Mercury IT Governance Center™

Commands, Tokens, and Validations
Guide and Reference

Version: 7.0

MERCURY



This manual, and the accompanying software and other documentation, is protected by U.S. and
international copyright laws, and may be used only in accordance with the accompanying license
agreement. Features of the software, and of other products and services of Mercury Interactive
Corporation, may be covered by one or more of the following patents: United States: 5,511,185;
5,657,438; 5,701,139; 5,870,559; 5,958,008; 5,974,572; 6,137,782; 6,138,157, 6,144,962;
6,205,122; 6,237,006; 6,341,310; 6,360,332, 6,449,739; 6,470,383; 6,477,483; 6,549,944;
6,560,564; 6,564,342; 6,587,969, 6,631,408; 6,631,411, 6,633,912; 6,694,288; 6,738,813;
6,738,933; 6,754,701; 6,792,460 and 6,810,494. Australia: 763468 and 762554. Other patents
pending. All rights reserved.

U.S. GOVERNMENT RESTRICTED RIGHTS. This Software Documentation is a
“commercial item” as defined at 48 C.F.R. 2.101 (October 1995). In accordance with 48 C.F.R.
12.212 (October 1995), 48 C.F.R. 27.401 through 27.404 and 52.227-14 (June 1987, as amended)
and 48 C.F.R. 227.7201 through 227.7204 (June 1995), and any similar provisions in the
supplements to Title 48 of the C.F.R. (the “Federal Acquisition Regulation™) of other entities of
the U.S. Government, as applicable, all U.S. Government users acquire and may use this
Documentation only in accordance with the restricted rights set forth in the license agreement
applicable to the Computer Software to which this Documentation relates.

Mercury, Mercury Interactive, the Mercury logo, the Mercury Interactive logo, LoadRunner,
WinRunner, SiteScope and TestDirector are trademarks of Mercury Interactive Corporation and
may be registered in certain jurisdictions. The absence of a trademark from this list does not
constitute a waiver of Mercury's intellectual property rights concerning that trademark.

All other company, brand and product names may be trademarks or registered trademarks of their
respective holders. Mercury disclaims any responsibility for specifying which marks are owned
by which companies or which organizations.

Mercury provides links to external third-party Web sites to help you find supplemental
information. The content and availability may change without notice. Mercury makes no
representations or warranties whatsoever as to the content or availability.

Mercury

379 North Whisman Road
Mountain View, CA 94043
http://www.mercury.com

© 1997-2006 Mercury Interactive Corporation. All rights reserved.

If you have any comments or suggestions regarding this document, please send email to
documentation@mercury.com.

Publication Number: ITGCommandsTokens7.0/02



Table of Contents

LiSt Of FIQUIES ...t sas s sessssesms e s sasas s ms e s sesme e e sas sesas sesme e ms e sms e e s snnes ix
TS o) = o = xi
Chapter 1: Getting Started with Commands, Tokens, and Validations............................ 15
Introduction to Commands, Tokens, and ValidationsS..........eieenneseeseesseee s essessssesesees 16

(R T=TE= U= Yo B L) 7] g g =[] o 1SS 17
Chapter 2: Using COMMANAS.........ccoccoermrrmrcrnresrsesessessssssssssssssssssssssssssssssssssssssssssssmsssssssssssassssnes 19
ADOUL COMMEANTS ...ttt et ss s e b b st R b bbb as bbb ars s 20
Object Type Commands and WOIKFIOWS...........ceeeeeeeeeeeeeeeeeeeee s essssenassssssssassaesans 20
Request Type Commands and WOrKFIOWS ...ttt sssesens 21

] 0 1Yo = LI @7 0] o] o 4 F= U Vo PP 22
COMMANA LANGQUAGE ...ttt es s tesses s sesssssssesssss b ssesssssssesssssssassss s sessesssssassasssssassassansans 22
ComMMANA CONAILIONS ...ttt e e as s ass s s s s s ae e s pnen 23

ADbOUL the COMMANAS TAD ...ttt bbb bbb st 24
CoNfIGUIING COMMEANTS ..ottt ssssss st ssss s s ssssssssssssssssssansssessssssssssssssssnsssnssssssssssans 25
EXamples Of COMMEANG USES .......oieeeeeessscssssssssesessssssssssssssssssssssssssssssssssssssssssssssssssssssssssssmssssssassssnsssnses 28
Chapter 3: Using Special Commands ..........cccoverrerrrerrnsserssesssssssssssssssssssssssssssssssssssssssssssssassssas 31
ADOUL SPECIAI COMMENTS ...ttt eee e esseessesssese s s e s s s s s s s ene s sess s sasesaassnses 32
Special Command ParamELErsS ... eeeseesseessesssssssessssesssesssssssssssesssassssssssssssssssesseses 32
Special CommaNnd LANGUAGE. ... ssssssssssssssssssssssssssssssssssssssssssssssssssssssssssasssssssnses 33
Special Command CONAILIONS..........oeeecececee ettt sttt bbbt sssassansans 34

About the Special Command BUIlAEr ...t aesssenes 35
Configuring Special COMMEANTAS ...ttt et bbb b s bbbt sessassansans 35
Using Special COMMEANAS ...ttt bbb bbb bbbt s sansasnas 41




Using the Special Command BUIIAET ...ttt seetsssess st s sssssassassssassassassans 42

Nesting Special COMMEANTS ...t sss s sss s st sssssssasssssssssssssssssasssns 43
Listing all of the Special COMMANAS ... sssssssanesns 44
Examples of Using Special COMMANGAS. ... ssssssssssssssssssssssssssssssssssssssssssssssssssssssssssaes 45
Chapter 4: USING TOKENS..........ccoerrcccrnssrssesssmssssssesssssmsassssssssssassssessssssssssssssssssasssssssansasassssssssasans 47
Y o Lo 10§ R I =T 1SS 48
WRIETE 10 USE TOKENS ...ttt sssssss s ssssssssssss s sss s sss s st ssssss s s sasessssanssnsanesas 48

B = T Y= 11U = L4 [0 o SO 49
ADOUL TOKEN BUIIAET ...ttt s s sssssssass s s sss s s ssss e sss s ssssssss s sasssssasssssassansanen 50
TOKEN FOIMEATS ...ttt s s e 51
DEfaUIt FOIMAT ...ttt bbb bbb s bbbt st 54
EXPIICIt ENTITY FOMMAT ... ettt et st s snsness 55
Nesting Explicit Entity Tokens within Other TOKENS...........eeeeceeeeeeeeeeeeeeteeee e 56

LU LT gl DT 1 = T o 0 - PSSP 57

= = ([T =) gl o] g - DRSO 58
ReQUEST FIield TOKENS ...ttt st s s et 59
REQUESE TOKEN PrefiXS ..ttt esss et seese st ssssssssssssessesasessssssssssasesnes 59
Tokens in Request Table COMPONENTS........ ettt 59
SUD-ENTITY FOIM@L ...ttt bbb bbb bbb bbbttt 62
Environment and Environment Application TOKENS.........neveeisereeseseeseessese s ssessssneanns 63
USING TOKEN BUIIAET ...ttt sttt sas s ass st s bbb st saneansas 65
Chapter 5: Using Validations............coorcececrcrrcssesssssmsssssessssssssssessssssssssssssssssassssssssssassssesssssasans 67
WY o Lo 10§ Y=o F= 14 o 1200 68
Validation COMPONENT TYPES ...ttt bbbttt eee 69
Accessing Validations Through Packages and Requests.......ecvccscsseneeessessessesneens 71
Validations and Special CharacCters ...t ssssssesssssssssssesssnssssssssesans 73
Viewing System ValidatiONs....... ettt ss s s sess st sssassessansnns 73
CoNnfigUING ValIATIONS ...ttt e s s s bt ass s s s s as st een 74
Configuring Static List ValidatioNs ...ttt sssae s s essasssssaees 77
Configuring Dynamic List ValidatioNS.........crceecscectseeee sttt sss s ssssesssssssssasssssanees 79
Configuring SQL Valid@tiONS........coruereereceseceseessisssessesssssssssssssssessssssssssssssssssssssssssssssssassssssssssssssssssssanes 79
SQL Valid@tion TiPS...cerrerrerseseesseessssresssessssssssesssssssssssssssssssssssssssssssssssssssssessssssssssssssssssssssssssssssassseses 81
(70T a 0] 0 aF=TaTe IV Z= 11T =11 o 1 PP 82
Configuring Short List Auto-Complete Field Validations.............vcececeeeeceeeeectsereenns 82
Configuring Long List Auto-Complete Field Validations...........ceeeceeeeeeeeeceeceeeeeeeeeeerseessennns 84
Configuring Automatic Value Matching and Interactive Select Pages..........eeenncee. 85
An Overview of Matching for “Starts with” or “Contains” ..., 86
CONTFIGUIATION TIPS iruuceurierrerressecesecteeeseesessseessesssessssesss s sssssesssesssssssns s sesssesssesssasssesssesssssssss s sasesssnees 88
Adding Search Fields to Long List Auto-Complete Validations...........veeeeeeeeeenne. 89
Configuring the Filter Field LayOUT........ ettt ss s sssssess s sssassansans 92
Configuring an Auto-Complete List of Users (Special Case) ... 94

iv Commands, Tokens, and Validations Guide and Reference



Configuring the Auto-Complete ValUEs ...t 94

Configuring Validations by Commands With Delimited Output.......vecvrveecneenees 95
Configuring Validations by Commands with Fixed Width Output.......ccovevrcreneenees 97
Configuring User-Defined Multi-Select Auto-Complete Fields ... 99
Example of Token Evaluation and Validation by Command with Delimited Output ...

101
Configuring Text Field ValidatioNS........crsresseseetsectssssssssss s ssssssssssssssssssssssssssssssssssssssnses 104
Text Data Masks fOr ValidaltionS.........eenressesseectssessesssssesssssesssssssssssssssssssssssssssssssssssssssssees 105
Configuring the NUMEriC Data MaSK..........oueececeeeceeceeeeeeeeeeeeee s sneassassanen 107
Configuring the Currency Data MasK ... ee s sneassssaeen 108
Configuring the Percentage Data MasK........ e ceceeecteeses s sssssssssassessassssens 111
Configuring the Telephone Data MasK ..........oeeerecnecnnssssesssssessssssssssssssssssssssssssssssssssssens 112
Configuring a CuStom Data MasSK ... sssssssssssssssssssssssssssssssssssassssssssssssns 114
Configuring Directory Chooser Validations ...........ccncenneennsisssinseseessssssssssssssssssssssssssssssssssssnees 115
Configuring File Chooser ValidatioNs...........cerenecinesseesseessessssssssssssesssssssssssssssssssssssssssssssssssssnses 116
Configuring Date Field ValidationS.........nrinrsre ettt sssssssssssssssssssssssssssssssssssssssssssssnses 118
Configuring 1800 Character TEXE AFEAS..... ettt ssses s s s sasssssasssssessessanen 120
Configuring the Table Validations.......... ettt ssss st sttt saen 120
Configuring Table COMPONENTS........ ettt sttt s s s s s s sanen 121
Configuring TaBIE RUIES ...ttt sttt sttt st sanen 125
Example of Using a Table Component on an Order FOrm.........cooonreonecenncerneennnenn. 125
Example of Setting UNit PriCES ...t sssesssesssesssss s ssssssssnns 127
Example of Calculating TOtalS ...ttt sssssssssssssssssssssssssssssnns 128
Using Table COMPONENTS....... et s sass s s s s sassassansans 129
Using Tokens in Table COMPONENTS ...ttt ssse et s s sessssassans 129
Calculating ColUMN TOTAIS ...t ss s e s s sseassaneas 129
APPENAIX A: TOKENS ......coeeerrirrinsnssssssssssssssmssssssssssssssssssssssssssssssssasssssssssssassnsasssssssssassessssssnsassnsassnss 133
OVEIVIEW OF TOKENS ...ttt tssesssessessesssssssssssssssssessesssssssssssssssssssessssssssssssssssssssesssssssssnsssessssssessnssnsssnsaeses 135
APPICALION SEIVEL TOKENS ...ttt st sas st bbbt bbb sas st s santans 135
BUAGET TOKENS ...ttt bbb bbb bbb bbb bbbt bt st 135
L0 ) £=Tox B o] (=1 o - 00O 137
DiSrIDULION TOKENS ...ttt s s ssssse s ssssssesssssssssessssassssssssessessssssssassssessssssessessssssssssssnssnes 138
Document ManagemMeEnt TOKENS ...ttt sttt 139
ENVIFONMENT TOKENS ..ottt ssessesssessssses s sssssssssssssssessssssssssssssssessssssssessssessnssssssnsssssssassssssaess 140
Environment > DESt ENV TOKENS...... et rsesesssessesssssssssssssssssssssssssssssssssssssssssssssssssssssasesns 140
Environment > Dest ENV > APP TOKENS ... eceeceeeceeeeeeeeeeeaeeeeseeeeses e sesassessssssssssssssssssanesseans 143
Environment > Dest ENV > ENV TOKENS....... et sss s s sssssssassssssssassans 145
ENVIroNMENT > ENV TOKENS ...ttt sass st s sss s s s sass s st s s sassassansassansans 148
Environment > ENV > APP TOKENS ...ttt ssessst s ssssssesssssssssesssesssssnsasesns 151
Environment > ENV > ENV TOKENS ...ttt sssssss st ssssssssssssesssssssssssssesssssnsaesns 153
Environment > SoUrce ENV TOKENS ...ttt sssssssssssssssssssssssssssesssssssssssssssssssssasesns 156




Environment > Source ENV > APP TOKENS ...ttt sas s sesens 159

Environment > Source EnV > ENV TOKENS ...ttt ssssssssssssssssssssssssasens 161
107070 0] 0 aF=Ta o [N 0] (=T o -0 PP 164
Financial BENETit TOKENS ... ettt sssssss s sessss s sss s ess s sssss st snsssssessssssansssnes 165
N To L3 Tox=1a o] o TN o] (=Y o 0O 166
Organization UNIt TOKENS ...ttt s s s s st st sassanen 167
= Ue] 1= Vo L= o] (=Y o 1= 168

Package > Package LiNE TOKENS ...ttt st sssss s st sessssassassassassansans 170

Package > Pending ReferenCe TOKENS ...t sass s aseseeans 171
PaCKaGE LIiNE TOKENS ...ttt ettt s sttt st s s s st 173
Lo To =1 T o] 1T o - PP 174
PrOJECT TOKENS ...ttt e ea bt s R bbbt 174
ProjeCt Detalil TOKENS ...ttt tecs e e es st st et st 178
REIEASE TOKENS ...ttt et sttt s st 178

Release > DisStribUtion TOKENS ...ttt s s s st sas s s sansans 179
REQUEST TOKENS.....ceieeeerctrrseeseieetseescsse s esesse e s s s s s s s ettt 180

Request > Pending ReferenCe TOKENS...... ettt sss st s st sassassassassassans 184

REQUEST > FIlld TOKENS ...ttt sttt bbb bbb bbb st st sannans 185
REQUEST DELAI TOKENS ...ttt bttt s s e bbb bbbt st 185

Request Detail > FIield TOKENS ... ettt st s s st sssassassassaneans 186
RESOUICE POOI TOKENS ...ttt s ssss st sss s s ssss st sessss s sssssssssesssssssssssasssssssssssnsssssussansssnssnes 186
SECUNTY GrOUP TOKENS ...ttt sttt bbb s s s sansaneas 187
SKIll TOKENS ...ttt ssssssssssssssss s sssssss s sssss s sessss s s s sssessessns s e s s s ssne e snssssusssnsanssens 188
StAffiNG Profile TOKENS ...ttt sttt sttt bbb s e 188
Step TXN (TranSaACHION) TOKENS ... ettt ettt sssss st e s ss s st st sas s s s sassaneas 189
SYSTEIM TOKENS ...ttt e st bbb bbb s s bbb s s s s sassansas 191
TASK TOKENS.....oceceeceseeecsr et ss s s s e s e e s s ane s bt ns 191

TasKS > PeNAING TOKENS ...ttt sttt sttt 194
Time Management NOtification TOKENS ...t s s ss s snnans 196
L LT =T g 0] =1 o PP 196
RV £= 11 Lo F= U Lo o TR e ] 1q= T o -0 198

Validation > Value TOKENS ...ttt sttt sttt ass s sansaneas 199
WOTKFIOW TOKENS ...ttt s st s st st s s s s st an s snsnsannans 200

WOrkflow > WOrKFIOW STEP TOKENS.......cececerereesreeeetseessstsss st sssssssssssssss s sssssssnssssssasssanes 201
WOTKFIOW STEP TOKENS ...ttt ssss st sssssssnssses s sssssssssssssssnsssnsssnssssssns 203
REQUEST > FIEld TOKENS ..ottt s eses s s esss st nsanes 206

CMBD APPHCAtION TOKENS......coeeeeeeceeeeeete ettt ss s ses s sss s bbbt s ssassass s sansassanen 206

Vi

Commands, Tokens, and Validations Guide and Reference



Demand Management SLA TOKENS ... ettt s sss s st ses s sassassssassassans 207

Demand Management SCheduling TOKENS.........eeeeeeeeeeeeeeeeeseesseee s sessss s sassassaesans 207
MAM IMpact ANAIYSIS TOKENS ...t sssssss s sssssss st sssssssssssssssssssssssssssssssssssssssssssssansans 207
Portfolio Management ASSET TOKENS..... ettt sassssssnsaneans 208
Portfolio Management ProjeCt TOKENS ...ttt sssessssssessessesssssssaseens 209
Portfolio Management Proposal TOKENS.........crrerereensc st sssessessessesssssseens 210
Program ISSUE TOKENS ...ttt ettt bbb bbbt b st bbbt sassassansans 211
Program REfErEnNCE TOKENS........ ettt ss s s sesssssss s s sassas s s sassassassassaneans 211
PrOJECT ISSUE TOKENS ...ttt ettt ettt bbb e sassassansas 211
Project REfErenCe TOKENS ...ttt sttt st 211
ProOjECT RISK TOKENS ...ttt ses s ssss st ses st ss st sanssns 211
Project SCOPE ChanNge TOKENS ...t sssssssssss s ssss s ssssssssssssssssssssssssssssssssssnses 212
Quality Center Defect INformation TOKENS.......rvrcrrsrerr e sesssesssssssssssssssnenns 212
Quality Center INfOrmMation TOKENS ...t s ssssss s sssssssssssssssssssssssssssssssasesns 212
Resource Management WOork [1emM TOKENS...........eeeeeeeeeeeeeeeeeeeeesee e sass s asssnens 213
SErVICE Catalog TOKENS ...ttt sttt sss s essss s sass b sss s s s s bbb assas s s 214
...................................................................................................................................................... 215

vii



viii Commands, Tokens, and Validations Guide and Reference



Figure 2-1
Figure 3-1
Figure 3-2
Figure 4-1
Figure 4-2
Figure 4-3
Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5
Figure 5-6
Figure 5-7
Figure 5-8
Figure 5-9
Figure 5-10
Figure 5-11
Figure 5-12
Figure 5-13
Figure 5-14
Figure 5-15
Figure 5-16
Figure 5-17

List of Figures

COMMEANAS TAD ..ottt e e e s s as s e b st 24
Special CommMaNd BUIIAET ...ttt seesssesse e ss s sesssssssss s ssssssnees 35
RCS File Migration ObJECT TYPE ...ttt sssassssnsaenns 41
Example of a token used in a SQL statement ... 49
TOKEN BUIIAEI WINAOW ......ceeeeeereeseesetssesetssessessssssssssssssssssssssssssssssssssessssssssssssssssssssesssssnssssssnssssssssenes 51
Table COMPONENT FOIMALS.......oore e neaees 60
RV 4= 11T £= 4o I T [ 1P 72
RV 4= 11T £= 4o Y T [ 1P 72
Auto-complete using command validation............eeeeeceeeeeeeeeee e 82
Short list QULO-COMPIETE ...ttt sttt sassastans 83
LoNG liSt QUIO-COMPIETE ...ttt bbb sanen 84
Auto-complete field and matching values on the Select page.......ovvnrernrenen. 86
Filter fields in the auto-complete select WiNdOW..........oonnncnne e 89
AULO-COMPIETE LIST ..ottt ss st 95
Validation by command with delimited output ... 96
Validation by command with fixed width output ..., 98
Validation window for the numeric data mask ... 107
Validation window for the currency data mask.......... e 109
Validation window for the percentage data mask ... 111
Validation window for the telephone data mask ... 113
Validation window for the custom data maskK.........seencnecneseesss e 114
Validation window for static environment override in file chooser........cccceueueeenee. 116
Validation window for token-based environment override in file chooser. ........... 117




List of Figures

Figure 5-18
Figure 5-19
Figure 5-20
Figure 5-21
Figure 5-22
Figure 5-23
Figure 5-24

Hardware information WiNAOW..........ccnrencsesscssessssseesssssesssssssssssssssssssssssssssssssssssssssssnns 121
Rules window accessed from the Rules tab...........ccecececececeeeeee e, 125
ValidatioNS WINAOW ...t ses s sss s s s bbb sans s 126
RUIES WINAOW. ..ottt s s s st s st s sttt ssansanens 128
Hardware information WiNAOW...........crinscsessessesssse s ssssssssssssssssssssssssssssssssssssasssnns 129
Sample validation for a Simple Order table component.........necreneecnereeenens 130
Sample table component displaying a column total. ..., 131

Commands, Tokens, and Validations Guide and Reference



Table 2-1
Table 3-1
Table 4-1
Table 4-2
Table 4-3
Table 5-1
Table 5-2
Table 5-3
Table 5-4
Table 5-5
Table 5-6
Table 5-7
Table 5-8
Table 5-9
Table 5-10
Table 5-11
Table 5-12
Table 5-13
Table 5-14
Table 5-15
Table 5-16
Table 5-17

List of Tables

L=N€= T o] o] [T @70 T L1 1] o 1300 OSSP 23
(=D€= T o] o] (=T @70 T L1 1] o 1300 34
1 L= OO 52
Sample environment and application attributes........ e 64
Sample enviroNMENt TOKENS........o st sees s s s s asnsseees 64
COMPONENT TYPES . cereeeeeeeereessresreessessseesseesseesses s sssesseessssssessssesss s ssssssssssssssessnsssnesssesssesssssssnssnes 69
1070118 4T 0 TN o 1= o [T PSSP 80
Automatic character matching field behavior ... 86
Automatic character matching Select page behavior ..., 87
Fields in the Fields: NEeW WINAOW ... ssssssssssssssssss s ssessssssesns 91
Validation by command with delimited output ... 97
(070 ] [1]0 0] o I8 g TT= T =1 OSSP 97
Validation by command with fixed width oUtput ... 98
(070 ] 11T 0'0] o I8 g TT= T =1 OSSP 99
Data Mask FOMALS ...ttt a e ses s s ss bbb s 105
Fields for configuring the numeric data mask for text fields ... 108
Fields configuring the currency data mask for text fields ........cccoovvvveccccseceenee. 109
Fields configuring the percentage data mask for text fields......covevrceecreverccnnne. 112
Fields configuring the telephone data mask for text fields.......ccovveveveccveccenee. 113
Sample telephone data mask fOrmats. ... seceseeens 113
Sample custom data mask fOrmMats....... e 115
File CNOOSEI FIEIA ...ttt et s 116

Xi



List of Tables

Table 5-18
Table 5-19
Table 5-20
Table 5-21
Table 5-22
Table 5-23
Table A-1

Table A-2

Table A-3

Table A-4

Table A-5

Table A-6

Table A-7

Table A-8

Table A-9

Table A-10
Table A-11
Table A-12
Table A-13
Table A-14
Table A-15
Table A-16
Table A-17
Table A-18
Table A-19
Table A-20
Table A-21
Table A-22
Table A-23
Table A-24
Table A-25
Table A-26
Table A-27
Table A-28

Static enVIrONMENT OVEITIAE ...t ees e 117
Token-based enviroNMEeNt OVEITIAE..........o et seeseesseesseesseessssssssesessnes 118
DALE FIEIA. ...ttt es e bbb 119
Example, table component validation settings..........ccoeeceeeeececeeeeee e 126
Example - Set Unit Price rule settings....... e 127
Example - Calculate Total rule Settings......ceeeeeeee e 128
APPIICAtION SEIVEI TOKENS ...ttt bbb 135
BUAGET TOKENS ...ttt bbbttt bbb bbbt 135
LO70] g1 2= T g (0] (= 1 J0 TP 137
DiStHDULION TOKENS ...ttt es st es s s et e 138
Document Management tOKENS ...t assaneas 139
Environment > DeSt ENV tOKENS ...ttt seesse s ssessseesssessesseees 140
Environment > Dest ENV > APP tOKENS ...ttt sssanens 143
Environment > Dest ENV > ENV tOKENS ... sesseessecsseeseesnees 145
ENVIronNmMent > ENV TOKENS ...ttt ce e ssses s ssseees 148
Environment > ENV > APP TOKENS...... ettt s 151
Environment > ENV > ENV TOKENS ...ttt seee s sesseees 153
Environment > SoUrce ENV tOKENS ...ttt sssecs e seesesseees 156
Environment > Source EnNV > APP tOKENS....... ettt 159
Environment Source ENV > ENV tOKENS ...t ssessesssecsssesseessees 161
COMMANG TOKENS ...ttt ees st es bbb s s bbbt 164
Financial BeNefit TOKENS.........o ettt sssees st e ssseees 165
NOTIFICATION TOKENS ...ttt ettt e 166
Organization UNIt TOKENS ...ttt s st s s st sannans 167
PaCKAGE TOKENS ...ttt s a e s bbb s 168
Package > Package LiNe tOKENS....... ettt sassasens 170
Package > Pending Reference tOKENS ...t 171
Package LiNE TOKENS ...ttt s st sass s bbb sassaneas 173
Program TOKENS ...ttt bbbttt s bbb st 174
PrOJECT TOKENS ..ottt sttt bbbt bbbt bbbt ansas 174
Project Detail TOKENS ...ttt bttt bbb s 178
REIEASE TOKENS ...ttt s es s s st sns s sesnessnsnnnsens 178
Release > Distribution tOKENS ...ttt s ssessesssssssnesns 179
REQUEST TOKENS....e ettt sesss st snssss s nasssssnsanesens 180

Xii Commands, Tokens, and Validations Guide and Reference



List of Tables

Table A-29
Table A-30
Table A-31
Table A-32
Table A-33
Table A-34
Table A-35
Table A-36
Table A-37
Table A-38
Table A-39
Table A-40
Table A-41
Table A-42
Table A-43
Table A-44
Table A-45
Table A-46
Table A-47
Table A-48
Table A-49
Table A-50
Table A-51
Table A-52
Table A-53
Table A-54
Table A-55
Table A-56
Table A-57
Table A-58
Table A-59
Table A-60
Table A-61

Request > Pending Reference tOKENS. ...t 184
Request Detail TOKENS........ ettt s s 185
RESOUICE POOI tOKENS ..ottt seessecs e essees st ass s et st sseees 186
SECUNITY GrOUD TOKENS ...ttt sttt s s s s s sass s s s sansans 187
SKill TOKENS ...ttt ettt e s b e st 188
Staffing Profile TOKENS...... ettt bbb s saneans 188
Step TXN (Transaction) TOKENS ...ttt sass s s sannans 189
SYSEEIM TOKENS ...ttt bbb bbb bbbt sannans 191
TASKS TOKENS ...ttt et et a b es s s bbb e st b 191
TaSKS > PENAING TOKENS....... ettt st bass st sassassas 194
Time Management Notification tOKENS. ... 196
LS g o (=T o F- OO 196
ValidAtiON TOKENS ...ttt ss s sess st s st en s 198
Validation > Value TOKENS ...ttt ss e seee s sesssesssssssssnnes 199
WOTKFIOW TOKENS ..ottt ettt et cs e sees s s bbb e ss e en s 200
Workflow > WOrkflow Step tOKENS ...ttt sssensaes 201
WOTKFIOW STEP TOKENS......ocee ettt sttt sttt saen 203
CMBD ApPPIICAtION TOKENS ...ttt s s st st s ssssaneans 206
Demand Management SLA tOKENS ...ttt sssss s sassasens 207
Demand Management Scheduling tOKENS........... ettt 207
MAM Impact ANalYSiS TOKENS ...ttt 207
Portfolio Management ASSEt TOKENS ...t 208
Portfolio Management Project tOKENS......... et 209
Portfolio Management Proposal tOKENS......... et sssenens 210
Program ReferenCe tOKENS ...ttt b s s 211
Project ISSUE TOKENS........ ettt bbb st s 211
Project ISSUE TOKENS........ ettt bbb s bbb e 211
Project ISSUE TOKENS......... ettt st s bbbt 211
Project Scope Change tOKENS......... ettt sssaneas 212
Quality Center Defect Information tOKENS.........oreerevresrcsrrre e e snessseees 212
Quality Center INformation tOKENS. ... ssssssssssssssssans 212
Resource Management Work Item tOKENS ...t eseessessessnsssesnens 213
Service Catalog tOKENS ...ttt e st snsssss s nsanens 214

Xiii



List of Tables

Xiv Commands, Tokens, and Validations Guide and Reference



Chapter

Getting Started with Commands, Tokens,
and Validations

In This Chapter:

m  [ntroduction to Commands, Tokens, and Validations
m  Related Information

15



Chapter 1: Getting Started with Commands, Tokens, and Validations

Introduction to Commands, Tokens, and Validations

Note

Commands, tokens, and validations are used throughout the Mercury IT
Governance Center™ implementation to enable advanced automation and
defaulting.

Commands are at the heart of the execution layer within the deployment
system. They determine which actions are executed at specific workflow steps.
Actions performed at a workflow step can include file migration, script
execution, data analysis, or code compilation.

provides an overview of commands, and examples of how to use
them.

Special commands are commands with variable parameters and are used in
object types, request types, report types, workflows, and validation command
steps. (Workflows use special commands in their workflow step sources.)
These command steps perform a variety of functions, such as copying files
between environments and establishing connections to environments for
remote command execution.

contains information about how to create, edit, and use special commands in
Mercury IT Governance Center.

Tokens are variables that Mercury IT Governance Center entities use to
reference information that is undefined until the entity is used in a specific
context. For example, entities use tokens to set variables in commands or
within notifications to specify recipients. Field validations determine the field
types (for example, a text field or drop-down list) and the values the field can
accept. Workflow step validation controls the possible results of exiting steps.

Mercury IT Governance Center uses two types of tokens: standard tokens and
custom tokens. shows how to use tokens.

Validations determine the acceptable input values for user-defined fields, such
as object type or request type fields. Validations also determine the possible
results that a workflow step can return. Validations are used for the field
component type and workflow step results.

provides detailed information on how to use tokens.

To access the user interface components described in this document, you must be
granted the Configuration license.

16

Commands, Tokens, and Validations Guide and Reference



Chapter 1: Getting Started with Commands, Tokens, and Validations

Related Information

The following documents also include information related to using commands,
tokens, and validations:

m  Mercury Demand Management Configuration Guide
m  Mercury Deployment Management Configuration Guide
m  Configuring the Standard Interface

Related Information 17



Chapter 1: Getting Started with Commands, Tokens, and Validations

18 Commands, Tokens, and Validations Guide and Reference



Chapter

Using Commands

In This Chapter:

About Commands

Object Type Commands and Workflows
Request Type Commands and Workflows
Special Commands

Command Language

Command Conditions

About the Commands Tab

Configuring Commands

Examples of Command Uses

[ o I o o B Y |

19



Chapter 2: Using Commands

About Commands

Commands are at the heart of the execution layer within Mercury IT
Governance Center. They determine which actions are executed at specific
workflow steps. Actions performed at workflow steps can include file
migration, script execution, data analysis, field behavior, or code compilation.
The following Mercury IT Governance Center entities use commands:

Object Types

Request Types

Report Types
Validations

Workflow Step Sources

Special Commands

Object type commands are tightly integrated with the workflow engine. The
commands in an object type are executed at execution workflow steps in
Mercury Deployment Management™ package lines.

Keep in mind the following concepts regarding command and workflow
interaction:

To execute object type commands at a given workflow step, configure the
workflow step as follows:

o The workflow step must be an execution type step.
o Specify the following parameter values:
m  Workflow Scope = Packages
m  Execution Type = Built-in Workflow Event
m  Workflow Command = execute object commands

When the object reaches the workflow step (Workflow Command =
execute object commands), all object type commands with conditions
satisfied are run in the order in which they are listed on the command field
for the object type.

20 Commands, Tokens, and Validations Guide and Reference



Chapter 2: Using Commands

®  You can configure the object type to run only certain commands at a given
step. To do this, specify command conditions. For information about how
to specify command conditions, see

Like object type commands, request type commands define the execution layer
within Mercury Demand Management™. While most of the resolution process
for a request is analytically based, cases may arise for specific request types for
which system changes are required. In such cases, you can use request type
commands to make these changes automatically.

Request type commands are tightly integrated with the workflow engine. The
commands in a request type are executed at execution workflow steps. Keep in
mind the following concepts regarding the interactions between command and
workflow:

m  To execute request type commands at a given workflow step, configure the
workflow step as follows:

o The workflow step must be an execution type step
o Set the following parameter values:
m  Workflow Scope = Requests
m  Execution Type = Built-in Workflow Event
m  Workflow Command = execute request commands

m  When the request reaches the workflow step (Workflow Command =
execute request commands), all commands with all conditions satisfied
are run in the listed order in which they are listed on the command field for
the request type.

m  To set up command conditions so that the request type runs only certain
commands at a given step, specify command conditions. For information
about how to specify command conditions, see

About Commands 21



Chapter 2: Using Commands

Object types, request types, report types, workflows and validations all use
commands to access the execution layer. To simplify the use of command
executions, Mercury IT Governance Center provides a predefined set of
special commands.

Special commands are commands with variable parameters, and are used in
object type, request type, report type, workflow, and validation command
steps. These command steps perform a variety of functions, such as copying
files between environments and establishing connections to environments for
remote command execution.

Mercury IT Governance Center features the following two types of special
commands:

m  System special commands are shipped with Mercury IT Governance
Center. System special commands are read-only and have the naming
convention ksc_command_name.

m  User-defined special commands have the naming convention sc_command

name.

Special commands act as modules that you can reuse. It it often more efficient
to create a special command for a program that you can reuse than to place an
individual command into every object type or request type that requires it.

Not For more information about special commands, see
ote

The command steps in a command define the system-level executions that
must be performed to realize the command function. Command steps can be
UNIX commands, third-party application commands, or special commands.
Special commands are reusable routines defined in Mercury IT Governance
Center.

Mercury IT Governance Center also supplies several system special
commands that you can use to perform common events (such as connecting to
environments or copying files).

Not For more information about special commands, see
ote

22 Commands, Tokens, and Validations Guide and Reference



Chapter 2: Using Commands

Command Conditions

In many situations, it may be necessary to run a different set of commands,
depending on the context of execution. To achieve this flexibility, you use
conditional commands. To define the situation under which the associated
command steps execute, you use the Condition field in the Edit Command or
New Command window.

Conditions are evaluated as boolean expressions. If the expression evaluates to
TRUE, the command is executed. If it evaluates to FALSE, the command is
skipped and the next command is evaluated. If no condition is specified, the
command is always executed. The syntax of a condition is identical to the
WHERE clause in a SQL statement. It allows for enormous flexibility in
evaluating scenarios. 7able 2-1 on page 23 lists some example conditions. The
condition can include tokens. For more information, see Chapter 4, Using
Tokens, on page 47.

Table 2-1. Example Conditions

BLANK Command is executed in all situations.
, , Command is executed if the parameter with
[P.P_VERSION_LABELJ'IS NOT the token P_VERSION_LABEL in the
NULL .

package line is not null.
'[DEST_ENV.ENVIRONMENT _ Command is executed when the destination
NAME]’ = 'Archive' environment is named Archive.
'TAS.SERVER_TYPE_CODE]= Command is executed if the application
'UNIX' server is installed on a UNIX machine.

a. You must place single quotes around string literals or tokens that are used to evaluate strings.

About Commands 23



Chapter 2: Using Commands

About the Commands Tab

Within Mercury IT Governance Center, commands are configured using the
Commands tab of various Mercury IT Governance Center entities. These

entities include:

m  Object Types

m  Request Types

m  Report Types

m  Validations

m  Workflow Step Sources

m  Special Commands

You can access a Commands tab by opening one of the listed entities and
selecting the Commands tab. /igure 2-/ shows the Commands tab from the

Object Type window.

Figure 2-1. Commands tab

Object Type : File Client- *Client

15 =1 B

Object Type Mame: |File Cliert->Clignt

Description: |Fi|e Copy From Client to Client

Extension: |

j Ohiject hame Column; |PARAM ETER1

Otject Category: |Standard Ohjects

| onject Revision colur: |

L] Ll

Ieta Layer Wiew: |MF‘KGL_

Enabled: & Yes © Mo

I Ownetship

[FILE_cLENT_cLENT

rComimand Step:

Comrma

kst_copy_client_client SUB_PATH="[P.P_SUB_PATHJ" FILENAME=

‘ Cancel |

Ficlde | Layout Commandss |
rCotrmanck
| Cormmanc | Concltion ‘ Desc
I=| client_copy | |c|\ent co
K — I
e =] New cmd |
Feady

24

Commands, Tokens, and Validations Guide and Reference



Chapter 2: Using Commands

Commands tabs are divided into two parts:

m  Commands. Commands defines the command-line directive or special
command to be issued.

m  Command Steps. Command steps represent the actual directives that
Mercury IT Governance Center specifies to execute the commands. A
command step can be an actual command-line directive that is sent to the
Mercury IT Governance Server or target machine, or it can be one of the
many special commands.

The execution engine executes the commands and command steps in the order
listed on the Commands tab. To change the order of the commands or the
Note command steps:

= On the Commands tab, click the command or command step, and then use the
up and down pointers to change the order of the selected item.

Configuring Commands

Each object type, request type, validation, workflow step source, or report type
can have many commands, and each command can include many steps. You
can think of a command as a particular function for an object. Copying a file
can be one command, and checking that file into version control can be
another. For these functions to operate, a series of events must take place. You
define these events in the command steps. Defining this events requires
configuring commands using the Commands tab. The following Mercury IT
Governance Center entity windows:

m  Object Type

m  Request Type

m  Report Type

m  Validation

m  Workflow Step Source

m  Special Command

Configuring Commands 25



Chapter 2: Using Commands

Commands consist of command information and command steps. In the
examples presented in this chapter, the commands are accessed through the
Mercury Deployment Management Object Type window. However, the

controls are the same in the other windows that you can use to configure
commands.

To configure commands associated with an object type:

1. Log on to Mercury IT Governance Center.

2. From the menu bar, select Administration > Open Workbench.
The Workbench opens.

3. From the shortcut bar, select Deployment Mgmt > Object Types.
The Object Type Workbench window opens.

4. Open an existing object type or create a new object type.
The Object Type window opens.

5. Click the Commands tab.

The Commands tab is opened.

Object Type : File Client- >Client M [=] E3
Object Type Name: |File Client-»Client
Description: | File Copy Fram Clientto Client
Extenzion: | j Ohject Mame Column: |PARAMETER1 j
Object Categary: |Slandard Ohjects j Object Rewvision Column: | j
Meta Layer View: [MPKGL_ |FILE_CLIENT_CLIENT
Enabled: & Yes { Mo
Fie\ds] Layaut Cnmmands] I Ownership
rCotnman riComimand Step:
| Command | Condition ‘ Desc Comma
=} client_copy | [client_co ||| kse_copy_client_client SUB_PATH="[F.P_SUB_PATH]" FILEMAME=
K I | | i
| m=an| e cm | | | | +|¥
Ok ‘ ‘ Cancel |
Feady

6. On the Commands tab, click New Cmd.

m  To open an existing command, select the command and click Edit Cmd.

The New Command window opens.

26 Commands, Tokens, and Validations Guide and Reference



Chapter 2: Using Commands

£ New Command _.

Comman:

Description
Tirneout (s)
Enahled:  Yes [ Mo

|
Condition: [
|
|

Steps:

Tokens ‘ Special Cmd | Show Desc | Ok | Add | Cancel |
\Ready

m  To remove an existing command, select the command and click
Remove.

7. Complete the fields of the New Command window as specified in the
following table.

Command The command name.

The specific conditions under which the command
steps are to be exclusively executed. This step is

Condition optional. For more information, see Command
Conditions on page 23.
The command description. This step is optional.
Description For more information, see Command Conditions

on page 23.

The number of minutes to run the command before
Timeout(s) stopping. The Timeout(s) setting is useful if a
command hangs or takes too long to execute.

Steps Enter at least one command step.

Yes/No radio buttons. Enables or disables the

Enable
command. Yes allows the command to be run.

m  Click Tokens to open the Token Builder window. The Token Builder
window allows you to find and add a token to the command step.
Tokens are variables used to facilitate the creation of general objects.
For more information concerning tokens, see Chapter 4, Using Tokens,
on page 47.

Configuring Commands 27



Chapter 2: Using Commands

m  Click Special Cmds to open the Special Command Builder. The Special
command Builder allows you to find and add a special command to the
command step. For more information concerning tokens, see

m  Click Show/Hide Desc to open (show) or hide (close) a Descriptions
field in the Steps field. When the Descriptions field is visible, you can
add a description to the command step.

8. Click OK to add the command to the Commands tab and close the New
Command window.

m  Click Add to add the command to the Commands tab and leave open
the New Command window.

m  Click Cancel to stop all work on the command and close the New
Command window.

Examples of Command Uses

This section provides examples of commands.
To copy a file from one environment to another environment:

Command:

copy client client

Command Steps:

ksc connect dest client

if T ' d [P.P SUB PATH] ];

then mkdir -p [P.P_SUB PATH]; fi

ksc exit

ksc copy client client SUB PATH="[P.P SUB PATH]"
FILENAME="[P.P _FILENAME]" FILE TYPE="[P.P FILE TYPE]"

28 Commands, Tokens, and Validations Guide and Reference



Chapter 2: Using Commands

To automatically update the staffing profile status to “In Planning:”

Command:

Update Staffing Profile Status

Command Steps:

ksc_set staffing profile status USE NAMES FLAG="N"
STAFF PROF _IDS="[REQ.P.KNTA STAFFING PROFILE]"
STATUS NAME="In Planning"

To execute Oracle SQL script against an Oracle Database using JDBC:

Command:

Execute SQL

Command Steps:

ksc _run java com.kintana.core.server.execution.KSCSQLQuery
jdbc:oracle:thin:@[ENV="[ENV_NAME]".DB NAME]:
[ENV="[ENV_NAME]".DB PORT NUMBER] :
[ENV="[ENV_NAME]".DB ORACLE SID]

[ENV="[ENV_NAME]".DB USERNAME]

"[ENV="[ENV_NAME]".DB PASSWORD]" " [QUERY STRING]"

-token SQL OUTPUT -delimiter "~" -file
[AS.PKG_TRANSFER PATH] [SYS.USER ID].txt

[EXCEPTION OPTION]

To log a program issue using a request type:

Command:

ksc _store

Command Steps:

ksc _store KNTA ESCALATION LEVEL="PROGRAM", "Program"

Examples of Command Uses 29



Chapter 2: Using Commands

To run a report using UNIX:

Command:

Run report.

Command Steps:

ksc_local exec [AS.ORACLE HOME]/bin/[AS.SQLPLUS]
[AS.DB_USERNAME]/[AS.DB_PASSWORD]@[AS.DB_CONNECTION_STRING}
@./scripts/kntarpt special com

"[AS.REPORT DIR]" "[RP.FILENAME]" "[P.P FROM COM]"
"[P.P_TO COM]" "[P.P SHOW REF]"

To run a report using Windows:

Command:

Run report.

Command Steps:

ksc local exec [AS.ORACLE HOME]/bin/[AS.SQLPLUS]
[ASTDBiUSERNAME]/[AS.DBiPKSSWORD]@[AS.DB7CONNECTION7$TRING}
@./scripts/kntarpt special com

'[AS.REPORT DIR]' '"[RP.FILENAME]' '[P.P FROM COM]'

'"[P.P_TO COM]' '[P.P_SHOW REF]' B B

ksc_run java
com.kintana.core.server.execution.CvtFileNameToLowerCaseCommand
"[AS.REPORT DIR] [RP.FILENAME].html"

30 Commands, Tokens, and Validations Guide and Reference



Chapter

Using Special Commands

In This Chapter:

m  About Special Commands
o Special Command Parameters
o Special Command Language
o Special Command Conditions
o About the Special Command Builder
Configuring Special Commands
Using Special Commands
o Using the Special Command Builder
o Nesting Special Commands
o Listing all of the Special Commands
m  Examples of Using Special Commands

31



Chapter 3: Using Special Commands

About Special Commands

Object types, request types, report types, workflows and validations all use
commands to access the execution layer. To simplify the use of command
executions, Mercury IT Governance Center provides a predefined set of
special commands. Users can also create their own special commands.

Special commands are commands with variable parameters and are used in
object types, request types, report types, workflows, and validation command
steps. (Workflows use special commands in their workflow step sources.)
These command steps perform a variety of functions, such as copying files
between environments and establishing connections to environments for
remote command execution. Mercury IT Governance Center features two
types of special commands:

m  System special commands are shipped with the Mercury IT Governance
Center. System special commands are read-only and have the naming
convention ksc_command name.

m  User defined special commands user-defined and have the naming
convention sc_command_name.

This chapter provides information about how to create, edit, and use special
commands in Mercury IT Governance Center.

The Parameters tab displays the current parameters for the special command.
Most special commands have parameters to override standard behavior. Nearly
all parameters are optional. When a parameter is not passed to a special
command and the default value for the parameter is a custom token, the entity
using the command must contain a field with that token.

For example: The ksc_copy server server special command shown is used
in an object type. The parameter FILENAME is not specified and defaults to
[P.P _FILENAME] because it is not explicitly passed.

ksc copy server server

32 Commands, Tokens, and Validations Guide and Reference



Chapter 3: Using Special Commands

Note

This makes ksc_copy server server equivalent to:

ksc _copy server server FILENAME="[P.P FILENAME]"

because [p.P FILENAME] is the default token for the parameter F1LENAME. The
command execution engine evaluates the token [p.P FILENAME] so it must be
defined for the entity (the specific object type, report type or request type).

To override the default token, pass in another value for the parameter. A few
examples are:

ksc _copy server server FILENAME="document.txt"
ksc copy server server FILENAME="[P.DOCUMENT NAME]"

This method of passing parameters is explained in more detail in the section
entitled

Custom tokens are defined for specific object types, request types, and report
types, and are referenced using the [P.TOKEN_NAME] syntax.

The command steps in a special command define the system-level executions
that must be performed to realize the command function. Command steps can
be UNIX commands, third-party application commands, or special commands.
Special commands are reusable routines defined in Mercury IT Governance
Center.

Mercury IT Governance Center also supplies several system special
commands that you can use to perform common events (such as connecting to
environments or copying files).

About Special Commands 33



Chapter 3: Using Special Commands

Special Command Conditions

]
= = Note

Depending on the context in which commands are executed, it may be
necessary to run a different set of commands. For example, one command may
be needed to update a Web page, while another command may be required to
set up an account on the Sales Automation application.

To achieve this flexibility, you use conditional commands. You can use the
Condition field for an object command to specify the conditions under which
the associated command steps are to be executed.

Conditions are evaluated as Boolean expressions. If the expression evaluates to
TRUE, the command is executed. If FALSE, the command is skipped and the
next command is evaluated to see if it should be run. If no condition is
specified, the command is always executed. The syntax of a condition is
identical to the WHERE clause of a SQL statement, which allows flexibility
when evaluating scenarios. 7able 3-1 provides some example conditions.

Table 3-1. Example Conditions

BLANK Command executes in all situations.

Command executes when the department

[REQ DEPARTMENT]' = "SALES for the request is named SALES.

Command executes if the priority assigned to

[REQ.PRIORITY]' = "HIGH the request is HIGH.

When using conditional commands, you must use single quotes to enclose strings.

A condition can include a token. For information on how to include tokens in
conditions, see Chapter 4, Using Tokens, on page 47 for more information.

34 Commands, Tokens, and Validations Guide and Reference



Chapter 3: Using Special Commands

About the Special Command Builder

The Special Command Builder (/7gure 3-1) simplifies special commands use
by ensuring that you format command steps correctly. After you select a
special command and specify its parameters, the Special Command Builder
populates the Command field with a line of text that you can use as a command
step.

Figure 3-1. Special Command Builder

< Special Command Builder

Cammand Name:
SERMAME [jahngmith

Wrr_ooman [[5OURGE_ENV.CLIENT_NT_DOMAIN]
PASSINORD [[SOURCE_ENY CLIENT_NT_PASSWORD]

SOURCE_BASE_PATH  |[SOURCE_ENY.CLIENT_MT_BASE_PATH]
CONNECTION_PROTOCOL |[SOURCE_ENY.CLIENT_CON_PROTOCOL_MEAMING]

SOURGE_ENY [[S0URCE_ENW]

e AL TION_PROTOCOL="[S0URCE_ENV.CLIENT_CON_PROTOCOL_MEANING]]

Clear ‘ Show Default Tokens | Cloze

Configuring Special Commands

To configure a new special command:
1. Log on to Mercury IT Governance Center.
2. From the menu bar, select Administration > Open Workbench.
The Workbench opens.
3. From the shortcut bar, select Configuration > Special Commands.
The Special Command Workbench opens.
4. From the Special Command Workbench, click New Special Command.

m  To open an existing special command, select a special command and
click Open.

The Special Command window opens.

Configuring Special Commands 35



Chapter 3: Using Special Commands

Special Command 19 [=]
Command Mame: |sc_ Enabled:  ‘Yes © No

Description |

Parameters | Commandsl Ownersh\pl Used Elyl

Parameter Mame I Default Token | Description I

Mewr | Edit | Rermoye |i|i|

Ok | Save | Cancel |

|Read;r

5. Complete the fields in the Special Command window as specified in the

following table.
Command The name of the special command. This can only be updated
Name when generating or editing a user-defined special command.
Determines whether or not the special command is enabled for
Enabled? use in workflows, object types, report types, request types, and
validations.

A description of the special command. This can only be updated

Description when generating or editing a user-defined special command.

6. Configure the Parameters tab.
a. Click the Parameters tab.

The Parameters tab opens.

36 Commands, Tokens, and Validations Guide and Reference



Chapter 3: Using Special Commands

Special Command 19 [=]
Cammand Name:|sc_new_command Enahled: ' Yes Mo
Description: |
Parameters | commands | Ownership| Used By
Parameter Mame I Default Token | Drescription
FILEMAME |P.P_FILENAME [Filenama
| I+
Newl Edit | Rernoye |i|i|

0K | Save | Cancel |

|Ready

b. To configure a new parameter, click New.

The Parameter window opens.

£ Pparameter: New :

Matne: ”

Description: |

Default Token: |

Tokens QK | Add | Cancel |
|Ready
c. Complete the fields in the Parameter window as specified in the
following table.
Name The name of the new parameter.
Description A description of the new parameter.

The name of the default token. Enter the
Token token name or click Token to open the
Token Builder.

d. Inthe Name field, type a name for the new parameter.
e. Add the field to the Parameters tab.
m  To add the field and close the Parameters window, click OK.
m  To add the field and leave open the Parameters window, click Add.

m  To stop work on the parameter and close the Parameters window,
click Cancel.

Configuring Special Commands 37



Chapter 3: Using Special Commands

7. Configure the Commands tab.
a. Click the Commands tab.
The Commands tab opens.

Special Command 19 [=]

Cammand Name \sc_new_command Enabled: = Yes " Mo

Description \

Parameters Commands ] ownership | Used By|

iz rCommand Step:
Cormmand | conation | Command |

Echovalue of FILEMAME sc_echo_himl RAW_TEXT="The value of FILEMNAME is...*
sc_echo_himl RAW_TEXT="[P.F_FILENAME]"

4 | 1| Kl | 5]
ﬂﬂ Mew Crd | | | ‘ +¥
Ok | Save | Cancel |
|Read;r

b. On the Commands tab, click New Cmd.

m  To open an existing command, select the command and click Edit
Cmd.

The New Command window opens.

£ New Command

Comman:

Description
Tirneout (s)
Enahled:  Yes [ Mo

|
Condition: [
|
|

Steps:

Tokens Special Cmd | Show Desc | Ok | Add | Cancel |
\Ready

m  To remove an existing command, select the command and click
Remove.

38 Commands, Tokens, and Validations Guide and Reference



Chapter 3: Using Special Commands

c. Complete the fields of the New Command window as specified in the

following table.
Command The command name.
The specific conditions under which the command
Condition steps are to be exclusively executed. This step is

optional. For more information, see Special
Command Conditions on page 34.

The command description. This step is optional.
Description For more information, see Special Command
Conditions on page 34.

The number of minutes to run the command before
Timeout(s) stopping. The Timeout(s) setting is useful if a
command hangs or takes too long to execute.

Steps Enter at least one command step.

Yes/No radio buttons. Enables or disables the

Enable
command. Yes allows the command to be run.

m  Click Tokens to open the Token Builder window. The Token
Builder window allows you to find and add a token to the command
step. Tokens are variables used to facilitate the creation of general
objects. For more information concerning tokens, see Chapter 4,
Using Tokens, on page 47.

m  Click Special Cmds to open the Special Command Builder. The
Special command Builder allows you to find and add a special
command to the command step. For more information concerning
tokens, see Chapter 3, Using Special Commands, on page 31.

m  Click Show/Hide Desc to open (show) or hide (close) a Descriptions
field in the Steps field. When the Descriptions field is visible, you
can add a description to the command step.

d. Save the newly configured command.

m  Click OK to add the command to the Commands tab and close the
New Command window.

m  Click Add to add the command to the Commands tab and leave
open the New Command window.

m  Click Cancel to stop all work on the command and close the New
Command window.

Configuring Special Commands 39



Chapter 3: Using Special Commands

8. Configure the Ownership tab.
a. To open the Ownership tab, click the Ownership tab.
The Ownership tab opens.

Special Command 19 [=]

Cormmand Marne: [sc_ Enahled: = Yes " Mo

Description \

Parameters | Commands Ownership 1 Used By
Give ability to editthis Special Command to
(+ Al ugers with the Edit Special Commands Access Grant

" Only groups listed below that have the Edit Special Commands Access Grant

Security Group Drescription

[ [ s |

Ok | Save | Cancel |

|Read;r

9. Select Only groups listed below that have the Edit Special Commands
Access Grant.

The Add button is enabled.
10. Click Add.
The Add Security Groups window opens.
11. In the Security Group window, select the security groups.
12. In the Add security group window, click OK.
On the Ownership tab, the security groups are listed.
13. To add the security group to the special command:

m  To save the security group and close the Special Command window,
click OK.

m  To save the security group and leave the Special Command window
open, click Save.

40

Commands, Tokens, and Validations Guide and Reference



Chapter 3: Using Special Commands

14. Configure the Used By tab.

a. To view a list of entities that reference the selected special command,
click the Used By tab.

15. Save the Special Command.

m  To save the special command and close the Special Command window,
click OK.

m  To save the special command and leave the Special Command window
open, click Save.

m  To stop work on the special command and close the Special Command
window, click Cancel.

Using Special Commands

Special commands are added to command steps directly in the entity windows
(object types, request types, report types, validations and workflows). For
example, Figure 3-2 shows an object type that has been generated using a
combination of special commands.

Figure 3-2. RCS File Migration object type

Object Type : RCS File Migration 9 [=] 4
Ohject Type Mame: |RCS File Migration
Description: |This object manages the checkout and disttibution of code in RCS
Extension | =] Ohject Name Colunn: [PARAMETERY |
Ohject Category: |Standard Ohjects j Chiject Revision Columin: | j
Meta Laver View: [MPKGL_ [RCS_FILE_MIG
Enahled. ™ Yes { Mo
F\elds] Layout Commancs 1 ] Ownarshlp}
rComtnat rComtnand Step: =
| Cotmanc
® Connectto RCS Environment (not expanded)
# Check outof RCS {not expanded)
=l Copyform RCS (serven to client ksc_copy_server_client SOURCE _ENV="RCE" SUB_PATH="[F.F
=l Copyform RCS (sewver to senver ksc_copy_serer_sener SOURCE_EMNV="RCE" SUB_PATH="[P.
#l Cannecttn RGS Frvirnnment {not exnandeds =
Ry | i ,
dhai| =an|  wNew cmd ‘ | | | + ¥
K ‘ ‘ Cancel |
Feady

Using Special Commands 41



Chapter 3: Using Special Commands

Special commands can be added to any set of command steps in the following
entities:

m  Object types

m  Request types

m  Report types

m  Validations

m  Workflow step sources
m  Other special commands

Access the Special Command Builder in the Commands tab for each of these
entities.

To build a command step using the Special Command Builder:
1. From the Workbench shortcut bar, select Change Mgmt > Object Types.
The Object Type Workbench opens.
2. Open an object type.
The Object Type Window opens.
3. Select the Commands tab.
The Commands tab is displayed.
4. Click New Cmd or Edit Cmd.
The Command window opens.
5. Click Special Cmd.
The Special Command Builder window opens.
6. In the Command Name field, select the special command.

When selecting a command name from the auto-complete, its parameters
are listed in the Special Command Builder.

You can use both predefined (ksc_command) and user defined (sc_command)
Note special commands to build the command steps line.

42 Commands, Tokens, and Validations Guide and Reference



Chapter 3: Using Special Commands

7. Replace the associated default token value with parameter information.
a. To view the default tokens, click Show Default Tokens.
b. To hide the default tokens, click Hide Default Tokens.

c. Copy the text in the Special Command Builder window Command field
to the Command window Steps field.

d. Select the text in the Special Command Builder window Command
field.

e. Type ctrl + cto copy the text in the Command field.

f. Click Close to close the Special Command Builder window.

g. In the Command window, click inside the Steps field.

h. Paste the copied text by typing ctrl + V.
8. Enter information in the remaining fields in the Command window.
9. For the Enabled option, click Yes.
10. To add the command step to the Command tab, click OK.

You can now use the new special command in an object type, request type,
report type, validation, or workflow.

Special commands can be used in an execution workflow step source. After the
Note workflow step source is created (which contains the special commands), it can be
dragged and dropped into a workflow.

Special commands can be used within other special commands, but must be
used within a command step. However, a special command cannot refer to
itself.

Using Special Commands 43



Chapter 3: Using Special Commands

Mercury IT Governance Center comes with several pre-configured special
commands. To see a list of all special commands in your system, run the
Special Commands Detail report. This report provides information on special
commands, how to use the special command, the parameters of the special
command, and where the special command is used.

To view the existing special commands on your instance:
1. Log on to Mercury IT Governance Center.
2. From the menu bar, select Reports > Create a Report.
The Reports window appears.
3. In the Report Category, select Administrative.
A list of the Administrative reports is displayed.

4. From the list of Administrative reports, select Special Command Details
Report.

The Special Command Details Report window opens.
5. Complete the fields in the Special Command Details Report window.

m  Too view all of the special commands, leave the fields Special
Command From and Special Command To empty.

m  Under Report Parameters, select Yes for Show References.

6. Click Submit and wait for the report to be displayed.

44 Commands, Tokens, and Validations Guide and Reference



Chapter 3: Using Special Commands

Examples of Using Special Commands

This section provides examples of special commands.
To copy a file from one server to another server:

Special Command Name:

copy_server server

Special Command Example:

ksc connect dest server

if [ ! -d [P.P_SUB PATH] ]; then mkdir -p [P.P_SUB PATH]; fi
ksc exit

ksc copy server server SUB PATH="[P.P SUB PATH]"
FILENAME="[P.P _FILENAME]" FILE TYPE="[P.P FILE TYPE]"

To import using a given password:

Special Command Name:

ksc_mig import

Special Command Example:

ksc mig import PASSWD="[P.DEST PASSWD]"

To change the status of a project:

Special Command Name:

ksc_run java

Special Command Example:

ksc run java com.kintana.core.server.execution.SetProjectStatus
-project [REQ.P.KNTA PROJECT PLAN] -status [P.P_STATUS]
-user [SYS.USER ID]

Examples of Using Special Commands 45



Chapter 3: Using Special Commands

To connect to a server and change permissions of a file:

Special Command Name:

ksc _connect dest server

Special Command Example:

ksc _connect dest server DEST ENV="[DEST ENV.ENVIRONMENT NAME]"

# 444 is read-only. if the locked flag
# is no this is the permission set

# the user requested

chmod 0444 "[P.P FILENAME]"

ksc_exit

46 Commands, Tokens, and Validations Guide and Reference



Chapter

Using Tokens

In This Chapter:

About Tokens

o Where to Use Tokens
o Token Evaluation

o About Token Builder
Token Formats

Default Format
Explicit Entity Format
User Data Format
Parameter Format
Sub-Entity Format
Environment and Environment Application Tokens
Using Token Builder

OO 00000

47



Chapter 4: Using Tokens

About Tokens

Mercury IT Governance Center uses variables to facilitate the creation of
general objects that can be applied to a variety of contexts. These variables are
called tokens.

Mercury IT Governance Center uses two types of tokens: standard tokens and
custom tokens. Standard tokens come with the product. Custom tokens are
generated to suit specific needs. You can reference the fields of the following
entities as custom tokens:

m  Object types

m  Request types and request header types
m  Report types

m  User data

m  Workflow parameters

In addition, numerous standard tokens are available that provide other useful
pieces of information related to the system. For example, Mercury IT
Governance Center has a token that represents the users currently logged onto
the system.

You can use tokens in the following entity windows:
m  Object type commands

m  Request type commands

m  Validation commands and SQL statements

m  Report type commands

m  Executions and notifications for a workflow

m  Workflow step commands

m  Notifications in a report submissions

m  Special command commands

m  Notifications for tasks and time management

m  Notes for request details

48 Commands, Tokens, and Validations Guide and Reference



Chapter 4: Using Tokens

Figure 4-1. Example of a token used in a SQL statement

Validation : DRY - Project Mames - All - Depend on [P_SHOW _MASTER_ONLY]
Plame: |DRV- Froject Mames - All - Depend on [P_SHOW_MASTER_OMLY]

Descrigtion: |DRY - Projects

Enabled: [+ Use in Workflow? [
Componert Type: | J
alidated By: | J Expected list length: fs
Selection mode: % e Murrber of results per page: |50
Configurstion ] Filter Fields | Fiter Layout
olumnn Headers: - | BAL T —
paren_praject_id=- =~
Seq | Columh Header | Displayved | Columny OR ([P.P_SHOW_MASTER_OMLY]=MT)
1]Hidden Code M AND  template_flag = W'
2|Project Mame  [¥ AMD
3|Project I i KDRY_SECURITY.Can_User Access Project([5v5.USER J
_ID], master_project_jd) =
order by 2 -
1 [ - ¥ =l
Use Bind Yariakles? [
| | o121 = [ |
Used By | Dwnership | Ok | | Cancel |

Ready (Read-Orly, Seed Deta)

Token Evaluation

Tokens are evaluated at the point when Mercury IT Governance Center must
know their context-specific values. At the time of evaluation, the token
evaluation engine gathers information from the current context and tries to
derive the value for the token. Values can only be derived for specific, known
contexts (the current context is defined as the current package, package line,
request, work plan, workflow step, or source and destination environments).

The token evaluation engine takes as many passes as necessary to evaluate all
tokens, so one token can be nested within another token. During each pass, if

the evaluation engine finds a valid token, it replaces that token with its derived
value. tokens that are invalid for any reason (such as the token is misspelled or
no context is available) are left alone.

For example, suppose an object type command has the following Bourne-shell
script segment as one of its command steps:

if [ ! -f [PKGL.P. P_SUB_PATH] / [PKGL.P. P_BASE_FILENAME] fmx ]
then exit 1; fi

At the time of execution, [PKGL.P.P SUB PATH] = Forms and [PKGL.P.P_

BASE FILENAME] = obj maint. After token evaluation, this command step
would reduce to:

if [ ! -f Forms/obj maint.fmx ]; then exit 1; fi

About Tokens 49



Chapter 4: Using Tokens

As another example, suppose a user data field has been generated for all users
called MANAGER. The email address of the manager of the person who
generated a request could be found using the token:

[USR="[USR="[REQ.CREATED BY NAME]".VUD.MANAGER]".EMAIL ADDRESS]

The token evaluation engine would first evaluate the innermost token
([REQ.CREATED BY NAME]). Once that is complete, the next token
([USR="<name>".VUD.MANAGER] ) is evaluated. Finally, the outermost token is
evaluated, giving the manager's email address.

Tokens are evaluated at different points based on the token type. Tokens used
in object type parameters and commands are evaluated during command
execution. Tokens in a validation SQL statement are evaluated just before that
statement is executed (such as generating a new package line). Tokens in an
email notification are evaluated when a notification is generated.

In each of the entity windows listed in ,a
token can be created by opening the Token Builder window. Note that the
available tokens found in the token builder reflect the tokens that can be built
for that entity. For example, opening the token builder in the Request Type
workbench excludes package tokens.

The folders displayed in the left pane of the Token Builder window contain
groups of tokens that correspond to entities defined in Mercury IT Governance
Center. For instance, the Packages folder contains tokens that reference
various package attributes. If the Packages folder is selected, the available
package tokens are displayed in the list in the right pane of the window.

Some entities (folders) have sub-entities (sub-folders) that can be referenced
by tokens. Click the plus sign (+) next to an entity to see the list of sub-entities
for an entity. Each sub-entity also has tokens, and it is possible to reference any
of the tokens of sub-entities, as well as tokens of the parent entity. For
example, the package line entity is a sub-entity of the package entity.

As entity folders and the subsequent tokens in the list are selected, a character
string is constructed in the Token field at the bottom of the Token Builder
window. This is the formatted string used to reference the token. Either copy
and paste the character string, or type this string where needed.

50

Commands, Tokens, and Validations Guide and Reference



Chapter 4: Using Tokens

Figure 4-2

£ Token Builder

. Token Builder window

oken Context

[Tokens

{7 Token Cortest

{771 Financial Benefit
{27] Organization Unit
{27 Program

{77 Re=ource Pool
{27 Security Group
270 kil

{77] Staffing Profile

Token

COMPOMENT_TYFE

The GUI comp

CREATED_BY The ugerid of
CREATION_DATE The date the W
DESCRIPTION The descriptiol

LAST_UPDATED_BY

The ugerid of

LAST_UPDATE_DATE

The date the ¥

LOOKUF_TYFE The foreign ke
UD.USED_JN_TEXTAREA __ |Denotes thattt
VALIDATION_ID The internal ich

VALIDATION_MAME

The name of tk

WALIDATION_SGL

The SGIL state

WORKBEMCH_WALIDATION...

URL to access

Context Yalue: I

Toker: |[W\L.]

Refresh

Token Formats

Tokens can use one of several different formats, depending on how they are
going to be evaluated. Tokens can be expressed in the following formats:

Default Format
Explicit Entity Format
User Data Format
Parameter Format

Sub-Entity Format

Environment and Environment Application Tokens

Table 4-1 lists the entities and the formats each entity supports. Each format is
discussed in a section following the table.

Token Formats 51



Chapter 4: Using Tokens

Table 4-1. Entities (page 1 of 3)

N

AS Application server N
BGT Budget Y
CON Contact Y
Destination environment. If an
DEST ENV app coc_le is specified, it is used. Y N
- Otherwise, use only values from
ENV.
Destination environment (for the
DEST ENV.APP environment application). Oply Y N
- use app code values, even if
they are null.
Destination environment.
DEST_ENV.ENV Ignores app codes and only Y N
uses the ENV values.
DIST Distribution N
ENV Environment N
Environment (for the
ENV.APP environment application). Orlly vy N
use app code values, even if
they’re null.
Environment. Ignores app codes
ENV.ENV and only uses the ENV values. Y N
EXEC Execution N N
FBEN Financial benefit Y N
NOTIF Notification N N
ORG Organization Unit Y N
PKG Package Y N
PKG.PKGL Package (package line) Y N
PKG.PEND Package (pending package) Y N
PKGL Package line Y Y
PRG Program Y N
PRJ Work plan Y N

52 Commands, Tokens, and Validations Guide and Reference




Chapter 4: Using Tokens

Table 4-1. Entities (page 2 of 3)

PRJD Work plan details N Y
REL Release N N
REL.DIST Release (distribution) Y N
REQ Request Y Y
REQ.FIELDS Request field groups N Y
REQ.PEND Request (pending) N N
REQD Request details N Y
REQD.P Request details N Y
RP Report submission N Y
RSCP Resource pool Y N
SG Security group Y N
SKL Skill Y N
STFP Staffing profile Y N
SOURCE_ENV Source environment Y N
Source environment (for
SOURCE _ environment application). Oply v N
ENV.APP use app code values, even if
they are null.

source | Soweenviomertgraes |
ENV.ENV ENV values.

SYS System N N
™G Time Management N N
TSK Task Y N
TSK.PEND Task (pending) N N
USR (User) User Y N
VAL Validation N N

Token Formats

53




Chapter 4: Using Tokens

Table 4-1. Entities (page 3 of 3)

WF Workflow Y N

Workflow (step). Use this format

WF.WFS to specify a specific workflow.

WFS Workflow step Y N

Default Format

Tokens are expressed as a prefix (a short name for the entity) followed by a
token name. The prefix and token name are separated by a period and enclosed
in square brackets with no spaces:

[PREFIX.TOKEN NAME ]

For example:
The token for the package number is expressed as:

[PKG.NUMBER]

The token for a request's workflow name is expressed as:

[REQ.WORKFLOW NAME]

Certain tokens also support a sub-format. This sub-format is required for
certain entities in order to evaluate to the correct context. For example, wr
tokens resolve to information related to the workflow, whereas wr.wrs tokens
resolve to workflow step information. Token sub-formats are included in the
prefix, appended to the parent prefix, and separated by a period:

[PREFIX.SUB-PREFIX.TOKEN NAME]
Tokens are evaluated according to the current context of Mercury IT

Governance Center, which is derived based on information known at the time
of evaluation. For more information, see 7oken Evaluation on page 49.

54 Commands, Tokens, and Validations Guide and Reference



Chapter 4: Using Tokens

Explicit Entity Format

You can provide a specific context value for an entity so that the default

context can be overridden. Some tokens can never be evaluated in the default
context. In these cases, you must use the following explicit entity format to set

the context:

[PREFIX="<entity name>".<TOKEN NAME>]

The Token Builder generates tokens in the explicit entity format by providing a
list of possible values. When such a list is available, the Context Value field at
the bottom of the Token Builder is enabled. You can either type in the field to

reduce the list, or click the auto-complete icon to open the Validate window.

The selected value is inserted into the token in the Token field to generate an

explicit entity token.

£ Token Builder

oken Context

[Tokens

{77 Token Contest

{71 App Server

{27] Budget

{27 Environmert
{7 Execution

{7 Financial Benefit
{71 Organization Unit
{771 Program

{7 Resource Pacl
{71 Security Group
27 =kl

{27 Staffing Profile
{71 System

Token

COMPOMNENT_TYPE The GUIl comp
CREATED_BY The userid ofi
CREATION_DATE The date the W
DESCRIPTION The description

LAST _UPDATED_BY

The userid off

LAST_UPDATE_DATE

The date the Wt

LOOKLUP_TYPE

The foreign ke

UD.USED_IN_TEXTAREA

Denotes that t

VALIDATION_ID

The internal ich

WALIDATION_MNAME

The name of th

VALIDATION_SGQL

The SGL statel

WORKBEMCH_WALIDATION...

URLto access

Context Yalue: I

Toker: |[\IAL.]

Reftesh

Close

For example, suppose you want to reference the email address for jsmith. The

token to specify this reference is:

[USR="jsmith" .EMAIL ADDRESS]

Token Formats

55



Chapter 4: Using Tokens

To construct the token [USR="jsmith".EMAIL ADDRESS] in the Token
Builder window:

1.

Open the Token Builder window.

See

2. In the Token Builder window, select the User folder.
Available tokens are listed in the Tokens column, and the Context Value
field is enabled.
The Token field displays the string [USR.].

3. In the Context Value field, sclect jsmith.
The Token field displays the string [USR="7jsmith"].

4. In the Tokens column, click EMAIL_ADDRESS.
The Token field displays the string [USR="jsmith".EMAIL ADDRESS].
This is the complete token. Since the token is now complete, the Token
field becomes enabled.

5. Select the text in the Token field.

6. Copy the text in the Token field by typing ctrl + C.

7. Type ctrl + V to paste the text into another field.

Note For a list of all explicit entity format tokens, see

Nesting Explicit Entilty Tokens within Other Tokens

The explicit entity format can be used to nest tokens within other tokens to
generate a value. For example, to print the description of the workflow that is
associated with package #10203, the token would be:

[WE="[PKG="10203" .WORKFLOW NAME]" .DESCRIPTION]

This token would have to be built in two steps. First, build the Description
token for the workflow. Copy and paste that token into another field, then build
the Workflow Name token for the package. Copy and paste that token within
the Description token that was previously pasted.

56 Commands, Tokens, and Validations Guide and Reference



Chapter 4: Using Tokens

Note

Internally, this token is evaluated in two stages. The inner token is evaluated
and the token has the following internal representation:

[WE="Workflow Name".DESCRIPTION]

The remaining token is evaluated and the final result is printed:

description of my workflow

User data fields use tokens differently, as shown below:

[PREFIX.UD.USER DATA TOKEN]

The prEFIX is the name of the entity that has user data. The modifier up
indicates that user data for that entity is being referenced. USER_DATA TOKEN is
the name of the token for the specific user data field. For example, suppose that
a field for package user data is generated, and its token is GAP_NUMBER. In the
default format, the token would be:

[PKG.UD.GAP_ NUMBER]

In this context, PG indicates that the package entity is referenced, up indicates
that user data is referenced, and Gap_NUMBER is the token name.

When user data fields are generated, a validation that has both a hidden and
visible value can be used. For example, if the validation KNTA - Usernames -
All is used, the hidden value is the user ID and the displayed value is the
username. The previous syntax references the hidden value only. To reference
the visible value for a user data field, the syntax shown below must be used:

[PREFIX.VUD.USER DATA TOKEN]

If the modifier vuD is used instead of UD, the visible user data value is
referenced.

Drop-down lists and auto-completes may have different hidden and displayed
values. For all other validations, hidden and displayed values are identical.

If context can be determined, user data tokens are displayed with the
system-defined tokens in the Token Builder.

Token Formats 57



Chapter 4: Using Tokens

Note

Note

Object type custom fields, request type custom fields, request header type
fields, work plan fields, and workflow parameters use the parameter format for
tokens as shown below:

[PREFIX.P.PARAMETER TOKEN]

In this specific case, PREFIX is the name of the entity that uses a custom field.
The modifier p indicates that parameters for that entity are referenced.
PARAMETER TOKEN is the name of the token for the specific parameter field.

Package lines reference object type fields. Requests reference request type and
request header type fields. Workflows reference workflow parameters.

For example, suppose a field for an object type named Gap Number (Token =
GAP_ NUMBER) is been generated for use on package lines. In the default format,
the token would be:

[PKGL.P.GAP_ NUMBER]

In this context, PXGL is the prefix, because the package lines entity is
referenced, p indicates that parameters are referenced, and GAP_ NUMBER is the
token name.

Custom fields store both a hidden and visible value. For example, if the field
uses the validation KNTA - Usernames - All, the hidden value is the user ID
and the displayed value is the username. The previous syntax references the
hidden value only. To reference the visible value for a parameter, use the
syntax as shown:

[PREFIX.VP.PARAMETER TOKEN]

If the modifier vp is used instead of p, the visible parameter value is
referenced.

Drop-down lists and auto-completes may have different hidden and displayed
values. For all other validations, the hidden and displayed values are identical.

58 Commands, Tokens, and Validations Guide and Reference



Chapter 4: Using Tokens

Request Field Tokens

Tokens can access information on custom fields included on a request. These
fields can be defined in a:

m  Custom request type field

m  Request header field (standard)

m  Request header field (custom fields)
m  Request header field (field groups)

m  Table component field

Request Token Prefixes

All fields defined in the request header type (field group fields, custom header
fields, and standard header fields) use the rReQ prefix. The following examples
could use p or vp.

REQ.<standard header Token>

REQ.DEPARTMENT CODE

REQ.P.<custom header field Token>
REQ.P.BUSINESS UNIT

REQ.P.<field group Token starting with KNTA >
REQ.P.KNTA SKILL

Fields defined in the request type use the REQD prefix. You can also access
standard header fields using the rREQD prefix, for example:

REQD.P.<custom detail field>
REQD.<standard header Token>

Tokens in Request Table Components

To refer to items in a table component, the tokens must follow specific
formats. These formats differ, depending on the item referenced within the
table. shows the basic elements of the table. These elements are
referenced when discussing the different options for referencing data within
the table using tokens.

Token Formats 59



Chapter 4: Using Tokens

Figure 4-3. Table component formats

MERCURY

Hardware Information
Select the Product and Quantity of the items you wish to order.

Seq Products Duantity Price Total
O 1 PC 3 1200 3600
ﬁ O 2 PC 2 1200 2400
Check All Clear All Add Edit Copy Delete
Done Cancel

The format [REQD.T.<TABLE TOKEN>] represents the table and specific tokens
will be represented as [REQD.T.<TABLE TOKEN>.<SPECIFIC TOKENS>].The
following sections provide examples of the formats used for tokens that
reference items related to the table component:

To access the table row count from a Request context:

To access the Salary Column Total value from a Request context:

To access the Name of the first employee in the table from a Request:
To access the Code of the first employee in the table from a Request:

To access the Department Cell value of the current row (Table Row
Context):

To obtain a delimited list of a column’s contents (Request Context)

In these examples, the following example is used. A table component named
Employee with four columns:

Name of Employee
Years of Service of the Employee
Department where the Employee belongs to

Salary of the Employee.

60 Commands, Tokens, and Validations Guide and Reference



Chapter 4: Using Tokens

These columns are defined as follows:

Table Component "Employee Table" with [EMPLOYEE] as the Token.

Column 1 - Name of Employee; Token = [NAME]

Column 2 - Years of Service; Token = [YEARS OF SERVICE]
Column 3 - Department of Employee; Token = [DEPARTMENT]
Column 4 - Salary of Employee; Token = [SALARY]

To access the table row count from a Request context:

[REQD.P.EMPLOYEE] - returns the raw row count without any
descriptive information.

[REQD.VP.EMPLOYEE] - returns the row count with descriptive
information. Example "13 Entry(s)".

WHERE: EMPLOYEE is the Token given to a table component type.

To access the Salary Column Total value from a Request context:

[REQD.T.EMPLOYEE.TC.VP.SALARY.TOTAL]

WHERE: EMPLOYEE is the Token given to a table component type and
SALARY is the Token name given the table's first column.

To access the Name of the first employee in the table from a Request:

[REQD.T.EMPLOYEE.TE="1".VP.NAME]

To access the Code of the first employee in the table from a Request:

[REQD.T.EMPLOYEE.TE="1".P.NAME]
To access the Department Cell value of the current row (Tahle Row Context):
[TE.VP.DEPARTMENT ]

It is possible to use this table component token in a Table Column Header
validation SQL or in a table component rule SQL.

Token Formats 61



Chapter 4: Using Tokens

To obtain a delimited list of a column’s contents (Request Context)

[REQD.T.EMPLOYEE.TC.VP.NAME]

where EMPLOYEE is the token given to a table component type and SALARY is
the token name given the table's first column. This is particularly useful when a
column is a list of user names, and this list can be used for sending these users
notification.

Some entities have sub-entities that can be referenced. In the Token Builder,
click the plus sign (+) next to an entity to see the list of its sub-entities. To
reference a token from a sub-entity, in the context of a parent entity, use the
syntax shown below:

[PREFIX.SUB ENTITY PREFIX.TOKEN]

In this case, the PREFIX is the name of the entity, the sUB_ENTITY prefix is the
prefix for a sub-entity, and TOKEN is a token of the sub-entity. Typically, it is
not necessary to use this syntax. However, it is possible to reference specific
sub-entities using the explicit entity syntax. For example, to reference the step
name of the workflow step in the current context, both of the following tokens
have the same meaning:

[WES.STEP NAME]
[WE.WFS.STEP NAME]

However, to reference the step name of the first workflow step for the current
workflow, use the following token:

[WE.WEFS="1".STEP_ NAME]

By not using the explicit entity format for the workflow entity, the token
indicates that the workflow in the current context should be used. But by using
the explicit entity format for the workflow step entity, the current context is
overridden and a specific workflow step is referenced. In contrast, to reference
the step name of the first workflow step in a workflow whose name is 'my
workflow', use the following token:

[(WE="<workflow name>".WFS="1".STEP NAME]

With this token, the current context for both the workflow and the workflow
step will be overridden.

62 Commands, Tokens, and Validations Guide and Reference



Chapter 4: Using Tokens

Tokens for the environments and environment application entities can have
many different forms depending on the information to be referenced. During
object type command execution, there is generally a source and a destination
environment. The token prefixes SOURCE_ENV and DEST_ENV are used to
reference the current source and destination, respectively, as shown in the
following example:

[SOURCE_ENV.DB USERNAME]
[DEST ENV.SERVER BASE PATH]

In addition, a general NV Prefix can be used in the explicit entity format to
reference specific environments, as shown in the following example:

[ENV="Prod" .CLIENT USERNAME]

During normal environment token evaluation, the evaluation engine first
evaluates the app code on the package line (if one is specified). If the
corresponding app code token has a value, then the value is used. Otherwise, if
no app code was specified or the app code token has no value, the
corresponding base environment information is used.

To override the normal environment token evaluation and only evaluate the
environment information (without first checking for the app code), construct
the SOURCE_ENV and DEST ENV tokens as shown in the following examples:

[SOURCE _ENV.ENV.DB USERNAME]
[DEST_ENV.ENV.SERVER BASE PATH]
[ENV="Prod" .ENV.CLIENT USERNAME]

The evaluation engine can be instructed to look only at the app code
information (without checking the base environment information if the app
code token has no value). Construct the sourRCE_ENV and DEST_ENV tokens as
shown in the following example:

[SOURCE ENV.APP.DB USERNAME]
[DEST ENV.APP.SERVER BASE PATH]
[ENV="Prod" .APP.CLIENT USERNAME ]

The prefix app can only be used in the sub-entity format. For example, the
following token is invalid, since a context environment that includes the app
code has not been specified.

[APP.SERVER BASE PATH]

Token Formats 63



Chapter 4: Using Tokens

In addition, the explicit entity format can be used with the app code entity to
reference a specific app code, as shown in the following examples:

[SOURCE_ENV.APP="AR".DB USERNAME]
[DEST ENV.APP="OE".SERVER BASE PATH]
[ENV="Prod" .APP="HR" .CLIENT USERNAME]

For example, suppose objects are being migrated on a package line at a given
workflow step, and the line uses app code HR. The workflow step has QA as the
source environment, and Prod as the destination environment. 7ab/e 4-2 shows
other attributes of the environments and applications.

Table 4-2. Sample environment and application attributes

QA /ga

QA OE /qaloe
QA HR /qal/hr
Prod /prod
Prod OE /prod/oe
Prod HR no value

Given this setup, 7able 4-3 shows some sample tokens and how each would
evaluate.

Table 4-3. Sample environment tokens

[SOURCE_ENV.SERVER_BASE_PATH] Iqalhr
[DEST_ENV.SERVER_BASE_PATH] Jprod
[SOURCE_ENV.ENV.SERVER _BASE_PATH] /qa
[DEST_ENV.ENV.SERVER_BASE_PATH] Jprod
[SOURCE_ENV.APP.SERVER_BASE_PATH] Iqalhr
[DEST_ENV.APP.SERVER_BASE_PATH] no value
[ENV="QA".APP="OE".SERVER_BASE_PATH] Iqaloe

. If any Mercury IT Governance Center Extensions are installed, there are more
m = Note environment tokens with the prefix ‘AC.” For information about these tokens, see the
Mercury IT Governance Center Extensions documentation.

64 Commands, Tokens, and Validations Guide and Reference



Chapter 4: Using Tokens

Using Token Builder

Some tokens can never be evaluated in the default format. In these cases, you
must use the explicit entity format to set the context, such as:

[PREFIX="<entity name>".<TOKEN NAME>]

Token Builder generates tokens in the explicit entity format by providing a list
of possible entity name values. When such a list is available, the Context Value
field at the bottom of the Token Builder is enabled. You can either type in the
field to reduce the list, or click the auto-complete icon to open the Validate

window (see ). The selected value is inserted into the
token in the Token field to generate an explicit entity token.

For example, you need to reference the email address for jsmith. The token to
specify this reference is:

[USR="9smith".EMAIL ADDRESS]

To configure the token [USR="9smith".EMATIL ADDRESS] in the Token Builder
window:

1. Log on to Mercury IT Governance Center.

2 . From the menu bar, select Administration > Open Workbench.
The Workbench opens.

3. From the shortcut bar, select Demand Mgmt > Request Types.
The Request Types Workbench opens.

4. Open a new or existing request type.
The Request Type window opens.

5. Click the Commands tab.
The Commands tab is displayed.

6. In the Commands tab, click New Cmd.
The Commands window opens.

7. In the Commands window, click Tokens.

The Token Builder window opens.

Using Token Builder 65



Chapter 4: Using Tokens

2 Token Builder
oken Context [Tokens
{77] Token Cortest Token Description

{77] Financial Benefit
{77 Organization Unit
{71 Program

{77 Resource Pacl
{77 Security Group
270 kil

{27] Staffing Profile
{27 System

{7 User

{7 Yalidation

Cortext Value: I
Token: ||]
Refresh Cloze

8. In the Token Builder window, select the User folder.

Available tokens are listed in the right pane, and the Context Value field is
available at the bottom of the Token Builder.

The Token field displays the string: [USR].
9. Click the auto-complete icon in the Context Value field.
A Validate window opens with a list of users.
10. Scroll down to and select jsmith.
11. In the Validate window, click OK.
The Token field displays the string: [USR="Fsmith"].
12. In the Tokens column, select EMAIL_ADDRESS.
The Token field displays the string: [USR="jsmith".EMAIL ADDRESS].

This is the complete token. Since the token is now complete, the Token
field becomes enabled.

13. Select the text in the Token field.
14. Copy the text in the Token field by typing ctrl + c.

15. Type ctrl + V to paste the text into another field.

66 Commands, Tokens, and Validations Guide and Reference



Chapter

Using Validations

In This Chapter:
About Validations

m]
m]
m]
m]

Validation Component Types

Accessing Validations Through Packages and Requests
Validations and Special Characters

Viewing System Validations

Configuring Validations
Configuring Static List Validations
Configuring Dynamic List Validations

m]

Configuring SQL Validations

Configuring Short List Auto-Complete Field Validations
Configuring Long List Auto-Complete Field Validations

m]

O oo g

Configuring Automatic Value Matching and Interactive Select
Pages

Adding Search Fields to Long List Auto-Complete Validations
Configuring the Filter Field Layout

Configuring an Auto-Complete List of Users (Special Case)
Configuring User-Defined Multi-Select Auto-Complete Fields

Configuring Text Field Validations

OO0 o0OoOoaoao

Text Data Masks for Validations
Configuring the Numeric Data Mask
Configuring the Currency Data Mask
Configuring the Percentage Data Mask
Configuring the Telephone Data Mask
Configuring a Custom Data Mask

67



Chapter 5: Using Validations

Configuring Directory Chooser Validations
Configuring File Chooser Validations
Configuring Date Field Validations
Configuring 1800 Character Text Areas
Configuring the Table Validations

o Configuring Table Components

o Configuring Table Rules

About Validations

Validations determine the acceptable input values for user-defined fields (such
as object type or request type fields). Validations also determine the possible
results that a workflow step can return. Validations are used for the following
two functions:

m  Field component type. Users can create fields for several entities,
including object types, request types, request header types, and user data.
Validations determine the field component type (for example, text field or
drop-down list) and define possible field values.

m  Workflow step results. Validations determine the possible results of
exiting a workflow step. For example, the validation WF - Standard
Execution Results contains the possible execution step results of
Succeeded or Failed.

Every Mercury IT Governance Center installation includes predefined system
validations. As you configure your system, you can use these system
validations. If no system validation meets your specific requirements, you can
use the Validation Workbench to create your own validation. (For details, see
Configuring Validations on page 74.)

68 Commands, Tokens, and Validations Guide and Reference



Chapter 5: Using Validations

Validation Component Types

The following table summarizes the available types of field components. You
can only use certain component types in a workflow step source validation.

Table 5-1. Component Types (page 1 of 3)

Text entry fields displayed on a single line. Text
fields can be configured to display the data
according to a certain format. For example, you
can configure a text field to accept and format a
hyphenated nine-digit social security number or a
ten-digit phone number.

Text field Yes

Max Length; I

Field that displays a list of values.
Drop Down List | Yes

Walidsted By: [S0L - Custorn ~|

Radio Buttons Field that accepts yes/no input.

No

(YeS/ NO) Expected izt lsngtty & Short ¢ Long

Field that lets you open a dialog box that lists
Auto-Complete choices.

. Yes
List
Sumimary Comdition: EE}
Text entry field that can include multiple lines.
Initial % ersion Comment:

Text Area No

Control that lets you specify date and time in one
Date Field No long, medium, short, or no format.

Start Date Fromm: I

About Validations 69



Chapter 5: Using Validations

Table 5-1. Component Types (page 2 of 3)

Text entry field for entering a URL. Clicking U
opens a browser window to the specified Web
No address.

URL: || ﬂ

Used only in object types. Requires that two fields
be defined with the following tokens: P FILE
LOCATION and P_SUB PATH. See Accessing
File Chooser No Validations Through Packages and Requests

on page 71 for configuration details.

File Mame: I ﬁl

Used only in object types. Requires that a
parameter field be defined with the token P FILE
No LOCATION.

Sub-Path: | =

Field used to locate and attach files.

Web Address
(URL)

Directory
Chooser

Attachment N o File:

70 Commands, Tokens, and Validations Guide and Reference



Chapter 5: Using Validations

Table 5-1. Component Types (page 3 of 3)

Field used to capture passwords.
Password No

Fleld Pazzword: | ﬂ

Used to enter multiple records into a single
component. The table component can be
configured to include multiple columns of varied
data types. This component supports rules for
populating elements within the table and provides
functionality for capturing column totals. For
Table No details, see Configuring the Table Validations
Component on page 120.

You can only add fields of this component type to
request types, request header types and request
user data.

Hardware Information 2 Entries HEH

Field that you can add to the request type to enable
access to view, edit or create budgets, staffing
Budget, profiles, or financial benefits associated with a

Staffing Profile, request, project, or work plan.

Financial No You can only add fields of this component type to a

Benefit request type.

Budget: Team T &llocations _%‘

Accessing Validations Through Packages and Requests

You can access the package and request group validations directly from the
Package window. To specify that a package belongs to a new or unique
package group that is not named in the auto-complete validation list, you are
not required to go through the Validation Workbench.

To access the package and request groups validation window from the Package
Workbench:

m  From the Workbench menu, select Package > New Package Group.

The Validation window opens and lists the existing Mercury Deployment
Management package groups.

About Validations 71



Chapter 5: Using Validations

Figure 5-1. Validation window

Validation : KNTA - Package and Request Groups 1 =1 E3
Matne: [KMNTA - Package and Request Groups
Description: |groupings far packages and requests
Enabled: [+ Use in Workflow? [
Componert Type: | J
alidates By: | =]
Walickstion *alues:
Seq Code Meahitg Description Enabled Detault |
TCUSTOMIZATION Customization Customization i &l
2|SETUP Setup Setup [ I
3UPGRADE Upgrade Upgrade v &l
Mew: | | | Copy From | f ‘
Used By | Dwnership | Ok | | Cancel |
Ready (Read-Orly, Seed Deta)
a Although all users can view this window, only users with the required security

= = Note privileges can change the package and request groups validation list.

To access the CRT - Request Type Category validation directly from the
Request Types Workbench:

m  From the Workbench menu, select Request Type > Request Type Category
Setup.

The Validation window opens and lists the existing request type categories.

Figure 5-2. Validation window

Validation : CRT - Request Type Category M [=] E3
name: [CRT - Request Type Catagory
Description: |This validation contains a list of categories used for arganizing Request Types
Enabled: [V Use inworkflow? [
Companert Type: | J
Validated By: | |
Walickstion *alues:
Seq Codle | Meaning | Descrigtion | Enabled ‘ Default |
1[MISCELLAMEQUS  [Miscellaneous [ v [rd |
ey | | | Copy From | f ‘
Used By | Dwnership | Ok | | Cancel |
Ready (Read-Orly, Seed Deta)

72

Commands, Tokens, and Validations Guide and Reference



Chapter 5: Using Validations

Although all users can view this window, only users with the required security

Note privileges can change the CRT - Request Type Category validation list.

You cannot enter the question mark character (?) in the validation Name field.
The Workbench prevents users from typing this character in the field.

Mercury IT Governance Center comes with several pre-configured validations.
Note that some of these validations may have been altered to better match the
specific business needs of your organization. To see a list of all validations in
your system, run the Validations report. This report provides information on
validation values and commands.

To view the existing validations on your instance:

1. Log on to Mercury IT Governance Center.

2. From the menu bar, select Reports > Create a Report.
The Reports window appears.

3. In the Report Category, select Administrative.
A list of the Administrative reports is displayed.

4. From the list of Administrative reports, select Validations Report.
The Validations Report window opens.

5. Complete the fields in the Validations Report window.

m  To view all of the special commands, leave the fields Validations From
and Validations To empty.

m  Under Report Parameters, select Yes for Show Validation Values.
m  Under Report Parameters, select Yes for Show Validation Commands.
m  Under Report Parameters, select Yes for Expand Special Commands.

6. Click Submit and wait for the report to be displayed.

About Validations 73



Chapter 5: Using Validations

Configuring Validations

You can create, edit, and delete validations using the Validations Workbench.
Be sure to exercise caution if you edit existing validations that are in use by
fields or workflow step sources. Both field and workflow step validations can
be tied to workflow logic. Changing the validation values can invalidate a
process. To create, edit, or delete a validation requires the correct access
grants. See the Security Model Guide and Reference document for more
information concerning access grants.

You cannot delete a validation if it is:

m A system validation (a validation that is delivered with the product as seed
data).

m  Currently used by a workflow step source. You can only disable
validations referenced by workflow step sources. Although a disabled
validation continues to function in existing workflow steps, you cannot use
it to define a new step source.

m  Currently used by a field in a product entity (object type, request type, user
data, report type, or project template field). You can only disable
validations referenced by entity fields. Although a disabled validation
continues to function in existing fields, you cannot use it to define a new
field.

Although you may not be able to delete a custom validation, you can disable it.
Note This allows any active workflows or product entities to use the validation, but
keeps it from being used in any new workflow or entity definitions.

To configure a new validation:
1. Log on to Mercury IT Governance Center.
2 . From the menu bar, select Administration > Open Workbench.
The Workbench opens.
3. From the shortcut bar, select Configuration > Validations.
The Validations Workbench opens.
4. Click New Validation.

The Validation window opens.

74 Commands, Tokens, and Validations Guide and Reference



Chapter 5: Using Validations

Validation : Untitled7 1 [=]
Natme: |Engingering Teams
Description: |
Enabled: [v Usze in Workflow? [
Component Type: |Autu Complete List j
validated By: [S0L - Custarn k2| Expacted list length: & f‘
Selection mode: % StartsWith O Contains Murrber of results per page: |50
Configuration ] Fitter Fields ] Filter Leyout I
olumn Headers: | BAL:
Seq | Colurnn Header | Displayed | Calurn W WS SECURITY_BROUP_ID ANDUSUSER D= ﬂ
UUSER_ID
1]hidden code [N AND SG.SECURITY_GROUP_MAME = Engineering’
Zvalue [ | and UPPER{u.username) like UPPER(?%)
and (uusername like upper(substri™?' 1,171 || %"
ar uugername like lower(substr(?, 1,100 || "%
arder by 2 j
1 | ¥
Tokens Use Bind Yariakles? [
New | | | o121 = _taens |
Used By | Dwnership | Ok | Save | Cancel |
Feady

5. Complete the fields as listed in the following table.

Name Name of the new validation.
Description A brief description of the validation.
Enabled Select checkbox to enable the

validation.

Use in Workflow

Select the checkbox to use the
validation in a workflow step source. You
can only use text field, list and
auto-complete component types within
workflow step sources.

Component Type

Select a validation type. Selecting a

value in this list dynamically updates the
Validation window to display fields used
to configure the selected validation type.

The following are the component types:
Text Field

Drop Down List

Radio Buttons

Auto Complete List

Text Area

Date Field

Web Address

File Chooser

Configuring Validations 75



Chapter 5: Using Validations

6. Enter any additional information required for the selected component type.

Additional information depends on the component type selected. Selecting
a components type dynamically changes the remaining fields. The
remainder of this chapter details how to configure the difference
component types.

7. Specify which users through security groups can edit, copy, and delete this
validation.

a. Click Ownership.
The Ownership window opens.

b. In the Ownership window, select Only groups listing below that have
the Edit Validations Access Grant.

The Add button is enabled.
¢. In the Ownership window, click Add.
The Add Security Group window opens.

d. In the Add Security Group window, add security groups to the
validation.

e. Click Apply to add a security group. Click OK to add a security group
and close the Add Security Group window.

8. Save the validation.

m  To save changes to the validation without closing the window, click
Save.

m  To save changes and close the window, click OK.

76 Commands, Tokens, and Validations Guide and Reference



Chapter 5: Using Validations

Configuring Static List Validations

A static list validation can be a drop-down or an auto-complete component.
You can create static list validations that provide a static list of options to the
user. For example, XYZ Corporation can create a validation for their
engineering teams. They create a validation called Engineering Teams,
consisting of the following values: New Product Introduction, Product One,
and Product Two.

To create a static list validation:
1. From the Workbench shortcut bar, select Configuration > Validations.
The Validations Workbench opens.
2. Open a validation.
The Validations window opens.
3. In the Component Type field, select Drop Down List or Auto Complete List.
The Validation window dynamically changes fields.
4. In the Validated By field, select List.
5. Click New and add a value.

The Add Validation Window opens.

£ Add Validation Value

“alue Infarmation ] }

Code: ”

teaning: |

Dese: |

Enable? [ Defautt. [

Ok | | Cancel |

‘Fx’eady

6. Enter information for the validation value as described in the following
table.

Configuring Static List Validations 77



Chapter 5: Using Validations

The underlying code for the validation value. The code is the value
Code stored in the database or passed to any internal functions, and is rarely
displayed.

The displayed meaning for the validation value in the drop-down list or

Meaning auto-complete.

The default value for the list. This value is initially displayed in
Default drop-down lists (this is not used for auto-completes). There can be only
one default value per list.

7. Set the validation value as the default by checking the Default field.
(Optional) The default option is only available for drop-down lists.
8. To add the value to the validation:

m  To add the value to the validation and close the Add Validation Value
window, click OK.

m  To add the value and keep the Add Validation Value window open,
click Add.

9. Click OK to save the changes to the validation and close the Validation
window.

Validation values can be re-ordered using the up and down pointers. The
sequence of the validation values determines the order that the values are
displayed in the list.

You can copy existing values defined in other validations using the Copy From
button. Click Copy From and query an existing list-validated validation and choose
any of the validation values. Click Add or OK in the Copy From window and the
selected value or values are added to the list.

Be careful when creating validations (drop-down lists and auto-complete fields) that
are validated by lists. Each time the set of values changes, you must update the
validation. Consider, instead, validating using a SQL query or PL/SQL function to
obtain the values from a database table.

]
= = Note

78 Commands, Tokens, and Validations Guide and Reference



Chapter 5: Using Validations

Configuring Dynamic List Validations

A dynamic list validation can be created using a drop-down or an
auto-complete component. You can create validations that provide a dynamic
list to the user. This is often a better approach than defining static list
validations. Each time a static list validation needs to be updated, a manual
update has to occur. Dynamic list validations can often be constructed in such a
way as to automatically pick up and display the altered values.

For example, XYZ Corporation needs a field validation that lists all users who
are on their Support Team. They could construct a validation that is validated
by a list of users, but any time the Support Team changed (members join or
leave the department) the list would have to be manually updated. XYZ
decides instead to create a dynamic list validation. They create an
auto-complete validation that is validated by a SQL statement. The SQL
statement returns all users who are a member of the Support Team security
group. When the security group membership is altered, the validation is
automatically updated with the correct values.

A dynamic list validation can be created using a drop-down or an
auto-complete component.

You can use a SQL statement to generate the values in a validation. SQL can
be used as a validation method for drop-down lists and auto-completes. To
define a dynamic list of choices, set a drop-down list or auto-completes to
Validated By - SQL. Then in the SQL field, enter the Select statement that
queries the necessary database.

Configuring Dynamic List Validations 79



Chapter 5: Using Validations

Validation : Untitled7 1 [=]
Natme: |Engingering Teams
Description: |
Enabled: [v Usze in Workflow? [
Component Type: |Autu Complete List j
validated By: [S0L - Custarn k2| Expacted list length: & f‘
Selection mode: % StartsWith O Contains Murrber of results per page: |50
Configuration ] Fitter Fields ] Filter Leyout I
olumn Headers: | BAL:
Seq | Colurnn Header | Displayed | Calurn W WS SECURITY_BROUP_ID ANDUSUSER D= ﬂ
UUSER_ID
1]hidden code [N AND SG.SECURITY_GROUP_MAME = Engineering’
Zvalue [ | and UPPER{u.username) like UPPER(?%)
and (uusername like upper(substri™?' 1,171 || %"
ar uugername like lower(substr(?, 1,100 || "%
arder by 2 j
1 | |
Tokens Use Bind Yariakles? [
New | | | o121 = _taens |
Used By | Dwnership | Ok | Save | Cancel |
Feady

If an auto-complete is being used, you can define headers for the selected
columns. These column headers are used in the window that opens when a
value from an auto-complete is selected. Click New underthe section Column
Headers. /uble 5-2 shows the fields that can be entered for a column header. If
a column header is not defined for each column in a SQL query, a default name

1s used.

Table 5-2. Column Headers

Column Header

The name of the column that is displayed in the
auto-complete window.

Display

Determines whether or not the column is displayed. The
first column is never displayed and the second column is
always displayed.

For example, XYZ Corporation creates an auto-complete field that lists all
users in the “Engineering” department. They choose to validate the list by

SQL.

SELECT U.USER ID, U.USERNAME,

U.FIRST NAME, U.LAST NAME

FROM KNTA USERS U, KNTA SECURITY GROUPS SG, KNTA USER SECURITY

us
WHERE SG.SECURITY GROUP ID
ID = U.USER ID

AND SG.SECURITY_GROUP_NAME
and UPPER (u.username) like
and

order by 2

(u.username like upper (substr('?',1,1))
or u.username like lower (substr('?',1,1))

US.SECURITY GROUP_ ID AND US.USER

'Engineering’
UPPER('?%")

80

Commands, Tokens, and Validations Guide and Reference



Chapter 5: Using Validations

After a new user account is created and added to the Engineering security
group, that user is automatically included in the auto-complete.

A validation may already exist that meets your process requirements. If it does,
consider using that validation in your process. Also consider copying and modifying
Note validations that are similar to the desired validation. See
for a complete list of validations that are delivered with the
product.

SAL Validation Tips

The following guidelines are helpful when writing a SQL statement for a
SQL-validated validation:

m  The SQL statement must query at least two columns. The first column is a
hidden value which is never displayed, and is often stored in the database
or passed to internal functions. The second column is the value that is
displayed in the field. All other columns are for information purposes and
are only displayed in the auto-complete window. Extra columns are not
displayed for drop-down lists.

m  When something is typed into an auto-complete field, the values in the
auto-complete window that appear are constrained by what was first typed
in the field. Generally, the constraint is case insensitive. This is
accomplished by writing the SQL statement to query only values that
match what was typed.

Before the auto-complete window is displayed, all question marks in the
SQL statement are replaced by the text that the user typed. In general, if the
following conditions are added to the WHERE clause in a SQL statement,
the values in the auto-complete window are constrained by what the user
typed.

where UPPER (<displayed column>) like UPPER('?%')
and (<displayed column> like upper (substr('?',1,1)) |

[ | '
or <displayed column> like lower (substr('?',1,1)) || '%

")
Any column aliases included directly in the SQL statement are not used.
The names of the columns, as displayed in auto-completes, are determined
from the section Column Headers. Drop-down lists do not have column
headers.

Configuring Dynamic List Validations 81



Chapter 5: Using Validations

Command Validations

An auto-complete can contain command line executions that return and display
a list of values. To define a dynamic list of choices, set an auto-complete to
Validated By - Command with Delimited Output or Command with Fixed
Width Output. Then enter commands the Commands section. See Configuring
the Auto-Complete Values on page 94 for detailed instructions.

Figure 5-3. Auto-complete using command validation

Validation : Untitleds 1 [=]
Mame: |
Description: |
Enahled: [+ Use inWorkflow? [
Compaonent Type: |Aum Complete List j
walidated By: [Command With Delimited Output _~ | Expected list length; = Shart " Long
Selection mode: % StartsWith O Containg Murrber of results per page: |50
configuration | | |
alunn Headers: > Cormmanch rCommand Steps—
Seq1|h?c:umn Hzader |ND|SpIayed | coumnn, | command condition
2| " en cade IY | = st_get_version_
[ralue ksc_capture_oul
4 K
{ . O deail| =al|  New:
New | | lel@i el | ]
Used By | Owvnership | Ok | Save | Cancel |

heady

Configuring Short List Auto-Complete Field Validations

Auto-complete fields are used throughout the Mercury IT Governance Center
to provide users with an efficient way to select field values from a set of valid
choices. Auto-complete fields can be used for validations with a small or large
number of choices. The auto-complete can be configured to behave differently
depending on the expected number of values. For example, if you expect a
large number of entries, the auto-complete window includes an interface that
lets you page through your results. You can configure how the auto-complete
feature for the field behaves. For example, you can configure the field to
automatically complete entries that either start with or contain a text string.

Auto-complete fields configured to display a short list of entries, displaying all
of the values on a single page. /igure 5-4 shows the Select window for a short
list auto-complete field.

82

Commands, Tokens, and Validations Guide and Reference



Chapter 5: Using Validations

Figure 5-4. Short list auto-complete

-2 Select Primary Organization Unit - Microsoft Internet Explorer g@g|
Primary Organization Unit starts with: %
Page: 1 Showing 1-6 of 6

Click a value to select
walue

Architecture Maintenance
Dev

Information Enginesrs
Operations

Primary Info Systems
Tech Faciltstors

Cloge Window [

To configure a short list auto-complete field:
1. From the Workbench shortcut bar, select Configuration > Validations.
The Validations Workbench opens.
2. Create a new validation or open an existing validation.
The Validation window opens.
3. From the Component Type field, sclect Auto Complete List.
4. In the Expected list length ficld, select Short.

5. Click Save.

Auto-completes configured as short lists load all values when the window is
opened. This can lead to a slower load time and an unfavorable user experience.
For fields with many possible values, consider formatting the auto-complete using
the long list format.

Note

Configuring Short List Auto-Complete Field Validations 83



Chapter 5: Using Validations

Configuring Long List Auto-Complete Field Validations

Auto-complete fields are used throughout the Mercury IT Governance Center
to provide users with an efficient way to select field values from a set of valid
choices. Auto-complete fields can be used for validations with a small or large
number of choices. The auto-complete can be configured to behave differently
depending on the expected number of values. For example, if you expect a
large number of entries, the auto-complete window includes an interface that
lets you page through your results. You can configure how the auto-complete
feature for the field behaves. For example, you can configure the field to
automatically complete entries that either start with or contain a text string.

Auto-complete fields configured to display a long list of entries, dividing the
results between multiple pages. By default, 50 results are shown per page. End
users can page through the results or further limit the results by specifying text
in one of the available filter fields at the top of the page. shows the
Select window for a long list auto-complete field.

Figure 5-5. Long list auto-complete

<2 Select Project Manager: - Microsoft Internet Explorer

Project Manager:

First Hame: Last Hame: gﬁnd

Page: 1 2 |[®| Showing 1-50 of 59

Click a value to select b

Full Hame Username Department Email

=Suthor Mot Known= author_unknoswn

Acdmin Lzer admin

Belinda Molan helindanalan belindanolan@company.com

Betty Molan bettyniolsn bettynolsn@company .com

Bill Malan billnalan bilnolan@companty .com

Buokr Brown hbrown bbrownig@mercury ] .com

Bk Fell bfel

Bob Malan bobnolan bobnolan@companty . com

Bob Waite brveaite

Buok Wong brwvoni bracongihy corps.com

Brad Malan bradnolan bradnolan@@company com

Bret Wans bweans brrans@hycorpa.com

Chriz Brown chrown chroweniEmercury ] .com

Dawid Ellis delli= delliz@metcury .com

Denise Newel dnewvel

Eric: Blunk ehlunk eblurk@hycorpa.com

Fred Bieka Thieko 1=

Fredrick Schmict tschmict fschmick@mercury! .com

Hanz Lopez hlopez hlopezi@hycorpa com

ITG Service ity _service

Jane Smith jasmith jasmithE@mercury ] com

Jane Stmith janesmith janesmith@company com

Janet Ortez jortez jortez@mercury .com

Jason Camper jcamper jeamper@@mercury ] .com

Jeremiah Smith ig=mith iesmith@mercury! .com b
Cloze Window [

84 Commands, Tokens, and Validations Guide and Reference



Chapter 5: Using Validations

Note

To configure a long list auto-complete field:
1. From the Workbench shortcut bar, select Configuration > Validations.
The Validations Workbench opens.
2. Open a validation.
The Validations window opens.
3. Create a new validation or open an existing validation.
The Validation window opens.
4. In the Component Type field, select Auto Complete List.
5. In the Expected list length field, select Long.

6. Click Save.

Auto-completes configured as long lists only load a limited set of values when
the window is opened. For extremely long lists or lists that are at risk of loading
slowly (for example the values are obtained from an alternate database),
consider using the long list format.

All auto-completes that are validated by SQL - User must use the long list
auto-complete format. This selection is automatically defaulted when the user
selects SQL - User in the Validated By list in the Validation window.

This section provides instructions for configuring auto-complete fields to filter
a list of possible values based on a matching character string. It also provides
instructions for configuring the automatic value-limiting that occurs on the
auto-complete’s Select page. shows an auto-complete field that has
opened to display matching values.

Configuring Long List Auto-Complete Field Validations 85



Chapter 5: Using Validations

Figure 5-6. Auto-complete field and matching values on the Select page

-2 Select Project Manager: - Microsoft Internet Explorer

1 o

Page: 4| 1 & | Showing1-TofT

Project M

First Hame:

Click a value to select

Full Hame Username Department Ernail

Janet Ortez
Joe Smith
John Smith
John Smith
John Wang
Jose Oreda
Jose Smith

jortez
joesmith
jozmith
johnsmith
Jevani
jorteda
josesmith

jortez@mercuryt com

josmithiE@mercury .com
johrsmithE@company.com
PreangE@mercuryl .com
jortegaE@mercury .com
josesmithE@company.com

Cloze Window [

An Overview of Maltching for “Starts with” or “Contains”
Auto-complete field behavior can be divided into the following areas:

m  Field behavior. A user types a character in the field and type the Tab key.
If an exact match is not available, the Select page opens.

m  Select page behavior. For lists that are configured appropriately, when a
user types a character or characters into the field at the top of the page, the
results are automatically limited to display only matching entries.

For both the field and Select page behaviors, automatic value matching can be
based on either “starts with” character matching or “contains” character
matching. The following table summarizes this behavior:

Table 5-3. Automatic character matching field behavior

Type characters and then type the Tab key. The selection

Starts with window opens and lists entries that begin with the specified
characters.
Type characters, and then type the Tab key. The selection
window opens and lists entries that contain the specified
Contains character string. This is the same behavior as a wild card

search, which uses the% character at the beginning of the
search text.

86 Commands, Tokens, and Validations Guide and Reference



Chapter 5: Using Validations

]
m m Note

Table 5-4. Automatic character matching Select page behavior

. Type characters and the list is automatically filtered for entries
Starts with o
that begin with those characters.

Type characters and the list is automatically filtered for entries

Contains that contain the character string.

To configure “starts with” matching from the auto-complete window to the
selection window, add the following to the SQL WHERE clause:

?%
v
v

UPPER (value) like UPPER (
upper (substr('?',1,1))

| or value like
lower (substr('?',1,1)) |

)

) and (value like
A}
A

o° oo =

L}
|
|

To configure “contains” matching from the auto-complete window to the
selection window, add the following to the SQL WHERE clause:

UPPER (value) like UPPER ('
upper (substr ('?',1,1)) ||
lower (substr ('?2',1,1)) ||

52

L}
\l

) and (value like '%' ||

A}
' or value like '%' ||
A}

o o o

)

To configure “starts with” matching within the interactive selection window:
1. Open the auto-complete Validation window.
2. From the Expected list length ficld, select Short.
This feature is only available for short lists.
3. From the Selection option, select Starts With.

4. Save the validation.

This setting only controls the matching on the Select page. Matching in the
auto-complete field is controlled by including specific clauses in the
auto-complete's SQL. See above for details.

Configuring Long List Auto-Complete Field Validations 87



Chapter 5: Using Validations

To configure “contains” matching within the interactive selection window:
1. From the Workbench shortcut bar, select Configuration > Validations.
The Validations Workbench opens.
2. Open the auto-complete Validation.
The Validation window opens.
3. From the Expected list length ficld, select Short.
This feature is only available for short lists.
4. From the Selection option, select Contains.

5. Save the validation.

This setting only controls the matching on the Select page. Matching in the
Note auto-complete field is controlled by including specific clauses in the
auto-complete's SQL. See above for details.

Configuration Tips

Consider the following tips when configuring the “starts with” versus
“contains” functionality for auto-complete fields and the Select page.

m  Auto-completes should be configured such that the field matching behavior
works the same way as the Select page matching behavior. Specifically, if
the auto-complete field uses the STARTING WITH clauses in the SQL,
then the selection window should use the “Starts With” Selection Mode.

m  Consider using the “Contains” Selection Mode for fields with multi-word
values. For example, consider the possible values for the request type
auto-complete field:

Development Bug
Development Enhancement
Development Issue
Development Change Request
IS Bug

IS Enhancement

IS Issue

IS Change Request

Support Issue

Support Change Request

Using “contains” can be useful here. The user knows that he needs to log a
bug against one of the IS-supported Financial applications. The user types

88 Commands, Tokens, and Validations Guide and Reference



Chapter 5: Using Validations

“bug” into the auto-complete field and types the Tab key. The following
items are returned:

Development Bug
IS Bug

The user selects “IS Bug.” Without the “contains” feature enabled, typing
“bug” would have returned the entire list. He might have also typed
“Financial,” thinking that there might be a separate request type used for
each type of supported application. This, too, would have returned the
entire list. At that point, the user would be forced to try another “starts
with” phrase or simply read the entire (potentially long) list.

Adding Search Fields to Long List Auto-Complete Validations

Auto-completes with a long list of values can be configured to display
additional filter fields in the Select window. These fields can be used to search
other properties than the primary values in the list. Users can enter values in
the filter fields, and then click Find to display only the values that match the
search criteria. Figure 5-7 shows the Select window with additional filter

fields.
Figure 5-7. Filter fields in the auto-complete select window
2} Select Assigned To: - Microsoft Internet Explorer

Assigned To: I:I Department:

Page: “| 1 | Showing 1-50 of 50

Click a value to select e

Full Hame Username Department Email

Acimin Lzer acdmin

Belinda Molan belindanolan belindanolani@company .com

Betty Molan bettynolan bettynolsn@company .com

Bill Malan billnolan billnalanE@company .com

Bob Brown bbrown bbrown@mercuryl .com

Bk Fell bfell

Bob Malan bobnalan bobnolaniE@companty .com

Bob Waite brnsite

Buok Wong Irwongy brwvongi@Ehycorps.com

Brad Malan bradnolan bradnolanEcompany . com o
Cloze Window [

0 Filter fields can not be configured when validating your list by List, Command With
= = Note Delimited Output, or Command With Fixed Width Output.

Configuring Long List Auto-Complete Field Validations 89



Chapter 5: Using Validations

To add a filter field to the auto-complete validation:
1. From the Workbench shortcut bar, select Configuration > Validations.
The Validations Workbench opens.
2. Open the validation for the auto-complete.

Auto-complete validations must display Auto Complete List in the
Component Type field.

3. In the Expected list length field, select Long.

Only long formatted auto-completes can include filter fields.
4. Click the Filter Fields tab.
5. Click New.

The Field: New window opens.

£ Field: New

Field Prompt: | Token: |
Procct: | | Description: |
Component Type: | J
Waliation I Default Yalue: |
MEswy Enabled: % Yes " Mo
Display: * Yes " Na
Display Only:  Yes & ho
When the auto-complete user chooses a value tor this field, append toWhere Clause:
Wiew Full Query Ok Add | Cancel
I|Ready

6. Enter the required information.

Table 5-5 defines all of the controls in this window.

90 Commands, Tokens, and Validations Guide and Reference



Chapter 5: Using Validations

Table 5-5. Fields in the Fields: New window

The name that is displayed for the field in the auto-complete Select

Field Prompt window.

Product The Mercury IT Governance Center product the field is used by.
The validation for the filter field. You can select any type of
validation, except for auto-complete type validations.

Validation The values accepted by this validation are appended to the
WHERE clause in the SQL query that determines the ultimate
auto-complete display.

Opens the Validation window where you can construct a new

New validation for the filter field. Note that you can not use an
auto-complete type validation for the filter field.

Open Opens the Validation window and displays the definition of the

P validation specified in the Validation field.
The token for the field value. The token value is appended to the

Token WHERE clause in the SQL query that determines the ultimate
auto-complete display.

Description The description of the filter field.

_(I?;Fr)r;ponent The component type for the filter field, determined by its validation.

Default Value

The default value for the filter field, determined by its validation.

auto-complet
e user

Enabled Determines whether the filter field is enabled.
. Determines whether the filter field is visible to the user in the
Display , .
auto-complete’s Select window.
Display Onl Determines whether the filter field is updatable. When Display
play Unly Only is set to Yes, the field can not be updated.
The AND clause that is appended to the portlet's WHERE clause if
When the the user enters a value in this filter field. Each filter field appends its

term to the portlet query if the user enters a value in the Select
window.

chooses a , For example, if the filter field uses the CRT-Priority-Enabled
value for this |\ 3i4ation and a filter field token of P_PRIORITY, enter the following
field, append | . 4o &1
in this field:
to WHERE
clause: AND R.PRIORITY CODE = '[P.P PRIORITY]'
Note: The value in this field must start with 'AND.’
View Full . .
Query Opens a window that displays the full query.

Configuring Long List Auto-Complete Field Validations 91



Chapter 5: Using Validations

7. Click OK.

Filter fields offer users a powerful way to efficiently locate specific values in
large lists. As you add filter fields to an auto-complete validation, consider the
following:

m Ensure that the filter fields are functionally related to the listed values. For
example, a validation that provides a list of request types can include a filter
field for a specific Department associated with the request types.

Note m Consider reusing (copying) an auto-complete validation and modifying the
filter fields to display a subset of the list. Use the Displayed, Display Only,
and Default fields in the Filter Field window, to configure the auto-complete
values to automatically limit the results.

m Performance can degrade if you join tables over database links.
Use this functionality only for complex fields.

To modify the filter field layout:
1. From the Workbench shortcut bar, select Configuration > Validations.
The Validations Workbench opens.

2. Open the auto-complete validation that includes filter fields on the Filter
Fields tab.

3. Click the Filter Layout tab.

The tab lists the primary field and all of the filter fields that have been
defined for the auto-complete. The primary field is named Field Value. This
is the field that holds the eventual selected value.

92 Commands, Tokens, and Validations Guide and Reference



Chapter 5: Using Validations

Validation : KNTA - User Names - Enabled 19 [=] F3
Natme: [KMTA - User Names - Enabled
Descrigtion: |[KMNTA - User Names - Enabled

Enabled: [+ Usze in Workflow? [
Componert Type: | J
“alidated By: | J Expected list length: ¢ +
Selection mods: o Murrber of results per page: |50
Configuration ] Fitter Fiels  Fitter Layout
LI Field Yalue -
LI First Narme: LI Last Mame
= hd
Field Width Component Lines Move Field 4| 4| 4= |= r
Previguy
Uszed By | Duwenership | (o34 | | Cancel |

Reatty (Read-Orly, Seed Data)

4. Select the field that you would like to move.

To select more than one field, type the shift key while selecting a range.
It is only possible to select a continuous set of fields (multiple selection
using ctrl key is not supported).

5. Use the arrow pointers to move the fields to the desired location in the
layout builder.

A field or a set of fields cannot be moved to an area where other fields already
Note exist. The other field(s) must be moved out of the way first.
6. To switch the positions of two fields:
a. Select the first field, and then and select the Swap Mode option.
An S is displayed in the checkbox area of the selected field.
b. Double-click the second field that you want to reposition.
The two fields switch positions and the Swap Mode option is cleared.
7. To preview the layout, click Preview.

A window opens and shows the fields as they are to be displayed.

Rows with no fields are ignored. They are not displayed as blank lines.

Note Hidden fields are treated the same as blank fields, and do not affect the layout.

Configuring Long List Auto-Complete Field Validations 93



Chapter 5: Using Validations

User auto-completes or validations (Validated by: SQL-User) have the
following three default filter fields:

m  Primary field - this field takes the name of the auto-complete field
m  First name

m Last name

The user auto-complete always appears in the long list format, which uses the
paging interface to display the items. Additionally, user auto-completes
display a different icon.

To configure a user auto-complete validation:
1. From the Workbench shortcut bar, select Configuration > Validations.
The Validations Workbench opens.
2. Create a new validation.
The Validation window opens.
3. From the Component Type field, select Auto Complete List.
4. From the Validated By field, select SQL - User.

5. Configure the SQL query that is to determine the users listed in the
validation.

See for details.

6. Click Save.

Configuring the Auto-Complete Values

The values in an auto-complete can be specified in the following ways. In the
Validate By field, select one of the following:

m  List. Used to enter specific values.
m  SQL. Uses a SQL statement to build the contents of the list.

m  SQL - User. Identical to SQL configuration, but includes a few additional
preconfigured filter fields.

m  Command With Delimited Output. Uses a system command to produce a
character-delimited text string and uses the results to define the list.

94 Commands, Tokens, and Validations Guide and Reference



Chapter 5: Using Validations

m  Command With Fixed Width Output. Uses a system command to
produce a text file and parses the result on the basis of the width of
columns, as well as the headers.

Figure 5-8. Auto-Complete List

Validation : Untitled9 1 [=]
Parne: |
Description: |
Enakled: |+ Use in Workflow? [
Compaonent Type: |Aum Complete List j

‘alidated By: fi8 Expected list length: & Short © Long

izl e Nurmber of resutts per page: |50
Configuration Command With Delimited Qutput

Command With Fied Width Qutput

olutin Headds o) - User &L
Seq | Column Header | Displayed | Calurnn ¥

1|hidden code [N

value [r |
q ;O

Tokens Use Bind Yariables? [

New | | | o121 = _toers |

Used By | Owvnership | Ok | Save | Cancel |

heady

For more information on creating auto-completes validated by List or SQL, see
Configuring Static List Validations on page 77 and Configuring Dynamic List
Validations on page 79.

Configuring Validations hy Commands With Delimited Output

Validations that are validated by commands with delimited output can be used
to get data from an alternate source, and use that data to populate an
auto-complete. This functionality provides additional flexibility when
designing auto-completes.

Many enterprises need to use alternate sources of data within their
applications. Examples of these sources are a flat file, an alternate database
source, or output from a command line execution. Special commands may be
used in conjunction with these alternate data sources, in the context of a
validation, to provide a list of values.

Configuring Long List Auto-Complete Field Validations 95



Chapter 5: Using Validations

To configure a validation by command with delimited output:

1. In the Validation Workbench, under Validated By, choose Command With
Delimited Output, and then enter the delimiting character.

2. Under New Command, enter the command steps.

These can include Mercury IT Governance Center special commands.
Include the special command ksc_capture output, which captures and
parses the delimited command output. If you place the ksc capture
output special command between the ksc_connect and ksc_disconnect
commands, the command is run on the remote system. Otherwise, the
command is run locally on the Mercury IT Governance Server (like ksc_
local_exec)

The following simple example uses a comma as the delimiter and includes the
validation values red, blue and green. The script places the validations into the
newfile.txt file, and then uses the special command ksc capture output
to process the text in the file.

ksc_begin script[AS.PKG _TRANSFER PATH]newfile.txt

red, red

blue,blue

green,green

ksc_end script

ksc_capture output cat[AS.PKG TRANSFER PATH]newfile.txt

Table 5-6 shows the Validation window for Command with Delimited Output.

Figure 5-9. Validation by command with delimited output

Validation : Untitleds i |=]
Iarne: |
Description: |
Enabled: [+ Lise in'Workflow? [
Component Type: |Autu Complete List ﬂ
walidated By: [Command With Delimited Output  ~ | Expected list length: @ Shot ( Long
Selection mode: * Startz With  © Contains Murrber of results per page: |50
Configuration ] ] I
olutnin Headers: > Cormmat FCommmand Steps—
Seqy | Fiolumn Header | Displayed | Colurin W J Command Condition
;Ic;?ﬁ:n tode I:,J | = Sc_get_version_
ksc_capture_oul
1 21K
1] | d dJeal| =a Mew 1
wew | | (I [ | i
Uszed By | Dvwenership | OH | Save | Cancel |
Feady

96 Commands, Tokens, and Validations Guide and Reference



Chapter 5: Using Validations

Table 5-6. Validation by command with delimited output

Field where new commands can be added to capture validation
Commands

values.
Data Indicates the character or key by which the file is separated into the
Delimiter validation columns.

You can also define headers for the selected columns. These column headers
are used in the window that opens when a value is selected from an
auto-complete. To define a new header, click New in the Column Header
section. 7able 5-7 shows the fields that can be entered for a column header. If a
column header is not defined for each column in a command, a default name is
used.

Table 5-7. Column headers

Column
Header

The name of the column that is displayed in the auto-complete window.

Display | Determines whether the header is displayed in the validation.

Configuring Validations by Commands with Fixed Width Output

Validations by Command with Fixed Width Output can be used to obtain data
from an alternate source, and use that data to populate an auto-complete. This
functionality provides additional flexibility when designing auto-completes.

Many enterprises need alternate data sources within their applications.
Example sources are a flat file, an alternate database source, or output from a
command-line execution. You can use special commands together with these
alternate data sources, in the context of a validation, to provide a list of values
on the fly.

In the Validation Workbench, under Validated By, choose Command With Fixed
Width Output and enter the width information. Then, under New Command,
type the command steps. These can include special commands. Include the
special command ksc_capture output in you commands. This command
captures and parses the delimited command output. If you place the ksc_
capture output between ksc_connect and ksc disconnect, the command

Configuring Long List Auto-Complete Field Validations 97



Chapter 5: Using Validations

is run on the remote system. Otherwise, it is run locally on the Mercury IT
Governance Server (as ksc_local exec 1s).

The following example includes the validations red, blue and green. The
column width is set to 6. The script places the validations into the

newfile.txt file.

ksc_begin script[AS.PKG TRANSFER PATH]newfile.txt

red red

blue blue
green green
ksc_end script

ksc capture output cat[AS.PKG TRANSFER PATH]newfile.txt

Figure 5-10. Validation by command with fixed width output

Validation : Untitledd

S [=] 3

Parne: |

Description: |

Enakled: |+

Use in Workflow? [

Companent Type: |Aum Complete List

“alidated By: |C|3rr|rnand With Fixed Width Outputj

Selection mode: * Starts With  © Containg

Configuration l Fitter Fields | Fiter Layout

Expected list length:  © Short  © Lang

Mumber of resuts per page: |50

olutnin Headlers: > FCommanc FCommand Steps—
Saq1 h%n[;umn Hzader ND\sp\ayed Colutan v | GO ‘ Candition | Desc
idden code - -
ksc_hegin_scri
Zvalue i =] execute | | _hedin_setip
3jred u
4/blus i 1] | K
Sgreen u
1] i aha)| =an |
e 1l | (IEYF 41054 ) K — ﬂ
Uszed By | Duwenership | (o34 | Save | Cancel |

Feady

Table 5-8. Validation by command with fixed width output

Commands

Field where new commands can be added to capture validation
values.

Headers can also be defined for the columns selected. These column headers
are used in the window that opens when a value is selected from an
auto-complete. To define a new column header, click New in the Column
Header section. /uzh/e 5-9 shows the fields can be entered for a column header.
If a column header is not defined for each column in a command, a default

name is used.

98

Commands, Tokens, and Validations Guide and Reference



Chapter 5: Using Validations

Table 5-9. Column headers

Column The name of the column that is displayed in the auto-complete.
Header
Displa Whether or not the column is displayed. The first column is never
play displayed and the second column is always displayed.
Column Width The number of characters in each column of the output generated
as a result of the command.

Configuring User-Defined Multi-Select Auto-Complete Fields

A number of auto-completes in the Workbench have been pre-configured to
allow users to open a separate window for selecting multiple values from a list.
Users can also define custom auto-completes to have multi-select capability
when creating various product entities.

The user-defined multi-select capability is supported for:

m  User data fields

m  Report type fields

m  Request type fields

m  Project template fields

The user-defined Multi-Select capability is not supported for:

m  Request header types

m  Object types

In order to use this feature when creating a new entity, users must:

m  Select a validation for the new entity that has Auto-Complete List as the
Component Type. This enables the Multi-Select Enabled field in the Field:
New window.

m In the Field: New window, users must click Yes for the Multi-Select
Enabled option.

The step-by-step procedure for defining multi-select capability in user data,
report type, request type, or project template fields is very similar. The
procedure for enabling this capability for request type field is shown below as
an example.

Configuring Long List Auto-Complete Field Validations 99



Chapter 5: Using Validations

To define a multi-select auto-complete for a request type:
1. From the Workbench shortcut bar, select Demand Mgmt > Request Types.
The Request Types Workbench opens.
2. Open a Request Type.
The Request Type window opens.
3. Click New.

The Field: New window opens.

< Field: New
Field Prompt: | Token:
Description: |
Enabled: (% Yes " Mo
R n i it Type:
Validation I:RT - Assigned Group - All A S J
ks Cy
MNew [ open| Mult-Select Enabled:  Yes & o
Adtributes ] Default I Storage] Security 1
Section Mame : | J Display Only: ¢ Yes & hao
Transaction History: © Yes (* Mo Motes History: © Yes & hao
Display on Search and Fiter: % Yes " Mo Display: ™ Yes " Mo
Search Yalidation
Copy From... OK Add | Cancel |

I|Readv

4. Select a validation of type Auto-Complete List from the Validation field.
The Multi-Select Enabled option is enabled.
5. To the right of Multi-Select Enabled, click Yes.

The Possible Conflicts window opens and displays a warning not to use a
multi-select auto-complete for advanced queries, workflow transitions and
reports. If this field is not to be used in advanced queries, workflow
transitions or reports, click Yes.

6. Configure any other optional settings for the new request type.
7. Click OK.

The field is now enabled for multi-select auto-complete.

100 Commands, Tokens, and Validations Guide and Reference



Chapter 5: Using Validations

Example of Token Evaluation and Validation by Command with Delimited

Output

The validation functionality can be extended to include field-dependent token
evaluation. You can configure validations to change dynamically, depending
on the client-side value entered in another field.

To use field dependent token evaluation, you must configure a validation in
conjunction with an object type, request type, report type, project template, or
user data definition. Consider the following example of how to set up an object
type using field-dependent tokens.

1. Generate a validation and set the following parameters as shown here:
a. Name: demo_client_token_parsing
b. Component Type: Auto Complete List
c. Validated By: Command With Delimited Output
d. Data Delimiter: | (bar)
e. Command
m  Command: Validate_from_file
m Steps

ksc _connect source server SOURCE ENV="Your Env"
ksc _capture output cat [P.P FILENAME]
ksc_exit

Validation : demo_client_token_parsing M =]

Marme: |demoftlienUukenfparS\ng

Description: |

Enablect |+ Use in Workflow? [
Cotnponent Type: |Auto Complete List j
Validated By: |Command WWith Delimited Output j Expected list length: % Short ¢ Long
Selection mode: (% StartsWith  © Cortains Number of resuts per page: |50
Configuration 1 ] ]
(Colurnn Headers: - ~Commands ———————— || -Command Steps
Seq || F:olumn Header || Displayed | Colutnt ¥ command Command
gl::;?j;n code |$ | = validate_from_file ksc_connect_source_server SC
ksi_capture_output cat [P.P_FIL
ksc_exit
4 | M
4 K
vew | | |28 | i
dhal| =21 mew cm
Data Delimter: || 'Z 1] | N
Used By ‘ Cwnership | oK | | Cancel‘

"Save" Successul.

Configuring Long List Auto-Complete Field Validations 101



Chapter 5: Using Validations

When called, this validation connects to an environment called “Your Env”
and retrieves data from a file specified by the token P FrLENAME. The file
resides in the directory specified in the Base Path in the Environment
window.

2. Generate an object type named token parsing demo.

Object Type : token_parsing_demo 1 [=] E3

Ohject Type Mame: |1Dken_paramg_demﬂ
Description: |
Extension: | | Obiect Name Column: [PARAMETER |

Ohject Categary: |Cuatnm Objects j Ohject Revision Calumn: | j

Meta Layer View: [MPKGL_ |TOKEN_PARSING_DEMO
Enabled: * es { Mo
Figlis l Layaut I Commands] I Ownership ]

Prompt | Token | Parameter Col | Displayed| Cornponert Type | Walidation |Requwre
autoco [P_AUTOC [PARAMETERZ | v |Auto Complete List  |demo_client_token_parsing |
Filename|P_FILEMA. [PARAMETER1 | v [TedField [TextField- 40 [

. | 2
Py | |
K ‘
|"Sava" Successful.

a. Generate a new field with the following parameter settings:
m  Name: Filename
m Token: P FILENAME
m  Validation: Text Field - 40

b. Generate a new field with the following parameter settings:
m  Name: AutoComp
m  Token: p AuTOCOMP

m  Validation: demo client token parsing (the validation defined
in step 2)

102 Commands, Tokens, and Validations Guide and Reference



Chapter 5: Using Validations

3.

For this example to return any values in the auto-complete, a file must be
generated in the directory specified in the Base Path in the Environment
Detail of “Your Env” environment. Generate a file named parse
testl.txt that contains the following delimited data:

DELIMITED TEXTI1|Parameter
DELIMITED TEXT2|Parameter
DELIMITED:TEXT3 | Parameter
DELIMITED TEXT4|Parameter

SN

The object type token parsing demo can now use this token evaluation.

To test the configuration sample:

1.

From the Workbench shortcut bar, select Deploy Mgmt > Packages.

The Packages Workbench opens.

. Open a new package.

In the Package window, select a workflow, and click Add Line.
The Add Line window opens.

In the Object Type field, sclect token_parsing_demao.

The Filename and AutoComp fields are displayed:

In the Filename field, type parse testl.txt.

In the AutoComp field, select parse_test1.txt.

Configuring Long List Auto-Complete Field Validations 103



Chapter 5: Using Validations

%\“_E

rohiect Type Information
BB & yalidate
Sequ|
Autocamp starts with H
Paramel
value e
Filenam:
Autocomgl |Parameter 2
Parameter 3
Parameter 4
g | U]
Cancel
Fetumed 4 choices.
Claar | ok | s | cancel |
|‘t0ken_parsing_demu'parametersIoaded.

Configuring Text Field Validations

Text fields displayed on a single line. Text fields can be configured to display
the data according to a certain format. For example, you can configure a text
field to accept and format a ten-digit telephone number or display a specific
number of decimal places for a percentage.

To create a text field validation:
1. From the Workbench shortcut bar, select Configuration > Validations.
The Validations Workbench opens.
2. Open a validation.
The Validations window opens.
3. In the Name field, type the validation name.
4. In the Component Type field, select Text Field.

5. In the Data Mask field, select the data mask that represents the format you
want for the field data.

For more information, see 7ext Data Masks for Validations on page 105.

104 Commands, Tokens, and Validations Guide and Reference



Chapter 5: Using Validations

6. (Optional) Configure the selected data mask.

For information about a data mask, see 7ext Data Masks for Validations
on page 105.

7. To view the results of your data mask settings:

a. In the Sample Input field, enter a value to preview based on your

settings.

b. Click Format.

The Formatted Output window displays the results.

8. Click OK.

Text Data Masks for Validations

Mercury IT Governance Center includes a number of preconfigured data
masks that can be used when creating text field validations. Each of these data
masks can be configured to meet your specific data requirements. 7able 5-10
defines the data masks delivered with Mercury IT Governance Center.

Table 5-10. Data Mask Formats (page 1 of 2)

Alphanumeric

Field allows all alphanumeric characters. You can specify the
maximum field length for fields using this validation.

Alphanumeric
Uppercase

Field allows alphanumeric characters and formats all characters as
uppercase text. You can specify the maximum field length for fields
using this validation.

Numeric

Field allows only numeric characters. You can specify the following
characteristics for this data mask:

m Range of values (maximum and minimum) that the field accepts
m Whether to display a zero if the field contains no data

m Whether to use a group separator such as a comma to display
large numbers

= Negative number format
»  Maximum number of decimal places

For more detailed information, see Configuring the Numeric Data
Mask on page 107.

Configuring Text Field Validations 105



Chapter 5: Using Validations

Table 5-10. Data Mask Formats (page 2 of 2)

Field is used to display currency data and accepts only numeric
characters. You can specify the following characteristics for this
data mask:

m Range of valid values (maximum and minimum) for the field
m Whether a zero is displayed if no data is entered

Currency m Whether a group separator such as a comma is used to display
large numbers

= Negative number display
m Number of decimal places

For more detailed information, see Configuring the Currency Data
Mask on page 108.

Field is used to display percentages and accepts only numeric
characters. You can specify the following characteristics for this
data mask:

Range of valid values (maximum and minimum) for the field
Whether a zero is displayed if no data is entered

Percentage m Whether a group separator such as a comma is used to display
large numbers

= Negative number display
» Number of decimal places

For more detailed information, see Configuring the Percentage
Data Mask on page 111.

Field is used to display telephone numbers and accepts only
numeric characters. You can specify the following characteristics
for this data mask:

m Format - specify the number of digits included, and the delimiter
to be used between groups of numbers. For example, you can
specify dashes (-) or periods (.) between numbers
(555-555-5555 or 555.555.5555).

m Maximum and minimum number of digits

For more detailed information, see Configuring the Telephone Data
Mask on page 112.

Telephone

Field allows a range of custom inputs. You can customize the field
to accept digits, letters, spaces, and custom delimiters. For more
detailed information, see Configuring a Custom Data Mask

on page 114.

Custom

106 Commands, Tokens, and Validations Guide and Reference



Chapter 5: Using Validations

Configuring the Numeric Data Mask

The numeric data mask allows only numeric characters. When creating a

validation using this data mask, you can specify the following field
characteristics:

Range of values (maximum and minimum) accepted
Whether to display a zero if the field contains no data

Whether to use a group separator such as a comma to display large
numbers

Negative number format

Maximum number of decimal places accepted

Figure 5-11 shows the fields that you can configure for this data mask.
Table 5-11 provides descriptions of these configurable fields.

Figure 5-11. Validation window for the numeric data mask

Validation : Untitled5 =]
Iarne: |
Description: |
Enahled: [+ Use inWorkflow? [
Companent Type: |Tex‘t Field ﬂ
Data Mask: |Numeric j
Maximum alue: | 39389 Sample Input:
Miriirnutn % Slue: |-9999 4500022
If Data not Enterad, then display & zera: 5 Yes Mo "
Use Group Separator (* Yes R
Formatted Output:
Megative Mumber looks like: |—1 oo j 2
Mutrbet ot Decimzl Places: |2 G500
Uszed By | Dvwenership OH | Save | Cancel |

Feady

Configuring Text Field Validations

107



Chapter 5: Using Validations

Table 5-11. Fields for configuring the numeric data mask for text fields

Maximum Value

Largest value allowed for this field. You can specify a positive
or negative number.

Minimum Value

Smallest accepted value for the field. You can specify positive
or negative number.

If Data not Entered,
then display a zero

Determines whether a field with no data displays a zero.

Use Group
Separator

Determines if the field uses a group separator (such as a
comma) to divide characters within large numbers (for
example, whether 1000000 is displayed as 1,000,000). The
default character used as the separator depends on the
locale setting for the machine, but you can use the Regional
Settings window in the Workbench (select Edit > Regional
Settings) to change the delimiter.

Negative Number
looks like

Used to select one of the following four formats for the display
of negative numbers:

(1000)—parentheses and black text
(1000)—parentheses and red text

m -1000—minus character (-) and black text
m -1000—minus character (-) and red text

Number of Decimal
Places

Determines the maximum number of decimal places used to
display values.

Configuring the Currency Data Mask

The currency data mask allows only numeric characters and is used to display
currency data. When creating a validation using this data mask, the following
characteristics can be specified:

m  Range of values (maximum and minimum) allowed for this field

m  Whether or not a zero is displayed when data is not entered into the field

m  Whether a group separator such as a comma is used to display large

numbers

m  Negative number display

m  Number of decimal places

108 Commands, Tokens, and Validations Guide and Reference



Chapter 5: Using Validations

Figure 5-12 shows the fields that can be configured for this data mask.
Table 5-12 defines these fields.

Figure 5-12. Validation window for the currency data mask

Validation : Untitled5 I =13
Ilarne: I
Description: I
Enabled: [+ Use in Workflaw? [
Companent Type: ITex‘t Field LI
Data hiask: |Currency LI
Regior: I Enterprise E Samnple Input:
Macirnum “alue: |1 0ooooo 500000.22
Mirirnugn % Slue: I 0 H H
If Diata ot Entered, then display & zero: & ves " Mo
Use Group Separator (% Yes " Mo e ] @it
Plegative Mumber looks like: |—1 ono LI o o 22
Mutmber of Decinal Places: |2
Uszed By | Dvwenership | OH | Save | Cancel |

Feady

Table 5-12. Fields configuring the currency data mask for text fields
(page 1 of 2)

Largest value allowed for this field. You can enter a positive
or negative number.

Maximum Value

Smallest value allowed for this field. You can enter a positive

Minimum Value .
or negative number.

If Data not Entered, | Determines whether a field that contains no data displays a
then display a zero | zero.

Configuring Text Field Validations 109



Chapter 5: Using Validations

Table 5-12. Fields configuring the currency data mask for text fields
(page 2 of 2)

Determines if the field should use a group separator (such as
a comma) to divide characters within large numbers. For
example: 1000000 versus 1,000,000. The character used for
the separator defaults based on the machine’s local, but can
be configured in the Regional Settings window in the
Workbench. Select Edit > Regional Settings to access this
window.

Use Group
Separator

Determines the text used to display negative numbers. The
four possible options are:

Negative Number = (1000)—parentheses and black text
looks like m (1000)—parentheses and red text

m -1000—minus character (-) and black text
m -1000—minus character (-) and red text

Number of Decimal

The maximum number of decimal places displayed.
Places

The INSTALLATION CURRENCY server parameter determines the currency symbol
displayed in the field and the position of the text in the field. For example, the
following parameter setting specifies the dollar currency sign, and right-aligned text:

]
= = Note
INSTALLATION CURRENCY=$;RIGHT

For help with changing this setting, contact your system administrator.

110 Commands, Tokens, and Validations Guide and Reference



Chapter 5: Using Validations

Configuring the Percentage Data Mask

The percentage data mask allows only numeric characters and is used to
display percentages. When creating a validation using this data mask, the
following characteristics can be specified:

Range of values (maximum and minimum) allowed for this field
Whether or not a zero is displayed when data is not entered into the field

Whether a group separator such as a comma is used to display large
numbers

Negative number format

Maximum number of decimal places

Figure shows the fields that you can configure for this data mask, and
Table 5-13 provides descriptions of these fields.

Figure 5-13. Validation window for the percentage data mask

Validation : Untitled5 =]
Iarne: |
Description: |
Enahled: [+ Use inWorkflow? [
Companent Type: |Tex‘t Field ﬂ
Data Mask: |F’ercemage j
Masmum Yalue: 100 Sample Input:
Miriirnutn % Slue: | 1] a0.22
If Data not Enterad, then display & zera: 5 Yes Mo
Use Group Separator (* Yes R
Formatted Output:
Megative Mumber looks like: |—1 oo j 2
Mutrbet ot Decimzl Places: |2 02
Uszed By | Dvwenership OH | Save | Cancel |

Feady

Configuring Text Field Validations 111



Chapter 5: Using Validations

Table 5-13. Fields configuring the percentage data mask for text fields

Maximum Value

Largest value allowed for this field. You can specify a
positive or negative value.

Minimum Value

Smallest value allowed for this field. You can specify a
positive or negative value.

If Data not Entered,
then display a zero

Determines whether the field displays a zero if no value is
entered.

Use Group Separator

Determines whether a group separator such as a comma
is used to display large numbers (for example, 1000000
versus 1,000,000). The default character used for the
separator is based on the local machine setting, but you
can modify the setting from the Workbench, in the
Regional Settings window. To open this window in the
Workbench, select Edit > Regional Settings.

Negative Numberlooks
like

Determines the text used to display negative numbers.
The four possible options are:

m (1000)—parentheses and black text
(1000)—parentheses and red text

m -1000—minus character (-) and black text
m -1000—minus character (-) and red text

Number of Decimal
Places

Determines the maximum number of decimal places
accepted.

Configuring the Telephone Data Mask

Use the percentage data mask to specify telephone number display. As you
create a validation using this data mask, you can specify the following
characteristics for the field:

m  Specify the number of digits to include, and the delimiter to use between
groups of numbers. For example, you can specify dashes (-) or periods (.)
between numbers (555-555-5555 or 555.555.5555).

m  Maximum and minimum number of digits.

Figure shows the fields that you can configure for this data mask, and
Table 5-14 provides descriptions of these fields.

112

Commands, Tokens, and Validations Guide and Reference



Chapter 5: Using Validations

Figure 5-14. Validation window for the telephone data mask

Validation : Untitled5 = =] E3
Matne: |
Description: I
Enabled: [V Use in wWorkflaw? [

Companent Type: ITe)d Field LI
Data Mask: [Telephone |
Formst. |DDD-DDD-DDDD Sample Input:

Iaccirmum # of Digits: |15 123456788012
Minimum # of Digits: |1 0
Formatted Cutput:
12345-678-9012
Use the following to specify custom format:
D Digit (0 to 9, pound "#' and start"™*", entry required, plus "+" and
minus "-" not allowed)
Allowed Allowed Delimiters are open parenthesis "{", close parenethesis "Y',
Delimiters dot"", minus "-", space " " and the plus "+" sign.
Used By | Dwnership | Ok | Save | Cancel |
Feady

Table 5-14. Fields configuring the telephone data mask for text fields

The rule that determines how digits are formatted,
including the use of spaces or delimiters. The format
definition can include the following delimiters:
m Parentheses ()
= Period (.)
Format = Dash (-)
m Space
m Plus character (+)
For telephone format examples, see Table 5-15
on page 113.
Maximum # of Digits The maximum number of digits that the field accepts.
Minimum # of Digits The minimum number of digits that the field accepts.

Table 5-15. Sample telephone data mask formats

D-DDD-DDD-DDDD 15555555555 1-5655-5655-5555
DDD DDD DDDD 5555555555 555 555 5555
(DDD) DDD-DDDD 5555555555 (555) 555-5555

Configuring Text Field Validations 113



Chapter 5: Using Validations

Special behavior applies to the extra characters if you define a format that lets
users enter a range of number of characters. Extra characters are always
grouped with the first set of characters. For example, if you configure the
telephone data mask with a minimum of ten characters and a maximum of 15
characters, the results are as follows:

Format: DDD-DDD-DDDD
Min: 10

Max: 15

Input: 1234567890
Output: 123-456-7890
Input 2: 12345678901
Output 2: 1234-567-8901

Configuring a Custom Data Mask

You can define a custom data mask that allows a range of inputs, and specify
the format for the input. You can customize the field to accept numeric values,
alphabetic characters, spaces, and custom delimiters.

Figure 5-15 shows the fields that you can configure for this data mask.

Figure 5-15. Validation window for the custom data mask

Validation : Untitled5 1 =]
Mame: |
Description: |
Enahled: [+ Use inWorkflow? [
Component Type: |Tex‘t Field j
Data Mask: |Cust0m ﬂ
Fartnzt: | Satnple Input:
Format
Formatted Output:
Use the following to specify custom format:
(] Digit {0 to 9, entry required, plus "+" and minus "-" not allowed).
L Letter (4 to Z entry required)
A Any character ar a space {entry required).
| Causes the character that follows to be displayed as the literal
character (& is displayed as A)
Used By | Owvnership | Ok | Save | Cancel |
heady

To configure a custom format, in the Format field, type a combination of the
following symbols.

m  Use D to specify that the user must enter a numeric value between 0 and 9.

m  Use L to specify that the user must enter an alphabetic character between A
and Z.

114

Commands, Tokens, and Validations Guide and Reference



Chapter 5: Using Validations

m  Use A to specify that the user must type a character or space.

m  Use a\ (backslash) to specify that the next character is to be displayed as
the literal character. For example: “\A” is displayed as “A”.

Table 5-16 illustrates two examples of custom formatting.

Table 5-16. Sample custom data mask formats

DDD\-DD\-DDDD 555555555 555-55-5555

AA\-DDD BC349 BC-349

Configuring Directory Chooser Validations

The Directory Chooser field can be used to select a valid directory from an
environment. Mercury Deployment Management connects to the first source
environment on a workflow and allows navigation through the directory
structure and the selection of a directory from the list.

When implementing the Directory Chooser, note the following:
m  The Directory Chooser field can only be used on an object type.

m  On every object type that a Directory Chooser is chosen, it is also
necessary to have a field whose token is P FILE LocATION and whose
validation is DLV - File Location. The possible values for this field are
Client and Server. If Client is chosen, the Directory Chooser connects to the
Client Base Path of the source environment. If Server is chosen, the
Directory Chooser connects to the Server Base Path of the source
environment.

Configuring Directory Chooser Validations 115



Chapter 5: Using Validations

Configuring File Chooser Validations

A File Chooser field can be used by object types to select a valid file from an
environment. Mercury Deployment Management connects to the first source
environment on a workflow and provides the ability to view all files within a
specific directory and select one from the list.

On every object type that a File Chooser is chosen, it is necessary to define the

following fields:

m  The first is a field for the file location for the directory chooser, described
in the previous section.

m  The second is a field whose token is p_sus_paTH. This field is the directory
from which the file is selected and is usually a directory chooser field.

Figure 5-16. Validation window for static environment override in file

chooser.
Validation : Untitled5 i |=]
Matne: |
Description: |
Enabled: [+ Lise in'Workflow? [~
Component Type: |F\|e Chooser ﬂ
Base File Mame Only: r
Environment Override Behavior: |Stalic Erviranment Overricde ﬂ
Overtiding Environment: || El

Owverriding Server Basepath: |

Overtiding Cliert Basepath: |

Uszed By | Dvwenership |

Ok | Save | Cancel |

Feady

Table 5-17. File chooser field

Base File Name Only

Defines whether the base file name only (without its suffix)
or the complete name is displayed.

Environment Override
Behavior

Used to select files from a specific environment other than
the default environment.

The Environment Override Behavior drop-down list contains three options:
Default Behavior, Static Environment Override, and Token-Based Environment

Override.

116 Commands, Tokens, and Validations Guide and Reference



Chapter 5: Using Validations

Static Environment Override lets you override one environment at a time. The

fields for static environment override are shown in /igure and described in
Table 5-18.

Table 5-18. Static environment override

Overriding

. Selects the environment to be overridden.
Environment

Overriding Server

The server basepath of the environment can be overridden.
Basepath

Overriding Client

The client basepath of the environment are overridden.
Basepath

Token-based Environment Override provides the ability to select a token that is
to resolve to the overriding environment. The fields for Token-based
Environment Override are shown in /igure 5-/7 and defined in 7able 5-19.

Figure 5-17. Validation window for token-based environment override in file
chooser.

Yalidation : Untitled5 1 [=]

Parne: |

Description: |
Enakled: |+ Use in Workflow? [

Component Type: |F\Ie Chonser ﬂ

Eaze File Mame Only: r

Environmert Override Behavior: Token-based Environment Overridej

Erwironmenit Token: |

Cwerriding Server Basepath: |

Overtiding Cliert Basepath: |

Uszed By | Duwenership (o34 | Save | Cancel |
Feady

Configuring File Chooser Validations 117



Chapter 5: Using Validations

Table 5-19. Token-based environment override

Environment Select the token that is to resolve to the overriding
Token environment.

Overriding Server | Specify a basepath to override the server basepath of the
Basepath environment to be resolved by the token.

Overriding Client | The client basepath of the environment that is to be resolved by
Basepath the token may be overridden.

Configuring Date Field Validations

Date fields can accept a variety of formats. The current date field validations
are separated into two categories: all systems and systems using only the
English language. These formats are defined in Table 3-14.

118 Commands, Tokens, and Validations Guide and Reference



Chapter 5: Using Validations

Date
Format

All

Table 5-20. Date field

The format for the date part of the field. Choices are:
m Long. January 2, 1999

= Medium. 02-Jan-99

= Short. 1/2/99

= None. Date is not displayed.

Date
Format

English
Only

Available formats for the date section of the field are:
= MM/DD/YY (06/16/99)

m DD-MON-YY (16-Jun-99)

s MONTH DD, YYYY (June 16, 1999)

= Day, Month DD, YYYY (Monday, June 16, 1999)
= DD-MON (16-JUN, defaults to current year)

m DD-MON-YYYY (16-JUN-1999)

= MM-DD-YYYY (06-16-1999)

= MM-DD-YY (06-16-99)

m DD (Defaults to the current month and year)

= MM/DD (06/16, defaults to current year)

= MM/DD/YYYY (06/16/1999)

Time
Format

All

Available formats for the time section of the field are:
Long. 12:00:00 PM PST

Medium. 12:00:00 PM

Short. 12:00 PM

= None. Time is not displayed.

Configuring Date Field Validations

119




Chapter 5: Using Validations

Configuring 1800 Character Text Areas

Note

Standard Text Areas are either 40 or 200 characters. You can, however, create
a Text Area validation with a character length of 1800.

To create a validation with a character length of 1800:
1. From the Workbench shortcut bar, select Configuration > Validations.
The Validations Workbench opens.
2. Search for Text Area - 1800.
3. In the results tab, select Text Area - 1800.
4. Click Copy.
5. Rename the validation.

You can use the new Text Area validation (with a length of 1800 characters)
when defining a custom field in the product.

You can only create a text field or area of length 40, 200, 1800, or 4000.

Configuring the Table Validations

The table component is used to enter multiple records into a single field on a
request. The table component can be configured to include multiple columns of
varied data types. Additionally, this component supports rules for populating
elements within the table and provides functionality for capturing column
totals.

For example, XYZ Corporation creates a request type to request quotes and
parts for hardware. Each entry of this type has four elements: Product,
Quantity, Price, and Total. XYZ creates a Table Component field called
Hardware Information to collect this information.

When the user logs a request for new hardware, the request displays the
Hardware Information field. The user opens the Hardware Information window
and selects a product, which triggers a rule to populate the fields in the Price
and Total columns. He submits the request, which now contains all of the
information required to successfully order the hardware.

120 Commands, Tokens, and Validations Guide and Reference



Chapter 5: Using Validations

Figure 5-18. Hardware information window

MERCURY

Hardware Information
Select the Product and Quantity of the items you wish to order.

Seq Products Duantity Price Total
O 1 PC 3 1200 3600
ﬁ O 2 PC 2 1200 2400
Check All Clear All Add Edit Copy Delete
Done Cancel

You can only add fields of this component to request types, request header
types, and request user data.

Configuring Table Components

To create a table component field:
1. From the Workbench shortcut bar, select Configuration > Validations.
The Validations Workbench opens.
2. Click New Validation.
The Validation window opens.

3. Select Table Component from the Component Type drop-down list.

Validation : Untitled’ 1 [=]
Parne: |
Description: |
Enakled: |+ Use in Workflow? [
Cormponent Type: |Tame Carmpaonent ﬂ
User Instructions: i‘
=

et Layer Wiew: |MRE@_ |

Table Columnz ] Fart Laynut] Rulas]

Colurnn Seq. | Colurmn Header | Column Token Parameter Col |Enabled| Componert Type Walidation | Editable |Rc

y Bl
4+ e | |
Uszed By | Duwenership | (o34 | Save | Cancel |
Feady

Configuring the Table Validations 121



Chapter 5: Using Validations

4. Enter a validation name and description.
5. Enter any user instructions to display on the top of the table entry page.
6. Create the table columns, as follows:
a. Click New in the Table Columns tab.
The Field window opens.

b. Define the type of information to store that column.

\ This may require that you create a validation for the column.
" Note You cannot use file attachments in a table component column.

£ Field: New

Column Header: Column Token:

De=cription: |

Enabled: * Yes " Mo

Walickstion E Componert Type: J

Mewe Multi-Select Enabled: =

Aftributes ] Default I Sturaga]

Edtable: * Yes " Mo i o
Recuired: |Never j
Copy From... QK | Cancel |

I|Read\r

c. Specify the attributes (editable or required) and any default behavior.
d. To save the column information and add another column, click Add.

e. To close the Field window after you finish adding columns, click OK.

122 Commands, Tokens, and Validations Guide and Reference



Chapter 5: Using Validations

Validation : Hardware Table 19 [=] F3
Natne: |Hardware Table
Description: |
Enabled: [v Usze in Workflow? [

Component Type: |Tab\e Caompanent j
Lser Inatructions: | S€lectthe Product and Quantity ofthe items you wish 1o order i‘
Meta Layer Yiew: [MREQ_ [HaRDWARE_TABLE

Table Colurmng ] Farm Laynut] Rulas]
Colurnn Seq. | Column Hesder | Column Token Parameter Col Enabled Componert Type “Walidation
1|Products PRODUCTS [PARAMETER1 v Auto Complete List Hardware Producis
2| Quantity QUANTITY PARAMETERZ |V Tend Field Text Field - 20
3|Price FRICE PARAMETERZ |V Text Field Text Field - 20
4[Total TOTAL FPARAMETER4 |V Text Field Text Field - 20
< | 2
+|¥ e | | |
Used By | Dwnership | Ok | Save | Cancel |
Feady

7. Configure the form layout, as follows:

a. Click the Form Layout tab.

b. To move a field, select it, and then use the arrow pointers to change its

position in a given direction.

Validation : Hardware Table

I =13

Mame: |Hardware Table

Description: |

Enabled: [V Use in Workflow? [~

Companent Type: |Tame Companent

(s FelimE s Selectthe Product and Guantity of the iterns vou wish to order,

b}

Meta Laver Yiew: |MREG_ | HARDWARE_TABLE

Table Columns  Form Layout 1 Rulas]

Products -
LI Quantity
|| Price ﬂ
Field Wicth Cotrponerit Lines Move Field f ‘ « * L
Preview
Uszed By | Duwenership (o34 | Save | Cancel |
Feady

Configuring the Table Validations

123



Chapter 5: Using Validations

c. To see the layout you configured, click Preview.

MERCURY

Layout Preview: Table

Products

Cuantity

Price

Total

u The preview loads a window in the Workbench, but the table component
= = Note itself is only available to those using the standard (HTML) interface.

8. To set up rules for advanced defaulting behavior or calculating column
totals, configure any required table logic, as follows:
a. Click the Rules tab.
b. Click New.

c. Create a rule.

u For detailed instructions on how to create a rule, see Configuring Table
= = Note Rules on page 125.

9. Click OK.

The new Table Component field can be included on a request type, request
header type or request user data field.

124 Commands, Tokens, and Validations Guide and Reference



Chapter 5: Using Validations

Configuring Table Rules

Table rules are configured in the same manner as advanced request type rules.
Essentially, you can configure fields (columns) in the table to default to certain
values based on an event or value in another field in the table. Because the
table component rules are configured using a SQL statement, you are given
enormous flexibility for the data that is populated in the table cells.

Table rules are configured using the Rules tab on the Validation window.

Figure 5-19. Rules window accessed from the Rules tab

£ Rules Window

Rule Matne: |Set Unit Ptice
Descriptior: |
Enabled: = ‘Yes " Mo
Rule Event: |App|y0n Field Change j
Dependenci
Calumn Header | walue |
Products [aIvalues |
I | | |
Results: e
Colurn Header | Colurmn | Token SELECT
Price [1 [TE.P.PRICE DECODE(TE P PRODUCTS], PG,
|2 [TENP.PRICE 1200,
Mouse’, 50,
‘Maonitor, 560,
‘Kevboard', 110, 0y,
DECODE([TE.P.PRODUCTS], PC",
1200,
Mouse' 50,
‘Maonitor, 560,
‘Keyboard', 110, 0y
4 | | || FroM sys.dual
Py
0K | | Cancel
I\Rules Cinly Apply within the same Entry.

Example of Using a Table Component on an Order Form

The following example illustrates the table component rules functionality.

XYZ Corporation uses a request for creating and tracking employee computer
hardware equipment orders. XYZ has included a table component field on their
request type for gathering the order information. When the employee selects a
Product, the Unit Price is automatically updated. Then, when they update the

Quantity, the total line cost is automatically calculated and displayed in the
table.

To enable this functionality, XYZ first has to configure a new validation with
the following specifications:

Configuring the Table Validations 125



Chapter 5: Using Validations

Table 5-21. Example, table component validation settings

Validation Name Product Order Information

Component Type Table Component

Column Header = Products
Column Token = PRODUCTS

Validation = Auto-complete with the following list values:
PC, MOUSE, MONITOR, KEYBOARD

Column 1

Column Header = Quantity
Column 2 Column Token = QUANTITY
Validation = Numeric Text Field

Column Header = Price
Column 3 Column Token = PRICE
Validation = Numeric Text Field

Column Header = Total
Column 4 Column Token = TOTAL
Validation = Numeric Text Field

Figure 5-20. Validations window

Validation : Hardware Table 19 [=] F3
Natne: |Hardware Table
Description: |
Enabled: [v Usze in Workflow? [

Component Type: |Tab\e Caompanent j
Lser Inatructions: | S€lectthe Product and Quantity ofthe items you wish 1o order i‘
Meta Layer Yiew: [MREQ_ [HaRDWARE_TABLE

Table Colurmng ] Farm Laynut] Rulas]

Colurnn Seq. | Column Hesder | Column Token Parameter Col Enabled Componert Type “Walidation
1|Products PRODUCTS [PARAMETER1 v Auto Complete List Hardware Producis
2| Quantity QUANTITY PARAMETERZ |V Tend Field Text Field - 20
3|Price FRICE PARAMETERZ |V Text Field Text Field - 20
4[Total TOTAL FPARAMETER4 |V Text Field Text Field - 20

< | 2

+|¥ e | | |
Used By | Dwnership | Ok | Save | Cancel |
Feady

After you define the columns for the validation, you can set up the rules.

126 Commands, Tokens, and Validations Guide and Reference



Chapter 5: Using Validations

Example of Setting Unit Prices

XYZ Corporation uses the rule described in 7ah/e 5-22 and show in 7able to
set the default unit price based on the product selected.

Table 5-22. Example - Set Unit Price rule settings

Rule Name Set Unit Price
Rule Event Apply on Field Change
. Column = Products

Dependencies
All Values = Yes

Results Column Header = Price
SELECT DECODE (' [TE.P.PRODUCTS]', 'PC',
1200,
'Mouse', 50,
'Monitor', 560,
'Keyboard', 110, 0),

SQL

DECODE (' [TE.P.PRODUCTS]', 'PC', 1200,
'Mouse', 50,

'Monitor', 560,

'Keyboard', 110, 0)

FROM sys.dual

Configuring the Table Validations 127



Chapter 5: Using Validations

Figure 5-21. Rules window

£ Rules Window

Rule Matne: |Set Unit Ptice
Descriptior: |
Enabled: = ‘Yes " Mo
Rule Event: |App|y0n Field Change j
Dependenci
Calumn Header walue |
Products [aIvalues |
I | | |
Results: e
Colurn Header | Colurmn | Token SELECT
Price [1 [TE.P.PRICE DECODE(TE P PRODUCTS], PG,
|2 [TEVP.PRICE 1200,
Mouse’, 50,
‘Maonitor, 560,
‘Kevboard', 110, 0y,
DECODE([TE.P.PRODUCTS], PC",
1200,
Mouse' 50,
‘Maonitor, 560,
‘Keyboard', 110, 0y
J | ] || FrRom sys dual
Py
0K | | Cancel
I\Rules Cinly Apply within the same Entry.

Example of Calculating Totals

XYZ Corporation uses the following rule to set the calculate and display the
total line price in the Total column based on the values in the Products and

Quantity ficlds.

Table 5-23. Example - Calculate Total rule settings

Rule Name Calculate Total
Rule Event Apply on Field Change
) Column = Price [All Values = Yes]

Dependencies ]

Column = Quantity [All Values = Yes]
Results Column Header = Total

SELECT [TE.P.PRICE] * [TE.P.QUANTITY],
sSQL [TE.P.PRICE] * [TE.P.QUANTITY]

from sys.dual

128

Commands, Tokens, and Validations Guide and Reference



Chapter 5: Using Validations

Using Table Components

Add a field to a request type that is validated by this table component

validation. After a user opens the window to enter information, the table rules
are applied to each row created.

Figure 5-22. Hardware information window

MERCURY

Hardware Information - New Entry

Products | |HE

Add Another Reset
Add Cancel

Using Tokens in Table Components

Each column in the table component has an associated token. You can use
these tokens in the same manner as other field tokens, such as for commands,
notifications, or advanced field defaulting. For detailed information about
referencing tokens related to table components, see Chapter 4, Using Tokens,
on page 47.

Calculating Column Totals

You can configure columns that are validated by a number to calculate the total
for that column. This is configured in the validation’s Field window. The
following example illustrates how to configure a column to calculate and
display the column total.

XYZ Corporation uses a request for creating and tracking simple employee
equipment orders. XYZ has included a table component field on their request
type for gathering the order information. Employees enter the Purchase Items
and Cost for each item. The table component automatically calculates the total
cost for the Cost column.

Configuring the Table Validations 129



Chapter 5: Using Validations

XYZ creates a validation with the following settings:

m  Component Type = Table Component
m  Column 1 = Purchase Item (text field)
]

select Display Total = Yes. The Display Total field is
field’s validation is a number.

Column 2 = Cost (number). In the Field window for the Cost column,

only enabled if the

Figure 5-23. Sample validation for a Simple Order table component.

Yalidation : Simple Order Form

=10
Mame: | Sirnple Order Form
Drescription: ‘
Enabled: [+ Use in Workflow? [
Component Type: ‘Table Campaonent j
ks [Fefieanes Enter the purchase item and the costfor each item. i‘
=l

Weta Layer view: |MREQ_ |SIMPLE_ORDER_FORM

Tahle Columns 1 Form Layout] Rules}

Columh Seq | Column Header | Column Token Parameter Col | Enahled| Cotmponhent Type

Walickation
1|Purchase ltem i Text Field [Test Field - 20
TextField Mumeric Text Field

£ Field: New 3
Colurnh Header: | Cost Coluran Toker: |COST

_‘ Description: |

Enablect * Yes " Mo

Used By | Crevniership |

Feady

walidation INumencTenFie\d ES
Mews | Open | | wti-Select Enabled:

Aftributes I Defaun] Storage}

Commponent Type:

Editable: (* ‘es T Mo

Required: |Never

= |

Display Total: % ‘Yes

Copy From...

8128 | Add | Cancel ‘

I'Add" Successiul

XYZ Corporation includes adds a field to their Order request type that uses this
validation. If a user creates a request of that type, he can click the table
component icon next to the field to open the order form. The total for the Cost

column is displayed at the bottom of the table.

130 Commands, Tokens, and Validations Guide and Reference



Chapter 5: Using Validations

Figure 5-24. Sample table component displaying a column total.

MERCURY

Simple Order Form

Enter the purchase tem and the cost for each item.

Seq Purchase tem Cost
O 1 Flatzcreen Monitor 1800
O 2 Cable 40
ﬂ O 3 Monitor Switch an
Total 1920
cCheck All Clear All Add Edit Copy Delete

Done Cancel

Configuring the Table Validations 131



Chapter 5: Using Validations

132 Commands, Tokens, and Validations Guide and Reference



Appendix

Tokens

In This Appendix:

Overview of Tokens

Application Server Tokens

Budget Tokens

Contact Tokens

Distribution Tokens

Document Management Tokens
Environment Tokens

Environment > Dest Env Tokens
Environment > Dest Env > App Tokens
Environment > Dest Env > Env Tokens
Environment > Env Tokens
Environment > Env > App Tokens
Environment > Env > Env Tokens
Environment > Source Env Tokens
Environment > Source Env > App Tokens
Environment > Source Env > Env Tokens
Command Tokens

Financial Benefit Tokens

Notification Tokens

Organization Unit Tokens

Package Tokens

o Package > Package Line Tokens

o Package > Pending Reference Tokens
Package Line Tokens

Program Tokens

O0OOOOQOSO OS Qa oo

133



Appendix A: Tokens

Project Tokens
Project Detail Tokens
Release Tokens

m]

Release > Distribution Tokens

m  Request Tokens

O
[m]

Request > Pending Reference Tokens
Request > Field Tokens

m  Request Detail Tokens

]

m]

Request Detail > Field Tokens

Resource Pool Tokens

Security Group Tokens

Skill Tokens

Staffing Profile Tokens

Step TXN (Transaction) Tokens
System Tokens

Task Tokens

Tasks > Pending Tokens

Time Management Notification Tokens
User Tokens

Validation Tokens

]

Validation > Value Tokens

m  Workflow Tokens

m]

Workflow > Workflow Step Tokens

Workflow Step Tokens
Request > Field Tokens

O0O0ODO0DO0ODO0ODO0ODOOOoOQOOQNO oQOOoQRaoRaoao o

CMBD Application Tokens

Demand Management SLA Tokens
Demand Management Scheduling Tokens
MAM Impact Analysis Tokens

Portfolio Management Asset Tokens
Portfolio Management Project Tokens
Portfolio Management Proposal Tokens
Program Issue Tokens

Program Reference Tokens

Project Issue Tokens

Project Reference Tokens

Project Risk Tokens

Project Scope Change Tokens

Quality Center Defect Information Tokens
Quality Center Information Tokens
Resource Management Work Item Tokens
Service Catalog Tokens

134 Commands, Tokens, and Validations Guide and Reference



Appendix A: Tokens

Overview of Tokens

Mercury IT Governance Center uses variables to facilitate the creation of
general objects that can be applied to a variety of contexts. These variables are
called tokens.

The Token Builder generates tokens in the explicit entity format by providing a
list of possible values. When such a list is available, the Context Value
auto-complete field at the bottom of the Token Builder is enabled and the
appropriate prefix is assigned. You then select the token from the list of
provided tokens.

Application Server Tokens

Table A-1. Application Server tokens

Temporary directory used for files during
command executions.

AS PKG_TRANSFER_PATH

Other application server properties tokens are generated from the parameters in
the server.conf file. For a description of each server parameter, see the
System Administration Guide and Reference.

Budget Tokens

Table A-2. Budget tokens (page 1 of 2)

BGT ACTIVE_FLAG The active flag for the budget.

The ID of the budget (defined in the table

BGT BUDGET_ID KCST BUDGETS).

The entity name (work plan, program, or

BGT BUDGET_IS_FOR_ENTITY_NAME org unit) to which the budget is linked.

The ID of the work plan/program/org unit

BGT e I to which the budget is linked.

Overview of Tokens 135



Appendix A: Tokens

Table A-2. Budget tokens (page 2 of 2)

BGT BUDGET_IS_FOR_NAME Ui o which the budget s ket
BGT BUDGET_NAME The name of the budget.

BGT BUDGET_ROLLS_UP_TO_ID 'rl'or;leS IEp(_)fthe budget into which this budget
BGT BUDGET ROLLS_UP_TO_NAME ZSSQZ?T:";’TSG budget into which this
BGT BUDGET_URL The URL used to view this budget.

BGT CREATED_BY 'tI)'Sjguest.ername of the user who created the
BGT CREATION_DATE The date the budget was created.

BGT DESCRIPTION The budget description.

BGT END_PERIOD The budget end period.

BGT INITIATION_REQ The budget initiation request ID.

BGT PERIOD_SIZE The budget period size.

BGT REGION Region associated with the budget.

BGT START_PERIOD The budget start period.

BGT STATUS_CODE The budget status code.

BGT STATUS_NAME The budget status name.

136 Commands, Tokens, and Validations Guide and Reference



Appendix A: Tokens

Contact Tokens

Table A-3. Contact tokens

CON COMPANY The company ID for which the contact
works.
CON COMPANY NAME The name of the company for which the
- contact works.
The contact ID (defined in the table
CON CONTACT_ID KCRT_CONTACTS).
CON CREATED BY The ID of the user who created the
- contact.
CON CREATION_DATE The date the contact was created.
CON EMAIL_ADDRESS The email address of the contact.
CON FIRST_NAME The first name of the contact.
CON FULL_NAME The full name of the contact.
CON LAST_NAME The last name of the contact.
CON LAST UPDATED BY The ID of the user who last updated the
- - contact.
CON LAST_UPDATE_DATE The date the contact was last updated.
CON PHONE_NUMBER The phone number of the contact.
The contact username (if applicable). This
CON USERNAME can be the username for an external
system, and not Mercury IT Governance
Center.
CON USER ID The userlID of the contact, if the contact is
- a Mercury IT Governance Center user.

Contact Tokens 137



Appendix A: Tokens

Distribution Tokens

Table A-4. Distribution tokens

DIST CREATED BY The _ID c_)f the user that created the
- distribution.
The Mercury IT Governance Center
DIST CREATED_BY_USERNAME username for the user who created the
distribution.
DIST DESCRIPTION The release description.
The distribution ID (defined in table KREL _
DIST DISTRIBUTION_ID DISTRIBUTION),
DIST DISTRIBUTION_NAME The distribution name.
DIST DISTRIBUTION_STATUS The distribution workflow status.
Whether the distribution has fed back a
DIST FEEDBACK_FLAG specified value to the package lines being
distributed.
DIST FEEDBACK VALUE The valuel to be returned to the original
- package lines.
DIST LAST UPDATED BY The _ID gf the user who last updated the
- - distribution.
The Mercury IT Governance Center
DIST LAST _UPDATED BY_ USERNAME username for the user who last updated
the distribution.
DIST LAST_UPDATE_DATE The date the distribution was last updated.
DIST RELEASE ID The _ID qf the release that created this
- distribution.
DIST RELEASE NAME The name of the release that created this
- distribution.
DIST WORKFELOW The .wor.kflow used to process the
distribution.
138 Commands, Tokens, and Validations Guide and Reference




Appendix A: Tokens

Document Management Tokens

Table A-5. Document Management tokens

Resolves to a URL which, when clicked,
opens the latest version of the document.

Forces user authentication before the
document is delivered.

DMS DOC_LINK

Resolves to a URL which, when clicked,
displays a view of the version history of the
DMS DOC_HISTORY document.

Forces user authentication before the
information is delivered.

Resolves to the author field stored with the

DMS AUTHOR
document.

DMS DESCRIPTION R_esolves to the description field stored
with the document.

DMS LAST CHECK_IN_DATE Resolves to the timestamp of the last

check-in.

Resolves to the full name of the Mercury
DMS LAST_CHECKED_IN_BY_NAME IT Governance Center user who added or
last checked in the document.

Resolves to the ID of the Mercury IT
DMS LAST_CHECKED_IN_BY Governance Center user who added or
last checked in the document.

Document Management Tokens 139



Appendix A: Tokens

Environment Tokens

If any Mercury IT Governance Center Extensions are installed, there are more
environment tokens with the prefix “AC.” For information about these tokens,
see the Mercury IT Governance Center Extensions documentation.

Environment > Dest Env Tokens

Table A-6. Environment > Dest Env tokens (page 1 of 3)

DEST_ENV CLIENT_BASE_PATH The base (root) path of the client.
DEST_ENV CLIENT_CON_PROTOCOL The protocol used to connect to this client.
CLIENT_CON_PROTOCOL_ The visible value of the client connect
DEST_ENV MEANING protocol.
DEST ENV CLIENT NAME The DNS name or IP address of the client
- - computer.
DEST ENV CLIENT_NT_DOMAIN The domain name for the client, if the
- - = client machine is running Windows.
DEST ENV CLIENT ENABLED FLAG The_flag that |nd|c_ates whef(her the client
- - - portion of the environment is enabled.
The password Mercury IT Governance
DEST_ENV CLIENT_PASSWORD Center uses to log on to or access the
client. This value is encrypted.
DEST ENV CLIENT SQL COMMAND The default command line SQL*Plus
- - - command name.
DEST ENV CLIENT TYPE CODE The v_alldatlon value code of the client
- - - machine type.
The username Mercury IT Governance
DEST_ENV CLIENT_USERNAME Center uses to log on to or access the
client.
DEST_ENV CLIENT_TRANSFER_PROTOCOL | | he protocol used to transfer files to or
- - - from this client.
CLIENT_TRANSFER_PROTOCOL_ | The visible value of the client transfer
DEST_ENV MEANING protocol.
DEST ENV CREATED BY The_ ID of the user who created the
- - environment.
DEST_ENV CREATION_DATE The date the environment was created.

140 Commands, Tokens, and Validations Guide and Reference




Appendix A: Tokens

DEST_ENV

Table A-6. Environment > Dest Env tokens (page 2 of 3)

DATABASE_ENABLED_FLAG

The flag that indicates whether the
database portion of the environment is
enabled.

DEST_ENV

DATABASE_TYPE

The validation value code of the database
type.

DEST_ENV

DB_CONNECT_STRING

For Oracle database type, the connect
string used to access the database from
the command line.

DEST_ENV

DB_JDBC_URL

The JDBC URL used in Oracle 9i RAC
configuration.

DEST_ENV

DB_LINK

For Oracle database type, the database
link from the Mercury IT Governance
Center schema to the environment’s
database schema.

DEST_ENV

DB_NAME

The DNS name or IP address of the
database server.

DEST_ENV

DB_ORACLE_SID

For Oracle database type, the SID of the
database (often the same as the DB_
CONNECT_STRING).

DEST_ENV

DB_PASSWORD

The password Mercury IT Governance
Center uses to log on to or access the
database. This value is encrypted.

DEST_ENV

DB_PORT_NUMBER

For Oracle database type, the port number
on which SQL*Net is listening for remote
SQL connections on the database server.

DEST_ENV

DB_USERNAME

The username or schema name Mercury
IT Governance Center uses to log on to or
access the database.

DEST_ENV

DB_VERSION

The database version (such as 8.1.7).

DEST_ENV

DESCRIPTION

The environment description.

DEST_ENV

ENABLED_FLAG

The flag that Indicates whether the
environment is enabled and available for
use in workflows.

DEST_ENV

ENVIRONMENT_ID

The ID of the environment in the table
KENV_ENVIRONMENTS.

DEST_ENV

ENVIRONMENT_NAME

The environment name.

Environment Tokens 141




Appendix A: Tokens

Table A-6. Environment > Dest Env tokens (page 3 of 3)

The ID of the user who last updated the

DEST_ENV LAST_UPDATED_BY .
- - - environment.
DEST ENV LAST UPDATE DATE The date the environment was last
- - - updated.
DEST_ENV LOCATION The environment location.
For a Microsoft SQL Server database
DEST_ENV MSSQL_DB_NAME type, the database name used to access
the database from the command line.
DEST_ENV SERVER_BASE PATH The base (root) path of the server.
DEST ENV SERVER_CON_PROTOCOL l’grevgrrotocol used to connect to this
SERVER_CON_PROTOCOL_ The visible value of the server connection
DEST_ENV MEANING protocol.
DEST ENV SERVER_SQL_COMMAND The default command line SQL*Plus
command name.
DEST ENV SERVER TRANSFER PROTOCOL The pr(?tocol used to transfer files to or
- — - from this server.
SERVER_TRANSFER_PROTOCOL_ | The visible value of the server transfer
DEST_ENV
- MEANING protocol.
DEST ENV SERVER ENABLED FLAG The_ﬂag that |nd|c_ates whef(her the server
- - - portion of the environment is enabled.
DEST ENV SERVER NAME The DNS name or IP address of the server
- — computer.
DEST ENV SERVER NT DOMAIN The domain name f0|f the_server, if the
- - - server machine type is Windows.
The password Mercury IT Governance
DEST_ENV SERVER_PASSWORD Center uses to log on to or access the
server. This value is encrypted.
DEST ENV SERVER TYPE CODE The vglldatlon value code of the server
- - - machine type.
The username Mercury IT Governance
DEST_ENV SERVER_USERNAME Center uses to log on to or access the
server.
DEST_ENV WORKBENCH_ENVIRONMENT _ URL to access the Environment window

URL

for this environment in the Workbench.

142 Commands, Tokens, and Validations Guide and Reference




Appendix A: Tokens

Environment > Dest Env > App Tokens

Table A-7. Environment > Dest Env > App tokens (page 1 of 2)

DEST_ENV.APP

APP_CODE

The short name (code) for the application.

DEST_ENV.APP

APP_NAME

The descriptive name for the application.

DEST_ENV.APP

CLIENT_BASE_PATH

The application-specific base (root) path of
the client.

DEST_ENV.APP

CLIENT_PASSWORD

The application-specific password
Mercury IT Governance Center uses to log
on to or access the client. This value is
encrypted.

DEST_ENV.APP

CLIENT_USERNAME

The application-specific username
Mercury IT Governance Center uses to log
on to or access the client.

DEST_ENV.APP

CLIENT_CON_PROTOCOL

The application-specific protocol used to
connect to this client.

DEST_ENV.APP

CLIENT_CON_PROTOCOL _
MEANING

The visible value of the client connection
protocol.

DEST_ENV.APP

CLIENT_TRANSFER_PROTOCOL

The application-specific protocol used to
transfer files to and from this client.

DEST_ENV.APP

CLIENT_TRANSFER_PROTOCOL _
MEANING

The visible value of the client transfer
protocol.

DEST_ENV.APP

CREATED_BY

The ID of the user who created the
application.

DEST_ENV.APP

CREATION_DATE

The date the application was created.

DEST_ENV.APP

DB_LINK

For Oracle database type, the

application-specific database link from the
Mercury IT Governance Center schema to
the database schema for the environment.

DEST_ENV.APP

DB_NAME

For a Microsoft SQL Server database, the
application-specific database name used
to access the database from the command
line.

DEST_ENV.APP

DB_PASSWORD

The application-specific password
Mercury IT Governance Center uses to log
on to or access the database. This value is
encrypted.

Environment Tokens 143



Appendix A: Tokens

Table A-7. Environment > Dest Env > App tokens (page 2 of 2)

DEST_ENV.APP

DB_USERNAME

The application-specific username or
schema name that Mercury IT
Governance Center uses to log on to or
access the database.

DEST_ENV.APP

DESCRIPTION

The application description.

DEST_ENV.APP

ENABLED_FLAG

The flag that indicates whether the
application is enabled and available for
selection in package lines.

DEST_ENV.APP

ENVIRONMENT_APP_ID

The ID of the application in the table
KENV_ENVIRONMENT_APPS.

DEST_ENV.APP

ENVIRONMENT_ID

The ID of the environment with which the
application is associated.

DEST_ENV.APP

ENVIRONMENT_NAME

The name of the environment with which
the application is associated.

DEST_ENV.APP

LAST_UPDATED_BY

The ID of the user who last updated the
application.

DEST_ENV.APP

LAST_UPDATE_DATE

The date the application was last updated.

DEST_ENV.APP

SERVER_CON_PROTOCOL

The application-specific protocol used to
connect to this server.

DEST_ENV.APP

SERVER_CON_PROTOCOL _
MEANING

The visible value of the server connection
protocol.

DEST_ENV.APP

SERVER_TRANSFER_PROTOCOL

The application-specific protocol used to
transfer files to and from this server.

DEST_ENV.APP

SERVER_TRANSFER_PROTOCOL _
MEANING

The visible value of the server transfer
protocol.

DEST_ENV.APP

SERVER_BASE_PATH

The application-specific base (root) path of
the server.

DEST_ENV.APP

SERVER_PASSWORD

The application-specific password
Mercury IT Governance Center uses to log
on to or access the server. This value is
encrypted.

DEST_ENV.APP

SERVER_USERNAME

The application-specific username
Mercury IT Governance Center uses to log
on to or access the server.

DEST_ENV.APP

WORKBENCH_ENVIRONMENT_
URL

The URL of the environment window in the
Workbench.

144

Commands, Tokens, and Validations Guide and Reference




Appendix A: Tokens

Environment > Dest Env > Env Tokens

Table A-8. Environment > Dest Env > Env tokens (page 1 of 3)

DEST_ENV.ENV

CLIENT_BASE_PATH

The base (root) path of the client.

DEST_ENV.ENV

CLIENT_CON_PROTOCOL

The protocol used to connect to this client.

DEST_ENV.ENV

CLIENT_CON_PROTOCOL._
MEANING

The visible value of the client connect
protocol.

DEST_ENV.ENV

CLIENT_NAME

The DNS name or IP address of the client
computer.

DEST_ENV.ENV

CLIENT_NT_DOMAIN

The domain name for the client, if the
client machine is running Windows.

DEST_ENV.ENV

CLIENT_ENABLED_FLAG

The flag that indicates whether the client
portion of the environment is enabled.

DEST_ENV.ENV

CLIENT_PASSWORD

The password Mercury IT Governance
Center uses to log on to or access the
client. This value is encrypted.

DEST_ENV.ENV

CLIENT_SQL_COMMAND

The default command line SQL*Plus
command name.

DEST_ENV.ENV

CLIENT_TYPE_CODE

The validation value code of the client
machine type.

DEST_ENV.ENV

CLIENT_USERNAME

The username Mercury IT Governance
Center uses to log on to or access the
client.

DEST_ENV.ENV

CLIENT_TRANSFER_PROTOCOL

The protocol used to transfer files to or
from this client.

DEST_ENV.ENV

CLIENT_TRANSFER_PROTOCOL_
MEANING

The visible value of the client transfer
protocol.

DEST_ENV.ENV

CREATED_BY

The ID of the user who created the
environment.

DEST_ENV.ENV

CREATION_DATE

The date the environment was created.

DEST_ENV.ENV

DATABASE_ENABLED_FLAG

The flag that indicates whether the
database portion of the environment is
enabled.

DEST_ENV.ENV

DATABASE_TYPE

The validation value code of the database
type.

Environment Tokens 145



Appendix A: Tokens

Table A-8. Environment > Dest Env > Env tokens (page 2 of 3)

DEST_ENV.ENV

DB_CONNECT_STRING

For Oracle database type, the connect
string used to access the database from
the command line.

The JDBC URL used in Oracle 9i RAC

DEST_ENV.ENV | DB_JDBC_URL , .
- - - configuration.
For Oracle database type, the database
DEST ENV.ENV | DB LINK link from the Mercury IT G.overnanc’:e
- - Center schema to the environment’s
database schema.
DEST ENV.ENV | DB_NAME The DNS name or IP address of the

database server.

DEST_ENV.ENV

DB_ORACLE_SID

For Oracle database type, the SID of the
database (often the same as the DB_
CONNECT_STRING).

DEST_ENV.ENV

DB_PASSWORD

The password Mercury IT Governance
Center uses to log on to or access the
database. This value is encrypted.

DEST_ENV.ENV

DB_PORT_NUMBER

For Oracle database type, the port number
on which SQL*Net is listening for remote
SQL connections on the database server.

DEST_ENV.ENV

DB_USERNAME

The username or schema name Mercury
IT Governance Center uses to log on to or
access the database.

DEST_ENV.ENV

DB_VERSION

The database version (such as 8.1.7).

DEST_ENV.ENV

DESCRIPTION

The environment description.

DEST_ENV.ENV

ENABLED_FLAG

The flag that Indicates whether the
environment is enabled and available for
use in workflows.

DEST_ENV.ENV

ENVIRONMENT_ID

The ID of the environment in the table
KENV_ENVIRONMENTS.

DEST_ENV.ENV

ENVIRONMENT_NAME

The environment name.

DEST_ENV.ENV

LAST_UPDATED_BY

The ID of the user who last updated the
environment.

DEST_ENV.ENV

LAST_UPDATE_DATE

The date the environment was last
updated.

DEST_ENV.ENV

LOCATION

The environment location.

146 Commands, Tokens, and Validations Guide and Reference




Appendix A: Tokens

Table A-8. Environment > Dest Env > Env tokens (page 3 of 3)

DEST_ENV.ENV

MSSQL_DB_NAME

For a Microsoft SQL Server database
type, the database name used to access
the database from the command line.

DEST_ENV.ENV

SERVER_BASE_PATH

The base (root) path of the server.

DEST_ENV.ENV

SERVER_CON_PROTOCOL

The protocol used to connect to this
server.

DEST_ENV.ENV

SERVER_CON_PROTOCOL _
MEANING

The visible value of the server connection
protocol.

DEST_ENV.ENV

SERVER_SQL_COMMAND

The default command line SQL*Plus
command name.

DEST_ENV.ENV

SERVER_TRANSFER_PROTOCOL

The protocol used to transfer files to or
from this server.

DEST_ENV.ENV

SERVER_TRANSFER_PROTOCOL._
MEANING

The visible value of the server transfer
protocol.

DEST_ENV.ENV

SERVER_ENABLED_FLAG

The flag that indicates whether the server
portion of the environment is enabled.

DEST_ENV.ENV

SERVER_NAME

The DNS name or IP address of the server
computer.

DEST_ENV.ENV

SERVER_NT_DOMAIN

The domain name for the server, if the
server machine type is Windows.

DEST_ENV.ENV

SERVER_PASSWORD

The password Mercury IT Governance
Center uses to log on to or access the
server. This value is encrypted.

DEST_ENV.ENV

SERVER_TYPE_CODE

The validation value code of the server
machine type.

DEST_ENV.ENV

SERVER_USERNAME

The username Mercury IT Governance
Center uses to log on to or access the
server.

DEST_ENV.ENV

WORKBENCH_ENVIRONMENT_
URL

URL to access the Environment window
for this environment in the Workbench.

Environment Tokens 147



Appendix A: Tokens

Environment > Env Tokens

Table A-9. Environment > Env tokens (page 1 of 3)

ENV CLIENT_BASE_PATH The base (root) path of the client.
ENV CLIENT_CON_PROTOCOL The protocol used to connect to this client.
ENV CLIENT_CON_PROTOCOL_ The visible value of the client connect
MEANING protocol.
ENV CLIENT NAME The DNS name or IP address of the client
- computer.
ENV CLIENT NT DOMAIN The domaln_ name for_the ch_ent, if the
- - client machine is running Windows.
ENV CLIENT ENABLED FLAG The_flag that |nd|c_ates whef(her the client
- - portion of the environment is enabled.
The password Mercury IT Governance
ENV CLIENT_PASSWORD Center uses to log on to or access the
client. This value is encrypted.
ENV CLIENT_SQL_COMMAND The default command line SQL*Plus
command name.
ENV CLIENT TYPE CODE The v_alldatlon value code of the client
- - machine type.
The username Mercury IT Governance
ENV CLIENT_USERNAME Center uses to log on to or access the
client.
ENV CLIENT TRANSEER PROTOCOL The prgtocpl used to transfer files to or
- - from this client.
ENV CLIENT_TRANSFER_PROTOCOL_ | The visible value of the client transfer
MEANING protocol.
ENV CREATED BY The_ ID of the user who created the
- environment.
ENV CREATION_DATE The date the environment was created.
The flag that indicates whether the
ENV DATABASE_ENABLED_ FLAG database portion of the environment is
enabled.
ENV DATABASE_TYPE ;I;/r;)ee validation value code of the database
148 Commands, Tokens, and Validations Guide and Reference




Appendix A: Tokens

Table A-9. Environment > Env tokens (page 2 of 3)

For Oracle database type, the connect
ENV DB_CONNECT_STRING string used to access the database from
the command line.
ENV DB JDBC URL The _JDBC_ URL used in Oracle 9i RAC
- - configuration.
For Oracle database type, the database
ENV DB LINK link from the Mercury IT G.overnan(’:e
- Center schema to the environment’s
database schema.
ENV DB NAME The DNS name or IP address of the
- database server.
For Oracle database type, the SID of the
ENV DB_ORACLE_SID database (often the same as the DB_
CONNECT_STRING).
The password Mercury IT Governance
ENV DB_PASSWORD Center uses to log on to or access the
database. This value is encrypted.
For Oracle database type, the port number
ENV DB_PORT_NUMBER on which SQL*Net is listening for remote
SQL connections on the database server.
The username or schema name Mercury
ENV DB_USERNAME IT Governance Center uses to log on to or
access the database.
ENV DB_VERSION The database version (such as 8.1.7).
ENV DESCRIPTION The environment description.
The flag that Indicates whether the
ENV ENABLED_FLAG environment is enabled and available for
use in workflows.
The ID of the environment in the table
ENV ENVIRONMENT_ID KENV_ENVIRONMENTS.
ENV ENVIRONMENT_NAME The environment name.
ENV LAST UPDATED BY The_ ID of the user who last updated the
- - environment.
ENV LAST UPDATE DATE The date the environment was last
- - updated.
ENV LOCATION The environment location.

Environment Tokens 149




Appendix A: Tokens

Table A-9. Environment > Env tokens (page 3 of 3)

For a Microsoft SQL Server database
ENV MSSQL_DB_NAME type, the database name used to access
the database from the command line.
ENV SERVER_BASE_ PATH The base (root) path of the server.
ENV SERVER CON PROTOCOL The protocol used to connect to this
— - server.
ENV SERVER_CON_PROTOCOL_ The visible value of the server connection
MEANING protocol.
ENV SERVER_SQL_COMMAND The default command line SQL*Plus
command name.
ENV SERVER TRANSFER PROTOCOL The pr(_)tocol used to transfer files to or
- - from this server.
ENV SERVER_TRANSFER_PROTOCOL_ | The visible value of the server transfer
MEANING protocol.
ENV SERVER ENABLED ELAG The_ﬂag that |nd|c_ates whef(her the server
— - portion of the environment is enabled.
ENV SERVER NAME The DNS name or IP address of the server
- computer.
ENV SERVER NT DOMAIN The domain _name f0|f the_server, if the
- = server machine type is Windows.
The password Mercury IT Governance
ENV SERVER_PASSWORD Center uses to log on to or access the
server. This value is encrypted.
ENV SERVER TYPE CODE The vglldatlon value code of the server
- - machine type.
The username Mercury IT Governance
ENV SERVER_USERNAME Center uses to log on to or access the
server.
ENV WORKBENCH_ENVIRONMENT _ URL to access the Environment window
URL for this environment in the Workbench.

150

Commands, Tokens, and Validations Guide and Reference




Appendix A: Tokens

Environment > Env > App Tokens

Table A-10. Environment > Env > App tokens (page 1 of 2)

ENV.APP APP_CODE The short name (code) for the application.
ENV.APP APP_NAME The descriptive name for the application.
ENV APP CLIENT BASE PATH The a_ppllcatlon-spemflc base (root) path of
- - the client.
The application-specific password
ENV APP CLIENT PASSWORD Mercury IT Governanc_:e Cent_er uses tp log
- on to or access the client. This value is
encrypted.
The application-specific username
ENV.APP CLIENT_USERNAME Mercury IT Governance Center uses to log
on to or access the client.
ENV APP CLIENT CON PROTOCOL The appllcatlgn-s_pecmc protocol used to
- - connect to this client.
ENV APP CLIENT_CON_PROTOCOL_ The visible value of the client connection
’ MEANING protocol.
The application-specific protocol used to
ENV.APP CLIENT_TRANSFER_PROTOCOL : L
- - transfer files to and from this client.
ENV APP CLIENT_TRANSFER_PROTOCOL_ | The visible value of the client transfer
’ MEANING protocol.
ENV APP CREATED BY The .ID (?f the user who created the
- application.
ENV.APP CREATION_DATE The date the application was created.
For Oracle database type, the
ENV APP DB LINK application-specific database link from the
- Mercury IT Governance Center schema to
the database schema for the environment.
For a Microsoft SQL Server database, the
ENV APP DB NAME application-specific database name used
- to access the database from the command
line.
The application-specific password
ENV APP DB PASSWORD Mercury IT Governance Center uses to qu
- on to or access the database. This value is
encrypted.

Environment Tokens 151



Appendix A: Tokens

Table A-10. Environment > Env > App tokens (page 2 of 2)

The application-specific username or
ENV APP DB USERNAME schema name that Mercury IT
- Governance Center uses to log on to or
access the database.
ENV.APP DESCRIPTION The application description.
The flag that indicates whether the
ENV.APP ENABLED_FLAG application is enabled and available for
selection in package lines.
The ID of the application in the table
ENV.APP ENVIRONMENT_APP_ID KENV_ENVIRONMENT APPS.
ENV APP ENVIRONMENT 1D The _ID c_)f th_e enwro_nment with which the
- application is associated.
ENV.APP ENVIRONMENT NAME The name qf th_e enwro.nment with which
- the application is associated.
ENV APP LAST UPDATED BY The _ID (_)f the user who last updated the
- - application.
ENV.APP LAST _UPDATE_DATE The date the application was last updated.
ENV APP SERVER CON PROTOCOL The appllcatlgn—spemﬁc protocol used to
- - connect to this server.
ENV APP SERVER_CON_PROTOCOL_ The visible value of the server connection
' MEANING protocol.
ENV.APP SERVER TRANSFER_PROTOCOL | | he application-specific protocol used to
- - transfer files to and from this server.
ENV.APP SERVER_TRANSFER_PROTOCOL_ | The visible value of the server transfer
' MEANING protocol.
ENV APP SERVER BASE PATH The application-specific base (root) path of
- - the server.
The application-specific password
ENV APP SERVER PASSWORD Mercury IT Governance Cente.r uses to' log
- on to or access the server. This value is
encrypted.
The application-specific username
ENV.APP SERVER_USERNAME Mercury IT Governance Center uses to log
on to or access the server.
WORKBENCH_ENVIRONMENT _ The URL of the environment window in the
ENV.APP
URL Workbench.

152 Commands, Tokens, and Validations Guide and Reference




Appendix A: Tokens

Environment > Env > Env Tokens

Table A-11. Environment > Env > Env tokens (page 1 of 3)

ENV.ENV CLIENT_BASE_PATH The base (root) path of the client.
ENV.ENV CLIENT_CON_PROTOCOL The protocol used to connect to this client.
ENV ENV CLIENT_CON_PROTOCOL _ The visible value of the client connect
’ MEANING protocol.
ENV ENV CLIENT NAME The DNS name or IP address of the client
- computer.
ENV.ENV CLIENT_NT_DOMAIN The domain name for the client, if the
- - client machine is running Windows.
ENV.ENV CLIENT ENABLED FLAG The_ﬂag that |nd|c_ates whefcher the client
- - portion of the environment is enabled.
The password Mercury IT Governance
ENV.ENV CLIENT_PASSWORD Center uses to log on to or access the
client. This value is encrypted.
ENV.ENV CLIENT_SQL_COMMAND The default command line SQL*Plus
command name.
ENV.ENV CLIENT TYPE CODE The v_alldatlon value code of the client
- - machine type.
The username Mercury IT Governance
ENV.ENV CLIENT_USERNAME Center uses to log on to or access the
client.
ENV.ENV CLIENT_TRANSFER_PROTOCOL | | he protocol used to transfer files to or
- - from this client.
ENV.ENV CLIENT_TRANSFER_PROTOCOL_ | The visible value of the client transfer
) MEANING protocol.
ENV ENV CREATED BY The_ ID of the user who created the
- environment.
ENV.ENV CREATION_DATE The date the environment was created.
The flag that indicates whether the
ENV.ENV DATABASE_ENABLED_ FLAG database portion of the environment is
enabled.
ENV ENV DATABASE_TYPE ;I;/r;eevalldatlon value code of the database

Environment Tokens 153



Appendix A: Tokens

Table A-11. Environment > Env > Env tokens (page 2 of 3)

For Oracle database type, the connect
ENV.ENV DB_CONNECT_STRING string used to access the database from
the command line.
ENV ENV DB JDBC URL The _JDBC_ URL used in Oracle 9i RAC
- - configuration.
For Oracle database type, the database
ENV.ENV DB LINK link from the Mercury IT G.overnanc’:e
- Center schema to the environment’s
database schema.
ENV ENV DB NAME The DNS name or IP address of the
- database server.
For Oracle database type, the SID of the
ENV.ENV DB_ORACLE_SID database (often the same as the DB_
CONNECT_STRING).
The password Mercury IT Governance
ENV.ENV DB_PASSWORD Center uses to log on to or access the
database. This value is encrypted.
For Oracle database type, the port number
ENV.ENV DB_PORT_NUMBER on which SQL*Net is listening for remote
SQL connections on the database server.
The username or schema name Mercury
ENV.ENV DB_USERNAME IT Governance Center uses to log on to or
access the database.
ENV.ENV DB_VERSION The database version (such as 8.1.7).
ENV.ENV DESCRIPTION The environment description.
The flag that Indicates whether the
ENENV.ENV ENABLED_FLAG environment is enabled and available for
use in workflows.
The ID of the environment in the table
ENV.ENV ENVIRONMENT _ID KENV_ENVIRONMENTS.
ENV.ENV ENVIRONMENT_NAME The environment name.
ENV.ENV LAST UPDATED BY The_ ID of the user who last updated the
- - environment.
ENV.ENV LAST UPDATE DATE The date the environment was last
- - updated.
ENV.ENV LOCATION The environment location.

154 Commands, Tokens, and Validations Guide and Reference




Appendix A: Tokens

Table A-11. Environment > Env > Env tokens (page 3 of 3)

For a Microsoft SQL Server database
ENV.ENV MSSQL_DB_NAME type, the database name used to access
the database from the command line.
ENV.ENV SERVER_BASE_ PATH The base (root) path of the server.
ENV.ENV SERVER CON PROTOCOL The protocol used to connect to this
- - server.
ENV ENV SERVER_CON_PROTOCOL_ The visible value of the server connection
’ MEANING protocol.
ENV ENV SERVER_SQL_COMMAND The default command line SQL*Plus
command name.
ENV.ENV SERVER TRANSFER PROTOCOL The pr(?tocol used to transfer files to or
— - from this server.
ENV ENV SERVER_TRANSFER_PROTOCOL_ | The visible value of the server transfer
’ MEANING protocol.
ENV ENV SERVER ENABLED FLAG The_ﬂag that |nd|c_ates whef(her the server
- - portion of the environment is enabled.
ENV.ENV SERVER NAME The DNS name or IP address of the server
— computer.
ENV ENV SERVER NT DOMAIN The domain name f0|f the_server, if the
- - server machine type is Windows.
The password Mercury IT Governance
ENV.ENV SERVER_PASSWORD Center uses to log on to or access the
server. This value is encrypted.
ENV.ENV SERVER TYPE CODE The vglldatlon value code of the server
- - machine type.
The username Mercury IT Governance
ENV.ENV SERVER_USERNAME Center uses to log on to or access the
server.
ENV.ENV WORKBENCH_ENVIRONMENT _ URL to access the Environment window
’ URL for this environment in the Workbench.

Environment Tokens 155



Appendix A: Tokens

Environment > Source Env Tokens

Table A-12. Environment > Source Env tokens (page 1 of 3)

SOURCE_ENV CLIENT_BASE_PATH The base (root) path of the client.
SOURCE_ENV CLIENT_CON_PROTOCOL The protocol used to connect to this client.
CLIENT_CON_PROTOCOL_ The visible value of the client connect
SOURCE_ENV MEANING protocol.
SOURCE ENV CLIENT NAME The DNS name or IP address of the client
- - computer.
SOURCE_ENV | CLIENT_NT_DOMAIN The domain name for the client, if the
- - - client machine is running Windows.
SOURCE ENV CLIENT ENABLED FLAG The_flag that |nd|c_ates whef(her the client
- - - portion of the environment is enabled.
The password Mercury IT Governance
SOURCE_ENV CLIENT_PASSWORD Center uses to log on to or access the
client. This value is encrypted.
SOURCE_ENV CLIENT_SQL_COMMAND The default command line SQL*Plus
command name.
SOURCE ENV CLIENT TYPE CODE The v_alldatlon value code of the client
- - - machine type.
The username Mercury IT Governance
SOURCE_ENV CLIENT_USERNAME Center uses to log on to or access the
client.
SOURCE_ENV | CLIENT TRANSFER PROTOCOL | 1€ protocol used o transfer files to or
- - - from this client.
SOURCE ENV CLIENT_TRANSFER_PROTOCOL_ | The visible value of the client transfer
- MEANING protocol.
SOURCE ENV CREATED BY The_ ID of the user who created the
- - environment.
SOURCE_ENV CREATION_DATE The date the environment was created.
The flag that indicates whether the
SOURCE_ENV DATABASE_ENABLED_ FLAG database portion of the environment is
enabled.
SOURCE_ENV DATABASE_TYPE ;I;/r;eevalldatlon value code of the database
156  Commands, Tokens, and Validations Guide and Reference




Appendix A: Tokens

Table A-12. Environment > Source Env tokens (page 2 of 3)

For Oracle database type, the connect
SOURCE_ENV DB_CONNECT_STRING string used to access the database from
the command line.
SOURCE ENV DB JDBC URL The _JDBC_ URL used in Oracle 9i RAC
- - - configuration.
For Oracle database type, the database
SOURCE ENV DB LINK link from the Mercury IT G.overnan(’:e
- - Center schema to the environment’s
database schema.
SOURCE ENV DB NAME The DNS name or IP address of the
- - database server.
For Oracle database type, the SID of the
SOURCE_ENV DB_ORACLE_SID database (often the same as the DB_
CONNECT_STRING).
The password Mercury IT Governance
SOURCE_ENV DB_PASSWORD Center uses to log on to or access the
database. This value is encrypted.
For Oracle database type, the port number
SOURCE_ENV DB_PORT_NUMBER on which SQL*Net is listening for remote
SQL connections on the database server.
The username or schema name Mercury
SOURCE_ENV DB_USERNAME IT Governance Center uses to log on to or
access the database.
SOURCE_ENV DB_VERSION The database version (such as 8.1.7).
SOURCE_ENV DESCRIPTION The environment description.
The flag that Indicates whether the
SOURCE_ENV ENABLED_ FLAG environment is enabled and available for
use in workflows.
The ID of the environment in the table
SOURCE_ENV ENVIRONMENT_ID KENV_ENVIRONMENTS.
SOURCE_ENV ENVIRONMENT_NAME The environment name.
SOURCE ENV LAST UPDATED BY The_ ID of the user who last updated the
- - - environment.
SOURCE ENV LAST UPDATE DATE The date the environment was last
- - - updated.
SOURCE_ENV LOCATION The environment location.

Environment Tokens 157




Appendix A: Tokens

Table A-12. Environment > Source Env tokens (page 3 of 3)

For a Microsoft SQL Server database
SOURCE_ENV MSSQL_DB_NAME type, the database name used to access
the database from the command line.
SOURCE_ENV SERVER_BASE_PATH The base (root) path of the server.
SOURCE_ENV | SERVER_CON_PROTOCOL lgr‘f/g:omo' used to connect to this
SERVER_CON_PROTOCOL_ The visible value of the server connection
SOURCE_ENV MEANING protocol.
SOURCE_ENV SERVER_SQL_COMMAND The default command line SQL*Plus
command name.
SOURCE_ENV | SERVER_TRANSFER_PROTOCOL | /e Protocol used to transfer files to or
- — - from this server.
SOURCE ENV SERVER_TRANSFER_PROTOCOL_ | The visible value of the server transfer
- MEANING protocol.
SOURCE ENV SERVER ENABLED FLAG The_ﬂag that |nd|c_ates whef(her the server
- - - portion of the environment is enabled.
SOURCE ENV SERVER NAME The DNS name or IP address of the server
- - computer.
SOURCE ENV SERVER NT DOMAIN The domain name f0|f the_server, if the
- - - server machine type is Windows.
The password Mercury IT Governance
SOURCE_ENV SERVER_PASSWORD Center uses to log on to or access the
server. This value is encrypted.
SOURCE ENV SERVER TYPE CODE The vglldatlon value code of the server
- — - machine type.
The username Mercury IT Governance
SOURCE_ENV SERVER_USERNAME Center uses to log on to or access the
server.
WORKBENCH_ENVIRONMENT _ URL to access the Environment window
SOURCE_ENV URL for this environment in the Workbench.

158

Commands, Tokens, and Validations Guide and Reference




Appendix A: Tokens

Environment > Source Env > App Tokens

Table A-13. Environment > Source Env > App tokens (page 1 of 3)

SOURCE_ _—
ENV.APP APP_CODE The short name (code) for the application.
SOURCE_ - _—
ENV APP APP_NAME The descriptive name for the application.
SOURCE _ The application-specific base (root) path of
ENV.APP CLIENT_BASE_PATH the client.
The application-specific password
SOURCE _ Mercury IT Governance Center uses to log
ENV.APP CLIENT_PASSWORD on to or access the client. This value is
encrypted.
SOURCE The application-specific username
— CLIENT_USERNAME Mercury IT Governance Center uses to log
ENV.APP ;
on to or access the client.
SOURCE _ The application-specific protocol used to
ENV.APP CLIENT_CON_PROTOCOL connect to this client.
SOURCE _ CLIENT_CON_PROTOCOL_ The visible value of the client connection
ENV.APP MEANING protocol.
SOURCE _ The application-specific protocol used to
ENV.APP CLIENT_TRANSFER_PROTOCOL transfer files to and from this client.
SOURCE _ CLIENT_TRANSFER_PROTOCOL_ | The visible value of the client transfer
ENV.APP MEANING protocol.
SOURCE _ The ID of the user who created the
ENV.APP CREATED_BY application.
SOURCE_ _—
ENV APP CREATION_DATE The date the application was created.
For Oracle database type, the
SOURCE _ DB LINK application-specific database link from the
ENV.APP - Mercury IT Governance Center schema to
the database schema for the environment.
For a Microsoft SQL Server database, the
SOURCE _ DB NAME application-specific database name used
ENV.APP - to access the database from the command
line.

Environment Tokens 159



Appendix A: Tokens

Table A-13. Environment > Source Env > App tokens (page 2 of 3)

The application-specific password
SOURCE _ Mercury IT Governance Center uses to log
ENV.APP DB_PASSWORD on to or access the database. This value is
encrypted.
The application-specific username or
SOURCE_ schema name that Mercury IT
ENV.APP DB_USERNAME Governance Center uses to log on to or
access the database.
SOURCE_ _— -
ENV.APP DESCRIPTION The application description.
SOURCE The flag that indicates whether the
- ENABLED_FLAG application is enabled and available for
ENV.APP C .
selection in package lines.
SOURCE _ The ID of the application in the table
ENV.APP ENVIRONMENT_APP_ID KENV_ENVIRONMENT_APPS.
SOURCE _ The ID of the environment with which the
ENV.APP ENVIRONMENT_ID application is associated.
SOURCE _ The name of the environment with which
ENV.APP ENVIRONMENT_NAME the application is associated.
SOURCE _ The ID of the user who last updated the
ENV.APP LAST_UPDATED_BY application.
SOURCE_ C
ENV.APP LAST_UPDATE_DATE The date the application was last updated.
SOURCE _ The application-specific protocol used to
ENV.APP SERVER_CON_PROTOCOL connect to this server.
SOURCE _ SERVER_CON_PROTOCOL_ The visible value of the server connection
ENV.APP MEANING protocol.
SOURCE _ The application-specific protocol used to
ENV.APP SERVER_TRANSFER_PROTOCOL transfer files to and from this server.
SOURCE _ SERVER_TRANSFER_PROTOCOL_ | The visible value of the server transfer
ENV.APP MEANING protocol.
SOURCE _ The application-specific base (root) path of
ENV.APP SERVER_BASE_PATH the server.

160 Commands, Tokens, and Validations Guide and Reference




Appendix A: Tokens

Table A-13. Environment > Source Env > App tokens (page 3 of 3)

The application-specific password
SOURCE _ Mercury IT Governance Center uses to log
ENV.APP SERVER_PASSWORD on to or access the server. This value is
encrypted.
SOURCE The application-specific username
— SERVER_USERNAME Mercury IT Governance Center uses to log
ENV.APP
on to or access the server.
SOURCE _ WORKBENCH_ENVIRONMENT _ The URL of the environment window in the
ENV.APP URL Workbench.

Environment > Source Env > Env Tokens

Table A-14. Environment Source Env > Env tokens (page 1 of 4)

SOURCE_ .
ENV.ENV CLIENT_BASE_PATH The base (root) path of the client.
SOURCE_ L
ENV ENV CLIENT_CON_PROTOCOL The protocol used to connect to this client.
SOURCE _ CLIENT_CON_PROTOCOL_ The visible value of the client connect
ENV.ENV MEANING protocol.
SOURCE _ The DNS name or IP address of the client
ENV.ENV CLIENT_NAME computer.
SOURCE_ The domain name for the client, if the
ENV.ENV CLIENT_NT_DOMAIN client machine is running Windows.
SOURCE_ The flag that indicates whether the client
ENV.ENV CLIENT_ENABLED_FLAG portion of the environment is enabled.
SOURCE The password Mercury IT Governance
b CLIENT_PASSWORD Center uses to log on to or access the
ENV.ENV ) . X
client. This value is encrypted.
SOURCE_ The default command line SQL*Plus
ENV.ENV CLIENT_SQL_COMMAND command name.
SOURCE _ The validation value code of the client
ENV.ENV CLIENT_TYPE_CODE machine type.
SOURCE The username Mercury IT Governance
b CLIENT_USERNAME Center uses to log on to or access the
ENV.ENV client

Environment Tokens 161



Appendix A: Tokens

Table A-14. Environment Source Env > Env tokens (page 2 of 4)

SOURCE _ The protocol used to transfer files to or
ENV ENV CLIENT_TRANSFER_PROTOCOL from this client.
SOURCE _ CLIENT_TRANSFER_PROTOCOL_ | The visible value of the client transfer
ENV.ENV MEANING protocol.
SOURCE _ The ID of the user who created the
ENV.ENV CREATED_BY environment.
SOURCE_ .
ENV ENV CREATION_DATE The date the environment was created.
SOURCE The flag that indicates whether the
— DATABASE_ENABLED FLAG database portion of the environment is
ENV.ENV
enabled.
SOURCE _ The validation value code of the database
ENV ENV DATABASE_TYPE type.
SOURCE For Oracle database type, the connect
— DB_CONNECT_STRING string used to access the database from
ENV.ENV :
the command line.
SOURCE _ The JDBC URL used in Oracle 9i RAC
ENV.ENV DB_JDBC_URL configuration.
For Oracle database type, the database
SOURCE_ DB LINK link from the Mercury IT Governance
ENV.ENV - Center schema to the environment’s
database schema.
SOURCE _ The DNS name or IP address of the
ENV.ENV DB_NAME database server.
SOURCE For Oracle database type, the SID of the
ENV.ENV DB_ORACLE_SID database (often the same as the DB_
' CONNECT_STRING).
SOURCE The password Mercury IT Governance
p DB_PASSWORD Center uses to log on to or access the
ENV.ENV } .
database. This value is encrypted.
SOURCE For Oracle database type, the port number
— DB_PORT_NUMBER on which SQL*Net is listening for remote
ENV.ENV .
SQL connections on the database server.
SOURCE The username or schema name Mercury
— DB_USERNAME IT Governance Center uses to log on to or
ENV.ENV
access the database.

162 Commands, Tokens, and Validations Guide and Reference




Appendix A: Tokens

Table A-14. Environment Source Env > Env tokens (page 3 of 4)

SOURCE_ .
ENV ENV DB_VERSION The database version (such as 8.1.7).
SOURCE_ . -
ENV ENV DESCRIPTION The environment description.
SOURCE The flag that Indicates whether the

o ENABLED_FLAG environment is enabled and available for
ENV.ENV - .

use in workflows.

SOURCE _ The ID of the environment in the table
ENV.ENV ENVIRONMENT_ID KENV_ENVIRONMENTS.
SOURCE_ .
ENV ENV ENVIRONMENT_NAME The environment name.
SOURCE _ The ID of the user who last updated the
ENV.ENV LAST_UPDATED_BY environment.
SOURCE _ The date the environment was last
ENV ENV LAST_UPDATE_DATE updated.
SOURCE_ . .
ENV ENV LOCATION The environment location.
SOURCE For a Microsoft SQL Server database

— MSSQL_DB_NAME type, the database name used to access
ENV.ENV )

the database from the command line.

SOURCE_
ENV ENV SERVER_BASE_PATH The base (root) path of the server.
SOURCE _ SERVER CON PROTOCOL The protocol used to connect to this
ENV.ENV - - server.
SOURCE _ SERVER_CON_PROTOCOL_ The visible value of the server connection
ENV.ENV MEANING protocol.
SOURCE _ The default command line SQL*Plus
ENV.ENV SERVER_SQL_COMMAND command name.
SOURCE _ The protocol used to transfer files to or
ENV ENV SERVER_TRANSFER_PROTOCOL from this server.
SOURCE_ SERVER_TRANSFER_PROTOCOL_ | The visible value of the server transfer
ENV.ENV MEANING protocol.
SOURCE _ The flag that indicates whether the server
ENV.ENV SERVER_ENABLED_FLAG portion of the environment is enabled.
SOURCE _ The DNS name or IP address of the server
ENV.ENV SERVER_NAME computer.

Environment Tokens 163



Appendix A: Tokens

Table A-14. Environment Source Env > Env tokens (page 4 of 4)

SOURCE_ The domain name for the server, if the
ENV.ENV SERVER_NT_DOMAIN server machine type is Windows.
SOURCE The password Mercury IT Governance
- SERVER_PASSWORD Center uses to log on to or access the
ENV.ENV ; .
server. This value is encrypted.
SOURCE _ The validation value code of the server
ENV.ENV SERVER_TYPE_CODE machine type.
SOURCE The username Mercury IT Governance
ENV ENY SERVER_USERNAME Center uses to log on to or access the
server.
SOURCE _ WORKBENCH_ENVIRONMENT _ URL to access the Environment window
ENV.ENV URL for this environment in the Workbench.

Command Tokens

Table A-15. Command tokens

EXEC EXIT_CODE The exit code of a command execution.
EXEC OUTPUT The Iagt line of output from a command
execution.

The command execution tokens, [EXEC.OUTPUT] and [EXEC.EXIT CODE], can
be used in the following contexts:

m  Inside command step segments that use the ksc_connect and ksc_exit
special commands.

m  Immediately after command step segments that use the ksc_local exec
special command.

164 Commands, Tokens, and Validations Guide and Reference



Appendix A: Tokens

For example, the following code segment demonstrates how to use both of
these command execution tokens to retrieve the output and exit code
immediately upon execution. The tokens are used immediately after the ksc_
local exec special command.

ksc local exec pwd

ksc set MY PATH="[EXEC.OUTPUT]"

ksc_set MY EXIT CODE="[EXEC.EXIT CODE]"
ksc local exec echo '[MY PATH]/bin'

ksc _local exec echo '[MY EXIT CODE]'

Financial Benefit Tokens

Table A-16. Financial Benefit tokens (page 1 of 2)

FBEN ACTIVE_FLAG The active flag of the financial benefit.
FBEN BENEFIT_ID The ID of the financial benefit.
FBEN BENEFIT IS_FOR_ENTITY NAME | | he entity name to which the financial
- = - - benefit is linked.
The ID of the asset, project, or proposal to
FBEN BENEFIT_IS_FOR_ID which the financial benefit is linked.
The name of the asset, project, or
FBEN BENEFIT_IS_FOR_NAME proposal to which the financial benefit is
linked.
FBEN BENEFIT_NAME The name of the financial benefit.
FBEN BENEFIT_URL The URL to view the financial benefit.
FBEN CREATED BY T_he u§ername_ofthe user who created the
- financial benefit.
FBEN CREATION DATE The date when the financial benefit was
- created.
FBEN DESCRIPTION The description of the financial benefit.
FBEN END_PERIOD The end period of the financial benefit.
FBEN INITIATION_REQ The |r?|t|at|on request ID of the financial
benefit.
FBEN PERIOD_SIZE The period size of the financial benefit.

Financial Benefit Tokens 165



Appendix A: Tokens

Table A-16. Financial Benefit tokens (page 2 of 2)

FBEN REGION The re_:gion associated with the financial
benefit.

FBEN START_PERIOD The start period of the financial benefit.

FBEN STATUS_CODE The status code of the financial benefit.

FBEN STATUS_NAME The status name of the financial benefit.

Notification Tokens

Table A-17. Notification tokens

NOTIE CC USERS Thg _Ilst _of users on the Cc: header of the
- notification.
NOTIF CHANGED FIELD Thg f|elq that changed to trigger a
- notification.
The exception rule that was met by the
NOTIF EXCEPTION_RULE task exception that caused the notification
to be sent.
NOTIE EXCEPTION RULE NAME The name of th_e_ tas_k exception that
- - caused the notification to be sent.
NOTIE EXCEPTION VIOLATION The specific vm_)llatlo.n of the exception that
- caused the notification to be sent.
NOTIF NEW_VALUE The new value of the changed field.
NOTIF NOTIFICATION_DETAILS Notification details for linked tokens.
NOTIF OLD_VALUE The previous value of the changed field.
NOTIE TO USERS Thg _Ilst _of users on the To: header of the
- notification.
166 Commands, Tokens, and Validations Guide and Reference



Appendix A: Tokens

Organization Unit Tokens

Table A-18. Organization Unit tokens

ORG BUDGET_ID The ID of the budget linked to this org unit.

ORG BUDGET NAME 'lIJ':IT name of the budget linked to this org
The lookup code of the org unit category

ORG CATEGORY_CODE (lookup type = RSC - org unit Category)

ORG CATEGORY_NAME The category name of the org unit.

ORG CREATED_BY 'lIJ':IT ID of the user that created the org

ORG CREATED_BY USERNAME Irr:let: name of the user that created the org

ORG CREATION_DATE The date that the org unit was created.
The lookup code of the org unit

ORG DEPARTMENT_CODE department (lookup type = DEPT)

ORG DEPARTMENT_NAME The department name of the org unit.
The lookup code of the org unit location

ORG LOCATION_CODE (lookup type = RSC - Location)

ORG LOCATION_NAME The location name of the org unit.

ORG MANAGER _ID The ID of the org unit manager.

ORG MANAGER_USERNAME The name of the org unit manager.
The org unit ID (defined in table KRSC_

ORG ORG_UNIT_ID ORG_UNITS).

ORG ORG_UNIT_NAME The org unit name.

ORG PARENT_ORG_UNIT_ID The parent org unit ID.

ORG PARENT_ORG_UNIT_NAME The parent org unit name.

ORG REGIONAL CALENDAR The name of the regional calendar for the

- org unit.

ORG REGION The region associated with the Org Unit.
The lookup code of the org unit category

ORG TYPE_CODE (lookup type = RSC - org unit Category)

ORG TYPE_NAME The type name of the org unit.

Organization Unit Tokens 167



Appendix A: Tokens

Package Tokens

Table A-19. Package tokens (page 1 of 3)

PKG ASSIGNED TO EMAIL The emal_l addrgss of the user to whom the
- = package is assigned.
PKG ASSIGNED TO GROUP ID The ID of.the s_ecurlty group to which the
- = - package is assigned.
PKG ASSIGNED TO GROUP NAME The_ security group to which the package is
- - - assigned.
PKG ASSIGNED TO USERNAME The name of th_e user to whom the
- = package is assigned.
PKG ASSIGNED TO USER ID Thg ID of the user to whom the package is
- - - assigned.
PKG CREATED BY The ID of the user who created the
- package.
PKG CREATED BY EMAIL The email address of the user who created
- - the package.
The Mercury IT Governance Center
PKG CREATED_BY_USERNAME username of the user who created the
package.
PKG CREATION_DATE The date the package was created.
PKG DESCRIPTION The package description.
The package ID in the table KDLV _
PKG D PACKAGES.
PKG LAST UPDATED BY The ID of the user who last updated the
- - package.
PKG LAST UPDATED BY EMAIL The email address of the user who last
- - = updated the package.
The Mercury IT Governance Center
PKG LAST_UPDATED_BY_USERNAME username of the user who last updated the
package.
PKG LAST_UPDATE_DATE The date the package was last updated.
PKG MOST_RECENT_NOTE_AUTHOR _ First and last names of the author of the
FULL_NAME most recent note.
PKG MOST_RECENT_NOTE_AUTHOR_ | Username of the author of the most recent
USERNAME note.
168 Commands, Tokens, and Validations Guide and Reference




Appendix A: Tokens

Table A-19. Package tokens (page 2 of 3)

MOST_RECENT_NOTE_
PKG AUTHORED_DATE Date of the most recent note.
PKG MOST_RECENT_NOTE_TEXT Text of the most recent note.
PKG NOTES All notes for the package.
PKG NUMBER The package name/number.
PKG PACKAGE_GROUP_CODE The package group code.
PKG PACKAGE_GROUP_NAME The package group name.
PKG PARENT REQUEST ID The ID of _the reguest that created this
package (if applicable).
PKG PRIORITY The package priority.
PKG PRIORITY CODE The yalldatlon value code for the package
- priority.
PKG PRIORITY NAME The val|dat|_oq value meaning of the
- package priority.
PKG PRIORITY_SEQ The package priority sequence.
PKG PROJECT CODE The v_alldatlon value code of the work plan
- to which the package belongs.
PKG PROJECT NAME The vallda_tlon value meaning of the work
plan to which the package belongs.
PKG SUBMIT DATE The d_ate on which the package was
- submitted.
PKG REQUESTED BY EMAIL The email address of the user who
- - requested the package.
The Mercury IT Governance Center
PKG REQUESTED_BY_USERNAME username of the user who requested the
package.
PKG REQUESTED_BY USER ID The ID of the user who requested the
package.
The ID of the package in the table KDLV _
PKG PACKAGE_ID PACKAGES.
A standard hyperlink to the package in
PKG PACKAGE_NO_LINK HTML-formatted notifications.
PKG PACKAGE TYPE The validation value meaning of the
- package type.

Package Tokens 169



Appendix A: Tokens

Table A-19. Package tokens (page 3 of 3)

PKG PACKAGE_TYPE_CODE tTyr;valldanon value code for the package
PKG PACKAGE URL The URL of the package in the standard
- interface.
PKG PERCENT_COMPLETE Percent complete of the package.
PKG RUN_GROUP The package run group.
PKG STATUS The validation value meaning for the
package status.
PKG STATUS CODE The validation value code for the package
- status.
PKG WORKBENCH_PACKAGE_NO _LINK | The package URL in Workbench.
PKG WORKBENCH_PACKAGE_URL The package screen URL in Workbench.
PKG WORKELOW 1D The ID of the workflow that the package
- uses.
PKG WORKELOW NAME The name of the workflow that the
- package uses.

Package > Package Line Tokens
Table A-20. Package > Package Line tokens (page 1 of 2)

PKG. PKGL APP_CODE The application code for the package line.

The name of the application for the

PKG. PKGL APP_NAME :
- package line.

The ID of the package line in the table

PKG. PKGL D KDLV_PACKAGE_LINES.

PKG. PKGL OBJECT CATEGORY CODE The validation value c_:ode of the object
- - type category of the line.

PKG. PKGL OBJECT CATEGORY NAME The validation value meaning of the object
- - type category of the line.

PKG. PKGL OBJECT_NAME The object name of the package line.

170 Commands, Tokens, and Validations Guide and Reference



Appendix A: Tokens

Table A-20. Package > Package Line tokens (page 2 of 2)

The value of the object revision column (if

PKG. PKGL OBJECT_REVISION any) as specified by the object type of the
package line.

PKG. PKGL OBJECT_TYPE The object type of the package line.

PKG. PKGL OBJECT TYPE_ID I'Ii':ee ID of the object type of the package

PKG. PKGL PACKAGE_LINE_ID The ID of the package line.

PKG. PKGL SEQ The sequence of the package line (relative
to other lines in the same package).

PKG. PKGL WORKBENCH_OBJECT TYPE_URL | URL to access the object type window for

this object type in the Workbench.

Package > Pending Reference Tokens

Table A-21. Package > Pending Reference tokens (page 1 of 2)

PKG.PEND D The ID of the entity that is being blocked
by the package.

The name of the entity that is being

PKG.PEND NAME blocked by the package.

Detail information for the entity that is

PKG.PEND DETAIL being blocked by the package.

The description of the entity that is being

PKG.PEND DESCRIPTION blocked by the package.

The ID of the state or code of the status of
PKG.PEND STATUS ID the entity that is being blocked by the
package.

The name of the status (or state) of the
PKG.PEND STATUS_NAME entity that is being blocked by the
package.

The name of the state of the entity of the
PKG.PEND STATE request that is being blocked by the
package.

Package Tokens 171



Appendix A: Tokens

PKG.PEND

Table A-21. Package > Pending Reference tokens (page 2 of 2)

ASSIGNED_TO_USERNAME

The name of the assigned user (or
resource) of the entity that is being
blocked by the package.

PKG.PEND

ASSIGNED_TO_USER_ID

The username of the assigned user (or
resource) of the entity that is being
blocked by the package.

PKG.PEND

ASSIGNED_TO_GROUP_NAME

The name of the assigned group (or
resource group) of the entity that is being
blocked by the package.

PKG.PEND

ASSIGNED_TO_GROUP_ID

The ID of the assigned group (or resource
group) of the entity that is being blocked
by the package.

PKG.PEND

RESOURCE_USERNAME

The name of the resource associated with
the entity that is being blocked by the
package.

PKG.PEND

RESOURCE_ID

The username of the assigned user (or
resource) associated with the entity that is
being blocked by the package.

PKG.PEND

RESOURCE_GROUP_NAME

The name of the assigned group (or
resource group) associated with the entity
that is being blocked by the package.

PKG.PEND

RESOURCE_GROUP_ID

The ID of the assigned group (or resource
group) associated with the entity that is
being blocked by the package.

PKG.PEND

PERCENT_COMPLETE

The current percent complete value
associated with the entity that is being
blocked by the package.

PKG.PEND

ENTITY_TYPE_ID

The ID of the type of entity that is being
blocked by the package.

PKG.PEND

ENTITY_TYPE_NAME

The name of the type of entity that is being
blocked by the package.

172 Commands, Tokens, and Validations Guide and Reference




Appendix A: Tokens

Package Line Tokens

Table A-22. Package Line tokens

PKGL APP_CODE The application code for the package line.
PKGL APP NAME The name of the application for the
- package line.
The ID of the package line in the table

PKGL D KDLV_PACKAGE_LINES.
PKGL OBJECT CATEGORY CODE The validation value (_:ode of the object

- - type category of the line.
PKGL OBJECT CATEGORY NAME The validation value meaning of the object

- - type category of the line.
PKGL OBJECT_NAME The object name of the package line.

The value of the object revision column (if
PKG OBJECT_REVISION any) as specified by the object type of the
package line.

PKGL OBJECT_TYPE The object type of the package line.
PKGL OBJECT_TYPE_ID J::. ID of the object type of the package
PKGL PACKAGE_LINE_ID The ID of the package line.

e peence ot packege e rlatve
PKGL WORKBENCH_OBJECT TYPE_URL URL to access the object type window for

this object type in the Workbench.

Package Line Tokens 173



Appendix A: Tokens

Program Tokens

Table A-23. Program tokens

The ID of the user that created the

PRG CREATED_BY
- program.
PRG CREATED BY USERNAME The name of the user that created the
- - program.
PRG LAST UPDATED BY The ID of the user that last updated the
- - program.
PRG LAST UPDATED_BY USERNAME The name of the user that last updated the

program.

PRG MOST_RECENT_NOTE_AUTHOR__ | First and last name of the author of the

FULL_NAME most recent (chronological) note.

PRG MOST_RECENT_NOTE_AUTHOR_ | Username of the author of the most recent
USERNAME (chronological) note.

PRG MOST_RECENT_NOTE_ Date of the most recent (chronological)
AUTHORED_DATE note.

PRG MOST RECENT NOTE_TEXT 'rll'(e):(et of the most recent (chronological)

PRG PROGRAM_MANAGER The ID(s) of the user(s) assigned to

manage this program.

Project Tokens

Table A-24. Project tokens (page 1 of 4)

PRJ ACTUAL DURATION The actual duration of the work plan.

PRJ ACTUAL_EFFORT 'Fl)'lr;en actual effort associated with the work
PRJ ACTUAL_FINISH_DATE The actual finish date of the work plan.
PRJ ACTUAL_START_DATE The actual start date of the work plan.

The ID of the budget linked to the work

PRJ BUDGET_ID
- plan.

174 Commands, Tokens, and Validations Guide and Reference



Appendix A: Tokens

Table A-24. Project tokens (page 2 of 4)

PRJ BUDGET NAME ;r; name of the budget linked to the work
PR CONFIDENCE CODE The code of the confidence value entered
- by the user.
PRJ CONFIDENCE NAME The name of the confidence value entered
- by the user.
PRJ CREATED_BY The user who created the work plan.
PRJ CREATED BY EMAIL The email address of the user who created
- - the work plan.
PRJ CREATED BY USERNAME The username of the person who created
- - the work plan.
PRJ CREATION_DATE The creation date of the work plan.
PRJ DEPARTMENT CODE The code of the department value entered
- by the user.
PRJ DEPARTMENT NAME The name of the department value entered
- by the user.
PRJ DESCRIPTION The description of the work plan.
PR ESTIMATED_REMAINING _ The estimated remaining duration of the
DURATION work plan.
PRJ ESTIMATED REMAINING EFFORT The estimated remaining effort involved in
- - the work plan.
PRJ ESTIMATED_FINISH_DATE The estimated finish date of the work plan.
PRJ LAST UPDATE DATE The date on which the work plan was last
- - updated.
PRJ LAST_UPDATED_BY The last person to update the work plan.
PRJ LAST UPDATED BY EMAIL The email address of the last person to
- - - update the project plan.
PRJ LAST UPDATED BY USERNAME The username of the last person to update
- - - the work plan.
PRJ MASTER_PROJECT_ID The ID of the master project.
PRJ MASTER_PROJECT_NAME The name of the master project.
PRJ MOST_RECENT_NOTE_AUTHOR _ First and last name of the author of the
FULL_NAME most recent note.

Project Tokens 175




Appendix A: Tokens

Table A-24. Project tokens (page 3 of 4)

PRJ MOST_RECENT_NOTE_AUTHOR_ | Username of the author of the most recent
USERNAME note.

MOST_RECENT_NOTE_

PRJ AUTHORED_DATE Date of the most recent note.

PRJ MOST_RECENT_NOTE_TEXT Text of the most recent note.

Type of the most recent note (USER or

PRJ MOST_RECENT_NOTE_TYPE FIELD CHANGE).

PR MOST_RECENT_USER_NOTE_ First and last name of the author of the
AUTHOR_FULL_NAME most recent user note.

PRJ MOST_RECENT_USER_NOTE_ Username of the author of the most recent
AUTHOR_USERNAME user note.
MOST_RECENT_USER_NOTE_

PRJ AUTHORED_DATE Date of the most recent user note.

PRJ MOST_RECENT_USER_NOTE_ Text of the most recent user note.

TEXT

PRJ PARENT_PROJECT_ID The ID of the parent work plan.

PRJ PARENT_PROJECT_NAME The name of the parent work plan.

PRJ PERCENT_COMPLETE The percent of the work plan completed.

PRJ PRIORITY The priority of the work plan.

PRJ PROGRAM ID The deliminted I!st of program |ds_of all

- programs associated with the project.

PRJ PROGRAM ID MANAGER The deliminted |IlSt of manager |d§ of all

- = programs associated with the project.

PRJ PROGRAM_ID_MANAGER _ The deliminted list of manager usernames
USERNAME of all programs associated with the project.

PR PROGRAM NAME The deliminted I|§t of program names of all

- programs associated with the project.
The number that uniquely identifies the

PRJ PROJECT_ID work plan (same as PROJECT_NUMBER)

in the table KDRV_PROJECTS.

PRJ PROJECT_MANAGER The manager of the work plan.

PRJ PROJECT_MANAGER_EMAIL The email address of the project manager.

PRJ PROJECT_MANAGER_USERNAME | The username of the project manager.

176 Commands, Tokens, and Validations Guide and Reference



Appendix A: Tokens

Table A-24. Project tokens (page 4 of 4)

PRJ PROJECT_NAME The work plan name.
A standard hyperlink to the work plan in
PRJ PROJECT_NAME_LINK HTML-formatted notifications.
The number that uniquely identifies the
PRJ PROJECT_NUMBER work plan (same as PROJECT_ID).
The work plan path. This is a hierarchy of
PRJ PROJECT_PATH parent work plans that contain this work
plan.
PRJ PROJECT_REQUEST_ID The request ID for this project.
PRJ PROJECT STAKEHOLDER The deliminted list of user ids of the project
- stakeholders.
PR PROJECT STAKEHOLDER EMAIL The deliminted list of emails of the project
- - stakeholders.
PR PROJECT_STAKEHOLDER _ The deliminted list of usernames of the
USERNAME project stakeholders.
PRJ PROJECT_STATE The work plan state.
PRJ PROJECT TEMPLATE The name of t!’le project template used to
- create the project plan.
PR PROJECT TYPE CODE Returns TASK for tasks and PROJECT for
- - work plans.
PRJ PROJECT URL The URL for the Project Overview page of
- the work plan.
PR REGIONAL CALENDAR The name of the regional calendar for the
- work plan
PRJ SCHEDULED_EFFORT ;lr:] scheduled effort defined in the work
PRJ SCHEDULED_DURATION The scheduled duration for the work plan.
PRJ SCHEDULED_FINISH_DATE ;lr:]ﬁmSh date scheduled for the work
PRJ SCHEDULED START_DATE The start date scheduled for the work plan.
PRJ SUMMARY_CONDITION The summary condition of the work plan.
PRJ WORKBENCH PROJECT URL The URL used to access this work plan in
- - Workbench.

Project Tokens 177



Appendix A: Tokens

Project Detail Tokens

Table A-25. Project Detail tokens

The project detail ID of the work plan in the
PRJD PROJECT_DETAIL_ID table KDRV_PROJECTS.

The project ID of the work plan in the table
PRJD PROJECT_ID KDRV_PROJECTS.

Parameters are accessible with this prefix (similar to request detail):

[PRJD.P.CUSOM TOKEN] .

Release Tokens

Table A-26. Release tokens (page 1 of 2)

The ID of the release in the KREL _
REL RELEASE_ID RELEASES table.
REL RELEASE_NAME The release name.
REL RELEASE_STATUS The release status.
REL CREATED BY The ID of the user who created the
- release.
The Mercury IT Governance Center
REL CREATED_BY_USERNAME username of the user who created the
release.
REL LAST UPDATED BY The ID of the user who last updated the
- - release.
The Mercury IT Governance Center
REL LAST _UPDATED BY_ USERNAME username of the user who last updated the
release.
REL LAST UPDATE DATE The date on which the release was last
- - updated.
REL MOST_RECENT_NOTE_AUTHOR_ | First and last name of the author of the
FULL_NAME most recent note.
178 Commands, Tokens, and Validations Guide and Reference



Appendix A: Tokens

Table A-26. Release tokens (page 2 of 2)

REL MOST_RECENT_NOTE_AUTHOR_ | Username of the author of the most recent
USERNAME note.
MOST_RECENT_NOTE_
REL AUTHORED_DATE Date of the most recent note.
REL MOST_RECENT_NOTE_TEXT Text of the most recent note.
REL RELEASE MANAGER The I_Vlercu_ry IT Governance Center user
- who is designated the release manager.
REL RELEASE TEAM The group of Mercu_ry IT G_overnance
- Center users associated with the release.
REL RELEASE GROUP The high-level categorization of the
- release.
REL DESCRIPTION The release description.
REL NOTES The notes contained within the release.

Release > Distribution Tokens

Table A-27. Release > Distribution tokens (page 1 of 2)

REL DIST CREATED BY T_he _use_r ID of the user that created the
- distribution.
REL DIST CREATE BE USERNAME T.he .use.rname of the user that created the
- - distribution.
REL.DIST DESCRIPTION The description of the release.
REL DIST DISTRIBUTION ID The internal identifier of the distribution for
- the release.
REL DIST DISTRIBUTION NAME The name of the distribution for the
- release.
REL DIST DISTRIBUTION STATUS The status of the distribution for the
- release.
REL.DIST FEEDBACK_FLAG The feedback flag for the release.
REL.DIST FEEDBACK_VALUE The feedback value for the release.
REL DIST LAST UPDATED BY The user ID_ of the user that last updated
- - the distribution.

Release Tokens 179



Appendix A: Tokens

Table A-27. Release > Distribution tokens (page 2 of 2)

REL.DIST LAST_UPDATED_BY USERNAME Iggafzgrazg?s?;gt‘;;‘;er that last
REL.DIST LAST_UPDATE_DATE The last update date of the distribution.
REL.DIST RELEASE_ID The internal identifier of the release.
REL.DIST RELEASE_NAME The name of the release.

REL.DIST WORKFLOW The workflow assigned to the release.

Request Tokens

Table A-28. Request tokens (page 1 of 4)

The validation value code for the

REQ APPLICATION_CODE application to which the request is
assigned.
The validation value meaning of the

REQ APPLICATION_NAME application to which the request is
assigned.

REQ ASSIGNED_TO_EMAIL The ema_ul address of the user to whom the
request is assigned.

REQ ASSIGNED TO GROUP ID The ID qf the §ecur|ty group to which the

- - - request is assigned.

REQ ASSIGNED_TO_GROUP_NAME The name o_f the s_ecunty group to which
the request is assigned.
The Mercury IT Governance Center

REQ ASSIGNED_TO_USERNAME username of the user to whom the request
is assigned.

REQ ASSIGNED_TO_NAME The full name of the assigned user.

REQ ASSIGNED_TO_USER_ID The_ ID of the user to whom the request is
assigned.

REQ COMPANY The company employing the user who
created the request.

180 Commands, Tokens, and Validations Guide and Reference



Appendix A: Tokens

Table A-28. Request tokens (page 2 of 4)

REQ COMPANY_NAME The name of the company employing the
user that created the request.
REQ CONTACT EMAIL The email address of the contact for the
request.
REQ CONTACT NAME The full name of the contact for the
- request.
REQ CONTACT_PHONE_NUMBER The phone number of the contact for the
request.
REQ CREATED_BY The ID of the user who created the
request.
REQ CREATED BY EMAIL The email address of the user who created
- - the request.
REQ CREATED_BY_NAME The full name of the created by user.
The Mercury IT Governance Center
REQ CREATED_BY_USERNAME username of the user who last updated the
request.
REQ CREATION DATE The date on which the request was
- created.
REQ DEPARTMENT CODE The validation value code of the
department for the request.
REQ DEPARTMENT NAME The validation value meaning of the
department for the request.
REQ DESCRIPTION The request description.
REQ LAST UPDATED_BY The ID of the user who last updated the
request.
REQ LAST UPDATED BY EMAIL The email address of the user who last
updated the request.
The Mercury IT Governance Center
REQ LAST_UPDATED_BY_USERNAME username of the user who last updated the
request.
REQ LAST UPDATE_DATE The date on which the request was last
updated.
REQ MOST_RECENT_NOTE_AUTHOR _ First and last name of the author of the
FULL_NAME most recent note.

Request Tokens 181



Appendix A: Tokens

Table A-28. Request tokens (page 3 of 4)

REQ MOST_RECENT_NOTE_AUTHOR_ | Username of the author of the most recent
USERNAME note.

MOST_RECENT_NOTE_

REQ AUTHORED_DATE Date of the most recent note.

REQ MOST_RECENT_NOTE_TEXT Text of the most recent note.

Type of the most recent note (USER or

REQ MOST_RECENT_NOTE_TYPE FIELD CHANGE).

REQ MOST_RECENT NOTE_CONTEXT In the F:ase of_ requests, this is the request

status; blank in all other cases.

REQ MOST_RECENT_USER_NOTE_ First and last names of the author of the
AUTHOR_FULL_NAME most recent user note.

REQ MOST_RECENT_USER_NOTE_ Username of the author of the most recent
AUTHOR_USERNAME user note.
MOST_RECENT_USER_NOTE_

REQ AUTHORED_DATE Date of the most recent user note.

REQ MOST_RECENT_USER_NOTE_ Text of the most recent user note.

TEXT

REQ MOST_RECENT_USER_NOTE_ Type of the most recent user note (USER
TYPE or FIELD CHANGE).
MOST_RECENT_USER_NOTE_

REQ CONTEXT The request status.

REQ NOTES All notes for the request.

REQ PERCENT COMPLETE The percent of the request that is

completed.

REQ PRIORITY_CODE The yalldatlon value code of the request

priority.

REQ PRIORITY NAME The vallda_tlo.n value meaning of the

- request priority.

REQ PROJECT CODE The v_alldatlon value code of the work plan

to which the request belongs.

REQ PROJECT NAME The vallda.tlon value meaning of the work

plan to which the request belongs.

REQ SUBMIT DATE The d.ate on which the request was

- submitted.

182 Commands, Tokens, and Validations Guide and Reference



Appendix A: Tokens

Table A-28. Request tokens (page 4 of 4)

REQ REQUEST_GROUP_CODE The request group code.
REQ REQUEST_GROUP_NAME The request group name.

The ID of the request in the table KCRT_
REQ REQUEST_ID REQUESTS.

The standard hyperlink to display for the
REQ REQUEST_ID_LINK request in HTML-formatted notifications.
REQ REQUEST_SUB_TYPE_ID The ID of the sub-type for the request.
REQ REQUEST_SUB_TYPE_NAME The name of the sub-type for the request.
REQ REQUEST_TYPE_ID The ID of the request type of the request.
REQ REQUEST_TYPE_NAME The name of the request type.
REQ REQUEST URL pRL of the request in the standard

- interface.
REQ STATUS_ID The ID of the request status.
REQ STATUS_NAME The request status.
REQ WORKBENCH_REQUEST_TYPE_ The URL of the request type in
URL Workbench.

REQ WORKBENCH_REQUEST_URL The URL of the request in the Workbench.
REQ WORKFLOW_ID The ID of the workflow that the request

uses.
REQ WORKFLOW_NAME 'lIJ':eesname of the workflow that the request

Request Tokens 183



Appendix A: Tokens

Request > Pending Reference Tokens

Table A-29. Request > Pending Reference tokens (page 1 of 2)

REQ.PEND

ID

The ID of the entity that the request is
blocking.

REQ.PEND

NAME

The name of the entity that the request is
blocking.

REQ.PEND

DETAIL

Detail information for the entity that the
request is blocking.

REQ.PEND

DESCRIPTION

The description of the entity that the
request is blocking.

REQ.PEND

STATUS_ID

The ID of the state or code of the status of
the entity that the request is blocking.

REQ.PEND

STATUS_NAME

The name of the status (or state) of the
entity that the request is blocking.

REQ.PEND

STATE

The name of the state of the entity of the
request that is being blocked by the
request.

REQ.PEND

ASSIGNED_TO_USERNAME

The name of the assigned user (or
resource) of the entity that the request is
blocking.

REQ.PEND

ASSIGNED_TO_USER_ID

The username of the assigned user (or
resource) of the entity that the request is
blocking.

REQ.PEND

ASSIGNED_TO_GROUP_NAME

The name of the assigned group (or
resource group) of the entity that the
request is blocking.

REQ.PEND

ASSIGNED_TO_GROUP_ID

The ID of the assigned group (or resource
group) of the entity that the request is
blocking.

REQ.PEND

RESOURCE_USERNAME

The name of the resource associated with
the entity that the request is blocking.

REQ.PEND

RESOURCE_ID

The username of the assigned user (or
resource) associated with the entity that
the request is blocking.

REQ.PEND

RESOURCE_GROUP_NAME

The name of the assigned group (or
resource group) associated with the entity
that is being blocked by the request.

184 Commands, Tokens, and Validations Guide and Reference




Appendix A: Tokens

Table A-29. Request > Pending Reference tokens (page 2 of 2)

REQ.PEND

RESOURCE_GROUP_ID

The ID of the assigned group (or resource
group) associated with the entity that is
being blocked by the request.

REQ.PEND

PERCENT_COMPLETE

The current percent complete value
associated with the entity that the request
is blocking.

REQ.PEND

ENTITY_TYPE_ID

The ID of the type of entity that the request
is blocking.

REQ.PEND

ENTITY_TYPE_NAME

The name of the type of entity that the
request is blocking.

Request > Field Tokens

The request field tokens are the tokens associated with field groups. Field
groups are attached to request header types to enable additional pre-configured
fields on requests. For more information concerning request field tokens, see

Request > Field Tokens on page 206.

Request Detail Tokens

Table A-30. Request Detail tokens (page 1 of 2)

The ID of the user who created the request

REQD CREATED_BY .
- detail.
REQD CREATION_DATE The date on which the request detail was
created.
REQD LAST UPDATED_BY The ID of the_ user who last updated the
request detail.
REQD LAST UPDATE_DATE The date on which request detail was last

updated.

Request Detail Tokens 185



Appendix A: Tokens

Table A-30. Request Detail tokens (page 2 of 2)

The ID for the request detail in the table
REQD REQUEST_DETAIL_ID KCRT_REQUEST_DETAILS.
REQD REQUEST _ID The .ID of the request for the request
detail.
REQD REQUEST TYPE_ID Zztea iIID of the request type for the request

The rEQD prefix is typically used for accessing custom fields, such as:

[REQD.P.CUSTOM TOKEN].

Request Detail > Field Tokens

Within the token builder, Request Detail Field is an empty folder.

Resource Pool Tokens

Table A-31. Resource Pool tokens (page 1 of 2)

RSCP CREATED BY The username of the user who created the
- resource pool.
RSCP CREATION DATE The date on which the resource pool was
- created.
RSCP DESCRIPTION The resource pool description.
RSCP END_PERIOD The resource pool end period.
RSCP PERIOD_SIZE The resource pool period size.
RSCP RESOURCE_POOL_URL The URL used to view the resource pool.
The ID of the resource pool in table
RSCP RSC_POOL_ID KRSC_RSC_POOLS.
RSC _POOL_IS_ FOR_ENTITY_ The entity name to which the resource
RSCP o :
NAME pool is linked (program or org unit).
RSCP RSC POOL IS FOR ID The ID of the program or org unit to which
- - - - the resource pool is linked.

186

Commands, Tokens, and Validations Guide and Reference



Appendix A: Tokens

Table A-31. Resource Pool tokens (page 2 of 2)

RSCP RSC POOL IS FOR NAME Th(_a name of the program or org unit to
- - - - which the resource pool is linked.

RSCP RSC_POOL_NAME The resource pool name.

RSCP START_PERIOD The resource pool start period.

Security Group Tokens

Table A-32. Security Group tokens

sSG CREATED BY The II_D of the user who created the
- security group.
sG CREATION DATE The date on which the security group was
- created.
SG DESCRIPTION The security group description.
sSG LAST UPDATED BY The II_D of the user who last updated the
- - security group.
e LAST UPDATE DATE The date on which the security group was
- - last updated.
The ID of the security group in the table
SG SECURITY_GROUP_ID KNTA_SECURITY_GROUPS.
SG SECURITY_GROUP_NAME The security group name.

Security Group Tokens 187



Appendix A: Tokens

Skill Tokens

Table A-33. Skill tokens

SKL CREATED_BY ;:ﬁ user ID of the user who created the

SKL CREATED_BY_USERNAME The name of the user that created the skill.

SKL CREATION_DATE The date on which the skill was created.
The lookup code for the skill Category

SKL SKILL_CATEGORY_CODE (lookup type = RSC - skill Category).

SKL SKILL_CATEGORY_NAME The name of the skill category.

SKL SKILL_ID The ID of the skill in table KRSC_SKILLS.

SKL SKILL_NAME The skill name.

Staffing Profile Tokens

Table A-34. Staffing Profile tokens (page 1 of 2)

STFP ACTIVE_FLAG The active flag of the staffing profile.
STFP CREATED BY The username of the user who created the
- staffing profile.
STEP CREATION DATE The date on which the staffing profile was
- created.

STFP DESCRIPTION The description of the staffing profile.
STFP END_PERIOD The end period of the staffing profile.
STFP PERIOD_SIZE The period size of the staffing profile.
STFP STAFFING_PROFILE_URL The URL to view this staffing profile.

The ID of the staffing profile in table
STFP STAFF_PROF_ID KRSC_STAFF_PROFS,
STEP STAFF_PROF_IS FOR _ENTITY_ The entity name to which the staffing

NAME profile is linked.

188 Commands, Tokens, and Validations Guide and Reference



Appendix A: Tokens

Table A-34. Staffing Profile tokens (page 2 of 2)

The ID of the work plan, program or org
STFP STAFF_PROF_IS_FOR_ID unit to which the staffing profile is linked.

The name of the work plan, program or org
STFP STAFF_PROFL_IS FOR_NAME unit to which the staffing profile is linked
(work plan, program, or org unit).

STFP STAFF_PROF_NAME The staffing profile name.

STFP START_PERIOD The staffing profile start period.

STFP STATUS CODE The staffing profile status code.

STFP STATUS_NAME The staffing profile status name.

Step TXN (Transaction) Tokens

Table A-35. Step TXN (Transaction) tokens (page 1 of 2)

The identifier for the Oracle Concurrent
WST CONCURRENT_REQUEST_ID Request for the Workflow Step
Transaction.

The user ID of the user that created the

WST CREATED_BY Workflow Step Transaction.

The date the Workflow Step Transaction

WST CREATION DATE
- was created.

Any system level error message
WST ERROR_MESSAGE associated with the Workflow Step
Transaction.

The execution batch ID for the Workflow

WST EXECUTION_BATCH_ID .
- - Step Transaction.

The hidden status of the Workflow Step

WST HIDDEN STATUS .
- Transaction.

The user ID of the user that last updated

WST LAST_UPDATED_BY the Workflow Step Transaction.

The email address of the user that last

WST LAST_UPDATED_BY_EMAIL updated the Workflow Step Transaction.

Step TXN (Transaction) Tokens 189



Appendix A: Tokens

Table A-35. Step TXN (Transaction) tokens (page 2 of 2)

The username of the user that last
WST LAST_UPDATED_BE_USERNAME updated the Workflow Step Transaction.
WST LAST UPDATE DATE The date the Workflow Step Transaction
- - was last updated.
WST STATUS The statgs of the Workflow Step
Transaction.
WST STEP TRANSACTION ID The tran§act|on ID for the Workflow Step
- - Transaction.
The date of the last timeout on the
WST TIMEOUT_DATE Workflow Step Transaction.
Any comments a user added to the
WST USER_COMMENT Workflow Step Transaction.
WST WORKELOW 1D The work_flow ID for the Workflow Step
- Transaction.
WST WORKELOW STEP ID The workflow _step ID for the Workflow
- - Step Transaction.
WST NEW HIDDEN STATUS The new hldde_n status of the Workflow
- - Step Transaction.
WST OLD HIDDEN STATUS The old h|dder_1 status of the Workflow
- - Step Transaction.
WST NEW STATUS The new_status of the Workflow Step
- Transaction.
WST OLD STATUS The old gtatus of the Workflow Step
- Transaction.

190 Commands, Tokens, and Validations Guide and Reference



Appendix A: Tokens

System Tokens

Table A-36. System tokens

SYS DATE The date on which the token is parsed.

The full name of the IT Governance

SYS FULL NAME
- Center user.

A date and time stamp at the time the
SYS ITG_TIME_STAMP token is parsed. You can use this token
with the ksc_store command.

SYS NEWLINE A new line character.

SYS TIME_STAMP Date and Time stamp. (Deprecated)

Used to obtain a unique number from the
database. It can be used to generate
SYS UNIQUE_IDENTIFIER unique filenames, for example. It is often
necessary to use with the ksc_set
special command.

SYS UNIX_NEWLINE The UNIX new line character.

The Mercury IT Governance Center
SYS USERNAME username of the user currently logged
onto Mercury IT Governance Center.

The ID of the user currently logged onto

SYS USER_ID Mercury IT Governance Center.

Task Tokens

Table A-37. Tasks tokens (page 1 of 4)

TSK ACTUAL DURATION The actual duration of the task.

TSK ACTUAL_EFFORT The actual effort associated with the task.
TSK ACTUAL_FINISH_DATE The actual finish date of the task.

TSK ACTUAL_START_DATE The actual start date of the task.

TSK CONFIDENCE_CODE I;\Thceogse?f the confidence value entered

System Tokens 191



Appendix A: Tokens

Table A-37. Tasks tokens (page 2 of 4)

TSK CONFIDENCE NAME The name of the confidence value entered
- by the user.
TSK CONSTRAINT_DATE The task’s constraint date.
TSK CREATED_BY The user who created the task.
TSK CREATED BY EMAIL The email address of the user who created
- - the task.
TSK CREATED BY USERNAME The username of the person who created
- - the task.
TSK CREATION_DATE The creation date of the task.
TSK DEPARTMENT CODE The code of the department value entered
- by the user.
TSK DEPARTMENT NAME The name of the department value entered
- by the user.
TSK DESCRIPTION The description of the task.
TSK ESTIMATED_REMAINING _ The estimated remaining duration of the
DURATION task.
TSK ESTIMATED REMAINING EFFORT The estimated remaining effort involved in
- - the task.
TSK ESTIMATED_FINISH_DATE The estimated finish date of the task.
TSK HAS EXCEPTIONS The flag to _show whether or not the task
- has exceptions.
TSK LAST UPDATE DATE The date on which the task was last
- - updated.
TSK LAST_UPDATED_BY The last user to update the task.
TSK LAST UPDATED BY EMAIL The email address of the last person to
- - - update the task.
TSK LAST UPDATED BY USERNAME The username of the last person to update
- - - the task.
TSK MASTER_PROJECT_ID The ID of the master project.
TSK MASTER_PROJECT_NAME The name of the master project.
TSK MOST_RECENT_NOTE_AUTHOR _ First and last name of the author of the
FULL_NAME most recent note.
192  Commands, Tokens, and Validations Guide and Reference




Appendix A: Tokens

Table A-37. Tasks tokens (page 3 of 4)

TSK MOST_RECENT_NOTE_AUTHOR_ | Username of the author of the most recent
USERNAME note.
MOST_RECENT_NOTE_
TSK AUTHORED_DATE Date of the most recent note.
TSK MOST_RECENT_NOTE_TEXT Text of the most recent note.
TSK PARENT_PROJECT _ID The ID of the parent work plan.
TSK PARENT_PROJECT_NAME The name of the parent work plan.
TSK PERCENT_COMPLETE The task’s completed percentage.
TSK PRIORITY The priority of the task.
TSK PROJECT PATH The work plan path. I-_Ilera_rchy of parent
- work plans that contain this task.
TSK PROJECT TEMPLATE The name of the project template used to
- create the work plan containing the task.
TSK PROJECT TYPE CODE Returns TASK for tasks and PROJECT for
- - work plans.
TSK RESOURCE ID The ID of the resource assigned to the
- task.
TSK RESOURCE_EMAIL The email address of the resource.
TSK RESOURCE GROUP ID The ID of the resource group assigned to
- - the task.
TSK RESOURCE GROUP NAME The name of the resource group assigned
- - to the task.
TSK RESOURCE_USERNAME The username of the resource.
TSK SCHEDULED_EFFORT The scheduled effort involved in the task.
TSK SCHEDULED_DURATION The duration scheduled for the task.
TSK SCHEDULED_FINISH_DATE The finish date scheduled for the task.
TSK SCHEDULED_START_DATE The start date scheduled for the task.
TSK SCHEDULING CONSTRAINT The scheduling constraint for the task.
The number that uniquely identifies the
task (same as TASK_NUMBER). This
TSK TASK_ID corresponds to the PROJECT _ID column
in table KDRV_PROJECTS.

Task Tokens 193



Appendix A: Tokens

Table A-37. Tasks tokens (page 4 of 4)

TSK TASK_NAME The task name.

Standard hyperlink to the task in
TSK TASK_NAME_LINK HTML-formatted notifications.

The number that uniquely identifies the
TSK TASK_NUMBER task (same as TASK_ID).
TSK TASK_STATE The task state.
TSK TASK_URL The URL for the task Detail page.
TSK WORKBENCH TASK URL The URL to access this task in the

- — Workbench.

Tasks > Pending Tokens

Table A-38. Tasks > Pending tokens (page 1 of 2)

TSK.PEND

ID

The ID of the entity that is being blocked
by the task.

TSK.PEND

NAME

The name of the entity that is being
blocked by the task.

TSK.PEND

DETAIL

Detail information for the entity that is
being blocked by the task as shown in the
References field.

TSK.PEND

DESCRIPTION

The description of the entity that is being
blocked by the task.

TSK.PEND

STATUS_ID

The ID of the state or the code of the
status of the entity that is being blocked by
the task.

TSK.PEND

STATUS_NAME

The name of the status (or state) of the
entity that is being blocked by the task.

TSK.PEND

STATE

The name of the state of the entity that is
being blocked by the task.

TSK.PEND

ASSIGNED_TO_USERNAME

The name of the assigned user (or
resource) of the entity that is being
blocked by the task.

194 Commands, Tokens, and Validations Guide and Reference



Appendix A: Tokens

Table A-38. Tasks > Pending tokens (page 2 of 2)

The username of the assigned user (or
TSK.PEND ASSIGNED_TO _USER_ID resource) of the entity that is being
blocked by the task.

The name of the assigned group (or
TSK.PEND ASSIGNED_TO_GROUP_NAME resource group) of the entity that is being
blocked by the task.

The ID of the assigned group (or resource
TSK.PEND ASSIGNED_TO_GROUP_ID group) of the entity that is being blocked
by the task.

The name of the resource associated with

TSK.PEND RESOURCE_USERNAME the entity that is being blocked by the task.

The username of the resource (or
TSK.PEND RESOURCE_ID assigned user) associated with the entity
that is being blocked by the task.

The name of the resource group (or
TSK.PEND RESOURCE_GROUP_NAME assigned user) associated with the entity
that is being blocked by the task.

The ID of the resource group (or assigned
TSK.PEND RESOURCE_GROUP_ID group) associated with the entity that is
being blocked by the task.

The current percent complete value
TSK.PEND PERCENT_COMPLETE associated with the entity that is being
blocked by the task.

The ID of the type of entity that is being

TSK.PEND ENTITY_TYPE_ID blocked by the task.

The name of the type of entity that is being

TSK.PEND ENTITY_TYPE_NAME blocked by the task.

Task Tokens 195



Appendix A: Tokens

Time Management Notification Tokens

Table A-39. Time Management Notification tokens

™G CREATE_TIME_SHEET URL LJeR;:;L(?r creating a new time sheet time
™G OPEN_TIME_SHEET_URL URL for opening time sheet.

TMG TIME_PERIOD Time period.

TMG TIME_SHEET_ DESCRIPTION Time sheet description.

User Tokens

Table A-40. User tokens (page 1 of 3)

USR AUTHENTICATION MODE CODE The authentication mode for the user
- - (such as LDAP).

USR AUTHENTICATION MODE NAME The authentication mode for the user
- - (such as LDAP).

USR COMPANY The company that employs the user.
USR COMPANY NAME The name of the company that employs
- the user.

USR CREATED_BY The ID of the user who created the user.

USR CREATED_BY_FULL_NAME The full name of the created by user.
The Mercury IT Governance Center

USR CREATED_BY_USERNAME username of the user that created the
user.

USR CREATION_DATE The date on which the user was created.
The lookup code of the department the

USR DEPARTMENT_CODE user belongs to (lookup type = DEPT).

USR DEPARTMENT NAME The name of the department to which the

- user belongs.
USR EMAIL_ADDRESS The email address of the user.
196 Commands, Tokens, and Validations Guide and Reference



Appendix A: Tokens

Table A-40. User tokens (page 2 of 3)

USR END DATE _The t_:iatg on which _the_user is made
- inactive in the application.
USR FIRST_NAME The first name of the user.
USR LAST_NAME The last name of the user.
USR LAST UPDATED_BY I::rID of the user that last updated the
USR LAST _UPDATE_BY_FULL NAME The full name of the last updated by user.
The Mercury IT Governance Center
USR LAST_UPDATED_BY_USERNAME username of the user that last updated the
user.
USR LAST_UPDATE_DATE The date the user was last updated.
The lookup code of the user’s location
USR LOCATION_CODE (lookup type = RSC - Location).
USR LOCATION_NAME The name of the user’s location.
USR MANAGER_USERNAME The username of the user’'s manager.
USR MANAGER _USER_ID The ID of the user's manager.
The password for the user to use to log on
USR PASSWORD to Mercury IT Governance Center. This
value is encrypted.
USR PASSWORD EXPIRATION DATE The date the password needs to be reset
- - for the user.
USR PASSWORD EXPIRATION DAYS The number of days until the password
- - must be reset for the user.
USR PHONE_NUMBER The phone number of the user.
USR PRIMARY ROLE ID The ID of the primary role associated with
- - the user.
USR PRIMARY ROLE NAME The name of the primary role associated
- - with the user.
USR REGION Region associated with the user.
USR REGIONAL_CALENDAR I::rname of the regional calendar for the
The lookup code of resource category
USR RESOURCE_CATEGORY_CODE (lookup type = RSC - Category) to which
the user belongs.

User Tokens 197




Appendix A: Tokens

Table A-40. User tokens (page 3 of 3)

USR RESOURCE CATEGORY NAME The name of the category to which the
- - user belongs.

the lookup code of the user’s resource title
USR RESOURCE_TITLE_CODE (lookup type = RSC - Resource Title).
USR RESOURCE_TITLE_NAME The name of the user’s resource title.
USR START DATE The _datg the user is made active in the

- application.

USR USERNAME The username for the user to use to log on

to Mercury IT Governance Center.

The ID of the user in the table KNTA_
USR USER_ID USERS.

i 0,

USR WORKLOAD_CAPACITY l_rlm_(laz;/vorkload capacity of the user (% of

Validation Tokens

Table A-41. Validation tokens (page 1 of 2)

VAL COMPONENT TYPE Thg cqmponent type associated with the
- validation.
VAL CREATED BY Th_e ID_ of the user that created the
- validation.
VAL CREATION_DATE The date the validation was created.
VAL DESCRIPTION The description of the validation.
VAL LAST UPDATED BY Th_e ID_ of the user that last updated the
- - validation.
VAL LAST_UPDATE_DATE The date the validation was last updated.
VAL LOOKUP TYPE Th_e Io<_)kup_ type gssomated with the
- validation (if applicable).
The ID of the validation in the table KNTA_
VAL VALIDATION_ID VALIDATIONS.

198 Commands, Tokens, and Validations Guide and Reference



Appendix A: Tokens

Table A-41. Validation tokens (page 2 of 2)

VAL VALIDATION_NAME The name of the validation.

The SQL statement associated with the

VAL VALIDATION_SQL validation (if applicable).

The URL for the validation in the

VAL WORKBENCH VALIDATION URL
- - Workbench.

Validation > Value Tokens

Table A-42. Validation > Value tokens

VAL.VALUE CREATED_BY The ID of the user that created the value.
VAL.VALUE CREATION_DATE The date the value was created.
The flag to indicate whether the value is
VAL.VALUE DEFAULT_FLAG the default value for the associated lookup
type.
VAL.VALUE DESCRIPTION The description of the value.
VAL VALUE ENABLED FLAG The_ flag that |nd|caFes \_/vhet_her the value is
- available for selection in a list.
VAL VALUE LAST UPDATED_BY IQI(Z (IeD of the user that last updated the
VAL.VALUE LAST_UPDATE_DATE The date the value was last updated.
VAL.VALUE LOOKUP_CODE The code associated with the value.
VAL.VALUE LOOKUP_TYPE The value lookup type.
VAL.VALUE MEANING The meaning associated with the value.

The sequence relative to other values in
VAL.VALUE SEQ the associated lookup type in which this
value will be displayed in a drop-down list.

Validation Tokens 199



Appendix A: Tokens

Workflow Tokens

Table A-43. Workflow tokens

WE CREATED BY The ID of the user that created the
- workflow.
WF CREATION_DATE The date the workflow was created.
WF DESCRIPTION The description of the workflow.
The flag indicating whether the workflow is
WF ENABLED_FLAG enabled and available to use in packages
and/or requests.
WE FIRST WORKFLOW STEP ID The ID of the first workflow step in the
- - - workflow.
WE FIRST WORKELOW STEP NAME The name of the first workflow step in the
- - - workflow.
WF ICON_NAME The name of the workflow step icon.
WE LAST UPDATED BY The ID of the user that last updated the
- - workflow.
WF LAST_UPDATE_DATE The date the workflow was last updated.
WE PRODUCT SCOPE CODE The validation value code for the product
- - scope of the workflow.
WF REOPEN_WORKFLOW_STEP_ID The ID of the reopened workflow step.
WF REOPEN_WORKFLOW_STEP_ The name of the reopened workflow step.
NAME
WE SUBWORKFLOW FLAG An indicator that specifies whether this
- workflow can be used as a Subworkflow.
The ID of the workflow defined in the table
WF WORKFLOW_ID KWFL_WORKFLOWS.
WF WORKFLOW_NAME The name of the workflow.
WE WORKBENCH WORKFLOW URL The URL to open the workflow in the
- - Workbench.
200 Commands, Tokens, and Validations Guide and Reference




Appendix A: Tokens

Workflow > Workflow Step Tokens

Table A-44. Workflow > Workflow Step tokens (page 1 of 3)

The label displayed on the package or
WF.WFS ACTION_BUTTON_LABEL request action button for the workflow
step.
WE.WES AVERAGE LEAD TIME The average lead time in days defined for
- - the workflow step.
WFE.WFS CREATED BY The ID of the user that created the
- workflow step.
WF.WFS CREATION_DATE The date the workflow step was created.
WF.WFS DESCRIPTION The description of the workflow step.
WF.WFS DEST ENV GROUP ID The ID of the destination environment
- - - group for the workflow step.
WE.WFS DEST ENV GROUP NAME The name of the destination environment
- - - group for the workflow step.
WE.WFS DEST ENVIRONMENT 1D The ID of destination environment for the
- - workflow step.
WFE.WFS DEST ENVIRONMENT NAME The name of the destination environment
- - for the workflow step.
The flag indicating whether the workflow
WF.WFS ENABLED_FLAG step is enabled and able to be traversed in
a package or request.
For GL object migration, the flag indicating
whether to save the GL object being
WF.WFS GL_ARCHIVE_FLAG migrated to the Mercury GL Migrator
archive.
WF.WFS INFORMATION_URL The workflow step’s information URL.
WE.WFS JUMP_RECEIVE_LABEL_CODE l’tr;ep code for a Jump/Receive workflow
WF.WFS JUMP_RECEIVE_LABEL_NAME ;2‘; name of a Jump/Receive workflow
WF.WFS LAST UPDATED BY The ID of the user that last updated the
- - workflow step.
WE.WFS LAST UPDATE_DATE Iggacz:;e the workflow step was last

Workflow Tokens 201



Appendix A: Tokens

Table A-44. Workflow > Workflow Step tokens (page 2 of 3)

For AOL object migration, the flag
indicating whether to save the AOL object
WF.WFS OM_ARCHIVE_FLAG being migrated to the Object*Migrator
archive.
The ID of the security group that the
PARENT_ASSIGNED_TO_GROUP_ | current package or request is assigned to
WF.WFS ! )
ID (determined by context at time of
evaluation).
The security group that the current
WE.WES PARENT_ASSIGNED_TO_GROUP_ | package or request is assigned to
) NAME (determined by context at time of
evaluation).
The name of the user that the current
WE. WES PARENT_ASSIGNED_TO__ package or request is assigned to
’ USERNAME (determined by context at time of
evaluation).
The ID of the user that the current
WF.WFS PARENT ASSIGNED_TO USER_ID | Package or request is assigned to
= - = - (determined by context at time of
evaluation).
WE.WES PARENT STATUS The validation vglue f:ode of the status of
- the request that is using the workflow step.
The validation value meaning of the status
WF.WFS PARENT_STATUS_NAME of the request that is using the workflow
step.
The validation value code for the product
WF.WFS PRODUCT_SCOPE_CODE scope of the workflow containing the
workflow step.
WE.WFS RESULT_WORKFLOW _ The ID of the workflow parameter to which
’ PARAMETER_ID the result of the workflow step is written.
The name of the workflow parameter to
RESULT_WORKFLOW _ ) .
WF.WFS PARAMETER NAME wh|ch the result of the workflow step is
- written.
WF.WFS SORT ORDER The FJlspIay sequence of t_he workflow step
- relative to all other steps in the workflow.
WF.WFS SOURCE ENV GROUP ID The ID of the source environment group
- - - for the workflow step.

202 Commands, Tokens, and Validations Guide and Reference




Appendix A: Tokens

Table A-44. Workflow > Workflow Step tokens (page 3 of 3)

WE.WES SOURCE ENV GROUP NAME The name of the source environment
- - - group for the workflow step.
WE.WES SOURCE ENVIRONMENT 1D The ID of the source environment for the
- - workflow step.
The name of the source environment for
WF.WFS SOURCE_ENVIRONMENT _NAME
- - the workflow step.
WF.WFS STEP_NAME The workflow step name.
WE.WES STEP NO The _dlsplay sequence of t_he workflow step
- relative to all other steps in the workflow.
WF.WFS STEP_SOURCE_NAME The name of the workflow step source.
WE.WES STEP_TYPE_NAME tTyT)z name of the workflow step source
WE.WES WORKELOW 1D The ID of the workflow containing the
- workflow step.
WFE.WFS WORKFLOW NAME The name of the workflow containing the
- workflow step.
The ID of the workflow step in the table
WF.WFS WORKFLOW_STEP_ID KWFL_WORKFLOW_STEPS.

Workflow Step Tokens

Table A-45. Workflow Step tokens (page 1 of 4)

The label displayed on the package or
WFS ACTION_BUTTON_LABEL request action button for the workflow
step.
WES AVERAGE LEAD TIME The average lead time in days defined for
- - the workflow step.
WES CREATED BY The ID of the user that created the
- workflow step.
WFS CREATION_DATE The date the workflow step was created.
WEFS DESCRIPTION The description of the workflow step.

Workflow Step Tokens 203




Appendix A: Tokens

Table A-45. Workflow Step tokens (page 2 of 4)

WES DEST ENV GROUP ID The ID of the destination environment
- - - group for the workflow step.
WES DEST ENV GROUP NAME The name of the destination environment
- - - group for the workflow step.
WES DEST ENVIRONMENT 1D The ID of destination environment for the
- - workflow step.
WES DEST ENVIRONMENT NAME The name of the destination environment
- - for the workflow step.
The flag indicating whether the workflow
WFS ENABLED_FLAG step is enabled and able to be traversed in
a package or request.
For GL object migration, the flag indicating
whether to save the GL object being
WFS GL_ARCHIVE_FLAG migrated to the Mercury GL Migrator
archive.
WFS INFORMATION_URL The workflow step’s information URL.
WES JUMP_RECEIVE_LABEL_CODE :tr; code for a Jump/Receive workflow
WES JUMP_RECEIVE_LABEL_NAME l’tr;ep name of a Jump/Receive workflow
WES LAST UPDATED BY The ID of the user that last updated the
- - workflow step.
WFS LAST UPDATE DATE The date the workflow step was last
- - updated.
For AOL object migration, the flag
indicating whether to save the AOL object
WFS OM_ARCHIVE_FLAG being migrated to the Object*Migrator
archive.
The ID of the security group that the
PARENT_ASSIGNED_TO_GROUP_ | current package or request is assigned to
WES ! )
ID (determined by context at time of
evaluation).
The security group that the current
WES PARENT_ASSIGNED_TO_GROUP_ | package or request is assigned to
NAME (determined by context at time of
evaluation).
204 Commands, Tokens, and Validations Guide and Reference




Appendix A: Tokens

Table A-45. Workflow Step tokens (page 3 of 4)

The name of the user that the current

WES PARENT_ASSIGNED_TO__ package or request is assigned to
USERNAME (determined by context at time of
evaluation).
The ID of the user that the current
WFS PARENT ASSIGNED_TO_USER_ID | Package or request is assigned to
= - = - (determined by context at time of
evaluation).
WES PARENT STATUS The validation vzlalue gode of the status of
- the request that is using the workflow step.
The validation value meaning of the status
WFS PARENT_STATUS_NAME of the request that is using the workflow

step.

The validation value code for the product
WFS PRODUCT_SCOPE_CODE scope of the workflow containing the
workflow step.

WES RESULT_WORKFLOW _ The ID of the workflow parameter to which
PARAMETER_ID the result of the workflow step is written.
The name of the workflow parameter to
RESULT_WORKFLOW _ ; :
WFS PARAMETER NAME wh_lch the result of the workflow step is
- written.
WES SORT ORDER The fjlsplay sequence of t_he workflow step
- relative to all other steps in the workflow.
WES SOURCE ENV GROUP ID The ID of the source environment group
- - - for the workflow step.
WES SOURCE ENV GROUP NAME The name of the source environment
- - - group for the workflow step.
WFS SOURCE ENVIRONMENT ID The ID of the source environment for the
- - workflow step.
WES SOURCE ENVIRONMENT NAME The name of the source environment for
- - the workflow step.
WFS STEP_NAME The workflow step name.
WES STEP NO The fjlsplay sequence of t.he workflow step
- relative to all other steps in the workflow.
WEFS STEP_SOURCE_NAME The name of the workflow step source.

Workflow Step Tokens 205



Appendix A: Tokens

Table A-45. Workflow Step tokens (page 4 of 4)

WES STEP_TYPE_NAME tTyT)Z name of the workflow step source
WES WORKELOW 1D The ID of the workflow containing the
- workflow step.
WES WORKFLOW NAME The name of the workflow containing the
- workflow step.
The ID of the workflow step in the table
WFS WORKFLOW_STEP_ID KWFL_WORKFLOW_STEPS.

Request > Field Tokens

The request field tokens are the tokens associated with field groups. Field
groups are attached to request header types to enable additional pre-configured
fields on requests. Field groups are often delivered as a part of Mercury IT
Governance Center best practice functionality. You will only have access to
field groups associated with products that are licensed at your site.

CMBD Application Tokens

Table A-46. CMBD Application tokens

The CMDB application referenced by the
request.

REQ.P KNTA_CMDB_APPLICATION

206 Commands, Tokens, and Validations Guide and Reference



Appendix A: Tokens

Demand Management SLA Tokens

Table A-47. Demand Management SLA tokens

REQ.P KNTA_SLA LEVEL SLA Level.

REQ.P KNTA_SLA_VIOLATION_DATE SLA Violation Data.
REQ.P SETA—SLA—SERV—REQUESTED— Service Request Date.
REQ.P KNTA_SLA SERV_SATISFIED_ON Service Satisfied Date.

Demand Management Scheduling Tokens

Table A-48. Demand Management Scheduling tokens

REQ.P KNTA_EST_START_DATE Estimated Start Date.
REQ.P KNTA_EFFORT Estimated Effort.
REQ.P KNTA_REJECTED_DATE Reject Date.

REQ.P KNTA_DEMAND_SATISFIED_DATE | Demand Satisfied Date.

MAM Impact Analysis Tokens

Table A-49. MAM Impact Analysis tokens

REQ.P KNTA_MAM_RFC_ID MAM RFC ID number.

REQ.P KNTA_MAM_IMPACT_RESULT MAM impact results.

Request > Field Tokens 207



Appendix A: Tokens

Portfolio Management Asset Tokens

Table A-50. Portfolio Management Asset tokens

REQ.P KNTA_ASSET_DEPENDENCIES Asset Dependencies.
REQ.P KNTA_BUSINESS_UNIT Business Unit.
REQ.P KNTA_PROJECT_NAME Asset Name.

REQ.P KNTA_PROJECT_HEALTH Asset Health.

REQ.P KNTA_PROJECT_CLASS Project Class.
REQ.P KNTA_ASSET_CLASS Asset Class.

REQ.P KNTA_BUSINESS_OBJECTIVE Business Objective.
REQ.P KNTA_PROJECT_MANAGER Project Manager.
REQ.P KNTA_PROJECT_PLAN Work Plan.

REQ.P KNTA_BUDGET Budget.

REQ.P KNTA_FINANCIAL_BENEFIT Financial Benefit.
REQ.P KNTA_STAFFING_PROFILE Staffing Profile.
REQ.P KNTA_NPV Net Present Value.
REQ.P KNTA_VALUE_RATING Value Rating.

REQ.P KNTA_RISK_RATING Risk Rating.

REQ.P KNTA_ROI Return on Investment.
REQ.P KNTA_CUSTOM_FIELD_VALUE Custom Field Value.
REQ.P KNTA_TOTAL_SCORE Total Score.

REQ.P KNTA_DISCOUNT_RATE Discount Rate.

208

Commands, Tokens, and Validations Guide and Reference




Appendix A: Tokens

Portfolio Management Project Tokens

Table A-51. Portfolio Management Project tokens

REQ.P KNTA_BUSINESS_UNIT Business Unit.
REQ.P KNTA_PROJECT_DEPENDENCIES | Project Dependencies.
REQ.P KNTA_PROJECT_NAME Project Name.
REQ.P KNTA_PROJECT_HEALTH Project Health.
REQ.P KNTA_PROJECT_CLASS Project Class.
REQ.P KNTA_ASSET_CLASS Asset Class.

REQ.P KNTA_BUSINESS_OBJECTIVE Business Objective.
REQ.P KNTA_PROJECT_PLAN Work Plan.

REQ.P KNTA_PROJECT_MANAGER Project Manager.
REQ.P KNTA_BUDGET Budget.

REQ.P KNTA_FINANCIAL_BENEFIT Financial Benefit.
REQ.P KNTA_STAFFING_PROFILE Staffing Profile.
REQ.P KNTA_NPV Net Present Value.
REQ.P KNTA_VALUE_RATING Value Rating.
REQ.P KNTA_RISK_RATING Risk Rating.

REQ.P KNTA_CUSTOM_FIELD_VALUE Custom Field Value.
REQ.P KNTA_ROI Return on Investment.
REQ.P KNTA_TOTAL_SCORE Total Score.

REQ.P KNTA_DISCOUNT_RATE Discount Rate.
REQ.P KNTA_PLAN_START_DATE Start Date.

REQ.P KNTA_PLAN_FINISH_DATE Finish Date.

Request > Field Tokens

209




Appendix A: Tokens

Portfolio Management Proposal Tokens

Table A-52. Portfolio Management Proposal tokens

REQ.P KNTA_BUSINESS_UNIT Business Unit.
REQ.P KNTA_PROJECT_NAME Project Name.
REQ.P KNTA_PROJECT_CLASS Project Class.
REQ.P KNTA_ASSET_CLASS Asset Class.
REQ.P KNTA_BUSINESS_OBJECTIVE Business Objective.
REQ.P KNTA_PROJECT_PLAN Project Plan.
REQ.P KNTA_PROJECT_DEPENDENCIES | Project Dependencies.
REQ.P KNTA_PROJECT_MANAGER Project Manager.
REQ.P KNTA_PROJECT_TYPE Project Type.
REQ.P KNTA_BUDGET Budget.
REQ.P KNTA_FINANCIAL_BENEFIT Expected Benefit.
REQ.P KNTA_STAFFING_PROFILE Staffing Profile.
REQ.P KNTA_NET_PRESENT_VALUE Net Present Value.
REQ.P KNTA_VALUE_RATING Value Rating.
REQ.P KNTA_RISK_RATING Risk Rating.
REQ.P KNTA_RETURN_ON_INVESTMENT | Return on Investment.
REQ.P KNTA_CUSTOM_FIELD_VALUE Custom Field Value.
REQ.P KNTA_TOTAL_SCORE Total Score.
REQ.P KNTA_DISCOUNT_RATE Discount Rate.
REQ.P KNTA_PLAN_START_DATE Start Date.
REQ.P KNTA_PLAN_FINISH_DATE Finish Date.

210 Commands, Tokens, and Validations Guide and Reference




Appendix A: Tokens

Program Issue Tokens

Within token builder, Program Issue is an empty folder.

Program Reference Tokens

Table A-53. Program Reference tokens

REQ.P KNTA_PROGRAM_REFERENCE Program Reference.

Project Issue Tokens

Table A-54. Project Issue tokens

non-app KNTA _ESCALATION_LEVEL Escalation Level.

Project Reference Tokens

Table A-55. Project Issue tokens

REQ.P KNTA_MASTER_PROJ_REF Master Project Reference.

Project Risk Tokens

Table A-56. Project Issue tokens

REQ.P KNTA_IMPACT_LEVEL Impact Level.

REQ.P KNTA_PROBABILITY Probability Level.

Request > Field Tokens 211



Appendix A: Tokens

Project Scope Change Tokens

Table A-57. Project Scope Change tokens

non-app

KNTA_CR_LEVEL

Critical Level.

non-app

KNTA_IMPACT_LEVEL

Impact Level.

Quality Center Defect Information Tokens

Table A-58. Quality Center Defect Information tokens

REQ.P KNTA_QC_DEECT_DOMAIN Quality Center domain name.

REQ.P KNTA_QC_DEFECT_PROJECT Quality Center project.

REQ.P KNTA_QC_DEFECT_ASSIGNED_TO | Quality Center defect assigned to.
REQ.P KNTA_QC_DEFECT_NO Quality Center defect number.

REQ.P KNTA_QC_DEFECT_STATUS Quality Center defect status.

REQ.P KNTA_QC_DEFECT_ATT_URL Quality Center defect ATT URL.
REQ.P KNTA_QC_DEFECT_INT_MSG Quality Center defect instant message.
REQ.P KNTA_QC_DEFECT_INSTANCE Quality Center defect instance.

Quality Center Information Tokens

Table A-59. Quality Center Information tokens (page 1 of 2)

REQ.P KNTA_QC_DOMAIN Quality Center domain name.

REQ.P KNTA_QC_ASSIGNED_TO Quality Center assigned to user.

REQ.P KNTA_QC_PROJECT Quality Center project.

REQ.P KNTA_QC_REQUIREMENT_NO Quality Center requirement number.
KNTA_QC_REQUIREMENT_ . .

REQ.P STATUS Quality Center requirement status.

REQ.P E';IA—QC—REQUIREMENT—ATT— Quality Center requirement ATT URL.

212 Commands, Tokens, and Validations Guide and Reference




Appendix A: Tokens

Table A-59. Quality Center Information tokens (page 2 of 2)

KNTA_QC_REQUIREMENT_INT_ Quality Center requirement instant
REQ.P )
MSG messaging.
REQ.P KNTA_QC_INSTANCE Quality Center instance.
REQ.P KNTA_QC_DASHBOARD_SUBJECT | Quality Center dashboard subject.
KNTA_QC_REQUIREMENT_ . .
REQ.P COVERAGE Quality Center requirement coverage.
REQ.P KNTA_QC_OPEN_DEFECTS Quality Center open defects.

Resource Management Work Item Tokens

Table A-60. Resource Management Work Item tokens

REQ.P KNTA_USR_SCHED_START_DATE | Scheduled Start Date

REQ.P KNTA_USR_ACTUAL_START_DATE | Actual Start Date

REQ.P KNTA_USR_SCHED_FINISH_DATE | Scheduled Finish Date

REQ.P KNTA_USR_ACTUAL_FINISH_DATE | Actual Finish Date

REQ.P KNTA_SCHED_DURATION Scheduled Duration

REQ.P KNTA_ACTUAL_DURATION Actual Duration

REQ.P KNTA_SCHED_EFFORT Scheduled Effort

REQ.P KNTA_ACTUAL_EFFORT Actual Effort

REQ.P KNTA_WORKLOAD Workload

REQ.P KNTA_WORKLOAD_CATEGORY Workload Category

REQ.P KNTA_ROLE Role

REQ.P EEEQ?';LLOW—EXTERNAL— Allow External Update of Actual Effort
REQ.P KNTA_SCHED_START_DATE Scheduled Start Date

REQ.P KNTA_ACTUAL_START_DATE Actual Start Date

REQ.P KNTA_SCHED_FINISH_DATE Scheduled Finish Date

REQ.P KNTA_ACTUAL_FINISH_DATE Actual Finish Date

REQ.P KNTA_SCHED_EFF_OVER_DUR Scheduled Effort Over Duration

Request > Field Tokens

213



Appendix A: Tokens

Service Catalog Tokens

Table A-61. Service Catalog tokens

REQ.P KNTA_SRC_CATALOG_NAME The catalog name of the service catalog.
REQ.P KNTA_SRC_SERVICE_NAME The service name of the service catalog.
REQ.P KNTA_SRC_SERVICE_ID Z:\deefewlce ID of the service catalog
REQ.P KNTA_SRC_REQUESTOR Irhdee:equestor for the service catalog
REQ.P KNTA_SRC_REQUESTED_FOR I:mdee::equestor for of the service catalog
REQ.P KNTA_SRC_QUANTITY The _quantlty of the service item in the
service catalog order.
REQP KNTA SRC PRICE The price of the service item in the service
- - catalog order.
REQ.P KNTA_SRC_TIME_EXTIMATE The t|me_: estimate for the service item in
the service catalog order.
REQ.P KNTA_SRC_ORDER_ID The order ID of the service catalog order.
REQ.P KNTA SRC SEQ The sequence number of the service item
- - in the service catalog order.

214 Commands, Tokens, and Validations Guide and Reference



Index

triggering from workflow 20
validation 82

A component types 69

auto-complete 99

directory chooser 115

file chooser 116

file chooser (static environment
override) 117

file chooser (token-based environment
override) 117

contact 135, 137

application server properties 135

auto-complete
command with delimited output 95
command with fixed width output 97
configuring the values 94
example 101
list of users 94

long lists 84 .
search fields 89 creating
short lists 82 custom data masks 114
user-defined multi-select 99 currency data mask 108
custom data masks
C creating 114
command conditions 23, 34 D

examples 23
command language 22, 33 date field
command with delimited output 95 valid format 119

command with fixed width output 97 directory chooser 115
dynamic list validations 79
command 82
SQL 79

commands
create new command 26, 38
edit existing command 26, 38
remove 27, 38
special 22

215



Index

E

entity token

application server properties 135
command execution 164
contacts 135, 137

demand management fields 207
distributions 138

document management 139
environment applications 143
environments 140, 145
extension 64

notifications 165, 166, 179
organization units 167
package lines 170, 173
package pending 171

program 174, 178

project plan 174

releases 178

requests 180

requests pending 184

resource pools 186

security groups 187

skills 188

staffing profile 188, 189, 196
tasks 191

tasks pending 194

users 196

workflow steps 201, 203
workflows 200

entity tokens

F

validation values 199
validations 198

field group tokens 206

asset 208

demand management 207
PMO 206, 207, 212
program reference 211
project 209

proposal 210

work item 213, 214

fields
preview layout 93

file chooser 116
static environment override 117
token-based environment override 117

format masks
for text fields 105

N

nesting tokens 56
New Command window 26, 38
numeric data mask 107

(0

object types
commands and workflow 20

P

percentage data mask 111

R

request field tokens 59
prefixes 59
table components 59

S

special command
parameters tab 32
special command builder 35
using to build steps 42
special commands 22
about 32
building steps with command builder 42
nesting 43
using 41
SQL validations 79
tips 81
static list validations 77
swap mode 93

216

Commands, Tokens, and Validations Guide and Reference



Index

system special commands 22

T

table component validations 120
column totals 129
creating rules 125
defining 121
rules example 125
tokens 129

table components
using tokens in 59

telephone data mask 112

text fields
configuring 104
currency 106
custom format 106
format masks 105
numeric 105
percentage 106
telephone 106

token
evaluation example 101

Token Builder window 50
token evaluation 49

tokens
building 56, 65
default format 54
environment tokens 63
explicit entity format 55
field groups 206
formats 51
nesting within tokens 56
overview 48
parameter format 58
request fields 59
sub-entity format 62
user data format 57
where to use 48

U

user-defined special commands 22

validations

command 82

command with delimited output 95

command with fixed width output 97

creating 74

date format 119

defined 68

directory chooser 115

dynamic list 79

file chooser 116

file chooser (static environment
override) 117

file chooser (token-based environment
override) 117

list of all 73

overview 69

package and request group 71

seeded 73

special characters and 73

SQL 79

SQL tips 81

static lists 77

system 73

table component 120

text area 1800 120

217



Index

218 Commands, Tokens, and Validations Guide and Reference



	Documentation Library
	List of Figures
	List of Tables
	Getting Started with Commands, Tokens, and Validations
	Introduction to Commands, Tokens, and Validations
	Related Information

	Using Commands
	About Commands
	Object Type Commands and Workflows
	Request Type Commands and Workflows
	Special Commands
	Command Language
	Command Conditions
	About the Commands Tab

	Configuring Commands
	Examples of Command Uses

	Using Special Commands
	About Special Commands
	Special Command Parameters
	Special Command Language
	Special Command Conditions
	About the Special Command Builder

	Configuring Special Commands
	Using Special Commands
	Using the Special Command Builder
	Nesting Special Commands
	Listing all of the Special Commands

	Examples of Using Special Commands

	Using Tokens
	About Tokens
	Where to Use Tokens
	Token Evaluation
	About Token Builder

	Token Formats
	Default Format
	Explicit Entity Format
	Nesting Explicit Entity Tokens within Other Tokens

	User Data Format
	Parameter Format
	Request Field Tokens
	Request Token Prefixes
	Tokens in Request Table Components

	Sub�Entity Format
	Environment and Environment Application Tokens

	Using Token Builder

	Using Validations
	About Validations
	Validation Component Types
	Accessing Validations Through Packages and Requests
	Validations and Special Characters
	Viewing System Validations

	Configuring Validations
	Configuring Static List Validations
	Configuring Dynamic List Validations
	Configuring SQL Validations
	SQL Validation Tips
	Command Validations


	Configuring Short List Auto�Complete Field Validations
	Configuring Long List Auto�Complete Field Validations
	Configuring Automatic Value Matching and Interactive Select Pages
	An Overview of Matching for “Starts with” or “Contains”
	Configuration Tips

	Adding Search Fields to Long List Auto�Complete Validations
	Configuring the Filter Field Layout
	Configuring an Auto�Complete List of Users (Special Case)
	Configuring the Auto�Complete Values
	Configuring Validations by Commands With Delimited Output
	Configuring Validations by Commands with Fixed Width Output

	Configuring User�Defined Multi�Select Auto�Complete Fields
	Example of Token Evaluation and Validation by Command with Delimited Output


	Configuring Text Field Validations
	Text Data Masks for Validations
	Configuring the Numeric Data Mask
	Configuring the Currency Data Mask
	Configuring the Percentage Data Mask
	Configuring the Telephone Data Mask
	Configuring a Custom Data Mask

	Configuring Directory Chooser Validations
	Configuring File Chooser Validations
	Configuring Date Field Validations
	Configuring 1800 Character Text Areas
	Configuring the Table Validations
	Configuring Table Components
	Configuring Table Rules
	Example of Using a Table Component on an Order Form
	Example of Setting Unit Prices
	Example of Calculating Totals
	Using Table Components
	Using Tokens in Table Components
	Calculating Column Totals



	Tokens
	Overview of Tokens
	Application Server Tokens
	Budget Tokens
	Contact Tokens
	Distribution Tokens
	Document Management Tokens
	Environment Tokens
	Environment > Dest Env Tokens
	Environment > Dest Env > App Tokens
	Environment > Dest Env > Env Tokens
	Environment > Env Tokens
	Environment > Env > App Tokens
	Environment > Env > Env Tokens
	Environment > Source Env Tokens
	Environment > Source Env > App Tokens
	Environment > Source Env > Env Tokens

	Command Tokens
	Financial Benefit Tokens
	Notification Tokens
	Organization Unit Tokens
	Package Tokens
	Package > Package Line Tokens
	Package > Pending Reference Tokens

	Package Line Tokens
	Program Tokens
	Project Tokens
	Project Detail Tokens
	Release Tokens
	Release > Distribution Tokens

	Request Tokens
	Request > Pending Reference Tokens
	Request > Field Tokens

	Request Detail Tokens
	Request Detail > Field Tokens

	Resource Pool Tokens
	Security Group Tokens
	Skill Tokens
	Staffing Profile Tokens
	Step TXN (Transaction) Tokens
	System Tokens
	Task Tokens
	Tasks > Pending Tokens

	Time Management Notification Tokens
	User Tokens
	Validation Tokens
	Validation > Value Tokens

	Workflow Tokens
	Workflow > Workflow Step Tokens

	Workflow Step Tokens
	Request > Field Tokens
	CMBD Application Tokens
	Demand Management SLA Tokens
	Demand Management Scheduling Tokens
	MAM Impact Analysis Tokens
	Portfolio Management Asset Tokens
	Portfolio Management Project Tokens
	Portfolio Management Proposal Tokens
	Program Issue Tokens
	Program Reference Tokens
	Project Issue Tokens
	Project Reference Tokens
	Project Risk Tokens
	Project Scope Change Tokens
	Quality Center Defect Information Tokens
	Quality Center Information Tokens
	Resource Management Work Item Tokens
	Service Catalog Tokens


	Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


