Mercury IT Governance Center™

Commands, Tokens, and Validations
Guide and Reference

Version: 6.0

MIERCURY

This manual, and the accompanying software and other documentation, is protected by U.S. and
international copyright laws, and may be used only in accordance with the accompanying license
agreement. Features of the software, and of other products and services of Mercury Interactive
Corporation, may be covered by one or more of the following patents: United States: 5,511,185;
5,657,438; 5,701,139; 5,870,559; 5,958,008; 5,974,572; 6,137,782; 6,138,157; 6,144,962;
6,205,122; 6,237,006; 6,341,310; 6,360,332, 6,449,739; 6,470,383; 6,477,483; 6,549,944;
6,560,564, 6,564,342; 6,587,969; 6,631,408; 6,631,411; 6,633,912; 6,694,288; 6,738,813;
6,738,933; 6,754,701; 6,792,460 and 6,810,494. Australia: 763468 and 762554. Other patents
pending. All rights reserved.

Mercury, Mercury Interactive, the Mercury logo, the Mercury Interactive logo, L oadRunner,
WinRunner, SiteScope and TestDirector are trademarks of Mercury Interactive Corporation and
may be registered in certain jurisdictions. The absence of atrademark from thislist does not
constitute awaiver of Mercury's intellectual property rights concerning that trademark.

All other company, brand and product names may be trademarks or registered trademarks of their
respective holders. Mercury disclaims any responsibility for specifying which marks are owned
by which companies or which organizations.

Mercury

379 North Whisman Road

Mountain View, CA 94043

Tel: (650) 603-5200

Toll Free: (800) TEST-911
Customer Support: (877) TEST-HLP
Fax: (650) 603-5300

© 1997-2005 Mercury Interactive Corporation. All rights reserved.

If you have any comments or suggestions regarding this document, please send email to
documentation@mercury.com.

Publication Number: ITG60CommandsTokens1104A

Table of Contents

LiSt Of FIQUIES ...t sns s s sm s snsns s mn s s s s sn e s sms s mn sas s sesms s ansas e smnsnansanans ix
IS Q0T S I o = O xi
L2 T- o 2= gl I 111 o Lo [T e3 4 Lo T o T 15
ADOUL ThiS DOCUMIENT.......cee ettt st s s st st s sa st 16
Who Should Read This DOCUMENT ...ttt ettt st sp e sr s sr e 16
Related DOCUMENTS ...ttt bbb bbb s bbbt et en s 17
OVEIVIBW ...ttt ettt ettt st sa e b bbbt b b e Rt e e e h e ba e s R st et st essns e snan s 17
Chapter 2: UsSing COMMANMS..........ccocoieereereiscccs s sessscssssnssssesmsssnssssssssssnssssssssssnsassssssssmssssssesssssass 19
OVErVIEW Of COMMEANGAS........oieecteeectee ettt ettt s e a st st s sass s a e st e s sn st 20
Where Commands @re USEd....... ettt sass st sss s ss s s st sass s sass st s st es s sses s 20
CoOmMMANAS INTEITACE. ...ttt e sa s sa s st st a s b s e et st 20
Object Type Commands and WOIKFIOW ... sessesce et se e secs s ssse s sesseesens 23
Request Type Commands and WOrKFIOW...........ooen et seseesecs e e seseeees 23
SPECIAI COMMEANTS ..ottt et et e ssee sttt s st 588 st et e banene s 24
(00T 0 0T gF=TaTo I = o130 25
CoOMMANA LANGQUAGE ...ttt e s s s s s s s s bbbt e b st e s st st 25
ComMMANA CONAITIONS ..ottt b bbb bbb st st st e st st 25
EXampPle COMMEANTA USES ..ottt sttt as e st st st s st s sttt st nen 26
Chapter 3: Special CoOMMANS..........ccccoorrrerrrrrereresssesssss s sms s ss s e sessasssssssssssassssesnssssnssssssassnss 29
Overview Of Special COMMENAS ...ttt ee st ss s s se et ss s s st nes 30
Special CommMaNd INTEITACE ...ttt ettt s s sttt 30
Special Command WOrKDENCH ...ttt ettt st sttt 31

Table of Contents

Special ComMMANT WINAOW ...t eeseee s ese e e st sessss st st st et sessss st snssesseesasesneas 31
Special Command Window General Information Regionconmnrenceneeneeneenneneens 32
PArameEters TaD ...ttt et et et et st st st st s a e nr e 32
COMMEANAS TAD ..ottt st sa s et e s st st e s s st st st a e st 33
L@ 10T 1Y = o T o N 1= o J OO 37
USEA BY TAD ettt ettt et ssss s st s s s st e s s st st st s st 38
Creating and Editing Special COMMAaNAS.........eeeceeeseeeeeee et ss st sa e 38
Creating a New Special COMMANG ...t ee et se s ee st s s s e ees 38
Creating and Editing Special Command Parameters........eneeeceesecesecseee e 40
Adding Parameters to Special CoOMMAaNS ...t ce e 40
Editing Special Command Parameters......... st sse s sessse s 42
Deleting ParamEtersS ... ettt et et sa s st st st b sa s st 43
Setting Ownership for Special COMMANAS ...ttt es e 43
USING SPECIAl COMMEABNTS ...t eeeee ettt ss st ee et s s st sttt st s s et e st nes 45
Adding Special Commands to Command Steps Using the Command Builder 46
Nesting Special COMMEANAS ...ttt sees s s s ee et s s st e 47
Chapter 4: USIiNG TOKENS..........ccoeecersercesss s sescsss s sesssesssssssassssssssnssssssssssnsasassssssmsassssssssmssssnsesssssass 49
OVEIVIBW ...ttt ettt st s st s b e e s a8 e e e et ba e s R e st e st enses st en s 50
WAL @re TOKENST? ...ttt ettt st s a et st s st st st e st st et st et as st 50
WHhEre TOKENS A€ USEd.........ee ettt b e st b s s s st s st e e a s st 50
Token Builder WIiNAOW OVEIVIEW ...ttt ss s ssss s ssss st s s sass s ssss st s st ssassnssenas 51
TOKEN FOIMALS ..ottt s s et s s e bbb et e st 53
DEfAUIT FOIM@L ...ttt et sttt st e s st e s p et 55
EXPlICIt ENTitY FOIMAT ... ettt ettt ettt st et 56
Using Tokens within Other TOKENS ...ttt st st nn e 57
USEI DA FOIM@AT..... ettt ettt e sa s bbb s s s sa s e s a s sa et e sn s s 59
Parameter FOIM@t....... ettt st s et a s st st s a et 60
REQUEST FIEIA TOKENS....o ettt ettt sttt st s st 61
SUD-ENTILY FOIM@t ...ttt et sttt ss st b st e st e sn s 63
Environment and Environment Application TOKENS ...t 64
TOKEN EVAIUATION ...ttt sttt s e s st st st st st b s a s st 66
Chapter 5: Working with Validations ... e e e s 69
Overview of Working With Validations............coeeceeeeceeee ettt sss e s sv st ssaen s 70
What @re ValidatiONS......ce et s e bbb s s a e s st e 70
Validation Component TYPES = OVEIVIEW ... eesessees e eseseesesssesss st s ssssssssssssessssssessssssneas 71
Creating @ Valid@tiON ...ttt st sas s s sa s st s s sa e st e s sa s se 73
User Data on the Validation ValUe........ ettt s sa s 74
Editing ValidatioNs.........coue ettt st s s b st s sttt e se 75

Creating a URL to Open the Validation WindOW.........ocn e ssesseenens 76

iv Commands, Tokens, and Validations Guide and Reference

Table of Contents

Deleting ValidAIONS ...ttt sass s ass st b s s s st s se 77
StatiC List ValidAtiONS ...ttt s s sa bt sa s st 77
DynamicC LisSt Valid@IONS ...ttt st ss s b s st e bbb s e 79
SQL ValIAALION ...ttt ettt s s e st st sttt st e an e sn s s 79

ST @ IV =1 [o F= 40} o N I o T 7O 81
ComMMANA ValiA@LION ...ttt et st sa s s ss e st sa e st e sa et 82
Configuring Auto-Complete Validations........... ettt s saen e 82
Configuring General Auto-complete BEhavior ...t 82
Configuring Short List Auto-Complete Fields ...ttt 83
Configuring Long List Auto-Complete Fields ...ttt 84
Configuring the Automatic Value Matching and the Interactive Select Page............. 85
Adding Search Fields to the Auto-Complete WiNdOW ... 88
Special Case: Configuring an Auto-Complete List of USerscvveoveeceeeecccrereecsines 93
Configuring the Auto-Complete ValUEs ...ttt ettt e 94
Validation by Command With Delimited OUtpUL ...t 95
Validation by Command With Fixed Width OQutput ... 97
User-Defined Multi-Select Auto-Complete Fields......o e 99
Example: Token Evaluation and Validation by Command with Delimited Output .100
CoNFIGQUING TEXTE FIEIAS ...ttt ettt sass st s s s e ss s ss e s sa s st st e s sn s 104
Creating a Text Field Validation OVEIVIEW........ ettt et es s saen s 104
Available TeXt Data MaSKS ...ttt s ss e s sttt 104
Customizing the System Text Data MasKS ...t sesaes s e 106
Customizing the Numeric Data MasK..........cceceeecese ettt ss s nes 106
Customizing the Currency Data MaskK ...ttt 108
Customizing the Percentage Data Mask ...ttt ssen e 110
Customizing the Telephone Data Mask ...t 112
Creating @ Custom Data MasSK ...ttt s sass s st sa s 115
Using Directory and File ChOOSEIS...... ettt sass s ss st ssss st sa s 116
DiIr€CIOIY CROOSET ...ttt ettt s e sa s s s s s s a s s s st 116
FIlE CROOSEN ...ttt sttt e s st ss e st base st b b e e st et st e st e np e s 116
Date Field FOIMALS......ccee ettt sa s bbb b b st s s et et 119
Creating 1800 Character TEXt Ar€as ...ttt nsaen e 120
Configuring the Table COMPONENT ... et s s ss s s st st saen s 121
Defining the Table Component in the Validation Workbench.............ocncnnoneenn. 122
Creating @ TabIE RUIE ...ttt et st st st et e 126
Calculating ColumN TOTAIS ...ttt ss s s s b s sr e sr e 130
Adding the Table Component to @ ReQUEST TYPE ..t sesseseeens 132
Package and Request Group Validations......... e seesess e ssens 134
Package and REQUEST GrOUDS ...t sseseesees e sse e sse st sessse s st ss st sesssssess s s sesesssesans 134
REQUESTE TYPE CAtEGONY ...ttt ettt et st b s b s st s ettt enen 135
Validation SPeCial Char@CtErS..... ettt e ee et e s s ee et s s st e 135
SYSIEM VAIIALIONS ...ttt e et e s st a s st b st et 136

Table of Contents

Appendix A: System Special Commands.............cccccvrrrrermrrrressssess s sesss s ssssasesssssssesassssasanas 137
Overview of System Special COMMEANTAS ...t sree et ssesse st sse s sesssseenes 138
ksc_connect Special COMMEANTS.........ocueurrisnei e ess s ss e es et st 138
KSC_CONNECT_AEST_ClIENT ...t st 139
Example Using ksc_connect_dest_Client ... 139
KSC_CONMNECT_EST_SEIVET ...ttt ettt bbbttt 140
Example using KSC_CONNECT_dEST_SEIVEN ...t seessseessess s 140
KSC_CONNECT_SOUICE_ClIENT ...ttt ettt sb et 141
Example using kSc_connect_Source_ClIent ... sess e 141
KSC_COMNECT_SOUINCE _SEIVEN ...ttt seeesseese s sb et sres et bbb b bbb sttt 142
Examples using KSC_CONNECt_SOUICE_SEIVEN......comeeieeiseiseissess e s sesssessesanas 142
KSC_EXIT ... teereeueeeseet ettt e bt 4 8888 8888 R 143
ksC_COpPY SpeCial COMMEBNAS ...ttt es e s s see s sttt 143
KSC_COPY_CHENT_CHENT ...ttt sttt s e st e 143
Example #1 using ksc_copy_Client_Client ... seeesneens 144
Example #2 using ksc_copy_Client_Client ... seeesneens 144
KSC_COPY_CHENT _SEIVET ...ttt ettt bbb sttt 144
Example using KSC_COPY_CHENT_SEIVET ...ttt seesssesssesss s 145
KSC_COPY_SEIVEI_ClIENT ... ettt bbbt 145
Example using KSC_COPY_SErVer_ClIENT ...t 146
KSC_COPY _SEIVEI_SEIVEN ...ieeeteeeeemseease et esssesssse s s ss bbbt 8 bbbt 146
Example USiNg KSC_COPY_SEIVEI_SEIVEN ...t ssse s st ssss e s sessssesssess 147
KSC_COPY_CHENT M ..ottt ee st e bbbt 148
KSC_COPY _SEIVEI_TIMP ettt s e bbbttt 148
KSC_COPY_tMP_ClIENT ...ttt bbb bbbt 149
KSC_COPY MNP _SEIVEN ..ottt et s b bbbt b 150
KSC_IESPONM ...t reeee ettt es ettt e e st st e 6 4888 £ 888 e b 151
KSC_SIMPIE_FESPONM. ..ottt s ettt bbb 88 b s st s 151
Examples using KSC_SIMPIE_Fe@SPON ...t sseese et sse s eessesesssesssssse s sessnsssnsans 152
KSC_IOCAI_EXEC ..ottt ettt et et e 88 b 153
Example USING KSC_OCAI_BXEC ...ttt sees s bttt seseas 153
KSC _FEPIACE ..ottt ettt 888 8RR bt 154
EXample USING KSC_FEPIACE ...ttt es ettt ss e sttt ss s sttt 154
KSC ST ..ottt ettt bt 888 £ 88 EE EE 154
EX@MPIE USING KSC_SE1 ...ttt s b sttt 155
KSC_SEE_ BNV .ttt ettt s bt 888 88 bt 155
KSC _STOF@ ..ottt ettt st 88 8 8 et 156
EXaMPIE USING KSC_STOTE ...ttt st ee st e se e bbbt 157
KSC_COMIMENT ..ottt ee e e 8 8 b 157
KSC_COMOCSUD ...ttt st s b e 888 bt 158
EXample USING KSC_CONCSUD ...ttt ss e e st se st 158

vi Commands, Tokens, and Validations Guide and Reference

Table of Contents

ksc_begin_SCript / KSC_ENA_SCIIPT ... iercese et se ettt st st 159
Example using ksc_begin_script and KSC_end_SCrPtonnemnsneeneeseenssesesssenens 160
ksc_copy_script Special COMMEAaNAS ...t ses et sessss st ssesssesssesesessees 160
kSC_COPY_SCHPL_dEST_CIENT ...ttt ettt bbbt 161
KSC_COPY_SCHPT_AEST_SEIVEN ..ottt e ss s s bbb bt 161
KSC_COPY_SCHPt_SOUICE_CHIENT ...ttt bbbttt 162
KSC_COPY_SCIPT_SOUICE_SEIVET ...ttt rreereeass et stsees s s ss st sses s sttt sttt 162
KSC_OM_IMIGEATE ..ottt et sttt st b e bt s 163
Example uSing KSC_OM_MIGIate......oieieeiesesesseenseessssse e sssssesesssss s st ss s s s sesssesens 164
KSC_CAPTUIE _OUTPUL .. .ottt sttt bt st bbbt s 164
KSC_ Gl IMHGEATE ...ttt ettt st e 8 st s 165
Example using KSC_ gl MUGrate ...t see sttt sttt 166
KSC_PAISE_JClu oottt ettt s bbb 888 88 166
KSC_SUDIMIT_JOD .ottt sttt bbb e bt 167
KSC_SEE_EXIt_VAIUE ...ttt ettt ettt s s st s bbbt 167
KSC_ClEAI_EXIT_VAIUE ...ttt bbbttt 168
KSC_IUN_SQL .ottt ettt e s bbb 888 £ 88 b 168
EXample USING KSC_FUN_SOL. .. ieireeenreenneeseise s sess e e see s st ssss st st sttt 168
Summary of All Special Command Parameters ...t esesee s sseees 169
ApPPENndiX B: TOKENS ... et r s ss s s e s sesssss s mssesassmssssses sssmes e sms sesmssmsmssnsansmssssansas 175
OVEIVIEW OF TOKENS ...ttt eeee ettt et ettt 88 b bbb s 176
SYSTEIM TOKENS ...ttt ettt ettt et st e s bbb et ettt 177
L= Lo T o TN o N e 1 =] 13O 213
13 o 1= 219

Vii

Table of Contents

viii Commands, Tokens, and Validations Guide and Reference

List of Figures

Figure 2-1 Commands tab and Edit Command WINAOW ...ttt eese s ssaeean 21
Figure 2-2 New CommMand WINAOW ...t s et ss s sase st st sass s s st saasssssenan 22
Figure 3-1 Special Command WOIrKDENCH ...ttt es e s seeens 31
Figure 3-2 Special CommMand WINAOW ...t eseseeseesectsess e sseseesess s sessss s s ss st st sesssseneas 32
Figure 3-3 Special Command window—Commands 1ab........c.corronenenneeeeeesr e sseseesseenens 34
Figure 3-4 Special CommMaNnd BUIIAEN ...ttt sse s et e ss s s s e ees 37
Figure 3-5 OWRNEISHIP 18D ...t ee et ss s st s s s st 38
Figure 3-6 RCS File Migration ObJECt tYPE ...ttt et et sr e sassena s 45
Figure 4-1 Example of a token used in a SQL statement ... 51
Figure 4-2 TOKeN BUIlAEr WINAOW...........cuiuerereereteereteeetctee st s s essss s s s s ss s ess s st e st snss s enan 52
Figure 4-3 EXPliCit ENTitY FOIMAT ...ttt ettt s sr s st st r s st 56
Figure 4-4 Table cOMPONENT FOIMEALS...... ittt ettt ss s s s ree s 62
Figure 5-1 Auto-complete using command validation ...t 82
Figure 5-2 Short list @ULO-COMPIETE ...ttt ss s st 83
Figure 5-3 Long list aUIO-COMPIETE ...t sp s na e 84
Figure 5-4 Auto-complete field and matching values in the Select page......ocicrncen 85
Figure 5-5 Filter fields in the auto-complete select WINAOW ... 89
FIQUIE 58 USEI ICON ...ttt ettt sass s s a s s a s st s sa st s st s et st st e st nn s st 93
Figure 5-7 AULO-COMPIETE LIST ..ottt ettt s st ss s s st 94
Figure 5-8 Validation by command with delimited outpUt......coece e 96
Figure 5-9 Validation by command with fixed width output ... 98
Figure 5-10 Validation window for the numeric data mask ..., 107
Figure 5-11 Validation window for the currency data maskK.........ncceccnececeececee e, 109
Figure 5-12 Validation window for the percentage data mask ... 111

List of Figures

Figure 5-13
Figure 5-14
Figure 5-15
Figure 5-16
Figure 5-17
Figure 5-18
Figure 5-19

Validation window for the telephone data mask ... 113
Validation window for the custom data maskK............ceecneeeceeseceeee e 115
Validation window for static environment override in file chooser........................... 117
Validation window for token-based environment override in file chooser. 118
Rules window accessed from the Rules tab.......nnn e 126
Sample validation for a Simple Order table component........oonnrrecrrnrenncenens 131
Sample table component displaying a column total. ... 132

X Commands, Tokens, and Validations Guide and Reference

Table 2-1
Table 2-2
Table 2-3
Table 3-1
Table 3-2
Table 3-3
Table 3-4
Table 4-1
Table 4-2
Table 4-3
Table 4-4
Table 5-1
Table 5-2
Table 5-3
Table 5-4
Table 5-5
Table 5-6
Table 5-7
Table 5-8
Table 5-9
Table 5-10
Table 5-11

List of Tables

New Command WIiNAOW FIEIAS ...ttt sttt sttt 22
(0701010 a=TaTo IS =T o T = To | Lo o [0 OO 25
[e=Ta] o] L= @] g o 11T o 13O T T P TPO 26
Special Command Workbench Query tab fields ... 31
Special Command window general information fields ..., 32
[e=Ta Y o] L= @] g o 114 T 13O 35
New Command WINAOW FIEIAS ...ttt sttt sttt 40
AT PO 53
Tokens supporting explicit entity format ... 58
Sample environment and app attributes....... et 66
Sample enViroNMENt TOKENS ...t ee ettt 66
(070T0 ¢ ToTo T aT=T o) Al I8 o L= OO 71
COIUMN HEAAEIS ..ottt e es e sttt s s st et st 80
Automatic character matching field behavior ... 86
Automatic character matching Select page behavior ... 86
Fields in the FieldSINEW WINAOW.........o et ee et st ssss s s sses s e neas 20
Validation by command with delimited outpuUt ... 96
(07011010 Y o TN V== To [T OO RRTUY 96
Validation by command with fixed width outpuUt ... 98
(07011010 Y o TN V== To 1T OO 98
Data Mask FOIMALS ...ttt sttt st 105
Fields for configuring the numeric data mask for text fieldscccoonenecrereeneeee. 107

Xi

List of Tables

Table 5-12
Table 5-13
Table 5-14
Table 5-15
Table 5-16
Table 5-17
Table 5-18
Table 5-19
Table 5-20
Table 5-21
Table 5-22
Table 5-23
Table A-1

Table A-2

Table A-3

Table A-4

Table A-5

Table A-6

Table A-7

Table A-8

Table A-9

Table A-10
Table A-11
Table A-12
Table A-13
Table A-14
Table A-15
Table A-16
Table A-17
Table A-18
Table A-19
Table A-20
Table A-21
Table A-22

Fields for configuring the currency data mask for text fields......oeveeccrrernenneee. 109
Fields for configuring the percentage data mask for text fieldsccccoverrennneeee. 111
Fields for configuring the telephone data mask for text fields ..., 113
Sample telephone data mask formats ...t 114
Sample custom data Mask fOrmMats.......o.o et seeees 115
File CROOSEI FIEIA ...ttt ettt sttt sttt 117
Static enVIFONMENT OVEITIAE ...ttt 118
Token-based environMent OVEITIAE.........coeienceie et e 119
[T2 L= 1= o PP 120
Example - table component validation Settings ..o 127
Example - Set Unit Price rule SettingS ..o ettt 128
Example - Calculate Total rule SettingsS ...ttt 129
ksc_connect_dest_client parameters........ e eeseens 139
ksc_connect_dest_server Parameters ... sesssesens 140
ksc_connect_source_client parameters ... seesseens 141
ksc_connect_source_Server Parameters ... s sesssesens 142
ksc_copy_client_client parameters......... s sesssssens 143
ksc_copy_client_server parameters......... e s sesssssens 145
ksc_copy_server_client parameters....... e sseens 146
KSC_COpY_SEerver_Server Parameters ... e sessssesssssssssssssssesens 147
ksC_copy_sServer_tmp ParameEters ...t ssssssssesssssssssesssssens 148
ksc_copy_server_tmp ParameEters ...t ssssssssessssssssssssssens 149
ksc_copy_server_tmp ParameEters ... ssssesssesssssss s ssessens 149
ksc_copy_server_tmp ParameEters ...t ssssssssessssssss s s essens 150
KSC_replace ParamMeELers ... et sse et e ses et s st st 154
KSC_SEt_ENV PArGMEIEIS ...ttt eb st s st 156
ksc_copy_script_dest_client parameters ... 161
ksc_copy_script_dest_server parameters...... e sssesens 161
ksc_copy_script_source_client parameters......... s 162
ksc_copy_script_source_client parameters......... s 163
KSC_OM_Migrate ParameEters....... s eessee st ssssssssss s e st sssens 163
kSC_gl_mMigrate ParameEters........ s eess e st ee e st et 165
KSC_pParse_JCl PAramMEIEIS ...t ee s st ee e st et 166
KSC_SUDMIt_jOD PAramMETErsS.......c.oeceree ettt st se e et et 167

Xii Commands, Tokens, and Validations Guide and Reference

List of Tables

Table A-23
Table A-24
Table B-1

Table B-2

Table B-3

Table B-4

Table B-5

Table B-6

Table B-7

Table B-8

Table B-9

Table B-10
Table B-11
Table B-12
Table B-13
Table B-14
Table B-15
Table B-16
Table B-17
Table B-18
Table B-19
Table B-20
Table B-21
Table B-22
Table B-23
Table B-24
Table B-25
Table B-26
Table B-27
Table B-28
Table B-29
Table B-30
Table B-31
Table B-32

KSC_rUN_SQl PAramMEIEIS....... it ee st s sttt 168
Special command PAramMELEIS ...ttt e ses st sese s eeees 169
TOKEN TADIES .ttt st s sttt 176
FaN o] oI =T gl o] 0] o =1 41T PO 177
BUGET ...ttt st st bbb e st s e et a et 178
(0707 o1 = o £ 0PRSS 178
[TR 4T o U1 1 T PO 179
Document ManagemMENT ...ttt ettt st s 180
ENVIFONMENTS ..ottt sttt s sttt ettt e st 180
(=101 o] aTaaT=Ta LAR=T o] o1 ox=1u o] o IO 183
COMMANGA EXECULION ..ottt ettt sttt s st ne et 185
[N T0) 131 o= 1 o] 13 PPN 185
OrganiZation UNIt ...ttt sa s s e s s s s s st st e e a st 186
PACKAGES. ...ttt st sttt s s s R R sttt s et 187
PACKAGE [INES...eeeeee ettt sttt st s a s st st s s a s st st e st n st 189
PacKage PENAING ...ttt ettt s a s s s s st et sp s a st 190
PrOGIAIM ...ttt et et st sass s st st e e ea e st et e s R st ettt sn s st 191
0T = o A] = o OO 191
Project plan detailS ...ttt sttt 194
REIBASES ..ottt ettt st es s e £s e £ R e £t 194
REGQUESTS ..ottt et sttt s st et E e e 195
REQUEST AETAIIS ...ttt ettt sttt et st 198
REQUEST PENAING ...ttt st et see et s s see et s e st st e e 198
REPOIt SUDMISSIONS ...ttt st ee ettt st 199
RESOUICE POOIS ...ttt ee st e st s s st st s et st 200
SECUNTY GIOUPS oottt ettt ettt st st s sttt bens st e 201
SKillooo ettt ss et se e s s s st s st st s s8££ R E e e Rt 201
STAFfING PrOTIl oottt s s st st 202
S S BNt et s a e b e AR e e R et eenb e b e nn et s 202
1= 1] 3OO 203
TASKS PENAING ...ttt sttt see et ss s st ss s et ss e e st st 205
USEIS ooeeeeeeereeceeet et ee et s s st et £ £ 858 £ £ £ 858 £ £ £E e et 206
RV =1 F= U o PP 208
Valid@tION VAIUES ...ttt et ss e st tsess s s sttt 208

Xiii

List of Tables

TabIE B-B3 WOIKFIOWS ..ottt ettt s s st cs e st s st et 209
Table B-34 WOIKFIOW STEPS . ccuierceieie ettt es sttt et s e s sttt st 210
Table B-35 WOrKflow Step tranSaCtiON. ... ettt ettt 212
Table B-36 Field group tOKeN tabIes ...ttt ettt 213
Table B-37 Demand Management field group tOKENS........ccceecse e 214
Table B-38 Master project reference on request field group tokens.........oeoeceeeccnececsnnee. 214
Table B-39 PFM asset field group tOKENS ...ttt s ee et 214
Table B-40 PFM project field group tOKENS..........eeec st s et ensa e 215
Table B-41 PFM proposal field group tOKENS ...ttt ee s se s sseeees 216
Table B-42 PMO field group TtOKENS ...ttt ettt ss s s sttt nes 216
Table B-43 Program reference on request field group toKens ... 217
Table B-44 Work item field group tOKENS ...ttt sttt 217
Xiv Commands, Tokens, and Validations Guide and Reference

Chapter

Introduction

In This Chapter:

About This Document

Who Should Read This Document
Related Documents

Overview

15

Chapter 1: Introduction

About This Document

This document provides information on using and configuring commands,
tokens, and validationsin Mercury IT Governance Center™. Each chapter or
appendix covers specific topics on commands, tokens, or validations:

Chapter 1, Introduction, on page 15

Includes an overview of the use of commands, tokens, and validations, and
details the document’ s intended audience and related guides.

Chapter 2, Using Commands, on page 19

Provides an overview and examples for using commands.

Chapter 3, Special Commands, on page 29

Discusses the interface for creating, editing and using special commandsin
the Mercury IT Governance Center.

Chapter 4, Using Tokens, on page 49

Provides an overview of how to use tokens.

Chapter 5, Working with Validations, on page 69

Discusses the creation and editing of validations.

Appendix A: System Special Commands on page 137

Discusses pre-defined special commands.

Appendix B: Tokens on page 175

Provides alist of all entity tokens.

Who Should Read This Document

The intended audience for this document includes:

Configuration experts configuring a deployment system.
Configuration experts configuring a request resolution system.

Business model ers who need to modify the following entities: workflows,
object types, request types, validations, notifications, and report types.

16 Commands, Tokens, and Validations Guide and Reference

Chapter 1: Introduction

Users must have the Configuration license to access the screens and windows
described in this document.

Related Documents

Overview

Related documents for this book are:

e Guideto Documentation

e Key Concepts

o (Getting Sarted

e Mercury Demand Management: Configuring a Request Resolution System
e Mercury Change Management: Configuring a Deployment System

e Configuring the Standard Interface

Commands, tokens, and validations are used throughout the Mercury I T
Governance Center implementation to enable advanced automation and
defaulting.

Commands define the heart of the execution layer within the deployment
system and determine which steps to execute at a specific workflow step. This
can involve activities such as migrating afile, executing a script, performing
some data analysis, or compiling code.

Tokens are variables that can be used by Mercury IT Governance Center
entities to reference information that is undefined until the entity is actually
used in a particular context. Thisincludes such things as setting variablesin
commands or using tokens within notifications to specify the recipients.

A field’' svalidation determines not only its type, but the valuesit can accept. A
workflow step’ s validation control the possible results exiting that step.
Altering the validation for afield can range from changing its very nature (text

Related Documents 17

Chapter 1: Introduction

field to auto-complete), while modifications to a workflow step validation
make it possible to specify new results for that step.

18 Commands, Tokens, and Validations Guide and Reference

Chapter

Using Commands

In This Chapter:

e Overview of Commands
Where Commands are Used
Commands Interface
Object Type Commands and Wor kflow
Request Type Commands and Wor kflow
Special Commands
e Command Steps

» Command Language
e Command Conditions
e Example Command Uses

19

Chapter 2: Using Commands

Overview of Commands

Commands define the heart of the execution layer within the deployment
system and determine which steps to execute at a specific workflow step. This
can involve activities such as migrating afile, executing a script, performing
some data analysis, or compiling code. This chapter explains where to find
commands, the interface used to manipulate commands, command structure,
and gives some uses for commands.

Where Commands are Used

Commands are used in the following entities to enhance the implementation
and enabl e sophisticated command-line automation:

Object types
Request types
Report types
Workflows

Validations

Commands Interface

Access commands through the Commands tab of the following screens:

Object Type

Request Type

Report Type
Validation

Workflow Step Source

Special Command

Commands consist of command information and command steps. In this
chapter, the examples are accessed through the Change Mgmt: Object Types
screen, but the interface isthe same in other screens where commands are
configured.

20 Commands, Tokens, and Validations Guide and Reference

Chapter 2: Using Commands

Double-click the command step to open the Edit Command window. The Edit

Command window displays the shell script codein the Steps window, as shown
in Figure 2-1.

Object Type : File Client-=Client

Object Type Narne: |File Client-=Client

Descrigtion: ‘Fl\e Copy Fram Clientto Client

Extenszion: ‘ j Ohject Mame Column: |FPARAMETER1
Ohject Categary: ‘Standard Objects j Ohject Revision Column:
Meta Layer Yiew: |MPKGL7 |FILE70LIENT70LIENT

Enabled: * Yes (" No

Double-click the

Fields] Layout Cnmmands]] Ownership]

command to open [~Command Stes
the Edit Command | Comtrianc | Coneition | Desc
WindOW. [=] client_copy | |c|ienl co ||| ksc_copy_client_client SUB_PATH="[F P_SIUE_PATH]' FILE}
I — 2 |
g al| =] New Crd | | | |"‘ ¥ ‘
(6124 | | Cancel |
£ Edit Command
Command: |c|iem_mpy
Condition: [
Description: [client_copy
Tirneout (s); 600
Enahled

& Yeg O No

LTH="[P.P_#UE_PATH]" FILENAME="[P.P_FILENAME]" FILE_TYPE="[P.P_FILE_TYFE]"

L4 [
Tokens | Special Cmd ‘ Show Desc | 0k | Cancel |
[Ready

Figure 2-1. Commands tab and Edit Command window

To generate anew command, click New Cmd in the Commands tab. Thisopens

the New Command window as shown in Figure 2-2. Table 2-1 lists the fields
contained in this window.

Overview of Commands 21

Chapter 2: Using Commands

£ New Command

Command:
Conditign:
Description:
Tirneout (s):
Enahled

& Yeg O No

Steps:

Tokens | Special Crmd ‘ Show Desc | QK Add | Cancel

[Ready

Figure 2-2. New Command window

Table 2-1. New Command window fields

Field

Description

Command

A simple name for the command.

Condition

A condition that determines whether the steps for the command are
executed or not. (See Command Conditions on page 25 below for
more information).

Description

A description of the command.

Timeout(s)

The amount of time the command will be allowed to run before its
process is terminated. This mechanism is used to abort commands
that are hanging or taking an abnormal amount of time.

Enabled

Determines whether the command is enabled for execution.

Each object type, request type, validation, workflow step source, or report type
may have many commands, and each command may have many command
steps. A command may be viewed as a particular function for an object.
Copying afile may be one command, and checking that file into version
control may be another. To perform these functions, a series of events needsto
take place, and these events are defined in the command steps.

An additional level of flexibility isintroduced when some commands must
only be executed in certain cases. Thisis powered by the condition field of the
commands and is discussed in Command Conditions on page 25.

22 Commands, Tokens, and Validations Guide and Reference

Chapter 2: Using Commands

Object Type Commands and Workflow

Object type commands are tightly integrated with the workflow engine. The
commands contained in an object type are executed at Execution workflow
stepsin Mercury Change Management™ package lines.

It isimportant to note the following concepts regarding command/workflow
interaction:

e To execute object type commands at a particular workflow step, the
workflow step must be configured with the following parameters:

» Workflow step must be an execution type step.
= Workflow Scope = Packages.
= Execution Type = Built-in Workflow Event.

= Workflow Command = execute_object_commands.

e When the object reaches the workflow step (with Workflow Command =
execute_object_commands), all object type commands whose conditions
are satisfied will berun in the order they are entered in the object type’s
command panel.

e The object type can be configured to run only certain commands at a
particular step. To do this, specify command conditions. For details, see
Command Conditions on page 25.

Request Type Commands and Workflow

Similar to object type commands, request type commands define the execution
layer within Mercury Demand Management™. While most of the resolution
process for arequest is analytically based, cases may arise for specific request
types where system changes are required. In these cases, request type
commands can be used to automatically perform these changes.

Request type commands are tightly integrated with the workflow engine. The
commands contained in a request type are executed at Execution workflow

steps.

It isimportant to note the following concepts regarding command/workflow
interaction:

e To execute request type commands at a particular workflow step, the
workflow step must be configured with the following parameters:

Overview of Commands 23

Chapter 2: Using Commands

s Workflow step must be an execution type step
= Workflow Scope = Requests
m Execution Type = Built-in Workflow Event

= Workflow Command = execute_request_commands

e When the request reaches the workflow step (with Workflow Command =
execute_request_commands), all commands whose conditions are satisfied
will be run in the order they are entered in the request type' s command
panel.

e Therequest type can be configured to run only certain commands at a
particular step. To do this, specify command conditions. For details, see
Command Conditions on page 25.

Special Commands

Object types, request types, report types, workflows and validations all use
commands to access the execution layer. In order to smplify the use of
command executions, Mercury IT Governance Center contains a predefined
set of special commands. Users can also create their own special commands.

Special commands are commands with variable parameters, and are used in
object type, request type, report type, workflow, and validation command
steps. These command steps perform a variety of functions, such as copying
files between environments and establishing connections to environments for
remote command execution. Mercury IT Governance Center features two
types of special commands:

e System special commands. These commands are shipped with Mercury
IT Governance Center. System special commands are read-only and have
the naming convention “ksc_command_name.” System specia commands
always begin with “ksc_.”

e User-defined special commands. These commands are user-defined and
have the naming convention “sc_command_name.” User-defined special
commands must begin with “sc_.”

Special commands act as subprograms that can be reused where needed. It it
often more convenient to create a special command for a program that will be
used in multiple places, rather than placing the individual commands into
every object type or request type that need them.

24 Commands, Tokens, and Validations Guide and Reference

Chapter 2: Using Commands

Command Steps

Command steps represent the actual directives that Mercury IT Governance
Center specifies to execute the commands. A command step can be an actual
command-line directive that is sent to the Mercury IT Governance Server or
target machine, or it can be one of the many special commands. Table 2-2
describes the fields in the Command Steps region of the New/Edit Commands
dialog.

Table 2-2. Command Steps region

Field Description

Defines the command-line directive or special command to be

Steps issued.

Description Describes each of the command steps.

The execution engine will execute the commands and command steps in the order
they are displayed in the Commands tab. To change the order of the commands or
Note the command steps, in the Commands tab, select the given command or command

step and use the arrow buttons to move the selected item.

Command Language

The command steps in a command define the actual system-level executions
that need to be performed to achieve the desired function of the command.
Command steps can be UNIX commands, third party application commands,
or special commands. Special commands are reusable routines defined in
Mercury IT Governance Center. Mercury IT Governance Center also supplies
anumber of system special commands used to perform common execution
events (such as connecting to environments or copying files). Tokens can be
used within command steps.

Command Conditions

In many situations, it may be necessary to run adifferent set of commands
depending on the context of execution. This flexibility is achieved through the

Command Steps 25

Chapter 2: Using Commands

use of conditional commands. The Condition field for acommand is used to
define the situation under which the associated command steps execute.

Conditions are evaluated as boolean expressions. If the expression evaluates to
true, the command is executed. If false, the command is skipped and the next
command is evaluated. If no condition is specified, the command isaways
executed. The syntax of aconditionisidentical to the “where” clause of a SQL
statement, which allows enormous flexibility when eval uating scenarios. Some
example conditions are detailed in the following table:

Table 2-3. Example Conditions

Condition Evaluates to

BLANK Command will be executed in all situations.

Command will be executed if the parameter

[P.P_VERSION_LABEL] with the token P_VERSION_LABEL in the

IS NOT NULL L

package line is not null.
‘IDEST_ENV.ENVIRONMENT _ Command will be executed when the
NAMETY = ‘Archive’ destination environment is named “Archive”.
‘[AS.SERVER_TYPE_CODE] = Command will be executed if the application
‘UNIX’ server is installed on a UNIX machine.

Be sure to place single quotes around string literals or tokens that will evaluate
Note strings.

The condition can include tokens. For more information, see Using Tokens
on page 49.

Example Command Uses

This section provides a number of operationsthat can be executed using
commands. Sample code for configuring many of these casesisincluded in
System Special Commands on page 137.

e Commands for connecting to machines

= Connect to the destination environment and run system commands

26 Commands, Tokens, and Validations Guide and Reference

Chapter 2: Using Commands

= Connect to an aternate environment and run command (environment
override)

Commands for manipulating data (fields and other information stored in
files or database)

= Setavaluein apackageline
= Create, run and delete a script

» Extract information from afile (version number)

Commands for running operating system-specific commands (NT and
UNIX)

= Starting aserver
= Stopping aserver
Commands for running program-specific commands

= Checking filesin and out of a version control system

Commands for copying files

Example Command Uses 27

Chapter 2: Using Commands

28 Commands, Tokens, and Validations Guide and Reference

Chapter

Special Commands

In This Chapter:

Overview of Special Commands

Soecial Command Interface

n Special Command Workbench

n Special Command Window

Creating and Editing Special Commands

= Creating a New Special Command

» Creating and Editing Special Command Parameters

n Setting Ownership for Special Commands

Using Special Commands

= Adding Special Commands to Command Steps Using the Command
Builder

= Nesting Special Commands

29

Chapter 3: Special Commands

Overview of Special Commands

Object types, request types, report types, workflows and validations all use
commands to access the execution layer. In order to smplify the use of
command executions, Mercury IT Governance Center contains a predefined
set of special commands. Users can also create their own special commands.

Specia commands are commands with variable parameters and are used in
object types, request types, report types, workflows, and validation command
steps. (Workflows use special commands in their workflow step sources.)
These command steps perform a variety of functions, such as copying files
between environments and establishing connections to environments for
remote command execution. Mercury IT Governance Center features two
types of special commands:

e System special commands - These commands are shipped with the
Mercury IT Governance Center. System special commands are read-only
and have the naming convention ‘ksc_command_name.” System special
commands always begin with ‘ksc_.’

e User defined special commands - These commands are user-defined and
have the naming convention ‘sc_command_name. User-defined special
commands must begin with ‘sc_.’

This chapter discusses the interface for creating, editing and using specia
commandsin Mercury IT Governance Center.

See System Special Commands on page 137 for a detailed description of system
special commands and their parameters.

Special Command Interface

Use the Workbench interface to create, view and edit special commands using
the Special Command Workbench shown in Figure 3-1.

To access the Special Command Workbench:

1. Log onto Mercury IT Governance Center and open the Workbench.

30

Commands, Tokens, and Validations Guide and Reference

Chapter 3: Special Commands

2. From the shortcut bar, select Configuration > Special Commands.

The Special Command Workbench opens.

Special Command Workbench

Use the Special Command Workbench to search for a particul ar special command
in the Query tab using the criteriadefined in Table 3-1.

Table 3-1. Special Command Workbench Query tab fields

Field Description
Special Command Name Filter for special commands where the name
matches a given string.
Description Filter for special commands where the
description matches a given string.
Enabled Filter for special commands that are enabled or
disabled.
E‘ Special Command Marne: | Gery: INDne LI
(] Description:
% Enabled: |ALL LI
£

Mewy Special Cormmatd | Save GUery | Clear | List I

heady

Figure 3-1. Special Command Workbench

Special Command Window

Use the Special Command window shown in Figure 3-2 to define and configure
special commands.

Special Command Interface 31

Chapter 3: Special Commands

Special Command B [=1E3 General

Command Mame: |sc_ Enabled: & Yes " Ma information
Desctiption: | region

Parameters] Commands} Ownership] Used BH

Tabs for
defining
parameters
and
commands

New| | ‘1“'

0K | Save | Cancel

[Ready

Figure 3-2. Special Command window

Special Command Window General Information Region

The Special Command window’ s general information region displays the basic
header information for the special commands. It consists of the fields described

in Table 3-2.

Table 3-2. Special Command window general information fields

Field Description

The name of the special command. This can only be updated

Command Name when generating or editing a user-defined special command.

Determines whether or not the special command is enabled
Enabled? for use in workflows, object types, report types, request types
and validations.

A description of the special command. This can only be
Description updated when generating or editing a user-defined special
command.

Parameters Tab

The Parameters tab displays the current parameters for the special command.
Most special commands have parametersto override standard behavior. Nearly
all parameters are optional. When a parameter is not passed to a special

32 Commands, Tokens, and Validations Guide and Reference

Chapter 3: Special Commands

command and the default value for the parameter is a custom token, the entity
using the command must contain afield with that token.

For example: The*ksc_copy_server_server’ special command shown is used
in an object type. The parameter FILENAME is not specified and defaults
to [P.P_FILENAME] becauseit is not explicitly passed.

ksc _copy server server
This makes ‘ksc_copy_server_server’ equivalent to:
ksc _copy server server FILENAME="” [P.P FILENAME]"”

because “[P.P_FILENAME]” isthe default token for the parameter
FILENAME. The command execution engine evaluates the token [P.P_
FILENAME] so it must be defined for the entity (the specific object type,
report type or request type).

To override the default token, passin another value for the parameter. A
few examples are:

ksc_copy_server server FILENAME="document.txt”
ksc _copy server server FILENAME=” [P.DOCUMENT NAME]”

This method of passing parametersis explained in more detail in the
section entitled Special Command Builder on page 37.

Custom tokens are defined for specific object types, request types, and report types,
and are referenced using the “[P.TOKEN_NAME]” syntax. See System Special
Note Commands on page 137 for a list of all predefined special command parameters and

their default tokens.

Commands Tab

Use the Commands tab to define and configure the commands and command
steps used by each user-defined special command. It is aso possible to view
the command information for the predefined system special commands.

Commands are designed to have a similar look-and-feel to the UNIX and DOS
operating system command structure. The specific parts of acommand, the
command steps, are often just command-prompt directives.

Special Command Interface 33

Chapter 3: Special Commands

Special Command 1 [=]
Command Name: [sc_ Enabled: Yes " Mo
Description: |
Parameters Commands I Ownership | Used By
riCommanc: riZommand Step:
Comnand | Condition | Dezc Cammand Dezcription
I [— 2 =
dhan| =a| New Cmd ‘ | | |f ¥
0K | Sae | Cancel |
[Ready

Figure 3-3. Special Command window—Commands tab

Commands are accessi ble through the Commands tab of the Special Commands
window and consist of command information and command steps.

Command Conditions

In many situations, it may be necessary to run adifferent set of commands
depending on the context of execution. For example, one command may be
needed to update a Web page, while another command may be required to
set-up an account on the Sales Automation application.

Thisflexibility is achieved through the use of conditional commands. The
Condition field for an object command provides the ability to define the
situation under which the associated command steps will execute.

Conditions are evaluated as Boolean expressions. If the expression evaluatesto
TRUE, the command is executed. If FALSE, the command is skipped and the
next command is evaluated to seeif it should run. If no condition is specified
the command is aways executed. The syntax of a condition isidentical to the
WHERE clause of a SQL statement, which allows flexibility when evaluating
scenarios. Some example conditions are given in Table 3-3.

34 Commands, Tokens, and Validations Guide and Reference

Chapter 3: Special Commands

Table 3-3. Example Conditions

Condition Evaluates to

BLANK Command executes in all situations.

Command executes when the department

[REQ.DEPARTMENTY' = "SALES for the request is named SALES.

Command executes if the priority assigned to
the request is HIGH.

@: When using conditional commands, strings must be enclosed by single quotes.

The condition can include atoken. See Using Tokens on page 49 for more
information.

{REQ.PRIORITY] = ‘HIGH’

Parameters in Command Steps

In the command steps within a special command, parameters are referred to as
their default tokens. When the special command is executed with avalue
specified for a parameter, this value will replace the default token throughout
the special command steps.

Example - Special Command

An existing special command echoes astring asan HTML tag named sc_echo_
html and takes the parameter RAW_TEXT. This example shows how to create
another special command named sc_new_command. This special command
will use sc_echo_html to echo the parameter value FILENAME, which has a
default token of [P.P_FILENAME].

Special Command Interface 35

Chapter 3: Special Commands

Special Command 1 [=]
Cammand Name: |sc_new_command Enahled: & Yas " Mo
Description: |
Parameters] Commands} Ownership] Used By
Parameter Name | Default Token Description
FILEMAME |P.P_FILEMAME [Filaname
< (>
| | 213
0K | Sae | Cancel |
[Ready

To accomplish this, the following command steps are entered in a command
for sc_new_command:

sc_echo html RAW TEXT="The value of FILENAME is...

"

sc_echo html RAW:TEXT:” [P.P_FILENAME]”

Special Command

9 [=1 3

Cammand Name: |sc_new_command Enahled: & Yas " Mo
Description: |

Parameters Commands I Ownership | Used By |
man: riZommand Step:

Cammancd | Condition | Cammancd | [
Echo value of FILENAME sc_echo_htm! RAW_TEXT="The value of FILENAME i5.."

sc_echo_htrml RAW_TEXT="[F.P_FILENAME]"
N 2]l | i
)| =] New Crd ‘ | | | +¥
Ok | Save | Cancel |

[Ready

Note that the command step uses the default token to refer to the value of the
special command parameter. The parameter name is only used when invoking
aspecial command.

36

Commands, Tokens, and Validations Guide and Reference

Chapter 3: Special Commands

Parameters cannot be used in command conditionals.
Continuing from the previous example, suppose that a special command has the

Not parameter FILENAME, whose default token is [P.P_FILENAME]. In command
ole conditionals, the token [P.P_FILENAME] will always be evaluated normally,

regardless of whether our special command was called with a value for the
parameter FILENAME.

Special Command Builder

The Special Command Builder isatool designed to simplify the use of special
commands by ensuring proper formatting of the command step. The Special
Command Builder, shown in Figure 3-4, is an interface where a special
command can be selected and appropriate parameters can be entered. The
Special Command Builder outputs a line of text to the Command field which
can be used as acommand step.

£ Special Command Builder

Command Name:
LUSERMAME |iohnsmith
NT_DOMaIN [[50URCE_EMY.CLIENT_NT_DOMAIN]

l|passworD [[30URGE_EMY.CLIENT_NT_PASSWORD]

SOLRCE_BASE_PATH | [SOURCE_ENV.CLIENT_NT_BASE_PATH]
COMMECTION_PROTOCOL | [SOURCE_ENY.CLIENT_CON_PROTOCOL_MEANING]

SOURCE_ENY [[s0URCE_ENY]
[N E TION PROTOCOL="[SOURCE_ENY.CLIENT _CON_PROTOCOL_MEANING
Clear | Showe Default Tokens | Close

Figure 3-4. Special Command Builder

Ownership Tah

The Ownership tab is used to select ownership groups for a specific special
command. Members of ownership groups are the only users who have the right
to edit, copy or delete this special command. This tab also displays ownership
groups that have been linked to this entity. Ownership groups can be deleted
from this tab by selecting them and clicking Remove.

See Setting Owner ship for Special Commands on page 43 for more
information about setting ownership for a new or existing special command.

Special Command Interface 37

Chapter 3: Special Commands

Special Command 1 [=] F3

Command Name: [sc_ Enabled: Yes " Mo

Description: |

Parameters | Commands Ownership] Used By

Give ahility to edit this Special Command to:
% Al ugers with the Edit Special Commands Access Grant
" Only groups listed below that have the Edit Special Commands Access Grant
Security Group Description
Ok | Save | Cancel

[Ready

Figure 3-5. Ownership tab

Used By Tah

Click the Used By tab to view alist of entities that currently refer to the
selected special command.

Creating and Editing Special Commands

This section details key procedures for creating and editing special commands.

Creating a New Special Command
To create anew specia command:
1. From the Special Command Workbench, click New Special Command.
The Special Command window opens.
2. Click the Commands tab.
3. Click New Cmd.

The New Command window opens. This window’ sfields are defined in
Table 3-4 on page 40.

38 Commands, Tokens, and Validations Guide and Reference

Chapter 3: Special Commands

£ New Command

Command:

Description:
Tirneout (s):
Enahled & Yeg O No

|
Condition: [
|
|

Steps:

Tokens | Special Crmd ‘ Show Desc | QK Add | Cancel |

[Ready

4. Enter information in the Command, Condition and Description fields.

See Command Conditions on page 34 for more details about defining
Conditions.

5. Select the Yes option for the Enabled radio button.
6. Add tokens to the new special command as desired.
a. Click Tokens.
The Token Builder window opens.
b. Copy atoken from the Token Builder window.
c. Paste it into the New Command window’ s Steps text area.
7. Add another special command to the new special command.
a. Click Special Cmd.
The Special Command Builder window opens.

b. In the Command Name field, select a special command and enter any
required parameters.

c. Copy the special command from the Special Command Builder window.

d. Paste it into the New Command window’ s Steps text area.

Creating and Editing Special Commands 39

Chapter 3: Special Commands

8. To add the new command to the Command tab of the Special Command
window without closing the New Command window, click Add.

9. To add the new command to the Command tab of the Special Command
window and close the New Command window, click OK.

The new special command has been created.

10. To save the new special command, click Save.

Table 3-4. New Command window fields

Field Description

Command The name of the command.

A condition that determines whether the command steps for the
Condition command are executed or not. (See Command Conditions
on page 34 for more information).

Description | A description of the command.

Enabled? Determines whether the command is enabled for execution.

Creating and Editing Special Command Parameters

This section describes procedures for creating and editing special command
parameters.

Adding Parameters to Special Commands

This section describes the procedure for adding parameters to a special
command.

To add a new parameter to a user-defined special command:
1. In the Parameters tab of the Special Command window, click New.

The Parameter: New window opens.

40 Commands, Tokens, and Validations Guide and Reference

Chapter 3: Special Commands

£ parameter: New

Marne: ”

Description: |

Default Token: |

Tokens oK Addl | cancel
[Ready

2. Fill in the Name, Description and Default Token fields.

To select an existing global token, follow step 3 through step 9. To
manually entered a token name in the Default Token field, go to step 7.

3. To select an existing global token, click Tokens.

The Token Builder window opens.

£ Token Builder
oken Cortext

[Tokens

{7 Token Contesxt

{71 App Server

{71 Budget

{71 Enwvironment
{771 Execution

{17 Financial Beneftt
{171 Organization Unit
{271 Program

{7] Re=ource Pool

{71 Security Group
{271 Skill
{7 Staffing Profile

{7 Walidation

Taken | Drescription |

Context Yalue: I

Token: [

Refresh

Close

4. In the Token Context pane of the window, select afolder.

The available tokens for each folder display in the Tokens pane of the

window.

5. In the Token column, select a token.

When atoken is selected, it enables the Token field and displays the name

of the selected token (including its prefix).

Creating and Editing Special Commands 41

Chapter 3: Special Commands

6. Copy the token.
a. Select the token in the Token field.
b. Press Ctrl+c on the keyboard.

7. In the Parameter window, paste the token name into the Default Token field
by pressing Ctri+v on the keyboard.

8. To add the field to the Parameters tab and close the Parameter window,
click OK.

9. To add the field to the Parameters tab without closing the Parameter
window, click Add.

Editing Special Command Parameters

This section describes the procedure for editing special command parameters.

To edit an existing parameter:
1. Open the special command.
2. In the Parameters tab, double-click the parameter.
The Parameter window opens.
3. Make the desired changes in the Parameter window.
4. Click Apply to apply the changes without closing the Parameter window.

5. Click OK to apply the changes and close the Parameter window.

The parameter order can be altered by selecting a parameter in the Parameters tab
and clicking either the Up or Down arrow.

Changes to parameters already used by existing request types, object types, or
report types can affect the way these entities function.

42 Commands, Tokens, and Validations Guide and Reference

Chapter 3: Special Commands

Deleting Parameters
This section describes the procedure for deleting special command parameters.

To delete a parameter:
1. Open the special command.
2. Select the parameter in the Parameters tab.
3. Click Remove.
4. Click OK to save the information and close the Special Command window.

5. Click save to save the information without closing the Special Command
window.

The parameter is deleted from the special command.

Setting Ownership for Special Commands

Different groups of users can have exclusive control over the special
commands used by their group. These groups are referred to as ownership
groups. Members of the ownership group are the only users who can edit,
delete or copy the special commands. Each special command can be assigned
multiple ownership groups.

Ownership groups are defined in the Security Group window in the Workbench.
See the Security Model Guide and Reference for instructions on setting up
security groups.

To set the ownership for a special command:
1. Open the Special Command window.

2. Click the Ownership tab.

Creating and Editing Special Commands 43

Chapter 3: Special Commands

Special Command 1 [=]
Command Name: [sc_ Enabled: Yes " Mo
Description: |

Parameters | Commands Ownership] Used By

Give ahility to edit this Special Command to:
% Al ugers with the Edit Special Commands Access Grant
" Only groups listed below that have the Edit Special Commands Access Grant
Security Group Description
Ok | Save | Cancel

Ready

Onl

. Select the Only groups listed below that have the Edit Special Commands

Access Grant option.

. Click Add.

The Add Security Groups window opens.

. In the Security Group auto-complete list, select a security group.

. To close the Add Security Group window, click OK.

The selected security groups are display in the Ownership tab under the
security group column.

. To save the changes and close the window, click OK in the Special

Command window.

To save the selection and |eave the Special Command window open, click
Save.

y members of the security group(s) specified in the Ownership tab can edit,

delete, or copy this special command.

44

Commands, Tokens, and Validations Guide and Reference

Chapter 3: Special Commands

If no ownership groups are associated with the entity, the entity is considered global
and any user with the Edit access grant for the entity can edit, copy or delete it. For
more information on access grants, see the Security Model Guide and Reference.
By default, administrators have the 'Ownership Override' access grant and can
access configuration entities even if the administrator is not a member of one of the
ownership groups and does not have the Edit access grant.

If a security group is disabled or loses the Edit access grant, that group will no longer
have edit access for the entity.

Using Special Commands

Special commands are added to command steps directly in the entity windows
(object types, request types, report types, validations and workflows). For
example, Figure 3-6 shows an object type that has been generated using a
combination of special commands.

Object Type : RCS File Migration 1 [=] F3
Object Type Name: |RCS File Migration
Descrigtion: | This object manages the chackout and distribution of code in RCS
Extenszion: ‘ j Ohject Mame Colurr: |PARAMETER1 ﬂ
Ohject Category: ‘Standard Ohjects j Ohject Revision Colurmn: | j
Meta Layer view: |[MPRGL_ |RCS_FILE_MIG
Enabled: * ves { MNo
Fields] Layout Cnmmands]] Ownership]
riCommancd: riZommand Step: o
| Comtmanc
[® Connectto RCS Environment (not expandec)
[# Checkoutof RCS (hot expanded)
(=] Copy form RES (server ta client kse_copy_server_client SOURCE_ENY="RCS" SUB_PATH="[F.f
[=- Copy form RCS (server) to server ksc_copy_server_server SOURCE_ENV="RCE" SUB_PATH="[F
[#- C:annecttn RGA Fovirnnment nat expanded s
1 ﬂ 1 »
| =] New cmd | | | | +|4
(6124 | | Cancel |
Feady

Figure 3-6. RCS File Migration object type

Using Special Commands 45

Chapter 3: Special Commands

Adding Special Commands to Command Steps Using the Command
Builder

Special commands can be added to any set of command steps in the following
entities:

o Object types

o Request types

o Report types

e Validations

e Workflow step sources
e Other special commands

Access the Special Command Builder in the Commands tab for each of these
entities.

To build acommand step using the Special Command Builder:
1. Go to the Commands tab for the entity which commands will be added.
2. Click New Cmd or edit an existing command.
The Command window opens.
3. Click special Cmd.
The Special Command Builder window opens.

4. Enter the a command name in the Command Name field, or select it from
the auto-complete list.

When selecting a command name from the auto-complete list, its
parameters appear in the Special Command Builder.

Both predefined (ksc_command) and user defined (sc_command) special commands
@: can be used to build the command steps line. For more information on generating

special commands, see Special Command Interface on page 30.

46 Commands, Tokens, and Validations Guide and Reference

Chapter 3: Special Commands

5. Replace the associated default token value with any desired parameter
information.

a. To view the default tokens, click Show Default Tokens.
b. To hide the default tokens, click Hide Default Tokens.

6. When the parameters have been modified, select the text in the Command
field.

To copy the formatted special command, press Ctrl+c on the keyboard.
7. To close the Special Command Builder window, click Close.

8. To paste the special command step, click in the steps text area of the New
Command window and press Ctrl+v on the keyboard.

9. Fill in the remaining fields in the New Command window.
10. Select the Yes option for the Enabled radio button.

11. To add the command step to the Command tab, click OK.

The new special command is now ready to be used in an object type, request
type, report type, validation, or workflow.

Special commands can be used in an execution workflow step source. After the
@: workflow step source is created (which contains the special commands), it can be

dragged and dropped into a workflow.

Nesting Special Commands

Special commands can be used within other special commands, but must be
used within a command step. However, a special command cannot refer to
itself.

Using Special Commands 47

Chapter 3: Special Commands

48 Commands, Tokens, and Validations Guide and Reference

Chapter

Using Tokens

In This Chapter:

Overview

What are Tokens?

Where Tokens Are Used

Token Builder Window Overview
Token Formats

Default Format

Explicit Entity Format

User Data Format
Parameter Format
Sub-Entity Format
Environment and Environment Application Tokens
e Token Evaluation

49

Chapter 4: Using Tokens

Overview

This chapter provides an overview of how to use tokens.

What are Tokens?

While configuring certain features, it is often necessary to reference
information that is undefined until Mercury IT Governance Center is actually
used a particular context. Instead of generating objects that are valid only in
specific contexts, Mercury IT Governance Center uses variables to facilitate
the creation of general objects that can be applied to avariety of contexts.
These variables are called tokens.

There are two types of tokens found within Mercury IT Governance Center:
custom tokens and standard tokens. Standard tokens are provided with the
product. Custom tokens are generated to suit specific needs. Each field of the
following entities can be referenced as a custom token:

o Object types

e Request types and request header types
o Report types

e Userdata

o Workflow parameters

In addition, numerous standard tokens are available that provide other useful
pieces of information related to the system. For example, Mercury IT
Governance Center has atoken that represents the users currently logged onto
the system.

Where Tokens Are Used

Tokens can be used in the following entity windows:
e Object type commands

e Request type commands

e Vadidation commands and SQL statements

50

Commands, Tokens, and Validations Guide and Reference

Chapter 4: Using Tokens

e Report type commands

e Executions and notifications for a workflow
e Workflow step commands

e Notificationsin areport submission

e Specia command commands

e Notifications for tasks

e Notesfor request details

Validation : DRY - Project Mames - All - Depend on [P_SHOW _MASTER_ONLY]

Mame: |DRV- Froject Mames - All - Depend

an [F_SHOW_MASTER_OMLY]

Descrition: |DRY - Projects

Enabled: [+ Usze in Workflow? [
Componert Type: | J
“alidated By: | J Expected list length: ¥
Selection mods: * i Murnber of resutts per page: |50
Configurstion] Filter Fields | Fiter Layout
olumnn Headers: ~| Bl . T
parent_praject_id=- -
Seqy (Folumn Header | Displayed | Column OR ([P.P_SHOW_MASTER_ONLY]= M)
1|Hidden Code M AND templale_flag = W'
2|Project Mame [¥ AND
3|Project 1D i KDRY_SECURITY.Can_User_Access_Project(SYS.USER J
_I0], master_project_id) = " J
arder by 2 W
| [2
Usze Bind Yatiables? |
| | | elal = |

Uszed By | Duenership |

OK|

| Cancel |

Readty (Read-Orly, Seed Data)

Figure 4-1. Example of a token used in a SQL statement

Token Builder Window Qverview

In each of the entity windows listed in Where Tokens Are Used on page 50, a
token can be created by opening the Token Builder window.

To open the Token Builder window through the Request Type window:

1. Open a Request Type window, either by generating a new request type or by

opening an existing one.

2. Click the Commands tab.

Token Builder Window Overview

51

Chapter 4: Using Tokens

3. Click New Cmd.
4. Click Tokens.
The Token Builder window opens, as shown in Figure 4-2.

5. Use the Token Builder window to help construct valid tokens.

£ Token Builder 3
oken Context [Tokens

{7 Token Contesxt Token | Description |
{71 App Server

{71 Budget

{71 Enwvironment
{771 Execution

{17 Financial Beneftt
{171 Organization Unit
{271 Program

{7] Re=ource Pool
{71 Security Group
{271 Skill

{7 Staffing Profile

{7 Walidation

Contesxt Value: I
Token: [
Refresh Close

Figure 4-2. Token Builder window

Folders are displayed in the left pane of the Token Builder window. These
folders contain groups of tokensthat correspond to entities defined in Mercury
IT Governance Center. For alist of entities and associated tokens, see Tokens
on page 175. For instance, the Packages folder contains tokens that reference
various package attributes. If the Packages folder is selected, the available
package tokens are displayed in the list in the right pane of the window.

Some entities (folders) have sub-entities (sub-folders) that can be referenced
by tokens. Click the plus sign (+) next to an entity to see thelist of sub-entities
for an entity. Each sub-entity also hastokens, and it is possible to reference any
of the tokens of sub-entities, aswell as tokens of the parent entity. For
example, the package line entity is a sub-entity of the package entity.

As entity folders and the subsequent tokens in the list are selected, a character
string is constructed in the Token field at the bottom of the Token Builder
window. Thisis the formatted string used to reference the token. Either copy
and paste the character string, or type this string where needed.

52

Commands, Tokens, and Validations Guide and Reference

Chapter 4: Using Tokens

Token Formats

Tokens can use one of several different formats, depending on how they are
going to be evaluated. Tokens can be expressed in the following formats:

Default Format
Explicit Entity Format
User Data Format
Parameter Format
Sub-Entity Format

Environment and Environment Application Tokens - the environment and
environment app entities evaluate differently than the other entities.

Table 4-1 lists the entities and the formats each entity supports. Each format is
discussed in a section following the table.

Table 4-1. Entities

uses the ENV values.

Prefix (Entity) Entity and Description User Data Parameter
Format? Format?
AS App server N
BGT Budget N
CON Contact Y N
Destination environment. If an app code is
DEST_ENV specified, it will be used. Otherwise use only | Y N
values from ENV.
Destination environment (for the environment
DEST_ENV.APP application). Only use app code values, even | Y N
if they’re null.
DEST ENV.ENV Destination environment. Ignores app codes Y N
and only uses the ENV values.
DIST Distribution N
ENV Environment N
Environment (for the environment
ENV.APP application). Only use app code values, even | Y N
if they’re null.
ENV.ENV Environment. Ignores app codes and only v N

Token Formats 53

Chapter 4: Using Tokens

Table 4-1. Entities

Prefix (Entity) Entity and Description User Data Parameter
Format? Format?
EXEC Execution N N
NOTIF Notification N N
ORG Organization Unit Y N
PKG Package Y N
PKG.PKGL Package (package line) Y N
PKG.PEND Package (pending package) Y N
PKGL Package line Y Y
PRG Program Y N
PRJ Project plan Y N
PRJD Project plan details N Y
REL Release N N
REL.DIST Release (distribution) Y N
REQ Request Y Y
REQ.PEND Request (pending) N N
REQD Request details N Y
RP Report submission N Y
RSCP Resource pool Y N
SG Security group Y N
SKL Skill Y N
STFP Staffing profile Y N
SOURCE_ENV Source environment Y N
Source environment (for environment
SOURCE_ENV.APP application). Only use app code values, even | Y N
if they’re null.
SoURE EnvENy | S uromment lararesappcodesand | N
SYS System N N
TSK Task Y N
TSK.PEND Task (pending) N N

54 Commands, Tokens, and Validations Guide and Reference

Chapter 4: Using Tokens
Table 4-1. Entities
Prefix (Entity) Entity and Description User Data Parameter
Format? Format?

USR (User) User Y N
VAL Validation N
VAL VALUE Valldat.u.)n (Vglue). Use this format to specify y N

a specific validation.
VALUE Validation (Value) Y N
WF Workflow N
WF.WFS Work'f!ow (step). Use this format to specify a N v

specific workflow.
WFS Workflow step Y N

Default Format

Tokens are expressed as a prefix (ashort name for the entity) followed by a
token name. The prefix and token name are separated by a period and enclosed
in square brackets with no spaces:

[PREFIX.TOKEN NAME]

For example:

The token for the package number is expressed as:

[PKG.NUMBER]

The token for arequest's workflow name is expressed as:

[REQ.WORKFLOW_ NAME]

Certain tokens also support a sub-format. This sub-format is required for
certain entities in order to evaluate to the correct context. For example, WF

tokens will resolve to information related to the workflow, whereas WF.WFS
tokens will resolve to workflow step information. Token sub-formats are
included in the prefix, appended to the parent prefix, and separated by a period:

[PREFIX.SUB-PREFIX.TOKEN NAME]

Tokens are evaluated according to the current context of Mercury IT
Governance Center, which is derived based on information known at the time
of evaluation. For more information, see Token Evaluation on page 66.

Token Formats 55

Chapter 4: Using Tokens

Explicit Entity Format

It is possible to provide a specific context value for an entity. This alowsthe
default context to be overridden. Some tokens can never be evaluated in the
default context. In these cases, the context must be set using an explicit entity
format:

[PREFIX="<entity name>" .TOKEN NAME]

The Token Builder helps generate tokens in this format by providing alist of
possible entity name values. When such alist is available, the Context Vaue
auto-complete field at the bottom of the Token Builder becomes enabled. Like
any other auto-complete field, either type into the field to reduce the list or
click the auto-complete icon in the field to open the validate window. Once a
value is selected, it isinserted into the token in the Token field, generating an
explicit entity token (see Figure 4-3).

£ Token Builder E]
oken Cortext Tokens

{7 Token Contesxt Token

{71 App Server COMPOMENT_TYFE The GUI comp
{7 Budget CREATED _BY The userid of
{17 Erwvironmert CREATION_DATE The date the 4
{271 Execution DESCRIPTION The descriptiol
{1 Firancisl Benefi LAST_UPCATED_BY The userid ofi
{171 Orgarization Unit LAST_UFPDATE_DATE The date the V:
{27 Program LOCKUP_TYPE The foreign ke
{17 Resource Poal UD.USED_IN_TEXTAREA Denotes that
{171 Security Group WVALIDATION_ID The internal it
{2 skl YALIDATION_MNAME The name of t
{1 Staffing Profile WALIDATION_SQL The SGL statel
WORKBEMCH_VALIDATION...|URL to access

K — Bl
Context Yalue: I H
Token: |NAL]
Refresh Close

Figure 4-3. Explicit Entity Format

For example, suppose the Email Address for the user “jsmith” isto be
referenced. The token would be:

[USR="jsmith” .EMAIL ADDRESS]

To construct the above token in the Token Builder window:

1. Select the User folder.

56

Commands, Tokens, and Validations Guide and Reference

Chapter 4: Using Tokens

Available tokens are displayed in the list on the right pane. The Context
Value field at the bottom of the Token Builder isenabled. The string [USR.]
appears in the Token field below the Context Value field.

2. Click the auto-complete icon in the Context Value field.
A Validate window openswith alist of users.

3. Scroll through the list to find user “jsmith.” Select this user and click OK.
The string [USR="jsmith"] appearsin the Token field.

4. Inthelist of tokens, select EMAIL_ADDRESS.

The string [USR="jsmith” . EMAIL_ADDRESS] appearsin the Token field.
Thisis the complete token. Since the token is “now complete, the Token
field becomes enabled.

5. Select the token.
6. Press Ctrl+c on the keyboard to copy the token.

7. Press Ctrl+v on the keyboard to paste the token into another field.

Using Tokens within Other Tokens

The explicit entity format can be used to put tokens within other tokens to
generate avalue. For example, to print the description of the workflow that is
associated with package #10203, the token would be:

[WE="[PKG="10203" .WORKFLOW NAME]” .DESCRIPTION]

This token would have to be built in two steps. First, build the Description token
for the workflow. Copy and paste that token into another field, then build the
Workflow Name token for the package. Copy and paste that token within the
Description token that was previously pasted.

Internally, this token is evaluated in two stages. The inner token is evaluated
and the token has the following internal representation:

[WF="Workflow Name” .DESCRIPTION]
The remaining token is evaluated and the final result is printed:

description of my workflow

Table 4-2 includes alist of the tokens that support the explicit entity format.

Token Formats 57

Chapter 4: Using Tokens

It is important to note that entity_name is case-sensitive and can contain spaces or

other ASCII symbols.

Tokens for the user and security group entities can never be evaluated in the
default format, and require the use of the explicit entity format. An example
would be the token [USR.EMAIL_ADDRESS]. Thistoken can never be
evaluated because Mercury IT Governance Center cannot determine to which

user it should refer.

Table 4-2. Tokens supporting explicit entity format

Token Prefix Example Acceptable Explicit Entry
BGT [BGT="Development Budget”.CREATED_BY] Budget Name

CON [CON="Smith, John”.PHONE_NUMBER] Last Name, First Name

ENV LEA\IC\)I;SE%T_]SERVER".CLIENT_TRANSFER_ Environment Name

ORG [ORG="Project Managers".MANAGER_ID] Organization Unit Name

PKG [PKG="30010".CREATED_BY] Package Number

REQ [REQ="30006".CREATED_BY] Request Number

RSCP EBRYS]CP="DeveIopment Resources".CREATED_ Resource Pool Name

SG [SG="Administrator".LAST_UPDATED_BY] Security Group Name

SKL [SKL="Architect". AVERAGE_COST_RATE] Skill Name

STFP [STFP="ITG Pilot".CREATED_BY] Staffing Profile Name

USR [USR="jsmith".LAST_NAME] User Name

VAL [VAL="Date".CREATED_BY] Validation Name

WF [WF="Dev -> Test -> Prod".CREATED_BY] Workflow Name

WF.WFS [WF="Workflow Name”.WFS="1".STEP_NAME] Workflow Step Sequence Number

58

Commands, Tokens, and Validations Guide and Reference

Chapter 4: Using Tokens

User Data Format

User datafields use tokens differently, as shown below:

[PREFIX.UD.USER DATA TOKEN]

The Prefix isthe name of the entity that has user data. The modifier UD
indicates that user data for that entity is being referenced. USER_DATA _
TOKEN isthe name of the token for the specific user data field. For example,
suppose that afield for package user data has been generated whose token is
GAP_NUMBER. In the default format, the token would be:

[PKG.UD.GAP_ NUMBER]

In this context, PKG indicates that the package entity is being referenced, UD
indicates that user data is being referenced, and GAP_NUMBER is the token
name.

When user data fields are generated, a validation that has both a hidden and
visible value can be used. For example, if thevalidation ‘KNTA - Usernames -
All" isused, the hidden value isthe user 1D and the displayed valueisthe
username. The previous syntax references the hidden value only. To reference
the visible value for a user datafield, the syntax shown below must be used:

[PREFIX.VUD.USER DATA TOKEN]

If the modifier VUD isused instead of UD, the visible user datavalueis
referenced.

Drop-down lists and auto-complete lists may have different hidden and displayed
values. For all other validations, the hidden and displayed values are identical.

When context can be determined, user data tokens are displayed with the
system-defined tokens in the Token Builder.

Table 4-1 indicates which tokens support the user data format.

Token Formats 59

Chapter 4: Using Tokens

Parameter Format

Object type custom fields, request type custom fields, request header type
fields, project plan fields, and workflow parameters use the parameter format
for tokens as shown below:

[PREFIX.P.PARAMETER TOKEN]

In this specific case, the Prefix is the name of the entity that uses a custom
field. The modifier “P’ indicates that parameters for that entity are being
referenced. PARAMETER_TOKEN is the name of the token for the specific
parameter field.

e Package lines reference object type fields.
¢ Requests reference request type and request header type fields.
e Workflows reference workflow parameters.

For example, suppose afield for an object type named Gap Number (Token =
GAP_NUMBER) has been generated that is used on package lines. In the
default format the token would be:

[PKGL.P.GAP_ NUMBER]

In this context, PKGL isthe prefix since the package lines entity has been
referenced, “P” indicates that parameters have been referenced, and GAP_
NUMBER is the token name.

Custom fields store both a hidden and visible value. For example, if the field
usesthe validation ‘KNTA - Usernames - All’, the hidden value is the user ID
and the displayed value is the username. The previous syntax references the
hidden value only. To reference the visible value for a parameter, use the
syntax as shown:

[PREFIX.VP.PARAMETER TOKEN]

If the modifier ‘“VP isused instead of ‘P, the visible parameter valueis
referenced.

Drop-down lists and auto-complete lists may have different hidden and displayed
values. For all other validations, the hidden and displayed values are identical.

60 Commands, Tokens, and Validations Guide and Reference

Chapter 4: Using Tokens

Request Field Tokens

Tokens can access information on custom fields included on arequest. These
fields can be defined in &

e Custom request type field

e Request header field (standard)

e Request header field (custom fields)
e Request header field (field groups)
e Table component field

Request Token Prefixes

All fields defined in the request header type (field group fields, custom header
fields, and standard header fields) use the REQ prefix. The following examples
coulduse“P’ or “VP.”

REQ.<standard header Token>

Example: REQ.DEPARTMENT_CODE

REQ.P.<custom header field Token>

Example: REQ.P.BUSINESS_UNIT

REQ.P.<field group Token starting with KNTA >

Example: REQ.P.KNTA_SKILL

Fields defined in the request type use the REQD prefix. It is also possible to
access standard header fields using the REQD prefix:

REQD.P.<custom detail field>

REQD.<standard header Token>

Tokens in Request Table Components

When referring to itemsin atable component, the tokens need to follow
specific formats. These formats differ depending on the item that is being
referenced within the table. Figure 4-4 shows the basic elements of the table.
These elements will be referenced when discussing the different options for
referencing data within the table using tokens.

Token Formats 61

Chapter 4: Using Tokens

MERCURY

Hardware Information

Select the Product and QWy of the tems you wish to order. Table COIUmn

\J
Seq Products Cuantity Price Total

0o PC 3 1200 3600 « Table Row

Al O 2 PC 2 1200 2400

¥
Check All Clear All A Add Edit Copy Delete
' ' Table Cell

Figure 4-4. Table component formats

Theformat [REQD.T.<TABLE TOKEN-] representsthe table and specific
tokens will be represented as [REQD.T.<TABLE TOKEN>.<SPECIFIC
TokENS>] . The following sections provide examples of the formats used for
tokens referencing items related to the table component:

e To access the table row count from a Request context

e To accessthe Salary Column Total value from a Request context

e To access the Name of the first employee in the table from a Request
e To access the Code of the first employee in the table from a Request

e To access the Department Cell value of the current row (Table Row
Context)

e Toobtain a delimited list of a column’s contents (Request Context)

In these examples, the following example will be used. A table component
named Employee with 4 columns:

e Name of Employee

e Years of Service of the Employee

e Department where the Employee belongs to
e Salary of the Employee.

These columns are defined as shown:

Table Component “Employee Table” with [EMPLOYEE] as the Token.

Column 1 - Name of Employee; Token = [NAME]

Column 2 - Years of Service; Token = [YEARS OF SERVICE]
Column 3 - Department of Employee; Token = [DEPARTMENT]
Column 4 - Salary of Employee; Token = [SALARY]

62 Commands, Tokens, and Validations Guide and Reference

Chapter 4: Using Tokens

To access the table row count from a Request context

[REQD.P.EMPLOYEE] - returns the raw row count without any
descriptive information.

[REQD.VP.EMPLOYEE] - returns the row count with descriptive
information. Example "13 Entry(s)".

WHERE: EMPLOYEE is the Token given to a table component type.
To access the Salary Column Total value from a Request context

[REQD.T.EMPLOYEE.TC.VP.SALARY.TOTAL]

WHERE: EMPLOYEE isg the Token given to a table component type and
SALARY is the Token name given the table's first column.

To access the Name of the first employee in the table from a Request

[REQD.T.EMPLOYEE.TE="1".VP.NAME]

To access the Code of the first employee in the table from a Request

[REQD.T.EMPLOYEE.TE="1".P.NAME]

To access the Department Cell value of the current row (Table Row Context)

[TE.VP.DEPARTMENT]

It is possible to use this table component token in a Table Column Header
validation SQL or in atable component rule SQL.

To obtain a delimited list of a column’s contents (Request Context)

[REQD.T.EMPLOYEE.TC.VP.NAME]

where EMPLOYEE IS the token given to atable component type and sarary is
the token name given the table's first column.

Thisis particularly useful when acolumnisalist of user names, and thislist
can be used for sending these users notification.

Sub-Entity Format

Some entities have sub-entities that can be referenced. In the Token Builder,
click the plus sign (+) next to an entity to seethelist of its sub-entities. To
reference a token from a sub-entity, in the context of a parent entity, use the
syntax shown below:

Token Formats 63

Chapter 4: Using Tokens

[PREFIX.SUB ENTITY PREFIX.TOKEN]

In this case, the preFIX iSthe name of the entity, the sus_enTITY prefix isthe
prefix for a sub-entity, and Toxen is a token of the sub-entity. Typically, itis
not necessary to use this syntax. However, it is possible to reference specific
sub-entities using the explicit entity syntax.

For example, to reference the step name of the workflow step in the current
context, both of the following tokens have the same meaning:

[WFS.STEP_NAME]

[WF.WFS.STEP_ NAME]

However, to reference the step name of the first workflow step for the current
workflow, use the following token:

[WF.WFS="1" .STEP_ NAME]

By not using the explicit entity format for the workflow entity, the token
indicates that the workflow in the current context should be used. But by using
the explicit entity format for the workflow step entity, the current context is
overridden and a specific workflow step isreferenced. In contrast, to reference
the step name of the first workflow step in a workflow whose nameis'my
workflow', use the following token:

[WF=“workflow name” .WFS="“1" .STEP_ NAME]

With this token, the current context for both the workflow and the workflow
step will be overridden.

Environment and Environment Application Tokens

Tokens for the environments and environment application entities can have
many different forms depending on the information to be referenced. During
object type command execution, there is generally a source and a destination
environment. The token prefixes SOURCE_ENV and DEST_ENV are used to
reference the current source and destination, respectively, as shown in the
following example:

[SOURCE_ENV.DB_ USERNAME]

[DEST ENV.SERVER BASE PATH]

In addition, ageneral ENV Prefix can be used in the explicit entity format to
reference specific environments, as shown in the following example:

[ENV="Prod” .CLIENT USERNAME]

64 Commands, Tokens, and Validations Guide and Reference

Chapter 4: Using Tokens

During normal environment token evaluation, the evaluation engine first
evaluates the app code on the package line (if oneis specified). If the
corresponding app code token has a value, then the valueis used. Otherwise, if
no app code was specified or the app code token has no value, the
corresponding base environment information is used.

To override the normal environment token evaluation and only evaluate the
environment information (without first checking for the app code), construct
the SOURCE_ENV and DEST_ENV tokens as shown in the following
examples:

[SOURCE_ENV.ENV.DB USERNAME]

[DEST ENV.ENV.SERVER BASE PATH]

[ENV="Prod” .ENV.CLIENT USERNAME]

The evaluation engine can be instructed to look only at the app code
information (without checking the base environment information if the app
code token has no value). Construct the SOURCE_ENV and DEST_ENV
tokens as shown in the following example:

[SOURCE_ENV.APP.DB USERNAME]
[DEST ENV.APP.SERVER BASE PATH]
[ENV="Prod” .APP.CLIENT USERNAME]

The prefix ‘APP can only be used in the sub-entity format. For example, the
following token isinvalid, since a context environment that includes the app
code has not been specified.

[APP.SERVER BASE PATH]

In addition, the explicit entity format can be used with the app code entity to
reference a specific app code, as shown in the following examples:

[SOURCE_ENV.APP="AR” .DB_USERNAME]
[DEST ENV.APP="OE” .SERVER BASE PATH]
[ENV="Prod” .APP="HR” . CLIENT USERNAME]

For example, suppose objects are being migrated on a package line a a given
workflow step, and the line uses app code “HR”. The workflow step has *QA’
as the source environment, and ‘Prod’ as the destination environment.
Table 4-3 shows other attributes of the environments and applications.

Token Formats 65

Chapter 4: Using Tokens

Table 4-3. Sample environment and app attributes

Environment App Code Server Base Paths
QA /qa

QA OE /qa/oe

QA HR /qa/hr

Prod /prod

Prod OE /prod/oe

Prod HR <no value>

Given this setup, Table 4-4 shows some sampl e tokens and how each would
evaluate.

Table 4-4. Sample environment tokens

Token Evaluation
[SOURCE_ENV.SERVER_BASE_PATH] /qa/hr
[DEST_ENV.SERVER_BASE_PATH] /prod
[SOURCE_ENV.ENV.SERVER_BASE_PATH] /qa
[DEST_ENV.ENV.SERVER_BASE_PATH] /prod
[SOURCE_ENV.APP.SERVER_BASE_PATH] /qa/hr
[DEST_ENV.APP.SERVER_BASE_PATH] <no value>
[ENV="QA”.APP="OE”.SERVER_BASE_PATH)] /qa/oe

Token Evaluation

Tokens are evaluated at the point when Mercury IT Governance Center must
know their context-specific values. At the time of evaluation, the token
evaluation engine gathers information from the current context and tries to
derive the value for the token. Values can only be derived for specific, known
contexts (the current context is defined as the current package, package line,
request, project plan, workflow step, or Source and destination environments).

66 Commands, Tokens, and Validations Guide and Reference

Chapter 4: Using Tokens

The token eval uation engine takes as many passes as necessary to evaluate all
tokens, so one token can be nested within another token. During each pass, if
the evaluation engine finds a valid token, it replaces that token with its derived
value. tokens that are invalid for any reason (such asthe token is misspelled or
no context is available) are |eft alone.

For example, suppose an object type command has the following Bourne-shell
script segment as one of its command steps:

if [! -f [PKGL.P.P_SUB_PATH]/[PKGL.P.P_BASE_FILENAME].fmx 1;
then exit 1; fi

At the time of execution, [PKGL.P.P_SUB_PATH] =*“Forms” and
[PKGL.P.P_BASE FILENAME] =*“obj_maint”. After token evaluation, this
command step would reduce to:

if [! -f Forms/obj maint.fmx]; then exit 1; fi

As another example, suppose a user data field has been generated for all users
called ‘MANAGER. The email address of the manager of the person who
generated arequest could be found using the token:

[USR=" [USR=" [REQ.CREATED BY NAME]” .VUD.MANAGER]” .EMAIL ADDRESS]

The token evaluation engine would first evaluate the innermost token
([REQ.CREATED_BY_NAME]). Once that is complete, the next token
([USR="<name>".VUD.MANAGER]) is evaluated. Finally, the outermost
token is evaluated, giving the manager's email address.

Tokens are evaluated at different points based on the token type. Tokens used
in object type parameters and commands are eval uated during command
execution. Tokensin avalidation SQL statement are evaluated just before that
statement is executed (such as generating a new package line). Tokensin an
email notification are evaluated when a notification is generated.

Token Evaluation 67

Chapter 4: Using Tokens

68 Commands, Tokens, and Validations Guide and Reference

Chapter

Working with Validations

In This Chapter:

Overview of Working with Validations

What are Validations

Validation Component Types - Overview
Creating a Validation

s User Data on the Validation Value

Editing Validations

s Creating a URL to Open the Validation Window
Deleting Validations

Satic List Validations

Dynamic List Validations

s SQL Validation

s Command Validation

Configuring Auto-Complete Validations

= Configuring General Auto-complete Behavior
= Configuring the Auto-Complete Values
Configuring Text Fields

» Creating a Text Field Validation Overview
= Available Text Data Masks

» Customizing the System Text Data Masks

» Creating a Custom Data Mask

Using Directory and File Choosers

» Directory Chooser

n File Chooser

Date Field Formats

Creating 1800 Character Text Areas

69

Chapter 5: Working with Validations

Configuring the Table Component

= Defining the Table Component in the Validation Wor kbench
= Adding the Table Component to a Request Type

Package and Request Group Validations

» Package and Request Groups

» Request Type Category

Validation Special Characters

System Validations

Overview of Working with Validations

This chapter provides an overview for how to use validations in your Mercury
IT Governance system. Validations determine the acceptable input values for
user-defined fields (such as object type or request type fields). Validations also
determine the possible results that a workflow step can return.

What are Validations

Validations are used for two primary functions:

Fields. Validations determine the field’ s component type (text field,
drop-down list, etc.) and the fields possible values. Fields can be created
for anumber of product entities: object types, request types, request header
types, and user data.

Workflow step results. Validations determine the possible results exiting
aworkflow step. For example, the validation WF - Standard Execution
Results contains the possible execution step results of Succeeded or Failed.

Pre-seeded (system) validations are included with every product installation or
upgrade. When configuring your system, you can select to use these system
validations. If no validation exists that meets your specific requirements, you
can create a new validation using the Validation Workbench. See Creating a
Validation on page 73 for details.

70 Commands, Tokens, and Validations Guide and Reference

Chapter 5: Working with Validations

Validation Component Types - Overview

The following table summarizes the available types of field components. Note
that only certain component types can be used in aworkflow step source’s

validation.

Table 5-1. Component Types

Component Use In Example** Description
Type Workflow?
Text entry fields displayed on
a single line. Text fields can
be configured to display the
data according to a certain
. format. For example, you can

Text Field ves Mo Lengit. | configure a text field to
accept and format a
hyphenated nine-digit social
security number or a ten digit
telephone number.

Drop-down Field showing a column of

list ves Validated By: [SQL - Custom =1 | choices.

: Field providing a Yes/No

Radio Button | No Expected list length: & Short ¢ Long input.p g

Auto-complet Yes Field showing list of choices

e list SURET SErCier: =i with multiple columns.

Initial Yersion Commert:

Text entry field that can span

Text Area No multiple lines.
Supports a variety of date

Date Field No Start Date From: and time formats: long,
medium, and short.

Web Text entry field for entering a

Address No URL. Pressing the U button

(URL) ur: | yl opens a browser window to
the specified web address.

Validation C

omponent Types - Overview 71

Chapter 5: Working with Validations

Table 5-1. Component Types

Component
Type

Use In
Workflow?

Example**

Description

File Chooser

No

File: Mame:

Used only in object types.
Requires that two fields be
defined with the following
tokens: P_FILE_LOCATION
and P_SUB_PATH. See
Using Directory and File
Choosers on page 116 for
configuration details.

Directory
Chooser

No

Sub-Path:

Used only in object types.
Requires that a parameter
field be defined with the token
P_FILE_LOCATION.

Attachment

No

File:

Field for adding file
attachments.

Password
field

No

Pazswword:

Field for capturing
passwords.

72 Commands, Tokens, and Validations Guide and Reference

Chapter 5: Working with Validations

Table 5-1. Component Types

Component Use In Example** Description
Type Workflow?

Used to enter multiple
records into a single
component. The table
component can be configured
to include multiple columns of
varied data types.
Additionally, this component
supports rules for populating
Table Hardware Information 2Entries [EER] elements within the table and
Component No provides functionality for
capturing column totals. See
Configuring the Table
Component on page 121 for
details.

Fields of this component can
only be added to request
types, request header types
and request user data.

Field that can be added to the
request type to enable
access to view, edit or create

Budget, budgets, staffing profiles, or
Staffmg resource pools associated
PrOfllei NO Buiget: Team T Allocations _% W|th a request’ pI’OJeCt, or
Resource project plan.

Pool

Fields of this component can
only be added to a request

type.

Creating a Validation

Generating certain workflow steps may require specific validations to ensure
that business procedures are being followed. It is necessary to have both the
Validation Editor and the Validation Values Editor access grants to add a new
validation. See the Security Model Guide and Reference for a discussion of
security groups and access grants.

To define a new validation:

Creating a Validation 73

Chapter 5: Working with Validations

1. Click New Validation on the Validation Workbench or select File > New >
Validation from the menu.

The Validation window opens.
2. Enter the name of the new validation in the Name field.
3. Enter adescription of the new validation in the Description field.
4. Select whether the validation is enabled or not in the Enabled checkbox.

5. In the Use in Workflow checkbox, specify whether or not this validation can
be used in aworkflow step source.

Y ou can only use text field, drop-down list and auto-complete component
types within workflow step sources.

6. Select the desired type of validation from the Component Type drop-down
list.

Choices are Text Field, Drop Down List, Radio Buttons (Y/N), Auto Complete
List, Text Area, Date Field, Web Address (URL), File Chooser, Directory
Chooser, Password Field, Attachment, Table Component, Budget, Staffing
Profile, and Resource Pool. Selecting a value from this field will
dynamically update the validation window to display fields used to
configure that type of validation.

7. Enter any additional information required for the component type selected.

8. Click ownership to select which userswill be able to edit, copy and delete
this validation.

9. To save changes to the validation without closing the window, click Save.
To save changes and close the window, click OK.

User Data on the Validation Value

Y ou can enable the User Data tab to capture more information related to an
individual validation value within a specific validation. For example, you can
create a Description user data field that is associated with the Departments
validation. When you add new values to the validation, you can click on the
User Data tab and enter a description for that value.

The User Data tab can only be used when creating a drop-down or an
auto-complete validated by alist.

74 Commands, Tokens, and Validations Guide and Reference

Chapter 5: Working with Validations

To enable the User Data tab in the Edit Validation Value window:
1. Create the validation and note its name.
2. Open the User Data workbench.
3. Click New User Data Context.
4. Select validation Value User Data from the User Data Type field.

5. Click New to create a user data field.

User Data Context : Untitledé 1 [=] F3
User Data Type: [Validation value User Data
Cortext Field: [Validation Name Cortext Value: |
Enabled: % Yes { Mo Scope: |Cuntex‘t
Meta Layer Wigw: | ‘
Fields] Layaut]
Prompt | Taoken | Uszer Data Col. | Displayed Component Type “alidation Reuirecd Display Only
y [2]
e | |
Ok | Save | Cancel |
Feady

6. Save the settings in the User Data window.
7. On the Validation window, add or edit a validation value.

The User Data tab is now enabled. Y ou can select the tab and enter
information in the newly defined user data field.

Editing Validations

Y ou can open and edit validations using the Workbench. Y ou should exercise
caution when editing validations that are currently used by fields or workflow
step sources. Both field and workflow step validations can be tied to workflow
logic. Changing the validation values can invalidate a process.

Editing Validations 75

Chapter 5: Working with Validations

For example, ACME changes the Priority field validation to include anew value
Very Easy. ACME uses a deployment system workflow that has an Evaluate
Priority step that routes the package based on the value in the Priority field
(using atoken execution type). ACME, however, did not update the workflow
to enable atransition out of the step for the case when Priority = Very Easy.
When aVery Easy package enters the Evaluate Priority step, it will get stuck.

The following restrictions apply to editing validations:

e User must have the following access grants:
= Edit Vaidations

= Edit Vaidation Values
e User must be amember of the ownership group for the validation.

e You cannot change which validation is associated with aworkflow step
source after a package has traversed that step. Y ou can, however, still edit
the values within that validation.

Creating a URL to Open the Validation Window

Y ou can create a URL that opens a specific validation in the Workbench. This
can provide aquick link to the configuration screen for avalidation that is
expected to change frequently. This URL can be included on your internal or
external Web pages or alist of browser Favoritesto provide convenient access
to the validation’s definition.

Use the following URL format to access a specific Validation window:

http://host:port/kintana/servlet/
SmartURL?screen=VAL&pkname=<ValidationName>

The following URL opens the Validation window for the validation named
“Development Priorities.”

http://host:port/kintana/servlet/SmartURL?screen=VAL&pkname=
Development+Priorities

76 Commands, Tokens, and Validations Guide and Reference

Chapter 5: Working with Validations

Deleting Validations

Validations can be deleted from the Workbench. To delete a validation, you
must be a member of the validation’s ownership group and have the Edit
Validations access grant.

A validation can not be deleted when:

e Itisasystem validation (avalidation that is delivered with the product as
seed data).

e Itisbeing used by aworkflow step source. Validations referenced by
workflow step sources can only be disabled. A disabled validation
continues to function in existing workflow steps, but can not be used when
defining a new step source.

e Itisbeingused by afieldinaproduct entity (object type, request type, user
data, report type, or project template field). Validations referenced by
entity fields can only be disabled. A disabled validation continues to
function in existing fields, but can not be used when defining a new field.

Although you may not be able to delete a custom validation in all cases, you can
disable it. This will allow the validation to be used in any active workflows or product
entities, but will keep it from being used in any new workflow or entity definitions.

Static List Validations

Y ou can create validations that provide a static list of optionsto the user. For
example, ACME can create avalidation for their engineering teams. They
create avalidation called Engineering Teams, consisting of the following
values. New Product Introduction, Product One, and Product Two.

A satic list validation can be a drop-down or an auto-compl ete list component.

To add values to the validation list:

1. In the validation window, select Drop Down List Or Auto Complete List from
the Component Type field.

2. Select List from the Validated By field.

Deleting Validations 77

Chapter 5: Working with Validations

3. Click New and add a value.

The Add Validation Window opens.

£ Add Validation Value

“Yalue Infarmation] I

Code: ||

Meaning: ‘

Desc: ‘

Enable? [V Defautt. [

0K | Cancel

Ready

4. Enter information for the validation value as described in the following

table.
Field Definition

The underlying code for the validation value. The code is the value

Code stored in the database or passed to any internal functions, and is
rarely displayed.

. The displayed meaning for the validation value in the drop-down list

Meaning
or auto-complete.
The default value for the list. This value is initially displayed in

Default drop-down lists (this is not used for auto-complete lists). There can
be only one default value per list.

5. (Optional) Set the validation value as the default by checking the Default
field.

The default option is only available for drop-down lists.

6. Click OK to close the window and add the value to the validation. Click
Add to add the value and keep the Add Validation Value open.

Validation values can be re-ordered using the up and down arrow buttons. The
sequence of the validation values determines the order that the values are
displayed inthelist.

78 Commands, Tokens, and Validations Guide and Reference

Chapter 5: Working with Validations

You can copy existing values defined in other validations using the Copy From
button. Click Copy From and query an existing list-validated validation and choose
Note any of the validation values. Click Add or OK in the Copy From window and the

selected value or values are added to the list.

Be careful when creating validations (drop-down lists and auto-complete lists) that
are validated by lists. Each time the set of values changes, you will be forced to
Note update the validation. Consider, instead, validating using a SQL query or PL/SQL

function to obtain the values from a database table.

Dynamic List Validations

Y ou can create validations that provide adynamic list to the user. Thisis often
abetter approach than defining static list validations. Each time a static list
validation needs to be updated, a manual update has to occur. Dynamic list
validations can often be constructed in such away asto automatically pick up
and display the altered values.

For example, ACME needs afield validation that will list all users who are on
their Support Team. They could construct a validation that isvalidated by alist
of users, but any time the Support Team changed (members join or leave the
department) the list would have to be manually updated. ACME decides
instead to create a dynamic list validation. They create an auto-complete list
validation that is validated by a SQL statement. The SQL statement returns all
users who are a member of the Support Team security group. When the
security group membership is altered, the validation is automatically updated
with the correct values.

A dynamic list validation can be created using a drop-down or an
auto-complete list component.

SQL Validation

Y ou can use a SQL statement to generate the valuesin avalidation. SQL can
be used as a validation method for drop-down lists and auto-complete lists. To
define adynamic list of choices, set a drop-down list or auto-complete list to
Validated By - SQL. Then in the SQL area, enter the Select statement that queries
the necessary database.

Dynamic List Validations 79

Chapter 5: Working with Validations

Yalidation : Untitled?7 1 [=]

Narme: |Engingering Teamms

Description: |

Enabled: [V Usze in workflow? [
Component Type: |Aum Complete List j
walidated By: [SQL - Custom B2 Expected st length: r
Selection mode: % StartsWith O Containg Murrber of results per page: |50
Configursation l] I
olumnn Headers: a| BAL
Seq | Caluth Header | Dizplayed | Colurn v e SELURITY_BROUF_ID AND US.USER_TD= d
: UUSER_ID
1]hidden code [N | AND SG.SECURITY_GROUP_NAME = Engineering’
Zralue i | and UPPER(u username) like UPPER(7%)

and {uusername like upper{substri™?' 1,171 | %'
ar uusername like lower{substr(?, 1,100 || "%

order by 2 ﬂ
4 | | d— l—
Tok Uze Bind variables?
e | | | 131 j okens e Bind Vatiables
Used By | Owvnership | (6124 | Save | Cancel |
Feady

If an auto-complete list is being used, you can define headers for the selected
columns. These column headers are used in the window that opens when a
value from an auto-complete list is selected. Click New under Column Headers.
Table 5-2 shows thefields that can be entered for acolumn header. If acolumn
header is not defined for each column in a SQL query, adefault nameis used.

Table 5-2. Column Headers

Field Definition
Column The name of the column that is displayed in the auto-complete
Header window.

Determines whether or not the column is displayed. The first
Display column is never displayed and the second column is always
displayed.

For example, ACME, Inc., creates an auto-complete field that lists all usersin
the “Engineering” department. They choose to validate the list by SQL.

SELECT U.USER_ID, U.USERNAME, U.FIRST NAME, U.LAST NAME

FROM KNTA USERS U, KNTA SECURITY GROUPS SG, KNTA USER SECURITY

Us

WHERE SG.SECURITY GROUP_ID

ID = U.USER _ID

AND SG.SECURITY GROUP_NAME = 'Engineering'

and UPPER (u.username) like UPPER('?%')

and (u.username like upper (substr('?',1,1)) ||
or u.username like lower (substr('?',1,1)) ||

order by 2

US.SECURITY GROUP ID AND US.USER_

80 Commands, Tokens, and Validations Guide and Reference

Chapter 5: Working with Validations

When anew user account is created and is added to the “Engineering” security
group, that user will automatically be included in the auto-complete list.

A validation may already exist that meets your process requirements. If it does,
consider using that validation in your process. Also consider copying and modifying
Note validations that are similar to the desired validation. See System Validations

on page 136 for a complete list of validations that are delivered with the product.

SAL Validation Tips

The following guidelines are helpful when writing a SQL statement for a
SQL-validated validation:

e The SQL statement must query at least two columns. The first columnisa
hidden value which is never displayed, and is often stored in the database
or passed to internal functions. The second column isthe value that is
displayed in the field. All other columns are for information purposes and
areonly displayed in the auto-complete window. Extra columns are not
displayed for drop-down lists.

e When something is typed into an auto-complete list field, the valuesin the
auto-complete window that appear are constrained by what was first typed
inthefield. Generally, the constraint is case insensitive. Thisis
accomplished by writing the SQL statement to query only values that
match what was typed.

Before the auto-complete window is displayed, all question marksin the
SQL statement are replaced by the text that the user typed. In generd, if the
following conditions are added to the WHERE clause in a SQL statement,
the values in the auto-complete window are constrained by what the user

typed.

where UPPER (<displayed column>) like UPPER('?%')

and (<displayed column> like upper (substr('?',1,1)) N
or <displayed column> like lower (substr('?',1,1)) %)

Any column aliasesincluded directly in the SQL statement are not used.
The names of the columns, as displayed in auto-complete lists, are
determined from the Column Headers. Drop-down lists do not have
column headers.

Dynamic List Validations 81

Chapter 5: Working with Validations

Command Validation

An auto-complete list can contain command line executions that return and
display alist of values. To define adynamic list of choices, set an
auto-completelist to Validated By - Command with Delimited Output Or
Command with Fixed Width Output. Then enter commands the Commands area.
See Configuring the Auto-Complete Values on page 94 for detailed

Instructions.
Validation : Untitled8 1 [=1 3
hlarne: |
Description: |
Enabled: [V Usze in workflow? [
Component Type: |Aum Complete List j
walidated By: [Command With Delimited Output _~ | Expected list length; = Shart " Long
Selection mode: % StartsWith O Containg Murrber of results per page: |50
Configursation l] I
alutin Headers: > Commanck FCommand Steps—
Seq | Fnlumn Header | Dizplayed | Colurn v J e — Condition
;Ic;?f:n tods I\r: I =] sC_get_version_
ksc_capture_oul
K I ia| K
1] | d dhal| =a ey 1
Newr | | IV T4) E— ﬂ
Uszed By | Duwenership | (o34 | Save | Cancel |
Feady

Figure 5-1. Auto-complete using command validation

Configuring Auto-Complete Validations

Auto-complete fields are used throughout the Mercury IT Governance Center
to provide users with an efficient way to select field values from a set of valid
choices. Configuring auto-complete fields consists of two activities:

e Specifying general auto-complete behavior

e Configuring the validation values

Configuring General Auto-complete Behavior

Auto-complete fields can be used for validations with a small or large number
of choices. The auto-complete can be configured to behave differently
depending on the expected number of values. For example, if you expect a

82 Commands, Tokens, and Validations Guide and Reference

Chapter 5: Working with Validations

large number of entries, the auto-complete window will include an interface
that allows you to page through your results. Additionally, you can configure
how the “auto-complete” feature of the field behaves. For example, you can
configure the auto-complete field to automatically complete entries that either
start with or contain a text string.

Configuring Short List Auto-Complete Fields

Auto-complete fields configured to display a short list of entries, displaying all
of the values on a single page. Figure 5-2 shows the Select window for a short
list auto-complete field.

A Select Primary Organization Unit - Microsoft Internet Explorer

Primary Organization Unit starts with: w

Page: 1 Showing 1-6 of 6

Click a value to select
value

Architecture Maintenance
Dev

Information Enginecrs
Operations

Primary Info Systems
Tech Faciltstors

Cloze Window 3]

Figure 5-2. Short list auto-complete

Auto-completes configured as short lists will load all values when the window is
opened. This can lead to a slower load time and an unfavorable user experience. For
Note fields with many possible values, consider formatting the auto-complete using the
long list format.
To configure ashort list auto-complete field:
1. Create a new validation or open an existing validation.
The Validation window opens.
2. From the Component Type field, select Auto Complete List.
3. In the Expected list length field, select Short.

4. Click save.

Configuring Auto-Complete Validations 83

Chapter 5: Working with Validations

Configuring Long List Auto-Complete Fields

Auto-complete fields configured to display along list of entries, dividing the
results between multiple pages. By default, 50 results are shown per page. End
users can page through the results or further limit the results by specifying text
in one of the availablefilter fields at the top of the page. Figure 5-3 shows the
Select window for along list auto-complete field.

2 Select Project Manager: - Microsoft Internet Explorer

Project Manager:

First Hame: Last Hame: w

Page: 1 2 |®]| Showing 1-50 of 59

Click a value to select ke

Full Hame Username Department Email

=&uthor Mot Known= author_unknown

Admin User admin

Belinda Malan belindanolan belindanolaniE@companty .com

Betty Nolan bettynolan bettynolanE@company .com

Bill Molan hillnolan killnolan@company.com

Biob Braovwn bbravwn bbrovwniE@imercury 1 .com

Biok Fell bfell

Buok Malan hobnolan bobnolang@company . Com

Biob watte brneaite

Bok Ywong brweoni brveongE@hycorpe . com

Brad Molan bradnolan bradnolani@company .com

Brret Wans brwvans bvvansE@hycorpe com

Chriz Browen chrown chrown@mercury1.com

Davidd Eliis deliz delliz@mercury! .com

Denise Newel dnetwell

Eric: Blunk ehlunk ehlunkEhycorpa.com

Fred Bieko thieko [

Fredrick Schmict tachmict fechmict@mercury com

Hans Lopez hlopez hlopezig@hycorpa.com

ITG Service ito_service

Jane Smith jasmith jasmithi@mercury! .com

Jane Smith janesmith janesmith@company . com

Janet Ortez jartez jortezE@mercury! com

Jazon Camper jcamper jcamper@mercuryl.com

Jeremiah Smith iz=mith iesmithg@mercuryd .com b
Cloze Window 3]

Figure 5-3. Long list auto-complete

Auto-completes configured as long lists only load a limited set of values when the
window is opened. For extremely long lists or lists that are at risk of loading slowly
Note (for example the values are obtained from an alternate database), consider using the
long list format.
To configure along list auto-complete field:
1. Create anew validation or open an existing validation.

The Validation window opens.

84 Commands, Tokens, and Validations Guide and Reference

Chapter 5: Working with Validations

2. From the Component Type field, select Auto Complete List.

3. In the Expected list length field, select Long.

4. Click save.

All auto-completes that are validated by SQL - User are required to use the long list
@: auto-complete format. This selection is automatically defaulted when the user selects

SQL - User from the Validated By field on the Validation window.

Configuring the Automatic Value Matching and the Interactive Select Page

This section providesinstructionsfor configuring auto-complete fields to filter
alist of possible values based on a matching character string. It also provides
instructions for configuring the automatic value-limiting that occurs on the
auto-complete’ s Select page. Figure 5-4 shows an auto-complete field that has
opened to display matching values.

Project Manager: (i &

2 Select Project Manager: - Microsoft Internet Explorer.

Project Manager: i
First Hame: Last Hame:

Page: | 1 | Showing1-Tof7

Click a value to select
F
Janget Ortez]
Joe Smith J
Johin Stmith J
John Smith johnzmith
J
J
J

ortez jorteTgBmercUry T .com

joesmith
o mith josmith@mercury! .com
johnsmith@company com
JeranoEBmercury .com
jortegaE@mercury! com

josesmith@Company Com

John Wang
Joge Ortegs
Jozg Smith

wrang
orteds
osesmith

Close Window 3]

Figure 5-4. Auto-complete field and matching values in the Select page

Functional Overview: Matching for “Starts with” or “Contains”
Auto-complete field behavior can be divided into the following aress:

e Field behavior. A user types acharacter in the field and presses the Tab
key. If an exact match is not available, the Select page opens.

Configuring Auto-Complete Validations 85

Chapter 5: Working with Validations

e The Select page behavior. For lists that are configured appropriately,
when a user types a character or charactersinto thefield at the top of the
page, the results are automatically limited to display only matching entries.

For both the field and Select page behaviors, automatic value matching can be
based on either “ starts with” character matching or “contains’ character
matching. The following table summarizes this behavior:

Table 5-3. Automatic character matching field behavior

Character matching Description of Behavior
mode

Type characters and press tab. The selection window will
Starts with open and list entries that begin with the specified
characters.

Type characters and press tab. The selection window will
open and list entries that contain the specified character
Contains string. This is the same behavior as a wild card search,
which uses the % character at the beginning of the search
text.

Table 5-4. Automatic character matching Select page behavior

Character matching Description of Behavior
selection mode

Type characters and the list will automatically be filtered

Starts with for entries that begin with the specified characters.

Type characters and the list will automatically be filtered

Contains for entries that contain the character string.

Configuration Instructions

The field and the Select page behavior are configured distinctly in the
Validation window for the specific auto-complete list. This section provides
instructions for configuring the “ starts with” and “contains” functionality in
the field and Select page, as described in Functional Overview: Matching for
“ Sartswith” or “ Contains’ on page 85.

To configure “ starts with” matching from the auto-complete window to the
selection window, add the following to the SQL WHERE clause:

or value like

UPPER (value) like UPPER('?%
')

upper (substr('?',1,1))
1,1))

) and (value like
lower (substr('?"', !

86 Commands, Tokens, and Validations Guide and Reference

Chapter 5: Working with Validations

To configure "contains" matching from the auto-compl ete window to the

selection window, add the following to the SQL WHERE clause:
UPPER (value) like UPPER ('%? ||
upper (substr('?"', !

lower (substr('?', !

') and (value like '%
' or value like '%' |

o\ o\ o\°

To configure “ starts with” matching within the interactive selection window:
1. Open the auto-compl ete’ s Validation window.
2. From the Expected list length field, select Short.
Thisfeature is only available for short lists.
3. From the Selection mode radio button, select Starts With.

4. Savethe validation.

This setting only controls the matching in the Select page. Matching in the
auto-complete field is controlled by including specific clauses in the auto-complete's
SQL. See above for details.

To configure “contains” matching within the interactive selection window:
1. Open the auto-compl ete’ s Validation window.
2. From the Expected list length field, select Short.
Thisfeatureisonly available for short lists.
3. From the Selection mode radio button, select Contains.

4. Savethe validation.

This setting only controls the matching in the Select page. Matching in the
auto-complete field is controlled by including specific clauses in the auto-complete's
SQL. See above for details.

Configuring Auto-Complete Validations 87

Chapter 5: Working with Validations

Configuration Tips

Consider the following tips when configuring the “ starts with” versus
“contains’ functionality for auto-complete fields and the Select page.

e Auto-completes should be configured such that the field matching behavior
works the same way as the Select page matching behavior. Specificaly, if
the auto-complete field uses the “ starts with” clauses in the SQL, then the
selection window should use the “ Starts With” Selection Mode. See
Configuration Instructions on page 86 for details.

e Consider using the “Contains’ Selection Mode for fields with multi-word
values. For example, consider the possible values for the request type
auto-complete field:

Development Bug
Development Enhancement
Development Issue
Development Change Request
IS Bug

IS Enhancement

IS Issue

IS Change Request

Support Issue

Support Change Request

Using “contains’ can be useful here. The user knows that he needsto log a
bug against one of the 1S-supported Financia applications. The user types
"bug" into the auto-complete field and presses the Tab key. The following

items are returned:

Development Bug
IS Bug

The user selects IS Bug.” Without the “ contains” feature enabled, typing
“bug” would have returned the entire list. He might have aso typed
“Financial,” thinking that there might be a separate request type used for
each type of supported application. This, too, would have returned the
entirelist. At that point, the user would be forced to try another “starts
with” phrase or simply read the entire (potentially long) list.

Adding Search Fields to the Auto-Complete Window

Auto-completes with along list of values can be configured to display
additiona filter fields in the Select window. These fields can be used to search
other properties than the primary valuesin thelist. Users can enter valuesin
thefilter fields and click Find to display only the values that match the search
criteria. Figure 5-3 shows the Select window with additional filter fields.

88 Commands, Tokens, and Validations Guide and Reference

Chapter 5: Working with Validations

2 Select Assigned To: - Microsoft Internet Explorer,

Assigned To: Department:

First Hame: Last Hame: w

P

Click a value to select e

Full Hame Username Department Email

Admin Uszer achmin

Belinda Molan belindsnolan belindsnolani@company .com

Betty Malan bettynolan bettynolan@company com

Bill Molan Killnolan killnolangcompany.com

Bk Brown hbrovwen bbrowni@mercury.com

Bok Fell bfel

Buob Malan bobnalan bobnolangBoompany . Com

Biob Waite bvaite

Bok Yong kreroni krerong@@hycorpe com

Brad Molan bradnolan bradnolani@company .com i
Cloze Window 3]

Figure 5-5. Filter fields in the auto-complete select window

Filter fields can not be configured when validating your list by List, Command With
Note Delimited Output, or Command With Fixed Width Output.

To add afilter field to the auto-complete validation:
1. Open the validation for the auto-complete.

Auto-complete validations must display Auto Complete List in the
Component Type field.

2. In the Expected list length field, select Long.

Only long formatted auto-complete lists can include filter fields.
3. Click the Filter Fields tab.
4. Click New.

The Field: New window opens.

Configuring Auto-Complete Validations 89

Chapter 5: Working with Validations

£ Field: New

Fizle Prompt: | Token: |
Procuct: | J De=scription: |
Component Type: | J
Valigation | E Defaut value: |
Mesy Enabled: * Yes " ha
Display: Yes " Mo
Display Only: ¢ Yes = No
‘Wihen the auto-complete user chooses & value for this figld, sppend toWhere Clause:
Wiew Full Query 0K Add | Cancel
I|Readv

5. Enter the required information.

Table 5-5 defines all of the fields on this window.

Table 5-5. Fields in the Fields:New window

Field Description

The name that is displayed for the field in the auto-complete

Field Prompt Select window.

The Mercury IT Governance Center product the field is used

Product by.

The validation for the filter field. You can select any type of
validation, except for auto-complete type validations.

Validation The values accepted by this validation will be appended to
the WHERE clause in the SQL query that determines the
ultimate auto-complete list display.

Opens the Validation window where you can construct a
New new validation for the filter field. Note that you can not use
an auto-complete type validation for the filter field.

Opens the Validation window and displays the definition of

Open the validation specified in the Validation field.

The token for the field value. The token value will be
Token appended to the WHERE clause in the SQL query that
determines the ultimate auto-complete list display.

Description The description of the filter field.

90 Commands, Tokens, and Validations Guide and Reference

Chapter 5: Working with Validations

Table 5-5. Fields in the Fields:New window [continued]

Field

Description

Component Type

The component type for the filter field, determined by its
validation.

Default Value

The default value for the filter field, determined by its
validation.

auto-complete user
chooses a value for
this field, append to
WHERE clause:

Enabled Determines whether the filter field is enabled.
. Determines whether the filter field is visible to the user in the

Display , .
auto-complete’s Select window.

Display Onl Determines whether the filter field is updatable. When

play y Display Only is set to Yes, the field can not be updated.

The AND clause that is appended to the portlet's WHERE
clause if the user enters a value in this filter field. Each filter

When the field will append its term to the portlet query when a value is

entered by the end user in the Select window.

For example, if the filter field uses the CRT-Priority-Enabled
validation and a filter field token of P_PRIORITY, enter the
following into this field:

AND R.PRIORITY CODE = ‘[P.P_PRIORITY]'
Note: The value in this field must start with “AND”.

View Full Query

Opens a window showing the full query.

6. Click OK.

Filter fields can offer a powerful method for enabling users to efficiently locate
specific values in large lists. When adding filter fields to an auto-complete validation,
consider the following tips:

e Ensure that the filter fields are functionally related to the list of values. For
example, a validation that provides a list of request types can include a filter field
for a specific Department associated with the request types.

e Consider reusing (copying) an auto-complete validation and modifying the filter
fields to display a subset of the entire list. Using the Displayed, Display Only, and
Default fields in the Filter Field window, you can configure the auto-complete
values to automatically limit the results.

e Performance can degrade if joining tables over database links.

e Only use this functionality for complex fields.

Configuring Auto-Complete Validations 91

Chapter 5: Working with Validations

To modify thefilter field layout:

1. Open the auto-complete validation that includes filter fields on the Filter
Fields tab.

2. Click the Filter Layout tab.

Thetab lists the primary field and all of the filter fields that have been
defined for the auto-complete. The primary field is named Field Value. This
isthefield that holds the eventual selected value.

Validation : KNTA - User Mames - Enabled 1 [=] F3
Marme: [KMTA - User Names - Enabled
Descrigtion: |[KMNTA - User Names - Enabled

Enabled: [+ Usze in workflow? [

Component Type: | J

alichated By: | J Expected list length: ¢ +

Selection mods: o Murrber of results per page: |50

Configuration I Fitter Figids ~ Fiter Layout

LI Field Walue -

LI First Narme: LI Last Name

= hd
Field Wicth Component Lines Move Field 4|4 | 4=|=> r
Preview
Uszed By | Duenership Ok | | Cancel |

Readty (Read-Orly, Seed Data)

3. Select the field that you would like to move.

To select morethan onefield, use the Shift key while selecting arange. It is
only possible to select a continuous set of fields (the Ctri+select
functionality is not supported).

4. Use the arrow buttons to move the fields to the desired location in the
layout builder.

A field or a set of fields cannot be moved to an area where other fields already exist.
Note The other field(s) must be moved out of the way first.

5. To switch the positions of two fields:

92 Commands, Tokens, and Validations Guide and Reference

Chapter 5: Working with Validations

a. Select the first field and check the Swap Mode checkbox.
An“S” appearsin the checkbox area of the selected field.

b. Double-click the second field that you want to switch positions with the
first.

This causes the two fields to change positions. Following the switch,
the Swap Mode checkbox is turned off. To swap another set of fields,
repeat this procedure.

6. To check what the layout looks like in actual use, click Preview.

This opens a small window that shows the fields as they will appear. It is
important to note that:

e Any rowswith no fields are ignored. They do not show up as a blank
line.

e Any non-displayed fields do not affect the layout. They are considered
the same as a blank field.

Special Case: Configuring an Auto-Complete List of Users

User auto-completes or validations (Validated by: SQL-User) have three filter
fields by defaullt:

e Primary field—thisfield takes the name of the auto-complete field
e First name
e Last name

The user auto-complete always appears in the long list format, which uses the
paging interface to display theitems. Additionally, user auto-completes
display adifferent icon, pictured in Figure 5-6, in the auto-complete field.

&8

Figure 5-6. User icon

To configure auser auto-complete validation:
1. Create anew validation.

The Validation window opens.

Configuring Auto-Complete Validations 93

Chapter 5: Working with Validations

2. From the Component Type field, select Auto Complete List.

3. From the validated By field, select SQL - User.

4. Configure the SQL query that will determine the userslisted in the

validation.

See Configuring the Auto-Complete Values on page 94 for details.

5. Click Save.

Configuring the Auto-Complete Values

The values in an auto-complete list can be specified in the following ways. In

the validate By field, select one of the following:

e List: Used to enter specific values.

e SQL: Usesa SQL statement to build the contents of the list.

e SQL - User: Identical to SQL configuration, but includes afew additional

preconfigured filter fields.

e Command With Delimited Output: Uses a system command to produce a
character-delimited text string and uses the results to define the list.

e Command With Fixed Width Output: uses a System command to produce a
text file and parses the result on the basis of the width of columns, as well

as the headers.
Validation : Untitled9 1 [=1
hlarne: |
Description: |
Enabled: [V Usze in workflow? [
Component Type: |Aum Complete List j

Yalidated By:

Selection mod List

Configuration Command With Delimited Qutput

Expected list length: & Short © Long

Murrber of results per page: |50

Command With Fixed Width Output

olutin Headds o) - User &L
Seq | Column Header | Displayed | [
1|hidden code [N |
lvalue [r [
4 .
Tokens Uze Bind Watiables? |
[| | | ‘fl‘l j
Uszed By | Duwenership | (o34 | Save | Cancel |

Feady

Figure 5-7. Auto-Complete List

94

Commands, Tokens, and Validations Guide and Reference

Chapter 5: Working with Validations

For more information on creating auto-completes validated by List or SQL,
refer to the following sections:

e Hatic List Validations on page 77
e Dynamic List Validations on page 79

Validation by Command With Delimited Output

Validations that are validated by commands with delimited output can be used
to get datafrom an alternate source, and use that data to populate an
auto-complete field. This functionality provides additional flexibility when
designing auto-complete lists.

Many enterprises need to use alternate sources of data within their
applications. Examples of these sources are aflat file, an aternate database
source, or output from a command line execution. Special commands may be
used in conjunction with these alternate data sources, in the context of a
validation, to provide alist of values.

To configure avalidation by command with delimited output:

1. In the Validation Workbench, under Validated By, choose Command With
Delimited Output and input the delimiting character.

2. Under New Command, enter in the command steps to be executed.

These can include Mercury IT Governance special commands. Y our
commands should include the special command ksc_capture output,
which captures and parses the delimited command output. If the ksc
capture_output special command issurrounded by the ksc_connect and
ksc_disconnect commands, the command will be run on the remote
system. Otherwise, the command will be run locally on the Mercury IT
Governance server (Smilar to ksc_local exec).

The simple example below uses acomma for adelimiter and has the
validation values red, blue and green. The script places the validations
into the newfile.txt file, and then uses the special command ksc_
capture_output to process the text of thefile.

ksc_begin script [AS.PKG TRANSFER PATH]newfile.txt

red, red

blue,blue

green, green

ksc_end script

ksc_capture output cat [AS.PKG TRANSFER PATH]newfile.txt

Table 5-6 shows the Validation window for Command with Delimited Output.

Configuring Auto-Complete Validations 95

Chapter 5: Working with Validations

Validation : Untitled8 1 [=1
hlarne: |
Description: |
Enabled: [V Usze in workflow? [
Component Type: |Aum Complete List j
walidated By: [Command With Delimited Output _~ | Expected list length; = Shart " Long
Selection mode: % StartsWith O Containg Murrber of results per page: |50
Configursation l] I
olunn Heacders: > Commanc rCommand Steps—
Seq | Fnlumn Header | Dizplayed | Colurn v J e Condition
;Ihlﬁiden code I\T;J i = sc_get_version_
[ralue ksc_capture_oul
4 * 4
4] . O dhal| =] Mew:
Newr | | IV T4) E— ﬂ
Uszed By | Duwenership | (o34 | Save | Cancel |

Feady

Figure 5-8. Validation by command with delimited output

Table 5-6. Validation by command with delimited output

Field

Definition

Command
Panel

Panel where new commands can be added to capture validation
values.

Data Delimiter

Indicates the character or key by which the file will be separated
into the validation columns.

Headers can a so be defined for the columns selected. These column headers
are used in the window that opens when avalue is selected from an
auto-complete list. To define anew header, click New under Column Header.

Table 5-7 shows

thefields that can be entered for acolumn header. If acolumn

header is not defined for each column in acommand, a default name is used.

Table 5-7. Column headers

Field Definition
Column The name of the column that is displayed in the auto-complete
Header window.
Display Determines whether or not the header is displayed in the validation.

96 Commands, Tokens, and Validations Guide and Reference

Chapter 5: Working with Validations

Validation by Command With Fixed Width Output

Validations by Command with Fixed Width Output can be used to obtain data
from an alternate source, and use that data to populate an auto-complete field.
This functionality provides additional flexibility when designing
auto-complete lists.

Many enterprises need to use alternate sources of data within their
applications. Examples of these sources are aflat file, an aternate database
source, or output from a command line execution. Special commands may be
used in conjunction with these alternate data sources, in the context of a
validation, to provide alist of values on the fly.

In the validation Workbench, under Validated By, choose Command With Fixed
Width Output and input the appropriate width information.

Then, under New Command, enter in the command steps to be executed. These
can include special commands. Y our commands should include the special
command ksc_capture output, Which captures and parses the delimited
command output. If theksc_capture output special command is surrounded
by the ksc_connect and ksc_disconnect commands, the command will be
run on the remote system. Otherwise, the command will be run locally on the
Mercury IT Governance server (sSimilar to ksc_local exec).

The example below has the validations red, blue and green. The column
width is set to avalue of 6. The script places the validations into the
newfile.txt file.

ksc_begin script [AS.PKG_TRANSFER PATH]newfile.txt

red red

blue blue

green green

ksc_end script

ksc_capture output cat[AS.PKG TRANSFER PATH]newfile.txt

Configuring Auto-Complete Validations 97

Chapter 5: Working with Validations

Validation : Untitled8 1 [=1
hlarne: |
Description: |
Enabled: [V Usze in workflow? [
Component Type: |Aum Complete List j
walidated By: [Command Wit Fixed Width Output ~ | Expected list length; = Shart " Long
Selection mode: % StartsWith O Containg Murrber of results per page: |50
Configursation l
olunn Heacders: > rCommanc rCommand Steps—
Seq | Columnh Hesder | Displayed Colutan v |] ‘ Condition | o
1lhidden code W - -
ksc_hegin_scri
ealue ® = execute | | _hegin_sctip
3jred u
4[blue [| | 3| K
Sgreen u
1] e o] ==a L
iew | (EYF 71054) I — ﬂ
Uszed By | Duwenership | (o34 | Save | Cancel |

Feady

Figure 5-9. Validation by command with fixed width output

Table 5-8. Validation by command with fixed width output

Field Definition

Command The panel where new commands can be added to capture
Panel validation values.

Headers can also be defined for the columns selected. These column headers
are used in the window that opens when avalue is selected from an
auto-complete list. To define anew column header, click New under Column
Header. Table 5-9 shows the fields can be entered for a column header. If a
column header is not defined for each column in acommand, adefault nameis
used.

Table 5-9. Column headers

Field Definition
Column The name of the column that is displayed in the Auto Complete
Header dialog.

Whether or not the column is displayed. The first column is never

Display displayed and the second column is always displayed.

The number of characters in each column of the output generated

Column Width as a result of the command.

98 Commands, Tokens, and Validations Guide and Reference

Chapter 5: Working with Validations

User-Defined Multi-Select Auto-Complete Fields

A number of auto-complete fieldsin the Workbench have been pre-configured
to allow users to open a separate window for selecting multiple values from a
list. Users can also define custom auto-complete fields to have multi-select
capability when creating various product entities.

The user-defined multi-select capability is supported for:

User datafields
Report type fields
Request type fields
Project template fields

The user-defined Multi-Select capability is not supported for:

Request header types
Object types

In order to use this feature when creating a new entity, users must:

Select avalidation for the new entity that has Auto-Complete List as the
Component Type. This enables the Multi-Select Enabled field in the Field:
New window.

In the Field: New window, users must click Yes for the Multi-Select Enabled

radio button.

The step-by-step procedure for defining multi-select capability in user data,
report type, request type, or project template fieldsis very similar. The

procedure for enabling this capability for request type field is shown below as
an example.

To define a multi-select auto-complete field for arequest type:

1. Log on to Mercury IT Governance Center and open the Workbench.

2. From the shortcut bar, select Create > Request Types.

The Request Type Workbench opens.

3. Click New Request Type.

The Request Type window opens.

4. Click New. The Field: New window opens.

Configuring Auto-Complete Validations

99

Chapter 5: Working with Validations

£ Field: New
Figle! Prormpt: | Token: |
Description: |
Enabled: * Yes o
Walidation |:RT - Assigned Group - Al Componert Type: | []

mews | O
0 | PN Mut-Select Enabled: (es & Na

Adtributes] Default I Storaga] Security 1

Section Mame : | J Display Only: ¢ Yes & ho
Transaction History: © Yes ¥ Mo Motes Histary: © Yes no
Display on Search and Fiter: (% Yes " Mo Display: % Yes " ho
Search Walication:
Copy Fram... oK Add | Cancel

I|Readv

5. Select avalidation of type Auto-Complete List from the Validation field.
The Multi-Select Enabled option is now enabled.
6. Select the Yes option for the Multi-Select Enabled radio button.

The Possible Conflicts window opens. It warns you not to use a multi-select
auto-complete for advanced queries, workflow transitions and reports. If
thisfield is not going to be used in advanced queries, workflow transitions
or reports, click Yes to continue.

7. Configure the other options in thiswindow for the new request type.

8. Click OK.

The field is now enabled for multi-select auto-complete.

Example: Token Evaluation and Validation by Command with Delimited
Output

The validation functionality can be extended to include field dependent token
evaluation. Validations can be configured to dynamically change, depending
on the client-side value entered in another field.

To use field dependent token evaluation, it is necessary to configure a
validation in conjunction with an object type, request type, report type, project
template, or user datadefinition. Consider the following example for setting up
an object type using field dependent tokens.

100 Commands, Tokens, and Validations Guide and Reference

Chapter 5: Working with Validations

1. Generate avalidation and set the following parameters as shown:
a. Name: demo_client_token_parsing
b. Component Type: Auto Complete List
c. Validated By: Command With Delimited Output
d. Data Delimiter: | (bar)
e. Command
s Command: Validate_from_file

m Steps

ksc_connect source server SOURCE ENV="Your Env"
ksc _capture output cat [P.P_ FILENAME]
ksc_exit

Validation : demo_client_token_parsing

hlarme: |demo_cliem_token_parsing

Description: |
Enabled: [V Usze in‘Workflow? [
Component Type: |Autu Complete List ﬂ
validated By: [Command With Delimited Output_~ | Expected list length. Short € Long
Selection mode: ™+ Starts With © Contains Mumbet of results per page: |50
Configuration]]]
olurnn Headers: =1 | - command Command Step:
Saq1|h%c|[;umn Het,jader |ND|spIayed | Calumn e e ——
2} II en code IY | [=I-validate_frarm_file ksc_connect_source_server 8C
value kst_capture_output cat [P.P_FIL
kgc_exit
« [2]
1 w4
Meswe | | ‘ +¥ J
dpall| ==al| mew Cmd
Data Delimiter: || 'Z 1| | ﬂ
Used By | Owwrership | Ok |

"Save" Successful

When called, this validation will connect to an environment called * Your
Env’ and retrieve data from afile specified by the token P_FILENAME.
The file should be located in the directory specified in the Base Path in the
Environment window.

2. Generate an object type named token_parsing_demo.

Configuring Auto-Complete Validations 101

Chapter 5: Working with Validations

Object Type : token_parsing_demo 1 [=] F3
Object Type Name: [token_parsing_darmo
Descrigtion: ‘
Extenszion: ‘ j Ohject Mame Colurr: |PARAMETER1 ﬂ
Ohject Category: [Custom Objects | obisct Revision Coturr: | =]
Meta Layer Yiew: |MPKGL_ | TOKEN_PARSING_DEMO
Enabled: * ves { MNo
Fields] Layout | Commands | | ownershio |
Prompt ‘ Token | Parameter Col. | Displayed | Component Type | Yalidation | Require
Autoco.. [P_AUTOC..[PARAMETER2 | ¥ [Auto Complete List [demo_client_token_parsing [N
Filename|P_FILEMA [PARAMETERT | v [TextField [Tesxt Field - 40 [
‘ \ i
I | |
ok | | e |
"Save" Successful

a. Generate anew field with the following parameters:
= Name: Filename
= Token: P_FILENAME
m Validation: Text Field - 40

b. Generate a new field with the following parameters:
= Name: AutoComp
= Token: P_AUTOCOMP

= Validation: demo_client_token_parsing (thisis the validation that
was defined above)

3. For this example to return any values in the auto-complete, afile must be
generated in the directory specified in the Base Path in the Environment
Detail of “Your Env’ environment. Generate afile named *parse_testl.txt’
with the following delimited data:

DELIMITED TEXT1|Parameter
DELIMITED TEXT2 |Parameter
DELIMITED TEXT3 |Parameter
DELIMITED TEXT4 |Parameter

B wWwNR

The object type ‘token_parsing_demo’ is now enabled to use this token
evaluation.

102 Commands, Tokens, and Validations Guide and Reference

Chapter 5: Working with Validations

To test the above configuration sample:
1. Generate anew package.
2. Select aworkflow and click Add Line.

3. Select token_parsing_demo from the Object Type drop-down list. The
following fields are displayed:

® Filename
e AutoComp
4. Type ‘parse_testl.txt’ in the Filename field.
5. Click on the auto-complete icon in the AutoComp field. The following

Validation window opens, displaying the contents of the ‘ parse_test1.txt’
file.

r2bject Type Information
B < Validate
Sequ|
Autocomp starts with: H
Parame
valle _
Filznarng
Autocomyl |Parameter 2
Parametar 3
Parameter 4
L | H
Cancel
haurned 4 choices.
Clear | ok | st | cancel |
|‘mken_paramg_demn' parameters loaded

Configuring Auto-Complete Validations 103

Chapter 5: Working with Validations

Configuring Text Fields

Text fields displayed on asingle line. Text fields can be configured to display
the data according to a certain format. For example, you can configure a text
field to accept and format aten digit telephone number or display a specific
number of decimal places for a percentage.
Creating a Text Field Validation Overview

To create atext field validation:

1. Open the Vvalidation window in the Workbench.

2. In the Name field, enter the name of the validation.

3. From the Component Type field, select Text Field.

4. From the Data Mask field, select the data mask that represents the desired
format for the field.

See “Available Text DataMasks” on page 104 for additional details.
5. (Optional) Configure the selected data mask.

See Customizing the System Text Data Masks on page 106 for additional
details.

6. Click OK.

Available Text Data Masks

The Mercury IT Governance Center includes a number of preconfigured data
masks that can be used when creating text field validations. Each of these data
masks can be configured to meet your specific data requirements. Table 5-10
defines the data masks delivered with Mercury IT Governance Center.

104 Commands, Tokens, and Validations Guide and Reference

Chapter 5: Working with Validations

Table 5-10. Data Mask Formats

Data Mask

Description

Alphanumeric

Field allows all alphanumeric characters. The maximum field
length for fields using this validation can be specified.

Alphanumeric

Field allows alphanumeric characters and formats all
characters as uppercase text. The maximum field length for

Uppercase fields using this validation can be specified.
Field allows only numeric characters. The following
characteristics can be specified for this data mask:
¢ Range of values (maximum and minimum) allowed for this
field
e Whether or not a zero is displayed when data is not
entered into the field
Numeric
u ' e Whether or not group separators (such as a comma) are
used within large numbers
¢ How negative numbers are displayed
¢ Number of decimal places
See Customizing the Numeric Data Mask on page 106 for
details.
Field allows only numeric characters and is used to display
currency data. The following characteristics can be specified
for this data mask:
¢ Range of values (maximum and minimum) allowed for this
field
e Whether or not a zero is displayed when data is not
Currency entered into the field

¢ Whether or not group separators (such as a comma) are
used within large numbers

¢ How negative numbers are displayed
¢ Number of decimal places

See Customizing the Currency Data Mask on page 108 for
details.

Configuring Text Fields 105

Chapter 5: Working with Validations

Table 5-10. Data Mask Formats [continued]

Data Mask Description

Field allows only numeric characters and is used to display
percentages. The following characteristics can be specified
for this data mask:

¢ Range of values (maximum and minimum) allowed for this
field

e Whether or not a zero is displayed when data is not

Percentage entered into the field

¢ Whether or not group separators (such as a comma) are
used within large numbers

¢ How negative numbers are displayed
¢ Number of decimal places

See Customizing the Percentage Data Mask on page 110 for
details.

Field allows only numeric characters and is used to display
telephone numbers. The following characteristics can be
specified for this data mask:

e Format—specify how many digits are included, and what

delimiter should be used between groups of numbers. For
Telephone example, you can select to use dashes (-) rather than
periods (.) between numbers: 555-555-5555 or
555.555.5555.

¢ Maximum and minimum number of digits

See Customizing the Telephone Data Mask on page 112 for
details.

Field allows a range of custom inputs. You can customize the
Custom field to accept digits, letters, spaces, and custom delimiters.
See Creating a Custom Data Mask on page 115 for details.

Customizing the System Text Data Masks

Each data mask that isincluded in Mercury IT Governance Center can be
customi zed.

Customizing the Numeric Data Mask

The numeric data mask allows only numeric characters. When creating a
validation using this data mask, the following characteristics can be specified:

e Range of values (maximum and minimum) allowed for thisfield

106 Commands, Tokens, and Validations Guide and Reference

Chapter 5: Working with Validations

e Whether or not a zero is displayed when dataiis not entered into the field

e Whether or not group separators (such as acomma) are used within large
numbers

e How negative numbers are displayed
e Number of decimal places

Figure 5-10 shows the fields that can be configured for this data mask.
Table 5-11 defines these fields.

Validation : Untitled5 I =]
hlarne: |
Description: |
Enabled: [v Usze in Workflow? [
Companent Type: |Tex1 Field j
Dita Maszk: |Numeric ﬂ
Mz Walle: | 49885 Samnple Input:
Mirirnugn % Slue: |-QQQQ 4500022
If Data not Entered, then display a zera: % Yes " ho
Use Group Separator (* Yes R
Formatted Output:
Megative Mumber looks like: |—1 oo j 2
Mutrbet ot Decimzl Places: |2 G500
Uszed By | Duenership | Ok | Save | Cancel |

Feady

Figure 5-10. Validation window for the numeric data mask

Table 5-11. Fields for configuring the numeric data mask for text fields

Field Description

Largest value allowed for this field. This can be a positive

Maximum Value .
or negative number.

Smallest value allowed for this field. This can be a positive

Minimum Value .
or negative number.

If Data not Entered, Determines if the field should display a zero when no data
then display a zero is entered.

Configuring Text Fields 107

Chapter 5: Working with Validations

Table 5-11. Fields for configuring the numeric data mask for text fields

Field Description

Determines if the field should use a group separator (such
as a comma) to divide characters within large numbers.
For example: 1000000 versus 1,000,000. The character
Use Group Separator | used for the separator defaults based on the machine’s
local, but can be configured in the Regional Settings
window in the Workbench. Select Edit > Regional
Settings to access this window.

Determines the appearance of negative numbers. There
are four options available:

Negative Number e (1000)—parenthesis and black text
looks like e (1000)—parenthesis and red text

e -1000—minus sign (-) and black text
e -1000—minus sign (-) and red text

Determines the number of allowed decimal places. Users
will only be able to enter up to this number of digits beyond
the decimal place.

Number of Decimal
Places

To view your customized data mask:

1. In the Sample Input field, enter the digitsthat you would like to see
formatted.

2. Click Format.

The digits are formatted according to your settings and displayed in the
Formatted Output field.

Customizing the Currency Data Mask

The currency data mask allows only numeric characters and is used to display
currency data. When creating avalidation using this data mask, the following
characteristics can be specified:

e Range of values (maximum and minimum) allowed for thisfield
e Whether or not a zero is displayed when dataiis not entered into the field

e Whether or not group separators (such as acomma) are used within large
numbers

e How negative numbers are displayed

108 Commands, Tokens, and Validations Guide and Reference

Chapter 5: Working with Validations

e Number of decimal places

Figure 5-11 shows the fields that can be configured for this data mask.
Table 5-12 defines these fields.

Validation : Untitled5 1 [=1
hlarne: |
Description: |
Enabled: [V Usze in workflow? [
Component Type: |TE)€[Field j
Dt Mask: |Currency ﬂ
Regian: I Enterprise E Samnple Input:
Mzdraurn alue: | 1000000 500000.22
Wirinurm “alue: | 0 " Formet §
If Data not Entered, then display & zera: ™+ Yes " Mo
Lse Group Separator (% Yes " Mo e
Megative Mumber looks like: |—1 ono j $500,000.22

Mumber of Decimal Places: | 2

Uszed By | Duwenership | (o34 | Save | Cancel |

Feady

Figure 5-11. Validation window for the currency data mask

Table 5-12. Fields for configuring the currency data mask for text fields

Field Description

Largest value allowed for this field. This can be a positive

Maximum Value .
or negative number.

Smallest value allowed for this field. This can be a positive

Minimum Value .
or negative number.

If Data not Entered, Determines if the field should display a zero when no data
then display a zero is entered.

Determines if the field should use a group separator (such
as a comma) to divide characters within large numbers.
For example: 1000000 versus 1,000,000. The character
Use Group Separator | used for the separator defaults based on the machine’s
local, but can be configured in the Regional Settings
window in the Workbench. Select Edit > Regional
Settings to access this window.

Configuring Text Fields 109

Chapter 5: Working with Validations

Table 5-12. Fields for configuring the currency data mask for text fields

Field

Description

Negative Number
looks like

Determines the appearance of negative numbers. There
are four options available:

(1000)—parenthesis and black text
(1000)—parenthesis and red text
-1000—minus sign (-) and black text
-1000—minus sign (-) and red text

Number of Decimal
Places

Determines the number of allowed decimal places. Users
will only be able to enter up to this number of digits beyond
the decimal place.

To view your customized data mask:

1. In the Sample Input field, enter the digitsthat you would like to see

formatted.

2. Click Format.

The digits are formatted according to your settings and displayed in the

Formatted Output field.

The INSTALLATION_CURRENCY server parameter dictates which currency symbol
is displayed in the field. This parameter also dictated the position of the text in the

field. For example:

Note INSTALLATION CURRENCY=$;RIGHT

will right-align the text using a dollar sign.
Contact your system administrator for help with changing this setting.

Customizing the Percentage Data Mask

The percentage data mask allows only numeric characters and is used to
display percentages. When creating a validation using this data mask, the
following characteristics can be specified:

e Range of values (maximum and minimum) allowed for thisfield

e Whether or not a zero is displayed when dataiis not entered into the field

110 Commands, Tokens, and Validations Guide and Reference

Chapter 5: Working with Validations

e Whether or not group separators (such as acomma) are used within large
numbers

e How negative numbers are displayed
e Number of decimal places

Figure 5-12 shows the fields that can be configured for this data mask.
Table 5-13 defines these fields.

Validation : Untitled5 1 [=1
hlarne: |
Description: |
Enabled: [V Usze in workflow? [
Component Type: |TE)€[Field j
Data Mask: |F’ercentage ﬂ
Idaimum Walue: |1 oo Samnple Input:
Mirimum % slue: | 1] 50.22
If Data nat Ertered, then display a zero: % Yes " Mo Farmat |
Use Group Separator % Yes " ho

Fortmatted Output:
Megstive Mumber looks like: |-1 Jululi] j 2
A0.22%
Mumber of Decimal Places: |2
Uszed By | Duwenership | (o34 | Save | Cancel |

Feady

Figure 5-12. Validation window for the percentage data mask

Table 5-13. Fields for configuring the percentage data mask for text fields

Field Description

Largest value allowed for this field. This can be a positive

Maximum Value .
or negative number.

Smallest value allowed for this field. This can be a positive

Minimum Value .
or negative number.

If Data not Entered, Determines if the field should display a zero when no data
then display a zero is entered.

Determines if the field should use a group separator (such
as a comma) to divide characters within large numbers.
For example: 1000000 versus 1,000,000. The character
Use Group Separator | used for the separator defaults based on the machine’s
local, but can be configured in the Regional Settings
window in the Workbench. Select Edit > Regional
Settings to access this window.

Configuring Text Fields 111

Chapter 5: Working with Validations

Table 5-13. Fields for configuring the percentage data mask for text fields

Field Description

Determines the appearance of negative numbers. There
are four options available:

Negative Number e (1000)—parenthesis and black text
looks like e (1000)—parenthesis and red text

e -1000—minus sign (-) and black text

e -1000—minus sign (-) and red text

Determines the number of allowed decimal places. Users
will only be able to enter up to this number of digits beyond
the decimal place.

Number of Decimal
Places

To view your customized data mask:

1. In the Sample Input field, enter the digitsthat you would like to see
formatted.

2. Click Format.

The digits are formatted according to your settings and displayed in the
Formatted Output field.

Customizing the Telephone Data Mask

The percentage data mask allows only numeric characters and is used to
display telephone numbers. When creating a validation using this data mask,
the following characteristics can be specified:

e Format—specify how many digits are included, and what delimiter should
be used between groups of numbers. For example, you can select to use
dashes (-) rather than periods (.) between numbers. For example,
555-555-5555 or 555.555.5555.

e Maximum and minimum number of digits.

Figure 5-13 shows the fields that can be configured for this data mask.
Table 5-14 defines these fields.

112 Commands, Tokens, and Validations Guide and Reference

Chapter 5: Working with Validations

Yalidation : Untitled5 1 [=]

hlarne: |

Description: |

Enabled: [V Usze in workflow? [

Companent Type: |TE)€[Field j

Dsta Mask: |Te|eph0ne ﬂ

Format: |DDD-DDD-DDDD Samnple Input:
Maccimum # of Digits: |15 123456789012

Minirmum # of Digits: |1 0 Farmat |

Formatted Cutput:

12345-678-9012
Use the following to specify custom format:
o Digit (0 to 9, pound "#' and start "™, entry required, plus "+" and
minus "-" not allowed).
Allowed Allowed Delimiters are open parenthesis "(", close parenethesis "),
Celimiters dot"" minus "', space " " and the plus "+ sign.
Uszed By | Duwenership | (o34 | Save | Cancel |
Feady

Figure 5-13. Validation window for the telephone data mask

Table 5-14. Fields for configuring the telephone data mask for text fields

Field Description

The rule that dictates how the digits are formatted,
including any spaces or delimiters. The following delimiters
are allowed in the format definition:

¢ Open and close parentheses ()
e Period (.)

e Dash (-)

e Space

Format

e Plus sign (+)

See Table 5-15 on page 114 for a few examples of
different Telephone formats.

Maximum # of Digits Largest number of digits that will be accepted in this field.

Smallest number of digits that will be accepted in this field.
If the user enters fewer than this number of digits in the
field and then tries to move from the field, he will receive
an error.

Minimum # of Digits

Configuring Text Fields 113

Chapter 5: Working with Validations

Table 5-15. Sample telephone data mask formats

Format Rule Text Entered By User | Sample Formatted Output
D-DDD-DDD-DDDD 15555555555 1-555-555-5555
DDD DDD DDDD 5555555555 555 555 5555
(DDD) DDD-DDDD 5555555555 (555) 555-5555

To view your customized data mask:

1. In the Sample Input field, enter the digitsthat you would like to see
formatted.

2. Click Format.

The digits are formatted according to your settings and displayed in the
Formatted Output field.

Special behavior applies to the extra characters, if your format is defined to allow a
range of entries. Extra characters will always be grouped with the first set of
characters. For example, if the telephone data mask is configured with a minimum of
10 characters and a maximum of 15 characters, then the following behavior is

expected:
Note Format: DDD-DDD-DDDD
Min: 10
Max: 15

Input: 1234567890
Output: 123-456-7890

Input 2: 12345678901
Output 2: 1234-567-8901

114 Commands, Tokens, and Validations Guide and Reference

Chapter 5: Working with Validations

Creating a Custom Data Mask

A custom data mask can be defined that will allow arange of inputs and format
them to your specification. Y ou can customize thefield to accept digits, letters,
spaces, and custom delimiters.

Figure 5-13 shows the fields that can be configured for this data mask.

Validation : Untitled5 1 [=]
lame: |
Description: |
Enahled: [V Use inWiorkflow? [
Companent Type: |TE)€[Field j
Data Mask: |Cust0m ﬂ
Formnat: | Sample Input:
Format
Formatted Cutput:
Use the following to specify custom format:
D Digit (0 to 8, entry required, plus "+" and minus "-" not allowed).
L Letter (& to Z entry required)
A Any character ar a space {entry required).
\ Causes the character that follows to be displayed as the literal
character (4 is displayed as A).
Uszed By | Duwenership | (o34 | Save | Cancel |
Feady

Figure 5-14. Validation window for the custom data mask

To configure acustom format, enter a combination of symbols into the Format
field. Thisfield can accept the following entries:

e D—Specifiesarequired digit between 0 and 9.
e L —Specifiesarequired |etter between A and Z.
e A—Specifiesarequired character or space.

o \ (backslash)—Causes the character that follows to be displayed as the
literal character. For example: “\A” will be displayed as“A”

Table 5-16 displays some examples of custom formats.

Table 5-16. Sample custom data mask formats

Format Rule Text Entered By User | Formatted Output
DDD\-DD\-DDDD 555555555 555-55-5555
AA\-DDD BC349 BC-349

Configuring Text Fields 115

Chapter 5: Working with Validations

To view your customized data mask:

1. In the Sample Input field, enter the digitsthat you would like to see
formatted.

2. Click Format.

The digits are formatted according to your settings and displayed in the
Formatted Output field.

Using Directory and File Choosers

Directory and File Choosers are only used with Mercury Change Management
object types.

Directory Chooser

File Chooser

The Directory Chooser field can be used to select avalid directory from an
environment. Mercury Change Management connects to the first source
environment on aworkflow and allows navigation through the directory
structure and the selection of adirectory from thelist.

When implementing the Directory Chooser, note the following:
e The Directory Chooser field can only be used on an object type.

e On every object type that a Directory Chooser is chosen, itisaso
necessary to have afield whose token is P_FILE_LOCATION and whose
validationisDLV - File Location. The possible valuesfor thisfield are Client
and Server. I Client is chosen, the Directory Chooser connectsto the Client
Base Path of the source environment. If Server is chosen, the Directory
Chooser connects to the Server Base Path of the source environment.

A File Chooser field can be used by object typesto select avalid file from an
environment. Mercury Change Management connects to the first source
environment on aworkflow and provides the ability to view all fileswithin a
specific directory and select one from the list.

On every object type that a File Chooser is chosen, it is necessary to define the
following fields:

116 Commands, Tokens, and Validations Guide and Reference

Chapter 5: Working with Validations

e Thefirstisafield for the File Location for the directory chooser, described
in the previous section.

e Thesecondisafield whosetokenis‘P_SUB PATH'. Thisfieldisthe
directory from which thefileis selected and is usually a Directory Chooser
field.

Yalidation : Untitled5 1 [=]

hlarne: |

Description: |

Enabled: [V Usze in workflow? [~

Component Type: |F\|E Chooser j

Ease File Mame Only: r

Environmert Override Behavior: Static Erwironment Cverride j

Overtiding Enviranmmerit: || B

Cwerriding Server Basepath: |

Overtiding Cliert Basepath: |

Uszed By | Duwenership | (o34 | Save | Cancel |

Feady

Figure 5-15. Validation window for static environment override in file
chooser.

Table 5-17. File chooser field

Field Definition

Defines whether the base file name only (without its

Base File Name Only suffix) or the complete name is displayed.

Environment Override Used to select files from a specific environment other
Behavior than the default environment.

The Environment Override Behavior drop-down list contains three options:
Default Behavior, Static Environment Override, and Token-Based Environment
Override.

Static Environment Override provides the ability to override one environment
at atime. Thefieldsfor static environment override are pictured in Figure 5-15
and described in Table 5-18.

Using Directory and File Choosers 117

Chapter 5: Working with Validations

Table 5-18. Static environment override

Field Definition
Ove.rrldlng Selects the environment to be overridden.
Environment

Overriding Server The server basepath of the environment may be overridden.
Basepath

Overriding Client The client basepath of the environment may be overridden.
Basepath

Token-based Environment Override provides the ability to select a token that
will resolve to the overriding environment. The fields for Token-based
Environment Override are shown in Figure 5-16 and defined in Table 5-19.

Yalidation : Untitled)

hlarne: |

19 [=1 E3

Description: |

Enabled: [v Usze in Workflow? [

Companent Type: |F\|e Chooser

Base File Mame Only: r

Environmert Owverride Behavior:

|Token—based Environment Overridej

Erwironment Token: [

Owverriding Server Basepath: |

Overtiding Cliert Basepath: |

Uszed By | Duenership |

Feady

Ok | Save | Cancel |

Figure 5-16. Validation window for token-based environment override in file
chooser.

118 Commands, Tokens, and Validations Guide and Reference

Chapter 5: Working with Validations

Table 5-19. Token-based environment override

Field Definition

Environment Select the token that will resolve to the overriding
Token environment.

Overriding Server | The server basepath of the environment that is to be resolved
Basepath by the token may be overridden.

Overriding Client The client basepath of the environment that is to be resolved
Basepath by the token may be overridden.

Date Field Formats

Date fields can accept a variety of formats. The current date field validations
are separated into two categories: al systems, and systems using only the
English language. These formats are defined in Table 3-14.

Date Field Formats 119

Chapter 5: Working with Validations

Table 5-20. Date field

Field
Definitions
Name Systems
The format for the date part of the field. Choices are:
- Long - “January 2, 1999".
Date . « »
Format All - Medium - “02-Jan-99”.
- Short - “1/2/99”.
- None - no date is displayed.
The format for the date part of the field. Choices are:
- MM/DD/YY (6/16/99).
- DD-MON-YY (16-Jun-99).
-MONTH DD, YYYY (June 16, 1999).
- Day, Month DD, YYYY (Monday, June 16, 1999).
Date English - DD-MON (16-JUN) - Defaults to current year.
Format Only - DD-MON-YYYY (16-JUN-1999).
- MM-DD-YYYY (06-16-1999).
- MM-DD-YY (06-16-99).
- DD [Defaults to the current month and year].
- MM/DD (06/16) - Defaults to current year.
- MM/DD/YYYY (06/16/1999).
The format for the time part of the field. Choices are:
. - Long - the time is displayed as “12:00:00 PM PST".
lgrr]riat All - Medium - the time is displayed as “12:00:00 PM”.
- Short - the time is displayed as “12:00 PM”".
- None - no time is displayed.

Creating 1800 Character Text Areas

Standard Text Areas are either 40 or 200 characters. Y ou can, however, create
aText Areavalidation with a character length of 1800.

To create avalidation with a character length of 1800:

1. Open the Validation Workbench.

120 Commands, Tokens, and Validations Guide and Reference

Chapter 5: Working with Validations

2. Search for “Text Area - 1800.”

3. In theresults tab, select Text Area - 1800.
4. Click Copy.

5. Rename the validation.

The new Text Areavalidation (with alength of 1800) can be used when
defining a custom field in the product.

@: You can only create a Text Field or Area of length 40, 200, or 1800.

Configuring the Table Component

The table component is used to enter multiple recordsinto asinglefield on a
request. The table component can be configured to include multiple columns of
varied data types. Additionally, this component supports rules for populating
elements within the table and provides functionality for capturing column
totals.

For example, ACME creates a request type to request quotes and parts for
hardware. Each entry of this type has four elements: Product, Quantity, Price,
and Total. ACME creates atable component field called Hardware Information to
collect this information.

When the user logs arequest for new hardware, the request displays the
Hardware Information field. The user opensthefield. He selects aProduct, which
triggers arule to populate the Price and Total. He submits the request, which
now contains all of the information required to successfully order the
hardware.

Configuring the Table Component 121

Chapter 5: Working with Validations

1. Click the Table
Component icon
to open the Table

Hardware Information 2 Entries

MERCURY Close Window Component entry
page.
Hardware Information
Select the Product and Quarntity of the tems you wish to order.
Seq Products Cuantity Price Total 2 Add, edit, or
o PC 3 1200 3600 delete entries in
[o> FC 2 1200 2400 the list.

Check All Clear All Add Edit Copy Delete

Done Cancel |

Fields of this component can only be added to request types, request header
types and request user data.

To configure and use a table component:
1. Defining the Table Component in the Validation Workbench

2. Adding the Table Component to a Request Type

Defining the Tabhle Component in the Validation Workbench
To create a table component field:
1. Log onto Mercury IT Governance Center and open the Workbench.
2. From the shortcut bar, select Configuration > Validations.
3. The Validation Workbench opens.
4. Click New Validation.
The Validation window opens.

5. Select Table Component from the Component Type drop-down list.

122 Commands, Tokens, and Validations Guide and Reference

Chapter 5: Working with Validations

Validation : Untitled5 1 [=1
hlarne: |
Description: |
Enabled: [V Usze in workflow? [~
Component Type: |Tame Compaonent j
User Instructions: i‘
=

Meta Layer Yiew: |MRE@_ |

Tahle Columnz] Form Laynut] Rulas]
Colurnn Seq. | Colurmn Header | Column Token Parameter Col |Enabled| Componert Type Walidation | Editable | R

y Bl
4+ e | |
Uszed By | Duwenership | (o34 | Save | Cancel |
Feady

6. Enter avalidation Name and Description.
7. Enter any User Instructions.
This text will appear on the top of the table entry page.

8. Create the table columns.

a. Click New in the Table Columns tab. The Field window opens.

b. Define the type of information that will be stored in that column’s
entries. This may require you to create a new validation for the column.

@: File attachments can not be used in a Table component column.

Configuring the Table Component 123

Chapter 5: Working with Validations

£ Field: New
Column Heacler: "— Colurn Token:
De=cription: |
Enabled: * Yes " Mo
Valiclation E Componert Type: J
Mew Multi-Select Enabled: o

Adtributes] Default I Storage]
Edtable: * Yes " Na i v

Reguired: |Never j

Copy Fram... oK | Cancel

I|Readv

c. Specify the Attributes (Editable or Required) and any Default behavior.

d. Click Add to save the column information and add another column.
When you are finished adding columns, click OK to close the Field

window.
Validation : Hardware Table 19 [=] F3
Narne: |Hardware Table
Description: |
Enabled: [v Usze in Workflow? [
Component Type: |Tab\e Caompanent j
Lser Inatructions: | S€lectthe Product and Quantity ofthe items you wish 1o order i‘
=
Meta Layer Yiew: |MREQ_ [HARDWARE_TABLE
Tahle Colunns] Farm Laynm] Rulas]
Column Seq Column Headet | Column Token Patameter Col Enabled Component Type Validation
1|Products FPRODUCTS [PARAMETER1 v Auto Complete List Hardware Products
2| Quantity QUANTITY PARAMETERZ |V Text Field Text Field - 20
3|Price FRICE PARAMETERZ |V Tend Field Text Field - 20
4[Total TOTAL FARAMETER4 |V Text Field Text Field - 20
< | 2
+¥ ey | | |
Uszed By | Duenership | Ok | Save | Cancel |
Feady

9. Configure the form layout.
a. Click the Form Layout tab.

b. Select the fields and move their positions using the arrow buttons.

124 Commands, Tokens, and Validations Guide and Reference

Chapter 5: Working with Validations

Validation : Hardware Table 1 [=] F3

Narne: |Hardware Table

Description: |

Enabled: [V Usze in workflow? [~

Compaonert Type: |Tame Companent

LUser Instructions: | Selectthe Product and Quantity of the items you wish to order

Leblo])|

Meta Layer Yiew: |MREQ_ | HARDWARE_TAELE

Tahle Columns Form Layout 1 Rulas]
LI Products

LI Quantity

LI Price

»

ET

Field Wicth Cotrponerit Lines Move Field f ‘ « * L

Preview i

Uszed By | Duwenership (o34 | Save | Cancel |

Feady

MERCURY

Layout Preview: Table

Products

Price

|

Quantity | ‘
|
|

Total

c. Click Preview to see a representation of the final positioning.

Note that the preview loads a window in the Workbench, but the actual
table component will only be availableto usersin the standard interface
(HTML).

10. Configure any table logic in the Rules tab.

Rules are used for advanced defaulting behavior and cal culating column
totals.

a. Click the Rules tab.
b. Click New to define anew rule.

See Creating a Table Rule on page 126 for detailed instructions.

Configuring the Table Component 125

Chapter 5: Working with Validations

11. Click OK to save the validation.

The new table component field can be included on arequest type, request
header type or request user datafield.

Creating a Table Rule

Table rules are configured in the same manner as advanced request type rules.
Essentially, you can configure fields (columns) in the table to default to certain
values based on an event or value in another field in the table. Because the
table component rules are configured using a SQL statement, you are given
enormous flexibility for the data that is populated in the table cells.

Table rules are configured using the Rules tab on the Validation window.

£ Rules Window @

Rule Marne: | Set Unit Price

De=cription: |

Enabled: & Yes

Rule Evert: [Apply On Figld Change

rDependenci

Colurmn Header

Value ‘

Froducts

[l values

ey |

Resultz:

Column Header ‘ Column |

Token

Price [1 [TE.P.PRICE

B [TEWP.PRICE

ey

SEL:

SELECT
DECODE(TE.P.PRODUCTS], PC',
1200,

Mouse', 50,

‘Monitor!, 860,

Weyhoard', 110, 0,
DECODE(TE.P.FRODUCTS], PC',
1200,

‘Mouse', 50,

‘Monitar!, 560,

‘Weyhoard', 110, 0)

FROM sys.dual

0K | | Cancel

I|Ru\es Cnly Apply within the same Entry.

Figure 5-17. Rules window accessed from the Rules tab

Example: Using a Table Component on an Order Form

The following example illustrates the table component rules functionality.

ACME uses arequest for creating and tracking employee computer hardware
equipment orders. ACME hasincluded atable component field on their request
type for gathering the order information. When the empl oyee selects a Product,

126

Commands, Tokens, and Validations Guide and Reference

Chapter 5: Working with Validations

the Unit Price isautomatically updated. Then, when they update the Quantity, the
total line cost is automatically calculated and displayed in the table.

To enable this functionality, ACME first has to configure anew validation
with the following specifications:

Table 5-21. Example - table component validation settings

Setting

Value / Description

Validation Name

Product Order Information

Component Type

Table Component

Column 1

Column Header = Products
Column Token = PRODUCTS
Validation = Auto complete list with the

following list values: PC, MOUSE, MONITOR,
KEYBOARD

Column 2

Column Header = Quantity
Column Token = QUANTITY
Validation = Numeric Text Field

Column 3

Column Header = Price
Column Token = PRICE
Validation = Numeric Text Field

Column 4

Column Header = Total
Column Token = TOTAL
Validation = Numeric Text Field

Validation : Hardware Table 1 [=] F3
Narne: |Hardware Table
Description: |
Enahled: [V Use inWiorkflow? [
Component Type: |Tame Compaonent j
LUser Instructions: | Selectthe Product and Quantity of the items you wish to order i‘
=

eta Layer View: |MRE@_

Tahle Columng] Fortn Laynut] Rulas]

| HARDWARE_TABLE

Colurnn Seq. | Column Header | Column Token Parameter Col Enabled Componert Type W aliclation
1|Products PRODUCTS |PARAMETER1 Y Auto Complete List Hardware Praducts
2| Quantity QUANTITY PARAMETERZ |V Text Field Text Field - 20
3|Price FRICE PARAMETERI |V Text Field Text Field - 20
4[Total TOTAL PARAMETER4 |V Tend Field Text Field - 20
! | o]
4+ e | | |
Uszed By | Duwenership | (o34 | Save | Cancel |
Feady

Configuring the Table Component

127

Chapter 5: Working with Validations

Once the validation’s columns have been defined, the rules can be configured:
Rule 1: Set Unit Price.

ACME uses the following rule to set the default unit price in the Price cell
based on the Product selection.

Table 5-22. Example - Set Unit Price rule settings

Setting Value / Description
Rule Name Set Unit Price
Rule Event Apply on Field Change

Column = Products

Dependencies
All Values = Yes

Results Column Header = Price

SELECT DECODE('[TE.P.PRODUCTS],
'PC', 1200,

‘Mouse', 50,

‘Monitor', 560,

'Keyboard', 110, 0),
DECODE('[TE.P.PRODUCTS], 'PC', 1200,
‘Mouse', 50,

‘Monitor', 560,

'Keyboard', 110, 0)

FROM sys.dual

SQL

128 Commands, Tokens, and Validations Guide and Reference

Chapter 5: Working with Validations

£ Rules Window @

Rule Marne: | Set Unit Price
De=cription: |
Enabled: & Yes " Mo
Rule Evert: [Apply On Figld Change]|
rDependenci
Colurmn Header ‘ Value ‘
Froducts [l values |
ey | | |
Resultz: AL
Column Header ‘ Column | Token SELECT
Price [1 [TE.P.PRICE DECODE(TE P.PRODUCTS]', 'PC",
B [TEVP.PRICE 1200,
Mouse', 50,
‘Monitor!, 860,
‘WKeyboard', 110, 03,
DECODE(TE P.PRODUCTS]', 'PC',
1200,
‘Mouse', 50,
‘Monitar!, 560,
‘Keyboard', 110, 0)
. | | | FrOM svs.dual
ey
0K | | Cancel
IlRu\ES Only Apply within the same Entry

Rule2: Calculate Total.

ACME uses the following rule to set the calculate and display the total line
price in the Total column based on the values in the Products and Quantity cells.

Table 5-23. Example - Calculate Total rule settings

Setting Value / Description
Rule Name Calculate Total
Rule Event Apply on Field Change

Column = Price [All Values = Yes]

Dependencies
P Column = Quantity [All Values = Yes]

Results Column Header = Total

SELECT [TE.P.PRICE] * [TE.P.QUANTITY],
saL [TE.P.PRICE] * [TE.P.QUANTITY]

from sys.dual

Configuring the Table Component 129

Chapter 5: Working with Validations

Using the table component

Add afield to arequest type that is validated by this table component
validation. When auser opensthefield to enter information, the table rules will
be applied to each row that is created.

MERCURY

Hardware Information - New Entry

Add Another Reset
Add Cancel

Tokens in the Table Components

Each column included in the table component has an associated token. These
tokens can be used in the same manner as other field tokens, such as for
commands, notifications or advanced field defaulting. See Tokensin Request
Table Components on page 61 for details on referencing tokens related to table
components.

Calculating Column Totals

Y ou can configure columnsthat are validated by a number to cal cul ate the total
for that column. Thisis configured in the validation’s Field window. The
following exampleillustrates how to configure a column to calculate and
display the column total.

ACME, Inc., uses arequest for creating and tracking simple employee
equipment orders. ACME hasincluded atable component field on their request
type for gathering the order information. Employees enter the Purchase Items
and Cost for each item. The table component automatically calculates the total
cost for the Cost column.

ACME creates a validation with the following settings:
e Component Type = Table Component.

e Column 1 = Purchase Item (text field)

130 Commands, Tokens, and Validations Guide and Reference

Chapter 5: Working with Validations

e Column 2 = Cost (number). In the Field window for the Cost column, select

Display Total = Yes. The Display Total field isonly enabled if the field's
validation is a number.

Validation : Simple Order Form

1 [=]
Narme: | Girnple Order Farm
Description: |
Enahled: [V Use inWiorkflow? [
Component Type: |Tame Companent j
LUser Instructions: | ENter the purchase item and the cost for each item. i‘
=

Meta Layer Yiew: |MREQ_ | SIMPLE_ORDER_FORM

Tahle Columng] Fortn Laynut] Rulas]

Colurnn Seq. | Colurmn Header | Colurnn Token Parameter Col | Enabled| Componert Type Walidation |

Text Field - 20
Mumetric Text Field

Text Field

4+¥ e | Edlit | Remove |

Uszed By | Duwenership |

Feady

Ok | | Cancel |

Column Header: | Cost Colurn Toker: |COST
Description: |
Enabled: * Yes " ho
waliddation | Murmeric Test Field B Component Type: | =l

Mew | Open | | wti-Select Enablers o

Attributes] Default 1 Storage I
Edtable: ™+ YVes " Mo Display Total: % Yes " Mo
Reguired: |Never j

Copy From... QK Add | Cancel

P Succassul

Figure 5-18. Sample validation for a Simple Order table component.

ACME includes adds afield to their Order request type that uses this
validation. When a user creates a request using that request type, he can click
on the table component icon next to the field to open the order form. The total
for the Cost column is displayed at the bottom of the table.

Configuring the Table Component 131

Chapter 5: Working with Validations

MERCURY

Simple Order Form

Erter the purchase item and the cost for each item.

Seq Purchase tem Cost
| 1 Flatscreen Monitor 1800

2 Cable a0
O

A
¥

Check All

Done Cancel

Figure 5-19. Sample table component displaying a column total.

Adding the Table Component to a Request Type

Table component fields can be included on a request type, request header type
or request user datafield.

To add a table component field to a request type:
1. Open the Request Type window.
2. Click New in the Fields tab.
The Field window opens.
3. Enter the Field Prompt, Token, and Description.
4. In the Vvalidation field, select atable component validation.
If you have not created a table component validation, click New to create

one. See Defining the Table Component in the Validation Workbench
on page 122 for instructions.

132 Commands, Tokens, and Validations Guide and Reference

Chapter 5: Working with Validations

£ Field: Hardware Information
Fielel Prompt: |Hardware Information Token: |HARDWARE_IMFO

Description: |
Enabled: * Yes o
valication [Hardware Takle T []
il Oy
New | open | Multi-Select Enabled: &
Aftributes] I Storaga] Security 1
Section Name : | J o =
Transaction History: © Yes ¥ Mo Motes Histary: © Yes no
o Display: % Yes " ho

~

Search Validation: E

QK | | Cancel

I|Readv

5. Click oK to add the field to the request type.

6. Save the request type.
The table component field will now appear on requests of this request type.

=l Details

=l Request Type Fields

Hardware Information
/2 Table: Hardware Information [Mercury] - Microsoft Internet Explorer

= Notes
MERCURY

Hotes to be ad
Hardware Information

Zelect the Product and Quartity of the items you wizsh to order

— Seq Preducts Quantity Price Total L
Referey o P 3 1200 3600
[o2 PC 2 1200 2400
N ||
Check all_| Clear All Add Edit Copy Delete
Done Cancel i
L

E

 Internet

——] Q Done

133

Configuring the Table Component

Chapter 5: Working with Validations

Package and Request Group Validations

Two particular entity-specific validations can be accessed in the Workbench
without entering the Validations screen group.

Package and Request Groups

The KNTA-Package and Request Groups validation can be accessed directly
from the Package screen. To specify that a package belongsto anew or unique
package group that is not named in the auto-complete validation list, it is not
necessary to proceed through the Validation Workbench.

To access the KNTA-Package and Request Groups validation window from
the Package screen:

Select New Package Group from the Package menu. The Validation window will
appear, listing the existing Mercury Change M anagement package groups.

All users are granted read access to this screen, but only users with appropriate
security privileges can alter the KNTA-Package and Request Groups validation list.

Validation : KNTA - Package and Request Groups 1 [=] F3
Ilarme: |KNTA- Package and Request Groups
Description: |groupings for packages and reguests
Enahled: [V Use inWiorkflow? [
Compaonert Type: | J
Validated By: | |
Walickstion aluss:
Seqy Code Mearitig Description Enablecd Dretanit |
T{CUSTOMIZATION Customization Customization [&
2[SETUP Setup Setup v &l
3|UPGRADE porade Iparade [I
Mewy | | | Copy From | f ‘
Uszed By | Duwenership | (o34 | | Cancel |
Reatty (Read-Orly, Seed Data)

134 Commands, Tokens, and Validations Guide and Reference

Chapter 5: Working with Validations

Request Type Category

The CRT - Request Type Category validation can be accessed directly from the

Request Types workbench.

Access the CRT - Request Type Category validation window from the Request
Types workbench by selecting Request Type Category Setup from the Request
Type menu. The Validation window will appear, listing the existing request type

categories.

All users are granted read access to this screen, but only users with appropriate
security privileges can alter the CRT - Request Type Category validation list.

Validation : CRT - Request Type Category M [=] E3
Ilarme: |CRT- Request Type Categary
Description: |This validation contains a list of categories used for arganizing Request Types
Enabled: [V Use inworkflow? [
Companert Type: | J
walidated By: | =]
Walickstion *alues:
Seq | Code Meaning | Description | Enabled ‘ Defautt |

1[MISCELLAMEOUS |Miscellaneous

| ¥ [|

v | e |

| Copy From | f ‘

Uszed By | Duenership |

Ok | | Cancel |

Readty (Read-Orly, Seed Data)

Validation Special Characters

The Validation Name field for all validations cannot contain a question mark
(*?). The Workbench prevents this character from being entered into the field,
but all previously configured validation names (validations entered before
release 4.5) should be checked and corrected.

Validation Special Characters 135

Chapter 5: Working with Validations

System Validations

There are anumber of validations that are provided with Mercury IT
Governance Center. Note that many of these validations may have been altered
to better match your company’ s specific business needs. Use the Validations
report to get alist of all validations currently in your system. The report
includes information on validation values and commands.

136 Commands, Tokens, and Validations Guide and Reference

Appendix

System Special Commands

In This Appendix:

e Overview of System Special Commands
e ksc_connect Yoecial Commands

» ksc_connect_dest_client

» ksc_connect_dest server

» ksc_connect_source client

= Kksc_connect_source server
e ksc exit
e ksc_copy Special Commands
ksc_copy_client_client
ksc_copy_client_server
ksc_copy_server_client
ksc_copy_server_server
ksc_copy_client_tmp
ksc_copy_server_tmp
ksc_copy_tmp_client
ksc_copy_tmp_server
e ksc respond
e ksc_simple respond

s Examplesusing ksc_simple_respond
e Kksc local exec

s Example using ksc_local_exec
e ksc replace

s Example using ksc_replace
e ksc set

= Example using ksc_set

137

Appendix A: System Special Commands

e ksc set env
e Kksc store
s Exampleusing ksc_store
e Kksc_comment
e ksc_concsub
= Example using ksc_concsub
e ksc begin_script/ ksc_end script
» Example using ksc_begin_script and ksc_end_script
e kst _copy_script Special Commands
s Kksc_copy_script_dest_client
m KsCc_copy_script_dest_server
m Kksc_copy_script_source client
m Kksc_copy_script_source server
e ksc_om migrate
= Example using ksc_om migrate
e ksc_capture output
ksc_gl_migrate
s Example using ksc_gl_migrate
ksc_parse jcl
ksc_submit_job
ksc set_exit value
ksc clear_exit value
ksc_run_sql
= Example using ksc_run_sql
e Summary of All Special Command Parameters

Overview of System Special Commands

This appendix discusses the pre-defined special commands.

ksc_connect Special Commands

The ksc_connect special commands instruct the execution engineto open a
connection to a specified environment. Thiscommand initiatesa TELNET,
SSH or SSH2 session with the server or client defined for the environment.

138 Commands, Tokens, and Validations Guide and Reference

Appendix A: System Special Commands

The command then sends all command steps that follow it directly to the
machine, as though someone was actually typing the command on that
machine. In this way, the execution engineis able to run virtually any
command-line directive that the machine understands.

All ksc_connect special commands must end with the ‘ksc_exit’ special command to
Note exit the TELNET, SSH, or SSH2 session.

ksc_connect_dest_client

This command initiatesa TELNET, SSH, or SSH2 session with the client of
the destination environment. The destination environment refers to the
destination environment of the workflow step initiating command execution.

Table A-1. ksc_connect_dest_client parameters

Parameter Default Token Description
USERNAME {?SEsgﬁihNﬂ\é'CLlENT— Username on [DEST_ENV].
PASSWORD LE)AESSSTVT’%':‘\SCLIENT— Password on [DEST_ENV].

[DEST_ENV.CLIENT_NT_ | Windows NT Domain name of

NT_DOMAIN DOMAIN [DEST_ENV].

BE?:I——BASE— EAESSET—FI,E A\ITVHCLIENT— Base Path of [DEST_ENV].
Specifies the connection

CONNECTION_ ?CI)ESTEE(N)\T/OC&IEL'\IT_ protocol. Possible values are

PROTOCOL MEANING] - listed in validation
“CONNECTION_PROTOCOL".
Name of the destination
environment to be used instead

DEST_ENV [DEST_ENV] of the destination environment
on the current workflow step.

Example Using ksc_connect_dest_client

Make a remote connection to the client of the
destination environment defined for the current

workflow step.

ksc_connect Special Commands 139

Appendix A: System Special Commands

ksc _connect dest client

<commands>
ksc_exit

Make a remote connection to the client defined for
the environment named ‘STAGING’.

ksc_connect dest client DEST_ ENV="STAGING"

<commands>
ksc_exit

ksc_connect_dest_server

Thiscommand initiatesa TELNET, SSH, or SSH2 session with the server of
the destination environment. The destination environment refers to the
destination environment of the workflow step initiating command execution.

Table A-2. ksc_connect_dest_server parameters

Parameter Default Token Description
[DEST_ENV.SERVER_
USERNAME USERNAME Username on [DEST_ENV].
[DEST_ENV.SERVER_
PASSWORD PASSWORD Password on [DEST_ENV].
[DEST_ENV.SERVER_ Windows NT Domain name of
NT_DOMAIN NT_DOMAIN [DEST_ENV].
DEST_BASE_ [DEST_ENV.SERVER_
PATH BASE PATH Base Path of [DEST_ENV].
Specifies the connection protocol.
CONNECTION_ ETI?CI)EI\SITI;E(N)¥OS(ES\L/ER_ Possible values are listed in
PROTOCOL MEANING] - validation “CONNECTION_
PROTOCOL".
Name of the destination
DEST ENV [DEST_ENV. environment to be used instead of
- ENVIRONMENT_NAME] | the destination environment on the
current workflow step.

Example using ksc_connect_dest_server

Make a remote connection to the server of the
destination environment defined for the current

workflow step.

ksc_connect dest server

<commands>

140

Commands, Tokens, and Validations Guide and Reference

Appendix A: System Special Commands

ksc_exit

Make a remote connection to the server defined for
the environment named ‘Staging’.

ksc_connect_dest server DEST_ ENV="STAGING"

<commands>
ksc_exit

ksc_connect_source_client

This command initiatesa TELNET, SSH, or SSH2 session with the client of
the source environment. The source environment refers to the source
environment of the workflow step initiating command execution.

Table A-3. ksc_connect_source_client parameters

Parameter Default Token Description

[SOURCE_ENV.CLIENT_

USERNAME USERNAME

Username on [SOURCE_ENV].

[SOURCE_ENV.CLIENT_

PASSWORD PASSWORD Password on [SOURCE_ENV].
NT_DOMAIN L?_?_%FS%EMEINV.CLIENT_ E/gliga?qwcsEl_l;\[l)\(;]r.nain name of
ggggj’:i—TH ESSA(?SLIJ;(;'EEENV'CLIENT— Base Path of [SOURCE_ENV].
connEcTion. | [SOURCE ENV.CLIENT. | EeC e valuet are
PROTOCOL N - listed in validation

MEANING] “CONNECTION_PROTOCOL”.

Name of the source environment
to be used instead of the source
environment on the current
workflow step.

SOURCE_ENV [SOURCE_ENV]

Example using ksc_connect_source_client

Make a remote connection to the client of the source
environment defined for the current workflow step.

ksc_connect source client
<commands>
ksc _exit

Make a remote connection to the client defined for
the environment named ‘STAGING’.

ksc_connect Special Commands 141

Appendix A: System Special Commands

ksc _connect source client SOURCE_ENV="STAGING"

<commands>
ksc_exit

ksc_connect_source_server

Thiscommand initiatesa TELNET, SSH, or SSH2 session with the server of
the source environment. The source environment refers to the source
environment of the workflow step initiating command execution.

Table A-4. ksc_connect_source_server parameters

Parameter Default Token

Description

USERNAME [SOURCE_ENV.SERVER_

Username on [SOURCE_ENV].

MEANING]

USERNAME
PASSWORD LSA(‘)SUSF\:\(,:OEﬁENV'SERVER— Password on [SOURCE_ENV].
[SOURCE_ENV.SERVER_ | Windows NT Domain name of
NT_DOMAIN NT_DOMAIN [SOURCE_ENV].
gggl? ?DI?A_TH LSA(‘)SLIJER(;'EEENV.SERVER_ Base Path of [SOURCE_ENV].
Specifies the connection
CONNECTION_ Egﬁi%%?gggLERVER— protocol. Possible values are
PROTOCOL N - listed in validation

“CONNECTION_PROTOCOL".

SOURCE_ENV [SOURCE_ENV]

Name of the source
environment to be used instead
of the source environment on
the current workflow step.

Examples using ksc_connect_source_server

Make a remote connection to the server of the source
environment defined for the current workflow step.

ksc_connect source server
<commands>
ksc _exit

Make a remote connection to the sgserver defined for

the environment named ‘STAGING’.

ksc_connect_source_server SOURCE_ ENV="STAGING"

<commands>
ksc_exit

142

Commands, Tokens, and Validations Guide and Reference

Appendix A: System Special Commands

ksc_exit

This command exitsthe TELNET, SSH, or SSH2 session initiated by the ksc_
connect Special Commands. For examples using ksc_exit, see ksc_connect
Special Commands.

ksc_copy Special Commands

The ksc_copy special commands provide the mechanism for transferring files
to and from the various environments defined in Mercury IT Governance
Center.

The default use of these commands requires that the entity containing the command
has three fields with the following tokens defined:

[P.P_FILENAME]
[P.P FILE TYPE]

@: [P.P_SUB_PATH]

If these fields are not defined as part of the entity, they must be passed as
parameters or the command will fail.

Files are copied using either FTP, SCP or SCP2, depending on the configuration of
the environment.

ksc_copy_client_client

This command copies afile from the source client environment to the
destination client environment.

Table A-5. ksc_copy_client_client parameters

Parameter Default Token Description

The sub-directory that should be
SUB_PATH [P.P_SUB_PATH] used to locate the file relative to the
base path of each environment.

The base path of the source client
SOURCE_BASE | [SOURCE_ENV. environment to be used instead of
_PATH CLIENT_BASE_PATH] | what is defined for the current
source environment.

ksc_exit 143

Appendix A: System Special Commands

Table A-5. ksc_copy_client_client parameters

Parameter Default Token Description

The base path of the destination
DEST_BASE [DEST_ENV. client environment to be used
_PATH CLIENT_BASE_PATH] | instead of what is defined for the

current destination environment.
FILENAME [P.P_FILENAME] Name of the file to be copied.

The file type associated with the file
FILE_TYPE [P.P_FILE_TYPE] (ASCII or BINARY).

Name of the source environment to
SOURCE_ENV [SOURCE_ENV] be gsed instead of the source

environment on the current workflow

step.

Name of the destination environment
DEST_ENV [DEST_ENV] to bg used instead of the destination

environment on the current workflow

step.

Example #1 using ksc_copy client_client

Copy a file between source and destination clients.

ksc _copy client client SUB PATH="forms"
FILENAME=" [P.P MODULE] .fmb" FILE TYPE="BINARY"

Copy a file between the client defined in the ‘STAGING'’
environment and the destination client.

ksc _copy client client DEST ENV="STAGING”

Example #2 using ksc_copy client_client

Override the base path of the destination directory.

ksc _copy client client DEST BASE PATH="/ul/datatree/exl” SUB
PATH=".” FILENAME="[P.P MODULE] .fmb" FILE TYPE="BINARY"

ksc_copy_client_server

This command copies afile from the source client environment to the
destination server environment.

144

Commands, Tokens, and Validations Guide and Reference

Appendix A: System Special Commands

Table A-6. ksc_copy_client_server parameters

Parameter Default Token Description

The sub-directory that should be
used to locate the file relative to
the base path of each
environment.

SUB_PATH [P.P_SUB_PATH]

The base path of the source client
SOURCE_BASE | [SOURCE_ENV.CLIENT_ | environment to be used instead of
_PATH BASE_PATH] what is defined for the current
source environment.

The base path of the destination

DEST_BASE [DEST_ENV. server environment to be used
_PATH SERVER_BASE_PATH] instead of what is defined for the
current destination environment.
FILENAME [P.P_FILENAME] Name of the file to be copied.
FILE TYPE (P.P_FILE_TYPE] The file type associated with the

file (ASCII or BINARY).

Name of the source environment
to be used instead of the source
environment on the current
workflow step.

SOURCE_ENV [SOURCE_ENV]

Name of the destination
environment to be used instead of
the destination environment on
the current workflow step.

DEST_ENV [DEST_ENV]

Example using ksc_copy client_server

Copy a file between source client and
destination server.

ksc copy client server SUB PATH="install/sqgl"
FILENAME="[P.P_SQL SCRIPT]" FILE TYPE="ASCII"

ksc_copy_server_client

This command copies afile from the source server environment to the
destination client environment.

ksc_copy Special Commands 145

Appendix A: System Special Commands

Table A-7. ksc_copy_server_client parameters

Parameter Default Token Description
The sub-directory that should be
SUB_PATH [P.P_SUB_PATH] used to locate the file relative to the
base path of each environment.
The base path of the source server
SOURCE_BASE | [SOURCE_ENV. environment to be used instead of
_PATH SERVER_BASE_PATH] | what is defined for the current
source environment.
The base path of the destination
DEST_BASE [DEST_ENV. client environment to be used
_PATH CLIENT_BASE_PATH] instead of what is defined for the
current destination environment.
FILENAME [P.P_FILENAME] Name of the file to be copied.
The file type associated with the file
FILE_TYPE [P.P_FILE_TYPE] (ASCIl or BINARY).
Name of the source environment to
SOURCE_ENV [SOURCE_ENV] be gsed instead of the source
environment on the current
workflow step.
Name of the destination
DEST ENV [DEST_ENV] enwronr.nen.t to be gsed instead of
the destination environment on the
current workflow step.

Example using ksc_copy server_client

Copy a file between source server

destination client.

and

ksc _copy server client SUB PATH="[P.P_ SUB DIRECTORY]"
FILE TYPE="[P.P FILE TYPE]"

ksc_copy_server_server

This command copies afile from the source server environment to the
destination server environment.

146 Commands, Tokens, and Validations Guide and Reference

Appendix A: System Special Commands

Table A-8. ksc_copy_server_server parameters

Parameter Default Token Description

The sub-directory that should be
SUB_PATH [P.P_SUB_PATH] used to locate the file relative to the
base path of each environment.

The base path of the source server
SOURCE_BASE | [SOURCE_ENV. environment to be used instead of
_PATH SERVER_BASE_PATH] | what is defined for the current
source environment.

The base path of the destination

DEST_BASE [DEST_ENV. server environment to be used
_PATH SERVER_BASE_PATH)] | instead of what is defined for the
current destination environment.
FILENAME [P.P_FILENAME] Name of the file to be copied.
FILE TYPE (P.P_FILE_TYPE] The file type associated with the

file (ASCII or BINARY).

Name of the source environment to
be used instead of the source
environment on the current
workflow step.

SOURCE_ENV [SOURCE_ENV]

Name of the destination
environment to be used instead of
the destination environment on the
current workflow step.

DEST_ENV [DEST_ENV]

Example using ksc_copy server server

Copy a file between source and destination servers.
ksc _copy server server FILENAME="[P.P FILE]"

Copy a file between the source server and the
destination server overriding the base bath.

ksc_copy server server FILENAME="install driver.sh”
DEST BASE PATH="/u2/app/drivers”

Copy a form between the ‘STAGING’ and destination servers.

ksc _copy server server SOURCE ENV="STAGING" SUB PATH="forms"
FILENAME=" [P.P MODULE] .fmb" FILE TYPE="BINARY"

ksc_copy Special Commands 147

Appendix A: System Special Commands

ksc_copy_client_tmp

This command copies afile from the source client environment to the
temporary package transfer directory on the application server. Thistemporary
directory is automatically cleaned up after an execution completes and can be
referenced using the [AS.PKG_TRANSFER_PATH] token.

Table A-9. ksc_copy_server_tmp parameters

Parameter

Default Token

Description

SUB_PATH

[P.P_SUB_PATH]

The sub-directory that should be
used to locate the file relative to the
base path of each environment.

SOURCE_BASE
_PATH

[SOURCE_ENV.
CLIENT_BASE_PATH]

The base path of the source client
environment to be used instead of
what is defined for the current source
environment.

FILENAME

[P.P_FILENAME]

Name of the file to be copied.

FILE_TYPE

[P.P_FILE_TYPE]

The file type associated with the file
(ASCII or BINARY).

SOURCE_ENV

[SOURCE_ENV]

Name of the source environment to
be used instead of the source
environment on the current workflow
step.

ksc_copy_server_tmp

This command copies afile from the source server environment to the
temporary package transfer directory on the application server. Thistemporary
directory is automatically cleaned up after an execution completes and can be
referenced using the [AS.PKG_TRANSFER_PATH] token.

148

Commands, Tokens, and Validations Guide and Reference

Appendix A: System Special Commands

Table A-10. ksc_copy_server_tmp parameters

Parameter Default Token Description
The sub-directory that should be
SUB_PATH [P.P_SUB_PATH] used to locate the file relative to the

base path of each environment.

SOURCE_BASE
_PATH

[SOURCE_ENV.

SERVER_BASE_PATH]

The base path of the source server
environment to be used instead of
what is defined for the current
source environment.

FILENAME [P.P_FILENAME] Name of the file to be copied.

The file type associated with the file
FILE_TYPE [P.P_FILE_TYPE] (ASCII or BINARY).

Name of the source environment to
SOURCE_ENV [SOURCE_ENV] be used instead of the source

environment on the current

workflow step.

ksc_copy_tmp_client

This command copies afile from the temporary package transfer directory on
the application server to the destination client environment. This temporary
directory is automatically cleaned up after an execution completes and can be
referenced using the [AS.PKG_TRANSFER_PATH] token.

Table A-11. ksc_copy_server_tmp parameters

Parameter Default Token Description
The sub-directory that should be
SUB_PATH [P.P_SUB_PATH] used to locate the file relative to the
base path of each environment.
The base path of the destination
DEST_BASE [DEST_ENV. server environment to be used
_PATH CLIENT_BASE_PATH] | instead of what is defined for the
current destination environment.
FILENAME [P.P_FILENAME] Name of the file to be copied.

ksc_copy Special Commands

149

Appendix A: System Special Commands

Table A-11. ksc_copy_server_tmp parameters

Parameter

Default Token

Description

FILE_TYPE

[P.P_FILE_TYPE]

The file type associated with the file
(ASCII or BINARY).

DEST_ENV

[DEST_ENV]

Name of the destination environment
to be used instead of the destination
environment on the current workflow
step.

ksc_copy_tmp_server

This command copies afile from the temporary package transfer directory on
the application server to the destination server environment. This temporary
directory is automatically cleaned up after an execution completes and can be
referenced using the [AS.PKG_TRANSFER_PATH] token.

Table A-12. ksc_copy_server_tmp parameters

Parameter

Default Token

Description

SUB_PATH

[P.P_SUB_PATH]

The sub-directory that should be
used to locate the file relative to the
base path of each environment.

DEST_BASE
_PATH

[DEST_ENV.
SERVER_BASE_PATH]

The base path of the destination
server environment to be used

instead of what is defined for the
current destination environment.

FILENAME

[P.P_FILENAME]

Name of the file to be copied.

FILE_TYPE

[P.P_FILE_TYPE]

The file type associated with the
file (ASCII or BINARY).

DEST_ENV

[DEST_ENV]

Name of the destination
environment to be used instead of
the destination environment on the
current workflow step.

150 Commands, Tokens, and Validations Guide and Reference

Appendix A: System Special Commands

ksc_respond

This command is currently only used to support Patch* Applicator. This
command is able to intelligently respond to interactive prompts generated by
the Oracle “adpatch” and “adadmin” programs. General use of this special
command for arbitrary programsis not yet supported. For simple interactive
programs, see ksc_simple_respond on page 151.

ksc_simple_respond

This command executes an interactive UNIX command on aremote computer.
This command is useful when the command to be executed will prompt for
additional information (such asthe UNIX ‘su’ command to switch user
accounts) or may not return an exit code upon completion (such as starting up a
new shell using ‘sh’).

This command can only be used from within a remote execution session, such as
between ‘ksc_connect’ and ‘ksc_exit’ commands.

The following syntax is supported:

ksc_simple respond “command”

ksc _simple respond “command” “prompt 1" “response 1" [“prompt
2" “resgponse 2" ..]

ksc_simple respond “command” -hide “prompt 1" “response 1"
[“prompt 2" “response 2" ..]

There can be as many prompt-response pairs as necessary. Each prompt must
be matched with aresponse, even if the response is an empty string. The
prompts must appear in the exact order they will be displayed as the command
isrun. All arguments must be enclosed in quotes. In addition, if the command
or any of the arguments contains double quotes (*), any other character can be
used as the quote character. Thefirst character after the string ‘ksc_simple
respond’ will be interpreted as the quote character, and that character must
appear at the beginning and end of each argument.

By using the -hide option, the value passed in for the response will not be
displayed in the execution log. In the log, the value will be displayed as****.
This flag should be used for each prompt/response pair that needs this
treatment.

ksc_respond 151

Appendix A: System Special Commands

The execution engine will wait for each specified prompt. If a prompt does not appear
@: for some reason, then the execution engine will continue to wait for it until the

command times out.

Examples using ksc_simple_respond

If it becomes necessary to invoke a new shell while in aremote session, it
would beideal to simply use the command ‘sh’. However, this can cause the
execution engine to wait indefinitely while waiting for an exit code. To avoid
this problem, the ‘sh’ command can be encapsulated in aksc_simple_respond
command with no prompts as shown:

ksc _simple respond “sh”

As another example, suppose it becomes necessary to switch to another user
account whilein aremote session using the ‘su” command. This command
always prompts for password, unless performed by aroot user. By utilizing the
-hide feature, the password will not be displayed in the execution logs. This
interactivity can be handled using ksc_simple_respond as follows:

ksc_simple respond "su <username>" -hide "word:" "<password>"

Note that “word:” was used as the prompt instead of the entire word
“password:”. The execution engine will wait for the specified prompt string,
whether it is all—or just a part—of the prompt text.

As one more example, consider the following Bourne shell command:

echo "Enter a string:\c"; read str; echo S$str

Normally, this command line would cause the execution engine to hang while
waiting for an exit code (the command will never exit becauseit iswaiting for
input), which would eventually timeout when the execution timeout time is
reached. Use ksc_simple_respond to process this command as shown (this
command should be entered on asingleline):

ksc _simple respond #echo "Enter a string:\c"; read str; echo
Sstr# #a string:# #my value#

Since the command line contained double quotes, the pound sign (#) is used as
the quote character. During execution, thiscommand step will prompt “Enter a
string:” and wait for input. The string “my_value” would be entered

152 Commands, Tokens, and Validations Guide and Reference

Appendix A: System Special Commands

automatically, this value will then be echoed to the output device (in this case,
the execution log), and execution will continue as normal with the next
command step.

ksc_local_exec

This command invokes alocal process on the machine running the Mercury IT
Governance Server. It can be used to run any program that does not require
interactive input. Each call using ‘ksc_local_exec’ is an independent process.
It does not execute in the context of other commands that precede it. The
starting directory for the processes generated using ‘ksc_local_exec’ isthe
home directory of the Mercury IT Governance Server. Full paths to the
executable being called are necessary if the Mercury IT Governance Server
does not have the correct system path information.

The ksc_local_exec command does not open a TELNET, SSH or SSH2 connection

to the Mercury IT Governance Server. It operates by creating a new child process on
the machine that is running the Mercury IT Governance Server. Therefore, the user

account and password for this process will be the same as the account and password
used to start the Mercury IT Governance Server.

Example using ksc_local _exec

Rename existing file ‘file.txt’ to ‘newfile.txt’
ksc _local exec mv file.txt newfile.txt

Run a DOS batch file
ksc local exec cmd /c runme.bat

System commands do not invoke either Unix shells or DOS shells. This means
that the following code segment using ‘ksc_local_exec’ isnot valid, because it
cannot use the ‘pipe’ ([) or redirect commands (>):

ksc_local exec cat names.txt | grep address > file.out

An effective way to use the ksc_local_exec command is to put a series of
commands into a .sh file, and then execute the .sh file as shown:

ksc_begin script + [AS.CR_TRANSFER PATH] run.sh

ksc_local_exec 153

Appendix A: System Special Commands

<series of commandss>
ksc_end script

ksc_local exe ksh run.sh

ksc_replace

Thiscommand is used to edit the contents of afile and placeit into another file.
Thiscommand worksinaway similar to the ‘sed’ utility and supportsthe same
substituting expressions.

The files must be located on the Mercury IT Governance Server in the
[AS.PKG_TRANSFER_PATH] directory. This requires the use of the ksc_
copy_tmp_* commands.

Table A-13. ksc_replace parameters

Parameter Default Token Description

FILENAME | [P.P_FILENAME] | Name of the source file to be edited.

Name of the output file after applying the

OUTFILE [OUTFILE] substitution expressions.

SUBST The substitution expression.

Example using ksc_replace

ksc_set

ksc_copy server tmp FILENAME="config.template” FILE
TYPE="ASCII”

ksc _replace FILENAME="config.template” OUTFILE="config.cfg”
SUBST="s/NAME/ [P.NAME] /g”

ksc_copy tmp server FILENAME="config.cfg”

This command sets the value of atemporary variable which may be used to
manage command conditions or aid in command processing.

154 Commands, Tokens, and Validations Guide and Reference

Appendix A: System Special Commands

The following syntax is supported:

ksc_set VARIABLE="Value”

To reference the value of this variable, use the familiar token syntax without
any prefix. Unlike the ‘ksc_store’ command, ‘ksc_set’ does not write valuesto
the database. The scope of the variable that is set isvalid from when the
variableis defined to the end of the command steps for the entity. This make
using ‘ksc_set’ more attractive than shell variables because the values are
retained between separate ‘ ksc_connect’ sessions. Another advantage of using
‘ksc_set’ isthat the token values are visible in the logs, not just the variable
names. This command may be nested within a‘ksc_connect’ command (see
the following example).

Example using ksc_set

Set the value of a compile flag.

#

ksc_set COMPILE="YES”

ksc_set nested within a ksc_connect
ksc _connect dest server

ksc_set REBUILD="NO”

ksc _exit

Later, atemporary variable can be referenced in a command condition or in
another command step. For example, the command condition may look like:

‘* [COMPILE]’ = ‘YES’

ksc_set_env

Use this command to set the correct environment context of an execution in
cases where the workflow source and destination environments are overridden
using the DEST_ENV and SOURCE_ENV parameters. Normally it is not
necessary to use this command sinceit is called internally from other special
commands. If it is used on a stand-alone basis, it must come after any ‘ksc_
copy’ commands.

ksc_set env 155

Appendix A: System Special Commands

Table A-14. ksc_set_env parameters

ENVIRONMENT_ID]

Parameter Default Token Description
ID of the destination environment to
DEST _ENV_ID [DEST_ENV. be used instead of the destination

environment on the current workflow
step.

SOURCE_ENV_ID

[SOURCE_ENV.
ENVIRONMENT_ID]

ID of the source environment to be
used instead of the source
environment on the current workflow
step.

Name of the source environment to
be used instead of the source

SOURCE_ENV [SOURCE_ENV] .
environment on the current workflow
step.
Name of the destination environment
DEST_ENV [DEST_ENV] to be used instead of the destination

environment on the current workflow
step.

ksc_store

This command dynamically sets the values of fields defined for object types,
reguest types, and report types. This command is useful to set or alter the value
of fields based on the command output. This command may only be used on
fields which have been custom configured. Custom configured fields are those
with tokens that are evaluated using the [P.<TOKEN>] or [VP.<TOKEN>]
format. After altering a token, future evaluations of the token will use the new
value. The new values are written to the database, so the changes are not
temporary asin ‘ksc_set’.

This command may be nested within a‘ksc_connect’ command (as seen in the
following example) and its value can be referenced in command conditions.

The following syntax is supported:

ksc_store TOKEN="Value”

ksc_store TOKEN="Hidden Value”,

“Wisible Value”

156

Commands, Tokens, and Validations Guide and Reference

Appendix A: System Special Commands

In thefirst case, the hidden and visible values of the field will be set to the
same value. In the second case, the hidden and visible values are set
independently. “Hidden Value’ refersto the [P.<TOKEN>] format. “Visible
Value' refersto the [VP.<TOKEN>] format.

Example using ksc_store

In the following example, it is assumed that the entity in question has the
following tokens defined:

[P.DRIVER]
[P.REVISION]
[P.RESULT]

Store the name of the driver file.

ksc_store DRIVER="driver.sh”

Capture the Revision number of a file.

#

ksc _connect dest server

cd “SourceCode/java”

grep ‘SRevision’ ServerAdmin.java

ksc_store REVISION=" [EXEC.OUTPUT]”

ksc_exit

Set the hidden and visible result codes of a parameter.

#
ksc_store RESULT="IN_PROG”,”In Progress”

ksc_comment

This command adds single line comments to the execution log. It can be used
to indicate informational or error messages. HTML tags are supported.

The following syntax is supported:

ksc _comment <comments>

The comment text can be any text string.

ksc_comment 157

Appendix A: System Special Commands

ksc_concsub

This command submits Oracle Application concurrent requests from the
operating system command line. It istreated as a special command because the
command engine must capture the concurrent request 1D, which isan output of
successful submission. To work properly, this command must be called within
a‘ksc_connect - ksc_exit’” command block.

If *ksc_concsub’ is used to submit a concurrent request to an Oracle
Applications database other than where Mercury IT Governance Center is
currently installed, the ORA_APPS DB_LINK parameter must be added to
the *ksc_concsub’ command. Otherwise, the status of the concurrent request
cannot be determined after submission.

The following syntax is supported:

ksc_concsub ORA APPS DB LINK="DB LINK" CONCSUB

DB_LINK corresponds to the database link from the Mercury IT Governance
Center schema to the APPS schema of the database to which the concurrent
request is submitted.

Example using ksc_concsub

ksc_concsub ORA APPS DB LINK=[DEST ENV.ORA APPS DB LINK]
CONCSUB [DEST ENV.APP.DB USERNAME]/ [DEST ENV.APP.DB
PASSWORD] @ [DEST_ENV.DB CONNECT STRING] FND 'Application
Developer' SYSADMIN WAIT=N CONCURRENT FND FNDFMREG [DEST
ENV.APP_CODE] [P.P_ FILENAME]

The special command ‘ksc_concsub’ is followed by the exact CONCSUB call that will
Note be executed directly at the command line.

The complete syntax for Oracle's CONCSUB is shown below. Optional
parameters are in square brackets.

CONCSUB

<ORACLE ID>

<Responsibility Application Short Namex>
<Responsibility Names>

<User Name>

[WAIT=N]

CONCURRENT

<Concurrent Program Application Short Name>

158 Commands, Tokens, and Validations Guide and Reference

Appendix A: System Special Commands

<Concurrent Program Name>

[START=<Requested Start Date>]

[REPEAT DAYS=<Repeat Interval>]

[REPEAT END=<Request Resubmission End Dates>]
<Concurrent Program Arguments...>

For additional information on using the CONCSUB command, see the Oracle
documentation.

It is not possible to retrieve the concurrent request logs from a ‘ksc_concsub’
Note submission submitted against a remote database.

ksc_hegin_script / ksc_end_script

The object command structure of Mercury IT Governance Center lends itself
nicely to standard, step-by-step processes. In most cases, these commands are
fully capable of automating the migration of an object. However, in some
circumstances, it is necessary to add additional logic to the commands for an
object. For example, perhaps aloop must be generated to repeat a command
several times. Thisiswhere scripts-on-the-fly are best applied.

Scripts-on-the-fly are designed to leverage the architecture, tools, and
knowledge already present in an organization. By using a script-on-the-fly,
administrators can define migration logic in their preferred scripting language
(such as Bourne Shell, C Shell or Perl). The scripts only need to be defined
once. The execution engine copies the script wherever it needs to be executed.
The execution engine can also be instructed to clean up the script after it has
been executed, leaving no traces behind.

The following syntax is supported:

ksc _begin script <full path to file to be generated>
<directives from any scripting language>
ksc_end script

It is commonly used in the following format:

ksc _begin script [AS.PKG TRANSFER PATH] [P.P_SCRIPT FILENAME]

Since the script will be generated into a temporary directory by use of the
[AS.PKG_TRANSFER_PATH] token, this token will reference aunique

ksc_begin_script / ksc_end_script 159

Appendix A: System Special Commands

temporary directory per execution and end with the proper directory slash ‘/* or
‘\". After generation, the script can be transferred to another machine for
execution using the‘ksc_copy_script’ commands described in ksc_copy_script
Special Commands.

Example using ksc_begin_script and ksc_end_script

ksc_begin_script [AS.PKG_TRANSFER_PATH][P.P_SCRIPT_FILENAME]
#!/usr/bin/csh

#

Script to lock, check in, and re-checkout the original

file using RCS commands.

#

Print a warning if the file does not exist.

#

if (S#argv != 2) then
echo "$0 : wrong number of arguments"
echo "Usage: $0 sub path filename"
exit 1

endif

set sub path = $argv[1l]

set filename = Sargv[2]

if (-e "S$sub path/RCS/s$filename,v") then
rcs -1 $sub _path/$filename
ci -m"Before Copy." S$sub path/$filename
co -1 sSsub path/sfilename
else
echo "Warning: File S$sub path/$filename not found in RCS
repository"
endif

exit 0
ksc_end script

Copy the script to the destination server and excute it.
ksc_copy script dest server

ksc_connect dest server

csh [P.P_SCRIPT FILENAME]

rm [P.P_SCRIPT FILENAME]

ksc_exit

ksc_copy_script Special Commands

Use these special commands to transfer files from the temporary file transfer
directory (defined by token [AS.PKG_TRANSFER_PATH]) to other
machines. These commands are typically used in conjuction with the ‘ksc_

160 Commands, Tokens, and Validations Guide and Reference

Appendix A: System Special Commands

begin_script’ and ‘ksc_end_script’ commands, but can aso be used in other
ways.

ksc_copy_script_dest_client
This command copies a script contained in [AS.PKG_TRANSFER_PATH], a

temporary directory located on the Mercury IT Governance Server, to the base
path of the destination client environment.

Table A-15. ksc_copy_script_dest_client parameters

Parameters Default Token Description
SCRIPT —_
_FILENAME [P.P_SCRIPT_FILENAME] | The name of the script file to transfer.
The base path of the destination
DEST_BASE | [DEST_ENV. client environment to be used
_PATH CLIENT_BASE_PATH] instead of what is defined for the

current destination environment.

Name of the destination environment
DEST ENV [DEST_ENV] to be used instead of the destination

- - environment on the current workflow
step.

ksc_copy_script_dest_server
This command copies a script contained in [AS.PKG_TRANSFER_PATH], a

temporary directory located on the Mercury IT Governance Server, to the base
path of the destination server environment.

Table A-16. ksc_copy_script_dest_server parameters

Parameters Default Token Description

SCRIPT

_FILENAME [P.P_SCRIPT_FILENAME] | The name of the script file to transfer.

ksc_copy_script Special Commands 161

Appendix A: System Special Commands

Table A-16. ksc_copy_script_dest_server parameters

Parameters

Default Token

Description

DEST_BASE
_PATH

[DEST_ENV.
SERVER_BASE_PATH]

The base path of the destination
server environment to be used

instead of what is defined for the
current destination environment.

DEST_ENV

[DEST_ENV]

Name of the destination environment
to be used instead of the destination
environment on the current workflow
step.

ksc_copy_script_source_client

This command copies a script contained in [AS.PKG_TRANSFER_PATH], a
temporary directory located on the Mercury IT Governance Server, to the base
path of the source client environment.

Table A-17. ksc_copy_script_source_client parameters

Parameters

Default Token

Description

SCRIPT
_FILENAME

[P.P_SCRIPT_FILENAME]

The name of the script file to
transfer.

DEST_BASE
_PATH

[SOURCE_ENV.
CLIENT_BASE_PATH]

The base path of the source client
environment to be used instead of
what is defined for the current
source environment.

SOURCE_ENV

[SOURCE_ENV]

Name of the source environment to
be used instead of the destination
environment on the current
workflow step.

ksc_copy_script_source_server

This command copies a script contained in [AS.PKG_TRANSFER_PATH], a
temporary directory located on the Mercury IT Governance Server, to the base
path of the source server environment.

162

Commands, Tokens, and Validations Guide and Reference

Appendix A: System Special Commands

Table A-18. ksc_copy_script_source_client parameters

Parameters

Default Token

Description

SCRIPT
_FILENAME

[P.P_SCRIPT_FILENAME]

The name of the script file to
transfer.

SOURCE_BASE
_PATH

[SOURCE_ENV.
SERVER_BASE_PATH]

The base path of the source
server environment to be used
instead of what is defined for the
current source environment.

SOURCE_ENV

[SOURCE_ENV]

Name of the source environment
to be used instead of the source
environment on the current
workflow step.

ksc_om_migrate

Use this command to launch migrations supported by the Object* Migrator.

The following syntax is supported:

ksc_om migrate CONC_PROGRAM=<conc program name:>
APP_ SHORT NAME=<APP SHORT NAME> OM ARCHIVE FLAG=<Y/N>

The parameters CONC_PROGRAM and APP_SHORT_NAME arerequired.
All other parameters are optional and are used to override the default behavior.

Table A-19. ksc_om_migrate parameters

Parameter

Default Token

Description

CONC
_PROGRAM

None. This is a
mandatory parameter.

The concurrent program name. This
has been pre-configured and will not
need to be modified.

OM_ARCHIVE
_FLAG

[WFS.
OM_ARCHIVE_FLAG]

Specifies whether the migration will
store to the archive rather than using
what has been specified for the current
workflow step.

APP_SHORT
_NAME

None. This is a required
parameter.

This value is normally “CLM” but can
be modified if the Object*Migrator has
been installed into a custom account.

ksc_om_migrate 163

Appendix A: System Special Commands

Table A-19. ksc_om_migrate parameters

Parameter Default Token Description
SOURCE The environment to migrate from rather
ENV [SOURCE_ENV] than the one defined on the workflow
- step.
DEST The environment to migrate to rather
ENV [DEST_ENV] than the one defined on the workflow
- step.

Example using ksc_om_migrate

#
#Launch an AOL Concurrent Program Migration

#
ksc_om migrate CONC_PROGRAM="CLMRMCP1l" APP SHORT NAME="CLM"

ksc_capture_output

The ‘ksc_capture_output’ special command isonly used in validations. It is
used to get data from an aternate source, and use that data to populate an
auto-complete field. This functionality provides additional flexibility when
designing auto-complete lists.

Many enterprises have found that they need to use alternate sources of data
within their applications. Examples of these sources might be aflat file, an
alternate database source, or output from a command line execution. The ‘ksc
capture_output’ command may be used in conjunction with these alternate data
sources, in the context of a validation, to provide alist of values on thefly.

The syntax for the ‘ksc_capture_output’ is:

ksc_capture output <commands>

In the Validation Workbench, under Validated By, choose either Command With
Delimited Output Or Command With Fixed Width Output and input the
delimiting character or field length information. Then, under New Command,

enter the steps. The example below would put the validations into the
address.txt file, then run the ‘ksc_capture_output’ against the address.txt file:

ksc_begin script [AS.PKG TRANSFER_ PATH]address.txt

164 Commands, Tokens, and Validations Guide and Reference

Appendix A: System Special Commands

street

city

state

zipcode

ksc_end script

ksc_capture_output cat[AS.PKG TRANSFER PATH]address.txt

In this case, the entire sequence of commands would be executed on the local
machine where the Mercury IT Governance Server isrunning. Thisisthe
preferred method of invoking ‘ksc_capture_output’. The ‘ksc_capture_output’
command may be embedded between ‘ksc_connect’ and ‘ksc_exit’ commands,
but the time delay is significant depending on network load (because the
validation actually requires an entire TELNET, SSH or SSH2 session to be
generated to the remote machine). It is recommended that ‘ksc_capture
output’ only be used in alocal execution scenario.

‘ksc_capture_output’ may be called more than once. Each call will append the
results to the previous call.

ksc_gl_migrate
Use this command to launch migrations supported by the GL *Migrator.

The following syntax is supported:

ksc_gl migrate CONC_PROGRAM=<conc program names
APP SHORT NAME=<APP SHORT NAME> GL_ARCHIVE FLAG=<Y/N>

The parameters CONC_PROGRAM and APP_SHORT_NAME arerequired.
All other parameters are optional and are used to override the default behavior.

Table A-20. ksc_gl_migrate parameters

Parameter Default Token Description

The concurrent program name. This
has been pre-configured and will not
need to be modified.

CONC None. This is a
_PROGRAM mandatory parameter.

Specify whether the migration will store
GL_ARCHIVE | [WFS. to the archive rather than using what
_FLAG OM_ARCHIVE_FLAG] has been specified for the current
workflow step.

ksc_gl_migrate 165

Appendix A: System Special Commands

Table A-20. ksc_gl_migrate parameters

Parameter Default Token Description
APP_SHORT | None. This s a required | | TS value is normally “CLGM" but can
be modified if the GL*Migrator has
_NAME parameter. . .
been installed into a custom account.
SOURCE The environment to migrate from rather
ENV [SOURCE_ENV] than the one defined on the workflow
- step.
DEST The environment to migrate to rather
ENV [DEST_ENV] than the one defined on the workflow
- step.

Example using ksc_gl_migrate

#

Launch a Budget Organization migration

#

ksc gl migrate CONC_PROGRAM="CLGMRBO1l" APP_ SHORT NAME="CLGM"

ksc_parse_jcl

This command is only used by the *OS/390 JCL Migration’ object type to
parse a JCL script using the Mainframe parameters for the specified

environment.

Table A-21. ksc_parse_jcl parameters

Parameter Default Token Description
FILENAME | [P.P_FILENAME] Name of the JCL source file to be edited.
OUTFILE [OUTFILE] Namg of.the output L.JCL file after applying the
substitution expressions.
ENV ID [DEST_ENV. The ID of the environment containing the
- ENVIRONMENT_ID] | mainframe substitution expressions.

166 Commands, Tokens, and Validations Guide and Reference

Appendix A: System Special Commands

ksc_submit_job

This command is only used by the *OS/390 JCL Migration’ object type to
submit JCL to the Mainframe JES.

Table A-22. ksc_submit_job parameters

Parameter Default Token Description

[AS.PKG_TRANSFER_

PATH PATH] Path to the JCL file.
FILENAME | [P.P_FILENAME] Name of the JCL source file to be edited.
ksc_set_exit_value

Use this command to set the exit value of the command execution to any value.
When not used, the command execution engine returns standard execution
results, such as FAILURE, SUCCESS, and ERROR (if an interna error
occurred) that the workflow engine can transition on. Using ‘ksc_set_exit_
value' alowsfor the flexibility to set any exit value and enables custom
workflow transitions.

The following formats are supported:

Sets the hidden and visible value to <values>.
ksc_set exit value "<value>"

Sets both the hidden and visible values independently.
ksc_set exit value "<hidden value>", "<visible value">

The workflow engine will key off of the hidden value to determine if a
transition should be made. The visible value is for display purposes.

‘ksc_set_exit_value' isideal for situations where there could be a number of
different execution results, not just Success or Failure. Using ‘ksc_set_exit_
value' alows the workflow engineto transition on any number of execution
outcomes.

ksc_submit_job 167

Appendix A: System Special Commands

ksc_clear_exit_value

Use this command to clear the exit value set by ‘ksc_set_exit_value'. When
cleared, the execution engine will return its standard results, SUCCESS,
FAILURE, or ERROR.

ksc_run_sql

Thiscommand runs a SQL query against the chosen environment. Theresult of
thelast row queried isreturned in the [SQL_OUTPUT] token. Theresult of the
entire query is placed in the [AS.PKG_TRANSFER_PATH][PKGL.SEQ].txt
filein<ITG_Home>.

To run this special command, any execution steps in the Change Management
workflow must have their source environments defined in the Workflow Step
window.

Table A-23 lists this specia command’ s parameters.

Table A-23. ksc_run_sql parameters

Parameter Default Token Description

QUERY_STRING [QUERY_STRING] A SQL select statement.

The name of the environment
where data will be queried.
ENV_NAME [ENV_NAME] The JDBC connection should
be checked in the
environment checker.

If no data is returned,
determines if an exception
EXCEPTION_OPTION | [EXCEPTION_OPTION] | should be thrown. The only
available option is
'-no_data_exception.'

Example using ksc_run_sql

ksc_run sgl QUERY STRING="select sysdate from sys.dual" ENV
NAME=" [SOURCE_ENV.ENVIRONMENT NAME]"

168 Commands, Tokens, and Validations Guide and Reference

Appendix A: System Special Commands

The ‘ksc_run_sql’ special command can be used to populate a validation. This is
@: appropriate when the validation is validated by a Command with Delimited Output. In

this case, the Data Delimiter should be set to “#@ #".

The following code is an example of ksc_run_sgl in avalidation.

ksc_run sgl QUERY STRING="select id, name from some table”
ENV_NAME=" [SOURCE_ENV.ENVIRONMENT NAME]”
ksc_capture_output cat [AS.PKG TRANSFER PATH] [PKGL.SEQ] .txt

Summary of All Special Command Parameters

Table A-24 provides the parameters for all predefined special commands.

Table A-24. Special command parameters

Special Command Parameters Defaults

ksc_begin_script

ksc_comment

ksc_concsub

USERNAME [DEST_ENV.CLIENT_USERNAME]
PASSWORD [DEST_ENV.CLIENT_PASSWORD]
NT_DOMAIN [DEST_ENV.CLIENT_NT_DOMAIN]
ksc_connect_dest_client DEST_BASE_PATH [DEST_ENV.CLIENT_BASE_PATH]
CONNECTION_ [DEST_ENV.CLIENT_CON_PROTOCOL _
PROTOCOL MEANING]
DEST_ENV [DEST_ENV]

Summary of All Special Command Parameters 169

Appendix A: System Special Commands

Table A-24. Special command parameters [continued]

ksc_connect_dest_server

Special Command Parameters Defaults
USERNAME [DEST_ENV.SERVER_USERNAME]
PASSWORD [DEST_ENV.SERVER_PASSWORD]
NT_DOMAIN [DEST_ENV.SERVER_NT_DOMAIN]

DEST_BASE_PATH

[DEST_ENV.SERVER_BASE_PATH]

ksc_connect_source_client

CONNECTION_ [DEST_ENV.SERVER_CON_
PROTOCOL PROTOCOL_MEANING]

DEST_ENV [DEST_ENV]

USERNAME [SOURCE_ENV.CLIENT_USERNAME]
PASSWORD [SOURCE_ENV.CLIENT_PASSWORD]
NT_DOMAIN [SOURCE_ENV.CLIENT_NT_DOMAIN]

SOURCE_BASE _
PATH

[SOURCE_ENV.CLIENT_BASE_PATH]

ksc_connect_source_server

CONNECTION_ [SOURCE_ENV.CLIENT_CON_
PROTOCOL PROTOCOL_MEANING]

SOURCE_ENV [SOURCE_ENV]

USERNAME [SOURCE_ENV.SERVER_USERNAME]
PASSWORD [SOURCE_ENV.SERVER_PASSWORD]
NT_DOMAIN [SOURCE_ENV.SERVER_NT_DOMAIN]

SOURCE_BASE_
PATH

[SOURCE_ENV.SERVER_BASE_PATH]

ksc_copy_client_client

CONNECTION_ [SOURCE_ENV.SERVER_CON_
PROTOCOL PROTOCOL_MEANING]
SOURCE_ENV [SOURCE_ENV]

SUB_PATH [P.P_SUB_PATH]

SOURCE_BASE_
PATH

[SOURCE_ENV.CLIENT_BASE_PATH]

DEST_BASE_PATH

[DEST_ENV.CLIENT_BASE_PATH]

FILENAME [P.P_FILENAME]
FILE_TYPE [P.P_FILE_TYPE]
SOURCE_ENV [SOURCE_ENV]
DEST_ENV [DEST_ENV]

170 Commands, Tokens, and Validations Guide and Reference

Appendix A: System Special Commands

Table A-24. Special command parameters [continued]

Special Command

Parameters

Defaults

ksc_copy_client_server

SUB_PATH

[P.P_SUB_PATH]

SOURCE_BASE_
PATH

[SOURCE_ENV.CLIENT_BASE_PATH]

DEST_BASE_PATH

[DEST_ENV.SERVER_BASE_PATH]

FILENAME [P.P_FILENAME]
FILE_TYPE [P.P_FILE_TYPE]
SOURCE_ENV [SOURCE_ENV]
DEST_ENV [DEST_ENV]

SUB_PATH [P.P_SUB_PATH]

SOURCE_BASE_PATH

[SOURCE_ENV.SERVER_BASE_PATH]

DEST_BASE_PATH

[DEST_ENV.CLIENT_BASE_PATH]

ksc_copy_server_client FILENAME [P.P_FILENAME]
FILE_TYPE [P.P_FILE_TYPE]
SOURCE_ENV [SOURCE_ENV]
DEST_ENV [DEST_ENV]
SUB_PATH [P.P_SUB_PATH]

ksc_copy_server_server

SOURCE_BASE_
PATH

[SOURCE_ENV.SERVER_BASE_PATH]

DEST_BASE_PATH

[DEST_ENV.SERVER_BASE_PATH]

ksc_copy_client_tmp

FILENAME [P.P_FILENAME]
FILE_TYPE [P.P_FILE_TYPE]
SOURCE_ENYV [SOURCE_ENV]
DEST_ENV [DEST_ENV]
SUB_PATH [P.P_SUB_PATH]

SOURCE_BASE_
PATH

[SOURCE_ENV.CLIENT_BASE_PATH]

DEST_BASE_PATH

[DEST_ENV.CLIENT_BASE_PATH]

FILENAME [P.P_FILENAME]
FILE_TYPE [P.P_FILE_TYPE]
SOURCE_ENYV [SOURCE_ENV]

Summary of All Special Command Parameters

171

Appendix A: System Special Commands

Table A-24. Special command parameters [continued]

Special Command

Parameters

Defaults

ksc_copy_server_tmp

SUB_PATH

[P.P_SUB_PATH]

SOURCE_BASE_
PATH

[SOURCE_ENV.SERVER_BASE_PATH]

FILENAME [P.P_FILENAME]

FILE_TYPE [P.P_FILE_TYPE]

SOURCE_ENV [SOURCE_ENV]

SUB_PATH [P.P_SUB_PATH]

EE?J—BASE— [DEST_ENV.CLIENT_BASE_PATH]
ksc_copy_tmp_client FILENAME [P.P_FILENAME]

FILE_TYPE [P.P_FILE_TYPE]

DEST_ENV [DEST_ENV]

SUB_PATH [P.P_SUB_PATH]

EE?J—BASE— [DEST_ENV.SERVER_BASE_PATH]
ksc_copy_tmp_server FILENAME [P.P_FILENAME]

FILE_TYPE [P.P_FILE_TYPE]

DEST_ENV [DEST_ENV]

ksc_copy_script_dest_client

SCRIPT_FILENAME

[P.P_SCRIPT_FILENAME]

DEST_BASE_PATH

[DEST_ENV.CLIENT.BASE_PATH]

DEST_ENV

[DEST_ENV]

ksc_copy_script_dest_server

SCRIPT_FILENAME

[P.P_SCRIPT_FILENAME]

DEST_BASE_PATH

[DEST_ENV.SERVER_BASE_PATH]

DEST_ENV

[DEST_ENV]

ksc_copy_script_source_client

SCRIPT_FILENAME

[P.P_SCRIPT_FILENAME]

SOURCE_BASE_
PATH

[SOURCE_ENV.CLIENT_BASE_PATH]

SOURCE_ENV

[SOURCE_ENV]

172 Commands, Tokens, and Validations Guide and Reference

Appendix A: System Special Commands

Table A-24. Special command parameters [continued]

Special Command Parameters Defaults
SCRIPT_FILENAME [P.P_SCRIPT_FILENAME]
ksc_copy_script_source_ SOURCE_BASE_ [SOURCE_ENV.SERVER_BASE_PATH]
server PATH
SOURCE_ENV [SOURCE_ENV]

ksc_clear_exit_value

ksc_end_script

ksc_exit
CONC_PROGRAM
SOURCE_ENV [SOURCE_ENV]
ksc_gl_migrate DEST_ENV [DEST_ENV]
GL_ARCHIVE_FLAG [WFS.GL_ARCHIVE_FLAG]

APP_SHORT_NAME

ksc_local_exec

CONC_PROGRAM

SOURCE_ENYV [SOURCE_ENV]

ksc_om_migrate DEST_ENV [DEST_ENV]

OM_ARCHIVE_FLAG [WFS.OM_ARCHIVE_FLAG]

APP_SHORT_NAME

FILENAME [P.P_FILENAME]
ksc_parse_jcl OUTFILE
ENV_ID [DEST_ENV.ENVIRONMENT_ID]
FILENAME [P.P_FILENAME]
ksc_replace OUTFILE
SUBST
ksc_respond
ksc_run_sql
ksc_set Custom Token

Summary of All Special Command Parameters 173

Appendix A: System Special Commands

Table A-24. Special command parameters [continued]

Special Command Parameters Defaults
DEST_ENV_ID [DEST_ENV.ENVIRONMENT_ID]
SOURCE_ENV_ID [SOURCE_ENV.ENVIRONMENT_ID]
ksc_set_env
SOURCE_ENV [SOURCE_ENV]
DEST_ENV [DEST_ENV]

ksc_set_exit_value

ksc_simple_respond

ksc_store Custom Token

PATH [AS.PKG_TRANSFER_PATH]

ksc_submit_job

FILENAME [P.P_FILENAME]

174 Commands, Tokens, and Validations Guide and Reference

Appendix

Tokens

In This Appendix:

e Overview of Tokens
e System Tokens
e Field Group Tokens

175

Appendix B: Tokens

Overview of Tokens

This appendix providesalist of all entity tokens. Use Table B-1 asaquick
reference guide to jump to the desired location.

Table B-1. Token tables

Table Page
Table B-2, App server properties 177
Table B-3, Budget 178
Table B-4, Contacts 178
Table B-5, Distribution 179
Table B-6, Document Management 180
Table B-7, Environments 180
Table B-8, Environment applications 183
Table B-9, Command execution 185
Table B-10, Notifications 185
Table B-11, Organization unit 186
Table B-12, Packages 187
Table B-13, Package lines 189
Table B-14, Package pending 190
Table B-15, Program 191
Table B-16, Project plans 191
Table B-17, Project plan details 194
Table B-18, Releases 194
Table B-19, Requests 195
Table B-20, Request details 198
Table B-21, Request pending 198
Table B-22, Report submissions 199
Table B-23, Resource pools 200
Table B-24, Security groups 201
Table B-25, Skill 201

176 Commands, Tokens, and Validations Guide and Reference

Appendix B: Tokens

Table B-1. Token tables [continued]

Table Page
Table B-26, Staffing profile 202
Table B-27, System 202
Table B-28, Tasks 203
Table B-29, Tasks pending 205
Table B-30, Users 206
Table B-31, Validations 208
Table B-32, Validation values 208
Table B-33, Workflows 209
Table B-34, Workflow steps 210
Table B-35, Workflow step transaction 212

For alist of the tokens that are associated with field groups, see Field Group

Tokens on page 213.

System Tokens

Table B-2. App server properties

Prefix

Token

Description

AS

PKG_TRANSFER_PATH

Temporary directory used for files during command executions.

Administration Guide and Reference.

Other app server properties tokens are generated from the parameters in the
server.conf file. For a description of each server parameter, see the System

System Tokens 177

Appendix B: Tokens

Table B-3. Budget

Prefix Token Description

BGT ACTIVE_FLAG The active flag of the budget.

BGT BUDGET_ID ;k&eDlgEong;.e budget (defined in the table KCST_

BGT BUDGET IS_FOR_ENTITY NAME Thg entity name (prqject plan, program, or org unit) to
which the budget is linked.

BGT BUDGET_IS_FOR_ID gﬂgglg)t (I)Sf ltizié)dréject plan/program/org unit to which the

BGT BUDGET_IS_FOR_NAME ;Zebtzrgzt?; t”hneks(rj(.)ject plan/program/org unit to which

BGT BUDGET_NAME The name of the budget.

BGT BUDGET_ROLLS_UP_TO_ID The ID of the budget to which this budget rolls up to.

BGT BUDGET_ROLLS_UP_TO_NAME | The name of the budget to which this budget rolls up to.

BGT BUDGET_URL The URL to view this budget.

BGT CREATED_BY The username of the user who created the budget.

BGT CREATION_DATE The date when the budget was created.

BGT DESCRIPTION The description of the budget.

BGT END_PERIOD The end period of the budget.

BGT INITIATION_REQ The initiation request ID of the budget.

BGT PERIOD_SIZE The period size of the budget.

BGT START_PERIOD The start period of the budget.

BGT STATUS_CODE The status code of the budget.

BGT STATUS_NAME The status name of the budget.

Table B-4. Contacts

Prefix Token Description

CON COMPANY The company the Contact works for.

CON COMPANY_NAME The name of the company the Contact works for.

CON CONTACT_ID The ID of the Contact (defined in the table KCRT_CONTACTS).
CON CREATED_BY The ID of the user that created the Contact.

178

Commands, Tokens, and Validations Guide and Reference

Appendix B: Tokens

Table B-4. Contacts [continued]

Prefix Token Description

CON CREATION_DATE The date the Contact was created.

CON EMAIL_ADDRESS The email address of the Contact.

CON FIRST_NAME The first name of the Contact.

CON FULL_NAME The full name of the Contact.

CON LAST_NAME The last name of the Contact.

CON LAST_UPDATED_BY | The ID of the user that last updated the Contact.

CON LAST_UPDATE_DATE | The date the Contact was last updated.

CON PHONE_NUMBER The phone number of the Contact.

CON USER_ID The userID of the Contact, if the Contact is a Mercury IT
Governance Center user.
The username of the Contact (if applicable). This may be a

CON USERNAME username for an external system, not necessarily Mercury IT

Governance Center.

Table B-5. Distribution

Prefix Tokens Description
DIST CREATED_BY The ID of the user that created the distribution.
DIST CREATED_BY_USERNAME The Mercury IT Goverqanpe Qenter username of the
user that created the distribution.
DIST DESCRIPTION The description of the release.
DIST DISTRIBUTION_ID [T)TESEF(‘)IthB?r%ﬁ;i-bution (defined in table KREL_
DIST DISTRIBUTION_NAME The name of the distribution.
DIST DISTRIBUTION_STATUS The workflow status of the distribution workflow.
DIST FEEDBACK_VALUE The value to be returned to the original package lines.
DIST LAST_UPDATED_BY The ID of the user that last updated the distribution.
DIST LAST_UPDATED_BY_ The Mercury IT Governancg antgr username of the
USERNAME user that last updated the distribution.
DIST LAST_UPDATE_DATE The date the distribution was last updated.

System Tokens

179

Appendix B: Tokens

Table B-5. Distribution [continued]

Prefix Tokens Description

DIST RELEASE_ID The ID of the release that created this distribution.

DIST RELEASE_NAME The name of the release that created this distribution.

DIST WORKFLOW The workflow used to process the distribution.

Table B-6. Document Management

Prefix Token Description
Resolves to a URL which, when clicked, opens the
latest version of the document.

DMS DOC_LINK oo , o
Forces user authentication prior to delivering the
document.
Resolves to a URL which, when clicked, displays a
view of the document’s version history

DMS DOC_HISTORY - . L
Forces user authentication prior to delivering the
information.

DMS AUTHOR Resolves to the author descriptive field stored with
the document.

DMS DESCRIPTION Resolves to the descriptive field stored with the
document.

DMS LAST_CHECK_IN_DATE Resolves to the timestamp of the last check-in.
Resolves to the full name of the Mercury IT

DMS LAST_CHECKED_IN_BY_NAME Governance Center user who added or last
checked in the document.
Resolves tothe ID of the Mercury IT Governance

DMS LAST_CHECKED_IN_BY Center user who added or last checked in the
document.

Table B-7. Environments

Prefix

Token

Description

ENV

CLIENT_BASE_PATH

The base (root) path of the client.

ENV CLIENT_CON_PROTOCOL The protocol used to connect to this client.
ENV CLIENT_CON_PROTOCOL_MEANING | The visible value of the client connect protocol.
ENV CLIENT _NAME The DNS name or IP address of the client

computer.

180 Commands, Tokens, and Validations Guide and Reference

Appendix B: Tokens

Table B-7. Environments [continued]

Prefix

Token

Description

ENV

CLIENT_NT_DOMAIN

The domain name for the client, if the client
machine type is Windows.

The flag indicating whether the client portion of the

ENV CLIENT_ENABLED_FLAG . :
environment is enabled.
The password Mercury IT Governance Center
ENV CLIENT_PASSWORD uses to log onto or access the client. This value is
encrypted.
ENV CLIENT_TYPE_CODE S;)eevalldatlon value code of the client machine
ENV CLIENT USERNAME The username Mercury IT Governance Center
uses to log onto or access the client.
ENV CLIENT TRANSFER_PROTOCOL Il?;ni)rotocol used to transfer files to or from this
CLIENT_TRANSFER_PROTOCOL_ - .
ENV MEANING The visible value of the client transfer protocol.
ENV CREATED_BY The ID of the user that created the environment.
ENV CREATION_DATE The date the environment was created.
ENV DATABASE_ENABLED_FLAG The flag |nd|cat|ng whether the database portion of
the environment is enabled.
ENV DATABASE_TYPE The validation value code of the database type.
ENV DB_CONNECT STRING For Oracle database type, the connect strlng used
to access the database from the command line.
For Oracle database type, the database link from
ENV DB_LINK the Mercury IT Governance Center schema to the
environment’s database schema.
ENV DB NAME The DNS name or IP address of the database
server.
For Oracle database type, the SID of the database
ENV DB_ORACLE_SID (often the same as the DB_CONNECT_STRING).
The password Mercury IT Governance Center
ENV DB_PASSWORD uses to log onto or access the database. This
value is encrypted.
For Oracle database type, the port number on
ENV DB_PORT_NUMBER which SQL*Net is listening for remote SQL

connections on the database server.

System Tokens 181

Appendix B: Tokens

Table B-7. Environments [continued]

Prefix

Token

Description

The username or schema name Mercury IT

ENV DB_USERNAME Governance Center uses to log onto or access the
database.

ENV DB_VERSION The version of the database (such as 8.1.7).

ENV DESCRIPTION The description of the environment.

ENV ENABLED_FLAG The flag |nd|cat|n'g whether thg environment is
enabled and available for use in workflows.
The ID of the environment in the table KENV_

ENV ENVIRONMENT_ID ENVIRONMENTS.

ENV ENVIRONMENT_NAME The name of the environment.

ENV LAST UPDATED_BY The. ID of the user that last updated the
environment.

ENV LAST_UPDATE_DATE The date the environment was last updated.

ENV LOCATION The location of the environment.
For MS SQL Server database type, the database

ENV MSSQL_DB_NAME name used to access the database from the
command line.

ENV SERVER_BASE_PATH The base (root) path of the server.

ENV SERVER_CON_PROTOCOL The protocol used to connect to this server.

SERVER_CON_PROTOCOL_ - :
ENV MEANING The visible value of the server connection protocol.
ENV SERVER_TRANSFER_PROTOCOL lgr(?/srrotocol used to transfer files to or from this
SERVER_TRANSFER_PROTOCOL_ -

ENV MEANING The visible value of the server transfer protocol.

ENV SERVER_ENABLED_ FLAG The flag |nd|cat|n.g whether the server portion of
the environment is enabled.

ENV SERVER_NAME The DNS name or IP address of the server
computer.

ENV SERVER_NT_DOMAIN The d.omam ngme.for the server, if the server
machine type is Windows.
The password Mercury IT Governance Center

ENV SERVER_PASSWORD uses to log onto or access the server. This value is

encrypted.

182

Commands, Tokens, and Validations Guide and Reference

Appendix B: Tokens

Table B-7. Environments [continued]
Prefix Token Description
ENV SERVER_TYPE_CODE The validation value code of the server machine

type.

ENV SERVER_USERNAME

The username Mercury IT Governance Center
uses to log onto or access the server.

If any Mercury IT Governance Center Extensions have been installed, there will be
more environment tokens with the prefix ‘AC.” For more detailed information on these
tokens, see the Mercury IT Governance Center Extensions documentation.

Table B-8. Environment applications
Prefix Token Description

ENV.APP APP_CODE The short name (code) for the application.

ENV.APP APP_NAME The descriptive name for the application.

ENV APP CLIENT BASE_PATH Il?:n?ppllcatlon-spemflc base (root) path of the
The application-specific password Mercury IT

ENV.APP CLIENT_PASSWORD Governance Center uses to log onto or access the
client. This value is encrypted.
The application-specific username Mercury IT

ENV.APP CLIENT_USERNAME Governance Center uses to log onto or access the
client.

ENV.APP CLIENT_CON_PROTOCOL The appllcatlon-spemflc protocol used to connect to
this client.

CLIENT_CON_PROTOCOL_ - : :
ENV.APP MEANING The visible value of the client connection protocol.
ENV.APP CLIENT_TRANSFER_ The application-specific protocol used to transfer
' PROTOCOL files to and from this client.
CLIENT_TRANSFER_ - .

ENV.APP PROTOCOL_MEANING The visible value of the client transfer protocol.

ENV.APP CREATED_BY The ID of the user that created the application.

ENV.APP CREATION_DATE The date the application was created.

System Tokens 183

Appendix B: Tokens

Table B-8. Environment applications [continued]

Prefix Token Description

For Oracle database type, the application-specific

ENV.APP DB_LINK database link from the Me.rcury IT (,30vernance
Center schema to the environment’s database
schema.
For MS SQL Server database type, the

ENV.APP DB_NAME application-specific database name used to access
the database from the command line.
The application-specific password Mercury IT

ENV.APP DB_PASSWORD Governance Center uses to log onto or access the
database. This value is encrypted.
The application-specific username or schema name

ENV.APP DB_USERNAME Mercury IT Governance Center uses to log onto or
access the database.

ENV.APP DESCRIPTION The description of the application.
The flag indicating whether the application is

ENV.APP ENABLED_FLAG enabled and available for selection in package
lines.
The ID of the application in the table KENV_

ENV.APP ENVIRONMENT_APP_ID ENVIRONMENT APPS.

ENV.APP ENVIRONMENT _ID The ID of the.enwronment the application is
associated with.

ENV.APP ENVIRONMENT NAME The name of .the environment the application is
associated with.

ENV.APP LAST_UPDATED_BY The ID of the user that last updated the application.

ENV.APP LAST_UPDATE_DATE The date the application was last updated.

ENV.APP SERVER_CON_PROTOCOL The application-specific protocol used to connect to
this server.

SERVER_CON_PROTOCOL_ - :
ENV.APP MEANING The visible value of the server connection protocol.
ENV.APP SERVER_TRANSFER_ The application-specific protocol used to transfer
' PROTOCOL files to and from this server.
SERVER_TRANSFER_ -

ENV.APP PROTOCOL_MEANING The visible value of the server transfer protocol.

ENV.APP SERVER_BASE_PATH The application-specific base (root) path of the
server

184 Commands, Tokens, and Validations Guide and Reference

Appendix B: Tokens

Table B-8. Environment applications [continued]

Prefix Token Description
The application-specific password Mercury IT
ENV.APP SERVER_PASSWORD Governance Center uses to log onto or access the
server. This value is encrypted.
The application-specific username Mercury IT
ENV.APP SERVER_USERNAME Governance Center uses to log onto or access the
server.
WORKBENCH_ENVIRONMENT_ | The URL of the environment window in the
ENV.APP
URL Workbench.
Table B-9. Command execution
Prefix Token Description
EXEC EXIT_CODE The exit code of a command execution.
EXEC OUTPUT The last line of output from a command execution.

The command execution tokens, [EXEC.OUTPUT] and [EXEC.EXIT_CODE], can be
used in the following contexts:

¢ Inside command step segments that use the ksc_connect and ksc_exit special
commands.

¢ Immediately after command step segments that use the ksc_local_exec special
command.

For example, the following code segment demonstrates how to use both command
execution tokens to retrieve the output and exit code immediately upon execution.
The tokens are used immediately after the ksc_local_exec special command.

ksc_local exec pwd

ksc _set MY PATH=” [EXEC.OUTPUT]"”

ksc _set MY EXIT CODE=" [EXEC.EXIT CODE]”
ksc local exec echo ‘' [MY PATH]/bin’
ksc_local exec echo ‘' [MY EXIT CODE] '’

Table B-10. Notifications

Prefix Tokens Description
NOTIF CC_USERS The list of users on the Cc: header of the notification.
NOTIF CHANGED_FIELD The field that changed to trigger a notification.

System Tokens 185

Appendix B: Tokens

Table B-10. Notifications [continued]
Prefix Tokens Description

NOTIF EXCEPTION_RULE The exception rgle t.hat was met by the task exception that
caused the notification to be sent.

NOTIF EXCEPTION_RULE.NAME The name of the task exception that caused the notification
to be sent.

NOTIF EXCEPTION_VIOLATION Thg ;peqﬂc violation of the exception that caused the
notification to be sent.

NOTIF NEW_VALUE The new value of the changed field.

NOTIF NOTIFICATION_DETAILS Notification details for linked tokens.

NOTIF OLD_VALUE The previous value of the changed field.

NOTIF TO_USERS The list of users on the To: header of the notification.

Table B-11. Organization unit
Prefix Tokens Description

ORG BUDGET_ID The ID of the budget linked to this org unit.

ORG BUDGET_NAME The name of the budget linked to this org unit.

ORG CATEGORY CODE The lookup cgde of the org unit category (lookup type =
RSC - org unit Category)

ORG CATEGORY_NAME The category name of the org unit.

ORG CREATED_BY The ID of the user that created the org unit.

ORG CREATED_BY_USERNAME | The name of the user that created the org unit.

ORG CREATION_DATE The date that the org unit was created.

ORG DEPARTMENT CODE The lookup code of the org unit department (lookup type =
DEPT)

ORG DEPARTMENT_NAME The department name of the org unit.

ORG LOGATION._CODE The lookup qode of the org unit location (lookup type =
RSC - Location)

ORG LOCATION_NAME The location name of the org unit.

ORG MANAGER_ID The ID of the manager of the org unit.

ORG MANAGER_USERNAME The name of the manager of the org unit.

ORG ORG._UNIT_ID Ijk[]\]eﬂl'[S))Of the org unit (defined in table KRSC_ORG_

186 Commands, Tokens, and Validations Guide and Reference

Appendix B: Tokens

Table B-11. Organization unit [continued]
Prefix Tokens Description

ORG ORG_UNIT_NAME The name of the org unit.

ORG PARENT_ORG_UNIT_ID The ID of the parent org unit.

ORG PARENT_ORG_UNIT_NAME | The name of the parent org unit.

ORG REGIONAL_CALENDAR The name of the regional calendar for the org unit.

Table B-12. Packages

Prefix Token Description

PKG | ASSIGNED_TO._EMAIL Thg email address of the user that the package is
assigned to.

PKG | ASSIGNED_TO_GROUP_ID Thg ID of the security group that the package has been
assigned to.

PKG | ASSIGNED_TO_GROUP_NAME ;he security group that the package has been assigned

PKG | ASSIGNED_TO_USERNAME ;he name of the user that the package has been assigned

PKG | ASSIGNED_TO_USER_ID The ID of the user that the package has been assigned to.

PKG CREATED_BY The ID of the user that created the package.

PKG CREATED_BY_EMAIL The email address of the user that created the package.

PKG | CREATED_BY USERNAME The Mercury IT Governance Center username of the user
that created the package.

PKG CREATION_DATE The date the package was created.

PKG DESCRIPTION The description of the package.

PKG ID The ID of the package in the table KDLV_PACKAGES.

PKG LAST_UPDATED_BY The ID of the user that last updated the package.

PKG LAST UPDATED_BY EMAIL The email address of the user that last updated the
package.

PKG LAST_UPDATED_BY_ The Mercury IT Governance Center username of the user

USERNAME that last updated the package.
PKG LAST_UPDATE_DATE The date the package was last updated.
PKG MOST_RECENT_NOTE_ First and last name of the author of the most recent
AUTHOR_FULL_NAME (chronological) note.

System Tokens 187

Appendix B: Tokens

Table B-12. Packages [continued]

Prefix Token Description

PKG MOST_RECENT_NOTE_ Username of the author of the most recent (chronological)
AUTHOR_USERNAME note.

PKG XLCJ)TSI-TC_)EEEESX?EOTE_ Date of the most recent (chronological) note.

PKG | MOST_RECENT_NOTE_TEXT Text of the most recent (chronological) note.

PKG NOTES All notes for the package.

PKG | NUMBER The name/number of the package.

PKG PACKAGE_GROUP_CODE The package group code.

PKG PACKAGE_GROUP_NAME The name of the package group.

PKG | PARENT REQUEST ID lg;ig&fet)he request that created this package (if

PKG | PRIORITY The priority of the package.

PKG | PRIORITY_CODE The validation value code of the package priority.

PKG | PRIORITY_NAME The validation value meaning of the package priority.

PKG | PRIORITY_SEQ The priority sequence of the package.

PKG PROJECT CODE gg;r\:ggdtgfion value code of the project plan the package

PKG PROJECT NAME ggsk\ézliedgtei?onn\g/zltjoe. meaning of the project plan the

PKG | SUBMIT_DATE The date that the package was submitted.

PKG REQUESTED_BY EMAIL ggskeargsil address of the user who requested the

PKG REQUESTED_BY USERNAME VTVT](Z I:/Gl}zrlj::;i/el(;rtﬁg\éea?kaan;z Center username of the user

PKG REQUESTED_BY_USER_ID The ID of the user that requested the package.

PKG | PACKAGE_ID The ID of the package in the table KDLV_PACKAGES.

PKG PACKAGE_TYPE The validation value meaning of the package type.

PKG PACKAGE_TYPE_CODE The validation value code of the package type.

PKG PACKAGE_URL The URL of the package in the standard interface.

PKG | PERCENT_COMPLETE Percent complete of the package.

188

Commands, Tokens, and Validations Guide and Reference

Appendix B: Tokens

Table B-12. Packages [continued]

Prefix Token Description

PKG RUN_GROUP The run group of the package.

PKG | STATUS The validation value meaning for the status of the
package.

PKG | STATUS_CODE The validation value code for the status of the package.

PKG XYSEKBENCH—PACKAGE—NO— The URL of the package in the Workbench.

PKG | WORKBENCH_PACKAGE_URL | The URL of the package screen in the Workbench.

PKG | WORKFLOW_ID The ID of the workflow used by the package.

PKG | WORKFLOW_NAME The name of the workflow used by the package.

Table B-13. Package lines

Prefix Token Description

PKGL APP_CODE The app code for the package line.

PKGL APP_NAME The name of the application for the package line.

PKGL D The ID of the package line in the table KDLV_PACKAGE_
LINES.

PKGL OBJECT CATEGORY CODE I:ee validation value code of the object type category of the

PKGL OBJECT CATEGORY NAME H;e”\r/]aelldatlon value meaning of the object type category of

PKGL OBJECT_NAME The object name of the package line.

PKG OBJECT REVISION The valug of the object revision co!umn (if any) as specified
by the object type of the package line.

PKGL OBJECT_TYPE The object type of the package line.

PKGL OBJECT_TYPE_ID The ID of the object type of the package line.

PKGL PACKAGE_LINE_ID The ID of the package line.

PKGL SEQ The sequence of the package line (relative to other lines in
the same package).

PKGL WORKBENCH_OBJECT _ URL to access the object type window for this object type in

TYPE_URL

the Workbench.

System Tokens 189

Appendix B: Tokens

Table B-14. Package pending

Prefix Tokens Description
PKG.PEND | ID The ID of the entity that is being blocked by the
package.
PKG.PEND | NAME The name of the entity that is being blocked by the
package.
PKG.PEND | DETAIL Detail information for the entity that is being blocked
by the package.
PKG.PEND | DESCRIPTION The description of the entity that is being blocked by
the package.
The ID of the state or code of the status of the entity
PKG.PEND | STATUS_ID that is being blocked by the package.
The name of the status (or state) of the entity that is
PKG.PEND | STATUS_NAME being blocked by the package.
The name of the state of the entity of the request that
PKG.PEND | STATE is being blocked by the package.
The name of the assigned user (or resource) of the
PKG.PEND | ASSIGNED_TO_USERNAME entity that is being blocked by the package.
The username of the assigned user (or resource) of
PKG.PEND | ASSIGNED_TO_USER_ID the entity that is being blocked by the package.
The name of the assigned group (or resource group)
PKG.PEND | ASSIGNED_TO_GROUP_NAME of the entity that is being blocked by the package.
The ID of the assigned group (or resource group) of
PKG.PEND | ASSIGNED_TO_GROUP_ID the entity that is being blocked by the package.
The name of the resource associated with the entity
PKG.PEND | RESOURCE_USERNAME that is being blocked by the package.
The username of the assigned user (or resource)
PKG.PEND | RESOURCE_ID associated with the entity that is being blocked by
the package.
The name of the assigned group (or resource group)
PKG.PEND | RESOURCE_GROUP_NAME associated with the entity that is being blocked by
the package.
The ID of the assigned group (or resource group)
PKG.PEND | RESOURCE_GROUP_ID associated with the entity that is being blocked by
the package.
The current percent complete value associated with
PKG.PEND | PERCENT_COMPLETE the entity that is being blocked by the package.
190 Commands, Tokens, and Validations Guide and Reference

Appendix B: Tokens

Table B-14. Package pending [continued]

Prefix Tokens Description
PKG.PEND | ENTITY_TYPE_ID The ID of the type of entity that is being blocked by
the package.
PKG.PEND | ENTITY_TYPE_NAME The name of the type of entity that is being blocked
by the package.

Table B-15. Program

Prefix Token Description
PRG CREATED_BY The ID of the user that created the program.
PRG CREATED_BY_USERNAME The name of the user that created the program.

PRG LAST_UPDATED_BY The ID of the user that last updated the program.
LAST_UPDATED_BY_

PRG USERNAME The name of the user that last updated the program.

PRG MOST_RECENT_NOTE_ First and last name of the author of the most recent
AUTHOR_FULL_NAME (chronological) note.

PRG MOST_RECENT_NOTE_ Username of the author of the most recent (chronological)
AUTHOR_USERNAME note.
MOST_RECENT_NOTE_ :

PRG AUTHORED_DATE Date of the most recent (chronological) note.

PRG MOST_RECENT_NOTE_TEXT | Text of the most recent (chronological) note.

PRG PROGRAM_MANAGER The ID(s) of the user(s) assigned to manage this program.

Table B-16. Project plans

Prefix Tokens Description

PRJ ACTUAL_DURATION The actual duration of the project plan.

PRJ ACTUAL_EFFORT The actual effort associated with the project plan.

PRJ ACTUAL_FINISH_DATE The actual finish date of the project plan.

PRJ ACTUAL_START_DATE The actual start date of the project plan.

PRJ BUDGET_ID The ID of the budget linked to the project plan.

PRJ BUDGET_NAME The name of the budget linked to the project plan.

PRJ CONFIDENCE_CODE The code of the confidence value entered by the user.
PRJ CONFIDENCE_NAME The name of the confidence value entered by the user.

System Tokens 191

Appendix B: Tokens

Table B-16. Project plans [continued]

Prefix Tokens Description
PRJ CREATED_BY The user who created the project plan.
PRJ CREATED._BY EMAIL The email address of the user who created the project

plan.

PRJ CREATED_BY_USERNAME The username of the person who created the project plan.

PRJ CREATION_DATE The creation date of the project plan.

PRJ DEPARTMENT_CODE The code of the department value entered by the user.

PRJ DEPARTMENT_NAME The name of the department value entered by the user.

PRJ DESCRIPTION The description of the project plan.
ESTIMATED_REMAINING_ : - : :

PRJ DURATION The estimated remaining duration of the project plan.

PRJ ESTIMATED_REMAINING._ The estimated remaining effort involved in the project plan.
EFFORT

PRJ ESTIMATED_FINISH_DATE The estimated finish date of the project plan.

PRJ LAST_UPDATE_DATE The date the project plan was last updated.

PRJ LAST_UPDATED_BY The last person to update the project plan.

PRJ LAST UPDATED_BY EMAIL glk; email address of the last person to update the project
LAST_UPDATED_BY_ :

PRJ USERNAME The username of the last person to update the project plan.

PRJ MASTER_PROJECT_ID The ID of the master project.

PRJ MASTER_PROJECT_NAME The name of the master project.

PRJ MOST_RECENT_NOTE_ First and last name of the author of the most recent
AUTHOR_FULL_NAME (chronological) note.

PRJ MOST_RECENT_NOTE_ Username of the author of the most recent (chronological)
AUTHOR_USERNAME note.
MOST_RECENT_NOTE_ :

PRJ AUTHORED_DATE Date of the most recent (chronological) note.

PRJ MOST_RECENT_NOTE_TEXT | Text of the most recent (chronological) note.

Type of the most recent (chronological) note (USER or

PRJ MOST_RECENT_NOTE_TYPE FIELD CHANGE).

PRJ MOST_RECENT_USER_ First and last name of the author of the most recent user
NOTE_AUTHOR_FULL_NAME | note.

192 Commands, Tokens, and Validations Guide and Reference

Appendix B: Tokens

Table B-16. Project plans [continued]

Prefix

Tokens

Description

MOST_RECENT_USER_

PRJ NOTE_AUTHOR_USERNAME Username of the author of the most recent user note.
MOST_RECENT_USER_
PRJ NOTE_AUTHORED_DATE Date of the most recent user note.
MOST_RECENT_USER_
PRJ NOTE_TEXT Text of the most recent user note.
PRJ MOST_RECENT_USER_ Type of the most recent user note (USER or FIELD
NOTE_TYPE CHANGE).
PRJ PARENT_PROJECT_ID The ID of the parent project plan.
PRJ PARENT_PROJECT_NAME The name of the parent project plan.
PRJ PERCENT_COMPLETE The project plan’s completed percentage.
PRJ PRIORITY The priority of the project plan.
The number that uniquely identifies the project plan (same
PRJ PROJECT_ID as PROJECT_NUMBER) in the table KDRV_PROJECTS.
PRJ PROJECT_MANAGER The manager of the project plan.
PRJ PROJECT_MANAGER_EMAIL | The email address of the project manager.
PROJECT_MANAGER_ :
PRJ USERNAME The username of the project manager.
PRJ PROJECT_NAME The name of the project plan.
PRJ PROJECT NAME._LINK Shows up as a st.a.nda.rd hyperlink to the project plan in
HTML-format notifications.
The number that uniquely identifies the project plan (same
PRJ PROJECT_NUMBER as PROJECT ID).
PRJ PROJECT PATH The project plan. path. Th|§ is a hierarchy of parent project
plans that contain this project plan.
PRJ PROJECT_STATE The project plan state.
PRJ PROJECT TEMPLATE glk; name of the project template used to create the project
PRJ PROJECT_TYPE_CODE Returns TASK for tasks and PROJECT for project plans.
PRJ PROJECT_URL The URL for the project plan’s Project Overview page.
PRJ REGIONAL_CALENDAR The name of the regional calendar for the project plan
PRJ SCHEDULED_EFFORT The scheduled effort defined in the project plan.

System Tokens 193

Appendix B: Tokens

Table B-16. Project plans [continued]
Prefix Tokens Description
PRJ SCHEDULED_DURATION The project plan’s scheduled duration.
PRJ SCHEDULED_FINISH_DATE The project plan’s scheduled finish date.
PRJ SCHEDULED_START_DATE The project plan’s scheduled start date.
PRJ SUMMARY_CONDITION The project plan’s summary condition.
PRJ WORKBENCH_PROJECT_URL | The URL to access this project plan in the Workbench.
Table B-17. Project plan details
Prefix Tokens* Description
PRJD PROJECT DETAIL_ID gl;eT'lgLosf.the project plan detail in the table KDRV_PROJECT _
PRJD PROJECT _ID gl;eT'lgLosf.the project plan detail in the table KDRV_PROJECT _
* Parameters are accessi ble with this prefix (sSimilar to request detail):
[PRID.P.CUSOM_TOKEN].
Table B-18. Releases
Prefix Tokens Description
REL RELEASE_ID The ID of the release in the table KREL_RELEASES.
REL RELEASE_NAME The name of the release.
REL RELEASE_STATUS The status of the release.
REL CREATED_BY The ID of the user who created the release.
REL CREATED_BY USERNAME VTVE?) I(\:/Ir(;racttég/tlk']rec:gl\;ea?:nce Center username of the user
REL LAST_UPDATED_BY The ID of the user who last updated the release.
REL LAST_UPDATED_BY_ The Mercury IT Governance Center username of the user
USERNAME who last updated the release.
REL LAST_UPDATE_DATE The date that the release was last updated.
REL MOST_RECENT_NOTE_ First and Ia;t name of the author of the most recent
AUTHOR_FULL_NAME (chronological) note.
REL MOST_RECENT_NOTE_ Username of the author of the most recent (chronological)
AUTHOR_USERNAME note.
194 Commands, Tokens, and Validations Guide and Reference

Appendix B: Tokens

Table B-18. Releases [continued]

Prefix Tokens Description
MOST_RECENT_NOTE_ .
REL AUTHORED DATE Date of the most recent (chronological) note.
REL MOST_RECENT_NOTE_ Text of the most recent (chronological) note.
TEXT
REL RELEASE_MANAGER The. Mercury IT Governance Center user who is
designated the release manager.
REL RELEASE TEAM The group of.Mercury IT Governance Center users
associated with the release.
REL RELEASE_GROUP The high level categorization of the release.
REL DESCRIPTION The description of the release.
REL NOTES The notes contained within the release.

Table B-19. Requests

Prefix Token Description

REQ | APPLICATION CODE The val|(ltlat|on.value code for the application that the
request is assigned to.

REQ | APPLICATION NAME The val|(.jat|on.value meaning of the application that the
request is assigned to.

REQ | ASSIGNED TO_EMAIL Thg email address of the user the request has been
assigned to.

REQ | ASSIGNED TO_GROUP_ID Thg ID of the security group that the request has been
assigned to.

REQ | ASSIGNED TO_GROUP NAME Thg name of the security group that the request has been
assigned to.

REQ | ASSIGNED TO_USERNAME The Mercury IT Governance Qenter username of the user
that the request has been assigned to.

REQ | ASSIGNED_TO_USER_ID The ID of the user that the request has been assigned to.

REQ | COMPANY The Company employing the user that created the request.

REQ | COMPANY NAME The name of the Company employing the user that created
the request.

REQ | CONTACT_EMAIL The email address of the Contact for the request.

REQ | CONTACT_NAME The full name of the Contact for the request.

REQ | CONTACT_PHONE_NUMBER The phone number of the Contact for the request.

System Tokens 195

Appendix B: Tokens

Table B-19. Requests [continued]

Prefix Token Description
REQ | CREATED_BY The ID of the user that created the request.
REQ | CREATED_BY_EMAIL The email address of the user that created the request.
REQ | CREATED_BY USERNAME The Mercury IT Governance Center username of the user
that created the request.
REQ | CREATION_DATE The date the request was created.
REQ | DEPARTMENT CODE The validation value code of the department for the
request.
REQ | DEPARTMENT NAME The validation value meaning of the department for the
request.
REQ | DESCRIPTION The description of the request.
REQ | LAST_UPDATED_BY The ID of the user that last updated the request.
REQ | LAST UPDATED BY EMAIL The email address of the user that last updated the
request.
REQ LAST_UPDATED_BY_ The Mercury IT Governance Center username of the user
USERNAME that last updated the request.
REQ | LAST_UPDATE_DATE The date the request was last updated.
REQ MOST_RECENT_NOTE_ First and last name of the author of the most recent
AUTHOR_FULL_NAME (chronological) note.
REQ MOST_RECENT_NOTE_ Username of the author of the most recent (chronological)
AUTHOR_USERNAME note.
MOST_RECENT_NOTE_ :
REQ AUTHORED_DATE Date of the most recent (chronological) note.
REQ | MOST_RECENT_NOTE_TEXT Text of the most recent (chronological) note.
Type of the most recent (chronological) note (USER or
REQ | MOST_RECENT_NOTE_TYPE FIELD CHANGE).
REQ MOST_RECENT_NOTE_ In the case of requests, this is the request status; blank in
CONTEXT all other cases.
REQ MOST_RECENT_USER_NOTE_ | First and last name of the author of the most recent user
AUTHOR_FULL_NAME note.
MOST_RECENT_USER_NOTE_
REQ AUTHOR_USERNAME Username of the author of the most recent user note.
MOST_RECENT_USER_NOTE_
REQ AUTHORED_DATE Date of the most recent user note.
196 Commands, Tokens, and Validations Guide and Reference

Appendix B: Tokens

Table B-19. Requests [continued]

Prefix Token Description

REQ ¥SXSTT—RECENT—USER—NOTE— Text of the most recent user note.

REQ MOST_RECENT_USER_NOTE_ | Type of the most recent user note (USER or FIELD
TYPE CHANGE).

REQ L\)/ICC))SIE)R(ECENT_USER_NOTE_ Status of the request.

REQ | NOTES All notes for the request.

REQ | PERCENT_COMPLETE The percent complete of the request.

REQ | PRIORITY_CODE The validation value code of the request priority.

REQ | PRIORITY_NAME The validation value meaning of the request priority.

REQ PROJECT CODE gg;r\]/ggdtgfion value code of the project plan the request

REQ PROJECT NAME rTek;eu\e/ii(éaetli::g\éatI;e meaning of the project plan the

REQ | SUBMIT_DATE The date that the request was submitted.

REQ | REQUEST_GROUP_CODE The code for the request group.

REQ | REQUEST_GROUP_NAME The name of the request group.

REQ | REQUEST_ID The ID of the request in the table KCRT_REQUESTS.

S 5.2 ardars et o e ruest

REQ | REQUEST_SUB_TYPE_ID The ID of the sub-type for the request.

REQ | REQUEST_SUB_TYPE_NAME The name of the sub-type for the request.

REQ | REQUEST_TYPE_ID The ID of the request type of the request.

REQ | REQUEST_TYPE_NAME The name of the request type of the request.

REQ | REQUEST_URL URL of the request in standard interface.

REQ | STATUS_ID The ID of the status of the request.

REQ | STATUS_NAME The status of the request.

REQ %%FQTBE‘NLCH_REQUEST_ The URL of the request type in the Workbench.

REQ | WORKFLOW_ID The ID of the workflow used by the request.

REQ | WORKFLOW_NAME The name of the workflow used by the request.

System Tokens 197

Appendix B:

Tokens

Table B-20. Request details

Prefix* Tokens Description
REQD CREATED_BY The ID of the user who created the request detail.
REQD CREATION_DATE The date the request detail was created.
REQD LAST_UPDATED_BY The ID of the user that last updated the request detail.
REQD LAST_UPDATE_DATE | The date the request detail was last updated.
REQD REQUEST DETAIL_ID [T)kllzeTgljgr the request detail in the table KCRT_REQUEST_
REQD REQUEST_ID The ID of the request for the request detail.
REQD REQUEST_TYPE_ID The ID of the request type for the request detail.

* Prefix ismainly used for accessing custom fields: [REQD.P.CUSTOM TOKEN]

Table B-21. Request pending

Prefix Tokens Description

REQ.PEND | ID The ID of the entity that is being blocked by the
request.

REQ.PEND | NAME The name of the entity that is being blocked by the
request.

REQ.PEND | DETAIL Detail information for the entity that is being blocked
by the request.

REQ.PEND | DESCRIPTION The description of the entity that is being blocked by
the request.
The ID of the state or code of the status of the entity

REQ.PEND | STATUS_ID that is being blocked by the request.

REQ.PEND | STATUS_NAME Thg name of the status (or state) of the entity that is
being blocked by the request.
The name of the state of the entity of the request that

REQ.PEND | STATE is being blocked by the request.
The name of the assigned user (or resource) of the

REQ.PEND | ASSIGNED_TO_USERNAME entity that is being blocked by the request.
The username of the assigned user (or resource) of

REQ.PEND | ASSIGNED_TO_USER_ID the entity that is being blocked by the request.

198 Commands, Tokens, and Validations Guide and Reference

Appendix B: Tokens

Table B-21. Request pending [continued]

Prefix Tokens

Description

REQ.PEND | ASSIGNED_TO_GROUP_NAME

The name of the assigned group (or resource group)
of the entity that is being blocked by the request.

REQ.PEND | ASSIGNED_TO_GROUP_ID

The ID of the assigned group (or resource group) of
the entity that is being blocked by the request.

REQ.PEND | RESOURCE_USERNAME

The name of the resource associated with the entity
that is being blocked by the request.

REQ.PEND | RESOURCE_ID

The username of the assigned user (or resource)
associated with the entity that is being blocked by
the request.

REQ.PEND | RESOURCE_GROUP_NAME

The name of the assigned group (or resource group)
associated with the entity that is being blocked by
the request.

REQ.PEND | RESOURCE_GROUP_ID

The ID of the assigned group (or resource group)
associated with the entity that is being blocked by
the request.

REQ.PEND | PERCENT_COMPLETE

The current percent complete value associated with
the entity that is being blocked by the request.

REQ.PEND | ENTITY_TYPE_ID

The ID of the type of entity that is being blocked by
the request.

REQ.PEND | ENTITY_TYPE_NAME

The name of the type of entity that is being blocked
by the request.

Table B-22. Report submissions

Prefix Tokens Description

RP CREATED_BY The ID of the user who submitted the report.

RP CREATION_DATE The date the report was submitted.

RP FILENAME ;k;elzf;:zesca)rg?ri%rgll_e. report. This file name is found in
RP LAST UPDATED_BY lSt?nlqti)s:i;t:_e user that last updated the report

RP LAST_UPDATE_DATE The date the report submission was last updated.
RP NEW_STATUS The visible value for the report’'s new status.

RP NEW_STATUS_CODE The code for the report’s new status.

RP OLD_STATUS The visible value for the report’s old status.

System Tokens 199

Appendix B: Tokens

Table B-22. Report submissions [continued]

Prefix Tokens Description

RP OLD_STATUS_CODE The code for the report’s old status.

RP REPORT_LOG_URL The Web address where the report log is located.
The ID of the report submission in the table KNTA_

RP REPORT_SUBMISSION_ID REPORT_SUBMISSIONS.

RP REPORT TYPE NAME The name of the report type of the report
submission.

RP REPORT_TYPE_ID The ID of the report type of the report submission.

RP REPORT_URL The Web address where the report output is located.

RP STATUS The status of the report submission.

RP STATUS_CODE The vgh;lahon value code for the status of the report
submission.

RP WORKBENCH_REPORT_TYPE_URL | The URL of the report type in the Workbench.

Table B-23. Resource pools

Prefix Tokens Description

RSCP | ACTIVE_FLAG The active flag of the resource pool.

RSCP | CREATED_BY ggsl username of the user who created the resource

RSCP | CREATION_DATE The date that the resource pool was created.

RSCP | DESCRIPTION The description of the resource pool.

RSCP | END_PERIOD The end period of the resource pool.

RSCP | INITIATION_REQ The initiation request ID of the resource pool.

RSCP | PERIOD_SIZE The period size of the resource pool.

RSCP | RESOURCE_POOL_URL The URL to view this resource pool.

RSCP | RSC_POOL_ID The ID of the resource pool in table KRSC_RSC_
POOLS.

RSCP | RSC_POOL_IS_FOR_ENTITY NAME The entity name to .wh|ch the resource pool is linked
(program or org unit).

RSCP | RSC_POOL_IS_FOR_ID The ID of the program or org unit to which the
resource pool is linked.

200 Commands, Tokens, and Validations Guide and Reference

Appendix B: Tokens

Table B-23. Resource pools [continued]

Prefix

Tokens

Description

RSCP

RSC_POOL_IS_FOR_NAME

The name of the program or org unit to which the
resource pool is linked.

RSCP | RSC_POOL_NAME The name of the resource pool.
RSCP | START_PERIOD The start period of the resource pool.
RSCP | STATUS_CODE The status code of the resource pool.
RSCP | STATUS_NAME The status name of the resource pool.

Table B-24. Security groups

Prefix Tokens Description

SG CREATED_BY The ID of the user who created the security group.

SG CREATION_DATE The date the security group was created.

SG DESCRIPTION The description for the security group.

SG LAST_UPDATED_BY The ID of the user that last updated the security group.

SG LAST_UPDATE_DATE The date the security group was last updated.

sG SECURITY_GROUP_ID The ID of the security group in the table KNTA_SECURITY_
GROUPS.

SG SECURITY_GROUP_NAME | The name of the security group.

Table B-25. Skill

Prefix Tokens Description
SKL AVERAGE_COST_RATE The average cost rate associated with the skill.
SKL CREATED_BY The user ID that created the skill.
SKL CREATED_BY_USERNAME | The name of the user that created the skill.
SKL CREATION_DATE The date that the skill was created.
SKL SKILL_CATEGORY_CODE ;:ﬁ g;)tl;lg%::yo)c.je of skill Category (lookup type = RSC -
SKL SKILL_CATEGORY_NAME The name of the skill category.
SKL SKILL_ID The ID of the skill in table KRSC_SKILLS.
SKL SKILL_NAME The name of the skill.

System Tokens 201

Appendix B: Tokens

Table B-26. Staffing profile

Prefix Tokens Description
STFP ACTIVE_FLAG The active flag of the staffing profile.
STFP CREATED_BY The username of the user who created the staffing profile.
STFP CREATION_DATE The date that the staffing profile was created.
STFP DESCRIPTION The description of the staffing profile.
STFP END_PERIOD The end period of the staffing profile.
STFP INITIATION_REQ The initiation request ID of the staffing profile.
STFP PERIOD_SIZE The period size of the staffing profile.
STFP STAFFING_PROFILE_URL The URL to view this staffing profile.
STFP STAFF_PROF_ID ;g%lst?f the staffing profile in table KRSC_STAFF_
STFP EII?FTFY__PNRA?NTEIS_FOR_ The entity name to which the staffing profile is linked.
STFP STAFF_PROF_IS_FOR_ID ;k;?filr%o;r‘i?fﬁepir;j”e:;ep(;én, program or org unit to which the
step | STAFFPROFLLIS FOR. | 1 e mked (rojoct plan, proaram, oforg.
NAME unit).
STFP STAFF_PROF_NAME The name of the staffing profile.
STFP START_PERIOD The start period of the staffing profile.
STFP STATUS_CODE The status code of the staffing profile.
STFP STATUS_NAME The status name of the staffing profile.

Table B-27. System

Prefix Tokens Description
SYS DATE The date at the time the token is parsed.
SYS NEWLINE A new line character.
SYS TIME_STAMP A date and time stamp at the time the token is parsed.
Used to obtain a unique number from the database. It can be used to
SYS UNIQUE_IDENTIFIER | generate unique filenames, etc. It is often necessary to use with the

‘ksc_set’ special command.

202 Commands, Tokens, and Validations Guide and Reference

Appendix B: Tokens

Table B-27. System [continued]

Prefix Tokens Description

SYS UNIX_NEWLINE The UNIX new line character.

SYS USERNAME The Mercury IT Governance Center username of the user currently
logged onto Mercury IT Governance Center.

SYS USER_ID The ID of the user currently logged onto Mercury IT Governance

Center.

Table B-28. Tasks

Prefix Tokens Description

TSK ACTUAL_DURATION The actual duration of the task.

TSK ACTUAL_EFFORT The actual effort associated with the task.

TSK ACTUAL_FINISH_DATE The actual finish date of the task.

TSK ACTUAL_START_DATE The actual start date of the task.

TSK CONFIDENCE_CODE The code of the confidence value entered by the user.
TSK CONFIDENCE_NAME The name of the confidence value entered by the user.
TSK CONSTRAINT_DATE The task’s constraint date.

TSK CREATED_BY The user who created the task.

TSK CREATED_BY_EMAIL The email address of the user who created the task.
TSK CREATED_BY_USERNAME The username of the person who created the task.
TSK CREATION_DATE The creation date of the task.

TSK DEPARTMENT_CODE The code of the department value entered by the user.
TSK DEPARTMENT NAME Izgr.name of the department value entered by the
TSK DESCRIPTION The description of the task.

TSK gﬁg%ﬁgﬁD—REMAINING— The estimated remaining duration of the task.

TSK ESTIMATED_REMAINING_EFFORT | The estimated remaining effort involved in the task.
TSK ESTIMATED_FINISH_DATE The estimated finish date of the task.

TSK HAS_EXCEPTIONS l:sef;)?i%r:gshow whether or not the task has

TSK LAST_UPDATE_DATE The date the task was last updated.

System Tokens 203

Appendix B: Tokens

Table B-28. Tasks [continued]

Prefix Tokens Description

TSK LAST_UPDATED_BY The last person to update the task.

The email address of the last person to update the

TSK LAST_UPDATED_BY_EMAIL
task.

TSK LAST_UPDATED_BY_USERNAME The username of the last person to update the task.

TSK MASTER_PROJECT_ID The ID of the master project.

TSK MASTER_PROJECT_NAME The name of the master project.

TSK MOST_RECENT_NOTE_ First and last name of the author of the most recent
AUTHOR_FULL_NAME (chronological) note.

TSK MOST_RECENT_NOTE_ Username of the author of the most recent
AUTHOR_USERNAME (chronological) note.

MOST_RECENT_NOTE_

TSK AUTHORED DATE Date of the most recent (chronological) note.
TSK MOST_RECENT_NOTE_TEXT Text of the most recent (chronological) note.
TSK PARENT_PROJECT_ID The ID of the parent project plan.

TSK PARENT_PROJECT_NAME The name of the parent project plan.

TSK PERCENT_COMPLETE The task’s completed percentage.

TSK PRIORITY The priority of the task.

The project plan path. Hierarchy of parent project plans

TSK PROJECT_PATH that contain this task.

The name of the project template used to create the

TSK PROJECT_TEMPLATE . -
project plan containing the task.

TSK PROJECT TYPE _CODE Returns TASK for tasks and PROJECT for project

plans.
TSK RESOURCE_ID The ID of the resource assigned to the task.
TSK RESOURCE_EMAIL The email address of the resource.
TSK RESOURCE_GROUP_ID The ID of the resource group assigned to the task.
TSK RESOURCE_GROUP_NAME The name of the resource group assigned to the task.
TSK RESOURCE_USERNAME The username of the resource.
TSK SCHEDULED_EFFORT The scheduled effort involved in the task.
TSK SCHEDULED_DURATION The task’s scheduled duration.
TSK SCHEDULED_FINISH_DATE The task’s scheduled finish date.

204 Commands, Tokens, and Validations Guide and Reference

Appendix B: Tokens

Table B-28. Tasks [continued]

Prefix Tokens Description
TSK SCHEDULED_START_DATE The task’s scheduled start date.
TSK SCHEDULING CONSTRAINT The task’s scheduling constraint.
TSK TASK_CATEGORY The predefined category the task belongs to.
The number that uniquely identifies the task (same as
TSK TASK_ID TASK_NUMBER). This corresponds to the
PROJECT_ID column in table KDRV_PROJECTS.
TSK TASK_NAME The name of the task.
TSK TASK_NAME_LINK :(t)?i?igztrg:é/.perlink to the task in HTML-format
TSK TASK_NUMBER $29é}rlﬂr[1)t;er that uniquely identifies the task (same as
TSK TASK_STATE The task state.
TSK TASK_URL The URL for the task Detail page.
TSK WORKBENCH_TASK_URL The URL to access this task in the Workbench.

Table B-29. Tasks pending

Prefix Tokens Description
TSK.PEND | ID The ID of the entity that is being blocked by the task.
TSK.PEND | NAME The name of the entity that is being blocked by the
task.
TSK.PEND | DETAIL Detail information for tlhe entity that is being blocked
by the task as shown in the References panel.
TSK.PEND | DESCRIPTION The description of the entity that is being blocked by
the task.
The ID of the state or the code of the status of the
TSK.PEND | STATUS_ID entity that is being blocked by the task.
TSK.PEND | STATUS_NAME Thg name of the status (or state) of the entity that is
being blocked by the task.
The name of the state of the entity that is being
TSK.PEND | STATE blocked by the task.
The name of the assigned user (or resource) of the
TSK.PEND | ASSIGNED_TO_USERNAME entity that is being blocked by the task.

System Tokens 205

Appendix B: Tokens

Table B-29. Tasks pending [continued]

Prefix Tokens

Description

TSK.PEND | ASSIGNED_TO_USER_ID

The username of the assigned user (or resource) of
the entity that is being blocked by the task.

TSK.PEND | ASSIGNED_TO_GROUP_NAME

The name of the assigned group (or resource group)
of the entity that is being blocked by the task.

TSK.PEND | ASSIGNED_TO_GROUP_ID

The ID of the assigned group (or resource group) of
the entity that is being blocked by the task.

TSK.PEND | RESOURCE_USERNAME

The name of the resource associated with the entity
that is being blocked by the task.

TSK.PEND | RESOURCE_ID

The username of the resource (or assigned user)
associated with the entity that is being blocked by the
task.

TSK.PEND | RESOURCE_GROUP_NAME

The name of the resource group (or assigned user)
associated with the entity that is being blocked by the
task.

TSK.PEND | RESOURCE_GROUP_ID

The ID of the resource group (or assigned group)
associated with the entity that is being blocked by the
task.

TSK.PEND | PERCENT_COMPLETE

The current percent complete value associated with
the entity that is being blocked by the task.

TSK.PEND | ENTITY_TYPE_ID

The ID of the type of entity that is being blocked by
the task.

TSK.PEND | ENTITY_TYPE_NAME

The name of the type of entity that is being blocked by
the task.

Table B-30. Users

Prefix Tokens Description
USR AUTHENTICATION_MODE_CODE | The authentication mode for the user (such as LDAP).
USR AUTHENTICATION_MODE_NAME | The authentication mode for the user (such as LDAP).
USR COMPANY The Company employing the user.
USR COMPANY_NAME The name of the Company employing the user.
USR COST RATE The cost ratg of the user ($/hour - subject to security of
user evaluating the token).
USR CREATED_BY The ID of the user that created the user.
206 Commands, Tokens, and Validations Guide and Reference

Appendix B: Tokens

Table B-30. Users [continued]

Prefix Tokens Description

USR CREATED_BY USERNAME Iggrli/lheartcsrrgalt';(?;‘veezr;aer;-ce Center username of the
USR CREATION_DATE The date the user was created.

USR DEPARTMENT CODE ggsklﬁsl;;gecgdglzo;%e department the user belongs to
USR DEPARTMENT_NAME The name of the department that the user belongs to.
USR EMAIL_ADDRESS The email address of the user.

USR END_DATE The date the user is made inactive in the application.
USR FIRST_NAME The first name of the user.

USR LAST_NAME The last name of the user.

USR LAST_UPDATED_BY The ID of the user that last updated the user.

USR | LAST_UPDATED_BY_USERNAME Izgr':"heartcluag 'Jpg;’t‘ézr?;:ii;?mer username of the
USR LAST_UPDATE_DATE The date the user was last updated.

USR LOCATION_CODE ;ké(ecl?oLI;ucp;ggg; of the user’s location (lookup type =
USR LOCATION_NAME The name of the user’s location.

USR MANAGER_USERNAME The username of the user's manager.

USR MANAGER_USER_ID The ID of the user's manager.

USR | PASSWORD Governance Center. This value i enonpted.
USR PASSWORD_EXPIRATION_DATE | The date the password needs to be reset for the user.
USR PASSWORD._EXPIRATION_DAYS H;eurg:ber of days until the password must be reset for
USR PHONE_NUMBER The phone number of the user.

USR PRIMARY_SKILL_ID The ID of the primary skill associated with the user.
USR PRIMARY_SKILL_NAME The name of the primary skill associated with the user.
USR REGIONAL_CALENDAR The name of the regional calendar for the user.

USR | RESOURCE CATEGORY_CODE | 1120 code f ek ceagor (okup e
USR RESOURCE_CATEGORY_NAME The name of the category to which the user belongs.

System Tokens 207

Appendix B: Tokens

Table B-30. Users [continued]

Prefix Tokens Description

USR RESOURCE_TITLE_CODE the lookup code of the user’s resource title (lookup type
= RSC - Resource Title).

USR RESOURCE_TITLE_NAME The name of the user’s resource title.

USR START_DATE The date the user is made active in the application.

USR USERNAME The username for the user to use to log onto Mercury IT
Governance Center.

USR USER_ID The ID of the user in the table KNTA_USERS.

USR WORKLOAD_CAPACITY The workload capacity of the user (% of FTE)

Table B-31. Validations

Prefix Tokens Description

VAL COMPONENT_TYPE The component type associated with the validation.
VAL CREATED_BY The ID of the user that created the validation.

VAL CREATION_DATE The date the validation was created.

VAL DESCRIPTION The description of the validation.

VAL LAST_UPDATED_BY The ID of the user that last updated the validation.
VAL LAST_UPDATE_DATE The date the validation was last updated.

VAL LOOKUP_TYPE ZS;;S;:Z?_ type associated with the validation (if
VAL VALIDATION_ID \TIFAT_IIII:I))AonItOhEéjahdatlon in the table KNTA_

VAL VALIDATION_NAME The name of the validation.

VAL VALIDATION_SQL ngliiaQbLles)‘fatement associated with the validation (if
VAL WORKBENCH_VALIDATION_URL | The URL for the validation in the Workbench.

Table B-32. Validation values

Prefix Tokens Description
VALUE | CREATED_BY The ID of the user that created the value.
VALUE | CREATION_DATE The date the value was created.

208 Commands, Tokens, and Validations Guide and Reference

Appendix B: Tokens

Table B-32. Validation values [continued]

Prefix Tokens Description

VALUE | DEFAULT FLAG The flgg to indicate whether the value is the default value for the
associated lookup type.

VALUE | DESCRIPTION The description of the value.

VALUE | ENABLED FLAG The flag to |nq|cate whether the value is enabled for selection in
a drop-down list.

VALUE | LAST_UPDATED_BY The ID of the user that last updated the value.

VALUE | LAST_UPDATE_DATE The date the value was last updated.

VALUE | LOOKUP_CODE The code associated with the value.

VALUE | LOOKUP_TYPE The lookup type the value belongs to.

VALUE | MEANING The meaning associated with the value.

VALUE | SEQ The sequence relative to other values in the associated lookup

type in which this value will be displayed in a drop-down list.

Table B-33. Workflows

Prefix Tokens Description
WF CREATED_BY The ID of the user that created the workflow.
WF CREATION_DATE The date the workflow was created.

WF DESCRIPTION The description of the workflow.

WE ENABLED FLAG The flag. indicating whether the workflow is enabled
and available to use in packages and/or requests.

WF FIRST_WORKFLOW_STEP_ID The ID of the first workflow step in the workflow.

WF FIRST_WORKFLOW_STEP_NAME The name of the first workflow step in the workflow.

WF ICON_NAME The name of the workflow step icon.

WF LAST_UPDATED_BY The ID of the user that last updated the workflow.

WF LAST_UPDATE_DATE The date the workflow was last updated.

WE PRODUCT SCOPE_CODE The validation value code for the product scope of
the workflow.

WF REOPEN_WORKFLOW_STEP_ID The ID of the reopened workflow step.

WF REOPEN_WORKFLOW_STEP_NAME | The name of the reopened workflow step.

WE SUBWORKFLOW FLAG An indicator that specifies whether this workflow

can be used as a Subworkflow.

System Tokens 209

Appendix B: Tokens

Table B-33. Workflows

Prefix Tokens Description
The ID of the workflow defined in the table KWFL_
WF WORKFLOW_ID WORKFLOWS.
WF WORKFLOW_NAME The name of the workflow.
WF WORKBENCH_WORKFLOW_URL The URL to open the workflow in the Workbench.

Table B-34. Workflow steps

Prefix Tokens Description

WES ACTION_BUTTON_LABEL Thg label displayed on the package or request
action button for the workflow step.

WFS AVERAGE_LEAD_TIME The average lead time in days defined for the
workflow step.

WFS CREATED_BY The ID of the user that created the workflow step.

WFS CREATION_DATE The date the workflow step was created.

WFS DESCRIPTION The description of the workflow step.

WFS DEST_ENV_GROUP_ID The ID of the destination environment group for
the workflow step.

WES DEST_ENV_GROUP_NAME The name of the destination environment group
for the workflow step.

WFS DEST_ENVIRONMENT _ID ;ZZID of destination environment for the workflow

WFS DEST_ENVIRONMENT NAME The name of the destination environment for the
workflow step.
The flag indicating whether the workflow step is

WFS ENABLED_FLAG enabled and able to be traversed in a package or
request.
For GL object migration, the flag indicating

WFS GL_ARCHIVE_FLAG whether to save the GL object being migrated to
the GL*Migrator archive.

WFS INFORMATION_URL The workflow step’s information URL.

WFS JUMP_RECEIVE_LABEL_CODE The code for a Jump/Receive workflow step.

WFS JUMP_RECEIVE_LABEL_NAME The name of a Jump/Receive workflow step.

WFS LAST UPDATED_BY The ID of the user that last updated the workflow

step.

210 Commands, Tokens, and Validations Guide and Reference

Appendix B: Tokens

Table B-34. Workflow steps [continued]

Prefix Tokens Description
WFS LAST_UPDATE_DATE The date the workflow step was last updated.
For AOL object migration, the flag indicating
WFS OM_ARCHIVE_FLAG whether to save the AOL object being migrated to
the Object*Migrator archive.
The ID of the security group that the current
WFS PARENT_ASSIGNED_TO_GROUP_ID | package or request is assigned to (determined by
context at time of evaluation).
PARENT ASSIGNED_TO_GROUP_ The secgnty group that the cur.rent package or
WFS request is assigned to (determined by context at
NAME . ;
time of evaluation).
The name of the user that the current package or
WFS PARENT_ASSIGNED_TO_USERNAME | request is assigned to (determined by context at
time of evaluation).
The ID of the user that the current package or
WFS PARENT_ASSIGNED_TO_USER_ID request is assigned to (determined by context at
time of evaluation).
WES PARENT STATUS The valldatlo.n va[ue code of the status of the
request that is using the workflow step.
WFS PARENT STATUS_NAME The valldatlo.n va!ue meaning of the status of the
request that is using the workflow step.
WES PRODUCT SCOPE_CODE The validation valug F:ode for the product scope of
the workflow containing the workflow step.
RESULT_WORKFLOW_PARAMETER_ | The ID of the workflow parameter that the result of
WFS . ;
ID the workflow step is written to.
WFS RESULT_WORKFLOW_PARAMETER_ | The name of the workflow parameter that the
NAME result of the workflow step is written to.
WFS SORT_ORDER The display sequence of the workflow step relative
to all other steps in the workflow.
WFS SOURCE_ENV_GROUP_ID The ID of the source environment group for the
workflow step.
WFS SOURCE_ENV_GROUP_NAME The name of the source environment group for the
workflow step.
WFS SOURCE_ENVIRONMENT _ID ;k:)ID of the source environment for the workflow
WFS SOURCE._ENVIRONMENT _NAME The name of the source environment for the

workflow step.

System Tokens 211

Appendix B: Tokens

Table B-34. Workflow steps [continued]

Prefix Tokens Description
WFS STEP_NAME The name of the workflow step.
WFS STEP_NO The display seq uence of the workflow step relative
to all other steps in the workflow.
WFS STEP_SOURCE_NAME The name of the workflow step source.
WFS STEP_TYPE_NAME The name of the workflow step source type.
WFS WORKFLOW_ID ;k;ilD of the workflow containing the workflow
WFS WORKFLOW NAME ;k:)name of the workflow containing the workflow
WFS WORKFLOW _STEP_ID The ID of the workflow step in the table KWFL_

WORKFLOW_STEPS.

Table B-35. Workflow step transaction

Prefix Tokens Description

WST CONCURRENT REQUEST ID The ID of the gongurrent request that was launched
in Oracle Applications.

WST CREATED_BY The ID of the user that created the step transaction.

WST CREATION_DATE The date the step transaction was created.

WST ERROR_MESSAGE The error message for the step transaction.

WST EXECUTION_BATCH_ID The ID of the execution batch for the workflow step.

WST HIDDEN_STATUS The h|d;len value for the status of the step
transaction.

WST LAST UPDATED_BY The ID qf the user that last updated the step
transaction.

WST LAST UPDATED_BY EMAIL The email adgress of the user that last updated the
step transaction.

WST LAST UPDATED_BY USERNAME The Mercury IT Governance Center username of the
user that last updated the step transaction.

WST LAST_UPDATE_DATE The date the step transaction was last updated.

WST NEW HIDDEN_STATUS The new hidden value for the status of the step
transaction.

WST NEW_STATUS The new status of the step transaction.

212 Commands, Tokens, and Validations Guide and Reference

Appendix B: Tokens

Table B-35. Workflow step transaction [continued]
Prefix Tokens Description
WST OLD_HIDDEN_STATUS The old .hidden value for the status of the step
transaction.
WST OLD_STATUS The old status of the step transaction.
WST STATUS The status of the step transaction.
WST STEP_TRANSACTION_ID ;2?5:3[3_?3:,‘3 ;fgﬁg”ﬁgf’“on In the table KWFL._
WST TIMEOUT_DATE The date that the step transaction times out.
WST USER_COMMENT The user comment for the step transaction.
WST WORKFLOW_ID The ID of the workflow for the step transaction.
WST WORKFLOW_STEP_ID The ID of the workflow step for the step transaction.

Field Group Tokens

Field groups can be attached to request header types to enable additional
pre-configured fields on requests. Field groups are often delivered as a part of
Mercury IT Governance Center best practice functionality. Y ou will only have
access to field groups associated with products that are licensed at your site.

Use Table B-36 as a quick reference guide to jump to the desired location.

Table B-36. Field group token tables

Table Page
Table B-37, Demand Management field group 514
tokens
Table B-38, Master project reference on request
. 214
field group tokens
Table B-39, PFM asset field group tokens 214
Table B-40, PFM project field group tokens 215

Table B-41, PFM proposal field group tokens 216

Table B-42, PMO field group tokens 216

Field Group Tokens 213

Appendix B: Tokens

Table B-36. Field group token tables

Table Page
Table B-43, Program reference on request field 217
group tokens
Table B-44, Work item field group tokens 217
Table B-37. Demand Management field group tokens
Field Token

SLA Level

KNTA_SLA_LEVEL

SLA Violation Data

KNTA_SLA_VIOLATION_DATE

Service Request Date

KNTA_SLA_SERV_REQUESTED_ON

Service Satisfied Date

KNTA_SLA_SERV_SATISFIED_ON

Estimated Start Date

KNTA_EST_START_DATE

Estimated Effort

KNTA_EFFORT

Reject Date

KNTA_REJECTED_DATE

Demand Satisfied Date

KNTA_DEMAND_SATISFIED_DATE

Table B-38. Master project reference on request field group tokens

Field

Token

Master Project

KNTA_MASTER_PROJ_REF

Table B-39. PFM asset field group tokens

Field

Token

Business Unit

KNTA_BUSINESS_UNIT

Asset Name

KNTA_PROJECT_NAME

Asset Health

KNTA_PROJECT_HEALTH

Project Class

KNTA_PROJECT_CLASS

Asset Class

KNTA_ASSET_CLASS

Business Objective

KNTA_BUSINESS_OBJECTIVE

Project Plan

KNTA_PROJECT_PLAN

Budget

KNTA_BUDGET

214 Commands, Tokens, and Validations Guide and Reference

Appendix B: Tokens

Table B-39. PFM asset field group tokens [continued]

Field

Token

Financial Benefit

KNTA_FINANCIAL_BENEFIT

Staffing Profile

KNTA_STAFFING_PROFILE

Net Present Value

KNTA_NET_PRESENT_VALUE

Value Rating

KNTA_VALUE_RATING

Risk Rating

KNTA_RISK_RATING

Return on Investment

KNTA_RETURN_ON_INVESTMENT

Custom Field Value

KNTA_CUSTOM_FIELD_VALUE

Total Score

KNTA_TOTAL_SCORE

Discount Rate

KNTA_DISCOUNT_RATE

Table B-40. PFM project field group tokens

Field

Token

Business Unit

KNTA_BUSINESS_UNIT

Project Name

KNTA_PROJECT_NAME

Project Health

KNTA_PROJECT_HEALTH

Project Class

KNTA_PROJECT_CLASS

Asset Class

KNTA_ASSET_CLASS

Business Objective

KNTA_BUSINESS_OBJECTIVE

Project Plan

KNTA_PROJECT_PLAN

Project Manager

KNTA_PROJECT_MANAGER

Budget

KNTA_BUDGET

Financial Benefit

KNTA_FINANCIAL_BENEFIT

Staffing Profile

KNTA_STAFFING_PROFILE

Net Present Value

KNTA_NET_PRESENT_VALUE

Value Rating

KNTA_VALUE_RATING

Risk Rating

KNTA_RISK_RATING

Custom Field Value

KNTA_CUSTOM_FIELD_VALUE

Return on Investment

KNTA_RETURN_ON_INVESTMENT

Field Group Tokens

215

Appendix B: Tokens

Table B-40. PFM project field group tokens

Field

Token

Total Score

KNTA_TOTAL_SCORE

Discount Rate

KNTA_DISCOUNT_RATE

Table B-41. PFM proposal field group tokens

Field

Token

Business Unit

KNTA_BUSINESS_UNIT

Project Name

KNTA_PROJECT_NAME

Project Class

KNTA_PROJECT_CLASS

Asset Class

KNTA_ASSET_CLASS

Business Objective

KNTA_BUSINESS_OBJECTIVE

Project Template

KNTA_PROJECT_TEMPLATE

Project Manager

KNTA_PROJECT_MANAGER

Budget

KNTA_BUDGET

Expected Benefit

KNTA_FINANCIAL_BENEFIT

Staffing Profile

KNTA_STAFFING_PROFILE

Net Present Value

KNTA_NET_PRESENT_VALUE

Value Rating

KNTA_VALUE_RATING

Risk Rating

KNTA_RISK_RATING

Return on Investment

KNTA_RETURN_ON_INVESTMENT

Custom Field Value

KNTA_CUSTOM_FIELD_VALUE

Total Score

KNTA_TOTAL_SCORE

Discount Rate

KNTA_DISCOUNT_RATE

Table B-42. PMO field group tokens

Field

Token

Escalation Level

KNTA_ESCALATION_LEVEL

Role Description

KNTA_ROLE_DESCRIPTION

Risk Impact Level

KNTA_RISK_IMPACT_LEVEL

216 Commands, Tokens, and Validations Guide and Reference

Appendix B: Tokens

Table B-42. PMO field group tokens

Field Token
Probability KNTA_PROBABILITY
CR Level KNTA_CR_LEVEL

Business Impact Severity

KNTA_IMPACT_SEVERITY

Table B-43. Program reference on request field group tokens

Field

Token

Program

KNTA_PROGRAM_REFERENCE

Table B-44. Work item field group tokens

Field

Token

Scheduled Start Date

KNTA_USR_SCHED_START_DATE

Actual Start Date

KNTA_USR_ACTUAL_START_DATE

Scheduled Finish Date

KNTA_USR_SCHED_FINISH_DATE

Actual Finish Date

KNTA_USR_ACTUAL_FINISH_DATE

Scheduled Duration

KNTA_SCHED_DURATION

Actual Duration

KNTA_ACTUAL_DURATION

Scheduled Effort

KNTA_SCHED_EFFORT

Actual Effort

KNTA_ACTUAL_EFFORT

Workload?

KNTA_WORKLOAD

Workload Category

KNTA_WORKLOAD_CATEGORY

Skill

KNTA_SKILL

Allow External Update of Actual Effort

KNTA_ALLOW_EXTERNAL_UPDATE

Scheduled Start Date

KNTA_SCHED_START_DATE

_Actual Start Date

KNTA_ACTUAL_START_DATE

_Scheduled Finish Date

KNTA_SCHED_FINISH_DATE

_Actual Finish Date

KNTA_ACTUAL_FINISH_DATE

Scheduled Effort Over Duration

KNTA_SCHED_EFF_OVER_DUR

Field Group Tokens 217

Appendix B: Tokens

218 Commands, Tokens, and Validations Guide and Reference

Index

A

app server properties 177
auto-complete
command with delimited output 95
command with fixed width output 97
configuring general behavior 82
configuring the values 94
example 100
list of users 93
long lists 84
search fields 88
short lists 83
user-defined multi-select 99

auto-complete validations 52

C

command conditions 25, 34
examples 26

command language 25

command steps 25

command with delimited output 95

command with fixed width output 97

commands
triggering from workflow 23
validation 82

component types 71

auto-complete 99
directory chooser 116
file chooser 116
file chooser (static environment override)
117
file chooser (token-based environment
override) 118
contact 178
currency data mask 108

custom datamask 115

D

date field
valid format 120

directory chooser 116

dynamic list validations 79
command 82

SQL 79

E

entity token
app server properties 177
command execution 185
contacts 178
demand management fields 214
distributions 179

219

Index

document management file chooser

environment applications static environment override
environments token-based environment override
extension format masks

notifications for text fields

organization units

package lines K

package pending . _

program ksc_begin_script

project field group example

project plan ksc_capture_output

project plan details
releases

report submissions
request details
requests

requests pending
resource pools
security groups
skills

staffing profile
tasks

tasks pending
users

workflow steps
workflows

entity tokens

validation values
validations

field group tokens

asset

demand management
master project reference
PMO

program reference
project

proposal

work item

fields

preview layout

ksc clear_exit value
ksc_comment
ksc_conc_sub
example
ksc_connect
ksc_connect_dest_client
example
ksc_connect_dest_server
example
ksc_connect_source client
example
ksc_connect_source server
examples
ksc_copy
ksc_copy_client_client
example
ksc_copy_client_server
example
ksc_copy_client_tmp
ksc_copy_script
ksc_copy_script_dest_client
ksc_copy_script_dest_server
ksc_copy_script_source client

ksc_copy_script_source_server

ksc_copy_server_client
example
ksc_copy_server_server
example
ksc_copy_server_tmp
ksc_copy_tmp_client

220

Commands, Tokens, and Validations Guide and Reference

Index

ksc_copy_tmp_server
ksc_end_script
example
ksc_exit
ksc_gl_migrate
example

ksc local_exec
ksc_om_migrate
example
ksc_parse jcl
ksc_replace
ksc_respond

ksc set , :
example 153, :
ksc set env

ksc set exit value
ksc_simple_respond
examples

ksc store 154, : :
example
ksc_submit_job

N
numeric data mask

o
object types
commands and workflow

ownership
setting for special commands

P
percentage data mask

R

request field tokens
prefixes

request tield fokens
table components

S

special command
parameters tab
special command builder
using to build steps
special commands
adding parameters 33,
building steps with command builder
commands tab
creating new
deleting parameters
editing parameters
header fields
ksc_begin_script
ksc_capture_output
ksc clear_exit value
ksc_comment
ksc_conc_sub
ksc_connect
ksc_copy
ksc_copy_script
ksc_end_script
ksc_exit
ksc_gl_migrate
ksc local_exec
ksc_om_migrate
ksc_parse jcl
ksc_respond
ksc_run_sql
ksc set : :
ksc set env
ksc set exit value
ksc_simple_respond
ksc store 154, : :
ksc_submit_job
nesting
ownership tab
parameters
setting ownership
used by tab
user interface
using
window

221

Index

workbench
SQL validations
tips
static list validations
swap mode

o

table component validations
adding to request type
column totals
creating rules
defining
rules example
tokens

table components
using tokensin
telephone data mask

text fields
configuring
currency
custom format
customizing the data masks
format masks
numeric
percentage
telephone

token
evaluation example

Token Builder window
token evaluation

tokens
building
default format
environment tokens
explicit entity format
field groups
formats
overview
parameter format
request fields
sub-entity format

user data format
within tokens

U

URL to validation

user data
context sensitive in validation

\'/

validations
auto-complete
command
command with delimited output
command with fixed width output
context sensitive user data and
creating
date format
defined
deleting
directory chooser
dynamic list
editing
file chooser
file chooser (static environment override)

file chooser (token-based environment
override)

overview

package and request group
quick link

request type category
seeded

specia characters and
SQL

SQL tips

static lists

system

table component

text area 1800

222 Commands, Tokens, and Validations Guide and Reference

	Documentation Home Page
	List of Figures
	List of Tables
	Introduction
	About This Document
	Who Should Read This Document
	Related Documents
	Overview

	Using Commands
	Overview of Commands
	Where Commands are Used
	Commands Interface
	Object Type Commands and Workflow
	Request Type Commands and Workflow
	Special Commands

	Command Steps
	Command Language

	Command Conditions
	Example Command Uses

	Special Commands
	Overview of Special Commands
	Special Command Interface
	Special Command Workbench
	Special Command Window
	Special Command Window General Information Region
	Parameters Tab
	Commands Tab
	Command Conditions
	Parameters in Command Steps
	Example � Special Command
	Special Command Builder

	Ownership Tab
	Used By Tab

	Creating and Editing Special Commands
	Creating a New Special Command
	Creating and Editing Special Command Parameters
	Adding Parameters to Special Commands
	Editing Special Command Parameters
	Deleting Parameters

	Setting Ownership for Special Commands

	Using Special Commands
	Adding Special Commands to Command Steps Using the Command Builder
	Nesting Special Commands

	Using Tokens
	Overview
	What are Tokens?
	Where Tokens Are Used
	Token Builder Window Overview
	Token Formats
	Default Format
	Explicit Entity Format
	Using Tokens within Other Tokens

	User Data Format
	Parameter Format
	Request Field Tokens
	Request Token Prefixes
	Tokens in Request Table Components

	Sub�Entity Format
	Environment and Environment Application Tokens

	Token Evaluation

	Working with Validations
	Overview of Working with Validations
	What are Validations
	Validation Component Types � Overview
	Creating a Validation
	User Data on the Validation Value

	Editing Validations
	Creating a URL to Open the Validation Window

	Deleting Validations
	Static List Validations
	Dynamic List Validations
	SQL Validation
	SQL Validation Tips

	Command Validation

	Configuring Auto�Complete Validations
	Configuring General Auto�complete Behavior
	Configuring Short List Auto�Complete Fields
	Configuring Long List Auto�Complete Fields
	Configuring the Automatic Value Matching and the Interactive Select Page
	Functional Overview: Matching for “Starts with” or “Contains”
	Configuration Instructions
	Configuration Tips

	Adding Search Fields to the Auto�Complete Window
	Special Case: Configuring an Auto�Complete List of Users

	Configuring the Auto�Complete Values
	Validation by Command With Delimited Output
	Validation by Command With Fixed Width Output
	User�Defined Multi�Select Auto�Complete Fields
	Example: Token Evaluation and Validation by Command with Delimited Output

	Configuring Text Fields
	Creating a Text Field Validation Overview
	Available Text Data Masks
	Customizing the System Text Data Masks
	Customizing the Numeric Data Mask
	Customizing the Currency Data Mask
	Customizing the Percentage Data Mask
	Customizing the Telephone Data Mask

	Creating a Custom Data Mask

	Using Directory and File Choosers
	Directory Chooser
	File Chooser

	Date Field Formats
	Creating 1800 Character Text Areas
	Configuring the Table Component
	Defining the Table Component in the Validation Workbench
	Creating a Table Rule
	Example: Using a Table Component on an Order Form
	Tokens in the Table Components

	Calculating Column Totals

	Adding the Table Component to a Request Type

	Package and Request Group Validations
	Package and Request Groups
	Request Type Category

	Validation Special Characters
	System Validations

	System Special Commands
	Overview of System Special Commands
	ksc_connect Special Commands
	ksc_connect_dest_client
	Example Using ksc_connect_dest_client

	ksc_connect_dest_server
	Example using ksc_connect_dest_server

	ksc_connect_source_client
	Example using ksc_connect_source_client

	ksc_connect_source_server
	Examples using ksc_connect_source_server

	ksc_exit
	ksc_copy Special Commands
	ksc_copy_client_client
	Example #1 using ksc_copy_client_client
	Example #2 using ksc_copy_client_client

	ksc_copy_client_server
	Example using ksc_copy_client_server

	ksc_copy_server_client
	Example using ksc_copy_server_client

	ksc_copy_server_server
	Example using ksc_copy_server_server

	ksc_copy_client_tmp
	ksc_copy_server_tmp
	ksc_copy_tmp_client
	ksc_copy_tmp_server

	ksc_respond
	ksc_simple_respond
	Examples using ksc_simple_respond

	ksc_local_exec
	Example using ksc_local_exec

	ksc_replace
	Example using ksc_replace

	ksc_set
	Example using ksc_set

	ksc_set_env
	ksc_store
	Example using ksc_store

	ksc_comment
	ksc_concsub
	Example using ksc_concsub

	ksc_begin_script / ksc_end_script
	Example using ksc_begin_script and ksc_end_script

	ksc_copy_script Special Commands
	ksc_copy_script_dest_client
	ksc_copy_script_dest_server
	ksc_copy_script_source_client
	ksc_copy_script_source_server

	ksc_om_migrate
	Example using ksc_om_migrate

	ksc_capture_output
	ksc_gl_migrate
	Example using ksc_gl_migrate

	ksc_parse_jcl
	ksc_submit_job
	ksc_set_exit_value
	ksc_clear_exit_value
	ksc_run_sql
	Example using ksc_run_sql

	Summary of All Special Command Parameters

	Tokens
	Overview of Tokens
	System Tokens
	Field Group Tokens

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

