
Mercury IT Governance Center™

Commands, Tokens, and Validations

Guide and Reference
Version: 6.0

This manual, and the accompanying software and other documentation, is protected by U.S. and
international copyright laws, and may be used only in accordance with the accompanying license
agreement. Features of the software, and of other products and services of Mercury Interactive
Corporation, may be covered by one or more of the following patents: United States: 5,511,185;
5,657,438; 5,701,139; 5,870,559; 5,958,008; 5,974,572; 6,137,782; 6,138,157; 6,144,962;
6,205,122; 6,237,006; 6,341,310; 6,360,332, 6,449,739; 6,470,383; 6,477,483; 6,549,944;
6,560,564; 6,564,342; 6,587,969; 6,631,408; 6,631,411; 6,633,912; 6,694,288; 6,738,813;
6,738,933; 6,754,701; 6,792,460 and 6,810,494. Australia: 763468 and 762554. Other patents
pending. All rights reserved.

Mercury, Mercury Interactive, the Mercury logo, the Mercury Interactive logo, LoadRunner,
WinRunner, SiteScope and TestDirector are trademarks of Mercury Interactive Corporation and
may be registered in certain jurisdictions. The absence of a trademark from this list does not
constitute a waiver of Mercury's intellectual property rights concerning that trademark.

All other company, brand and product names may be trademarks or registered trademarks of their
respective holders. Mercury disclaims any responsibility for specifying which marks are owned
by which companies or which organizations.

Mercury
379 North Whisman Road
Mountain View, CA 94043
Tel: (650) 603-5200
Toll Free: (800) TEST-911
Customer Support: (877) TEST-HLP
Fax: (650) 603-5300

© 1997–2005 Mercury Interactive Corporation. All rights reserved.

If you have any comments or suggestions regarding this document, please send email to
documentation@mercury.com.

Publication Number: ITG60CommandsTokens1104A

Table of Contents
List of Figures .. ix

List of Tables .. xi

Chapter 1: Introduction...15

 About This Document.. 16

 Who Should Read This Document ... 16

 Related Documents.. 17

 Overview... 17

Chapter 2: Using Commands..19

 Overview of Commands... 20

Where Commands are Used... 20

Commands Interface... 20

Object Type Commands and Workflow .. 23

Request Type Commands and Workflow... 23

Special Commands .. 24

 Command Steps .. 25

Command Language... 25

 Command Conditions ... 25

 Example Command Uses .. 26

Chapter 3: Special Commands..29

 Overview of Special Commands ... 30

 Special Command Interface .. 30

Special Command Workbench.. 31
iii

Table of Contents
Special Command Window ... 31

Special Command Window General Information Region .. 32

Parameters Tab .. 32

Commands Tab .. 33

Ownership Tab.. 37

Used By Tab... 38

 Creating and Editing Special Commands... 38

Creating a New Special Command ... 38

Creating and Editing Special Command Parameters .. 40

Adding Parameters to Special Commands ... 40

Editing Special Command Parameters.. 42

Deleting Parameters .. 43

Setting Ownership for Special Commands ... 43

 Using Special Commands ... 45

Adding Special Commands to Command Steps Using the Command Builder 46

Nesting Special Commands .. 47

Chapter 4: Using Tokens..49

 Overview... 50

 What are Tokens? ... 50

 Where Tokens Are Used.. 50

 Token Builder Window Overview .. 51

 Token Formats .. 53

Default Format.. 55

Explicit Entity Format .. 56

Using Tokens within Other Tokens .. 57

User Data Format.. 59

Parameter Format... 60

Request Field Tokens.. 61

Sub-Entity Format... 63

Environment and Environment Application Tokens.. 64

 Token Evaluation.. 66

Chapter 5: Working with Validations ...69

 Overview of Working with Validations.. 70

 What are Validations.. 70

 Validation Component Types - Overview ... 71

 Creating a Validation ... 73

User Data on the Validation Value... 74

 Editing Validations... 75

Creating a URL to Open the Validation Window.. 76
iv Commands, Tokens, and Validations Guide and Reference

Table of Contents
 Deleting Validations ... 77

 Static List Validations.. 77

 Dynamic List Validations ... 79

SQL Validation.. 79

SQL Validation Tips.. 81

Command Validation... 82

 Configuring Auto-Complete Validations.. 82

Configuring General Auto-complete Behavior .. 82

Configuring Short List Auto-Complete Fields .. 83

Configuring Long List Auto-Complete Fields ... 84

Configuring the Automatic Value Matching and the Interactive Select Page............. 85

Adding Search Fields to the Auto-Complete Window... 88

Special Case: Configuring an Auto-Complete List of Users .. 93

Configuring the Auto-Complete Values .. 94

Validation by Command With Delimited Output .. 95

Validation by Command With Fixed Width Output ... 97

User-Defined Multi-Select Auto-Complete Fields.. 99

Example: Token Evaluation and Validation by Command with Delimited Output .100

 Configuring Text Fields...104

Creating a Text Field Validation Overview...104

Available Text Data Masks ...104

Customizing the System Text Data Masks ..106

Customizing the Numeric Data Mask...106

Customizing the Currency Data Mask ...108

Customizing the Percentage Data Mask ..110

Customizing the Telephone Data Mask ..112

Creating a Custom Data Mask...115

 Using Directory and File Choosers...116

Directory Chooser ..116

File Chooser...116

 Date Field Formats..119

 Creating 1800 Character Text Areas ..120

 Configuring the Table Component ...121

Defining the Table Component in the Validation Workbench...122

Creating a Table Rule ...126

Calculating Column Totals ...130

Adding the Table Component to a Request Type ...132

 Package and Request Group Validations...134

Package and Request Groups ...134

Request Type Category ...135

 Validation Special Characters...135

 System Validations ...136
v

Table of Contents
Appendix A: System Special Commands ... 137

 Overview of System Special Commands.. 138

 ksc_connect Special Commands.. 138

ksc_connect_dest_client...139

Example Using ksc_connect_dest_client ...139

ksc_connect_dest_server ...140

Example using ksc_connect_dest_server ..140

ksc_connect_source_client ...141

Example using ksc_connect_source_client ..141

ksc_connect_source_server..142

Examples using ksc_connect_source_server...142

 ksc_exit ... 143

 ksc_copy Special Commands... 143

ksc_copy_client_client ...143

Example #1 using ksc_copy_client_client ...144

Example #2 using ksc_copy_client_client ...144

ksc_copy_client_server..144

Example using ksc_copy_client_server...145

ksc_copy_server_client..145

Example using ksc_copy_server_client...146

ksc_copy_server_server ..146

Example using ksc_copy_server_server ...147

ksc_copy_client_tmp...148

ksc_copy_server_tmp ...148

ksc_copy_tmp_client...149

ksc_copy_tmp_server ...150

 ksc_respond ... 151

 ksc_simple_respond... 151

Examples using ksc_simple_respond...152

 ksc_local_exec.. 153

Example using ksc_local_exec ..153

 ksc_replace... 154

Example using ksc_replace ...154

 ksc_set .. 154

Example using ksc_set...155

 ksc_set_env .. 155

 ksc_store.. 156

Example using ksc_store ..157

 ksc_comment .. 157

 ksc_concsub .. 158

Example using ksc_concsub...158
vi Commands, Tokens, and Validations Guide and Reference

Table of Contents
 ksc_begin_script / ksc_end_script ... 159

Example using ksc_begin_script and ksc_end_script ...160

 ksc_copy_script Special Commands .. 160

ksc_copy_script_dest_client ...161

ksc_copy_script_dest_server..161

ksc_copy_script_source_client..162

ksc_copy_script_source_server ..162

 ksc_om_migrate ... 163

Example using ksc_om_migrate..164

 ksc_capture_output.. 164

 ksc_gl_migrate .. 165

Example using ksc_gl_migrate...166

 ksc_parse_jcl.. 166

 ksc_submit_job ... 167

 ksc_set_exit_value .. 167

 ksc_clear_exit_value .. 168

 ksc_run_sql ... 168

Example using ksc_run_sql..168

 Summary of All Special Command Parameters .. 169

Appendix B: Tokens.. 175

 Overview of Tokens.. 176

 System Tokens.. 177

 Field Group Tokens .. 213

Index .. 219
vii

Table of Contents
viii Commands, Tokens, and Validations Guide and Reference

List of Figures

Figure 2-1 Commands tab and Edit Command window ... 21

Figure 2-2 New Command window .. 22

Figure 3-1 Special Command Workbench ... 31

Figure 3-2 Special Command window.. 32

Figure 3-3 Special Command window—Commands tab.. 34

Figure 3-4 Special Command Builder ... 37

Figure 3-5 Ownership tab.. 38

Figure 3-6 RCS File Migration object type ... 45

Figure 4-1 Example of a token used in a SQL statement .. 51

Figure 4-2 Token Builder window.. 52

Figure 4-3 Explicit Entity Format ... 56

Figure 4-4 Table component formats.. 62

Figure 5-1 Auto-complete using command validation ... 82

Figure 5-2 Short list auto-complete ... 83

Figure 5-3 Long list auto-complete .. 84

Figure 5-4 Auto-complete field and matching values in the Select page.. 85

Figure 5-5 Filter fields in the auto-complete select window... 89

Figure 5-6 User icon ... 93

Figure 5-7 Auto-Complete List ... 94

Figure 5-8 Validation by command with delimited output ... 96

Figure 5-9 Validation by command with fixed width output ... 98

Figure 5-10 Validation window for the numeric data mask ...107

Figure 5-11 Validation window for the currency data mask..109

Figure 5-12 Validation window for the percentage data mask ..111
ix

List of Figures
Figure 5-13 Validation window for the telephone data mask ...113

Figure 5-14 Validation window for the custom data mask ...115

Figure 5-15 Validation window for static environment override in file chooser.117

Figure 5-16 Validation window for token-based environment override in file chooser.118

Figure 5-17 Rules window accessed from the Rules tab..126

Figure 5-18 Sample validation for a Simple Order table component. ..131

Figure 5-19 Sample table component displaying a column total. ..132
x Commands, Tokens, and Validations Guide and Reference

List of Tables

Table 2-1 New Command window fields ... 22

Table 2-2 Command Steps region .. 25

Table 2-3 Example Conditions .. 26

Table 3-1 Special Command Workbench Query tab fields ... 31

Table 3-2 Special Command window general information fields ... 32

Table 3-3 Example Conditions .. 35

Table 3-4 New Command window fields ... 40

Table 4-1 Entities.. 53

Table 4-2 Tokens supporting explicit entity format ... 58

Table 4-3 Sample environment and app attributes.. 66

Table 4-4 Sample environment tokens... 66

Table 5-1 Component Types.. 71

Table 5-2 Column Headers ... 80

Table 5-3 Automatic character matching field behavior... 86

Table 5-4 Automatic character matching Select page behavior .. 86

Table 5-5 Fields in the Fields:New window... 90

Table 5-6 Validation by command with delimited output ... 96

Table 5-7 Column headers .. 96

Table 5-8 Validation by command with fixed width output ... 98

Table 5-9 Column headers .. 98

Table 5-10 Data Mask Formats ...105

Table 5-11 Fields for configuring the numeric data mask for text fields ..107
xi

List of Tables
Table 5-12 Fields for configuring the currency data mask for text fields109

Table 5-13 Fields for configuring the percentage data mask for text fields111

Table 5-14 Fields for configuring the telephone data mask for text fields113

Table 5-15 Sample telephone data mask formats ..114

Table 5-16 Sample custom data mask formats..115

Table 5-17 File chooser field ..117

Table 5-18 Static environment override ...118

Table 5-19 Token-based environment override..119

Table 5-20 Date field...120

Table 5-21 Example - table component validation settings...127

Table 5-22 Example - Set Unit Price rule settings...128

Table 5-23 Example - Calculate Total rule settings..129

Table A-1 ksc_connect_dest_client parameters..139

Table A-2 ksc_connect_dest_server parameters ..140

Table A-3 ksc_connect_source_client parameters ..141

Table A-4 ksc_connect_source_server parameters...142

Table A-5 ksc_copy_client_client parameters...143

Table A-6 ksc_copy_client_server parameters...145

Table A-7 ksc_copy_server_client parameters...146

Table A-8 ksc_copy_server_server parameters ...147

Table A-9 ksc_copy_server_tmp parameters ..148

Table A-10 ksc_copy_server_tmp parameters ..149

Table A-11 ksc_copy_server_tmp parameters ..149

Table A-12 ksc_copy_server_tmp parameters ..150

Table A-13 ksc_replace parameters ...154

Table A-14 ksc_set_env parameters...156

Table A-15 ksc_copy_script_dest_client parameters ..161

Table A-16 ksc_copy_script_dest_server parameters...161

Table A-17 ksc_copy_script_source_client parameters ...162

Table A-18 ksc_copy_script_source_client parameters ...163

Table A-19 ksc_om_migrate parameters..163

Table A-20 ksc_gl_migrate parameters...165

Table A-21 ksc_parse_jcl parameters ..166

Table A-22 ksc_submit_job parameters..167
xii Commands, Tokens, and Validations Guide and Reference

List of Tables
Table A-23 ksc_run_sql parameters..168

Table A-24 Special command parameters ..169

Table B-1 Token tables..176

Table B-2 App server properties ..177

Table B-3 Budget ..178

Table B-4 Contacts ..178

Table B-5 Distribution...179

Table B-6 Document Management ...180

Table B-7 Environments ..180

Table B-8 Environment applications...183

Table B-9 Command execution ..185

Table B-10 Notifications ..185

Table B-11 Organization unit ..186

Table B-12 Packages...187

Table B-13 Package lines..189

Table B-14 Package pending ..190

Table B-15 Program ...191

Table B-16 Project plans ...191

Table B-17 Project plan details ..194

Table B-18 Releases ..194

Table B-19 Requests ...195

Table B-20 Request details ..198

Table B-21 Request pending...198

Table B-22 Report submissions...199

Table B-23 Resource pools..200

Table B-24 Security groups ...201

Table B-25 Skill ...201

Table B-26 Staffing profile..202

Table B-27 System..202

Table B-28 Tasks ...203

Table B-29 Tasks pending ..205

Table B-30 Users ...206

Table B-31 Validations..208

Table B-32 Validation values ...208
xiii

List of Tables
Table B-33 Workflows...209

Table B-34 Workflow steps ..210

Table B-35 Workflow step transaction...212

Table B-36 Field group token tables ...213

Table B-37 Demand Management field group tokens...214

Table B-38 Master project reference on request field group tokens ..214

Table B-39 PFM asset field group tokens ..214

Table B-40 PFM project field group tokens...215

Table B-41 PFM proposal field group tokens ...216

Table B-42 PMO field group tokens ..216

Table B-43 Program reference on request field group tokens ...217

Table B-44 Work item field group tokens ..217
xiv Commands, Tokens, and Validations Guide and Reference

Chapter

1

Introduction

In This Chapter:

� About This Document
� Who Should Read This Document
� Related Documents
� Overview
15

 Chapter 1: Introduction
About This Document

This document provides information on using and configuring commands,
tokens, and validations in Mercury IT Governance Center™. Each chapter or
appendix covers specific topics on commands, tokens, or validations:

� Chapter 1, Introduction, on page 15

Includes an overview of the use of commands, tokens, and validations, and
details the document’s intended audience and related guides.

� Chapter 2, Using Commands, on page 19

Provides an overview and examples for using commands.

� Chapter 3, Special Commands, on page 29

Discusses the interface for creating, editing and using special commands in
the Mercury IT Governance Center.

� Chapter 4, Using Tokens, on page 49

Provides an overview of how to use tokens.

� Chapter 5, Working with Validations, on page 69

Discusses the creation and editing of validations.

� Appendix A: System Special Commands on page 137

Discusses pre-defined special commands.

� Appendix B: Tokens on page 175

Provides a list of all entity tokens.

Who Should Read This Document

The intended audience for this document includes:

� Configuration experts configuring a deployment system.

� Configuration experts configuring a request resolution system.

� Business modelers who need to modify the following entities: workflows,
object types, request types, validations, notifications, and report types.
16 Commands, Tokens, and Validations Guide and Reference

 Chapter 1: Introduction
Related Documents

Related documents for this book are:

� Guide to Documentation

� Key Concepts

� Getting Started

� Mercury Demand Management: Configuring a Request Resolution System

� Mercury Change Management: Configuring a Deployment System

� Configuring the Standard Interface

Overview

Commands, tokens, and validations are used throughout the Mercury IT
Governance Center implementation to enable advanced automation and
defaulting.

Commands define the heart of the execution layer within the deployment
system and determine which steps to execute at a specific workflow step. This
can involve activities such as migrating a file, executing a script, performing
some data analysis, or compiling code.

Tokens are variables that can be used by Mercury IT Governance Center
entities to reference information that is undefined until the entity is actually
used in a particular context. This includes such things as setting variables in
commands or using tokens within notifications to specify the recipients.

A field’s validation determines not only its type, but the values it can accept. A
workflow step’s validation control the possible results exiting that step.
Altering the validation for a field can range from changing its very nature (text

Users must have the Configuration license to access the screens and windows
described in this document.
Related Documents 17

 Chapter 1: Introduction
field to auto-complete), while modifications to a workflow step validation
make it possible to specify new results for that step.
18 Commands, Tokens, and Validations Guide and Reference

Chapter

2

Using Commands

In This Chapter:

� Overview of Commands
� Where Commands are Used
� Commands Interface
� Object Type Commands and Workflow
� Request Type Commands and Workflow
� Special Commands

� Command Steps
� Command Language

� Command Conditions
� Example Command Uses
19

 Chapter 2: Using Commands
Overview of Commands

Commands define the heart of the execution layer within the deployment
system and determine which steps to execute at a specific workflow step. This
can involve activities such as migrating a file, executing a script, performing
some data analysis, or compiling code. This chapter explains where to find
commands, the interface used to manipulate commands, command structure,
and gives some uses for commands.

Where Commands are Used

Commands are used in the following entities to enhance the implementation
and enable sophisticated command-line automation:

� Object types

� Request types

� Report types

� Workflows

� Validations

Commands Interface

Access commands through the Commands tab of the following screens:

� Object Type

� Request Type

� Report Type

� Validation

� Workflow Step Source

� Special Command

Commands consist of command information and command steps. In this
chapter, the examples are accessed through the Change Mgmt: Object Types
screen, but the interface is the same in other screens where commands are
configured.
20 Commands, Tokens, and Validations Guide and Reference

 Chapter 2: Using Commands
Double-click the command step to open the Edit Command window. The Edit
Command window displays the shell script code in the Steps window, as shown
in Figure 2-1.

Figure 2-1. Commands tab and Edit Command window

To generate a new command, click New Cmd in the Commands tab. This opens
the New Command window as shown in Figure 2-2. Table 2-1 lists the fields
contained in this window.

Double-click the
command to open
the Edit Command
window.
Overview of Commands 21

 Chapter 2: Using Commands
Figure 2-2. New Command window

Each object type, request type, validation, workflow step source, or report type
may have many commands, and each command may have many command
steps. A command may be viewed as a particular function for an object.
Copying a file may be one command, and checking that file into version
control may be another. To perform these functions, a series of events needs to
take place, and these events are defined in the command steps.

An additional level of flexibility is introduced when some commands must
only be executed in certain cases. This is powered by the condition field of the
commands and is discussed in Command Conditions on page 25.

Table 2-1. New Command window fields

Field Description

Command A simple name for the command.

Condition
A condition that determines whether the steps for the command are
executed or not. (See Command Conditions on page 25 below for
more information).

Description A description of the command.

Timeout(s)
The amount of time the command will be allowed to run before its
process is terminated. This mechanism is used to abort commands
that are hanging or taking an abnormal amount of time.

Enabled Determines whether the command is enabled for execution.
22 Commands, Tokens, and Validations Guide and Reference

 Chapter 2: Using Commands
Object Type Commands and Workflow

Object type commands are tightly integrated with the workflow engine. The
commands contained in an object type are executed at Execution workflow
steps in Mercury Change Management™ package lines.

It is important to note the following concepts regarding command/workflow
interaction:

� To execute object type commands at a particular workflow step, the
workflow step must be configured with the following parameters:

� Workflow step must be an execution type step.

� Workflow Scope = Packages.

� Execution Type = Built-in Workflow Event.

� Workflow Command = execute_object_commands.

� When the object reaches the workflow step (with Workflow Command =
execute_object_commands), all object type commands whose conditions
are satisfied will be run in the order they are entered in the object type’s
command panel.

� The object type can be configured to run only certain commands at a
particular step. To do this, specify command conditions. For details, see
Command Conditions on page 25.

Request Type Commands and Workflow

Similar to object type commands, request type commands define the execution
layer within Mercury Demand Management™. While most of the resolution
process for a request is analytically based, cases may arise for specific request
types where system changes are required. In these cases, request type
commands can be used to automatically perform these changes.

Request type commands are tightly integrated with the workflow engine. The
commands contained in a request type are executed at Execution workflow
steps.

It is important to note the following concepts regarding command/workflow
interaction:

� To execute request type commands at a particular workflow step, the
workflow step must be configured with the following parameters:
Overview of Commands 23

 Chapter 2: Using Commands
� Workflow step must be an execution type step

� Workflow Scope = Requests

� Execution Type = Built-in Workflow Event

� Workflow Command = execute_request_commands

� When the request reaches the workflow step (with Workflow Command =
execute_request_commands), all commands whose conditions are satisfied
will be run in the order they are entered in the request type’s command
panel.

� The request type can be configured to run only certain commands at a
particular step. To do this, specify command conditions. For details, see
Command Conditions on page 25.

Special Commands

Object types, request types, report types, workflows and validations all use
commands to access the execution layer. In order to simplify the use of
command executions, Mercury IT Governance Center contains a predefined
set of special commands. Users can also create their own special commands.

Special commands are commands with variable parameters, and are used in
object type, request type, report type, workflow, and validation command
steps. These command steps perform a variety of functions, such as copying
files between environments and establishing connections to environments for
remote command execution. Mercury IT Governance Center features two
types of special commands:

� System special commands. These commands are shipped with Mercury
IT Governance Center. System special commands are read-only and have
the naming convention “ksc_command_name.” System special commands
always begin with “ksc_.”

� User-defined special commands. These commands are user-defined and
have the naming convention “sc_command_name.” User-defined special
commands must begin with “sc_.”

Special commands act as subprograms that can be reused where needed. It it
often more convenient to create a special command for a program that will be
used in multiple places, rather than placing the individual commands into
every object type or request type that need them.
24 Commands, Tokens, and Validations Guide and Reference

 Chapter 2: Using Commands
Command Steps

Command steps represent the actual directives that Mercury IT Governance
Center specifies to execute the commands. A command step can be an actual
command-line directive that is sent to the Mercury IT Governance Server or
target machine, or it can be one of the many special commands. Table 2-2
describes the fields in the Command Steps region of the New/Edit Commands
dialog.

Command Language

The command steps in a command define the actual system-level executions
that need to be performed to achieve the desired function of the command.
Command steps can be UNIX commands, third party application commands,
or special commands. Special commands are reusable routines defined in
Mercury IT Governance Center. Mercury IT Governance Center also supplies
a number of system special commands used to perform common execution
events (such as connecting to environments or copying files). Tokens can be
used within command steps.

Command Conditions

In many situations, it may be necessary to run a different set of commands
depending on the context of execution. This flexibility is achieved through the

Table 2-2. Command Steps region

 Field Description

Steps
Defines the command-line directive or special command to be
issued.

Description Describes each of the command steps.

The execution engine will execute the commands and command steps in the order
they are displayed in the Commands tab. To change the order of the commands or
the command steps, in the Commands tab, select the given command or command
step and use the arrow buttons to move the selected item.
Command Steps 25

 Chapter 2: Using Commands
use of conditional commands. The Condition field for a command is used to
define the situation under which the associated command steps execute.

Conditions are evaluated as boolean expressions. If the expression evaluates to
true, the command is executed. If false, the command is skipped and the next
command is evaluated. If no condition is specified, the command is always
executed. The syntax of a condition is identical to the “where” clause of a SQL
statement, which allows enormous flexibility when evaluating scenarios. Some
example conditions are detailed in the following table:

The condition can include tokens. For more information, see Using Tokens
on page 49.

Example Command Uses

This section provides a number of operations that can be executed using
commands. Sample code for configuring many of these cases is included in
System Special Commands on page 137.

� Commands for connecting to machines

� Connect to the destination environment and run system commands

Table 2-3. Example Conditions

Condition Evaluates to

BLANK Command will be executed in all situations.

‘[P.P_VERSION_LABEL]’
IS NOT NULL

Command will be executed if the parameter
with the token P_VERSION_LABEL in the
package line is not null.

‘[DEST_ENV.ENVIRONMENT_
NAME]’ = ‘Archive’

Command will be executed when the
destination environment is named “Archive”.

‘[AS.SERVER_TYPE_CODE]’ =
‘UNIX’

Command will be executed if the application
server is installed on a UNIX machine.

Be sure to place single quotes around string literals or tokens that will evaluate
strings.
26 Commands, Tokens, and Validations Guide and Reference

 Chapter 2: Using Commands
� Connect to an alternate environment and run command (environment
override)

� Commands for manipulating data (fields and other information stored in
files or database)

� Set a value in a package line

� Create, run and delete a script

� Extract information from a file (version number)

� Commands for running operating system-specific commands (NT and
UNIX)

� Starting a server

� Stopping a server

� Commands for running program-specific commands

� Checking files in and out of a version control system

� Commands for copying files
Example Command Uses 27

 Chapter 2: Using Commands
28 Commands, Tokens, and Validations Guide and Reference

Chapter

3

Special Commands

In This Chapter:

� Overview of Special Commands
� Special Command Interface

� Special Command Workbench
� Special Command Window

� Creating and Editing Special Commands
� Creating a New Special Command
� Creating and Editing Special Command Parameters
� Setting Ownership for Special Commands

� Using Special Commands
� Adding Special Commands to Command Steps Using the Command

Builder
� Nesting Special Commands
29

 Chapter 3: Special Commands
Overview of Special Commands

Object types, request types, report types, workflows and validations all use
commands to access the execution layer. In order to simplify the use of
command executions, Mercury IT Governance Center contains a predefined
set of special commands. Users can also create their own special commands.

Special commands are commands with variable parameters and are used in
object types, request types, report types, workflows, and validation command
steps. (Workflows use special commands in their workflow step sources.)
These command steps perform a variety of functions, such as copying files
between environments and establishing connections to environments for
remote command execution. Mercury IT Governance Center features two
types of special commands:

� System special commands - These commands are shipped with the
Mercury IT Governance Center. System special commands are read-only
and have the naming convention ‘ksc_command_name.’ System special
commands always begin with ‘ksc_.’

� User defined special commands - These commands are user-defined and
have the naming convention ‘sc_command_name. User-defined special
commands must begin with ‘sc_.’

This chapter discusses the interface for creating, editing and using special
commands in Mercury IT Governance Center.

Special Command Interface

Use the Workbench interface to create, view and edit special commands using
the Special Command Workbench shown in Figure 3-1.

To access the Special Command Workbench:

1. Log on to Mercury IT Governance Center and open the Workbench.

See System Special Commands on page 137 for a detailed description of system
special commands and their parameters.
30 Commands, Tokens, and Validations Guide and Reference

 Chapter 3: Special Commands
2. From the shortcut bar, select Configuration > Special Commands.

The Special Command Workbench opens.

Special Command Workbench

Use the Special Command Workbench to search for a particular special command
in the Query tab using the criteria defined in Table 3-1.

Figure 3-1. Special Command Workbench

Special Command Window

Use the Special Command window shown in Figure 3-2 to define and configure
special commands.

Table 3-1. Special Command Workbench Query tab fields

Field Description

Special Command Name Filter for special commands where the name
matches a given string.

Description Filter for special commands where the
description matches a given string.

Enabled Filter for special commands that are enabled or
disabled.
Special Command Interface 31

 Chapter 3: Special Commands
Figure 3-2. Special Command window

Special Command Window General Information Region

The Special Command window’s general information region displays the basic
header information for the special commands. It consists of the fields described
in Table 3-2.

Parameters Tab

The Parameters tab displays the current parameters for the special command.
Most special commands have parameters to override standard behavior. Nearly
all parameters are optional. When a parameter is not passed to a special

General
information
region

Tabs for
defining
parameters
and
commands

Table 3-2. Special Command window general information fields

Field Description

Command Name
The name of the special command. This can only be updated
when generating or editing a user-defined special command.

Enabled?
Determines whether or not the special command is enabled
for use in workflows, object types, report types, request types
and validations.

Description
A description of the special command. This can only be
updated when generating or editing a user-defined special
command.
32 Commands, Tokens, and Validations Guide and Reference

 Chapter 3: Special Commands
command and the default value for the parameter is a custom token, the entity
using the command must contain a field with that token.

For example: The ‘ksc_copy_server_server’ special command shown is used
in an object type. The parameter FILENAME is not specified and defaults
to [P.P_FILENAME] because it is not explicitly passed.

ksc_copy_server_server

This makes ‘ksc_copy_server_server’ equivalent to:

ksc_copy_server_server FILENAME=”[P.P_FILENAME]”

because “[P.P_FILENAME]” is the default token for the parameter
FILENAME. The command execution engine evaluates the token [P.P_
FILENAME] so it must be defined for the entity (the specific object type,
report type or request type).

To override the default token, pass in another value for the parameter. A
few examples are:

ksc_copy_server_server FILENAME=”document.txt”
ksc_copy_server_server FILENAME=”[P.DOCUMENT_NAME]”

This method of passing parameters is explained in more detail in the
section entitled Special Command Builder on page 37.

Commands Tab

Use the Commands tab to define and configure the commands and command
steps used by each user-defined special command. It is also possible to view
the command information for the predefined system special commands.

Commands are designed to have a similar look-and-feel to the UNIX and DOS
operating system command structure. The specific parts of a command, the
command steps, are often just command-prompt directives.

Custom tokens are defined for specific object types, request types, and report types,
and are referenced using the “[P.TOKEN_NAME]” syntax. See System Special
Commands on page 137 for a list of all predefined special command parameters and
their default tokens.
Special Command Interface 33

 Chapter 3: Special Commands
Figure 3-3. Special Command window—Commands tab

Commands are accessible through the Commands tab of the Special Commands
window and consist of command information and command steps.

Command Conditions

In many situations, it may be necessary to run a different set of commands
depending on the context of execution. For example, one command may be
needed to update a Web page, while another command may be required to
set-up an account on the Sales Automation application.

This flexibility is achieved through the use of conditional commands. The
Condition field for an object command provides the ability to define the
situation under which the associated command steps will execute.

Conditions are evaluated as Boolean expressions. If the expression evaluates to
TRUE, the command is executed. If FALSE, the command is skipped and the
next command is evaluated to see if it should run. If no condition is specified
the command is always executed. The syntax of a condition is identical to the
WHERE clause of a SQL statement, which allows flexibility when evaluating
scenarios. Some example conditions are given in Table 3-3.
34 Commands, Tokens, and Validations Guide and Reference

 Chapter 3: Special Commands
The condition can include a token. See Using Tokens on page 49 for more
information.

Parameters in Command Steps

In the command steps within a special command, parameters are referred to as
their default tokens. When the special command is executed with a value
specified for a parameter, this value will replace the default token throughout
the special command steps.

Example - Special Command

An existing special command echoes a string as an HTML tag named sc_echo_
html and takes the parameter RAW_TEXT. This example shows how to create
another special command named sc_new_command. This special command
will use sc_echo_html to echo the parameter value FILENAME, which has a
default token of [P.P_FILENAME].

Table 3-3. Example Conditions

Condition Evaluates to

BLANK Command executes in all situations.

‘[REQ.DEPARTMENT]’ = ‘SALES’
Command executes when the department
for the request is named SALES.

‘[REQ.PRIORITY]’ = ‘HIGH’
Command executes if the priority assigned to
the request is HIGH.

When using conditional commands, strings must be enclosed by single quotes.
Special Command Interface 35

 Chapter 3: Special Commands
To accomplish this, the following command steps are entered in a command
for sc_new_command:

sc_echo_html RAW_TEXT=”The value of FILENAME is...”
sc_echo_html RAW_TEXT=”[P.P_FILENAME]”

Note that the command step uses the default token to refer to the value of the
special command parameter. The parameter name is only used when invoking
a special command.
36 Commands, Tokens, and Validations Guide and Reference

 Chapter 3: Special Commands
Special Command Builder

The Special Command Builder is a tool designed to simplify the use of special
commands by ensuring proper formatting of the command step. The Special
Command Builder, shown in Figure 3-4, is an interface where a special
command can be selected and appropriate parameters can be entered. The
Special Command Builder outputs a line of text to the Command field which
can be used as a command step.

Figure 3-4. Special Command Builder

Ownership Tab

The Ownership tab is used to select ownership groups for a specific special
command. Members of ownership groups are the only users who have the right
to edit, copy or delete this special command. This tab also displays ownership
groups that have been linked to this entity. Ownership groups can be deleted
from this tab by selecting them and clicking Remove.

See Setting Ownership for Special Commands on page 43 for more
information about setting ownership for a new or existing special command.

Parameters cannot be used in command conditionals.

Continuing from the previous example, suppose that a special command has the
parameter FILENAME, whose default token is [P.P_FILENAME]. In command
conditionals, the token [P.P_FILENAME] will always be evaluated normally,
regardless of whether our special command was called with a value for the
parameter FILENAME.
Special Command Interface 37

 Chapter 3: Special Commands
Figure 3-5. Ownership tab

Used By Tab

Click the Used By tab to view a list of entities that currently refer to the
selected special command.

Creating and Editing Special Commands

This section details key procedures for creating and editing special commands.

Creating a New Special Command

To create a new special command:

1. From the Special Command Workbench, click New Special Command.

The Special Command window opens.

2. Click the Commands tab.

3. Click New Cmd.

The New Command window opens. This window’s fields are defined in
Table 3-4 on page 40.
38 Commands, Tokens, and Validations Guide and Reference

 Chapter 3: Special Commands
4. Enter information in the Command, Condition and Description fields.

See Command Conditions on page 34 for more details about defining
Conditions.

5. Select the Yes option for the Enabled radio button.

6. Add tokens to the new special command as desired.

a. Click Tokens.

The Token Builder window opens.

b. Copy a token from the Token Builder window.

c. Paste it into the New Command window’s Steps text area.

7. Add another special command to the new special command.

a. Click Special Cmd.

The Special Command Builder window opens.

b. In the Command Name field, select a special command and enter any
required parameters.

c. Copy the special command from the Special Command Builder window.

d. Paste it into the New Command window’s Steps text area.
Creating and Editing Special Commands 39

 Chapter 3: Special Commands
8. To add the new command to the Command tab of the Special Command
window without closing the New Command window, click Add.

9. To add the new command to the Command tab of the Special Command
window and close the New Command window, click OK.

The new special command has been created.

10. To save the new special command, click Save.

Creating and Editing Special Command Parameters

This section describes procedures for creating and editing special command
parameters.

Adding Parameters to Special Commands

This section describes the procedure for adding parameters to a special
command.

To add a new parameter to a user-defined special command:

1. In the Parameters tab of the Special Command window, click New.

The Parameter: New window opens.

Table 3-4. New Command window fields

Field Description

Command The name of the command.

Condition
A condition that determines whether the command steps for the
command are executed or not. (See Command Conditions
on page 34 for more information).

Description A description of the command.

Enabled? Determines whether the command is enabled for execution.
40 Commands, Tokens, and Validations Guide and Reference

 Chapter 3: Special Commands
2. Fill in the Name, Description and Default Token fields.

To select an existing global token, follow step 3 through step 9. To
manually entered a token name in the Default Token field, go to step 7.

3. To select an existing global token, click Tokens.

The Token Builder window opens.

4. In the Token Context pane of the window, select a folder.

The available tokens for each folder display in the Tokens pane of the
window.

5. In the Token column, select a token.

When a token is selected, it enables the Token field and displays the name
of the selected token (including its prefix).
Creating and Editing Special Commands 41

 Chapter 3: Special Commands
6. Copy the token.

a. Select the token in the Token field.

b. Press Ctrl+c on the keyboard.

7. In the Parameter window, paste the token name into the Default Token field
by pressing Ctrl+v on the keyboard.

8. To add the field to the Parameters tab and close the Parameter window,
click OK.

9. To add the field to the Parameters tab without closing the Parameter
window, click Add.

Editing Special Command Parameters

This section describes the procedure for editing special command parameters.

To edit an existing parameter:

1. Open the special command.

2. In the Parameters tab, double-click the parameter.

The Parameter window opens.

3. Make the desired changes in the Parameter window.

4. Click Apply to apply the changes without closing the Parameter window.

5. Click OK to apply the changes and close the Parameter window.

The parameter order can be altered by selecting a parameter in the Parameters tab
and clicking either the Up or Down arrow.

Changes to parameters already used by existing request types, object types, or
report types can affect the way these entities function.
42 Commands, Tokens, and Validations Guide and Reference

 Chapter 3: Special Commands
Deleting Parameters

This section describes the procedure for deleting special command parameters.

To delete a parameter:

1. Open the special command.

2. Select the parameter in the Parameters tab.

3. Click Remove.

4. Click OK to save the information and close the Special Command window.

5. Click Save to save the information without closing the Special Command
window.

The parameter is deleted from the special command.

Setting Ownership for Special Commands

Different groups of users can have exclusive control over the special
commands used by their group. These groups are referred to as ownership
groups. Members of the ownership group are the only users who can edit,
delete or copy the special commands. Each special command can be assigned
multiple ownership groups.

Ownership groups are defined in the Security Group window in the Workbench.
See the Security Model Guide and Reference for instructions on setting up
security groups.

To set the ownership for a special command:

1. Open the Special Command window.

2. Click the Ownership tab.
Creating and Editing Special Commands 43

 Chapter 3: Special Commands
3. Select the Only groups listed below that have the Edit Special Commands
Access Grant option.

4. Click Add.

The Add Security Groups window opens.

5. In the Security Group auto-complete list, select a security group.

6. To close the Add Security Group window, click OK.

The selected security groups are display in the Ownership tab under the
security group column.

7. To save the changes and close the window, click OK in the Special
Command window.

To save the selection and leave the Special Command window open, click
Save.

Only members of the security group(s) specified in the Ownership tab can edit,
delete, or copy this special command.
44 Commands, Tokens, and Validations Guide and Reference

 Chapter 3: Special Commands
Using Special Commands

Special commands are added to command steps directly in the entity windows
(object types, request types, report types, validations and workflows). For
example, Figure 3-6 shows an object type that has been generated using a
combination of special commands.

Figure 3-6. RCS File Migration object type

If no ownership groups are associated with the entity, the entity is considered global
and any user with the Edit access grant for the entity can edit, copy or delete it. For
more information on access grants, see the Security Model Guide and Reference.

By default, administrators have the 'Ownership Override' access grant and can
access configuration entities even if the administrator is not a member of one of the
ownership groups and does not have the Edit access grant.

If a security group is disabled or loses the Edit access grant, that group will no longer
have edit access for the entity.
Using Special Commands 45

 Chapter 3: Special Commands
Adding Special Commands to Command Steps Using the Command
Builder

Special commands can be added to any set of command steps in the following
entities:

� Object types

� Request types

� Report types

� Validations

� Workflow step sources

� Other special commands

Access the Special Command Builder in the Commands tab for each of these
entities.

To build a command step using the Special Command Builder:

1. Go to the Commands tab for the entity which commands will be added.

2. Click New Cmd or edit an existing command.

The Command window opens.

3. Click Special Cmd.

The Special Command Builder window opens.

4. Enter the a command name in the Command Name field, or select it from
the auto-complete list.

When selecting a command name from the auto-complete list, its
parameters appear in the Special Command Builder.

Both predefined (ksc_command) and user defined (sc_command) special commands
can be used to build the command steps line. For more information on generating
special commands, see Special Command Interface on page 30.
46 Commands, Tokens, and Validations Guide and Reference

 Chapter 3: Special Commands
5. Replace the associated default token value with any desired parameter
information.

a. To view the default tokens, click Show Default Tokens.

b. To hide the default tokens, click Hide Default Tokens.

6. When the parameters have been modified, select the text in the Command
field.

To copy the formatted special command, press Ctrl+c on the keyboard.

7. To close the Special Command Builder window, click Close.

8. To paste the special command step, click in the steps text area of the New
Command window and press Ctrl+v on the keyboard.

9. Fill in the remaining fields in the New Command window.

10. Select the Yes option for the Enabled radio button.

11. To add the command step to the Command tab, click OK.

The new special command is now ready to be used in an object type, request
type, report type, validation, or workflow.

Nesting Special Commands

Special commands can be used within other special commands, but must be
used within a command step. However, a special command cannot refer to
itself.

Special commands can be used in an execution workflow step source. After the
workflow step source is created (which contains the special commands), it can be
dragged and dropped into a workflow.
Using Special Commands 47

 Chapter 3: Special Commands
48 Commands, Tokens, and Validations Guide and Reference

Chapter

4

Using Tokens

In This Chapter:

� Overview
� What are Tokens?
� Where Tokens Are Used
� Token Builder Window Overview
� Token Formats

� Default Format
� Explicit Entity Format
� User Data Format
� Parameter Format
� Sub-Entity Format
� Environment and Environment Application Tokens

� Token Evaluation
49

 Chapter 4: Using Tokens
Overview

This chapter provides an overview of how to use tokens.

What are Tokens?

While configuring certain features, it is often necessary to reference
information that is undefined until Mercury IT Governance Center is actually
used a particular context. Instead of generating objects that are valid only in
specific contexts, Mercury IT Governance Center uses variables to facilitate
the creation of general objects that can be applied to a variety of contexts.
These variables are called tokens.

There are two types of tokens found within Mercury IT Governance Center:
custom tokens and standard tokens. Standard tokens are provided with the
product. Custom tokens are generated to suit specific needs. Each field of the
following entities can be referenced as a custom token:

� Object types

� Request types and request header types

� Report types

� User data

� Workflow parameters

In addition, numerous standard tokens are available that provide other useful
pieces of information related to the system. For example, Mercury IT
Governance Center has a token that represents the users currently logged onto
the system.

Where Tokens Are Used

Tokens can be used in the following entity windows:

� Object type commands

� Request type commands

� Validation commands and SQL statements
50 Commands, Tokens, and Validations Guide and Reference

 Chapter 4: Using Tokens
� Report type commands

� Executions and notifications for a workflow

� Workflow step commands

� Notifications in a report submission

� Special command commands

� Notifications for tasks

� Notes for request details

Figure 4-1. Example of a token used in a SQL statement

Token Builder Window Overview

In each of the entity windows listed in Where Tokens Are Used on page 50, a
token can be created by opening the Token Builder window.

To open the Token Builder window through the Request Type window:

1. Open a Request Type window, either by generating a new request type or by
opening an existing one.

2. Click the Commands tab.
Token Builder Window Overview 51

 Chapter 4: Using Tokens
3. Click New Cmd.

4. Click Tokens.

The Token Builder window opens, as shown in Figure 4-2.

5. Use the Token Builder window to help construct valid tokens.

Figure 4-2. Token Builder window

Folders are displayed in the left pane of the Token Builder window. These
folders contain groups of tokens that correspond to entities defined in Mercury
IT Governance Center. For a list of entities and associated tokens, see Tokens
on page 175. For instance, the Packages folder contains tokens that reference
various package attributes. If the Packages folder is selected, the available
package tokens are displayed in the list in the right pane of the window.

Some entities (folders) have sub-entities (sub-folders) that can be referenced
by tokens. Click the plus sign (+) next to an entity to see the list of sub-entities
for an entity. Each sub-entity also has tokens, and it is possible to reference any
of the tokens of sub-entities, as well as tokens of the parent entity. For
example, the package line entity is a sub-entity of the package entity.

As entity folders and the subsequent tokens in the list are selected, a character
string is constructed in the Token field at the bottom of the Token Builder
window. This is the formatted string used to reference the token. Either copy
and paste the character string, or type this string where needed.
52 Commands, Tokens, and Validations Guide and Reference

 Chapter 4: Using Tokens
Token Formats

Tokens can use one of several different formats, depending on how they are
going to be evaluated. Tokens can be expressed in the following formats:

� Default Format

� Explicit Entity Format

� User Data Format

� Parameter Format

� Sub-Entity Format

� Environment and Environment Application Tokens - the environment and
environment app entities evaluate differently than the other entities.

Table 4-1 lists the entities and the formats each entity supports. Each format is
discussed in a section following the table.

Table 4-1. Entities

Prefix (Entity) Entity and Description User Data
Format?

Parameter
Format?

AS App server N N

BGT Budget Y N

CON Contact Y N

DEST_ENV
Destination environment. If an app code is
specified, it will be used. Otherwise use only
values from ENV.

Y N

DEST_ENV.APP
Destination environment (for the environment
application). Only use app code values, even
if they’re null.

Y N

DEST_ENV.ENV
Destination environment. Ignores app codes
and only uses the ENV values.

Y N

DIST Distribution Y N

ENV Environment Y N

ENV.APP
Environment (for the environment
application). Only use app code values, even
if they’re null.

Y N

ENV.ENV
Environment. Ignores app codes and only
uses the ENV values.

Y N
Token Formats 53

 Chapter 4: Using Tokens
EXEC Execution N N

NOTIF Notification N N

ORG Organization Unit Y N

PKG Package Y N

PKG.PKGL Package (package line) Y N

PKG.PEND Package (pending package) Y N

PKGL Package line Y Y

PRG Program Y N

PRJ Project plan Y N

PRJD Project plan details N Y

REL Release N N

REL.DIST Release (distribution) Y N

REQ Request Y Y

REQ.PEND Request (pending) N N

REQD Request details N Y

RP Report submission N Y

RSCP Resource pool Y N

SG Security group Y N

SKL Skill Y N

STFP Staffing profile Y N

SOURCE_ENV Source environment Y N

SOURCE_ENV.APP
Source environment (for environment
application). Only use app code values, even
if they’re null.

Y N

SOURCE_ENV.ENV
Source environment. Ignores app codes and
only uses the ENV values.

Y N

SYS System N N

TSK Task Y N

TSK.PEND Task (pending) N N

Table 4-1. Entities

Prefix (Entity) Entity and Description User Data
Format?

Parameter
Format?
54 Commands, Tokens, and Validations Guide and Reference

 Chapter 4: Using Tokens
Default Format

Tokens are expressed as a prefix (a short name for the entity) followed by a
token name. The prefix and token name are separated by a period and enclosed
in square brackets with no spaces:

[PREFIX.TOKEN_NAME]

For example:

The token for the package number is expressed as:

[PKG.NUMBER]

The token for a request's workflow name is expressed as:

[REQ.WORKFLOW_NAME]

Certain tokens also support a sub-format. This sub-format is required for
certain entities in order to evaluate to the correct context. For example, WF
tokens will resolve to information related to the workflow, whereas WF.WFS
tokens will resolve to workflow step information. Token sub-formats are
included in the prefix, appended to the parent prefix, and separated by a period:

[PREFIX.SUB-PREFIX.TOKEN_NAME]

Tokens are evaluated according to the current context of Mercury IT
Governance Center, which is derived based on information known at the time
of evaluation. For more information, see Token Evaluation on page 66.

USR (User) User Y N

VAL Validation N N

VAL.VALUE
Validation (Value). Use this format to specify
a specific validation.

Y N

VALUE Validation (Value) Y N

WF Workflow Y N

WF.WFS
Workflow (step). Use this format to specify a
specific workflow.

N Y

WFS Workflow step Y N

Table 4-1. Entities

Prefix (Entity) Entity and Description User Data
Format?

Parameter
Format?
Token Formats 55

 Chapter 4: Using Tokens
Explicit Entity Format

It is possible to provide a specific context value for an entity. This allows the
default context to be overridden. Some tokens can never be evaluated in the
default context. In these cases, the context must be set using an explicit entity
format:

[PREFIX=“<entity name>”.TOKEN_NAME]

The Token Builder helps generate tokens in this format by providing a list of
possible entity name values. When such a list is available, the Context Value
auto-complete field at the bottom of the Token Builder becomes enabled. Like
any other auto-complete field, either type into the field to reduce the list or
click the auto-complete icon in the field to open the Validate window. Once a
value is selected, it is inserted into the token in the Token field, generating an
explicit entity token (see Figure 4-3).

Figure 4-3. Explicit Entity Format

For example, suppose the Email Address for the user “jsmith” is to be
referenced. The token would be:

[USR=”jsmith”.EMAIL_ADDRESS]

To construct the above token in the Token Builder window:

1. Select the User folder.
56 Commands, Tokens, and Validations Guide and Reference

 Chapter 4: Using Tokens
Available tokens are displayed in the list on the right pane. The Context
Value field at the bottom of the Token Builder is enabled. The string [USR.]
appears in the Token field below the Context Value field.

2. Click the auto-complete icon in the Context Value field.

A Validate window opens with a list of users.

3. Scroll through the list to find user “jsmith.” Select this user and click OK.

The string [USR=“jsmith”] appears in the Token field.

4. In the list of tokens, select EMAIL_ADDRESS.

The string [USR=“jsmith”.EMAIL_ADDRESS] appears in the Token field.
This is the complete token. Since the token is “now complete, the Token
field becomes enabled.

5. Select the token.

6. Press Ctrl+c on the keyboard to copy the token.

7. Press Ctrl+v on the keyboard to paste the token into another field.

Using Tokens within Other Tokens

The explicit entity format can be used to put tokens within other tokens to
generate a value. For example, to print the description of the workflow that is
associated with package #10203, the token would be:

[WF=“[PKG=“10203”.WORKFLOW_NAME]”.DESCRIPTION]

This token would have to be built in two steps. First, build the Description token
for the workflow. Copy and paste that token into another field, then build the
Workflow Name token for the package. Copy and paste that token within the
Description token that was previously pasted.

Internally, this token is evaluated in two stages. The inner token is evaluated
and the token has the following internal representation:

[WF=“Workflow_Name”.DESCRIPTION]

The remaining token is evaluated and the final result is printed:

description of my workflow

Table 4-2 includes a list of the tokens that support the explicit entity format.
Token Formats 57

 Chapter 4: Using Tokens
Tokens for the user and security group entities can never be evaluated in the
default format, and require the use of the explicit entity format. An example
would be the token [USR.EMAIL_ADDRESS]. This token can never be
evaluated because Mercury IT Governance Center cannot determine to which
user it should refer.

It is important to note that entity_name is case-sensitive and can contain spaces or
other ASCII symbols.

Table 4-2. Tokens supporting explicit entity format

Token Prefix Example Acceptable Explicit Entry

BGT [BGT=”Development Budget”.CREATED_BY] Budget Name

CON [CON=”Smith, John”.PHONE_NUMBER] Last Name, First Name

ENV
[ENV=”ITG_SERVER".CLIENT_TRANSFER_
PROTOCOL]

Environment Name

ORG [ORG="Project Managers".MANAGER_ID] Organization Unit Name

PKG [PKG="30010".CREATED_BY] Package Number

REQ [REQ="30006".CREATED_BY] Request Number

RSCP
[RSCP="Development Resources".CREATED_
BY]

Resource Pool Name

SG [SG=”Administrator”.LAST_UPDATED_BY] Security Group Name

SKL [SKL="Architect".AVERAGE_COST_RATE] Skill Name

STFP [STFP="ITG Pilot".CREATED_BY] Staffing Profile Name

USR [USR="jsmith".LAST_NAME] User Name

VAL [VAL="Date".CREATED_BY] Validation Name

WF [WF="Dev -> Test -> Prod".CREATED_BY] Workflow Name

WF.WFS [WF=“Workflow Name”.WFS=“1”.STEP_NAME] Workflow Step Sequence Number
58 Commands, Tokens, and Validations Guide and Reference

 Chapter 4: Using Tokens
User Data Format

User data fields use tokens differently, as shown below:

[PREFIX.UD.USER_DATA_TOKEN]

The Prefix is the name of the entity that has user data. The modifier UD
indicates that user data for that entity is being referenced. USER_DATA_
TOKEN is the name of the token for the specific user data field. For example,
suppose that a field for package user data has been generated whose token is
GAP_NUMBER. In the default format, the token would be:

[PKG.UD.GAP_NUMBER]

In this context, PKG indicates that the package entity is being referenced, UD
indicates that user data is being referenced, and GAP_NUMBER is the token
name.

When user data fields are generated, a validation that has both a hidden and
visible value can be used. For example, if the validation ‘KNTA - Usernames -
All’ is used, the hidden value is the user ID and the displayed value is the
username. The previous syntax references the hidden value only. To reference
the visible value for a user data field, the syntax shown below must be used:

[PREFIX.VUD.USER_DATA_TOKEN]

If the modifier VUD is used instead of UD, the visible user data value is
referenced.

When context can be determined, user data tokens are displayed with the
system-defined tokens in the Token Builder.

Table 4-1 indicates which tokens support the user data format.

Drop-down lists and auto-complete lists may have different hidden and displayed
values. For all other validations, the hidden and displayed values are identical.
Token Formats 59

 Chapter 4: Using Tokens
Parameter Format

Object type custom fields, request type custom fields, request header type
fields, project plan fields, and workflow parameters use the parameter format
for tokens as shown below:

[PREFIX.P.PARAMETER_TOKEN]

In this specific case, the Prefix is the name of the entity that uses a custom
field. The modifier “P” indicates that parameters for that entity are being
referenced. PARAMETER_TOKEN is the name of the token for the specific
parameter field.

For example, suppose a field for an object type named Gap Number (Token =
GAP_NUMBER) has been generated that is used on package lines. In the
default format the token would be:

[PKGL.P.GAP_NUMBER]

In this context, PKGL is the prefix since the package lines entity has been
referenced, “P” indicates that parameters have been referenced, and GAP_
NUMBER is the token name.

Custom fields store both a hidden and visible value. For example, if the field
uses the validation ‘KNTA - Usernames - All’, the hidden value is the user ID
and the displayed value is the username. The previous syntax references the
hidden value only. To reference the visible value for a parameter, use the
syntax as shown:

[PREFIX.VP.PARAMETER_TOKEN]

If the modifier ‘VP’ is used instead of ‘P’, the visible parameter value is
referenced.

� Package lines reference object type fields.

� Requests reference request type and request header type fields.

� Workflows reference workflow parameters.

Drop-down lists and auto-complete lists may have different hidden and displayed
values. For all other validations, the hidden and displayed values are identical.
60 Commands, Tokens, and Validations Guide and Reference

 Chapter 4: Using Tokens
Request Field Tokens

Tokens can access information on custom fields included on a request. These
fields can be defined in a:

� Custom request type field

� Request header field (standard)

� Request header field (custom fields)

� Request header field (field groups)

� Table component field

Request Token Prefixes

All fields defined in the request header type (field group fields, custom header
fields, and standard header fields) use the REQ prefix. The following examples
could use “P” or “VP.”

REQ.<standard header Token>

Example: REQ.DEPARTMENT_CODE

REQ.P.<custom header field Token>

Example: REQ.P.BUSINESS_UNIT

REQ.P.<field group Token starting with KNTA_>

Example: REQ.P.KNTA_SKILL

Fields defined in the request type use the REQD prefix. It is also possible to
access standard header fields using the REQD prefix:

REQD.P.<custom detail field>

REQD.<standard header Token>

Tokens in Request Table Components

When referring to items in a table component, the tokens need to follow
specific formats. These formats differ depending on the item that is being
referenced within the table. Figure 4-4 shows the basic elements of the table.
These elements will be referenced when discussing the different options for
referencing data within the table using tokens.
Token Formats 61

 Chapter 4: Using Tokens
Figure 4-4. Table component formats

The format [REQD.T.<TABLE_TOKEN>] represents the table and specific
tokens will be represented as [REQD.T.<TABLE_TOKEN>.<SPECIFIC
TOKENS>]. The following sections provide examples of the formats used for
tokens referencing items related to the table component:

� To access the table row count from a Request context

� To access the Salary Column Total value from a Request context

� To access the Name of the first employee in the table from a Request

� To access the Code of the first employee in the table from a Request

� To access the Department Cell value of the current row (Table Row
Context)

� To obtain a delimited list of a column’s contents (Request Context)

In these examples, the following example will be used. A table component
named Employee with 4 columns:

� Name of Employee

� Years of Service of the Employee

� Department where the Employee belongs to

� Salary of the Employee.

These columns are defined as shown:

Table Component “Employee Table” with [EMPLOYEE] as the Token.
Column 1 - Name of Employee; Token = [NAME]

Column 2 - Years of Service; Token = [YEARS_OF_SERVICE]
Column 3 - Department of Employee; Token = [DEPARTMENT]

Column 4 - Salary of Employee; Token = [SALARY]

Table Row

Table Cell

Table Column
62 Commands, Tokens, and Validations Guide and Reference

 Chapter 4: Using Tokens
To access the table row count from a Request context

[REQD.P.EMPLOYEE] - returns the raw row count without any
descriptive information.

[REQD.VP.EMPLOYEE] - returns the row count with descriptive
information. Example "13 Entry(s)".

WHERE: EMPLOYEE is the Token given to a table component type.

To access the Salary Column Total value from a Request context

[REQD.T.EMPLOYEE.TC.VP.SALARY.TOTAL]

WHERE: EMPLOYEE is the Token given to a table component type and
SALARY is the Token name given the table's first column.

To access the Name of the first employee in the table from a Request

[REQD.T.EMPLOYEE.TE="1".VP.NAME]

To access the Code of the first employee in the table from a Request

[REQD.T.EMPLOYEE.TE="1".P.NAME]

To access the Department Cell value of the current row (Table Row Context)

[TE.VP.DEPARTMENT]

It is possible to use this table component token in a Table Column Header
validation SQL or in a table component rule SQL.

To obtain a delimited list of a column’s contents (Request Context)

[REQD.T.EMPLOYEE.TC.VP.NAME]

where EMPLOYEE is the token given to a table component type and SALARY is
the token name given the table's first column.

This is particularly useful when a column is a list of user names, and this list
can be used for sending these users notification.

Sub-Entity Format

Some entities have sub-entities that can be referenced. In the Token Builder,
click the plus sign (+) next to an entity to see the list of its sub-entities. To
reference a token from a sub-entity, in the context of a parent entity, use the
syntax shown below:
Token Formats 63

 Chapter 4: Using Tokens
[PREFIX.SUB_ENTITY_PREFIX.TOKEN]

In this case, the PREFIX is the name of the entity, the SUB_ENTITY prefix is the
prefix for a sub-entity, and TOKEN is a token of the sub-entity. Typically, it is
not necessary to use this syntax. However, it is possible to reference specific
sub-entities using the explicit entity syntax.

For example, to reference the step name of the workflow step in the current
context, both of the following tokens have the same meaning:

[WFS.STEP_NAME]

[WF.WFS.STEP_NAME]

However, to reference the step name of the first workflow step for the current
workflow, use the following token:

[WF.WFS=”1”.STEP_NAME]

By not using the explicit entity format for the workflow entity, the token
indicates that the workflow in the current context should be used. But by using
the explicit entity format for the workflow step entity, the current context is
overridden and a specific workflow step is referenced. In contrast, to reference
the step name of the first workflow step in a workflow whose name is 'my
workflow', use the following token:

[WF=“workflow_name”.WFS=“1”.STEP_NAME]

With this token, the current context for both the workflow and the workflow
step will be overridden.

Environment and Environment Application Tokens

Tokens for the environments and environment application entities can have
many different forms depending on the information to be referenced. During
object type command execution, there is generally a source and a destination
environment. The token prefixes SOURCE_ENV and DEST_ENV are used to
reference the current source and destination, respectively, as shown in the
following example:

[SOURCE_ENV.DB_USERNAME]

[DEST_ENV.SERVER_BASE_PATH]

In addition, a general ENV Prefix can be used in the explicit entity format to
reference specific environments, as shown in the following example:

[ENV=”Prod”.CLIENT_USERNAME]
64 Commands, Tokens, and Validations Guide and Reference

 Chapter 4: Using Tokens
During normal environment token evaluation, the evaluation engine first
evaluates the app code on the package line (if one is specified). If the
corresponding app code token has a value, then the value is used. Otherwise, if
no app code was specified or the app code token has no value, the
corresponding base environment information is used.

To override the normal environment token evaluation and only evaluate the
environment information (without first checking for the app code), construct
the SOURCE_ENV and DEST_ENV tokens as shown in the following
examples:

[SOURCE_ENV.ENV.DB_USERNAME]

[DEST_ENV.ENV.SERVER_BASE_PATH]

[ENV=”Prod”.ENV.CLIENT_USERNAME]

The evaluation engine can be instructed to look only at the app code
information (without checking the base environment information if the app
code token has no value). Construct the SOURCE_ENV and DEST_ENV
tokens as shown in the following example:

[SOURCE_ENV.APP.DB_USERNAME]

[DEST_ENV.APP.SERVER_BASE_PATH]

[ENV=”Prod”.APP.CLIENT_USERNAME]

The prefix ‘APP’ can only be used in the sub-entity format. For example, the
following token is invalid, since a context environment that includes the app
code has not been specified.

[APP.SERVER_BASE_PATH]

In addition, the explicit entity format can be used with the app code entity to
reference a specific app code, as shown in the following examples:

[SOURCE_ENV.APP=”AR”.DB_USERNAME]

[DEST_ENV.APP=”OE”.SERVER_BASE_PATH]

[ENV=”Prod”.APP=”HR”.CLIENT_USERNAME]

For example, suppose objects are being migrated on a package line at a given
workflow step, and the line uses app code “HR”. The workflow step has ‘QA’
as the source environment, and ‘Prod’ as the destination environment.
Table 4-3 shows other attributes of the environments and applications.
Token Formats 65

 Chapter 4: Using Tokens
Given this setup, Table 4-4 shows some sample tokens and how each would
evaluate.

Token Evaluation

Tokens are evaluated at the point when Mercury IT Governance Center must
know their context-specific values. At the time of evaluation, the token
evaluation engine gathers information from the current context and tries to
derive the value for the token. Values can only be derived for specific, known
contexts (the current context is defined as the current package, package line,
request, project plan, workflow step, or Source and destination environments).

Table 4-3. Sample environment and app attributes

Environment App Code Server Base Paths

QA /qa

QA OE /qa/oe

QA HR /qa/hr

Prod /prod

Prod OE /prod/oe

Prod HR <no value>

Table 4-4. Sample environment tokens

Token Evaluation

[SOURCE_ENV.SERVER_BASE_PATH] /qa/hr

[DEST_ENV.SERVER_BASE_PATH] /prod

[SOURCE_ENV.ENV.SERVER_BASE_PATH] /qa

[DEST_ENV.ENV.SERVER_BASE_PATH] /prod

[SOURCE_ENV.APP.SERVER_BASE_PATH] /qa/hr

[DEST_ENV.APP.SERVER_BASE_PATH] <no value>

[ENV=”QA”.APP=”OE”.SERVER_BASE_PATH] /qa/oe
66 Commands, Tokens, and Validations Guide and Reference

 Chapter 4: Using Tokens
The token evaluation engine takes as many passes as necessary to evaluate all
tokens, so one token can be nested within another token. During each pass, if
the evaluation engine finds a valid token, it replaces that token with its derived
value. tokens that are invalid for any reason (such as the token is misspelled or
no context is available) are left alone.

For example, suppose an object type command has the following Bourne-shell
script segment as one of its command steps:

if [! -f [PKGL.P.P_SUB_PATH]/[PKGL.P.P_BASE_FILENAME].fmx];
then exit 1; fi

At the time of execution, [PKGL.P.P_SUB_PATH] = “Forms” and
[PKGL.P.P_BASE_FILENAME] = “obj_maint”. After token evaluation, this
command step would reduce to:

if [! -f Forms/obj_maint.fmx]; then exit 1; fi

As another example, suppose a user data field has been generated for all users
called ‘MANAGER.’ The email address of the manager of the person who
generated a request could be found using the token:

[USR=”[USR=”[REQ.CREATED_BY_NAME]”.VUD.MANAGER]”.EMAIL_ADDRESS]

The token evaluation engine would first evaluate the innermost token
([REQ.CREATED_BY_NAME]). Once that is complete, the next token
([USR=“<name>”.VUD.MANAGER]) is evaluated. Finally, the outermost
token is evaluated, giving the manager's email address.

Tokens are evaluated at different points based on the token type. Tokens used
in object type parameters and commands are evaluated during command
execution. Tokens in a validation SQL statement are evaluated just before that
statement is executed (such as generating a new package line). Tokens in an
email notification are evaluated when a notification is generated.
Token Evaluation 67

 Chapter 4: Using Tokens
68 Commands, Tokens, and Validations Guide and Reference

Chapter

5

Working with Validations

In This Chapter:

� Overview of Working with Validations
� What are Validations
� Validation Component Types - Overview
� Creating a Validation

� User Data on the Validation Value
� Editing Validations

� Creating a URL to Open the Validation Window
� Deleting Validations
� Static List Validations
� Dynamic List Validations

� SQL Validation
� Command Validation

� Configuring Auto-Complete Validations
� Configuring General Auto-complete Behavior
� Configuring the Auto-Complete Values

� Configuring Text Fields
� Creating a Text Field Validation Overview
� Available Text Data Masks
� Customizing the System Text Data Masks
� Creating a Custom Data Mask

� Using Directory and File Choosers
� Directory Chooser
� File Chooser

� Date Field Formats
� Creating 1800 Character Text Areas
69

 Chapter 5: Working with Validations
� Configuring the Table Component
� Defining the Table Component in the Validation Workbench
� Adding the Table Component to a Request Type

� Package and Request Group Validations
� Package and Request Groups
� Request Type Category

� Validation Special Characters
� System Validations

Overview of Working with Validations

This chapter provides an overview for how to use validations in your Mercury
IT Governance system. Validations determine the acceptable input values for
user-defined fields (such as object type or request type fields). Validations also
determine the possible results that a workflow step can return.

What are Validations

Validations are used for two primary functions:

� Fields. Validations determine the field’s component type (text field,
drop-down list, etc.) and the fields possible values. Fields can be created
for a number of product entities: object types, request types, request header
types, and user data.

� Workflow step results. Validations determine the possible results exiting
a workflow step. For example, the validation WF - Standard Execution
Results contains the possible execution step results of Succeeded or Failed.

Pre-seeded (system) validations are included with every product installation or
upgrade. When configuring your system, you can select to use these system
validations. If no validation exists that meets your specific requirements, you
can create a new validation using the Validation Workbench. See Creating a
Validation on page 73 for details.
70 Commands, Tokens, and Validations Guide and Reference

 Chapter 5: Working with Validations
Validation Component Types - Overview

The following table summarizes the available types of field components. Note
that only certain component types can be used in a workflow step source’s
validation.

Table 5-1. Component Types

Component
Type

Use In
Workflow?

Example** Description

Text Field Yes

Text entry fields displayed on
a single line. Text fields can
be configured to display the
data according to a certain
format. For example, you can
configure a text field to
accept and format a
hyphenated nine-digit social
security number or a ten digit
telephone number.

Drop-down
list

Yes
Field showing a column of
choices.

Radio Button No
Field providing a Yes/No
input.

Auto-complet
e list

Yes
Field showing list of choices
with multiple columns.

Text Area No
Text entry field that can span
multiple lines.

Date Field No
Supports a variety of date
and time formats: long,
medium, and short.

Web
Address
(URL)

No

Text entry field for entering a
URL. Pressing the U button
opens a browser window to
the specified web address.
Validation Component Types - Overview 71

 Chapter 5: Working with Validations
File Chooser No

Used only in object types.
Requires that two fields be
defined with the following
tokens: P_FILE_LOCATION
and P_SUB_PATH. See
Using Directory and File
Choosers on page 116 for
configuration details.

Directory
Chooser

No

Used only in object types.
Requires that a parameter
field be defined with the token
P_FILE_LOCATION.

Attachment No
Field for adding file
attachments.

Password
field

No
Field for capturing
passwords.

Table 5-1. Component Types

Component
Type

Use In
Workflow?

Example** Description
72 Commands, Tokens, and Validations Guide and Reference

 Chapter 5: Working with Validations
Creating a Validation

Generating certain workflow steps may require specific validations to ensure
that business procedures are being followed. It is necessary to have both the
Validation Editor and the Validation Values Editor access grants to add a new
validation. See the Security Model Guide and Reference for a discussion of
security groups and access grants.

To define a new validation:

Table
Component

No

Used to enter multiple
records into a single
component. The table
component can be configured
to include multiple columns of
varied data types.
Additionally, this component
supports rules for populating
elements within the table and
provides functionality for
capturing column totals. See
Configuring the Table
Component on page 121 for
details.

Fields of this component can
only be added to request
types, request header types
and request user data.

Budget,
Staffing
Profile,
Resource
Pool

No

Field that can be added to the
request type to enable
access to view, edit or create
budgets, staffing profiles, or
resource pools associated
with a request, project, or
project plan.

Fields of this component can
only be added to a request
type.

Table 5-1. Component Types

Component
Type

Use In
Workflow?

Example** Description
Creating a Validation 73

 Chapter 5: Working with Validations
1. Click New Validation on the Validation Workbench or select File > New >
Validation from the menu.

The Validation window opens.

2. Enter the name of the new validation in the Name field.

3. Enter a description of the new validation in the Description field.

4. Select whether the validation is enabled or not in the Enabled checkbox.

5. In the Use in Workflow checkbox, specify whether or not this validation can
be used in a workflow step source.

You can only use text field, drop-down list and auto-complete component
types within workflow step sources.

6. Select the desired type of validation from the Component Type drop-down
list.

Choices are Text Field, Drop Down List, Radio Buttons (Y/N), Auto Complete
List, Text Area, Date Field, Web Address (URL), File Chooser, Directory
Chooser, Password Field, Attachment, Table Component, Budget, Staffing
Profile, and Resource Pool. Selecting a value from this field will
dynamically update the Validation window to display fields used to
configure that type of validation.

7. Enter any additional information required for the component type selected.

8. Click Ownership to select which users will be able to edit, copy and delete
this validation.

9. To save changes to the validation without closing the window, click Save.
To save changes and close the window, click OK.

User Data on the Validation Value

You can enable the User Data tab to capture more information related to an
individual validation value within a specific validation. For example, you can
create a Description user data field that is associated with the Departments
validation. When you add new values to the validation, you can click on the
User Data tab and enter a description for that value.

The User Data tab can only be used when creating a drop-down or an
auto-complete validated by a list.
74 Commands, Tokens, and Validations Guide and Reference

 Chapter 5: Working with Validations
To enable the User Data tab in the Edit Validation Value window:

1. Create the validation and note its name.

2. Open the User Data workbench.

3. Click New User Data Context.

4. Select Validation Value User Data from the User Data Type field.

5. Click New to create a user data field.

6. Save the settings in the User Data window.

7. On the Validation window, add or edit a validation value.

The User Data tab is now enabled. You can select the tab and enter
information in the newly defined user data field.

Editing Validations

You can open and edit validations using the Workbench. You should exercise
caution when editing validations that are currently used by fields or workflow
step sources. Both field and workflow step validations can be tied to workflow
logic. Changing the validation values can invalidate a process.
Editing Validations 75

 Chapter 5: Working with Validations
For example, ACME changes the Priority field validation to include a new value
Very Easy. ACME uses a deployment system workflow that has an Evaluate
Priority step that routes the package based on the value in the Priority field
(using a token execution type). ACME, however, did not update the workflow
to enable a transition out of the step for the case when Priority = Very Easy.
When a Very Easy package enters the Evaluate Priority step, it will get stuck.

The following restrictions apply to editing validations:

� User must have the following access grants:

� Edit Validations

� Edit Validation Values

� User must be a member of the ownership group for the validation.

� You cannot change which validation is associated with a workflow step
source after a package has traversed that step. You can, however, still edit
the values within that validation.

Creating a URL to Open the Validation Window

You can create a URL that opens a specific validation in the Workbench. This
can provide a quick link to the configuration screen for a validation that is
expected to change frequently. This URL can be included on your internal or
external Web pages or a list of browser Favorites to provide convenient access
to the validation’s definition.

Use the following URL format to access a specific Validation window:

http://host:port/kintana/servlet/
SmartURL?screen=VAL&pkname=<ValidationName>

The following URL opens the Validation window for the validation named
“Development Priorities.”

http://host:port/kintana/servlet/SmartURL?screen=VAL&pkname=
Development+Priorities
76 Commands, Tokens, and Validations Guide and Reference

 Chapter 5: Working with Validations
Deleting Validations

Validations can be deleted from the Workbench. To delete a validation, you
must be a member of the validation’s ownership group and have the Edit
Validations access grant.

A validation can not be deleted when:

� It is a system validation (a validation that is delivered with the product as
seed data).

� It is being used by a workflow step source. Validations referenced by
workflow step sources can only be disabled. A disabled validation
continues to function in existing workflow steps, but can not be used when
defining a new step source.

� It is being used by a field in a product entity (object type, request type, user
data, report type, or project template field). Validations referenced by
entity fields can only be disabled. A disabled validation continues to
function in existing fields, but can not be used when defining a new field.

Static List Validations

You can create validations that provide a static list of options to the user. For
example, ACME can create a validation for their engineering teams. They
create a validation called Engineering Teams, consisting of the following
values: New Product Introduction, Product One, and Product Two.

A static list validation can be a drop-down or an auto-complete list component.

To add values to the validation list:

1. In the Validation window, select Drop Down List or Auto Complete List from
the Component Type field.

2. Select List from the Validated By field.

Although you may not be able to delete a custom validation in all cases, you can
disable it. This will allow the validation to be used in any active workflows or product
entities, but will keep it from being used in any new workflow or entity definitions.
Deleting Validations 77

 Chapter 5: Working with Validations
3. Click New and add a value.

The Add Validation Window opens.

4. Enter information for the validation value as described in the following
table.

5. (Optional) Set the validation value as the default by checking the Default
field.

The default option is only available for drop-down lists.

6. Click OK to close the window and add the value to the validation. Click
Add to add the value and keep the Add Validation Value open.

Validation values can be re-ordered using the up and down arrow buttons. The
sequence of the validation values determines the order that the values are
displayed in the list.

Field Definition

Code
The underlying code for the validation value. The code is the value
stored in the database or passed to any internal functions, and is
rarely displayed.

Meaning
The displayed meaning for the validation value in the drop-down list
or auto-complete.

Default
The default value for the list. This value is initially displayed in
drop-down lists (this is not used for auto-complete lists). There can
be only one default value per list.
78 Commands, Tokens, and Validations Guide and Reference

 Chapter 5: Working with Validations
Dynamic List Validations

You can create validations that provide a dynamic list to the user. This is often
a better approach than defining static list validations. Each time a static list
validation needs to be updated, a manual update has to occur. Dynamic list
validations can often be constructed in such a way as to automatically pick up
and display the altered values.

For example, ACME needs a field validation that will list all users who are on
their Support Team. They could construct a validation that is validated by a list
of users, but any time the Support Team changed (members join or leave the
department) the list would have to be manually updated. ACME decides
instead to create a dynamic list validation. They create an auto-complete list
validation that is validated by a SQL statement. The SQL statement returns all
users who are a member of the Support Team security group. When the
security group membership is altered, the validation is automatically updated
with the correct values.

A dynamic list validation can be created using a drop-down or an
auto-complete list component.

SQL Validation

You can use a SQL statement to generate the values in a validation. SQL can
be used as a validation method for drop-down lists and auto-complete lists. To
define a dynamic list of choices, set a drop-down list or auto-complete list to
Validated By - SQL. Then in the SQL area, enter the Select statement that queries
the necessary database.

You can copy existing values defined in other validations using the Copy From
button. Click Copy From and query an existing list-validated validation and choose
any of the validation values. Click Add or OK in the Copy From window and the
selected value or values are added to the list.

Be careful when creating validations (drop-down lists and auto-complete lists) that
are validated by lists. Each time the set of values changes, you will be forced to
update the validation. Consider, instead, validating using a SQL query or PL/SQL
function to obtain the values from a database table.
Dynamic List Validations 79

 Chapter 5: Working with Validations
If an auto-complete list is being used, you can define headers for the selected
columns. These column headers are used in the window that opens when a
value from an auto-complete list is selected. Click New under Column Headers.
Table 5-2 shows the fields that can be entered for a column header. If a column
header is not defined for each column in a SQL query, a default name is used.

For example, ACME, Inc., creates an auto-complete field that lists all users in
the “Engineering” department. They choose to validate the list by SQL.

SELECT U.USER_ID, U.USERNAME, U.FIRST_NAME, U.LAST_NAME
FROM KNTA_USERS U, KNTA_SECURITY_GROUPS SG, KNTA_USER_SECURITY
US
WHERE SG.SECURITY_GROUP_ID = US.SECURITY_GROUP_ID AND US.USER_
ID = U.USER_ID
AND SG.SECURITY_GROUP_NAME = 'Engineering'
and UPPER(u.username) like UPPER('?%')
and (u.username like upper(substr('?',1,1)) || '%'
 or u.username like lower(substr('?',1,1)) || '%')
order by 2

Table 5-2. Column Headers

Field Definition

Column
Header

The name of the column that is displayed in the auto-complete
window.

Display
Determines whether or not the column is displayed. The first
column is never displayed and the second column is always
displayed.
80 Commands, Tokens, and Validations Guide and Reference

 Chapter 5: Working with Validations
When a new user account is created and is added to the “Engineering” security
group, that user will automatically be included in the auto-complete list.

SQL Validation Tips

The following guidelines are helpful when writing a SQL statement for a
SQL-validated validation:

� The SQL statement must query at least two columns. The first column is a
hidden value which is never displayed, and is often stored in the database
or passed to internal functions. The second column is the value that is
displayed in the field. All other columns are for information purposes and
are only displayed in the auto-complete window. Extra columns are not
displayed for drop-down lists.

� When something is typed into an auto-complete list field, the values in the
auto-complete window that appear are constrained by what was first typed
in the field. Generally, the constraint is case insensitive. This is
accomplished by writing the SQL statement to query only values that
match what was typed.

Before the auto-complete window is displayed, all question marks in the
SQL statement are replaced by the text that the user typed. In general, if the
following conditions are added to the WHERE clause in a SQL statement,
the values in the auto-complete window are constrained by what the user
typed.

where UPPER(<displayed_column>) like UPPER('?%')
and (<displayed_column> like upper(substr('?',1,1)) || '%'
or <displayed_column> like lower(substr('?',1,1)) || '%')

Any column aliases included directly in the SQL statement are not used.
The names of the columns, as displayed in auto-complete lists, are
determined from the Column Headers. Drop-down lists do not have
column headers.

A validation may already exist that meets your process requirements. If it does,
consider using that validation in your process. Also consider copying and modifying
validations that are similar to the desired validation. See System Validations
on page 136 for a complete list of validations that are delivered with the product.
Dynamic List Validations 81

 Chapter 5: Working with Validations
Command Validation

An auto-complete list can contain command line executions that return and
display a list of values. To define a dynamic list of choices, set an
auto-complete list to Validated By - Command with Delimited Output or
Command with Fixed Width Output. Then enter commands the Commands area.
See Configuring the Auto-Complete Values on page 94 for detailed
instructions.

Figure 5-1. Auto-complete using command validation

Configuring Auto-Complete Validations

Auto-complete fields are used throughout the Mercury IT Governance Center
to provide users with an efficient way to select field values from a set of valid
choices. Configuring auto-complete fields consists of two activities:

� Specifying general auto-complete behavior

� Configuring the validation values

Configuring General Auto-complete Behavior

Auto-complete fields can be used for validations with a small or large number
of choices. The auto-complete can be configured to behave differently
depending on the expected number of values. For example, if you expect a
82 Commands, Tokens, and Validations Guide and Reference

 Chapter 5: Working with Validations
large number of entries, the auto-complete window will include an interface
that allows you to page through your results. Additionally, you can configure
how the “auto-complete” feature of the field behaves. For example, you can
configure the auto-complete field to automatically complete entries that either
start with or contain a text string.

Configuring Short List Auto-Complete Fields

Auto-complete fields configured to display a short list of entries, displaying all
of the values on a single page. Figure 5-2 shows the Select window for a short
list auto-complete field.

Figure 5-2. Short list auto-complete

To configure a short list auto-complete field:

1. Create a new validation or open an existing validation.

The Validation window opens.

2. From the Component Type field, select Auto Complete List.

3. In the Expected list length field, select Short.

4. Click Save.

Auto-completes configured as short lists will load all values when the window is
opened. This can lead to a slower load time and an unfavorable user experience. For
fields with many possible values, consider formatting the auto-complete using the
long list format.
Configuring Auto-Complete Validations 83

 Chapter 5: Working with Validations
Configuring Long List Auto-Complete Fields

Auto-complete fields configured to display a long list of entries, dividing the
results between multiple pages. By default, 50 results are shown per page. End
users can page through the results or further limit the results by specifying text
in one of the available filter fields at the top of the page. Figure 5-3 shows the
Select window for a long list auto-complete field.

Figure 5-3. Long list auto-complete

To configure a long list auto-complete field:

1. Create a new validation or open an existing validation.

The Validation window opens.

Auto-completes configured as long lists only load a limited set of values when the
window is opened. For extremely long lists or lists that are at risk of loading slowly
(for example the values are obtained from an alternate database), consider using the
long list format.
84 Commands, Tokens, and Validations Guide and Reference

 Chapter 5: Working with Validations
2. From the Component Type field, select Auto Complete List.

3. In the Expected list length field, select Long.

4. Click Save.

Configuring the Automatic Value Matching and the Interactive Select Page

This section provides instructions for configuring auto-complete fields to filter
a list of possible values based on a matching character string. It also provides
instructions for configuring the automatic value-limiting that occurs on the
auto-complete’s Select page. Figure 5-4 shows an auto-complete field that has
opened to display matching values.

Figure 5-4. Auto-complete field and matching values in the Select page

Functional Overview: Matching for “Starts with” or “Contains”

Auto-complete field behavior can be divided into the following areas:

� Field behavior. A user types a character in the field and presses the Tab
key. If an exact match is not available, the Select page opens.

All auto-completes that are validated by SQL - User are required to use the long list
auto-complete format. This selection is automatically defaulted when the user selects
SQL - User from the Validated By field on the Validation window.
Configuring Auto-Complete Validations 85

 Chapter 5: Working with Validations
� The Select page behavior. For lists that are configured appropriately,
when a user types a character or characters into the field at the top of the
page, the results are automatically limited to display only matching entries.

For both the field and Select page behaviors, automatic value matching can be
based on either “starts with” character matching or “contains” character
matching. The following table summarizes this behavior:

Configuration Instructions

The field and the Select page behavior are configured distinctly in the
Validation window for the specific auto-complete list. This section provides
instructions for configuring the “starts with” and “contains” functionality in
the field and Select page, as described in Functional Overview: Matching for
“Starts with” or “Contains” on page 85.

To configure “starts with” matching from the auto-complete window to the
selection window, add the following to the SQL WHERE clause:

UPPER(value) like UPPER('?%') and (value like
upper(substr('?',1,1)) || '%' or value like
lower(substr('?',1,1)) || '%')

Table 5-3. Automatic character matching field behavior

Character matching
mode

Description of Behavior

Starts with
Type characters and press tab. The selection window will
open and list entries that begin with the specified
characters.

Contains

Type characters and press tab. The selection window will
open and list entries that contain the specified character
string. This is the same behavior as a wild card search,
which uses the % character at the beginning of the search
text.

Table 5-4. Automatic character matching Select page behavior

Character matching
selection mode

Description of Behavior

Starts with
Type characters and the list will automatically be filtered
for entries that begin with the specified characters.

Contains
Type characters and the list will automatically be filtered
for entries that contain the character string.
86 Commands, Tokens, and Validations Guide and Reference

 Chapter 5: Working with Validations
To configure "contains" matching from the auto-complete window to the
selection window, add the following to the SQL WHERE clause:

UPPER(value) like UPPER('%?%') and (value like '%' ||
upper(substr('?',1,1)) || '%' or value like '%' ||
lower(substr('?',1,1)) || '%')
-

To configure “starts with” matching within the interactive selection window:

1. Open the auto-complete’s Validation window.

2. From the Expected list length field, select Short.

This feature is only available for short lists.

3. From the Selection mode radio button, select Starts With.

4. Save the validation.

To configure “contains” matching within the interactive selection window:

1. Open the auto-complete’s Validation window.

2. From the Expected list length field, select Short.

This feature is only available for short lists.

3. From the Selection mode radio button, select Contains.

4. Save the validation.

This setting only controls the matching in the Select page. Matching in the
auto-complete field is controlled by including specific clauses in the auto-complete's
SQL. See above for details.

This setting only controls the matching in the Select page. Matching in the
auto-complete field is controlled by including specific clauses in the auto-complete's
SQL. See above for details.
Configuring Auto-Complete Validations 87

 Chapter 5: Working with Validations
Configuration Tips

Consider the following tips when configuring the “starts with” versus
“contains” functionality for auto-complete fields and the Select page.

� Auto-completes should be configured such that the field matching behavior
works the same way as the Select page matching behavior. Specifically, if
the auto-complete field uses the “starts with” clauses in the SQL, then the
selection window should use the “Starts With” Selection Mode. See
Configuration Instructions on page 86 for details.

� Consider using the “Contains” Selection Mode for fields with multi-word
values. For example, consider the possible values for the request type
auto-complete field:

Development Bug
Development Enhancement
Development Issue
Development Change Request
IS Bug
IS Enhancement
IS Issue
IS Change Request
Support Issue
Support Change Request

Using “contains” can be useful here. The user knows that he needs to log a
bug against one of the IS-supported Financial applications. The user types
"bug" into the auto-complete field and presses the Tab key. The following
items are returned:

Development Bug
IS Bug

The user selects “IS Bug.” Without the “contains” feature enabled, typing
“bug” would have returned the entire list. He might have also typed
“Financial,” thinking that there might be a separate request type used for
each type of supported application. This, too, would have returned the
entire list. At that point, the user would be forced to try another “starts
with” phrase or simply read the entire (potentially long) list.

Adding Search Fields to the Auto-Complete Window

Auto-completes with a long list of values can be configured to display
additional filter fields in the Select window. These fields can be used to search
other properties than the primary values in the list. Users can enter values in
the filter fields and click Find to display only the values that match the search
criteria. Figure 5-3 shows the Select window with additional filter fields.
88 Commands, Tokens, and Validations Guide and Reference

 Chapter 5: Working with Validations
Figure 5-5. Filter fields in the auto-complete select window

To add a filter field to the auto-complete validation:

1. Open the validation for the auto-complete.

Auto-complete validations must display Auto Complete List in the
Component Type field.

2. In the Expected list length field, select Long.

Only long formatted auto-complete lists can include filter fields.

3. Click the Filter Fields tab.

4. Click New.

The Field: New window opens.

Filter fields can not be configured when validating your list by List, Command With
Delimited Output, or Command With Fixed Width Output.
Configuring Auto-Complete Validations 89

 Chapter 5: Working with Validations
5. Enter the required information.

Table 5-5 defines all of the fields on this window.

Table 5-5. Fields in the Fields:New window

Field Description

Field Prompt
The name that is displayed for the field in the auto-complete
Select window.

Product
The Mercury IT Governance Center product the field is used
by.

Validation

The validation for the filter field. You can select any type of
validation, except for auto-complete type validations.

The values accepted by this validation will be appended to
the WHERE clause in the SQL query that determines the
ultimate auto-complete list display.

New
Opens the Validation window where you can construct a
new validation for the filter field. Note that you can not use
an auto-complete type validation for the filter field.

Open
Opens the Validation window and displays the definition of
the validation specified in the Validation field.

Token
The token for the field value. The token value will be
appended to the WHERE clause in the SQL query that
determines the ultimate auto-complete list display.

Description The description of the filter field.
90 Commands, Tokens, and Validations Guide and Reference

 Chapter 5: Working with Validations
6. Click OK.

Component Type
The component type for the filter field, determined by its
validation.

Default Value
The default value for the filter field, determined by its
validation.

Enabled Determines whether the filter field is enabled.

Display
Determines whether the filter field is visible to the user in the
auto-complete’s Select window.

Display Only
Determines whether the filter field is updatable. When
Display Only is set to Yes, the field can not be updated.

When the
auto-complete user
chooses a value for
this field, append to
WHERE clause:

The AND clause that is appended to the portlet’s WHERE
clause if the user enters a value in this filter field. Each filter
field will append its term to the portlet query when a value is
entered by the end user in the Select window.

For example, if the filter field uses the CRT-Priority-Enabled
validation and a filter field token of P_PRIORITY, enter the
following into this field:

AND R.PRIORITY_CODE = ‘[P.P_PRIORITY]’

Note: The value in this field must start with “AND”.

View Full Query Opens a window showing the full query.

Table 5-5. Fields in the Fields:New window [continued]

Field Description

Filter fields can offer a powerful method for enabling users to efficiently locate
specific values in large lists. When adding filter fields to an auto-complete validation,
consider the following tips:

� Ensure that the filter fields are functionally related to the list of values. For
example, a validation that provides a list of request types can include a filter field
for a specific Department associated with the request types.

� Consider reusing (copying) an auto-complete validation and modifying the filter
fields to display a subset of the entire list. Using the Displayed, Display Only, and
Default fields in the Filter Field window, you can configure the auto-complete
values to automatically limit the results.

� Performance can degrade if joining tables over database links.

� Only use this functionality for complex fields.
Configuring Auto-Complete Validations 91

 Chapter 5: Working with Validations
To modify the filter field layout:

1. Open the auto-complete validation that includes filter fields on the Filter
Fields tab.

2. Click the Filter Layout tab.

The tab lists the primary field and all of the filter fields that have been
defined for the auto-complete. The primary field is named Field Value. This
is the field that holds the eventual selected value.

3. Select the field that you would like to move.

To select more than one field, use the Shift key while selecting a range. It is
only possible to select a continuous set of fields (the Ctrl+select
functionality is not supported).

4. Use the arrow buttons to move the fields to the desired location in the
layout builder.

5. To switch the positions of two fields:

A field or a set of fields cannot be moved to an area where other fields already exist.
The other field(s) must be moved out of the way first.
92 Commands, Tokens, and Validations Guide and Reference

 Chapter 5: Working with Validations
a. Select the first field and check the Swap Mode checkbox.

An “S” appears in the checkbox area of the selected field.

b. Double-click the second field that you want to switch positions with the
first.

This causes the two fields to change positions. Following the switch,
the Swap Mode checkbox is turned off. To swap another set of fields,
repeat this procedure.

6. To check what the layout looks like in actual use, click Preview.

This opens a small window that shows the fields as they will appear. It is
important to note that:

� Any rows with no fields are ignored. They do not show up as a blank
line.

� Any non-displayed fields do not affect the layout. They are considered
the same as a blank field.

Special Case: Configuring an Auto-Complete List of Users

User auto-completes or validations (Validated by: SQL-User) have three filter
fields by default:

� Primary field—this field takes the name of the auto-complete field

� First name

� Last name

The user auto-complete always appears in the long list format, which uses the
paging interface to display the items. Additionally, user auto-completes
display a different icon, pictured in Figure 5-6, in the auto-complete field.

Figure 5-6. User icon

To configure a user auto-complete validation:

1. Create a new validation.

The Validation window opens.
Configuring Auto-Complete Validations 93

 Chapter 5: Working with Validations
2. From the Component Type field, select Auto Complete List.

3. From the Validated By field, select SQL - User.

4. Configure the SQL query that will determine the users listed in the
validation.

See Configuring the Auto-Complete Values on page 94 for details.

5. Click Save.

Configuring the Auto-Complete Values

The values in an auto-complete list can be specified in the following ways. In
the Validate By field, select one of the following:

� List: Used to enter specific values.

� SQL: Uses a SQL statement to build the contents of the list.

� SQL - User: Identical to SQL configuration, but includes a few additional
preconfigured filter fields.

� Command With Delimited Output: Uses a system command to produce a
character-delimited text string and uses the results to define the list.

� Command With Fixed Width Output: uses a system command to produce a
text file and parses the result on the basis of the width of columns, as well
as the headers.

Figure 5-7. Auto-Complete List
94 Commands, Tokens, and Validations Guide and Reference

 Chapter 5: Working with Validations
For more information on creating auto-completes validated by List or SQL,
refer to the following sections:

� Static List Validations on page 77

� Dynamic List Validations on page 79

Validation by Command With Delimited Output

Validations that are validated by commands with delimited output can be used
to get data from an alternate source, and use that data to populate an
auto-complete field. This functionality provides additional flexibility when
designing auto-complete lists.

Many enterprises need to use alternate sources of data within their
applications. Examples of these sources are a flat file, an alternate database
source, or output from a command line execution. Special commands may be
used in conjunction with these alternate data sources, in the context of a
validation, to provide a list of values.

To configure a validation by command with delimited output:

1. In the Validation Workbench, under Validated By, choose Command With
Delimited Output and input the delimiting character.

2. Under New Command, enter in the command steps to be executed.

These can include Mercury IT Governance special commands. Your
commands should include the special command ksc_capture_output,
which captures and parses the delimited command output. If the ksc_
capture_output special command is surrounded by the ksc_connect and
ksc_disconnect commands, the command will be run on the remote
system. Otherwise, the command will be run locally on the Mercury IT
Governance server (similar to ksc_local_exec).

The simple example below uses a comma for a delimiter and has the
validation values red, blue and green. The script places the validations
into the newfile.txt file, and then uses the special command ksc_
capture_output to process the text of the file.

ksc_begin_script[AS.PKG_TRANSFER_PATH]newfile.txt
red,red
blue,blue
green,green
ksc_end_script
ksc_capture_output cat[AS.PKG_TRANSFER_PATH]newfile.txt

Table 5-6 shows the Validation window for Command with Delimited Output.
Configuring Auto-Complete Validations 95

 Chapter 5: Working with Validations
Figure 5-8. Validation by command with delimited output

Headers can also be defined for the columns selected. These column headers
are used in the window that opens when a value is selected from an
auto-complete list. To define a new header, click New under Column Header.
Table 5-7 shows the fields that can be entered for a column header. If a column
header is not defined for each column in a command, a default name is used.

Table 5-6. Validation by command with delimited output

Field Definition

Command
Panel

Panel where new commands can be added to capture validation
values.

Data Delimiter
Indicates the character or key by which the file will be separated
into the validation columns.

Table 5-7. Column headers

Field Definition

Column
Header

The name of the column that is displayed in the auto-complete
window.

Display Determines whether or not the header is displayed in the validation.
96 Commands, Tokens, and Validations Guide and Reference

 Chapter 5: Working with Validations
Validation by Command With Fixed Width Output

Validations by Command with Fixed Width Output can be used to obtain data
from an alternate source, and use that data to populate an auto-complete field.
This functionality provides additional flexibility when designing
auto-complete lists.

Many enterprises need to use alternate sources of data within their
applications. Examples of these sources are a flat file, an alternate database
source, or output from a command line execution. Special commands may be
used in conjunction with these alternate data sources, in the context of a
validation, to provide a list of values on the fly.

In the Validation Workbench, under Validated By, choose Command With Fixed
Width Output and input the appropriate width information.

Then, under New Command, enter in the command steps to be executed. These
can include special commands. Your commands should include the special
command ksc_capture_output, which captures and parses the delimited
command output. If the ksc_capture_output special command is surrounded
by the ksc_connect and ksc_disconnect commands, the command will be
run on the remote system. Otherwise, the command will be run locally on the
Mercury IT Governance server (similar to ksc_local_exec).

The example below has the validations red, blue and green. The column
width is set to a value of 6. The script places the validations into the
newfile.txt file.

ksc_begin_script[AS.PKG_TRANSFER_PATH]newfile.txt
red red
blue blue
green green
ksc_end_script
ksc_capture_output cat[AS.PKG_TRANSFER_PATH]newfile.txt
Configuring Auto-Complete Validations 97

 Chapter 5: Working with Validations
Figure 5-9. Validation by command with fixed width output

Headers can also be defined for the columns selected. These column headers
are used in the window that opens when a value is selected from an
auto-complete list. To define a new column header, click New under Column
Header. Table 5-9 shows the fields can be entered for a column header. If a
column header is not defined for each column in a command, a default name is
used.

Table 5-8. Validation by command with fixed width output

Field Definition

Command
Panel

The panel where new commands can be added to capture
validation values.

Table 5-9. Column headers

Field Definition

Column
Header

The name of the column that is displayed in the Auto Complete
dialog.

Display
Whether or not the column is displayed. The first column is never
displayed and the second column is always displayed.

Column Width
The number of characters in each column of the output generated
as a result of the command.
98 Commands, Tokens, and Validations Guide and Reference

 Chapter 5: Working with Validations
User-Defined Multi-Select Auto-Complete Fields

A number of auto-complete fields in the Workbench have been pre-configured
to allow users to open a separate window for selecting multiple values from a
list. Users can also define custom auto-complete fields to have multi-select
capability when creating various product entities.

The user-defined multi-select capability is supported for:

� User data fields

� Report type fields

� Request type fields

� Project template fields

The user-defined Multi-Select capability is not supported for:

� Request header types

� Object types

In order to use this feature when creating a new entity, users must:

� Select a validation for the new entity that has Auto-Complete List as the
Component Type. This enables the Multi-Select Enabled field in the Field:
New window.

� In the Field: New window, users must click Yes for the Multi-Select Enabled
radio button.

The step-by-step procedure for defining multi-select capability in user data,
report type, request type, or project template fields is very similar. The
procedure for enabling this capability for request type field is shown below as
an example.

To define a multi-select auto-complete field for a request type:

1. Log on to Mercury IT Governance Center and open the Workbench.

2. From the shortcut bar, select Create > Request Types.

The Request Type Workbench opens.

3. Click New Request Type.

The Request Type window opens.

4. Click New. The Field: New window opens.
Configuring Auto-Complete Validations 99

 Chapter 5: Working with Validations
5. Select a validation of type Auto-Complete List from the Validation field.

The Multi-Select Enabled option is now enabled.

6. Select the Yes option for the Multi-Select Enabled radio button.

The Possible Conflicts window opens. It warns you not to use a multi-select
auto-complete for advanced queries, workflow transitions and reports. If
this field is not going to be used in advanced queries, workflow transitions
or reports, click Yes to continue.

7. Configure the other options in this window for the new request type.

8. Click OK.

The field is now enabled for multi-select auto-complete.

Example: Token Evaluation and Validation by Command with Delimited
Output

The validation functionality can be extended to include field dependent token
evaluation. Validations can be configured to dynamically change, depending
on the client-side value entered in another field.

To use field dependent token evaluation, it is necessary to configure a
validation in conjunction with an object type, request type, report type, project
template, or user data definition. Consider the following example for setting up
an object type using field dependent tokens.
100 Commands, Tokens, and Validations Guide and Reference

 Chapter 5: Working with Validations
1. Generate a validation and set the following parameters as shown:

a. Name: demo_client_token_parsing

b. Component Type: Auto Complete List

c. Validated By: Command With Delimited Output

d. Data Delimiter: | (bar)

e. Command

� Command: Validate_from_file

� Steps

ksc_connect_source_server SOURCE_ENV="Your Env"
ksc_capture_output cat [P.P_FILENAME]
ksc_exit

When called, this validation will connect to an environment called ‘Your
Env’ and retrieve data from a file specified by the token P_FILENAME.
The file should be located in the directory specified in the Base Path in the
Environment window.

2. Generate an object type named token_parsing_demo.
Configuring Auto-Complete Validations 101

 Chapter 5: Working with Validations
a. Generate a new field with the following parameters:

� Name: Filename

� Token: P_FILENAME

� Validation: Text Field - 40

b. Generate a new field with the following parameters:

� Name: AutoComp

� Token: P_AUTOCOMP

� Validation: demo_client_token_parsing (this is the validation that
was defined above)

3. For this example to return any values in the auto-complete, a file must be
generated in the directory specified in the Base Path in the Environment
Detail of ‘Your Env’ environment. Generate a file named ‘parse_test1.txt’
with the following delimited data:

DELIMITED_TEXT1|Parameter 1
DELIMITED_TEXT2|Parameter 2
DELIMITED_TEXT3|Parameter 3
DELIMITED_TEXT4|Parameter 4

The object type ‘token_parsing_demo’ is now enabled to use this token
evaluation.
102 Commands, Tokens, and Validations Guide and Reference

 Chapter 5: Working with Validations
To test the above configuration sample:

1. Generate a new package.

2. Select a workflow and click Add Line.

3. Select token_parsing_demo from the Object Type drop-down list. The
following fields are displayed:

� Filename

� AutoComp

4. Type ‘parse_test1.txt’ in the Filename field.

5. Click on the auto-complete icon in the AutoComp field. The following
Validation window opens, displaying the contents of the ‘parse_test1.txt’
file.
Configuring Auto-Complete Validations 103

 Chapter 5: Working with Validations
Configuring Text Fields

Text fields displayed on a single line. Text fields can be configured to display
the data according to a certain format. For example, you can configure a text
field to accept and format a ten digit telephone number or display a specific
number of decimal places for a percentage.

Creating a Text Field Validation Overview

To create a text field validation:

1. Open the Validation window in the Workbench.

2. In the Name field, enter the name of the validation.

3. From the Component Type field, select Text Field.

4. From the Data Mask field, select the data mask that represents the desired
format for the field.

See “Available Text Data Masks” on page 104 for additional details.

5. (Optional) Configure the selected data mask.

See Customizing the System Text Data Masks on page 106 for additional
details.

6. Click OK.

Available Text Data Masks

The Mercury IT Governance Center includes a number of preconfigured data
masks that can be used when creating text field validations. Each of these data
masks can be configured to meet your specific data requirements. Table 5-10
defines the data masks delivered with Mercury IT Governance Center.
104 Commands, Tokens, and Validations Guide and Reference

 Chapter 5: Working with Validations
Table 5-10. Data Mask Formats

Data Mask Description

Alphanumeric
Field allows all alphanumeric characters. The maximum field
length for fields using this validation can be specified.

Alphanumeric
Uppercase

Field allows alphanumeric characters and formats all
characters as uppercase text. The maximum field length for
fields using this validation can be specified.

Numeric

Field allows only numeric characters. The following
characteristics can be specified for this data mask:

� Range of values (maximum and minimum) allowed for this
field

� Whether or not a zero is displayed when data is not
entered into the field

� Whether or not group separators (such as a comma) are
used within large numbers

� How negative numbers are displayed

� Number of decimal places

See Customizing the Numeric Data Mask on page 106 for
details.

Currency

Field allows only numeric characters and is used to display
currency data. The following characteristics can be specified
for this data mask:

� Range of values (maximum and minimum) allowed for this
field

� Whether or not a zero is displayed when data is not
entered into the field

� Whether or not group separators (such as a comma) are
used within large numbers

� How negative numbers are displayed

� Number of decimal places

See Customizing the Currency Data Mask on page 108 for
details.
Configuring Text Fields 105

 Chapter 5: Working with Validations
Customizing the System Text Data Masks

Each data mask that is included in Mercury IT Governance Center can be
customized.

Customizing the Numeric Data Mask

The numeric data mask allows only numeric characters. When creating a
validation using this data mask, the following characteristics can be specified:

� Range of values (maximum and minimum) allowed for this field

Percentage

Field allows only numeric characters and is used to display
percentages. The following characteristics can be specified
for this data mask:

� Range of values (maximum and minimum) allowed for this
field

� Whether or not a zero is displayed when data is not
entered into the field

� Whether or not group separators (such as a comma) are
used within large numbers

� How negative numbers are displayed

� Number of decimal places

See Customizing the Percentage Data Mask on page 110 for
details.

Telephone

Field allows only numeric characters and is used to display
telephone numbers. The following characteristics can be
specified for this data mask:

� Format—specify how many digits are included, and what
delimiter should be used between groups of numbers. For
example, you can select to use dashes (-) rather than
periods (.) between numbers: 555-555-5555 or
555.555.5555.

� Maximum and minimum number of digits

See Customizing the Telephone Data Mask on page 112 for
details.

Custom
Field allows a range of custom inputs. You can customize the
field to accept digits, letters, spaces, and custom delimiters.
See Creating a Custom Data Mask on page 115 for details.

Table 5-10. Data Mask Formats [continued]

Data Mask Description
106 Commands, Tokens, and Validations Guide and Reference

 Chapter 5: Working with Validations
� Whether or not a zero is displayed when data is not entered into the field

� Whether or not group separators (such as a comma) are used within large
numbers

� How negative numbers are displayed

� Number of decimal places

Figure 5-10 shows the fields that can be configured for this data mask.
Table 5-11 defines these fields.

Figure 5-10. Validation window for the numeric data mask

Table 5-11. Fields for configuring the numeric data mask for text fields

Field Description

Maximum Value
Largest value allowed for this field. This can be a positive
or negative number.

Minimum Value
Smallest value allowed for this field. This can be a positive
or negative number.

If Data not Entered,
then display a zero

Determines if the field should display a zero when no data
is entered.
Configuring Text Fields 107

 Chapter 5: Working with Validations
To view your customized data mask:

1. In the Sample Input field, enter the digits that you would like to see
formatted.

2. Click Format.

The digits are formatted according to your settings and displayed in the
Formatted Output field.

Customizing the Currency Data Mask

The currency data mask allows only numeric characters and is used to display
currency data. When creating a validation using this data mask, the following
characteristics can be specified:

� Range of values (maximum and minimum) allowed for this field

� Whether or not a zero is displayed when data is not entered into the field

� Whether or not group separators (such as a comma) are used within large
numbers

� How negative numbers are displayed

Use Group Separator

Determines if the field should use a group separator (such
as a comma) to divide characters within large numbers.
For example: 1000000 versus 1,000,000. The character
used for the separator defaults based on the machine’s
local, but can be configured in the Regional Settings
window in the Workbench. Select Edit > Regional
Settings to access this window.

Negative Number
looks like

Determines the appearance of negative numbers. There
are four options available:

� (1000)—parenthesis and black text

� (1000)—parenthesis and red text

� -1000—minus sign (-) and black text

� -1000—minus sign (-) and red text

Number of Decimal
Places

Determines the number of allowed decimal places. Users
will only be able to enter up to this number of digits beyond
the decimal place.

Table 5-11. Fields for configuring the numeric data mask for text fields

Field Description
108 Commands, Tokens, and Validations Guide and Reference

 Chapter 5: Working with Validations
� Number of decimal places

Figure 5-11 shows the fields that can be configured for this data mask.
Table 5-12 defines these fields.

Figure 5-11. Validation window for the currency data mask

Table 5-12. Fields for configuring the currency data mask for text fields

Field Description

Maximum Value
Largest value allowed for this field. This can be a positive
or negative number.

Minimum Value
Smallest value allowed for this field. This can be a positive
or negative number.

If Data not Entered,
then display a zero

Determines if the field should display a zero when no data
is entered.

Use Group Separator

Determines if the field should use a group separator (such
as a comma) to divide characters within large numbers.
For example: 1000000 versus 1,000,000. The character
used for the separator defaults based on the machine’s
local, but can be configured in the Regional Settings
window in the Workbench. Select Edit > Regional
Settings to access this window.
Configuring Text Fields 109

 Chapter 5: Working with Validations
To view your customized data mask:

1. In the Sample Input field, enter the digits that you would like to see
formatted.

2. Click Format.

The digits are formatted according to your settings and displayed in the
Formatted Output field.

Customizing the Percentage Data Mask

The percentage data mask allows only numeric characters and is used to
display percentages. When creating a validation using this data mask, the
following characteristics can be specified:

� Range of values (maximum and minimum) allowed for this field

� Whether or not a zero is displayed when data is not entered into the field

Negative Number
looks like

Determines the appearance of negative numbers. There
are four options available:

� (1000)—parenthesis and black text

� (1000)—parenthesis and red text

� -1000—minus sign (-) and black text

� -1000—minus sign (-) and red text

Number of Decimal
Places

Determines the number of allowed decimal places. Users
will only be able to enter up to this number of digits beyond
the decimal place.

Table 5-12. Fields for configuring the currency data mask for text fields

Field Description

The INSTALLATION_CURRENCY server parameter dictates which currency symbol
is displayed in the field. This parameter also dictated the position of the text in the
field. For example:

INSTALLATION_CURRENCY=$;RIGHT

will right-align the text using a dollar sign.

Contact your system administrator for help with changing this setting.
110 Commands, Tokens, and Validations Guide and Reference

 Chapter 5: Working with Validations
� Whether or not group separators (such as a comma) are used within large
numbers

� How negative numbers are displayed

� Number of decimal places

Figure 5-12 shows the fields that can be configured for this data mask.
Table 5-13 defines these fields.

Figure 5-12. Validation window for the percentage data mask

Table 5-13. Fields for configuring the percentage data mask for text fields

Field Description

Maximum Value
Largest value allowed for this field. This can be a positive
or negative number.

Minimum Value
Smallest value allowed for this field. This can be a positive
or negative number.

If Data not Entered,
then display a zero

Determines if the field should display a zero when no data
is entered.

Use Group Separator

Determines if the field should use a group separator (such
as a comma) to divide characters within large numbers.
For example: 1000000 versus 1,000,000. The character
used for the separator defaults based on the machine’s
local, but can be configured in the Regional Settings
window in the Workbench. Select Edit > Regional
Settings to access this window.
Configuring Text Fields 111

 Chapter 5: Working with Validations
To view your customized data mask:

1. In the Sample Input field, enter the digits that you would like to see
formatted.

2. Click Format.

The digits are formatted according to your settings and displayed in the
Formatted Output field.

Customizing the Telephone Data Mask

The percentage data mask allows only numeric characters and is used to
display telephone numbers. When creating a validation using this data mask,
the following characteristics can be specified:

� Format—specify how many digits are included, and what delimiter should
be used between groups of numbers. For example, you can select to use
dashes (-) rather than periods (.) between numbers. For example,
555-555-5555 or 555.555.5555.

� Maximum and minimum number of digits.

Figure 5-13 shows the fields that can be configured for this data mask.
Table 5-14 defines these fields.

Negative Number
looks like

Determines the appearance of negative numbers. There
are four options available:

� (1000)—parenthesis and black text

� (1000)—parenthesis and red text

� -1000—minus sign (-) and black text

� -1000—minus sign (-) and red text

Number of Decimal
Places

Determines the number of allowed decimal places. Users
will only be able to enter up to this number of digits beyond
the decimal place.

Table 5-13. Fields for configuring the percentage data mask for text fields

Field Description
112 Commands, Tokens, and Validations Guide and Reference

 Chapter 5: Working with Validations
Figure 5-13. Validation window for the telephone data mask

Table 5-14. Fields for configuring the telephone data mask for text fields

Field Description

Format

The rule that dictates how the digits are formatted,
including any spaces or delimiters. The following delimiters
are allowed in the format definition:

� Open and close parentheses ()

� Period (.)

� Dash (-)

� Space

� Plus sign (+)

See Table 5-15 on page 114 for a few examples of
different Telephone formats.

Maximum # of Digits Largest number of digits that will be accepted in this field.

Minimum # of Digits

Smallest number of digits that will be accepted in this field.
If the user enters fewer than this number of digits in the
field and then tries to move from the field, he will receive
an error.
Configuring Text Fields 113

 Chapter 5: Working with Validations
To view your customized data mask:

1. In the Sample Input field, enter the digits that you would like to see
formatted.

2. Click Format.

The digits are formatted according to your settings and displayed in the
Formatted Output field.

Table 5-15. Sample telephone data mask formats

Format Rule Text Entered By User Sample Formatted Output

D-DDD-DDD-DDDD 15555555555 1-555-555-5555

DDD DDD DDDD 5555555555 555 555 5555

(DDD) DDD-DDDD 5555555555 (555) 555-5555

Special behavior applies to the extra characters, if your format is defined to allow a
range of entries. Extra characters will always be grouped with the first set of
characters. For example, if the telephone data mask is configured with a minimum of
10 characters and a maximum of 15 characters, then the following behavior is
expected:

Format: DDD-DDD-DDDD
Min: 10
Max: 15

Input: 1234567890
Output: 123-456-7890

Input 2: 12345678901
Output 2: 1234-567-8901
114 Commands, Tokens, and Validations Guide and Reference

 Chapter 5: Working with Validations
Creating a Custom Data Mask

A custom data mask can be defined that will allow a range of inputs and format
them to your specification. You can customize the field to accept digits, letters,
spaces, and custom delimiters.

Figure 5-13 shows the fields that can be configured for this data mask.

Figure 5-14. Validation window for the custom data mask

To configure a custom format, enter a combination of symbols into the Format
field. This field can accept the following entries:

� D—Specifies a required digit between 0 and 9.

� L—Specifies a required letter between A and Z.

� A—Specifies a required character or space.

� \ (backslash)—Causes the character that follows to be displayed as the
literal character. For example: “\A” will be displayed as “A”

Table 5-16 displays some examples of custom formats.

Table 5-16. Sample custom data mask formats

Format Rule Text Entered By User Formatted Output

DDD\-DD\-DDDD 555555555 555-55-5555

AA\-DDD BC349 BC-349
Configuring Text Fields 115

 Chapter 5: Working with Validations
To view your customized data mask:

1. In the Sample Input field, enter the digits that you would like to see
formatted.

2. Click Format.

The digits are formatted according to your settings and displayed in the
Formatted Output field.

Using Directory and File Choosers

Directory and File Choosers are only used with Mercury Change Management
object types.

Directory Chooser

The Directory Chooser field can be used to select a valid directory from an
environment. Mercury Change Management connects to the first source
environment on a workflow and allows navigation through the directory
structure and the selection of a directory from the list.

When implementing the Directory Chooser, note the following:

� The Directory Chooser field can only be used on an object type.

� On every object type that a Directory Chooser is chosen, it is also
necessary to have a field whose token is P_FILE_LOCATION and whose
validation is DLV - File Location. The possible values for this field are Client
and Server. If Client is chosen, the Directory Chooser connects to the Client
Base Path of the source environment. If Server is chosen, the Directory
Chooser connects to the Server Base Path of the source environment.

File Chooser

A File Chooser field can be used by object types to select a valid file from an
environment. Mercury Change Management connects to the first source
environment on a workflow and provides the ability to view all files within a
specific directory and select one from the list.

On every object type that a File Chooser is chosen, it is necessary to define the
following fields:
116 Commands, Tokens, and Validations Guide and Reference

 Chapter 5: Working with Validations
� The first is a field for the File Location for the directory chooser, described
in the previous section.

� The second is a field whose token is ‘P_SUB_PATH’. This field is the
directory from which the file is selected and is usually a Directory Chooser
field.

Figure 5-15. Validation window for static environment override in file

chooser.

The Environment Override Behavior drop-down list contains three options:
Default Behavior, Static Environment Override, and Token-Based Environment
Override.

Static Environment Override provides the ability to override one environment
at a time. The fields for static environment override are pictured in Figure 5-15
and described in Table 5-18.

Table 5-17. File chooser field

Field Definition

Base File Name Only
Defines whether the base file name only (without its
suffix) or the complete name is displayed.

Environment Override
Behavior

Used to select files from a specific environment other
than the default environment.
Using Directory and File Choosers 117

 Chapter 5: Working with Validations
Token-based Environment Override provides the ability to select a token that
will resolve to the overriding environment. The fields for Token-based
Environment Override are shown in Figure 5-16 and defined in Table 5-19.

Figure 5-16. Validation window for token-based environment override in file

chooser.

Table 5-18. Static environment override

Field Definition

Overriding
Environment

Selects the environment to be overridden.

Overriding Server
Basepath

The server basepath of the environment may be overridden.

Overriding Client
Basepath

The client basepath of the environment may be overridden.
118 Commands, Tokens, and Validations Guide and Reference

 Chapter 5: Working with Validations
Date Field Formats

Date fields can accept a variety of formats. The current date field validations
are separated into two categories: all systems, and systems using only the
English language. These formats are defined in Table 3-14.

Table 5-19. Token-based environment override

Field Definition

Environment

Token
Select the token that will resolve to the overriding
environment.

Overriding Server
Basepath

The server basepath of the environment that is to be resolved
by the token may be overridden.

Overriding Client
Basepath

The client basepath of the environment that is to be resolved
by the token may be overridden.
Date Field Formats 119

 Chapter 5: Working with Validations
Creating 1800 Character Text Areas

Standard Text Areas are either 40 or 200 characters. You can, however, create
a Text Area validation with a character length of 1800.

To create a validation with a character length of 1800:

1. Open the Validation Workbench.

Table 5-20. Date field

Field
Definitions

Name Systems

Date
Format

All

The format for the date part of the field. Choices are:

· Long - “January 2, 1999".

· Medium - “02-Jan-99”.

· Short - “1/2/99”.

· None - no date is displayed.

Date
Format

English
Only

The format for the date part of the field. Choices are:

· MM/DD/YY (6/16/99).

· DD-MON-YY (16-Jun-99).

· MONTH DD, YYYY (June 16, 1999).

· Day, Month DD, YYYY (Monday, June 16, 1999).

· DD-MON (16-JUN) - Defaults to current year.

· DD-MON-YYYY (16-JUN-1999).

· MM-DD-YYYY (06-16-1999).

· MM-DD-YY (06-16-99).

· DD [Defaults to the current month and year].

· MM/DD (06/16) - Defaults to current year.

· MM/DD/YYYY (06/16/1999).

Time
Format

All

The format for the time part of the field. Choices are:

· Long - the time is displayed as “12:00:00 PM PST”.

· Medium - the time is displayed as “12:00:00 PM”.

· Short - the time is displayed as “12:00 PM”.

· None - no time is displayed.
120 Commands, Tokens, and Validations Guide and Reference

 Chapter 5: Working with Validations
2. Search for “Text Area - 1800.”

3. In the results tab, select Text Area - 1800.

4. Click Copy.

5. Rename the validation.

The new Text Area validation (with a length of 1800) can be used when
defining a custom field in the product.

Configuring the Table Component

The table component is used to enter multiple records into a single field on a
request. The table component can be configured to include multiple columns of
varied data types. Additionally, this component supports rules for populating
elements within the table and provides functionality for capturing column
totals.

For example, ACME creates a request type to request quotes and parts for
hardware. Each entry of this type has four elements: Product, Quantity, Price,
and Total. ACME creates a table component field called Hardware Information to
collect this information.

When the user logs a request for new hardware, the request displays the
Hardware Information field. The user opens the field. He selects a Product, which
triggers a rule to populate the Price and Total. He submits the request, which
now contains all of the information required to successfully order the
hardware.

You can only create a Text Field or Area of length 40, 200, or 1800.
Configuring the Table Component 121

 Chapter 5: Working with Validations
Fields of this component can only be added to request types, request header
types and request user data.

To configure and use a table component:

1. Defining the Table Component in the Validation Workbench

2. Adding the Table Component to a Request Type

Defining the Table Component in the Validation Workbench

To create a table component field:

1. Log on to Mercury IT Governance Center and open the Workbench.

2. From the shortcut bar, select Configuration > Validations.

3. The Validation Workbench opens.

4. Click New Validation.

The Validation window opens.

5. Select Table Component from the Component Type drop-down list.

1. Click the Table
Component icon
to open the Table
Component entry
page.

2. Add, edit, or
delete entries in
the list.
122 Commands, Tokens, and Validations Guide and Reference

 Chapter 5: Working with Validations
6. Enter a validation Name and Description.

7. Enter any User Instructions.

This text will appear on the top of the table entry page.

8. Create the table columns.

a. Click New in the Table Columns tab. The Field window opens.

b. Define the type of information that will be stored in that column’s
entries. This may require you to create a new validation for the column.

File attachments can not be used in a Table component column.
Configuring the Table Component 123

 Chapter 5: Working with Validations
c. Specify the Attributes (Editable or Required) and any Default behavior.

d. Click Add to save the column information and add another column.
When you are finished adding columns, click OK to close the Field
window.

9. Configure the form layout.

a. Click the Form Layout tab.

b. Select the fields and move their positions using the arrow buttons.
124 Commands, Tokens, and Validations Guide and Reference

 Chapter 5: Working with Validations
c. Click Preview to see a representation of the final positioning.

Note that the preview loads a window in the Workbench, but the actual
table component will only be available to users in the standard interface
(HTML).

10. Configure any table logic in the Rules tab.

Rules are used for advanced defaulting behavior and calculating column
totals.

a. Click the Rules tab.

b. Click New to define a new rule.

See Creating a Table Rule on page 126 for detailed instructions.
Configuring the Table Component 125

 Chapter 5: Working with Validations
11. Click OK to save the validation.

The new table component field can be included on a request type, request
header type or request user data field.

Creating a Table Rule

Table rules are configured in the same manner as advanced request type rules.
Essentially, you can configure fields (columns) in the table to default to certain
values based on an event or value in another field in the table. Because the
table component rules are configured using a SQL statement, you are given
enormous flexibility for the data that is populated in the table cells.

Table rules are configured using the Rules tab on the Validation window.

Figure 5-17. Rules window accessed from the Rules tab

Example: Using a Table Component on an Order Form

The following example illustrates the table component rules functionality.

ACME uses a request for creating and tracking employee computer hardware
equipment orders. ACME has included a table component field on their request
type for gathering the order information. When the employee selects a Product,
126 Commands, Tokens, and Validations Guide and Reference

 Chapter 5: Working with Validations
the Unit Price is automatically updated. Then, when they update the Quantity, the
total line cost is automatically calculated and displayed in the table.

To enable this functionality, ACME first has to configure a new validation
with the following specifications:

Table 5-21. Example - table component validation settings

Setting Value / Description

Validation Name Product Order Information

Component Type Table Component

Column 1

Column Header = Products

Column Token = PRODUCTS

Validation = Auto complete list with the
following list values: PC, MOUSE, MONITOR,
KEYBOARD

Column 2

Column Header = Quantity

Column Token = QUANTITY

Validation = Numeric Text Field

Column 3

Column Header = Price

Column Token = PRICE

Validation = Numeric Text Field

Column 4

Column Header = Total

Column Token = TOTAL

Validation = Numeric Text Field
Configuring the Table Component 127

 Chapter 5: Working with Validations
Once the validation’s columns have been defined, the rules can be configured:

Rule 1: Set Unit Price.

ACME uses the following rule to set the default unit price in the Price cell
based on the Product selection.

Table 5-22. Example - Set Unit Price rule settings

Setting Value / Description

Rule Name Set Unit Price

Rule Event Apply on Field Change

Dependencies
Column = Products

All Values = Yes

Results Column Header = Price

SQL

SELECT DECODE('[TE.P.PRODUCTS]',
'PC', 1200,

'Mouse', 50,

'Monitor', 560,

'Keyboard', 110, 0),

DECODE('[TE.P.PRODUCTS]', 'PC', 1200,

'Mouse', 50,

'Monitor', 560,

'Keyboard', 110, 0)

FROM sys.dual
128 Commands, Tokens, and Validations Guide and Reference

 Chapter 5: Working with Validations
Rule 2: Calculate Total.

ACME uses the following rule to set the calculate and display the total line
price in the Total column based on the values in the Products and Quantity cells.

Table 5-23. Example - Calculate Total rule settings

Setting Value / Description

Rule Name Calculate Total

Rule Event Apply on Field Change

Dependencies
Column = Price [All Values = Yes]

Column = Quantity [All Values = Yes]

Results Column Header = Total

SQL
SELECT [TE.P.PRICE] * [TE.P.QUANTITY],
[TE.P.PRICE] * [TE.P.QUANTITY]

from sys.dual
Configuring the Table Component 129

 Chapter 5: Working with Validations
Using the table component

Add a field to a request type that is validated by this table component
validation. When a user opens the field to enter information, the table rules will
be applied to each row that is created.

Tokens in the Table Components

Each column included in the table component has an associated token. These
tokens can be used in the same manner as other field tokens, such as for
commands, notifications or advanced field defaulting. See Tokens in Request
Table Components on page 61 for details on referencing tokens related to table
components.

Calculating Column Totals

You can configure columns that are validated by a number to calculate the total
for that column. This is configured in the validation’s Field window. The
following example illustrates how to configure a column to calculate and
display the column total.

ACME, Inc., uses a request for creating and tracking simple employee
equipment orders. ACME has included a table component field on their request
type for gathering the order information. Employees enter the Purchase Items
and Cost for each item. The table component automatically calculates the total
cost for the Cost column.

ACME creates a validation with the following settings:

� Component Type = Table Component.

� Column 1 = Purchase Item (text field)
130 Commands, Tokens, and Validations Guide and Reference

 Chapter 5: Working with Validations
� Column 2 = Cost (number). In the Field window for the Cost column, select
Display Total = Yes. The Display Total field is only enabled if the field’s
validation is a number.

Figure 5-18. Sample validation for a Simple Order table component.

ACME includes adds a field to their Order request type that uses this
validation. When a user creates a request using that request type, he can click
on the table component icon next to the field to open the order form. The total
for the Cost column is displayed at the bottom of the table.
Configuring the Table Component 131

 Chapter 5: Working with Validations
Figure 5-19. Sample table component displaying a column total.

Adding the Table Component to a Request Type

Table component fields can be included on a request type, request header type
or request user data field.

To add a table component field to a request type:

1. Open the Request Type window.

2. Click New in the Fields tab.

The Field window opens.

3. Enter the Field Prompt, Token, and Description.

4. In the Validation field, select a table component validation.

If you have not created a table component validation, click New to create
one. See Defining the Table Component in the Validation Workbench
on page 122 for instructions.
132 Commands, Tokens, and Validations Guide and Reference

 Chapter 5: Working with Validations
5. Click OK to add the field to the request type.

6. Save the request type.

The table component field will now appear on requests of this request type.
Configuring the Table Component 133

 Chapter 5: Working with Validations
Package and Request Group Validations

Two particular entity-specific validations can be accessed in the Workbench
without entering the Validations screen group.

Package and Request Groups

The KNTA-Package and Request Groups validation can be accessed directly
from the Package screen. To specify that a package belongs to a new or unique
package group that is not named in the auto-complete validation list, it is not
necessary to proceed through the Validation Workbench.

To access the KNTA-Package and Request Groups validation window from
the Package screen:

Select New Package Group from the Package menu. The Validation window will
appear, listing the existing Mercury Change Management package groups.

All users are granted read access to this screen, but only users with appropriate
security privileges can alter the KNTA-Package and Request Groups validation list.
134 Commands, Tokens, and Validations Guide and Reference

 Chapter 5: Working with Validations
Request Type Category

The CRT - Request Type Category validation can be accessed directly from the
Request Types workbench.

Access the CRT - Request Type Category validation window from the Request
Types workbench by selecting Request Type Category Setup from the Request
Type menu. The Validation window will appear, listing the existing request type
categories.

Validation Special Characters

The Validation Name field for all validations cannot contain a question mark
(‘?’). The Workbench prevents this character from being entered into the field,
but all previously configured validation names (validations entered before
release 4.5) should be checked and corrected.

All users are granted read access to this screen, but only users with appropriate
security privileges can alter the CRT - Request Type Category validation list.
Validation Special Characters 135

 Chapter 5: Working with Validations
System Validations

There are a number of validations that are provided with Mercury IT
Governance Center. Note that many of these validations may have been altered
to better match your company’s specific business needs. Use the Validations
report to get a list of all validations currently in your system. The report
includes information on validation values and commands.
136 Commands, Tokens, and Validations Guide and Reference

Appendix

A

System Special Commands

In This Appendix:

� Overview of System Special Commands
� ksc_connect Special Commands

� ksc_connect_dest_client
� ksc_connect_dest_server
� ksc_connect_source_client
� ksc_connect_source_server

� ksc_exit
� ksc_copy Special Commands

� ksc_copy_client_client
� ksc_copy_client_server
� ksc_copy_server_client
� ksc_copy_server_server
� ksc_copy_client_tmp
� ksc_copy_server_tmp
� ksc_copy_tmp_client
� ksc_copy_tmp_server

� ksc_respond
� ksc_simple_respond

� Examples using ksc_simple_respond
� ksc_local_exec

� Example using ksc_local_exec
� ksc_replace

� Example using ksc_replace
� ksc_set

� Example using ksc_set
137

Appendix A: System Special Commands
� ksc_set_env
� ksc_store

� Example using ksc_store
� ksc_comment
� ksc_concsub

� Example using ksc_concsub
� ksc_begin_script / ksc_end_script

� Example using ksc_begin_script and ksc_end_script
� ksc_copy_script Special Commands

� ksc_copy_script_dest_client
� ksc_copy_script_dest_server
� ksc_copy_script_source_client
� ksc_copy_script_source_server

� ksc_om_migrate
� Example using ksc_om_migrate

� ksc_capture_output
� ksc_gl_migrate

� Example using ksc_gl_migrate
� ksc_parse_jcl
� ksc_submit_job
� ksc_set_exit_value
� ksc_clear_exit_value
� ksc_run_sql

� Example using ksc_run_sql
� Summary of All Special Command Parameters

Overview of System Special Commands

This appendix discusses the pre-defined special commands.

ksc_connect Special Commands

The ksc_connect special commands instruct the execution engine to open a
connection to a specified environment. This command initiates a TELNET,
SSH or SSH2 session with the server or client defined for the environment.
138 Commands, Tokens, and Validations Guide and Reference

Appendix A: System Special Commands
The command then sends all command steps that follow it directly to the
machine, as though someone was actually typing the command on that
machine. In this way, the execution engine is able to run virtually any
command-line directive that the machine understands.

ksc_connect_dest_client

This command initiates a TELNET, SSH, or SSH2 session with the client of
the destination environment. The destination environment refers to the
destination environment of the workflow step initiating command execution.

Example Using ksc_connect_dest_client

Make a remote connection to the client of the
destination environment defined for the current
workflow step.

All ksc_connect special commands must end with the ‘ksc_exit’ special command to
exit the TELNET, SSH, or SSH2 session.

Table A-1. ksc_connect_dest_client parameters

Parameter Default Token Description

USERNAME
[DEST_ENV.CLIENT_
USERNAME

Username on [DEST_ENV].

PASSWORD
[DEST_ENV.CLIENT_
PASSWORD

Password on [DEST_ENV].

NT_DOMAIN
[DEST_ENV.CLIENT_NT_
DOMAIN

Windows NT Domain name of
[DEST_ENV].

DEST_BASE_
PATH

[DEST_ENV.CLIENT_
BASE_PATH

Base Path of [DEST_ENV].

CONNECTION_
PROTOCOL

[DEST_ENV.CLIENT_
CON_PROTOCOL_
MEANING]

Specifies the connection
protocol. Possible values are
listed in validation
“CONNECTION_PROTOCOL”.

DEST_ENV [DEST_ENV]

Name of the destination
environment to be used instead
of the destination environment
on the current workflow step.
ksc_connect Special Commands 139

Appendix A: System Special Commands
ksc_connect_dest_client
<commands>
ksc_exit

Make a remote connection to the client defined for
the environment named ‘STAGING’.

ksc_connect_dest_client DEST_ENV="STAGING"
<commands>
ksc_exit

ksc_connect_dest_server

This command initiates a TELNET, SSH, or SSH2 session with the server of
the destination environment. The destination environment refers to the
destination environment of the workflow step initiating command execution.

Example using ksc_connect_dest_server

Make a remote connection to the server of the
destination environment defined for the current
workflow step.

ksc_connect_dest_server
<commands>

Table A-2. ksc_connect_dest_server parameters

Parameter Default Token Description

USERNAME
[DEST_ENV.SERVER_
USERNAME

Username on [DEST_ENV].

PASSWORD
[DEST_ENV.SERVER_
PASSWORD

Password on [DEST_ENV].

NT_DOMAIN
[DEST_ENV.SERVER_
NT_DOMAIN

Windows NT Domain name of
[DEST_ENV].

DEST_BASE_
PATH

[DEST_ENV.SERVER_
BASE_PATH

Base Path of [DEST_ENV].

CONNECTION_
PROTOCOL

[DEST_ENV.SERVER_
CON_PROTOCOL_
MEANING]

Specifies the connection protocol.
Possible values are listed in
validation “CONNECTION_
PROTOCOL”.

DEST_ENV
[DEST_ENV.
ENVIRONMENT_NAME]

Name of the destination
environment to be used instead of
the destination environment on the
current workflow step.
140 Commands, Tokens, and Validations Guide and Reference

Appendix A: System Special Commands
ksc_exit

Make a remote connection to the server defined for
the environment named ‘Staging’.

ksc_connect_dest_server DEST_ENV="STAGING"
<commands>
ksc_exit

ksc_connect_source_client

This command initiates a TELNET, SSH, or SSH2 session with the client of
the source environment. The source environment refers to the source
environment of the workflow step initiating command execution.

Example using ksc_connect_source_client

Make a remote connection to the client of the source
environment defined for the current workflow step.

ksc_connect_source_client
<commands>
ksc_exit

Make a remote connection to the client defined for
the environment named ‘STAGING’.

Table A-3. ksc_connect_source_client parameters

Parameter Default Token Description

USERNAME
[SOURCE_ENV.CLIENT_
USERNAME

Username on [SOURCE_ENV].

PASSWORD
[SOURCE_ENV.CLIENT_
PASSWORD

Password on [SOURCE_ENV].

NT_DOMAIN
[SOURCE_ENV.CLIENT_
NT_DOMAIN

Windows NT Domain name of
[SOURCE_ENV].

SOURCE_
BASE_PATH

[SOURCE_ENV.CLIENT_
BASE_PATH

Base Path of [SOURCE_ENV].

CONNECTION_
PROTOCOL

[SOURCE_ENV.CLIENT_
CON_PROTOCOL_
MEANING]

Specifies the connection
protocol. Possible values are
listed in validation
“CONNECTION_PROTOCOL”.

SOURCE_ENV [SOURCE_ENV]

Name of the source environment
to be used instead of the source
environment on the current
workflow step.
ksc_connect Special Commands 141

Appendix A: System Special Commands
ksc_connect_source_client SOURCE_ENV="STAGING"
<commands>
ksc_exit

ksc_connect_source_server

This command initiates a TELNET, SSH, or SSH2 session with the server of
the source environment. The source environment refers to the source
environment of the workflow step initiating command execution.

Examples using ksc_connect_source_server

Make a remote connection to the server of the source
environment defined for the current workflow step.

ksc_connect_source_server
<commands>
ksc_exit

Make a remote connection to the server defined for
the environment named ‘STAGING’.

ksc_connect_source_server SOURCE_ENV="STAGING"
<commands>
ksc_exit

Table A-4. ksc_connect_source_server parameters

Parameter Default Token Description

USERNAME
[SOURCE_ENV.SERVER_
USERNAME

Username on [SOURCE_ENV].

PASSWORD
[SOURCE_ENV.SERVER_
PASSWORD

Password on [SOURCE_ENV].

NT_DOMAIN
[SOURCE_ENV.SERVER_
NT_DOMAIN

Windows NT Domain name of
[SOURCE_ENV].

SOURCE_
BASE_PATH

[SOURCE_ENV.SERVER_
BASE_PATH

Base Path of [SOURCE_ENV].

CONNECTION_
PROTOCOL

[SOURCE_ENV.SERVER_
CON_PROTOCOL_
MEANING]

Specifies the connection
protocol. Possible values are
listed in validation
“CONNECTION_PROTOCOL”.

SOURCE_ENV [SOURCE_ENV]

Name of the source
environment to be used instead
of the source environment on
the current workflow step.
142 Commands, Tokens, and Validations Guide and Reference

Appendix A: System Special Commands
ksc_exit

This command exits the TELNET, SSH, or SSH2 session initiated by the ksc_
connect Special Commands. For examples using ksc_exit, see ksc_connect
Special Commands.

ksc_copy Special Commands

The ksc_copy special commands provide the mechanism for transferring files
to and from the various environments defined in Mercury IT Governance
Center.

ksc_copy_client_client

This command copies a file from the source client environment to the
destination client environment.

The default use of these commands requires that the entity containing the command
has three fields with the following tokens defined:

[P.P_FILENAME]
[P.P_FILE_TYPE]
[P.P_SUB_PATH]

If these fields are not defined as part of the entity, they must be passed as
parameters or the command will fail.

Files are copied using either FTP, SCP or SCP2, depending on the configuration of
the environment.

Table A-5. ksc_copy_client_client parameters

Parameter Default Token Description

SUB_PATH [P.P_SUB_PATH]
The sub-directory that should be
used to locate the file relative to the
base path of each environment.

SOURCE_BASE
_PATH

[SOURCE_ENV.
CLIENT_BASE_PATH]

The base path of the source client
environment to be used instead of
what is defined for the current
source environment.
ksc_exit 143

Appendix A: System Special Commands
Example #1 using ksc_copy_client_client

Copy a file between source and destination clients.

ksc_copy_client_client SUB_PATH="forms"
 FILENAME="[P.P_MODULE].fmb" FILE_TYPE="BINARY"

Copy a file between the client defined in the ‘STAGING’
environment and the destination client.

ksc_copy_client_client DEST_ENV=”STAGING”

Example #2 using ksc_copy_client_client

Override the base path of the destination directory.

ksc_copy_client_client DEST_BASE_PATH=”/u1/datatree/ex1” SUB_
PATH=”.” FILENAME="[P.P_MODULE].fmb" FILE_TYPE="BINARY"

ksc_copy_client_server

This command copies a file from the source client environment to the
destination server environment.

DEST_BASE
_PATH

[DEST_ENV.
CLIENT_BASE_PATH]

The base path of the destination
client environment to be used
instead of what is defined for the
current destination environment.

FILENAME [P.P_FILENAME] Name of the file to be copied.

FILE_TYPE [P.P_FILE_TYPE]
The file type associated with the file
(ASCII or BINARY).

SOURCE_ENV [SOURCE_ENV]

Name of the source environment to
be used instead of the source
environment on the current workflow
step.

DEST_ENV [DEST_ENV]

Name of the destination environment
to be used instead of the destination
environment on the current workflow
step.

Table A-5. ksc_copy_client_client parameters

Parameter Default Token Description
144 Commands, Tokens, and Validations Guide and Reference

Appendix A: System Special Commands
Example using ksc_copy_client_server

Copy a file between source client and
destination server.

ksc_copy_client_server SUB_PATH="install/sql"
 FILENAME="[P.P_SQL_SCRIPT]" FILE_TYPE="ASCII"

ksc_copy_server_client

This command copies a file from the source server environment to the
destination client environment.

Table A-6. ksc_copy_client_server parameters

Parameter Default Token Description

SUB_PATH [P.P_SUB_PATH]

The sub-directory that should be
used to locate the file relative to
the base path of each
environment.

SOURCE_BASE
_PATH

[SOURCE_ENV.CLIENT_
BASE_PATH]

The base path of the source client
environment to be used instead of
what is defined for the current
source environment.

DEST_BASE
_PATH

[DEST_ENV.
SERVER_BASE_PATH]

The base path of the destination
server environment to be used
instead of what is defined for the
current destination environment.

FILENAME [P.P_FILENAME] Name of the file to be copied.

FILE_TYPE [P.P_FILE_TYPE]
The file type associated with the
file (ASCII or BINARY).

SOURCE_ENV [SOURCE_ENV]

Name of the source environment
to be used instead of the source
environment on the current
workflow step.

DEST_ENV [DEST_ENV]

Name of the destination
environment to be used instead of
the destination environment on
the current workflow step.
ksc_copy Special Commands 145

Appendix A: System Special Commands
Example using ksc_copy_server_client

Copy a file between source server and
destination client.

ksc_copy_server_client SUB_PATH="[P.P_SUB_DIRECTORY]"
 FILE_TYPE="[P.P_FILE_TYPE]"

ksc_copy_server_server

This command copies a file from the source server environment to the
destination server environment.

Table A-7. ksc_copy_server_client parameters

Parameter Default Token Description

SUB_PATH [P.P_SUB_PATH]
The sub-directory that should be
used to locate the file relative to the
base path of each environment.

SOURCE_BASE
_PATH

[SOURCE_ENV.
SERVER_BASE_PATH]

The base path of the source server
environment to be used instead of
what is defined for the current
source environment.

DEST_BASE
_PATH

[DEST_ENV.
CLIENT_BASE_PATH]

The base path of the destination
client environment to be used
instead of what is defined for the
current destination environment.

FILENAME [P.P_FILENAME] Name of the file to be copied.

FILE_TYPE [P.P_FILE_TYPE]
The file type associated with the file
(ASCII or BINARY).

SOURCE_ENV [SOURCE_ENV]

Name of the source environment to
be used instead of the source
environment on the current
workflow step.

DEST_ENV [DEST_ENV]

Name of the destination
environment to be used instead of
the destination environment on the
current workflow step.
146 Commands, Tokens, and Validations Guide and Reference

Appendix A: System Special Commands
Example using ksc_copy_server_server

Copy a file between source and destination servers.
ksc_copy_server_server FILENAME="[P.P_FILE]"

Copy a file between the source server and the
destination server overriding the base bath.

ksc_copy_server_server FILENAME=”install_driver.sh”
DEST_BASE_PATH=”/u2/app/drivers”

Copy a form between the ‘STAGING’ and destination servers.

ksc_copy_server_server SOURCE_ENV="STAGING" SUB_PATH="forms"
 FILENAME="[P.P_MODULE].fmb" FILE_TYPE="BINARY"

Table A-8. ksc_copy_server_server parameters

Parameter Default Token Description

SUB_PATH [P.P_SUB_PATH]
The sub-directory that should be
used to locate the file relative to the
base path of each environment.

SOURCE_BASE
_PATH

[SOURCE_ENV.
SERVER_BASE_PATH]

The base path of the source server
environment to be used instead of
what is defined for the current
source environment.

DEST_BASE
_PATH

[DEST_ENV.
SERVER_BASE_PATH]

The base path of the destination
server environment to be used
instead of what is defined for the
current destination environment.

FILENAME [P.P_FILENAME] Name of the file to be copied.

FILE_TYPE [P.P_FILE_TYPE]
The file type associated with the
file (ASCII or BINARY).

SOURCE_ENV [SOURCE_ENV]

Name of the source environment to
be used instead of the source
environment on the current
workflow step.

DEST_ENV [DEST_ENV]

Name of the destination
environment to be used instead of
the destination environment on the
current workflow step.
ksc_copy Special Commands 147

Appendix A: System Special Commands
ksc_copy_client_tmp

This command copies a file from the source client environment to the
temporary package transfer directory on the application server. This temporary
directory is automatically cleaned up after an execution completes and can be
referenced using the [AS.PKG_TRANSFER_PATH] token.

ksc_copy_server_tmp

This command copies a file from the source server environment to the
temporary package transfer directory on the application server. This temporary
directory is automatically cleaned up after an execution completes and can be
referenced using the [AS.PKG_TRANSFER_PATH] token.

Table A-9. ksc_copy_server_tmp parameters

Parameter Default Token Description

SUB_PATH [P.P_SUB_PATH]
The sub-directory that should be
used to locate the file relative to the
base path of each environment.

SOURCE_BASE
_PATH

[SOURCE_ENV.
CLIENT_BASE_PATH]

The base path of the source client
environment to be used instead of
what is defined for the current source
environment.

FILENAME [P.P_FILENAME] Name of the file to be copied.

FILE_TYPE [P.P_FILE_TYPE]
The file type associated with the file
(ASCII or BINARY).

SOURCE_ENV [SOURCE_ENV]

Name of the source environment to
be used instead of the source
environment on the current workflow
step.
148 Commands, Tokens, and Validations Guide and Reference

Appendix A: System Special Commands
ksc_copy_tmp_client

This command copies a file from the temporary package transfer directory on
the application server to the destination client environment. This temporary
directory is automatically cleaned up after an execution completes and can be
referenced using the [AS.PKG_TRANSFER_PATH] token.

Table A-10. ksc_copy_server_tmp parameters

Parameter Default Token Description

SUB_PATH [P.P_SUB_PATH]
The sub-directory that should be
used to locate the file relative to the
base path of each environment.

SOURCE_BASE
_PATH

[SOURCE_ENV.
SERVER_BASE_PATH]

The base path of the source server
environment to be used instead of
what is defined for the current
source environment.

FILENAME [P.P_FILENAME] Name of the file to be copied.

FILE_TYPE [P.P_FILE_TYPE]
The file type associated with the file
(ASCII or BINARY).

SOURCE_ENV [SOURCE_ENV]

Name of the source environment to
be used instead of the source
environment on the current
workflow step.

Table A-11. ksc_copy_server_tmp parameters

Parameter Default Token Description

SUB_PATH [P.P_SUB_PATH]
The sub-directory that should be
used to locate the file relative to the
base path of each environment.

DEST_BASE
_PATH

[DEST_ENV.
CLIENT_BASE_PATH]

The base path of the destination
server environment to be used
instead of what is defined for the
current destination environment.

FILENAME [P.P_FILENAME] Name of the file to be copied.
ksc_copy Special Commands 149

Appendix A: System Special Commands
ksc_copy_tmp_server

This command copies a file from the temporary package transfer directory on
the application server to the destination server environment. This temporary
directory is automatically cleaned up after an execution completes and can be
referenced using the [AS.PKG_TRANSFER_PATH] token.

FILE_TYPE [P.P_FILE_TYPE]
The file type associated with the file
(ASCII or BINARY).

DEST_ENV [DEST_ENV]

Name of the destination environment
to be used instead of the destination
environment on the current workflow
step.

Table A-11. ksc_copy_server_tmp parameters

Parameter Default Token Description

Table A-12. ksc_copy_server_tmp parameters

Parameter Default Token Description

SUB_PATH [P.P_SUB_PATH]
The sub-directory that should be
used to locate the file relative to the
base path of each environment.

DEST_BASE
_PATH

[DEST_ENV.
SERVER_BASE_PATH]

The base path of the destination
server environment to be used
instead of what is defined for the
current destination environment.

FILENAME [P.P_FILENAME] Name of the file to be copied.

FILE_TYPE [P.P_FILE_TYPE]
The file type associated with the
file (ASCII or BINARY).

DEST_ENV [DEST_ENV]

Name of the destination
environment to be used instead of
the destination environment on the
current workflow step.
150 Commands, Tokens, and Validations Guide and Reference

Appendix A: System Special Commands
ksc_respond

This command is currently only used to support Patch*Applicator. This
command is able to intelligently respond to interactive prompts generated by
the Oracle “adpatch” and “adadmin” programs. General use of this special
command for arbitrary programs is not yet supported. For simple interactive
programs, see ksc_simple_respond on page 151.

ksc_simple_respond

This command executes an interactive UNIX command on a remote computer.
This command is useful when the command to be executed will prompt for
additional information (such as the UNIX ‘su’ command to switch user
accounts) or may not return an exit code upon completion (such as starting up a
new shell using ‘sh’).

The following syntax is supported:

ksc_simple_respond “command”
ksc_simple_respond “command” “prompt 1" “response 1" [“prompt
2" “response 2" …]
ksc_simple_respond “command” -hide “prompt 1" “response 1"
[“prompt 2" “response 2" …]

There can be as many prompt-response pairs as necessary. Each prompt must
be matched with a response, even if the response is an empty string. The
prompts must appear in the exact order they will be displayed as the command
is run. All arguments must be enclosed in quotes. In addition, if the command
or any of the arguments contains double quotes (“), any other character can be
used as the quote character. The first character after the string ‘ksc_simple_
respond’ will be interpreted as the quote character, and that character must
appear at the beginning and end of each argument.

By using the -hide option, the value passed in for the response will not be
displayed in the execution log. In the log, the value will be displayed as ****.
This flag should be used for each prompt/response pair that needs this
treatment.

This command can only be used from within a remote execution session, such as
between ‘ksc_connect’ and ‘ksc_exit’ commands.
ksc_respond 151

Appendix A: System Special Commands
Examples using ksc_simple_respond

If it becomes necessary to invoke a new shell while in a remote session, it
would be ideal to simply use the command ‘sh’. However, this can cause the
execution engine to wait indefinitely while waiting for an exit code. To avoid
this problem, the ‘sh’ command can be encapsulated in a ksc_simple_respond
command with no prompts as shown:

ksc_simple_respond “sh”

As another example, suppose it becomes necessary to switch to another user
account while in a remote session using the ‘su’ command. This command
always prompts for password, unless performed by a root user. By utilizing the
-hide feature, the password will not be displayed in the execution logs. This
interactivity can be handled using ksc_simple_respond as follows:

ksc_simple_respond "su <username>" -hide "word:" "<password>"

Note that “word:” was used as the prompt instead of the entire word
“password:”. The execution engine will wait for the specified prompt string,
whether it is all—or just a part—of the prompt text.

As one more example, consider the following Bourne shell command:

echo "Enter a string:\c"; read str; echo $str

Normally, this command line would cause the execution engine to hang while
waiting for an exit code (the command will never exit because it is waiting for
input), which would eventually timeout when the execution timeout time is
reached. Use ksc_simple_respond to process this command as shown (this
command should be entered on a single line):

ksc_simple_respond #echo "Enter a string:\c"; read str; echo
$str# #a string:# #my_value#

Since the command line contained double quotes, the pound sign (#) is used as
the quote character. During execution, this command step will prompt “Enter a
string:” and wait for input. The string “my_value” would be entered

The execution engine will wait for each specified prompt. If a prompt does not appear
for some reason, then the execution engine will continue to wait for it until the
command times out.
152 Commands, Tokens, and Validations Guide and Reference

Appendix A: System Special Commands
automatically, this value will then be echoed to the output device (in this case,
the execution log), and execution will continue as normal with the next
command step.

ksc_local_exec

This command invokes a local process on the machine running the Mercury IT
Governance Server. It can be used to run any program that does not require
interactive input. Each call using ‘ksc_local_exec’ is an independent process.
It does not execute in the context of other commands that precede it. The
starting directory for the processes generated using ‘ksc_local_exec’ is the
home directory of the Mercury IT Governance Server. Full paths to the
executable being called are necessary if the Mercury IT Governance Server
does not have the correct system path information.

Example using ksc_local_exec

Rename existing file ‘file.txt’ to ‘newfile.txt’
ksc_local_exec mv file.txt newfile.txt

Run a DOS batch file
ksc_local_exec cmd /c runme.bat

System commands do not invoke either Unix shells or DOS shells. This means
that the following code segment using ‘ksc_local_exec’ is not valid, because it
cannot use the ‘pipe’ (|) or redirect commands (>):

ksc_local_exec cat names.txt | grep address > file.out

An effective way to use the ksc_local_exec command is to put a series of
commands into a .sh file, and then execute the .sh file as shown:

ksc_begin_script + [AS.CR_TRANSFER_PATH] run.sh
..

The ksc_local_exec command does not open a TELNET, SSH or SSH2 connection
to the Mercury IT Governance Server. It operates by creating a new child process on
the machine that is running the Mercury IT Governance Server. Therefore, the user
account and password for this process will be the same as the account and password
used to start the Mercury IT Governance Server.
ksc_local_exec 153

Appendix A: System Special Commands
<series of commands>
ksc_end_script

ksc_local_exe ksh run.sh

ksc_replace

This command is used to edit the contents of a file and place it into another file.
This command works in a way similar to the ‘sed’ utility and supports the same
substituting expressions.

The files must be located on the Mercury IT Governance Server in the
[AS.PKG_TRANSFER_PATH] directory. This requires the use of the ksc_
copy_tmp_* commands.

Example using ksc_replace

ksc_copy_server_tmp FILENAME=”config.template” FILE_
TYPE=”ASCII”

ksc_replace FILENAME=”config.template” OUTFILE=”config.cfg”
SUBST=”s/NAME/[P.NAME]/g”

ksc_copy_tmp_server FILENAME=”config.cfg”

ksc_set

This command sets the value of a temporary variable which may be used to
manage command conditions or aid in command processing.

Table A-13. ksc_replace parameters

Parameter Default Token Description

FILENAME [P.P_FILENAME] Name of the source file to be edited.

OUTFILE [OUTFILE]
Name of the output file after applying the
substitution expressions.

SUBST The substitution expression.
154 Commands, Tokens, and Validations Guide and Reference

Appendix A: System Special Commands
The following syntax is supported:

ksc_set VARIABLE=”Value”

To reference the value of this variable, use the familiar token syntax without
any prefix. Unlike the ‘ksc_store’ command, ‘ksc_set’ does not write values to
the database. The scope of the variable that is set is valid from when the
variable is defined to the end of the command steps for the entity. This make
using ‘ksc_set’ more attractive than shell variables because the values are
retained between separate ‘ksc_connect’ sessions. Another advantage of using
‘ksc_set’ is that the token values are visible in the logs, not just the variable
names. This command may be nested within a ‘ksc_connect’ command (see
the following example).

Example using ksc_set

Set the value of a compile flag.
#
ksc_set COMPILE=”YES”
ksc_set nested within a ksc_connect
ksc_connect_dest_server
ksc_set REBUILD=”NO”
ksc_exit

Later, a temporary variable can be referenced in a command condition or in
another command step. For example, the command condition may look like:

‘[COMPILE]’ = ‘YES’

ksc_set_env

Use this command to set the correct environment context of an execution in
cases where the workflow source and destination environments are overridden
using the DEST_ENV and SOURCE_ENV parameters. Normally it is not
necessary to use this command since it is called internally from other special
commands. If it is used on a stand-alone basis, it must come after any ‘ksc_
copy’ commands.
ksc_set_env 155

Appendix A: System Special Commands
ksc_store

This command dynamically sets the values of fields defined for object types,
request types, and report types. This command is useful to set or alter the value
of fields based on the command output. This command may only be used on
fields which have been custom configured. Custom configured fields are those
with tokens that are evaluated using the [P.<TOKEN>] or [VP.<TOKEN>]
format. After altering a token, future evaluations of the token will use the new
value. The new values are written to the database, so the changes are not
temporary as in ‘ksc_set’.

This command may be nested within a ‘ksc_connect’ command (as seen in the
following example) and its value can be referenced in command conditions.

The following syntax is supported:

ksc_store TOKEN=”Value”
ksc_store TOKEN=”Hidden Value”, “Visible Value”

Table A-14. ksc_set_env parameters

Parameter Default Token Description

DEST_ENV_ID
[DEST_ENV.
ENVIRONMENT_ID]

ID of the destination environment to
be used instead of the destination
environment on the current workflow
step.

SOURCE_ENV_ID
[SOURCE_ENV.
ENVIRONMENT_ID]

ID of the source environment to be
used instead of the source
environment on the current workflow
step.

SOURCE_ENV [SOURCE_ENV]

Name of the source environment to
be used instead of the source
environment on the current workflow
step.

DEST_ENV [DEST_ENV]

Name of the destination environment
to be used instead of the destination
environment on the current workflow
step.
156 Commands, Tokens, and Validations Guide and Reference

Appendix A: System Special Commands
In the first case, the hidden and visible values of the field will be set to the
same value. In the second case, the hidden and visible values are set
independently. “Hidden Value” refers to the [P.<TOKEN>] format. “Visible
Value” refers to the [VP.<TOKEN>] format.

Example using ksc_store

In the following example, it is assumed that the entity in question has the
following tokens defined:

[P.DRIVER]
[P.REVISION]
[P.RESULT]

Store the name of the driver file.

ksc_store DRIVER=”driver.sh”

Capture the Revision number of a file.
#
ksc_connect_dest_server
cd “SourceCode/java”
grep ‘$Revision’ ServerAdmin.java
ksc_store REVISION=”[EXEC.OUTPUT]”
ksc_exit

Set the hidden and visible result codes of a parameter.
#
ksc_store RESULT=”IN_PROG”,”In Progress”

ksc_comment

This command adds single line comments to the execution log. It can be used
to indicate informational or error messages. HTML tags are supported.

The following syntax is supported:

ksc_comment <comment>

The comment text can be any text string.
ksc_comment 157

Appendix A: System Special Commands
ksc_concsub

This command submits Oracle Application concurrent requests from the
operating system command line. It is treated as a special command because the
command engine must capture the concurrent request ID, which is an output of
successful submission. To work properly, this command must be called within
a ‘ksc_connect - ksc_exit’ command block.

If ‘ksc_concsub’ is used to submit a concurrent request to an Oracle
Applications database other than where Mercury IT Governance Center is
currently installed, the ORA_APPS_DB_LINK parameter must be added to
the ‘ksc_concsub’ command. Otherwise, the status of the concurrent request
cannot be determined after submission.

The following syntax is supported:

ksc_concsub ORA_APPS_DB_LINK="DB_LINK" CONCSUB

DB_LINK corresponds to the database link from the Mercury IT Governance
Center schema to the APPS schema of the database to which the concurrent
request is submitted.

Example using ksc_concsub

ksc_concsub ORA_APPS_DB_LINK=[DEST_ENV.ORA_APPS_DB_LINK]
CONCSUB [DEST_ENV.APP.DB_USERNAME]/[DEST_ENV.APP.DB_
PASSWORD]@[DEST_ENV.DB_CONNECT_STRING] FND 'Application
Developer' SYSADMIN WAIT=N CONCURRENT FND FNDFMREG [DEST_
ENV.APP_CODE] [P.P_FILENAME]

The complete syntax for Oracle's CONCSUB is shown below. Optional
parameters are in square brackets.

CONCSUB
<ORACLE ID>
<Responsibility Application Short Name>
<Responsibility Name>
<User Name>
[WAIT=N]
CONCURRENT
<Concurrent Program Application Short Name>

The special command ‘ksc_concsub’ is followed by the exact CONCSUB call that will
be executed directly at the command line.
158 Commands, Tokens, and Validations Guide and Reference

Appendix A: System Special Commands
<Concurrent Program Name>
[START=<Requested Start Date>]
[REPEAT_DAYS=<Repeat Interval>]
[REPEAT_END=<Request Resubmission End Date>]
<Concurrent Program Arguments...>

For additional information on using the CONCSUB command, see the Oracle
documentation.

ksc_begin_script / ksc_end_script

The object command structure of Mercury IT Governance Center lends itself
nicely to standard, step-by-step processes. In most cases, these commands are
fully capable of automating the migration of an object. However, in some
circumstances, it is necessary to add additional logic to the commands for an
object. For example, perhaps a loop must be generated to repeat a command
several times. This is where scripts-on-the-fly are best applied.

Scripts-on-the-fly are designed to leverage the architecture, tools, and
knowledge already present in an organization. By using a script-on-the-fly,
administrators can define migration logic in their preferred scripting language
(such as Bourne Shell, C Shell or Perl). The scripts only need to be defined
once. The execution engine copies the script wherever it needs to be executed.
The execution engine can also be instructed to clean up the script after it has
been executed, leaving no traces behind.

The following syntax is supported:

ksc_begin_script <full_path_to_file_to_be_generated>
<directives from any scripting language>
ksc_end_script

It is commonly used in the following format:

ksc_begin_script [AS.PKG_TRANSFER_PATH][P.P_SCRIPT_FILENAME]

Since the script will be generated into a temporary directory by use of the
[AS.PKG_TRANSFER_PATH] token, this token will reference a unique

It is not possible to retrieve the concurrent request logs from a ‘ksc_concsub’
submission submitted against a remote database.
ksc_begin_script / ksc_end_script 159

Appendix A: System Special Commands
temporary directory per execution and end with the proper directory slash ‘/’ or
‘\’. After generation, the script can be transferred to another machine for
execution using the ‘ksc_copy_script’ commands described in ksc_copy_script
Special Commands.

Example using ksc_begin_script and ksc_end_script

ksc_begin_script [AS.PKG_TRANSFER_PATH][P.P_SCRIPT_FILENAME]
#!/usr/bin/csh
#
Script to lock, check in, and re-checkout the original
file using RCS commands.
#
Print a warning if the file does not exist.
#

if ($#argv != 2) then
 echo "$0 : wrong number of arguments"
 echo "Usage: $0 sub_path filename"
 exit 1
endif

set sub_path = $argv[1]
set filename = $argv[2]

if (-e "$sub_path/RCS/$filename,v") then
 rcs -l $sub_path/$filename
 ci -m"Before Copy." $sub_path/$filename
 co -l $sub_path/$filename
else
 echo "Warning: File $sub_path/$filename not found in RCS
repository"
endif

exit 0
ksc_end_script

Copy the script to the destination server and excute it.
ksc_copy_script_dest_server
ksc_connect_dest_server
csh [P.P_SCRIPT_FILENAME]
rm [P.P_SCRIPT_FILENAME]
ksc_exit

ksc_copy_script Special Commands

Use these special commands to transfer files from the temporary file transfer
directory (defined by token [AS.PKG_TRANSFER_PATH]) to other
machines. These commands are typically used in conjuction with the ‘ksc_
160 Commands, Tokens, and Validations Guide and Reference

Appendix A: System Special Commands
begin_script’ and ‘ksc_end_script’ commands, but can also be used in other
ways.

ksc_copy_script_dest_client

This command copies a script contained in [AS.PKG_TRANSFER_PATH], a
temporary directory located on the Mercury IT Governance Server, to the base
path of the destination client environment.

ksc_copy_script_dest_server

This command copies a script contained in [AS.PKG_TRANSFER_PATH], a
temporary directory located on the Mercury IT Governance Server, to the base
path of the destination server environment.

Table A-15. ksc_copy_script_dest_client parameters

Parameters Default Token Description

SCRIPT
_FILENAME

[P.P_SCRIPT_FILENAME] The name of the script file to transfer.

DEST_BASE
_PATH

[DEST_ENV.
CLIENT_BASE_PATH]

The base path of the destination
client environment to be used
instead of what is defined for the
current destination environment.

DEST_ENV [DEST_ENV]

Name of the destination environment
to be used instead of the destination
environment on the current workflow
step.

Table A-16. ksc_copy_script_dest_server parameters

Parameters Default Token Description

SCRIPT
_FILENAME

[P.P_SCRIPT_FILENAME] The name of the script file to transfer.
ksc_copy_script Special Commands 161

Appendix A: System Special Commands
ksc_copy_script_source_client

This command copies a script contained in [AS.PKG_TRANSFER_PATH], a
temporary directory located on the Mercury IT Governance Server, to the base
path of the source client environment.

ksc_copy_script_source_server

This command copies a script contained in [AS.PKG_TRANSFER_PATH], a
temporary directory located on the Mercury IT Governance Server, to the base
path of the source server environment.

DEST_BASE
_PATH

[DEST_ENV.
SERVER_BASE_PATH]

The base path of the destination
server environment to be used
instead of what is defined for the
current destination environment.

DEST_ENV [DEST_ENV]

Name of the destination environment
to be used instead of the destination
environment on the current workflow
step.

Table A-16. ksc_copy_script_dest_server parameters

Parameters Default Token Description

Table A-17. ksc_copy_script_source_client parameters

Parameters Default Token Description

SCRIPT
_FILENAME

[P.P_SCRIPT_FILENAME]
The name of the script file to
transfer.

DEST_BASE
_PATH

[SOURCE_ENV.
CLIENT_BASE_PATH]

The base path of the source client
environment to be used instead of
what is defined for the current
source environment.

SOURCE_ENV [SOURCE_ENV]

Name of the source environment to
be used instead of the destination
environment on the current
workflow step.
162 Commands, Tokens, and Validations Guide and Reference

Appendix A: System Special Commands
ksc_om_migrate

Use this command to launch migrations supported by the Object*Migrator.

The following syntax is supported:

ksc_om_migrate CONC_PROGRAM=<conc_program_name>
APP_SHORT_NAME=<APP_SHORT_NAME> OM_ARCHIVE_FLAG=<Y/N>

The parameters CONC_PROGRAM and APP_SHORT_NAME are required.
All other parameters are optional and are used to override the default behavior.

Table A-18. ksc_copy_script_source_client parameters

Parameters Default Token Description

SCRIPT
_FILENAME

[P.P_SCRIPT_FILENAME]
The name of the script file to
transfer.

SOURCE_BASE
_PATH

[SOURCE_ENV.
SERVER_BASE_PATH]

The base path of the source
server environment to be used
instead of what is defined for the
current source environment.

SOURCE_ENV [SOURCE_ENV]

Name of the source environment
to be used instead of the source
environment on the current
workflow step.

Table A-19. ksc_om_migrate parameters

Parameter Default Token Description

CONC
_PROGRAM

None. This is a
mandatory parameter.

The concurrent program name. This
has been pre-configured and will not
need to be modified.

OM_ARCHIVE
_FLAG

[WFS.
OM_ARCHIVE_FLAG]

Specifies whether the migration will
store to the archive rather than using
what has been specified for the current
workflow step.

APP_SHORT
_NAME

None. This is a required
parameter.

This value is normally “CLM” but can
be modified if the Object*Migrator has
been installed into a custom account.
ksc_om_migrate 163

Appendix A: System Special Commands
Example using ksc_om_migrate

#Launch an AOL Concurrent Program Migration
#
ksc_om_migrate CONC_PROGRAM="CLMRMCP1" APP_SHORT_NAME="CLM"

ksc_capture_output

The ‘ksc_capture_output’ special command is only used in validations. It is
used to get data from an alternate source, and use that data to populate an
auto-complete field. This functionality provides additional flexibility when
designing auto-complete lists.

Many enterprises have found that they need to use alternate sources of data
within their applications. Examples of these sources might be a flat file, an
alternate database source, or output from a command line execution. The ‘ksc_
capture_output’ command may be used in conjunction with these alternate data
sources, in the context of a validation, to provide a list of values on the fly.

The syntax for the ‘ksc_capture_output’ is:

ksc_capture_output <command>

In the Validation Workbench, under Validated By, choose either Command With
Delimited Output or Command With Fixed Width Output and input the
delimiting character or field length information. Then, under New Command,
enter the steps. The example below would put the validations into the
address.txt file, then run the ‘ksc_capture_output’ against the address.txt file:

ksc_begin_script[AS.PKG_TRANSFER_PATH]address.txt

SOURCE
_ENV

[SOURCE_ENV]
The environment to migrate from rather
than the one defined on the workflow
step.

DEST
_ENV

[DEST_ENV]
The environment to migrate to rather
than the one defined on the workflow
step.

Table A-19. ksc_om_migrate parameters

Parameter Default Token Description
164 Commands, Tokens, and Validations Guide and Reference

Appendix A: System Special Commands
street
city
state
zipcode
ksc_end_script
ksc_capture_output cat[AS.PKG_TRANSFER_PATH]address.txt

In this case, the entire sequence of commands would be executed on the local
machine where the Mercury IT Governance Server is running. This is the
preferred method of invoking ‘ksc_capture_output’. The ‘ksc_capture_output’
command may be embedded between ‘ksc_connect’ and ‘ksc_exit’ commands,
but the time delay is significant depending on network load (because the
validation actually requires an entire TELNET, SSH or SSH2 session to be
generated to the remote machine). It is recommended that ‘ksc_capture_
output’ only be used in a local execution scenario.

‘ksc_capture_output’ may be called more than once. Each call will append the
results to the previous call.

ksc_gl_migrate

Use this command to launch migrations supported by the GL *Migrator.

The following syntax is supported:

ksc_gl_migrate CONC_PROGRAM=<conc_program_name>
APP_SHORT_NAME=<APP_SHORT_NAME> GL_ARCHIVE_FLAG=<Y/N>

The parameters CONC_PROGRAM and APP_SHORT_NAME are required.
All other parameters are optional and are used to override the default behavior.

Table A-20. ksc_gl_migrate parameters

Parameter Default Token Description

CONC
_PROGRAM

None. This is a
mandatory parameter.

The concurrent program name. This
has been pre-configured and will not
need to be modified.

GL_ARCHIVE
_FLAG

[WFS.
OM_ARCHIVE_FLAG]

Specify whether the migration will store
to the archive rather than using what
has been specified for the current
workflow step.
ksc_gl_migrate 165

Appendix A: System Special Commands
Example using ksc_gl_migrate

#
Launch a Budget Organization migration
#
ksc_gl_migrate CONC_PROGRAM="CLGMRBO1" APP_SHORT_NAME="CLGM"

ksc_parse_jcl

This command is only used by the ‘OS/390 JCL Migration’ object type to
parse a JCL script using the Mainframe parameters for the specified
environment.

APP_SHORT
_NAME

None. This is a required
parameter.

This value is normally “CLGM” but can
be modified if the GL*Migrator has
been installed into a custom account.

SOURCE
_ENV

[SOURCE_ENV]
The environment to migrate from rather
than the one defined on the workflow
step.

DEST
_ENV

[DEST_ENV]
The environment to migrate to rather
than the one defined on the workflow
step.

Table A-20. ksc_gl_migrate parameters

Parameter Default Token Description

Table A-21. ksc_parse_jcl parameters

Parameter Default Token Description

FILENAME [P.P_FILENAME] Name of the JCL source file to be edited.

OUTFILE [OUTFILE]
Name of the output JCL file after applying the
substitution expressions.

ENV_ID
[DEST_ENV.
ENVIRONMENT_ID]

The ID of the environment containing the
mainframe substitution expressions.
166 Commands, Tokens, and Validations Guide and Reference

Appendix A: System Special Commands
ksc_submit_job

This command is only used by the ‘OS/390 JCL Migration’ object type to
submit JCL to the Mainframe JES.

ksc_set_exit_value

Use this command to set the exit value of the command execution to any value.
When not used, the command execution engine returns standard execution
results, such as FAILURE, SUCCESS, and ERROR (if an internal error
occurred) that the workflow engine can transition on. Using ‘ksc_set_exit_
value’ allows for the flexibility to set any exit value and enables custom
workflow transitions.

The following formats are supported:

Sets the hidden and visible value to <value>.
ksc_set_exit_value "<value>"

Sets both the hidden and visible values independently.
ksc_set_exit_value "<hidden_value>", "<visible_value">

The workflow engine will key off of the hidden value to determine if a
transition should be made. The visible value is for display purposes.

‘ksc_set_exit_value’ is ideal for situations where there could be a number of
different execution results, not just Success or Failure. Using ‘ksc_set_exit_
value’ allows the workflow engine to transition on any number of execution
outcomes.

Table A-22. ksc_submit_job parameters

Parameter Default Token Description

PATH
[AS.PKG_TRANSFER_
PATH]

Path to the JCL file.

FILENAME [P.P_FILENAME] Name of the JCL source file to be edited.
ksc_submit_job 167

Appendix A: System Special Commands
ksc_clear_exit_value

Use this command to clear the exit value set by ‘ksc_set_exit_value’. When
cleared, the execution engine will return its standard results, SUCCESS,
FAILURE, or ERROR.

ksc_run_sql

This command runs a SQL query against the chosen environment. The result of
the last row queried is returned in the [SQL_OUTPUT] token. The result of the
entire query is placed in the [AS.PKG_TRANSFER_PATH][PKGL.SEQ].txt
file in <ITG_Home>.

To run this special command, any execution steps in the Change Management
workflow must have their source environments defined in the Workflow Step
window.

Table A-23 lists this special command’s parameters.

Example using ksc_run_sql

ksc_run_sql QUERY_STRING="select sysdate from sys.dual" ENV_
NAME="[SOURCE_ENV.ENVIRONMENT_NAME]"

Table A-23. ksc_run_sql parameters

Parameter Default Token Description

QUERY_STRING [QUERY_STRING] A SQL select statement.

ENV_NAME [ENV_NAME]

The name of the environment
where data will be queried.
The JDBC connection should
be checked in the
environment checker.

EXCEPTION_OPTION [EXCEPTION_OPTION]

If no data is returned,
determines if an exception
should be thrown. The only
available option is
'-no_data_exception.'
168 Commands, Tokens, and Validations Guide and Reference

Appendix A: System Special Commands
The following code is an example of ksc_run_sql in a validation.

ksc_run_sql QUERY_STRING=”select id, name from some_table”
ENV_NAME=”[SOURCE_ENV.ENVIRONMENT_NAME]”
ksc_capture_output cat [AS.PKG_TRANSFER_PATH][PKGL.SEQ].txt

Summary of All Special Command Parameters

Table A-24 provides the parameters for all predefined special commands.

The ‘ksc_run_sql’ special command can be used to populate a validation. This is
appropriate when the validation is validated by a Command with Delimited Output. In
this case, the Data Delimiter should be set to “#@#”.

Table A-24. Special command parameters

Special Command Parameters Defaults

ksc_begin_script

ksc_comment

ksc_concsub

ksc_connect_dest_client

USERNAME [DEST_ENV.CLIENT_USERNAME]

PASSWORD [DEST_ENV.CLIENT_PASSWORD]

NT_DOMAIN [DEST_ENV.CLIENT_NT_DOMAIN]

DEST_BASE_PATH [DEST_ENV.CLIENT_BASE_PATH]

CONNECTION_
PROTOCOL

[DEST_ENV.CLIENT_CON_PROTOCOL_
MEANING]

DEST_ENV [DEST_ENV]
Summary of All Special Command Parameters 169

Appendix A: System Special Commands
ksc_connect_dest_server

USERNAME [DEST_ENV.SERVER_USERNAME]

PASSWORD [DEST_ENV.SERVER_PASSWORD]

NT_DOMAIN [DEST_ENV.SERVER_NT_DOMAIN]

DEST_BASE_PATH [DEST_ENV.SERVER_BASE_PATH]

CONNECTION_
PROTOCOL

[DEST_ENV.SERVER_CON_
PROTOCOL_MEANING]

DEST_ENV [DEST_ENV]

ksc_connect_source_client

USERNAME [SOURCE_ENV.CLIENT_USERNAME]

PASSWORD [SOURCE_ENV.CLIENT_PASSWORD]

NT_DOMAIN [SOURCE_ENV.CLIENT_NT_DOMAIN]

SOURCE_BASE_
PATH

[SOURCE_ENV.CLIENT_BASE_PATH]

CONNECTION_
PROTOCOL

[SOURCE_ENV.CLIENT_CON_
PROTOCOL_MEANING]

SOURCE_ENV [SOURCE_ENV]

ksc_connect_source_server

USERNAME [SOURCE_ENV.SERVER_USERNAME]

PASSWORD [SOURCE_ENV.SERVER_PASSWORD]

NT_DOMAIN [SOURCE_ENV.SERVER_NT_DOMAIN]

SOURCE_BASE_
PATH

[SOURCE_ENV.SERVER_BASE_PATH]

CONNECTION_
PROTOCOL

[SOURCE_ENV.SERVER_CON_
PROTOCOL_MEANING]

SOURCE_ENV [SOURCE_ENV]

ksc_copy_client_client

SUB_PATH [P.P_SUB_PATH]

SOURCE_BASE_
PATH

[SOURCE_ENV.CLIENT_BASE_PATH]

DEST_BASE_PATH [DEST_ENV.CLIENT_BASE_PATH]

FILENAME [P.P_FILENAME]

FILE_TYPE [P.P_FILE_TYPE]

SOURCE_ENV [SOURCE_ENV]

DEST_ENV [DEST_ENV]

Table A-24. Special command parameters [continued]

Special Command Parameters Defaults
170 Commands, Tokens, and Validations Guide and Reference

Appendix A: System Special Commands
ksc_copy_client_server

SUB_PATH [P.P_SUB_PATH]

SOURCE_BASE_
PATH

[SOURCE_ENV.CLIENT_BASE_PATH]

DEST_BASE_PATH [DEST_ENV.SERVER_BASE_PATH]

FILENAME [P.P_FILENAME]

FILE_TYPE [P.P_FILE_TYPE]

SOURCE_ENV [SOURCE_ENV]

DEST_ENV [DEST_ENV]

ksc_copy_server_client

SUB_PATH [P.P_SUB_PATH]

SOURCE_BASE_PATH [SOURCE_ENV.SERVER_BASE_PATH]

DEST_BASE_PATH [DEST_ENV.CLIENT_BASE_PATH]

FILENAME [P.P_FILENAME]

FILE_TYPE [P.P_FILE_TYPE]

SOURCE_ENV [SOURCE_ENV]

DEST_ENV [DEST_ENV]

ksc_copy_server_server

SUB_PATH [P.P_SUB_PATH]

SOURCE_BASE_
PATH

[SOURCE_ENV.SERVER_BASE_PATH]

DEST_BASE_PATH [DEST_ENV.SERVER_BASE_PATH]

FILENAME [P.P_FILENAME]

FILE_TYPE [P.P_FILE_TYPE]

SOURCE_ENV [SOURCE_ENV]

DEST_ENV [DEST_ENV]

ksc_copy_client_tmp

SUB_PATH [P.P_SUB_PATH]

SOURCE_BASE_
PATH

[SOURCE_ENV.CLIENT_BASE_PATH]

DEST_BASE_PATH [DEST_ENV.CLIENT_BASE_PATH]

FILENAME [P.P_FILENAME]

FILE_TYPE [P.P_FILE_TYPE]

SOURCE_ENV [SOURCE_ENV]

Table A-24. Special command parameters [continued]

Special Command Parameters Defaults
Summary of All Special Command Parameters 171

Appendix A: System Special Commands
ksc_copy_server_tmp

SUB_PATH [P.P_SUB_PATH]

SOURCE_BASE_
PATH

[SOURCE_ENV.SERVER_BASE_PATH]

FILENAME [P.P_FILENAME]

FILE_TYPE [P.P_FILE_TYPE]

SOURCE_ENV [SOURCE_ENV]

ksc_copy_tmp_client

SUB_PATH [P.P_SUB_PATH]

DEST_BASE_
PATH

[DEST_ENV.CLIENT_BASE_PATH]

FILENAME [P.P_FILENAME]

FILE_TYPE [P.P_FILE_TYPE]

DEST_ENV [DEST_ENV]

ksc_copy_tmp_server

SUB_PATH [P.P_SUB_PATH]

DEST_BASE_
PATH

[DEST_ENV.SERVER_BASE_PATH]

FILENAME [P.P_FILENAME]

FILE_TYPE [P.P_FILE_TYPE]

DEST_ENV [DEST_ENV]

ksc_copy_script_dest_client

SCRIPT_FILENAME [P.P_SCRIPT_FILENAME]

DEST_BASE_PATH [DEST_ENV.CLIENT.BASE_PATH]

DEST_ENV [DEST_ENV]

ksc_copy_script_dest_server

SCRIPT_FILENAME [P.P_SCRIPT_FILENAME]

DEST_BASE_PATH [DEST_ENV.SERVER_BASE_PATH]

DEST_ENV [DEST_ENV]

ksc_copy_script_source_client

SCRIPT_FILENAME [P.P_SCRIPT_FILENAME]

SOURCE_BASE_
PATH

[SOURCE_ENV.CLIENT_BASE_PATH]

SOURCE_ENV [SOURCE_ENV]

Table A-24. Special command parameters [continued]

Special Command Parameters Defaults
172 Commands, Tokens, and Validations Guide and Reference

Appendix A: System Special Commands
ksc_copy_script_source_
server

SCRIPT_FILENAME [P.P_SCRIPT_FILENAME]

SOURCE_BASE_
PATH

[SOURCE_ENV.SERVER_BASE_PATH]

SOURCE_ENV [SOURCE_ENV]

ksc_clear_exit_value

ksc_end_script

ksc_exit

ksc_gl_migrate

CONC_PROGRAM

SOURCE_ENV [SOURCE_ENV]

DEST_ENV [DEST_ENV]

GL_ARCHIVE_FLAG [WFS.GL_ARCHIVE_FLAG]

APP_SHORT_NAME

ksc_local_exec

ksc_om_migrate

CONC_PROGRAM

SOURCE_ENV [SOURCE_ENV]

DEST_ENV [DEST_ENV]

OM_ARCHIVE_FLAG [WFS.OM_ARCHIVE_FLAG]

APP_SHORT_NAME

ksc_parse_jcl

FILENAME [P.P_FILENAME]

OUTFILE

ENV_ID [DEST_ENV.ENVIRONMENT_ID]

ksc_replace

FILENAME [P.P_FILENAME]

OUTFILE

SUBST

ksc_respond

ksc_run_sql

ksc_set Custom Token

Table A-24. Special command parameters [continued]

Special Command Parameters Defaults
Summary of All Special Command Parameters 173

Appendix A: System Special Commands
ksc_set_env

DEST_ENV_ID [DEST_ENV.ENVIRONMENT_ID]

SOURCE_ENV_ID [SOURCE_ENV.ENVIRONMENT_ID]

SOURCE_ENV [SOURCE_ENV]

DEST_ENV [DEST_ENV]

ksc_set_exit_value

ksc_simple_respond

ksc_store Custom Token

ksc_submit_job
PATH [AS.PKG_TRANSFER_PATH]

FILENAME [P.P_FILENAME]

Table A-24. Special command parameters [continued]

Special Command Parameters Defaults
174 Commands, Tokens, and Validations Guide and Reference

Appendix

B

Tokens

In This Appendix:

� Overview of Tokens
� System Tokens
� Field Group Tokens
175

Appendix B: Tokens
Overview of Tokens

This appendix provides a list of all entity tokens. Use Table B-1 as a quick
reference guide to jump to the desired location.

Table B-1. Token tables

Table Page

Table B-2, App server properties 177

Table B-3, Budget 178

Table B-4, Contacts 178

Table B-5, Distribution 179

Table B-6, Document Management 180

Table B-7, Environments 180

Table B-8, Environment applications 183

Table B-9, Command execution 185

Table B-10, Notifications 185

Table B-11, Organization unit 186

Table B-12, Packages 187

Table B-13, Package lines 189

Table B-14, Package pending 190

Table B-15, Program 191

Table B-16, Project plans 191

Table B-17, Project plan details 194

Table B-18, Releases 194

Table B-19, Requests 195

Table B-20, Request details 198

Table B-21, Request pending 198

Table B-22, Report submissions 199

Table B-23, Resource pools 200

Table B-24, Security groups 201

Table B-25, Skill 201
176 Commands, Tokens, and Validations Guide and Reference

Appendix B: Tokens
For a list of the tokens that are associated with field groups, see Field Group
Tokens on page 213.

System Tokens

Table B-26, Staffing profile 202

Table B-27, System 202

Table B-28, Tasks 203

Table B-29, Tasks pending 205

Table B-30, Users 206

Table B-31, Validations 208

Table B-32, Validation values 208

Table B-33, Workflows 209

Table B-34, Workflow steps 210

Table B-35, Workflow step transaction 212

Table B-1. Token tables [continued]

Table Page

Table B-2. App server properties

Prefix Token Description

AS PKG_TRANSFER_PATH Temporary directory used for files during command executions.

Other app server properties tokens are generated from the parameters in the
server.conf file. For a description of each server parameter, see the System
Administration Guide and Reference.
System Tokens 177

Appendix B: Tokens
Table B-3. Budget

Prefix Token Description

BGT ACTIVE_FLAG The active flag of the budget.

BGT BUDGET_ID
The ID of the budget (defined in the table KCST_
BUDGETS).

BGT BUDGET_IS_FOR_ENTITY_NAME
The entity name (project plan, program, or org unit) to
which the budget is linked.

BGT BUDGET_IS_FOR_ID
The ID of the project plan/program/org unit to which the
budget is linked.

BGT BUDGET_IS_FOR_NAME
The name of the project plan/program/org unit to which
the budget is linked.

BGT BUDGET_NAME The name of the budget.

BGT BUDGET_ROLLS_UP_TO_ID The ID of the budget to which this budget rolls up to.

BGT BUDGET_ROLLS_UP_TO_NAME The name of the budget to which this budget rolls up to.

BGT BUDGET_URL The URL to view this budget.

BGT CREATED_BY The username of the user who created the budget.

BGT CREATION_DATE The date when the budget was created.

BGT DESCRIPTION The description of the budget.

BGT END_PERIOD The end period of the budget.

BGT INITIATION_REQ The initiation request ID of the budget.

BGT PERIOD_SIZE The period size of the budget.

BGT START_PERIOD The start period of the budget.

BGT STATUS_CODE The status code of the budget.

BGT STATUS_NAME The status name of the budget.

Table B-4. Contacts

Prefix Token Description

CON COMPANY The company the Contact works for.

CON COMPANY_NAME The name of the company the Contact works for.

CON CONTACT_ID The ID of the Contact (defined in the table KCRT_CONTACTS).

CON CREATED_BY The ID of the user that created the Contact.
178 Commands, Tokens, and Validations Guide and Reference

Appendix B: Tokens
CON CREATION_DATE The date the Contact was created.

CON EMAIL_ADDRESS The email address of the Contact.

CON FIRST_NAME The first name of the Contact.

CON FULL_NAME The full name of the Contact.

CON LAST_NAME The last name of the Contact.

CON LAST_UPDATED_BY The ID of the user that last updated the Contact.

CON LAST_UPDATE_DATE The date the Contact was last updated.

CON PHONE_NUMBER The phone number of the Contact.

CON USER_ID
The userID of the Contact, if the Contact is a Mercury IT
Governance Center user.

CON USERNAME
The username of the Contact (if applicable). This may be a
username for an external system, not necessarily Mercury IT
Governance Center.

Table B-4. Contacts [continued]

Prefix Token Description

Table B-5. Distribution

Prefix Tokens Description

DIST CREATED_BY The ID of the user that created the distribution.

DIST CREATED_BY_USERNAME
The Mercury IT Governance Center username of the
user that created the distribution.

DIST DESCRIPTION The description of the release.

DIST DISTRIBUTION_ID
The ID of the distribution (defined in table KREL_
DIESTRIBUTION).

DIST DISTRIBUTION_NAME The name of the distribution.

DIST DISTRIBUTION_STATUS The workflow status of the distribution workflow.

DIST FEEDBACK_FLAG
Whether the distribution has fed back a specified value
to the package lines being distributed.

DIST FEEDBACK_VALUE The value to be returned to the original package lines.

DIST LAST_UPDATED_BY The ID of the user that last updated the distribution.

DIST
LAST_UPDATED_BY_
USERNAME

The Mercury IT Governance Center username of the
user that last updated the distribution.

DIST LAST_UPDATE_DATE The date the distribution was last updated.
System Tokens 179

Appendix B: Tokens
DIST RELEASE_ID The ID of the release that created this distribution.

DIST RELEASE_NAME The name of the release that created this distribution.

DIST WORKFLOW The workflow used to process the distribution.

Table B-5. Distribution [continued]

Prefix Tokens Description

Table B-6. Document Management

Prefix Token Description

DMS DOC_LINK

Resolves to a URL which, when clicked, opens the
latest version of the document.

Forces user authentication prior to delivering the
document.

DMS DOC_HISTORY

Resolves to a URL which, when clicked, displays a
view of the document’s version history

Forces user authentication prior to delivering the
information.

DMS AUTHOR
Resolves to the author descriptive field stored with
the document.

DMS DESCRIPTION
Resolves to the descriptive field stored with the
document.

DMS LAST_CHECK_IN_DATE Resolves to the timestamp of the last check-in.

DMS LAST_CHECKED_IN_BY_NAME
Resolves to the full name of the Mercury IT
Governance Center user who added or last
checked in the document.

DMS LAST_CHECKED_IN_BY
Resolves tothe ID of the Mercury IT Governance
Center user who added or last checked in the
document.

Table B-7. Environments

Prefix Token Description

ENV CLIENT_BASE_PATH The base (root) path of the client.

ENV CLIENT_CON_PROTOCOL The protocol used to connect to this client.

ENV CLIENT_CON_PROTOCOL_MEANING The visible value of the client connect protocol.

ENV CLIENT_NAME
The DNS name or IP address of the client
computer.
180 Commands, Tokens, and Validations Guide and Reference

Appendix B: Tokens
ENV CLIENT_NT_DOMAIN
The domain name for the client, if the client
machine type is Windows.

ENV CLIENT_ENABLED_FLAG
The flag indicating whether the client portion of the
environment is enabled.

ENV CLIENT_PASSWORD
The password Mercury IT Governance Center
uses to log onto or access the client. This value is
encrypted.

ENV CLIENT_TYPE_CODE
The validation value code of the client machine
type.

ENV CLIENT_USERNAME
The username Mercury IT Governance Center
uses to log onto or access the client.

ENV CLIENT_TRANSFER_PROTOCOL
The protocol used to transfer files to or from this
client.

ENV
CLIENT_TRANSFER_PROTOCOL_
MEANING

The visible value of the client transfer protocol.

ENV CREATED_BY The ID of the user that created the environment.

ENV CREATION_DATE The date the environment was created.

ENV DATABASE_ENABLED_FLAG
The flag indicating whether the database portion of
the environment is enabled.

ENV DATABASE_TYPE The validation value code of the database type.

ENV DB_CONNECT_STRING
For Oracle database type, the connect string used
to access the database from the command line.

ENV DB_LINK
For Oracle database type, the database link from
the Mercury IT Governance Center schema to the
environment’s database schema.

ENV DB_NAME
The DNS name or IP address of the database
server.

ENV DB_ORACLE_SID
For Oracle database type, the SID of the database
(often the same as the DB_CONNECT_STRING).

ENV DB_PASSWORD
The password Mercury IT Governance Center
uses to log onto or access the database. This
value is encrypted.

ENV DB_PORT_NUMBER
For Oracle database type, the port number on
which SQL*Net is listening for remote SQL
connections on the database server.

Table B-7. Environments [continued]

Prefix Token Description
System Tokens 181

Appendix B: Tokens
ENV DB_USERNAME
The username or schema name Mercury IT
Governance Center uses to log onto or access the
database.

ENV DB_VERSION The version of the database (such as 8.1.7).

ENV DESCRIPTION The description of the environment.

ENV ENABLED_FLAG
The flag indicating whether the environment is
enabled and available for use in workflows.

ENV ENVIRONMENT_ID
The ID of the environment in the table KENV_
ENVIRONMENTS.

ENV ENVIRONMENT_NAME The name of the environment.

ENV LAST_UPDATED_BY
The ID of the user that last updated the
environment.

ENV LAST_UPDATE_DATE The date the environment was last updated.

ENV LOCATION The location of the environment.

ENV MSSQL_DB_NAME
For MS SQL Server database type, the database
name used to access the database from the
command line.

ENV SERVER_BASE_PATH The base (root) path of the server.

ENV SERVER_CON_PROTOCOL The protocol used to connect to this server.

ENV
SERVER_CON_PROTOCOL_
MEANING

The visible value of the server connection protocol.

ENV SERVER_TRANSFER_PROTOCOL
The protocol used to transfer files to or from this
server.

ENV
SERVER_TRANSFER_PROTOCOL_
MEANING

The visible value of the server transfer protocol.

ENV SERVER_ENABLED_FLAG
The flag indicating whether the server portion of
the environment is enabled.

ENV SERVER_NAME
The DNS name or IP address of the server
computer.

ENV SERVER_NT_DOMAIN
The domain name for the server, if the server
machine type is Windows.

ENV SERVER_PASSWORD
The password Mercury IT Governance Center
uses to log onto or access the server. This value is
encrypted.

Table B-7. Environments [continued]

Prefix Token Description
182 Commands, Tokens, and Validations Guide and Reference

Appendix B: Tokens
ENV SERVER_TYPE_CODE
The validation value code of the server machine
type.

ENV SERVER_USERNAME
The username Mercury IT Governance Center
uses to log onto or access the server.

Table B-7. Environments [continued]

Prefix Token Description

If any Mercury IT Governance Center Extensions have been installed, there will be
more environment tokens with the prefix ‘AC.’ For more detailed information on these
tokens, see the Mercury IT Governance Center Extensions documentation.

Table B-8. Environment applications

Prefix Token Description

ENV.APP APP_CODE The short name (code) for the application.

ENV.APP APP_NAME The descriptive name for the application.

ENV.APP CLIENT_BASE_PATH
The application-specific base (root) path of the
client.

ENV.APP CLIENT_PASSWORD
The application-specific password Mercury IT
Governance Center uses to log onto or access the
client. This value is encrypted.

ENV.APP CLIENT_USERNAME
The application-specific username Mercury IT
Governance Center uses to log onto or access the
client.

ENV.APP CLIENT_CON_PROTOCOL
The application-specific protocol used to connect to
this client.

ENV.APP
CLIENT_CON_PROTOCOL_
MEANING

The visible value of the client connection protocol.

ENV.APP
CLIENT_TRANSFER_
PROTOCOL

The application-specific protocol used to transfer
files to and from this client.

ENV.APP
CLIENT_TRANSFER_
PROTOCOL_MEANING

The visible value of the client transfer protocol.

ENV.APP CREATED_BY The ID of the user that created the application.

ENV.APP CREATION_DATE The date the application was created.
System Tokens 183

Appendix B: Tokens
ENV.APP DB_LINK

For Oracle database type, the application-specific
database link from the Mercury IT Governance
Center schema to the environment’s database
schema.

ENV.APP DB_NAME
For MS SQL Server database type, the
application-specific database name used to access
the database from the command line.

ENV.APP DB_PASSWORD
The application-specific password Mercury IT
Governance Center uses to log onto or access the
database. This value is encrypted.

ENV.APP DB_USERNAME
The application-specific username or schema name
Mercury IT Governance Center uses to log onto or
access the database.

ENV.APP DESCRIPTION The description of the application.

ENV.APP ENABLED_FLAG
The flag indicating whether the application is
enabled and available for selection in package
lines.

ENV.APP ENVIRONMENT_APP_ID
The ID of the application in the table KENV_
ENVIRONMENT_APPS.

ENV.APP ENVIRONMENT_ID
The ID of the environment the application is
associated with.

ENV.APP ENVIRONMENT_NAME
The name of the environment the application is
associated with.

ENV.APP LAST_UPDATED_BY The ID of the user that last updated the application.

ENV.APP LAST_UPDATE_DATE The date the application was last updated.

ENV.APP SERVER_CON_PROTOCOL
The application-specific protocol used to connect to
this server.

ENV.APP
SERVER_CON_PROTOCOL_
MEANING

The visible value of the server connection protocol.

ENV.APP
SERVER_TRANSFER_
PROTOCOL

The application-specific protocol used to transfer
files to and from this server.

ENV.APP
SERVER_TRANSFER_
PROTOCOL_MEANING

The visible value of the server transfer protocol.

ENV.APP SERVER_BASE_PATH
The application-specific base (root) path of the
server

Table B-8. Environment applications [continued]

Prefix Token Description
184 Commands, Tokens, and Validations Guide and Reference

Appendix B: Tokens
ENV.APP SERVER_PASSWORD
The application-specific password Mercury IT
Governance Center uses to log onto or access the
server. This value is encrypted.

ENV.APP SERVER_USERNAME
The application-specific username Mercury IT
Governance Center uses to log onto or access the
server.

ENV.APP
WORKBENCH_ENVIRONMENT_
URL

The URL of the environment window in the
Workbench.

Table B-8. Environment applications [continued]

Prefix Token Description

Table B-9. Command execution

Prefix Token Description

EXEC EXIT_CODE The exit code of a command execution.

EXEC OUTPUT The last line of output from a command execution.

The command execution tokens, [EXEC.OUTPUT] and [EXEC.EXIT_CODE], can be
used in the following contexts:

� Inside command step segments that use the ksc_connect and ksc_exit special
commands.

� Immediately after command step segments that use the ksc_local_exec special
command.

For example, the following code segment demonstrates how to use both command
execution tokens to retrieve the output and exit code immediately upon execution.
The tokens are used immediately after the ksc_local_exec special command.

ksc_local_exec pwd
ksc_set MY_PATH=”[EXEC.OUTPUT]”
ksc_set MY_EXIT_CODE=”[EXEC.EXIT_CODE]”
ksc_local_exec echo ‘[MY_PATH]/bin’
ksc_local_exec echo ‘[MY_EXIT_CODE]’

Table B-10. Notifications

Prefix Tokens Description

NOTIF CC_USERS The list of users on the Cc: header of the notification.

NOTIF CHANGED_FIELD The field that changed to trigger a notification.
System Tokens 185

Appendix B: Tokens
NOTIF EXCEPTION_RULE
The exception rule that was met by the task exception that
caused the notification to be sent.

NOTIF EXCEPTION_RULE_NAME
The name of the task exception that caused the notification
to be sent.

NOTIF EXCEPTION_VIOLATION
The specific violation of the exception that caused the
notification to be sent.

NOTIF NEW_VALUE The new value of the changed field.

NOTIF NOTIFICATION_DETAILS Notification details for linked tokens.

NOTIF OLD_VALUE The previous value of the changed field.

NOTIF TO_USERS The list of users on the To: header of the notification.

Table B-10. Notifications [continued]

Prefix Tokens Description

Table B-11. Organization unit

Prefix Tokens Description

ORG BUDGET_ID The ID of the budget linked to this org unit.

ORG BUDGET_NAME The name of the budget linked to this org unit.

ORG CATEGORY_CODE
The lookup code of the org unit category (lookup type =
RSC - org unit Category)

ORG CATEGORY_NAME The category name of the org unit.

ORG CREATED_BY The ID of the user that created the org unit.

ORG CREATED_BY_USERNAME The name of the user that created the org unit.

ORG CREATION_DATE The date that the org unit was created.

ORG DEPARTMENT_CODE
The lookup code of the org unit department (lookup type =
DEPT)

ORG DEPARTMENT_NAME The department name of the org unit.

ORG LOCATION_CODE
The lookup code of the org unit location (lookup type =
RSC - Location)

ORG LOCATION_NAME The location name of the org unit.

ORG MANAGER_ID The ID of the manager of the org unit.

ORG MANAGER_USERNAME The name of the manager of the org unit.

ORG ORG_UNIT_ID
The ID of the org unit (defined in table KRSC_ORG_
UNITS).
186 Commands, Tokens, and Validations Guide and Reference

Appendix B: Tokens
ORG ORG_UNIT_NAME The name of the org unit.

ORG PARENT_ORG_UNIT_ID The ID of the parent org unit.

ORG PARENT_ORG_UNIT_NAME The name of the parent org unit.

ORG REGIONAL_CALENDAR The name of the regional calendar for the org unit.

Table B-11. Organization unit [continued]

Prefix Tokens Description

Table B-12. Packages

Prefix Token Description

PKG ASSIGNED_TO_EMAIL
The email address of the user that the package is
assigned to.

PKG ASSIGNED_TO_GROUP_ID
The ID of the security group that the package has been
assigned to.

PKG ASSIGNED_TO_GROUP_NAME
The security group that the package has been assigned
to.

PKG ASSIGNED_TO_USERNAME
The name of the user that the package has been assigned
to.

PKG ASSIGNED_TO_USER_ID The ID of the user that the package has been assigned to.

PKG CREATED_BY The ID of the user that created the package.

PKG CREATED_BY_EMAIL The email address of the user that created the package.

PKG CREATED_BY_USERNAME
The Mercury IT Governance Center username of the user
that created the package.

PKG CREATION_DATE The date the package was created.

PKG DESCRIPTION The description of the package.

PKG ID The ID of the package in the table KDLV_PACKAGES.

PKG LAST_UPDATED_BY The ID of the user that last updated the package.

PKG LAST_UPDATED_BY_EMAIL
The email address of the user that last updated the
package.

PKG
LAST_UPDATED_BY_
USERNAME

The Mercury IT Governance Center username of the user
that last updated the package.

PKG LAST_UPDATE_DATE The date the package was last updated.

PKG
MOST_RECENT_NOTE_
AUTHOR_FULL_NAME

First and last name of the author of the most recent
(chronological) note.
System Tokens 187

Appendix B: Tokens
PKG
MOST_RECENT_NOTE_
AUTHOR_USERNAME

Username of the author of the most recent (chronological)
note.

PKG
MOST_RECENT_NOTE_
AUTHORED_DATE

Date of the most recent (chronological) note.

PKG MOST_RECENT_NOTE_TEXT Text of the most recent (chronological) note.

PKG NOTES All notes for the package.

PKG NUMBER The name/number of the package.

PKG PACKAGE_GROUP_CODE The package group code.

PKG PACKAGE_GROUP_NAME The name of the package group.

PKG PARENT_REQUEST_ID
The ID of the request that created this package (if
applicable).

PKG PRIORITY The priority of the package.

PKG PRIORITY_CODE The validation value code of the package priority.

PKG PRIORITY_NAME The validation value meaning of the package priority.

PKG PRIORITY_SEQ The priority sequence of the package.

PKG PROJECT_CODE
The validation value code of the project plan the package
belongs to.

PKG PROJECT_NAME
The validation value meaning of the project plan the
package belongs to.

PKG SUBMIT_DATE The date that the package was submitted.

PKG REQUESTED_BY_EMAIL
The email address of the user who requested the
package.

PKG REQUESTED_BY_USERNAME
The Mercury IT Governance Center username of the user
who requested the package.

PKG REQUESTED_BY_USER_ID The ID of the user that requested the package.

PKG PACKAGE_ID The ID of the package in the table KDLV_PACKAGES.

PKG PACKAGE_NO_LINK
Shows up as a standard hyperlink to the package in
HTML-format notifications.

PKG PACKAGE_TYPE The validation value meaning of the package type.

PKG PACKAGE_TYPE_CODE The validation value code of the package type.

PKG PACKAGE_URL The URL of the package in the standard interface.

PKG PERCENT_COMPLETE Percent complete of the package.

Table B-12. Packages [continued]

Prefix Token Description
188 Commands, Tokens, and Validations Guide and Reference

Appendix B: Tokens
PKG RUN_GROUP The run group of the package.

PKG STATUS
The validation value meaning for the status of the
package.

PKG STATUS_CODE The validation value code for the status of the package.

PKG
WORKBENCH_PACKAGE_NO_
LINK

The URL of the package in the Workbench.

PKG WORKBENCH_PACKAGE_URL The URL of the package screen in the Workbench.

PKG WORKFLOW_ID The ID of the workflow used by the package.

PKG WORKFLOW_NAME The name of the workflow used by the package.

Table B-12. Packages [continued]

Prefix Token Description

Table B-13. Package lines

Prefix Token Description

PKGL APP_CODE The app code for the package line.

PKGL APP_NAME The name of the application for the package line.

PKGL ID
The ID of the package line in the table KDLV_PACKAGE_
LINES.

PKGL OBJECT_CATEGORY_CODE
The validation value code of the object type category of the
line.

PKGL OBJECT_CATEGORY_NAME
The validation value meaning of the object type category of
the line.

PKGL OBJECT_NAME The object name of the package line.

PKG OBJECT_REVISION
The value of the object revision column (if any) as specified
by the object type of the package line.

PKGL OBJECT_TYPE The object type of the package line.

PKGL OBJECT_TYPE_ID The ID of the object type of the package line.

PKGL PACKAGE_LINE_ID The ID of the package line.

PKGL SEQ
The sequence of the package line (relative to other lines in
the same package).

PKGL
WORKBENCH_OBJECT_
TYPE_URL

URL to access the object type window for this object type in
the Workbench.
System Tokens 189

Appendix B: Tokens
Table B-14. Package pending

Prefix Tokens Description

PKG.PEND ID
The ID of the entity that is being blocked by the
package.

PKG.PEND NAME
The name of the entity that is being blocked by the
package.

PKG.PEND DETAIL
Detail information for the entity that is being blocked
by the package.

PKG.PEND DESCRIPTION
The description of the entity that is being blocked by
the package.

PKG.PEND STATUS_ID
The ID of the state or code of the status of the entity
that is being blocked by the package.

PKG.PEND STATUS_NAME
The name of the status (or state) of the entity that is
being blocked by the package.

PKG.PEND STATE
The name of the state of the entity of the request that
is being blocked by the package.

PKG.PEND ASSIGNED_TO_USERNAME
The name of the assigned user (or resource) of the
entity that is being blocked by the package.

PKG.PEND ASSIGNED_TO_USER_ID
The username of the assigned user (or resource) of
the entity that is being blocked by the package.

PKG.PEND ASSIGNED_TO_GROUP_NAME
The name of the assigned group (or resource group)
of the entity that is being blocked by the package.

PKG.PEND ASSIGNED_TO_GROUP_ID
The ID of the assigned group (or resource group) of
the entity that is being blocked by the package.

PKG.PEND RESOURCE_USERNAME
The name of the resource associated with the entity
that is being blocked by the package.

PKG.PEND RESOURCE_ID
The username of the assigned user (or resource)
associated with the entity that is being blocked by
the package.

PKG.PEND RESOURCE_GROUP_NAME
The name of the assigned group (or resource group)
associated with the entity that is being blocked by
the package.

PKG.PEND RESOURCE_GROUP_ID
The ID of the assigned group (or resource group)
associated with the entity that is being blocked by
the package.

PKG.PEND PERCENT_COMPLETE
The current percent complete value associated with
the entity that is being blocked by the package.
190 Commands, Tokens, and Validations Guide and Reference

Appendix B: Tokens
PKG.PEND ENTITY_TYPE_ID
The ID of the type of entity that is being blocked by
the package.

PKG.PEND ENTITY_TYPE_NAME
The name of the type of entity that is being blocked
by the package.

Table B-14. Package pending [continued]

Prefix Tokens Description

Table B-15. Program

Prefix Token Description

PRG CREATED_BY The ID of the user that created the program.

PRG CREATED_BY_USERNAME The name of the user that created the program.

PRG LAST_UPDATED_BY The ID of the user that last updated the program.

PRG
LAST_UPDATED_BY_
USERNAME

The name of the user that last updated the program.

PRG
MOST_RECENT_NOTE_
AUTHOR_FULL_NAME

First and last name of the author of the most recent
(chronological) note.

PRG
MOST_RECENT_NOTE_
AUTHOR_USERNAME

Username of the author of the most recent (chronological)
note.

PRG
MOST_RECENT_NOTE_
AUTHORED_DATE

Date of the most recent (chronological) note.

PRG MOST_RECENT_NOTE_TEXT Text of the most recent (chronological) note.

PRG PROGRAM_MANAGER The ID(s) of the user(s) assigned to manage this program.

Table B-16. Project plans

Prefix Tokens Description

PRJ ACTUAL_DURATION The actual duration of the project plan.

PRJ ACTUAL_EFFORT The actual effort associated with the project plan.

PRJ ACTUAL_FINISH_DATE The actual finish date of the project plan.

PRJ ACTUAL_START_DATE The actual start date of the project plan.

PRJ BUDGET_ID The ID of the budget linked to the project plan.

PRJ BUDGET_NAME The name of the budget linked to the project plan.

PRJ CONFIDENCE_CODE The code of the confidence value entered by the user.

PRJ CONFIDENCE_NAME The name of the confidence value entered by the user.
System Tokens 191

Appendix B: Tokens
PRJ CREATED_BY The user who created the project plan.

PRJ CREATED_BY_EMAIL
The email address of the user who created the project
plan.

PRJ CREATED_BY_USERNAME The username of the person who created the project plan.

PRJ CREATION_DATE The creation date of the project plan.

PRJ DEPARTMENT_CODE The code of the department value entered by the user.

PRJ DEPARTMENT_NAME The name of the department value entered by the user.

PRJ DESCRIPTION The description of the project plan.

PRJ
ESTIMATED_REMAINING_
DURATION

The estimated remaining duration of the project plan.

PRJ
ESTIMATED_REMAINING_
EFFORT

The estimated remaining effort involved in the project plan.

PRJ ESTIMATED_FINISH_DATE The estimated finish date of the project plan.

PRJ LAST_UPDATE_DATE The date the project plan was last updated.

PRJ LAST_UPDATED_BY The last person to update the project plan.

PRJ LAST_UPDATED_BY_EMAIL
The email address of the last person to update the project
plan.

PRJ
LAST_UPDATED_BY_
USERNAME

The username of the last person to update the project plan.

PRJ MASTER_PROJECT_ID The ID of the master project.

PRJ MASTER_PROJECT_NAME The name of the master project.

PRJ
MOST_RECENT_NOTE_
AUTHOR_FULL_NAME

First and last name of the author of the most recent
(chronological) note.

PRJ
MOST_RECENT_NOTE_
AUTHOR_USERNAME

Username of the author of the most recent (chronological)
note.

PRJ
MOST_RECENT_NOTE_
AUTHORED_DATE

Date of the most recent (chronological) note.

PRJ MOST_RECENT_NOTE_TEXT Text of the most recent (chronological) note.

PRJ MOST_RECENT_NOTE_TYPE
Type of the most recent (chronological) note (USER or
FIELD CHANGE).

PRJ
MOST_RECENT_USER_
NOTE_AUTHOR_FULL_NAME

First and last name of the author of the most recent user
note.

Table B-16. Project plans [continued]

Prefix Tokens Description
192 Commands, Tokens, and Validations Guide and Reference

Appendix B: Tokens
PRJ
MOST_RECENT_USER_
NOTE_AUTHOR_USERNAME

Username of the author of the most recent user note.

PRJ
MOST_RECENT_USER_
NOTE_AUTHORED_DATE

Date of the most recent user note.

PRJ
MOST_RECENT_USER_
NOTE_TEXT

Text of the most recent user note.

PRJ
MOST_RECENT_USER_
NOTE_TYPE

Type of the most recent user note (USER or FIELD
CHANGE).

PRJ PARENT_PROJECT_ID The ID of the parent project plan.

PRJ PARENT_PROJECT_NAME The name of the parent project plan.

PRJ PERCENT_COMPLETE The project plan’s completed percentage.

PRJ PRIORITY The priority of the project plan.

PRJ PROJECT_ID
The number that uniquely identifies the project plan (same
as PROJECT_NUMBER) in the table KDRV_PROJECTS.

PRJ PROJECT_MANAGER The manager of the project plan.

PRJ PROJECT_MANAGER_EMAIL The email address of the project manager.

PRJ
PROJECT_MANAGER_
USERNAME

The username of the project manager.

PRJ PROJECT_NAME The name of the project plan.

PRJ PROJECT_NAME_LINK
Shows up as a standard hyperlink to the project plan in
HTML-format notifications.

PRJ PROJECT_NUMBER
The number that uniquely identifies the project plan (same
as PROJECT_ID).

PRJ PROJECT_PATH
The project plan path. This is a hierarchy of parent project
plans that contain this project plan.

PRJ PROJECT_STATE The project plan state.

PRJ PROJECT_TEMPLATE
The name of the project template used to create the project
plan.

PRJ PROJECT_TYPE_CODE Returns TASK for tasks and PROJECT for project plans.

PRJ PROJECT_URL The URL for the project plan’s Project Overview page.

PRJ REGIONAL_CALENDAR The name of the regional calendar for the project plan

PRJ SCHEDULED_EFFORT The scheduled effort defined in the project plan.

Table B-16. Project plans [continued]

Prefix Tokens Description
System Tokens 193

Appendix B: Tokens
* Parameters are accessible with this prefix (similar to request detail):
[PRJD.P.CUSOM_TOKEN].

PRJ SCHEDULED_DURATION The project plan’s scheduled duration.

PRJ SCHEDULED_FINISH_DATE The project plan’s scheduled finish date.

PRJ SCHEDULED_START_DATE The project plan’s scheduled start date.

PRJ SUMMARY_CONDITION The project plan’s summary condition.

PRJ WORKBENCH_PROJECT_URL The URL to access this project plan in the Workbench.

Table B-16. Project plans [continued]

Prefix Tokens Description

Table B-17. Project plan details

Prefix Tokens* Description

PRJD PROJECT_DETAIL_ID
The ID of the project plan detail in the table KDRV_PROJECT_
DETAILS.

PRJD PROJECT_ID
The ID of the project plan detail in the table KDRV_PROJECT_
DETAILS.

Table B-18. Releases

Prefix Tokens Description

REL RELEASE_ID The ID of the release in the table KREL_RELEASES.

REL RELEASE_NAME The name of the release.

REL RELEASE_STATUS The status of the release.

REL CREATED_BY The ID of the user who created the release.

REL CREATED_BY_USERNAME
The Mercury IT Governance Center username of the user
who created the release.

REL LAST_UPDATED_BY The ID of the user who last updated the release.

REL
LAST_UPDATED_BY_
USERNAME

The Mercury IT Governance Center username of the user
who last updated the release.

REL LAST_UPDATE_DATE The date that the release was last updated.

REL
MOST_RECENT_NOTE_
AUTHOR_FULL_NAME

First and last name of the author of the most recent
(chronological) note.

REL
MOST_RECENT_NOTE_
AUTHOR_USERNAME

Username of the author of the most recent (chronological)
note.
194 Commands, Tokens, and Validations Guide and Reference

Appendix B: Tokens
REL
MOST_RECENT_NOTE_
AUTHORED_DATE

Date of the most recent (chronological) note.

REL
MOST_RECENT_NOTE_
TEXT

Text of the most recent (chronological) note.

REL RELEASE_MANAGER
The Mercury IT Governance Center user who is
designated the release manager.

REL RELEASE_TEAM
The group of Mercury IT Governance Center users
associated with the release.

REL RELEASE_GROUP The high level categorization of the release.

REL DESCRIPTION The description of the release.

REL NOTES The notes contained within the release.

Table B-18. Releases [continued]

Prefix Tokens Description

Table B-19. Requests

Prefix Token Description

REQ APPLICATION_CODE
The validation value code for the application that the
request is assigned to.

REQ APPLICATION_NAME
The validation value meaning of the application that the
request is assigned to.

REQ ASSIGNED_TO_EMAIL
The email address of the user the request has been
assigned to.

REQ ASSIGNED_TO_GROUP_ID
The ID of the security group that the request has been
assigned to.

REQ ASSIGNED_TO_GROUP_NAME
The name of the security group that the request has been
assigned to.

REQ ASSIGNED_TO_USERNAME
The Mercury IT Governance Center username of the user
that the request has been assigned to.

REQ ASSIGNED_TO_USER_ID The ID of the user that the request has been assigned to.

REQ COMPANY The Company employing the user that created the request.

REQ COMPANY_NAME
The name of the Company employing the user that created
the request.

REQ CONTACT_EMAIL The email address of the Contact for the request.

REQ CONTACT_NAME The full name of the Contact for the request.

REQ CONTACT_PHONE_NUMBER The phone number of the Contact for the request.
System Tokens 195

Appendix B: Tokens
REQ CREATED_BY The ID of the user that created the request.

REQ CREATED_BY_EMAIL The email address of the user that created the request.

REQ CREATED_BY_USERNAME
The Mercury IT Governance Center username of the user
that created the request.

REQ CREATION_DATE The date the request was created.

REQ DEPARTMENT_CODE
The validation value code of the department for the
request.

REQ DEPARTMENT_NAME
The validation value meaning of the department for the
request.

REQ DESCRIPTION The description of the request.

REQ LAST_UPDATED_BY The ID of the user that last updated the request.

REQ LAST_UPDATED_BY_EMAIL
The email address of the user that last updated the
request.

REQ
LAST_UPDATED_BY_
USERNAME

The Mercury IT Governance Center username of the user
that last updated the request.

REQ LAST_UPDATE_DATE The date the request was last updated.

REQ
MOST_RECENT_NOTE_
AUTHOR_FULL_NAME

First and last name of the author of the most recent
(chronological) note.

REQ
MOST_RECENT_NOTE_
AUTHOR_USERNAME

Username of the author of the most recent (chronological)
note.

REQ
MOST_RECENT_NOTE_
AUTHORED_DATE

Date of the most recent (chronological) note.

REQ MOST_RECENT_NOTE_TEXT Text of the most recent (chronological) note.

REQ MOST_RECENT_NOTE_TYPE
Type of the most recent (chronological) note (USER or
FIELD CHANGE).

REQ
MOST_RECENT_NOTE_
CONTEXT

In the case of requests, this is the request status; blank in
all other cases.

REQ
MOST_RECENT_USER_NOTE_
AUTHOR_FULL_NAME

First and last name of the author of the most recent user
note.

REQ
MOST_RECENT_USER_NOTE_
AUTHOR_USERNAME

Username of the author of the most recent user note.

REQ
MOST_RECENT_USER_NOTE_
AUTHORED_DATE

Date of the most recent user note.

Table B-19. Requests [continued]

Prefix Token Description
196 Commands, Tokens, and Validations Guide and Reference

Appendix B: Tokens
REQ
MOST_RECENT_USER_NOTE_
TEXT

Text of the most recent user note.

REQ
MOST_RECENT_USER_NOTE_
TYPE

Type of the most recent user note (USER or FIELD
CHANGE).

REQ
MOST_RECENT_USER_NOTE_
CONTEXT

Status of the request.

REQ NOTES All notes for the request.

REQ PERCENT_COMPLETE The percent complete of the request.

REQ PRIORITY_CODE The validation value code of the request priority.

REQ PRIORITY_NAME The validation value meaning of the request priority.

REQ PROJECT_CODE
The validation value code of the project plan the request
belongs to.

REQ PROJECT_NAME
The validation value meaning of the project plan the
request belongs to.

REQ SUBMIT_DATE The date that the request was submitted.

REQ REQUEST_GROUP_CODE The code for the request group.

REQ REQUEST_GROUP_NAME The name of the request group.

REQ REQUEST_ID The ID of the request in the table KCRT_REQUESTS.

REQ REQUEST_ID_LINK
Shows up as a standard hyperlink to the request in
HTML-format notifications.

REQ REQUEST_SUB_TYPE_ID The ID of the sub-type for the request.

REQ REQUEST_SUB_TYPE_NAME The name of the sub-type for the request.

REQ REQUEST_TYPE_ID The ID of the request type of the request.

REQ REQUEST_TYPE_NAME The name of the request type of the request.

REQ REQUEST_URL URL of the request in standard interface.

REQ STATUS_ID The ID of the status of the request.

REQ STATUS_NAME The status of the request.

REQ
WORKBENCH_REQUEST_
TYPE_URL

The URL of the request type in the Workbench.

REQ WORKFLOW_ID The ID of the workflow used by the request.

REQ WORKFLOW_NAME The name of the workflow used by the request.

Table B-19. Requests [continued]

Prefix Token Description
System Tokens 197

Appendix B: Tokens
* Prefix is mainly used for accessing custom fields: [REQD.P.CUSTOM_TOKEN]

Table B-20. Request details

Prefix* Tokens Description

REQD CREATED_BY The ID of the user who created the request detail.

REQD CREATION_DATE The date the request detail was created.

REQD LAST_UPDATED_BY The ID of the user that last updated the request detail.

REQD LAST_UPDATE_DATE The date the request detail was last updated.

REQD REQUEST_DETAIL_ID
The ID for the request detail in the table KCRT_REQUEST_
DETAILS.

REQD REQUEST_ID The ID of the request for the request detail.

REQD REQUEST_TYPE_ID The ID of the request type for the request detail.

Table B-21. Request pending

Prefix Tokens Description

REQ.PEND ID
The ID of the entity that is being blocked by the
request.

REQ.PEND NAME
The name of the entity that is being blocked by the
request.

REQ.PEND DETAIL
Detail information for the entity that is being blocked
by the request.

REQ.PEND DESCRIPTION
The description of the entity that is being blocked by
the request.

REQ.PEND STATUS_ID
The ID of the state or code of the status of the entity
that is being blocked by the request.

REQ.PEND STATUS_NAME
The name of the status (or state) of the entity that is
being blocked by the request.

REQ.PEND STATE
The name of the state of the entity of the request that
is being blocked by the request.

REQ.PEND ASSIGNED_TO_USERNAME
The name of the assigned user (or resource) of the
entity that is being blocked by the request.

REQ.PEND ASSIGNED_TO_USER_ID
The username of the assigned user (or resource) of
the entity that is being blocked by the request.
198 Commands, Tokens, and Validations Guide and Reference

Appendix B: Tokens
REQ.PEND ASSIGNED_TO_GROUP_NAME
The name of the assigned group (or resource group)
of the entity that is being blocked by the request.

REQ.PEND ASSIGNED_TO_GROUP_ID
The ID of the assigned group (or resource group) of
the entity that is being blocked by the request.

REQ.PEND RESOURCE_USERNAME
The name of the resource associated with the entity
that is being blocked by the request.

REQ.PEND RESOURCE_ID
The username of the assigned user (or resource)
associated with the entity that is being blocked by
the request.

REQ.PEND RESOURCE_GROUP_NAME
The name of the assigned group (or resource group)
associated with the entity that is being blocked by
the request.

REQ.PEND RESOURCE_GROUP_ID
The ID of the assigned group (or resource group)
associated with the entity that is being blocked by
the request.

REQ.PEND PERCENT_COMPLETE
The current percent complete value associated with
the entity that is being blocked by the request.

REQ.PEND ENTITY_TYPE_ID
The ID of the type of entity that is being blocked by
the request.

REQ.PEND ENTITY_TYPE_NAME
The name of the type of entity that is being blocked
by the request.

Table B-21. Request pending [continued]

Prefix Tokens Description

Table B-22. Report submissions

Prefix Tokens Description

RP CREATED_BY The ID of the user who submitted the report.

RP CREATION_DATE The date the report was submitted.

RP FILENAME
The filename for the report. This file name is found in
the REPORT_URL.

RP LAST_UPDATED_BY
The ID of the user that last updated the report
submission.

RP LAST_UPDATE_DATE The date the report submission was last updated.

RP NEW_STATUS The visible value for the report’s new status.

RP NEW_STATUS_CODE The code for the report’s new status.

RP OLD_STATUS The visible value for the report’s old status.
System Tokens 199

Appendix B: Tokens
RP OLD_STATUS_CODE The code for the report’s old status.

RP REPORT_LOG_URL The Web address where the report log is located.

RP REPORT_SUBMISSION_ID
The ID of the report submission in the table KNTA_
REPORT_SUBMISSIONS.

RP REPORT_TYPE_NAME
The name of the report type of the report
submission.

RP REPORT_TYPE_ID The ID of the report type of the report submission.

RP REPORT_URL The Web address where the report output is located.

RP STATUS The status of the report submission.

RP STATUS_CODE
The validation value code for the status of the report
submission.

RP WORKBENCH_REPORT_TYPE_URL The URL of the report type in the Workbench.

Table B-22. Report submissions [continued]

Prefix Tokens Description

Table B-23. Resource pools

Prefix Tokens Description

RSCP ACTIVE_FLAG The active flag of the resource pool.

RSCP CREATED_BY
The username of the user who created the resource
pool.

RSCP CREATION_DATE The date that the resource pool was created.

RSCP DESCRIPTION The description of the resource pool.

RSCP END_PERIOD The end period of the resource pool.

RSCP INITIATION_REQ The initiation request ID of the resource pool.

RSCP PERIOD_SIZE The period size of the resource pool.

RSCP RESOURCE_POOL_URL The URL to view this resource pool.

RSCP RSC_POOL_ID
The ID of the resource pool in table KRSC_RSC_
POOLS.

RSCP RSC_POOL_IS_FOR_ENTITY_NAME
The entity name to which the resource pool is linked
(program or org unit).

RSCP RSC_POOL_IS_FOR_ID
The ID of the program or org unit to which the
resource pool is linked.
200 Commands, Tokens, and Validations Guide and Reference

Appendix B: Tokens
RSCP RSC_POOL_IS_FOR_NAME
The name of the program or org unit to which the
resource pool is linked.

RSCP RSC_POOL_NAME The name of the resource pool.

RSCP START_PERIOD The start period of the resource pool.

RSCP STATUS_CODE The status code of the resource pool.

RSCP STATUS_NAME The status name of the resource pool.

Table B-23. Resource pools [continued]

Prefix Tokens Description

Table B-24. Security groups

Prefix Tokens Description

SG CREATED_BY The ID of the user who created the security group.

SG CREATION_DATE The date the security group was created.

SG DESCRIPTION The description for the security group.

SG LAST_UPDATED_BY The ID of the user that last updated the security group.

SG LAST_UPDATE_DATE The date the security group was last updated.

SG SECURITY_GROUP_ID
The ID of the security group in the table KNTA_SECURITY_
GROUPS.

SG SECURITY_GROUP_NAME The name of the security group.

Table B-25. Skill

Prefix Tokens Description

SKL AVERAGE_COST_RATE The average cost rate associated with the skill.

SKL CREATED_BY The user ID that created the skill.

SKL CREATED_BY_USERNAME The name of the user that created the skill.

SKL CREATION_DATE The date that the skill was created.

SKL SKILL_CATEGORY_CODE
The lookup code of skill Category (lookup type = RSC -
skill Category).

SKL SKILL_CATEGORY_NAME The name of the skill category.

SKL SKILL_ID The ID of the skill in table KRSC_SKILLS.

SKL SKILL_NAME The name of the skill.
System Tokens 201

Appendix B: Tokens
Table B-26. Staffing profile

Prefix Tokens Description

STFP ACTIVE_FLAG The active flag of the staffing profile.

STFP CREATED_BY The username of the user who created the staffing profile.

STFP CREATION_DATE The date that the staffing profile was created.

STFP DESCRIPTION The description of the staffing profile.

STFP END_PERIOD The end period of the staffing profile.

STFP INITIATION_REQ The initiation request ID of the staffing profile.

STFP PERIOD_SIZE The period size of the staffing profile.

STFP STAFFING_PROFILE_URL The URL to view this staffing profile.

STFP STAFF_PROF_ID
The ID of the staffing profile in table KRSC_STAFF_
PROFS.

STFP
STAFF_PROF_IS_FOR_
ENTITY_NAME

The entity name to which the staffing profile is linked.

STFP STAFF_PROF_IS_FOR_ID
The ID of the project plan, program or org unit to which the
staffing profile is linked.

STFP
STAFF_PROFL_IS_FOR_
NAME

The name of the project plan, program or org unit to which
the staffing profile is linked (project plan, program, or org
unit).

STFP STAFF_PROF_NAME The name of the staffing profile.

STFP START_PERIOD The start period of the staffing profile.

STFP STATUS_CODE The status code of the staffing profile.

STFP STATUS_NAME The status name of the staffing profile.

Table B-27. System

Prefix Tokens Description

SYS DATE The date at the time the token is parsed.

SYS NEWLINE A new line character.

SYS TIME_STAMP A date and time stamp at the time the token is parsed.

SYS UNIQUE_IDENTIFIER
Used to obtain a unique number from the database. It can be used to
generate unique filenames, etc. It is often necessary to use with the
‘ksc_set’ special command.
202 Commands, Tokens, and Validations Guide and Reference

Appendix B: Tokens
SYS UNIX_NEWLINE The UNIX new line character.

SYS USERNAME
The Mercury IT Governance Center username of the user currently
logged onto Mercury IT Governance Center.

SYS USER_ID
The ID of the user currently logged onto Mercury IT Governance
Center.

Table B-27. System [continued]

Prefix Tokens Description

Table B-28. Tasks

Prefix Tokens Description

TSK ACTUAL_DURATION The actual duration of the task.

TSK ACTUAL_EFFORT The actual effort associated with the task.

TSK ACTUAL_FINISH_DATE The actual finish date of the task.

TSK ACTUAL_START_DATE The actual start date of the task.

TSK CONFIDENCE_CODE The code of the confidence value entered by the user.

TSK CONFIDENCE_NAME The name of the confidence value entered by the user.

TSK CONSTRAINT_DATE The task’s constraint date.

TSK CREATED_BY The user who created the task.

TSK CREATED_BY_EMAIL The email address of the user who created the task.

TSK CREATED_BY_USERNAME The username of the person who created the task.

TSK CREATION_DATE The creation date of the task.

TSK DEPARTMENT_CODE The code of the department value entered by the user.

TSK DEPARTMENT_NAME
The name of the department value entered by the
user.

TSK DESCRIPTION The description of the task.

TSK
ESTIMATED_REMAINING_
DURATION

The estimated remaining duration of the task.

TSK ESTIMATED_REMAINING_EFFORT The estimated remaining effort involved in the task.

TSK ESTIMATED_FINISH_DATE The estimated finish date of the task.

TSK HAS_EXCEPTIONS
The flag to show whether or not the task has
exceptions.

TSK LAST_UPDATE_DATE The date the task was last updated.
System Tokens 203

Appendix B: Tokens
TSK LAST_UPDATED_BY The last person to update the task.

TSK LAST_UPDATED_BY_EMAIL
The email address of the last person to update the
task.

TSK LAST_UPDATED_BY_USERNAME The username of the last person to update the task.

TSK MASTER_PROJECT_ID The ID of the master project.

TSK MASTER_PROJECT_NAME The name of the master project.

TSK
MOST_RECENT_NOTE_
AUTHOR_FULL_NAME

First and last name of the author of the most recent
(chronological) note.

TSK
MOST_RECENT_NOTE_
AUTHOR_USERNAME

Username of the author of the most recent
(chronological) note.

TSK
MOST_RECENT_NOTE_
AUTHORED_DATE

Date of the most recent (chronological) note.

TSK MOST_RECENT_NOTE_TEXT Text of the most recent (chronological) note.

TSK PARENT_PROJECT_ID The ID of the parent project plan.

TSK PARENT_PROJECT_NAME The name of the parent project plan.

TSK PERCENT_COMPLETE The task’s completed percentage.

TSK PRIORITY The priority of the task.

TSK PROJECT_PATH
The project plan path. Hierarchy of parent project plans
that contain this task.

TSK PROJECT_TEMPLATE
The name of the project template used to create the
project plan containing the task.

TSK PROJECT_TYPE_CODE
Returns TASK for tasks and PROJECT for project
plans.

TSK RESOURCE_ID The ID of the resource assigned to the task.

TSK RESOURCE_EMAIL The email address of the resource.

TSK RESOURCE_GROUP_ID The ID of the resource group assigned to the task.

TSK RESOURCE_GROUP_NAME The name of the resource group assigned to the task.

TSK RESOURCE_USERNAME The username of the resource.

TSK SCHEDULED_EFFORT The scheduled effort involved in the task.

TSK SCHEDULED_DURATION The task’s scheduled duration.

TSK SCHEDULED_FINISH_DATE The task’s scheduled finish date.

Table B-28. Tasks [continued]

Prefix Tokens Description
204 Commands, Tokens, and Validations Guide and Reference

Appendix B: Tokens
TSK SCHEDULED_START_DATE The task’s scheduled start date.

TSK SCHEDULING CONSTRAINT The task’s scheduling constraint.

TSK TASK_CATEGORY The predefined category the task belongs to.

TSK TASK_ID
The number that uniquely identifies the task (same as
TASK_NUMBER). This corresponds to the
PROJECT_ID column in table KDRV_PROJECTS.

TSK TASK_NAME The name of the task.

TSK TASK_NAME_LINK
Standard hyperlink to the task in HTML-format
notifications.

TSK TASK_NUMBER
The number that uniquely identifies the task (same as
TASK_ID).

TSK TASK_STATE The task state.

TSK TASK_URL The URL for the task Detail page.

TSK WORKBENCH_TASK_URL The URL to access this task in the Workbench.

Table B-28. Tasks [continued]

Prefix Tokens Description

Table B-29. Tasks pending

Prefix Tokens Description

TSK.PEND ID The ID of the entity that is being blocked by the task.

TSK.PEND NAME
The name of the entity that is being blocked by the
task.

TSK.PEND DETAIL
Detail information for the entity that is being blocked
by the task as shown in the References panel.

TSK.PEND DESCRIPTION
The description of the entity that is being blocked by
the task.

TSK.PEND STATUS_ID
The ID of the state or the code of the status of the
entity that is being blocked by the task.

TSK.PEND STATUS_NAME
The name of the status (or state) of the entity that is
being blocked by the task.

TSK.PEND STATE
The name of the state of the entity that is being
blocked by the task.

TSK.PEND ASSIGNED_TO_USERNAME
The name of the assigned user (or resource) of the
entity that is being blocked by the task.
System Tokens 205

Appendix B: Tokens
TSK.PEND ASSIGNED_TO_USER_ID
The username of the assigned user (or resource) of
the entity that is being blocked by the task.

TSK.PEND ASSIGNED_TO_GROUP_NAME
The name of the assigned group (or resource group)
of the entity that is being blocked by the task.

TSK.PEND ASSIGNED_TO_GROUP_ID
The ID of the assigned group (or resource group) of
the entity that is being blocked by the task.

TSK.PEND RESOURCE_USERNAME
The name of the resource associated with the entity
that is being blocked by the task.

TSK.PEND RESOURCE_ID
The username of the resource (or assigned user)
associated with the entity that is being blocked by the
task.

TSK.PEND RESOURCE_GROUP_NAME
The name of the resource group (or assigned user)
associated with the entity that is being blocked by the
task.

TSK.PEND RESOURCE_GROUP_ID
The ID of the resource group (or assigned group)
associated with the entity that is being blocked by the
task.

TSK.PEND PERCENT_COMPLETE
The current percent complete value associated with
the entity that is being blocked by the task.

TSK.PEND ENTITY_TYPE_ID
The ID of the type of entity that is being blocked by
the task.

TSK.PEND ENTITY_TYPE_NAME
The name of the type of entity that is being blocked by
the task.

Table B-29. Tasks pending [continued]

Prefix Tokens Description

Table B-30. Users

Prefix Tokens Description

USR AUTHENTICATION_MODE_CODE The authentication mode for the user (such as LDAP).

USR AUTHENTICATION_MODE_NAME The authentication mode for the user (such as LDAP).

USR COMPANY The Company employing the user.

USR COMPANY_NAME The name of the Company employing the user.

USR COST_RATE
The cost rate of the user ($/hour - subject to security of
user evaluating the token).

USR CREATED_BY The ID of the user that created the user.
206 Commands, Tokens, and Validations Guide and Reference

Appendix B: Tokens
USR CREATED_BY_USERNAME
The Mercury IT Governance Center username of the
user that created the user.

USR CREATION_DATE The date the user was created.

USR DEPARTMENT_CODE
The lookup code of the department the user belongs to
(lookup type = DEPT).

USR DEPARTMENT_NAME The name of the department that the user belongs to.

USR EMAIL_ADDRESS The email address of the user.

USR END_DATE The date the user is made inactive in the application.

USR FIRST_NAME The first name of the user.

USR LAST_NAME The last name of the user.

USR LAST_UPDATED_BY The ID of the user that last updated the user.

USR LAST_UPDATED_BY_USERNAME
The Mercury IT Governance Center username of the
user that last updated the user.

USR LAST_UPDATE_DATE The date the user was last updated.

USR LOCATION_CODE
The lookup code of the user’s location (lookup type =
RSC - Location).

USR LOCATION_NAME The name of the user’s location.

USR MANAGER_USERNAME The username of the user’s manager.

USR MANAGER_USER_ID The ID of the user’s manager.

USR PASSWORD
The password for the user to use to log onto Mercury IT
Governance Center. This value is encrypted.

USR PASSWORD_EXPIRATION_DATE The date the password needs to be reset for the user.

USR PASSWORD_EXPIRATION_DAYS
The number of days until the password must be reset for
the user.

USR PHONE_NUMBER The phone number of the user.

USR PRIMARY_SKILL_ID The ID of the primary skill associated with the user.

USR PRIMARY_SKILL_NAME The name of the primary skill associated with the user.

USR REGIONAL_CALENDAR The name of the regional calendar for the user.

USR RESOURCE_CATEGORY_CODE
The lookup code of resource category (lookup type =
RSC - Category) to which the user belongs.

USR RESOURCE_CATEGORY_NAME The name of the category to which the user belongs.

Table B-30. Users [continued]

Prefix Tokens Description
System Tokens 207

Appendix B: Tokens
USR RESOURCE_TITLE_CODE
the lookup code of the user’s resource title (lookup type
= RSC - Resource Title).

USR RESOURCE_TITLE_NAME The name of the user’s resource title.

USR START_DATE The date the user is made active in the application.

USR USERNAME
The username for the user to use to log onto Mercury IT
Governance Center.

USR USER_ID The ID of the user in the table KNTA_USERS.

USR WORKLOAD_CAPACITY The workload capacity of the user (% of FTE)

Table B-30. Users [continued]

Prefix Tokens Description

Table B-31. Validations

Prefix Tokens Description

VAL COMPONENT_TYPE The component type associated with the validation.

VAL CREATED_BY The ID of the user that created the validation.

VAL CREATION_DATE The date the validation was created.

VAL DESCRIPTION The description of the validation.

VAL LAST_UPDATED_BY The ID of the user that last updated the validation.

VAL LAST_UPDATE_DATE The date the validation was last updated.

VAL LOOKUP_TYPE
The lookup type associated with the validation (if
applicable).

VAL VALIDATION_ID
The ID of the validation in the table KNTA_
VALIDATIONS.

VAL VALIDATION_NAME The name of the validation.

VAL VALIDATION_SQL
The SQL statement associated with the validation (if
applicable).

VAL WORKBENCH_VALIDATION_URL The URL for the validation in the Workbench.

Table B-32. Validation values

Prefix Tokens Description

VALUE CREATED_BY The ID of the user that created the value.

VALUE CREATION_DATE The date the value was created.
208 Commands, Tokens, and Validations Guide and Reference

Appendix B: Tokens
VALUE DEFAULT_FLAG
The flag to indicate whether the value is the default value for the
associated lookup type.

VALUE DESCRIPTION The description of the value.

VALUE ENABLED_FLAG
The flag to indicate whether the value is enabled for selection in
a drop-down list.

VALUE LAST_UPDATED_BY The ID of the user that last updated the value.

VALUE LAST_UPDATE_DATE The date the value was last updated.

VALUE LOOKUP_CODE The code associated with the value.

VALUE LOOKUP_TYPE The lookup type the value belongs to.

VALUE MEANING The meaning associated with the value.

VALUE SEQ
The sequence relative to other values in the associated lookup
type in which this value will be displayed in a drop-down list.

Table B-32. Validation values [continued]

Prefix Tokens Description

Table B-33. Workflows

Prefix Tokens Description

WF CREATED_BY The ID of the user that created the workflow.

WF CREATION_DATE The date the workflow was created.

WF DESCRIPTION The description of the workflow.

WF ENABLED_FLAG
The flag indicating whether the workflow is enabled
and available to use in packages and/or requests.

WF FIRST_WORKFLOW_STEP_ID The ID of the first workflow step in the workflow.

WF FIRST_WORKFLOW_STEP_NAME The name of the first workflow step in the workflow.

WF ICON_NAME The name of the workflow step icon.

WF LAST_UPDATED_BY The ID of the user that last updated the workflow.

WF LAST_UPDATE_DATE The date the workflow was last updated.

WF PRODUCT_SCOPE_CODE
The validation value code for the product scope of
the workflow.

WF REOPEN_WORKFLOW_STEP_ID The ID of the reopened workflow step.

WF REOPEN_WORKFLOW_STEP_NAME The name of the reopened workflow step.

WF SUBWORKFLOW_FLAG
An indicator that specifies whether this workflow
can be used as a Subworkflow.
System Tokens 209

Appendix B: Tokens
WF WORKFLOW_ID
The ID of the workflow defined in the table KWFL_
WORKFLOWS.

WF WORKFLOW_NAME The name of the workflow.

WF WORKBENCH_WORKFLOW_URL The URL to open the workflow in the Workbench.

Table B-33. Workflows

Prefix Tokens Description

Table B-34. Workflow steps

Prefix Tokens Description

WFS ACTION_BUTTON_LABEL
The label displayed on the package or request
action button for the workflow step.

WFS AVERAGE_LEAD_TIME
The average lead time in days defined for the
workflow step.

WFS CREATED_BY The ID of the user that created the workflow step.

WFS CREATION_DATE The date the workflow step was created.

WFS DESCRIPTION The description of the workflow step.

WFS DEST_ENV_GROUP_ID
The ID of the destination environment group for
the workflow step.

WFS DEST_ENV_GROUP_NAME
The name of the destination environment group
for the workflow step.

WFS DEST_ENVIRONMENT_ID
The ID of destination environment for the workflow
step.

WFS DEST_ENVIRONMENT_NAME
The name of the destination environment for the
workflow step.

WFS ENABLED_FLAG
The flag indicating whether the workflow step is
enabled and able to be traversed in a package or
request.

WFS GL_ARCHIVE_FLAG
For GL object migration, the flag indicating
whether to save the GL object being migrated to
the GL*Migrator archive.

WFS INFORMATION_URL The workflow step’s information URL.

WFS JUMP_RECEIVE_LABEL_CODE The code for a Jump/Receive workflow step.

WFS JUMP_RECEIVE_LABEL_NAME The name of a Jump/Receive workflow step.

WFS LAST_UPDATED_BY
The ID of the user that last updated the workflow
step.
210 Commands, Tokens, and Validations Guide and Reference

Appendix B: Tokens
WFS LAST_UPDATE_DATE The date the workflow step was last updated.

WFS OM_ARCHIVE_FLAG
For AOL object migration, the flag indicating
whether to save the AOL object being migrated to
the Object*Migrator archive.

WFS PARENT_ASSIGNED_TO_GROUP_ID
The ID of the security group that the current
package or request is assigned to (determined by
context at time of evaluation).

WFS
PARENT_ASSIGNED_TO_GROUP_
NAME

The security group that the current package or
request is assigned to (determined by context at
time of evaluation).

WFS PARENT_ASSIGNED_TO_USERNAME
The name of the user that the current package or
request is assigned to (determined by context at
time of evaluation).

WFS PARENT_ASSIGNED_TO_USER_ID
The ID of the user that the current package or
request is assigned to (determined by context at
time of evaluation).

WFS PARENT_STATUS
The validation value code of the status of the
request that is using the workflow step.

WFS PARENT_STATUS_NAME
The validation value meaning of the status of the
request that is using the workflow step.

WFS PRODUCT_SCOPE_CODE
The validation value code for the product scope of
the workflow containing the workflow step.

WFS
RESULT_WORKFLOW_PARAMETER_
ID

The ID of the workflow parameter that the result of
the workflow step is written to.

WFS
RESULT_WORKFLOW_PARAMETER_
NAME

The name of the workflow parameter that the
result of the workflow step is written to.

WFS SORT_ORDER
The display sequence of the workflow step relative
to all other steps in the workflow.

WFS SOURCE_ENV_GROUP_ID
The ID of the source environment group for the
workflow step.

WFS SOURCE_ENV_GROUP_NAME
The name of the source environment group for the
workflow step.

WFS SOURCE_ENVIRONMENT_ID
The ID of the source environment for the workflow
step.

WFS SOURCE_ENVIRONMENT_NAME
The name of the source environment for the
workflow step.

Table B-34. Workflow steps [continued]

Prefix Tokens Description
System Tokens 211

Appendix B: Tokens
WFS STEP_NAME The name of the workflow step.

WFS STEP_NO
The display sequence of the workflow step relative
to all other steps in the workflow.

WFS STEP_SOURCE_NAME The name of the workflow step source.

WFS STEP_TYPE_NAME The name of the workflow step source type.

WFS WORKFLOW_ID
The ID of the workflow containing the workflow
step.

WFS WORKFLOW_NAME
The name of the workflow containing the workflow
step.

WFS WORKFLOW_STEP_ID
The ID of the workflow step in the table KWFL_
WORKFLOW_STEPS.

Table B-34. Workflow steps [continued]

Prefix Tokens Description

Table B-35. Workflow step transaction

Prefix Tokens Description

WST CONCURRENT_REQUEST_ID
The ID of the concurrent request that was launched
in Oracle Applications.

WST CREATED_BY The ID of the user that created the step transaction.

WST CREATION_DATE The date the step transaction was created.

WST ERROR_MESSAGE The error message for the step transaction.

WST EXECUTION_BATCH_ID The ID of the execution batch for the workflow step.

WST HIDDEN_STATUS
The hidden value for the status of the step
transaction.

WST LAST_UPDATED_BY
The ID of the user that last updated the step
transaction.

WST LAST_UPDATED_BY_EMAIL
The email address of the user that last updated the
step transaction.

WST LAST_UPDATED_BY_USERNAME
The Mercury IT Governance Center username of the
user that last updated the step transaction.

WST LAST_UPDATE_DATE The date the step transaction was last updated.

WST NEW_HIDDEN_STATUS
The new hidden value for the status of the step
transaction.

WST NEW_STATUS The new status of the step transaction.
212 Commands, Tokens, and Validations Guide and Reference

Appendix B: Tokens
Field Group Tokens

Field groups can be attached to request header types to enable additional
pre-configured fields on requests. Field groups are often delivered as a part of
Mercury IT Governance Center best practice functionality. You will only have
access to field groups associated with products that are licensed at your site.

Use Table B-36 as a quick reference guide to jump to the desired location.

WST OLD_HIDDEN_STATUS
The old hidden value for the status of the step
transaction.

WST OLD_STATUS The old status of the step transaction.

WST STATUS The status of the step transaction.

WST STEP_TRANSACTION_ID
The ID of the step transaction in the table KWFL_
STEP_TRANSACTIONS.

WST TIMEOUT_DATE The date that the step transaction times out.

WST USER_COMMENT The user comment for the step transaction.

WST WORKFLOW_ID The ID of the workflow for the step transaction.

WST WORKFLOW_STEP_ID The ID of the workflow step for the step transaction.

Table B-35. Workflow step transaction [continued]

Prefix Tokens Description

Table B-36. Field group token tables

Table Page

Table B-37, Demand Management field group
tokens

214

Table B-38, Master project reference on request
field group tokens

214

Table B-39, PFM asset field group tokens 214

Table B-40, PFM project field group tokens 215

Table B-41, PFM proposal field group tokens 216

Table B-42, PMO field group tokens 216
Field Group Tokens 213

Appendix B: Tokens
Table B-43, Program reference on request field
group tokens

217

Table B-44, Work item field group tokens 217

Table B-37. Demand Management field group tokens

Field Token

SLA Level KNTA_SLA_LEVEL

SLA Violation Data KNTA_SLA_VIOLATION_DATE

Service Request Date KNTA_SLA_SERV_REQUESTED_ON

Service Satisfied Date KNTA_SLA_SERV_SATISFIED_ON

Estimated Start Date KNTA_EST_START_DATE

Estimated Effort KNTA_EFFORT

Reject Date KNTA_REJECTED_DATE

Demand Satisfied Date KNTA_DEMAND_SATISFIED_DATE

Table B-38. Master project reference on request field group tokens

Field Token

Master Project KNTA_MASTER_PROJ_REF

Table B-39. PFM asset field group tokens

Field Token

Business Unit KNTA_BUSINESS_UNIT

Asset Name KNTA_PROJECT_NAME

Asset Health KNTA_PROJECT_HEALTH

Project Class KNTA_PROJECT_CLASS

Asset Class KNTA_ASSET_CLASS

Business Objective KNTA_BUSINESS_OBJECTIVE

Project Plan KNTA_PROJECT_PLAN

Budget KNTA_BUDGET

Table B-36. Field group token tables

Table Page
214 Commands, Tokens, and Validations Guide and Reference

Appendix B: Tokens
Financial Benefit KNTA_FINANCIAL_BENEFIT

Staffing Profile KNTA_STAFFING_PROFILE

Net Present Value KNTA_NET_PRESENT_VALUE

Value Rating KNTA_VALUE_RATING

Risk Rating KNTA_RISK_RATING

Return on Investment KNTA_RETURN_ON_INVESTMENT

Custom Field Value KNTA_CUSTOM_FIELD_VALUE

Total Score KNTA_TOTAL_SCORE

Discount Rate KNTA_DISCOUNT_RATE

Table B-40. PFM project field group tokens

Field Token

Business Unit KNTA_BUSINESS_UNIT

Project Name KNTA_PROJECT_NAME

Project Health KNTA_PROJECT_HEALTH

Project Class KNTA_PROJECT_CLASS

Asset Class KNTA_ASSET_CLASS

Business Objective KNTA_BUSINESS_OBJECTIVE

Project Plan KNTA_PROJECT_PLAN

Project Manager KNTA_PROJECT_MANAGER

Budget KNTA_BUDGET

Financial Benefit KNTA_FINANCIAL_BENEFIT

Staffing Profile KNTA_STAFFING_PROFILE

Net Present Value KNTA_NET_PRESENT_VALUE

Value Rating KNTA_VALUE_RATING

Risk Rating KNTA_RISK_RATING

Custom Field Value KNTA_CUSTOM_FIELD_VALUE

Return on Investment KNTA_RETURN_ON_INVESTMENT

Table B-39. PFM asset field group tokens [continued]

Field Token
Field Group Tokens 215

Appendix B: Tokens
Total Score KNTA_TOTAL_SCORE

Discount Rate KNTA_DISCOUNT_RATE

Table B-41. PFM proposal field group tokens

Field Token

Business Unit KNTA_BUSINESS_UNIT

Project Name KNTA_PROJECT_NAME

Project Class KNTA_PROJECT_CLASS

Asset Class KNTA_ASSET_CLASS

Business Objective KNTA_BUSINESS_OBJECTIVE

Project Template KNTA_PROJECT_TEMPLATE

Project Manager KNTA_PROJECT_MANAGER

Budget KNTA_BUDGET

Expected Benefit KNTA_FINANCIAL_BENEFIT

Staffing Profile KNTA_STAFFING_PROFILE

Net Present Value KNTA_NET_PRESENT_VALUE

Value Rating KNTA_VALUE_RATING

Risk Rating KNTA_RISK_RATING

Return on Investment KNTA_RETURN_ON_INVESTMENT

Custom Field Value KNTA_CUSTOM_FIELD_VALUE

Total Score KNTA_TOTAL_SCORE

Discount Rate KNTA_DISCOUNT_RATE

Table B-42. PMO field group tokens

Field Token

Escalation Level KNTA_ESCALATION_LEVEL

Role Description KNTA_ROLE_DESCRIPTION

Risk Impact Level KNTA_RISK_IMPACT_LEVEL

Table B-40. PFM project field group tokens

Field Token
216 Commands, Tokens, and Validations Guide and Reference

Appendix B: Tokens
Probability KNTA_PROBABILITY

CR Level KNTA_CR_LEVEL

Business Impact Severity KNTA_IMPACT_SEVERITY

Table B-43. Program reference on request field group tokens

Field Token

Program KNTA_PROGRAM_REFERENCE

Table B-44. Work item field group tokens

Field Token

Scheduled Start Date KNTA_USR_SCHED_START_DATE

Actual Start Date KNTA_USR_ACTUAL_START_DATE

Scheduled Finish Date KNTA_USR_SCHED_FINISH_DATE

Actual Finish Date KNTA_USR_ACTUAL_FINISH_DATE

Scheduled Duration KNTA_SCHED_DURATION

Actual Duration KNTA_ACTUAL_DURATION

Scheduled Effort KNTA_SCHED_EFFORT

Actual Effort KNTA_ACTUAL_EFFORT

Workload? KNTA_WORKLOAD

Workload Category KNTA_WORKLOAD_CATEGORY

Skill KNTA_SKILL

Allow External Update of Actual Effort KNTA_ALLOW_EXTERNAL_UPDATE

_Scheduled Start Date KNTA_SCHED_START_DATE

_Actual Start Date KNTA_ACTUAL_START_DATE

_Scheduled Finish Date KNTA_SCHED_FINISH_DATE

_Actual Finish Date KNTA_ACTUAL_FINISH_DATE

_Scheduled Effort Over Duration KNTA_SCHED_EFF_OVER_DUR

Table B-42. PMO field group tokens

Field Token
Field Group Tokens 217

Appendix B: Tokens
218 Commands, Tokens, and Validations Guide and Reference

Index
A

app server properties 177
auto-complete

command with delimited output 95
command with fixed width output 97
configuring general behavior 82
configuring the values 94
example 100
list of users 93
long lists 84
search fields 88
short lists 83
user-defined multi-select 99

auto-complete validations 82

C

command conditions 25, 34
examples 26

command language 25
command steps 25
command with delimited output 95
command with fixed width output 97
commands

triggering from workflow 23
validation 82

component types 71

auto-complete 99
directory chooser 116
file chooser 116
file chooser (static environment override)
117
file chooser (token-based environment
override) 118

contact 178
currency data mask 108
custom data mask 115

D

date field
valid format 120

directory chooser 116
dynamic list validations 79

command 82
SQL 79

E

entity token
app server properties 177
command execution 185
contacts 178
demand management fields 214
distributions 179
219

Index
document management 180
environment applications 183
environments 180
extension 183
notifications 185
organization units 186
package lines 189
package pending 190
program 191
project field group 214
project plan 191
project plan details 194
releases 194
report submissions 199
request details 198
requests 195
requests pending 198
resource pools 200
security groups 201
skills 201
staffing profile 202
tasks 203
tasks pending 205
users 206
workflow steps 210
workflows 209

entity tokens
validation values 208
validations 208

F

field group tokens 213
asset 214
demand management 214
master project reference 214
PMO 216
program reference 217
project 215
proposal 216
work item 217

fields
preview layout 93

file chooser 116
static environment override 117
token-based environment override 118

format masks
for text fields 104

K

ksc_begin_script 159
example 160

ksc_capture_output 164
ksc_clear_exit_value 168
ksc_comment 157
ksc_conc_sub 158

example 158
ksc_connect 138
ksc_connect_dest_client 139

example 139
ksc_connect_dest_server 140

example 140
ksc_connect_source_client 141

example 141
ksc_connect_source_server 142

examples 142
ksc_copy 143
ksc_copy_client_client 143

example 144
ksc_copy_client_server 144

example 145
ksc_copy_client_tmp 148
ksc_copy_script 160
ksc_copy_script_dest_client 161
ksc_copy_script_dest_server 161
ksc_copy_script_source_client 162
ksc_copy_script_source_server 162
ksc_copy_server_client 145

example 146
ksc_copy_server_server 146

example 147
ksc_copy_server_tmp 148
ksc_copy_tmp_client 149
220 Commands, Tokens, and Validations Guide and Reference

Index
ksc_copy_tmp_server 150
ksc_end_script 159

example 160
ksc_exit 143
ksc_gl_migrate 165

example 166
ksc_local_exec 153
ksc_om_migrate 163

example 164
ksc_parse_jcl 166
ksc_replace 154
ksc_respond 151
ksc_set 154, 166, 167

example 153, 154, 155
ksc_set_env 155
ksc_set_exit_value 167
ksc_simple_respond 151

examples 152
ksc_store 154, 156, 166, 167

example 157
ksc_submit_job 167

N

numeric data mask 106

O

object types
commands and workflow 23

ownership
setting for special commands 43

P

percentage data mask 110

R

request field tokens 61
prefixes 61

request tield fokens
table components 61

S

special command
parameters tab 32

special command builder 37
using to build steps 46

special commands
adding parameters 33, 40
building steps with command builder 46
commands tab 33
creating new 38
deleting parameters 43
editing parameters 42
header fields 32
ksc_begin_script 159
ksc_capture_output 164
ksc_clear_exit_value 168
ksc_comment 157
ksc_conc_sub 158
ksc_connect 138
ksc_copy 143
ksc_copy_script 160
ksc_end_script 159
ksc_exit 143
ksc_gl_migrate 165
ksc_local_exec 153
ksc_om_migrate 163
ksc_parse_jcl 166
ksc_respond 151
ksc_run_sql 168
ksc_set 154, 166, 167
ksc_set_env 155
ksc_set_exit_value 167
ksc_simple_respond 151
ksc_store 154, 156, 166, 167
ksc_submit_job 167
nesting 47
ownership tab 37
parameters 169
setting ownership 43
used by tab 38
user interface 30
using 45
window 31
221

Index
workbench 31
SQL validations 79

tips 81
static list validations 77
swap mode 92

T

table component validations 121
adding to request type 132
column totals 130
creating rules 126
defining 122
rules example 126
tokens 130

table components
using tokens in 61

telephone data mask 112
text fields

configuring 104
currency 105
custom format 106
customizing the data masks 106
format masks 104
numeric 105
percentage 106
telephone 106

token
evaluation example 100

Token Builder window 51
token evaluation 66
tokens

building 56
default format 55
environment tokens 64
explicit entity format 56
field groups 213
formats 53
overview 50
parameter format 60
request fields 61
sub-entity format 63

user data format 59
within tokens 57

U

URL to validation 76
user data

context sensitive in validation 74

V

validations
auto-complete 82
command 82
command with delimited output 95
command with fixed width output 97
context sensitive user data and 74
creating 73
date format 120
defined 70
deleting 77
directory chooser 116
dynamic list 79
editing 75
file chooser 116
file chooser (static environment override)
117
file chooser (token-based environment
override) 118
overview 71
package and request group 134
quick link 76
request type category 135
seeded 136
special characters and 135
SQL 79
SQL tips 81
static lists 77
system 136
table component 121
text area 1800 120
222 Commands, Tokens, and Validations Guide and Reference

	Documentation Home Page
	List of Figures
	List of Tables
	Introduction
	About This Document
	Who Should Read This Document
	Related Documents
	Overview

	Using Commands
	Overview of Commands
	Where Commands are Used
	Commands Interface
	Object Type Commands and Workflow
	Request Type Commands and Workflow
	Special Commands

	Command Steps
	Command Language

	Command Conditions
	Example Command Uses

	Special Commands
	Overview of Special Commands
	Special Command Interface
	Special Command Workbench
	Special Command Window
	Special Command Window General Information Region
	Parameters Tab
	Commands Tab
	Command Conditions
	Parameters in Command Steps
	Example � Special Command
	Special Command Builder

	Ownership Tab
	Used By Tab

	Creating and Editing Special Commands
	Creating a New Special Command
	Creating and Editing Special Command Parameters
	Adding Parameters to Special Commands
	Editing Special Command Parameters
	Deleting Parameters

	Setting Ownership for Special Commands

	Using Special Commands
	Adding Special Commands to Command Steps Using the Command Builder
	Nesting Special Commands

	Using Tokens
	Overview
	What are Tokens?
	Where Tokens Are Used
	Token Builder Window Overview
	Token Formats
	Default Format
	Explicit Entity Format
	Using Tokens within Other Tokens

	User Data Format
	Parameter Format
	Request Field Tokens
	Request Token Prefixes
	Tokens in Request Table Components

	Sub�Entity Format
	Environment and Environment Application Tokens

	Token Evaluation

	Working with Validations
	Overview of Working with Validations
	What are Validations
	Validation Component Types � Overview
	Creating a Validation
	User Data on the Validation Value

	Editing Validations
	Creating a URL to Open the Validation Window

	Deleting Validations
	Static List Validations
	Dynamic List Validations
	SQL Validation
	SQL Validation Tips

	Command Validation

	Configuring Auto�Complete Validations
	Configuring General Auto�complete Behavior
	Configuring Short List Auto�Complete Fields
	Configuring Long List Auto�Complete Fields
	Configuring the Automatic Value Matching and the Interactive Select Page
	Functional Overview: Matching for “Starts with” or “Contains”
	Configuration Instructions
	Configuration Tips

	Adding Search Fields to the Auto�Complete Window
	Special Case: Configuring an Auto�Complete List of Users

	Configuring the Auto�Complete Values
	Validation by Command With Delimited Output
	Validation by Command With Fixed Width Output
	User�Defined Multi�Select Auto�Complete Fields
	Example: Token Evaluation and Validation by Command with Delimited Output

	Configuring Text Fields
	Creating a Text Field Validation Overview
	Available Text Data Masks
	Customizing the System Text Data Masks
	Customizing the Numeric Data Mask
	Customizing the Currency Data Mask
	Customizing the Percentage Data Mask
	Customizing the Telephone Data Mask

	Creating a Custom Data Mask

	Using Directory and File Choosers
	Directory Chooser
	File Chooser

	Date Field Formats
	Creating 1800 Character Text Areas
	Configuring the Table Component
	Defining the Table Component in the Validation Workbench
	Creating a Table Rule
	Example: Using a Table Component on an Order Form
	Tokens in the Table Components

	Calculating Column Totals

	Adding the Table Component to a Request Type

	Package and Request Group Validations
	Package and Request Groups
	Request Type Category

	Validation Special Characters
	System Validations

	System Special Commands
	Overview of System Special Commands
	ksc_connect Special Commands
	ksc_connect_dest_client
	Example Using ksc_connect_dest_client

	ksc_connect_dest_server
	Example using ksc_connect_dest_server

	ksc_connect_source_client
	Example using ksc_connect_source_client

	ksc_connect_source_server
	Examples using ksc_connect_source_server

	ksc_exit
	ksc_copy Special Commands
	ksc_copy_client_client
	Example #1 using ksc_copy_client_client
	Example #2 using ksc_copy_client_client

	ksc_copy_client_server
	Example using ksc_copy_client_server

	ksc_copy_server_client
	Example using ksc_copy_server_client

	ksc_copy_server_server
	Example using ksc_copy_server_server

	ksc_copy_client_tmp
	ksc_copy_server_tmp
	ksc_copy_tmp_client
	ksc_copy_tmp_server

	ksc_respond
	ksc_simple_respond
	Examples using ksc_simple_respond

	ksc_local_exec
	Example using ksc_local_exec

	ksc_replace
	Example using ksc_replace

	ksc_set
	Example using ksc_set

	ksc_set_env
	ksc_store
	Example using ksc_store

	ksc_comment
	ksc_concsub
	Example using ksc_concsub

	ksc_begin_script / ksc_end_script
	Example using ksc_begin_script and ksc_end_script

	ksc_copy_script Special Commands
	ksc_copy_script_dest_client
	ksc_copy_script_dest_server
	ksc_copy_script_source_client
	ksc_copy_script_source_server

	ksc_om_migrate
	Example using ksc_om_migrate

	ksc_capture_output
	ksc_gl_migrate
	Example using ksc_gl_migrate

	ksc_parse_jcl
	ksc_submit_job
	ksc_set_exit_value
	ksc_clear_exit_value
	ksc_run_sql
	Example using ksc_run_sql

	Summary of All Special Command Parameters

	Tokens
	Overview of Tokens
	System Tokens
	Field Group Tokens

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

