Reference - Extending the Analyzer
Trimming Data From an Event

org.w3c.dom.Element which is copied into the XMLEvent object event. The call
appendChild() to attaches the copied nodes to the location for the message data, namely
under ”/Event/Data”.
 Document payloadDoc = StockTradeHelper.getUserDataXML(event);
 /* append the Order document to /Event/Data */
 dataNode.appendChild(event.importNode(payloadDoc.getDocumentEleme
nt(), true));
The above sample code is useful when the message data is already in an XML format. The
following sample from file StockTradePayloadProcessingBean.java shows how to
create nodes from part of the message data tree and append it to the XMLEvent tree.

 /* create /Event/Data/Result/ID */
 String orderid = payloadLookup.getValue("/Order/ID");
 Element eltOrderID = event.createElement("ID");
 eltOrderID.appendChild(event.createTextNode(orderid));

 /* create /Event/Data/Result/Type */
 String orderType = payloadLookup.getValue("/Order/Type");
 Element eltType = event.createElement("Type");

 eltType.appendChild(event.createTextNode(orderType));

 /* create /Event/Data/Result/Status */
 String orderStatus = payloadLookup.getValue("/Order/Status");
 Element eltStatus = event.createElement("Status");
 eltStatus.appendChild(event.createTextNode(orderStatus));

 /* create /Event/Data/Result */
 Element eltRes = event.createElement("Result");

 /* attach ID, Type, Status to /Event/Data/Result */
 eltRes.appendChild(eltOrderID);
 eltRes.appendChild(eltType);
 eltRes.appendChild(eltStatus);
 /* attach new tree to /Event/Data */
 dataNode.appendChild(eltRes);

4.3. Trimming Data From an Event
The DBWriteCtx context is invoked by the Analyzer framework before the database write
operation. It gives a user defined bean an opportunity to trim out data from the XML event
packet. Beans loaded by this context need to implement the IDBWriteExit interface.

4.3.1. Interface IDBWriteExit

public interface IDBWriteExit

Methods

• modify
public XMLEvent modify(XMLEvent event)
 throws DBWriteExitException

This method trims data off the XML event. The bean has to make a copy of the XML event
and return the trimmed copy.
Parameters:

TransactionVision Programmer’s Guide 51

Chapter 4 • Reference - Extending the Analyzer
XML-Database mapping Using XDM Files

event - The XML event to trim.
Returns:
The return value is the trimmed XML event
Throws:
TrimEventDataException - Trimming of the event failed
The sample code under <TVISION_HOME>/samples/dbwritexit shows how to write a
bean to plug into the database write exit context.

4.4. XML-Database mapping Using XDM Files
The TransactionVision database schema is made extensible through the XML to Database
Mapping (XDM) files. As new technologies or message data specific information is added,
new XDM files can be written to describe the lookup tables for the technology and message-
specific data in those events. Hence the purpose of the XML to Database mapping is
twofold:

• To describe which fields are to be extracted from the XML event data and stored in
lookup tables for fast searching and retrieval.

• To make the database schema partially data-driven.
The definitions contained in the XML Database Mapping (XDM) file are used as input not
only to the TransactionVision Data Manager (including the query services), but also to a
program that generates the commands necessary to create the lookup tables.
The XDM mappings can be technology or platform specific. The common mapping defined
in the file <TVISION_HOME>/config/xdm/Event.xdm (data in the standard event header)
will be written for every event, but the mappings defined in the other XDM files will only be
applied if the current event matches the mapping’s “category’ (technology or platform)
definition. The XML schema format of XDM files is defined in
<TVISION_HOME>/config/xmlschema/XDM.xsd. The following code is an extract from
the file Event.xdm.

<?xml version="1.0"?>
<Mapping documentTable="event" documentColumn="event_data">
 <Key name="proginst_id" type="INTEGER"
description="ProgramInstanceId">
 <Path>/Event/EventID/@programInstID</Path>
 </Key>
 <Key name="sequence_no" type="INTEGER"
description="SequenceNumber">
 <Path>/Event/EventID/@sequenceNum</Path>
 </Key>
 <Table name="EVENT_LOOKUP" category="COMMON">
 <Column name="host_id" type="INTEGER" description="Host"
isObject="true">
 <Path>/Event/StdHeader/Host/@objectId</Path>
 </Column>
 <Column name="program_id" type="INTEGER"
description="Program" isObject="true">

 <Path>/Event/StdHeader/ProgramName/@objectId</Path>
 </Column>
 ...
 </Table>
</Mapping>

52 TransactionVision Programmer’s Guide

Chapter 4 • Reference - Extending the Analyzer
XML-Database mapping Using XDM Files

The above snippet from Event.xdm defines a table EVENT containing the XML document
and a table EVENT_LOOKUP, containing various indexed columns of data from the XML
document. The key columns proginst_id and sequence_no are integer types and mapped
to XPath expressions /Event/EventID/@programInstID and
/Event/EventID/@sequenceNum. These key columns are primary keys common to the
EVENT and EVENT_LOOKUP tables. Similarly columns host_id and program_id are mapped
to XPath expressions /Event/StdHeader/Host/@objectId and
/Event/StdHeader/ProgramName/@objectId respectively.
The above XDM file specifies that when an XML event is written to the database by the DBWrite
module in the Analyzer, these fields are extracted and written into the database columns mapped
to in the XDM file. Similarly, when the database is queried using the QueryServices XML
interface, these XDM files are used to construct the corresponding SQL query.
The isObject attribute for a Column tag in the above XDM file refers to that column being an
identifier for an object in the system model table. The documentTable and documentColumn
tags are the table and column where the actual XML document is stored. The key is the primary
key and is common to the document table and the lookup tables. Each lookup column is indexed.
The queryOnly attribute for a Column tag indicates that the value is not written by the Analyzer
in the DBWrite module, but maybe written in the analysis phase of the Analyzer or by some other
application. Hence, this field is for queries only.

<Column name="local_trans_id" type="INTEGER"
description="LocalTransactionId" queryOnly="true">

<Path>/Event/LocalTransactionId</Path>
</Column>

The generated attribute for a Column tag means that column is a database generated id.
<Column name="sequential_id" type="INTEGER" generated="true" des

cription="SequentialId">
<Path>/Event/SequentialId</Path>

</Column>
The conversionType attribute for a Column tag means that field requires a formatting
conversion before writing to the database. The TypeConvService is called into before writing
that field into the database. This is typically used for writing date/time or enumeration fields.

<Column name="entrytime" type="CHAR" size="20" description="Entr
yTime" conversionType="Date">

<Path>/Event/StdHeader/EntryTime</Path>
</Column>

The category attribute on the Table tag contains either COMMON or the technology string or the
platform string for the event data that should be written into this table. The string COMMON
indicates that this table contains data common to every event and should be written for every
event going through the Analyzer. A technology or platform name like “MQSERIES” or
“OS390_BATCH” used in the category field indicates that this table should only be filled for
events of that technology or platform.

<Table name="EVENT_LOOKUP" category="COMMON">
...
</Table>
<Table name="OS390_LOOKUP"
category="OS390_BATCH,OS390_CICS,OS390_IMS">
...
</Table>

A column can map to multiple XPath expressions as in the sample code below. This assumes that
only one of the XPaths will exist in a given event document.

<Column name="datasize" type="INTEGER" description="DataSize">

TransactionVision Programmer’s Guide 53

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

<Path>/Event/Technology/MQSeries/MQGET/MQGETExit/DataLength</Path
>

<Path>/Event/Technology/MQSeries/MQPUT/MQPUTExit/BufferLength</Pa
th>

<Path>/Event/Technology/MQSeries/MQPUT1/MQPUT1Exit/BufferLength</
Path>

</Column>
The XDM files are also used by the CreateSqlScript utility to create the TransactionVision
tables are setup time.

4.5. Performing Event Analysis
There are five categories of event analysis activities defined in TransactionVision:

• Event Correlation: Establishing relation(s) between any two events. Examples
include message path relation representing a message flow from one event to
another, and transaction path relation representing a control flow between the two
events.

• Local Transaction Analysis: Grouping events of the same technology that
participate in the same unit of work in the same thread of execution into one local
transaction object.

• Business Transaction Analysis: Grouping local transaction objects participating in
the processing of the same business activity instance into one business transaction
object. This is achieved by establishing relation between any two local transaction
objects through the corresponding message path or transaction path relation of respective
events in the local transaction objects.

• Statistics Analysis: Calculating event statistics for the Static Topology View
• User Analysis: This can be any customized infrastructure or business level analysis.

Each event analysis task is implemented in an event analysis bean. The class
AnalyzeEventBean defines the base class for these beans:
The individual beans are managed under a multi-level analyze event context framework. The
class AnalyzeEventCtx defines the top level context. The set of beans to be managed under
this context are specified in the Beans.xml file. Each registered bean is executed following
the order defined in the file. The following is an example of the event analysis context setup
for the stock trade simulation example:

<Module type="Context" name="AnalyzeEventCtx">

<!-- This context contains beans that perform transaction analysis.
-->
<!-- Each registered bean in the chain is called. -->

<!—- TransactionVision Event Correlation bean -->
<Module type="Bean"

class="com.bristol.tvision.services.analysis.eventanalysis.EventC

orrelationBean"/>

<!—- TransactionVision Local Transaction Analysis bean -->

<Module type="Bean"

54 TransactionVision Programmer’s Guide

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

class="com.bristol.tvision.services.analysis.eventanalysis.Local
TransactionAnalysisBean"/>

<!—- TransactionVision Default Business Transaction Analysis bean

-->

<Module type="Bean"
class="com.bristol.tvision.services.analysis.eventanalysis.Busine
ssTransactionAnalysisBean">

<!—- TransactionVision Statistics beans -->

<Module type="Context" name="StatisticsCtx"
class="com.bristol.tvision.services.analysis.statistics.Statistic
sCtx">
 <Module type="Bean"
class="com.bristol.tvision.services.analysis.statistics.MQStatist
icsBean"/>
 <Module type="Bean"
class="com.bristol.tvision.services.analysis.statistics.JMSStatis
ticsBean"/>
 <Module type="Bean"
class="com.bristol.tvision.services.analysis.statistics.ServletSt
atisticsBean"/>
 <Module type="Bean"
class="com.bristol.tvision.services.analysis.statistics.EJBStatis
ticsBean"/>
</Module>

<!—User Analysis bean for the stock trade simulation -->
<Module type="Bean"
class="com.bristol.tvision.demo.stock.StockTradeAnalysisBean"/>

</Module>

4.5.1. Event Analysis Utility Classes and Interface

The following utility classes are extensively used in implementing various types of event
analysis beans.

4.5.1.1. Interface Cache

package com.bristol.tvision.util.cache
public interface Cache
TransactionVision maintains various in-memory caches for miscellaneous objects. These
caches are implemented as LRU caches, meaning that always the most recent processed data
is available. For example, a local transaction cache is maintained to store a mapping from
event ID to local transaction data. This interface defines the methods for manipulating the
cache.

TransactionVision Programmer’s Guide 55

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

Methods:

• insert
public void insert(java.lang.Object key, java.lang.Object value)

Insert a new key-value pair into the cache.
Parameters:

key – new cache object key field
value – new cache object value field

• get
public Object get(java.lang.Object key)

This method returns the value field of the cache entry with the matching key.
Parameters:
key – key field of the cache entry to be matched
Returns:
The value field of the cache entry if a matching object is found.

• remove
public void remove(java.lang.Object key)

Remove the cache entry with the matching key.
Parameters:

key – key field of the cache entry to be matched

• removeAll
public void removeAll()

Remove all cache entries.

• getSize
public int getSize()

Return the defined cache size specified in the CacheProperty file.
Returns:
The defined cache size

• resize
public void resize(int size)

Resizes (and clears) the cache.
Parameters:
size – new cache size

• getElementCount
public int getElementCount()

Return the current number of cache entries.
Returns:
The current number of cache entries.

56 TransactionVision Programmer’s Guide

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

• getCacheName
public java.lang.String getCacheName()

Return the name of this cache.
Returns:
The name of this cache

4.5.1.2.

4.5.1.3.

 Class ConnectionInfo

package com.bristol.tvision.datamgr
public class ConnectionInfo
This class is a simple structure for holding the TransactionVision database connection and
schema name within an object which can be passed through the event analysis service
framework.

Fields:

• con
public java.sql.Connection con;

A TransactionVision Connection object to the database. This connection object implements
the Java SQL Connection object interface.

• schema
public java.lang.String schema;

String for the current project database schema.

 Class EventID

package com.bristol.tvision.datamgr.dbtypes
public class EventID
Each event is uniquely identified by a pair of integer ID: a program instance (PII) ID and a
sequence number. The program instance ID points to the program instance (threads, tasks,
etc.) the event occurs within. This class defines a wrapper around these two identifiers for an
event.

Constructor:

• EventID
EventID(int piiId, int seqNo)
Creates an event ID object for an event with the program instance ID piiId and sequence
number seqNo.

Fields:

• public int piiId

The program instance id for this event

• public int seqNo

The sequence number of this event

TransactionVision Programmer’s Guide 57

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

Methods:

• equals
public boolean equals(EventID eventId)

Determine if the input event is the same as this event.
Parameters:
eventId – eventId to be matched
Returns:
true if the event ID matches, false otherwise.

• hashCode
public int hashCode()

Return a unique integer has code for this event ID object.
Returns:
The integer hash code for this event ID object

• toString
public java.lang.String toString ()

Return a string describing this event ID object.
Returns:
A string describing this event ID object

4.5.1.4.

4.5.2.1.

 Class TechEventID

package com.bristol.tvision.datamgr.dbtypes
public class TechEventID
This class extends class EventID and additionally holds the technology ID of the event.

Constructor:

• TechEventID
TechEventID(int piiId, int seqNo, int techId)
Creates an event ID object for an event with the program instance ID piiId, sequence
number seqNo., and techology ID techId

Fields:

• public int techId

The techology ID for this event.

4.5.2. Event Analysis Classes

 Interface IAnalyze

package com.bristol.tvision.services.analysis.eventanalysis
public interface IAnalyze
This defines the interface for general-purpose event analysis beans.

58 TransactionVision Programmer’s Guide

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

Methods:

• analyze
public void analyze(XMLEvent event, ConnectionInfo)
 throws AnalyzeEventException

This method implements a specific event analysis task on the given event.
Parameters:

conInfo – database connection info object for the current project
event – completed XML document for the current event

Throws:
AnalyzeEventException - Signals errors during the event correlation analysis

4.5.2.2.

4.5.2.3.

 Class AnalyzeEventCtx

package com.bristol.tvision.services.analysis.eventanalysis
public class AnalyzeEventCtx extends ChainManagerCtx implements IAnalyze
This is the top level event analysis context class and holds all analysis beans for the event
analysis. During analysis, the analyze() interface will be called for all beans contained in this
context (in sequential order).

 Class AnalyzeEventBean

package com.bristol.tvision.services.analysis.eventanalysis
public abstract class AnalyzeEventBean extends ChainManagedBean implements IAnalyze
This is the abstract base class for all event analyze bean. Any custom event analysis bean
should derive directly or indirectly from this class, and implement the IAnalyze interface
methods.

Fields:

• Analysis Type
public static final int EVENT_CORRELATION = 1;
public static final int LOCAL_TRANSACTION_ANALYSIS = 2;
public static final int BUSINESS_TRANSACTION_ANALYSIS = 3;
public static final int BUSINESS_PROCESS_ANALYSIS = 4;
public static final int USER_ANALYSIS = 5;

The type of analysis implemented by the event analysis bean
instance.

Methods:

• getAnalysisType
public int getAnalysisType()

Return the analysis type of the event analysis bean.

4.5.3. Adding Custom Correlation Analysis Beans

For event correlation, the class CorrelationTechHelperCtx defines the top-level context for
managing all event correlation beans. These beans are managed into different groups
according to the technology categories the beans are associated with. Each category is
managed by a technology specific event correlation context. Each context is designated to

TransactionVision Programmer’s Guide 59

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

handle a particular type of technology (e.g.: WebSphere MQ). That is, all the events being
passed to the context belong to the same technology. The technology specific context itself
holds a set of correlation beans which implements the Interface IEventCorrelation, each is
responsible for correlating the current technology to one particular other technology.
In Addition to these technology specific contexts it is possible to plug in a custom
‘UserCorrelationBean’, which will be invoked for every event processed by the event analysis
service, irrespectively of the technology.
The following is an example of event correlation context definition in the Beans.xml file:

<Module type="Context" name="CorrelationTechHelperCtx">

<!-- This context contains beans that perform event correlation.
-->
<!-- For each event the correlation context that matches the
event's technology will be called. -->

<!-- This context contains beans that perform MQSeries event
correlation -->
<Module type="Context" name="CorrelationMQHelperCtx"
class="com.bristol.tvision.services.analysis.eventanalysis.Correl
ationMQHelperCtx">

<!—- This bean is provided by TransactionVision for establishing
default intra MQSeries event correlation such as MQPUT – MQGET
message path relations -->

<Module type="Bean"
class="com.bristol.tvision.services.analysis.eventanalysis.MQToM
QRelationshipBean"/>

<!—- This bean is provided by TransactionVision for establishing
MQSeries – IMSBridge message path relations -->

<Module type="Bean"
class="com.bristol.tvision.services.analysis.eventanalysis.MQToB
ridgeRelationshipBean"/>

<!—- This bean is developed specifically the stock trade
simulation for establishing a custom transaction path relation
between a failed MQGET call and the MQPUT call issued by the
stock trade initiating program -->

<Module type="Bean" class="com.bristol.tvision.demo.
stock.StockTradeRelationshipBean"/>

<!—The CorrelationTechHelperCtx provides a hook for the user to
plug in a technology independent custom correlation bean:
<!-- UserCorrelationBean :
1.) the ‘createLookupKeys()’ method of the user bean is called
after the default lookup key generation for events of all
technologies and can add additional lookup keys

60 TransactionVision Programmer’s Guide

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

2.) the ‘correlateEvents()’ method of the user bean is called
after the default correlation for events of all technologies and
can generate additional event relations -->

<Attribute name="UserCorrelationBean"
value="com.bristol.tvision.services.analysis.eventanalysis.UserC
orrelationBean"/ -->

</Module>

</Module>

For WebSphere MQ, TransactionVision provides a bean MQToMQRelationshipBean that
handles all WebSphere MQ correlation tasks. This includes matching MQPUT or MQPUT1
calls to MQGET calls that handle the same message. The resultant relation is known as the
message path relation, indicating a data flow between the two corresponding applications.
It is possible to add additional correlation logic in several ways:

• A new correlation bean can be developed and added to the correlation processing
chain. In the above example, the StockTradeRelationshipBean bean is invoked in
the MQSeries event context along with the MQToMQRelationshipBean.

• The default correlation bean can be replaced by a user bean through subclassing or
aggregation. This allows modifications to the default correlation behavior. For
example, a bean can be developed that invokes the MQToMQRelationshipBean
correlation interfaces, examines the correlation results, and makes modifications to
the results if necessary.

• Provide an implementation for the UserCorrelationBean.
An event correlation bean should implement the interface IEventCorrelation. The
IEventCorrelation interface defines two methods createLookupKeys and correlate for the
two phases discussed before. The class CorrelationTechHelperBean serves as the base
class for all event correlation beans
In TransactionVision, event correlation is performed on a per event, per technology basis.
The correlation task is divided into two phases.
The first phase involves generating lookup keys based on the characteristics of the current
event. The purpose of setting up these keys is to identify the set of events bearing the same
lookup key as the potential candidates for correlation in the second phase. For example, in
the case of MQPUT(1) – MQGET message path relation generation, for each MQPUT(1)
and MQGET event, a key composed of the message ID (MQMD.MsgId), correlation ID
(MQMD.CorrelId), message put data and time is generated.
For any event, the createLookupKeys() method of each bean contained in the
technology specific context will be called. In the above example, for a MQ event the
MQToMQRelationshipBean as well as the MSToBridge RelationshipBean will both generate
a lookup key for the current event.
The second phase involves relation generation. Specifically, a set of events is passed as
potential candidate for matching with the current event. This set is composed of the events
that have the same lookup key as the current event. For example, for a MQGET event, all
the MQPUT(1) /MQGET events having the same key (message Id + correlation ID +
message put data + message put time) are passed as potential match candidates. Further tests
can now be conducted on individual candidate event to see if it is truly related to the current

TransactionVision Programmer’s Guide 61

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

event. For example, events with the same method/API name (MQPUT-MQPUT, MQGET-
MQGET) should not result in a message path relation.
For a certain set of candidates with matching lookup keys, the type of the correlation (e.g.,
MQ-MQ or MQ-IMS) determines which beans correlateEvents() method is called.
In the above example, a set of events with matching lookup key of type MQ-MQ will be
passed on to the MQToMQRelationshipBean, a set of events with type MQ-IMS will be
passed on to the MQToBridgeRelationshipBean. Currently the following correlation types
are defined for TransactionVision as constants in class EventCorrelationBean:

public class EventCorrelationBean extends AnalyzeEventBean {

 public static final int MQ_PUT_GET_TYPE = 1;
 public static final int MQ_IMSBRIDGE_TYPE = 2;
 public static final int IMSBRIDGE_ENTRY_EXIT_TYPE = 3;
 public static final int JMS_SEND_RCV_TYPE = 4;
 public static final int PROXY_TYPE = 5;
 public static final int PUBSUB_TYPE = 6;
 public static final int CICS_TRANS_TYPE = 7;
 public static final int MQ_CICS_TYPE = 8;
…

}
The correlation type for a correlation bean has to provided in the constructor call. For user
defined correlation beans, new correlation types should be >= 100.

4.5.3.1. Interface IEventCorrelation

package com.bristol.tvision.util.services.analysis.eventanalysis
public interface IEventCorrelation

The IEventCorrelation interface defines the methods to be implemented by any event
correlation bean.

Methods:

• createLookupKeys
public void createLookupKeys(ConnectionInfo conInfo, XMLEvent event,
java.awt.List lookupKeys) throws AnalyzeEventException

Generate one or more lookup keys for correlation purpose for the given event.
Parameters:

conInfo – database connection info object for the current project
event – completed XML document for the current event
lookupKeys – list of lookup keys to be added

Throws:
AnalyzeEventException - Signals errors during the event correlation analysis

• correlateEvents
public void correlateEvents (ConnectionInfo conInfo, TechEventID id,
TechEventID idToMatch, List eventRelations)
throws AnalyzeEventException

Decide whether a relation should be established between the two events passed. If the conclusion
is affirmative, generate new relation objects and add them to the given list.
Parameters:

62 TransactionVision Programmer’s Guide

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

conInfo – database connection info object for the current project
id – event ID object for the current event to be matched
idToMatch – event ID object for the potential matching event candidate
eventRelations – list of event relations generated

Throws:
AnalyzeEventException - Signals errors during the event correlation analysis

4.5.3.2.

4.5.3.3.

 Class CorrelationTechHelperBean

package com.bristol.tvision.util.services.analysis.eventanalysis
public abstract class CorrelationTechHelperBean
extends ChainManagedBean
implements IEventCorrelation

This is the abstract base class for all event correlation beans.

Constructor:

• CorrelationTechHelperBean

CorrelationTechHelperBean(java.lang.String technology, int
correlationType) throws AnalyzeEventException

Creates an instance of this event correlation bean for the given technology and correlation
type. The correlation type is a unique integer and should be >= 100 for new user-defined
correlation types.

Methods:

• createLookupKeys

Refer to the definition of IEventCorrelation.

• correlateEvents

Refer to the definition of IEventCorrelation.

• getCorrelationType
public java.lang.String getCorrelationType()

Return the correlation type string.

 Class MQCorrelationData

package com.bristol.tvision.datamgr.dbtypes
public class MQCorrelationData
This class defines a collection of event attributes relevant to the event correlation process.
For example, in the IEventCorrelation::correlateEvents method, event attributes for the two
events to be matched can be retrieved through a correlation data cache. The attributes are
returned in an object instance of this class.

TransactionVision Programmer’s Guide 63

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

Constructor:

• MQCorrelationData

MQCorrelationData(int apiCode, java.lang.String putApplName,
java.lang.String putApplType,String userId, int qmgrId, int mqObjId,
java.lang.String eventTime, int programId)

Creates an instance of a WebSphere MQ correlation event attribute data collection object
based on the given event attributes.

Fields:

• int apiCode

• String putApplName

• String putApplType

• String userId

• Int qmgrId

• Int mqObjId

• String eventTime

• Int programId

4.5.3.4. Class JMSCorrelationData

package com.bristol.tvision.datamgr.dbtypes
public class JMSCorrelationData
Similar to the class MQCorrelationData, this class defines a collection of event attributes
relevant to the event correlation process of JMS events.

Constructor:

• JMSCorrelationData
JMSCorrelationData(int methodCode, String appId, String userId, String
destination, String eventTime, int programId, String putApplType, int
qmgrId, int mqObjId)

Creates an instance of a JMS correlation event attribute data collection object based on the
given event attributes.

Fields:

• int methodCode

• String appId

• String userId

• String destination

• String eventTime

• int programId

64 TransactionVision Programmer’s Guide

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

• String putApplType

• int qmgrId

• int mqObjid

4.5.3.5. Class LookupKey
package com.bristol.tvision.datamgr.dbtypes
public class LookupKey

This class defines the lookup key object to be used in identifying potential events for correlation
purpose.

Constructor:

• LookupKey
LookupKey(java.lang.String keyValue, int typeId)

Creates a new lookup key instance with the given key and the correlation type id.

Fields:

• String keyValue

• int typeId

Methods:

• equals
public boolean equals (LookupKey lookupKey)

Decide whether the given lookupKey is equal to this key object. The two objects are equal if the
corresponding key, correlation type string, and type ID are the same.
Parameters:
lookupKey – lookup key object to be compared
Returns:
true if the two keys are equal, false otherwise

4.5.3.6. Class EventRelation
package com.bristol.tvision.datamgr.dbtypes
public class EventRelation

This class defines an event relation object between any two events.

Fields:

• Relation Type
public static final int UNKNOWN_PATH = 0;
public static final int MESSAGE_PATH = 1;
public static final int TRANSACTION_PATH = 2;
public static final int BIDIRECTION = 16

Type of the event relation:
• MESSAGE_PATH indicates a direct message flow between the two events. That means

the two events are associated with the same message data. For example, a MQPUT and
MQGET call dealing with the same message bears a message path relation.

TransactionVision Programmer’s Guide 65

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

• TRANSACTION_PATH indicates a control flow between two events.

• BIDIRECTION is a type mask that indicates the bi-direction nature of the relation
between the two events.

• Relation Direction
public static final int RELATION_PATH_IN = 1;
public static final int RELATION_PATH_OUT = 2;
public static final int RELATION_UNKNOWN = 0;

Direction of the event relation. Note that the event object is created in conjunction with an event
pair (event1, event2). This indicates the direction from event1 to event2.

• Confidence Factor
public static final int WEAK_RELATION = 0;
public static final int STRONG_RELATION = 1;

This factor is assigned by the event correlation module. There are cases where the correlation
module may not have perfect data for a deterministic decision on the event relation generated. In
such case, the relation created can carry a WEAK_RELATION confidence factor indicating the
uncertainty in the decision.

• int relation

Bitfield indicating the relation type, e.g. MESSAGE_PATH | BIDIRECTION

• int direction

Bitfield indicating the relation direction, e.g. RELATION_PATH_IN |
RELATION_PATH_OUT

• int confidence

Confidence factor, either WAEK_RELATION or STRONG_RELATION

• int latency

The latency between the two events in milliseconds

Constructor:

• EventRelation
EventRelation(int relation, int direction, int confidence, int
latency)

Creates a relation object with the given relation type, direction, confidence factor, and
latency.

4.5.3.7. Class MQRelationDBService
package com.bristol.tvision.datamgr.dbservices
public class MQRelationDBService

This class defines an internal database service for accessing MQSeries correlation related
information. For example, this service works in conjunction with the caching mechanism
and stores MQSeries event correlation attributes. The following describes the public
interfaces of interest to the custom event analysis beans developers.

66 TransactionVision Programmer’s Guide

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

Methods:

• instance
public static MQRelationDBService instance (java.lang.String schema)

Return the singleton instance of the MQRelationDBServices.
Parameters:

schema – Database schema for the current project
Returns:

Singleton instance of the MQRelationDBService.

• getCorrelationData
public MQCorrelationData getCorrelationData(java.lang.Connection
con, EventID eventID) throws DataManagerException

Return the MQSeries correlation event data for the given event.
Parameters:

con – Java SQL database connection handle, probably from the ConnectionInfo object.
eventID – EventID object for the interested event

Returns:
A MQCorrelationData object for the given event.
Throws:
DataManagerException - Signals errors during internal database operations.

4.5.3.8. Class JMSRelationDBService
package com.bristol.tvision.datamgr.dbservices
public class JMSRelationDBService

This class defines an internal database service for accessing JMS correlation related
information.

Methods:

• instance
public static JMSRelationDBService instance (java.lang.String
schema)

Return the singleton instance of the JMSRelationDBServices.
Parameters:

schema – Database schema for the current project
Returns:
Singleton instance of the JMSRelationDBService.

• getCorrelationData
public JMSCorrelationData getCorrelationData(java.lang.Connection
con, EventID eventID) throws DataManagerException

Return the MQSeries correlation event data for the given event.
Parameters:

con – Java SQL database connection handle, probably from the ConnectionInfo object.
eventID – EventID object for the interested event

TransactionVision Programmer’s Guide 67

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

Returns:
A JMSCorrelationData object for the given event.
Throws:
DataManagerException - Signals errors during internal database operations.

4.5.3.9. Sample Custom Event Correlation Bean

Refer to the code in the directory
<TVISION_HOME>/samples/stock/beans/correlation to see a sample implementation
of custom event correlation bean (StockTradeRelationshipBean.java).
StockTradeRelationshipBean implements the IEventCorrelation interface and is derived
from the class CorrelationTechHelperBean. It builds a custom message path relation
between a failed MQGET event (CompCode equals to MQCC_FAILED) and the MQPUT
event that participates in the same trade request processing. The stock trade example follows
a request-reply messaging model. The StockTrade program records the message ID field of
the initial request message, and uses this value as the correlation ID value to be matched
when it reads the reply message through the MQGET call. In other words, for a particular
transaction, the message ID field in the MQMD object of the StockTrade – MQPUT(1)
event should be the equal to the correlation ID field in the MQGET event.
The following is the code fragment for the StockTradeRelationshipBean constructor. It
specifies that the bean handles MQSeries events and generates custom event relation of type
“REQUEST_REPLY_TYPE” correlation as described above:

public static final String REQUEST_REPLY_TYPE = 100;
public StockTradeRelationshipBean() throws AnalyzeEventException {
super(TVisionCommon.TECH_NAME_MQSERIES, REQUEST_REPLY_TYPE);
}

The next code fragement contains the implementation of the createLookupKeys method. As
discussed before, the message ID or correlation ID value in the message descriptor record is
used as the lookup key for MQPUT(1) and MQGET respectively.

public void createLookupKeys(ConnectionInfo conInfo, XMLEvent event,
 List lookupKeys) throws
AnalyzeEventException {
try {
XPathSearch lookup = new XPathSearch(event);
String correlId;
/* for StockTrade->MQPUT call (request event), use MQMD.MsgID as */
/* lookup key, for StockTrade->MQGET call (reply event), use */
/* MQMD.CorrelId as the lookup key */
switch (StockTradeHelper.getEventType(lookup)) {
case StockTradeHelper.MQSERIES_REQUEST_EVENT:
correlId = lookup.getValue(XPathConstants.MSGID);
if (correlId == null)
 return;
break;
case StockTradeHelper.MQSERIES_REPLY_EVENT:
if (Integer.parseInt(lookup.getValue(XPathConstants.COMPCODE)) !=
 MQDefs.MQCC_FAILED)
return;
 correlId = lookup.getValue(XPathConstants.CORRELID);
 if (correlId == null)

68 TransactionVision Programmer’s Guide

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

return;
 break;
default:
return;
 }

/* create a new lookup key and add it to the list */
LookupKey key = new LookupKey(correlId, REQUEST_REPLY_TYPE);
lookupKeys.add(key);
 }
 catch (XMLException ex) {
throw new AnalyzeEventException(ex);
 }
}

The next code fragment contains the implementation of the correlateEvents method:

public void correlateEvents(ConnectionInfo conInfo, TechEventID id,
TechEventID idToMatch, List eventRelations) throws
AnalyzeEventException {

try {
/* Retrieve data relevant for event correlation from cache. */
Cache cache = AnalysisCacheManager.instance().getCorrelationCache
(conInfo.schema);
MQCorrelationData data = (MQCorrelationData) cache.get(id);
if (data == null) {
 data =
MQRelationDBService.instance(conInfo.schema).getCorrelationData(
 conInfo.con, id);
 if (data != null)
 cache.insert(id, data);
 else
 return;
}
MQCorrelationData dataToMatch = (MQCorrelationData)
cache.get(idToMatch);
if (dataToMatch == null) {
 dataToMatch =
 MQRelationDBService.instance(conInfo.schema).getCorrelationData(
 conInfo.con, idToMatch);
 if (dataToMatch != null)
 cache.insert(idToMatch, dataToMatch);
 else
 return;
}
int apiId = data. apiCode;
int apiIdToMatch = dataToMatch.apiCode;
if (apiId != apiIdToMatch) {
 EventRelation eventRelation = new EventRelation();
 eventRelation.setRelation(EventRelation.MESSAGE_PATH |
 EventRelation.BIDIRECTION);
 eventRelation.setDirection(EventRelation.RELATION_UNKNOWN);
 eventRelation.setConfidence(EventRelation.STRONG_RELATION);
 eventRelations.add(eventRelation);
}
}

TransactionVision Programmer’s Guide 69

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

catch (DataManagerException ex) {
 throw new AnalyzeEventException(ex);
}
}

The AnalysisCacheManager object provides an internal memory cache for storing selected
attributes of the events to be matched. Refer to the MQCorrelationData class definition for
a list of attributes supported. This cache allows quick access to certain event attributes
without executing an event data query, thus improving the correlation process performance.
To decide whether the two events are indeed related, the API code of the two events are
compared to ensure that one event is MQPUT(1) and the other one is MQGET. Since only
MQPUT(1) and MQGET events can be potential candidates, it is enough to check whether
the two event API codes are different or not.
Once it is decided that the two events are related, a new event relation object is created and
inserted to the relation list. The relation is of type MESSAGE_PATH, has no direction
attribute, and has a STRONG_RELATION confidence factor.
The following code fragment is the change to the Beans.xml file for including this custom
event correlation bean. It tells the Analyzer framework to load and run the
StockTradeCorrelationBean bean as a part of the CorrelationMQHelperCtx context.
This bean will be invoked after the default MQToMQRelationshipBean for every MQSeries
event.

<Module type="Context" name="CorrelationTechHelperCtx">

<Module type="Context" name="CorrelationMQHelperCtx"
class="com.bristol.tvision.services.analysis.eventanalysis.CorrelationMQH
elperCtx">

<Module type="Bean"
class="com.bristol.tvision.services.analysis.eventanalysis.MQToMQRelati
onshipBean"/>

<Module type="Bean" class="com.bristol.tvision.demo.
stock.StockTradeRelationshipBean"/>

</Module>

</Module>

4.5.4. Custom Business Transaction Attributes and Classification

Business transaction attributes are stored in the table BUSINESS_TRANSACTION
which is defined by an XDM file, and thus are easily extensible. Additional custom
business transaction attributes can be simply added by modifying the corresponding
Transaction.xdm file. The database schema which is defined by the standard XDM
definition is as follows:

70 TransactionVision Programmer’s Guide

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

BUSINESS_TRANSACTION
business_trans_id: INTEGER

class_id: INTEGER
starttime: CHAR(20)
endtime: CHAR(20)
responsetime: BIGINT
state: INTEGER
result: INTEGER
label: VARCHAR(128)
sequential_id: INTEGER

• business_trans_id: a unique ID for the transaction generated by the database

• class_id: the ID of the transaction class (FK into table transaction_class)

• starttime: the start time of the transaction

• endtime: the end time of the transaction

• responsetime: the time difference between start and end time

• state: the current state of the transaction (UNKNOWN, IN_PROCESS, COMPLETED)

• result: the result of the transaction (SUCCESS, FAILED)

• label: a label for the transaction to display in the GUI

• sequential_id: a unique ID which gets incremented every time the transaction has
been updated

When modifying the XDM definition to add custom business transaction attributes it is
important not to alter or delete any of those predefined “standard” attributes.
If no standard or custom transaction classification bean is plugged in into the Analyzer
framework, the attributes will get populated with the following values during event
transaction analysis:

business_trans_id generated by the database
class_id XMLTransaction.UNCLASSIFIED_ID (-1)
starttime time of the earliest event in this business transaction
endtime time of the latest event in this business transaction
state XMLTransaction.Unknown (-1)
result XMLTransaction.Unknown (-1)
label null
responsetime difference between starttime and endtime
sequential_id generated by the database

There are two different ways to populate the values of custom transaction attributes or to
modify the default values of the standard attributes:

• Use the StandardClassifyTransactionBean and define rules how to classify
transactions and update attribute values. This approach does not require any
additional coding, only the rule definition file has to be edited.

TransactionVision Programmer’s Guide 71

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

• Write a custom classification bean that implements the IClassifyTransaction
interface. This approach is useful if more complex transaction classification is needed
than the standard classification bean can provide

4.5.4.1.

4.5.4.2.

 Transaction Classification

By default, TransactionVision does not classify the business transactions it processes; the
class ID of each transaction will be 0, indicating that this transaction does not belong to
any transaction class. To enable transaction classification, the following steps (which are
explained in more detail in sections 3.5.4.2 – 3.5.4.6) are required:

• Enable classification in the Beans.xml file by removing the comment around the
ClassifyTransactionCtx section and by placing the appropriate classification bean
(standard or custom classification bean) into it.

• Define your classification rules in the file TransactionDefinition.xml (if
using the standard classification bean).

• Insert each class with its attributes into the database table
TRANSACTION_CLASS. The table must be populated before any transactions
are processed by the Analyzer.

 Transaction Classification with the Standard Classification Bean

The StandardClassifyTransactionBean is a default implementation of a classification bean
and allows user customized transaction classification without the need to write a single line
of code. Although the rule engine of this standard bean is simple and fairly limited, it may
well be sufficient for a great amount of classification cases. It is well suited for transactions
that can be classified based on the attributes of one event of the transaction.
The classification logic is driven by rules in the configuration file
$TVISION_HOME/config/services/TransactionDefinition.xml which define how and
when transaction attributes are set or updated. These rules will get evaluated for each event
being processed in the transaction analysis in the Analyzer. The main structure of this
configuration file is:

<TransactionDefinition>

<Class name="StockTrade" dbschema="Stock,Stock2">
 <Classify id=”1”>
 Conditions for setting the class
 </Classify>

 <Classify id=”2”>
 Different conditions for setting the class
 </Classify>

Rules for updating the transaction attributes

</Class>

<Class name="CashFlow" >
{…}
</Class>

{…}

</TransactionDefinition>

72 TransactionVision Programmer’s Guide

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

The transaction definition consists of one ore more <Class> definitions that contain rules
that are applicable to events and transactions of that particular transaction class. The
attribute @name has to be a valid transaction class name which has a corresponding entry in
the transaction_class table. Each class definition can have an optional attribute @dbschema
which restricts the definition to one or more (specified as a comma separated list) database
schemas. If the database schema for the current event does not match the schema tag for the
class definition, none of the rules for this class will get evaluated. If the schema attribute is
missing, the definition is valid for all database schemas.
Each <Class> definition consists of one or more <Classify> sections that contain rules for
identifying the transaction class, and a list of rules for setting and updating the transaction
attributes. Each <Classify> tag needs an arbitrary, but unique @id attribute.
The evaluation flow is as follows:

• If the current transaction has not been classified yet (class_id ==
XMLTransaction.UNCLASSIFIED_ID), then all <Classify> sections of all class
definitions matching with the current event schema are evaluated. If a classification is
successful, the transaction class ID of the transaction will get set and all attribute
rules contained in the class definition will get evaluated as well. No further
<Classify> section will be evaluated any more. If none of the classifications are
successful, the union of all attribute rules (outside of <Classify> sections) of all class
definitions for the current event schema are evaluated.

Note: This is necessary because the processing order of events in the analyzer can be
different to the order the events really happened, and the classification algorithm
needs to make sure that all rules for a certain class will get evaluated even if the event
which will classify the transaction will be processed at a later time. As a consequence,
rules outside of <Classify> sections should always be specific enough (by defining
appropriate matching rules) to match only on events of the class they are meant for,
because they will also get executed on events that might belong to another class for
which the classifying event has not been processed yet.

• If the current transaction already has its class attribute set, only the attribute rules in
the corresponding class definition outside of the <Classify> sections are evaluated.
The conditions inside of the corresponding <Classify> section are not evaluated
again.

Each <Classify> section contains one ore more <Match> conditions, e.g.:

<Class name="StockTrade" dbschema="Stock ">
<Classify id="1">
<Match xpath="/Event/Technology/JMS/Caller" operator="EQUAL"
value="StockTrade"/>
 <Match xpath="/Event/Technology/JMS/MQObject/Queue"
operator="EQUAL" value="TRADE_REQUEST"/>
 {…}

If the logial AND of these conditions results in true, the current transaction is
considered to be ‘classified’, and the class_id attribute of the current transaction is set to
the corresponding class ID of the definition class. In general, a match condition consist
of a @xpath, @operator, and @value attribute. The @xpath attribute specifies a certain

TransactionVision Programmer’s Guide 73

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

value from either the current XML event or the transaction document. @operator can
be either EQUAL or UNEQUAL, and @value can either contain a literal string value
or an enumeration constant (if there is an enumeration defined for this XPath). The
condition gets evaluated by string comparison of the document value with the specified
value.

As mentioned before, the match conditions in one <Classify> section are logically
AND-ed together. To specify an alternative set of conditions (logical OR), one or more
additional <Classify> sections for the same class can be added.

In addition to the <Classify> section, each class definition can contain zero or more
attribute rules to set or modify other transaction attributes. Here is an example of such
an attribute rule:
<Attribute name="Declined">
<Path>/Transaction/Declined</Path>
<ValueRule name="SetDeclined1">
<Match xpath="/Event/StdHeader/ProgramName" operator="EQUAL"
value="DeclineTrade01"/>
 <Match xpath="/Event/Technology/MQSeries/MQObject/@objectName"
operator="EQUAL" value="TRADE_REPLY"/>
 <Value type="Constant">true</Value>
</ValueRule>

<ValueRule name="SetDeclined2">
<Match xpath="/Event/StdHeader/ProgramName" operator="EQUAL"
value="DeclineTrade02"/>
 <Match xpath="/Event/Technology/MQSeries/MQObject/@objectName"
operator="EQUAL" value="TRADE_REPLY"/>
 <Value type="Constant">true</Value>
</ValueRule>
</Attribute>

Each <Attribute> element defines rules for setting the value of a certain transaction
attribute. An arbitrary but (for the class) unique @name attribute is required. The <Path>
element specifies the Xpath for the transaction attribute. The possible values for this
transaction attribute are specified in one or more <ValueRule> sections. Each <ValueRule>
specifies a set of match conditions (logical AND) and the new value for the attribute if the
match conditions ‘fire’. Again, each <ValueRule> requires an arbitrary but unique @name
attribute. The <ValueRule> definitions for an <Attribute> are evaluated in sequential order,
and once a certain rule has ‘fired’, the transaction attribute will get updated with the value
defined within this rule, and all following <ValueRule> sections will get skipped..
The new values for a transaction attribute are specified within the <Value> element and can
have one of two possible types (specified with the @type attribute):

• “Constant” specifies a literal String value or an enumeration constant (if there is an
enumeration defined for this XPath)

• “XPath” specifies that the new value should be retrieved dynamically at runtime
from either the XML event or transaction document

It is possible to specify multiple <Value> element for one attribute, in which case the
attribute value will be the concatenation of all evaluated <Value> definitions, like .e.g.:

<Attribute name="Label">
<Path>/Transaction/Label</Path>
<ValueRule name="SetLabel">
<Value type="XPath">/Event/Data/Order/Ticker</Value>
 <Value type="Constant">_</Value>

74 TransactionVision Programmer’s Guide

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

 <Value type="XPath">/Transaction/Account</Value>
 <Value type="Constant">_</Value>
 <Value type="XPath">/Transaction/OrderID</Value>
</ValueRule>
</Attribute>

Every time the transaction analysis calls into the standard classification bean for an event all
<Attribute> definitions for the corresponding transaction class are getting evaluated in
sequential order. But by default the <Attribute> rules are only evaluated if the
corresponding transaction attribute has no value yet, the definition is considered to be
“final”. Once a final rule has set the value of the transaction attribute, it (and other final rules
that refer to the same attribute) will not be evaluated again.
To allow transaction attributes to get set and updated more than once, the attribute rule can
be declared with an attribute @final set to “false”:

<Attribute name="EndTime" final=”false”>
 <Path>/Transaction/EndTime</Path>
 {…}

This forces an attribute rule to get evaluated every time, even when the transaction attribute
is already set. An attribute rule without the @final attribute is equivalent to @final=”true”.
Another rule attribute, @precedence, can be used to control the setting of new values for
transaction attributes :

<Attribute name="State" precedence="true">
<Path>/Transaction/State</Path>
{…}

This attribute can only be set for rules referencing integer valued transaction attributes. If set
to true then an existing attribute value only gets overwritten if the new value is greater than
the old value. This mainly makes sense for ‘state’ and ‘result’ like attributes where all values
can be ordered according to a priority (e.g. UNKNOWN->PROCESSING-
>COMPLETE), though in general it can be applied to any integer valued attribute. All
@precedence rules are automatically considered to be non-final too. By default (if the
@precedence attribute is not specified) the value is false.

Any transactions that have been successfully classified will show up with their respective
class name in the reports that categorize by class, such as the Transaction Tracking Report.
Also, any errors that are encountered during the classification process will get logged in the
Analyzer.log file.

4.5.4.3. Classification Action Rules

In addition to setting values within a classification value rule, custom actions can be
performed when the value rules are met. This is done by specifying a java class
implementing com.bristol.tvision.services.analysis.eventanalysis.IAnalyzerAction with an
<Action> element under the <ValueRule> element.
<Attribute name="State" precedence="true">
 <Path>/Transaction/State</Path>
 <ValueRule name="SetCompletedState">
 <Match xpath="/Transaction/StartTime"
operator="UNEQUAL" value=""/>
 <Match xpath="/Transaction/EndTime"
operator="UNEQUAL" value=""/>
 <Value type="Constant">Completed</Value>

TransactionVision Programmer’s Guide 75

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

 <Action type="JAVACLASS" code="1" reason="SLA
Violation">com.bristol.tvision.services.analysis.actions.LogSL
AViolation</Action>
 </ValueRule>
</Attribute>

In this example, if both the StartTime and EndTime of the transaction documents have
been set (not equal to empty string), set the transaction attribute named "State" to
"Completed". When this occurs, the bean specified in the action tag is invoked. This
allows invocation of response time computation logic only once per transaction. This
logic can also log service level violations or other transactional information.

<Action> elements can be chained. If more than one <Action> element is specified
within a classification attribute, they will be invoked in the order they appear as long as
the actions return true. As soon as one action returns false, the invocation chain is
stopped for that transaction.

Currently, the only Action type available is “JAVACLASS”. Code and reason provide a
means of passing an integer and/or string for use in the action method. They are not
required.

The com.bristol.tvision.services.analysis.actions.LogSLAViolation class provided with
TransactionVision logs service level agreement violations for a given transaction to
AnalyzeActivityLog defined in the Analyzer.Logging.xml:
<category additivity="false"
 class="com.bristol.tvision.util.log.XCategory"
 name="AnalyzerActivityLog">
 <priority class="com.bristol.tvision.util.log.XPriority"
 value="info"/>
 <appender-ref ref="ANALYZER_ACTIVITY_LOGFILE"/>
 <appender-ref ref="AMIT_APPENDER"/>
</category>

If you write a custom action class, it must implement
com.bristol.tvision.services.analysis.eventanalysis.IAnalyzerAction interface and must
provide an action method to be invoked by the standard classification bean. The custom
class is added to the Analyzer’s CLASSPATH by setting service_additional_classpath in
the Analyzer.properties file.

4.5.4.4. The ClassifyTransactionCtx and the IClassifyTransaction Interface

Transaction classification beans are plugged in into the Analyzer framework by placing
them into the ClassifyTransactionCtx in the Beans.xml file; for example:

 <Module type="Context" name="ClassifyTransactionCtx">
 <Module type="Bean"
class="com.bristol.tvision.services.analysis.eventanalysis.StandardCl
assifyTransactionBean"/>
 </Module>

76 TransactionVision Programmer’s Guide

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

The context can contain multiple beans, in which case the beans are processed in
sequential order. Each classification bean has to implement the
IClassifyTransaction interface:
public boolean
classify(com.bristol.tvision.services.analysis.XMLEvent event,

com.bristol.tvision.services.analysis.eventanalysis.XMLTransaction t
xn, com.bristol.tvision.datamgr.dbtypes.EventID[] correlatedEvents,
com.bristol.tvision.datamgr.ConnectionInfo conInfo)
 throws
com.bristol.tvision.services.analysis.eventanalysis.AnalyzeEventExce
ption

Performs transaction classification
Parameters:
event - The current event
txn - The transaction document for the current event
correlatedEvents - The list of correlated events
conInfo - The current database connection

Returns:
true if the transaction doc has been updated, false otherwise

Throws:
com.bristol.tvision.services.analysis.eventanalysis.AnalyzeEventExce
ption - The analysis process failed

For each event that gets processed during the event transaction analysis phase the
classify method of each registered classification bean will be called, and the logical
OR of all bean invocations will be returned back to the transaction analysis phase in the
Analyzer. If the returned value is true (meaning one or more beans have modified the
transaction document) the corresponding row values in the business_transaction
table will get updated by the Analyzer framework.

By default, the ClassifyTransactionCtx is disabled in the Beans.xml file. To enable the
standard classification, remove the XML comments around the following section :

 <!--Module type="Context" name="ClassifyTransactionCtx">
 <Module type="Bean"
class="com.bristol.tvision.services.analysis.eventanalysis.Sta
ndardClassifyTransactionBean"/>
 </Module-->

4.5.4.5. Writing a Custom Classification Bean

A classification bean has to implement the classify interface described above and can
trigger the update of business transaction attributes by modifying the XMLTransaction
object (the business transaction for the current event), which gets passed into the call.
The bean has access to all XMLDocument values in the current event and the

TransactionVision Programmer’s Guide 77

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

corresponding business transaction object by using the method
getDocumentValue(String xpath); for example:

String progName =
event.getDocumentValue(XpathConstants.PROGRAM_NAME);
String oldLabel = txn.getDocumentValue(XMLTransaction.LABEL_XPATH);

The bean can set and modify all of the additional custom transaction attributes, and most
of the standard ones. The only exception is business_trans_id; updating this value is
not allowed and may lead to unexpected results in the Analyzer. The update of
transaction attributes is done by using the method setDocumentValue(String
xpath, String value); for example:

tnx.setDocumentValue(XMLTransaction.LABEL_XPATH, newLabel);

If the bean has modified any of the transaction attributes, it has to return a boolean true
value from the classify call; otherwise, the new values will not be written to the
database in the Analyzer framework.
If the transaction document remains unchanged, the bean should return false to avoid
unnecessary database write overhead.

To classify a certain transaction, the bean has to update the class_id attribute of the
transaction document (XMLTransaction.CLASS_ID_XPATH). This integer value is a
foreign key into the transaction_class table and thus should only contain values that
correspond to valid transaction class entries. The transaction class Ids can easily be
accessed by using the utility class CachedTransactionClass :

int classId = CachedTransactionClass.getClassId(conInfo,
className);

As the transaction class table content is static, the utility class reads the transaction class
data only once from the database and returns all Ids without any further database access.

4.5.4.6. The Transaction Class Table

As attributes for a certain transactions are stored in the business_transaction table,
transaction classes and their attributes are stored in the table transaction_class. The standard
database schema (without any user-defined class attributes added) and the relationship to the
business_transaction table is as follows:

78 TransactionVision Programmer’s Guide

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

A row in this table makes a certain transaction class ‘known’ to the analysis system. The table
contents is static, meaning that all transaction classes have to be defined (and the table
populated) before the Analysis service is started. The Analyzer will read the transaction class
definitions at startup and use this information to map class names (wherever specified) to
the corresponding class Ids stored in the database.
The table schema is defined by the XDM mapping TransactionClass.xdm . The standard
mapping is:

<Mapping documentType="/TransactionClass">
<Key name="class_id" type="INTEGER" description="ClassId">
<Path>/TransactionClass/ClassId</Path>
</Key>
<Table name="TRANSACTION_CLASS" category="COMMON">
<Column name="class_name" type="VARCHAR" size="64"
description="ClassName">
 <Path>/TransactionClass/ClassName</Path>
 </Column>
</Table>
</Mapping>

Custom transaction class attributes can be simply added by editing the XDM file and adding
the appropriate <Column> definitions. Here is an example how to add a custom attribute
‘SLA’ :

<Column name="SLA" type="INTEGER" description="SLA">
 <Path>/TransactionClass/SLA</Path>
 </Column>

Although there is no “TransactionClass” XML document that gets processed by the
XMLDatabaseMapper (as mentioned above the contents is static), defining the
transaction_class table through a XDM mapping has the advantage of allowing queries on
transaction data that can include references to the transaction class attributes. The class_id
column definition in the business transaction XDM mapping includes a JOIN reference to
the transaction class table and thus makes it possible to create queries that use both
document types.

TransactionVision Programmer’s Guide 79

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

There is currently no utility that can aid in populating this table, so all class definitions have
to be inserted manually, e.g. by an SQL script. A sample script would look like this:

INSERT INTO schema.transaction_class (class_id, class_name, SLA)
VALUES(1, ‘StockTrade’, 5)
INSERT INTO schema.transaction_class (class_id, class_name, SLA)
VALUES(2, ‘CashFlow’, 0)
{…}

The class IDs and class names should be unique, and the class ID value 0 is reserved for the
UNCLASSIFIED transaction class.
Important! It is important to distinguish the class_id for each Class definition from the
classify id set in each Classify section within a Class definition. You should enter one unique
class id value into the transaction_class table for each Class that you define. Do not add an
entry for each Classify section that you define. The classify ids are only required for the
standard classification bean to uniquely identify each classify section.

4.5.4.7. Business Groups

A Business Group is a group of one or more Transaction Classes or child business
groups. There are two tables that must be populated in order to make use of reports
such as the Business Impact Report which use and display information by Business
Group.

Business Group Table:

The Business Group table defines the set of business groups to be used. Each table
entry defines the text name of the group, assigns it a unique id, and the id of its parent
group. If the group is a root level group and has no parent, the parent id should be
specified as -1.

The schema definition is as follows:
BUSINESS_GROUP
BIZGRP_NAME: VARCHAR(64) - name of the business group
PARENT_BIZGRP_ID: INTEGER - ID of the parent business group of this group (-1
if no parent)
BIZ_GRP_ID: INTEGER - ID of this business group

Transaction Class to Business Group Table:

The Transaction Class to Business Group table assigns transaction classes to their
corresponding business groups. Each table entry specifies the id of a transaction class
and the id of its corresponding business group.

The schema definition is as follows:
TRANSCLASS_TO_BIZGRP
TRANSCLASS_ID: INTEGER - ID of the Transaction Class
BIZGRP_ID: INTEGER - ID of the Business Group

80 TransactionVision Programmer’s Guide

Chapter 4 • Reference - Extending the Analyzer
Extending the System Model

In order to use the Business Impact Report and other future reports that use Business
Groups, these two tables must be populated. As with the Transaction Class table, there
is currently no utility that can assist in populating these tables, and they must be
populated manually through an SQL script.

A sample would look like the following:
INSERT INTO TRADE.BUSINESS_GROUP(BIZGRP_NAME,
PARENT_BIZGRP_ID, BIZGRP_ID) VALUES('Purchase', -1, 0);
INSERT INTO TRADE.BUSINESS_GROUP(BIZGRP_NAME,
PARENT_BIZGRP_ID, BIZGRP_ID) VALUES('Trade', -1, 1);
INSERT INTO TRADE.TRANSCLASS_TO_BIZGRP(TRANSCLASS_ID,
BIZGRP_ID) VALUES(1, 0);
INSERT INTO TRADE.TRANSCLASS_TO_BIZGRP(TRANSCLASS_ID,
BIZGRP_ID) VALUES(2, 0);
INSERT INTO TRADE.TRANSCLASS_TO_BIZGRP(TRANSCLASS_ID,
BIZGRP_ID) VALUES(3, 1);

4.6. Extending the System Model

Use the <TVISION_HOME>/config/services/RemoteDefinition.xml file to define objects in
your system that the sensor might otherwise not be able to fully resolve.

For example, suppose you have a remote queue on queue manager QM1 that points to some
queue on queue manager QM2. A sensored application putting to the queue on QM1 does not
connect to QM2 to fully discover what type of object the final destination queue is. The
destination queue might be an alias queue or even another remote queue. If no sensored
application on QM2 ever connects directly to the destnation of the QM1 remote queue, then
the object will never be fully resolved, possibly resulting in a missing link in the correlation of
events.

By manually defining objects in RemoteDefinition.xml, you can specify the details of objects
that the sensor could not completely resolve otherwise.

Each <RemoteObject> tag defines an object. When the analyzer attempts to resolve the target
of a remote queue, it checks whether an entry exists with the same object and queue manager
name. If such a match is found, the MQObject definitions within the RemoteObject tag will
replace the generic queue definition provided by the sensor. Embedding an additional
MQObject tag within the first MQObject tag creates a "resolveto" relationship.

Therefore, the first RemoteObject tag in the following example can be interpreted as: If the
destination of a remote queue has the name RALIAS2.QUEUE on queue manager
host.tv2.manager, create for this object an alias queue RALIAS2.QUEUE that resolves to a
local queue RRR.QUEUE.

Possible values for the objectType attribute include:

• Q_LOCAL

• Q_MODEL

• Q_ALIAS

• Q_REMOTE

• Q_CLUSTER

TransactionVision Programmer’s Guide 81

Chapter 4 • Reference - Extending the Analyzer
Generating Application Events to Tivoli Enterprise Console (TEC)

• Q_LOCAL_CLUSTER

• Q_ALIAS_CLUSTER

• Q_REMOTE_CLUSTER

Take care in creating and modifying these definitions as inserting objects that don't actually
match the topology of your system could break the correlation of events.

Example RemoteDefinition.xml file:

<?xml version="1.0" encoding="UTF-8"?>

<RemoteDefinition>

 <RemoteObject objectName="RALIAS2.QUEUE" queueManager="perplex7.tv2.manager">

 <MQObject objectName="RALIAS2.QUEUE" objectType="Q_ALIAS"

queueManager="perplex7.tv2.manager">

 <MQObject objectName="RRR.QUEUE" objectType="Q_LOCAL"

queueManager="perplex7.tv2.manager"/>

 </MQObject>

 </RemoteObject->

 <RemoteObject objectName="TEST.CLUSTER.QUEUE" queueManager="SECOND_CLUSTER">

 <MQObject objectName="TEST.CLUSTER.QUEUE" objectType="Q_REMOTE"

queueManager="SECOND_CLUSTER">

 <MQObject clusterName="SECOND_CLUSTER" objectName="TEST.CLUSTER.QUEUE"

objectType="Q_LOCAL_CLUSTER" queueManager="deepakelap.tv3.manager"/>

 </MQObject>

 </RemoteObject>

</RemoteDefinition>

4.7. Generating Application Events to Tivoli Enterprise Console (TEC)
TransactionVision allows plugging in custom code to generate TEC events when certain application
events occur. These can either be plugin beans into the Analyzer or as scheduled jobs running in the
application server hosting the UI. This custom code can use the log4j classes to generate log
messages. The log4j appender, TECAppender, routes these log messages to Tivoli, when enabled.
The MonitoringEvent class is provided to allow setting of parameters into the log4j message, which
are then mapped to Tivoli slots by the TECAppender. The TECAppender uses the file
<TVISION_HOME>/config/logging/tivoli/SlotMap.properties to map
MonitoringEvent parameters to Tivoli slots.

4.7.1. Class MonitoringEvent

public class MonitoringEvent
implements Cloneable

Constants:
 // severity levels.

82 TransactionVision Programmer’s Guide

Chapter 4 • Reference - Extending the Analyzer
Generating Application Events to Tivoli Enterprise Console (TEC)

 public static int FATAL = 1;
 public static int ERROR = 2;
 public static int WARN = 2;
 public static int INFO = 3;

 public static final String TVISION_EVENT_APPLICATION =
"TVISION_EVENT_APPLICATION";

Constructor:
public MonitoringEvent(String clas, int s)
Takes in constant TVISION_EVENT_APPLICATION as the class name and severity levels
FATAL, ERROR, WARN and INFO, as defined above.

Methods:
 public void setMessage(String msg)
 public String getMessage()
Sets and gets the message string to be logged.

 public void setParameter(String name, String value)
 public String getParameter(String name)
Sets and gets additional parameters that can be set into Tivoli slots.

4.7.2. SlotMap.properties

This file is used by the log4j TECAppender to allow mapping of parameters set into
MonitoringEvent to Tivoli slots. The file format is:
<MonitoringEvent parameter> = <Tivoli slot>
Any parameter specified here is explicitly mapped to a Tivoli slot. Parameter names unspecified in
this file are mapped to Tivoli slots tv_attrib[1|2|3] and their values are mapped to slots
tv_value[1|2|3].

4.7.3. Example Usage:

The following sample code writes an ERROR log message of class BTV_app_red, with parameters
"application", "transaction_class" set.

MonitoringEvent ev = new MonitoringEvent
(MonitoringEvent.TVISION_EVENT_APPLICATION, MonitoringEvent.ERROR);

 ev.setParameter("application", "Trade");
 ev.setParameter("transaction_class", "TRADE_CLASS");
 ev.setParameter("message_id", "TransactionError");
 ev.setMessage("Error fulfilling transaction xyz");
 Logging.analyzerActivityLog.error(ev);

4.7.4. BTV Class Definitions and Rulebase

Class definitions supplied address the following events:
• Internal events - events generated regarding the TransactionVision application itself
• Applications events - events generated by entities that TransactionVision is monitoring
• Unknown events - events that have not fit the criteria to be defined beyond coming from

TransactionVision.

TransactionVision Programmer’s Guide 83

Chapter 4 • Reference - Extending the Analyzer
Generating Application Events to Tivoli Enterprise Console (TEC)

• Escalation events - events of either internal or application that have exceeded count thresholds
The rules file creates the following classes related to TransactionVision:
 BTV_app_black
 BTV_app_red
 BTV_app_yellow
 BTV_app_green
 BTV_int_black
 BTV_int_red
 BTV_int_yellow
 BTV_int_green
 BTV_unk
The classes BTV_int_[black|red|yellow|green] are used by TransactionVision internally while the
classes BTV_app_[black|red|yellow|green] may be used by application plugin code. The color
black, red, yellow, green indicates the severity level to be FATAL, ERROR, WARN and INFO
respectively.

The following slots will be created:
 message_id
 tv_component
 tv_attrib1
 tv_attrib2
 tv_attrib3
 tv_value1
 tv_value2
 tv_value3
 err_code
 application
 event_time
 transact_class
 transact_id
All slots may not be filled by TransactionVision internal messages.

Rulesets have supplied rules for the following:
• First instance rule which takes action upon an event the first time it arrives, or if there are no

other like events in either OPEN or ACK status
• Duplicate rule which identifies an event as a duplicate to a previous event in either OPEN or

ACK status, increments the repeat count on the original event, and drops the new event
• Escalation rule which takes action when an event has been received in succession for a defined

count and status is of OPEN or ACK
• internal events, which are focused on the TV application itself.

84 TransactionVision Programmer’s Guide

5. Using the Query Services

The Query Services interfaces provide a means to retrieve XDM mapped data from the
database using an XML based query document. The Query Services consist of the
following interfaces and classes: QueryServices interface is the top-level interface to
create and run queries. The methods in this class return an object that implements the
Query interface, which can be used to execute the query. Many of the methods in this
class take an object implementing the QueryDoc interface as a parameter. The QueryDoc
object describes the query to be obtained in the form of an XML document. A
WhereClause can be set into the QueryDoc, which describes what matching criteria
should be used, and a SelectClause, which describes what fields should be retrieved.
A Cursor object is returned from several of the QueryServices methods, which allows
a user to iterate over the results. The QueryServices implementation converts the input
XML query into an SQL statement and executes it. The Cursor class is a wrapper
around the JDBC cursor classes.

The following sections will describe each of these objects and interfaces and show
sample code to document their usage.

5.1. Sample Usage

The following sample code shows how to create a query document, populate the
document with a query description, use the QueryServices interface to get a Query
object back and then execute the query. The sample counts the number of events for
each MQPUT, MQPUT1 and MQGET.

// instantiate a new query document.
QueryDoc qdoc = new QueryDoc();

String[] apiCodes = { String.valueOf(MQDefs.MQPUT),
 String.valueOf(MQDefs.MQPUT1),
 String.valueOf(MQDefs.MQGET)};

// set the WhereClause of the QueryDocument to retrieve events
// containing a list of APIs, MQPUT, MQPUT1 and MQGET.
QueryDoc.WhereClause clause = new QueryDoc.WhereClause("mqputget",
 false,
 XPathConstants.APICODE,

QueryOp.EQ_QUERY_STRING,
 apiCodes,
 false);

// set the WhereClause into the QueryDoc.
qdoc.updateWhereClause(clause);

TransactionVision Programmer’s Guide 85

Chapter 5 • Using the Query Services
Class QueryServices

// select the fields to be retrieved in this case the program id.
String[] selects = { XPathConstants.PROGRAM_ID };
qdoc.insertSelect(selects);

// gets and execute the query.
Cursor queryCursor = customReportBean.getQueryResults(qdoc);

// map of API name versus event count for that API.
HashMap nameToCount = new HashMap();
int maxValue = 0;

// iterate through the query fetching the results from the database.
while (queryCursor.next()){

 String objValue = queryCursor.getValue(1,true);
 Integer count = (Integer)nameToCount.get(objValue);
 if (count == null)
 {
 count = new Integer(1);
 nameToCount.put(objValue,count);
 } else {
 int newValue = count.intValue() + 1;
 nameToCount.put(objValue,new Integer(newValue));
 if (newValue > maxValue)
 maxValue = newValue;
 }
}

The method getQueryResults used in the above code snippet is as follows. This
method gets the QueryService instance (QueryService is a singleton object per
schema), gets an event list query object and executes the query, returning the result set
cursor.

public Cursor getQueryResults(QueryDoc queryDoc) throws
DataManagerException
 {
 // get a reference to the singleton QueryServices instance.
 QueryServices queryServ =
QueryServices.instance(schemaName);

 // get a query object.
 Query queryObj = queryServ.getEventListQuery(dbConn,
queryDoc);

 // execute the query and return a result set cursor.
 return queryObj.execute();
 }

5.2. Class QueryServices
public class com.bristol.tvision.datamgr.query.QueryServices
extends java.lang.Object
QueryServices is the main interface to query the XDM tables. It is a singleton object
that has methods that take a XML query document as the query definition and returns a
query object. This query object can then be executed to obtain a cursor, which is then

86 TransactionVision Programmer’s Guide

Chapter 5 • Using the Query Services
Class QueryServices

used in consecutive calls to retrieve data. All the methods in this interface that get a
cursor or data from the database require a valid JDBC SQL connection handle. The
methods throw a DataManagerException on an error condition occurring.

This interface defines the following methods.

5.2.1. Methods:

instance
public static QueryServices instance(java.lang.String schema)
 throws DataManagerException

This method returns the singleton instance for the specified schema

Parameters:

schema - The schema for which the instance should be returned. The schema name used
by the current project can be obtained by using the TVisionServlet class documented
in Chapter 4 of this manual.

Returns:

The return value is a reference to the singleton instance.

Example:

A servlet requiring access to a QueryServices instance could use the code below to get
the schema name using the getSessionBeanFromSession() method and then use the
instance method of the QueryServices singleton using the schema name.

String schemaName =
TVisionServlet.getSessionBeanFromSession(session).getSchemaName();

 QueryServices queryServ = QueryServices.instance(schemaName);

getEventDetail
public org.w3c.dom.Document getEventDetail(java.sql.Connection con,
 EventID eventId,
 TypeConvService convSvr)
 throws DataManagerException

This method returns the event XML document for a given event.

Parameters:

con The database connection to use
eventId The specified event
convSvr The TypeConvService allows fields like date and time formatting,

time-zone and other conversions to be applied to the retrieved
data. A value of null implies that no conversions are applied. Refer
to the section on TypeConvService for more information on the
supported conversions.

Returns:

The return value is an XML document containing event data.

TransactionVision Programmer’s Guide 87

Chapter 5 • Using the Query Services
Class QueryServices

Throws:

DataManagerException - if retrieving of the XML document fails

getUserDataLength
public long getUserDataLength(java.sql.Connection con,
 EventID eventId,
 int dataNum)
 throws DataManagerException

This method returns the length of a given message data segment for a given event.
Typically, message data is segmented when a data collection filter using data ranges is
used to collect data. In that case, this method allows you to get the size of a particular
data segment.

Parameters:

con - he database connection to use.
eventId The event id the event that the message data belongs to.
dataNum The segment number of the message data, where the first segment

has index 0.

Returns:

The return value is the length of the message data segment.

Throws:

DataManagerException – occurs if the database operation fails.

getUserData
public byte[] getUserData(java.sql.Connection con,
 EventID eventId,
 int dataNum,
 int offset,
 int length)
 throws DataManagerException

This method returns a segment of a message data segment. This segment is specified by
a starting offset (offset) and the length (length) to return.

Parameters:

con The database connection to use.
eventId The event id the user data belongs to.
dataNum The segment number of the user data.
offset The starting offset of the segment to retrieve.
length The number of bytes to return.

Returns:

The return value is the message data part of the event of id eventId.

Throws:

88 TransactionVision Programmer’s Guide

Chapter 5 • Using the Query Services
Class QueryServices

DataManagerException - if database operation fails.

Example:

The following code retrieves the first (index 0) segment of the message data buffer into a
byte array.

QueryServices queryService =
QueryServices.instance(TVisionServlet.getSchemaNameFromSess

ion(session));
int dataLength =

(int)queryService.getUserDataLength(con, eventId, 0);
byte[] rawData =

queryService.getUserData(con,eventId,0,0,dataLength);

getEventListQuery
public Query getEventListQuery(java.sql.Connection con,
 org.w3c.dom.Document queryDoc)
 throws DataManagerException

This method creates a Query object for the given event list query document. The
Cursor obtained from executing the query can be used in the following calls to
getNextEventListDocument to get a specific part of the result returned as an XML
document.

Parameters:

con The connection to use for executing the query
queryDoc The XML query document specifying the event list query

Returns:

A Query object ready for execution

Throws:

DataManagerException - if parsing the query doc or executing the query fails.

Example:

The following sample gets and executes a query for a given query document. It then
creates a document containing an event list of all the events in the database. Note, that
this event list does not contain all the event data, only those that have been indexed in
lookup tables.

 Query queryObj = query.getEventListQuery(con, queryDoc);
 Cursor cursor = queryObj.execute();
 int rowCount = cursor.getRowCount();
 Document doc = query.getNextEventListDocument(cursor,

0, rowCount, null);

getNextEventListDocument
public org.w3c.dom.Document getNextEventListDocument(Cursor cursor,
 int startIndex,
 int nrOfRows,
 TypeConvService convSvr)
 throws DataManagerException

TransactionVision Programmer’s Guide 89

Chapter 5 • Using the Query Services
Class QueryServices

This method returns the event list XML document for a given query cursor, start index,
and number of next rows to return. This event list document does not contain the
complete event, but only the data in database lookup tables.

Parameters:

cursor The query cursor on the events
startInd
ex

The index of first row to include in the document

nrOfRows The number of rows following the stating position to include in
the document

convSvr The TypeConvService allows fields like date and time
formatting, time-zone and other conversions to be applied to the
retrieved data. A value of null implies that no conversions are
applied. Refer to the section on TypeConvService for more
information on the supported conversions.

Returns:

The return value is the XML event document for the event list.

Throws:

DataManagerException - if retrieving of the data or assembly of the XML document
fails

The format of the returned XML documents is:
<?xml version="1.0" encoding="UTF-8"?>

<EventList>

 <EventListItem Program=”Trade” APICode=”…” … />

 <EventListItem … />

 …

<//EventList>

Each <EventListItem> contains the data for one row of the result.

getPreviousEventListDocument
public org.w3c.dom.Document
getPreviousEventListDocument(Cursor cursor, int startIndex,
 int nrOfRows, TypeConvService convSvr)
 throws DataManagerException

This method returns the event list XML document for a given query cursor, start index,
and number of previous rows to return.

Parameters:

cursor The query cursor on the events
startIndex The index of first row to include in the document

90 TransactionVision Programmer’s Guide

Chapter 5 • Using the Query Services
Class QueryServices

nrOfRows The number of rows preceeding the stating position to include
in the document

convSvr The TypeConvService allows fields like date and time
formatting, time-zone and other conversions to be applied to
the retrieved data. A value of null implies that no conversions
are applied. Refer to the section on TypeConvService for more
information on the supported conversions.

Returns:

The XML event document for the event list

Throws:

DataManagerException - if retrieving of the data or assembly of the XML document
fails

insert
public void insert(java.sql.Connection con,

com.bristol.tvision.services.analysis.XMLDocument doc)
 throws com.bristol.tvision.datamgr.DataManagerException

Inserts all values from the given XML document for which a XDM mapping is defined
into the corresponding lookup tables.

Parameters:

con The database connection to use
doc The XML document

Throws:

com.bristol.tvision.datamgr.DataManagerException - If the database insert
fails

update
public void update(java.sql.Connection con,
 java.util.Map values,
 org.w3c.dom.Document queryDoc)
 throws com.bristol.tvision.datamgr.DataManagerException

Updates all rows in the lookup table which get selected by the query document. The
columns to update and the new values are passed in as a Map: The key is the XPath
specifying the column, the value is the new value. Note that the WHERE conditions in
the query document are only allowed to reference one lookup table.

Parameters:

con The database connection to use
values The map containing column xpaths and new values
queryDo
c

The query document specifying which rows to update

TransactionVision Programmer’s Guide 91

Chapter 5 • Using the Query Services
Class QueryServices

Throws:

com.bristol.tvision.datamgr.DataManagerException - If the database update
fails

delete
public void delete(java.sql.Connection con,
 org.w3c.dom.Document queryDoc)
 throws com.bristol.tvision.datamgr.DataManagerException

Deletes all rows in the lookup table which get selected by the query document. Note that
the WHERE conditions in the query document are only allowed to reference one lookup
table.

Parameters:

con The database connection to use
queryDo
c

The query document specifying which rows to delete

Throws:

com.bristol.tvision.datamgr.DataManagerException - If the database delete
fails

getLocalTransactionQuery
public Query getLocalTransactionQuery(java.sql.Connection con,
 EventID eventId,
 org.w3c.dom.Document queryDoc)
 throws DataManagerException

This method creates a Query object to query the database for all events contained in the
same local transaction as eventId . Execution of the query returns a Cursor which can
be used in following calls to getEventListDocument to get a specific parts of the result
returned as an XML document. The SELECT clauses in the query document define
which rows to include in the result, the WHERE clauses are ignored.

Parameters:

con The connection to use for executing the query
queryDoc The XML query document specifying the rows to include in the

result

Returns:

A Query object ready for execution

Throws:

DataManagerException - if parsing the query doc or executing the query fails

getBusinessTransactionQuery
public Query getBusinessTransactionQuery(java.sql.Connection con,
 EventID eventId,
 org.w3c.dom.Document queryDoc)
 throws DataManagerException

92 TransactionVision Programmer’s Guide

Chapter 5 • Using the Query Services
Class QueryServices

This method creates a Query object to query the database for all events contained in the
same business transaction as eventId. Execution of the query returns a Cursor which can
be used in following calls to getEventListDocument to get a specific part of the result
returned as an XML document. The SELECT clauses in the query document define
which rows to include in the result, the WHERE clauses are ignored.

Parameters:

con The connection to use for executing the query
eventId The event ID

queryDoc The XML query document specifying the rows to include in the

result

Returns:

A Query object ready for execution

Throws:

DataManagerException - if parsing the query doc or executing the query fails

getBusinessTransactionQuery
public Query getBusinessTransactionQuery(java.sql.Connection con,
 int businessTxnId,
 org.w3c.dom.Document queryDoc)
 throws DataManagerException

This method creates a Query object to query the database for all events contained in the
business transaction denoted by businessTxnId. Execution of the query returns a
Cursor that allows access to all columns specified in queryDoc

Parameters:

con The connection to use for executing the query
businessTxn
Id

The business transcation ID

queryDoc The XML query document specifying the rows to include in
the result.The WHERE clauses are ignored.

Returns:

A Query object ready for execution.

Throws:

DataManagerException - if parsing the query doc or executing the query fails

getCorrelatedEventsQuery
public Query getCorrelatedEventsQuery(java.sql.Connection con,
 EventID eventId,
 org.w3c.dom.Document queryDoc)
 throws DataManagerException

TransactionVision Programmer’s Guide 93

Chapter 5 • Using the Query Services
Class QueryServices

This method creates a Query object to query the database for all events correlated to the
event denoted by eventId. Execution of the query returns a Cursor that allows access to
all columns specified in select section of the query, as well as to the column
"confidence", “direction”, and “relation_type” of table event_relation.

Parameters:

con The connection to use for executing the query
eventId The eventID
queryDoc The XML query document specifying the rows to include in the

result. The WHERE clauses are ignored.

Returns:

A Query object ready for execution

Throws:

DataManagerException - if parsing the query doc or executing the query fails

updateBusinessTransactionLabel
public void updateBusinessTransactionLabel(java.sql.Connection con,
 int businessTransactionId,
 java.lang.String label)
 throws DataManagerException

This method updates the label for a business transaction. This label is displayed on the
left-side panel of the transaction analysis view.

Parameters:

con The database connection to use
businessTransactionId The ID of the business transaction.
label The new label.

Throws:

DataManagerException - If database operation fails

getBusinessTransactionId
public int getBusinessTransactionId(java.sql.Connection con,
 EventID eventId)
 throws DataManagerException

This method returns the business transaction id for an event

Parameters:

con The database connection to use
eventId Event ID of the event

Returns:

int - The business transaction id for the event, or -1 if no business transaction exists

Throws:

94 TransactionVision Programmer’s Guide

Chapter 5 • Using the Query Services
Class QueryDoc

DataManagerException - If database operation fails

getEventCount
public static int getEventCount(java.sql.Connection con,
 java.lang.String schema)
 throws DataManagerException

This method returns the number of events in the database for a particular schema.

Parameters:

con The database connection to use.
schema The schema for which to retrieve the event count.

Returns:

The event count

Throws:

DataManagerException - If database operation fails

5.3. Class QueryDoc
public class com.bristol.tvision.projectmgr.QueryDoc
extends com.bristol.tvision.util.xml.XMLDocument
The QueryDoc class is used as the input query definition into the QueryServices object.
The schema the XML document is defined in the file
<TVISION_HOME>/config/xmlschema/Query.xsd.

A sample query document is as follows:

<?xml version="1.0" encoding="UTF-8"?>
 <Query desc="" name="default" timeZone="America/New_York">
 <Group name="MQSERIES">
 <Where name="apicode" negated="false" translateValue=”false”>
 <XPath>/Event/Technology/MQSeries/@apiCode</XPath>
 <Operator>equal</Operator>
 <Value>8</Value>
 <Value>11</Value>
 <Value>12</Value>
 </Where>
 </Group>
 </Query>

The above query searches for events on the XPath
“/Event/Technology/MQSeries/@apiCode”, that is the lookup column corresponding
to the MQSeries API code for values 8 (MQGET), 11(MQPUT) and 12 (MQPUT1).
Note that there is a separate <Group> section for each technology include in the query,
and the conditions of all <Group> sections are ORed together for the final query.

<?xml version="1.0" encoding="UTF-8"?>
 <Query desc="" name="default" timeZone="America/New_York">
 <Group name="MQSERIES">

TransactionVision Programmer’s Guide 95

Chapter 5 • Using the Query Services
Class QueryDoc

 <Where name="apicode" negated="false" translateValue=”true”>
 <XPath>/Event/Technology/MQSeries/@apiCode</XPath>
 <Operator>equal</Operator>
 <Value>MQGET</Value>
 </Where>
 <Where name="program" negated="false">
 <XPath>/Event/StdHeader/ProgramName/@objectId</XPath>
 <Operator>equal</Operator>
 <Value>amqsput</Value>
 </Where>
 </Group>
 </Query>

The above query searches for WebSphere MQ API “MQGET” events from program
name of “amqsput”.

An “AND” operation is performed on the two “Where” clauses in the above query,
while an “OR” operation is performed on values within the same “Where” clause. To
use actual values instead of object ids the attribute “translateValue” has to be set to true
in the “Where” clause. The static inner class QueryDoc.WhereClause can be used to
construct the QueryDoc document instead of providing an XML document.

5.3.1. Constructors

QueryDoc
public QueryDoc()

This constructor creates new QueryDoc. The root element 'Query' is created
automatically.

QueryDoc
public QueryDoc(java.lang.String name)

This constructor creates new a QueryDoc of a given name. The root element 'Query' is
created automatically.

Parameters:

name - The session unique name of this QueryDoc.

QueryDoc
public QueryDoc(java.lang.String queryName,
 byte[] queryDoc,
 boolean modified)
 throws ProjectManagerException

The constructor creates a new QueryDoc from the input queryDoc bytes.

Parameters:

queryName Name of the query
queryDoc Document for the query.
modified Modification status for the query document.

Throws:

96 TransactionVision Programmer’s Guide

Chapter 5 • Using the Query Services
Class QueryDoc

ProjectManagerException - Error generating XML document for the query

QueryDoc
public QueryDoc(QueryDoc other)

This copy constructor creates a new QueryDoc from the given input QueryDoc.

Parameters:

other - QueryDoc instance used to create a new QueryDoc from.

QueryDoc
public QueryDoc(boolean transDoc)

This constructor creates a new QueryDoc, if it is passed ‘true’ it will initialize the query
document to use the Transaction XDM Document type. This is required if you wish to
query on your transaction classes. By default the QueryDoc uses the Event document
type.

5.3.2. Methods

getDocName
public java.lang.String getDocName()

This method gets the name of the query document.

Returns:

Name of query document

setDocName
public void setDocName(java.lang.String str)

This method sets the query name.

Parameters:

str - Name of query document.

setDocDescription
public void setDocDescription(java.lang.String desc)

This method sets the description string for the query document.

Parameters:

desc - Description string for the query document.

getDocDescription
public java.lang.String getDocDescription()

This method retrieves the description string for the query document.

Returns:

Description string for the query document.

TransactionVision Programmer’s Guide 97

Chapter 5 • Using the Query Services
Class QueryDoc

setTimeZone
public void setTimeZone(java.lang.String tzId)

This method sets the time-zone string for the query document.

Parameters:

desc - timezone string for the query document.

getTimeZone
public java.lang.String getTimeZone()

This method retrieves the time-zone string for the query document.

Returns:

The return value is the time-zone string for the query document.

toByteArray
public byte[] toByteArray()
 throws ProjectManagerException

This method returns the XML query document as a byte array.

Returns:

The return value is a byte array of the XML document. Returns null on failure.

insertSelect
public boolean insertSelect(java.lang.String[] xpaths)

This method sets an array of XPath expressions, which form the “SELECT” part of the
query.

isModified

public boolean isModified()

Check if query document is changed since the last calling of setClean()

Return:

true, if document is modified.

setClean

public void setClean()

Reset the modified flag.

updateWhereClause
public boolean updateWhereClause(QueryDoc.WhereClause clause)

This method sets the “WHERE” part of the query. It will check the current query group
setting. If current query group id is QueryDoc.TECH_ALL, it updates where clauses for
all existing technology, otherwise just update the where clause of current selected query
group.

Returns:

98 TransactionVision Programmer’s Guide

Chapter 5 • Using the Query Services
Class QueryDoc

Parameters:

clause - If there is no “Where” clause of same name in the query document, this clause
is added into the document, else the existing “Where” clause is updated.

updateWhereClause
public boolean updateWhereClause(WhereClause clause, int groupId)

Update where clause under given query group. The groupId can be any integer. The
following values are reserved for TransactionVision technology; if groupId is
QueryDoc.TECH_ALL, it updates where clauses for all existing query groups.

 TVisionCommon.TECH_ID_MQSERIES,
 TVisionCommon.TECH_ID_BTTRACE,
 TVisionCommon.TECH_ID_SERVLET,
 TVisionCommon.TECH_ID_JMS,
 TVisionCommon.TECH_ID_MQIMSBRIDGE,
 TVisionCommon.TECH_ID_EJB,
 TVisionCommon.TECH_ID_CICS

Parameters:

clause where clause
groupId group id

Return:

true if operation succeeds.

updateBufferClause
public boolean updateBufferClause(BufferClause clause)

Update buffer clause under current query group. If current query group id is
QueryDoc.TECH_ALL, it applies on all existing query groups.

Parameters:

clause - buffer clause

Return:

true if operation succeeds.

updateBufferClause
public boolean updateBufferClause(BufferClause clause, int groupId)

Update buffer clause under given query group. The groupID can be any integer. The
following values are reserved for TransactionVision technology. If groupId is
QueryDoc.TECH_ALL, it updates all buffer clauses under existing query groups.

Parameters:

clause buffer clause
groupId group id

Return:

TransactionVision Programmer’s Guide 99

Chapter 5 • Using the Query Services
Class QueryDoc

true if operation succeeds.

deleteWhereClauseByName
public void deleteWhereClauseByName(String name)

Delete where clause under current query group. If the current query group is
QueryDoc.TECH_ALL, it deletes where clauses from all existing query groups.

Parameters:

name - where clause name

deleteWhereClauseByName
public void deleteWhereClauseByName(String name, int groupId)

Update where clause under given query group. GroupId can be any integer. The
following values are reserved for TransactionVision technology; if groupId is
QueryDoc.TECH_ALL, it deletes where clauses from all existing query groups:

Parameters:

name where clause name
groupId group id

deleteBufferClause
public void deleteBufferClause()

Delete buffer clause under current query group. If the current query group id is
QueryDoc.TECH_ALL, it deletes all buffer clauses from existing query group.

deleteBufferClause
public void deleteBufferClause(int groupId)

Delete buffer clause under give technology. The groupID can be any integer . the
following values are reserved for TransactionVision Technology. If groupId is
QueryDoc.TECH_ALL, it deletes all buffer clauses from existing query group.

Parameters:

groupId - group id

findWhereClauseByName
public WhereClause findWhereClauseByName(String name)

Retrieve the where clause of given name under current query group

Parameter:

name - where clause name

Return:

WhereClause instance

findWhereClauseByName
public WhereClause findWhereClauseByName(String name, int groupId)

100 TransactionVision Programmer’s Guide

Chapter 5 • Using the Query Services
Class QueryDoc

Retrieve the where clause of given name under given query group. GroupId should be
the ID of an existing query group.

Parameters:

name where clause name
groupId query group id

Return:

WhereClause instance.

getBufferClause
public BufferClause getBufferClause()

Get buffer clause under current query group

Return:

BufferClause instance

getBufferClause

public BufferClause getBufferClause(int groupId)

Get buffer clause under given query group.

Return:

BufferClause instance

getWhereClauseNames
public String[] getWhereClauseNames()

Get all where clause names under current query group.

Return:

An array of where clause names.

getWhereClauseNames
public String[] getWhereClauseNames(int groupId)

Get all where clause names under given query group.

Return:

An array of where clause names.

isLinearSearch
public boolean isLinearSearch()

Check if query document contains linear search clause.

Return:

true if query document is linear searching.

TransactionVision Programmer’s Guide 101

Chapter 5 • Using the Query Services
Class QueryDoc

isBufferSearch
public boolean isBufferSearch()

Check if query document contains buffer clause

Return:

true if there’s at least one buffer clause

equals
public boolean equals(QueryDoc d)

Check if two queries equal or not.

groupCompare
public boolean groupCompare(QueryDoc d, int groupId1, int groupId2)

Compare group of different query doc.

printQueryDoc
public void printQueryDoc(OutputStream out)

Dump query document to given output stream.

Parameter:

out - output stream instance.

getCurGroup
public int getCurGroup()

Get current query group id

Return:

Query group ID

setCurGroup
public void setCurGroup(int groupId)

Set current query group id. GroupID can be any integer. The following values are
reserved for TransactionVision technologies:

 TVisionCommon.TECH_ID_MQSERIES,
 TVisionCommon.TECH_ID_BTTRACE,
 TVisionCommon.TECH_ID_SERVLET,
 TVisionCommon.TECH_ID_JMS,
 TVisionCommon.TECH_ID_MQIMSBRIDGE,
 TVisionCommon.TECH_ID_EJB,
 TVisionCommon.TECH_ID_CICS

Parameter:

groupId – The query group Id.

setCurGroup
public void setCurGroup(String name)

102 TransactionVision Programmer’s Guide

Chapter 5 • Using the Query Services
Class QueryDoc

Set current query group by given technology name. QueryDoc will map the name to
TransactionVision technology ID.

Parameter:

name - technology name, must be one of the following values:

 TVisionCommon.TECH_ID_MQSERIES,
 TVisionCommon.TECH_ID_BTTRACE,
 TVisionCommon.TECH_ID_SERVLET,
 TVisionCommon.TECH_ID_JMS,
 TVisionCommon.TECH_ID_MQIMSBRIDGE,
 TVisionCommon.TECH_ID_EJB,
 TVisionCommon.TECH_ID_CICS

setTechnologyOn
public void setTechnologyOn(boolean on, int techId)

Turn on/off the query for given technology. TechID must be one of the following
values:

 TVisionCommon.TECH_ID_MQSERIES,
 TVisionCommon.TECH_ID_BTTRACE,
 TVisionCommon.TECH_ID_SERVLET,
 TVisionCommon.TECH_ID_JMS,
 TVisionCommon.TECH_ID_MQIMSBRIDGE,
 TVisionCommon.TECH_ID_EJB,
 TVisionCommon.TECH_ID_CICS

Parameters:

on flag turn on/off
techId technology id

isTechnologyOn
public boolean isTechnologyOn(int techId)

Check if query on given technology is on or off.

getTechnologyNameFromID
public static String getTechnologyNameFromID(int id)

Get technology name for given tech ID.

getTechnologyDescFromID
public static String getTechnologyDescFromID(int id)

Get technology display string for given tech ID.

getTechnologyIDFromName
public static int getTechnologyIDFromName(String name)

Get technology id from given technology name.

TransactionVision Programmer’s Guide 103

Chapter 5 • Using the Query Services
Class QueryDoc.WhereClause

5.4. Class QueryDoc.WhereClause

This is an inner static class in the class QueryDoc. It is a utility class that helps to define
the where condition of the query. This condition is the matching criteria for which
events should be retrieved from the database.

5.4.1. Fields

• name
public java.lang.String name
Name of the where clause

• negated
public boolean negated
Whether the where clause has "not" condition

• xpath
public java.lang.String xpath
XPath for the where clause

• operator
public java.lang.String operator
Operator for the where clause

• values
public java.lang.String[] values
Values for the where clause

• isLinearCond
public boolean isLinearCond
Specifies whether the “Where” clause is a linear search condition.

• valueType
public java.lang.String valueType

• TYPE_BIN
public static final java.lang.String TYPE_BIN

• TYPE_TEXT
public static final java.lang.String TYPE_TEXT

• codePage
public java.lang.String codePage

5.4.2. Constructors

QueryDoc.WhereClause
public QueryDoc.WhereClause()

This constructor creates an empty object.

104 TransactionVision Programmer’s Guide

Chapter 5 • Using the Query Services
Class QueryDoc.WhereClause

QueryDoc.WhereClause
public QueryDoc.WhereClause(java.lang.String Name,
 boolean Negated,
 java.lang.String XPath,
 java.lang.String Operator,
 java.lang.String[] Values,
 boolean IsLinearCond)

This constructor creates a “WhereClause” object using the given data.

Parameters:

Name - Name of the “Where” clause.
Negated - Whether the where clause has "not" condition.
XPath - XPath of “Where” clause.
Operator - Operator of “Where” clause.
Values - Values of “Where” clause.
IsLinearCond - True if “Where” clause is a linear search condition.

QueryDoc.WhereClause
public QueryDoc.WhereClause(java.lang.String Name,
 boolean Negated,
 java.lang.String XPath,
 java.lang.String Operator,
 java.lang.String[] Values,
 boolean IsLinearCond,
 java.lang.String valueType,
 java.lang.String codePage)

This constructor creates a “WhereClause” object using the given data.

Parameters:

Name - Name of the where clause
Negated - Whether the “Where” clause has "not" condition
XPath - XPath of “Where” clause
Operator - Operator of the “Where” clause
Values - Values of the “Where” clause
IsLinerCond - True if “Where” clause is a linear condition
valueType - Either of the following values, it’s just for query edit page display
 QueryDoc.WhereClause.TYPE_BIN
 QueryDoc.WhereClause.TYPE_TEXT
codePage - The character code page

QueryDoc.WhereClause
public QueryDoc.WhereClause(java.lang.String Name,
 boolean Negated,
 java.lang.String XPath,
 java.lang.String Operator,
 java.lang.String[] Values,
 boolean IsLinearCond,
 java.lang.String valueType,
 java.lang.String codePage,
 java.lang.String techID)

This constructor creates a “WhereClause” object using the given data.

TransactionVision Programmer’s Guide 105

Chapter 5 • Using the Query Services
Class QueryDoc.WhereClause

Parameters:

Name - Name of the where clause
Negated - Whether the “Where” clause has "not" condition
XPath - XPath of “Where” clause
Operator - Operator of the “Where” clause
Values - Values of the “Where” clause
IsLinerCond - True if “Where” clause is a linear condition
valueType - Either of the following values. For display purpose only.
 QueryDoc.WhereClause.TYPE_BIN
 QueryDoc.WhereClause.TYPE_TEXT
codePage - The character set code page, that is used when converting the hexidecimal
 value string into text
techID – Technology ID

5.4.3. Methods

equals
public boolean equals(QueryDoc.WhereClause c)

This method compares two WhereClause objects.

Parameters:

c - another instance of WhereClause

Returns:

true if two are considered be equal

5.4.4. Example

The sample code below creates a query document with a “WhereClause” and a
“SelectClause” using the methods updateWhereClause and insertSelect. The query
condition is named “mqputget” and specifies to match all MQPUT, MQPUT1 and
MQGET APIs. The data fetched out of the database is specified by the selects String
array and contains the XPath expressions for the fields entry time, exit time, API code,
host id, program id, program instance id and sequence number.

QueryDoc qdoc = new QueryDoc();

String[] apiCodes = { String.valueOf(MQDefs.MQPUT),
 String.valueOf(MQDefs.MQPUT1),
 String.valueOf(MQDefs.MQGET)};
QueryDoc.WhereClause clause = new QueryDoc.WhereClause("mqputget",
 true,

XPathConstants.APICODE,
QueryOp.EQ_QUERY_STRING,

 apiCodes,
 false);

String[] selects = { XPathConstants.PRIMARYTIME,
 XPathConstants.APICODE,
 XPathConstants.HOST_ID,
 XPathConstants.PROGRAM_ID,

106 TransactionVision Programmer’s Guide

Chapter 5 • Using the Query Services
Interface Query

 XPathConstants.PROGINST_ID,
 XPathConstants.SEQUENCE_NO };

qdoc.updateWhereClause(clause);
qdoc.insertSelect(selects);

5.5. Interface Query
public interface com.bristol.tvision.datamgr.query.Query

This interface provides the functionality to run a query. This object is obtained from
methods in the QueryServices class.

5.5.1. Methods

execute
public Cursor execute()
 throws DataManagerException

This method executes the query and returns a Cursor object to be iterated over.

Throws:

DataManagerException - If executing the query fails

close
public void close()
 throws DataManagerException

This method closes the query and releases the database resources. The query can not be
executed again once close has been called.

Throws:

DataManagerException - If release of the database resources fails

cancel
public void cancel()
 throws DataManagerException

This method can be called from a different thread to cancel the current query execution.

Throws:

DataManagerException - If the cancel fails

5.6. Interface Cursor

public interface com.bristol.tvision.datamgr.query.Cursor
The cursor interface is used to iterate over data returned by a query.

5.6.1. Methods

getRowCount
public int getRowCount()

TransactionVision Programmer’s Guide 107

Chapter 5 • Using the Query Services
Interface Cursor

This method returns the number of table rows in the query result, or -1 if this feature is
not supported

Returns:

The number of rows

getColumnCount
public int getColumnCount()

This method returns the number of columns in the query result

Returns:

The number of columns

getColumnDescription
public java.lang.String getColumnDescription(int index)

This method returns the column description for the specified column. The index of the
first column is 1.

Parameters:

index - The index of the column

Returns:

The column name

getColumnName
public java.lang.String getColumnName(int index)

This method returns the database column name for the specified column. The index of
the first column is 1.

Parameters:

index - The index of the column

Returns:

The column name

getRow
public int getRow()
 throws DataManagerException

This method returns the current row for this cursor

Returns:

The current row, or 0 if there is no current row

getValue
public java.lang.String getValue(int index)
 throws DataManagerException

108 TransactionVision Programmer’s Guide

Chapter 5 • Using the Query Services
Interface Cursor

This method returns the value of the column as a String value. The index of the first
column is 1.

Parameters:

index - The index of the column
Returns:

The value of the column, converted into a String

Throws:

DataManagerException - If getting the value from the underlying ResultSet fails

getValue
public java.lang.String getValue(int index,
 TypeConvService convSvr)
 throws DataManagerException

This method returns the value of the column as a String value (converted by the type
conversion service). The index of the first column is 1.

Parameters:
index The index of the column
convSvr The type conversion service to use.

Returns:

The value of the column, converted into a String

Throws:

DataManagerException - If getting the value from the underlying ResultSet fails

getIntValue
public int getIntValue(int index)
 throws DataManagerException

This method returns the value of the column as an integer value. The index of the first
column is 1.

Parameters:

index - The index of the column

Returns:

The value of the column, converted into a integer

Throws:

DataManagerException - if getting the value from the underlying ResultSet fails

getValue
public java.lang.String getValue(java.lang.String key)
 throws DataManagerException

This method returns the value of the column as a String value. The column is identified
by a key (XPath for XDM columns).

TransactionVision Programmer’s Guide 109

Chapter 5 • Using the Query Services
Interface Cursor

Parameters:

key - The key for the column

Returns:

The value of the column, converted into a String

Throws:

DataManagerException - If getting the value from the underlying ResultSet fails

getValue
public java.lang.String getValue(java.lang.String key,
 TypeConvService convSvr)
 throws DataManagerException

This method returns the value of the column as a String value (possibly converted by the
type conversion service). The column is identified by a key (XPath for XDM columns).

Parameters:

key The key for the column
convSvr The type conversion service to use

Returns:

The value of the column, converted into a String

Throws:

DataManagerException - If getting the value from the underlying ResultSet fails

getIntValue
public int getIntValue(java.lang.String key)
 throws DataManagerException

This method returns the value of the column as an integer value. The column is
identified by a key (XPath for XDM columns).

Parameters:

key - The key for the column

Returns:

The value of the column, converted into a integer

Throws:

DataManagerException - if getting the value from the underlying ResultSet fails

getValueMap
public java.util.Map getValueMap(TypeConvService convSvr)
 throws DataManagerException

This method returns a Map object which contains a mapping from XPath to current
column value, or null if this feature is not supported.

Parameters:

110 TransactionVision Programmer’s Guide

Chapter 5 • Using the Query Services
Interface Cursor

convSvr - The type conversion service to use.

Returns:

A Map object containing the values of the current row

Throws:

DataManagerException - if getting the values from the underlying ResultSet fails

wasNull
public boolean wasNull()
 throws DataManagerException

This method reports whether the last column read with getValue() or getIntValue
had a value of SQL NULL

Returns:

true if the last column value read was SQL NULL and false otherwise

Throws:

DataManagerException - if accessing the ResultSet fails

next
public boolean next()
 throws DataManagerException

This method moves the cursor forward one row from its current position. A Cursor is
initially positioned before the first row, calls to next() advance the cursor to the next
row.

Returns:

true if the new current row is valid; false if there are no more rows

Throws:

DataManagerException - if moving the cursor in the underlying ResultSet fails

previous
public boolean previous()
 throws DataManagerException

This method moves the cursor backwards one row from its current position. A Cursor is
initially positioned before the first row, calls to previous() advance the cursor to the
previous row.

Returns:

true if the new current row is valid; false if there are no more rows

Throws:

DataManagerException - if moving the cursor in the underlying ResultSet fails

absolute
public boolean absolute(int row)

TransactionVision Programmer’s Guide 111

Chapter 5 • Using the Query Services
Class DataManagerException

 throws DataManagerException

This method moves the cursor to an absolute row position.

Parameters:

row - The row to position on

Returns:

true if the new current row is valid; false if cursor is not positioned on valid row

Throws:

DataManagerException - if positioning the cursor in the underlying ResultSet fails

close
public void close()
 throws DataManagerException

This method closes the cursor and all with the cursor associated database resources

Throws:
DataManagerException - if closing the underlying JDBC resources fails

5.7. Class DataManagerException
public class DataManagerException
extends TVisionException

This exception class contains errors from the DataManager package.

5.7.1. Constructors

DataManagerException
public DataManagerException()

This constructor creates new DataManagerException without a detail message string.

DataManagerException
public DataManagerException(java.lang.Throwable t)

This method constructs a DataManagerException with the specified embedded
Throwable.

DataManagerException
public DataManagerException(java.lang.Object[] args)

This method constructs a DataManagerException with the specified logging
arguments.

Parameters:

args - the logging arguments

DataManagerException
public DataManagerException(java.lang.Throwable t,
 java.lang.Object[] args)

112 TransactionVision Programmer’s Guide

Chapter 5 • Using the Query Services
Class DataManagerException

This method constructs a DataManagerException with the specified embedded
Throwable and the specified logging arguments.

Parameters:

t - the exception to chain
args - the logging arguments

5.7.2. Methods

getSQLException
public java.sql.SQLException getSQLException()

This method returns the embedded exception as a SQLException if it is an instance of
SQLException, null otherwise.

Returns:

The SQLException, or null if the embedded exception is not an instance of
SQLException

isUniqueViolationException
public boolean isUniqueViolationException()

Returns true if the embedded exception is a SQLException indicating a violation of an
unique constraint, false otherwise.

Returns:

true if exception is a unique constraint violation

isStringTruncationException
public boolean isStringTruncationException()

This method returns true if the embedded exception is a SQLException indicating that a
string has been truncated because it is too long for the column, false otherwise.

Returns:

true if exception is a truncation exception

isComplexityException
public boolean isComplexityException()

This method returns true if the embedded exception is an SQLException indicating that
the executed SQL statement was too complex, false otherwise.

Returns:

true if exception is a SQL complexity violation

isOperationCanceledException
public boolean isOperationCanceledException()

This method returns true if the embedded exception is an SQLException indicating that
the executed SQL query has been canceled, false otherwise.

Returns:

TransactionVision Programmer’s Guide 113

Chapter 5 • Using the Query Services
Class DataManagerException

true if exception is a SQL cancellation violation

114 TransactionVision Programmer’s Guide

6. Extending the User Interface

6.1. Writing TransactionVision Reports

TransactionVision reports are essentially JSPs and servlets which make queries into
TransactionVision project tables to extract, analyze and present data collected. These
reports may either use the QueryServices classes or make direct JDBC SQL calls to
perform queries. The presentation of the reports may be in any browser support
technology such as HTML, SVG or Java applets.

The TransactionVision report framework is based on the Model-View-Controller (MVC)
design pattern. When creating new reports, you must code the "View" and "Model" parts
of the framework, then hook them into the report framework. To facilitate report
development, the TransactionVision report framework provides the following:

• A library of custom JSP tags

• Interfaces for handling report generation and report parameters

The TransactionVision report framework also provides a default implementation of the
interfaces. You are encouraged to use the default implementation and override only
those aspects that are unique to your report. The TransactionVision installation provides
a set of sample reports; use them as a reference when creating your own reports.

To creat a new TransactionVision report, you must do the following:

1. Identify report parameters.

2. Create a new implementation of the IReportData interface, or derive a class from
the BaseReportBean. Create get/set methods for each parameter that has to be
updated by the framwork, with values from either the HTTP request or from a saved
database record.

3. Create a new implementation of the IReportAction interface to generate the
report. If additional actions are defined for the report, then provide an
implementation of IReportAction for each of these as well. The
DefaultReportActionImpl Java class handles most of the operations known to
the framework; you are expected to override only the CreateReport action.

4. Write up a new JSP to display the report. The JSP custom tag library assists in JSP
creation.

5. Add the report to the <TVISION_HOME>/config/ui/reports.xml file.

Note: trace and debug messages from the report framework and tag classes are written
to the UI_TRACELOG under the category "ReportTrace."

TransactionVision Programmer’s Guide 115

Chapter 6 • Extending the User Interface
Writing TransactionVision Reports

The following diagram shows an overview of how the report framework handles an
incoming report request:

Report Control Servlet

No

Lookup
definition from
Report.xml file.

Redirect to

Attempt to run a default
report action. (Save report
settings, delete a saved
report, load a saved
parameters)
Report
Request

 Yes

Specified

o

another
report or
URL

Does this
action have
a redirect
setting?

Does this
report have a
handler for this
action?

s

R

116
Create an
instance of the
define report
bean and call
its perform()
method.
Perform all
relevant
logic for this
report

eport Bean

Transa
N

Ye

report JSP
page is
loaded

ctionVision Programmer’s Guide

Chapter 6 • Extending the User Interface
Writing TransactionVision Reports

6.1.1. Report Interfaces

The IReportData and IReportAction interfaces enable the report framwork to handle
reports in a uniform way. Each report can have one implementation of IReportData
and one or more IReportAction implementations. All report interfaces may be
implemented in either one Java class or a separate class for each interface.

6.1.1.1.

6.1.1.2.

 IReportData
public interface IReportData {
 public String parmsToXML
 (HttpServletRequest request) throws UIException;
 public void extractParmsFromRequest
 (HttpServletRequest request) throws UIException;
 public void XMLtoParms
 (HttpServletRequest request, String xmlRep)
 throws UIException;
}

This interface encompasses the most common operations executed on a specific report's
parameters. The following operations are currently identified:

• Creating an XML document holding a list of parameters and their current values for
easy storage in a database.

• Extracting the parameters from either a submitted HTTP request object or an XML
document and updating the report bean properties.

The com.bristol.tvision.ui.report.DefaultReportDataImpl class provides a
default implementation of this interface. You may either derive from this class or
provide your own implementation of this interface.

Note: The framework assumes and depends on the report bean to provide the get/set
function for each individual parameter. The prototypes of these functions are as follows:

void setXXXXXX(String value);
String getXXXXXX();

If you do not provide a get/set method for any parameter, the default implementation of
the framework is unable to handle that parameter.

For an example, see the SLA Analysis Report. This report contains two parameters:
ReportDate and SelectedTxnClasses. The bean
com.bristol.tvision.report.samples.performance.SLAAnalysisReportBean
derives from the DefaultReportDataImpl class and also provides set/get methods for
the two parameters.

 IReportAction
public interface IReportAction {
 public void perform(HttpServletRequest request)
 throws UIException;
}

This interface represents a single atomic operation that can be operated on a report. You
must provide at least one implementation of this interface to handle creation of the
report itself. The following other operations are also recognized by the framework:

TransactionVision Programmer’s Guide 117

Chapter 6 • Extending the User Interface
Writing TransactionVision Reports

• Saving the report parameters to the database. This helps end-users generate reports
with just a click of a URL. Multiple configurations may be saved for each report.

• Retrieving the previously saved report parameters and generating the report.

• Deleting obsolete saved report parameter record(s) from the database.

The operations of the framework are CreateReport, SaveParameters,
DeleteParameters, and GetParameters. The
com.bristol.tvision.ui.report.DefaultActionImpl class provides a default
implementation for these framework actions as follows:

Action Default Implementation

CreateReport Does nothing.
SaveParameters Calls an IReportData function to wrap all the report

parameters in an XML document, then saves the document in
the REPORT_PARAMETERS table.

GetParameters This action is executed when a saved report configuration link
is clicked from the list of reports page. It extracts the saved
record from the databse and passes it onto an IReportData
function to update the report bean's properties then generate
the report using these parameters.

DeleteParameters Deletes an instance of the saved report parameters record and
redisplays the list of available reports.

A report can override any or all these actions by providing a different IReportAction
implementation.

You may also define new actions for your reports. The new actions must be handled by
the report defining them. One implementation of this interface can handle one action, or
it can be made to handle multiple actions by identifying the action by anme and handling
it accordingly.

For examples, see the following reports installed with TransactionVision:

• The SLA Analysis Report bean implements the IReportAction interface for
CreateReport.

• The Dashboard Report bean derives from the BaseReportBean class and
implements the IReportAction::perform() method for generating the report.

• The com.bristol.tvision.ui.report.framework.ReportListBean report
defines a new action—SelectReport—and the bean provides a common
implementation for the CreateReport and SelectReport actions.

6.1.1.3. BaseReportBean

This is an abstract class extending DefaultReportDataImpl. It includes some
additional methods that are common to most reports, such as handling the reporting
time period parameter (From and To dates) and obtaining a database connection handle.

118 TransactionVision Programmer’s Guide

Chapter 6 • Extending the User Interface
Writing TransactionVision Reports

You may create new report beans by deriving from this class. At a minimum, the new
bean must provide set/get methods for each report parameter and provide an
implementation of the IReportAction::perform() method to generate the report
data.

6.1.2. TransactionClass

The class com.bristol.tvision.datamgr.dbtypes.TransactionClass is provided to to get
access to the transaction classification definitions. Its interface is as follows; an example
of its use can be found in the report samples:
public Integer[] getClassIds()

 Returns an Integer Array of ClassIds
public Map getClassAttributes(int classId)

Parameters: classId - The class id to retrieve the attributes for

 Returns a map of all this classes attributes
public String getClassAttributeValue(int classId, String
xpath)

Parameters: classId - The class id to retrieve the attributes for

 xpath - The specific xpath of the attribute you want to lookup

 Returns the attribute value, or if it doesn't exist, null.
public int getCount()

 Returns the numbers of definitions for the given project.

6.1.3. JSP Custom Tag Library

TransactionVision provides a JSP custom tag library that you may use while writing the
report JSP. Most of the tags are for creating the HTML form that obtains report
parameters from the user generating the report.

Two basic report tags are required for every report JSP within the report framework: the
report tag and the form tag. The following example shows these tags:

<tvreport:report>
<tvreport:form name = “reportForm” >

[…] Put all your form elements here.
[…] Put all your button definitions here – See ActionBuildTag.
</tvreport:form>
[…] Put all display related JSP code here.
</tvreport:report>

6.1.3.1. The Report Tag

The report tag (<tvreport:report>) frames the entire contents of your report. All
contents of your JSP should occur within the contents of this tag. This tag sets up the
basic infrastructure that the report needs. Most importantly, it sets a number of page

TransactionVision Programmer’s Guide 119

Chapter 6 • Extending the User Interface
Writing TransactionVision Reports

context attributes that contian relevant information about the currently running report.
The following table describes these variables, which are accessible from the JSP:

Variable Description

reportRequest This object is an instance of the ReportRequestParms (see
javadoc) object for this report.

reportData This object is the instance of your data bean for this report.

categoryName category name of current report

subCategoryName subcategory name of current report

reportName name of current report

Important:
Only access these variables within the report tag. For example, trying to access them
before the <tvreport:report> start tag results in an error.

6.1.3.2.

6.1.3.3.

 The Form Tag

The other required tag is the form tag. The body of this tag contains all the HTML you
want displayed to set the parameters for configuring what the report will display and
buttons for deciding what action the report should perform. This tag creates an HTML
form tag and inserts a number of hidden form elements that contain information for the
framework on how to handle this report when the form is submitted.

Anything occuring after the end of the form tag (after </tvreport:form>) is part of
display portion of the report. These contents will only be displayed once the report has
been run; it will not show on the initial entry to the report. Place any representation of
your data in this section.

 Tag Reference

This section provides reference information for TransactionVision report tags.

Form

This tag provides an HTML form for holding all the report parameters. The framework
itself uses hidden HTTP form fields for identifying the report in the current request, user
name, etc. This tag automatically generates the HTML for these hidden variables. When
this form is submitted to the report framework, all fields submitted from the form are
checked against the reports data bean. If a get/setter method matching the name of the
form field is found, the value will be read and saved into the bean.

Important:
This tag has changed from the previous TransactionVision version; be sure to read the
'Migrating Form Tag' section to learn about these differences.

Attributes of this tag are:
name The name corresponds to the name of the form. You can

then use that name to access the form via JavaScript.
onValidate (optional) Name of a JavaScript function to perform client

120 TransactionVision Programmer’s Guide

Chapter 6 • Extending the User Interface
Writing TransactionVision Reports

side validation of data entered into a reportform. The
javscript function specified in onValidate will be called
whenever the user submits the form. If the specified function
returns false, the form will not be submitted.

Example:
 […]
 <%@ taglib uri="/tvReportTags" prefix="tvreport" %>
 <tvreport: form name=”reportForm” onValidate="MyValidationCB">
 <tr class='tableHdr'><td colspan='10'>Report
Parameters</td></tr>
 <tr>
 <td>A Checkbox</td>
 <td><input type="checkbox" name="mychkbox"
checked/></td>
 </tr>
 </table>
 </tvreport:form>

Button

By default a report form will contain no buttons. Use the button tag to add a desired
button.

This tag has four attributes: type, label, callback and action.

Type
The type attribute can be used to create the standard report buttons, and will override
the other attributes. The three standard buttons are the Generate Report, Print Preview,
and Save Settings buttons. They can be created as shown in the following example.
These buttons can then be added, or removed as desired from your report.
 <tvreport:button type='<%=ActionButtonTag.GENERATE_REPORT%>'/>
 <tvreport:button type='<%=ActionButtonTag.PRINT_PREVIEW%>'/>
 <tvreport:button type='<%=ActionButtonTag.SAVE_REPORT%>'/>

If you wish to further customize your buttons, the other three attributes allow you to
control this.

Label
The text on the button. The label attribute specifies what text will appear in the button.

callback
Javascript callback to call when button is pressed. The callback names an optional
JavaScript function that you want called to do some processing before the form is
submitted. The default callbacks for the standard buttons are generateReport,
printPreviewReport, and saveReport respectively. These can be specified in most cases,
but if you have further special tasks you want done you can write your own callback.

action
Report Action to initiate. The action is the report framework action this button initiates.
If you have extended your report bean to support additional action types, you can use
this field to create a button for doing this action.

The below shows an example of creating a button called 'Replay Events' that when
pressed will generate the report.

TransactionVision Programmer’s Guide 121

Chapter 6 • Extending the User Interface
Writing TransactionVision Reports

<tvreport:button label="Replay Events" callback="generateReport"
action="CreateReport"/>

Multiselect

This is a helper tag that provides some useful features. This tag creates a list of
checkboxes that are all associated with a single parameter as given through the name
attribute. This can be useful if you have a number of dynamically generated checkboxes,
and thus your bean will not have set/get methods predefined. In this case all the option
tags associated with this multiselect concatenate their values, delimeted by a ';' to the
named value. The report bean can then extract these values from a single parameter.
This is used commonly in the shipped TransactionVision reports to list all the
transaction classes in a report. (see the following example). For lists of items that can
have a large set of unique values, this tag also creates this checkboxes within a scrollable
area.

This tag has two attributes:
name Required, is the name of the variable in the bean where the data will

be sent.
initValue (Optional) The checkbox matching this name will be selected when

this tag is initialized. If its not set, all checkboxes will be initialiy
selected.

Listsize (Optional) Controls the minimum size of the list of checkboxes to
display before a scrollbar appears.

Example:
<tvreport:multiselect name="selectedTxnClasses" listsize="10">
 <% for (int i = 0; i < numTxnClasses; i++) { %>
 <tvreport:option value='<%=txnClassNames[i]%>'/>
 <% } %>
 </tvreport:multiselect>

6.1.3.4. Migrating the Form Tag from TransactionVision 4.0

A new tag called form replaces the parameterform of TransactionVision 4.0. This tag
has some changes from the old tag. The goal of the new tag is to make the use of
reports more flexible and in the hands of the user. The tag no longer makes any
assumptions on how you want your report form to look. The old form tag forced the
report form to use a table layout with a certain look. The new form tag no longer does
this; it leaves the layout and look of the fields up to the web page developer. This allows
you to use standard html form tags to create your form instead of needing to learn how
to use cutom TransactionVision tags. One effect of this is that the form tag will no
longer creates an overall table that all the controls appear in. In migrating your reports,
if you want them to maintain the similar table format, you need to add the appropriate
table tags to the HTML (see the following example). Instead of a label attribute (the
label is now set explicitly by you in your report HTML), the form has a name attribute.

New jsp code:
<tvreport:form name="reportForm">
<table border='1' cellpadding='2' cellspacing='0'>

122 TransactionVision Programmer’s Guide

Chapter 6 • Extending the User Interface
Writing TransactionVision Reports

<tr class='tableHdr'><td colspan='10'>Report Parameters</td></tr>
 <tr>
 <td>A Checkbox</td>
 <td><input type="checkbox" name="mychkbox" checked/></td>
 </tr>
</table>
</tvreport:tvform>

Old jsp code:
<tvreport:parameterform label="Report Parameters">
<tvreport:checkboxparm label="A CheckBox" name="mychkbox">
 <tvreport:checked>
 true
 </tvreport:checked>
</tvreport:checkboxparm>
</tvreport:paramterform>

dateParm

This tag displays the reporting time period. The time period is relative and has values like
“Today”, “Yesterday”, “This Year”, “Last Year” etc. There is also a “DateRange…”
value which when selected displays two input fields for providing the From and To dates
of the range.

Attributes of this tag are:
name Hardcoded to “ReportDate”.
Label Required. This is the label or static text that appears to the left

of this select field.
htmlAttrs Optional. All the HTML <select> tag attributes for which

there is no corresponding attribute in this tag goes here.

Example:
 […]
 <tvreport:dateparm label="Reporting Time Period:">
 <tvreport:option value='Today'/>
 <tvreport:option value='Yesterday'/>
 <tvreport:option value='ThisWeek'/>
 <tvreport:option value='LastWeek'/>
 <tvreport:option value='ThisMonth'/>
 <tvreport:option value='LastMonth'/>
 <tvreport:option value='ThisYear'/>
 <tvreport:option value='LastYear'/>
 <tvreport:option value="DateRange..." />
 <tvreport:selected>
 <%=request.getParameter("reportDate")%>
 </tvreport:selected>
 </tvreport:dateparm>

6.1.3.5. Deprecated Tags

The tags in this section were available in TransactionVision 4.0; however, they may not
work in future releases.

TransactionVision Programmer’s Guide 123

Chapter 6 • Extending the User Interface
Writing TransactionVision Reports

ReportParmInputTag

This tag creates an HTML <input> element. Along with the normal HTML it generates
additional code to place this element within a table with the “label” on the left and the
element itself on the left. Apart from these, it handles additional things specific to the
report framework functionality. This tag is deprecated; it may not work in future releases.

Attributes of this tag are:
Type Required. Can be any valid value of <input> HTML tag like

“text”, “button”, etc.
Name Required. Identifier for this UI element.

Note: If this is a report parameter then provide the same name
as the bean’s corresponding property.

Label Optional. This is the label or static text that appears to the left
of this text field, button etc. Default is NULL.

Value Optional. Default value for this field. Default is NULL.
Mandatory Optional. If set to “true”, this makes sure that the text field is

always filled up before submitting the form. Makes sense for
text fields only. Default is “no”.

Serialize Optional. If set to “true”, this form field is saved to the
database when the “Save Parameters” button is clicked.
Default is “yes”.

Note: This requires the ‘name’ of this field to be same as the
report bean’s property or the very least the report bean should
provide a get/setXXXX() method where XXXX is the name
of this field.

htmlAttrs Optional. All the HTML <input> tag attributes for which there
is no corresponding attribute in this tag goes here.

Example:
 […]
 <tvreport:inputparm label="Queue Manager"
 type="text"
 name="QueueManager"
 value="<%=queueManager%>"/>
 […]

ReportParmCheckboxTag

This tag creates an HTML <input type=”checkbox”> element. Along with the normal
HTML it generates additional code to place this element within a table with the “label”
on the left and the element itself on the left. Apart from these it handles additional
things specific to the report framework functionality. This tag is deprecated; it may not
work in future releases.

Attributes of this tag are:
name Required. Identifier for this UI element.

124 TransactionVision Programmer’s Guide

Chapter 6 • Extending the User Interface
Writing TransactionVision Reports

Note: If this is a report parameter then provide the same
name as the bean’s corresponding property.

Label Optional. This is the label or static text that appears to the left
of this checkbox. Default is NULL.

Value Optional. Default value for this field. This is the value
returned when the checkbox is checked. Default is NULL.

Serialize Optional. If set to “true”, this form field is saved to the
database when the “Save Parameters” button is clicked.
Default is “yes”.

Note: This requires the ‘name’ of this field to be same as the
report bean’s property or the very least the report bean
should provide a get/setXXXX() method where XXXX is
the name of this field.

htmlAttrs Optional. All the HTML <input> tag attributes for which
there is no corresponding attribute in this tag goes here.

Checked Optional. If “true” the checkbox is checked. Default value is
“false”.

Example:
 […]
 <tvreport:checkboxparm
 label="Include local transactions:"
 name="wantLocalTxns">
 <tvreport:checked>
 <%= (request.getParameter("wantLocalTxns") != null) ?
 "true" : "false" %>
 </tvreport:checked>
 </tvreport:checkboxparm> […]

ReportParmSelectTag

This tag creates an HTML <select> element. Along with the normal HTML it generates
additional code to place this element within a table with the “label” on the left and the
element itself on the left. Apart from these it handles additional things specific to the
report framework functionality. This tag is deprecated; it may not work in future releases.

Attributes of this tag are:
Name Required. Identifier for this UI element.

Note: If this is a report parameter then provide the same
name as the bean’s corresponding property.

Label Optional. This is the label or static text that appears to the left
of this select field. Default is NULL.

Serialize Optional. If set to “true”, this form field is saved to the
database when the “Save Parameters” button is clicked.
Default is “yes”.

TransactionVision Programmer’s Guide 125

Chapter 6 • Extending the User Interface
Writing TransactionVision Reports

Note: This requires the ‘name’ of this field to be same as the
report bean’s property or the very least the report bean
should provide a get/setXXXX() method where XXXX is
the name of this field.

htmlAttrs Optional. All the HTML <select> tag attributes for which
there is no corresponding attribute in this tag goes here.

Example:
 […]
 <tvreport:selectparm label="Sort By:" name="sortByCol">
 <tvreport:option value='Name'>
 Component Name
 </tvreport:option>
 <tvreport:option value='Min'>
 Minimum Latency Time
 </tvreport:option>
 </tvreport:selectparm>
 […]

CheckboxTag

This tag creates an HTML <input type=”checkbox”> element. Along with the normal
HTML it handles additional things that are specific to the report framework
functionality. This tag is deprecated; it may not work in future releases.

Attributes of this tag are:
Name Required. Identifier for this UI element.

Note: If this is a report parameter then provide the same
name as the bean’s corresponding property.

Value Optional. Default value for this field. This is the value
returned when the checkbox is checked. Default is NULL.

htmlAttrs Optional. All the HTML <input> tag attributes for which
there is no corresponding attribute in this tag goes here.

Checked Optional. If “true” the checkbox is checked. Default value is
“false”.

Example:
 […]
 <tvreport:checkbox name="txnClass”
 htmlAttrs=" onclick='updateSelectedTxnClasses(false)'"
/>
 […]

CheckedTag

This tag works only with a CheckBoxTag or a ReportParmCheckboxTag. It either
checks or unchecks the checkbox. This tag is deprecated; it may not work in future
releases.

Attributes of this tag are:

 None

126 TransactionVision Programmer’s Guide

Chapter 6 • Extending the User Interface
Writing TransactionVision Reports

Example:
 […]
 <tvreport:checkbox name="<%=\"txnClass\" + i%>"
 htmlAttrs=" onclick='updateSelectedTxnClasses(false)'">
 <%=txnClassNames[i]%>

 <tvreport:checked>
 <%= (selectedClasses.indexOf(txnClassNames[i]) >= 0)
?
 "true" :
"false"%>
 </tvreport:checked>
 </tvreport:checkbox> […]

FormTag

This tag provides an HTML form. It provides some basic validation of the form
fields.This tag is deprecated; it may not work in future releases.

Attributes of this tag are:
Name Required. Name of the HTML form.
Action Required. Action to be performed when this form is

submitted.
Method Required. GET or POST http method.

Example:
 […]
 <%@ taglib uri="/tvReportTags" prefix="tvreport" %>
 <tvreport:form name=”myForm” action=”foo.jsp” method=”GET”>
 […]
 </tvreport:form>
 […]

InputTag

This tag creates an HTML <input> element. When this tag is used with FormTag or
ReportParmFormTag then some basic data validation is done. This tag is deprecated; it
may not work in future releases.

Attributes of this tag are:
type Required. Can be any valid value of <input> HTML tag like

“text”, “button”, etc.
name Required. Identifier for this UI element.

Note: If this is a report parameter then provide the same
name as the bean’s corresponding property.

Value Optional. Default value for this field. Default is NULL.
Mandatory Optional. If set to “true”, this makes sure that the text field is

always filled up before submitting the form. Makes sense for
text fields only. Default is “no”.

Serialize Optional. If set to “true”, this form field is saved to the

TransactionVision Programmer’s Guide 127

Chapter 6 • Extending the User Interface
Writing TransactionVision Reports

database when the “Save Parameters” button is clicked.
Default is “yes”.

Note: This requires the ‘name’ of this field to be same as the
report bean’s property or the very least the report bean
should provide a get/setXXXX() method where XXXX is
the name of this field.

htmlAttrs Optional. All the HTML <input> tag attributes for which
there is no corresponding attribute in this tag goes here.

Example:
 […]
 <tvreport:input type="text"
 name="QueueManager"
 value="<%=queueManager%>"
 mandatory=”yes” />
 […]

OptionTag

This tag works only with a SelectTag or a ReportParmSelectTag. It identifies one of the
available options in the select list. This tag is deprecated; it may not work in future
releases.

Attributes of this tag are:
Value This is the value sent to the report framework which this

option is selected.

Example:
 […]
 <tvreport:selectparm label="Sort By:" name="sortByCol">
 <tvreport:option value='Name'>
 Component Name
 </tvreport:option>
 <tvreport:option value='Min'>
 Minimum Latency Time
 </tvreport:option>
 </tvreport:selectparm>
 […]

SelectTag

This tag creates an HTML <select> element. This tag is deprecated; it may not work in
future releases.

Attributes of this tag are:
Name Required. Identifier for this UI element.

Note: If this is a report parameter then provide the same
name as the bean’s corresponding property.

Serialize Optional. If set to “true”, this form field is saved to the
database when the “Save Parameters” button is clicked.
Default is “yes”.

128 TransactionVision Programmer’s Guide

Chapter 6 • Extending the User Interface
Writing TransactionVision Reports

Note: This requires the ‘name’ of this field to be same as the
report bean’s property or the very least the report bean
should provide a get/setXXXX() method where XXXX is
the name of this field.

htmlAttrs Optional. All the HTML <select> tag attributes for which
there is no corresponding attribute in this tag goes here.

Example:
 […]
 <tvreport:select name="sortByCol">
 <tvreport:option value='Name'>
 Component Name
 </tvreport:option>
 <tvreport:option value='Min'>
 Minimum Latency Time
 </tvreport:option>
 </tvreport:select>
 […]

SelectedTag

This tag works only with a SelectTag or a ReportParmSelectTag. It identifies the selected
option. This tag is deprecated; it may not work in future releases.

Attributes of this tag are:

None

Example:
 […]
 <tvreport:selectparm label="Sort By:" name="sortByCol">
 <tvreport:option value='Name'>
 Component Name
 </tvreport:option>
 <tvreport:option value='Min'>
 Minimum Latency Time
 </tvreport:option>
 <tvreport:selected>
 <%=request.getParameter("sortByCol")%>
 </tvreport:selected>
 </tvreport:selectparm>
 […]

6.1.3.6. Report Example

This section provides an overview of the steps that can be followed to get a dashboard
style report with controls that update in real-time, and how to accomplish this effect
using the Report Framework.

The Transaction Scorecard Dashboard report is an extension of the 'How are my
transactions performing' report. Instead of specifying a date range, the dashboard
version of the report will automatically refresh itself by the given interval and show the
latest data for the past N minutes. The steps taken to convert from the fixed time report
to an updating report should provide insight into how this process could be applied to

TransactionVision Programmer’s Guide 129

Chapter 6 • Extending the User Interface
Writing TransactionVision Reports

other reports to accomplish a similar effect. This mechanism can be used primarily if
you have an SVG control that can be independently updated.

The basic mechanism for auto-updating the reports SVG control exists within the
following JSP code:

JSP code sample:
<%
String dashboardUpdate =
"http://mymachine/tv/"+reportData.getRequestUrl(reportRequest,"Dashb
oard")
%>

<OBJECT ID="gauge0" TYPE="image/svg+xml"
DATA="<%=dashboardUpdate%>'></OBJECT>
<script language='JavaScript1.1'>
function Update() {

 document.getElementById('gauge0').src =
'<%=dashboardUpdate%>';
 window.setTimeout("Update()",60000);
 }

 window.setTimeout("Update()",60000);
</script>

In a nutshell, the way this javascript function works is that it will periodically cause the
object referenced, in this case 'gauge0' to reload its SVG content.

The next step becomes, how do we fit this within the report framework? What our
report needs to do is be able to handle a special request, and return data in SVG content
when this request is made. Thus the first step in this process is to extend our report's
definition to configure this action.

In Reports.xml, we define a new action called 'Dashboard'. The important part about
this definition is the 'redirectUrl' attribute we give this action. What this does is tells the
report framework that after this bean has done it processing (querying the database,
constructing the neccassary prerequisites for this SVG's construction), it is to forward
this request to another servlet which will convert that data into an SVG control/graph.
This special redirection is needed because the default behavior of the report framework
is to send the browser back to the main jsp defined for this report.

Report.xml example xml:
<Report name="myreport.report" title="A Dashboard report"
 layoutfile="/reports/dashboard.jsp"
 dataclass="my.dashboard.reportbeanclass">
 <ShortDesc>"A Dashboard report</ShortDesc>
 <Description> ... </Description>
 <Action name="CreateReport"
class="my.dashboard.reportbeanclass" />

 <Action name="Dashboard"
 class="my.dashboard.reportbeanclass"
 redirectUrl="/SvgGeneratorServlet"/>

130 TransactionVision Programmer’s Guide

Chapter 6 • Extending the User Interface
Writing TransactionVision Reports

 </Report>

Now, in the ReportBean itself we need to do a couple things differently than the
standard simple report. First, you must distinguish between whether this is a dashboard
action or the standard report generation action. Because the dashboard generation
request and the report creation request are now split into separate calls, there must be
some way of communicating the options selected for this report to the dashboard
request. For example, perhaps what transaction class to track, or any other criteria
selected from the form that the bean needs to generate all its data. These configuration
settings can be saved into the session so that when a subsequent dashboard request
comes in the configuration can be retrieved from there.

Additionally, before completing the dashboard action should save the appropriate results
so that out SvgGeneratorServlet knows how to generate its image. The below pseudo
code shows how this might be done.

ReportBean example code:
 ReportRequestParms reportRequest = (ReportRequestParms)
request.getAttribute(ReportConstants.TVREPORT_REQUEST);

 if (reportRequest.getActionName().equals("Dashboard")) {
 Retrieve report configuration parameters
 Generate my data here
 Save graph definition where SvgGeneratorServlet can
retrieve it.
 } else { // Handle standard report actions
 Save report configuration parameters into session
 }

The data from the report bean could be passed via a request object and the
SvgGeneratorServlet in this case might do something like the below to generate the svg
contents.

Note that in the case of a PopChart SVG control, such as those used by the current
TransactionVision report samples, TransactionVision already provides a servlet that can
do exactly this. By placing the appropriately configued PCISLibEmbedder object into
the PopChartServlet.OBJECT_NAME request attribute, and setting your redirectUrl to
"/PopChartServlet" you will generate a popchart SVG control.
 protected void processRequest(HttpServletRequest request,
HttpServletResponse response) throws ServletException,
java.io.IOException {
 ...
 ServletOutputStream sos =
response.getOutputStream();
 graphImage = request.getAttribute(OBJECT_NAME);
 response.setContentType("image/svg-xml");
 byte[] imgBytes = graphImage.getImageData();
 response.setContentLength(imgBytes.length);
 sos.write(imgBytes);
 ...
 }
 .

Now go back to the initial JSP code sample above to tie everything together. You've now
defined all the report framework steps needed for this new action, and only need to

TransactionVision Programmer’s Guide 131

Chapter 6 • Extending the User Interface
Writing TransactionVision Reports

complete the hookup in the JSP. For this a helper function of the BaseReportBean will
be used - getRequestUrl(). This method will generate the appropriate base url string that
will initiate the passed in action, in this case 'Dashboard'. Now everything should be
ready to go.

Several implementation details of the report itself have been omitted so that this example
can be explained succinctly. To see a complete sample that uses the steps above, take a
look at the Transaction Scorecard Dashboard.

6.1.4. Adding a Report to the Framework

All reports are configured and defined in the file
<TVISION_HOME>/config/ui/Reports.xml. When a report is added to this file, a link
to the report becomes available in the “Reports” page of the TransactionVision user
interface.

The Reports.xml file defines one or more reports. Each report definition includes
information such as the report title, description, a URL to the report, and the report
categories the report belongs to.

A report category is a logical grouping of reports. TransactionVision groups together
links to reports that belong to a category in a table in the Reports page. A
ReportCatagory also defines the group of reports that are linked to a particular user
right. A ReportCategory's name corresponds to the name specified in a user's LDAP
settings. If this name appears in the user’s report LDAP settings then that user will be
able to view this group of reports. A user whose list of report groups contains the value
of “allGroups” can see all available reports.

The ReportCategory and ReportSubcategory require both a name and a title.

The following is a sample from the Reports.xml file. A category called “Performance
Analysis & Problem Resolution.” This category contains a "Reports" subcategory, which
contains the SLA Analysis Report. The link text for this report is "Amy I meeting my
Service Level Agreement (SLA) availability and response requirements?" The URL for
the report is /reports/performance/SLAAnalysis.jsp.
<ReportCategory name="performance"
 title="Performance Analysis & Problem Resolution">
 <ReportSubCategory name="reports" title="Reports">

 <Report name="SLAAnalysis.report"
 layoutfile="/reports/performance/SLAAnalysis.jsp"
 title="SLA Analysis Report"
 dataclass="samples.performance.SLAAnalysisReportBean">

 <Action name="CreateReport"
 class=" samples.performance.SLAAnalysisReportBean" />

 <ShortDesc>
 Am I meeting my Service Level Agreement(SLA)
 availability and response requirements?
 </ShortDesc>

 <Description>
 The SLA Analysis report provides transaction response

132 TransactionVision Programmer’s Guide

Chapter 6 • Extending the User Interface
Writing TransactionVision Reports

 time and availability service level analysis for the
 current project. You can specify a maximum
 response time for the transactions and a minimum
 transaction volume for the time period interval.
 </Description>
 </Report>
 </ReportSubCategory>
</ReportCategory>

6.1.4.1.

6.1.4.2.

 Required Configuration Information

You must provide the following configuration information for each report in
Reports.xml:

name The name of the report. A report name must be unique within the
subcategory in which it is defined.

layoutfile The location of the JSP for displaying the report.

Note: To add reports created for a release of TransactionVision prior to release 4.0,
specify the required configuration information for the report as follows:
<Report name="myOld.report"
 layoutfile="old.jsp" />

You may also add optional information such as a title and description to provide more
information about these reports.

 Optional Configuration Information

In addition to the name layoutfile, you may also specify a number of optional attributes
for each report.

title

The title is displayed at the top of the report (above the parameters form), if it is
provided. The default value is NULL, menaing that no title wil be displayed.

dataclass

Specifies the Java class providing an implementation of the IReportData interface. For
convenience, the framework provides a default implementation of IReportData in
BaseReportBean. The default implementation takes care of assigning values to the
parameters from the data in the HTTP request or the retrieved database record. IT can
also generate and XML document encompassing all the report parameters so that they
can be saved to the database easily.

If this attirbute is not provided, the framwork renders the provided JSP and assumes that
the JSP knows how to extract the parameters and generate the report, similar to the way
TransactionVision reports were written prior to release 4.0.

Action

Defines the various actions that can be performed on the report. Each operation one the
report is identified by a <Action> tag. Most common action is “CreateReport”.

TransactionVision Programmer’s Guide 133

Chapter 6 • Extending the User Interface
Writing TransactionVision Reports

Each action is an implementation instance of IReportAction. One java class can
implement more than one action. Each action is uniquely identified by the name
attribute. Each name should be accompanied by an IReportAction class.

Some of the actions may also need to perform other actions. For example, after getting a
saved parameter record from the database, the report has to be created with these
retrieved parameters and hence we need to call “CreateAction”. This redirection is
achieved by adding redirect attribute to the <Action> tag. For example:
<Action name="GetParameters"
 class=" report.framework.DefaultReportActionImpl"
 redirect="CreateReport" />

You can also redirect to a different report, subcategory or category using additional
attributes as follows:
<Action name="DeleteParameters"
 class=" report.framework.DefaultReportActionImpl"
 redirect="CreateReport"
 redirectCategory="main"
 redirectSubCategory="main"
 redirectReport="ReportList.report" />

If redirectCategory is not provided, then the current category is assumed and so on.

ShortDesc

Use this tag to provide a very short concise description of the purpose of the report,
usually in the form of a question. This is the description that will be displayed for this
report in the main list of reports page. If this tag is not provided, then the report title is
shown in the list of reports. If the title is not given, then the name itself is displayed.

Description

Use this tag to explain the report’s purpose in more detail along with a brief explanation
of how the report data is calculated. This helps the user's perception of the report and
also helps them to understand the generated report better. This data is displayed when a
report is selected from the list of reports page. No description is displayed if none is
given.

redirectURL

If set, the report framework will forward the request to this URL upon completion of the
report action.

6.1.4.3. Adding Actuate Reports

In addition to writing reports with the TransactionVision reporting framework, you may also
use the Actuate Formula One eReport Designer application. This application facilitates the
development of TransactionVision reports and is provided on the TransactionVision
installation CD. This application is available for Windows platforms only.

Installing and Using the Actuate Formula One Reort Designer

To install the application, double-click the FormulaOneERD.exe icon on the
TransactionVision installation CD.

134 TransactionVision Programmer’s Guide

Chapter 6 • Extending the User Interface
Writing TransactionVision Reports

Once you install the application, perform the following steps to invoke the designer and
connect to a TransactionVision database:

1. Using the Windows Control Panel, create an ODBC data source.

2. Invoike the Actuate designer application.

3. Choose the Data > JDBC Data Source menu item to connect to the data source using
a JDBC connection. For DB2, specify the driver as
COM.ibm.db2.jdbc.app.DB2Driver and the database URL as jdbc:db2:TVISION,
where TVISION is the name of the TransactionVision database.

For instructions on writing reports with the Actuate designer application, see the Actuate
designer documentation.

Adding Actuate Reports to Reports.xml

After authoring your report, add it to the Reports.xml file for inclusion in the Reports page, as
in the following example:
<Report name="Account Summary.report"
 title="Account Summary"
 layoutfile="/reports/Actuate.jsp"
 templatefile="Account Summary.jod"
 dataclass="com.bristol.tvision.ui.report.framework.ActuateReport
Bean">

 <Action name="CreateReport"
 class="com.bristol.tvision.ui.report.framework.ActuateReportBean" />

 <ShortDesc>Account Summary Report</ShortDesc>
 <Description>
 A sample Actuate report that displays
 transactions per account along with
 summary information on response time by
 transaction type.
 </Description>
 </Report>

The differences between specifying an Actuate report as opposed to a non-Actuate report are
as follows:

• For the layoutfile attribute, all Actuates reports should specify a layoutfile value of
“/reports/Actuate.jsp”, which is the default JSP for Actuate reports, unless
customization is required. This JSP automatically parses the report and generates the
report parameter form. This page can be copied and customized as needed if different
behavior and/or formatting is required.

• Acutate reports require the templatefile attribute, which specifies the name/location
of the Actuate template file to use in generating the report. The path specified is
relative to the TVISION_HOME/config/actuate/jodfiles directory. In the example
above, the file “Account Summary.jod” is assumed to reside in
TVISION_HOME/config/actuate/jodfiles. You may organize Actuate templates by
creating subdirectories within the jodfiles folder. Actuate template fiels that the
extension .jod.

TransactionVision Programmer’s Guide 135

Chapter 6 • Extending the User Interface
Adding Query Pages

• For the dataclass attribute, all Actuate reports should use the class
“com.bristol.tvision.ui.report.framework.ActuateReportBean”. This class handles
saving and loading of report parameters.

• For the Action attribute, Actuate reports really only need a single CreateReport
action, which should use the class
“com.bristol.tvision.ui.report.framework.ActuateReportBean”, by default. This class
interacts with the ActuateReportServlet to generate the report.

Note: The Actuate report engine requires an X connection to run. Your web server should be
started in an environment where DISPLAY is set to a valid X server. By default, it will try to
connect to the default display, “0:0”. If X is not available or permission does not exist for the
user to access X on the server machine, then you must set the DISPLAY environment
variable to a valid X server.

Setting CLASSPATH for Formula One

 To enable a Formula One report to connect to a DB2 JDBC datasource so it can
access your data, you must modify the Formula One CLASSPATH to reference the
system CLASSPATH as follows:

1. Open the <FormulaOne_Insallation>/bin/env.bat script for editing.

2. To the CP= line, add the path to db2java.zip (for example, C:\Program
Files\IBM\SQLLIB\java\db2java.zip).

3. Close and save env.bat.

6.2. Adding Query Pages

Data indexed into lookup tables using the XDM files can be queried using the
TransactionVision query page. The query page consists of two parts: the left-hand side
query navigator pane and the right-hand side value input pane. The
<TVISION_HOME>/config/ui/PresentationQuery.xml file needs to be modified to
add a new entry to the query navigator pane and the value input pane the new entry uses.
The following is a sample entry in the PresentationQuery.xml file:
<Group name="Stock">
 <Category name="OrderID" desc="Order ID" type="default
jsp="querySimpleString.jsp">
 <Path>/Event/Data/Order/ID</Path>
 </Category>
 <Category name-"Account" desc="Account Number" type="default"
jps="querySimpleString.jsp">
 <Path>/Event/Data/Order/Account</Path>
 </Category>
</Group>
<Group name="General">
 <Category name="entrytime" desc="Event Entry Time" type="time"
jsp="queryTime.jsp">
 <Path>/Event/StdHeader/EntryTime</Path>
 </Category>
 <Category name="host" desc="Host" type="object" objectType="1"
jsp="queryObject.jsp">
 <Path>/Event/StdHeader/Host/@objectId</Path>

136 TransactionVision Programmer’s Guide

Chapter 6 • Extending the User Interface
Adding Query Pages

 </Category>
</Group>

This sample creates two query groups. These groups create a criteria grouping the query
navigator pane list box. Each category in the group adds a criteria entry in the navigator
pane list box. Each category corresponds to a possible WHERE clause in the generated
SQL query. The description text is used as an entry in the navigator list box. When the
criteria entry is clicked on, the JSP specified in the jsp attribute is invokded in the right-
hand side panel, which brings up the user interface to input the value to query upon. The
type attribute describes the type of the field being queried. the Path element specifies the
XPath in the XML document of the field being queried. The name attribute of Category
gives a unique name to the category. This is used by the query navigator pane to select
which value input pane to use. For example,
ViewServlet?viewSelect=query&queryPage=program, where program corresponds
to the name attribute value.

In the above sample, the Stock group containing categories OrderID and Account are
created. The OrderID is a simple string type with and XPath of /Event/Data/Oder/ID.

The type attribute of Category identifies the data type of the WHERE clause. It can only
be one of the following values:
time This is a raw 20-character strin of format

yyyymmddhhmmssnnnnnn. The query page will use
queryTime.jsp to display the edit page. Supported operations
include <, <=, ==, >, >=, and query for a time frame.

simpleInt This is an integer field, such as DataLength. The query page
will use querySimpleInt.jsp to display the edit page.

multipleInt This is a set of integer fields. However, only an enueration
of integers is valid for this field, and each value has the
corresponding user-friendly description. A typical example is
fields of WebSphere MQ completion code. The GUI engine
uses queryMultipleInt.jsp or queryMultipleIntExt.jsp to
display the edit page, the latter one displayes the value along
with the description, while the former one does not. The ==
operation is supported.

simpleString This is a formatted string in hexadecimal character code
format. If a user wants to query on 'ABC', but the real data
in the dabase is stored as '65 66 67', which is the character
code of 'ABC' in code page 1252. The query page uses
queryByteArray.jsp to facilitate the conversion between
'ABC' to '65 66 67' (CP 1252). It also allows the user to
query the hexadecimal string directly.

default This is a plain text string field. The query page uses
querySimpleString.jsp to display the edit page. The only
operation supported is 'LIKE'.

object This query field is an integer of object id. The value of
@objectType must be a valid object type id in the system

TransactionVision Programmer’s Guide 137

Chapter 6 • Extending the User Interface
User Interface Utility Classes

model tables. The query edit page will retrieve all the object
ids currently in the system model tables for the user to
choose. The value of @jsp determines which JSP is used in
the query page. The value 'queryOjbect.jsp' simply displays a
pane that lets the user multi-select all possible values.
'queryGroupedOject.jsp' displays a multi-select list box of all
possible values and a list of object types to help group-
selecting objects of that type.

groupedObject This is only used for WebSphere MQ objects. This type
differs from 'object' in that the query page uses
queryGroupedObject.jsp to display all MQ objects, which
are further grouped under they MQ queue manager names.

The "isLinearCondition" attribute to the Category element tells the query engine to
perform a sequential linear search on data in the XML tables. A sample usage is:
<Category name="mqsibroker" desc="MQI Broker" type="object"
objectType-"1017" jsp="queryObject.jsp" isLinearCondition="true">
 <Path>/Event/Technology/MQSeries/MQSI2TRACE/MQSI2TRACEEntry/MQSI
MFH/BrokerName/@objectId</Path>
</Category>

In this example, the object id for the XPath to BrokerName is searched in XML
documents linearly. Note that this kind of query may be significantly slow on large
databases and the query should typically be narrowed down to smaller results using other
query conditions like time.

6.3. User Interface Utility Classes

The following utility classes may be useful while developing custom reports and user
interface enhancements for TransactionVision.

6.3.1. Class TVisionServlet
public abstract class TVisionServlet
extends javax.servlet.http.HttpServlet

6.3.1.1. Methods

getUserBean
public UserBean getUserBean(javax.servlet.http.HttpSession session)
 throws UIException

getProjectBeanFromSession
public static UIProjectBean
getProjectBeanFromSession(javax.servlet.http.HttpSession session)
 throws UIException

getSchemaNameFromSession
public static java.lang.String
getSchemaNameFromSession(javax.servlet.http.HttpSession session)
 throws UIException

138 TransactionVision Programmer’s Guide

Chapter 6 • Extending the User Interface
User Interface Utility Classes

getQueryBeanFromSession
public static QueryBean
getQueryBeanFromSession(javax.servlet.http.HttpSession session)
 throws UIException

getFilterBeanFromSession
public static FilterBean
getFilterBeanFromSession(javax.servlet.http.HttpSession session)
 throws UIException

getQueryDocFromSession
public static QueryDoc
getQueryDocFromSession(javax.servlet.http.HttpSession session)
 throws UIException

getSessionBeanFromSession
public static SessionBean
getSessionBeanFromSession(javax.servlet.http.HttpSession session)
 throws UIException

getCommLinkTmplMgrBeanFromSession
public static SessionCommLinkTmplMgrBean
getCommLinkTmplMgrBeanFromSession(javax.servlet.http.HttpSession ses
sion)

throws UIException

getProjCommLinkMgrBeanFromSession
public static SessionProjCommLinkMgrBean
getProjCommLinkMgrBeanFromSession(javax.servlet.http.HttpSession ses
sion)
throws UIException

6.3.2. Class TypeConvService

public class com.bristol.tvision.util.typeconv.TypeConvService
extends java.lang.Object
This class contains convenient utility methods to format strings for user interface
presentation. The QueryService calls into this object’s convert method to perform
conversions based on the user interface settings. This class provides date, time and
enumeration formatting capabilities.

6.3.2.1. Methods

convert
public java.lang.String convert(TypeConvService.Type convType,

TransactionVision Programmer’s Guide 139

Chapter 6 • Extending the User Interface
User Interface Utility Classes

 java.lang.String xpath,
 java.lang.String value)
 throws TVisionException

This method converts from a raw value string into user-friendly named description

Parameters:

convType - the conversion type

• TypeConvService.Type.DATE: converts a 20-character time string
“yyyymmddhhmmssnnnnnn” to a user-friendly string. The exact output can be
configured through the properties: timeFormat, timeZoneID.

• TypeConvService.Type.DATEONLY: converts an 8-character date yyyymmdd string
to user-friendly string.

• TypeConvService.Type.TIMEONLY: converts an 8-character time string hhmmss to
user-friendly string.

• TypeConvService.Type.ENUM: give XPath and the raw value in XMLEvent,
return the user-friendly description. For example 0 for XPath field
“..CompletionCode..” would return MQCC_OK.

• TypeConvService.Type.MSUNIT: appends milli-seconds to the value

• TypeConvService.Type.SECUNIT: append seconds to the value.

• TypeConvService.Type.TIMESKEW: converts from time-skew 20-character string
to a user-displayable string.

xpath - The XPath to value's original data field

value - contains string format of the data

Returns:

The return value is a description. This may be null if no XPath is found in the
technology constant files at <TVISION_HOME>/java/config/technologyconst.

Throws:

TVisionException – An error occurred during conversion.

retrieve
public java.lang.String retrieve(TypeConvService.Type convType,
 java.lang.String xpath,
 java.lang.String desc)
 throws TVisionException

This method converts from a user-friendly named description to raw value string. This is
used for transforming enumeration values to their enumeration values. For example, for
a given XPath field, the value 0 can be looked up from the descriptive field say
MQCC_OK.

Parameters:

convType - the conversion type

140 TransactionVision Programmer’s Guide

Chapter 6 • Extending the User Interface
Using Job Beans

xpath - The XPath to value's original data field

desc - the user-friendly named description

Returns:

value, may be null, if no XPath is found in knowledge base

Throws:

TVisionException – An error occurred during conversion.

getTimeFormat
public int getTimeFormat()

setTimeFormat
public void setTimeFormat(int format)

This method allows setting the time format on all time fields in the result document
returned by the QueryService. The valid values for this field are:

 TVisionCommon.TIME_MILLISECOND_ONLY = 1;
 TVisionCommon.TIME_MICROSECOND_ONLY = 2;
 TVisionCommon.TIME_MILLISECOND_AND_DATE = 3;
 TVisionCommon.TIME_MICROSECOND_AND_DATE = 4;

setTimeZoneID
public void setTimeZoneID(java.lang.String id)

This method sets the time zone to which all time fields in the result document returned
by the QueryService are converted to. The id string should be a valid Java time zone ID.

getTimeZoneID
public java.lang.String getTimeZoneID()

convertDateStringToDateObj
public static java.util.Date
convertDateStringToDateObj(java.lang.String str)

This method converts a date-time string in the TransactionVision format to Java
standard Date object. A date-time string looks like “yyyymmddhhmmssmmm” e.g.
“20020123105501123”. The last three numbers are millisecond. The micro-second part
is ignored.

Parameters:

str - Date String

Returns:

Data object. If failed to convert due to incorrect input string return null.

6.4. Using Job Beans

A job is a taks that runs at a specified frequency. A job typically gathers statistics of
recently arrived events and stores calculated results in a way that is easily accessible by a

TransactionVision Programmer’s Guide 141

Chapter 6 • Extending the User Interface
Using Job Beans

report. By using a job, the reports themselves do not have to perform comlex, time-
consuming queries to present report data. Instead, they use already calculated data that is
periodically updated by a job running in the background. A job is a bean that implements
a particular task.

6.4.1. JobBean
package com.bristol.tvision.services.analysis.job;
public class JobBean extends implements IJob;

All job beans should extend the JobBean basic class and implement the IJob interface.
This is required in order for the job to be managed by the job manager.

The JobBean class implements a method called
allowMultipleJobsPerSchema(), which returns true by default. If a job
should only ever have one instance allowable per schema, override this method to return
false:

Public Boolean allowMultipleJobsPerSchema()

6.4.2. IJob Interface

The IJob interface contains the following functions:
public void init(String startupparam) throws JobException;

The Init method is called once as the job transitions from a stopped to started state.
Any one-time initilization for this job can be performed here. The JobManager will
pass in this job's startup parameters (specified in the job definition).

public void exit() throws JobException;

The exit method is called when a job is stopped. Any cleanup can be done here.
public void run(ConnectionInfo con) throws JobException;

This method will be called when this job is scheduled to perform its particular task.
Note: Do not call con.close() to disconnect a connection, as it is used internally by
TransactionVision.

Job beans do not need to implement database connect logic if the TransactionVision
DataManager classes are used for database access. If you use TransactionVision
DataManager classes, the Job scheduler will handle the database reconnection. The
only requirement for this is to embed a DataManagerException in the JobException
thrown from the run() method, as in the following example:
Public void run(ConnectionInfo con) throws JobException {
 try{
 […]
 } catch (DataManagerException ex) {
 throw new JobExceptin(ex);
 }
}

public void cancel() throws JobException;

This function is called in order to interrupt a job that is currently processing (that is,
while it is in its run method). If you want it to support the ability of the job to be

142 TransactionVision Programmer’s Guide

Chapter 6 • Extending the User Interface
Using Job Beans

cancelled while it is running, code your run and cancel methods so that the job
gracefully breaks out of whatever processing its in the middle of.

public void forceStop() throws JobException;

This function is similar to cancel, but indicates that the user wants the job to end
immediately without wating for finishing up any cleanup. By default, it calls cancel. It
is up to the bean to override and handle this correctly if it is to support a forced stop.

In addition the JobBean class provides the following helper functions
public int getJobID()

This will return the current jobs id, which is a unique identifier for a job.
public String getState(ConnectionInfo con) throws JobException
public void setState(ConnectionInfo con,String state) throws
JobException

Up to 128 bytes of customer user data can be stored and associated with a particular
job. A Job Bean can optionally take advantage of this feature to store any state
information it might want to maintain from one run to another. The getState
method will return the current contents of this data. The setState method allows
setting of this data.

6.4.3. Creating Jobs at Project Creation

When you create a new project, the project wizard will present you with a page that has a
list of standard job templates. This page provides an easy way to include commonly
used Jobs into new project when a project is created, without needed to manually create
each job individually. The jobs available in this list are controlled by a configuration file
(config/ui/Jobs.xml). This file has the following format:
<?xml version="1.0" encoding="UTF-8"?>
<JobDefinitions>
 <JobDef name="testjob1" desc="Job Describption" priority="0"
startup="manual" params="" classname="com.bristol.tvision.ui.???"
interval="1" units="hours"/>
 <JobDef name="testjob2" desc="testing123" priority="0"
startup="automatic" params="" classname="com.bristol.tvision.ui.???"
interval="1" units="minutes"/>
</JobDefinitions>

Any definition included in this xml file is listed in the project creation wizard when you
create a new project. The priority attribute is currently there for future support, and has
no effect at the moment. Supported values for the 'startup' attribute are manual,
automatic, and disabled. Supported values for the units attributes are
minutes,hours,days,months.

TransactionVision Programmer’s Guide 143

7. Database Schema

7.1. System Object Model Tables

The System Object Model tables are used to store all the System Model objects and the
relationships between them. System model objects include general resources as well as
technology-specific resources.

Object Types

As such, different technologies will be assigned different ranges of object types. This is
described in the table below.
Object Types

Value (range) Description

0 – 999 Basic System Model Objects (hosts, technologies,
Program Instances, etc.)

1 Host

2 Not used

3 Program

4 Program Instance

5 OS/390 Jobname

6 OS/390 Jobstep

7 OS/390 CICS Region

8 OS/390 CICS Transaction

9 OS/390 IMS ID

10 OS/390 IMS Region Type

11 OS/390 IMS Region ID

12 OS/390 IMS Transaction

13 OS/390 IMS PSB

14 OS400 Jobname

15 OS/390 CICS Task

16 User Name

17 Proxy

TransactionVision Programmer’s Guide 145

Chapter 7 • Database Schema
System Object Model Tables

18 Statistics

1000-2000 MQSeries Objects

1000 Unknown type

1001 None

1002 Queue

1003 Local Queue

1004 Model Queue

1005 Alias Queue

1006 Remote Queue

1007 Cluster Queue

1008 Local Cluster Queue

1009 Alias Cluster Queue

1010 Remote Cluster Queue

1011 Namelist

1012 Process

1013 Queue Manager

1014 Distribution List

1015 Cluster

1016 MQSI Message Flow

1017 MQSI Broker

1018 Connection Name

1019 Cluster Name

1020 ReplyTo Queue

1021 ReplyTo Queue Manager

2000 Proxy Object

3000-3100 Servlet Objects

3000 Server

3001 Web Application

3002 Servlet

3003 Internet

3004 JSP

3005 EJB

3006 EJB Method

3101-3199 JMS Objects

146 TransactionVision Programmer’s Guide

Chapter 7 • Database Schema
System Object Model Tables

3101 Topic

3102 Queue

4000-5000 CICS Objects

4001 SYSID

4002 APPLID

4003 TREMID

4004 File

4005 TD Queue

4006 TS Queue

4007 TD Alias Queue

Signatures

Each System Model Object has a unique object id that is assigned when the object is
inserted into the table. In addition to this unique identifier, each object can be
considered to have a signature that identifies that object uniquely. The signature of the
object can be generated from event data and looked up in the SYS_MDL_OBJECT
table to find the corresponding unique object id. The signature can be uniquely
generated from the attributes of the object in an event.

The general format for a signature is a list of all the successor objects from left (highest)
to right (the final object), separated by forward slashes. In addition, the object type
identifier (see table above) is a prefix to the signature since two objects of different
types might otherwise have the same signature.

Signature Examples

Object Type Example Signature

Host 1/macbeth

(Object type/hostname)

Program Instance
(Unix/NT)

4/U/2001080617592300000/132/1

(Object type/platform id/start time/process id/thread id)

Program Instance

(CICS – OS/390)

2/C/CICS/ABCD/A0F1

(Object type/platform id/CICS region/transaction id/task id)

MQSeries Queue Manager 1001/qm1 (Object type/queue manager name)

MQSeries Queue (local) 1002/qm1/LOCAL.QUEUE

(Object type/queue manager/queue)

MQSeries Queue (alias) 1003/qm1/ALIAS.QUEUE

(Object type/queue manager/queue)

TransactionVision Programmer’s Guide 147

Chapter 7 • Database Schema
Event Tables

 Logical Model

SYS_MODEL_OBJECT
object_id

object_name
object_doc
object_type
signature

SYS_MDL_OBJECT_RELATION

object_id1 (FK)
object_id2 (FK)
relation_type
direction

Figure 7-1: System Object Tables Logical Model

Physical Model

SYS_MODEL_OBJECT
object_id: INTEGER

object_name: VARCHAR(128)
object_doc: CLOB(4K)
object_type: INTEGER
signature: VARCHAR(255)

SYS_MDL_OBJECT_RELATION

object_id1: INTEGER
object_id2: INTEGER
relation_type: INTEGER
direction: INTEGER

Figure 7-2: System Object Tables Physical Model

7.2. Event Tables

Data in the event tables is split up into three basic sections:

• The core event data

• The user data

• Lookup tables

The core event data contains a unique compound key identifying that event and an
XML document, which contains the entire event data (minus user data which was not
unmarshalled into XML.) The XML data gets stored in LOB columns. For performance
reasons, the Analyzer can be configured to store the XML data into a VARCHAR
column instead. Should the event XML data exceed the maximum size of this
VARCHAR column, a separate row will be inserted into the EVENT_OVERFLOW
table, which defines the event_data as LOB. To configure the Analyzer to use
VARCHAR, edit the DatabaseDef.xml file in $TVISION_HOME/config.datamgr and
replace:
<Table name="EVENT" volatile="true">
 <Column name="event_data" type="CLOB" size="1M"/>

with the following:
<Table name="EVENT" volatile="true">

 <Column name="event_data" type="VARCHAR" size="3960"/>

Please note that this change will only improve performance if most of the events will fit
into the VARCHAR column (thus minimizing the need to use the overflow table). The

148 TransactionVision Programmer’s Guide

Chapter 7 • Database Schema
Event Tables

maximum size for the VARCHAR is dependent on the database tablespace page size and
should be determined by a DBA.

The PARTIAL_EVENT table is a temporary container for Entry- or Exit only events. If
the corresponding partial event arrives in the the Analyzer within a defined time interval,
a matching thread running in the Analyzer will merge those events and store them in the
EVENT table as usual.

User data that was not unmarshalled into XML is stored in the USER_DATA table in
the raw format (no data conversion). As with the XML event data, the Analyzer can be
configured to use VARCHAR instead of BLOB columns (edit the DatabaseDef.xml file
in $TVISION_HOME/config.datamgr and replace:
 <Table name="USER_DATA" volatile="true">
 <Column name="user_data" type="BLOB" size="10M"/>

with the following:
 <Table name="USER_DATA" volatile="true">
 <Column name="user_data" type="VARBINARY" size="3960"/>

The size of the user_data column may also be changed via the size attribute. However,
note that if this value is changed or if the column type is changed, the USER_DATA
table must be dropped and then re-created for the changes to take effect.

The lookup tables are used to store fields for quick searching; all columns in these tables
are indexed. The XML to Database Mapping (XDM) file uses XPath statements to
identify which data items are to be extracted from the XML event data and placed into
the lookup tables. Lookup tables for the basic event data and the technology/platform
specific MQSeries, OS390, OS400, JMS, Servlet, EJB, and BTTRACE event data are
shown in the following figures.

TransactionVision Programmer’s Guide 149

Chapter 7 • Database Schema
Event Tables

Logical Model

Figure 7-3: Event Tables Logical Model

150 TransactionVision Programmer’s Guide

Chapter 7 • Database Schema
Event Tables

Physical Model

Figure 7-4: Event Tables Physical Model

TransactionVision Programmer’s Guide 151

Chapter 7 • Database Schema
Event Relationship Tables

7.3. Event Relationship Tables

EVENT_RELATION table stores the relationship between two events determined by
technology specific event correlation logic. If the relationship type is defined as
BIDIRECTION, there will be two entries in this table: event1 -> event 2 and event2 ->
event1. If the logic determines the two events are correlated in certain way with 100%
certainty, the confidence factor is set to STRONG_RELATION, otherwise
WEAK_RELATION.

RELATION_LOOKUP table stores a correlation lookup id for each event. The logic
to generate this lookup id is specific to the technology used by this event.

 Logical Model

Figure 7-5: Event Relationship Tables Logical Model

152 TransactionVision Programmer’s Guide

Chapter 7 • Database Schema
Transaction Tables

Physical Model

Figure 7-6: Event Relationship Tables Physical Model

7.4. Transaction Tables

Local and Business Transactions are created and updated during the Event Analysis
phase in the Analyzer. The local transaction analysis bean populates the
LOCAL_TRANSACTION table and links the event data to the corresponding
transaction through the column local_trans_id in the table EVENT_LOOKUP. The
BUSINESS_TRANSACTION and LOCAL_TO_BUSINESS_TRANS tables are
populated during business transaction analysis.

The TRANSACTION_CLASS table contains attributes of all transaction classes that will
be made known to the Analyzer, it is static and has to get pre-populated by the user. The
BUSINESS_TRANSACTION and TRANSACTION_CLASS tables are defined
through an XDM file.

TransactionVision Programmer’s Guide 153

Chapter 7 • Database Schema
Transaction Tables

 Logical Model

Figure 7-7: Transaction Tables Logical Model

154 TransactionVision Programmer’s Guide

Chapter 7 • Database Schema
Transaction Tables

 Physical Model

Figure 7-8: Transaction Tables Physical Model

TransactionVision Programmer’s Guide 155

Chapter 7 • Database Schema
Statistics Tables

7.5. Statistics Tables

The statistics tables contain data used by various Reports in the TransactionVision web
application. The data in the TOPOLOGY_STATS is collected by the Analyzer and used
for the static Topology View and as a Datasource for event based reports. The data in
the table TRANSACTION_STATS is generated by the TransactionStatisticsJobBean
running in the web application and is used for transaction based reports.

Logical Model

Statistics tables

generated by XML Database Mapper

TOPOLOGY_STATS
start_time
end_time
source_objid
dest_objid
topic_related
tech_id

msg_success
msg_warn
msg_error
putget_success
putget_warn
putget_error
byte_success
byte_warn
byte_error
min_latency
max_latency
avg_latency
type

TRANSACTION_STATS
begin
end
class_id (FK)

count
success_count
failure_count
exceeding_sla_count
min_response_time
max_response_time
avg_response_time
max_response_txnid

Figure 7-9: Statistics Tables Logical Model

156 TransactionVision Programmer’s Guide

Chapter 7 • Database Schema
User Preference Tables

Physical model

Statistics tables

generated by XML Database Mapper

TOPOLOGY_STATS
start_time: TIMESTAMP
end_time: TIMESTAMP
source_objid: INTEGER
dest_objid: INTEGER
link_objid: INTEGER
tech_id: INTEGER

msg_success: INTEGER
msg_warn: INTEGER
msg_error: INTEGER
putget_success: INTEGER
putget_warn: INTEGER
putget_error: INTEGER
byte_success: INTEGER
byte_warn: INTEGER
byte_error: INTEGER
min_latency: INTEGER
max_latency: INTEGER
avg_latency: DOUBLE
type: INTEGER

TRANSACTION_STATS
begin: TIMESTAMP
end: TIMESTAMP
class_id: INTEGER

count: INTEGER
success_count: INTEGER
failure_count: INTEGER
exceeding_sla_count: INTEGER
min_response_time: BIGINT
max_response_time: BIGINT
avg_response_time: BIGINT
max_response_txnid: INTEGER

Figure 7-10: Statistics Tables Physical Model

7.6. User Preference Tables

User preference tables stores the personal setting for each user. The setting includes,
view options for the event list view, topology view, and time-zone information. When a
user logs onto the TransactionVision, the application server will firstly check if there is a
database record of the same user id, if not it will read the default setting from
<TVISION_HOME>/config/usermgr/DefaultUserData.xml, and create a record for
the user. The database record will be updated when the setting is changed by the user in
any view. The Query table is used to store the queries for a ceratin project. The query
document is saved as XML into the query_doc column. The Storage table is only used
for internal purposes.

TransactionVision Programmer’s Guide 157

Chapter 7 • Database Schema
User Preference Tables

 Logical model

PROJECT
project_id

project_name
schema_id (FK)
is_active
description

USER_PREF
user_id
type_id

pref_data

STORAGE
storage_id

project_id (FK)
storage_name
storage_doc

QUERY
query_id

project_id (FK)
query_name
description
query_doc

Figure 7-11: User Preference Tables Logical Model

Physical model

PROJECT
project_id: INTEGER

project_name: VARCHAR(80)
schema_id: INTEGER
is_active: INTEGER
description: VARCHAR(128)

USER_PREF
user_id: VARCHAR(255)
type_id: VARCHAR(20)

pref_data: CLOB(64)

STORAGE
storage_id: INTEGER

project_id: INTEGER
storage_name: VARCHAR(120)
storage_doc: CLOB(64)

QUERY
query_id: INTEGER

project_id: INTEGER
query_name: VARCHAR(80)
description: VARCHAR(128)
query_doc: CLOB(64)

Figure 7-12: User Preference Tables Physical Model

158 TransactionVision Programmer’s Guide

Chapter 7 • Database Schema
Administration (System) Tables

7.7. Administration (System) Tables

 Logical model

COMMLINK
commlink_id

commlink_name
commlink_doc

ANALYZER_SCHEMA

analyzer_id (FK)
schema_id (FK)

ANALYZER
analyzer_id

analyzer_host
analyzger_doc
rmi_port

PROJECT
project_id

project_name
schema_id (FK)
is_active
description

PROJECT_COMMLINK
commlink_id

project_id (FK)
commlink_name
commlink_doc
commlink_secs
commlink_msecs

FILTER
filter_id

filter_name
project_id (FK)
filter_doc

SCHEMA
schema_id

schema_name (FK)
apply_timeskew

ANALYZER_PROJ_COMMLINK

analyzer_id (FK)
commlink_id (FK)

COMMLINK_FILTER

commlink_id (FK)
filter_id (FK)
analyzer_id (FK)

SCHEMA_VERSION
schema_name

version

Figure 7-13: Administration Tables Logical Model

TransactionVision Programmer’s Guide 159

Chapter 7 • Database Schema
Administration (System) Tables

Physical model

COMMLINK
commlink_id: INTEGER

commlink_name: VARCHAR(80)
commlink_doc: VARCHAR(3072)

ANALYZER_SCHEMA

analyzer_id: INTEGER
schema_id: INTEGER

ANALYZER
analyzer_id: INTEGER

analyzer_host: VARCHAR(252)
analyzer_doc: VARCHAR(1024)
rmi_port: INTEGER

PROJECT
project_id: INTEGER

project_name: VARCHAR(80)
schema_id: INTEGER
is_active: INTEGER
description: VARCHAR(128)

PROJECT_COMMLINK
commlink_id: INTEGER

project_id: INTEGER
commlink_name: VARCHAR(164)
commlink_doc: VARCHAR(3072)
commlink_secs: INTEGER
commlink_msecs: INTEGER

FILTER
filter_id: INTEGER

filter_name: VARCHAR(80)
project_id: INTEGER
filter_doc: CLOB(64K)

SCHEMA
schema_id: INTEGER

schema_name: CHAR(18)
apply_timeskew: INTEGER

ANALYZER_PROJ_COMMLINK

analyzer_id: INTEGER
commlink_id: INTEGER

COMMLINK_FILTER

commlink_id: INTEGER
filter_id: INTEGER
analyzer_id: INTEGER

SCHEMA_VERSION
schema: CHAR(18)

version: INTEGER

Figure 7-14: Administratin Tables Physical Model

All of the following tables are created in the “TVISION” schema, and not the user-
defined schema to store events.

Analyzer Table: contains all Analyzers defined in the system. Only one Analyzer
instance for a given schema is allowed and only one Analyzer instance is allowed to run
on a given host. One Analyzer may process data from multiple schemas since the
Analyzer is multi-threaded.

160 TransactionVision Programmer’s Guide

Chapter 7 • Database Schema
Administration (System) Tables

ANALYZER
analyzer_id: INTEGER

analyzer_host: VARCHAR(252)
analyzer_doc: VARCHAR(1024)
rmi_port: INTEGER

Figure 7-15: Analyzer Table

Analyzer_Schema Table: saves a map of Analyzers and the schemas they process data
from. One Analyzer can process data for one or more schemas, though multiple
Analyzers cannot process data for the same schema.

ANALYZER_SCHEMA

analyzer_id: INTEGER
schema_id: INTEGER

Figure 7-16: Analyzer_Schema Table

Schema Table: saves the list of database schemas available.
SCHEMA
schema_id: INTEGER

schema: CHAR(18)
apply_timeskew: INTEGER

Figure 7-17: Schema Table

Schema_Version Table: This tables is used to perform a version check between the
DataManager and the project schemas in the database.

SCHEMA_VERSION
schema: CHAR(18)

version: INTEGER

Figure 7-18: Schema_Version Table

Project Table: saves the list of project names and schemas their data is stored into.
PROJECT
project_id: INTEGER

project_name: VARCHAR(80)
schema_id: INTEGER
is_active: INTEGER
description: VARCHAR(128)

Figure 7-19: Project Table

Project_CommLink Table: One-to-many relation between a project and the
communication links it contains. The communication links here are a copy from the
global table of communication links. When they are copied over, the commlink name
has the project name prepended to it. If the same communication link in global

TransactionVision Programmer’s Guide 161

Chapter 7 • Database Schema
Administration (System) Tables

communication link table is copied into two different projects, the two copies have
different commlink_id.

PROJECT_COMMLINK
commlink_id: INTEGER

project_id: INTEGER
commlink_name: VARCHAR(164)
commlink_doc: VARCHAR(3072)
commlink_secs: INTEGER
commlink_msecs: INTEGER

Figure 7-20: Project_CommLink Table

Filter Table: This is a one to many relationship between a project and the data
collection filters it contains. The same filter_name in different projects has different
filter_id.

FILTER
filter_id: INTEGER

filter_name: VARCHAR(80)
project_id: INTEGER
filter_doc: CLOB(64K)

Figure 7-21: Filter Table

Analyzer_Project_CommLink Table: This is to allow assigning particular
communication link (in a particular project) to a particular Analyzer.

ANALYZER_PROJ_COMMLINK

analyzer_id: INTEGER
commlink_id: INTEGER

Figure 7-22: Analyzer_Project_CommLink Table

CommLink_Filter Table: This is to allow assigning a particular data collection filter in
to a particular communication link (in a particular project) on a particular Analyzer.

COMMLINK_FILTER

commlink_id: INTEGER
filter_id: INTEGER
analyzer_id: INTEGER

Figure 7-23: CommLink_Filter Table

CommLink Table: This is the global communication link table. All created global
communication link templates are saved here, and copied into the project table when
loaded into a project by user.

162 TransactionVision Programmer’s Guide

Chapter 7 • Database Schema
Administration (System) Tables

COMMLINK
commlink_id: INTEGER

commlink_name: VARCHAR(80)
commlink_doc: VARCHAR(3072)

Figure 7-24: CommLink Table

TransactionVision Programmer’s Guide 163

8. Event XML Schema

This section describes the various XML documents stored in TransactionVision database
tables. XML schemas are used to describe TransactionVision data.

8.1. Basic Types

Basic types are technology specific data types and are described using schema tags
xsd:simpleType or xsd:complexType. For example, MQMD belonging to the MQSeries technology
may be described in a schema as:

 <xsd:complexType name="MQMD">
 <xsd:sequence>
 <xsd:element name="StrucId" type="MQCHAR4"/>
 <xsd:element name="Version" type="MQLONG"/>
 <xsd:element name="Report" type="MQLONG"/>
 <xsd:element name="MsgType" type="MQLONG"/>
 <!-- and so on… -- >
 </xsd:sequence>
 </xsd:complexType>

and the basic types MQCHAR4 and MQLONG are:

 <xsd:simpleType name="MQCHAR4">
 <xsd:restriction base="xsd:string">
 <xsd:length value="4" fixed="true"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="MQLONG">
 <xsd:restriction base="xsd:long"/>
 </xsd:simpleType>

Similarly, all datatypes in a particular technology need to be described as above.

Technology specific methods such as MQGET, MQPUT etc. extend the “API” base
type.

 <xsd:element name="MQPUT">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Hconn" type="MQHCONN"/>
 <xsd:element name="Hobj" type="MQHOBJ"/>
 <xsd:element name="pMsgDesc" type="PMQMD"/>
 <xsd:element name="BufferLength" type="MQLONG"/>
 <xsd:element name="pCompCode" type="pMQLONG"/>
 <xsd:element name="pReasonCode" type="pMQLONG"/>
 </xsd:sequence>
 </xsd:comp xType> le

 </xsd:element>

TransactionVision Programmer’s Guide 165

Chapter 8 • Event XML Schema
Event Schema Description

8.2. Event Schema Description

An event packet saved in the database would have the following layout: Detailed Schema
definition can be found under <TVISION_HOME>/config/xmlschema/Event.xsd.
<?xml version="1.0" encoding="UTF-8"?>
<Event>
<EventID programInstID="642" sequenceNum="7"/>
<StdHeader minorVersion="1" uow="…" version="5">
<HostArch>
<OS>AIX</OS>
<Vendor>IBM</Vendor>
<HostArchValue>0xFFFFFFFF80030780</HostArchValue>

</HostArch>
<Encoding>273</Encoding>
…

</StdHeader>
<Technology>
<MQSeries API="MQPUT" … >
<MQPUT>
<MQPUTEntry>
<HConn>0x5</HConn>
<HObj>0x200EC268</HObj>
<MQMD parameterName="MsgDesc" pointerValue="0x2FF22288">
<StrucId>MQMD_STRUC_ID "MD"</StrucId>
<Version>MQMD_VERSION_1 1</Version>
<Report>MQRO_NONE 0</Report>
<MsgType>MQMT_DATAGRAM 8</MsgType>
…

</MQMD>
<MQPMO parameterName="PutMsgOpts" pointerValue="0x2FF223F8">
<StrucId>MQPMO_STRUC_ID "PMO"</StrucId>
<Version>MQPMO_VERSION_1 1</Version>
<Options>MQPMO_NONE 0x0</Options>
…

</MQPMO>
<BufferLength>25</BufferLength>
<Buffer pointerValue="0x2FF2253C">
 <UserDataRef chunk="0"/>
</Buffer>
<CompCode pointerValue="0x2FF224FC">N/A</CompCode>
<ReasonCode pointerValue="0x2FF22500">N/A</ReasonCode>

</MQPUTEntry>
<MQPUTExit>
<HConn>0x5</HConn>
<HObj>0x200EC268</HObj>
…

</MQPUTExit>
</MQPUT>

</MQSeries>
</Technology>
<Data>
 <Chunk blobType="0" ccsid="0" from="0" seqNo="0" to="24"/>
</Data>

</Event>

The diagram below shows the basic structure of the type hierarchy of objects used to
describe an event.

166 TransactionVision Programmer’s Guide

Chapter 8 • Event XML Schema
Event Schema Description

TransactionVision Programmer’s Guide 167

Chapter 8 • Event XML Schema
Event Schema Description

168 TransactionVision Programmer’s Guide

Chapter 9 • The Data Manager
Using the DataManager to Access the Database

9. The Data Manager

9.1. Using the DataManager to Access the Database

Custom beans and reports that need to access the database may use the service interface
of the DataManager class to conveniently perform tasks which otherwise would have
to be coded on the JDBC level.

A reference to the DataManager object can be obtained with the instance() method.

If the DataManager instance is used outside of the TransactionVision application
context (for example, in a standalone Java application), the first call into the
DataManager must be

 DataManager.instance().init()

Beans and reports that run within the TransactionVision application are not required to
do this; they can expect the instance to be successfully initialized.

Custom beans running within the TranactionVision Analyzer Framework will usually get
the current database connection passed in as a parameter of class ConnectionInfo,
which encapsulates the JDBC connection handle and the database schema name for the
current processed event:
public class ConnectionInfo {

 /** The database connection */
 public Connection con;
 /** The database schema */
 public String schema;

 public ConnectionInfo(Connection con, String schema) ;
}

In cases where the custom code needs to obtain its own database connection, the
DataManager offers three different methods for this purpose:

getThreadConnection() will return a connection for the current thread. If this is the
first time the thread calls into this method, a new connection to the database is returned.
Every following call from the same thread will return the same connection, until it is
getting released with releaseThreadConnection().

getSessionConnection(String sessionId) will return a new connection the first
time this method is called for a certain session Id, and then return the cached connection
for all further calls until the connection is relased with
releaseSessionConnection(String sessionId)

TransactionVision Programmer’s Guide 169

Chapter 9 • The Data Manager
Using the DataManager to Access the Database

getConnection() will always create and return a new connection to the database. This
connection will get released with a call to releaseConnection(Connection con).

Here is the complete list of the methods that make up the supported DataManager
interface:
public static DataManager instance()

Returns the DataManager Singleton instance
Returns:

The DataManager instance

public void init(java.lang.String propertyFile)
 throws com.bristol.tvision.datamgr.DataManagerException

Initializes the DataManager according to the settings in the specified properties file.
NOTE : This method has to be called before any other method.

Parameters:
dbProperties - The Database.properties file containing the db settings

Throws:

com.bristol.tvision.datamgr.DataManagerException - If initialization fails

public void init()
 throws com.bristol.tvision.datamgr.DataManagerException

Initializes the DataManager with the default properties file (Database.properties)

Throws:
com.bristol.tvision.datamgr.DataManagerException - If initialization fails

public java.sql.Connection getThreadConnection()
 throws
com.bristol.tvision.datamgr.DataManagerException

Returns the database connection for the current thread. If there is no connection stored
in the connection map for this thread, a new connection is established by calling into the
configured ConnectionSource, and this connection will be returned for all following
calls.

Returns:

The database connection for the current thread

Throws:
com.bristol.tvision.datamgr.DataManagerException - if getting a new
connection from the ConnectionSource fails

public void releaseThreadConnection()
 throws
com.bristol.tvision.datamgr.DataManagerException

Releases (closes) the connection for the current thread.

170 TransactionVision Programmer’s Guide

Chapter 9 • The Data Manager
Using the DataManager to Access the Database

Throws:

com.bristol.tvision.datamgr.DataManagerException - if closing the connection
fails

public java.sql.Connection
getSessionConnection(java.lang.String sessionId)
 throws
com.bristol.tvision.datamgr.DataManagerException

Returns the database connection for the specified web session. If there is no connection
stored in the connection map for this session, a new connection is established by calling
into the configured ConnectionSource, and this connection will be returned for all
following calls.

Parameters:

sessionId - The session id

Returns:

The database connection for the session

Throws:

com.bristol.tvision.datamgr.DataManagerException - if getting a new
connection from the ConnectionSource fails

public void releaseSessionConnection(java.lang.String sessionId)
 throws
com.bristol.tvision.datamgr.DataManagerException

Releases (closes) the connection for the specified session.

Throws:

com.bristol.tvision.datamgr.DataManagerException - if closing the connection
fails

public java.sql.Connection getConnection()
 throws
com.bristol.tvision.datamgr.DataManagerException

Returns a new database connection which is not cached, which means every call into this
method will obtain a new connection from the configured ConnectionSource.

Returns:

The database connection

Throws:

com.bristol.tvision.datamgr.DataManagerException - if getting a new
connection from the ConnectionSource fails

public void releaseConnection(java.sql.Connection con)
 throws
com.bristol.tvision.datamgr.DataManagerException

TransactionVision Programmer’s Guide 171

Chapter 9 • The Data Manager
XML-Database Mapping Using XDM Files

Close the connection which has been obtained from a call to getConnection.

Throws:

com.bristol.tvision.datamgr.DataManagerException - if closing the connection
fails

public void commitTransaction(java.sql.Connection con)
 throws
com.bristol.tvision.datamgr.DataManagerException

Performs a commit on current the database transaction

Parameters:

con - The connection holding the transaction to commit

Throws:

com.bristol.tvision.datamgr.DataManagerException - if the commit fails

public void rollbackTransaction(java.sql.Connection con)
 throws
com.bristol.tvision.datamgr.DataManagerException

Performs a rollback on the current database transaction

Parameters:

con - The connection holding the transaction to roll back

Throws:

com.bristol.tvision.datamgr.DataManagerException - if the rollback fails

9.2. XML-Database Mapping Using XDM Files

The TransactionVision database schema is made extensible through the XML to
Database Mapping (XDM) files. XDM is a generic way to describe the mapping of
values contained in XML documents onto table columns in the database and allows fast,
indexed XML data retrieval by the database engine.

The XML mapping is implemented by the class XMLDatabaseMapper and is used in
TransactionVision to store the event and transaction data into lookup tables for fast
retrieval. This class is also accessible from custom beans and reports and allows user
written code to map basically any XML data to the database.

XML mappings are grouped into different ‘document types’. Each document type is
defined by the root tag value for its documents and describes a mapping from XML to a
set of database tables that logically belong together. These tables must share the same
primary key, and the join across all these tables represents the mapped XML data for one
XML document. In TransactionVision there are three predefined document types:

172 TransactionVision Programmer’s Guide

Chapter 9 • The Data Manager
The XDM Syntax

/Event
This document type consists of all event based XML mappings, including standard
header event data, technology specific event data, and platform specific event data.
/Transaction
This document type maps data for the transaction analysis to the database tables.
/TransactionClass
This document type contains a single mapping for business class attributes.

9.3. The XDM Syntax

XML mappings are defined in XDM files in the <TVISION_HOME>/config/xdm
directory. The XML schema format of XDM files is defined in
<TVISION_HOME>/config/xmlschema/XDM.xsd. Each XDM file defines a mapping
of XML data to a particular database table. The syntax to describe this mapping is as
follows:
<Mapping documentType="/Event">

Defines the document type for this mapping. This mapping is only valid for XML
documents that have the same root tag as “documentType”.
<DBSchema>Stock</DBSchema>
Defines that this mapping is only valid for the specified database schema. The insert()
method of the XMLDatabaseMapper will not write any columns of this mapping if the
supplied database schema parameter does not match. There are multiple <DBSchema>
tags allowed. If this tag is missing, the mapping is valid for all schemas.
<Key name="proginst_id" type="INTEGER"
description="ProgramInstanceId">
<Path>/Event/EventID/@programInstID</Path>
</Key>
<Key name="sequence_no" type="INTEGER" description="SequenceNumber">
<Path>/Event/EventID/@sequenceNum</Path>
</Key>

Defines the primary key for the database table. All XDM mappings of the same
document type must have the same key definition. There may be multiple key tags, in
which case a compound primary key will get created. The structure of the key tag is
similar to the Column tag and will be described there.
<Table name="EVENT_LOOKUP" category="COMMON">

Specifies the database table for the mapping. For mappings of the document type
“/Event”, the XDM mappings can be technology or platform specific. The category
attribute on the Table tag contains either “COMMON” or the technology string or the
platform string for the event data that should be written into this table. The string
“COMMON” indicates that this table contains data common to every event and should
be written for every event going through the Analyzer. A technology or platform name
like “MQSERIES” or “OS390_BATCH” used in the category field indicates that this
table should only be filled for events of that technology or platform. Examples:

<Table name="EVENT_LOOKUP" category="COMMON">
...
</Table>
<Table name="MQSERIES_LOOKUP" category="MQSERIES">

TransactionVision Programmer’s Guide 173

Chapter 9 • The Data Manager
The XDM Syntax

...
</Table>
<Table name="OS390_LOOKUP"
category="OS390_BATCH,OS390_CICS,OS390_IMS">
...
</Table>

For other document types, the value of the category attribute should always contain the
string “COMMON”.
<Column name="host_id" type="INTEGER" description="Host"
isObject="true">

<Path>/Event/StdHeader/Host/@objectId</Path>

</Column>

Each table mapping consists of several Column definitions that describe which XML
value has to be mapped onto which database table column. The name attribute specifies
the column name, and the type attribute specifies the column type, which can be one of
the following:

• INTEGER

• FLOAT

• DOUBLE

• CHAR

• VARCHAR

• DATE

• TIMESTAMP

Both name and type are required. Types CHAR and VARCHAR require an additional
attribute size.

The description attribute specifies the name of the tag containing the value for that
column in the query result document returned by the QueryServices. Required.

The isObject attribute for a Column tag in the above XDM file refers to that column
being an identifier for an object in the system model table. This allows to use the object
name instead of the numerical, system generated object id in XDM based queries.
Possible values: ‘yes/no’. Default value if missing: ‘No’.

The queryOnly attribute for a Column tag indicates that the value is not written by the
XMLDatabaseMapper when invoking its write() method, but from some other code
independent of the XDM mapping. Hence, the column value is only considered for
queries.

The generated attribute for a Column tag means that column is a database generated
id. Possible values: ‘yes/no’. Default value if missing: ‘No’.

The conversionType attribute for a Column tag means that field requires a formatting
conversion after reading from the database. The TypeConvService is called into after
reading that field from the database. This is typically used for writing enumeration fields

174 TransactionVision Programmer’s Guide

Chapter 9 • The Data Manager
The XDM Syntax

(conversionType=’enum’). Refer to the TypeConversionService for more information
on how values are converted.

The indexed attribute specifies if a database index should be created for this column for
faster query access. Possible values: ‘yes/no’. Default value if missing: ‘Yes’.

<Path> contains the XPath of the document value to write into the table column. The
XMLDatabaseMapper will extract the value form the XML document and insert it into
the database. Note that only XPaths pointing to Text nodes and attribute values are
valid. If a value specified by the XPath does not exist in the XML document, a NULL
value is inserted to the database.

A column can map to multiple XPath expressions as in the sample code below. The
XPath expressions are evaluated in a sequential order and the first value found will get
inserted into the database.
<Column name="datasize" type="INTEGER" description="DataSize">
<Path>/Event/Technology/MQSeries/MQGET/MQGETExit/DataLength</Path>
<Path>/Event/Technology/MQSeries/MQPUT/MQPUTExit/BufferLength</Path>
<Path>/Event/Technology/MQSeries/MQPUT1/MQPUT1Exit/BufferLength</Pat
h>
</Column>

In addition to the <Path> element, a column definition can contain a <Join> definition
like in the following example:
<Column name="class_id" type="INTEGER" description="ClassId">
<Path>/Transaction/ClassId</Path>
 <Join documentType="/TransactionClass"</Join>
</Column>

Join definitions offer a way to link two different document types together in order to use
column definitions of both document types in one query. Internally this will generate a
database join between the column of the current table and the primary key of the other
table.

9.3.1. Creating the XDM database tables

One important aspect of the XDM framework is that the creation of the underlying
database tables is entirely data-driven. The definitions in the XDM files are not only
being used for updating or querying the XML data, but also as an input to the
TransactionVision Table Manager, which is responsible for creating and dropping the
project tables as projects in the Analyzer GUI get created and deleted. Thus there is no
need to issue any SQL DDL calls to the database. Once the XDM file is placed into the
proper directory, and provided the document type is registered with the Table Manager,
the new tables defined in the XDM mapping get automatically created for a new project.
The same holds true if the project tables get created or dropped by using the command
line tool CreateSqlScript.

The registration with the Table Manager is only needed if the XDM mapping uses a new
user defined document type. The only thing to do is to add the new document type to
the following section of the DatabaseDefinition.xml in the
<TVISION_HOME>/config/datamgr directory:
<XDM>
 <DocumentType>/Event</DocumentType>
 <DocumentType>/Transaction</DocumentType>

TransactionVision Programmer’s Guide 175

Chapter 9 • The Data Manager
The XMLDatabaseMapper Interface

 <DocumentType>/TransactionClass</DocumentType>
 <DocumentType>/MyNewDocType</DocumentType>
 </XDM>

9.3.2. Properties of the TransactionVision Document Types

9.3.2.1.

9.3.2.2.

9.3.2.3.

 The /Event Document Type

Event-based XDM files specify that when an XML event is written to the database by
the DBWrite module in the Analyzer, these fields are extracted and written into the
database columns defined by the XDM mappings. Similarly, when the database is
queried to retrieve event based data in the Analyzer GUI, these XDM files are used to
construct the corresponding SQL query. The XML document for each event gets stored
in the database table EVENT.

 The /Transaction Document Type

This mapping is used to write business transaction attributes during the transaction
analysis phase in the Analyzer. One noticeable difference to the event-based mappings is
that there is no XML document inserted into the database, all document values are
always mapped to the database tables.

 The /TransactionClass Document Type

This document type contains only one XDM mapping file for the “transaction_class”
table and describes the attributes of a transaction class. This document type is ‘artificial’
in the way that the underlying database table contents is static and must not be updated
during the runtime of the application. Thus the XDM mapping solely serves a query
purpose and allows, together with the document type join feature, to use transaction
class attributes in business transaction queries.

9.4. The XMLDatabaseMapper Interface

The XMLDatabaseMapper can be used in 2 different ways: implicitly when writing
custom bean code in the Analyzer bean framework or using the query facilities of the
QueryServices, or explicitly by obtaining a reference to an XMLDatabaseMapper
instance and calling into one of the available service methods.

To obtain a reference to an instance, the instance() method has to be called with the
particular document type as an argument, e.g.:
 XMLDatabaseMapper xdm = XMLDatabaseMapper.instance(myDocType);

The interface contains methods for reading, inserting, updating, and deleting XML
values. All methods take a parameter of class XMLDocument, which denotes the XML
document containing the data. The XMLDocument class implements the
org.wc3.dom.Document Interface and can be constructed in several ways: from an
existing document using the constructor XMLDocument(org.w3.dom.Document doc),
or entirely bypassing the generation of any XML objects and creating a ‘lightweight’
XMLDocument instance by using the constructor XMLDocument(java.util.Map).

The class contains an internal HashMap for caching XPath expressions to the
corresponding values in the XML document. The key of the map entry is an XPath

176 TransactionVision Programmer’s Guide

Chapter 9 • The Data Manager
The XMLDatabaseMapper Interface

expression, the value of the map entry is the value in the XML document corresponding
to that XPath. If an instance is created by using the latter constructor, then any value
lookup on the document translates into a simple HashMap lookup, whereas a lookup on
an instance created with the first constructor is performed by executing an XPath search
on the XML document (unless the corresponding XPath is already in the cache). This is
implemented transparently for the caller by the following method of XMLDocument:
 public String getDocumentValue(String xpath) throws XMLException;

If there is a value for the given XPath in the HashMap, the stored value is returned.
Otherwise an XPath search on the document is performed.

With these ‘lightweight’ XML documents it is possible to provide data to the
XMLDatabaseMapper without having to make expensive XML operations. The
XMLTransaction class used in the transaction analysis is one example of such a
‘lightweight’ XML object.

Following is the list of available XMLDatabaseMapper methods:
public void read(com.bristol.tvision.datamgr.ConnectionInfo conInfo,

com.bristol.tvision.services.analysis.XMLDocument doc)
 throws com.bristol.tvision.datamgr.DataManagerException

Reads all lookup table rows for the given key values and store the values in the attribute
map of the XML document. The document passed in only needs to contain the key
values.

Parameters:

con - The database connection to use

doc - The document containing the key values

Throws:

com.bristol.tvision.datamgr.DataManagerException - Error while accessing
the document or reading from the database tables

public void
write(com.bristol.tvision.datamgr.ConnectionInfo conInfo,

com.bristol.tvision.services.analysis.XMLDocument doc)
 throws com.bristol.tvision.datamgr.DataManagerException

Writes the values of the mapped document elements to the lookup tables. For each
mapped column defined in the xdm files, the value of the corresponding XPath
expression is searched in the xml document and written to the table column defined in
the mapping.

Parameters:

con - The database connection to use

doc - The document to search

TransactionVision Programmer’s Guide 177

Chapter 9 • The Data Manager
Extending the /Event Document Type

Throws:

com.bristol.tvision.datamgr.DataManagerException - Error while accessing
the document or writing to the database tables

public void
update(com.bristol.tvision.datamgr.ConnectionInfo conInfo,

com.bristol.tvision.services.analysis.XMLDocument doc)
 throws com.bristol.tvision.datamgr.DataManagerException

Updates the values of the mapped document elements in the lookup tables. All columns
that are defined by the document type will get updated. The rows to update are
determined by the key values in the XML document.

Parameters:

con - The database connection to use

doc - The document containing the updated values

Throws:

com.bristol.tvision.datamgr.DataManagerException - Error while accessing
the document or writing to the database tables

public void
delete(com.bristol.tvision.datamgr.ConnectionInfo conInfo,

com.bristol.tvision.services.analysis.XMLDocument doc)
 throws com.bristol.tvision.datamgr.DataManagerException

Deletes rows in all lookup tables of the document type for the given key values in the
XML document.

The document passed in only needs to contain the key values.

Parameters:

con - The database connection to use

doc - The document containing the key values

Throws:

com.bristol.tvision.datamgr.DataManagerException - Error while accessing
the document or writing to the database tables

9.5. Extending the /Event Document Type

The XDM mappings of the /Event document type can be easily extended to map
additional XML data to indexed database columns for faster retrieval. First, this can be
done for XML values that are already present in the standard XML event data but which
are not included in the default event based XDM mapping definitions. In this case the

178 TransactionVision Programmer’s Guide

Chapter 9 • The Data Manager
Extending the /Transaction and /TransactionClass Document Type

mapping for the desired values can be simply added (with its XPath and database
column) to the corresponding XDM file (event.xdm. mqseries.xdm, etc.).

Second and more important, additional mappings can be defined for XML data that has
been assembled from the contents of the user data buffer by an EventModifierBean (see
chapter 3.2). Although this user defined XML data could also be mapped to the existing
lookup tables (by simply modifying one of the existing XDM files), this is not advisable.
For this purpose a new XDM file defining a mapping to a new table should be created.
The mapping definition is required to have the document type /Event and the key
columns proginst_id and sequence_no like all other event based XDM files. The
column definitions should include all XDM values intended for display in the Analyzer
GUI or queries through the query services. For steps to configure the Analyzer GUI to
display these new columns see Chapter 3.

The TransactionVision DeleteEvents utility and job use an optimized fast deletion
scheme based on timestamp columns if the –older option is used. To delete data in
user-defined XDM tables, theis timestamp column must be present in any additional
XDM mapping you define. Therefore, the following section is mandatory in the XDM
file:
<Column name="event_time" type="TIMESTAMP"
description="EventTime" queryOnly="true">
 <Path>/Event/EventTimeTS</Path>
</Column>

9.6. Extending the /Transaction and /TransactionClass Document Type

The /Transaction and /TransactionClass document types can be extended to add
custom business transaction and transaction class attributes to the transactional data in
TransactionVision. See chapter 3.5.4 for details.

The TransactionVision DeleteEvents utility and job use an optimized fast deletion
scheme based on timestamp columns if the –older option is used. To delete data in
user-defined XDM tables, theis timestamp column must be present in any additional
XDM mapping you define. Therefore, the following section is mandatory in the
transaction document type:
<Column name="starttime" type="CHAR" size="20"
description="StartTime" conversionType="Date">
 <Path>/Transaction/StartTime</Path>
</Column>

Adding New Document Types

It is possible to create new document types that are independent of the
TransactionVision event and analysis process and entirely controlled by custom code.
This allow user written code to store and retrieve XML data in a convenient way without
having to code SQL on the JDBC level. The custom code can insert and modify data for
this document type by using the various interface methods of the XMLDatabasMapper
instance directly, or by using the corresponding interface methods in QueryServices
which allow query based updates. Data query and retrieval can be accomplished by

TransactionVision Programmer’s Guide 179

Chapter 9 • The Data Manager
Adding New Document Types

creating a QueryDoc containing conditions based on the document type, and using the
QueryServices class to retrieve the data. The necessary steps are:

1. Create a new XDM file with the documentType set to the root tag of the XML data
to handle. The key definition should be set to the primary key of the new table.

2. Define a XPath-column mapping for each XML value that has to be stored into the
table.

3. If the new table should be automatically created for new projects, register the new
document type with the TableManager (see chapter 9.3.1).

4. Get a XMLDatabaseMapper instance for the document type with
XMLDatabaseMappper.instance(newDocType) and use its method to
insert/modify the XML data, or use the corresponding QueryServices interface.

5. Use the QueryServices interface to query and retrieve the XML data (see chapter
4).

180 TransactionVision Programmer’s Guide

	TransactionVision Programmer's Guide
	Contents
	1. Introduction
	Changes in TransactionVision 4.2.1 SupportPac A
	Changes in TransactionVision 4.2.1
	Changes in TransactionVision 4.2
	Changes in TransactionVision 4.1
	Prerequisites

	2. Architecture Overview
	System Components
	Database
	User Interface Framework

	3. Tutorial - Extending the Analyzer
	How to Handle XML Message Data in Events
	Step 1: Modify the Beans.xml file to use the DefaultModifier
	Step 2: Verify that XML data is extracted correctly

	How to Handle Custom Message Data Formats in Events
	Step 1: Document message format(s) layout
	Step 2: Document the target XML format
	Step 3: Implement the bean to do the format conversion
	Step 4: Modify the Beans.xml file to use the custom bean
	Step 5: Test the custom bean in the Analyzer environment

	Overview of XDM Files
	How to Map Custom Message Data Fields to Database Tables
	Step 1: Determine which fields in the XML event document nee
	Step 2: Determine the database column names for these fields
	Step 3: Construct XDM file entries
	Step 4: Recreate your project database schema
	Step 5: Verify that the XDM mapping works correctly

	Additional XDM File Examples
	How to classify business transactions and map transaction at
	Overview of Transaction Classification:
	Task Description:
	Implementation:
	Step 1: Determine the event attributes that apply to a busin
	Step 2: Determine database column names for these fields
	Step 3: Extract transaction attributes from event data
	Step 4: Construct XDM file entries for transaction attribute
	Step 5: Determine the transaction classes and their classifi
	Step 6: Implement classification rules
	Step 7: Recreate the project database schema
	Step 8: Enable classification in the Analyzer
	Step 9: Verify that the transaction classification works cor

	How to perform custom correlation of related events
	Overview of Custom Event Correlation:
	Task Description:
	Implementation:
	Step 1: Determine correlation requirements
	Step 2: Determine which events need to be correlated and com
	Step 3: Implement the correlation bean
	Step 4: Enable the Analyzer to invoke the correlation bean
	Step 5: Test the correlation bean

	4. Reference - Extending the Analyzer
	Using the Beans.xml File
	Unmarshalling Message Data
	The Default Modifier Bean
	Adding a Message Data Unmarshal Bean
	IEventModifier Interface
	XML Related Classes
	Class XMLEvent
	Class XPathSearch
	Class XMLParser
	Other Utility Classes
	Interface DOMElement
	Class EventElement
	Class TextElement
	Class ByteElement
	Class ByteStringElement
	Class IntElement
	Class IntHexElement
	Class LongElement
	Class LongHexElement
	Class StringElement
	Class RawStringElement

	Sample Usage of the IEventModifier Interface

	Trimming Data From an Event
	Interface IDBWriteExit

	XML-Database mapping Using XDM Files
	Performing Event Analysis
	Event Analysis Utility Classes and Interface
	Interface Cache
	Class ConnectionInfo
	Class EventID
	Class TechEventID

	Event Analysis Classes
	Interface IAnalyze
	Class AnalyzeEventCtx
	Class AnalyzeEventBean

	Adding Custom Correlation Analysis Beans
	Interface IEventCorrelation
	Class CorrelationTechHelperBean
	Class MQCorrelationData
	Class JMSCorrelationData
	Class LookupKey
	Class EventRelation
	Class MQRelationDBService
	Class JMSRelationDBService
	Sample Custom Event Correlation Bean

	Custom Business Transaction Attributes and Classification
	Transaction Classification
	Transaction Classification with the Standard Classification
	Classification Action Rules
	The ClassifyTransactionCtx and the IClassifyTransaction Inte
	Writing a Custom Classification Bean
	The Transaction Class Table
	Business Groups
	Business Group Table:
	Transaction Class to Business Group Table:

	Extending the System Model
	Generating Application Events to Tivoli Enterprise Console (
	Class MonitoringEvent
	SlotMap.properties
	Example Usage:
	BTV Class Definitions and Rulebase

	5. Using the Query Services
	Sample Usage
	Class QueryServices
	Class QueryDoc
	Class QueryDoc.WhereClause
	Interface Query
	Interface Cursor
	Class DataManagerException

	6. Extending the User Interface
	Writing TransactionVision Reports
	Report Interfaces
	IReportData
	IReportAction
	BaseReportBean

	TransactionClass
	JSP Custom Tag Library
	The Report Tag
	The Form Tag
	Tag Reference
	Form
	Button
	Multiselect

	Migrating the Form Tag from TransactionVision 4.0
	dateParm

	Deprecated Tags
	ReportParmInputTag
	ReportParmCheckboxTag
	ReportParmSelectTag
	CheckboxTag
	CheckedTag
	FormTag
	InputTag
	OptionTag
	SelectTag
	SelectedTag

	Report Example

	Adding a Report to the Framework
	Required Configuration Information
	Optional Configuration Information
	title
	dataclass
	Action
	ShortDesc
	Description
	redirectURL

	Adding Actuate Reports
	Installing and Using the Actuate Formula One Reort Designer
	Adding Actuate Reports to Reports.xml
	Setting CLASSPATH for Formula One

	Adding Query Pages
	User Interface Utility Classes
	Class TVisionServlet
	Methods
	getUserBean
	getProjectBeanFromSession
	getSchemaNameFromSession
	getQueryBeanFromSession
	getFilterBeanFromSession
	getQueryDocFromSession
	getSessionBeanFromSession
	getCommLinkTmplMgrBeanFromSession
	getProjCommLinkMgrBeanFromSession

	Class TypeConvService
	Methods
	convert
	retrieve
	getTimeFormat
	setTimeFormat
	setTimeZoneID
	getTimeZoneID
	convertDateStringToDateObj

	Using Job Beans
	JobBean
	IJob Interface
	Creating Jobs at Project Creation

	7. Database Schema
	System Object Model Tables
	Event Tables
	Event Relationship Tables
	Transaction Tables
	Statistics Tables
	User Preference Tables
	Administration (System) Tables

	8. Event XML Schema
	Basic Types
	Event Schema Description

	9. The Data Manager
	Using the DataManager to Access the Database
	XML-Database Mapping Using XDM Files
	The XDM Syntax
	Creating the XDM database tables
	Properties of the TransactionVision Document Types
	The /Event Document Type
	The /Transaction Document Type
	The /TransactionClass Document Type

	The XMLDatabaseMapper Interface
	Extending the /Event Document Type
	Extending the /Transaction and /TransactionClass Document Ty
	Adding New Document Types

