

39 Old Ridgebury Road | Danbury, CT 06810 | 203-798-1007

Programmer’s Guide

Version 5.0.0

Printed February 9, 2006

This manual supports TransactionVision Release 5.0.0.
No part of this manual may be reproduced in any form or by any means without written permission of:

Bristol Technology Inc.
39 Old Ridgebury Road
Danbury, CT 06810-5113 U.S.A.

Copyright © Bristol Technology Inc. 2000 — 2006

RESTRICTED RIGHTS

The information contained in this document is subject to change without notice.

For U.S. Government use:
Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause at 52.227-7013.

All rights reserved. Printed in the U.S.A.

The information in this publication is believed to be accurate in all respects; however, Bristol Technology
Inc. cannot assume responsibility for any consequences resulting from its use. The information contained
herein is subject to change. Revisions to this publication or a new edition of it may be issued to incorporate
such changes.

Bristol Technology® and TransactionVision® are registered trademarks of Bristol Technology Inc. The IBM
e-business logo, zSeries, z/OS, S/390, OS/390, OS/400 and WebSphere MQ are all trademarks of IBM
Corporation. All other trademarks herein are the property of their respective holders.

General Notice: Some of the product names used herein have been used for identification purposes only
and may be trademarks of their respective companies.

Part No. TV16060209

TransactionVision Programmer’s Guide i

Contents

1. Introduction ... 1
1.1. Changes in TransactionVision 5.0.0 .. 1
1.2. Changes in TransactionVision 4.2.1 SupportPac A... 2
1.3. Changes in TransactionVision 4.2.1 .. 2
1.4. Changes in TransactionVision 4.2 ... 2
1.5. Changes in TransactionVision 4.1 ... 3
1.6. Prerequisites... 3

2. Architecture Overview .. 5
2.1. System Components... 5
2.2. Database... 6
2.3. User Interface Framework ... 7

3. Tutorial - Extending the Analyzer ... 9
3.1. How to Handle XML Message Data in Events.. 9

3.1.1. Step 1: Modify the Beans.xml file to use the DefaultModifierBean 10
3.1.2. Step 2: Verify that XML data is extracted correctly .. 10

3.2. How to Handle Custom Message Data Formats in Events .. 10
3.2.1. Step 1: Document message format(s) layout.. 10
3.2.2. Step 2: Document the target XML format.. 11
3.2.3. Step 3: Implement the bean to do the format conversion 11
3.2.4. Step 4: Modify the Beans.xml file to use the custom bean 15
3.2.5. Step 5: Test the custom bean in the Analyzer environment 15

3.3. How to Handle Custom Data Formats in Events Using CredibleXML 15
3.3.1. Step 1: Document the message format layout .. 16
3.3.2. Step 2: Document the target XML format.. 16
3.3.3. Step 3: Plug the bean into the TransactionVision framework 17
3.3.4. Step 4: Enable the bean in the Beans.xml file .. 17
3.3.5. Step 5: Restart the Analyzer ... 17

3.4. Overview of XDM Files .. 18
3.5. How to Map Custom Message Data Fields to Database Tables 18

3.5.1. Step 1: Determine which fields in the XML event document need to be mapped to
database columns.. 18
3.5.2. Step 2: Determine the database column names for these fields.............................. 19
3.5.3. Step 3: Construct XDM file entries .. 19
3.5.4. Step 4: Recreate your project database schema.. 21
3.5.5. Step 5: Verify that the XDM mapping works correctly ... 21

3.6. Additional XDM File Examples .. 21
3.7. How to Classify Business Transactions and Map Attributes to Database Tables............ 23

3.7.1. Overview of Transaction Classification: .. 23
3.7.2. Task Description: ... 24

Contents

ii TransactionVision Programmer’s Guide

3.7.3. Implementation:.. 24
3.8. How to Perform Custom Correlation of Related Events.. 31

3.8.1. Overview of Custom Event Correlation: .. 31
3.8.2. Task Description: ... 31
3.8.3. Implementation:.. 31

4. Reference - Extending the Analyzer.. 36
4.1. Using the Beans.xml File ... 36
4.2. Unmarshalling Message Data .. 37

4.2.1. The Default Modifier Bean .. 37
4.2.2. Adding a Message Data Unmarshal Bean .. 37
4.2.3. IEventModifier Interface .. 37
4.2.4. Class XMLEvent .. 38
4.2.5. Methods:... 38
4.2.6. Class XPathSearch ... 40
4.2.7. Class XMLParser ... 42
4.2.8. Other Utility Classes .. 44
4.2.9. Interface DOMElement .. 44
4.2.10. Class EventElement.. 44
4.2.11. Class TextElement.. 45
4.2.12. Class ByteElement ... 45
4.2.13. Class ByteStringElement.. 46
4.2.14. Class IntElement... 47
4.2.15. Class IntHexElement .. 48
4.2.16. Class LongElement... 48
4.2.17. Class LongHexElement .. 49
4.2.18. Class StringElement ... 49
4.2.19. Class RawStringElement .. 50
4.2.20. Sample Usage of the IEventModifier Interface.. 50

4.3. Trimming Data From an Event .. 53
4.3.1. Interface IDBWriteExit .. 53

4.4. XML-Database mapping Using XDM Files .. 54
4.5. Performing Event Analysis .. 56

4.5.1. Event Analysis Utility Classes and Interface ... 57
4.5.2. Interface Cache... 57
4.5.3. Class ConnectionInfo ... 59
4.5.4. Class EventID... 59
4.5.5. Class TechEventID... 60
4.5.6. Event Analysis Classes... 61
4.5.7. Interface IAnalyze .. 61
4.5.8. Class AnalyzeEventCtx .. 61
4.5.9. Class AnalyzeEventBean.. 61
4.5.10. Custom Business Transaction Attributes and Classification 62
4.5.11. Custom Event Correlation .. 73
4.5.12. Custom Local Transaction Definition .. 88
4.5.13. LocalTransactionDefinition.xml File ... 88
4.5.14. LocalTransactionType.. 89
4.5.15. LocalTranasctionAttributes .. 90
4.5.16. Sample LocalTransactionDefinition.xml Rule File.. 91
4.5.17. Changes to the Beans.xml File ... 92

4.6. Extending the System Model ... 93
4.6.1. User Events... 94

Introduction

TransactionVision Programmer’s Guide iii

4.7. Generating Application Events to Tivoli Enterprise Console (TEC)............................... 95
4.7.1. Monitoring Events.. 95
4.7.2. Event Delivery.. 98
4.7.3. SlotMap.properties ... 99
4.7.4. Example Usage:.. 100
4.7.5. BTV Class Definitions and Rulebase ... 100

5. Using the Query Services .. 103
5.1. Sample Usage .. 103
5.2. Class QueryServices .. 104

5.2.1. Methods:... 105
5.3. Class QueryDoc ... 112

5.3.1. Constructors.. 114
5.3.2. Methods .. 115

5.4. Class QueryDoc.WhereClause... 121
5.4.1. Fields .. 121
5.4.2. Constructors.. 122
5.4.3. Methods .. 124
5.4.4. Example.. 124

5.5. Interface Query .. 124
5.5.1. Methods .. 125

5.6. Interface Cursor ... 125
5.6.1. Methods .. 125

5.7. Class DataManagerException .. 130
5.7.1. Constructors.. 130
5.7.2. Methods .. 130

6. Extending the User Interface ... 133
6.1. Writing TransactionVision Reports ... 133

6.1.1. Report Interfaces .. 135
6.1.2. TransactionClass .. 137
6.1.3. JSP Custom Tag Library .. 137
6.1.4. Tag Reference... 138
6.1.5. Report Example.. 140
6.1.6. Adding a Report to the Framework .. 142
6.1.7. Required Configuration Information.. 143
6.1.8. Optional Configuration Information... 144
6.1.9. Adding Actuate Reports ... 145

6.2. Adding Query Pages .. 147
6.3. User Interface Utility Classes .. 148

6.3.1. Class TVisionServlet .. 149
6.3.2. Class TypeConvService ... 150

6.4. Using Job Beans... 152
6.4.1. JobBean .. 152
6.4.2. IJob Interface.. 152
6.4.3. Creating Jobs at Project Creation ... 153

7. Implementing User Events .. 155
7.1. Differences Between User Events and Standard Events.. 155
7.2. User Event Data Model.. 157

7.2.1. EventID .. 159
7.2.2. Standard Section... 159
7.2.3. Technology Section.. 163
7.2.4. User Data Section... 165

Contents

iv TransactionVision Programmer’s Guide

7.3. Using the User Event SDK .. 166
7.3.1. Class com.bristol.tvision.userevents.Constants.. 166
7.3.2. Class com.bristol.tvision.userevents.marshal.SystemModelObject 168
7.3.3. Class com.bristol.tvision.userevents.marshal.TimeData 170
7.3.4. Class com.bristol.tvision.userevents.marshal.UserEventHelper 170
7.3.5. Class com.bristol.tvision.userevents.marshal.UserEventSkeleton 173

7.4. Transporting User Events .. 178
7.5. Analyzing User Events .. 179

7.5.1. Event Unmarshalling.. 179
7.5.2. Local Transaction Analysis .. 179
7.5.3. Business Transaction Analysis ... 180
7.5.4. Statistical Analysis ... 180

7.6. Tutorial: Generating User Events .. 180
7.6.1. Sample Overview ... 181
7.6.2. Building the Tutorial Sample ... 184
7.6.3. Running the Tutorial Sample.. 184

8. Database Schema... 187
8.1. System Object Model Tables ... 187

8.1.1. Object Types... 187
8.1.2. Signatures ... 189
8.1.3. Logical Model .. 190
8.1.4. Physical Model ... 190
8.1.5. System Model Relationships .. 190

8.2. Event Tables .. 191
8.2.1. Logical Model .. 193
8.2.2. Physical Model ... 194

8.3. Event Relationship Tables ... 195
8.3.1. Logical Model .. 195
8.3.2. Physical Model ... 196

8.4. Transaction Tables ... 196
8.4.1. Logical Model .. 197
8.4.2. Physical Model ... 198

8.5. Statistics Tables ... 198
8.5.1. Logical Model .. 199
8.5.2. Physical model ... 200

8.6. User Preference Tables .. 200
8.6.1. Logical model... 201
8.6.2. Physical model ... 201

8.7. Object Alias Tables.. 202
8.7.1. Logical Model .. 202
8.7.2. Physical Model ... 202

8.8. Administration (System) Tables .. 203
8.8.1. Logical model... 203
8.8.2. Physical model ... 204

9. Event XML Schema .. 209
9.1. Basic Types.. 209
9.2. Event Schema Description... 210

10. The Data Manager ... 213
10.1. Using the DataManager to Access the Database.. 213
10.2. XML-Database Mapping Using XDM Files.. 216
10.3. The XDM Syntax... 217

Introduction

TransactionVision Programmer’s Guide v

10.3.1. Creating the XDM database tables ... 219
10.3.2. Properties of the TransactionVision Document Types....................................... 220

10.4. The XMLDatabaseMapper Interface ... 221
10.5. Extending the /Event Document Type ... 223
10.6. Extending the /Transaction and /TransactionClass Document Type 223
10.7. Adding New Document Types... 224

TransactionVision Programmer’s Guide 1

1. Introduction

This guide provides details of how the TransactionVision platform can be extended and
programmed against to achieve better control over its various functions. This manual
presents an architecture overview of the TransactionVision system and documents the
different methods available to use and extend the analyzer service, the query service, project
manager services and the TransactionVision user interface.

1.1. Changes in TransactionVision 5.0.0

• TransactionVision 5.0.0 adds support of accepting user events. These are events created
by user applications beyond those originating from the standard TransactionVision
Sensors. In essence, users can add code in their application to generate user events in
propriety format. User applications are also responsible for delivering the event to the
Analyzer through the standard communication links. For detailed information, see
Chapter 7, "Implementing User Events."

• Pre-population of XDM tables at creation time is supported. For detailed information,
see section 10.3.

• Additional operators have been added for transaction classification rules, as well as the
ability to use wildcards in rule values. For detailed information, see section 3.6.

• The implementation of the XMLDatabaseMapper class has changed. The instance can
now be accessed per schema (previously per document type) :

 XMLDatabaseMapper xdm = XMLDatabaseMapper.instance(schema);
 xdm.insert(conInfo, xmlDoc);

For more information, see Chapter 10, "The Data Manager."

• The com.bristol.tvision.services.analysis.eventmodifier.IEventModifier class has
changed. The method modify() now has the following interface:

public boolean modiy(XMLEvent event, ConnectionInfo conInfo)

A false return value tells the event processor not to continue the remaining steps, discard
the current event right away.

• The translateValue attribute enables you to query XML documents by object names in
addition to object IDs.

Chapter 1 • Introduction
Changes in TransactionVision 4.2.1 SupportPac A

2 TransactionVision Programmer’s Guide

• Detection of SLA violations has been incorporated into the product and does not have to
be coded as an Action any more. A default logging bean
com.bristol.tvision.services.analysis.eventanalysis.LogSLAViolationBean is provided,
but custom logging beans can be implemented, too. See Chapter 4 for more information.

• Indexed XPathSearch (/List[2]/item) is not supported by the internal XPathSearch
implementation.

• Xalan XPathSearch engine is now also supported for transaction classification and
custom correlation/local transaction rule files.

1.2. Changes in TransactionVision 4.2.1 SupportPac A

A new column "timerule_status" has been added to the business_transaction table. This
column indicates if a start or end time rule has fired during during transaction classification.
The possible values are: 0=no rule fired, 1=start time rule fired, 2=end time rule fired,
3=both time rules fired. This column is used internally by the Analyzer and should not be
modified by the user.

1.3. Changes in TransactionVision 4.2.1

• In TransactionVision 4.2.1, the key definition for the business_trans_id key column has
changed. In earlier releases, this key definition was as follows:
<Key name="business_trans_id" type="INTEGER" generated="true"
description="TransactionId">
 <Path>/Transaction/BusinessTransId</Path>
</Key>

The new definition in TransactionVision 4.2.1 is as follows:
<Key name="business_trans_id" type="INTEGER"
generateSequence="true" description="TransactionId">
 <Path>/Transaction/BusinessTransId</Path>
</Key>

If you have a custom transaction XDM file that uses the old definition, you will
encounter the following error:
TransactionVision Error (XDMInconsistentDefForKeyColumn):
Inconsistent Key definition in XDM file 'Transaction.XDM'.

This error indicates that the definition for a key column is not exactly the same for two
(or more) XDM files.

• You can use the IAnalyzerAction interface to specify custom actions to be performed for
specific classification values. For more information, see Classification Action Rules.

• State and Result constants in the following file have changed
<TVISION_HOME>/config/technologyconst/TransactionConst.xml

1.4. Changes in TransactionVision 4.2
The following changes in TransactionVision 4.2 may require existing custom beans or reports
to be changed accordingly.

• The DeleteEvents utility and job uses an optimized fast deletion scheme based on
timestamp columns, resulting in changes to the TransactionVision database schema. See
Chapter 7 for updated schema table diagrams.

Chapter 1 •Introduction
Changes in TransactionVision 4.1

TransactionVision Programmer’s Guide 3

• In order for the new deletion scheme to delete user defined transaction XDM tables, it is
necessary to write the transaction end time into each new XDM table. See Chapter 9 for
more information.

• Two new options have been added to to the DeleteEvents utility:
-threadcount and –nosplit (only valid for the –older option). For more
information, see the TransactionVision Administrator's Guide.

• A business group table has been added to allow grouping of transaction classes into
business groups. See Chapter 3 for more information.

• A CICS lookup table has been added to store CICS event related data. See Chapter 7 for
more information.

• In the report framework, the TransactionClassLookup class, which gets access to the
transaction classification definitions, has been replaced with
com.bristol.tvision.datamgr.dbtypes.TransactionClass. This class is similar to
the previous class, but its usage is slightly different. See Chapter 5 for information about
this class.

1.5. Changes in TransactionVision 4.1
The following public interfaces changed in TransactionVision 4.1. Any exiting custom beans
that use these interfaces must be changed accordingly. For detailed information, see section
3.5.3.

• Interface com.bristol.tvision.services.analysis.eventanalysis.
IEventCorrelation

• Constructor of class com.bristol.tvision.services.analysis.
eventanalysis.CorrelationTechHelperBean

• Constructor of class com.bristol.tvision.datamgr.dbtypes.LookupKey

In addition, changes have been made to the JSP custom tag library used to create
TransactionVision reports. For detailed information, see section 5.1.2.

1.6. Prerequisites
To use this guide to customize TransactionVision requires knowledge of some of the
following technologies and APIs:

• The Java programming language

• The Java Database Connectivity (JDBC) API

• J2EE concepts related to JSPs and servlets

• Relational database and SQL knowledge

Chapter 1 • Introduction
Prerequisites

4 TransactionVision Programmer’s Guide

This guide is designed to explain common programming tasks to extend TransactionVision. It
is not a comprehensive guide and your customization needs may go beyond what this guide
defines. In that case, please contact Bristol Technology technical support for assistance.

Important! This documentation is related to the internals of the TransactionVision product;
incorrect changes could break the functioning of the product.

TransactionVision Programmer’s Guide 5

2. Architecture Overview

2.1. System Components
TransactionVision consists of the following logical components:
• The Sensor component generates events based on the technology being sensed. The

sensor gets configuration and filtering messages from the configuration queue and sends
events into the event queue. The event and configuration queues are represented by the
“communication infrastructure” box in the diagram on the following page.

• The Analyzer component is responsible for retrieving and analyzing events from the
communication link. It contains a chain of Java bean contexts, each performing a
particular function on the event data. Each bean context can hold multiple chained beans
to perform technology specific or other custom processing of the event data. The beans in
each bean context are controlled by the
<TVISION_HOME>/config/services/Beans.xml file. The main components of the
Analyzer include:

• The EventModifier bean context is responsible for converting raw event data from
its binary format into XML. This bean context provides an environment for user
message data unmarshaller beans to be plugged in.

• The DBWriteExit bean context allows a custom bean to trim or cut down on the
data written into the database. This gives a user flexibility to cut down on storage
size. Typically this is an XSLT which processes the XML tree generated by the
unmarshaller context.

• The Database write context is responsible for mapping the XML tree generated by
the unmarshaller and trim contexts to database tables and writing the tree into the
database. This context uses the XML data mapper component to map the XML tree
to relational database tables.

• The Analysis context performs event correlation, local and business transaction
analysis, transaction classification, statistics analysis and any other custom data
analysis.

• The XML data mapper and database query services components provide a means of
mapping XML data to relational tables and a XML based query to an SQL statements
based on relational tables.

The following diagram shows the TransactionVision architecture layout:

Chapter 2 • Architecture Overview
Database

6 TransactionVision Programmer’s Guide

User

Analyzer

Configuration
Repository

(TVISION schema)

Data Access

Operator DeveloperAdministrator

Communication Infrastructure
(event and confiuguration queues)

Event/Transaction Data Store
(project schema)

Event
Unmarshalling

Sensoring
and Event
Capturing

Sensoring
and Event
Capturing

Sensoring
and Event
Capturing

AppServer based
user interface framework

Event/
Transaction

Analysis
Configuration

Control

Configuration /
Project Setup

Security
Management

Event
Warehousing

RMI

RMI

LDAP repository

Figure 1 TransactionVision Architecture

2.2. Database

The general table organization consists of a TVISION schema, where project, communication
links, filter, queries and other administration related information is stored, and project-
specific schemas, where events collected by a project are stored. Each project schema
consists of an event table, where the event identifier and the XML event are stored, and
several lookup tables that provide indexes to the event. In addition there are several other

Chapter 2 • Architecture Overview
User Interface Framework

TransactionVision Programmer’s Guide 7

tables in a project schema storing event correlation, local transaction, business transaction
and other WebSphere MQ objects related information.

2.3. User Interface Framework

The Presentation, User and Session management components interact with the user interface,
transferring requests for data into calls into the database component and returning the results
of the requests back to views in the user interface. The framework consists of servlets and
JSPs running under a web application server such as WebSphere. This framework also
manages user login into the system and all aspects of the user’s access rights to the
TransactionVision system. Users can create new views and reports to be plugged into this
framework.

The Security Management component gets user rights, that control what view and data is
accessible to a user, from an LDAP server. This component allows administrators to assign
rights to users and groups of users to aspects of TransactionVision functionality and data
collected. This includes defining policies for starting and stopping data collection, changing
data collection filters and access rights to collected data. Refer to the Administration Guide
for setting up these user rights.

The Configuration and Administration component manages administration of the
TransactionVision system. This includes starting/stopping data collection and event
processing, changing data collection filters, providing system status, and administering
security policies on the Analyzer service. The Analyzer is controlled using embedded RMI
and can run on systems different from the application server.

This programmer's guide provides the details of extending TransactionVision. It is important
to note that since this documentation is related to the internals of the product, incorrect
changes could break the functioning of the product.

.

TransactionVision Programmer’s Guide 9

3. Tutorial - Extending the Analyzer

The Analyzer reads in binary event packets from the TransactionVision Event Queue and
processes them through a chain of bean contexts. Each bean context performs a specific
function to analyze and write data from the event into the database. Many of these operations
can be extended and customized to perform transformations based on your systems or
application needs. This chain of beans is defined by the Beans.xml file. The sequence of bean
contexts includes:

• The event modifier context, which allows users to write custom beans to modify the
incoming event, such as convert binary message data into XML.

• The data writer context, which contains beans to write the data into various relational
database tables.

• The analysis context, which contains various beans to perform event analysis, transaction
analysis and correlation of events to create a business transaction.

Each context holds beans that perform a default function and can be replaced or added on to
perform further actions on the data being processed. The following sections document
common tasks related to extending the Analyzer.

3.1. How to Handle XML Message Data in Events

Task Description:
When your message data is already composed of XML, a custom bean is not required to have
the XML processed by the Analyzer. Instead, TransactionVision provides a default modifier
that can be used to attach the message data XML contents to the TransactionVision event.

Implementation:
This section describes how to set up the TransactionVision DefaultModifierBean, which
detects XML data in the message field and appends it to the XML event. The default event
modifier bean, “com.bristol.tvision.services.analysis.
eventmodifier.DefaultModifierBean” scans the user data for any XML data and, if
found, simply adds it to the Event XML document at the position
“/Event/UserData/Chunk[@seqNo=’n’]” wher n is the number of the data range
(defined in the data collection filter).

Chapter 3 • Tutorial - Extending the Analyzer
How to Handle Custom Message Data Formats in Events

10 TransactionVision Programmer’s Guide

3.1.1. Step 1: Modify the Beans.xml file to use the DefaultModifierBean

Edit the file Beans.xml under the <TVISION_HOME>/config/services directory to
uncomment the following line of XML:

<!--Module type="Bean"
class="com.bristol.tvision.services.analysis.eventmodifier.DefaultMo
difierBean"/-->

The changed line is:

<Module type="Bean"
class="com.bristol.tvision.services.analysis.eventmodifier.DefaultMo
difierBean"/>

Refer to Section 4.1, “Using the Beans.xml File” on the layout and format of the Beans.xml
file.

3.1.2. Step 2: Verify that XML data is extracted correctly

Re-start the Analyzer after making the changes in Step 1. Collect events using the
TransactionVision sensors from your application. For each event that generates XML
message data, go to the event detail view and verify that the XML data shows up in the user
data panel.

Once this task is done, the XML message data can be mapped to custom database tables
based on the kind of analysis that is required to be performed on the message data. Section
3.5 describes how to implement this mapping.

3.2. How to Handle Custom Message Data Formats in Events
Task Description:
Typically, event data from applications may contain binary, text or XML data embedded
within the message. This data is often in custom and proprietary formats that are not known
to the TransactionVision Analyzer. A common task is to convert these custom formats into
XML within the Analyzer for later use in reports, for analysis, browsing or querying. The
TransactionVision Analyzer allows for embedding a Java bean that implements the
IEventModifier interface to perform the format conversion. This bean can modify the event
being currently processed to do any kind of format conversion on the event data.

Implementation:
This section describes the steps to write a custom event modifier bean in Java to extract and
convert binary message data and insert it into the event data as XML. A custom bean that
converts a text message into XML will be used as an example. The sample code used below
is from the CICS Accounting sample shipped with TransactionVision. The source code can
be found at “<TVISION_HOME>/samples/CICSAccounting”.

3.2.1. Step 1: Document message format(s) layout

The first step in the process of writing a bean to handle custom event data is to know the
layout of all message formats in the event data and document them.

Consider the sample message to contain the following text layout, with fields Account
Number, Last Name, First Name and Account Type:

Chapter 3 • Tutorial - Extending the Analyzer
How to Handle Custom Message Data Formats in Events

TransactionVision Programmer’s Guide 11

In the above layout, the first 5 bytes are the AccountNumber field, while the remaining
fields of “LastName”, “FirstName” and “AccountType” are separated by a space separator
“S”. The “LastName” and “FirstName” fields are variable length fields. The “AccountType”
field is one character and can be either “S” (Savings), “M” (Money Market) or “C”
(Checking). The remaining fields are ignored and not required to be processed by
TranactionVision.

3.2.2. Step 2: Document the target XML format

First design the target XML document to be created from the above text message. The
following is a sample resulting XML structure:

<Event sort="false">
...
 <Data>
 <Chunk blobType="2" ccsid="0" from="0" seqNo="0" to="382">
 <Account>
 <AccountNo>11111</AccountNo>
 <LastName>DOE</LastName>
 <FirstName>JOHN</FirstName>
 <AccountType>Saving</AccountType>
 </Account>
 </Chunk>
 </Data>
...

Here, an “Account” node is created under the item “/Event/Data/Chunk”. This is the point
where TransactionVision stores references to message data. Hence, this is a good point,
though not the only point, where any XML converted message data can be added. Under the
“Account” node, nodes for “AccountNo”, “LastName”, “FirstName” and “AccountType”
are created and their values filled in.

The XPath values of each of the above fields are as follows:

AccountNo – “/Event/Data/Chunk/Account/AccountNo”
LastName – “/Event/Data/Chunk/Account/LastName”
FirstName – “/Event/Data/Chunk/Account/ FirstName”
AccountType – “/Event/Data/Chunk/Account/AccountType”

3.2.3. Step 3: Implement the bean to do the format conversion

This section describes the implementation of the Java bean to perform the format conversion
described in Steps 1 and 2.

1. A Java class, CICSAccountingModifierBean, extends from the base class

EventModifierBean and implements the modify method of the IEventModifier
interface. This modify method is invoked by the Analyzer framework to perform any
custom data conversion tasks.

 public class CICSAccountingModifierBean extends EventModifierBean {

AccountNumber
(5 characters)

LastName FirstName AccountType
(1 character-S/M/C)

S

S

. . .

Chapter 3 • Tutorial - Extending the Analyzer
How to Handle Custom Message Data Formats in Events

12 TransactionVision Programmer’s Guide

 ...

 /** Creates new CICSAccountingModifierBean */
 public CICSAccountingModifierBean() {
 ...
 }

 public void modify(XMLEvent event) throws EventModifyException {
 …

 The above code defines the CICSAccountingModifierBean class with a method
modify. This method accepts the current XML event object as its input and is allowed to
modify this object in any way, typically for transforming data from proprietary formats to
XML.

2. The following code fragment from the modify method first verifies whether this is the

right CICS event whose message data needs to be processed, and then processes chunks
of message data.

00055 String tech =
event.getDocumentValue(XPathConstants.TECH_NAME);
00056 if (tech == null ||
!tech.equalsIgnoreCase("CICS"))
00057 return;
00058
00059 String eventType =
event.getDocumentValue(XPathConstants.CICS_COMMON_EVENTTYPE);
00060 if (eventType == null)
00061 return;
00062
00063 int type = Integer.parseInt(eventType);
00064 if (type != CICSConstants.B_CICS_TYPE_FC)
00065 return;
00066

 In the above code, the constant XPathConstants.TECH_NAME contains the value

to the technology XPath expression. The XPathConstants class contains various other
commonly used XPath expression values. Hence, line 55 extracts the value of the
technology name from the event document. Line 56 ignores all events that are not from
the CICS sensor (ie. are not of technology CICS). Line 59-64 lookup the event type of the
CICS event. Only file control APIs (CICSConstants.B_CICS_TYPE_FC) are
considered for further processing. The method getDocumentValue returns the value of
any XPath location in the DOM tree in the XMLEvent object.

3. The following code fragment shows how to obtain pieces of user data from the

XMLEvent object.

00067 XPathSearch lookup = new XPathSearch(event);
00068
00069 /*
00070 * get user data chunks by retrieving all
/Event/Data/Chunk nodes
00071 */
00072 NodeList dataChunks =
lookup.getNodes(XPATH_DATACHUNK);
00073 if (dataChunks == null || dataChunks.getLength()
== 0)
00074 return;

Chapter 3 • Tutorial - Extending the Analyzer
How to Handle Custom Message Data Formats in Events

TransactionVision Programmer’s Guide 13

00075
00076 int chunkNum = dataChunks.getLength();
00077
00078 /*
00079 * process each user data chunk
00080 */
00081 for (int i = 0; i < chunkNum; i++) {
00082 try {
00083 processUserData(event, lookup,
(Element)(dataChunks.item(i)));
00084 }
00085 catch (XMLException xmlEx) {
00086 throw new EventModifyException(xmlEx);
00087 }
00088 }

Line 67 creates an XPathSearch object, whose function is to perform lookups on the
XMLEvent document. The getNodes and getValues methods on the XPathSearch class
enable lookups based on given XPath expressions. Section 4.2.6 has the documentation
on this class and its methods.

The message data in a TransactionVision event is stored as a series of chunks. This is
done since the message data from TransactionVision Sensors can be broken up based on
data ranges specified in the data collection filter. The XMLEvent document contains the
location and byte count of each of these chunks and can be looked up using the XPath
expression “/Event/Data/Chunk”. Typically, if no data range is specified in the data
collection filters, only one chunk is created.

Line 72 gets a list of data chunk nodes. For each of the data chunks, the method
processUserData is called to perform the format conversion.

4. The following code fragment is from the processUserData method which converts the

text message into XML.

00104 private void processUserData(XMLEvent event, XPathSearch
lookup, Element owner) throws XMLException {
00105
00106 int chunkId =
Integer.parseInt(owner.getAttribute(ATTR_CHUNK_ID));
00107
00108 /*
00109 * find the XMLEvent.Blob which has the same chunk
ID
00110 */
00111 XMLEvent.Blob chunkBlob = null;
00112
00113 Iterator it = event.blobIterator();
00114 while (it.hasNext() && (chunkBlob == null)) {
00115 XMLEvent.Blob blob = (XMLEvent.Blob)it.next();
00116 if (blob.id == chunkId)
00117 chunkBlob = blob;
00118 }
00119
00120 if (chunkBlob == null)
00121 return;
00122
00123 int ccsid = chunkBlob.ccsid;
00124
00131 /*
00132 * if ccsid <=0 use ccsid in standard header

Chapter 3 • Tutorial - Extending the Analyzer
How to Handle Custom Message Data Formats in Events

14 TransactionVision Programmer’s Guide

00133 */
00134 if (ccsid <= 0) {
00135 ccsid =
Integer.parseInt(lookup.getValue(XPATH_EVENT_CCSID));
00136 }
00137
00138 String strBuf =
Translator.instance(ccsid).translate(chunkBlob.blob);
00139
00142
00143 /*
00144 * parse XML document, and if succeeds, append it to
owner node,
00145 * then change the data type of the chunk.
00146 */
00147 Element acctRoot = event.createElement("Account");
00148 owner.appendChild(acctRoot);
00149
00150 StringElement acctNo = new
StringElement("AccountNo");
00151 StringElement lastName = new
StringElement("LastName");
00152 StringElement firstName = new
StringElement("FirstName");
00153 StringElement acctType = new
StringElement("AccountType");
00154
00155 StringTokenizer tokens = new
StringTokenizer(strBuf);
00156 int cnt = tokens.countTokens();
00157 if (cnt < 3)
00158 return;
00159
00160 String[] tokenStrs = new String[cnt];
00161 for (int i = 0; i < cnt; i++) {
00162 tokenStrs[i] = tokens.nextToken();
00164 }
00165
00166 // check for numeric value
00167 char c = tokenStrs[0].charAt(0);
00168 if (!Character.isDigit(c))
00169 return;
00170
00171 acctNo.value = tokenStrs[0].substring(0, 5);
00172 lastName.value = tokenStrs[0].substring(5);
00173 firstName.value = tokenStrs[1];
00174
00175 int idx = strBuf.indexOf("FSR");
00176 acctType.value = strBuf.substring(idx + 3, idx + 4);
00177 if (acctType.value.equalsIgnoreCase("M"))
00178 acctType.value = "Money Market";
00179 else if (acctType.value.equalsIgnoreCase("S"))
00180 acctType.value = "Saving";
00181 else
00182 acctType.value = "Checking";
00183
00184 acctNo.toDOM(event, acctRoot);
00185 lastName.toDOM(event, acctRoot);
00186 firstName.toDOM(event,acctRoot);
00187 acctType.toDOM(event, acctRoot);
00188
00189 chunkBlob.type = TVisionCommon.XMLEVENT_BLOB_XML;
00190
00191 owner.setAttribute(ATTR_BLOBTYPE,

Chapter 3 • Tutorial - Extending the Analyzer
How to Handle Custom Data Formats in Events Using CredibleXML

TransactionVision Programmer’s Guide 15

00192
Integer.toString(TVisionCommon.XMLEVENT_BLOB_XML)
00193);
00194 }
00195 }

The method processUserData converts one chunk of message data text into XML. Line 106
obtains the id of the current chunk of message data being processed.

Lines 111-119 access the array of message data binary objects (BLOB) that are stored in a
separate table in the same sequence as the chunks in the XML document. Typically, there is
just one object, but there could be more depending on whether data ranges have been set in
the data collection filter. Hence, a chunk in the XML document with the ID 1 will have its
equivalent BLOB in the user data table at the sequence number 1. The chunk id from the
XML document is matched with the message data BLOB ID.

Lines 134-138 find the codepage of the message data and convert it to the code page the
Analyzer is using. This is required because the message data is from CICS and needs to be
converted from EBCDIC to ASCII.

Lines 147-148 create new nodes in the XMLEvent document to hold the Account related
data.

Lines 150-154 create new objects of type StringElement. This class is a TransactionVision
utility class that has the ability to generate XML DOM nodes from input values. Refer to
Section 4.2.4.4 for details on this class. The toDOM method of this class creates and appends
XML DOM nodes to a DOM tree at a specified location.

Lines 155-183 is Java code which parses the message data string buffer and extracts values
for Account, LastName, FirstName and AccountType based on the format defined in Step 2.

Lines 184-188 convert the parsed message data from their StringElement values into
DOM nodes attached to the XMLEvent DOM tree at location
“/Event/Data/Chunk/Account”.

3.2.4. Step 4: Modify the Beans.xml file to use the custom bean

The event modifier bean implemented in the previous steps needs to be enabled in the event
modifier context of the Beans.xml file. Change the Beans.xml file to add the following line:

 <Module type="Context" name="EventModifierCtx">

<Module type="Bean" class=
"com.bristol.tvision.samples.accounting.CICSAccountingModifi
erBean"/>

 </Module>

The Analyzer needs to be re-started after this change.

3.2.5. Step 5: Test the custom bean in the Analyzer environment

To verify that the above data extraction is working correctly, check the right events user data
buffer in the event detail view. In the example above, check the user data for the file control
READ API.

3.3. How to Handle Custom Data Formats in Events Using CredibleXML

CredibleXML is a GUI tool used to convert proprietary data formats to a XML tree for easier
access in the TransactionVision events. The CredibleXML tool will create a SAX parser to

Chapter 3 • Tutorial - Extending the Analyzer
How to Handle Custom Data Formats in Events Using CredibleXML

16 TransactionVision Programmer’s Guide

parse the user’s proprietary format. This SAX parser can be directly plugged into the
TransactionVision framework using the CredibleXMLEventModifierBean. Using this event
modifier bean any SAX parser created by the CredibleXML tool can be plugged into
TransactionVision.

The CredibleXML being a GUI based tool allows for very quick turnarounds of this process.
Please refer to the CredibleXML documentation for more information.

Task Description:
Often the data formats of being collected by the TransactionVision Analyzer are proprietary
and cannot be understood out of the box. To be able to use the data for reporting purposes,
the TransactionVision Analyzer must be provided a mechanism to understand and extract the
required data. Since the data stored in the TransactionVision Analyzer is in th XML format,
the easiest way to have the proprietary data available for use is to convert it to XML. The
CredibleXML tool enables you to do exactly this. The task involves using the CredibleXML
GUI to create a SAX parser to parse and create the XML document and then plugging in this
parser into the Analyzer framework.

Implementation:
This section describes the steps required to create and plug in a CredibleXML parser for a
proprietary data format. Note that the implementation steps are not intended to give the user a
complete understanding of CredibleXML and its features. Please refer to the documentation
of CredibleXML for these steps.

3.3.1. Step 1: Document the message format layout

The first step in the process of writing a bean to handle custom event data is to know the
layout of all message formats in the event data and document them. Consider the sample
message to contain the following text layout, with fields Account Number, Last Name, First
Name and Account Type:

In the above layout, the first 5 bytes are the AccountNumber field, while the remaining fields
of “LastName”, “FirstName” and “AccountType” are separated by a space separator “S”. The
“LastName” and “FirstName” fields are variable length fields. The “AccountType” field is
one character and can be either “S” (Savings), “M” (Money Market) or “C” (Checking). The
remaining fields are ignored and not required to be processed by TransactionVision.

3.3.2. Step 2: Document the target XML format

First design the target XML document to be created from the above text message. The
following is a sample resulting XML structure:
<AccountData>
 <Account>
 <No>11111</No>
 <LastName>DOE</LastName>
 <FirstName>JOHN</FirstName>
 <AccountType description="Checking Account">C</AccountType>

AccountNumber
(5 characters)

LastName FirstName AccountType
(1 character-S/M/C)

S

S

. . .

Chapter 3 • Tutorial - Extending the Analyzer
How to Handle Custom Data Formats in Events Using CredibleXML

TransactionVision Programmer’s Guide 17

 </Account>
</AccountData>

Please refer to the account.cpr sample CredibleXML project shipped with
TransactionVision. A sample input data is also shipped in the file accounttestmsg1.txt.

3.3.3. Step 3: Plug the bean into the TransactionVision framework

The CredibleXML tool will create a jar file as specified in the project properties. For example
the account.cpr project will create an account.jar in the specified location. The newly created
jar file will have to be plugged into the TransactionVision Analyzer framework. This can be
done by running the TVisionSetupInfo script in the TVISION_HOME/bin directory.

When you get to the prompt below, enter the fully qualified jar file name as an additional jar
to use in the TransactionVision Analyzer. You must also enter the crediblexml.jar file.

The Analyzer can optionally be customized by plug in beans in JAR files. The location of
these JAR files needs to be added to the Analyzer CLASSPATH.

Please specify a semicolon delimited list of any additional JAR files you wish to be added to
the CLASSPATH. (for example,
'C:\TVision\myext.jar;C:\TVision\myutil.jar') []:C:/Software/Bristol
/TransactionVision/java/lib/account.jar;C:/Software/Bristol/Transact
ionVision/java/lib/crediblexml.jar

3.3.4. Step 4: Enable the bean in the Beans.xml file

Enable the CredibleXML bean in the Beans.xml file located in the
<TVISION_HOME>/config/services directory as show below.
<Module class="com.bristol.tvision.services.analysis.eventmodifier.
CredibleXMLEventModifierBean" type="Bean">
 <Attribute name="ParserClass" value="com.bristol.tvision.
parsers.SAXAccountDocumentParser"/>
 <Attribute name="ReplaceUserData" value="yes"/>
 <Attribute name="ApplicationList" value="PutJMS;java;javaw"/>
 <Attribute name="QueueQMgrList" value="TEST.Q-deepakepc.
tv1.manager;Q1-QMGR1"/>
</Module>

The ParserClass must point to the fully qualified SAX parser class created in the
CredibleXML jar file.

The ReplaceUserData defined whether the created XML tree will replace the events data
chunks so that is will directly show up in the TransactionVision event detail view. Default is
NOT to replace user data. If not replacing user data the created XML tree is appended to the
/Event/Data/Chunk section of the TransactionVision event.

The ApplicationList will limit the CredibleXMLEventModifierBean being applied to only the
applications/program names listed in that list. Each application is separated by a comma.

The QueueQMgrList defined pairs of queues and queue managers in the format ‘<queue>-
<queueMgr>’ separated by a ‘;’ for which the CredibleXMLEventModifierBean will be
applied.

3.3.5. Step 5: Restart the Analyzer

Restart the TransactionVision Analyzer using the ServicesManager script located in the
<TVISION_HOME>\bin directory.

Chapter 3 • Tutorial - Extending the Analyzer
Overview of XDM Files

18 TransactionVision Programmer’s Guide

3.4. Overview of XDM Files

Certain pieces of information in the message data may be useful to be queried upon by
custom reports or analysis modules. In that case, these fields need to be extracted from the
message data and mapped to database columns by the Analyzer. Before these fields can be
written to a database column by the Analyzer, they need to be extracted from the message and
converted to XML (if not already in the XML format). Section 3.2 describes how to extract
binary message data and convert it to XML and Section 3.1 describes how to handle XML
message data.

The TransactionVision database schema is made extensible through the XML to Database
Mapping (XDM) files. As message data specific columns are added to the database, the XDM
files can be updated to describe the new schema. Hence XML to Database mapping serves
several purposes:
• To describe to the CreateSqlScript program the layout of the project database schema

tables.

• To describe to the Analyzer the fields that are to be extracted from the XML event data
and stored in event lookup tables for fast searching and retrieval.

• To describe to the Analyzer the fields that are to be extracted from the transaction XML
document and stored in the transaction lookup tables.

• To describe the database schema to the query services for use in TransactionVision user
interface views and reports.

3.5. How to Map Custom Message Data Fields to Database Tables

Task Description:
The task in this section describes how to map event XML data to database fields using
TransactionVision’s XDM (XML to Database Mapping) module.

3.5.1. Step 1: Determine which fields in the XML event document need to be mapped to
database columns

Consider a WebSphere MQ MQPUT request event which has the following XML segment in
its message data:
<Event>
 <Data>
 <Order>
 <ID>123456</ID>
 <Branch>Danbury</Branch>
 <Account></Account>
 <Ticker>MSFT</Ticker>
 <Price>88.88</Price>
 <Shares>1000</Shares>
 </Order>
 </Data>
</Event>

Consider a WebSphere MQ MQPUT reply event in response to the above request that
contains the following XML segment in its message data:
<Event>
 <Data>
 <Result>

Chapter 3 • Tutorial - Extending the Analyzer
How to Map Custom Message Data Fields to Database Tables

TransactionVision Programmer’s Guide 19

 <ID>123456</ID>
 <Type>Stock</Type>
 <Status>Success</Status>
 </Result>
 </Data>
</Event>

3.5.2. Step 2: Determine the database column names for these fields

The mapping of message data to database columns enables custom business reports and
queries to be written to view and analyze the contents of the message data.

Consider that the following fields need to be mapped to database columns from the message
data described in Step (1).

For the MQPUT request message data, a TRADE_ORDER table can be defined as follows:

Field Name SQL Type Length
ORDERID VARCHAR 16
BRANCH VARCHAR 16

ACCOUNT VARCHAR 8
TICKER VARCHAR 8
PRICE VARCHAR 8

SHARES VARCHAR 8
PROGINST_ID INTEGER 4

SEQUENCE_NO INTEGER 4

For the MQPUT reply message data, a TRADE_RESULT table can be defined as follows:

Field Name SQL Type Length
ORDERID VARCHAR 16

TYPE VARCHAR 8
STATUS VARCHAR 12

PROGINST_ID INTEGER 4
SEQUENCE_NO INTEGER 4

In both the above tables, PROGINST_ID and SEQUENCE_NO are event identification fields
that are required to join with the TransactionVision EVENT table, while the remaining
columns contain business content to be extracted from the message data.

3.5.3. Step 3: Construct XDM file entries

Now that we have determined the format and contents of the message data in Step 1 and
which database tables need to be populated in Step 2, a mapping can be created from the
XML message data contents to the database columns.

Consider the following XML segment:
<Event>
 <Data>
 <Order>
 <ID>123456</ID>
 ...

Chapter 3 • Tutorial - Extending the Analyzer
How to Map Custom Message Data Fields to Database Tables

20 TransactionVision Programmer’s Guide

 </Order>
 </Data>
</Event>

The XPath to the Order ID field can be written as: “/Event/Data/Order/ID”.

The value at this XPath needs to be written to the ORDERID column of the
TRADE_ORDER table.

This mapping can be done in an XDM file as follows:

<Table name="TRADE_ORDER" category="MQSERIES,JMS">
 <Column name="ORDERID" type="VARCHAR" size="16"
description="OrderID">
 <Path>/Event/Data/Order/ID</Path>
 </Column>
 ...

The above XDM file segment defines a table name TRADE_ORDER in the “Table” element.
The table contains a column ORDERID, defined by the “Column” element, of type
VARCHAR and size 16 bytes. The “Column” of name ORDERID has an XPath mapping,
defined by the “Path” element to be “/Event/Data/Order/ID”.

The table definition part of the XDM segment is applied when a new project schema is
created either by CreateSqlScript or the project creation web pages. The XPath mapping
part of the XDM segment is applied by the Analyzer when processing events. When an event
contains data at the XPath value “/Event/Data/Order/ID”, the Analyzer extracts the value and
writes a row to the mapped column ORDERID belonging to table TRADE_ODER for that
event. The “category” attribute for the “Table” element, indicates that this mapping is applied
only to MQSeries and JMS events.

The complete mapping of the MQPUT request message to the TRADE_ORDER table is as
follows:
 <Table name="TRADE_ORDER" category="MQSERIES,JMS">
 <Column name="orderid" type="VARCHAR" size="16"
description="OrderID">
 <Path>/Event/Data/Order/ID</Path>
 </Column>
 <Column name="branch" type="VARCHAR" size="16"
description="Branch">
 <Path>/Event/Data/Order/Branch</Path>
 </Column>
 <Column name="account" type="VARCHAR" size="8"
description="AccountNumber">
 <Path>/Event/Data/Order/Account</Path>
 </Column>

 <Column name="ticker" type="VARCHAR" size="8"
description="Ticker">

 <Path>/Event/Data/Order/Ticker</Path>
</Column>

 <Column name="price" type="VARCHAR" size="8"
description="Price">

 <Path>/Event/Data/Order/Price</Path>
</Column>

 <Column name="shares" type="VARCHAR" size="8"
description="NumberOfShares">

 <Path>/Event/Data/Order/Shares</Path>
</Column>

 </Table>

Chapter 3 • Tutorial - Extending the Analyzer
Additional XDM File Examples

TransactionVision Programmer’s Guide 21

3.5.4. Step 4: Recreate your project database schema

The TransactionVision Analyzer and Web component need to be restarted for the modified
XDM files to have effect. Once the Web component is restarted, when new project schemas
are created, they will contain the newly defined tables or columns. However, existing
database project schemas need to be updated to create the newly added tables or columns.
This can be done using options in the CreateSqlScript utility.

For example:

CreateSqlScript –c –e –n –p TEST –t TRADE_ORDER

The above command creates the table TRADE_ORDER as defined in the XDM file in the
TEST database schema.

3.5.5. Step 5: Verify that the XDM mapping works correctly

Start Analyzer collection for the project that has the custom XDM mapping. Generate events
containing the message data with the expected XPath entries. Verify that rows are written into
the TRADE_ORDER table for every event containing the expected message data.

3.6. Additional XDM File Examples

The XDM mappings can be technology or platform specific. The common mapping defined
in the file <TVISION_HOME>/config/xdm/Event.xdm (data in the standard event header)
will be written for every event, but the mappings defined in the other XDM files will only be
applied if the current event matches the mapping’s “category’ (technology or platform)
definition. The XML schema format of XDM files is defined in
<TVISION_HOME>/config/xmlschema/XDM.xsd. The following code is an extract from
the file Event.xdm.

<?xml version="1.0"?>
<Mapping documentTable="event" documentColumn="event_data">
 <Key name="proginst_id" type="INTEGER"
description="ProgramInstanceId">
 <Path>/Event/EventID/@programInstID</Path>
 </Key>
 <Key name="sequence_no" type="INTEGER"
description="SequenceNumber">
 <Path>/Event/EventID/@sequenceNum</Path>
 </Key>
 <Table name="EVENT_LOOKUP" category="COMMON">
 <Column name="host_id" type="INTEGER" description="Host"
isObject="true">
 <Path>/Event/StdHeader/Host/@objectId</Path>
 </Column>
 <Column name="program_id" type="INTEGER"
description="Program" isObject="true">
 <Path>/Event/StdHeader/ProgramName/@objectId</Path>
 </Column>
 ...
 </Table>
</Mapping>

Chapter 3 • Tutorial - Extending the Analyzer
Additional XDM File Examples

22 TransactionVision Programmer’s Guide

The above snippet from Event.xdm defines a table EVENT containing the XML document
and a table EVENT_LOOKUP, containing various indexed columns of data from the XML
document. The key columns proginst_id and sequence_no are integer types and mapped
to XPath expressions /Event/EventID/@programInstID and
/Event/EventID/@sequenceNum. These key columns are primary keys common to the
EVENT and EVENT_LOOKUP tables. Similarly, the columns host_id and program_id are
mapped to XPath expressions /Event/StdHeader/Host/@objectId and
/Event/StdHeader/ProgramName/@objectId respectively.

The preceeding XDM file specifies that when an XML event is written to the database by the
DBWrite module in the Analyzer, these fields are extracted and written into the database
columns mapped to in the XDM file. Similarly, when the database is queried using the
QueryServices XML interface, these XDM files are used to construct the corresponding SQL
query.

The isObject attribute for a Column tag in the XDM file refers to that column being an
identifier for an object in the system model table. The documentTable and
documentColumn tags are the table and column where the actual XML document is stored.
The key is the primary key and is common to the document table and the lookup tables. Each
lookup column is indexed.

The queryOnly attribute for a Column tag indicates that the value is not written by the
Analyzer in the DBWrite module, but maybe written in the analysis phase of the Analyzer or
by some other application. Hence, this field is for queries only.

<Column name="local_trans_id" type="INTEGER"
description="LocalTransactionId" queryOnly="true">

<Path>/Event/LocalTransactionId</Path>
</Column>

The generated attribute for a Column tag means that column is a database generated id.

<Column name="sequential_id" type="INTEGER" generated="true"
description="SequentialId">

<Path>/Event/SequentialId</Path>
</Column>

The conversionType attribute for a Column tag means that field requires a formatting
conversion before writing to the database. The TypeConvService is called into before writing
that field into the database. This is typically used for writing date/time or enumeration fields.

<Column name="entrytime" type="CHAR" size="20"
description="EntryTime" conversionType="Date">

<Path>/Event/StdHeader/EntryTime</Path>
</Column>

The category attribute on the Table tag contains either COMMON or the technology string
or the platform string for the event data that should be written into this table. The string
COMMON indicates that this table contains data common to every event and should be
written for every event going through the Analyzer. A technology or platform name like
“MQSERIES” or “OS390_BATCH” used in the category field indicates that this table should
only be filled for events of that technology or platform.

<Table name="EVENT_LOOKUP" category="COMMON">
...

Chapter 3 • Tutorial - Extending the Analyzer
How to Classify Business Transactions and Map Attributes to Database Tables

TransactionVision Programmer’s Guide 23

</Table>
<Table name="OS390_LOOKUP"
category="OS390_BATCH,OS390_CICS,OS390_IMS">
...
</Table>

A column can map to multiple XPath expressions, as in the following sample code. This
assumes that only one of the XPaths will exist in a given event document.
<Column name="datasize" type="INTEGER" description="DataSize">
 <Path>/Event/Technology/MQSeries/MQGET/MQGETExit/DataLength
 </Path>
 <Path>/Event/Technology/MQSeries/MQPUT/MQPUTExit/BufferLength
 </Path>
 <Path>/Event/Technology/MQSeries/MQPUT1/MQPUT1Exit/BufferLength
 </Path>
</Column>

Additionally, business transaction attributes (as opposed to event attributes) can also be
mapped to transaction based XDM files. Section 3.7 describes how to map transaction
attributes to transaction XDM tables.

Refer to Section 10.2 for details on the XDM file layout.

3.7. How to Classify Business Transactions and Map Attributes to Database Tables

3.7.1. Overview of Transaction Classification:

Transaction classification allows users to partition their business transactions into different
transaction classes and set transaction attributes based on event data. These classes may be
created based on data in the messages flowing through the business system. A transaction is
classified to a transaction class when attributes in one or more events in the transaction match
the criteria defined in the TransactionDefinition.xml. This file supports creating simple rules
to classify transactions. This file also allows setting of attributes on transactions. These
attribute values can be extracted from one or more events belonging to that transaction. These
attributes then can be mapped to database tables using XDM files.

Consider a business system consisting of a JSP/servlet based user interface, a middle-tier
based on EJBs and a mainframe based backend. The following sample classification criteria
may be applied to such a system:
• Based on the types of business systems these transactions involve. For example, if the 3-

tier system described above supports financial transactions such those dealing with
stocks and bonds, transaction classes may be created based on this.

• Based on statistics that need to be collected for each class. Such statistics may include
service level and response time requirements for different classes of transactions. In the
3-tier system described earlier, aggregate response times could be measured for each tier
of the system.

• Actions or rules fired for different classes of transactions. In the 3-tier system described,
email alerts may need to be fired to different administrators based on response times
exceeding a threshold. Once, transaction classification has been performed, these kind of
alerts can be fired based on which class a transaction belongs to.

Chapter 3 • Tutorial - Extending the Analyzer
How to Classify Business Transactions and Map Attributes to Database Tables

24 TransactionVision Programmer’s Guide

The Transaction Tracking Report lists transaction classes and attributes automatically along
with common attributes such as start time, response time etc. For more information about this
report, see Chapter 7, "Using Reports," in the TransactionVision User’s Guide.

3.7.2. Task Description:

The task in this section describes the following:
• How to extract event data and map that data to transaction attributes.
• How to map transaction attributes to database tables using transaction XDM files.
• How to write rules in the TransactionDefinition.xml file to perform transaction

classification.

The sample message data used in this section is from the TRADE demo system, for which the
project and event databases are shipped with TransactionVision. Refer to the
TransactionVision Administration Guide on how to setup the TRADE demo database.

The previous sections in this chapter have discussed mapping event attributes to database
tables. This section describes how to map business transaction attributes to database tables.
This involves extracting attributes from events that apply to the business transaction the event
belongs to and writing them to business transaction XDM tables.

3.7.3. Implementation:

Step 1: Determine the event attributes that apply to a business transaction

Consider a request event which has the following XML segment in its message data:

<Event>
 <Data>
 <Order>
 <Account>123456</Account>
 <Transaction>Danbury</Transaction>
 <Type></Type>
 <Product>MSFT</Product>
 <Quantity>88.88</Quantity>
 <!—- present in FX transactions -->
 <Currency>1000</Currency>
 <RecvAccount>1000</RecvAccount>
 <!—- present in Bond transactions -->
 <Maturity>1000</Maturity>
 <Issue>1000</Issue>
 <!—- present in Equity transactions -->
 <Symbol>1000</Symbol>
 </Order>
 </Data>
</Event>

Three kinds of transactions flow through this TRADE system: Bond, Equity and FX (foreign
exchange). Besides a common header, each transaction type has data specific to that
transaction.

Consider the reply event in response to the above request that contains the following XML
segment in its message data:

<Event>
 <Data>

Chapter 3 • Tutorial - Extending the Analyzer
How to Classify Business Transactions and Map Attributes to Database Tables

TransactionVision Programmer’s Guide 25

 <Order>
 <ID>123456</ID>
 <Region>Stock</UnitPrice>
 <Status>Success</Status>
 <Reason>Success</Reason>
 <!—- present in Bond transactions -->
 <Yield>5.94</Yield>
 </Order>
 </Data>
</Event>

Step 2: Determine database column names for these fields

The mapping of message data to transaction database columns enables custom business
reports and queries to be written to view and analyze the contents of the business transaction.
Consider that the following fields need to be mapped to database columns from the message
data described in Step 1.

The TRADE_BUSINESS_TRANSACTION table is defined as below:

Field Name SQL Type Length
ORDERID VARCHAR 20
REGION VARCHAR 12
ACCOUNT VARCHAR 12
TRADETYPE VARCHAR 12
TRADEACTION VARCHAR 12
AMOUNT DOUBLE 8
STATUS VARCHAR 12
REASON VARCHAR 32
BONDISSUE VARCHAR 12
BONDMATURITY INTEGER 4
EQUITYSYMBOL VARCHAR 8
VALUE DOUBLE 8
CUSTOMER VARCHAR 32
BUSINESS_TRANS_ID INTEGER 4

In the above table, the BUSINESS_TRANS_ID column is a transaction identification field
that is required to join with the TransactionVision BUSINESS_TRANSACTION table, while
the remaining columns contain business content that are extracted from the message data.

Step 3: Extract transaction attributes from event data

Now that we have determined the format and contents of the message data in Step 1, these
event fields need to be set as transaction attributes. This is done in the
TransactionDefinition.xml rules file with the help of “Attribute” elements with
“ValueRule” elements to set values into attributes. A transaction XML document is created
by the Analyzer in memory as attributes are set and this document is then mapped to database
tables defined in the transaction XDM file.

Consider the mapping rule below from the TransactionDefinition.xml file for the TRADE
sample database:

<Attribute name="OrderID">
 <Path>/Transaction/OrderID</Path>

Chapter 3 • Tutorial - Extending the Analyzer
How to Classify Business Transactions and Map Attributes to Database Tables

26 TransactionVision Programmer’s Guide

 <ValueRule name="SetOrderID">
 <Value type="XPath">
/Event/Technology/Servlet/Response/Headers/Header[@name='orderid']/@
value</Value>
 </ValueRule>
</Attribute>

Here a transaction attribute called “OrderID” has been defined, with an XPath location of
“/Transaction/OrderID”. A “ValueRule” of name “SetOrderID” sets the value of the
transaction attribute at XPath “/Transaction/OrderID” from the attribute value in the event
data at XPath “/Event/Technology/Servlet/Response/Headers/Header[@name='orderid']”.

The two important pieces of information in the above attribute rule are the event XPath,
which is the source of the data, and the transaction XPath, which is the destination to which
the source data is copied into.

Value rules can also set constant values into transaction attributes. In the following XML
snippet, a constant value of “Completed” is set into the transaction attribute “State” at XPath
location “/Transaction/State”.

<Attribute name="State">
 <Path>/Transaction/State</Path>
 <ValueRule name="SetState">
 <Value type="Constant">Completed</Value>
 </ValueRule>
</Attribute>

The attribute rules can be used in the context of class rules, which determine that the attribute
rules are applied only for certain classes. Consider the example below:

<?xml version="1.0"?>
<TransactionDefinition>
 <Class name="Bond" dbschema="TRADE">
 <Classify id="1">
 <Match xpath="/Event/StdHeader/ProgramName"
operator="EQUAL" value="TradeServlet"/>
 <Match
xpath="/Event/Technology/Servlet/Request/Parameters/Parameter[@name=
'product']/@value" operator="EQUAL" value="Bond"/>
 <Attribute name="OrderID">
 <Path>/Transaction/OrderID</Path>
 <ValueRule name="SetOrderID">
 <Value type="XPath">
/Event/Technology/Servlet/Response/Headers/Header[@name='orderid']/@
value</Value>
 </ValueRule>
 </Attribute>
...

Here, the attribute rule of name “OrderID” is applied only for already classified transactions
of class “Bond”.

Attribute rules also can have match criteria such that the rules are applied to every event
when a match criteria is successful. Consider the XML snippet below:
 <Attribute name="Amount">
 <Path>/Transaction/Amount</Path>
 <ValueRule name="SetAmount">
 <Match xpath="/Event/Technology/JMS/Caller"
operator="EQUAL" value="TradeServlet"/>
 <Match xpath="/Event/Technology/JMS/Method"
operator="EQUAL" value="receive"/>

Chapter 3 • Tutorial - Extending the Analyzer
How to Classify Business Transactions and Map Attributes to Database Tables

TransactionVision Programmer’s Guide 27

 <Match xpath="/Event/Technology/JMS/Data/DataSize"
operator="UNEQUAL" value=""/>
 <Match xpath="/Event/Technology/JMS/Data/DataSize"
operator="UNEQUAL" value="0"/>
 <Value
type="XPath">/Event/Data/Chunk/Order/Amount</Value>
 </ValueRule>
 </Attribute>

Here, the value rule to set the value of “Amount” at XPath location
“/Transaction/Amount” from the event XPath
”/Event/Data/Chunk/Order/Amount”, is fired when the logical AND of the Match
criteria evaluate to True.

Refer to Section 4.5.10 for details on the syntax of the classification rules.

Step 4: Construct XDM file entries for transaction attributes

Now that we have determined the contents of the transaction attributes and extracted them
from the event data as in Step (1) and (3) and determined which database tables need to be
populated as in Step (2), a mapping can be created from the XML transaction attributes to the
database columns.

Consider the below transaction document created by rules set XML segment:
<Transaction>
 <OrderID>123456</OrderID>
 <Account> </Account>
 <Region> </Region>
 <TradeType> </ TradeType >
 <TradeAction> </TradeAction>
 <Amount> </Amount>
 ...
</Transaction>

The XPath to the OrderID field can be written as: “/Transaction/OrderID”.

The value at this XPath is to be written to the ORDERID column of the
TRADE_BUSINESS_TRANSACTION table for the business transactions for which this
value is set.

This mapping can be done in an XDM file as follows:

<Mapping documentType="/Transaction">
 <DBSchema>Trade</DBSchema>
 <Key name="business_trans_id" type="INTEGER"
generateSequence="true" description="TransactionId">
 <Path>/Transaction/BusinessTransId</Path>
 </Key>
 <Table name="TRADE_BUSINESS_TRANSACTION">
 <Column name="orderid" type="VARCHAR" size="20"
description="OrderID">
 <Path>/Transaction/OrderID</Path>
 </Column>
 <Column name="account" type="VARCHAR" size="12"
description="Account">
 <Path>/Transaction/Account</Path>
 </Column>
 ...

Chapter 3 • Tutorial - Extending the Analyzer
How to Classify Business Transactions and Map Attributes to Database Tables

28 TransactionVision Programmer’s Guide

The above XDM file segment, the “Table” element defines a table name
TRADE_BUSINESS_TRANSACTION. The table contains a column ORDERID, defined by
the “Column” element, of type VARCHAR and size 20 bytes. The “Column” of name
ORDERID has an XPath mapping, defined by the “Path” element to be
“/Transaction/OrderID”. The key for the TRADE_BUSINESS_TRANSACTION is defined
by the “Key” element to be business_trans_id column of type INTEGER.

The table definition part of the XDM segment is applied when a new project schema is
created either by the CreateSqlScript or the project creation web pages. The XPath mapping
part of the XDM segment is applied by the Analyzer when processing events. When a
transaction contains data at the XPath value “/Transaction/OrderID” set by the classification
rules, the Analyzer extracts the value from the transaction document and writes a row to the
mapped column ORDERID belonging to table TRADE_BUSINESS_TRANSACTION for
that transaction. The “DBSchema” attributes indicates that this mapping is applied only to
transactions being written to the “Trade” schema.

Step 5: Determine the transaction classes and their classification criteria

Transaction classification can be based on a variety of different criteria based on the
transactions flowing through your business systems. In the sample TRADE system,
transaction classification is performed based on the type of financial transactions flowing
through the system, namely Equity, Bonds and FX (Foreign Exchange). Hence, the next step
would be to identify fields in the message data which identify the event and its transaction to
be one of these three types. For this system, this field is an attribute “Product” in the XPath
element "/Event/Technology/Servlet/Request/Parameters/Parameter”. The next section
describes how to build a classification rule using this XPath value.

Step 6: Implement classification rules

Consider the below XML segment from the TransactionDefinition.xml sample file for the
TRADE sample:

<Class name="Bond" dbschema="TRADE">
 <Classify id="1">
 <Match xpath="/Event/StdHeader/ProgramName" operator="EQUAL"
 value="TradeServlet"/>
 <Match
xpath="/Event/Technology/Servlet/Request/Parameters/Parameter[@name=
'product']/@value" operator="EQUAL" value="Bond"/>
 ...

In the above segment, the element “Class” defines a transaction class called “Bond”, which
applies to the database schema “TRADE”. Following the “Class” element is a “Classify”
element, which specifies one or more classification rules for the “Bond” transaction class.

The “Match” elements specify the rule criteria. The first “Match” element has a rule which
evaluates to True when the XPath value of "/Event/StdHeader/ProgramName" in an event
equals the value of “TradeServlet”. Multiple “Match” elements are logically AND’d
together. The second “Match” criteria evaluates to True if a servlet event with the XPath
element "/Event/Technology/Servlet/Request/Parameters/Parameter” whose attribute
“product” has a value of “Bond”. In other words, any event with the program name
“TradeServlet” and a request parameter value of “Bond” is classified to be in the “Bond”
transaction class.

Match statements have the following components:

Chapter 3 • Tutorial - Extending the Analyzer
How to Classify Business Transactions and Map Attributes to Database Tables

TransactionVision Programmer’s Guide 29

• Xpath element

• Operator

• Value

The following are valid operators:

• EQUAL – can be used with numeric values or strings

• GREATER – can be used with numeric values or strings

• GREATEREQUAL – can be used with numeric values or strings

• LESS – can be used with numeric values or strings

• LESSEQUAL – can be used with numeric values or strings

• EXISTS – the value must be specified, but is ignored. You can use "" for the value.

• NOTEXISTS – the value must be specified, but is ignored. You can use "" for the value.

• REGEXPR – the value is a regular expression

Values in "Match" criteria may contain one wildcard character, as in the following example:
"*FlowEngine", "DataFlow*", and "Data*Engine"

The following set of classification rules classify transactions to classes “Equity” and “FX”.

<Class name="Equity" dbschema="TRADE">
 <Classify id="2">
 <Match xpath="/Event/StdHeader/ProgramName" operator="EQUAL"
 value="TradeServlet"/>
 <Match xpath="/Event/Technology/Servlet/Request/Parameters/
Parameter[@name='product']/@value" operator="EQUAL" value="Equity"/>

...

<Class name="FX" dbschema="TRADE">
 <Classify id="3">
 <Match xpath="/Event/StdHeader/ProgramName" operator="EQUAL"
 value="TradeServlet"/>
 <Match xpath="/Event/Technology/Servlet/Request/Parameters/
Parameter[@name='product']/@value" operator="EQUAL" value="FX"/>
 ...

Once a transaction is classified, attributes are attached to the transaction based on the
“Attribute” rules in the TransactionDefinition.xml file. The rules for setting and writing
attributes are described in Steps 3 and 4.

Step 7: Recreate the project database schema

Existing database project schemas need to be updated to create the newly added tables or
columns. This can be done using options in the CreateSqlScript utility.

For example:

CreateSqlScript –c –e –n –p TRADE –t TRADE_BUSINESS_TRANSACTION

The above command creates the table TRADE_BUSINESS_TRANSACTION as defined in
the XDM file in the TRADE database schema.

Chapter 3 • Tutorial - Extending the Analyzer
How to Classify Business Transactions and Map Attributes to Database Tables

30 TransactionVision Programmer’s Guide

Step 8: Enable classification in the Analyzer

By default, TransactionVision does not classify the business transactions it processes.

To enable transaction classification, the following steps are required:
• Enable classification in the Beans.xml file by removing the comments around the

“ClassifyTransactionCtx” section. The following section is to be un-commented by
changing from:
 <!--Module type="Context" name="ClassifyTransactionCtx">
 <Module type="Bean"
class="com.bristol.tvision.services.analysis.eventanalysis.Standar
dClassifyTransactionBean"/>
 </Module-->

 To:
 <Module type="Context" name="ClassifyTransactionCtx">
 <Module type="Bean"
class="com.bristol.tvision.services.analysis.eventanalysis.Standar
dClassifyTransactionBean"/>
 </Module>

• Define your classification rules in the file TransactionDefinition.xml. This has
been completed in the previous steps.

• Insert each class name into the database table “TRANSACTION_CLASS”. This table
must be populated before any transactions are processed by the Analyzer. For example,
for the three transaction classes discussed in the previous steps, the strings “Bond”,
“Equity” and “FX” need to be inserted into this table.

INSERT INTO <schema>.TRANSACTION_CLASS (class_id,

 class_name) VALUES(1, ‘Bond’)
INSERT INTO <schema>.TRANSACTION_CLASS (class_id,

class_name) VALUES(2, ‘Equity’)
INSERT INTO <schema>.TRANSACTION_CLASS (class_id,

class_name) VALUES(3, ‘FX’)
where <schema> is the database schema into which these transactions are written to.
Additional attributes of the transaction class, such as SLA thresholds, costs per
transaction etc. can also be populated into this table.

The TransactionVision Analyzer and Web component need to be restarted, after the changes
in above steps, so that when new projects are created, the XDM file changes are applied to
create the TRADE_BUSINESS_TRANSACTION table.

Step 9: Verify that the transaction classification works correctly and the transaction
attributes are written correctly

The results of the above steps can be verified by looking at the “Transaction Tracking
Report”, which can be accessed by going to the report “Where are my transactions?” from the
Reports page. For each business transaction, this report will show you the class of the
transaction and any custom attributes that have been set for that transaction. Other custom
reports may be written based on the transaction attributes collected.

Chapter 3 • Tutorial - Extending the Analyzer
How to Perform Custom Correlation of Related Events

TransactionVision Programmer’s Guide 31

3.8. How to Perform Custom Correlation of Related Events

3.8.1. Overview of Custom Event Correlation:

By default, the TransactionVision Analyzer correlates WebSphere MQ MQPUT and MQGET
events or JMS send and receive events based on certain criteria such as message id,
correlation id, put time and other fields in these events. However, there may be times when
these criteria are not sufficient to perform event correlation. These criteria may then either
need to be expanded to include other data fields, such as those from the message data, or may
need to be relaxed to exclude some of the standard fields, or may need to be modified in other
ways.

Here are some scenarios where a custom correlation bean may be required:
• TransactionVision Sensors may not be installed on some systems, such as those

belonging to external sensors. Hence, the messages going out to the un-sensored systems
would need to be correlated with the replies coming back from these systems.

• Unique message ids or correlation ids are not used by the applications. In this scenario,
custom fields from the message data may need to be used to correlate message PUTs
and GETs.

• An application that replies to a message swaps the message id and correlation id fields
and this application is not monitored by TranactionVision sensors.

This correlation can be done by writing XML based event correlation rules in the
EventCorrelationDefinition.xml file. Alternately, if complex logic is required to be
implemented, a Java bean can be written to override the IEventCorrelation interface.
Refer to Chapter 4, Section 4.5 on the details of a bean implementation.

3.8.2. Task Description:

This task walks through the creation of a XML event correlation rule. The requirement for the
bean is to correlate WebSphere MQ events for which the message id and correlation ids have
been swapped.

3.8.3. Implementation:

Step 1: Determine correlation requirements

Consider two applications A and B, where application A is monitored by a TransactionVision
Sensor while application B is not. The sequence of events for this system is as follows:
• Application A performed an MQPUT on a queue q1, with message id m1 and

correlation id c1.
• Application B read the message using an MQGET from queue q1 and processed the

message.
• Application B then placed a reply message using MQPUT on the reply-to queue q2, with

message id c1 and correlation id m1. Hence, the message ids and correlation ids were
swapped by application B.

• Application A performed an MQGET to read this message.

Now, because application B does not have sensors enabled and its MQGET/MQPUT are not
received, this transaction path remains un-correlated and no message flow arc is drawn
between application A’s MQPUT and application A’s MQGET. The custom event correlation
bean seeks to complete this path.

Chapter 3 • Tutorial - Extending the Analyzer
How to Perform Custom Correlation of Related Events

32 TransactionVision Programmer’s Guide

Step 2: Determine which events need to be correlated and common correlation data
between the events

For this task, the requirement is to correlate an MQPUT event from application A with an
MQGET event from the same application A, which have their message id and correlation id
swapped.
Step 3: Implement XML based event correlation rules

The correlation process in the Analyzer consists of two phases:
• The first phase involves generating lookup keys based on the characteristics of the

current event. This lookup key is then inserted into the database and then used to match
up with other correlated events as they arrive into the Analyzer. The XML event
correlation rule file has a CreateLookupKey stanza that allows creation of custom
lookup keys based on fields from the incoming event. If a bean is being implemented,
the createLookupKeys method is invoked to generate these lookup keys. Hence, for
application A for a MQPUT event, a lookup key comprising of the message id needs to
be created, while for an MQGET event from application A, a lookup key comprising of
the correlation id should be created.

• The second phase involves relation generation. Specifically, a set of events is passed as
potential candidate for matching with the current event. This set is composed of the
events that have the same lookup key as the current event. The purpose of this phase is
to further narrow down set of event matches based on additional criteria which have not
been covered by the lookup key data. For example, for application A, the correlation
should only be performed between MQPUTs and MQGETs and not between APIs of the
same type. This phase is implemented by creating a CreateRelation stanza in the
XML event correlation definition file or by implementing the correlateEvents
method of the event correlation bean.

The event correlation rule file is named
<TVISION_HOME>/config/services/EventCorrelationDefinition.xml.

The basic template of a correlation rule file is as follows:
<EventCorrelationDefinition>
 <RelationLookupType id=1001" name="JMSToUserEvent"
dbschema="BROKER">
 <CreateLookupKey technology="UserEvent" id="1">

 </CreateLookupKey>

 <CreateRelation keyRuleId1="1" keyRuleId2="2" id="1">

 </CreateRelation>

 </RelationLookupType>
</EventCorrelationDefinition>

Here, a RelationLookupType stanza is composed of one or more CreateLookupKey and
CreateRelation stanzas. The CreateLookupKey stanza allows defining lookup keys from
fields of certain events and the CreateRelation stanza allows matching up keys of different
events.

The following is the event correlation rule file to correlate on the message id of a successful
MQPUT with the correlation id of a successful MQGET. The steps following this listing
describe the different stanzas in this file.
00001 <?xml version="1.0"?>
00002 <EventCorrelationDefinition>

Chapter 3 • Tutorial - Extending the Analyzer
How to Perform Custom Correlation of Related Events

TransactionVision Programmer’s Guide 33

00003 <!--
00004 Sample correlation rule file to correlate on swapped message
id and correlation
00005 ids for MQPUTs and MQGETs.
00006 -->
00007 <RelationLookupType id="1001" name="SwapMessageCorrelId"
dbschema="*">
00008
00009 <CreateLookupKey technology="MQSERIES" id="1">
00010 <Match xpath="/Event/Technology/MQSeries/@API"
operator="EQUAL" value="MQPUT"/>
00011 <Match xpath="/Event/Technology/
MQSeries/*/*Exit/CompCode" operator="UNEQUAL" value="2"/>
00012 <Attribute name="LookupKey">
00013 <Path>/RelationLookup/LookupKey</Path>
00014 <ValueRule name="SetLookupKey">
00015 <Value type="XPath">/
Event/Technology/MQSeries/*/*Exit/MQMD/MsgId</Value>
00016 </ValueRule>
00017 </Attribute>
00018 </CreateLookupKey>
00019
00020 <CreateLookupKey technology="MQSERIES" id="2">
00021 <Match xpath="/Event/Technology/MQSeries/@API"
operator="EQUAL" value="MQGET"/>
00022 <Match xpath="/Event/Technology/
MQSeries/*/*Exit/CompCode" operator="UNEQUAL" value="2"/>
00023 <Attribute name="LookupKey">
00024 <Path>/RelationLookup/LookupKey</Path>
00025 <ValueRule name="SetLookupKey">
00026 <Value type="XPath">/Event/Technology/
MQSeries/*/*Exit/MQMD/CorrelId</Value>
00027 </ValueRule>
00028 </Attribute>
00029 </CreateLookupKey>
00030
00031 <CreateRelation keyRuleId1="1" keyRuleId2="2" id="1">
00032 <Attribute name="RelationType">
00033 <Path>/EventRelation/RelationType</Path>
00034 <ValueRule name="SetRelationType">
00035 <Value type="Constant">17</Value>
00036 </ValueRule>
00037 </Attribute>
00038 <Attribute name="Direction">
00039 <Path>/EventRelation/Direction</Path>
00040 <ValueRule name="SetDirection">
00041 <Value type="Constant">1</Value>
00042 </ValueRule>
00043 </Attribute>
00044 <Attribute name="Confidence">
00045 <Path>/EventRelation/Confidence</Path>
00046 <ValueRule name="SetConfidence">
00047 <Value type="Constant">1</Value>
00048 </ValueRule>
00049 </Attribute>
00050 </CreateRelation>
00051
00052 </RelationLookupType>
00053
00054 </EventCorrelationDefinition>

Chapter 3 • Tutorial - Extending the Analyzer
How to Perform Custom Correlation of Related Events

34 TransactionVision Programmer’s Guide

• Line 7 provides the RelationLookupType stanza that contains the
CreateLookupKey and CreateRelation rules. This element provides a constant
id and name and defines the list of schemas to which its rules apply. An event
correlation definition file may contain multiple RelationLookupType elements.
The list of schemas in the dbschema attribute can be comma separated.

• Lines 9-18 define a lookup key rule for events from the MQSeries technology. Lines
10 and 11 define that this rule should be applied to all events with the API MQPUT
and whose CompCode (completion code) is not equal to 2(failed). Lines 12-17
specify that when these criteria are matched for an event, a lookup key from the
field MsgId is created for that event.

• Similarly, lines 20-29 create a lookup key from the CorrelId field for all
successful MQGET APIs.

• The CreateRelation stanza on lines 31-54 specifies that the lookup keys created
by rule id 1 and 2 should be matched up. Hence, two events that have the same
lookup key created by rules 1 and 2, will have an event relation created. This event
relation has the attributes of RelationType, Direction and Confidence set in
the CreateRelation stanza.

Refer to Chapter 4, Section “Custom Event Correlation” for details on customizing this rules
file.
Step 4: Enable the Analyzer to invoke the XML correlation rules.

This involves editing the Beans.xml file to add the XML rule correlation bean, which then
loads the EventCorrelationDefinition.xml rule file. The following line in bold needs
to be added in the Beans.xml file:

 <Module type="Context" name="CorrelationTechHelperCtx">

 ...
 <Module type="Context" name="CorrelationMQHelperCtx"
class="com.bristol.tvision.services.analysis.eventanalysis.Correlatio
nMQHelperCtx">

 <!-- This context contains beans that perform MQ specific
event correlation. -->
 <!-- For each MQ event the bean that matches the
technology of the event to correlate with will be called. -->

 <Module type="Bean"
class="com.bristol.tvision.services.analysis.eventanalysis.MQToMQRela
tionshipBean"/>

 <Attribute name="UserCorrelationBean"
value="com.bristol.tvision.services.analysis.eventanalysis.X
MLRuleCorrelationBean"

 </Module>

Step 5: Test the correlation bean

The correlation bean can be verified by checking the transaction path in the transaction
analysis view. A completely correlated path will have message path flows between local
transactions.

Chapter 3 • Tutorial - Extending the Analyzer
How to Perform Custom Correlation of Related Events

TransactionVision Programmer’s Guide 35

Chapter 4 • Reference - Extending the Analyzer
Using the Beans.xml File

36 TransactionVision Programmer’s Guide

4. Reference - Extending the Analyzer

4.1. Using the Beans.xml File

The file Beans.xml located in the <TVISION_HOME>/config/services directory controls
the beans loaded by the Analyzer framework for event processing.

IMPORTANT: This file is used by the Analyzer internally. Modifying sections that are not
documented here could break the correct functioning of the Analyzer.

Each module listed in the Beans.xml file has a type and a name. The type can be a “Context”,
which can hold other modules or a “Bean” type, which is loaded by a “Context”. A module of
type “Bean” contains the class that implements an interface which is used by its context. Each
context defines a known interface for the beans it contains, loads the bean and calls into the
interface implemented by the bean to perform its function. In the example segment below, the
EventModifierCtx is a bean context which holds the DefaultModifierBean bean.
<Module type=”Context” name=” EventModifierCtx”>

<Module type=”Bean” class=”com.bristol.tvision.services.analysis.
eventmodifier.DefaultModifierBean”/>

</Module>

Each context uses its own rules to determine how its beans are invoked. The following
contexts can be modified or added to:

• EventModifierCtx
• DBWriteExitCtx
• CorrelationTechHelperCtx

The following sections will document how each of the above contexts can be modified.

The following section gives an example of plugging -in your own implementation of EJB
correlation analysis into the analysis framework:

<!-- context bean that allows build relationship between EJBs or EJB
to other technology

 Here is one sample. Note that the SampleEJBToMQRelationshipBean
is not in the shippment.

Chapter 4 • Reference - Extending the Analyzer
Unmarshalling Message Data

TransactionVision Programmer’s Guide 37

<Module
class="com.bristol.tvision.services.analysis.eventanalysis.Correlati
onEJBHelperCtx" name="CorrelationEJBHelperCtx" type="Context">

 <Module
class="com.bristol.tvision.extension.staples.services.SampleEJBToMQR
elationshipBean" type="Bean"/>

</Module>
!-->

4.2. Unmarshalling Message Data

Typically, binary message data has a proprietary, user-defined format. The
EventModifierCtx context allows a user to add a bean to “unmarshal” this binary data;
that is, convert the binary data to XML for later use by TransactionVision in reports, for
analysis or querying. To help converting binary data to XML, TransactionVision provides a
set of utility classes.

4.2.1. The Default Modifier Bean

The TransactionVision installation comes with a default event modifier bean, the
“com.bristol.tvision.services.analysis.eventmodifier.DefaultModifierBean”. This bean scans
the user data for any XML data and, if found, simply adds it to the Event XML document at
the position “/Event/UserData/Chunk[@seqNo=’n’]” wher ‘n’ is the number of the data range
(defined in the data collection filter).

4.2.2. Adding a Message Data Unmarshal Bean

Adding a custom message or user data unmarshal bean involves modifying the Beans.xml file
to replace the default class with one or more custom written classes.
 <Module type="Context" name="EventModifierCtx">

<Module type="Bean"
class="com.bristol.tvision.demo.stock.StockTradePayloadProc
essingBean"/>

 </Module>

For example, in the code snippet above, a bean
com.bristol.tvision.demo.stock.StockTradePayloadProcessingBean
processes any “stock trade” related custom data. If no event modifier bean is plugged in, the
binary data will be saved into tables as a BLOB. The bean invoked by the
EventModifierCtx context needs to implement the IEventModifier interface.

4.2.3. IEventModifier Interface

The method modify() of the IEventModifier interface is invoked by the
EventModifierCtx context when it receives an event. This interface contains one method
modify() defined as below.

 public Boolean modify(XMLEvent event)
 throws EventModifyException

Description:

Chapter 4 • Reference - Extending the Analyzer
Unmarshalling Message Data

38 TransactionVision Programmer’s Guide

The method modify() is called to modifiy an unmarshaled XML event. For example, to
convert the BLOB set stored in the XMLEvent object into the user-data section of the XML
tree or modify the event’s XML data. The BLOB set contains the event’s binary message
data.

The framework will check the return Boolean value to decide whether to continue the reset
event processing steps or not. A false return value means the current event under processing
shall be discarded right away.

IMPORTANT: data should typically be added in the XML event tree. Removing certain
nodes from the tree could break the analysis and database write operations in later contexts.

Parameters:
event - The XML event to which the XML format of the message data is appended to.
The XMLEvent class is documented in detail in Section 0.
conInfo – The connection information data structure.

Throws:
EventModifyException – This exception represents a failure in the bean performing the
XMLEvent modification.

XML Related Classes

This section documents the relevant public methods of the classes XMLEvent, XPathSearch
and XMLParser. Class XMLEvent contains the incoming event converted to an XML DOM
tree. Class XPathSearch is a utility class to search a DOM tree using XPath queries. Class
XMLParser is a wrapper class around the Apache DOM parser, with better error handling
facilities.

TransactionVision event and event collection filter information is saved in XML document
format. To retrieve values of different fields, an XPath expression is used to specify the
location of the field. TransactionVision provides the file XPathConstants.java, which
contains XPath expression constants used to locate different fields in the event. This file is
useful for writing plug-in beans and reports and can be found at
<TVISION_HOME>/java/src.

4.2.4. Class XMLEvent
package com.bristol.tvision.services.analysis
public class XMLEvent
extends com.bristol.tvision.util.xml.XMLDocument
implements java.io.Serializable

The class XMLEvent contains event data in XML DOM representation. It also holds a set of
cached properties to carry inter-module communication information, and a list of BLOBs to
hold application data which cannot be placed in the XML DOM tree. Note, that all the public
methods of the class org.w3c.dom.Document are available to users of XMLEvent. The
following methods are defined in the XMLEvent class.

4.2.5. Methods:

getAttribute
public java.lang.Object getAttribute(java.lang.String key)

Chapter 4 • Reference - Extending the Analyzer
Unmarshalling Message Data

TransactionVision Programmer’s Guide 39

setAttribute
public void setAttribute(java.lang.String key,
 java.lang.Object value)

removeAttribute
public java.lang.Object removeAttribute(java.lang.String key)

The above three methods allow the user to set a cached value at one stage of event
processing, which can be used at another point of event processing without parsing the XML
document. For example during the unmarshal message data phase values can be stored which
may later be used during analysis. Typically, the key would be an XPath into the XML
document and the value would be the XML element value. The user of the above APIs must
ensure that TransactionVision internal values are not overwritten or deleted. This can be done
by using unique XPaths to message data as the key.

getBlobCount
public int getBlobCount()

Returns the number of BLOBs available, using the blobIterator() method.

blobIterator
public java.util.Iterator blobIterator()

Typically, event message data is stored into one BLOB field in the XMLEvent object. However,
if data ranges are used in the data collection filter an array of BLOBs is created, one BLOB for
each data range. This method returns an Iterator for instances of type XMLEvent.Blob.

deleteBlob
public void deleteBlob(int seqNo, boolean deleteUserDataRef,
 boolean delteDataChunk)
 throws TVisionException

This method is used to delete the binary message data from XMLEvent. This method should
typically be called if an EventModifier plugin bean converts binary data to XML. In that case, the
binary data may no longer be required to be stored in the database and should be deleted using
this method. If the message data is unmarshalled into the technology tree under, for example, the
/Event/Technology/MQSeries/MQPUTEntry/Buffer subtree, the deleteUserDataRef and
deleteDataChunk flags should be set to true. If the message data is unmarshalled into
/Event/Data/Chunk, then both flags should be set to false. Also, if you want to replace a chunk
with a different BLOB, call this method with both flags set to false and then call addBlob() to
add a new BLOL into the XMLEvent.

Parameters:

seqNo - 0-based BLOB index

deleteUserDataRef – true if /Event//UserDataRef[@chunk=n] should be removed

deleteDataChunk – true if /Event/Data/Chunk[@seqNo=n] should be removed

getPiiId
public int getPiiId()

getEventSeqNo
public int getEventSeqNo()

Chapter 4 • Reference - Extending the Analyzer
Unmarshalling Message Data

40 TransactionVision Programmer’s Guide

The PiiId (Program Instance Id) and the SeqNo (Sequence Number) together form a unique
identifier to an event. They may be used to access event data from database tables.

Inner Class XMLEvent.Blob

Instances of this class are returned by the method ‘blobIterator()’ and represent the data
ranges for the message data:

 public static class Blob {

 public int id; // id of the blob, starting with 0
 public int from; // data range start
 public int to; // data range end
 public int type; // type of BLOB data

// (Binary, String, or XML,
 // defined in TVisionCommon.java)
 public int ccsid; // the character set id
 public byte[] blob; // the data

 public Blob(int ID, int from, int to, int type, int ccsid,

byte[] blob);

 }

4.2.6. Class XPathSearch

package com.bristol.tvision.util.xml
public class XPathSearch
extends XPathSearchBase

The helper class XPathSearch allows access to elements of an XML document using the
XPath syntax.

This class does not support the full standard XPath syntax. The following subset is supported:

• path to a text element: /Test/Value

• path to an attribute: /Test/Value/@attribute

• access a multi-valued element by qualifying attribute value:
 /Test/Value[@attribute='X']/Name

• indexed access to a multi-valued element /Test/List[0], Test/List[0]/Value

• wildcard /Test/*/Name, /Test/*lue, /Test/Val*

Constructor:

XPathSearch

XPathSearch(org.w3c.dom.Document doc)
Creates an XPathSearch object from a DOM document or derived class like XMLEvent.

 XPathSearch
XpathSearch(java.io.InputStream stream) throws XMLException

Chapter 4 • Reference - Extending the Analyzer
Unmarshalling Message Data

TransactionVision Programmer’s Guide 41

Creates an XPathSearch object from an InputStream.

The InputStream is parsed into a DOM document without validation

XPathSearch
XPathSearch(java.io.InputStream stream, boolean validate)
throws XMLException

Creates an XPathSearch object from an InputStream.

The InputStream is parsed into a DOM document.

Parameters:

stream - The InputStream conatining the XML data

validate - Use parser validation

Methods:

getNodes
public org.w3c.dom.NodeList getNodes(java.lang.String xpath)
 throws XMLException

This method returns a list of all nodes in the XML document matching the XPath query. The
elements in the array are ordered according to the order of the elements in the DOM tree.

Overrides:
getNodes in class XPathSearchBase

Parameters:
xpath - The XPath expression for the query

Returns:
A list of all nodes matching the query

Throws:
XMLException - Signals error during retrieving the values from the document

getValues
public java.lang.String[] getValues(java.lang.String xpath)
 throws XMLException

This method returns the value of all text elements in the XML document matching the XPath
query. The elements in the array are ordered according to the order of the elements in the
DOM tree.

Overrides:
getValues in class XPathSearchBase

Parameters:
xpath - The XPath expression for the query

Returns:
The value of all text elements matching the query

Throws:
XMLException - Signals error during retrieving the values from the document

Chapter 4 • Reference - Extending the Analyzer
Unmarshalling Message Data

42 TransactionVision Programmer’s Guide

getValue
public java.lang.String getValue(java.lang.String xpath)
 throws XMLException

This method returns the value of the first text element in the XML document matching the
XPath query.

Overrides:
getValue in class XPathSearchBase

Parameters:
xpath - The XPath expression for the query

Returns:
The value of the first matching text element

Throws:
XMLException - Signals error during retrieving the values from the document

4.2.7. Class XMLParser

package com.bristol.tvision.util.xml
public class XMLParser

implements org.xml.sax.ErrorHandler

This class is a wrapper around the Apache DOM parser and is a utility useful to parse XML
files or convert binary streams containing XML data into a DOM tree.

Constructor:

XMLParser
XMLParser(boolean validation)
Creates a parser instance

Parameters:
validation – whether to create a validating parser or not

Methods:

parse
public org.w3c.dom.Document parse(java.lang.String systemId)
 throws XMLException

Parses a XML file

Parameters:

systemId - The system id for the XML source

Returns:

The parsed document as a DOM tree

Throws:

XMLException - Signals errors during parsing

Chapter 4 • Reference - Extending the Analyzer
Unmarshalling Message Data

TransactionVision Programmer’s Guide 43

parse
public org.w3c.dom.Document parse(java.lang.String systemId,
 java.lang.String schema)
 throws XMLException

Parses a XML file and uses the specified XML schema rather than a schema reference in the
document itself for schema validation

Parameters:

systemId - The system id for the XML source

schema - The schema to use for validation

Returns:

The parsed document as a DOM tree

Throws:

XMLException - Signals errors during parsing

parse
public org.w3c.dom.Document parse(java.io.InputStream stream)
 throws XMLException

Parses a XML document from an input stream

Parameters:

stream - The input stream for the document

Returns:

The parsed document as a DOM tree

Throws:

XMLException - Signals an error during parsing

parse
public org.w3c.dom.Document parse(java.io.InputStream stream,
 java.lang.String schema)
 throws XMLException

Parses a XML document from an input stream and uses the specified XML schema rather
than a schema reference in the document itself for schema validation

Parameters:

stream - The input stream for the document

schema - The schema to use for validation

Returns:

The parsed document as a DOM tree

Throws:

XMLException - Signals an error during parsing

Chapter 4 • Reference - Extending the Analyzer
Unmarshalling Message Data

44 TransactionVision Programmer’s Guide

4.2.8. Other Utility Classes

Often, binary structures embedded in the message data will need to be converted to XML.
This can be accomplished with a two step process, first extract the binary data into Java data
types and then convert these data types to appropriate XML elements. The Java class
java.io.DataInputStream could be used to walk through a binary stream, extract and
convert data into Java basic types. Also, the class “Translator” can be used to convert raw
binary data into a Java UTF String with code page conversion:

package com.bristol.tvision.util.charmapper

public class Translator {

 public static Translator instance(int srcCcsid);
 public String translate(byte[] rawData);

}

Once Java basic types have been extracted from the binary stream these values need to be
converted to XML data. This can be done using the utility “XML builder” classes in the
package com.bristol.tvision.util.xml. These classes allow a user to set values of
native Java types, a element name and get the XML tag output appended to a DOM tree using
the toDOM() method. These classes implement the DOMElement interface.

4.2.9. Interface DOMElement

public interface DOMElement

This class defines a common interface for classes which output XML into a DOM tree.

Methods:

toDOM
public void toDOM(org.w3c.dom.Document doc,
 org.w3c.dom.Node root)

This method appends nodes to the DOM tree doc at node location root.

4.2.10. Class EventElement
public abstract class EventElement
implements DOMElement

This class is the super class of all XML builder classes that output XML elements into a
DOM tree.

Methods:

Constructor
public EventElement(java.lang.String name)

The constructor of the EventElement class takes in the element name as a parameter. The
element name is used by the toDOM method to output the node of element name to the XML
DOM tree.

Chapter 4 • Reference - Extending the Analyzer
Unmarshalling Message Data

TransactionVision Programmer’s Guide 45

toDOM
public abstract void toDOM(org.w3c.dom.Document doc,
 org.w3c.dom.Node root)

This is the same method as in the interface DOMElement.

4.2.11. Class TextElement

public abstract class TextElement
extends EventElement

This class is a super class for those XML element classes which have only one text node as a
child. This class allows adding attributes to the XML element.

Methods:

Constructor
public TextElement(java.lang.String elementName)

The constructor takes in the element name of the node to be inserted into the XML DOM
tree.

toDOM
public void toDOM(org.w3c.dom.Document doc,
 org.w3c.dom.Node root)

Overrides:
toDOM in class EventElement

addAttribute
public void addAttribute(java.lang.String name,
 java.lang.String value)

This method allows adding a name-value pair of attributes to the XML element.

hasNonNullValue
public abstract boolean hasNonNullValue()

This method returns true if this element has a non-null value and false otherwise.

4.2.12. Class ByteElement

public class ByteElement
extends TextElement

Fields:

value
public byte value

This field holds the byte value to be converted to an XML DOM tree node by the toDOM method.

Methods:

Constructor
public ByteElement(java.lang.String elementName)

Chapter 4 • Reference - Extending the Analyzer
Unmarshalling Message Data

46 TransactionVision Programmer’s Guide

The constructor takes in the element name of the tag to be output in the XML DOM tree
node.

toDOM
public void toDOM(org.w3c.dom.Document doc,
 org.w3c.dom.Node root)

This method appends a node containing the byte value held by the field value to the DOM
tree doc at node location root with the element name elementName specified in the
constructor of this object.

toString
public java.lang.String toString()

Overrides:
toString in class java.lang.Object

This method converts the byte held in the field value to a string representation.

hasNonNullValue
public boolean hasNonNullValue()

Overrides:

hasNonNullValue in class TextElement

This method returns true if this element has a non-null value and false otherwise.

4.2.13. Class ByteStringElement

public class ByteStringElement
extends TextElement

Fields:

value
public byte[] value

This field holds the byte array value to be converted to an XML DOM tree node by the
toDOM method.

Methods:

Constructor
public ByteStringElement(java.lang.String elementName)

The constructor takes in the element name of the tag to be output into the XML DOM tree
node.

toDOM
public void toDOM(org.w3c.dom.Document doc,
 org.w3c.dom.Node root)

This method appends a node containing the byte array value held by value to the DOM tree
doc at node location root with the element name elementName specified in the constructor
of this object.

Chapter 4 • Reference - Extending the Analyzer
Unmarshalling Message Data

TransactionVision Programmer’s Guide 47

toString
public java.lang.String toString()

Overrides:
toString in class java.lang.Object

This method converts a byte array held in the value field to a string representation.

hasNonNullValue
public boolean hasNonNullValue()

Overrides:

hasNonNullValue in class TextElement

This method returns true if this element has a non-null value and false otherwise.

4.2.14. Class IntElement

public class IntElement
extends TextElement

Fields:

value
public int value

This field holds the integer value to be converted to an XML DOM tree node by the toDOM
method.

Methods:

Constructor
public IntElement(java.lang.String elementName)

The constructor takes in the element name of the tag to be output into the XML DOM tree
node.

toDOM
public void toDOM(org.w3c.dom.Document doc,
 org.w3c.dom.Node root)

This method appends a node containing the integer value held by field value to the DOM tree
doc at node location root with the element name elementName specified in the constructor of
this object.

toString
public java.lang.String toString()

Overrides:
toString in class java.lang.Object

This method converts an integer to a string representation.

hasNonNullValue
public boolean hasNonNullValue()

Chapter 4 • Reference - Extending the Analyzer
Unmarshalling Message Data

48 TransactionVision Programmer’s Guide

Overrides:
hasNonNullValue in class TextElement

This method returns true if this element has a non-null value and false otherwise.

4.2.15. Class IntHexElement

public class IntHexElement
extends IntElement

This class’s toDOM method outputs an integer value to a XML DOM node element as a
hexadecimal string.

4.2.16. Class LongElement

public class LongElement
extends TextElement

Fields:

value
public long value

This field holds the integer long value to be converted to an XML DOM tree node by the
toDOM method.

Methods:

Constructor
public LongElement(java.lang.String elementName)

The constructor takes in the element name of the tag to be output into the XML DOM tree
node.

toDOM
public void toDOM(org.w3c.dom.Document doc,
 org.w3c.dom.Node root)

This method appends a node containing the integer long value held by the field value to the
DOM tree doc at node location root with the element name elementName specified in the
constructor of this object.

toString
public java.lang.String toString()

Overrides:
toString in class java.lang.Object

This method converts the integer long held in the field value to a string representation.

hasNonNullValue
public boolean hasNonNullValue()

Overrides:
hasNonNullValue in class TextElement

Chapter 4 • Reference - Extending the Analyzer
Unmarshalling Message Data

TransactionVision Programmer’s Guide 49

This method returns true if this element has a non-null value and false otherwise.

4.2.17. Class LongHexElement

public class LongHexElement
extends LongElement

This class’s toDOM method outputs an integer long value to a XML DOM node element as a
hexadecimal string.

4.2.18. Class StringElement

public class StringElement
extends TextElement

Fields:

value
public String value

This field holds the String value to be converted to an XML DOM tree node by the toDOM
method.

Methods:

Constructor
public StringElement(java.lang.String elementName)

The constructor takes in the element name of the tag to be output into the XML DOM tree
node.

toDOM
public void toDOM(org.w3c.dom.Document doc,
 org.w3c.dom.Node root)

This method appends a node containing the String value held by the field value to the DOM
tree doc at node location root with the element name elementName specified in the
constructor of this object.

toString
public java.lang.String toString()

Overrides:
toString in class java.lang.Object

This method converts the String held in the field value to a string representation.

hasNonNullValue
public boolean hasNonNullValue()

Overrides:
hasNonNullValue in class TextElement

This method returns true if this element has a non-null value and false otherwise.

Chapter 4 • Reference - Extending the Analyzer
Unmarshalling Message Data

50 TransactionVision Programmer’s Guide

4.2.19. Class RawStringElement

public class RawStringElement
extends TextElement

This class’s toDOM method outputs a String value to a XML DOM node element as a string
whose non-ASCII characters are converted to hexadecimal values.

4.2.20. Sample Usage of the IEventModifier Interface

Refer to the code in the directory <TVISION_HOME>/samples/stock/beans to see the
usage of the IEventModifier interface.

Two Java beans have been developed for processing stock trade simulation under
TransactionVision 3.0 - StockTradePayloadProcessingBean and StockTradeAnalysisBean.

StockTradePayloadProcesingBean is a message data processing bean. It looks for the
MQPUT/MQPUT1 and MQGET events from a StockTrade program (which initiates a trade).
MQPUT/MQPUT1 and MQGET events mark the beginning and end of a stock trade
transaction.

For the MQPUT/MQPUT1 calls, the bean retrieves the message data blob, passes it to the
XML parser, and attaches the resultant DOM tree (/Order) to the event document under
/Event/Data. For the MQGET calls, the bean performs the same XML parsing on the message
data blob, creates a new XML document (Event/Data/Result) reflecting the trade result.

The following code fragment is the change to the Beans.xml file. It tells the Analyzer
framework to load the StockTradePayloadProcessingBean bean as a part of the
EventModifierCtx context. The payload processing bean’s IEventModifierCtx
interface’s modify() method is invoked by the context.
<Module type="Context" name="EventModifierCtx">

<!--

This context contains beans that modify XML event, which is
unmarshalled from raw event stream.

-->

<Module type="Bean"
class="com.bristol.tvision.demo.stock.StockTradePayloadProcessingBea
n"/>

</Module>

The following code fragment is the implementation of the IEventModifierCtx interface.
The class StockTradePayloadProcessingBean is derived from EventModifierBean
and needs to implement the method modify(). The method modify() receives an
XMLEvent as its parameter. This sample looks for a particular type of event namely
MQPUTs, MQPUT1s and MQGETs APIs from certain programs.
public class StockTradePayloadProcessingBean extends
EventModifierBean {
/** Creates new StockTradePayloadProcessingBean */
 public StockTradePayloadProcessingBean() {
 }
 /**

Chapter 4 • Reference - Extending the Analyzer
Unmarshalling Message Data

TransactionVision Programmer’s Guide 51

 * Processing the event data and generate stock trade payload
document
 * @param event completed event document for the current event
 * @throws EventModifyException when processing failed
 */
 public void modify(XMLEvent event) throws EventModifyException
{
 try {
 XPathSearch lookup = new XPathSearch(event);
 int type = StockTradeHelper.getEventType(lookup);
 switch (type) {
 case StockTradeHelper.MQSERIES_REQUEST_EVENT:
 case StockTradeHelper.MQSERIES_REPLY_EVENT:
 processMQSeriesEvent(event, lookup,
type);
 break;
 case StockTradeHelper.DONT_CARE_EVENT:
 default:
 break;
 }
 }
 catch (XMLException e) {
 if (Logging.debug)
EventReader.log.debug("StockTradePayloadProcessingBean-process: " +
 "XML exception encountered");
 }
 }
}

The method getEventType()in the file StockTradeHelper.java does a lookup on certain
parts of the XML event document using the class XPathSearch. For example, in the
segment below the value of the event technology name and the program name is being
accessed from the DOM tree using the class XPathSearch’s getValue method.
XPathConstants.TECH_NAME and XPathConstants.PROGRAM_NAME map to the XPath
expressions "/Event/StdHeader/TechName" and
"/Event/StdHeader/ProgramName" respectively. Refer to the event XML schema at
<TVISION_HOME>/config/xmlschema/Event.xsd for the schema layout of the XML
event packet.
XPathSearch lookup = new XPathSearch(event);
String techName = lookup.getValue(XPathConstants.TECH_NAME);
if (techName.equalsIgnoreCase(TVisionCommon.TECH_NAME_MQSERIES)) {
 /* we are only interested in the initiating program events */
 String programName =
lookup.getValue(XPathConstants.PROGRAM_NAME);
 if (!programName.equalsIgnoreCase(INIT_PROGRAM))
 ………
}

Once the right event has been identified, its message data is converted to XML by the
getUserDataXML() method called from the processMQSeriesEvent method. The
BLOB list is first obtained from the XMLEvent object using the blobIterator() method.
The obtained BLOB is converted to an XML DOM tree using the XMLParser class. The
method getUserDataXML is as below.

Chapter 4 • Reference - Extending the Analyzer
Unmarshalling Message Data

52 TransactionVision Programmer’s Guide

 /**
 * Return the XML document for event user data blob
 * @param event TransactionVision event document
 * @return the byte array representing the event user data
 */
 public static Document getUserDataXML(XMLEvent event) throws
XMLException {

 byte[] blob;
 Iterator blobs = event.blobIterator();

 if (blobs.hasNext())
 blob = ((XMLEvent.Blob) blobs.next()).blob;
 else
 return null;

 XMLParser parser = new XMLParser(false);
 return parser.parse(new ByteArrayInputStream(blob));
 }

Note that the parse() method of the XMLParser class will throw an exception if the BLOB
is not a XML document. Once the XML document is obtained, the document tree is inserted
under the node /Event/Data of the XMLEvent DOM tree. The method getDataNode() as
below returns the location of the message data node in the event DOM tree.
 /**

 * Return the /Event/Data node in the event document
 * @param lookup The XPathSearch lookup object of the
corresponding event document.
 * @return the /Event/Data node in the event document
 */
 public static Node getDataNode(XPathSearch lookup) throws
XMLException {

 NodeList nodes =
lookup.getNodes(StockTradeHelper.XPATH_EVENT_DATA);
 if (nodes.getLength() < 1)
 return null;
 return nodes.item(0);
 }

Once the binary data has been converted to an XML tree and the message data node has been
identified, the next step is inserting the message data XML tree into the XML event. The
code below from file StockTradePayloadProcessingBean.java shows how to append
data into the XMLEvent DOM tree. Here payloadDoc is of type org.w3c.dom.Document.
A call into getDocumentElement returns an object of type org.w3c.dom.Element which
is copied into the XMLEvent object event. The call appendChild() to attaches the copied
nodes to the location for the message data, namely under ”/Event/Data”.
 Document payloadDoc = StockTradeHelper.getUserDataXML(event);

 /* append the Order document to /Event/Data */
 dataNode.appendChild(event.importNode(payloadDoc.getDocumentEleme
nt(), true));

The above sample code is useful when the message data is already in an XML format. The
following sample from file StockTradePayloadProcessingBean.java shows how to
create nodes from part of the message data tree and append it to the XMLEvent tree.

Chapter 4 • Reference - Extending the Analyzer
Trimming Data From an Event

TransactionVision Programmer’s Guide 53

 /* create /Event/Data/Result/ID */
 String orderid = payloadLookup.getValue("/Order/ID");
 Element eltOrderID = event.createElement("ID");
 eltOrderID.appendChild(event.createTextNode(orderid));

 /* create /Event/Data/Result/Type */
 String orderType = payloadLookup.getValue("/Order/Type");
 Element eltType = event.createElement("Type");

 eltType.appendChild(event.createTextNode(orderType));

 /* create /Event/Data/Result/Status */
 String orderStatus = payloadLookup.getValue("/Order/Status");
 Element eltStatus = event.createElement("Status");
 eltStatus.appendChild(event.createTextNode(orderStatus));

 /* create /Event/Data/Result */
 Element eltRes = event.createElement("Result");

 /* attach ID, Type, Status to /Event/Data/Result */
 eltRes.appendChild(eltOrderID);
 eltRes.appendChild(eltType);
 eltRes.appendChild(eltStatus);
 /* attach new tree to /Event/Data */
 dataNode.appendChild(eltRes);

4.3. Trimming Data From an Event

The DBWriteCtx context is invoked by the Analyzer framework before the database write
operation. It gives a user defined bean an opportunity to trim out data from the XML event
packet. Beans loaded by this context need to implement the IDBWriteExit interface.

4.3.1. Interface IDBWriteExit

public interface IDBWriteExit

Methods

modify
public XMLEvent modify(XMLEvent event)
 throws DBWriteExitException

This method trims data off the XML event. The bean has to make a copy of the XML event
and return the trimmed copy.

Parameters:

event - The XML event to trim.

Returns:

The return value is the trimmed XML event

Throws:

TrimEventDataException - Trimming of the event failed

Chapter 4 • Reference - Extending the Analyzer
XML-Database mapping Using XDM Files

54 TransactionVision Programmer’s Guide

The sample code under <TVISION_HOME>/samples/dbwritexit shows how to write a
bean to plug into the database write exit context.

4.4. XML-Database mapping Using XDM Files

The TransactionVision database schema is made extensible through the XML to Database
Mapping (XDM) files. As new technologies or message data specific information is added,
new XDM files can be written to describe the lookup tables for the technology and message-
specific data in those events. Hence the purpose of the XML to Database mapping is twofold:
• To describe which fields are to be extracted from the XML event data and stored in

lookup tables for fast searching and retrieval.

• To make the database schema partially data-driven.

The definitions contained in the XML Database Mapping (XDM) file are used as input not
only to the TransactionVision Data Manager (including the query services), but also to a
program that generates the commands necessary to create the lookup tables.

The XDM mappings can be technology or platform specific. The common mapping defined
in the file <TVISION_HOME>/config/xdm/Event.xdm (data in the standard event header)
will be written for every event, but the mappings defined in the other XDM files will only be
applied if the current event matches the mapping’s “category’ (technology or platform)
definition. The XML schema format of XDM files is defined in
<TVISION_HOME>/config/xmlschema/XDM.xsd. The following code is an extract from
the file Event.xdm.
<?xml version="1.0"?>
<Mapping documentTable="event" documentColumn="event_data">
 <Key name="proginst_id" type="INTEGER"
description="ProgramInstanceId">
 <Path>/Event/EventID/@programInstID</Path>
 </Key>
 <Key name="sequence_no" type="INTEGER"
description="SequenceNumber">
 <Path>/Event/EventID/@sequenceNum</Path>
 </Key>
 <Table name="EVENT_LOOKUP" category="COMMON">
 <Column name="host_id" type="INTEGER" description="Host"
isObject="true">
 <Path>/Event/StdHeader/Host/@objectId</Path>
 </Column>
 <Column name="program_id" type="INTEGER"
description="Program" isObject="true">

 <Path>/Event/StdHeader/ProgramName/@objectId</Path>
 </Column>
 ...
 </Table>
</Mapping>

The above snippet from Event.xdm defines a table EVENT containing the XML document and
a table EVENT_LOOKUP, containing various indexed columns of data from the XML
document. The key columns proginst_id and sequence_no are integer types and mapped
to XPath expressions /Event/EventID/@programInstID and
/Event/EventID/@sequenceNum. These key columns are primary keys common to the

Chapter 4 • Reference - Extending the Analyzer
XML-Database mapping Using XDM Files

TransactionVision Programmer’s Guide 55

EVENT and EVENT_LOOKUP tables. Similarly columns host_id and program_id are
mapped to XPath expressions /Event/StdHeader/Host/@objectId and
/Event/StdHeader/ProgramName/@objectId respectively.

The above XDM file specifies that when an XML event is written to the database by the
DBWrite module in the Analyzer, these fields are extracted and written into the database
columns mapped to in the XDM file. Similarly, when the database is queried using the
QueryServices XML interface, these XDM files are used to construct the corresponding
SQL query.

The isObject attribute for a Column tag in the above XDM file refers to that column being
an identifier for an object in the system model table. The documentTable and
documentColumn tags are the table and column where the actual XML document is stored.
The key is the primary key and is common to the document table and the lookup tables. Each
lookup column is indexed by default.

The indexed attribute can be used to prevent the index creation:
<Column name="latency" type="INTEGER" description="Latency"
indexed="false">

<Path>/Event/Latency</Path>
</Column>

The generated attribute for a Column tag means that column is a database generated id.
<Column name="sequential_id" type="INTEGER" generated="true" des

cription="SequentialId">
<Path>/Event/SequentialId</Path>

</Column>

The conversionType attribute for a Column tag means that field requires a formatting
conversion before writing to the database. The TypeConvService is called into before
writing that field into the database. This is typically used for writing date/time or enumeration
fields.
<Column name="entrytime" type="CHAR" size="20" description="Entr

yTime" conversionType="Date">
<Path>/Event/StdHeader/EntryTime</Path>

</Column>

The category attribute on the Table tag contains either COMMON or the technology string or
the platform string for the event data that should be written into this table. The string COMMON
indicates that this table contains data common to every event and should be written for every
event going through the Analyzer. A technology or platform name like “MQSERIES” or
“OS390_BATCH” used in the category field indicates that this table should only be filled
for events of that technology or platform.
<Table name="EVENT_LOOKUP" category="COMMON">
...
</Table>
<Table name="OS390_LOOKUP"
category="OS390_BATCH,OS390_CICS,OS390_IMS">
...
</Table>

A column can map to multiple XPath expressions as in the sample code below. This assumes
that only one of the XPaths will exist in a given event document.

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

56 TransactionVision Programmer’s Guide

<Column name="datasize" type="INTEGER" description="DataSize">

<Path>/Event/Technology/MQSeries/MQGET/MQGETExit/DataLength</Path
>

<Path>/Event/Technology/MQSeries/MQPUT/MQPUTExit/BufferLength</Pa
th>

<Path>/Event/Technology/MQSeries/MQPUT1/MQPUT1Exit/BufferLength</
Path>

</Column>

The XDM files are also used by the CreateSqlScript utility to create the
TransactionVision tables are setup time.

4.5. Performing Event Analysis

There are five categories of event analysis activities defined in TransactionVision:
• Event Correlation: Establishing relation(s) between any two events. Examples include

message path relation representing a message flow from one event to another, and
transaction path relation representing a control flow between the two events.

• Local Transaction Analysis: Grouping events of the same technology that participate in
the same unit of work in the same thread of execution into one local transaction object.

• Business Transaction Analysis: Grouping local transaction objects participating in the
processing of the same business activity instance into one business transaction object.
This is achieved by establishing relation between any two local transaction objects
through the corresponding message path or transaction path relation of respective events
in the local transaction objects.

• Statistics Analysis: Calculating event statistics for the Static Topology View
• User Analysis: This can be any customized infrastructure or business level analysis.

Each event analysis task is implemented in an event analysis bean. The class
AnalyzeEventBean defines the base class for these beans:

The individual beans are managed under a multi-level analyze event context framework. The
class AnalyzeEventCtx defines the top level context. The set of beans to be managed under
this context are specified in the Beans.xml file. Each registered bean is executed following
the order defined in the file. The following is an example of the event analysis context setup
for the stock trade simulation example:
<Module type="Context" name="AnalyzeEventCtx">

<!-- This context contains beans that perform transaction analysis.
-->
<!-- Each registered bean in the chain is called. -->

<!—- TransactionVision Event Correlation bean -->
<Module type="Bean"

class="com.bristol.tvision.services.analysis.eventanalysis.EventC

orrelationBean"/>

<!—- TransactionVision Local Transaction Analysis bean -->

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

TransactionVision Programmer’s Guide 57

<Module type="Bean"

class="com.bristol.tvision.services.analysis.eventanalysis.Local
TransactionAnalysisBean"/>

<!—- TransactionVision Default Business Transaction Analysis bean

-->

<Module type="Bean"
class="com.bristol.tvision.services.analysis.eventanalysis.Busine
ssTransactionAnalysisBean">

<!—- TransactionVision Statistics beans -->

<Module type="Context" name="StatisticsCtx"
class="com.bristol.tvision.services.analysis.statistics.Statistic
sCtx">
 <Module type="Bean"
class="com.bristol.tvision.services.analysis.statistics.MQStatist
icsBean"/>
 <Module type="Bean"
class="com.bristol.tvision.services.analysis.statistics.JMSStatis
ticsBean"/>
 <Module type="Bean"
class="com.bristol.tvision.services.analysis.statistics.ServletSt
atisticsBean"/>
 <Module type="Bean"
class="com.bristol.tvision.services.analysis.statistics.EJBStatis
ticsBean"/>
</Module>

<!—User Analysis bean for the stock trade simulation -->
<Module type="Bean"
class="com.bristol.tvision.demo.stock.StockTradeAnalysisBean"/>

</Module>

4.5.1. Event Analysis Utility Classes and Interface

The following utility classes are extensively used in implementing various types of event
analysis beans.

4.5.2. Interface Cache

package com.bristol.tvision.util.cache
public interface Cache

TransactionVision maintains various in-memory caches for miscellaneous objects. These
caches are implemented as LRU caches, meaning that always the most recent processed data
is available. For example, a local transaction cache is maintained to store a mapping from
event ID to local transaction data. This interface defines the methods for manipulating the
cache.

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

58 TransactionVision Programmer’s Guide

Methods:

insert
public void insert(java.lang.Object key, java.lang.Object value)

Insert a new key-value pair into the cache.

Parameters:
key – new cache object key field
value – new cache object value field

get
public Object get(java.lang.Object key)

This method returns the value field of the cache entry with the matching key.

Parameters:

key – key field of the cache entry to be matched

Returns:

The value field of the cache entry if a matching object is found.

remove
public void remove(java.lang.Object key)

Remove the cache entry with the matching key.

Parameters:
key – key field of the cache entry to be matched

removeAll
public void removeAll()

Remove all cache entries.

getSize
public int getSize()

Return the defined cache size specified in the CacheProperty file.

Returns:

The defined cache size

resize
public void resize(int size)

Resizes (and clears) the cache.

Parameters:

size – new cache size

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

TransactionVision Programmer’s Guide 59

getElementCount
public int getElementCount()

Return the current number of cache entries.

Returns:

The current number of cache entries.

getCacheName
public java.lang.String getCacheName()

Return the name of this cache.

Returns:

The name of this cache

4.5.3. Class ConnectionInfo

package com.bristol.tvision.datamgr
public class ConnectionInfo

This class is a simple structure for holding the TransactionVision database connection and
schema name within an object which can be passed through the event analysis service
framework.

Fields:

con
public java.sql.Connection con;

A TransactionVision Connection object to the database. This connection object implements
the Java SQL Connection object interface.

schema
public java.lang.String schema;

String for the current project database schema.

4.5.4. Class EventID

package com.bristol.tvision.datamgr.dbtypes
public class EventID

Each event is uniquely identified by a pair of integer ID: a program instance (PII) ID and a
sequence number. The program instance ID points to the program instance (threads, tasks,
etc.) the event occurs within. This class defines a wrapper around these two identifiers for an
event.

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

60 TransactionVision Programmer’s Guide

Constructor:

EventID

EventID(int piiId, int seqNo)
Creates an event ID object for an event with the program instance ID piiId and sequence
number seqNo.

Fields:

public int piiId

The program instance id for this event

public int seqNo

The sequence number of this event

Methods:

equals
public boolean equals(EventID eventId)

Determine if the input event is the same as this event.

Parameters:

eventId – eventId to be matched

Returns:

true if the event ID matches, false otherwise.

hashCode
public int hashCode()

Return a unique integer has code for this event ID object.

Returns:

The integer hash code for this event ID object

toString
public java.lang.String toString ()

Return a string describing this event ID object.

Returns:

A string describing this event ID object

4.5.5. Class TechEventID

package com.bristol.tvision.datamgr.dbtypes
public class TechEventID

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

TransactionVision Programmer’s Guide 61

This class extends class EventID and additionally holds the technology ID of the event.
Constructor:

TechEventID
TechEventID(int piiId, int seqNo, int techId)
Creates an event ID object for an event with the program instance ID piiId, sequence number
seqNo., and techology ID techId

Fields:

public int techId

The techology ID for this event.

4.5.6. Event Analysis Classes

4.5.7. Interface IAnalyze

package com.bristol.tvision.services.analysis.eventanalysis
public interface IAnalyze

This defines the interface for general-purpose event analysis beans.

Methods:

analyze
public void analyze(XMLEvent event, ConnectionInfo)
 throws AnalyzeEventException

This method implements a specific event analysis task on the given event.

Parameters:
conInfo – database connection info object for the current project
event – completed XML document for the current event

Throws:

AnalyzeEventException - Signals errors during the event correlation analysis

4.5.8. Class AnalyzeEventCtx

package com.bristol.tvision.services.analysis.eventanalysis
public class AnalyzeEventCtx extends ChainManagerCtx implements IAnalyze

This is the top level event analysis context class and holds all analysis beans for the event
analysis. During analysis, the analyze() interface will be called for all beans contained in
this context (in sequential order).

4.5.9. Class AnalyzeEventBean

package com.bristol.tvision.services.analysis.eventanalysis
public abstract class AnalyzeEventBean extends ChainManagedBean implements IAnalyze

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

62 TransactionVision Programmer’s Guide

This is the abstract base class for all event analyze bean. Any custom event analysis bean
should derive directly or indirectly from this class, and implement the IAnalyze interface
methods.
Fields:

Analysis Type
public static final int EVENT_CORRELATION = 1;
public static final int LOCAL_TRANSACTION_ANALYSIS = 2;
public static final int BUSINESS_TRANSACTION_ANALYSIS = 3;
public static final int BUSINESS_PROCESS_ANALYSIS = 4;
public static final int USER_ANALYSIS = 5;

The type of analysis implemented by the event analysis bean
instance.

Methods:

getAnalysisType
public int getAnalysisType()

Return the analysis type of the event analysis bean.

4.5.10. Custom Business Transaction Attributes and Classification

Business transaction attributes are stored in the table BUSINESS_TRANSACTION which is
defined by an XDM file, and thus are easily extensible. Additional custom business
transaction attributes can be simply added by modifying the corresponding Transaction.xdm
file. The database schema which is defined by the standard XDM definition is as follows:
BUSINESS_TRANSACTION
business_trans_id: INTEGER

class_id: INTEGER
starttime: CHAR(20)
endtime: CHAR(20)
responsetime: BIGINT
state: INTEGER
result: INTEGER
label: VARCHAR(128)
sequential_id: INTEGER

• business_trans_id: a unique ID for the transaction generated by the database

• class_id: the ID of the transaction class (FK into table transaction_class)

• starttime: the start time of the transaction

• endtime: the end time of the transaction

• responsetime: the time difference between start and end time

• state: the current state of the transaction (UNKNOWN, IN_PROCESS, COMPLETED)

• result: the result of the transaction (SUCCESS, FAILED)

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

TransactionVision Programmer’s Guide 63

• label: a label for the transaction to display in the GUI

• sequential_id: a unique ID which gets incremented every time the transaction has been
updated

When modifying the XDM definition to add custom business transaction attributes it is
important not to alter or delete any of those predefined “standard” attributes.

If no standard or custom transaction classification bean is plugged in into the Analyzer
framework, the attributes will get populated with the following values during event
transaction analysis:

business_trans_id generated by the database
class_id XMLTransaction.UNCLASSIFIED_ID (-1)
starttime time of the earliest event in this business transaction
endtime time of the latest event in this business transaction
state XMLTransaction.Unknown (-1)
result XMLTransaction.Unknown (-1)
label null
responsetime difference between starttime and endtime
sequential_id generated by the database

There are two different ways to populate the values of custom transaction attributes or to
modify the default values of the standard attributes:
• Use the StandardClassifyTransactionBean and define rules how to classify

transactions and update attribute values. This approach does not require any additional
coding, only the rule definition file has to be edited.

• Write a custom classification bean that implements the IClassifyTransaction
interface. This approach is useful if more complex transaction classification is needed
than the standard classification bean can provide

Transaction Classification

By default, TransactionVision does not classify the business transactions it processes; the
class ID of each transaction will be 0, indicating that this transaction does not belong to any
transaction class. To enable transaction classification, the following steps (which are
explained in more detail in sections 3.5.4.2 – 3.5.4.6) are required:

• Enable classification in the Beans.xml file by removing the comment around the
ClassifyTransactionCtx section and by placing the appropriate classification bean
(standard or custom classification bean) into it.

• Define your classification rules in the file TransactionDefinition.xml (if
using the standard classification bean).

• Insert each class with its attributes into the database table TRANSACTION_CLASS.
The table must be populated before any transactions are processed by the Analyzer.

Transaction Classification with the Standard Classification Bean

The StandardClassifyTransactionBean is a default implementation of a classification bean
and allows user customized transaction classification without the need to write a single line of
code. Although the rule engine of this standard bean is simple and fairly limited, it may well
be sufficient for a great amount of classification cases. It is well suited for transactions that
can be classified based on the attributes of one event of the transaction.

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

64 TransactionVision Programmer’s Guide

The classification logic is driven by rules in the configuration file
$TVISION_HOME/config/services/TransactionDefinition.xml which define how and when
transaction attributes are set or updated. These rules will get evaluated for each event being
processed in the transaction analysis in the Analyzer. The main structure of this configuration
file is:
<TransactionDefinition>

<Class name="StockTrade" dbschema="Stock,Stock2">
 <Classify>
 Conditions for setting the class
 </Classify>

 <Classify>
 Different conditions for setting the class
 </Classify>

Rules for updating the transaction attributes

</Class>

<Class name="CashFlow" >
{…}
</Class>

{…}

</TransactionDefinition>

The transaction definition consists of one ore more <Class> definitions that contain rules that
are applicable to events and transactions of that particular transaction class. The attribute
@name has to be a valid transaction class name which has a corresponding entry in the
transaction_class table. Each class definition can have an optional attribute @dbschema
which restricts the definition to one or more (specified as a comma separated list) database
schemas. If the database schema for the current event does not match the schema tag for the
class definition, none of the rules for this class will get evaluated. If the schema attribute is
missing, the definition is valid for all database schemas.

Each <Class> definition consists of one or more <Classify> sections that contain rules for
identifying the transaction class, and a list of rules for setting and updating the transaction
attributes.

The evaluation flow is as follows:
• If the current transaction has not been classified yet (class_id ==

XMLTransaction.UNCLASSIFIED_ID), then all <Classify> sections of all class
definitions matching with the current event schema are evaluated. If a classification is
successful, the transaction class ID of the transaction will get set and all attribute rules
contained in the class definition will get evaluated as well. No further <Classify> section
will be evaluated any more. If none of the classifications are successful, the union of all
attribute rules (outside of <Classify> sections) of all class definitions for the current
event schema are evaluated.

Note: This is necessary because the processing order of events in the analyzer can be
different to the order the events really happened, and the classification algorithm needs to
make sure that all rules for a certain class will get evaluated even if the event which will
classify the transaction will be processed at a later time. As a consequence, rules outside
of <Classify> sections should always be specific enough (by defining appropriate
matching rules) to match only on events of the class they are meant for, because they will

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

TransactionVision Programmer’s Guide 65

also get executed on events that might belong to another class for which the classifying
event has not been processed yet.

• If the current transaction already has its class attribute set, only the attribute rules in the
corresponding class definition outside of the <Classify> sections are evaluated. The
conditions inside of the corresponding <Classify> section are not evaluated again.

Each <Classify> section contains one ore more <Match> conditions, e.g.:

<Class name="StockTrade" dbschema="Stock ">
<Classify>
<Match xpath="/Event/Technology/JMS/Caller" operator="EQUAL"
value="StockTrade"/>
 <Match xpath="/Event/Technology/JMS/MQObject/Queue"
operator="EQUAL" value="TRADE_REQUEST"/>
 {…}

If the logial AND of these conditions results in true, the current transaction is considered to
be ‘classified’, and the class_id attribute of the current transaction is set to the corresponding
class ID of the definition class. In general, a match condition consist of a @xpath, @operator,
and @value attribute. The @xpath attribute specifies a certain value from either the current
XML event or the transaction document. @operator can be one of the following:
• EQUAL, UNEQUAL: compares the value in the document (specified by xpath) against

the string in ‘value’.For EQUAL, a single wildcard “*” is allowed at any position.
• GREATER, LESS, GREATEREQUAL. LESSEQUAL: compares the numeric value in

the document against the numeric value of the string in ‘value’
• EXISTS, NOTEXISTS: checks for existence of any value at the specified xpath. The

‘value’ attribute is ignored and should be set to “”
• SUBSTRING: matches if the value in the document contains the string in ‘value’ as a

substring
• REGEXPR: matches if the regular expression given in ‘value’ matches the value in the

document

@value can either contain a literal string value or an enumeration constant (if there is an
enumeration defined for this XPath). The condition gets evaluated by string comparison of
the document value with the specified value.

As mentioned before, the match conditions in one <Classify> section are logically AND-ed
together. To specify an alternative set of conditions (logical OR), one or more additional
<Classify> sections for the same class can be added.

In addition to the <Classify> section, each class definition can contain zero or more
attribute rules to set or modify other transaction attributes. Here is an example of such an
attribute rule:
<Attribute>
<Path>/Transaction/Declined</Path>
<ValueRule>
<Match xpath="/Event/StdHeader/ProgramName" operator="EQUAL"
value="DeclineTrade01"/>
 <Match xpath="/Event/Technology/MQSeries/MQObject/@objectName"
operator="EQUAL" value="TRADE_REPLY"/>
 <Value type="Constant">true</Value>
</ValueRule>

<ValueRule>
<Match xpath="/Event/StdHeader/ProgramName" operator="EQUAL"
value="DeclineTrade02"/>

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

66 TransactionVision Programmer’s Guide

 <Match xpath="/Event/Technology/MQSeries/MQObject/@objectName"
operator="EQUAL" value="TRADE_REPLY"/>
 <Value type="Constant">true</Value>
</ValueRule>
</Attribute>

Each <Attribute> element defines rules for setting the value of a certain transaction attribute.
The <Path> element specifies the Xpath for the transaction attribute. The possible values for
this transaction attribute are specified in one or more <ValueRule> sections. Each
<ValueRule> specifies a set of match conditions (logical AND) and the new value for the
attribute if the match conditions ‘fire’. The <ValueRule> definitions for an <Attribute> are
evaluated in sequential order, and once a certain rule has ‘fired’, the transaction attribute will
get updated with the value defined within this rule, and all following <ValueRule> sections
will get skipped..

The new values for a transaction attribute are specified within the <Value> element and can
have one of two possible types (specified with the @type attribute):
• “Constant” specifies a literal String value or an enumeration constant (if there is an

enumeration defined for this XPath)

• “XPath” specifies that the new value should be retrieved dynamically at runtime from
either the XML event or transaction document

It is possible to specify multiple <Value> element for one attribute, in which case the
attribute value will be the concatenation of all evaluated <Value> definitions, like .e.g.:
<Attribute>
<Path>/Transaction/Label</Path>
<ValueRule>
<Value type="XPath">/Event/Data/Order/Ticker</Value>
 <Value type="Constant">_</Value>
 <Value type="XPath">/Transaction/Account</Value>
 <Value type="Constant">_</Value>
 <Value type="XPath">/Transaction/OrderID</Value>
</ValueRule>
</Attribute>

Every time the transaction analysis calls into the standard classification bean for an event all
<Attribute> definitions for the corresponding transaction class are getting evaluated in
sequential order. But by default the <Attribute> rules are only evaluated if the corresponding
transaction attribute has no value yet, the definition is considered to be “final”. Once a final
rule has set the value of the transaction attribute, it (and other final rules that refer to the same
attribute) will not be evaluated again.

To allow transaction attributes to get set and updated more than once, the attribute rule can be
declared with an attribute @final set to “false”:
<Attribute final=”false”>
 <Path>/Transaction/EndTime</Path>
 {…}

This forces an attribute rule to get evaluated every time, even when the transaction attribute is
already set. An attribute rule without the @final attribute is equivalent to @final=”true”.

Another rule attribute, @precedence, can be used to control the setting of new values for
transaction attributes :

<Attribute precedence="true">
<Path>/Transaction/State</Path>
{…}

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

TransactionVision Programmer’s Guide 67

This attribute can only be set for rules referencing integer valued transaction attributes. If set
to true then an existing attribute value only gets overwritten if the new value is greater than
the old value. This mainly makes sense for ‘state’ and ‘result’ like attributes where all values
can be ordered according to a priority (e.g. UNKNOWN->PROCESSING->COMPLETE),
though in general it can be applied to any integer valued attribute. All @precedence rules are
automatically considered to be non-final too. By default (if the @precedence attribute is not
specified) the value is false.

The TransactionDefinition.xml file can also contain one or more <Common> sections with
one or more <Attribute> definitions. The attribute rules placed in those sections are valid for
all classes (including UNCLASSIFIED) and will get evaluated on every event, irrespectively
of the classification status. Each section can contain an optional ‘dbschema’ attribute to
specify that this section is only valid for certain schemas:

 <Class name=”…”>
[…]
</Class>
<Common dbschema=’TRADE”>
 <Attribute>
 […]
 </Attribute>
</Common>

Any transactions that have been successfully classified will show up with their respective
class name in the reports that categorize by class, such as the Transaction Tracking Report.
Also, any errors that are encountered during the classification process will get logged in the
Analyzer.log file.

Note: In previous TransactionVision versions it was necessary to specify “id” and “name”
attributes for the <Classify>, <Attribute>, and <ValueRule> tags. This is not required any
more. However, these tags are simply ignored, and no change to existing definition files is
necessary.

The ‘schemasWithTimeRules’ attribute of the BusinessTransactionAnalysisBean in
Benas.xml specifies that a schema (or a list of schemas, separated by comma) has its own
transaction classification time rules. When you use this attribute, it turns off the automatic
generation of start and end times for transactions in that schema; instead, TransactionVision
sets start/end time based on rules you provide. It it important to note that because the
automatic start/end time generation is disabled in these schemas, it will cause unclassified
transactions to have no start and end times (since they have no matching rules). Since these
unclassified transactions have no start and end time, they can not be incorporated into the
statistics that are generated for reports, or be visible in any of the graphs that get generated by
reports (because the reports all gather statistics based on when a transaction starts and stops).
Also, these transactions will not be shown in the Business Transaction View if a time-based
query is in effect.
Classification Action Rules

In addition to setting values within a classification value rule, custom actions can be
performed when the value rules are met. This is done by specifying a java class
implementing com.bristol.tvision.services.analysis.eventanalysis.IAnalyzerAction with an
<Action> element under the <ValueRule> element.

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

68 TransactionVision Programmer’s Guide

<Attribute precedence="true">
 <Path>/Transaction/State</Path>
 <ValueRule >
 <Match xpath="/Transaction/StartTime" operator="UNEQUAL"
value=""/>
 <Match xpath="/Transaction/EndTime" operator="UNEQUAL"
value=""/>
 <Value type="Constant">Completed</Value>
 <Action type="JAVACLASS" code="1" reason="SLA
Violation">com.bristol.tvision.services.analysis.actions.LogNotifica
tion</Action>
 </ValueRule>
</Attribute>

In this example, if both the StartTime and EndTime of the transaction documents have been
set (not equal to empty string), set the transaction attribute named "State" to "Completed".
When this occurs, the bean specified in the action tag is invoked. The sample bean logs
information about the event and the transaction to the notification log.

<Action> elements can be chained. If more than one <Action> element is specified within a
classification attribute, they will be invoked in the order they appear as long as the actions
return true. As soon as one action returns false, the invocation chain is stopped for that
transaction.

Currently, the only Action type available is “JAVACLASS”. Code and reason provide a
means of passing an integer and/or string for use in the action method. They are not required.

The com.bristol.tvision.services.analysis.actions.LogNotification class provided with
TransactionVision logs information about the triggering event (event ID, API, result codes)
and the business transaction (all transaction attributes) to NotificationLog defined in the
Analyzer.Logging.xml:
<category additivity="false"
 class="com.bristol.tvision.util.log.XCategory"
 name="NotificationLog">
 <priority class="com.bristol.tvision.util.log.XPriority"
 value="info"/>
 <appender-ref ref="NOTIFICATION_LOGFILE"/>
</category>

If you write a custom action class, it must implement
com.bristol.tvision.services.analysis.eventanalysis.IAnalyzerAction interface and must
provide an action method to be invoked by the standard classification bean. The custom class
is added to the Analyzer’s CLASSPATH by setting service_additional_classpath in the
Analyzer.properties file.

The ClassifyTransactionCtx and the IClassifyTransaction Interface

Transaction classification beans are plugged in into the Analyzer framework by placing them
into the ClassifyTransactionCtx in the Beans.xml file; for example:
 <Module type="Context" name="ClassifyTransactionCtx">
 <Module type="Bean"
class="com.bristol.tvision.services.analysis.eventanalysis.StandardC
lassifyTransactionBean"/>
 </Module>

The context can contain multiple beans, in which case the beans are processed in sequential
order. Each classification bean has to implement the IClassifyTransaction interface:

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

TransactionVision Programmer’s Guide 69

public boolean
classify(com.bristol.tvision.services.analysis.XMLEvent event,

com.bristol.tvision.services.analysis.eventanalysis.XMLTransaction t
xn, com.bristol.tvision.datamgr.dbtypes.EventID[] correlatedEvents,
com.bristol.tvision.datamgr.ConnectionInfo conInfo)
 throws
com.bristol.tvision.services.analysis.eventanalysis.AnalyzeEventExce
ption

Performs transaction classification
Parameters:
event - The current event
txn - The transaction document for the current event
correlatedEvents - The list of correlated events
conInfo - The current database connection

Returns:
true if the transaction doc has been updated, false otherwise

Throws:
com.bristol.tvision.services.analysis.eventanalysis.AnalyzeEventExce
ption - The analysis process failed

For each event that gets processed during the event transaction analysis phase the classify
method of each registered classification bean will be called, and the logical OR of all bean
invocations will be returned back to the transaction analysis phase in the Analyzer. If the
returned value is true (meaning one or more beans have modified the transaction document)
the corresponding row values in the business_transaction table will get updated by the
Analyzer framework.

By default, the ClassifyTransactionCtx is disabled in the Beans.xml file. To enable the
standard classification, remove the XML comments around the following section :

 <!--Module type="Context" name="ClassifyTransactionCtx">
 <Module type="Bean"
class="com.bristol.tvision.services.analysis.eventanalysis.StandardC
lassifyTransactionBean"/>
 </Module-->

Writing a Custom Classification Bean

A classification bean has to implement the classify interface described above and can
trigger the update of business transaction attributes by modifying the XMLTransaction
object (the business transaction for the current event), which gets passed into the call. The
bean has access to all XMLDocument values in the current event and the corresponding
business transaction object by using the method getDocumentValue(String xpath); for
example:

String progName =
event.getDocumentValue(XpathConstants.PROGRAM_NAME);
String oldLabel = txn.getDocumentValue(XMLTransaction.LABEL_XPATH);

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

70 TransactionVision Programmer’s Guide

The bean can set and modify all of the additional custom transaction attributes, and most of
the standard ones. The only exception is business_trans_id; updating this value is not
allowed and may lead to unexpected results in the Analyzer. The update of transaction
attributes is done by using the method setDocumentValue(String xpath, String
value); for example:

tnx.setDocumentValue(XMLTransaction.LABEL_XPATH, newLabel);

If the bean has modified any of the transaction attributes, it has to return a boolean true
value from the classify call; otherwise, the new values will not be written to the database
in the Analyzer framework.
If the transaction document remains unchanged, the bean should return false to avoid
unnecessary database write overhead.

To classify a certain transaction, the bean has to update the class_id attribute of the
transaction document (XMLTransaction.CLASS_ID_XPATH). This integer value is a
foreign key into the transaction_class table and thus should only contain values that
correspond to valid transaction class entries. The transaction class Ids can easily be accessed
by using the utility class TransactionClassCache:

int classId =
TransactionClassCache.instance(schema).getClassId(conInfo,
className);

As the transaction class table content is static, the utility class reads the transaction class data
only once from the database and returns all Ids without any further database access.

The Transaction Class Table

As attributes for a certain transactions are stored in the business_transaction table, transaction
classes and their attributes are stored in the table transaction_class. The standard database
schema (without any user-defined class attributes added) and the relationship to the
business_transaction table is as follows:

A row in this table makes a certain transaction class ‘known’ to the analysis system. The table
contents is static, meaning that all transaction classes have to be defined (and the table

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

TransactionVision Programmer’s Guide 71

populated) before the Analysis service is started. The Analyzer will read the transaction class
definitions at startup and use this information to map class names (wherever specified) to the
corresponding class Ids stored in the database.

The table schema is defined by the XDM mapping TransactionClass.xdm . The standard
mapping is:

<Mapping documentType="/TransactionClass">
<Key name="class_id" type="INTEGER" description="ClassId">
<Path>/TransactionClass/ClassId</Path>
</Key>
<Table name="TRANSACTION_CLASS" category="COMMON">
 <Column name="class_name" type="VARCHAR" size="64"
description="ClassName">
 <Path>/TransactionClass/ClassName</Path>
 </Column>
 <Column name="SLA" type="INTEGER" description="SLA">
 <Path>/TransactionClass/SLA</Path>
 </Column>
 <Column name="COST_PER_TRANSACTION" type="DOUBLE"
description="Cost per Transaction">
 <Path>/TransactionClass/CostPerTransaction</Path>
 </Column>
</Table>
</Mapping>

Custom transaction class attributes can be simply added by editing the XDM file and adding
the appropriate <Column> definitions. Here is an example how to add a custom attribute
‘SLA’ :

<Column name="SLA" type="INTEGER" description="SLA">
 <Path>/TransactionClass/SLA</Path>
 </Column>

Although there is no “TransactionClass” XML document that gets processed by the
XMLDatabaseMapper (as mentioned above the contents is static), defining the
transaction_class table through a XDM mapping has the advantage of allowing queries on
transaction data that can include references to the transaction class attributes. The class_id
column definition in the business transaction XDM mapping includes a JOIN reference to the
transaction class table and thus makes it possible to create queries that use both document
types.

Also, the table definition through XDM allows to pre-populate this table automatically at
creation time (with ‘CreateSqlScript’ or in the GUI). The XDM syntax allows to define a
fixed set of row values which are inserted into the table after it has been created. The syntax
for the transactions class rows is as follows:

 <Table name=…>
 <Column name=…>
 </Column>
 […]
 <RowValues>0, -Unclassified-, 1000, NULL</RowValues>
 <RowValues>1, Bond, 5000, 0.015</RowValues>
 <RowValues>2, Equity, 7000, 0.020</RowValues>
 <RowValues>3, Funds Transfer, 3000, 0.010</RowValues>

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

72 TransactionVision Programmer’s Guide

 </Table>

Each <RowValue> element contains the values for all column of one row of the table,
separated by commas. A database null value can be specified with NULL.

Note: The class IDs and class names should be unique, and the class ID value 0 is reserved
for the UNCLASSIFIED transaction class.

Logging SLA violations

When a transaction gets classified, the analyzer can monitor its response time against the
SLA value defined for the corresponding transaction class, and fire an alert in case the SLA is
violated. The SLA violation logging can be enabled by removing the comment around the
LogSLAViolationCtx section in Beans.xml and by placing the appropriate logging bean
(standard or custom logging bean) into it.

TransactionVision ships with a standard logging bean, com.bristol.tvision.
.services.analysis.eventanalysis.LogSLAViolationBean, which logs the transaction together
with its SLA and response time to the SLAViolationLog defined in Analyzer.Logging.xml.

If you write a custom logging class, it must implement the
com.bristol.tvision.services.analysis.eventanalysis.ILogSLAViolation interface:

 public boolean slaViolation(XMLTransaction txn, ConnectionInfo
conInfo);

For the “normal” analyzer processing mode, the return value of this method is ignored. In
“failure mode”, the return value indicates to the analyzer whether to write the whole business
transaction to the database (return ‘true’) or to discard it (return ‘false’). The custom class is
added to the Analyzer’s CLASSPATH by setting service_additional_classpath in the
Analyzer.properties file.

Business Groups

A Business Group is a group of one or more Transaction Classes or child business groups.
There are two tables that must be populated in order to make use of reports such as the
Business Impact Report which use and display information by Business Group.

Business Group Table:

The Business Group table defines the set of business groups to be used. Each table entry
defines the text name of the group, assigns it a unique id, and the id of its parent group. If the
group is a root level group and has no parent, the parent id should be specified as -1.

The schema definition is as follows:
BUSINESS_GROUP
BIZGRP_NAME: VARCHAR(64) - name of the business group

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

TransactionVision Programmer’s Guide 73

PARENT_BIZGRP_ID: INTEGER - ID of the parent business group of this group (-1 if no
parent)
BIZ_GRP_ID: INTEGER - ID of this business group

Transaction Class to Business Group Table:

The Transaction Class to Business Group table assigns transaction classes to their
corresponding business groups. Each table entry specifies the id of a transaction class and the
id of its corresponding business group.

The schema definition is as follows:
TRANSCLASS_TO_BIZGRP
TRANSCLASS_ID: INTEGER - ID of the Transaction Class
BIZGRP_ID: INTEGER - ID of the Business Group

In order to use the Business Impact Report and other future reports that use Business Groups,
these two tables must be populated. As with the Transaction Class table, there is currently no
utility that can assist in populating these tables, and they must be populated manually through
an SQL script.

A sample would look like the following:
INSERT INTO TRADE.BUSINESS_GROUP(BIZGRP_NAME, PARENT_BIZGRP_ID,
BIZGRP_ID) VALUES('Purchase', -1, 0);
INSERT INTO TRADE.BUSINESS_GROUP(BIZGRP_NAME, PARENT_BIZGRP_ID,
BIZGRP_ID) VALUES('Trade', -1, 1);
INSERT INTO TRADE.TRANSCLASS_TO_BIZGRP(TRANSCLASS_ID, BIZGRP_ID)
VALUES(1, 0);
INSERT INTO TRADE.TRANSCLASS_TO_BIZGRP(TRANSCLASS_ID, BIZGRP_ID)
VALUES(2, 0);
INSERT INTO TRADE.TRANSCLASS_TO_BIZGRP(TRANSCLASS_ID, BIZGRP_ID)
VALUES(3, 1);

4.5.11. Custom Event Correlation

There are two ways to establish relationships between either two user events or a user event
and standard Sensor event:

1. Implement the correlation logic through a Java bean that implements the interface
com.bristol.tvision.services.analysis.eventanalysis.IEventCorrelation.
Install this bean as the UserCorelationBean for the CorrelationTechHelperCtx
in the analyzer configuration file <TVISION_HOME>/config/services/Beans.xml:

(extracted from <TVISION_HOME>/config/services/Beans.xml)
<Module name="CorrelationTechHelperCtx" type="Context">
<Attribute name="UserCorrelationBean"
 value="com.bristol.tvision.extension.MyCorrelationBean/>

2. TransactionVision supports an XML rule engine for event correlation purposes
(com.bristol.tvision.services.analysis.eventanalysis.XMLRuleCorre
lationBean). This is similar to the rule engine for transaction classification. The
custom correlation logic is implemented through XML syntax rules that are stored in the
configuration file
<TVISION_HOME>/config/services/EventCorrelationDefinition.xml. For

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

74 TransactionVision Programmer’s Guide

each event (Sensor or user), it will evaluate the correlation rules against the event, create
correlation lookup key(s) and event relation(s) according to the matched rules. The bean
will also take care of updating the memory cache and database tables for the entities
created.

The rule engine bean can be enabled by modifying the Beans.xml file as follows:

(extracted from <TVISION_HOME>/config/services/Beans.xml)
<Module name="CorrelationTechHelperCtx" type="Context">
 <Attribute name="UserCorrelationBean" value="com.bristol.
tvision.services.analysis.eventanalysis.XMLRuleCorrelationBean"
/>

Event Correlation Using the XML Rule File

The event correlation rules follow the same syntax as the transaction classification rules.
Refer to the transaction classification section in Chapter 3 for a detailed description on the
rule basics. This section covers the details specific to the event correlation rule engine. For an
example of the rules, see <TVISION_HOME>/config/services/
EventCorrelationDefinition.xml.

The high level framework for the correlation rules is as follows:

<EventCorrelationDefinition>
<RelationLookupType id=1001" name="JMSToUserEvent"
dbschema="BROKER">
 <CreateLookupKey technology="UserEvent" id="1">

 </CreateLookupKey>

 <CreateRelation keyRuleId1="1" keyRuleId2="2" id="1">

 </CreateRelation>
</RelationLookupType>
</EventCorrelationDefinition>

RelationLookupType

This element defines a relation type. It takes three attributes that characterizes the lookup
type:

Attributes:

Name Type Use Description

id xsd:int required The relation lookup type ID. This ID should be unique in the
type definition scope. The type ID should have a value greater
than 1000.

name xsd:string required Relation lookup type name.

dbschema xsd:string optional A string representing the database schema. The presence of
this attribute limits the relation lookup type scope to the
particular database schema.

This element can have two types of child elements: CreateLookupKey and CreateRelation.
The former implements a single rule set for creating lookup keys from individual event
specific for this relation lookup type. The latter implements a single rule set for creating
relation entity between two events that obey the matching conditions specified.

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

TransactionVision Programmer’s Guide 75

CreateLookupKey

This element defines a set of rules for creating a lookup key for the relation type this element
belongs to. The following illustrates the structure of this element and its children:

<CreateLookupKey technology="UserEvent" id="1">
<Match xpath="/Event/StdHeader/ProgramName" operator="EQUAL"
value="Validate"/>
<Match xpath="/Event/Technology/UserEvent/Class" operator="EQUAL"
value="JDBC"/>
<Attribute name="LookupKey">
 <Path>/RelationLookup/LookupKey</Path>
 <ValueRule name="SetLookupKey">
 <Value type="XPath">/Event/Data/Chunk/Order/OrderID</Value>
 </ValueRule>
</Attribute>
</CreateLookupKey>

Attributes:

Name Type Use Description

technology xsd:string required String representing a technology name. This must be one
of the technologies supported by TransactionVision. Only
events belonging to the specified technology will be
evaluated against this rule.

Id xsd:int required An integer uniquely identifying this CreateLookupKey
rule among all belonging to the same
RelationLookupType object. This ID can be used in the
relation creation stage to identify events that have lookup
keys created based on this rule.

The following is a list of supported technology names to be used for reference in
TransactionVision configuration or definition files (for example, in XML event correlation
definition):

• “BTTRACE” for application tracing library for WebSphere MQ

• “MQSERIES” for WebSphere MQ

• “MQIMSBRIDGE” for WebSphere MQ IMS bridge

• “Servlet” for J2EE Servlet

• “JSP” for J2EE JSP

• “JMS” for J2EE Java Message Service

• “EJB” for J2EE Enterprise Java Beans

• “CICS” for IBM CICS

• “UserEvent” for TransactionVision User Event

Match

There can be one or more match conditions. All the conditions must be met (AND) for a
proper event match.

Attribute LookupKey

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

76 TransactionVision Programmer’s Guide

There should be exactly one “Attribute” element with the name “LookupKey” and path
“/RelationLookup/LookupKey”, as shown in the above example. There can be one or more
ValueRule elements with optional match conditions for assigning the lookup key value based
on the event contents.

In the above example, the lookup key value is extracted from the event document under the
path /Event/Data/Chunk/Order/OrderID.

CreateRelation

This element implements a rule for creating a relation between two events having the same
lookup key. This element has two attributes “keyRuleId1” and “keyRuleId2”. These attributes
refer to the CreateLookupKey id attribute:

Attributes:

Name Type Use Description

keyRuleId1 xsd:int required The source event of this relation object
should have its lookup key generated by the
CreateLookupKey element with id equals to the
value of this attribute.

keyRuleId2 xsd:int required The destination event of this relation object
should have its lookup key generated by the
CreateLookupKey element with id equals to the
value of this attribute.

id xsd:int required An integer ID for this CreateRelation element.

The following illustrates the structure of this element and its children:

<CreateRelation keyRuleId1="3" keyRuleId2="5" id="1">
 <Attribute name="RelationType">
 <Path>/EventRelation/RelationType</Path>
 <ValueRule name="SetRelationType">
 <Value type="Constant">18</Value>
 </ValueRule>
 </Attribute>
 <Attribute name="Direction">
 <Path>/EventRelation/Direction</Path>
 <ValueRule name="SetDirection">
 <Value type="Constant">2</Value>
 </ValueRule>
 </Attribute>
 <Attribute name="Confidence">
 <Path>/EventRelation/Confidence</Path>
 <ValueRule name="SetConfidence">
 <Value type="Constant">1</Value>
 </ValueRule>
 </Attribute>
</CreateLookupKey>

This example says that a relation is to be created between event 1 (source) and 2 (destination)
if the following conditions are met:

• Event 1 and 2 has the same lookup key value for this relation type.

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

TransactionVision Programmer’s Guide 77

• Event 1’s lookup key for this relation type is created under the CreateLookupKey
rule with id equals to 3.

• Event 2’s lookup key for this relation type is created under the CreateLookupKey
rule with id equals to 5.

The CreateRelation element should always have the three child Attribute elements as shown
above:

• The RelationType element should always have the value 17 or 18. 17 indicates a
message path (suitable for representing message oriented middleware activities)
while 18 indicates general purpose transaction control flow.

• The Direction element defines the relation direction, and should have value equals
to 0 (unknown), 1 (inbound, flow from destination to source event), or 2 (outbound,
flow from source to destination event).

• The Confidence element indicates whether the relation is strong (value = 1) or weak
(value = 0). In general, the relation confidence should be set to strong (1).

Event Correlation Using a Custom Bean

For event correlation, the class CorrelationTechHelperCtx defines the top-level context for
managing all event correlation beans. These beans are managed into different groups
according to the technology categories the beans are associated with. Each category is
managed by a technology specific event correlation context. Each context is designated to
handle a particular type of technology (e.g.: WebSphere MQ). That is, all the events being
passed to the context belong to the same technology. The technology specific context itself
holds a set of correlation beans which implements the Interface IEventCorrelation, each is
responsible for correlating the current technology to one particular other technology.

In Addition to these technology specific contexts it is possible to plug in a custom
‘UserCorrelationBean’, which will be invoked for every event processed by the event
analysis service, irrespectively of the technology.
The following is an example of event correlation context definition in the Beans.xml file:

<Module type="Context" name="CorrelationTechHelperCtx">

<!-- This context contains beans that perform event correlation.
-->
<!-- For each event the correlation context that matches the
event's technology will be called. -->

<!-- This context contains beans that perform MQSeries event
correlation -->
<Module type="Context" name="CorrelationMQHelperCtx"
class="com.bristol.tvision.services.analysis.eventanalysis.Correl
ationMQHelperCtx">

<!—- This bean is provided by TransactionVision for establishing
default intra MQSeries event correlation such as MQPUT – MQGET
message path relations -->

<Module type="Bean"
class="com.bristol.tvision.services.analysis.eventanalysis.MQToM
QRelationshipBean"/>

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

78 TransactionVision Programmer’s Guide

<!—- This bean is provided by TransactionVision for establishing
MQSeries – IMSBridge message path relations -->

<Module type="Bean"
class="com.bristol.tvision.services.analysis.eventanalysis.MQToB
ridgeRelationshipBean"/>

<!—- This bean is developed specifically the stock trade
simulation for establishing a custom transaction path relation
between a failed MQGET call and the MQPUT call issued by the
stock trade initiating program -->

<Module type="Bean" class="com.bristol.tvision.demo.
stock.StockTradeRelationshipBean"/>

<!—The CorrelationTechHelperCtx provides a hook for the user to
plug in a technology independent custom correlation bean:
<!-- UserCorrelationBean :
1.) the ‘createLookupKeys()’ method of the user bean is called
after the default lookup key generation for events of all
technologies and can add additional lookup keys
2.) the ‘correlateEvents()’ method of the user bean is called
after the default correlation for events of all technologies and
can generate additional event relations -->

<Attribute name="UserCorrelationBean"
value="com.bristol.tvision.services.analysis.eventanalysis.UserC
orrelationBean"/ -->

</Module>

</Module>

For WebSphere MQ, TransactionVision provides a bean MQToMQRelationshipBean that
handles all WebSphere MQ correlation tasks. This includes matching MQPUT or MQPUT1
calls to MQGET calls that handle the same message. The resultant relation is known as the
message path relation, indicating a data flow between the two corresponding applications.

It is possible to add additional correlation logic in several ways:
• A new correlation bean can be developed and added to the correlation processing chain.

In the above example, the StockTradeRelationshipBean bean is invoked in the
MQSeries event context along with the MQToMQRelationshipBean.

• The default correlation bean can be replaced by a user bean through subclassing or
aggregation. This allows modifications to the default correlation behavior. For
example, a bean can be developed that invokes the MQToMQRelationshipBean
correlation interfaces, examines the correlation results, and makes modifications to the
results if necessary.

• Provide an implementation for the UserCorrelationBean.

An event correlation bean should implement the interface IEventCorrelation. The
IEventCorrelation interface defines two methods createLookupKeys and correlate for the

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

TransactionVision Programmer’s Guide 79

two phases discussed before. The class CorrelationTechHelperBean serves as the base class
for all event correlation beans

In TransactionVision, event correlation is performed on a per event, per technology basis.
The correlation task is divided into two phases.

The first phase involves generating lookup keys based on the characteristics of the current
event. The purpose of setting up these keys is to identify the set of events bearing the same
lookup key as the potential candidates for correlation in the second phase. For example, in the
case of MQPUT(1) – MQGET message path relation generation, for each MQPUT(1) and
MQGET event, a key composed of the message ID (MQMD.MsgId), correlation ID
(MQMD.CorrelId), message put data and time is generated.

For any event, the createLookupKeys() method of each bean contained in the
technology specific context will be called. In the above example, for a MQ event the
MQToMQRelationshipBean as well as the MSToBridge RelationshipBean will both generate
a lookup key for the current event.

The second phase involves relation generation. Specifically, a set of events is passed as
potential candidate for matching with the current event. This set is composed of the events
that have the same lookup key as the current event. For example, for a MQGET event, all the
MQPUT(1) /MQGET events having the same key (message Id + correlation ID + message
put data + message put time) are passed as potential match candidates. Further tests can now
be conducted on individual candidate event to see if it is truly related to the current event. For
example, events with the same method/API name (MQPUT-MQPUT, MQGET-MQGET)
should not result in a message path relation.

For a certain set of candidates with matching lookup keys, the type of the correlation (e.g.,
MQ-MQ or MQ-IMS) determines which beans correlateEvents() method is called.
In the above example, a set of events with matching lookup key of type MQ-MQ will be
passed on to the MQToMQRelationshipBean, a set of events with type MQ-IMS will be
passed on to the MQToBridgeRelationshipBean. Currently the following correlation types are
defined for TransactionVision as constants in class EventCorrelationBean:
public class EventCorrelationBean extends AnalyzeEventBean {

 public static final int MQ_PUT_GET_TYPE = 1;
 public static final int MQ_IMSBRIDGE_TYPE = 2;
 public static final int IMSBRIDGE_ENTRY_EXIT_TYPE = 3;
 public static final int JMS_SEND_RCV_TYPE = 4;
 public static final int PROXY_TYPE = 5;
 public static final int PUBSUB_TYPE = 6;
 public static final int CICS_TRANS_TYPE = 7;
 public static final int MQ_CICS_TYPE = 8;
…
}

The correlation type for a correlation bean has to provided in the constructor call. For user
defined correlation beans, new correlation types should be >= 100.

Interface IEventCorrelation

package com.bristol.tvision.util.services.analysis.eventanalysis
public interface IEventCorrelation

The IEventCorrelation interface defines the methods to be implemented by any event
correlation bean.

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

80 TransactionVision Programmer’s Guide

Methods:

createLookupKeys
public void createLookupKeys(ConnectionInfo conInfo, XMLEvent event,
java.awt.List lookupKeys) throws AnalyzeEventException

Generate one or more lookup keys for correlation purpose for the given event.

Parameters:
conInfo – database connection info object for the current project
event – completed XML document for the current event
lookupKeys – list of lookup keys to be added

Throws:

AnalyzeEventException - Signals errors during the event correlation analysis

correlateEvents
public void correlateEvents (ConnectionInfo conInfo, TechEventID id,
TechEventID idToMatch, List eventRelations)
throws AnalyzeEventException

Decide whether a relation should be established between the two events passed. If the
conclusion is affirmative, generate new relation objects and add them to the given list.

Parameters:
conInfo – database connection info object for the current project
id – event ID object for the current event to be matched
idToMatch – event ID object for the potential matching event candidate
eventRelations – list of event relations generated

Throws:

AnalyzeEventException - Signals errors during the event correlation analysis
Class CorrelationTechHelperBean

package com.bristol.tvision.util.services.analysis.eventanalysis
public abstract class CorrelationTechHelperBean
extends ChainManagedBean
implements IEventCorrelation

This is the abstract base class for all event correlation beans.

Constructor:

CorrelationTechHelperBean

CorrelationTechHelperBean(java.lang.String technology, int
correlationType) throws AnalyzeEventException

Creates an instance of this event correlation bean for the given technology and correlation
type. The correlation type is a unique integer and should be >= 100 for new user-defined
correlation types.

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

TransactionVision Programmer’s Guide 81

Methods:

createLookupKeys

Refer to the definition of IEventCorrelation.

correlateEvents

Refer to the definition of IEventCorrelation.

getCorrelationType
public java.lang.String getCorrelationType()

Return the correlation type string.
Class MQCorrelationData

package com.bristol.tvision.datamgr.dbtypes

public class MQCorrelationData

This class defines a collection of event attributes relevant to the event correlation process. For
example, in the IEventCorrelation::correlateEvents method, event attributes for the two
events to be matched can be retrieved through a correlation data cache. The attributes are
returned in an object instance of this class.

Constructor:

MQCorrelationData

MQCorrelationData(int apiCode, java.lang.String putApplName,
java.lang.String putApplType,String userId, int qmgrId, int mqObjId,
java.lang.String eventTime, int programId)

Creates an instance of a WebSphere MQ correlation event attribute data collection object
based on the given event attributes.

Fields:

• int apiCode

• String putApplName

• String putApplType

• String userId

• Int qmgrId

• Int mqObjId

• String eventTime

• Int programId

Class JMSCorrelationData

package com.bristol.tvision.datamgr.dbtypes

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

82 TransactionVision Programmer’s Guide

public class JMSCorrelationData

Similar to the class MQCorrelationData, this class defines a collection of event attributes
relevant to the event correlation process of JMS events.

Constructor:

JMSCorrelationData

JMSCorrelationData(int methodCode, String appId, String userId,
String destination, String eventTime, int programId, String
putApplType, int qmgrId, int mqObjId)

Creates an instance of a JMS correlation event attribute data collection object based on the
given event attributes.

Fields:

• int methodCode

• String appId

• String userId

• String destination

• String eventTime

• int programId

• String putApplType

• int qmgrId

• int mqObjid

Class LookupKey
package com.bristol.tvision.datamgr.dbtypes
public class LookupKey

This class defines the lookup key object to be used in identifying potential events for
correlation purpose.

Constructor:

LookupKey
LookupKey(java.lang.String keyValue, int typeId)

Creates a new lookup key instance with the given key and the correlation type id.

Fields:

• String keyValue

• int typeId

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

TransactionVision Programmer’s Guide 83

Methods:

equals
public boolean equals (LookupKey lookupKey)

Decide whether the given lookupKey is equal to this key object. The two objects are equal if
the corresponding key, correlation type string, and type ID are the same.

Parameters:

lookupKey – lookup key object to be compared

Returns:

true if the two keys are equal, false otherwise
Class EventRelation
package com.bristol.tvision.datamgr.dbtypes
public class EventRelation

This class defines an event relation object between any two events.

Fields:

Relation Type
public static final int UNKNOWN_PATH = 0;
public static final int MESSAGE_PATH = 1;
public static final int TRANSACTION_PATH = 2;
public static final int BIDIRECTION = 16

Type of the event relation:
• MESSAGE_PATH indicates a direct message flow between the two events. That means

the two events are associated with the same message data. For example, a MQPUT and
MQGET call dealing with the same message bears a message path relation.

• TRANSACTION_PATH indicates a control flow between two events.

• BIDIRECTION is a type mask that indicates the bi-direction nature of the relation
between the two events.

Relation Direction
public static final int RELATION_PATH_IN = 1;
public static final int RELATION_PATH_OUT = 2;
public static final int RELATION_UNKNOWN = 0;

Direction of the event relation. Note that the event object is created in conjunction with an
event pair (event1, event2). This indicates the direction from event1 to event2.

Confidence Factor
public static final int WEAK_RELATION = 0;
public static final int STRONG_RELATION = 1;

This factor is assigned by the event correlation module. There are cases where the correlation
module may not have perfect data for a deterministic decision on the event relation generated.
In such case, the relation created can carry a WEAK_RELATION confidence factor
indicating the uncertainty in the decision.

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

84 TransactionVision Programmer’s Guide

int relation

Bitfield indicating the relation type, e.g. MESSAGE_PATH | BIDIRECTION

int direction

Bitfield indicating the relation direction, e.g. RELATION_PATH_IN |
RELATION_PATH_OUT

int confidence

Confidence factor, either WAEK_RELATION or STRONG_RELATION

int latency

The latency between the two events in milliseconds

Constructor:

EventRelation
EventRelation(int relation, int direction, int confidence, int
latency)

Creates a relation object with the given relation type, direction, confidence factor, and
latency.

Class MQRelationDBService
package com.bristol.tvision.datamgr.dbservices
public class MQRelationDBService

This class defines an internal database service for accessing MQSeries correlation related
information. For example, this service works in conjunction with the caching mechanism and
stores MQSeries event correlation attributes. The following describes the public interfaces of
interest to the custom event analysis beans developers.

Methods:

instance
public static MQRelationDBService instance (java.lang.String schema)

Return the singleton instance of the MQRelationDBServices.

Parameters:
schema – Database schema for the current project

Returns:
Singleton instance of the MQRelationDBService.

getCorrelationData
public MQCorrelationData getCorrelationData(java.lang.Connection
con, EventID eventID) throws DataManagerException

Return the MQSeries correlation event data for the given event.

Parameters:
con – Java SQL database connection handle, probably from the ConnectionInfo object.

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

TransactionVision Programmer’s Guide 85

eventID – EventID object for the interested event

Returns:

A MQCorrelationData object for the given event.

Throws:

DataManagerException - Signals errors during internal database operations.

Class JMSRelationDBService
package com.bristol.tvision.datamgr.dbservices
public class JMSRelationDBService

This class defines an internal database service for accessing JMS correlation related
information.

Methods:

instance
public static JMSRelationDBService instance (java.lang.String
schema)

Return the singleton instance of the JMSRelationDBServices.
Parameters:

schema – Database schema for the current project
Returns:
Singleton instance of the JMSRelationDBService.

getCorrelationData
public JMSCorrelationData getCorrelationData(java.lang.Connection
con, EventID eventID) throws DataManagerException

Return the MQSeries correlation event data for the given event.
Parameters:

con – Java SQL database connection handle, probably from the ConnectionInfo object.
eventID – EventID object for the interested event

Returns:
A JMSCorrelationData object for the given event.
Throws:
DataManagerException - Signals errors during internal database operations.

Sample Custom Event Correlation Bean

Refer to the code in the directory
<TVISION_HOME>/samples/stock/beans/correlation to see a sample
implementation of custom event correlation bean (StockTradeRelationshipBean.java).

StockTradeRelationshipBean implements the IEventCorrelation interface and is derived from
the class CorrelationTechHelperBean. It builds a custom message path relation between a
failed MQGET event (CompCode equals to MQCC_FAILED) and the MQPUT event that
participates in the same trade request processing. The stock trade example follows a request-
reply messaging model. The StockTrade program records the message ID field of the initial
request message, and uses this value as the correlation ID value to be matched when it reads

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

86 TransactionVision Programmer’s Guide

the reply message through the MQGET call. In other words, for a particular transaction, the
message ID field in the MQMD object of the StockTrade – MQPUT(1) event should be the
equal to the correlation ID field in the MQGET event.

The following is the code fragment for the StockTradeRelationshipBean constructor. It
specifies that the bean handles MQSeries events and generates custom event relation of type
“REQUEST_REPLY_TYPE” correlation as described above:

public static final String REQUEST_REPLY_TYPE = 100;
public StockTradeRelationshipBean() throws AnalyzeEventException {
super(TVisionCommon.TECH_NAME_MQSERIES, REQUEST_REPLY_TYPE);
}

The next code fragement contains the implementation of the createLookupKeys method. As
discussed before, the message ID or correlation ID value in the message descriptor record is
used as the lookup key for MQPUT(1) and MQGET respectively.

public void createLookupKeys(ConnectionInfo conInfo, XMLEvent event,
 List lookupKeys) throws
AnalyzeEventException {
try {
XPathSearch lookup = new XPathSearch(event);
String correlId;
/* for StockTrade->MQPUT call (request event), use MQMD.MsgID as */
/* lookup key, for StockTrade->MQGET call (reply event), use */
/* MQMD.CorrelId as the lookup key */
switch (StockTradeHelper.getEventType(lookup)) {
case StockTradeHelper.MQSERIES_REQUEST_EVENT:
correlId = lookup.getValue(XPathConstants.MSGID);
if (correlId == null)
 return;
break;
case StockTradeHelper.MQSERIES_REPLY_EVENT:
if (Integer.parseInt(lookup.getValue(XPathConstants.COMPCODE)) !=
 MQDefs.MQCC_FAILED)
return;
 correlId = lookup.getValue(XPathConstants.CORRELID);
 if (correlId == null)
return;
 break;
default:
return;
 }

/* create a new lookup key and add it to the list */
LookupKey key = new LookupKey(correlId, REQUEST_REPLY_TYPE);
lookupKeys.add(key);
 }
 catch (XMLException ex) {
throw new AnalyzeEventException(ex);
 }
}

The next code fragment contains the implementation of the correlateEvents method:
public void correlateEvents(ConnectionInfo conInfo, TechEventID id,

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

TransactionVision Programmer’s Guide 87

TechEventID idToMatch, List eventRelations) throws
AnalyzeEventException {

try {
/* Retrieve data relevant for event correlation from cache. */
Cache cache = AnalysisCacheManager.instance().getCorrelationCache
(conInfo.schema);
MQCorrelationData data = (MQCorrelationData) cache.get(id);
if (data == null) {
 data =
MQRelationDBService.instance(conInfo.schema).getCorrelationData(
 conInfo.con, id);
 if (data != null)
 cache.insert(id, data);
 else
 return;
}
MQCorrelationData dataToMatch = (MQCorrelationData)
cache.get(idToMatch);
if (dataToMatch == null) {
 dataToMatch =
 MQRelationDBService.instance(conInfo.schema).getCorrelationData(
 conInfo.con, idToMatch);
 if (dataToMatch != null)
 cache.insert(idToMatch, dataToMatch);
 else
 return;
}
int apiId = data. apiCode;
int apiIdToMatch = dataToMatch.apiCode;
if (apiId != apiIdToMatch) {
 EventRelation eventRelation = new EventRelation();
 eventRelation.setRelation(EventRelation.MESSAGE_PATH |
 EventRelation.BIDIRECTION);
 eventRelation.setDirection(EventRelation.RELATION_UNKNOWN);
 eventRelation.setConfidence(EventRelation.STRONG_RELATION);
 eventRelations.add(eventRelation);
}
}
catch (DataManagerException ex) {
 throw new AnalyzeEventException(ex);
}
}

The AnalysisCacheManager object provides an internal memory cache for storing selected
attributes of the events to be matched. Refer to the MQCorrelationData class definition for a
list of attributes supported. This cache allows quick access to certain event attributes without
executing an event data query, thus improving the correlation process performance.

To decide whether the two events are indeed related, the API code of the two events are
compared to ensure that one event is MQPUT(1) and the other one is MQGET. Since only
MQPUT(1) and MQGET events can be potential candidates, it is enough to check whether
the two event API codes are different or not.

Once it is decided that the two events are related, a new event relation object is created and
inserted to the relation list. The relation is of type MESSAGE_PATH, has no direction
attribute, and has a STRONG_RELATION confidence factor.

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

88 TransactionVision Programmer’s Guide

The following code fragment is the change to the Beans.xml file for including this custom
event correlation bean. It tells the Analyzer framework to load and run the
StockTradeCorrelationBean bean as a part of the CorrelationMQHelperCtx
context.

This bean will be invoked after the default MQToMQRelationshipBean for every MQSeries
event.
<Module type="Context" name="CorrelationTechHelperCtx">

<Module type="Context" name="CorrelationMQHelperCtx"
class="com.bristol.tvision.services.analysis.eventanalysis.CorrelationMQH
elperCtx">

<Module type="Bean"
class="com.bristol.tvision.services.analysis.eventanalysis.MQToMQRelati
onshipBean"/>

<Module type="Bean" class="com.bristol.tvision.demo.
stock.StockTradeRelationshipBean"/>

</Module>

</Module>

4.5.12. Custom Local Transaction Definition

Customization of the local transaction analysis algorithm in the Analyzer allows modification
of the unit of work or local transaction definition for a set of events. By default,
TransactionVision uses the sync-point APIs such as MQCMIT, MQBACK, etc., to group
events into local transactions. However some applications may not be transactional in nature.
For these applications, it may be useful to group sets of events into logical local transactions.

The local transaction rule definition file follows the same syntax as the transaction
classification rules. Please refer to the “Transaction Classification” section earlier in this
chapter for a detailed description on the rule basics. This section covers the details specific to
the local transaction rule engine.

The basic goal of the rules defined in the LocalTransactionDefinition.xml file is to
set local transaction attributes, if the event currently being processed matches certain criteria.
These attributes, such as the LookupKey attribute, are then used by the framework to either,
create a new local transaction id and assign that id to the event or find an existing local
transaction that has the same attributes, and assign its local transaction id to the current event.

An example application of the LocalTransactionDefinition.xml rule file is to
correlate an MQPUT of a request with an MQGET for the reply in the same process based on
message id, where the MQPUT and MQGET do not exist in the same unit of work. This
happens when an application puts a request, and waits for a reply with an MQGET for the
same id until it times out. The request and reply will by placed in the same unit of work by
the Analyzer only if the sync-point options have been used by the application. If not, the
LocalTransactionDefinition.xml file may be used to generate a custom LookupKey
attribute based on the message id field in the MQPUT and MQGET events.

4.5.13. LocalTransactionDefinition.xml File

This file is located in the <TVISION_HOME>/config/services directory. The layout of
this rule file is as follows:

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

TransactionVision Programmer’s Guide 89

 <LocalTransactionDefinition>
 <LocalTransactionType dbschema="*" hasMultiTracking="false" >

 <Match xpath=". . ." operator="EQUAL" value=". . ."/>
 . . .
 <LocalTransactionAttributes>

 <Attribute name="LookupKey">
 <Path> . . . </Path>

 <ValueRule name="SetLookupKey">
 <Value type="XPath"> . . . </Value>
 <Value type="XPath"> . . . </Value>
 </ValueRule>
 </Attribute>

 </LocalTransactionAttributes>

 </LocalTransactionType>

 </LocalTransactionDefinition>

The LocalTransactionDefinition element is the root element and only one instance of
this element can exist in a definition file. Each root element can contain several
LocalTransactionType elements. Each LocalTransactionType element has a
dbschema attribute containing one or more schemas (comma separated) to which this rule
type applies. Hence, the attributes and match criteria contained in this
LocalTransactionType element only apply to events being written to the given schemas.
A set of Match child elements determine whether the attributes specified in the
LocalTransactionAttributes element should be applied to the current event. The
LocalTransactionAttributes element contains a set of Attribute elements. Each
attribute is set at the XPath specified in the Path element. The value for this attribute comes
from the Value elements. These may be constants or XPaths into the current event document.
The Attribute element may contain additional Match criteria to determine which attributes
need to be set.

4.5.14. LocalTransactionType

This element defines a local transaction rule type. It takes three attributes that characterizes
the lookup type:

Attributes:

Name Type Use Description

dbschema xsd:string optional A string representing the database schema. The
presence of this attribute limits the relation lookup type
scope to the particular database schema.

hasMultiTracking xsd:boolean optional A boolean value, which when true indicates that the
local transaction can have multiple tracking ids and the
processMultiTracking() method of the
ILocalTransaction interface needs to be executed.

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

90 TransactionVision Programmer’s Guide

This element can contain two kinds of child elements, multiple Match elements and one
LocalTransactionAttributes element. The Match elements contain the criteria based
on which attributes will be set for an event. For example:

<Match xpath="/Event/StdHeader/TechName" operator="EQUAL"
value="MQSERIES"/>

 <Match xpath="/Event/StdHeader/HostArch/OS" operator="UNEQUAL"
value="OS390_CICS"/>

The above two Match criteria evaluate to true if the event is an MQSeries event, but not from
z/OS CICS. When an event which matches these criteria is evaluated, the attribute setting
rules contained in the LocalTransactionAttributes element are executed.

4.5.15. LocalTranasctionAttributes

One element of this type is required. This element holds multiple attribute elements, each
defining an Attribute to be set. The LookupKey attribute containing a Path
/LocalTransaction/LookupKey is required. Attribute names need to be unique for a
given LocalTransactionAttributes element. There can be multiple Attribute rules with
the same XPath but a different name, Match and Value rules.

For example:
<LocalTransactionAttributes>

 <Attribute name="LookupKey">

 <Path>/LocalTransaction/LookupKey</Path>

 <ValueRule name="SetLookupKey">

 <Value type="XPath">/Event/EventID/@programInstID</Value>

<Value type="Constant">-</Value>

 <Value type="XPath">/Event/StdHeader/@uow</Value>

 </ValueRule>

 </Attribute>

</LocalTransactionAttributes>

The above LocalTransactionAttributes element contains one Attribute called LookupKey.
This attribute maps to the XPath /LocalTransaction/LookupKey and is set to a
concatenation of three values in the Value elements.

Typically, for WebSphere MQ events, only the LookupKey attribute needs to be set to group
events into a unit of work. However, for other events such as JMS, Servlet or EJB events,
additional attributes such as TrackingId (/LocalTransaction/TrackingId),
ParentTxnKey (/LocalTransaction/ParentTxnKey) and TrackingSeq
(/LocalTransaction/TrackingSeq) may be set. The TrackingId attribute is used to
group multiple local transactions into business transactions for the J2EE Sensors. The
ParentTxnKey and TrackingSeq attributes are primarily used by the TransactionVision
Transaction Analysis view to draw links between local transactions. These attributes are
reported by the Sensors and typically would not need to be customized.

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

TransactionVision Programmer’s Guide 91

4.5.16. Sample LocalTransactionDefinition.xml Rule File

The following sample rule file sets the LookupKey local transaction attribute to the event
message id field for all events from queue TVISION.TEST.Q for all events being written to
the TEST.SCHEMA. For events to any other schema besides TEST.SCHEMA, the
LookupKey attribute is set using the default MQSeries strict algorithm to use the program
instance id and unit of work ids.
<LocalTransactionDefinition>

 <LocalTransactionType dbschema="TEST.SCHEMA"

 hasMultiTracking="false" >

<Match xpath="/Event/StdHeader/TechName" operator="EQUAL"
value="MQSERIES"/>

<Match xpath="/Event/Technology/MQSeries/MQObject/@objectName"
operator="EQUAL" value="TVISION.TEST.Q"/>

<LocalTransactionAttributes>

<Attribute name="LookupKey">

<Path>/LocalTransaction/LookupKey</Path>

<ValueRule name="SetLookupKey">

 <Value
type="XPath">/Event/Technology/MQSeries/*/*Exit/MQMD/MsgId</Value>

</ValueRule>

</Attribute>

</LocalTransactionAttributes>

</LocalTransactionType>

 <LocalTransactionType dbschema="*"

 hasMultiTracking="false" >

<Match xpath="/Event/StdHeader/TechName" operator="EQUAL"
value="MQSERIES"/>

<LocalTransactionAttributes>

<Attribute name="LookupKey">

<ValueRule name="SetLookupKey">

<Value
type="XPath">/Event/EventID/@programInstID</Value>

<Value type="Constant">-</Value>

 <Value type="XPath">/Event/StdHeader/@uow</Value>

</ValueRule>

</Attribute>

</LocalTransactionAttributes>

</LocalTransactionType>

</LocalTransactionDefinition>

Chapter 4 • Reference - Extending the Analyzer
Performing Event Analysis

92 TransactionVision Programmer’s Guide

4.5.17. Changes to the Beans.xml File

To enable usage of the LocalTransactionDefinition.xml rules file, the
<TVISION_HOME>/config/services/Beans.xml file must be modified to enable use of
the rules bean. The following changes are required to the Beans.xml file:
 <Module type="Context" name="LocalTransactionTechHelperCtx">

 . . .

 <Module type="Bean"
class="com.bristol.tvision.services.analysis.eventanalysis.MQLocalTr
ansactionBean">

 <Attribute name="AlgorithmBean"
value="com.bristol.tvision.services.analysis.eventanalysis.XMLRuleLo
calTransactionBean"/>

 <!--Attribute name="AlgorithmBean"
value="com.bristol.tvision.services.analysis.eventanalysis.MQStrictL
ocalTransaction"/ -->

 <!-- Attribute name="AlgorithmBean"
value="com.bristol.tvision.services.analysis.eventanalysis.MQDefault
LocalTransaction"/ -->

 </Module>

 . . .

The same needs to be repeated for the corresponding technology where the rule bean needs to
be applied.

Local transaction analysis algorithm beans can be chained by placing multiple bean names in
the Beans.xml file as below:
<Module type="Bean" class="com.bristol.tvision.services.analysis.eventanalysis.
MQLocalTransactionBean">
 <Attribute name="AlgorithmBean" value="com.bristol.tvision.services.
analysis.eventanalysis.XMLRuleLocalTransactionBean"/>
 <Attribute name="AlgorithmBean" value="com.bristol.tvision.services.
analysis.eventanalysis.MQStrictLocalTransaction"/>
</Module>

The local transaction beans are initialized and invoked in the sequence they are placed in the
Beans.xml file. For example, in the above snippet the XMLRuleLocalTransactionBean rules
will be executed before the MQStrictLocalTransaction getAttributes() method is invoked. By
default, the chain of invocation is broken and subsequent beans are NOT called when a bean's
getAttribute() method returns a non-null lookup key. Hence, in the above example, the
MQStrictLocalTransaction bean is invoked only when there is no matching rule set in the
LocalTransactionDefinition.xml file which create a non-null lookup key.

In some scenarios, it may be desired that certain events do not have a local transaction id. To
do this, create a rule that sets the return key value as a constant NULL.

The following example rule does not create a local transaction id for all events from queue
TVISION.TEST.Q, by setting the LookupKey attribute to a constant NULL value.
<LocalTransactionType dbschema="*" hasMultiTracking="false" >
 <Match xpath="/Event/StdHeader/TechName" operator="EQUAL" value="MQSERIES"/>
 <Match xpath="/Event/Technology/MQSeries/MQObject/@objectName" operator="EQUAL"
value="TVISION.TEST.Q"/>
 <LocalTransactionAttributes>
 <Attribute name="LookupKey">

<Path>/LocalTransaction/LookupKey</Path>

Chapter 4 • Reference - Extending the Analyzer
Extending the System Model

TransactionVision Programmer’s Guide 93

<ValueRule name="SetLookupKey">
 <Value type="Constant">NULL</Value>
 </ValueRule>
 </Attribute>
 </LocalTransactionAttributes>
</LocalTransactionType>

4.6. Extending the System Model

Use the <TVISION_HOME>/config/services/RemoteDefinition.xml file to define objects in
your system that the sensor might otherwise not be able to fully resolve.

For example, suppose you have a remote queue on queue manager QM1 that points to some
queue on queue manager QM2. A sensored application putting to the queue on QM1 does not
connect to QM2 to fully discover what type of object the final destination queue is. The
destination queue might be an alias queue or even another remote queue. If no sensored
application on QM2 ever connects directly to the destnation of the QM1 remote queue, then
the object will never be fully resolved, possibly resulting in a missing link in the correlation
of events.

By manually defining objects in RemoteDefinition.xml, you can specify the details of objects
that the sensor could not completely resolve otherwise.

Each <RemoteObject> tag defines an object. When the analyzer attempts to resolve the target
of a remote queue, it checks whether an entry exists with the same object and queue manager
name. If such a match is found, the MQObject definitions within the RemoteObject tag will
replace the generic queue definition provided by the sensor. Embedding an additional
MQObject tag within the first MQObject tag creates a "resolveto" relationship.

Therefore, the first RemoteObject tag in the following example can be interpreted as: If the
destination of a remote queue has the name RALIAS2.QUEUE on queue manager
host.tv2.manager, create for this object an alias queue RALIAS2.QUEUE that resolves to a
local queue RRR.QUEUE.

Possible values for the objectType attribute include:

• Q_LOCAL

• Q_MODEL

• Q_ALIAS

• Q_REMOTE

• Q_CLUSTER

• Q_LOCAL_CLUSTER

• Q_ALIAS_CLUSTER

• Q_REMOTE_CLUSTER

Take care in creating and modifying these definitions as inserting objects that don't actually
match the topology of your system could break the correlation of events.

Example RemoteDefinition.xml file:

<?xml version="1.0" encoding="UTF-8"?>

Chapter 4 • Reference - Extending the Analyzer
Extending the System Model

94 TransactionVision Programmer’s Guide

<RemoteDefinition>

 <RemoteObject objectName="RALIAS2.QUEUE" queueManager="perplex7.tv2.manager">

 <MQObject objectName="RALIAS2.QUEUE" objectType="Q_ALIAS"

queueManager="perplex7.tv2.manager">

 <MQObject objectName="RRR.QUEUE" objectType="Q_LOCAL"

queueManager="perplex7.tv2.manager"/>

 </MQObject>

 </RemoteObject->

 <RemoteObject objectName="TEST.CLUSTER.QUEUE" queueManager="SECOND_CLUSTER">

 <MQObject objectName="TEST.CLUSTER.QUEUE" objectType="Q_REMOTE"

queueManager="SECOND_CLUSTER">

 <MQObject clusterName="SECOND_CLUSTER" objectName="TEST.CLUSTER.QUEUE"

objectType="Q_LOCAL_CLUSTER" queueManager="deepakelap.tv3.manager"/>

 </MQObject>

 </RemoteObject>

</RemoteDefinition>

4.6.1. User Events

Each user event can optionally carry data about system resource objects involved in the event.
The user defined types have type ID greater than the value
com.bristol.tvision.userevents.Constants.USEROBJECT_TYPE_BASE.

On the Analyzer side, all user object types should be included in a central configuration file
<TVISION_HOME>/config/sysmodel/SystemModelDefinition.xml. Both the
Analyzer and Web components read this configuration file, and use the information for
runtime object type validation.

The following is an example of this file:

<?xml version="1.0" encoding="UTF-8"?>
<SystemModelDefinition>
 <ObjectClass name="JDBC" base="100000">
 <ObjectType name="DatabaseServer" id="1"/>
 </ObjectClass>
 <ObjectClass name="FTP" base="101000">
 <ObjectType name="FTPServer" id="1"/>
 </ObjectClass>
</SystemModelDefinition>

• User object types should be grouped under various object type classes. Each class is
defined under the element /SystemModelDefinition/ObjectClass. In the
example, two classes are defined for database and FTP technology objects
respectively.

• Each object type class should have a string attribute “name” and integer attribute
“base”, which defines the base for the type ID for all objects in the class.

• The element /SystemModelDefinition/ObjectClass/ObjectType defines a
single object type. It has a string attribute “name” for the object type name, and an
integer attribute “id”. The id attribute, combining with the object type class ID base,
forms the final type ID for the object type. In this example, the object type

Chapter 4 • Reference - Extending the Analyzer
Generating Application Events to Tivoli Enterprise Console (TEC)

TransactionVision Programmer’s Guide 95

“DatabaseServer” has type ID 100001 (100000 + 1), and the object type
“FTPServer” has type ID 101001 (101000 + 1).

It is important to ensure that the object type ID values used by the user events are consistent
with the ones from the central configuration file.

4.7. Generating Application Events to Tivoli Enterprise Console (TEC)

TransactionVision allows plugging in custom code to generate TEC events when certain
application events occur. These can either be plugin beans into the Analyzer or as scheduled
jobs running in the application server hosting the UI. This custom code can use the log4j
classes to generate log messages. The log4j appender, TECAppender, routes these log
messages to Tivoli, when enabled. The MonitoringEvent class is provided to allow setting of
parameters into the log4j message, which are then mapped to Tivoli slots by the
TECAppender. The TECAppender uses the file
<TVISION_HOME>/config/logging/tivoli/SlotMap.properties to map
MonitoringEvent parameters to Tivoli slots.

4.7.1. Monitoring Events

The class com.bristol.tvision.util.log.MonitoringEvent implements the monitoring event
structure. TransactionVision defines various monitoring events reporting the analyzer and
web component runtime states. Custom monitoring events based on business data can also be
constructed with this class.

Class com.bristol.tvision.util.log.MonitoringEvent

package com.bristol.tvision.util.log;

public class MonitoringEvent implements Cloneable,

java.io.Serializable {

}

Attributes and Access Methods

Event Source Components

This refers to a string identifying the main event source component. TransactionVision
defines several standard values in the class com.bristol.tvision.util.TVisionCommon:

• TVisionCommon.COMP_ANALYZER: Analyzer components

• TVisionCommon.COMP_JOB: Job bean

• TVisionCommon.COMP_UI: TransactionVision web application components

• TVisionCommon.COMP_OTHERS: Other event sources.

Access methods:
public void setSourceComponent(String srcComp);
public String getSourceComponent();

Chapter 4 • Reference - Extending the Analyzer
Generating Application Events to Tivoli Enterprise Console (TEC)

96 TransactionVision Programmer’s Guide

Event Source Sub-components

This refers to a string identifying the event source subcomponent. Usually this refers to the
Java class name (e.g.: com.bristol.tvision.services.analysis.action.LogSLAViolation).

Access methods:
public void setSourceSubComponent(String subSrcComp);
public String getSourceSubComponent();

Event Class

This refers to a string identifying the event class. TransactionVision defines the following
standard values:

• MonitoringEvent.CLASS_INTERNAL: Analyzer and web components internal
monitoring events.

• MonitoringEvent.CLASS_APPLICATION: Application specific monitoring events.

• MonitoringEvent.CLASS_CEP_SITUATION: Complex event processor situation
events.

Access methods:
public void setClassName(String className);
public String getClassName();

Event Type

This refers to a string describing the monitoring event type. All TransactionVision standard
values for internal monitoring events have the prefix “TVision”. Any custom defined
monitoring event should have a type name consistent with the complex event processor event
definitions.

Access methods:
public void setTypeName(String typeName);
public String getTypeName();

Priority

This refers to an integer value reflecting the priority of the monitoring events. The following
is a list of standard values:

• MonitoringEvent.PRIORITY_HIGH = 70

• MonitoringEvent.PRIORITY_MEDIUM = 50

• MonitoringEvent.PRIORITY_LOW = 10

• MonitoringEvent.PRIORITY_UNKNOWN = 0

Access methods:
public void setPriority(int priority);
public int getPriority();

Severity

This refers to an integer value reflecting the severity of the monitoring events. The following
is a list of standard values:

• MonitoringEvent.SEVERITY_FATAL= 60

Chapter 4 • Reference - Extending the Analyzer
Generating Application Events to Tivoli Enterprise Console (TEC)

TransactionVision Programmer’s Guide 97

• MonitoringEvent.SEVERITY_ERROR = 50

• MonitoringEvent.SEVERITY_MINOR = 40

• MonitoringEvent.SEVERITY_WARNING = 30

• MonitoringEvent.SEVERITY_HARMLESS = 20

• MonitoringEvent.SEVERITY_INFORMATION = 10

• MonitoringEvent.SEVERITY_UNKNOWN = 0

Access methods:
public void setSeverity(int severity);
public int getSeverity();

Message

This refers to a string containing the description for the monitoring event. By default this is
set to an empty string.

Access methods:
public void setMessage(String msg);
public String getMessage();

Time

This refers to a long value representing the event time in milliseconds (specifically, the
difference, measured in milliseconds, between the current time and midnight, January 1, 1970
UTC). The constructors for this class automatically set this to the current time.

Access methods:
public void setTime(long eventTime);
public long getTime();

Parameters

Additional parameters for the monitoring event are stored as name-value pair in an internal
hash map in the MonitoringEvent class. The name part has to be a Java string, while the value
part can be any Java serializable objects. Use the following access methods to get and set
additional parameters.

Access methods:
public void setParameter(String name, Object value);
public Object getParameter(String name);
public HashMap getParameters(); (return parameter hash map)
public Set getEntries(); (return parameter hash map entry set)

Constructors
public MonitoringEvent()

The default constructor only initializes the monitoring event time. All other attributes
are set to the default values. The attribute access methods should be used to set the
required attributes.

public MonitoringEvent(String srcComp, String srcSubComp, String
eventClass, String eventType, int severity)

Chapter 4 • Reference - Extending the Analyzer
Generating Application Events to Tivoli Enterprise Console (TEC)

98 TransactionVision Programmer’s Guide

This constructor initializes the monitoring event with the given source component,
subcomponent, event class, event type, and severity level. Event time is by default set
to the current time.

Clone
public Object clone();

This method returns a shallow clone copy of the given MonitoringEvent object. The
parameter hash map contents are indeed copied over.

Serialization

The toString() method can serialize the MonitoringEvent contents in two forms:

1. By default, the message attribute will be returned by the toString() method (Message
Serialization).

2. The complete event content can be serialized in XML format (XML Serialization).

The serialization behavior can be toggled by the following two methods:
public void enableMessageSerialization
public void enableXMLSerialization

Helper functions
public static String getHostName()

This method returns the local host name.

4.7.2. Event Delivery

This section describes the steps for implementing monitoring event delivery.

Using the logging interface

The class com.bristol.tvision.util.log.Logging supports various methods for delivering the
monitoring events through Log4J. Any log4j initialization is taken care of by the
TransactionVision components. TransactionVision implements the following Logger
(Category) objects in various components:

Analyzer:

1. AppLog: for reporting Analyzer errors, warning, and information type messages.
This is the default logger object in the Logging class. One can invoke any of the
following four Log4J category logging methods directly through this class:

Logging.fatal(MonitoringEvent eventObj)
Logging.error(MonitoringEvent eventObj)
Logging.warn(MonitoringEvent eventObj)
Logging.info(MonitoringEvent eventObj)

2. AnalyzerActivityLog: for internal Analyzer activity logging such as start and stop
operation. This can also be used for logging transaction related report such as service
level agreement violation. This logger object can be accessed through the variable
Logging.analyzerActivityLog:

Logging.analyzerActivityLog.fatal(MonitoringEvent eventObj)
Logging.analyzerActivityLog.error(MonitoringEvent eventObj)

Chapter 4 • Reference - Extending the Analyzer
Generating Application Events to Tivoli Enterprise Console (TEC)

TransactionVision Programmer’s Guide 99

Logging.analyzerActivityLog.warn(MonitoringEvent eventObj)
Logging.analyzerActivityLog.info(MonitoringEvent eventObj)

Web components (UI):

1. AppLog: for reporting web component errors, warning, and information type
messages. This is the default logger object in the Logging class. One can invoke any
of the following four Log4J category logging methods directly through this class:

Logging.fatal(MonitoringEvent eventObj)
Logging.error(MonitoringEvent eventObj)
Logging.warn(MonitoringEvent eventObj)
Logging.info(MonitoringEvent eventObj)

2. UIActivityLog: for internal web components activity logging such as start and stop
operation. This logger object can be accessed through the variable
Logging.uiActivityLog:

Logging.uiActivityLog.fatal(MonitoringEvent eventObj)
Logging.uiActivityLog.error(MonitoringEvent eventObj)
Logging.uiActivityLog.warn(MonitoringEvent eventObj)
Logging.uiActivityLog.info(MonitoringEvent eventObj)

The following code segment provides an example of logging a service level agreement
violation monitoring event:

import com.bristol.tvision.util.TVisionCommon;
import com.bristol.tvision.util.log.Logging;
import com.bristol.tvision.util.log.MonitoringEvent;
.
public static void logViolation(String txnClass, . . .) {
 String msg = "Service level agreement violation detected";

 MonitoringEvent me = new MonitoringEvent(
 TVisionCommon.COMP_ANALYZER,
 "com.bristol.tvision.services.analysis.actions.LogSLAViolation",
 MonitoringEvent.CLASS_APPLICATION,
 "TVisionSLAViolation",
 MonitoringEvent.SEVERITY_WARNING);

 me.setMessage(msg);
 me.setParameter("txnClass", txnClass);

 Logging.analyzerActivityLog.warn(me);
}

4.7.3. SlotMap.properties

This file is used by the log4j TECAppender to allow mapping of parameters set into
MonitoringEvent to Tivoli slots. The file format is:

<MonitoringEvent parameter> = <Tivoli slot>

Any parameter specified here is explicitly mapped to a Tivoli slot. Parameter names
unspecified in this file are mapped to Tivoli slots tv_attrib[1|2|3] and their values are mapped
to slots tv_value[1|2|3].

Chapter 4 • Reference - Extending the Analyzer
Generating Application Events to Tivoli Enterprise Console (TEC)

100 TransactionVision Programmer’s Guide

4.7.4. Example Usage:

The following sample code writes an ERROR log message of class BTV_app_red, with
parameters "application", "transaction_class" set.

MonitoringEvent ev = new MonitoringEvent
(MonitoringEvent.TVISION_EVENT_APPLICATION, MonitoringEvent.ERROR);

 ev.setParameter("application", "Trade");
 ev.setParameter("transaction_class", "TRADE_CLASS");
 ev.setParameter("message_id", "TransactionError");
 ev.setMessage("Error fulfilling transaction xyz");
 Logging.analyzerActivityLog.error(ev);

4.7.5. BTV Class Definitions and Rulebase

Class definitions supplied address the following events:
• Internal events - events generated regarding the TransactionVision application itself
• Applications events - events generated by entities that TransactionVision is monitoring
• Unknown events - events that have not fit the criteria to be defined beyond coming from

TransactionVision.
• Escalation events - events of either internal or application that have exceeded count

thresholds

The rules file creates the following classes related to TransactionVision:
 BTV_app_black
 BTV_app_red
 BTV_app_yellow
 BTV_app_green
 BTV_int_black
 BTV_int_red
 BTV_int_yellow
 BTV_int_green
 BTV_unk

The classes BTV_int_[black|red|yellow|green] are used by TransactionVision internally while
the classes BTV_app_[black|red|yellow|green] may be used by application plugin code. The
color black, red, yellow, green indicates the severity level to be FATAL, ERROR, WARN
and INFO respectively.

The following slots will be created:
 message_id
 tv_component
 tv_attrib1
 tv_attrib2
 tv_attrib3
 tv_value1
 tv_value2
 tv_value3
 err_code
 application
 event_time
 transact_class

Chapter 4 • Reference - Extending the Analyzer
Generating Application Events to Tivoli Enterprise Console (TEC)

TransactionVision Programmer’s Guide 101

 transact_id

All slots may not be filled by TransactionVision internal messages.

Rulesets have supplied rules for the following:
• First instance rule which takes action upon an event the first time it arrives, or if there are

no other like events in either OPEN or ACK status
• Duplicate rule which identifies an event as a duplicate to a previous event in either OPEN

or ACK status, increments the repeat count on the original event, and drops the new event
• Escalation rule which takes action when an event has been received in succession for a

defined count and status is of OPEN or ACK
• internal events, which are focused on the TV application itself.

TransactionVision Programmer’s Guide 103

5. Using the Query Services

The Query Services interfaces provide a means to retrieve XDM mapped data from the
database using an XML based query document. The Query Services consist of the following
interfaces and classes: QueryServices interface is the top-level interface to create and run
queries. The methods in this class return an object that implements the Query interface,
which can be used to execute the query. Many of the methods in this class take an object
implementing the QueryDoc interface as a parameter. The QueryDoc object describes the
query to be obtained in the form of an XML document. A WhereClause can be set into the
QueryDoc, which describes what matching criteria should be used, and a SelectClause,
which describes what fields should be retrieved. A Cursor object is returned from several of
the QueryServices methods, which allows a user to iterate over the results. The
QueryServices implementation converts the input XML query into an SQL statement and
executes it. The Cursor class is a wrapper around the JDBC cursor classes.

The following sections will describe each of these objects and interfaces and show sample
code to document their usage.

5.1. Sample Usage

The following sample code shows how to create a query document, populate the document
with a query description, use the QueryServices interface to get a Query object back and
then execute the query. The sample counts the number of events for each MQPUT, MQPUT1
and MQGET.
// instantiate a new query document.
QueryDoc qdoc = new QueryDoc();

String[] apiCodes = { String.valueOf(MQDefs.MQPUT),
 String.valueOf(MQDefs.MQPUT1),
 String.valueOf(MQDefs.MQGET)};

// set the WhereClause of the QueryDocument to retrieve events
// containing a list of APIs, MQPUT, MQPUT1 and MQGET.
QueryDoc.WhereClause clause = new QueryDoc.WhereClause("mqputget",
 false,
 XPathConstants.APICODE,
QueryOp.EQ_QUERY_STRING,
 apiCodes,
 false);

Chapter 5 • Using the Query Services
Class QueryServices

104 TransactionVision Programmer’s Guide

// set the WhereClause into the QueryDoc.
qdoc.updateWhereClause(clause);

// select the fields to be retrieved in this case the program id.
String[] selects = { XPathConstants.PROGRAM_ID };
qdoc.insertSelect(selects);

// gets and execute the query.
Cursor queryCursor = customReportBean.getQueryResults(qdoc);

// map of API name versus event count for that API.
HashMap nameToCount = new HashMap();
int maxValue = 0;

// iterate through the query fetching the results from the database.
while (queryCursor.next()){

 String objValue = queryCursor.getValue(1,true);
 Integer count = (Integer)nameToCount.get(objValue);
 if (count == null)
 {
 count = new Integer(1);
 nameToCount.put(objValue,count);
 } else {
 int newValue = count.intValue() + 1;
 nameToCount.put(objValue,new Integer(newValue));
 if (newValue > maxValue)
 maxValue = newValue;
 }
}

The method getQueryResults used in the above code snippet is as follows. This method
gets the QueryService instance (QueryService is a singleton object per schema), gets an
event list query object and executes the query, returning the result set cursor.

public Cursor getQueryResults(QueryDoc queryDoc) throws
DataManagerException
 {
 // get a reference to the singleton QueryServices instance.
 QueryServices queryServ =
QueryServices.instance(schemaName);

 // get a query object.
 Query queryObj = queryServ.getEventListQuery(dbConn,
queryDoc);

 // execute the query and return a result set cursor.
 return queryObj.execute();
 }

5.2. Class QueryServices

public class com.bristol.tvision.datamgr.query.QueryServices
extends java.lang.Object
QueryServices is the main interface to query the XDM tables. It is a singleton object that
has methods that take a XML query document as the query definition and returns a query

Chapter 5 • Using the Query Services
Class QueryServices

TransactionVision Programmer’s Guide 105

object. This query object can then be executed to obtain a cursor, which is then used in
consecutive calls to retrieve data. All the methods in this interface that get a cursor or data
from the database require a valid JDBC SQL connection handle. The methods throw a
DataManagerException on an error condition occurring.

This interface defines the following methods.

5.2.1. Methods:

instance
public static QueryServices instance(java.lang.String schema)
 throws DataManagerException

This method returns the singleton instance for the specified schema

Parameters:

schema - The schema for which the instance should be returned. The schema name used by
the current project can be obtained by using the TVisionServlet class documented in
Chapter 4 of this manual.

Returns:

The return value is a reference to the singleton instance.

Example:

A servlet requiring access to a QueryServices instance could use the code below to get the
schema name using the getSessionBeanFromSession() method and then use the
instance method of the QueryServices singleton using the schema name.

String schemaName =
TVisionServlet.getSessionBeanFromSession(session).getSchemaName();

 QueryServices queryServ = QueryServices.instance(schemaName);

getEventDetail
public org.w3c.dom.Document getEventDetail(java.sql.Connection con,
 EventID eventId,
 TypeConvService convSvr)
 throws DataManagerException

This method returns the event XML document for a given event.

Parameters:
con The database connection to use
eventId The specified event
convSvr The TypeConvService allows fields like date and time formatting,

time-zone and other conversions to be applied to the retrieved data. A
value of null implies that no conversions are applied. Refer to the
section on TypeConvService for more information on the supported
conversions.

Returns:

The return value is an XML document containing event data.

Throws:

Chapter 5 • Using the Query Services
Class QueryServices

106 TransactionVision Programmer’s Guide

DataManagerException - if retrieving of the XML document fails

getUserDataLength
public long getUserDataLength(java.sql.Connection con,
 EventID eventId,
 int dataNum)
 throws DataManagerException

This method returns the length of a given message data segment for a given event. Typically,
message data is segmented when a data collection filter using data ranges is used to collect
data. In that case, this method allows you to get the size of a particular data segment.

Parameters:

con - he database connection to use.
eventId The event id the event that the message data belongs to.
dataNum The segment number of the message data, where the first segment has

index 0.

Returns:

The return value is the length of the message data segment.

Throws:

DataManagerException – occurs if the database operation fails.

getUserData
public byte[] getUserData(java.sql.Connection con,
 EventID eventId,
 int dataNum,
 int offset,
 int length)
 throws DataManagerException

This method returns a segment of a message data segment. This segment is specified by a
starting offset (offset) and the length (length) to return.

Parameters:
con The database connection to use.
eventId The event id the user data belongs to.
dataNum The segment number of the user data.
offset The starting offset of the segment to retrieve.
length The number of bytes to return.

Returns:

The return value is the message data part of the event of id eventId.

Throws:

DataManagerException - if database operation fails.

Example:

Chapter 5 • Using the Query Services
Class QueryServices

TransactionVision Programmer’s Guide 107

The following code retrieves the first (index 0) segment of the message data buffer into a byte
array.

QueryServices queryService =
QueryServices.instance(TVisionServlet.getSchemaNameFromSess

ion(session));
int dataLength =

(int)queryService.getUserDataLength(con, eventId, 0);
byte[] rawData =

queryService.getUserData(con,eventId,0,0,dataLength);

getEventListQuery
public Query getEventListQuery(java.sql.Connection con,
 org.w3c.dom.Document queryDoc)
 throws DataManagerException

This method creates a Query object for the given event list query document. The Cursor
obtained from executing the query can be used in the following calls to
getNextEventListDocument to get a specific part of the result returned as an XML
document.

Parameters:
con The connection to use for executing the query
queryDoc The XML query document specifying the event list query

Returns:

A Query object ready for execution

Throws:

DataManagerException - if parsing the query doc or executing the query fails.

Example:

The following sample gets and executes a query for a given query document. It then creates a
document containing an event list of all the events in the database. Note, that this event list
does not contain all the event data, only those that have been indexed in lookup tables.

 Query queryObj = query.getEventListQuery(con, queryDoc);
 Cursor cursor = queryObj.execute();
 int rowCount = cursor.getRowCount();
 Document doc = query.getNextEventListDocument(cursor,

0, rowCount, null);

getNextEventListDocument
public org.w3c.dom.Document getNextEventListDocument(Cursor cursor,
 int startIndex,
 int nrOfRows,
 TypeConvService convSvr)
 throws DataManagerException

This method returns the event list XML document for a given query cursor, start index, and
number of next rows to return. This event list document does not contain the complete event,
but only the data in database lookup tables.

Parameters:
cursor The query cursor on the events

Chapter 5 • Using the Query Services
Class QueryServices

108 TransactionVision Programmer’s Guide

startInd
ex

The index of first row to include in the document

nrOfRows The number of rows following the stating position to include in the
document

convSvr The TypeConvService allows fields like date and time formatting,
time-zone and other conversions to be applied to the retrieved data. A
value of null implies that no conversions are applied. Refer to the
section on TypeConvService for more information on the supported
conversions.

Returns:

The return value is the XML event document for the event list.

Throws:

DataManagerException - if retrieving of the data or assembly of the XML document fails

The format of the returned XML documents is:
<?xml version="1.0" encoding="UTF-8"?>

<EventList>

 <EventListItem Program=”Trade” APICode=”…” … />

 <EventListItem … />

 …

<//EventList>

Each <EventListItem> contains the data for one row of the result.

getPreviousEventListDocument
public org.w3c.dom.Document
getPreviousEventListDocument(Cursor cursor, int startIndex,
 int nrOfRows, TypeConvService convSvr)
 throws DataManagerException

This method returns the event list XML document for a given query cursor, start index, and
number of previous rows to return.

Parameters:
cursor The query cursor on the events
startIndex The index of first row to include in the document
nrOfRows The number of rows preceeding the stating position to include in

the document
convSvr The TypeConvService allows fields like date and time

formatting, time-zone and other conversions to be applied to the
retrieved data. A value of null implies that no conversions are
applied. Refer to the section on TypeConvService for more
information on the supported conversions.

Returns:

Chapter 5 • Using the Query Services
Class QueryServices

TransactionVision Programmer’s Guide 109

The XML event document for the event list

Throws:

DataManagerException - if retrieving of the data or assembly of the XML document fails

insert
public void insert(java.sql.Connection con,

com.bristol.tvision.services.analysis.XMLDocument doc)
 throws com.bristol.tvision.datamgr.DataManagerException

Inserts all values from the given XML document for which a XDM mapping is defined into
the corresponding lookup tables.

Parameters:
con The database connection to use
doc The XML document

Throws:

com.bristol.tvision.datamgr.DataManagerException - If the database insert fails

update
public void update(java.sql.Connection con,
 java.util.Map values,
 org.w3c.dom.Document queryDoc)
 throws com.bristol.tvision.datamgr.DataManagerException

Updates all rows in the lookup table which get selected by the query document. The columns
to update and the new values are passed in as a Map: The key is the XPath specifying the
column, the value is the new value. Note that the WHERE conditions in the query document
are only allowed to reference one lookup table.

Parameters:
con The database connection to use
values The map containing column xpaths and new values
queryDoc The query document specifying which rows to update

Throws:

com.bristol.tvision.datamgr.DataManagerException - If the database update
fails

delete
public void delete(java.sql.Connection con,
 org.w3c.dom.Document queryDoc)
 throws com.bristol.tvision.datamgr.DataManagerException

Deletes all rows in the lookup table which get selected by the query document. Note that the
WHERE conditions in the query document are only allowed to reference one lookup table.

Parameters:
con The database connection to use

Chapter 5 • Using the Query Services
Class QueryServices

110 TransactionVision Programmer’s Guide

queryDo
c

The query document specifying which rows to delete

Throws:

com.bristol.tvision.datamgr.DataManagerException - If the database delete fails

getLocalTransactionQuery
public Query getLocalTransactionQuery(java.sql.Connection con,
 EventID eventId,
 org.w3c.dom.Document queryDoc)
 throws DataManagerException

This method creates a Query object to query the database for all events contained in the same
local transaction as eventId . Execution of the query returns a Cursor which can be used in
following calls to getEventListDocument to get a specific parts of the result returned as
an XML document. The SELECT clauses in the query document define which rows to
include in the result, the WHERE clauses are ignored.

Parameters:
con The connection to use for executing the query
queryDoc The XML query document specifying the rows to include in the result

Returns:

A Query object ready for execution

Throws:

DataManagerException - if parsing the query doc or executing the query fails

getBusinessTransactionQuery
public Query getBusinessTransactionQuery(java.sql.Connection con,
 EventID eventId,
 org.w3c.dom.Document queryDoc)
 throws DataManagerException

This method creates a Query object to query the database for all events contained in the same
business transaction as eventId. Execution of the query returns a Cursor which can be used in
following calls to getEventListDocument to get a specific part of the result returned as an
XML document. The SELECT clauses in the query document define which rows to include in
the result, the WHERE clauses are ignored.

Parameters:
con The connection to use for executing the query
eventId The event ID

queryDoc The XML query document specifying the rows to include in the result

Returns:

A Query object ready for execution

Throws:

Chapter 5 • Using the Query Services
Class QueryServices

TransactionVision Programmer’s Guide 111

DataManagerException - if parsing the query doc or executing the query fails

getBusinessTransactionQuery
public Query getBusinessTransactionQuery(java.sql.Connection con,
 int businessTxnId,
 org.w3c.dom.Document queryDoc)
 throws DataManagerException

This method creates a Query object to query the database for all events contained in the
business transaction denoted by businessTxnId. Execution of the query returns a Cursor
that allows access to all columns specified in queryDoc

Parameters:
con The connection to use for executing the query
businessTxn
Id

The business transcation ID

queryDoc The XML query document specifying the rows to include in the
result.The WHERE clauses are ignored.

Returns:

A Query object ready for execution.

Throws:

DataManagerException - if parsing the query doc or executing the query fails

getCorrelatedEventsQuery
public Query getCorrelatedEventsQuery(java.sql.Connection con,
 EventID eventId,
 org.w3c.dom.Document queryDoc)
 throws DataManagerException

This method creates a Query object to query the database for all events correlated to the event
denoted by eventId. Execution of the query returns a Cursor that allows access to all
columns specified in select section of the query, as well as to the column "confidence",
“direction”, and “relation_type” of table event_relation.

Parameters:
con The connection to use for executing the query
eventId The eventID
queryDoc The XML query document specifying the rows to include in the

result. The WHERE clauses are ignored.

Returns:

A Query object ready for execution

Throws:

DataManagerException - if parsing the query doc or executing the query fails

updateBusinessTransactionLabel
public void updateBusinessTransactionLabel(java.sql.Connection con,

Chapter 5 • Using the Query Services
Class QueryDoc

112 TransactionVision Programmer’s Guide

 int businessTransactionId,
 java.lang.String label)
 throws DataManagerException

This method updates the label for a business transaction. This label is displayed on the left-
side panel of the transaction analysis view.

Parameters:
con The database connection to use
businessTransactionId The ID of the business transaction.
label The new label.

Throws:

DataManagerException - If database operation fails

getBusinessTransactionId
public int getBusinessTransactionId(java.sql.Connection con,
 EventID eventId)
 throws DataManagerException

This method returns the business transaction id for an event

Parameters:
con The database connection to use
eventId Event ID of the event

Returns:

int - The business transaction id for the event, or -1 if no business transaction exists

Throws:

DataManagerException - If database operation fails

getEventCount
public static int getEventCount(java.sql.Connection con,
 java.lang.String schema)
 throws DataManagerException

This method returns the number of events in the database for a particular schema.

Parameters:
con The database connection to use.
schema The schema for which to retrieve the event count.

Returns:

The event count

Throws:

DataManagerException - If database operation fails

5.3. Class QueryDoc
public class com.bristol.tvision.projectmgr.QueryDoc

Chapter 5 • Using the Query Services
Class QueryDoc

TransactionVision Programmer’s Guide 113

extends 2com.bristol.tvision.util.xml.XMLDocument

The QueryDoc class is used as the input query definition into the QueryServices object. The
schema the XML document is defined in the file
<TVISION_HOME>/config/xmlschema/Query.xsd.

A sample query document is as follows:

<?xml version="1.0" encoding="UTF-8"?>
 <Query desc="" name="default" timeZone="America/New_York">
 <Group name="MQSERIES">
 <Where name="apicode" negated="false" translateValue=”false”>
 <XPath>/Event/Technology/MQSeries/@apiCode</XPath>
 <Operator>equal</Operator>
 <Value>8</Value>
 <Value>11</Value>
 <Value>12</Value>
 </Where>
 </Group>
 </Query>

The above query searches for events on the XPath
“/Event/Technology/MQSeries/@apiCode”, that is the lookup column corresponding to the
MQSeries API code for values 8 (MQGET), 11(MQPUT) and 12 (MQPUT1). Note that there
is a separate <Group> section for each technology included in the query, and the conditions
of all <Group> sections are ORed together for the final query.

<?xml version="1.0" encoding="UTF-8"?>
 <Query desc="" name="default" timeZone="America/New_York">
 <Group name="MQSERIES">
 <Where name="apicode" negated="false" translateValue=”true”>
 <XPath>/Event/Technology/MQSeries/@apiCode</XPath>
 <Operator>equal</Operator>
 <Value>MQGET</Value>
 </Where>
 <Where name="program" negated="false">
 <XPath>/Event/StdHeader/ProgramName/@objectId</XPath>
 <Operator>equal</Operator>
 <Value>amqsput</Value>
 </Where>
 </Group>
 </Query>

The above query searches for WebSphere MQ API “MQGET” events from program name of
“amqsput”.

An “AND” operation is performed on the two “Where” clauses in the above query, while an
“OR” operation is performed on values within the same “Where” clause. To use actual
values instead of object ids the attribute “translateValue” has to be set to true in the “Where”
clause. The static inner class QueryDoc.WhereClause can be used to construct the
QueryDoc document instead of providing an XML document.

Because the internetal database lookup table stores the numeric object ID instead of an object
name, the QueryDoc must set the value of the Where clause to the object ID to get the correct
event. Alternately, the translateValue attribute can be set to true to compose a query doc

Chapter 5 • Using the Query Services
Class QueryDoc

114 TransactionVision Programmer’s Guide

based on object name instead of object id. This attribute causes the data in the <Value>
subelement to be treated as an object name. The corresponding object ID is looked up and
used before submitting the query to the query engine.

For example, the following code looks up an event where the program name is test and the
internal system model table says the object ID of test is 12:
 <Where name="prpogram" negated="false">
 <XPath>/Event/StdHeader/ProgramName/@objectId</XPath>
 <Operator>equal</Operator>
 <Value>12</Value>
 </Where>

To use the object name instead of the object ID, the code would be as follows:
 <Where name="prpogram" negated="false" translateValue=”true”>
 <XPath>/Event/StdHeader/ProgramName/@objectId</XPath>
 <Operator>equal</Operator>
 <Value>test</Value>
 </Where>

Furthermore, you can use SQL wildcard support for a more powerful query:
 <Where name="prpogram" negated="false" translateValue=”true”>
 <XPath>/Event/StdHeader/ProgramName/@objectId</XPath>
 <Operator>equal</Operator>
 <Value>tes%</Value><!— query all program names beginning with
‘tes’ !-->
 <Value>amqs_</Value><!— query all 5-letter program names
beginning with ‘amqs’ !-->
 </Where>

5.3.1. Constructors

QueryDoc
public QueryDoc()

This constructor creates new QueryDoc. The root element 'Query' is created automatically.

QueryDoc
public QueryDoc(java.lang.String name)

This constructor creates new a QueryDoc of a given name. The root element 'Query' is
created automatically.

Parameters:

name - The session unique name of this QueryDoc.

QueryDoc
public QueryDoc(java.lang.String queryName,
 byte[] queryDoc,
 boolean modified)
 throws ProjectManagerException

The constructor creates a new QueryDoc from the input queryDoc bytes.

Parameters:
queryName Name of the query

Chapter 5 • Using the Query Services
Class QueryDoc

TransactionVision Programmer’s Guide 115

queryDoc Document for the query.
modified Modification status for the query document.

Throws:

ProjectManagerException - Error generating XML document for the query

QueryDoc
public QueryDoc(QueryDoc other)

This copy constructor creates a new QueryDoc from the given input QueryDoc.

Parameters:

other - QueryDoc instance used to create a new QueryDoc from.

QueryDoc
public QueryDoc(boolean transDoc)

This constructor creates a new QueryDoc, if it is passed ‘true’ it will initialize the query
document to use the Transaction XDM Document type. This is required if you wish to query
on your transaction classes. By default the QueryDoc uses the Event document type.

5.3.2. Methods

getDocName
public java.lang.String getDocName()

This method gets the name of the query document.

Returns:

Name of query document

setDocName
public void setDocName(java.lang.String str)

This method sets the query name.

Parameters:

str - Name of query document.

setDocDescription
public void setDocDescription(java.lang.String desc)

This method sets the description string for the query document.

Parameters:

desc - Description string for the query document.

getDocDescription
public java.lang.String getDocDescription()

This method retrieves the description string for the query document.

Returns:

Chapter 5 • Using the Query Services
Class QueryDoc

116 TransactionVision Programmer’s Guide

Description string for the query document.

setTimeZone
public void setTimeZone(java.lang.String tzId)

This method sets the time-zone string for the query document.

Parameters:

desc - timezone string for the query document.

getTimeZone
public java.lang.String getTimeZone()

This method retrieves the time-zone string for the query document.

Returns:

The return value is the time-zone string for the query document.

toByteArray
public byte[] toByteArray()
 throws ProjectManagerException

This method returns the XML query document as a byte array.

Returns:

The return value is a byte array of the XML document. Returns null on failure.

insertSelect
public boolean insertSelect(java.lang.String[] xpaths)

This method sets an array of XPath expressions, which form the “SELECT” part of the query.

isModified

public boolean isModified()

Check if query document is changed since the last calling of setClean()

Return:

true, if document is modified.

setClean

public void setClean()

Reset the modified flag.

updateWhereClause
public boolean updateWhereClause(QueryDoc.WhereClause clause)

This method sets the “WHERE” part of the query. It will check the current query group
setting. If current query group id is QueryDoc.TECH_ALL, it updates where clauses for all
existing technology, otherwise just update the where clause of current selected query group.

Returns:

Parameters:

Chapter 5 • Using the Query Services
Class QueryDoc

TransactionVision Programmer’s Guide 117

clause - If there is no “Where” clause of same name in the query document, this clause is
added into the document, else the existing “Where” clause is updated.

updateWhereClause
public boolean updateWhereClause(WhereClause clause, int groupId)

Update where clause under given query group. The groupId can be any integer. The
following values are reserved for TransactionVision technology; if groupId is
QueryDoc.TECH_ALL, it updates where clauses for all existing query groups.

 TVisionCommon.TECH_ID_MQSERIES,
 TVisionCommon.TECH_ID_BTTRACE,
 TVisionCommon.TECH_ID_SERVLET,
 TVisionCommon.TECH_ID_JMS,
 TVisionCommon.TECH_ID_MQIMSBRIDGE, TVisionCommon.TECH_ID_EJB,
 TVisionCommon.TECH_ID_CICS

Parameters:
clause where clause
groupId group id

Return:

true if operation succeeds.

updateBufferClause
public boolean updateBufferClause(BufferClause clause)

Update buffer clause under current query group. If current query group id is
QueryDoc.TECH_ALL, it applies on all existing query groups.

Parameters:

clause - buffer clause

Return:

true if operation succeeds.

updateBufferClause
public boolean updateBufferClause(BufferClause clause, int groupId)

Update buffer clause under given query group. The groupID can be any integer. The
following values are reserved for TransactionVision technology. If groupId is
QueryDoc.TECH_ALL, it updates all buffer clauses under existing query groups.

Parameters:
clause buffer clause
groupId group id

Return:

true if operation succeeds.

deleteWhereClauseByName
public void deleteWhereClauseByName(String name)

Chapter 5 • Using the Query Services
Class QueryDoc

118 TransactionVision Programmer’s Guide

Delete where clause under current query group. If the current query group is
QueryDoc.TECH_ALL, it deletes where clauses from all existing query groups.

Parameters:

name - where clause name

deleteWhereClauseByName
public void deleteWhereClauseByName(String name, int groupId)

Update where clause under given query group. GroupId can be any integer. The following
values are reserved for TransactionVision technology; if groupId is QueryDoc.TECH_ALL,
it deletes where clauses from all existing query groups:

Parameters:
name where clause name
groupId group id

deleteBufferClause
public void deleteBufferClause()

Delete buffer clause under current query group. If the current query group id is
QueryDoc.TECH_ALL, it deletes all buffer clauses from existing query group.

deleteBufferClause
public void deleteBufferClause(int groupId)

Delete buffer clause under give technology. The groupID can be any integer . the following
values are reserved for TransactionVision Technology. If groupId is QueryDoc.TECH_ALL,
it deletes all buffer clauses from existing query group.

Parameters:

groupId - group id

findWhereClauseByName
public WhereClause findWhereClauseByName(String name)

Retrieve the where clause of given name under current query group

Parameter:

name - where clause name

Return:

WhereClause instance

findWhereClauseByName
public WhereClause findWhereClauseByName(String name, int groupId)

Retrieve the where clause of given name under given query group. GroupId should be the ID
of an existing query group.

Parameters:
name where clause name

Chapter 5 • Using the Query Services
Class QueryDoc

TransactionVision Programmer’s Guide 119

groupId query group id

Return:

WhereClause instance.

getBufferClause
public BufferClause getBufferClause()

Get buffer clause under current query group

Return:

BufferClause instance

getBufferClause

public BufferClause getBufferClause(int groupId)

Get buffer clause under given query group.

Return:

BufferClause instance

getWhereClauseNames
public String[] getWhereClauseNames()

Get all where clause names under current query group.

Return:

An array of where clause names.

getWhereClauseNames
public String[] getWhereClauseNames(int groupId)

Get all where clause names under given query group.

Return:

An array of where clause names.

isLinearSearch
public boolean isLinearSearch()

Check if query document contains linear search clause.

Return:

true if query document is linear searching.

isBufferSearch
public boolean isBufferSearch()

Check if query document contains buffer clause

Return:

true if there’s at least one buffer clause

Chapter 5 • Using the Query Services
Class QueryDoc

120 TransactionVision Programmer’s Guide

equals
public boolean equals(QueryDoc d)

Check if two queries equal or not.

groupCompare
public boolean groupCompare(QueryDoc d, int groupId1, int groupId2)

Compare group of different query doc.

printQueryDoc
public void printQueryDoc(OutputStream out)

Dump query document to given output stream.

Parameter:

out - output stream instance.

getCurGroup
public int getCurGroup()

Get current query group id

Return:

Query group ID

setCurGroup
public void setCurGroup(int groupId)

Set current query group id. GroupID can be any integer. The following values are reserved
for TransactionVision technologies:

 TVisionCommon.TECH_ID_MQSERIES,
 TVisionCommon.TECH_ID_BTTRACE,
 TVisionCommon.TECH_ID_SERVLET,
 TVisionCommon.TECH_ID_JMS,
 TVisionCommon.TECH_ID_MQIMSBRIDGE, TVisionCommon.TECH_ID_EJB,
 TVisionCommon.TECH_ID_CICS

Parameter:

groupId – The query group Id.

setCurGroup
public void setCurGroup(String name)

Set current query group by given technology name. QueryDoc will map the name to
TransactionVision technology ID.

Parameter:

name - technology name, must be one of the following values:

 TVisionCommon.TECH_ID_MQSERIES,
 TVisionCommon.TECH_ID_BTTRACE,
 TVisionCommon.TECH_ID_SERVLET,
 TVisionCommon.TECH_ID_JMS,

Chapter 5 • Using the Query Services
Class QueryDoc.WhereClause

TransactionVision Programmer’s Guide 121

 TVisionCommon.TECH_ID_MQIMSBRIDGE, TVisionCommon.TECH_ID_EJB,
 TVisionCommon.TECH_ID_CICS

setTechnologyOn
public void setTechnologyOn(boolean on, int techId)

Turn on/off the query for given technology. TechID must be one of the following values:

 TVisionCommon.TECH_ID_MQSERIES,
 TVisionCommon.TECH_ID_BTTRACE,
 TVisionCommon.TECH_ID_SERVLET,
 TVisionCommon.TECH_ID_JMS,
 TVisionCommon.TECH_ID_MQIMSBRIDGE, TVisionCommon.TECH_ID_EJB,
 TVisionCommon.TECH_ID_CICS

Parameters:
on flag turn on/off
techId technology id

isTechnologyOn
public boolean isTechnologyOn(int techId)

Check if query on given technology is on or off.

getTechnologyNameFromID
public static String getTechnologyNameFromID(int id)

Get technology name for given tech ID.

getTechnologyDescFromID
public static String getTechnologyDescFromID(int id)

Get technology display string for given tech ID.

getTechnologyIDFromName
public static int getTechnologyIDFromName(String name)

Get technology id from given technology name.

5.4. Class QueryDoc.WhereClause

This is an inner static class in the class QueryDoc. It is a utility class that helps to define the
where condition of the query. This condition is the matching criteria for which events should
be retrieved from the database.

5.4.1. Fields

name
public java.lang.String name
Name of the where clause

negated
public boolean negated

Chapter 5 • Using the Query Services
Class QueryDoc.WhereClause

122 TransactionVision Programmer’s Guide

Whether the where clause has "not" condition

xpath
public java.lang.String xpath
XPath for the where clause

operator
public java.lang.String operator
Operator for the where clause

values
public java.lang.String[] values
Values for the where clause

isLinearCond
public boolean isLinearCond
Specifies whether the “Where” clause is a linear search condition.

translateValue
public boolean translateValue
If true, causes all data in the <Value> subelement to be treated as an object name. The
corresponding object ID will be looked up and used before submitting the query to the
query engine.

valueType
public java.lang.String valueType

TYPE_BIN
public static final java.lang.String TYPE_BIN

TYPE_TEXT
public static final java.lang.String TYPE_TEXT

codePage
public java.lang.String codePage

5.4.2. Constructors

QueryDoc.WhereClause
public QueryDoc.WhereClause()

This constructor creates an empty object.

QueryDoc.WhereClause
public QueryDoc.WhereClause(java.lang.String Name,
 boolean Negated,
 java.lang.String XPath,
 java.lang.String Operator,
 java.lang.String[] Values,
 boolean IsLinearCond)

This constructor creates a “WhereClause” object using the given data.

Chapter 5 • Using the Query Services
Class QueryDoc.WhereClause

TransactionVision Programmer’s Guide 123

Parameters:
Name - Name of the “Where” clause.
Negated - Whether the where clause has "not" condition.
XPath - XPath of “Where” clause.
Operator - Operator of “Where” clause.
Values - Values of “Where” clause.
IsLinearCond - True if “Where” clause is a linear search condition.

QueryDoc.WhereClause
public QueryDoc.WhereClause(java.lang.String Name,
 boolean Negated,
 java.lang.String XPath,
 java.lang.String Operator,
 java.lang.String[] Values,
 boolean IsLinearCond,
 java.lang.String valueType,
 java.lang.String codePage)

This constructor creates a “WhereClause” object using the given data.

Parameters:
Name - Name of the where clause
Negated - Whether the “Where” clause has "not" condition
XPath - XPath of “Where” clause
Operator - Operator of the “Where” clause
Values - Values of the “Where” clause
IsLinerCond - True if “Where” clause is a linear condition
valueType - Either of the following values, it’s just for query edit page display
 QueryDoc.WhereClause.TYPE_BIN
 QueryDoc.WhereClause.TYPE_TEXT
codePage - The character code page

QueryDoc.WhereClause
public QueryDoc.WhereClause(java.lang.String Name,
 boolean Negated,
 java.lang.String XPath,
 java.lang.String Operator,
 java.lang.String[] Values,
 boolean IsLinearCond,
 java.lang.String valueType,
 java.lang.String codePage,
 java.lang.String techID)

This constructor creates a “WhereClause” object using the given data.

Parameters:
Name - Name of the where clause
Negated - Whether the “Where” clause has "not" condition
XPath - XPath of “Where” clause
Operator - Operator of the “Where” clause
Values - Values of the “Where” clause
IsLinerCond - True if “Where” clause is a linear condition
valueType - Either of the following values. For display purpose only.

Chapter 5 • Using the Query Services
Interface Query

124 TransactionVision Programmer’s Guide

 QueryDoc.WhereClause.TYPE_BIN
 QueryDoc.WhereClause.TYPE_TEXT
codePage - The character set code page, that is used when converting the hexidecimal
 value string into text
techID – Technology ID

5.4.3. Methods

equals
public boolean equals(QueryDoc.WhereClause c)

This method compares two WhereClause objects.

Parameters:

c - another instance of WhereClause

Returns:

true if two are considered be equal

5.4.4. Example

The sample code below creates a query document with a “WhereClause” and a
“SelectClause” using the methods updateWhereClause and insertSelect. The query condition
is named “mqputget” and specifies to match all MQPUT, MQPUT1 and MQGET APIs. The
data fetched out of the database is specified by the selects String array and contains the XPath
expressions for the fields entry time, exit time, API code, host id, program id, program
instance id and sequence number.

QueryDoc qdoc = new QueryDoc();

String[] apiCodes = { String.valueOf(MQDefs.MQPUT),
 String.valueOf(MQDefs.MQPUT1),
 String.valueOf(MQDefs.MQGET)};
QueryDoc.WhereClause clause = new QueryDoc.WhereClause("mqputget",
 true,

XPathConstants.APICODE,
QueryOp.EQ_QUERY_STRING,

 apiCodes,
 false);

String[] selects = { XPathConstants.PRIMARYTIME,
 XPathConstants.APICODE,
 XPathConstants.HOST_ID,
 XPathConstants.PROGRAM_ID,
 XPathConstants.PROGINST_ID,
 XPathConstants.SEQUENCE_NO };

qdoc.updateWhereClause(clause);
qdoc.insertSelect(selects);

5.5. Interface Query
public interface com.bristol.tvision.datamgr.query.Query

Chapter 5 • Using the Query Services
Interface Cursor

TransactionVision Programmer’s Guide 125

This interface provides the functionality to run a query. This object is obtained from methods
in the QueryServices class.

5.5.1. Methods

execute
public Cursor execute()
 throws DataManagerException

This method executes the query and returns a Cursor object to be iterated over.

Throws:

DataManagerException - If executing the query fails

close
public void close()
 throws DataManagerException

This method closes the query and releases the database resources. The query can not be
executed again once close has been called.

Throws:

DataManagerException - If release of the database resources fails

cancel
public void cancel()
 throws DataManagerException

This method can be called from a different thread to cancel the current query execution.

Throws:

DataManagerException - If the cancel fails

5.6. Interface Cursor

public interface com.bristol.tvision.datamgr.query.Cursor
The cursor interface is used to iterate over data returned by a query.

5.6.1. Methods

getRowCount
public int getRowCount()

This method returns the number of table rows in the query result, or -1 if this feature is not
supported

Returns:

The number of rows

getColumnCount
public int getColumnCount()

This method returns the number of columns in the query result

Chapter 5 • Using the Query Services
Interface Cursor

126 TransactionVision Programmer’s Guide

Returns:

The number of columns

getColumnDescription
public java.lang.String getColumnDescription(int index)

This method returns the column description for the specified column. The index of the first
column is 1.

Parameters:

index - The index of the column

Returns:

The column name

getColumnName
public java.lang.String getColumnName(int index)

This method returns the database column name for the specified column. The index of the
first column is 1.

Parameters:

index - The index of the column

Returns:

The column name

getRow
public int getRow()
 throws DataManagerException

This method returns the current row for this cursor

Returns:

The current row, or 0 if there is no current row

getValue
public java.lang.String getValue(int index)
 throws DataManagerException

This method returns the value of the column as a String value. The index of the first column
is 1.

Parameters:
index - The index of the column

Returns:

The value of the column, converted into a String

Throws:

DataManagerException - If getting the value from the underlying ResultSet fails

Chapter 5 • Using the Query Services
Interface Cursor

TransactionVision Programmer’s Guide 127

getValue
public java.lang.String getValue(int index,
 TypeConvService convSvr)
 throws DataManagerException

This method returns the value of the column as a String value (converted by the type
conversion service). The index of the first column is 1.

Parameters:
index The index of the column
convSvr The type conversion service to use.

Returns:

The value of the column, converted into a String

Throws:

DataManagerException - If getting the value from the underlying ResultSet fails

getIntValue
public int getIntValue(int index)
 throws DataManagerException

This method returns the value of the column as an integer value. The index of the first
column is 1.

Parameters:

index - The index of the column

Returns:

The value of the column, converted into a integer

Throws:

DataManagerException - if getting the value from the underlying ResultSet fails

getValue
public java.lang.String getValue(java.lang.String key)
 throws DataManagerException

This method returns the value of the column as a String value. The column is identified by a
key (XPath for XDM columns).

Parameters:

key - The key for the column

Returns:

The value of the column, converted into a String

Throws:

DataManagerException - If getting the value from the underlying ResultSet fails

getValue
public java.lang.String getValue(java.lang.String key,
 TypeConvService convSvr)

Chapter 5 • Using the Query Services
Interface Cursor

128 TransactionVision Programmer’s Guide

 throws DataManagerException

This method returns the value of the column as a String value (possibly converted by the type
conversion service). The column is identified by a key (XPath for XDM columns).

Parameters:
key The key for the column
convSvr The type conversion service to use

Returns:

The value of the column, converted into a String

Throws:

DataManagerException - If getting the value from the underlying ResultSet fails

getIntValue
public int getIntValue(java.lang.String key)
 throws DataManagerException

This method returns the value of the column as an integer value. The column is identified by
a key (XPath for XDM columns).

Parameters:

key - The key for the column

Returns:

The value of the column, converted into a integer

Throws:

DataManagerException - if getting the value from the underlying ResultSet fails

getValueMap
public java.util.Map getValueMap(TypeConvService convSvr)
 throws DataManagerException

This method returns a Map object which contains a mapping from XPath to current column
value, or null if this feature is not supported.

Parameters:

convSvr - The type conversion service to use.

Returns:

A Map object containing the values of the current row

Throws:

DataManagerException - if getting the values from the underlying ResultSet fails

wasNull
public boolean wasNull()
 throws DataManagerException

This method reports whether the last column read with getValue() or getIntValue had a
value of SQL NULL

Chapter 5 • Using the Query Services
Interface Cursor

TransactionVision Programmer’s Guide 129

Returns:

true if the last column value read was SQL NULL and false otherwise

Throws:

DataManagerException - if accessing the ResultSet fails

next
public boolean next()
 throws DataManagerException

This method moves the cursor forward one row from its current position. A Cursor is initially
positioned before the first row, calls to next() advance the cursor to the next row.

Returns:

true if the new current row is valid; false if there are no more rows

Throws:

DataManagerException - if moving the cursor in the underlying ResultSet fails

previous
public boolean previous()
 throws DataManagerException

This method moves the cursor backwards one row from its current position. A Cursor is
initially positioned before the first row, calls to previous() advance the cursor to the previous
row.

Returns:

true if the new current row is valid; false if there are no more rows

Throws:

DataManagerException - if moving the cursor in the underlying ResultSet fails

absolute
public boolean absolute(int row)
 throws DataManagerException

This method moves the cursor to an absolute row position.

Parameters:

row - The row to position on

Returns:

true if the new current row is valid; false if cursor is not positioned on valid row

Throws:

DataManagerException - if positioning the cursor in the underlying ResultSet fails

close
public void close()
 throws DataManagerException

This method closes the cursor and all with the cursor associated database resources

Chapter 5 • Using the Query Services
Class DataManagerException

130 TransactionVision Programmer’s Guide

Throws:
DataManagerException - if closing the underlying JDBC resources fails

5.7. Class DataManagerException
public class DataManagerException
extends TVisionException

This exception class contains errors from the DataManager package.

5.7.1. Constructors

DataManagerException
public DataManagerException()

This constructor creates new DataManagerException without a detail message string.

DataManagerException
public DataManagerException(java.lang.Throwable t)

This method constructs a DataManagerException with the specified embedded
Throwable.

DataManagerException
public DataManagerException(java.lang.Object[] args)

This method constructs a DataManagerException with the specified logging arguments.

Parameters:
args - the logging arguments

DataManagerException
public DataManagerException(java.lang.Throwable t,
 java.lang.Object[] args)

This method constructs a DataManagerException with the specified embedded
Throwable and the specified logging arguments.

Parameters:
t - the exception to chain
args - the logging arguments

5.7.2. Methods

getSQLException
public java.sql.SQLException getSQLException()

This method returns the embedded exception as a SQLException if it is an instance of
SQLException, null otherwise.

Returns:

The SQLException, or null if the embedded exception is not an instance of
SQLException

Chapter 5 • Using the Query Services
Class DataManagerException

TransactionVision Programmer’s Guide 131

isUniqueViolationException
public boolean isUniqueViolationException()

Returns true if the embedded exception is a SQLException indicating a violation of an unique
constraint, false otherwise.

Returns:
true if exception is a unique constraint violation

isStringTruncationException
public boolean isStringTruncationException()

This method returns true if the embedded exception is a SQLException indicating that a
string has been truncated because it is too long for the column, false otherwise.

Returns:
true if exception is a truncation exception

isComplexityException
public boolean isComplexityException()

This method returns true if the embedded exception is an SQLException indicating that the
executed SQL statement was too complex, false otherwise.

Returns:
true if exception is a SQL complexity violation

isOperationCanceledException
public boolean isOperationCanceledException()

This method returns true if the embedded exception is an SQLException indicating that the
executed SQL query has been canceled, false otherwise.

Returns:

true if exception is a SQL cancellation violation

TransactionVision Programmer’s Guide 133

6. Extending the User Interface

6.1. Writing TransactionVision Reports

TransactionVision reports are essentially JSPs and servlets which make queries into
TransactionVision project tables to extract, analyze and present data collected. These reports
may either use the QueryServices classes or make direct JDBC SQL calls to perform queries.
The presentation of the reports may be in any browser support technology such as HTML,
SVG or Java applets.

The TransactionVision report framework is based on the Model-View-Controller (MVC)
design pattern. When creating new reports, you must code the "View" and "Model" parts of
the framework, then hook them into the report framework. To facilitate report development,
the TransactionVision report framework provides the following:

• A library of custom JSP tags

• Interfaces for handling report generation and report parameters

The TransactionVision report framework also provides a default implementation of the
interfaces. You are encouraged to use the default implementation and override only those
aspects that are unique to your report. The TransactionVision installation provides a set of
sample reports; use them as a reference when creating your own reports.

To creat a new TransactionVision report, you must do the following:

1. Identify report parameters.

2. Create a new implementation of the IReportData interface, or derive a class from the
BaseReportBean. Create get/set methods for each parameter that has to be updated by
the framwork, with values from either the HTTP request or from a saved database record.

3. Create a new implementation of the IReportAction interface to generate the report. If
additional actions are defined for the report, then provide an implementation of
IReportAction for each of these as well. The DefaultReportActionImpl Java
class handles most of the operations known to the framework; you are expected to
override only the CreateReport action.

4. Write up a new JSP to display the report. The JSP custom tag library assists in JSP
creation.

5. Add the report to the <TVISION_HOME>/config/ui/reports.xml file.

Chapter 6 • Extending the User Interface
Writing TransactionVision Reports

134 TransactionVision Programmer’s Guide

Note: trace and debug messages from the report framework and tag classes are written to the
UI_TRACELOG under the category "ReportTrace."

The following diagram shows an overview of how the report framework handles an incoming
report request:

No
Report
Request

Report Control Servlet

Lookup
definition from
Report.xml file.

Create an
instance of the
define report
bean and call
its perform()
method.

Report Bean

Perform all
relevant
logic for this
report

Does this
action have
a redirect
setting?

Attempt to run a default
report action. (Save report
settings, delete a saved
report, load a saved
parameters)

Redirect to
another
report or
URL

No

Specified
report JSP
page is
loaded

Yes

Yes

Does this
report have a
handler for this
action?

Chapter 6 • Extending the User Interface
Writing TransactionVision Reports

TransactionVision Programmer’s Guide 135

6.1.1. Report Interfaces

The IReportData and IReportAction interfaces enable the report framwork to handle
reports in a uniform way. Each report can have one implementation of IReportData and
one or more IReportAction implementations. All report interfaces may be implemented in
either one Java class or a separate class for each interface.

IReportData
public interface IReportData {
 public String parmsToXML
 (HttpServletRequest request) throws UIException;
 public void extractParmsFromRequest
 (HttpServletRequest request) throws UIException;
 public void XMLtoParms
 (HttpServletRequest request, String xmlRep)
 throws UIException;
}

This interface encompasses the most common operations executed on a specific report's
parameters. The following operations are currently identified:

• Creating an XML document holding a list of parameters and their current values for easy
storage in a database.

• Extracting the parameters from either a submitted HTTP request object or an XML
document and updating the report bean properties.

The com.bristol.tvision.ui.report.DefaultReportDataImpl class provides a
default implementation of this interface. You may either derive from this class or provide
your own implementation of this interface.

Note: The framework assumes and depends on the report bean to provide the get/set function
for each individual parameter. The prototypes of these functions are as follows:

void setXXXXXX(String value);
String getXXXXXX();

If you do not provide a get/set method for any parameter, the default implementation of the
framework is unable to handle that parameter.

For an example, see the SLA Analysis Report. This report contains two parameters:
ReportDate and SelectedTxnClasses. The bean
com.bristol.tvision.report.samples.performance.SLAAnalysisReportBean
derives from the DefaultReportDataImpl class and also provides set/get methods for the
two parameters.

IReportAction
public interface IReportAction {
 public void perform(HttpServletRequest request)
 throws UIException;
}

This interface represents a single atomic operation that can be operated on a report. You must
provide at least one implementation of this interface to handle creation of the report itself.
The following other operations are also recognized by the framework:

• Saving the report parameters to the database. This helps end-users generate reports with
just a click of a URL. Multiple configurations may be saved for each report.

Chapter 6 • Extending the User Interface
Writing TransactionVision Reports

136 TransactionVision Programmer’s Guide

• Retrieving the previously saved report parameters and generating the report.

• Deleting obsolete saved report parameter record(s) from the database.

The operations of the framework are CreateReport, SaveParameters,
DeleteParameters, and GetParameters. The
com.bristol.tvision.ui.report.DefaultActionImpl class provides a default
implementation for these framework actions as follows:

Action Default Implementation
CreateReport Does nothing.
SaveParameters Calls an IReportData function to wrap all the report parameters

in an XML document, then saves the document in the
REPORT_PARAMETERS table.

GetParameters This action is executed when a saved report configuration link is
clicked from the list of reports page. It extracts the saved record
from the databse and passes it onto an IReportData function to
update the report bean's properties then generate the report using
these parameters.

DeleteParameters Deletes an instance of the saved report parameters record and
redisplays the list of available reports.

A report can override any or all these actions by providing a different IReportAction
implementation.

You may also define new actions for your reports. The new actions must be handled by the
report defining them. One implementation of this interface can handle one action, or it can be
made to handle multiple actions by identifying the action by anme and handling it
accordingly.

For examples, see the following reports installed with TransactionVision:

• The SLA Analysis Report bean implements the IReportAction interface for
CreateReport.

• The Dashboard Report bean derives from the BaseReportBean class and implements
the IReportAction::perform() method for generating the report.

• The com.bristol.tvision.ui.report.framework.ReportListBean report
defines a new action—SelectReport—and the bean provides a common
implementation for the CreateReport and SelectReport actions.

BaseReportBean

This is an abstract class extending DefaultReportDataImpl. It includes some additional
methods that are common to most reports, such as handling the reporting time period
parameter (From and To dates) and obtaining a database connection handle.

You may create new report beans by deriving from this class. At a minimum, the new bean
must provide set/get methods for each report parameter and provide an implementation of the
IReportAction::perform() method to generate the report data.

Chapter 6 • Extending the User Interface
Writing TransactionVision Reports

TransactionVision Programmer’s Guide 137

6.1.2. TransactionClass

The class com.bristol.tvision.datamgr.dbtypes.TransactionClass is provided to to get access to
the transaction classification definitions. Its interface is as follows; an example of its use can
be found in the report samples:
public Integer[] getClassIds()

 Returns an Integer Array of ClassIds
public Map getClassAttributes(int classId)

Parameters: classId - The class id to retrieve the attributes for

 Returns a map of all this classes attributes
public String getClassAttributeValue(int classId, String
xpath)

Parameters: classId - The class id to retrieve the attributes for

 xpath - The specific xpath of the attribute you want to lookup

 Returns the attribute value, or if it doesn't exist, null.
public int getCount()

 Returns the numbers of definitions for the given project.

6.1.3. JSP Custom Tag Library

TransactionVision provides a JSP custom tag library that you may use while writing the
report JSP. Most of the tags are for creating the HTML form that obtains report parameters
from the user generating the report.

Two basic report tags are required for every report JSP within the report framework: the
report tag and the form tag. The following example shows these tags:

<tvreport:report>
<tvreport:form name = “reportForm” >

[…] Put all your form elements here.
[…] Put all your button definitions here – See ActionBuildTag.
</tvreport:form>
[…] Put all display related JSP code here.
</tvreport:report>

The Report Tag

The report tag (<tvreport:report>) frames the entire contents of your report. All contents of
your JSP should occur within the contents of this tag. This tag sets up the basic infrastructure
that the report needs. Most importantly, it sets a number of page context attributes that
contian relevant information about the currently running report. The following table
describes these variables, which are accessible from the JSP:

Variable Description

reportRequest This object is an instance of the ReportRequestParms (see
javadoc) object for this report.

reportData This object is the instance of your data bean for this report.

Chapter 6 • Extending the User Interface
Writing TransactionVision Reports

138 TransactionVision Programmer’s Guide

Variable Description

categoryName category name of current report

subCategoryName subcategory name of current report

reportName name of current report

Important:
Only access these variables within the report tag. For example, trying to access them before
the <tvreport:report> start tag results in an error.

The Form Tag

The other required tag is the form tag. The body of this tag contains all the HTML you want
displayed to set the parameters for configuring what the report will display and buttons for
deciding what action the report should perform. This tag creates an HTML form tag and
inserts a number of hidden form elements that contain information for the framework on how
to handle this report when the form is submitted.

Anything occuring after the end of the form tag (after </tvreport:form>) is part of display
portion of the report. These contents will only be displayed once the report has been run; it
will not show on the initial entry to the report. Place any representation of your data in this
section.

6.1.4. Tag Reference

This section provides reference information for TransactionVision report tags.

Form

This tag provides an HTML form for holding all the report parameters. The framework itself
uses hidden HTTP form fields for identifying the report in the current request, user name, etc.
This tag automatically generates the HTML for these hidden variables. When this form is
submitted to the report framework, all fields submitted from the form are checked against the
reports data bean. If a get/setter method matching the name of the form field is found, the
value will be read and saved into the bean.

Important:
This tag has changed from the previous TransactionVision version; be sure to read the
'Migrating Form Tag' section to learn about these differences.

Attributes of this tag are:
name The name corresponds to the name of the form. You can then

use that name to access the form via JavaScript.
onValidate (optional) Name of a JavaScript function to perform client side

validation of data entered into a reportform. The javscript
function specified in onValidate will be called whenever the user
submits the form. If the specified function returns false, the form
will not be submitted.

Example:
 […]
 <%@ taglib uri="/tvReportTags" prefix="tvreport" %>
 <tvreport: form name=”reportForm” onValidate="MyValidationCB">

Chapter 6 • Extending the User Interface
Writing TransactionVision Reports

TransactionVision Programmer’s Guide 139

 <tr class='tableHdr'><td colspan='10'>Report
Parameters</td></tr>
 <tr>
 <td>A Checkbox</td>
 <td><input type="checkbox" name="mychkbox"
checked/></td>
 </tr>
 </table>
 </tvreport:form>

Button

By default a report form will contain no buttons. Use the button tag to add a desired button.

This tag has four attributes: type, label, callback and action.

Type
The type attribute can be used to create the standard report buttons, and will override the
other attributes. The three standard buttons are the Generate Report, Print Preview, and Save
Settings buttons. They can be created as shown in the following example. These buttons can
then be added, or removed as desired from your report.
 <tvreport:button type='<%=ActionButtonTag.GENERATE_REPORT%>'/>
 <tvreport:button type='<%=ActionButtonTag.PRINT_PREVIEW%>'/>
 <tvreport:button type='<%=ActionButtonTag.SAVE_REPORT%>'/>

If you wish to further customize your buttons, the other three attributes allow you to control
this.

Label
The text on the button. The label attribute specifies what text will appear in the button.

callback
Javascript callback to call when button is pressed. The callback names an optional JavaScript
function that you want called to do some processing before the form is submitted. The
default callbacks for the standard buttons are generateReport, printPreviewReport, and
saveReport respectively. These can be specified in most cases, but if you have further special
tasks you want done you can write your own callback.

action
Report Action to initiate. The action is the report framework action this button initiates. If
you have extended your report bean to support additional action types, you can use this field
to create a button for doing this action.

The below shows an example of creating a button called 'Replay Events' that when pressed
will generate the report.
<tvreport:button label="Replay Events" callback="generateReport"
action="CreateReport"/>

Multiselect

This is a helper tag that provides some useful features. This tag creates a list of checkboxes
that are all associated with a single parameter as given through the name attribute. This can
be useful if you have a number of dynamically generated checkboxes, and thus your bean will
not have set/get methods predefined. In this case all the option tags associated with this
multiselect concatenate their values, delimeted by a ';' to the named value. The report bean
can then extract these values from a single parameter. This is used commonly in the shipped

Chapter 6 • Extending the User Interface
Writing TransactionVision Reports

140 TransactionVision Programmer’s Guide

TransactionVision reports to list all the transaction classes in a report. (see the following
example). For lists of items that can have a large set of unique values, this tag also creates
this checkboxes within a scrollable area.

This tag has two attributes:
name Required, is the name of the variable in the bean where the data will be

sent.
initValue (Optional) The checkbox matching this name will be selected when this

tag is initialized. If its not set, all checkboxes will be initialiy selected.
Listsize (Optional) Controls the minimum size of the list of checkboxes to

display before a scrollbar appears.

Example:
<tvreport:multiselect name="selectedTxnClasses" listsize="10">
 <% for (int i = 0; i < numTxnClasses; i++) { %>
 <tvreport:option value='<%=txnClassNames[i]%>'/>
 <% } %>
 </tvreport:multiselect>

6.1.5. Report Example

This section provides an overview of the steps that can be followed to get a dashboard style
report with controls that update in real-time, and how to accomplish this effect using the
Report Framework.

The Transaction Scorecard Dashboard report is an extension of the 'How are my transactions
performing' report. Instead of specifying a date range, the dashboard version of the report
will automatically refresh itself at the given interval and show the latest data for the past N
minutes. The steps taken to convert from the fixed time report to an updating report should
provide insight into how this process could be applied to other reports to accomplish a similar
effect. The method described shows how you can dynamically update a Flash image using
the TransactionVision report framework.

The report needs to be able to handle a special request, and return data in Flash content when
this request is made. The first step in this process is to extend our report’s definition to
configure this action. In Reports.xml, define a new action called ‘Dashboard.’ The
‘redirectURL’ attribute we give to this action tells the report framework that after this bean
has done its processing (querying the database, constructing the necessary prerequisites for
this graph’s construction), it is to forward this request to another servlet. The servlet will then
convert that data into a graph. This special redirection is needed because the default behavior
of the report framework is to send the browser back to the main jave server page defined for
this report.

Report.xml example XML:
<Report name="myreport.report" title="A Dashboard report"
layoutfile="/reports/dashboard.jsp"
dataclass="my.dashboard.reportbeanclass">
<ShortDesc>"A Dashboard report</ShortDesc>
<Description> ... </Description>
<Action name="CreateReport" class="my.dashboard.reportbeanclass" />
<Action name="Dashboard" class="my.dashboard.reportbeanclass"
redirectUrl="/GraphGeneratorServlet"/>
</Report>

Chapter 6 • Extending the User Interface
Writing TransactionVision Reports

TransactionVision Programmer’s Guide 141

We must also change the ReportBean itself to do some things differently than the standard
simple report. First, you must distinguish between whether this is a dashboard action or the
standard report generation action. Because the dashboard generation request and the report
creation request are now split into separate calls, there must be some way of communicating
the options selected for this report to the dashboard request. For example: what trasaction
class to track, or another criteria selected from the form that the bean needs to generate all its
data. These configuration settings can be saved into the session so that when a subsequent
dashboard request comes in, the configuration can be retrieved from there. Additionally,
before completing, the dashboard action should save the appropriate results so that
GraphGeneratorServlet knows how to generate its image. The following pseudo code shows
how this might be done:

ReportBean example code:

ReportRequestParms reportRequest = (ReportRequestParms)

request.getAttribute(ReportConstants.TVREPORT_REQUEST);

 if (reportRequest.getActionName().equals("Dashboard")) {
 Retrieve report configuration parameters
 Generate my data here
 Save graph data where GraphGeneratorServlet can retrieve
it.
 }else {
 Handle standard report processing
 }

The data from the report bean could be passed via a request object and the
GraphGeneratorServlet in this case might do something like the following to generate the
Flash content.

Note that in the case of a PopChart Flash control, such as those used by the current
TransactionVision report samples, TransactionVision already provides a servlet that can do
exactly this. By placing the appropriately configued PCISLibEmbedder object into the
PopChartServlet.OBJECT_NAME request attribute, and setting your redirectUrl to
"/PopChartServlet" you will generate a popchart Flash control. Otherwise, you could create
the GraphGeneratorServlet using code similar to the following:

protected void processRequest(HttpServletRequest request,
HttpServletResponse response) throws ServletException,
java.io.IOException {

ServletOutputStream sos = response.getOutputStream();
MyGraphObject graphImage = request.getAttribute(OBJECT_NAME);
response.setContentType("application/x-shockwave-flash");
byte[] imgBytes = graphImage.getImageData();
response.setContentLength(imgBytes.length);
sos.write(imgBytes);
...
}

You've now defined all the report framework steps needed for this new action, and only need
to complete the hookup in the JSP. This is accomplished through a two-step process. The
automated updating itself will be controlled through a javascript function in a seperate page
that is embedded as an iframe in your main report page. The javascript on this page will use

Chapter 6 • Extending the User Interface
Writing TransactionVision Reports

142 TransactionVision Programmer’s Guide

a timer to periodically submit a request to the report framework; this way, the whole page
will not be unneccassarily refreshed, only the graph that needs updating.
<iframe FRAMEBORDER=0 SCROLLING=NO WIDTH="216" HEIGHT="282"
src="updateflashctrlframe.jsp?myoption=xyz"> </iframe>

In the updateflashctrlframe.jsp, you would then set up a form that contains all of the
parameters needed for this request. This is needed so that when the javascript timer fires, this
form will again be submitted, maintaining its current parameters.
<form name="dashform" id="dashform"
action="updateflashctrlframe.jsp" method="GET" >
<input type='hidden' name='actionName' value="Dashboard">
<input type='hidden' name='myoption'
value="<%=request.getParameter("myoption")%>">
[... any other form fields required ...]

</form>

You will also need to add a line like the following which defines the flash object, contains the
URL to the servlet generating the image, and passing any required parameters to this request:
<embed ID="gauge" WIDTH="210" HEIGHT="280" TYPE="application/x-
shockwave-flash"
pluginspage="http://www.macromedia.com/shockwave/download/download.c
gi?P1_Prod_Version=ShockwaveFlash"
src="http://...//ReportControlServlet/[standard report
options]&myoption=xyz"></embed>

Javascript like the following can then be used to cause this page to be sumitted every 60
seconds:
<script language='JavaScript1.1'>
function Update() {
 document.dashform.submit();
 }
 window.setTimeout("Update()",60000);
</script>

Some of the implementation details in the above descriptions have been ommited. To see the
complete details the basic mechanism for automatically updating a chart within your report,
you can examine the 'How are my transactions performing?' report. This report is comprised
of the com.bristol.tvision.ui.report.bean.TransactionScoreCardBean class and its JSP files,
TransactionDash.jsp and dashboardframe.jsp. These files can be found in the samples/report
directory in your TransactionVision installation.

6.1.6. Adding a Report to the Framework

All reports are configured and defined in the file
<TVISION_HOME>/config/ui/Reports.xml. When a report is added to this file, a link to
the report becomes available in the “Reports” page of the TransactionVision user interface.

The Reports.xml file defines one or more reports. Each report definition includes
information such as the report title, description, a URL to the report, and the report categories
the report belongs to.

A report category is a logical grouping of reports. TransactionVision groups together links to
reports that belong to a category in a table in the Reports page. A ReportCategory also
defines the group of reports that are linked to a particular user right. A ReportCategory's

Chapter 6 • Extending the User Interface
Writing TransactionVision Reports

TransactionVision Programmer’s Guide 143

name corresponds to the name specified in a user's LDAP settings. If this name appears in
the user’s report LDAP settings then that user will be able to view this group of reports. A
user whose list of report groups contains the value of “allGroups” can see all available
reports.

The ReportCategory and ReportSubcategory require both a name and a title. The
ReportCategory tag can also take a “project” attribute, which is a list of projects delimited by
a comma. This report group will only be available to any project listed in this attribute. An
empty or non-existent project attribute makes the report available to all projects.

The following is a sample from the Reports.xml file. A category called “Performance
Analysis & Problem Resolution.” This category contains a "Reports" subcategory, which
contains the SLA Analysis Report. The link text for this report is "Amy I meeting my Service
Level Agreement (SLA) availability and response requirements?" The URL for the report is
/reports/performance/SLAAnalysis.jsp.
<ReportCategory name="performance"
 title="Performance Analysis & Problem Resolution">
 <ReportSubCategory name="reports" title="Reports">

 <Report name="SLAAnalysis.report"
 layoutfile="/reports/performance/SLAAnalysis.jsp"
 title="SLA Analysis Report"
 dataclass="samples.performance.SLAAnalysisReportBean">

 <Action name="CreateReport"
 class=" samples.performance.SLAAnalysisReportBean" />

 <ShortDesc>
 Am I meeting my Service Level Agreement(SLA)
 availability and response requirements?
 </ShortDesc>

 <Description>
 The SLA Analysis report provides transaction response
 time and availability service level analysis for the
 current project. You can specify a maximum
 response time for the transactions and a minimum
 transaction volume for the time period interval.
 </Description>
 </Report>
 </ReportSubCategory>
</ReportCategory>

6.1.7. Required Configuration Information

You must provide the following configuration information for each report in Reports.xml:

name The name of the report. A report name must be unique within the
subcategory in which it is defined.

layoutfile The location of the JSP for displaying the report.

Note: To add reports created for a release of TransactionVision prior to release 4.0, specify
the required configuration information for the report as follows:
<Report name="myOld.report"
 layoutfile="old.jsp" />

Chapter 6 • Extending the User Interface
Writing TransactionVision Reports

144 TransactionVision Programmer’s Guide

You may also add optional information such as a title and description to provide more
information about these reports.

6.1.8. Optional Configuration Information

In addition to the name layoutfile, you may also specify a number of optional attributes for
each report.

title

The title is displayed at the top of the report (above the parameters form), if it is provided.
The default value is NULL, menaing that no title wil be displayed.

dataclass

Specifies the Java class providing an implementation of the IReportData interface. For
convenience, the framework provides a default implementation of IReportData in
BaseReportBean. The default implementation takes care of assigning values to the parameters
from the data in the HTTP request or the retrieved database record. IT can also generate and
XML document encompassing all the report parameters so that they can be saved to the
database easily.

If this attirbute is not provided, the framwork renders the provided JSP and assumes that the
JSP knows how to extract the parameters and generate the report, similar to the way
TransactionVision reports were written prior to release 4.0.

Action

Defines the various actions that can be performed on the report. Each operation one the report
is identified by a <Action> tag. Most common action is “CreateReport”.

Each action is an implementation instance of IReportAction. One java class can implement
more than one action. Each action is uniquely identified by the name attribute. Each name
should be accompanied by an IReportAction class.

Some of the actions may also need to perform other actions. For example, after getting a
saved parameter record from the database, the report has to be created with these retrieved
parameters and hence we need to call “CreateAction”. This redirection is achieved by adding
redirect attribute to the <Action> tag. For example:
<Action name="GetParameters"
 class=" report.framework.DefaultReportActionImpl"
 redirect="CreateReport" />

You can also redirect to a different report, subcategory or category using additional attributes
as follows:
<Action name="DeleteParameters"
 class=" report.framework.DefaultReportActionImpl"
 redirect="CreateReport"
 redirectCategory="main"
 redirectSubCategory="main"
 redirectReport="ReportList.report" />

If redirectCategory is not provided, then the current category is assumed and so on.

Chapter 6 • Extending the User Interface
Writing TransactionVision Reports

TransactionVision Programmer’s Guide 145

ShortDesc

Use this tag to provide a very short concise description of the purpose of the report, usually in
the form of a question. This is the description that will be displayed for this report in the main
list of reports page. If this tag is not provided, then the report title is shown in the list of
reports. If the title is not given, then the name itself is displayed.

Description

Use this tag to explain the report’s purpose in more detail along with a brief explanation of
how the report data is calculated. This helps the user's perception of the report and also helps
them to understand the generated report better. This data is displayed when a report is
selected from the list of reports page. No description is displayed if none is given.

redirectURL

If set, the report framework will forward the request to this URL upon completion of the
report action.

6.1.9. Adding Actuate Reports

In addition to writing reports with the TransactionVision reporting framework, you may also
use the Actuate Formula One eReport Designer application. This application facilitates the
development of TransactionVision reports and is provided on the TransactionVision
installation CD. This application is available for Windows platforms only.

Installing and Using the Actuate Formula One Reort Designer

To install the application, double-click the FormulaOneERD.exe icon on the
TransactionVision installation CD.

Once you install the application, perform the following steps to invoke the designer and
connect to a TransactionVision database:

1. Using the Windows Control Panel, create an ODBC data source.

2. Invoike the Actuate designer application.

3. Choose the Data > JDBC Data Source menu item to connect to the data source using
a JDBC connection. For DB2, specify the driver as
COM.ibm.db2.jdbc.app.DB2Driver and the database URL as jdbc:db2:TVISION,
where TVISION is the name of the TransactionVision database.

For instructions on writing reports with the Actuate designer application, see the Actuate
designer documentation.

Adding Actuate Reports to Reports.xml

After authoring your report, add it to the Reports.xml file for inclusion in the Reports page, as
in the following example:
<Report name="Account Summary.report"
 title="Account Summary"
 layoutfile="/reports/Actuate.jsp"
 templatefile="Account Summary.jod"
 dataclass="com.bristol.tvision.ui.report.framework.ActuateReport
Bean">

Chapter 6 • Extending the User Interface
Writing TransactionVision Reports

146 TransactionVision Programmer’s Guide

 <Action name="CreateReport"
 class="com.bristol.tvision.ui.report.framework.ActuateReportBean" />

 <ShortDesc>Account Summary Report</ShortDesc>
 <Description>
 A sample Actuate report that displays
 transactions per account along with
 summary information on response time by
 transaction type.
 </Description>
 </Report>

The differences between specifying an Actuate report as opposed to a non-Actuate report are
as follows:

• For the layoutfile attribute, all Actuates reports should specify a layoutfile value of
“/reports/Actuate.jsp”, which is the default JSP for Actuate reports, unless
customization is required. This JSP automatically parses the report and generates the
report parameter form. This page can be copied and customized as needed if different
behavior and/or formatting is required.

• Acutate reports require the templatefile attribute, which specifies the name/location
of the Actuate template file to use in generating the report. The path specified is
relative to the TVISION_HOME/config/actuate/jodfiles directory. In the example
above, the file “Account Summary.jod” is assumed to reside in
TVISION_HOME/config/actuate/jodfiles. You may organize Actuate templates by
creating subdirectories within the jodfiles folder. Actuate template fiels that the
extension .jod.

• For the dataclass attribute, all Actuate reports should use the class
“com.bristol.tvision.ui.report.framework.ActuateReportBean”. This class handles
saving and loading of report parameters.

• For the Action attribute, Actuate reports really only need a single CreateReport
action, which should use the class
“com.bristol.tvision.ui.report.framework.ActuateReportBean”, by default. This class
interacts with the ActuateReportServlet to generate the report.

Note: The Actuate report engine requires an X connection to run. Your web server should be
started in an environment where DISPLAY is set to a valid X server. By default, it will try to
connect to the default display, “0:0”. If X is not available or permission does not exist for the
user to access X on the server machine, then you must set the DISPLAY environment
variable to a valid X server.

Setting CLASSPATH for Formula One

 To enable a Formula One report to connect to a DB2 JDBC datasource so it can access your
data, you must modify the Formula One CLASSPATH to reference the system
CLASSPATH as follows:

1. Open the <FormulaOne_Insallation>/bin/env.bat script for editing.

2. To the CP= line, add the path to db2java.zip (for example, C:\Program
Files\IBM\SQLLIB\java\db2java.zip).

3. Close and save env.bat.

Chapter 6 • Extending the User Interface
Adding Query Pages

TransactionVision Programmer’s Guide 147

6.2. Adding Query Pages

Data indexed into lookup tables using the XDM files can be queried using the
TransactionVision query page. The query page consists of two parts: the left-hand side query
navigator pane and the right-hand side value input pane. The
<TVISION_HOME>/config/ui/PresentationQuery.xml file needs to be modified to
add a new entry to the query navigator pane and the value input pane the new entry uses. The
following is a sample entry in the PresentationQuery.xml file:
<Group name="Stock">
 <Category name="OrderID" desc="Order ID" type="default
jsp="querySimpleString.jsp">
 <Path>/Event/Data/Order/ID</Path>
 </Category>
 <Category name-"Account" desc="Account Number" type="default"
jps="querySimpleString.jsp">
 <Path>/Event/Data/Order/Account</Path>
 </Category>
</Group>
<Group name="General">
 <Category name="entrytime" desc="Event Entry Time" type="time"
jsp="queryTime.jsp">
 <Path>/Event/StdHeader/EntryTime</Path>
 </Category>
 <Category name="host" desc="Host" type="object" objectType="1"
jsp="queryObject.jsp">
 <Path>/Event/StdHeader/Host/@objectId</Path>
 </Category>
</Group>

This sample creates two query groups. These groups create a criteria grouping the query
navigator pane list box. Each category in the group adds a criteria entry in the navigator pane
list box. Each category corresponds to a possible WHERE clause in the generated SQL query.
The description text is used as an entry in the navigator list box. When the criteria entry is
clicked on, the JSP specified in the jsp attribute is invokded in the right-hand side panel,
which brings up the user interface to input the value to query upon. The type attribute
describes the type of the field being queried. the Path element specifies the XPath in the XML
document of the field being queried. The name attribute of Category gives a unique name to
the category. This is used by the query navigator pane to select which value input pane to use.
For example, ViewServlet?viewSelect=query&queryPage=program, where program
corresponds to the name attribute value.

In the above sample, the Stock group containing categories OrderID and Account are created.
The OrderID is a simple string type with and XPath of /Event/Data/Oder/ID.

The type attribute of Category identifies the data type of the WHERE clause. It can only be
one of the following values:
time This is a raw 20-character strin of format

yyyymmddhhmmssnnnnnn. The query page will use
queryTime.jsp to display the edit page. Supported operations
include <, <=, ==, >, >=, and query for a time frame.

simpleInt This is an integer field, such as DataLength. The query page
will use querySimpleInt.jsp to display the edit page.

multipleInt This is a set of integer fields. However, only an enueration of

Chapter 6 • Extending the User Interface
User Interface Utility Classes

148 TransactionVision Programmer’s Guide

integers is valid for this field, and each value has the
corresponding user-friendly description. A typical example is
fields of WebSphere MQ completion code. The GUI engine
uses queryMultipleInt.jsp or queryMultipleIntExt.jsp to display
the edit page, the latter one displayes the value along with the
description, while the former one does not. The == operation is
supported.

simpleString This is a formatted string in hexadecimal character code format.
If a user wants to query on 'ABC', but the real data in the
dabase is stored as '65 66 67', which is the character code of
'ABC' in code page 1252. The query page uses
queryByteArray.jsp to facilitate the conversion between 'ABC'
to '65 66 67' (CP 1252). It also allows the user to query the
hexadecimal string directly.

default This is a plain text string field. The query page uses
querySimpleString.jsp to display the edit page. The only
operation supported is 'LIKE'.

object This query field is an integer of object id. The value of
@objectType must be a valid object type id in the system
model tables. The query edit page will retrieve all the object ids
currently in the system model tables for the user to choose. The
value of @jsp determines which JSP is used in the query page.
The value 'queryOjbect.jsp' simply displays a pane that lets the
user multi-select all possible values. 'queryGroupedOject.jsp'
displays a multi-select list box of all possible values and a list
of object types to help group-selecting objects of that type.

groupedObject This is only used for WebSphere MQ objects. This type differs
from 'object' in that the query page uses
queryGroupedObject.jsp to display all MQ objects, which are
further grouped under they MQ queue manager names.

The "isLinearCondition" attribute to the Category element tells the query engine to perform a
sequential linear search on data in the XML tables. A sample usage is:
<Category name="wbibroker" desc="WBI Broker" type="object"
objectType-"1017" jsp="queryObject.jsp" isLinearCondition="true">
 <Path>/Event/Technology/MQSeries/MQSI2TRACE/MQSI2TRACEEntry/MQSI
MFH/BrokerName/@objectId</Path>
</Category>

In this example, the object id for the XPath to BrokerName is searched in XML documents
linearly. Note that this kind of query may be significantly slow on large databases and the
query should typically be narrowed down to smaller results using other query conditions like
time.

6.3. User Interface Utility Classes

The following utility classes may be useful while developing custom reports and user
interface enhancements for TransactionVision.

Chapter 6 • Extending the User Interface
User Interface Utility Classes

TransactionVision Programmer’s Guide 149

6.3.1. Class TVisionServlet
public abstract class TVisionServlet
extends javax.servlet.http.HttpServlet

Methods

getUserBean
public UserBean getUserBean(javax.servlet.http.HttpSession session)
 throws UIException

getProjectBeanFromSession
public static UIProjectBean
getProjectBeanFromSession(javax.servlet.http.HttpSession session)
 throws UIException

getSchemaNameFromSession
public static java.lang.String
getSchemaNameFromSession(javax.servlet.http.HttpSession session)
 throws UIException

getQueryBeanFromSession
public static QueryBean
getQueryBeanFromSession(javax.servlet.http.HttpSession session)
 throws UIException

getFilterBeanFromSession
public static FilterBean
getFilterBeanFromSession(javax.servlet.http.HttpSession session)
 throws UIException

getQueryDocFromSession
public static QueryDoc
getQueryDocFromSession(javax.servlet.http.HttpSession session)
 throws UIException

getSessionBeanFromSession
public static SessionBean
getSessionBeanFromSession(javax.servlet.http.HttpSession session)
 throws UIException

getCommLinkTmplMgrBeanFromSession
public static SessionCommLinkTmplMgrBean
getCommLinkTmplMgrBeanFromSession(javax.servlet.http.HttpSession ses
sion)

throws UIException

Chapter 6 • Extending the User Interface
User Interface Utility Classes

150 TransactionVision Programmer’s Guide

getProjCommLinkMgrBeanFromSession
public static SessionProjCommLinkMgrBean
getProjCommLinkMgrBeanFromSession(javax.servlet.http.HttpSession ses
sion)
throws UIException

6.3.2. Class TypeConvService

public class com.bristol.tvision.util.typeconv.TypeConvService
extends java.lang.Object

This class contains convenient utility methods to format strings for user interface
presentation. The QueryService calls into this object’s convert method to perform
conversions based on the user interface settings. This class provides date, time and
enumeration formatting capabilities.

Methods

convert
public java.lang.String convert(TypeConvService.Type convType,
 java.lang.String xpath,
 java.lang.String value)
 throws TVisionException

This method converts from a raw value string into user-friendly named description

Parameters:

convType - the conversion type

• TypeConvService.Type.DATE: converts a 20-character time string
“yyyymmddhhmmssnnnnnn” to a user-friendly string. The exact output can be configured
through the properties: timeFormat, timeZoneID.

• TypeConvService.Type.DATEONLY: converts an 8-character date yyyymmdd string to
user-friendly string.

• TypeConvService.Type.TIMEONLY: converts an 8-character time string hhmmss to
user-friendly string.

• TypeConvService.Type.ENUM: give XPath and the raw value in XMLEvent,
return the user-friendly description. For example 0 for XPath field “..CompletionCode..”
would return MQCC_OK.

• TypeConvService.Type.MSUNIT: appends milli-seconds to the value

• TypeConvService.Type.SECUNIT: append seconds to the value.

• TypeConvService.Type.TIMESKEW: converts from time-skew 20-character string to a
user-displayable string.

xpath - The XPath to value's original data field

value - contains string format of the data

Returns:

Chapter 6 • Extending the User Interface
User Interface Utility Classes

TransactionVision Programmer’s Guide 151

The return value is a description. This may be null if no XPath is found in the technology
constant files at <TVISION_HOME>/java/config/technologyconst.

Throws:

TVisionException – An error occurred during conversion.

retrieve
public java.lang.String retrieve(TypeConvService.Type convType,
 java.lang.String xpath,
 java.lang.String desc)
 throws TVisionException

This method converts from a user-friendly named description to raw value string. This is used
for transforming enumeration values to their enumeration values. For example, for a given
XPath field, the value 0 can be looked up from the descriptive field say MQCC_OK.

Parameters:

convType - the conversion type

xpath - The XPath to value's original data field

desc - the user-friendly named description

Returns:

value, may be null, if no XPath is found in knowledge base

Throws:

TVisionException – An error occurred during conversion.

getTimeFormat
public int getTimeFormat()

setTimeFormat
public void setTimeFormat(int format)

This method allows setting the time format on all time fields in the result document returned
by the QueryService. The valid values for this field are:

 TVisionCommon.TIME_MILLISECOND_ONLY = 1;
 TVisionCommon.TIME_MICROSECOND_ONLY = 2;
 TVisionCommon.TIME_MILLISECOND_AND_DATE = 3;
 TVisionCommon.TIME_MICROSECOND_AND_DATE = 4;

setTimeZoneID
public void setTimeZoneID(java.lang.String id)

This method sets the time zone to which all time fields in the result document returned by the
QueryService are converted to. The id string should be a valid Java time zone ID.

getTimeZoneID
public java.lang.String getTimeZoneID()

Chapter 6 • Extending the User Interface
Using Job Beans

152 TransactionVision Programmer’s Guide

convertDateStringToDateObj
public static java.util.Date
convertDateStringToDateObj(java.lang.String str)

This method converts a date-time string in the TransactionVision format to Java standard
Date object. A date-time string looks like “yyyymmddhhmmssmmm” e.g.
“20020123105501123”. The last three numbers are millisecond. The micro-second part is
ignored.

Parameters:

str - Date String

Returns:

Data object. If failed to convert due to incorrect input string return null.

6.4. Using Job Beans

A job is a taks that runs at a specified frequency. A job typically gathers statistics of recently
arrived events and stores calculated results in a way that is easily accessible by a report. By
using a job, the reports themselves do not have to perform comlex, time-consuming queries to
present report data. Instead, they use already calculated data that is periodically updated by a
job running in the background. A job is a bean that implements a particular task.

6.4.1. JobBean
package com.bristol.tvision.services.analysis.job;
public class JobBean extends implements IJob;

All job beans should extend the JobBean basic class and implement the IJob interface. This is
required in order for the job to be managed by the job manager.

The JobBean class implements a method called
allowMultipleJobsPerSchema(), which returns true by default. If a job should
only ever have one instance allowable per schema, override this method to return false:

Public Boolean allowMultipleJobsPerSchema()

6.4.2. IJob Interface

The IJob interface contains the following functions:
public void init(String startupparam) throws JobException;

The Init method is called once as the job transitions from a stopped to started state. Any
one-time initilization for this job can be performed here. The JobManager will pass in
this job's startup parameters (specified in the job definition).

public void exit() throws JobException;

The exit method is called when a job is stopped. Any cleanup can be done here.
public void run(ConnectionInfo con) throws JobException;

This method will be called when this job is scheduled to perform its particular task. Note:
Do not call con.close() to disconnect a connection, as it is used internally by
TransactionVision.

Chapter 6 • Extending the User Interface
Using Job Beans

TransactionVision Programmer’s Guide 153

Job beans do not need to implement database connect logic if the TransactionVision
DataManager classes are used for database access. If you use TransactionVision
DataManager classes, the Job scheduler will handle the database reconnection. The only
requirement for this is to embed a DataManagerException in the JobException thrown
from the run() method, as in the following example:
Public void run(ConnectionInfo con) throws JobException {
 try{
 […]
 } catch (DataManagerException ex) {
 throw new JobExceptin(ex);
 }
}

public void cancel() throws JobException;

This function is called in order to interrupt a job that is currently processing (that is,
while it is in its run method). If you want it to support the ability of the job to be
cancelled while it is running, code your run and cancel methods so that the job gracefully
breaks out of whatever processing its in the middle of.

public void forceStop() throws JobException;

This function is similar to cancel, but indicates that the user wants the job to end
immediately without wating for finishing up any cleanup. By default, it calls cancel. It is
up to the bean to override and handle this correctly if it is to support a forced stop.

In addition the JobBean class provides the following helper functions
public int getJobID()

This will return the current jobs id, which is a unique identifier for a job.
public String getState(ConnectionInfo con) throws JobException
public void setState(ConnectionInfo con,String state) throws
JobException

Up to 128 bytes of customer user data can be stored and associated with a particular job.
A Job Bean can optionally take advantage of this feature to store any state information it
might want to maintain from one run to another. The getState method will return the
current contents of this data. The setState method allows setting of this data.

6.4.3. Creating Jobs at Project Creation

When you create a new project, the project wizard will present you with a page that has a list
of standard job templates. This page provides an easy way to include commonly used Jobs
into new project when a project is created, without needed to manually create each job
individually. The jobs available in this list are controlled by a configuration file
(config/ui/Jobs.xml). This file has the following format:
<?xml version="1.0" encoding="UTF-8"?>
<JobDefinitions>
 <JobDef name="testjob1" desc="Job Describption" priority="0"
startup="manual" params="" classname="com.bristol.tvision.ui.???"
interval="1" units="hours"/>
 <JobDef name="testjob2" desc="testing123" priority="0"
startup="automatic" params="" classname="com.bristol.tvision.ui.???"
interval="1" units="minutes"/>
</JobDefinitions>

Any definition included in this xml file is listed in the project creation wizard when you
create a new project. The priority attribute is currently there for future support, and has no

Chapter 6 • Extending the User Interface
Using Job Beans

154 TransactionVision Programmer’s Guide

effect at the moment. Supported values for the 'startup' attribute are manual, automatic, and
disabled. Supported values for the units attributes are minutes,hours,days,months.

TransactionVision Programmer’s Guide 155

7. Implementing User Events

TransactionVision supports accepting events created by user applications beyond those
originating from the standard TransactionVision sensors. In essence, you can add code in
your application to generate events in propriety format. This type of event is known as a user
event. Your applications are also responsible for delivering the event to the Analyzer through
the standard communication links. See the TransactionVision Administrator's Guide for
information about enabling communication links to process user events in addition to
standard TransactionVision events.

Note that there are no configuration messages for managing user events. Specifically, data
collection filters cannot be used to control user event collection.

User events are defined as XML documents, and should conform to the standard imposed by
the TransactionVision user event XML schema. Just like standard events, user events contain
three sections: standard data, technology data, and user data. TransactionVision provides a
Java User Event SDK for you to use to generate user events.

Each user event should reflect the transaction processing state at the point of origin. Events
can be classified and associated with custom defined system resources (for example, database
or FTP server).

The TransactionVision Analyzer is capable of processing the standard header section
automatically. By default, it does not perform any processing or analysis on the technology
and user data section. However, you may implement additional beans for customizing the
unmarshalling, modification, and database writing process.

User events should include data for event correlation, unit of work identification, and
transaction classification. The XML rule engine in TransactionVision has been extended to
also handle event-to-event correlation. It is also possible to implement event or transaction
analysis beans for more complicated type processing.

7.1. Differences Between User Events and Standard Events

Standard TransactionVision events are distinguished from user events as follows:

• Standard events belong to technologies supported directly by TransactionVision.
Sensor and analysis components are supplied. Events are generated automatically
within applications by the Sensors.

• User events are designed and implemented by end users. They belong to the
TransactionVision technology type “UserEvent”. Events can be divided into

Chapter 7 • Implementing User Events
Differences Between User Events and Standard Events

156 TransactionVision Programmer’s Guide

different classes according to your design. TransactionVision has no control on
configuration or data collection filtering. The applications are responsible for event
generation and distribution.

The following tables provide a comparison of standard and user events features:

Data Format:

 Standard Events User Events

Standard data format Binary XML

Technology data format Binary/XML XML

User data format BLOB/XML XML

Event Correlation Data Supported by TV Defined by user

Transaction Data (e.g.: UOW id) Supported by TV Defined by user

Sensor and Transportation Support:

 Standard Events User Events

Configuration Message Yes No

Sensor Components Yes No

SDK Support No Yes

Data Collection Filtering Supported Not Supported

Event Generation Control By data collection filters By applications

Event Packaging Supported Not supported

Application A

Event Queue A Event Queue B

Standard Header
Unmarshaller

User Defined Technology
Header Unmarshaller

User Data
Unmarshaller

Event Analysis
Bean

Event Analysis
Bean

System Model
Processor Bean

XML Events

User Events User Events User Events

TransactionVision
Communication
Infrastructure

Event Collection and Analysis Service

Application B Application C

Chapter 7 • Implementing User Events
User Event Data Model

TransactionVision Programmer’s Guide 157

Event Analysis Support:

 Standard Events User Events

Unmarshaling (Standard) Supported by TV Supported by TV

Unmarshaling (Technology) Supported by TV User Defined

Unmarshaling (User Data) Supported by TV User Defined

System Model Update Supported by TV TV/User Defined

Event Modification TV/User Defined TV/User Defined

Database I/O Supported by TV Supported by TV

Event Correlation Supported by TV TV(XML Rules)/User Defined

Local Transaction Analysis Supported by TV Supported by TV (data to be
defined by users)

Business Transaction Analysis Supported by TV Supported by TV

7.2. User Event Data Model

The following is an example of user event XML content. User events should conform to the
TransactionVision user event XML schema. The two schema files UserEvent.xsd and
TechUserEvent.xsd can be found under the TransactionVision installation configuration
directory <TVISION_HOME>/config/xmlschema:

Chapter 7 • Implementing User Events
User Event Data Model

158 TransactionVision Programmer’s Guide

The following shows a sample TransactionVision user event XML document:
<?xml version="1.0" encoding="UTF-8"?>
 <Event>
 <EventID sequenceNum="631"/>
 <StdHeader minorVersion="1" version="5" uow=”12A2345”>
 <HostArch>
 <HostArchValue>0x80000380</HostArchValue>
 </HostArch>
 <Encoding>273</Encoding>
 <CCSID>1208</CCSID>

Chapter 7 • Implementing User Events
User Event Data Model

TransactionVision Programmer’s Guide 159

 <PrimaryTime>20030930155849620000</PrimaryTime>
 <SecondaryTime>20030930155849620000</SecondaryTime>
 <ClientTimeSkew>0</ClientTimeSkew>
 <TechName>UserEvent</TechName>
 <Host>bennytpc</Host>
 <ExecPoint>2</ExecPoint>
 <DataCollMode>7</DataCollMode>
 <ProgramName>ExecuteOrder </ProgramName>
 <ProgramInstance>
 <SensorStartTime>1060282060062</SensorStartTime>
 <ThreadStartTime>1060282060123</ThreadStartTime>
 <ThreadIdHash>231233575</ThreadIdHash>
 </ProgramInstance>
 </StdHeader>
 <Technology>
 <UserEvent>
 <Class>JDBC</Class>
 <Method>query</Method>
 <DataSize>1200</DataSize>
 <CompCode>0</CompCode>
 <Status>Normal</Status>
 <TrackingId>CA21B2335D3325</TrackingId>
 </UserEvent>
 </Technology>
 <Data>
 <Chunk seqNo=”0” ccsid=”1208” blobType=”2” from=”0” to=”35”>
 <Order>Buy 100 shares of IBM</Order>
 </Chunk>
 </Data>
</Event>

This section describes the user event XML elements and attributes. In many cases,
TransactionVision defines the possible constant values for the elements and attributes through
the following class com.bristol.tvision.userevents.Constants. There are also references to the
User Event SDK provided by TransactionVision for assisting the user event generation
process.

/Event (required): This is the root element for a single user event. Any user event must have
one and only one instance of this element.

7.2.1. EventID

/Event/EventID (required): This element servers as the event identifier. It has one required
attribute sequenceNum. This identifier must be unique in the application’s thread of
execution (program instance) space over the lifetime of the application.

Attributes:

Name Type Use Description

sequenceNum xsd:int required Uniquely identify the event among those belong
to the same thread of execution.

7.2.2. Standard Section

/Event/StdHeader (required): This is the top level element for standard event data.

Attributes:

Name Type Use Description

version xsd:int required Major version number for the event. Should be set to

Chapter 7 • Implementing User Events
User Event Data Model

160 TransactionVision Programmer’s Guide

Name Type Use Description
Constants..EVENT_MAJOR_VERSION_LATEST.

minorVersion xsd:int required Minor version number for the event. Should be set to
Constants.EVENT_MINOR_VERSION_LATEST.

uow xsd:string optional A string representing the local unit of work that the event
participates in the application thread of execution. The
analyzer uses this to group events to the same local
transaction.

/Event/StdHeader/HostArch (required): This element describes the host machine
architecture where the application runs: It contains one child element “HostArchValue” that
contains a unique code defined by TransactionVision for identifying the host vendor and
operating system. Java applications should use the User Event SDK to retrieve the host
architecture value.

The host architecture code is a 32-bit integer that is divided into three separate subfields,
these subfields identify

• The byte order (Big or Little Endian)

• The operating system

• The operator system vendor

In the following discussion, bit 0 is the most significant bit, and bit 31 is the least significant
bit.

BYTE ORDER

Mask for binary-integer encoding.

This subfield occupies bit positions 0 through 7 and 24 through 31 within the host
architecture value field. For big endian architecture, this should be set to 0x80000080.
For little endian architecture, this should be set to 0x00000000.

VENDOR

Mask for vendor code.

This subfield occupies bit positions 8 through 15 within the host architecture value field.
The possible values are as follows:

Vendor Name Code Value

Microsoft 0

Sun Microsystem 1

Hewlett-Packard (HP) 2

IBM 3

Linux 4

Digital 5

OPERATING SYSTEM

Mask for operating system code.

Chapter 7 • Implementing User Events
User Event Data Model

TransactionVision Programmer’s Guide 161

This subfield occupies bit positions 16 through 23 within the host architecture value field.
The possible values are as follows:

Operating System Code Value

Microsoft Windows 3.1 0

Microsoft Windows 95 1

Microsoft Windows 98 2

Microsoft Windows 2000 3

Microsoft Windows NT 4

Sun Solaris 5

Hewlett Packard HP-UX 6

IBM AIX 7

IBM OS390 (CICS) 8

Linux 9

IBMOS390 (Batch) 10

IBM OS400 11

IBM OS390 (IMS) 12

Microsoft Windows ME 13

Tru64 UNIX 14

IBM Sun OS 15

Microsoft Windows XP 16

Microsoft Windows 2003 17

/Event/StdHeader/Encoding (required): This element contains an integer code for
identifying the numerical encoding of the application environment (integer, floating point).
Java applications should use the User Event SDK to retrieve this value.

The Encoding field is a 32-bit integer that is divided into four separate subfields; these
subfields identify:

• The encoding used for binary integers

• The encoding used for packed-decimal integers

• The encoding used for floating-point numbers

• Reserved bits

Each subfield is identified by a bit mask which has 1-bits in the positions corresponding to
the subfield, and 0-bits elsewhere. The bits are numbered such that bit 0 is the most
significant bit, and bit 31 the least significant bit. The following masks are defined:

INTEGER_MASK

Mask for binary-integer encoding.

Chapter 7 • Implementing User Events
User Event Data Model

162 TransactionVision Programmer’s Guide

This subfield occupies bit positions 28 through 31 within the Encoding field.

DECIMAL_MASK

Mask for packed-decimal-integer encoding.

This subfield occupies bit positions 24 through 27 within the Encoding field.

FLOAT_MASK

Mask for floating-point encoding.

This subfield occupies bit positions 20 through 23 within the Encoding field.

RESERVED_MASK

Mask for reserved bits.

This subfield occupies bit positions 0 through 19 within the Encoding field.

/Event/StdHeader/CCSID (required): This element contains an integer code for identifying
the character code set of the application environment. The User Event SDK defines the
default value as UTF-8 for Java environment.

/Event/StdHeader/PrimaryTime (required): This element contains a string representing the
primary time stamp of the event up to microseconds. The format of the string is
yyyyMMddhhmmssuuuuuu, where yyyy is the 4-digit year field, MM is the 2 digit month
field, dd is the 2-digit day field, hh is the 2-digit 24-hour based hour field, mm is the 2-digit
minute field, ss is the 2-digit second field, and uuuuuu is the 6-digit microsecond fields. The
User Event SDK provides support of retrieving and rendering the time stamp value.

For cases where a distinct entry and exit time stamps are to be associated with a single event,
set this and the SecondaryTime element to the entry and exit time respectively.

/Event/StdHeader/SecondaryTime (required): This element contains a string representing
the secondary time stamp for the event. The format is similar to that for the primary time
element. As stated before, this can be set to hold the exit time stamp of an event. The
secondary time is set to the primary time value if this element is absent.

/Event/StdHeader/ClientTimeSkew (optional): This element contains a long value defining
the time skew (in milliseconds) between the two hosts where (a) the application runs and (b)
the event queue/manager receiving the event resides. If the event queue/queue manager exists
on the same host where the application runs, this should be set to zero. The time skew is
assumed to be zero if this element is absent.

/Event/StdHeader/TechName (required): This element contains a string that identifies the
technology. This should always be set to “UserEvent”. Java applications can retrieve this
value through the constant variable TECH_NAME_USEREVENT defined in the Constants
class.

/Event/StdHeader/Host (required): This element contains a string that identifies the host
where the application runs.

/Event/StdHeader/ExecPoint (required): This element contains that an integer that is a
numerical byte code defined by TransactionVision for identifying the monitored method
execution point. For user events, this should always be set to the value Constants.EP_EXIT
(=2).

/Event/StdHeader/DataCollMode (required): This element contains an integer that is a
numerical byte code defined by TransactionVision for identifying the data collection mode.

Chapter 7 • Implementing User Events
User Event Data Model

TransactionVision Programmer’s Guide 163

For user events, the two possible values are “Collect technology and user data”
(Constants.DATA_COLL_MODE_ALL_MASK , value = 7) or “Collect technology data
only, no user data” (Constatns.DATA_COLL_MODE_ARG_MASK, value = 3).

/Event/StdHeader/UserName (optional): This element contains a string that identifies the
user context of the running application. This can be set to the user id running the application.

/Event/StdHeader/ProgramPath (optional): This element contains a string that defines the
application path on the host. This is not needed for Java programs.

/Event/StdHeader/ProgramName (required): This element contains a string that defines
the application name.

/Event/StdHeader/ProgramInstance (required): This element contains one or more child
elements that together identify the runtime thread of execution (program instance) where the
event occurs. For example, this can be threads in JVM on distributed platforms. The actual
elements and their meaning are specific to the platform and environment.

For Java environment, the program instance identifier contains the following three elements:

1. /Event/StdHeader/ProgramInstance/SensorStartTime: This element contains a string that
represents a timestamp in milliseconds. This should be a value unique across all
application threads. The User Event SDK can automatically generate a value based on
the time when the SDK singleton helper class is created. The application can choose to
overwrite with another reference time stamp that is unique in the application space.

2. /Event/StdHeader/ProgramInstance/ThreadStartTime. This element contains a string that
represents a timestamp in milliseconds. This should be a value unique in the application
thread where the event happens. The User Event SDK can automatically generate this
value. The application can choose to overwrite with another reference time stamp if it
wishes.

3. /Event/StdHeader/ProgramInstance/ThreadIDHash. This element contains a string that
represents a hash value for the Java thread ID. The User Event SDK can automatically
generate this value. Unlike the other two attributes, the SDK does not allow user to
overwrite the default value.

It is highly recommended that Java applications should avoid generate this element directory
and leverage the SDK support.

7.2.3. Technology Section

/Event/Technology: This is the top level element for technology data. It has exactly one
child element /Event/Technology/UserEvent. All the standard child elements for the
UserEvent element are optional. The technology section can contain any number of
application defined child elements attached to the UserEvent element.

The standard elements are defined as follows:

1. /Event/Technology/UserEvent/Class: This element contains a string that describing the
class for categorizing different user events. For example, database events can be
grouped under the class “JDBC”.

2. /Event/Technology/UserEvent/Method: This element contains that a string that
describes the method/API of the event (e.g.: insert/update/query for JDBC).

3. /Event/Technology/UserEvent/DataSize: This element contains an integer that
represents the user data length.

Chapter 7 • Implementing User Events
User Event Data Model

164 TransactionVision Programmer’s Guide

4. /Event/Technology/UserEvent/CompCode: This element contains an integer
representing the event completion (return) code. TransactionVision defines the possible
values in the Constants class.

5. /Event/Technology/UserEvent/Status: This element contains a string that representing
the status (reason) code supplementing the completion code. For example, this can be
the SQL error code further explaining the JDBC operation result.

6. /Event/Technology/UserEvent/Tracking: This element contains a mandatory string
attribute id that defines a unique ID for grouping events belonging to the same business
transaction. In other words, events having the same tracking ID would be put into the
same business transaction record in TransactionVision. This is different from the unit of
work attribute (/Event/StdHeader/@uow) since the unit of work ID is used for grouping
events into the same LOCAL transaction.

Attributes:

Name Type Use Description

id xsd:string Required A tracking string for correlating events belongs
to the same business transaction across multiple
applications and platforms.

7. /Event/Technology/UserEvent/UserDataRef: This element serves as a reference tag to
the user data (if presented). It has a single mandatory integer attribute “chunk” that
should always be set to the value 0.

Attributes:

Name Type Use Description

chunk xsd:int required A tracking string for correlating events belongs to
the same business transaction across multiple
applications and platforms.

8. /Event/Technology/SystemModel: A user event can be associated with a system
resource. For example, a JDBC event can be associated with the database table that the
JDBC call operates on. This element defines the model for any such system resource.
The system model can have one or more child elements
/Event/Technology/SystemModel/Object. Each object element contains a user defined
system object. The object element has the following mandatory attributes:

Attributes for /Event/Technology/SystemModel/Object:

Name Type Use Description

id xsd:int required The object local ID in the system model and event context.
The event element for the event system resource
/Event/Technology/Object uses this ID for identifying the
object.

typeId xsd:int required The object type ID in the Analyzer project-wise system object
model table. Any use defined object type should have a type
ID value greater than a well-defined base value
Constants.USEROBJECT_TYPE_BASE (= 100000).

name xsd:string required The object name. In general, this should be a simple string.

Chapter 7 • Implementing User Events
User Event Data Model

TransactionVision Programmer’s Guide 165

Name Type Use Description

sig xsd:string required A string that services as the object unique signature in the
Analyzer project system object table. The signature should
have the format <typeId>/<signature name>. TypeId is the
global object type ID, while “signature name” can be any
string chosen by the user. For example, a database table
MYTABLE can have the signature 100100/MYTABLE,
where 100100 is the type ID for database tables.

9. /Event/Technology/Object: This element identifies the system resource object
associated with this event. For example, this can refer to a database table for a JDBC
insert event. The presence of this element implies that the application interacts with the
system resource in the scope of the event lifetime.

Attributes:

Name Type Use Description

id xsd:int required The local object ID for this object, as defined in the local
system model.

dir xsd:int required An integer defining the direction of interaction of the
application and resource object. The two possible values are
Constants.USEREVENT_PATH_IN and
Constants..USEREVENT_PATH_OUT. PATH_IN indicates
that data flows from resource to application, and PATH_OUT
implies the opposite. For example, if an event is supposed to
represent a database query, the direction should be set to
PATH_OUT, implying the application is retrieving data from
the database (resource).

latency xsd:string optional A long value representing the latency of the application-
resource interaction in milliseconds. For example, for a
database query event, this can represent the amount of time
taken for the query to complete.

7.2.4. User Data Section

/Event/Data (optional): This is the top level element for storing any user payload data. User
data should also be in XML format. There should be one child element /Event/Data/Chunk
attached to the /Event/Data element. The user data document should then be attached to the
Chunk element as its child. The following attributes should be set for the Chunk element:

Attributes:

Name Type Use Description

seqNo Xsd:int required This should always be set to 0.

blobType Xsd:int required Identify the type of the data attached. This should always be
set to Constants.XMLEVENT_BLOB_XML (=2).

ccsid Xsd:int required This should be set to the character code set for the user data.

from xsd:int required This should always be set to 0.

Chapter 7 • Implementing User Events
Using the User Event SDK

166 TransactionVision Programmer’s Guide

Name Type Use Description

to Xsd:int required This should be set to the user data length minus 1.

7.3. Using the User Event SDK

TransactionVision provides a user event software development kit (SDK) for assisting
applications for generating user events. The SDK classes are included in the JAR file
<TVISION_HOME>/java/lib/tvisionuserevents.jar. This depends on another JAR
file <TVISION_HOME>/java/lib/tvisionutil.jar that should also be included in the
CLASSPATH.

7.3.1. Class com.bristol.tvision.userevents.Constants

This class defines the constant values for various user event elements and attributes.

java.lang.Object
 com.bristol.tvision.userevents.Constants

public class Constants

extends java.lang.Object

This class defines the constants used by the user event SDK and application that
produces user events.

Fields:

ENV_TVHOME
public static final java.lang.String ENV_TVHOME

Environment variable for TransationVision installation directory.

SYSPROP_TVHOME
public static final java.lang.String SYSPROP_TVHOME

Java System property for TransactionVision installation directory.

EVENT_MAJOR_VERSION_LATEST
public static final int EVENT_MAJOR_VERSION_LATEST

Current user event major version number.

EVENT_MINOR_VERSION_LATEST
public static final int EVENT_MINOR_VERSION_LATEST

Current user event minor version number.

CCSID_UTF8
public static final int CCSID_UTF8

Character code set value for Java environment, UTF-8.

ENCODING_JAVA
public static final int ENCODING_JAVA

Chapter 7 • Implementing User Events
Using the User Event SDK

TransactionVision Programmer’s Guide 167

Encoding value to be used for Java environment.

TECH_NAME_USEREVENT
public static final java.lang.String TECH_NAME_USEREVENT

Technology name for user event.

EP_EXIT
public static int EP_EXIT

Exit execution point of an event. Set the element /Event/StdHeader/ExecPoint to this
value.

DATA_COLL_MODE_ARG_MASK
public static final byte DATA_COLL_MODE_ARG_MASK

Data collection mode value indicating that only technology section (and no user data) is
available in the user event.

DATA_COLL_MODE_ALL_MASK
public static final byte DATA_COLL_MODE_ALL_MASK

Data collection mode value indicating that both technology section and user data present
in the user event.

PII_JAVA_STARTTIME
public static final java.lang.String PII_JAVA_STARTTIME

Name of Java environment Program Instance Identifier application process reference start
time attribute.

PII_JAVA_THREAD_STARTTIME
public static final java.lang.String PII_JAVA_THREAD_STARTTIME

Name of Java environment Program Instance Identifier application thread reference start
time attribute.

PII_JAVA_THREAD_HASH
public static final java.lang.String PII_JAVA_THREAD_HASH

Name of Java environment Program Instance Identifier application thread ID hash
attribute.

USEREVENT_COMPCODE_NOT_AVAILABLE
public static final int USEREVENT_COMPCODE_NOT_AVAILABLE

User event completion code value reflecting this value is not available.

USEREVENT_COMPCODE_UNKNOWN
public static final int USEREVENT_COMPCODE_UNKNOWN

User event completion code value reflecting the completion status is unknown.

USEREVENT_COMPCODE_OK
public static final int USEREVENT_COMPCODE_OK

User event completion code value reflecting successful completion with no warning.

USEREVENT_COMPCODE_WARNING
public static final int USEREVENT_COMPCODE_WARNING

Chapter 7 • Implementing User Events
Using the User Event SDK

168 TransactionVision Programmer’s Guide

User event completion code value reflecting successful completion with warning.

USEREVENT_COMPCODE_ERROR
public static final int USEREVENT_COMPCODE_ERROR

User event completion code value reflecting error/exception condition.

USEROBJECT_TYPE_BASE
public static final int USEROBJECT_TYPE_BASE

The base value for user defined system object types. Any user defined system object
types should have a type ID greater than this value.

USEREVENT_PATH_IN
public static final int USEREVENT_PATH_IN

User event object flow path direction: inbound

USEREVENT_PATH_OUT
public static final int USEREVENT_PATH_OUT

User event object flow path direction: outbound

XMLEVENT_BLOB_XML
public static final int XMLEVENT_BLOB_XML

This value is to be used for /Event/Data/Chunk/@blobType attribute and indicates that
the user data is in XML format.

TVISION_USEREVENTS_ID
public static final java.lang.String TVISION_USEREVENTS_ID

Correlation id to be used for user event JMS messages.

7.3.2. Class com.bristol.tvision.userevents.marshal.SystemModelObject

This class defines a local system model object to be used for the element
/Event/Technology/UserEvent/SystemModel/Object. The constructor takes the
local object ID, global object type ID, type name, and signature name segment. The class
provides a method for serializing the content in XML format to be used in the user event
document.

java.lang.Object
 com.bristol.tvision.userevents.marshal.SystemModelObject

public class SystemModelObject
extends java.lang.Object

This class represents a system model object that is associated with a single user event.
It supports a method for serializing the object data in a XML format that complies
with the user event XML schema.

Fields

id
public int id

The system object local ID in the system model table carried by the user event.

Chapter 7 • Implementing User Events
Using the User Event SDK

TransactionVision Programmer’s Guide 169

typeId
public int typeId

This system object type ID in the project system model table. This ID should be unique
within the project scope.

name
public java.lang.String name

This object name.

sig
public java.lang.String sig

This object completed signature of the format TypeID/Signature string.

Constructor

SystemModelObject
public SystemModelObject(int id,
 int typeId,
 java.lang.String name,
 java.lang.String signame)

Constructs a system model object with the given object details.

Parameters:
id - This object local ID in the associated user event system model table.
typeId - This object type ID in the project system model table. This ID should be
unique with the project scope.
name - Name for this object. If this is set to null, assign the string "Not Available" to this
object name.
signame - Signature string for this object. A system object signature is formed by
combining the type ID and this string, using the forward slash ('/') as the separator. The
resultant signature would uniquely identify this object in the project system model table.
If this is set to null, the name of the object will be used to form the signature. Note that
this argument should not have the type ID prepended. This is done by the object
constructor automatically.

Methods

toXML
public java.lang.String toXML()

Serialize this object data in XML format complying with the user event XML schema.
Returns:
Object data in XML form.

equals
public boolean equals(java.lang.Object obj)

Determine if the given system object is identical to this object. Two objects are
considered equal if all the object attributes match.
Parameters:
obj - System object to be compared.
Returns:
True if the two objects are identical, false otherwise.

Chapter 7 • Implementing User Events
Using the User Event SDK

170 TransactionVision Programmer’s Guide

7.3.3. Class com.bristol.tvision.userevents.marshal.TimeData

This class stores and presents time information in both string and long format. In the former
case, time information is returned in a format that is compatible with the
/Event/StdHeader/PrimaryTime and /Event/StdHeader/SecondaryTime elements.
The latter case returns the time as a long value that represents the difference, measured in
milliseconds, between the stored time and midnight, January 1, 1970 UTC.

java.lang.Object
 com.bristol.tvision.userevents.marshal.TimeData

public class TimeData
extends java.lang.Object

This class stores and returns time data in two forms: a formatted string that complies
with the event primary and secondary time element requirement, and a long value
representing time to the miliseconds.

Fields

strTime
public java.lang.String strTime

Represent time in a string following the format yyyyMMddhhMMssuuuuuu; with "yyyy"
set to the 4-digit year field, "MM" set to the 2-digit month field, "ss" set to the 2-digit day
field, "hh" set to the 24 hour based 2-digit hour field, "MM" set to 2-digit minute field,
"ss" set to 2-digit second field, and "uuuuuu" set to microsecond field. This string can be
used for setting the primary and secondary time element in the user event.

timeInMillis
public long timeInMillis

Represent time as long data type in milliseconds. The value is equal to the difference
between the represented time and midnight, January 1, 1970 UTC.

Constructor

TimeData
public TimeData(java.lang.String strTime,
 long timeInMillis)

Construct an instance of this class using the given arguments.

Parameters:
strTime - Time in string format.
timeInMillis - Time in long data type.

7.3.4. Class com.bristol.tvision.userevents.marshal.UserEventHelper

This class provides methods for retrieving system and environment data for standard event
attributes such as current time stamp, host architecture, program name, local encoding and
character code set, etc. It also supports two methods for disabling and restoring JMS Sensor
activity.

Chapter 7 • Implementing User Events
Using the User Event SDK

TransactionVision Programmer’s Guide 171

java.lang.Object
 com.bristol.tvision.userevents.marshal.UserEventHelper

public class UserEventHelper
extends java.lang.Object
This class supports various helper methods useful in generating user events.

Methods

instance
public static UserEventHelper instance()

Return the singleton instance of the UserEventHelper class. Application should never
create this object directly. Instead, use this instance method to return the singleton.

getHostArch
public int getHostArch()

Return the host architecture code for this platform. The value returned by this method can
be used for setting the /Event/StdHeader/HostArch/HostArchValue element in the user
event. This field value is automatically set in the constructor.
Returns:
Integer code representing the host architecture.

getOS
public java.lang.String getOS()

Return the operating system name for the host. This field value is automatically set in the
constructor.
Returns:
The operating system name.

getVendor
public java.lang.String getVendor()

Return the name of the operating system vendor for the host. This field value is
automatically set in the constructor.
Returns:
The name of the operating system vendor.

getEncoding
public int getEncoding()

Return the encoding of the environment. This is always set to the encoding for Java.
Returns:
Encoding of the environment.

getCCSID
public int getCCSID()

Return the character code set of the environment. This is always set to the UTF-8 (1208).
Returns:
Character code set of the environment.

Chapter 7 • Implementing User Events
Using the User Event SDK

172 TransactionVision Programmer’s Guide

getLocalHostName
public java.lang.String getLocalHostName()

Return the local host name. This field value is automatically set in the constructor.
Returns:
Local host name.

getReferenceStartTime
public java.lang.String getReferenceStartTime()

Return the program instance identifier application process reference start time. This
value, together with the application thread reference start time and thread ID hash value,
forms the program instance identifier for the calling thread. This is automatically set by
the helper singleton instance during the instance creation time.
Returns:
Reference time stamp in microseconds.

setReferenceStartTime
public void
setReferenceStartTime(java.lang.String referenceStartTime)

Set the program instance identifier application process reference start time.

getReferenceThreadStartTime
public java.lang.String getReferenceThreadStartTime()

Return the program instance identifier application thread reference start time. This value,
together with the application process reference start time and thread ID hash value, forms
the program instance identifier for the calling thread. This is automatically set by the
helper singleton instance during the calling thread creation time.
Returns:
Reference time stamp in micrseconds.

setReferenceThreadStartTime
public void
setReferenceThreadStartTime(java.lang.String referenceThreadStartTim
e)

Set the program instance identifier application thread reference start time.

getThreadIDHashCode
public java.lang.String getThreadIDHashCode()

Return the program instance identifier application thread ID hash code. This value,
together with the application process and thread reference start time, forms the program
instance identifier for the calling thread. This is automatically set by the helper singleton
instance during the calling thread creation time.
Returns:
String representation of the calling thread ID hash code.

getCurrentTime
public static TimeData getCurrentTime()

Return the current time in GMT time zone. The time value is returned as a TimeData
object.
Returns:
TimeData object containing current time.

Chapter 7 • Implementing User Events
Using the User Event SDK

TransactionVision Programmer’s Guide 173

disableTVisionJMSSensor
public static boolean disableTVisionJMSSensor()

Suspend TransactionVision JMS sensor data collection activity in the calling thread. This
can be used to prevent the JMS sensor from generating events for the applicatio JMS
calls for delivering the user event messages.
Returns:
Current JMS sensor data collection mode.

restoreTVisionJMSSensor
public static void restoreTVisionJMSSensor(boolean jmsEnabled)

Restore TransactionVision JMS sensor original collection mode.
Parameters:
jmsEnabled - True if sensor should be enabled, false otherwise.

7.3.5. Class com.bristol.tvision.userevents.marshal.UserEventSkeleton

This class defines the basic framework/skeleton for any user event. Applications can use this
class in two ways:

• The skeleton object instantiates several standard header attributes at creation time,
including host architecture, character code set, encoding, etc.. Application can query
for these attributes and generate the standard header document on their own.

• Instead of having the skeleton object to generate the event document, the event
producers can supply additional standard header and request the skeleton object to
generate the standard header XML. Note that the document returned does not
contain the XML header. It is the responsibility of the application to insert such
header.

java.lang.Object
 com.bristol.tvision.userevents.marshal.UserEventSkeleton

public class UserEventSkeleton
extends java.lang.Object
This class defines the user event skeleton. Any user event producer can use this
class to gather individual event attributes or generate the standard header section
for the user event XML document.

Constructor

UserEventSkeleton
public UserEventSkeleton()

Creates a new UserEventSkeleton instance. This constructor instantiates several attributes
default values including operator system, vendor, host architecture, encoding, character
code set, host name, execution point (Constants.EP_EXIT), and data collection mode
(Constants.DATA_COLL_MODE_ALL_MASK). It also assigns a unique identifer for
this event across the application scope to be used as the event ID sequence number, and
generate the program instance identifier for the calling thread.

Chapter 7 • Implementing User Events
Using the User Event SDK

174 TransactionVision Programmer’s Guide

Methods

getMajorVersion
public int getMajorVersion()

Return TransactionVision user event current supported version number.
Returns:
Current TransactionVision event major version number.

getMinorVersion
public int getMinorVersion()

Return TransactionVision user event current supported minor version number.
Returns:
Current TransactionVision event minor version number.

getEventIDSequenceNum
public int getEventIDSequenceNum()

Return the sequence number of this user event ID (/Event/EventID/@sequenceNum) This
field is automatically set by the constructor.
Returns:
Event ID sequence number.

setEventIDSequenceNum
public void setEventIDSequenceNum(int id)

Set the user event ID sequence number.
Parameters:
id - New event ID sequence number to be used.

getOS
public java.lang.String getOS()

Return the operating system information for the environment (e.g.: AIX). This field is
automatically set by the constructor. This field is read-only and cannot be overwritten.
Returns:
Operating system name. This attribute is read-only and cannot be overwritten.

getVendor
public java.lang.String getVendor()

Return the vendor name for the operating system (e.g.: IBM). This field is automatically
set by the constructor. This field is read-only and cannot be overwritten.
Returns:
Vendor name.

getHostArch
public int getHostArch()

Return the integer code representing the host architecture. This code is is a combination
of the operating system and the vendor data. This field is automatically set by the
constructor. This field is read-only and cannot be overwritten.
Returns:
An integer code for the host architecture.

Chapter 7 • Implementing User Events
Using the User Event SDK

TransactionVision Programmer’s Guide 175

getEncoding
public int getEncoding()

Return the integer and floating point encoding value for the environment. This field is
automatically set by the constructor.
Returns:
The environment encoding value.

setEncoding
public void setEncoding(int encoding)

Set the integer and floating point encoding value for the environment.
Parameters:
encoding - New encoding value.

getCCSID
public int getCCSID()

Return the character code set value for the environment. This field is automatically set by
the constructor.
Returns:
The character code set value.

setCCSID
public void setCCSID(int ccsid)

Set the character code set value for the environment.
Parameters:
ccsid - New character code set value.

getPrimaryTime
public java.lang.String getPrimaryTime()

Return the primary timestamp for the event.
Returns:
A String representing the event primary time.

setPrimaryTime
public void setPrimaryTime(java.lang.String primaryTime)

Set the primary timestamp for the event.
Parameters:
primaryTime - TransactionVision timestamp for the primary event time.

getSecondaryTime
public java.lang.String getSecondaryTime()

Return the secondary timestamp for the event.
Returns:
A String representing the event secondary time.

setSecondaryTime
public void setSecondaryTime(java.lang.String secondaryTime)

Set the secondary timestamp for the event.

getClientTimeSkew
public int getClientTimeSkew()

Chapter 7 • Implementing User Events
Using the User Event SDK

176 TransactionVision Programmer’s Guide

Return the client clock skew in microseconds. By default this is set to 0.
Returns:
Client clock skew in microseconds.

setClientTimeSkew
public void setClientTimeSkew(int clientTimeSkew)

Set the client clock skew in microseconds.
Parameters:
clientTimeSkew - Client clock skew in microseconds.

getExecutionPoint
public byte getExecutionPoint()

Return the user event execution point. This is a read-only attribute.
Returns:
The user event execution point.

getDataCollectionMode
public byte getDataCollectionMode()

Return the user event data collection mode. By default this is set to "Collect All"
(Constants.DATA_COLL_MODE_ALL_MASK).
Returns:
The user event data collection mode.

setDataCollectionMode
public void setDataCollectionMode(byte dataCollMode)

Set the user event data collection mode.
Parameters:
dataCollMode - The user event data collection mode.

getUserName
public java.lang.String getUserName()

Return the user name associated with the event. By default, this is set to null. It is valid
for a user event to have null user name.
Returns:
User name.

setUserName
public void setUserName(java.lang.String userName)

Set the user name associated with the events.
Parameters:
userName - User name string.

getHost
public java.lang.String getHost()

Return the host name. This field is automatically set by the constructor.
Returns:
Host name.

setHost
public void setHost(java.lang.String host)

Chapter 7 • Implementing User Events
Using the User Event SDK

TransactionVision Programmer’s Guide 177

Set the host name.
Parameters:
host - Host name.

getProgramPath
public java.lang.String getProgramPath()

Return the program path for the user event. By default, this is set to null. It is valid for a
user event to have a null program path.
Returns:
Program path for the user event.

setProgramPath
public void setProgramPath(java.lang.String programPath)

Set the program path for the user event.
Parameters:
programPath - Program path for the user event.

getProgramName
public java.lang.String getProgramName()

Return the program name for the user event. By default, this is set to null. If no program
name is provided, the getStandardHeader method will assign the name "Unknown" for
the returned standard header data.
Returns:
Program name for the user event.

setProgramName
public void setProgramName(java.lang.String programName)

Set the program name for the user event.
Parameters:
programName - Program name for the user event.

getPIINames
public java.util.Vector getPIINames()

Return a list of the program instance identifier name attributes. This is set by the object
constructor.
Returns:
A vector of the program instance identifier names.

getPIIValues
public java.util.Vector getPIIValues()

Return a list of the program instance identifier value attributes. This is set by the object
constructor.
Returns:
A vector of the program instance identifier values.

getUOW
public java.lang.String getUOW()

Return the user event unit of work string. By default, this is set to null. If this field
remains null when getStandardHeader is called, the attribute /Event/StdHeader/@uow
will not be inserted into the standard header XML document returned by the method.

Chapter 7 • Implementing User Events
Transporting User Events

178 TransactionVision Programmer’s Guide

Returns:
User event unit of work string.

setUOW
public void setUOW(java.lang.String uow)

Set the unit of work string for the user event.

getEvent
public java.lang.String getEvent()

Generate a string containing the XML user event docuement based on the current
attribute settings. This document contains the event ID and the standard header element
and their children. The caller is responsible for populating the technology and user data
section.
Returns:
A string containing the XML user event document.

getStandardHeader
public java.lang.String getStandardHeader()

Generate a string containing the XML user event standard header data based on the
current attribute settings.
Returns:
A string containing the XML user event standard header data.

7.4. Transporting User Events

The application is responsible for delivering the user events to the TransactionVision
Analyzer component as JMS/WebSphere MQ messages through the communication links.
The event messages should be sent to the Analyzer’s local event queue/destination specified
by the corresponding communication link. Since there are no data collection filters or
configuration messages from the Analyzer on behalf of user events, the event queue
knowledge has to be conveyed to the application through other channels (for example, local
configuration files, java properties, environment variables, etc.).

Moreover, the event message should have a well-defined JMS correlation ID
(com.bristol.tvision.marshal.Constants.TVISION_USEREVENTS_ID). This
allows the Analyzer to exclusively retrieve user event messages from the user event
processing threads.

The application is responsible for determining and setting any relevant JMS properties
ensuring properly message delivery. This includes (but not limited to) message persistence,
priority, expiration, etc. Specifically, the character code set and encoding attributes of the
message should be set properly according to the environment since the Analyzer depends
on these values for unmarshalling purposes.

Since there are no configuration messages from the Analyzer, the application has no way to
determine the Analyzer’s runtime status, specifically, whether the Analyzer is running and
actively collecting and processing. Safe-guard measures should be taken to avoid undesirable
exception conditions in the communication infrastructure. For example, alerts can be set up
on event queue depth.

There may be cases that the Java applications producing user events may be monitored by
TransactionVision JMS sensors. In order to prevent the JMS sensors from reporting events
corresponding to the user event delivery (also through JMS), applications can suspend the

Chapter 7 • Implementing User Events
Analyzing User Events

TransactionVision Programmer’s Guide 179

JMS sensor on a temporary basis through the SDK helper class. The following example
illustrates this process:

 import com.bristol.tvision.userevents.marshal.UserEventHelper;

// temporarily suspend JMS sensors before sending user events
 boolean bSensorMode = UserEventHelper.disableTVisionJMSSensor();
 // send user event through JMS
 TextMessage message =
helper.qsession.createTextMessage(strEvent);
 message.setJMSCorrelationID(TVisionCommon.TVISION_USEREVENTS_ID)
;
 helper.tvQSender.send(message);
 helper.qsession.commit();
 // restore previous sensor collection mode
 UserEventHelper.restoreTVisionJMSSensor(bSensorMode);

Note that the method disableTVisionJMSSensor and restoreTVisionJMSSensor
only take effect in the calling thread.

7.5. Analyzing User Events

This section discusses the specific customization or configuration for user event analysis. For
information on correlating user events into transactions, see section 4.5. For information
about extending the system model for user events, see section 4.6.

7.5.1. Event Unmarshalling

By default, TransactionVision Analyzers would extract the user event XML document from
the event messages, and convert it into the internal XMLEvent class object
(com.bristol.tvision.services.analysis.XMLEvent). The XMLEvent class
implements the interface org.w3c.dom.Document and can be manipulated like any other
XML document. Since the user event is in XML format, minimal modifications are needed to
the incoming document.

Should you decide to further customize the unmarshalling logic for the technology and user
data section, you can elect to develop a bean implementing the
com.bristol.tvision.services.analysis.unmarshal.IUnmarshal interface.
There is one difference between unmarshalling user events and standard Sensor events. In the
former case, the whole XML document has already been read off from the input stream and
attached to the XMLEvent structure. Thus the unmarshalling logic for use event should not
attempt to read from the event input stream. Instead, it should focus on modifying the
XMLEvent document instead.

7.5.2. Local Transaction Analysis

TransactionVision implements a local transaction generation algorithm through the bean
com.bristol.tvision.services.analysis.eventanalysis.UserEventLocal
Transaction for all user events. To group user events into the same local transaction, this
bean uses the user event unit of work ID (/Event/StdHeader/@uow) and the program
instance identifier.

Chapter 7 • Implementing User Events
Tutorial: Generating User Events

180 TransactionVision Programmer’s Guide

7.5.3. Business Transaction Analysis

By default, the Analyzer is capable of putting user events belonging to different local
transactions into the same business transactions by either event relations or tracking ID.

In the first case, two local transactions containing user events are put into the same business
transaction if at least one event relation exists between events from either local transaction.

In the second case, two local transactions containing user events are put into the same
business transaction if at least one event from each local transaction shares the same tracking
id (/Event/Technology/UserEvent/Tracking/@id).

7.5.4. Statistical Analysis

For user events that have an associated system object (resource), the Analyzer will generate
aggregated latency statistics over fixed intervals. Individual latency statistics will be gathered
for each application-system object pair with a particular flow direction.

For example, if there are two applications reading from and writing to five different database
tables, a total of twenty (20) data sets will be created and updated for every application-
resource combination in either flow direction (20 = 2 x 5 x 2).

The statistics computation and aggregation is handled by the Java bean
com.bristol.tvision.services.analysis.statistics.UserEvent
StatisticsBean. This can be enabled and disabled by modifying the corresponding entry
in the Beans.xml file.

7.6. Tutorial: Generating User Events

This section provides a tutorial sample that demonstrates how to generate user events with the
TransactionVision User Event SKD and helper classes.

The source code and build files for this tutorial are located in the TransactionVision
<TVISION_HOME>/samples/userevent/tutorial directory. This directory contains the
following files:

File Description

build.xml Ant build file

readme.txt Readme file for the tutorial

SystemModelDefinition.xlm System model definitions for this sample

TechUserEvent.xsd XML schema for user events

TVisionUserEvent.java Source code for the tutorial

tvUserEvent.bat Script to run the sample on Microsoft
Windows.

tvUserEvent.sh Script to run the sample on UNIX platforms.

UserEvent.xsd XML schema for user evnets

Chapter 7 • Implementing User Events
Tutorial: Generating User Events

TransactionVision Programmer’s Guide 181

7.6.1. Sample Overview

This sample generates a single user event representing a JDBC query activity. It delivers the
event message through WebSphere JMS. The user can define the destination WebSphere MQ
queue manager and queue to receive the generated user event.

First, examine the main routine of this Java sample, found in TVisionUserEvent.java:
/**
 * Main routine for composing and delivering a single
 * TransactionVision user event to the analyzer through a WebSphere
 * MQ communication link.
 */
public static void main (String args[])
{
 /* Check command line arguments */

 /* Set up JMS(WebSphere MQ) connection for delivering user
 events to TransactionVision communication link. */

 /* Generate and delivery a user event */
 sendEvent();

 /* Shut down JMS connection */

}

The majority of the code in this method validates the command line arguments and handles
the JMS connection for delivering the user event message. This code for this has been
omitted in the above code snippet.

The sendEvent() method contains the code that generates and delivers the user event

In the following code segment, the UserEventHelper class records the start and end time of
the JDBC activity. The sleep call simulates the elapsed time of a JDBC call.
/* We simulate a JDBC query call by sleeping for at least 1 second.
 Use the SDK helper function to get event start and end time. */

 TimeData startTime = UserEventHelper.getCurrentTime();
 Thread.currentThread().sleep(1000);
 TimeData endTime = UserEventHelper.getCurrentTime();

The following code segment creates a system object to represent the database named
“tradedb01.” Note that the system object type identifier (100001) must be consistent with the
data in the SystemModelDefinition file in the TransactionVision configuration directory.
/* Create a database system model object use this as the resource
 for the JDBC user event */

SystemModelObject dbObj = new SystemModelObject(
 1, /* local object id in system model */
 100001, /* user defined system object type id */
 "tradedb01", /* object name */
 "tradedb01"); /* object signature string */

Next, the sample prepares the user data for a book order in XML format:
/* Compute the application-resource latency time by comparing the
 start and end time */
long latency = endTime.timeInMillis - startTime.timeInMillis;

Chapter 7 • Implementing User Events
Tutorial: Generating User Events

182 TransactionVision Programmer’s Guide

/* Prepare user data for the event and record data length */
String userData = "<BookOrder><ISBN>0743267524</ISBN>" +
 "<Quantity>1</Quantity></BookOrder>";
int userDataSize = userData.length();

The following code uses the User Event SDK UserEventSkeleton class to generate the
basic XML document for the user event standard header section. It uses several set methods
in the UserEventSkeleton class to set the context data such as program name, event
primary and secondary time, and unit of work identifier.
/* Create a TransactionVision user event skeleton through the SDK.
 Most environment settings such as host architecture, encoding,
 character code set are set by default. We only need to set the
 program name, timestamps, and technology attributes. */

UserEventSkeleton userEvent = new UserEventSkeleton();
userEvent.setProgramName("OrderProcessor");
userEvent.setPrimaryTime(startTime.strTime);
userEvent.setSecondaryTime(endTime.strTime);
userEvent.setUOW("A67524B2236"); /* unit of work chosen by user */

Next, the sample creates the Java string for storing the complete user event XML document.
Note the use of the UserEventSkeleton class to help generating an event sequence
number.
/* Start composing the user event with the XML header */
String strEvent = "<?xml version=\"1.0\" encoding=\"UTF-8\"?>";

/* Create an event sequence number that should be unique in the
 application life time. The SDK skeleton class can supply such
 number. */
int eventSeqNo = userEvent.getEventIDSequenceNum();

/* Add the standard header. We can leverage the user event skeleton
 for the bulk of the standard header content. */
strEvent += "<Event><EventID sequenceNum=\"" + eventSeqNo + "\"/>";

Next, the UserEventSkeleton class object generates the string for the standard header:
strEvent += userEvent.getStandardHeader();

The following is the technology section:
/* Start the technology section */
strEvent += "<Technology><UserEvent>";

/* TransactionVision defines several completion code in the class
 com.bristol.tvision.userevents.Constants */
int compCode = Constants.USEREVENT_COMPCODE_OK;

strEvent += "<Class>JDBC</Class>";
strEvent += "<Method>query</Method>";
strEvent += "<DataSize>" + userDataSize + "</DataSize>";
strEvent += "<CompCode>" + compCode + "</CompCode>";
strEvent += "<Status>Normal</Status>"; /* status chosen by user */

Next, add a reference to the database system model object associated with the JDBC activity
you are reporting. In this case, the sample reports an inbound activity (query), the application
reading data from the database:
/* This event refers to the database resource we created above.
 Use the local object id as reference. Since the event represents
 a query action, the relation direction is set to point from the
 database object to the application (inbound).
 The direction constants are defined in the class
 com.bristol.tvision.userevents.Constants */

Chapter 7 • Implementing User Events
Tutorial: Generating User Events

TransactionVision Programmer’s Guide 183

int pathDir = Constants.USEREVENT_PATH_IN;
strEvent += "<Object id=\"" + dbObj.id + "\" ";
strEvent += "dir= \"" + pathDir + "\" ";
strEvent += "latency= \"" + latency + "\" />";

The following code segment generates a unique transaction tracking ID for grouping events
of the same business transaction:
/* Generate a unique tracking id for grouping events belonging to
 the same transaction together */
strEvent += "<Tracking id=\"1A2D357236B17925\"/>";

The following code writes details about the system model object for the database by using the
serialization method toXML() of the system model object class:
/* Generate the system model for our database object. Use the
 toXML() method for serialization. */
strEvent += "<SystemModel>";
strEvent += dbObj.toXML();
strEvent += "</SystemModel>";

We add the UserDataRef element as a reference to the user data for this event:
/* Create a user data reference line */
strEvent += "<UserDataRef chunk=\"0\"/>";

We have now completed the technology section of the user event:
/* Close technology section */
strEvent += "</UserEvent></Technology>";

The following code segment attaches the user data to the event
document under the "/Event/Data/Chunk" node:

/* Create the user data section, make sure we set the type to
 com.bristol.tvision.userevents.Constants.XMLEVENT_BLOB_XML */
int toIndex = userDataSize - 1;
String chunkEleBegin =
 "<Chunk seqNo=\"0\" ccsid=\"1208\" blobType=\"" +
 Constants.XMLEVENT_BLOB_XML + "\"" +
 " from=\"0\" to=\"" + toIndex + "\">";
String chunkEleEnd = "</Chunk>";
strEvent += "<Data>" + chunkEleBegin + userData + chunkEleEnd +
 "</Data>";

The event document has now been completed:
/* Close the event */
strEvent += "</Event>";

Optionally, we can validate the document generated against the XML schema
UserEvent.xsd. This sample has a copy of this schema file in the sample directory. This
schema file is also available in the TransactionVision configuration directory. The validation
code can be found in the tutorial Java source file:
/* Parse and validate the user event through XML parser */
if (validateEvent(strEvent) == false)
 return;
System.out.println("Event document comforms to XML schema.");

Finally, we are ready to deliver the user event through JMS. Note that since this sample uses
JMS to deliver the user event, we may get TransactionVision JMS events for these activites if
the sample is run in a Sensor-enabled environment. The SDK helper class allows you to
temporarily disable such JMS events generation through the method
disableTVisionJMSSensor().

Chapter 7 • Implementing User Events
Tutorial: Generating User Events

184 TransactionVision Programmer’s Guide

/* Send user event through JMS. It is possible that this application
 is monitored by TransactionVision JMS sensor. In order to avoid
 sending standard TV JMS events for our user event delivery calls,
 temporarily disable the JMS sensor. It may be necessary to add
 synchronization control in multi-thread environment. */
bSensorMode = UserEventHelper.disableTVisionJMSSensor();
bRestoreSensor = true;

TextMessage message = tvQSession.createTextMessage(strEvent);

All user event JMS messages should have the correlation ID set to the well-defined value
Constants.TVISION_USEREVENTS_ID:
/* All user event messages should have the same correlation ID
 as defined in the com.bristol.tvision.userevents.Constants
 class. */
message.setJMSCorrelationID(Constants.TVISION_USEREVENTS_ID);

tvQSender.send(message);
tvQSession.commit();
System.out.println("Send user event to TransactionVision event
queue.");

Now that we have delivered the message, we can restore the normal behavior of the JMS
Sensor with restoreTVisionJMSSensor().
/* We can now resume JMS sensor collection */
bRestoreSensor = false;
UserEventHelper.restoreTVisionJMSSensor(bSensorMode);

7.6.2. Building the Tutorial Sample

Use the included ant file to build this tutorial. Make sure you update the build.xml file so
that the following directory properties are set according to your local environment:

Property Description

mq.dir The WebSphere MQ installation directory

tvision.dir The TransactionVision installation directory

This sample uses the XML schema files UserEvent.xsd and TechUserEvent.xsd for
validating the user event XML document generated. These two files can also be found in the
config/xmlschema directory under the TransactionVision installation directory.

This sample makes use of the user event SDK tvisionuserevents.jar under the
TransactionVision installation
(<TVISION_HOME>/java/lib/tvisionuserevents.jar).

7.6.3. Running the Tutorial Sample

To set up a TransactionVision project, run the tutorial sample, and collect user events,
perform the following steps:

1. Merge the provided SystemModelDefinition.xml file with the one in the
TransactionVision installation under the directory
<TVISION_HOME>/config/sysmodel.

2. Create a TransactionVision project with one communication link.

Chapter 7 • Implementing User Events
Tutorial: Generating User Events

TransactionVision Programmer’s Guide 185

3. Make sure the communication link is created with User Event Processing support
enabled. This option is available in the Miscellaneous Information section of the
communication link editing user interface.

4. This sample makes use of JMS (WebSphere MQ) for delivering the user event
messages. Make sure the event queue created can be accessed by the sample through
MQ SERVER connection.

5. Before running the sample, make sure you turn on Analyzer collection.

6. Use the script tvUserEvent.[bat|sh] to run the sample. The script takes two
required command line arguments which specify the event queue name and queue
manager name respectively (in the specified order).

For example, if the event queue has name TVISION.EVENT.QUEUE on the queue
manager trading, run the sample as follows:

% tvUserEvent.sh TVISION.EVENT.QUEUE TRADING

After a successful run of the sample, you should find a single user event in the project
database.

TransactionVision Programmer’s Guide 187

8. Database Schema

8.1. System Object Model Tables

The System Object Model tables are used to store all the System Model objects and the
relationships between them. System model objects include general resources as well as
technology-specific resources.

8.1.1. Object Types

As such, different technologies will be assigned different ranges of object types. This is
described in the table below.
Object Types

Value (range) Description

0 – 999 Basic System Model Objects (hosts, technologies,
Program Instances, etc.)

1 Host

2 Not used

3 Program

4 Program Instance

5 z/OS Jobname

6 z/OS Jobstep

7 z/OS CICS Region

8 z/OS CICS Transaction

9 z/OS IMS ID

10 z/OS IMS Region Type

11 z/OS IMS Region ID

12 z/OS IMS Transaction

13 z/OS IMS PSB

Chapter 8 • Database Schema
System Object Model Tables

188 TransactionVision Programmer’s Guide

14 OS400 Jobname

15 z/OS CICS Task

16 User Name

17 Proxy

18 Statistics

1000-2000 MQSeries Objects

1000 Unknown type

1001 None

1002 Queue

1003 Local Queue

1004 Model Queue

1005 Alias Queue

1006 Remote Queue

1007 Cluster Queue

1008 Local Cluster Queue

1009 Alias Cluster Queue

1010 Remote Cluster Queue

1011 Namelist

1012 Process

1013 Queue Manager

1014 Distribution List

1015 Cluster

1016 WBI Message Flow

1017 WBI Broker

1018 Connection Name

1019 Cluster Name

1020 ReplyTo Queue

1021 ReplyTo Queue Manager

2000 Proxy Object

3000-3100 Servlet Objects

3000 Server

3001 Web Application

3002 Servlet

Chapter 8 • Database Schema
System Object Model Tables

TransactionVision Programmer’s Guide 189

3003 Internet

3004 JSP

3005 EJB

3006 EJB Method

3101-3199 JMS Objects

3101 Topic

3102 Queue

4000-5000 CICS Objects

4001 SYSID

4002 APPLID

4003 TREMID

4004 File

4005 TD Queue

4006 TS Queue

4007 TD Alias Queue

8.1.2. Signatures

Each System Model Object has a unique object id that is assigned when the object is inserted
into the table. In addition to this unique identifier, each object can be considered to have a
signature that identifies that object uniquely. The signature of the object can be generated
from event data and looked up in the SYS_MDL_OBJECT table to find the corresponding
unique object id. The signature can be uniquely generated from the attributes of the object in
an event.

The general format for a signature is a list of all the successor objects from left (highest) to
right (the final object), separated by forward slashes. In addition, the object type identifier
(see table above) is a prefix to the signature since two objects of different types might
otherwise have the same signature.

Signature Examples

Object Type Example Signature

Host 1/macbeth

(Object type/hostname)

Program Instance
(Unix/NT)

4/U/2001080617592300000/132/1

(Object type/platform id/start time/process id/thread id)

Program Instance

(CICS – z/OS)

2/C/CICS/ABCD/A0F1

(Object type/platform id/CICS region/transaction id/task id)

MQSeries Queue Manager 1001/qm1 (Object type/queue manager name)

Chapter 8 • Database Schema
System Object Model Tables

190 TransactionVision Programmer’s Guide

MQSeries Queue (local) 1002/qm1/LOCAL.QUEUE

(Object type/queue manager/queue)

MQSeries Queue (alias) 1003/qm1/ALIAS.QUEUE

(Object type/queue manager/queue)

8.1.3. Logical Model

SYS_MODEL_OBJECT
object_id

object_name
object_doc
object_type
signature

SYS_MDL_OBJECT_RELATION

object_id1 (FK)
object_id2 (FK)
relation_type
direction

Figure 8-1: System Object Tables Logical Model

8.1.4. Physical Model

SYS_MODEL_OBJECT
object_id: INTEGER

object_name: VARCHAR(128)
object_doc: CLOB(4K)
object_type: INTEGER
signature: VARCHAR(255)

SYS_MDL_OBJECT_RELATION

object_id1: INTEGER
object_id2: INTEGER
relation_type: INTEGER
direction: INTEGER

Figure 8-2: System Object Tables Physical Model

8.1.5. System Model Relationships

The following table shows the relationship between system model objects:

Relation
Type

Relation Name Examples of the Relationship

1 OWNS • A host owns all the programs it hosts.
• A program owns its program instances.
• A queue manager owns all the queues it hosts.
• A host owns all pallication servers it hosts.
• An application server owns all web (enterprise)

applications.
• A web application owns all servlets, JSP, and EJB it

contains.
• An EJB owns all the methods it defines.
• An IMS control region job owns transaction.
• A z/OS job owns all its job steps.
• A TIBCO connection owns TIBCO targets.

Chapter 8 • Database Schema
Event Tables

TransactionVision Programmer’s Guide 191

Relation
Type

Relation Name Examples of the Relationship

2 CONTAINS A name List and its contents.
3 USES • A queue uses a connection name.

• A program uses a queue.
• A program uses its EJB and servlets.
• A CICS transaction uses programs.
• A CICS program uses CICS PC programs.
• A CICS program uses CICS files.
• A CICS program uses CICS TD queues.

4 RESOLVETO • An alias queue and the base queue it refers to
• A remote queue and the queue it refers to
• A model queue and the dynamic queue generated from

it
• A CICS TD queue and indirect queue

5 ABSTRACTS • Cluster name and cluster object
• Cluster object and cluster queue

6 ALIAS • Program instance and MQSI message flow
• Program instance and MQSI broker

7 ONE_TO_ONE EJB entity beans relationship
8 ONE_TO_MANY EJB entity beans relationship
9 MANY_TO_ONE EJB entity beans relationship
10 MANY_TO_MANY EJB entity beans relationship
11 STARTS Two CICS transactions; one starts the other
12 BRIDGE_TO TIBCO bridge source and target
13 ROUTE_TO TIBCO route source and target
14 ROUTE_TO_FROM TIBCO route source and target

8.2. Event Tables

Data in the event tables is split up into three basic sections:

• The core event data

• The user data

• Lookup tables

The core event data contains a unique compound key identifying that event and an XML
document, which contains the entire event data (minus user data which was not unmarshalled
into XML.) The XML data gets stored in LOB columns. For performance reasons, the
Analyzer can be configured to store the XML data into a VARCHAR column instead. Should
the event XML data exceed the maximum size of this VARCHAR column, a separate row
will be inserted into the EVENT_OVERFLOW table, which defines the event_data as LOB.

Chapter 8 • Database Schema
Event Tables

192 TransactionVision Programmer’s Guide

To configure the Analyzer to use VARCHAR, edit the DatabaseDef.xml file in
$TVISION_HOME/config.datamgr and replace:
<Table name="EVENT" volatile="true">
 <Column name="event_data" type="CLOB" size="1M"/>

with the following:
<Table name="EVENT" volatile="true">

 <Column name="event_data" type="VARCHAR" size="3960"/>

Please note that this change will only improve performance if most of the events will fit into
the VARCHAR column (thus minimizing the need to use the overflow table). The maximum
size for the VARCHAR is dependent on the database tablespace page size and should be
determined by a DBA.

The PARTIAL_EVENT table is a temporary container for Entry- or Exit only events. If the
corresponding partial event arrives in the the Analyzer within a defined time interval, a
matching thread running in the Analyzer will merge those events and store them in the
EVENT table as usual.

User data that was not unmarshalled into XML is stored in the USER_DATA table in the raw
format (no data conversion). As with the XML event data, the Analyzer can be configured to
use VARCHAR instead of BLOB columns (edit the DatabaseDef.xml file in
$TVISION_HOME/config.datamgr and replace:
 <Table name="USER_DATA" volatile="true">
 <Column name="user_data" type="BLOB" size="10M"/>

with the following:
 <Table name="USER_DATA" volatile="true">
 <Column name="user_data" type="VARBINARY" size="3960"/>

The size of the user_data column may also be changed via the size attribute. However, note
that if this value is changed or if the column type is changed, the USER_DATA table must be
dropped and then re-created for the changes to take effect.

The lookup tables are used to store fields for quick searching; all columns in these tables are
indexed. The XML to Database Mapping (XDM) file uses XPath statements to identify
which data items are to be extracted from the XML event data and placed into the lookup
tables. Lookup tables for the basic event data and the technology/platform specific
MQSeries, OS390, OS400, JMS, Servlet, EJB, and BTTRACE event data are shown in the
following figures.

Chapter 8 • Database Schema
Event Tables

TransactionVision Programmer’s Guide 193

8.2.1. Logical Model

Figure 8-3: Event Tables Logical Model

Chapter 8 • Database Schema
Event Tables

194 TransactionVision Programmer’s Guide

8.2.2. Physical Model

Figure 8-4: Event Tables Physical Model

Chapter 8 • Database Schema
Event Relationship Tables

TransactionVision Programmer’s Guide 195

8.3. Event Relationship Tables

EVENT_RELATION table stores the relationship between two events determined by
technology specific event correlation logic. If the relationship type is defined as
BIDIRECTION, there will be two entries in this table: event1 -> event 2 and event2 ->
event1. If the logic determines the two events are correlated in certain way with 100%
certainty, the confidence factor is set to STRONG_RELATION, otherwise
WEAK_RELATION.

RELATION_LOOKUP table stores a correlation lookup id for each event. The logic to
generate this lookup id is specific to the technology used by this event.

8.3.1. Logical Model

Figure 8-5: Event Relationship Tables Logical Model

Chapter 8 • Database Schema
Transaction Tables

196 TransactionVision Programmer’s Guide

8.3.2. Physical Model

Figure 8-6: Event Relationship Tables Physical Model

8.4. Transaction Tables

Local and Business Transactions are created and updated during the Event Analysis phase in
the Analyzer. The local transaction analysis bean populates the LOCAL_TRANSACTION
table and links the event data to the corresponding transaction through the column
local_trans_id in the table EVENT_LOOKUP. The BUSINESS_TRANSACTION and
LOCAL_TO_BUSINESS_TRANS tables are populated during business transaction analysis.

The TRANSACTION_CLASS table contains attributes of all transaction classes that will be
made known to the Analyzer, it is static and has to get pre-populated by the user. The
BUSINESS_TRANSACTION and TRANSACTION_CLASS tables are defined through an
XDM file.

Chapter 8 • Database Schema
Transaction Tables

TransactionVision Programmer’s Guide 197

8.4.1. Logical Model

Figure 8-7: Transaction Tables Logical Model

Chapter 8 • Database Schema
Statistics Tables

198 TransactionVision Programmer’s Guide

8.4.2. Physical Model

Figure 8-8: Transaction Tables Physical Model

8.5. Statistics Tables

The statistics tables contain data used by various Reports in the TransactionVision web
application. The data in the TOPOLOGY_STATS is collected by the Analyzer and used for
the static Topology View and as a Datasource for event based reports. The data in the table
TRANSACTION_STATS is generated by the TransactionStatisticsJobBean running in the
web application and is used for transaction based reports.

Chapter 8 • Database Schema
Statistics Tables

TransactionVision Programmer’s Guide 199

8.5.1. Logical Model

Figure 8-9: Statistics Tables Logical Model

Chapter 8 • Database Schema
User Preference Tables

200 TransactionVision Programmer’s Guide

8.5.2. Physical model

Figure 8-10: Statistics Tables Physical Model

8.6. User Preference Tables

User preference tables stores the personal setting for each user. The setting includes view
options for the event list view, topology view, and time-zone information. When a user logs
onto the TransactionVision, the application server will firstly check if there is a database
record of the same user id, if not it will read the default setting from
<TVISION_HOME>/config/usermgr/DefaultUserData.xml, and create a record for
the user. The database record will be updated when the setting is changed by the user in any
view. The Query table is used to store the queries for a ceratin project. The query document is
saved as XML into the query_doc column. The Storage table is only used for internal
purposes.

Chapter 8 • Database Schema
User Preference Tables

TransactionVision Programmer’s Guide 201

8.6.1. Logical model

PROJECT
project_id

project_name
schema_id (FK)
is_active
description

USER_PREF
user_id
type_id

pref_data

STORAGE
storage_id

project_id (FK)
storage_name
storage_doc

QUERY
query_id

project_id (FK)
query_name
description
query_doc

Figure 8-11: User Preference Tables Logical Model

8.6.2. Physical model

PROJECT
project_id: INTEGER

project_name: VARCHAR(80)
schema_id: INTEGER
is_active: INTEGER
description: VARCHAR(128)

USER_PREF
user_id: VARCHAR(255)
type_id: VARCHAR(20)

pref_data: CLOB(64)

STORAGE
storage_id: INTEGER

project_id: INTEGER
storage_name: VARCHAR(120)
storage_doc: CLOB(64)

QUERY
query_id: INTEGER

project_id: INTEGER
query_name: VARCHAR(80)
description: VARCHAR(128)
query_doc: CLOB(64)

Figure 8-12: User Preference Tables Physical Model

Chapter 8 • Database Schema
Object Alias Tables

202 TransactionVision Programmer’s Guide

8.7. Object Alias Tables

The object alias tables contain data used to map alias names to the corresponding system
model objects. If alias names are defined for system model objects, TransactionVision uses
the alias names in TransactionVision views and reports. The OBJECT_ALIAS_ID table
keeps track of alias set names and their database IDs. The OBJECT_ALIAS_DEFINITION
table keeps track of all the alias definitions in alias sets.

8.7.1. Logical Model

Figure 8-13: Object Alias Tables Logical Model

8.7.2. Physical Model

Figure 8-14: Object Alias Tables Logical Model

Chapter 8 • Database Schema
Administration (System) Tables

TransactionVision Programmer’s Guide 203

8.8. Administration (System) Tables

8.8.1. Logical model

Figure 8-15: Administration Tables Logical Model

Chapter 8 • Database Schema
Administration (System) Tables

204 TransactionVision Programmer’s Guide

8.8.2. Physical model

Figure 8-16: Administration Tables Physical Model

All of the following tables are created in the “TVISION” schema, and not the user-defined
schema to store events.

Analyzer Table: contains all Analyzers defined in the system. Only one Analyzer instance
for a given schema is allowed and only one Analyzer instance is allowed to run on a given
host. One Analyzer may process data from multiple schemas since the Analyzer is multi-
threaded.

Chapter 8 • Database Schema
Administration (System) Tables

TransactionVision Programmer’s Guide 205

ANALYZER
analyzer_id: INTEGER

analyzer_host: VARCHAR(252)
analyzer_doc: VARCHAR(1024)
rmi_port: INTEGER

Figure 8-17: Analyzer Table

Analyzer_Schema Table: saves a map of Analyzers and the schemas they process data from.
One Analyzer can process data for one or more schemas, though multiple Analyzers cannot
process data for the same schema.

ANALYZER_SCHEMA

analyzer_id: INTEGER
schema_id: INTEGER

Figure 8-18: Analyzer_Schema Table

Schema Table: saves the list of database schemas available.
SCHEMA
schema_id: INTEGER

schema: CHAR(18)
apply_timeskew: INTEGER

Figure 8-19: Schema Table

Schema_Version Table: This tables is used to perform a version check between the
DataManager and the project schemas in the database.

Figure 8-20: Schema_Version Table

Project Table: saves the list of project names and schemas their data is stored into.
PROJECT
project_id: INTEGER

project_name: VARCHAR(80)
schema_id: INTEGER
is_active: INTEGER
description: VARCHAR(128)

Figure 8-21: Project Table

Project_CommLink Table: One-to-many relation between a project and the
communication links it contains. The communication links here are a copy from the global
table of communication links. When they are copied over, the commlink name has the project

SCHEMA_VERSION
schema: CHAR(18)
version: INTEGER
apply_alias_id: INTEGER

Chapter 8 • Database Schema
Administration (System) Tables

206 TransactionVision Programmer’s Guide

name prepended to it. If the same communication link in global communication link table is
copied into two different projects, the two copies have different commlink_id.

PROJECT_COMMLINK
commlink_id: INTEGER

project_id: INTEGER
commlink_name: VARCHAR(164)
commlink_doc: VARCHAR(3072)
commlink_secs: INTEGER
commlink_msecs: INTEGER

Figure 8-22: Project_CommLink Table

Filter Table: This is a one to many relationship between a project and the data collection
filters it contains. The same filter_name in different projects has different filter_id.

FILTER
filter_id: INTEGER

filter_name: VARCHAR(80)
project_id: INTEGER
filter_doc: CLOB(64K)

Figure 8-23: Filter Table

Analyzer_Project_CommLink Table: This is to allow assigning particular communication
link (in a particular project) to a particular Analyzer.

ANALYZER_PROJ_COMMLINK

analyzer_id: INTEGER
commlink_id: INTEGER

Figure 8-24: Analyzer_Project_CommLink Table

CommLink_Filter Table: This is to allow assigning a particular data collection filter in to a
particular communication link (in a particular project) on a particular Analyzer.

COMMLINK_FILTER

commlink_id: INTEGER
filter_id: INTEGER
analyzer_id: INTEGER

Figure 8-25: CommLink_Filter Table

CommLink Table: This is the global communication link table. All created global
communication link templates are saved here, and copied into the project table when loaded
into a project by user.

Chapter 8 • Database Schema
Administration (System) Tables

TransactionVision Programmer’s Guide 207

COMMLINK
commlink_id: INTEGER

commlink_name: VARCHAR(80)
commlink_doc: VARCHAR(3072)

Figure 8-26: CommLink Table

Object Alias ID Table: This table contains all the alias lists available in TransactionVision.

Figure 8-27: Object Alias ID Table

Object Alias Definition Table: Thistable saves all alias definitions.

Figure 8-28: Object Alias Definition Table

OBJECT_ALIAS_ID
alias_set_id: INTEGER
alias_name: VARCHAR(128)

OBJECT_ALIAS_DEFINITION
alias_set_id: INTEGER

obj_signature_type: VARCHAR(255)
obj_type: INTEGER
obj_name: VARCHAR(128)
alias_name: VARCHAR(128)
obj_owner: VARCHAR(255)
is_signature: INTEGER

TransactionVision Programmer’s Guide 209

9. Event XML Schema

This section describes the various XML documents stored in TransactionVision database
tables. XML schemas are used to describe TransactionVision data.

9.1. Basic Types

Basic types are technology specific data types and are described using schema tags
xsd:simpleType or xsd:complexType. For example, MQMD belonging to the MQSeries
technology may be described in a schema as:

 <xsd:complexType name="MQMD">
 <xsd:sequence>
 <xsd:element name="StrucId" type="MQCHAR4"/>
 <xsd:element name="Version" type="MQLONG"/>
 <xsd:element name="Report" type="MQLONG"/>
 <xsd:element name="MsgType" type="MQLONG"/>
 <!-- and so on… -- >
 </xsd:sequence>
 </xsd:complexType>

and the basic types MQCHAR4 and MQLONG are:

 <xsd:simpleType name="MQCHAR4">
 <xsd:restriction base="xsd:string">
 <xsd:length value="4" fixed="true"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="MQLONG">
 <xsd:restriction base="xsd:long"/>
 </xsd:simpleType>

Similarly, all datatypes in a particular technology need to be described as above.

Technology specific methods such as MQGET, MQPUT etc. extend the “API” base type.
 <xsd:element name="MQPUT">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Hconn" type="MQHCONN"/>
 <xsd:element name="Hobj" type="MQHOBJ"/>
 <xsd:element name="pMsgDesc" type="PMQMD"/>
 <xsd:element name="BufferLength" type="MQLONG"/>
 <xsd:element name="pCompCode" type="pMQLONG"/>
 <xsd:element name="pReasonCode" type="pMQLONG"/>

Chapter 9 • Event XML Schema
Event Schema Description

210 TransactionVision Programmer’s Guide

 </xsd:sequence>
 </xsd:complexType>

 </xsd:element>

9.2. Event Schema Description

An event packet saved in the database would have the following layout: Detailed Schema
definition can be found under <TVISION_HOME>/config/xmlschema/Event.xsd.
<?xml version="1.0" encoding="UTF-8"?>
<Event>
<EventID programInstID="642" sequenceNum="7"/>
<StdHeader minorVersion="1" uow="…" version="5">
<HostArch>
<OS>AIX</OS>
<Vendor>IBM</Vendor>
<HostArchValue>0xFFFFFFFF80030780</HostArchValue>

</HostArch>
<Encoding>273</Encoding>
…

</StdHeader>
<Technology>
<MQSeries API="MQPUT" … >
<MQPUT>
<MQPUTEntry>
<HConn>0x5</HConn>
<HObj>0x200EC268</HObj>
<MQMD parameterName="MsgDesc" pointerValue="0x2FF22288">
<StrucId>MQMD_STRUC_ID "MD"</StrucId>
<Version>MQMD_VERSION_1 1</Version>
<Report>MQRO_NONE 0</Report>
<MsgType>MQMT_DATAGRAM 8</MsgType>
…

</MQMD>
<MQPMO parameterName="PutMsgOpts" pointerValue="0x2FF223F8">
<StrucId>MQPMO_STRUC_ID "PMO"</StrucId>
<Version>MQPMO_VERSION_1 1</Version>
<Options>MQPMO_NONE 0x0</Options>
…

</MQPMO>
<BufferLength>25</BufferLength>
<Buffer pointerValue="0x2FF2253C">
 <UserDataRef chunk="0"/>
</Buffer>
<CompCode pointerValue="0x2FF224FC">N/A</CompCode>
<ReasonCode pointerValue="0x2FF22500">N/A</ReasonCode>

</MQPUTEntry>
<MQPUTExit>
<HConn>0x5</HConn>
<HObj>0x200EC268</HObj>
…

</MQPUTExit>
</MQPUT>

</MQSeries>
</Technology>
<Data>
 <Chunk blobType="0" ccsid="0" from="0" seqNo="0" to="24"/>
</Data>

</Event>

The diagram below shows the basic structure of the type hierarchy of objects used to describe
an event.

Chapter 9 • Event XML Schema
Event Schema Description

TransactionVision Programmer’s Guide 211

Chapter 10 • The Data Manager
Using the DataManager to Access the Database

TransactionVision Programmer’s Guide 213

10. The Data Manager

10.1. Using the DataManager to Access the Database

Custom beans and reports that need to access the database may use the service interface of
the DataManager class to conveniently perform tasks which otherwise would have to be
coded on the JDBC level.

A reference to the DataManager object can be obtained with the instance() method.

If the DataManager instance is used outside of the TransactionVision application context
(for example, in a standalone Java application), the first call into the DataManager must be

 DataManager.instance().init()

Beans and reports that run within the TransactionVision application are not required to do
this; they can expect the instance to be successfully initialized.

Custom beans running within the TranactionVision Analyzer Framework will usually get the
current database connection passed in as a parameter of class ConnectionInfo, which
encapsulates the JDBC connection handle and the database schema name for the current
processed event:
public class ConnectionInfo {

 /** The database connection */
 public Connection con;
 /** The database schema */
 public String schema;

 public ConnectionInfo(Connection con, String schema) ;
}

In cases where the custom code needs to obtain its own database connection, the
DataManager offers three different methods for this purpose:

getThreadConnection() will return a connection for the current thread. If this is the first
time the thread calls into this method, a new connection to the database is returned. Every
following call from the same thread will return the same connection, until it is getting
released with releaseThreadConnection().

getSessionConnection(String sessionId) will return a new connection the first
time this method is called for a certain session Id, and then return the cached connection for

Chapter 10 • The Data Manager
Using the DataManager to Access the Database

214 TransactionVision Programmer’s Guide

all further calls until the connection is relased with releaseSessionConnection(String
sessionId)

getConnection() will always create and return a new connection to the database. This
connection will get released with a call to releaseConnection(Connection con).

Here is the complete list of the methods that make up the supported DataManager interface:
public static DataManager instance()

Returns the DataManager Singleton instance

Returns:
The DataManager instance

public void init(java.lang.String propertyFile)
 throws com.bristol.tvision.datamgr.DataManagerException

Initializes the DataManager according to the settings in the specified properties file. NOTE :
This method has to be called before any other method.

Parameters:
dbProperties - The Database.properties file containing the db settings

Throws:
com.bristol.tvision.datamgr.DataManagerException - If initialization fails

public void init()
 throws com.bristol.tvision.datamgr.DataManagerException

Initializes the DataManager with the default properties file (Database.properties)

Throws:
com.bristol.tvision.datamgr.DataManagerException - If initialization fails

public java.sql.Connection getThreadConnection()
 throws
com.bristol.tvision.datamgr.DataManagerException

Returns the database connection for the current thread. If there is no connection stored in the
connection map for this thread, a new connection is established by calling into the configured
ConnectionSource, and this connection will be returned for all following calls.

Returns:

The database connection for the current thread

Throws:
com.bristol.tvision.datamgr.DataManagerException - if getting a new
connection from the ConnectionSource fails

public void releaseThreadConnection()
 throws
com.bristol.tvision.datamgr.DataManagerException

Releases (closes) the connection for the current thread.

Chapter 10 • The Data Manager
Using the DataManager to Access the Database

TransactionVision Programmer’s Guide 215

Throws:

com.bristol.tvision.datamgr.DataManagerException - if closing the connection
fails

public java.sql.Connection
getSessionConnection(java.lang.String sessionId)
 throws
com.bristol.tvision.datamgr.DataManagerException

Returns the database connection for the specified web session. If there is no connection stored
in the connection map for this session, a new connection is established by calling into the
configured ConnectionSource, and this connection will be returned for all following calls.

Parameters:

sessionId - The session id

Returns:

The database connection for the session

Throws:

com.bristol.tvision.datamgr.DataManagerException - if getting a new
connection from the ConnectionSource fails

public void releaseSessionConnection(java.lang.String sessionId)
 throws
com.bristol.tvision.datamgr.DataManagerException

Releases (closes) the connection for the specified session.

Throws:

com.bristol.tvision.datamgr.DataManagerException - if closing the connection
fails

public java.sql.Connection getConnection()
 throws
com.bristol.tvision.datamgr.DataManagerException

Returns a new database connection which is not cached, which means every call into this
method will obtain a new connection from the configured ConnectionSource.

Returns:

The database connection

Throws:

com.bristol.tvision.datamgr.DataManagerException - if getting a new
connection from the ConnectionSource fails

public void releaseConnection(java.sql.Connection con)
 throws
com.bristol.tvision.datamgr.DataManagerException

Close the connection which has been obtained from a call to getConnection.

Throws:

Chapter 10 • The Data Manager
XML-Database Mapping Using XDM Files

216 TransactionVision Programmer’s Guide

com.bristol.tvision.datamgr.DataManagerException - if closing the connection
fails

public void commitTransaction(java.sql.Connection con)
 throws
com.bristol.tvision.datamgr.DataManagerException

Performs a commit on current the database transaction

Parameters:

con - The connection holding the transaction to commit

Throws:

com.bristol.tvision.datamgr.DataManagerException - if the commit fails

public void rollbackTransaction(java.sql.Connection con)
 throws
com.bristol.tvision.datamgr.DataManagerException

Performs a rollback on the current database transaction

Parameters:

con - The connection holding the transaction to roll back

Throws:

com.bristol.tvision.datamgr.DataManagerException - if the rollback fails

10.2. XML-Database Mapping Using XDM Files

The TransactionVision database schema is made extensible through the XML to Database
Mapping (XDM) files. XDM is a generic way to describe the mapping of values contained in
XML documents onto table columns in the database and allows fast, indexed XML data
retrieval by the database engine.

The XML mapping is implemented by the class XMLDatabaseMapper and is used in
TransactionVision to store the event and transaction data into lookup tables for fast retrieval.
This class is also accessible from custom beans and reports and allows user written code to
map basically any XML data to the database.

XML mappings are grouped into different ‘document types’. Each document type is defined
by the root tag value for its documents and describes a mapping from XML to a set of
database tables that logically belong together. These tables must share the same primary key,
and the join across all these tables represents the mapped XML data for one XML document.
In TransactionVision there are three predefined document types:
/Event

This document type consists of all event based XML mappings, including standard header
event data, technology specific event data, and platform specific event data.
/Transaction

This document type maps data for the transaction analysis to the database tables.

Chapter 10 • The Data Manager
The XDM Syntax

TransactionVision Programmer’s Guide 217

/TransactionClass

This document type contains a single mapping for business class attributes.

10.3. The XDM Syntax

XML mappings are defined in XDM files in the <TVISION_HOME>/config/xdm directory.
The XML schema format of XDM files is defined in
<TVISION_HOME>/config/xmlschema/XDM.xsd. Each XDM file defines a mapping of
XML data to a particular database table. The syntax to describe this mapping is as follows:
<Mapping documentType="/Event">

Defines the document type for this mapping. This mapping is only valid for XML documents
that have the same root tag as “documentType”.
<Mapping documentType="/Event" dbschema="SCHEMA1,SCHEMA2">

The dbschema attribute can specify one schema (or a list of schemas) for which the mapping
is valid. The data insertion and retrieval methods of the XMLDatabaseMapper will not use
this mapping if the supplied database schema parameter does not match. If this attribute is
missing, the mapping is valid for all schemas. The <DBSchema> syntax of previous versions
is still supported.
<Key name="proginst_id" type="INTEGER"
description="ProgramInstanceId">
<Path>/Event/EventID/@programInstID</Path>
</Key>
<Key name="sequence_no" type="INTEGER" description="SequenceNumber">
<Path>/Event/EventID/@sequenceNum</Path>
</Key>

Defines the primary key for the database table. All XDM mappings of the same document
type must have the same key definition. There may be multiple key tags, in which case a
compound primary key will get created. The structure of the key tag is similar to the Column
tag and will be described there.
<Table name="EVENT_LOOKUP" category="COMMON">

Specifies the database table for the mapping. For mappings of the document type “/Event”,
the XDM mappings can be technology or platform specific. The category attribute on the
Table tag contains either “COMMON” or the technology string or the platform string for the
event data that should be written into this table. The string “COMMON” indicates that this
table contains data common to every event and should be written for every event going
through the Analyzer. A technology or platform name like “MQSERIES” or
“OS390_BATCH” used in the category field indicates that this table should only be filled for
events of that technology or platform. Examples:

<Table name="EVENT_LOOKUP" category="COMMON">
...
</Table>
<Table name="MQSERIES_LOOKUP" category="MQSERIES">
...
</Table>
<Table name="OS390_LOOKUP"
category="OS390_BATCH,OS390_CICS,OS390_IMS">
...
</Table>

For other document types, the value of the category attribute should always contain the string
“COMMON”.

Chapter 10 • The Data Manager
The XDM Syntax

218 TransactionVision Programmer’s Guide

<Column name="host_id" type="INTEGER" description="Host"
isObject="true">

<Path>/Event/StdHeader/Host/@objectId</Path>

</Column>

Each table mapping consists of several Column definitions that describe which XML value
has to be mapped onto which database table column. The name attribute specifies the column
name, and the type attribute specifies the column type, which can be one of the following:

• INTEGER

• FLOAT

• DOUBLE

• CHAR

• VARCHAR

• DATE

• TIMESTAMP

Both name and type are required. Types CHAR and VARCHAR require an additional
attribute size.

The description attribute specifies the name of the tag containing the value for that
column in the query result document returned by the QueryServices. Required.

The isObject attribute for a Column tag in the above XDM file refers to that column being
an identifier for an object in the system model table. This allows to use the object name
instead of the numerical, system generated object id in XDM based queries. Possible values:
‘true/false’. Default value if missing: ‘false’.

The generated attribute for a Column tag means that column is a database generated id.
Possible values: ‘true/false’. Default value if missing: ‘false’.

The conversionType attribute for a Column tag means that field requires a formatting
conversion after reading from the database. The TypeConvService is called into after reading
that field from the database. This is typically used for writing enumeration fields
(conversionType=’enum’). Refer to the TypeConversionService for more information on how
values are converted.

Additionally, an XDM column definition can be assigned a parameter named
decimalFormat using a Param tag with a value set to a pattern of how to display a numeric
value. When this column is read from the database and conversion is used, it will format a
number according to the pattern given here. This pattern can be any pattern of the form
supported by the java.text.DecimalFormat class. For example:
 <Column name="value" type="DOUBLE" description="Value">
 <Param name="decimalFormat" value="$#.00"/>
 <Path>/Transaction/Value</Path>
 </Column>

The indexed attribute specifies if a database index should be created for this column for
faster query access. Possible values: ‘true/false’. Default value if missing: ‘true.

The complex attribute specifies that the Xalan XPath engine should be used instead of the
built-in one for the document lookup. The built-in XPath search implementation is very
efficient, but supports only a subset of the standard XPath syntax (see section 4.2 for details).

Chapter 10 • The Data Manager
The XDM Syntax

TransactionVision Programmer’s Guide 219

If full XPath support is needed for a certain column, this attribute can be set. Note: the Xalan
XPath implementation is much slower than the internal one and might slow down the
analyzing process. Possible values: ‘true/false’. Default value if missing: ‘false’.

The xml attribute specifies that the XPath is pointing to an XML sub tree. The
XMLDatabaseMapper will store the complete subtree as a full XML document into the
corresponding column. Possible values: ‘true/false’. Default value if missing: ‘false’. Note:
on ORACLE, LOB types are not supported for XDM column types. Use 'VARCHAR' or
'LONGVARCHAR' instead.

<Path> contains the XPath of the document value to write into the table column. The
XMLDatabaseMapper will extract the value form the XML document and insert it into the
database. Note that only XPaths pointing to Text nodes and attribute values are valid. If a
value specified by the XPath does not exist in the XML document, a NULL value is inserted
to the database.

A column can map to multiple XPath expressions as in the sample code below. The XPath
expressions are evaluated in a sequential order and the first value found will get inserted into
the database.
<Column name="datasize" type="INTEGER" description="DataSize">
<Path>/Event/Technology/MQSeries/MQGET/MQGETExit/DataLength</Path>
<Path>/Event/Technology/MQSeries/MQPUT/MQPUTExit/BufferLength</Path>
<Path>/Event/Technology/MQSeries/MQPUT1/MQPUT1Exit/BufferLength</Pat
h>
</Column>

In addition to the <Path> element, a column definition can contain a <Join> definition like
in the following example:
<Column name="class_id" type="INTEGER" description="ClassId">
<Path>/Transaction/ClassId</Path>
 <Join documentType="/TransactionClass"</Join>
</Column>

Join definitions offer a way to link two different document types together in order to use
column definitions of both document types in one query. Internally this will generate a
database join between the column of the current table and the primary key of the other table.

10.3.1. Creating the XDM database tables

One important aspect of the XDM framework is that the creation of the underlying database
tables is entirely data-driven. The definitions in the XDM files are not only being used for
updating or querying the XML data, but also as an input to the TransactionVision Table
Manager, which is responsible for creating and dropping the project tables as projects in the
Analyzer GUI get created and deleted. Thus there is no need to issue any SQL DDL calls to
the database. Once the XDM file is placed into the proper directory, and provided the
document type is registered with the Table Manager, the new tables defined in the XDM
mapping get automatically created for a new project. The same holds true if the project tables
get created or dropped by using the command line tool CreateSqlScript.

The registration with the Table Manager is only needed if the XDM mapping uses a new user
defined document type. The only thing to do is to add the new document type to the
following section of the DatabaseDefinition.xml in the
<TVISION_HOME>/config/datamgr directory:
<XDM>
 <DocumentType>/Event</DocumentType>
 <DocumentType>/Transaction</DocumentType>

Chapter 10 • The Data Manager
The XDM Syntax

220 TransactionVision Programmer’s Guide

 <DocumentType>/TransactionClass</DocumentType>
 <DocumentType>/MyNewDocType</DocumentType>
 </XDM>

10.3.2. Properties of the TransactionVision Document Types

The /Event Document Type

Event-based XDM files specify that when an XML event is written to the database by the
DBWrite module in the Analyzer, these fields are extracted and written into the database
columns defined by the XDM mappings. Similarly, when the database is queried to retrieve
event based data in the Analyzer GUI, these XDM files are used to construct the
corresponding SQL query. The XML document for each event gets stored in the database
table EVENT.

The /Transaction Document Type

This mapping is used to write business transaction attributes during the transaction analysis
phase in the Analyzer. One noticeable difference to the event-based mappings is that there is
no XML document inserted into the database, all document values are always mapped to the
database tables.

The /TransactionClass Document Type

This document type contains only one XDM mapping file for the “transaction_class” table
and describes the attributes of a transaction class. This document type is ‘artificial’ in the way
that the underlying database table contents is static and must not be updated during the
runtime of the application. Thus the XDM mapping solely serves a query purpose and allows,
together with the document type join feature, to use transaction class attributes in business
transaction queries.

To prepopulate static XDM tables at creation time (for example, the
TRANSACTION_CLASS table), it is possible to provide one or more row values in the
XDM file itself which are inserted into the table when the table is created. The syntax for
specifying the row values is:
<Table name="TRANSACTION_CLASS" category="COMMON">

 <Column name="class_name" type="VARCHAR" size="64"
description="ClassName">
 <Path>/TransactionClass/ClassName</Path>
 </Column>
 <Column name="SLA" type="INTEGER" description="SLA">
 <Path>/TransactionClass/SLA</Path>
 </Column>
 <Column name="COST_PER_TRANSACTION" type="DOUBLE"
description="Cost per Transaction">
 <Path>/TransactionClass/CostPerTransaction</Path>
 </Column>

 <RowValues>0, -Unclassified-, 1000, 1.5</RowValues>
 <RowValues>1, Fund Transfer, 2500, 2.3</RowValues>
 <RowValues>2, Bond, 1200, NULL</RowValues>
 [...]

</Table>

Chapter 10 • The Data Manager
The XMLDatabaseMapper Interface

TransactionVision Programmer’s Guide 221

For each row to insert, all column values have to be specified in a comma separated list, in
the order they are defined in the XDM file.

10.4. The XMLDatabaseMapper Interface

The XMLDatabaseMapper can be used in 2 different ways: implicitly when writing custom
bean code in the Analyzer bean framework or using the query facilities of the
QueryServices, or explicitly by obtaining a reference to an XMLDatabaseMapper
instance and calling into one of the available service methods.

To obtain a reference to an instance, the instance() method has to be called with the
particular schema as an argument, e.g.:
 XMLDatabaseMapper xdm = XMLDatabaseMapper.instance(mySchema);

The interface contains methods for reading, inserting, updating, and deleting XML values.
All methods take a parameter of class XMLDocument, which denotes the XML document
containing the data. The XMLDocument class implements the org.wc3.dom.Document
Interface and can be constructed in several ways: from an existing document using the
constructor XMLDocument(org.w3.dom.Document doc), or entirely bypassing the
generation of any XML objects and creating a ‘lightweight’ XMLDocument instance by using
the constructor XMLDocument(java.util.Map).

The class contains an internal HashMap for caching XPath expressions to the corresponding
values in the XML document. The key of the map entry is an XPath expression, the value of
the map entry is the value in the XML document corresponding to that XPath. If an instance
is created by using the latter constructor, then any value lookup on the document translates
into a simple HashMap lookup, whereas a lookup on an instance created with the first
constructor is performed by executing an XPath search on the XML document (unless the
corresponding XPath is already in the cache). This is implemented transparently for the caller
by the following method of XMLDocument:
 public String getDocumentValue(String xpath) throws XMLException;

If there is a value for the given XPath in the HashMap, the stored value is returned. Otherwise
an XPath search on the document is performed.

With these ‘lightweight’ XML documents it is possible to provide data to the
XMLDatabaseMapper without having to make expensive XML operations. The
XMLTransaction class used in the transaction analysis is one example of such a
‘lightweight’ XML object.

Following is the list of available XMLDatabaseMapper methods:
public void read(com.bristol.tvision.datamgr.ConnectionInfo conInfo,

com.bristol.tvision.services.analysis.XMLDocument doc)
 throws com.bristol.tvision.datamgr.DataManagerException

Reads all lookup table rows for the given key values and store the values in the attribute map
of the XML document. The document passed in only needs to contain the key values.

Parameters:

con - The database connection to use

doc - The document containing the key values

Throws:

Chapter 10 • The Data Manager
The XMLDatabaseMapper Interface

222 TransactionVision Programmer’s Guide

com.bristol.tvision.datamgr.DataManagerException - Error while accessing the
document or reading from the database tables

public void
write(com.bristol.tvision.datamgr.ConnectionInfo conInfo,

com.bristol.tvision.services.analysis.XMLDocument doc)
 throws com.bristol.tvision.datamgr.DataManagerException

Writes the values of the mapped document elements to the lookup tables. For each mapped
column defined in the xdm files, the value of the corresponding XPath expression is searched
in the xml document and written to the table column defined in the mapping.

Parameters:

con - The database connection to use

doc - The document to search

Throws:

com.bristol.tvision.datamgr.DataManagerException - Error while accessing the
document or writing to the database tables

public void
update(com.bristol.tvision.datamgr.ConnectionInfo conInfo,

com.bristol.tvision.services.analysis.XMLDocument doc)
 throws com.bristol.tvision.datamgr.DataManagerException

Updates the values of the mapped document elements in the lookup tables. All columns that
are defined by the document type will get updated. The rows to update are determined by the
key values in the XML document.

Parameters:

con - The database connection to use

doc - The document containing the updated values

Throws:

com.bristol.tvision.datamgr.DataManagerException - Error while accessing the
document or writing to the database tables

public void
delete(com.bristol.tvision.datamgr.ConnectionInfo conInfo,

com.bristol.tvision.services.analysis.XMLDocument doc)
 throws com.bristol.tvision.datamgr.DataManagerException

Deletes rows in all lookup tables of the document type for the given key values in the XML
document.

The document passed in only needs to contain the key values.

Parameters:

con - The database connection to use

Chapter 10 • The Data Manager
Extending the /Event Document Type

TransactionVision Programmer’s Guide 223

doc - The document containing the key values

Throws:

com.bristol.tvision.datamgr.DataManagerException - Error while accessing the
document or writing to the database tables

10.5. Extending the /Event Document Type

The XDM mappings of the /Event document type can be easily extended to map additional
XML data to indexed database columns for faster retrieval. First, this can be done for XML
values that are already present in the standard XML event data but which are not included in
the default event based XDM mapping definitions. In this case the mapping for the desired
values can be simply added (with its XPath and database column) to the corresponding XDM
file (event.xdm. mqseries.xdm, etc.).

Second and more important, additional mappings can be defined for XML data that has been
assembled from the contents of the user data buffer by an EventModifierBean (see chapter
3.2). Although this user defined XML data could also be mapped to the existing lookup tables
(by simply modifying one of the existing XDM files), this is not advisable. For this purpose a
new XDM file defining a mapping to a new table should be created. The mapping definition
is required to have the document type /Event and the key columns proginst_id and
sequence_no like all other event based XDM files. The column definitions should include
all XDM values intended for display in the Analyzer GUI or queries through the query
services. For steps to configure the Analyzer GUI to display these new columns see Chapter
3.

The TransactionVision DeleteEvents utility and job use an optimized fast deletion
scheme based on timestamp columns if the –older option is used. To delete data in user-
defined XDM tables, theis timestamp column must be present in any additional XDM
mapping you define. Therefore, the following section is mandatory in the XDM file:
<Column name="event_time" type="TIMESTAMP"
description="EventTime" queryOnly="true">
 <Path>/Event/EventTimeTS</Path>
</Column>

10.6. Extending the /Transaction and /TransactionClass Document Type

The /Transaction and /TransactionClass document types can be extended to add custom
business transaction and transaction class attributes to the transactional data in
TransactionVision. See chapter 3.5.4 for details.

The TransactionVision DeleteEvents utility and job use an optimized fast deletion
scheme based on timestamp columns if the –older option is used. To delete data in user-
defined XDM tables, theis timestamp column must be present in any additional XDM
mapping you define. Therefore, the following section is mandatory in the transaction
document type:
<Column name="starttime" type="CHAR" size="20"
description="StartTime" conversionType="Date">
 <Path>/Transaction/StartTime</Path>
</Column>

Chapter 10 • The Data Manager
Adding New Document Types

224 TransactionVision Programmer’s Guide

10.7. Adding New Document Types

It is possible to create new document types that are independent of the TransactionVision
event and analysis process and entirely controlled by custom code. This allow user written
code to store and retrieve XML data in a convenient way without having to code SQL on the
JDBC level. The custom code can insert and modify data for this document type by using the
various interface methods of the XMLDatabasMapper instance directly, or by using the
corresponding interface methods in QueryServices which allow query based updates. Data
query and retrieval can be accomplished by creating a QueryDoc containing conditions based
on the document type, and using the QueryServices class to retrieve the data. The
necessary steps are:

1. Create a new XDM file with the documentType set to the root tag of the XML data to
handle. The key definition should be set to the primary key of the new table.

2. Define a XPath-column mapping for each XML value that has to be stored into the table.

3. If the new table should be automatically created for new projects, register the new
document type with the TableManager (see chapter 9.3.1).

4. Get a XMLDatabaseMapper instance for the document type with
XMLDatabaseMappper.instance(newDocType) and use its method to insert/modify
the XML data, or use the corresponding QueryServices interface.

5. Use the QueryServices interface to query and retrieve the XML data (see chapter 4).

	1. Introduction
	1.1. Changes in TransactionVision 5.0.0
	1.2. Changes in TransactionVision 4.2.1 SupportPac A
	1.3. Changes in TransactionVision 4.2.1
	1.4. Changes in TransactionVision 4.2
	1.5. Changes in TransactionVision 4.1
	1.6. Prerequisites

	2. Architecture Overview
	2.1. System Components
	2.2. Database
	2.3. User Interface Framework

	3. Tutorial - Extending the Analyzer
	3.1. How to Handle XML Message Data in Events
	3.1.1. Step 1: Modify the Beans.xml file to use the DefaultModifierBean
	3.1.2. Step 2: Verify that XML data is extracted correctly

	3.2. How to Handle Custom Message Data Formats in Events
	3.2.1. Step 1: Document message format(s) layout
	3.2.2. Step 2: Document the target XML format
	3.2.3. Step 3: Implement the bean to do the format conversion
	3.2.4. Step 4: Modify the Beans.xml file to use the custom bean
	3.2.5. Step 5: Test the custom bean in the Analyzer environment

	3.3. How to Handle Custom Data Formats in Events Using CredibleXML
	3.3.1. Step 1: Document the message format layout
	3.3.2. Step 2: Document the target XML format
	3.3.3. Step 3: Plug the bean into the TransactionVision framework
	3.3.4. Step 4: Enable the bean in the Beans.xml file
	3.3.5. Step 5: Restart the Analyzer

	3.4. Overview of XDM Files
	3.5. How to Map Custom Message Data Fields to Database Tables
	3.5.1. Step 1: Determine which fields in the XML event document need to be mapped to database columns
	3.5.2. Step 2: Determine the database column names for these fields
	3.5.3. Step 3: Construct XDM file entries
	3.5.4. Step 4: Recreate your project database schema
	3.5.5. Step 5: Verify that the XDM mapping works correctly

	3.6. Additional XDM File Examples
	3.7. How to Classify Business Transactions and Map Attributes to Database Tables
	3.7.1. Overview of Transaction Classification:
	3.7.2. Task Description:
	3.7.3. Implementation:

	3.8. How to Perform Custom Correlation of Related Events
	3.8.1. Overview of Custom Event Correlation:
	3.8.2. Task Description:
	3.8.3. Implementation:

	4. Reference - Extending the Analyzer
	4.1. Using the Beans.xml File
	4.2. Unmarshalling Message Data
	4.2.1. The Default Modifier Bean
	4.2.2. Adding a Message Data Unmarshal Bean
	4.2.3. IEventModifier Interface
	4.2.4. Class XMLEvent
	4.2.5. Methods:
	4.2.6. Class XPathSearch
	4.2.7. Class XMLParser
	4.2.8. Other Utility Classes
	4.2.9. Interface DOMElement
	4.2.10. Class EventElement
	4.2.11. Class TextElement
	4.2.12. Class ByteElement
	4.2.13. Class ByteStringElement
	4.2.14. Class IntElement
	4.2.15. Class IntHexElement
	4.2.16. Class LongElement
	4.2.17. Class LongHexElement
	4.2.18. Class StringElement
	4.2.19. Class RawStringElement
	4.2.20. Sample Usage of the IEventModifier Interface

	4.3. Trimming Data From an Event
	4.3.1. Interface IDBWriteExit

	4.4. XML-Database mapping Using XDM Files
	4.5. Performing Event Analysis
	4.5.1. Event Analysis Utility Classes and Interface
	4.5.2. Interface Cache
	4.5.3. Class ConnectionInfo
	4.5.4. Class EventID
	4.5.5. Class TechEventID
	4.5.6. Event Analysis Classes
	4.5.7. Interface IAnalyze
	4.5.8. Class AnalyzeEventCtx
	4.5.9. Class AnalyzeEventBean
	4.5.10. Custom Business Transaction Attributes and Classification
	4.5.11. Custom Event Correlation
	4.5.12. Custom Local Transaction Definition
	4.5.13. LocalTransactionDefinition.xml File
	4.5.14. LocalTransactionType
	4.5.15. LocalTranasctionAttributes
	4.5.16. Sample LocalTransactionDefinition.xml Rule File
	4.5.17. Changes to the Beans.xml File

	4.6. Extending the System Model
	4.6.1. User Events

	4.7. Generating Application Events to Tivoli Enterprise Console (TEC)
	4.7.1. Monitoring Events
	4.7.2. Event Delivery
	4.7.3. SlotMap.properties
	4.7.4. Example Usage:
	4.7.5. BTV Class Definitions and Rulebase

	5. Using the Query Services
	5.1. Sample Usage
	5.2. Class QueryServices
	5.2.1. Methods:

	5.3. Class QueryDoc
	5.3.1. Constructors
	5.3.2. Methods

	5.4. Class QueryDoc.WhereClause
	5.4.1. Fields
	5.4.2. Constructors
	5.4.3. Methods
	5.4.4. Example

	5.5. Interface Query
	5.5.1. Methods

	5.6. Interface Cursor
	5.6.1. Methods

	5.7. Class DataManagerException
	5.7.1. Constructors
	5.7.2. Methods

	6. Extending the User Interface
	6.1. Writing TransactionVision Reports
	6.1.1. Report Interfaces
	6.1.2. TransactionClass
	6.1.3. JSP Custom Tag Library
	6.1.4. Tag Reference
	6.1.5. Report Example
	6.1.6. Adding a Report to the Framework
	6.1.7. Required Configuration Information
	6.1.8. Optional Configuration Information
	6.1.9. Adding Actuate Reports

	6.2. Adding Query Pages
	6.3. User Interface Utility Classes
	6.3.1. Class TVisionServlet
	6.3.2. Class TypeConvService

	6.4. Using Job Beans
	6.4.1. JobBean
	6.4.2. IJob Interface
	6.4.3. Creating Jobs at Project Creation

	7. Implementing User Events
	7.1. Differences Between User Events and Standard Events
	7.2. User Event Data Model
	7.2.1. EventID
	7.2.2. Standard Section
	7.2.3. Technology Section
	7.2.4. User Data Section

	7.3. Using the User Event SDK
	7.3.1. Class com.bristol.tvision.userevents.Constants
	7.3.2. Class com.bristol.tvision.userevents.marshal.SystemModelObject
	7.3.3. Class com.bristol.tvision.userevents.marshal.TimeData
	7.3.4. Class com.bristol.tvision.userevents.marshal.UserEventHelper
	7.3.5. Class com.bristol.tvision.userevents.marshal.UserEventSkeleton

	7.4. Transporting User Events
	7.5. Analyzing User Events
	7.5.1. Event Unmarshalling
	7.5.2. Local Transaction Analysis
	7.5.3. Business Transaction Analysis
	7.5.4. Statistical Analysis

	7.6. Tutorial: Generating User Events
	7.6.1. Sample Overview
	7.6.2. Building the Tutorial Sample
	7.6.3. Running the Tutorial Sample

	8. Database Schema
	8.1. System Object Model Tables
	8.1.1. Object Types
	8.1.2. Signatures
	8.1.3. Logical Model
	8.1.4. Physical Model
	8.1.5. System Model Relationships

	8.2. Event Tables
	8.2.1. Logical Model
	8.2.2. Physical Model

	8.3. Event Relationship Tables
	8.3.1. Logical Model
	8.3.2. Physical Model

	8.4. Transaction Tables
	8.4.1. Logical Model
	8.4.2. Physical Model

	8.5. Statistics Tables
	8.5.1. Logical Model
	8.5.2. Physical model

	8.6. User Preference Tables
	8.6.1. Logical model
	8.6.2. Physical model

	8.7. Object Alias Tables
	8.7.1. Logical Model
	8.7.2. Physical Model

	8.8. Administration (System) Tables
	8.8.1. Logical model
	8.8.2. Physical model

	9. Event XML Schema
	9.1. Basic Types
	9.2. Event Schema Description

	10. The Data Manager
	10.1. Using the DataManager to Access the Database
	10.2. XML-Database Mapping Using XDM Files
	10.3. The XDM Syntax
	10.3.1. Creating the XDM database tables
	10.3.2. Properties of the TransactionVision Document Types

	10.4. The XMLDatabaseMapper Interface
	10.5. Extending the /Event Document Type
	10.6. Extending the /Transaction and /TransactionClass Document Type
	10.7. Adding New Document Types

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Avenir-Book
 /Avenir-Medium
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

