
 WinRunner®

TSL Reference Guide
Version 7.01

Books
Online�

TSL Reference Guide, Version 7.01

© Copyright 1994 - 2001 by Mercury Interactive Corporation

All rights reserved. All text and figures included in this publication are the exclusive property of
Mercury Interactive Corporation, and may not be copied, reproduced, or used in any way without the
express permission in writing of Mercury Interactive. Information in this document is subject to
change without notice and does not represent a commitment on the part of Mercury Interactive.

Mercury Interactive may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents except as
expressly provided in any written license agreement from Mercury Interactive.

WinRunner, XRunner, LoadRunner, TestDirector, TestSuite, WebTest, and Astra are registered
trademarks of Mercury Interactive Corporation in the United States and/or other countries. Astra
SiteManager, Astra SiteTest, Astra QuickTest, Astra LoadTest, Topaz, RapidTest, QuickTest, Visual
Testing, Action Tracker, Link Doctor, Change Viewer, Dynamic Scan, Fast Scan, and Visual Web
Display are trademarks of Mercury Interactive Corporation in the United States and/or other
countries.

This document also contains registered trademarks, trademarks and service marks that are owned by
their respective companies or organizations. Mercury Interactive Corporation disclaims any
responsibility for specifying which marks are owned by which companies or organizations.

If you have any comments or suggestions regarding this document, please send them via e-mail to
documentation@mercury.co.il.

Mercury Interactive Corporation
1325 Borregas Avenue
Sunnyvale, CA 94089 USA

WRTSLREF7.01/01

iii

Table of Contents

Welcome to TSL...v
Using This Guide ...v
WinRunner Documentation Set...vi
Online Resources ..vi
Typographical Conventions.. viii

Chapter 1: Introduction ..1
Function Types ..2
Analog Functions...3
Context Sensitive Functions ...3
Customization Functions ..5
Standard Functions..5

Chapter 2: Language ...7
Variables and Constants ...7
Operators and Expressions ...12
Statements ...17
Control Flow..17
Arrays...22
Input-Output ...28
Comments ...29
Built-in Functions..29
User-Defined Functions...30
External Function Declarations...32

Chapter 3: Guidelines for Working with TSL35
Test Scripts...36
Flow Control..40
Return Values ..41
Path Names..42
tl_step Function...43
GUI Map ..44
Libraries and Functions ...45

TSL Reference Guide

iv

Chapter 4: Reserved Words ..51

Chapter 5: Functions by Category ..55
Analog Functions ..56
Context Sensitive Functions ...58
Customization Functions ..98
Standard Functions ...101

Chapter 6: Return Values ..117
General Return Values...118
Return Values for Database Functions ..122
Return Values for PowerBuilder and Table Functions123
Return Values for Terminal Emulator Functions124

Chapter 7: Alphabetical Reference ...125

Index ..495

v

Welcome to TSL

Welcome to TSL, Mercury Interactive’s Test Script Language (TSL).

Using This Guide

This book is a comprehensive guide to Mercury Interactive’s Test Script
Language (TSL). It provides a detailed description of TSL and how to use it in
your test scripts. It lists all TSL functions alphabetically and by category, and
describes the parameters, return values, and availability for each function.
This book assumes that you are already familiar with WinRunner. For
information on using WinRunner, see the WinRunner User’s Guide.

This book contains the following chapters:

Introduction

Provides an overview of TSL and the different types of TSL functions. Read
this section to learn which groups of TSL functions are relevant for your
product.

Language

Describes the basic elements of the TSL programming language, such as:
constants and variables, operators and expressions, statements, control-flow,
arrays, input/output.

Guidelinesfor Working with TSL

Provides guidelines to assist you in creating intuitive and readable test
scripts and libraries.

Functions by Category

Provides a list of TSL functions grouped according to the type of tasks they
perform. Functions are arranged alphabetically within each category, and a
brief description of each function is included.

TSL Reference Guide

vi

Alphabetical Reference

Lists all TSL functions alphabetically. The name of each function is listed
along with the type and the category to which it belongs. A description and
complete syntax are provided. The definition of the function’s parameters
and its return values and availability are also described.

WinRunner Documentation Set

In addition to this guide, WinRunner comes with a complete set of
documentation:

WinRunner Installation Guide describes how to install WinRunner on a
single computer or a network.

WinRunner Tutorial teaches you basic WinRunner skills and shows you how
to start testing your application.

WinRunner User’s Guide explains how to use WinRunner to meet the
special testing requirements of your application.

WinRunner Customization Guide explains how to customize WinRunner to
meet the special testing requirements of your application.

Online Resources

WinRunner includes the following online resources:

Read Me First provides last-minute news and information about
WinRunner.

What’s New in WinRunner describes the newest features in the latest
versions of WinRunner.

Books Online displays the complete documentation set in PDF format.
Online books can be read and printed using Adobe Acrobat Reader 4.0,
which is included in the installation package. Check Mercury Interactive’s
Customer Support web site for updates to WinRunner online books.

Welcome to TSL

vii

WinRunner Context-Sensitive Help provides immediate answers to
questions that arise as you work with WinRunner. It describes menu
commands and dialog boxes, and shows you how to perform WinRunner
tasks. Check Mercury Interactive’s Customer Support Web site for updates to
WinRunner help files.

TSL Online Reference provides additional information on each function and
examples of usage. You can open the TSL Online Reference from the
WinRunner group in the Start menu or from WinRunner’s Help menu. To
open the online reference to a specific function, click the context-sensitive
Help button and then click a TSL statement in your test script, or place your
cursor on a TSL statement in your test script and then press the F1 key.
Check Mercury Interactive’s Customer Support Web site for updates to the
TSL Online Reference.

WinRunner Sample Tests includes utilities and sample tests with
accompanying explanations. Check Mercury Interactive’s Customer Support
Web site for updates to WinRunner sample tests.

Technical Support Online uses your default Web browser to open Mercury
Interactive’s Customer Support Web site.

Support Information presents Mercury Interactive’s home page, its
Customer Support web site, and a list of Mercury Interactive’s offices around
the world.

Mercury Interactive on the Web uses your default web browser to open
Mercury Interactive’s home page. This site provides you with the most up-
to-date information on Mercury Interactive, its products and services. This
includes new software releases, seminars and trade shows, customer support,
training, and more.

TSL Reference Guide

viii

Typographical Conventions

This book uses the following typographical conventions:

Bold Bold text indicates function names and the elements
of the functions that are to be typed in literally.

Italics Italic text indicates variable and parameter names.

Helvetica The Helvetica font is used for examples and statements
that are to be typed in literally.

[] Square brackets enclose optional parameters.

{ } Curly brackets indicate that one of the enclosed values
must be assigned to the current parameter.

... In a line of syntax, three dots indicate that more items
of the same format may be included. In a program
example, three dots are used to indicate lines of a pro-
gram that have been intentionally omitted.

| A vertical bar indicates that either of the two options
separated by the bar should be selected.

1

1
Introduction

The scripts you create with Mercury Interactive systems are written in Test
Script Language (TSL). TSL is an enhanced, C-like programming language
designed for testing. At the heart of Mercury Interactive’s integrated testing
environment, TSL is high-level and easy to use. It combines the power and
flexibility of conventional programming languages with functions
specifically developed for use with Mercury Interactive’s products. This
enables you to modify recorded material or to program sophisticated test
suites.

This reference manual is intended to help you read, edit, and write TSL
scripts. It contains a description of the programming language capabilities
of TSL and a list of TSL functions.

This chapter provides overviews about:

➤ Function Types

➤ Analog Functions

➤ Context Sensitive Functions

➤ Customization Functions

➤ Standard Functions

TSL Reference Guide

2

Function Types

There are four types of TSL functions. Each type of function addresses a
different requirement.

The functions that are available depend on which testing product you are
using.

WinRunner: If you work with WinRunner, you can use functions from all of
the categories. Some functions are supported only when working with
applications developed in a specific environment such as PowerBuilder or
Visual Basic. To check the availability of a specific function, click the
Availability button at the top of the Help screen for that function.

LoadRunner GUI Vusers on PC platforms: This type of GUI Vuser uses
WinRunner to create system load. For this reason, you can use functions
from any of the categories. You can also use the LoadRunner functions
described in the “GUI Vuser Scripts” section of the LoadRunner Creating
Virtual User Scripts User’s Guide for Windows and UNIX Platforms.

LoadRunner Scenarios: In LoadRunner scenario scripts (UNIX only), you
can use standard functions in addition to the LoadRunner functions
described in the LoadRunner Controller User’s Guide.

Note for XRunner users: Many TSL functions are supported for both
WinRunner and XRunner. For a list of these functions, refer to the TSL
Online Reference.

Function Type Requirement

Analog perform mouse and keyboard input

Context Sensitive perform operations on GUI objects

Standard perform basic programming-language operations

Customization configure the testing tool according to your requirements

Chapter 1 • Introduction

3

Analog Functions

Analog functions record and execute operations at specified screen
coordinates. When you record in Analog mode, these functions are used to
depict mouse clicks, keyboard input, and the exact coordinates traveled by
the mouse. When you run a test, Analog functions retrace the mouse tracks
and exactly resubmit the input you recorded. Analog functions also support
different test operations such as synchronization, verification, and text
manipulation.

Analog functions are available for:

➤ WinRunner

➤ LoadRunner GUI Vusers on PC Platforms

Coordinate and Numbering Conventions

Many of the Analog functions refer to screen coordinates. In the system of
coordinates used by Mercury Interactive’s products, the origin (0,0
coordinate) is located in the upper left corner of the screen. The maximum
value of x is the width of the screen, in pixels, minus one. The maximum
value of y is the height of the screen, in pixels, minus one.

Context Sensitive Functions

Context Sensitive functions depict actions on the application under test in
terms of GUI objects (such as windows, lists, and buttons), ignoring the
physical location of an object on the screen. In Context Sensitive mode,
each time you record an operation on the application under test (AUT), a
TSL statement is generated in the test script which describes the object
selected and the action performed.

Context Sensitive functions are available for:

➤ WinRunner

➤ LoadRunner GUI Vusers on PC Platforms

TSL Reference Guide

4

Context Sensitive Object Naming Conventions

Most Context Sensitive functions include parameters which refer to an
object’s logical name.

Note that you can replace the logical name of the object with the physical
description. During recording, the logical name is automatically used by the
system. However, the function will also work with the physical description
of the object.

For example, the syntax of button_press function is:

button_press (button [, mouse_button]);

The button parameter may be the logical name of the button—for example:

button_press("OK");

But it can also be the physical description—for instance:

button_press("{class:push_button, label:\"OK\"}");

Numbering Conventions

Numbering for most Context Sensitive functions starts from 0. For example,
the function list_get_item returns 0 for the first item of the given list.

Position coordinates for the “edit” Context Sensitive functions, such as
edit_get_info, are denoted by row and column. The first row is numbered
“0.” Columns are denoted by insertion position, not by character index. In
other words, the position before the first character in any line is “0”, the
position between the first and second characters is “1”, and so on.

Chapter 1 • Introduction

5

Customization Functions

Customization functions allow you to enhance your testing tool so that it
better supports your specific needs. For example, you can add functions to
the Function Generator, or create custom GUI checkpoints.

Customization functions are available for WinRunner.

Standard Functions

Standard functions include the general elements of a programming language,
such as basic input and output, control-flow, mathematical, and array
functions. By combining these elements with Analog and Context Sensitive
functions, you can transform a simple test into an advanced testing
program.

Standard functions are available for all Mercury Interactive products.

TSL Reference Guide

6

7

2
Language

This chapter describes the basic elements of the TSL programming language,
including:

➤ Variables and Constants

➤ Operators and Expressions

➤ Statements

➤ Control Flow

➤ Arrays

➤ Input-Output

➤ Comments

➤ Built-in Functions

➤ User-Defined Functions

➤ External Function Declarations

Variables and Constants

Variables and constants may be either strings or numbers. Declaration is
optional; if variables are not declared, their type is determined at run time
according to their context.

Variable names can include English-language letters (a-z and A-Z), digits,
and underscores (_). The first character must be a letter or an underscore.
TSL is case-sensitive; y and Y are therefore two different characters. Note that
names of built-in functions and keywords (such as if, while, switch) cannot
be used as variable names.

TSL Reference Guide

8

Types of Variables and Constants

TSL supports two types of constants and variables: numbers and strings.
Numbers may be either integer or floating point, and exponential notation
is also acceptable. For example, -17, .05, -3e2, and 3E-2 are all legal values.

Strings consist of a sequence of zero or more characters enclosed within
double quotes. When a backslash (\) or double-quote (") character appears
within a string, it must be preceded by a backslash. Special characters can be
incorporated in a string using the appropriate representation:

In the case of octal numbers, the zeroes represent the ASCII code of a
character. For example, “\126” is equivalent to the letter “v.”

For example, to represent the string “The values are: 12 14 16”, type:

"\"The values are:\t12\t14\t16\""

At a given moment, the value of a constant or variable can be either a string
or a number. The TSL interpreter determines the type according to the
operation performed. For example:

x = 123;
s = x & "Hello";
y = x + 1;

Variable x is assigned the value 123. In the second statement, because the
operation is concatenation (&), x is treated as a string. The interpreted value
of s is therefore 123Hello. In the third line, because the operation is addition,
x is treated as a number. Variable y is therefore assigned the value 124.

backspace \b vertical tab \v
carriage return \r newline \n
formfeed \f octal number \ooo
horizontal \t

Chapter 2 • Language

9

In the case of an expression where a mathematical operation is performed
on a string, such as

"6RED87" + 0

the numeric value of the string is the first part of the string that can be
evaluated to a number. Here, the numeric value of the expression is 6.

Since relational operators are valid for both strings and numbers, a numeric
comparison is always performed if both operands can be evaluated to a
number. For instance, in the relational expression below,

"0.01" == "1e-2"

although both constants are written like strings (enclosed within quotation
marks), both expressions are also valid numbers so a numeric comparison is
performed. But in the next expression,

"0.01" == "1f-2"

the second expression is not a number, so a string comparison is performed.

Undeclared Variables

If a variable is not declared, it is created implicitly when it is assigned or
used in an expression. If a variable is not initialized, it is given the string
value "" (null) at run time.

All undeclared variables are global, unless they are on the formal Parameter
List of a called test. For more information on parameters, see the WinRunner
User’s Guide.

Variable Declarations

Note that while constant and variable declarations are optional in tests, they
are required in user-defined functions. Variable declarations have the
following syntax:

class variable [= init_expression];

TSL Reference Guide

10

The init_expression assigned to a declared variable can be any valid
expression. If an init_expression is not set, the variable is assigned an empty
string. The variable class can be any one of the following:

auto: An auto variable can only be declared within a function and is local to
that function. It exists only while the function is running. A new copy of
the variable is created each time the function is called.

static: A static variable is local to the function, test, or compiled module in
which it is declared. The variable retains its value until the test is terminated
by a Stop command.

public: A public variable can only be declared within a test or module, and
is available for all functions, tests, and compiled modules.

extern: An extern declaration indicates a reference to a public variable
declared outside of the current test or module.

With the exception of the auto variable, all variables continue to exist until
the Stop command is executed. For example, the statement

static a=175, b=get_time(), c = 2.235;

defines three variables (a, b, and c), and assigns each an initial value. This
value is retained between invocations of the test. The following script
segment demonstrates how a static variable can be used so that a message is
printed only the first time that the test, T_2, is called.

static first = 1;
pause ("first = " & first);
if (first == 1) {
first = 0;
report_msg ("Test T_2 was called.");

}

Chapter 2 • Language

11

The following table summarizes the scope, lifetime, and location of the
variable declarations for each class:

Constant Declarations

The const specifier indicates that the declared value cannot be modified.
The syntax of this declaration is:

[class] const name [= expression];

The class of a constant may be either public or static. (If no class is explicitly
declared, the constant is assigned the default class public.) Once a constant
is defined, it remains in existence until the Stop command is executed.

For example, defining the constant TMP_DIR using the declaration:

const TMP_DIR = "/tmp";

means that the assigned value /tmp cannot be modified. (This value can be
changed only by explicitly making a new constant declaration for
TMP_DIR.)

Declaration Scope Lifetime Declare the variable in...

auto local end of function function

static local until stop function, test, or module

public global until stop test or module

extern global until stop function, test, or module

TSL Reference Guide

12

Operators and Expressions

TSL supports six types of operators: arithmetical, concatenation, relational,
logical, conditional, and assignment. Operators are used to create
expressions by combining basic elements. In TSL, expressions can consist of
constants, variables, function calls, and other expressions.

Arithmetical Operators

TSL supports the following arithmetical operators:

+ addition

- subtraction (unary)

- subtraction (binary)

* multiplication

/ division

% modulus

^ or ** exponent

++ increment (adds 1 to its operand - unary operator)

-- decrement (subtracts 1 from its operand - unary
operator)

The result of the modulus operation is assigned the sign of the dividend. For
example:

7 % -4 = 3
-4.5 % 4 = -0.5

The increment and decrement operators may be placed before the variable
(++n), or after (n++). As a result, the variable is incremented either before or
after the value is used. For example:

i = 5;
j = i++;
k = ++i;
print(i & j & k);

Chapter 2 • Language

13

prints the values 7, 5, 7. Note that the increment and decrement operators
may be applied only to variables, and not to expressions, such as (a + b).

Concatenation Operator

The ampersand (&) character is used to concatenate strings. For example,
the statement

x = "ab" & "cd";

assigns the string value abcd to variable x.

Relational Operators

The relational operators used in TSL are:

> greater than

>= greater than or equal to

< less than

<= less than or equal to

== equal to

!= not equal to

Relational expressions are evaluated to the value 1 if true, and 0 if false.
When the value of an expression is null or zero, it is considered false. All
other values are considered true.

Strings are compared character by character according to their ASCII value.
Letter strings are evaluated in terms of alphabetical order; the string which
comes first alphabetically is considered smaller. For instance, “galactic” <
“galaxy”.

TSL Reference Guide

14

Logical Operators

Logical operators are used to create logical expressions by combining two or
more basic expressions. TSL supports the following logical operators:

&& and

|| or

! not (unary)

Logical expressions are assigned the value 1 if true, and 0 if false. When the
value of an expression is null or zero, it is considered false. All other values
are considered true. Logical expressions are evaluated from left to right, and
as soon as the value of an expression is determined, interpretation stops. For
example, in the expression

(g != 0) && (d/g > 17)

if the first expression is false, then the second expression is not evaluated.

Conditional Operator

The conditional operator is the ? (question mark) character. Conditional
expressions have the format:

expression1 ? expression2 : expression3

expression1 is evaluated first; if it is true, expression2 is evaluated and
becomes the value of the expression. If expression1 is false (zero or null),
then expression3 is executed and becomes the value of the expression. In the
following statement,

(g != 0) ? 17 : 18;

if the first expression is true (g is not equal to zero), then the value of the
conditional expression is 17. If the first expression is false, then the value of
the conditional expression is 18.

For more information, see “Control Flow” on page 17.

Chapter 2 • Language

15

Assignment Operators

Assignment operators are used to assign values to variables and arrays. All of
the binary arithmetical operators have corresponding assignment operators:

For example, in the following segment of a test script,

for (i=0; i<200; i+=20)
move_locator_abs(i,i);

the value of i is incremented by 20 after each repetition of the loop. The
mouse pointer is then moved to the new position defined by i. For more
information about for loops see “Control Flow” on page 17.

Operator Example Meaning

= a = b assign the value of b to a

+ = a += b assign the value of a plus b to a

- = a -= b assign the value of a minus b to a

* = a *= b assign the value of a times b to a

/ = a /= b assign the value of a divided by b to a

% = a %= b assign the value of a modulo b to a

^= or **= a ^ = b assign the value of a to the power of b to a

TSL Reference Guide

16

Precedence and Associativity of Operators

The rules of precedence and associativity determine the order in which
operations are performed when more than one operator appears in an
expression. Operators with higher precedence are interpreted before
operators with lower precedence. For example, multiplication is performed
before addition.

When more than one operator of the same level of precedence appears in an
expression, the associativity indicates the order in which they are
interpreted. For example, in

x / 2 + i - q

division is performed first. Addition is performed before subtraction because
the associativity of these operators, which have the same level of
precedence, is left to right.

The following table lists the precedence, in descending order, and the
associativity of operators:

Operator (in order of precedence) Associativity

() (parentheses) none

++ -- none

^ ** right to left

! - + (unary) none

* / % left to right

+ - (binary) left to right

& left to right

< <= > >= == != none

in (array operator) none

&& left to right

|| left to right

? right to left

= += -= *= /= %= ^= **= right to left

Chapter 2 • Language

17

Statements

Any expression followed by a semicolon is a statement. A statement can
continue beyond one line.

In a control-flow structure, a single statement can be replaced by a group of
statements, or block. Statements are grouped by enclosing them within
curly brackets { }. Each individual statement within brackets is followed by a
semicolon, but the brackets themselves are not. This is illustrated below:

for (i = 0; i < 10; i++) {
st = "Iteration number " & i;
type (st);

}

Control Flow

TSL control-flow statements include:

➤ if/else and switch for decision-making

➤ while, for, and do for looping

➤ break and continue for loop modification

If/Else Statement

TSL provides an if/else statement for decision-making. The else clause is
optional. The syntax of this statement is:

if (expression)
statement1

[else
statement2]

The expression is evaluated; if the value of the expression is true (nonzero or
non-null), statement1 is executed; if the value is false (zero or null), and the
[else statement2] clause is included, statement2 is executed.

TSL Reference Guide

18

When if statements are nested, the TSL interpreter associates each else with
the if that appears closest to it. For example, a statement such as:

if (b1) if (b2) s1; else s2;

is interpreted as follows:

if (b1) {
if (b2)

s1;
else

s2;
}

The following example shows how to use an if/else statement with multiple
TSL statements:

if (win_exists(...) == E_OK)
{

win_activate(...);
set_window(...);

}
else

invoke_application(...);

Chapter 2 • Language

19

Switch Statement

The switch statement provides the mechanism for a multi-way decision. The
syntax of this structure is:

switch (expression)
{

case case_expr1:
statement(s)

case case_expr2:
statement(s)

case case_exprn:
statement(s)

[default: statement(s)]
}

The switch statement consecutively evaluates each of the enumerated case
expressions (case_expr1, case_expr2,.... case_exprn), until one is found that
equals the initial expression. If no case expression is equal to the specified
expression, then the optional default statements are executed.

Note that the first time a case expression is found to be equal to the
specified initial expression, no further case expressions are evaluated.
However, all subsequent statements enumerated by these cases are executed,
unless you use a break statement within a case to end the loop. For example:

switch (a) {
case"xyz":

b = a & "tw";
break;

case"uv":
pause ("hello");
x = a;
break;

default:
x = a;

}

Note that while the initial expression can be any regular expression, case
expressions can only be constants or variables.

TSL Reference Guide

20

Looping Statements

TSL provides several statements that enable looping.

while (expression)
statement

While the expression is true, the statement is repeatedly executed. At the start
of each repetition of the loop, the expression is evaluated; if it is true
(nonzero or non-null), the statement is executed, and the expression is re-
evaluated. The loop ends when the value of the expression is false. For
example,

i = 1;
while (i < 21)

type (i++);

types the value of i 20 times.

for ([expression1]; [expression2]; [expression3];)
statement

First, expression1 is implemented as the starting condition. While expression2
is true, the statement is executed, and expression3 is evaluated. The loop
repeats until expression2 is found to be false. This statement is equivalent to:

expression1 # state initial condition
while (expression2) { # while this is true

statement # perform this statement and
expression3 # evaluate this expression

}

For example, the for loop below performs the same function as the while
loop above.

for (i=1; i<21; i++)
type (i);

Chapter 2 • Language

21

Note that if expression2 is missing, it is always considered true, so that

for (i=1;i++)
type (i);

is an infinite loop.

do
statement

while (expression);

The statement is executed and then the expression is evaluated. If the
expression is true, then the cycle is repeated. This statement differs from the
while and for statements in that the expression is evaluated at the end.
Therefore, the loop is always executed at least once. For example, in the
following statement,

i = 20;
do

type (i++);
while (i < 17);

the structure of the loop ensures that the value of i is typed at least once.

Loop Modification

The following statements can be used to exit a loop or to jump to the next
iteration.

break;
The break statement causes an exit from within a loop. If loops are nested,
break affects the innermost for, while, or do loop that encloses it.

TSL Reference Guide

22

For example, a for loop where expression2 is undefined can be terminated
using break:

for (i = 1;; i++) {
type (i);
if (i > 29)

break;
}
continue;

The continue statement causes the next cycle of the loop to begin. In a
do/while loop, execution resumes with the test expression. In a for loop,
execution resumes with expression3. For example:

for (i = 1; i<=300; i++) {
if (i % 3 != 0) {

continue; # to next number
}
... # long processing
type(i & "<kReturn>");

}

Here, a certain process should only be performed on every third number.
Therefore, if i cannot be divided equally by three, execution continues with
the next iteration of the loop.

Arrays

TSL supports associative arrays. Arrays in TSL are unique in that:

➤ Array declaration and initialization are optional.

➤ Each element has a user-defined string subscript.

Rather than arrays of fixed length with numeric subscripts, TSL arrays
contain an undefined number of elements, each with a user-defined string
subscript.

Chapter 2 • Language

23

For example, the statement

capitals["Ohio"] = "Columbus";

assigns the value "Columbus" to the element with subscript "Ohio" in the
array capitals. If array elements are not declared, they are created the first
time they are mentioned and the order of the elements in the array is not
defined. Any uninitialized array element has the numeric value zero and
the string value null ("").

Arrays can be used to store both numbers and strings. In the following test
script, an array is used to store a series of dates and times:

for (i=0; i<5; i++) {
date = time_str();
date_array[i] = date;
wait(5);

}

Here, each array element includes the date and time of the call to the
time_str function. The subscript of the array element is the value of i.

Array Declaration

Array declaration is optional within a test but required within user-defined
functions (initialization is optional). Using the following syntax, you can
define the class and/or the initial expression of an array. Array size need not
be defined in TSL.

class array_name [] [=init_expression]

The array class may be any of the classes listed under Variable Declarations.
The init expression can take one of two formats: C language syntax, or a
string subscript for each element.

TSL Reference Guide

24

An array can be initialized using the C language syntax. For example:

public hosts [] = {"lithium", "silver", "bronze"};

This statement creates an array with the following elements:

hosts[0]="lithium"
hosts[1]="silver"
hosts[2]="bronze"

Note that, as in C, arrays with the class auto cannot be initialized.

In addition, an array can be initialized using a string subscript for each
element. The string subscript may be any legal TSL expression. Its value is
evaluated during interpretation or compilation. For example:

static gui_item []={
"class"="push_button",
"label"="OK",
"X_class"="XmPushButtonGadget",
"X"=10,
"Y"=60
};

creates the following array elements:

gui_item ["class"]="push_button"
gui_item ["label"]="OK"
gui_item ["X_class"]="XmPushButtonGadget"
gui_item ["X"]=10
gui_item ["Y"]=60

Chapter 2 • Language

25

Array Initialization

Arrays are initialized once during a test run. The TSL interpreter maintains
the original initialization values throughout the test run. If you edit an
array’s initialization values, the new values will not be reflected during test
execution. To reset the array with new initialization values, perform one of
the following:

➤ stop/abort the test run

➤ define the array elements explicitly

When you stop the test run, all of the script’s variables are destroyed. The
next time you execute the script, the array is initialized with the new values.

Alternatively, you can explicitly define an array’s elements. When you
assign a value to each array element, you ensure that the array is updated
with the new values for each test run. In the following example, the regular
array initialization is replaced with explicit definitions:

Multidimensional Arrays

TSL supports multidimensional arrays such as a[i,j,k]. Multidimensional
arrays can be used like records or structures in other languages. For example,
the following script uses a multidimensional array to store the date and
time:

for (i = 0;i < 10; i++) {
date=time_str();
split(date,array," ");
multi_array[i, "day"] = array[1];
multi_array[i, "time"] = array[4];
wait(5);

}

Regular Initialization Explicit Definitions

public array[] = {1,2,3}; array[0] = 1;
array[1] = 2;
array[2] = 3;

TSL Reference Guide

26

TSL simulates multidimensional arrays using one-dimensional arrays. The
element multi_array[i1, i2,...in] is stored in the one-dimensional array called
multi_array, in the element [i1 & SUBSEP & i2 & SUBSEP... & in]. (The variable
SUBSEP has the initial value “\034,” but this value may be changed.)

Multidimensional arrays can also be declared and initialized, as described
above. For example, a multidimensional array could be initialized as follows:

static rectangles [] = {
 {153, 212, 214, 437},
 {72, 112, 88, 126},
 {351, 312, 399, 356}
}

The in Operator

The in operator is used to determine if a subscript exists in an array.

subscript in array;

returns the value 1 if the subscript exists, and 0 if it does not. It can be used
in a conditional statement, like the one below which checks whether the
element with the subscript new exists in the array menu_array:

if ("new" in menu_array)

The operator in should be used rather than the following statement:

if (menu_array["new"] != "")...

because this statement causes the element to be created, if it does not
already exist. (Recall that array elements are created the first time they are
mentioned.)

Chapter 2 • Language

27

The in operator can also be used for multidimensional arrays. The subscript
of the element is enclosed in parentheses, as in the following statement:

if (("new.doc", 12) in multi_array)...
for (element in array) statement

causes the element to be set to the subscript of each element in the array. The
statement is executed once for each element of the array, and the loop is
terminated when all elements have been considered. The order in which the
subscripts are read is undefined. The sample script below reads an array for
which each element is a date and time string. A for loop is used to print to
the screen each of the elements of the array.

for (i in date_array)
print ("the date was " & date_array[i]);

Specifying a Starting Subscript

TSL allows you to assign values to array elements starting from a specific
subscript number. You specify the starting subscript in the array
initialization. Remember that the array subscripts are zero-based—the first
subscript number is 0.

abc[] = {starting subscript = value1, value2, value3... }

For example, if the array size is ten, you can assign values to the last five
elements of the array:

public abc[] = {5 = 100,101,102,103,104}

As a result, the abc array receives the following values:

abc[5]=100
abc[6]=101
abc[7]=102
abc[8]=103
abc[9]=104

TSL Reference Guide

28

Array Functions

TSL provides two array functions: delete and split. The delete function
removes an element from an array; split splits a string into fields and stores
the fields in an array. Note that since TSL arrays are associative, deleting one
element does not affect any other element. For instance, if you delete the
element a[2] from an array with three elements, a[1] and a[3] will not be
affected. For details, see the alphabetical reference.

Input-Output

TSL provides a number of built-in functions that allow you to read and write
to files or to the screen.

For UNIX products, the sprintf function returns a formatted string to a
variable.

For WinRunner and other PC products, use the file_open function to open a
file for reading and writing. The file_printf function writes to a file, and
file_getline reads from a file. The file_close function closes a file that you
opened with file_open.

There are two functions that generate output within the testing
environment. The report_msg function prints a user-defined string
expression to the test run report. The pause function stops the test run and
displays a string expression in a message box on the screen.

For more information on any of the TSL built-in functions, refer to the TSL
Online Reference.

Chapter 2 • Language

29

Comments

A number sign (#) indicates that all text from this point to the end of the
line is a comment. Comments can appear within statements that extend
beyond one line, or can stand alone on a line of test script. The TSL
interpreter does not process comments. For example,

Type the date
i=1
while (i<=31)# number of days in month

type ("The date is January " & i++ & ", 1994");

Note that a number sign (#) that appears within a string constant is not
considered a comment; for instance, a="#3".

Built-in Functions

TSL provides numerous built-in functions that perform a range of tasks. To
call a built-in function from within a test script, use the following syntax:

function ([parameters]);

Most built-in functions return a value. This value can be assigned to a
variable. For example,

x = int(12.42);

The int function returns the integer portion of a positive, real number.
Here, x is equal to 12.

The return value of a built-in function can also become part of an
expression. When a function returns the value 0, the value of the
expression is considered false. When it returns any other value, it is
considered true. For example,

while (getline address < "clients.doc")
type (address "<kReturn>");

TSL Reference Guide

30

The getline function returns the value 1 if it succeeds, and 0 at the end of
the file. Therefore, the while loop above continues until the end of the file is
reached (the function returns the value 0).

For detailed information on each of the TSL functions, refer to the TSL
Online Reference.

User-Defined Functions

In addition to the built-in functions it offers, TSL allows you to design and
implement your own functions in test scripts. A user-defined function has
the following structure:

[class] function name ([mode] parameter...)
{
declarations;
statements;
}

Class

The class of a function may be either public or static. If no class is explicitly
declared, the function is assigned the default class public. A public function
is available to all tests; a static function is available only to the test or
compiled module within which the function was defined.

Parameters

Function parameters can be of mode in, out, or inout. For all non-array
parameters, the default mode is in. The significance of each parameter type
is as follows:

in: A parameter which is assigned a value from outside the function.

out: A parameter which passes a value from inside the function.

inout: A parameter which can be assigned a value from outside the function
as well as pass on a value to the outside.

Chapter 2 • Language

31

A parameter designated as out or inout must be a variable name, not an
expression. Only a variable can be assigned a value in a function call, not an
expression. For example, consider a function defined in the following
manner:

function my_func (out p) {... }

Proper usage of the function call is: my_func (var_1); Illegal usage of the
function call is: my_func (arr[i]); my_func (a+b); because arr[i] and a+b are
expressions.

Array parameters are designated by square brackets. For example, the
following parameter list indicates that parameter a is an array:

function my_func (a[], b, c){
...
}

Array parameters can be either out or inout. If no class is specified, the
default inout is assumed.

While variables used within a function must be explicitly declared, this is
not the case for parameters.

Declarations

Variables used by a function must be declared. The declaration for such a
variable can be within the function itself, or anywhere else within the test or
module. For syntax, see “Variable Declarations” on page 9 in this chapter.

TSL Reference Guide

32

Return Statement

Any valid statement used within a TSL test script can be used within a
function. In addition, the return statement is used exclusively in functions.

return [expression];

This statement halts execution of the called function and passes control
back to the calling function or test. It also returns the value of the evaluated
expression to the calling function or test. (If no expression is attached to the
return statement, an empty string is returned.) For additional information
on functions, refer to the TSL Online Reference.

External Function Declarations

The extern function declaration is used to declare functions that are not part
of TSL, but reside in external C libraries. For more information on using C
functions stored in external dlls, refer to your User’s Guide.

The extern declaration must appear before the function can be called. The
syntax of the extern function declaration is:

extern type function_name (param1, param2,...);

The type refers to the return value of the function. Type can be one of the
following:

➤ char (signed and unsigned)float

➤ short (signed and unsigned)double

➤ int (signed and unsigned)string (equivalent to C char*)

➤ long (signed and unsigned)

Chapter 2 • Language

33

Each parameter must include the following information:

[mode] type [name] [< size >]

mode The mode can be in, out, or inout. The default is in.
Note that these values must appear in lower case.

type The type can be any of the values listed above.

name An optional name can be assigned to the parameter to
improve readability.

size This information is required only for an out or inout
parameter of type string. (See below.)

For example, to declare a function named set_clock that sets the time in a
clock application, you write the following:

extern int set_clock (string name, int time);

The set_clock function accepts two parameters. Since they are both input
parameters, no mode is specified. The first parameter, a string, is the name
of the clock window. The second parameter specifies the time to be set on
the clock. The function returns an integer that indicates whether the
operation was successful.

Once the extern declaration is interpreted, you can call the set_clock
function the same way you call a TSL built-in function:

result = set_clock ("clock v. 3.0", 3);

If an extern declaration includes an out or inout parameter of type string, you
must budget the maximum possible string size by specifying an integer size
after the parameter type or (optional) name. For example, the statement
below declares the function get_clock_string. It returns the time displayed in
a clock application as a string value in the format “The time is...”

extern int get_clock_string (string clock, out string time <20>);
The size should be large enough to avoid an overflow. If no value is specified
for size, the default is 127. There is no maximum size.

TSL Reference Guide

34

TSL identifies the function in your C code by its name only. You must pass
the correct parameter information from TSL to the C function. TSL does not
check parameters: if the information is incorrect, the operation fails.

In addition, your C function must adhere to the following conventions:

➤ Any parameter designated as a string in TSL must be associated with a
parameter of type char* in C.

➤ Any parameter of mode out or inout in TSL must be associated with a pointer
in C. For instance, a parameter out int in TSL must be associated with a
parameter int* in the C function.

➤ For WinRunner the external function must observe the standard Pascal
calling convention export far Pascal.

For example, the following declaration in TSL:

extern int set_clock (string name, inout int time);

must appear as follows in C:

int _far _pascal _export [_loads] set_clock (
char* name,
int* time

)

35

3
Guidelines for Working with TSL

This chapter provides guidelines to assist you in creating intuitive and
readable test scripts and libraries. There are several advantages to using these
guidelines:

➤ Uniformity - Shorter learning curve for new test engineers.

➤ Clarity - Scripts and functions are easier to read, maintain, and debug.

➤ Customer Support - Mercury CSO engineers can easily understand scripts,
which results in faster support.

The following guidelines are offered as suggestions. There is an infinite
number of styles for creating a test. If you are partial to another style, use
the style with which you are most comfortable.

This chapter provides guidelines for working with TSL in the following
areas:

➤ Test Scripts

➤ Flow Control

➤ Return Values

➤ Path Names

➤ tl_step Function

➤ GUI Map

➤ Libraries and Functions

TSL Reference Guide

36

Test Scripts

Test Header

The test header is inserted at the top of the test script, enclosed with the #
symbol. It contains necessary information about the test:

➤ Test Name

➤ Subject

➤ Test Creator

➤ Date of creation/Date of revision

➤ Purpose of the test

➤ Vital information (for example, initial conditions, variable information,
state of AUT, and so on.)

The following is an example of a test header:

Constant Declaration

Constants (const) should be defined at the top of the test. When defining a
constant in a particular test, the syntax is as follows:

static const <CONST_NAME> = <const_value>;

###
TEST NAME: Open Order
DATE: 12/12/95
DATE OF LAST REVISION: 2/14/96
CREATED BY: John Smith

PURPOSE: Verify that the correct orders are retrieved from the database
INITIAL STATE: Application’s main window is open, all others are closed.
PARAMETERS: None
###

Chapter 3 • Guidelines for Working with TSL

37

Constant name should be in capital letters and underscores; spaces are not
allowed. For example:

static const NUMBER_OF_FILES = 3;
static const PATH_OF_FILES = "C:\\TESTS\\FILES";

You should not define a constant as public in a test, since a constant defined
in one test might subsequently be used in another test as a different value. A
constant declared as public should be defined in a library or an initialization
test, where it can be used by all tests within a testing session or batch run.

Variable Declaration

Variables used in a test should be declared below the constant declarations
and test header. Because TSL is an interpretive language, variables are
automatically defined when they are assigned. Therefore, variable
declaration should be used for the purpose of holding information that the
tester might have to change in order to ensure a successful test run.

When defining a variable, the syntax is as follows:

[static/public] <variable_name> = [<variable_value>];

Variable names can include letters, underscores, and digits. For example:

public my_first_variable = 7;
public MyFirstVariable;
static myFirstVariable = "Hello World!";

You should not mix underscores and upper case letters.

There are two ways to initialize a variable:

➤ [static/public] x = 1;

➤ [static/public] x;
x = 1;

Functionally, the two choices are the same. The difference is that the
variable x cannot be reinitialized by the technique in example 1 (all on one
line). To ensure that a variable can be reinitialized, use the technique in
example 2. For example:

TSL Reference Guide

38

Test A:

public x = 1;
x = 5 + y;
...
Test B:

call A();
call A();

When you run test B, the second call to test A will not reinitialize x. Use the
technique in example 2.

Note the way that the test initializes variables. In a batch run, separate tests
might have the same variable names. It is important to ensure that they are
reinitialized for each test; otherwise a test might not replay correctly.

Array Declaration

Array declarations should occur with variable declarations. Because TSL is an
interpretive language, array declaration is optional. Arrays should be
declared when they store information that the tester might change from
one test run to another.

When declaring a standard array whose indices are: 0,1,2...,n; the syntax is
as follows:

[static/public] <array_name> [0]= <value_0>;
<array_name>[1] = <value_1>;
...
<array_name>[n] = <value_n>;

For example:

public capital[0] = "Sacramento";
capital[1] = "Austin";
capital[2] = "Albany";

Chapter 3 • Guidelines for Working with TSL

39

Declaring associative arrays follows the same syntax:

[static/public] <array_name>["string_1"] = <value_1>;
...
<array_name>["string_n"] = <value_2>;

For example:

public capital["California"] = "Sacramento";
capital["Texas"] = "Austin";
capital["New York"] = "Albany";

User-Defined Functions

User-defined functions should be defined after the variable declarations.
Functions should be declared as static. They can be accessed only by the test
in which they reside. Functions declared as public should be placed in a
function library. For further information, see “Libraries and Functions” on
page 45.

Comments

Comments are essential for clear and intuitive test scripts. A number sign (#)
indicates that the text from this point to the end of the line is a comment.
Comments can appear within statements that extend beyond one line, or
they can stand alone on a line of a test script. They should always begin in
the same column as the lines of the script on which they are commenting.
When you run a test, the TSL interpreter does not process comments. For
example:

This is a comment
set_window ("Window_Name");
button_press ("Button_Name");

This is also a comment. Checks if window exists
if (win_exists ("Window_Name") == E_OK) {
activate_window ("WinName");

TSL Reference Guide

40

Flow Control

Flow control statements should be indented one tab length for easier
readability.

If / Else

TSL provides an if/else statement for decision-making. The else clause is
optional. The syntax is as follows:

if (<condition>) {
statement_1;
...
statement_n;

}
else {

statement_1;
...
statement_n;

}

For Loops

For loop syntax is as follows:

for (<initial condition>; <end condition>, <index increment/decrement>) {
statement_1;
statement_n;
}

While Loops

While loop syntax is as follows:

while (<condition>) {
statement_1;
...
statement_n;
}

Chapter 3 • Guidelines for Working with TSL

41

Do Loops

Do loop is executed at least once. Syntax is as follows:

do {
statement_1;
...
statement_n;
}

while (<condition>)

Return Values

Error Codes

Every TSL statement generates a return value. Statements within a test script
can be checked for specific error codes to indicate whether the statements
were executed successfully. You can branch your test according to the return
value.

When checking return values, you should use the name instead of the
numeric value.

The following bits of script all have the same functionality:

a) if (win_exists ("Window_Name") == 0) {
set_window ("Window_Name");
...

b) if (!win_exists ("Window_Name")) {
set_window ("Window_Name");
...

c) if (win_exists ("Window_Name") == E_OK) {
set_window ("Window_Name");
...

TSL Reference Guide

42

The win_exists() statement returns the value 0 when executed successfully.
For readability purposes, example c is recommended. The return value
checked is the constant E_OK, whose value is equal to 0.

There is a complete list of generated return values in Chapter 6, “Return
Values.” In addition, TSL enables you to create your own error codes. Use
the following conventions:

➤ Error codes should be in capital letters.

➤ Error codes should begin with the letter “E” followed by an underscore (for
example, E_MY_ERROR).

➤ Error code numbers should include a dash “-” followed by a five digit value
(for example, -31001).

➤ Error codes should be defined as public in a library or initialization test (for
example, public const E_MY_ERROR = -31001).

Return Codes

The variable rc is used for checking return codes from a TSL statement. For
example:

rc = activate_window ("Window Name");
if (rc!= E_OK)
report_message ("Could not activate Window Name");

The above example verifies that the activate_window() function is successful
by checking the return code. The return value is E_OK.

Path Names

The rule regarding path names is simple: do not use absolute (hardcoded)
path names. Because pathnames are so dynamic, you should always to use
variables that hold the name of the path in a test script. For example, the
line:

GUI_load ("c:\\files\\my_file.gui");

should be replaced with:

Chapter 3 • Guidelines for Working with TSL

43

path = "c:\\files\\";
GUI_load (path & "my_file.gui");

In the case where path names are not parameters, substituting a variable
involves a bit more work. For example:

call "c:\\tests\\my_test" ();

contains a path name that is not a parameter. To replace a hardcoded path
name with variables, an eval statement must be used. For example:

pathname = "\"c:\\\\tmp\\\\";
eval ("call " & pathname & "my_test\" ();");

tl_step Function

The tl_step is an extremely useful function for two reasons:

➤ It enables you to enhance a test report by naming a step, giving it a pass or
fail status. It provides additional information as to why a step passed or
failed.

➤ It can give the entire test a fail status without the use of check_gui or
check_window.

You should use the tl_step function after every verification point in a test
script. In addition, a test that contains a tl_step can be imported into the
TestDirector test set immediately.

TSL Reference Guide

44

The recommended construction of a tl_step statement is as follows:

rc = check_gui (5, "Open Order", "list1.ckl", "gui_1");
#verification point
if (rc != E_OK) {

tl_step ("Init state", 1, "Initial state of Open Order window was incorrect");
}

else {
tl_step ("Init state", 0, "Initial state of Open Order window was correct");
}

In the above example, the tl_step statement is used twice: once for failure,
and once for success. You should use this construction for readable and
informative test reports.

GUI Map

A script generated by WinRunner in Context Sensitive mode is relatively
intuitive. However, you can make the test even more intuitive using your
GUI map.

You can modify the logical names for objects, as they appear in a test script,
for further clarity. For instance, when recording a script in WinRunner, a
statement such as the following might be generated:

button_press ("ThunderSSCommand_0");

You can modify the statement as follows:

button_press ("NewOrder");

Now you can see what button was pushed after that statement was
executed. This new logical name is much more readable and intuitive. To
ensure that a readable and logical name is recorded in your script, remember
to create the GUI map before recording. Modify logical names as you
proceed, wherever necessary.

Note that creating and editing the GUI map before any script has been
created will save you having to modify an existing script.

Chapter 3 • Guidelines for Working with TSL

45

Libraries and Functions

A library is a test consisting of constant declarations and user-defined
function declarations. Once the test is completed, it is converted into a
module where it can be compiled and loaded into memory, allowing all tests
public access to the declarations and functions inside.

Library Header

The format for the header is much like the header for a test script. It is
enclosed by the "#" symbol and contains the following information:

➤ Library Name

➤ List of functions

For example:

Constants

Constants declarations should follow the Library Header. Constants should
always be declared as public when defined in a library. For example:

public const <CONST_NAME> = <const_value>;

Constants declared as public can be used by any test.

###
COMPLIED MODULE: flt_lib

FUNCTION:
-STATIC
- get_flight_from_table()
- set_table_fields ()
- set_working_dir ()
#
-PUBLIC
- open_order ()
- delete_order ()
- insert_order ()
###

TSL Reference Guide

46

Function Header

The function header is placed above a user defined function. Like the Test
Header, the function header is enclosed by the "#" symbol and stores
information about the function:

➤ Function Name

➤ Description or purpose of the function

➤ Input parameters

➤ Output parameters

➤ Return Values

For example:

User-Defined Functions

The user-defined function follows immediately after the function header.
When declaring a function, the function starts with the function heading.
The function heading has the following format:

[class] function <function_name> ([mode] <parameter_list>)

A function can be one of two classes:

➤ Static - Available only to the current module; not accessible outside the
module. A function should be declared as static if it is used only by other
functions within the library.

FUNCTION: get_flight_from_table
PURPOSE: This function is static only to this file. It selects a flight from the
flight table using a given flight number. Also uses split() function to access the
flight number from the table.

INPUT PARAMS: flight_num The flight number to be selected.
OUTPUT PARAMS: none
RETURN VALUES: Standard return values.
###

static function get_flight_from_table (in flight_num){...

Chapter 3 • Guidelines for Working with TSL

47

➤ Public (default) - Available to all tests and functions outside the library. Most
functions in a library are declared as public.

The class of the function is followed by the reserved word function followed
by the function name.

The name of the function should be intuitively meaningful, such as
"insert_order". The first character of a function name can be a letter or an
underscore.

A parameter can be one of three modes:

➤ In (default) - Assigned a value from outside the function

➤ Out - Assigned a value from inside the function

➤ Inout - Can be assigned a value from outside the function and pass a value to
the outside.

Array parameters are designated by square brackets and can be declared only
as out or inout (the default).

The function body follows the function heading as follows:

[class] function <function_name> ([mode] <parameter_list>)
{

declarations;
statement_1;
statement_n;

}

The function body is enclosed by curly brackets. The open curly bracket ({)
is aligned with the first column of the heading. The close curly bracket (})
is aligned in the same column as the open curly bracket.

In test scripts, variable declaration is optional (see “Variable Declaration” on
page 37). In functions, however, variables, constants, and arrays all must be
declared. A variable can be one of two types:

➤ Static - Limited in scope to the function, test, or module within which it is
running.

TSL Reference Guide

48

➤ Auto (default) - Short for "automatic" (a C language convention). When in
doubt, declare the variable as auto. Once a variable is declared as auto, it is
local in scope and exists only for the duration of the function’s execution.

For example:

public function issue_report_line (in line_to_print)
{

static internal_line_count;
auto tmp_line;
tmp_line = internal_line_count & ":" line_to_print;
report_msg (line_to_print);
internal_line_count++;

}

Note that the variable internal_line_count retains its value even after control
is passed from the function body. It holds the value representing the
number of lines reported throughout the test run. It will retain its value as
long as the function remains in memory. However, the value of tmp_line will
be redefined every time issue_report_line is called, losing its value from the
last call.

The statements in a user-defined function follow the declarations in the
function body. A statement can be any valid TSL statement. Statements
should be indented one tab length for better readability.

Chapter 3 • Guidelines for Working with TSL

49

All functions should return a standard return value such as E_OK or
E_GENERAL_ERROR. To return error codes, use the return statement. It returns
a value and passes control back to the calling test or function. For example:

public function open_order (in OrderNum)
{

set_window ("Open Order");
button_set ("Order Num:", ON);
edit_set ("Order Num:", OrderNum);
button_press ("OK");
if (win_exists ("Flight Reservation System") == E_OK)

{
set_window ("Flight Reservation System");
button_press ("OK");
return (E_COULD_NOT_OPEN);

}
end if
else
return (E_OK);
Function executed successfully

}

Note that the function open_order returns E_COULD_NOT_OPEN when the
order does not exist and E_OK when the function is executed successfully. A
function should return an error code, rather than the error code’s value.

TSL Reference Guide

50

51

4
Reserved Words

WinRunner contains reserved words. In addition to the words listed below,
all TSL functions and statements are reserved words in WinRunner.

Note that you can change the color and appearance of reserved words in
WinRunner’s script editor. For more information, refer to the “Customizing
the Test Script Editor” chapter in the WinRunner User’s Guide.

auto button_check_enabled

button_get_value case

char check_file

check_wid const

continue default

display_date_result display_euro_result

double edit_check_content

edit_check_format else

endif exception_on_print

exit extern

float function

get_lang get_obj_record_method

get_runner_str getline

grab gsub

GUI_buf_get_data GUI_buf_get_data_attr

TSL Reference Guide

52

GUI_buf_set_data_attr GUI_data_get_attr

GUI_data_set_attr GUI_list_data_attrs

GUI_mark GUI_point_to

GUI_replay_wizard if

in inout

input_to_description_int list_check_multi_selection

list_check_row_num list_check_selection

list_get_items_count list_get_multi_selected

long menu_get_items_count

menu_verify move_mouse_abs

move_mouse_rel move_window

next obj_check_attr

obj_check_enabled obj_check_focused

obj_check_label obj_check_pos

obj_check_size obj_check_style

obj_set_focus obj_verify

out pause_test

printf process_return_value

prvars public

quad_click report_event

report_param_msg reset_filter

reset_internals return

save_report_info scroll_get_value

set_filter set_obj_record_method

short signed

Chapter 4 • Reserved Words

53

static string

sub tab_get_page

tab_get_selected_page tab_select_page

tbl_get_cell_coords tbl_synchronize

tech tl_get_status

tl_set_status tl_setvar

toolbar_get_info toolbar_wait_info

treturn trpl_click

tsl_set_module_mark tsl_test_is_module

ungrab unsigned

vendor vuser_status_message

wait_stable_window win_check_attr

win_check_label win_check_pos

win_check_size win_press_cancel

win_press_ok win_press_return

win_set_focus win_verify

TSL Reference Guide

54

55

5
Functions by Category

This section lists all TSL functions according to the type of tasks they
perform. Functions are arranged alphabetically within each category, and a
very brief description of each function is included. Where appropriate,
functions appear in more than one category.

There are four types of functions:

➤ Analog Functions

➤ Context Sensitive Functions

➤ Customization Functions

➤ Standard Functions

TSL Reference Guide

56

Analog Functions

Analog functions record and run operations at specified screen coordinates.
When you record in Analog mode, these functions are used to depict mouse
clicks, keyboard input, and the exact coordinates traveled by the mouse.
When you run a test, Analog functions retrace the mouse tracks and exactly
resubmit the input you recorded. Analog functions also support test
operations such as synchronization, verification, and text manipulation.

Analog functions are divided into the following categories:

➤ Bitmap Checkpoint Function

➤ Input Device Functions

➤ Synchronization Function

➤ Table Functions

➤ Text Checkpoint Functions

Bitmap Checkpoint Function

Function Description See Page

check_window compares a bitmap of an AUT window to an
expected bitmap

149

Chapter 5 • Functions by Category

57

Input Device Functions

Synchronization Function

Table Functions

Function Description See Page

click clicks a mouse button 151

click_on_text clicks a mouse button on a string 151

dbl_click double-clicks a mouse button 182

get_x returns the current x-coordinate of the
mouse pointer

246

get_y returns the current y-coordinate of the
mouse pointer

246

move_locator_abs moves the mouse to a new absolute position 299

move_locator_rel moves the mouse to a new relative position 300

move_locator_text moves the mouse to a string 300

move_locator_track moves the mouse along a prerecorded track 301

mtype clicks one or more mouse buttons 301

type specifies keyboard input 447

Function Description See Page

wait_window waits for a window bitmap to appear in
order to synchronize test execution

453

Function Description See Page

tbl_click_cell clicks in a cell in a JFC JTable object 376

tbl_dbl_click_cell double-clicks in a cell in a JFC JTable object 377

tbl_drag drags a cell to a different location within a
JFC JTable object

381

TSL Reference Guide

58

Text Checkpoint Functions

Context Sensitive Functions

Context Sensitive functions depict actions on the application under test in
terms of GUI objects, ignoring the physical location of an object on the
screen. When you record in Context Sensitive mode, a TSL statement, which
describes the object selected and the action performed, is generated in the
test script.

Context Sensitive functions are divided into the following categories:

➤ ActiveBar Functions

➤ ActiveX/Visual Basic Functions

➤ Bitmap Checkpoint Functions

➤ Button Object Functions

➤ Calendar Functions

➤ Database Functions

➤ Data-Driven Test Functions

➤ Date Operation Functions

➤ Delphi Functions

➤ Edit Object Functions

➤ EURO Functions

➤ GUI Checkpoint Functions

Function Description See Page

click_on_text clicks on a string 151

find_text searches for a string 237

get_text reads text from the screen 245

move_locator_text moves the mouse to a string 300

Chapter 5 • Functions by Category

59

➤ GUI Map Configuration Functions

➤ GUI Map Editor Functions

➤ Icon Object Functions

➤ Java Functions

➤ List Object Functions

➤ Menu Object Functions

➤ Object Functions

➤ Oracle Functions

➤ PowerBuilder Functions

➤ Scroll Object Functions

➤ Siebel Functions

➤ Spin Object Functions

➤ Static Text Object Functions

➤ Statusbar Functions

➤ Synchronization Functions

➤ Tab Object Functions

➤ Table Functions

➤ Terminal Emulator Functions

➤ Text Checkpoint Functions

➤ Toolbar Object Functions

➤ WAP Functions

➤ Web Functions

➤ Table Functions for WebTest

➤ Window Object Functions

TSL Reference Guide

60

ActiveBar Functions

ActiveX/Visual Basic Functions

The following functions are available only when the ActiveX or the Visual
Basic Add-in is installed and loaded:

Function Description See Page

ActiveBar_combo_select_item selects an item in a ComboBox
tool

126

ActiveBar_dump stores information about
ActiveBar bands and tools. This
information includes captions,
names, types and IDs

127

ActiveBar_select_menu selects a menu item in a toolbar 128

ActiveBar_select_tool selects a tool in the toolbar 129

Function Description See Page

ActiveX_activate_method invokes an ActiveX method of an
ActiveX control

130

ActiveX_get_info returns the value of an ActiveX/Visual
Basic control property

131

ActiveX_set_info sets the value of a property in an
ActiveX/Visual Basic control

132

vb_get_label_names retrieves the names of all label
controls in the given form window.
The names are stored as subscripts of
an array

452

Chapter 5 • Functions by Category

61

Bitmap Checkpoint Functions

Button Object Functions

Function Description See Page

obj_check_bitmap compares a current object bitmap to an
expected bitmap

302

win_check_bitmap compares a current window bitmap to an
expected bitmap

475

Function Description See Page

button_check_info checks the value of a button property 137

button_check_state checks the state of a radio or check button 138

button_get_info returns the value of a button property 138

button_get_state returns the state of a radio or check button 139

button_press clicks a push button 139

button_set sets the state of a radio or check button 140

button_wait_info waits for the value of a button property 140

TSL Reference Guide

62

Calendar Functions

The following functions are available for calendars included in Visual Studio
Version 6 and higher and in Internet Explorer Active Desktop Version 4 and
higher:

Database Functions

Function Description See Page

calendar_activate_date double clicks the specified date in the
calendar

141

calendar_get_selected retrieves and counts the selected dates
in a calendar

142

calendar_get_status returns the status validity of the date 142

calendar_get_valid_range returns the date range 143

calendar_select_date clicks the specified date in a calendar 144

calendar_select_range clicks the specified date in a calendar 144

calendar_select_time selects a time in the HH:MM:SS format 145

calendar_set_status sets the selection status to valid or
invalid

145

Function Description See Page

db_check compares current database data to expected
database data

175

db_connect creates a new database session and
establishes a connection to an ODBC
database

176

db_disconnect disconnects from the database and ends the
database session

177

db_execute_query executes the query based on the SQL
statement and creates a record se

178

db_get_field_value returns the value of a single field in the
database

178

Chapter 5 • Functions by Category

63

db_get_headers returns the number of column headers in a
query and the content of the column
headers, concatenated and delimited by tabs

179

db_get_last_error returns the last error message of the last
ODBC or Data Junction operation

179

db_get_row returns the content of the row, concatenated
and delimited by tabs

180

db_record_check compares information that appears in the
application under test during a test run with
the current values in the corresponding
record(s) in your database

181

db_write_records writes the record set into a text file
delimited by tabs

182

Function Description See Page

TSL Reference Guide

64

Database Function for Working with Data Junction

Data-Driven Test Functions

Function Description See Page

db_dj_convert runs a Data Junction export file (.djs file) 177

Function Description See Page

ddt_close closes a data table file 183

ddt_export exports the information of one
table file into a different table file

184

ddt_get_current_row retrieves the active row in a data
table

185

ddt_get_parameters returns a list of all the parameters
in a data table

185

ddt_get_row_count retrieves the number of rows in a
data table

186

ddt_is_parameter returns whether a parameter in a
data table is valid

187

ddt_next_row changes the active row in a data
table to the next row

187

ddt_open creates or opens a data table file
so that WinRunner can access it

188

ddt_report_row reports the active row in a data
table to the test results

189

ddt_save saves the information in a data
table

189

ddt_set_row sets the active row in a data table 190

Chapter 5 • Functions by Category

65

Date Operation Functions

ddt_set_val sets a value in the current row of
the data table

190

ddt_set_val_by_row sets a value in the specified row
of the data table

191

ddt_show shows or hides the table editor of
a specified data table

192

ddt_update_from_db imports data from a database into
a data table

193

ddt_val returns the value of a parameter
in the active row in a data table

194

ddt_val_by_row returns the value of a parameter
in the specified row in a data
table

194

Function Description See Page

date_age_string ages date string and
returns the aged date

158

date_align_day ages dates to a business
day or to the same day of
the week

159

date_calc_days_in_field calculates the number of
days between two dates

160

date_calc_days_in_string calculates the number of
days between two
numeric strings

161

date_change_field_aging overrides aging on a
specified date object

162

date_change_original_new_formats overrides automatic date
recognition for a specified
object

163

Function Description See Page

TSL Reference Guide

66

date_disable_format disables a date format 164

date_enable_format enables a date format 165

date_field_to_Julian translates a date field to a
Julian number

165

date_is_field determines whether a
field contains a valid date

166

date_is_leap_year determines whether a year
is a leap year

166

date_is_string determines whether a
numeric string contains a
valid date

167

date_leading_zero determines whether to
add a zero before single-
digit numbers when aging
and translating dates

168

date_month_language sets the language used for
month names

168

date_set_aging sets aging in a test script 169

date_set_run_mode changes the Date
Operations run mode in
the test script

172

date_set_system_date changes the system date
and time

173

date_set_year_limits sets the minimum and
maximum years valid for
date verification and
aging

173

date_set_year_threshold sets the year threshold 174

Function Description See Page

Chapter 5 • Functions by Category

67

Delphi Functions

The following functions are available only when WinRunner support for
Delphi is installed and loaded:

date_string_to_Julian translates a numeric string
to a Julian number

174

date_type_mode disables overriding of
automatic date
recognition for all date
objects in a GUI
application

175

Function Description See Page

add_dlph_obj adds a Delphi object 135

dlph_edit_set replaces the entire content of a Delphi
edit object

200

dlph_list_select_item selects a Delphi list item 200

dlph_obj_get_info retrieves the value of a Delphi object 201

dlph_obj_set_info sets the value of a Delphi object 201

dlph_panel_button_press clicks a button within a Delphi panel 202

Function Description See Page

TSL Reference Guide

68

Edit Object Functions

Function Description See Page

edit_check_info checks the value of an edit object
property

204

edit_check_selection checks that a string is selected 205

edit_check_text checks the contents of an edit object 205

edit_delete deletes the contents of an edit object 206

edit_delete_block deletes a text block from an edit object 206

edit_get_block returns a block of text from an edit object 207

edit_get_info returns the value of an edit object
property

208

edit_get_row_length returns the length of a row in an edit
object

208

edit_get_rows_count returns the number of rows written in an
edit object

209

edit_get_selection returns the selected string in an edit
object

209

edit_get_selection_pos returns the position at which the selected
block starts and ends

210

edit_get_text returns the text in an edit object 211

edit_insert inserts text in an edit object 211

edit_insert_block inserts text in a multi-line edit object 212

edit_replace replaces part of the contents of an edit
object

212

edit_replace_block replaces a block of text in a multi-line
edit object

213

edit_set replaces the entire contents of an edit
object

213

edit_set_insert_pos places the cursor at the specified point in
an edit object

214

Chapter 5 • Functions by Category

69

EURO Functions

The following functions are available for WinRunner EURO users only:

edit_set_selection selects text in an edit object 215

edit_type types a string in an edit object 215

edit_wait_info waits for the value of an edit object
property

216

Function Description See Page

EURO_check_currency captures and compares the
currencies in a window

217

EURO_compare_columns compares two currency
columns (dual display) and
returns the number of
mismatches

218

EURO_compare_fields compares two fields while
converting

219

EURO_compare_numbers compares two numbers while
converting

220

EURO_convert_currency returns the converted
currency value between two
currencies

221

EURO_override_field overrides the original
currency in a field to a new
currency

222

EURO_set_auto_currency_verify activates/deactivates
automatic EURO verification

223

EURO_set_capture_mode determines how WinRunner
EURO captures currency in
terminal emulator
applications

224

Function Description See Page

TSL Reference Guide

70

EURO_set_conversion_mode sets the EURO conversion
run mode in the test script

224

EURO_set_conversion_rate sets the conversion rate
between the EURO currency
and a national currency

225

EURO_set_cross_rate sets the cross rate method
between two currencies

226

EURO_set_currency_threshold sets the minimum value of an
integer which will be
considered a currency

227

EURO_set_decimals_precision sets the number of decimals
in the conversion results

227

EURO_set_original_new_currencies sets the original and new
currencies of the application

228

EURO_set_regional_symbols sets the character used as
decimal separator and the
character used to separate
groups of digits to the left of
the decimal

229

EURO_set_triangulation_decimals sets the default decimals
precision for the EURO
triangulation

229

EURO_type_mode disables/enables overriding of
automatic currency
recognition for all integer
objects in a GUI application

230

Function Description See Page

Chapter 5 • Functions by Category

71

GUI Checkpoint Functions

GUI Map Configuration Functions

Function Description See Page

obj_check_gui compares current GUI data to expected GUI
data for any class of object

303

win_check_gui compares current GUI data to expected GUI
data for a window

476

Function Description See Page

get_class_map returns the standard class associated with a
custom class

242

get_record_attr returns the properties recorded for an object
class

243

get_record_method returns the recording method used for an
object class

244

set_class_map associates a custom class with a standard
class

338

set_record_attr sets the properties to learn for an object class 339

set_record_method specifies the record method for a class 340

unset_class_map unbinds a custom class from a standard class 451

TSL Reference Guide

72

GUI Map Editor Functions

Function Description See Page

GUI_add adds an object to a GUI map file 248

GUI_buf_get_desc returns the physical description of
an object in a GUI map file

248

GUI_buf_get_desc_attr returns the value of an object
property in a GUI map file

249

GUI_buf_get_logical_name returns the logical name of an
object in a GUI map file

250

GUI_buf_new creates a new GUI map file 250

GUI_buf_set_desc_attr sets the value of a property in a GUI
map file

251

GUI_close closes a GUI map file 251

GUI_close_all closes all GUI map files 252

GUI_delete deletes an object from a GUI map
file

252

GUI_desc_compare compares two physical descriptions 253

GUI_desc_get_attr gets the value of a property from a
physical description

253

GUI_desc_set_attr sets the value of a property 254

GUI_get_name returns the type of GUI for the
application under test

254

GUI_get_window returns the active window in the
GUI map

255

GUI_list_buf_windows lists all windows in a GUI map file 256

GUI_list_buffers lists all open GUI map files 256

GUI_list_desc_attrs returns a list of all property values
for an object

257

GUI_list_map_buffers lists all loaded GUI map files 257

Chapter 5 • Functions by Category

73

GUI_list_win_objects lists all objects in a window 258

GUI_load loads a GUI map file 259

GUI_map_get_desc returns the description of an object
in the GUI map

260

GUI_map_get_logical_name returns the logical name of an
object in the GUI map

260

GUI_open opens a GUI map file 261

GUI_save saves a GUI map file 261

GUI_save_as saves a GUI map file under a new
name

262

GUI_set_window sets the scope for identifying
objects in the GUI map

262

GUI_unload unloads a GUI map file 263

GUI_unload_all unloads all loaded GUI map files 263

Function Description See Page

TSL Reference Guide

74

Icon Object Functions

Java Functions

The following functions are available only when WinRunner support for
Java is installed and loaded:

Function Description See Page

icon_move moves an icon to a new location 266

icon_select clicks an icon 266

Function Description See Page

java_activate_method invokes the requested Java method for
the given object

269

jco_create creates a Java object within your
application or applet, or within the
context of an existing object in your
application or applet

271

jco_free frees the specified jco object from
memory

271

jco_free_all frees all jco objects from memory 272

java_fire_event simulates an event on a Java object 270

jdc_aut_connect establishes a connection between
WinRunner and Java applications

272

method_wizard launches the Java Method wizard, which
enables you to view the methods
associated with any jco object in your
application or applet and to generate the
appropriate java_activate_method
statement for one of the displayed
methods

299

obj_key_type sends KeyEvents to a Java component 310

Chapter 5 • Functions by Category

75

List Object Functions

obj_set_info sets the value of an object property 316

popup_select_item selects an item from a Java popup menu. 325

Function Description See Page

list_activate_item activates an item 273

list_check_info checks the value of a list property 274

list_check_item checks the content of an item in a list 274

list_check_selected checks that the specified item is
selected

275

list_collapse_item hides items in a tree view object 275

list_deselect_item deselects an item 276

list_deselect_range deselects all items between two
specified items

276

list_drag_item drags an item from a source list 277

list_drop_on item drops an object onto a target list item 277

list_expand_item displays hidden items in a tree view
object

278

list_extend_item adds an item to the items already
selected

279

list_extend_multi_items adds multiple items to the items
already selected

279

list_extend_range selects a range of items and adds them
to the items currently selected

280

list_get_checked_items returns the value of items marked as
checked

281

list_get_column_header returns the value of a ListView column
header

281

Function Description See Page

TSL Reference Guide

76

list_get_info returns the value of a list property 282

list_get_item returns the contents of an item 282

list_get_item_coord returns the dimensions and
coordinates of the list item

283

list_get_item_info returns the state of a list item 284

list_get_item_num returns the position of an item 284

list_get_selected returns the currently selected item 285

list_get_subitem returns the value of the ListView
subitem

286

list_rename_item activates an item’s edit mode in order
to rename it

286

list_select_item selects an item in a list 287

list_select_multi_items selects items in a multiple-selection
container object

288

list_select_range selects all items between two specified
items

288

list_set_item_state sets the state of an icon of the specified
ListView or TreeView

289

list_wait_info waits for the value of a list property 290

Function Description See Page

Chapter 5 • Functions by Category

77

Menu Object Functions

Object Functions

Function Description See Page

menu_get_desc returns the physical description of a menu 295

menu_get_info returns the value of a menu property 296

menu_get_item returns the contents of an item 296

menu_get_item_num returns the position of an item 297

menu_select_item selects an item 297

menu_wait_info waits for the value of a menu property 298

Function Description See Page

obj_check_bitmap compares a current object bitmap to an
expected bitmap

302

obj_check_gui compares current GUI data to expected
GUI data

303

obj_check_info checks the value of an object property 304

obj_click_on_text clicks on text in an object 304

obj_drag begins dragging an object 305

obj_drop ends dragging an object 306

obj_exists checks if an object is displayed 306

obj_find_text returns the location of a string within an
object

307

obj_get_desc returns an object’s physical description 308

obj_get_info returns the value of an object property 309

obj_get_text reads text from an object 309

obj_highlight highlights an object 310

TSL Reference Guide

78

Oracle Functions

The following functions are available only when WinRunner support for
Oracle is installed and loaded:

obj_mouse_click clicks on an object 311

obj_mouse_dbl_click double-clicks on an object 312

obj_mouse_drag drags the mouse within an object 313

obj_mouse_move moves the mouse within an object 314

obj_move_locator_text moves the mouse to a string in an object 315

obj_type sends keyboard input to an object 317

obj_wait_bitmap waits for an object bitmap 317

obj_wait_info waits for the value of an object property 318

Function Description See Page

edit_activate double-clicks an object in an Oracle application 204

edit_set_focus focuses on an object in an Oracle application 214

lov_get_item retrieves an item from a list of values in an
Oracle application

293

lov_select_item selects an item from a list of values in an Oracle
application

293

Function Description See Page

Chapter 5 • Functions by Category

79

PowerBuilder Functions

The following functions are available only when WinRunner support for
PowerBuilder is installed and loaded:

Scroll Object Functions

Function Description See Page

datawindow_get_info retrieves the value of a DataWindow
object property

157

datawindow_text_click clicks a DataWindow text object 157

datawindow_text_dbl_click double-clicks a DataWindow text
object

158

Function Description See Page

scroll_check_info checks the value of a scroll property 331

scroll_check_pos checks the current position of a scroll 331

scroll_drag drags a scroll to the specified location 332

scroll_drag_from_min scrolls the specified distance from the
minimum position

332

scroll_get_info returns the value of a scroll property 333

scroll_get_max returns the value of a scroll at its
maximum (end) position

333

scroll_get_min returns the value of the scroll at its
minimum (start) position

334

scroll_get_pos returns the current scroll position 334

scroll_get_selected returns the minimum and maximum
values of the selected range on a slider

335

scroll_line scrolls the specified number of lines 335

scroll_max sets a scroll to the maximum (end)
position

336

TSL Reference Guide

80

scroll_min sets a scroll to the minimum (start)
position

336

scroll_page moves a scroll the specified number of
pages

337

scroll_wait_info waits for the value of a scroll property 337

Function Description See Page

Chapter 5 • Functions by Category

81

Siebel Functions

The following functions are available only when WinRunner support for
Siebel is installed and loaded:

Function Description See Page

siebel_click_history clicks the history button 342

siebel_connect_repository connects to the Siebel repository
database

343

siebel_get_active_applet returns the active applet name 344

siebel_get_active_buscomp returns the active business
component name

344

siebel_get_active_busobj returns the active business object
name

345

siebel_get_active_control returns the active control name 345

siebel_get_active_view returns the active view name 346

siebel_get_chart_data returns the legend data and chart
values from the specified chart

347

siebel_get_control_value returns the active control value 347

siebel_goto_record navigates to the specified record 348

siebel_navigate_view navigates to the specified view 348

siebel_obj_get_info returns the value of a single Siebel
object property from the Siebel
repository database

349

siebel_obj_get_properties returns all properties of a Specified
siebel object in the Siebel repository
database.

350

siebel_select_alpha selects a letter button from the alpha
tab bar

351

siebel_set_active_applet sets the specified applet as the active
applet.

351

TSL Reference Guide

82

siebel_set_active_control sets the specified control as the
active control

352

siebel_set_control_value sets a new value for the active
control

352

siebel_terminate closes the Siebel application 353

Function Description See Page

Chapter 5 • Functions by Category

83

Spin Object Functions

Static Text Object Functions

Function Description See Page

spin_get_info returns the value of a spin property 354

spin_get_pos returns the position of a spin object 354

spin_get_range returns the minimum and maximum
positions of a spin

355

spin_max sets a spin to its maximum value 355

spin_min sets a spin to its minimum value 356

spin_next sets a spin to its next value 356

spin_prev sets a spin to its previous value 357

spin_set sets a spin to the specified value 357

spin_up scrolls a spin control up the specified
number of times

358

spin_wait_info waits for the value of a spin property 358

Function Description See Page

static_check_info checks the value of a static text object property 361

static_check_text checks the contents of a static text object 362

static_get_info returns the value of a static text property 362

static_get_text returns the contents of a static text object 363

static_wait_info waits for the value of a static text property 363

TSL Reference Guide

84

Statusbar Functions

Synchronization Functions

Function Description See Page

statusbar_get_field_num returns the numeric index of a field on
a status bar

364

statusbar_get_info returns the value of a status bar
property

364

statusbar_get_text reads text from a field on a status bar 365

statusbar_wait_info waits for the value of a status bar
property

366

Function Description See Page

button_wait_info waits for the value of a button property 140

edit_wait_info waits for the value of an edit property 216

list_wait_info waits for the value of a list property 290

menu_wait_info waits for the value of a menu property 298

obj_wait_info waits for the value of an object property 318

scroll_wait_info waits for the value of a scroll property 337

spin_wait_info waits for the value of a spin property 358

static_wait_info waits for a the value of a static text property 363

statusbar_wait_info waits for the value of a status bar property 366

tab_wait_info waits for the value of a tab property 371

win_wait_info waits for the value of a window property 493

Chapter 5 • Functions by Category

85

Tab Object Functions

Table Functions

Function Description See Page

tab_get_info returns the value of a tab property 369

tab_get_item returns the name of a tab item 369

tab_get_selected returns the name of the selected tab item 370

tab_select_item selects a tab item 370

tab_wait_info waits for the value of a tab property 371

Function Description See Page

tbl_activate_cell double-clicks the specified cell in a
table

372

tbl_activate_col double-clicks the specified column 374

tbl_activate_header double-clicks the specified column
header in a table

375

tbl_activate_row double-clicks the specified row 376

tbl_deselect_col deselects the specified column 378

tbl_deselect_cols_range deselects the specified range of
columns

379

tbl_deselect_row deselects the specified row 380

tbl_deselect_rows_range deselects the specified range of rows 380

tbl_extend_col adds a column to the currently
selected columns

382

tbl_extend_cols_range adds columns to the currently
selected columns

383

tbl_extend_row adds a row to the currently selected
rows

384

TSL Reference Guide

86

tbl_extend_rows_range adds rows to the currently selected
rows

385

tbl_get_cell_data retrieves the contents of the specified
cell from a table

386

tbl_get_cols_count retrieves the number of columns in a
table

388

tbl_get_column_name retrieves the column header name of
the specified column in a table

389

tbl_get_column_names returns the names and number of
columns in a table for PowerBuilder
applications

390

tbl_get_rows_count retrieves the number of rows in the
specified table

391

tbl_get_selected_cell returns the cell currently in focus in a
table

392

tbl_get_selected_row returns the row currently selected in a
table

394

tbl_select_cells_range selects the specified range of cells 395

tbl_select_col_header clicks the specified column header of
a table

396

tbl_select_cols_range selects the specified range of columns 398

tbl_select_rows_range selects the specified range of rows 399

tbl_set_cell_data sets the contents of a cell to the
specified text in a table

400

tbl_set_cell_focus sets the focus to the specified cell in a
table

402

tbl_set_selected_cell selects the specified cell in a table 404

tbl_set_selected_col selects the specified column in a table 406

tbl_set_selected_row selects the specified row in a table 407

Function Description See Page

Chapter 5 • Functions by Category

87

Terminal Emulator Functions

The following functions are available only when WinRunner support for
Terminal Emulators is installed and loaded:

Function Description See Page

date_check checks all dates in the current
screen of a terminal emulator
application

164

date_set_attr sets the record configuration
mode for a field

170

date_set_auto_date_verify automatically generates a date
checkpoint for the current
screen in a terminal emulator
application.

170

date_set_capture_mode determines how WinRunner
captures dates in terminal
emulator applications

171

TE_add_screen_name_location instructs WinRunner where to
look for the logical name of a
screen

410

TE_bms2gui teaches WinRunner the user
interface from a BMS file

411

TE_check_text captures and compares the text
in a terminal emulator window

412

TE_create_filter creates a filter in the test
database

412

TE_define_sync_keys sets keys that enable automatic
synchronization in type,
win_type and obj_type
commands

413

TE_delete_filter deletes a specified filter from
the test database

414

TE_edit_field inserts text into an unprotected
field

414

TSL Reference Guide

88

TE_edit_hidden_field inserts text into a hidden field 415

TE_edit_screen types a string in the specified
location in a screen

415

TE_find_text returns the location of a
specified string

416

TE_force_send_key defines a key causing a screen
to change

417

TE_get_active_filter returns the coordinates of a
specified active filter.

417

TE_get_auto_reset_filters indicates whether or not filters
are automatically deactivated
at the end of a test run

418

TE_get_auto_verify indicates whether automatic
text verification is on or off

419

TE_get_cursor_position returns the position of the
cursor

419

TE_get_field_content returns the contents of a field
to a variable

420

TE_get_filter returns the properties of a
specified filter

420

TE_get_merge_rule returns the rule for merging
fields

421

TE_get_refresh_time returns the time WinRunner
waits for the screen to refresh

422

TE_get_screen_name_location returns the screen name
location

422

TE_get_sync_time returns the system
synchronization time

423

TE_get_text reads text from screen and
stores it in a string

423

Function Description See Page

Chapter 5 • Functions by Category

89

TE_get_timeout returns the current
synchronization time

424

TE_merge_fields sets the rule for merging fields 424

TE_reset_all_filters deactivates all filters in a test 425

TE_reset_all_force_send_key deactivates the execution of
TE_force_send_key functions

425

TE_reset_all_merged_fields deactivates the merging of
fields

426

TE_reset_filter deactivates a specified filter 426

TE_reset_screen_name_location resets the screen name location
to 0

427

TE_send_key sends to the mainframe the
specified F-key function

427

TE_set_auto_reset_filters deactivates the automatic reset
of filters when a test run is
completed

428

TE_set_auto_transaction defines a recorded
TE_wait_sync statement as a
transaction

428

TE_set_auto_verify activates/deactivates automatic
text

429

TE_set_BMS_name_tag changes a name tag that
appears in your BMS file

429

TE_set_cursor_position defines the position of the
cursor

430

TE_set_field specifies the field that will
receive subsequent input

430

TE_set_filter creates and activates a filter 431

TE_set_filter_mode specifies whether to assign
filters to all screens or to the
current screen

432

Function Description See Page

TSL Reference Guide

90

TE_set_record_method specifies the recording method
for operations on terminal
emulator objects

432

TE_set_refresh_time sets the interval that
WinRunner waits for the screen
to refresh

433

TE_set_screen_name_location resets the screen name location
to 0 and instructs WinRunner
where to look for the logical
name of a screen

433

TE_set_sync_time defines the system
synchronization time

434

TE_set_timeout sets the maximum time
WinRunner waits for a
response from the server

435

TE_set_trailing determines whether
WinRunner types spaces and
tabs in fields during test
execution

435

TE_user_attr_comment enables a user to add a user-
defined comment property to
the physical description of
fields in the GUI map

436

TE_user_reset_all_attr_comment resets all user-defined
comment properties

436

TE_wait_field waits for a specified string in a
specified field to appear on
screen

437

TE_wait_string waits for a string to appear on
screen

437

TE_wait_sync instructs WinRunner to wait
for the terminal emulator
screen to be redrawn

438

Function Description See Page

Chapter 5 • Functions by Category

91

Text Checkpoint Functions

Toolbar Object Functions

Function Description See Page

obj_click_on_text clicks on text in an object 304

obj_find_text returns the location of a string in an
object

307

obj_get_text reads text from an object 309

obj_move_locator_text moves the mouse to a string in an object 315

win_find_text returns the location of a string in a
window

481

win_click_on_text clicks on text in a window 478

win_get_text reads text from a window 483

win_move_locator_text moves the mouse to a string in a window 489

Function Description See Page

toolbar_button_press clicks on a toolbar button 442

toolbar_get_button returns the name of a toolbar button 442

toolbar_get_button_info returns the value of a toolbar button
property

443

toolbar_get_button_num returns the position of a toolbar
button

444

toolbar_get_buttons_count returns the number of buttons on a
toolbar

445

toolbar_select_item selects an item from a menu-like
toolbar, as in Microsoft Internet
Explorer 4.0 or the Start menu in
Windows 98

445

TSL Reference Guide

92

WAP Functions

The following functions are available only when WinRunner support for
WAP applications is installed and loaded:

Function Description See Page

phone_append_text appends the specified text string to the
current contents of the phone editor

321

phone_edit_set replaces the contents of the phone editor
with the specified text string

321

phone_get_name returns the model name of the phone 322

phone_GUI_load loads the GUI map for the specified
Phone.com phone

322

phone_key_click clicks a phone key 323

phone_navigate directs the phone to connect to the
specified site

323

phone_sync recorded after any phone navigation on
the Nokia emulator and instructs
WinRunner to wait until the phone is
ready to handle the next operation

324

Chapter 5 • Functions by Category

93

Web Functions

The following functions are available only when the WebTest add-in is
installed and loaded:

Function Description See Page

web_browser_invoke invokes the browser and opens a
specified site

454

web_cursor_to_image moves the cursor to an image
on a page.

454

web_cursor_to_label moves the cursor to a label on a
page

455

web_cursor_to_link moves the cursor to a link on a
page

455

web_cursor_to_obj moves the cursor to an object
on a page

456

web_event runs an event on the specified
object

456

web_file_browse clicks a browse button 457

web_file_set sets the text value in a file-type
object

458

web_find_text returns the location of text
within a page

458

web_frame_get_text retrieves the text content of a
page

459

web_frame_get_text_count returns the number of
occurrences of a regular
expression in a page

460

web_frame_text_exists returns a text value if it is found
in a frame

460

web_get_run_event_mode returns the current run mode 461

web_get_timeout returns the maximum time that
WinRunner waits for response
from the web

461

TSL Reference Guide

94

web_image_click clicks a hypergraphic link or an
image

462

web_label_click clicks the specified label 462

web_link_click clicks a hypertext link 463

web_link_valid checks whether a URL name of a
link is valid (not broken)

463

web_obj_click clicks an object in a frame 464

web_obj_get_child_item returns the description of the
children in an object

464

web_obj_get_child_item_count returns the count of the
children in an object

465

web_obj_get_info returns the value of an object
property

466

web_obj_get_text returns a text string from an
object

466

web_obj_get_text_count returns the number of
occurrences of a regular
expression string in an object

467

web_obj_text_exists returns a text value if it is found
in an object

468

web_password_encrypt encrypts a password on a Web
page.

468

web_refresh resets all events to their default
settings.

469

web_restore_event_default resets all events to their default
settings

469

web_set_event sets the event status 470

web_set_run_event_mode sets the event run mode 471

Function Description See Page

Chapter 5 • Functions by Category

95

web_set_timeout sets the maximum time
WinRunner waits for a response
from the Web

472

web_set_tooltip_color sets the colors for the WebTest
ToolTip

472

web_sync waits for the navigation of a
frame to be completed

473

web_tbl_get_cell_data retrieves the contents of the
specified cell from a Web table,
starting from the specified
character

473

web_url_valid checks whether a URL is valid 474

Function Description See Page

TSL Reference Guide

96

Table Functions for WebTest

Window Object Functions

Function Description See Page

tbl_get_cell_data retrieves the contents of the specified cell
from a table

386

tbl_get_cols_count retrieves the number of columns in a table 388

tbl_get_column_na
me

retrieves the column header name of the
specified column

389

tbl_get_rows_count retrieves the number of rows in the specified
table

391

Function Description See Page

set_window specifies the window to receive input,
according to the window’s logical name

341

_set_window specifies a window to receive input,
according to the window’s physical
description

341

win_activate activates a window 475

win_check_bitmap compares a current window bitmap to an
expected bitmap

475

win_check_gui compares current GUI data to expected
GUI data

476

win_check_info checks the requested window property 477

win_click_help clicks the help button in a window title
bar

477

win_click_on_text clicks on text in a window 478

win_close closes a window 479

win_drag drags an object from a source window 479

win_drop drops an object on a target window 480

Chapter 5 • Functions by Category

97

win_exists checks whether a window is displayed 480

win_find_text returns the location of a string in a
window

481

win_get_desc returns the physical description of a
window

482

win_get_info returns the value of a window property 482

win_get_text reads text from a window 483

win_highlight highlights a window 484

win_max maximizes a window 484

win_min minimizes a window to an icon 485

win_mouse_click clicks in a window 485

win_mouse_dbl_click double-clicks in a window 486

win_mouse_drag drags the mouse in a window 487

win_mouse_move moves the mouse in a window 488

win_move moves a window to a new absolute
location

488

win_move_locator_text moves the mouse to a string in a window 489

win_open opens a window 490

win_resize resizes a window 490

win_restore restores a window from a minimized or
maximized state to its previous size

491

win_type sends keyboard input to a window 491

win_wait_bitmap waits for a window bitmap 492

win_wait_info waits for the value of a window property 493

Function Description See Page

TSL Reference Guide

98

Customization Functions

Customization functions let you enhance your testing tool for your own
needs. For example, you can add functions to the Function Generator or
create custom GUI checkpoints.

Customization functions are divided into the following categories:

➤ Custom Record Functions

➤ Custom User Interface Functions

➤ Function Generator Functions

➤ GUI Checkpoint Functions

Chapter 5 • Functions by Category

99

Custom Record Functions

Custom User Interface Functions

Function Generator Functions

Function Description See Page

add_cust_record_class registers a custom record function and/or
logical name function

134

add_record_attr registers a custom property 136

add_record_message adds a message to the list of Windows
messages that WinRunner processes

136

delete_record_attr removes a custom property 199

Function Description See Page

create_browse_file_dialog displays a browse dialog box from
which the user selects a file

153

create_custom_dialog creates a custom dialog box. 154

create_input_dialog creates a dialog box with an edit
field for use in interactive test
execution

155

create_list_dialog creates a dialog box with a list of
items for use in interactive test
execution

155

create_password_dialog creates a password dialog box 156

Function Description See Page

generator_add_category adds a category to the
Function Generator

238

generator_add_function adds a function to the
Function Generator

238

TSL Reference Guide

100

GUI Checkpoint Functions

generator_add_function_to_category adds a function defined in
the Function Generator to
a category

240

generator_add_subcategory adds a subcategory to a
category in the Function
Generator

240

generator_set_default_function sets a default function for
a Function Generator
category

241

Function Description See Page

gui_ver_add_check registers a new check for a GUI
checkpoint

264

gui_ver_add_check_to_class adds a check to an object class,
which can be viewed in the GUI
Checkpoint dialog boxes

264

gui_ver_add_class adds a checkpoint for a new object
class

265

gui_ver_set_default_checks sets default checks for a GUI object
class

265

Function Description See Page

Chapter 5 • Functions by Category

101

Standard Functions

Standard functions include all the general elements of a programming
language, such as basic input and output, control-flow, mathematical, and
array functions.

Standard functions are divided into the following categories:

➤ Arithmetic Functions

➤ Array Functions

➤ Call Statements

➤ Compiled Module Functions

➤ Exception Handling Functions

➤ I/O Functions

➤ Load Testing Functions

➤ Miscellaneous Functions

➤ Operating System Functions

➤ Password Functions

➤ QuickTest 2000 Functions

➤ String Functions

➤ TDAPI Functions

➤ Testing Option Functions

➤ TestDirector Functions

➤ Time-Related Functions

TSL Reference Guide

102

Arithmetic Functions

Array Functions

Function Description See Page

atan2 returns the arctangent of y/x, in radians 137

cos returns the cosine of an angle, in radians 153

exp calculates the exponential function of ex 232

int returns the integer part of a real number 267

log returns a natural logarithm 292

rand returns a pseudo-random real number 327

sin calculates the sine of an angle 353

sqrt returns the square root of its argument 360

srand defines a seed parameter for the rand function 360

Function Description See Page

delete removes an element from an array 198

split divides an input string into fields, stores them in an
array, and indicates the number of fields generated

359

Chapter 5 • Functions by Category

103

Call Statements

Compiled Module Functions

Function Description See Page

call invokes a test from within another test
script

146

call_chain_get_attr obtains information about a test or
function in the current call chain

147

call_chain_get_depth returns the number of items in the current
call chain

147

call_close invokes a test from within a script and
closes the test when the test is completed

148

call_ex invokes an Astra QuickTest test from
within a WinRunner test script

149

return returns a value to the calling function or
test

329

texit stops execution of a called test 439

treturn stops a called test and returns control to
the calling test

446

Function Description See Page

load loads a compiled module into
memory

290

reload removes a compiled module from
memory and loads it again

327

unload removes a compiled module or
selected functions from memory

449

TSL Reference Guide

104

Exception Handling Functions

I/O Functions

Function Description See Page

define_object_exception defines a GUI object exception 196

define_popup_exception defines a popup window exception 197

define_tsl_exception defines a TSL exception 198

exception_off deactivates handling for an exception 231

exception_off_all deactivates handling of all exceptions 231

exception_on enables detection and handling of a
previously defined exception

232

Function Description See Page

file_close closes a file opened with file_open 233

file_compare compares the contents of two files 233

file_getline reads a line from a file 234

file_open opens a file for reading or printing, or
creates a new file

234

file_printf prints formatted output to a file 235

pause pauses a test and displays a message 320

report_msg inserts a message in a test report 329

sprintf returns a formatted string to a
variable

359

str_map_logical_to_visual converts a logical string to a visual
string or vice-versa

366

Chapter 5 • Functions by Category

105

Load Testing Functions

The following functions are available for LoadRunner GUI Vusers only:

Function Description See Page

declare_rendezvous declares a rendezvous 195

declare_transaction declares a transaction 195

end_transaction marks the end of a transaction for
performance analysis

216

error_message sends an error message to the controller 217

get_host_name returns the name of a host 242

get_master_host_name returns the name of the controller’s host 243

lr_whoami returns information about the Vuser
executing the script

294

output_message sends a message to the controller 319

rendezvous sets a rendezvous point in a Vuser script 328

start_transaction marks the beginning of a transaction for
performance analysis

361

user_data_point records a user-defined data sample 451

TSL Reference Guide

106

Miscellaneous Functions

Operating System Functions

Function Description See Page

eval evaluates and executes the enclosed TSL
statements

230

getenv returns the value of any environment variable, as
defined in the [WrCfg] section of wrun.ini in the
WinRunner runtime environment

247

load_16_dll performs a runtime load of a 16-bit Dynamic Link
Library

291

load_dll performs a runtime load of a Dynamic Link
Library

292

nargs returns the number of arguments passed to the
function or test

302

tl_step divides a test script into sections and inserts a
status message in the test results for the previous
section. When WinRunner is connected to a
TestDirector project, the message is inserted in the
TestDirector “step” table for each statement.

440

tl_step_once divides a test script into sections and inserts a
status message in the test results for the previous
section. When WinRunner is connected to a
TestDirector project, the message is inserted in the
TestDirector “step” table once for each step name.

440

unload_16_dll unloads a 16-bit DLL from memory 450

unload_dll unloads a DLL from memory 450

Function Description See Page

dos_system executes a DOS command 203

invoke_application invokes a Windows application from within
a test script

268

Chapter 5 • Functions by Category

107

Password Functions

QuickTest 2000 Functions

The following functions are available for QuickTest 2000 users only:

Function Description See Page

password_edit_set sets the value of a password edit field to a
given value

319

password_encrypt encrypts a plain password 320

Function Description See Page

qt_force_send_key instructs WinRunner to
recognize an edit field
which prompts a screen
change when information
is inserted

326

qt_reset_all_force_send_key negates screen change
configurations previously
made using the
qt_force_send_key
function

326

TSL Reference Guide

108

String Functions

Function Description See Page

ascii returns the ASCII code of the first character in a
string

137

compare_text compares two strings 152

index indicates the position of one string within
another

267

length counts characters in a string 273

match finds a regular expression in a string 294

split divides an input string into fields and stores them
in an array

359

sprintf returns a formatted string to a variable 359

substr extracts a substring from a given string 367

tolower converts uppercase characters to lowercase 441

toupper converts lowercase characters to uppercase 446

Chapter 5 • Functions by Category

109

TDAPI Functions

To add the TDAPI functions to WinRunner’s Function Generator, run the
tdapi test in the lib folder of your WinRunner installation directory.

For explanations and examples of all TDAPI functions, refer to the
TestDirector Open Test Architecture Guide.

Project Connection Functions

Project connection functions let you select the TestDirector remote agent
and project to which you want to connect. The TDAPI includes the
following project connection functions:

Test Functions

Test functions let you retrieve information relating to the tests stored in
TestDirector’s test repository. The TDAPI contains the following test
functions:

Function Description

TDServerInitInstance creates a connection to the
TestDirector remote agent

TDServerRelease closes the connection to the
TestDirector remote agent

TDAPI_Connect connects to the specified project

TDAPI_Disconnect disconnects from the currently
connected project

TDAPI_CreateTDDatabasesList creates a list of projects.

TDAPI_GetDatabaseNameFromList retrieves the name of a project from
a project list

Function Description

TDAPI_CreateTest creates a new test

TDAPI_CreateTestList creates a list of all tests in the project

TDAPI_DeleteTest deletes a test

TSL Reference Guide

110

Design Steps Functions

TestDirector tests are divided into design steps. These are detailed
step-by-step instructions that describe the actions the tester (manual tests)
or testing tool (automated tests) should perform as the test is executed. The
TDAPI contains the following design steps functions:

TDAPI_FindTestByPath locates a test by its file system path

TDAPI_FindTestBySubject
Path

locates a test by its subject path

TDAPI_GetTestFieldSize returns the size of a field in a test.

TDAPI_GetTestFullPath retrieves the full path of a test

TDAPI_GetTestSubjectPath retrieves a test’s subject path.

TDAPI_GetTestValue retrieves the value of a field in a test

TDAPI_SetTestValue updates a field in a test

TDAPI_TestExists locates a test

TDAPI_TestListMove steps through a list of tests

Function Description

TDAPI_CreateDesStep creates a design step in a test

TDAPI_CreateDesStepList creates a list of design steps

TDAPI_DeleteDesStep deletes a design step in a test

TDAPI_DesStepListMove steps through a list of design steps

TDAPI_GetDesStepFieldSize returns the size of a design step field

TDAPI_GetDesStepValue retrieves the value of a field in a design step

TDAPI_SetDesStepValue updates a field in a design step record

Function Description

Chapter 5 • Functions by Category

111

Defect Tracking Functions

Defect records contain errors discovered during test execution. Defect
tracking functions let you add, locate, update defect information in your
project. The TDAPI contains the following defect tracking functions:

Test Set Functions

A test set is a group of tests designed to meet a specific testing goal. For
example, to verify that the application under test is functional and stable,
you create a sanity test set that checks the application’s basic features. The
TDAPI contains the following functions to help you build and maintain test
sets:

Function Description

TDAPI_BugListMove steps through a list of defects

TDAPI_CreateBug creates a new defect

TDAPI_CreateBugList creates a list of defects in the project

TDAPI_DeleteBug deletes a defect from the TestDirector project

TDAPI_GetBugFieldSize returns the size of a defect field

TDAPI_GetBugValue retrieves the value of a field in a defect

TDAPI_SetBugValue updates a field in a defect

Function Description

TDAPI_AddTestToCycle adds a test to a test set

TDAPI_CreateCycle creates a new test set

TDAPI_CreateCycleList creates a list of test sets in the project

TDAPI_CreateTestinCycleList creates a list of test sets in the project

TDAPI_CycleExists checks a test set exists

TDAPI_CycleListMove steps through a list of test sets

TDAPI_DeleteCycle deletes a test set

TDAPI_DeleteTestFromCycle removes a test from a test set

TSL Reference Guide

112

Test Run Functions

A test run stores information about how each test performs during test
execution. The TDAPI includes the following functions to let you create and
manage test runs:

TDAPI_GetCyclesForTest retrieves names of the test sets to which the
test belongs

TDAPI_GetCycleValue retrieves value of a field in a test set record

TDAPI_GetCycleFieldSize returns the size of a field in a test set

TDAPI_GetTestInCycleFieldSize returns the size (in bytes) of a field of a test in
a test set.

TDAPI_GetTestInCycleValue retrieves the value of a field in a test in a test
set record

TDAPI_SetCycleValue updates a field of a test set record to new
value

TDAPI_SetTestInCycleValue updates the specified field of a test set record
to new value

TDAPI_TestInCycleExists looks for a test in a test set

TDAPI_TestInCycleListMove steps through a list of tests in a test set

Function Description

TDAPI_CreateRun creates a test run for a test

TDAPI_CreateRunList creates a list of test runs

TDAPI_DeleteRun deletes a test run

TDAPI_GetRunFieldSize returns the size of a field in a test run

TDAPI_GetRunValue retrieves value of a field in a test run

TDAPI_RunListMove steps through a list of test runs

TDAPI_SetRunValue updates a field in a test run record

Function Description

Chapter 5 • Functions by Category

113

Test Step Functions

Test steps record the performance of each test step during a test run. Each
test step contains detailed information on what actions were performed
during each test run. These include the IDs of the test and test run, the
name of the step, the status of the step, and the line number of where the
step will appear within the test script. The TDAPI contains the following
functions to help you create and manage test runs:

Test Plan Tree Functions

The test plan tree is a representation of how information is stored within
your project. When you access the project, you use the tree to locate
information in the project. The TDAPI contains the following functions to
help you create and manage test plan trees:

Function Description

TDAPI_AddStepToRun creates a step in a test run

TDAPI_CreateStepList creates a list of steps

TDAPI_DeleteStep deletes a step in a test run

TDAPI_GetStepFieldSize retrieves size of a field in a step

TDAPI_GetStepValue returns the value of a field in a step

TDAPI_SetStepValue updates a step to a new value

TDAPI_StepListMove steps through a list of defects

Function Description

TDAPI_GetCategoryTreeRoot returns the ID of a the test plan tree’s
subject folder

TDAPI_TreeAddNode adds a folder to the test plan tree

TDAPI_TreeChanged indicates if changes were made to the test
plan tree

TDAPI_TreeCreateRoot sets a parent folder in the test plan tree

TDAPI_TreeGetChild returns the ID of a subfolder in a test plan
tree folder

TSL Reference Guide

114

Project Administration Functions

Project administration functions let you create and manage project users,
return internal project error information, and view project statistics. The
TDAPI includes the following project administration functions:

TDAPI_TreeGetNodeAttribute returns the ID of a subfolder in the test
plan tree

TDAPI_TreeGetNumberOfChildren returns the number of subfolders
contained in a folder

TDAPI_TreeGetRoot returns the ID of the current parent
folder

TDAPI_TreeGetSubjectIDFromPath returns the ID of a test plan tree folder

Function Description

TDAPI_CreateUser creates a new user

TDAPI_CreateUserList creates a list of TestDirector users

TDAPI_DeleteUser deletes a user

TDAPI_GetFieldProperty returns information from the System_fields
table

TDAPI_GetFunctionStatistics returns performance statistics of TDAPI
functions

TDAPI_GetLastErrorString returns a description of an error

TDAPI_GetStackErrorString returns all the errors in the error stack

TDAPI_GetUserFieldSize returns the size of the field in a user record.

TDAPI_GetUserValue returns value of a field in a user record

TDAPI_SetUserValue updates a field in a user record

TDAPI_UserExists checks whether a user record exists

TDAPI_UserListMove returns the current user name.

Function Description

Chapter 5 • Functions by Category

115

Testing Option Functions

TestDirector Functions

The following functions are only available when working with TestDirector:

Function Description See Page

get_aut_var returns the value of a variable that
determines how WinRunner learns
descriptions of objects, records tests, and
runs tests on Java applets or applications.

241

getvar returns the value of a testing option 247

set_aut_var sets how WinRunner learns descriptions of
objects, records tests, and runs tests on Java
applets or applications

338

setvar sets the value of a testing option 342

Function Description See Page

tddb_get_step_value returns the value of a field in the
"dessteps" table in a TestDirector database

408

tddb_get_test_value returns the value of a field in the "test"
table in a TestDirector database

409

tddb_get_testset_value returns the value of a field in the
"testcycl" table in a TestDirector database.

409

tddb_load_attachment loads a test’s file attachment and returns
the file system path of the location where
it was loaded.

410

tl_step divides a test script into sections 440

tl_step_once divides a test script into sections and
inserts a status message in the test results
for the previous section

440

TSL Reference Guide

116

Time-Related Functions

Function Description See Page

end_transaction marks the end of a transaction for
performance analysis

216

get_time returns the current system time 246

pause pauses test execution and displays a message 320

start_transaction marks the beginning of a transaction for
performance analysis

361

time_str converts the integer returned by get_time to
a string

439

wait causes test execution to pause for the
specified amount of time

452

117

6
Return Values

Unless otherwise specified, functions may return one of the general return
values listed below. This function returns one of the return values listed in
“General Return Values,” on page 118.

In addition, some functions may return specialized return values.

➤ For database functions (db_), see also“Return Values for PowerBuilder and
Table Functions,” on page 123.

➤ For table and PowerBuilder functions (tbl_ and datawindow_), see also
“Return Values for Database Functions,” on page 122.

➤ For Terminal Emulator functions (TE_), see also “Return Values for Terminal
Emulator Functions,” on page 124.

TSL Reference Guide

118

General Return Values

Unless otherwise specified, all functions may return one of the general
return values listed below.

Error Code Number Description

E_OK 0 Operation successful.

E_FILE_OK 0 Operation successful.

E_GENERAL_ERROR -10001 General error occurred.

E_NOT_FOUND -10002 Window or object not found.

E_NOT_UNIQUE -10003 More than one window or object
responds to the physical
description.

E_ILLEGAL_OPERATION -10004 Operation invalid for object. For
more information, see the note
on page 122.

E_OUT_OF_RANGE -10005 Parameter is out of range.

E_ILLEGAL_PARAMETER -10006 Specified value for one or more
parameters is invalid.

E_FILE_OPEN -10007 Cannot open file. File may
already be open.

E_ILLEGAL_ARGLIST -10009 Illegal argument list.

E_NOT_IN_MAPPING -10011 Cannot find window or object
in the GUI map.

E_EXIST -10012 Object already exists.

E_OPERATION_NOT_PERFORMED -10018 Cannot perform requested
operation.

E_FUNCTION_NOT_LOADED -10019 Specified function is not
currently loaded. In the case of a
handler function, the exception
is undefined.

E_NO_FONT -10024 No font was loaded.

Chapter 6 • Return Values

119

E_SYNTAX -10025 Syntax error in TSL statement.

E_NO_SVC -10026 Called function does not exist.

E_FUNCTION_NOT_IMPLEMENTE
D

-10028 Called function could not be
implemented.

E_ATTR_IN_DESC -10029 Specified property is used in the
object’s physical description in
the GUI map.

E_NO_LABEL -10030 Label property is not used in the
window’s physical description in
the GUI map.

E_USING_WIN_TITLE -10031 Error using window title.

E_FILE_NOT_OPEN -10032 File is not open.

E_FILE_NOT_FOUND -10033 File is not found.

E_FILE_LINE_TRUNC -10034 File line is truncated.

E_FILE_EOF -10035 End of file.

E_FILE_NOT_READ_MODE -10036 Cannot read file because file is
not in read mode.

E_FILE_READ_MODE -10037 Cannot write to file because file
is in read mode.

E_BAD_PATH -10038 Incorrect path.

E_ACCESS_DENIED -10039 Access is denied.

E_DISK_FULL -10040 Disk is full.

E_SHARING_VIOLATION -10041 Sharing violation.

E_FILE_ERROR -10042 General file error.

E_NOT_PARAMETER -10044 Parameter is invalid.

Error Code Number Description

TSL Reference Guide

120

E_MAX_COLUMNS_EXCEEDED -10045 Column cannot be added to the
data table because the data table
already contains the maximum
allowable number of columns
(255).

E_NOT_DISPLAYED -10101 Window, object or data table is
not displayed.

E_DISABLED -10102 Window or object is disabled.

E_IMPROPER_CLASS -10103 Operation cannot be performed
on this object class.

E_ILLEGAL_KEY -10104 Key or mouse button name is
illegal.

E_ITEM_NOT_FOUND -10105 Item in list or menu not found.

E_NOT_RESPONDING -10106 Application did not respond
within the specified timeout.

E_OBJECT_SYNTAX -10107 Illegal syntax used.

E_ILLEGAL_NUM_OF_PARAMS -10112 Number of parameters does not
match those for the command.

E_AUT_DISCONNECTED -10114 The application under test was
disconnected.

E_ATTR_NOT_SUPPORTED -10115 Property in function is not
supported.

E_MISMATCH -10116 Verification mismatch found.

E_ITEM_NOT_UNIQUE -10117 More than one item in list or
menu has this name.

E_TEXT_TOO_LONG -10118 Text to be inserted exceeds
maximum number of characters.
The string will be truncated to
the appropriate length.

E_DIFF -10119 GUI checkpoint mismatch
found.

Error Code Number Description

Chapter 6 • Return Values

121

E_CMP_FAILED -10120 Comparison failed.

E_CAPT_FAILED -10121 Capture failed.

E_SET_WIN -10123 Window setting parameters
missing.

E_BITMAP_TIMEOUT -10124 The wait_bitmap operation
exceeded specified wait time.

E_BAD_CHECK_NAME -10125 Syntax error in requested check.

E_OBJ_CAPT_FAILED -10126 Capture failed for specified
object.

E_UNEXP_WIN -10127 Window in checklist is not the
window in the command.

E_CAPT_FUNC_NOT_FOUND -10128 Capture function not defined.

E_CMP_FUNC_NOT_FOUND -10129 Compare function not defined.

E_TSL_ERR -10130 Syntax error detected.

E_TOOLKIT_MISMATCH -10131 Incorrect toolkit detected.

E_RECT_COVERED -10132 Desired rectangle is hidden.

E_RECT_OUT -10133 Desired rectangle does not
appear on screen.

E_AREA_COVERED -10134 Desired area is hidden.

E_AREA_OUT -10135 Desired area does not appear on
screen.

E_STR_NOT_FOUND -10136 Text string not located.

E_WAIT_INFO_TIMEOUT -10137 The wait_info operation
exceeded specified wait time.

E_DIFF_SIZE -10139 Expected and actual bitmaps are
different sizes.

E_DROP_WITHOUT_DRAG -10141 Drop operation is performed
without a drag operation
preceding it.

Error Code Number Description

TSL Reference Guide

122

Note about E_ILLEGAL_OPERATION: A function may fail if the method
does not exist, the parameter number is wrong, the parameter types are
wrong, etc. For more information regarding a failure, insert the following
statement and then rerun the function. This will provide you with more
details.

set_aut_var("DEBUG_GCALL", ON);

Return Values for Database Functions

Unless otherwise specified in the function description, database functions
(db_) may return one of the following return values in addition to the
regular return values.

E_VIR_OBJ -10142 Function not supported for
virtual objects.

E_MISSING_ATTR -10143 Lack of x-, y-, height, or width
coordinates in the description of
the virtual object.

E_EDIT_SET_FAILED -10144 The edit_set operation failed.

Error Code Number Description

E_SESSION_NOT_STARTED -10160 The database session was not started.

E_CONNECTION_FAILED -10161 The connection to the database
failed.

E_SQL_SYNTAX_ERROR -10162 Syntax error in the SQL statement.

E_PASSED_LAST_ROW -10163 The row number exceeded the row
number of the last row in the table.

E_QUERY_CAPTURE_FAILED -10164 General error while capturing data.

Error Code Number Description

Chapter 6 • Return Values

123

Return Values for PowerBuilder and Table Functions

Unless otherwise specified, table and PowerBuilder functions (tbl_ and
datawindow_) may return one of the following return values in addition to
the regular return values.

Error Code Number Description

PB_E_NO_PBTAPI -10145 Internal error.

PB_E_ROW_COL_INVALID -10146 Parameter is out of range.

PB_E_ROW_INVALID -10147 Parameter is out of range.

PB_E_DESC_OVERFLOW -10149 Internal error.

PB_E_DW_LIST_ITEM_NOT_FOUND -10150 Item not found.

PB_E_DESC_NOT_FOUND -10151 Internal error.

PB_E_CELL_NOT_VISIBLE -10152 Cell not visible.

PB_E_PARSE_ERROR -10153 Internal error.

PB_E_TAPI_ERROR -10154 Internal error.

PB_E_BUF_NOT_INIT -10155 Internal error.

PB_E_CELL_NOT_FOUND -10156 Cell not found.

PB_E_API_ERROR -10157 General error.

PB_E_INVALID_COL_TYPE -10158 Unknown column type.

PB_E_ILLEGAL_COORDS -10159 Illegal coordinates.

TSL Reference Guide

124

Return Values for Terminal Emulator Functions

Unless otherwise specified in the function description, terminal emulator
functions (TE_) may return one of the following return values in addition to
the regular return values.

WinRunner/TE Error Code Number Description

E_PROT_FIELD -10400 Field is protected and cannot accept
input.

E_TERM_ DISCONNECTED -10401 Terminal is probably disconnected.

E_TERM_LOCKED -10402 Terminal is locked. In an interactive
run, the user can continue, pause, or
unlock the terminal. In a batch run,
WinRunner unlocks the terminal and
sends a report message.

E_TERM_BUSY -10403 Terminal is synchronizing. In an
interactive run, user can continue,
pause, or perform wait_sync. In a
batch run, WinRunner synchronizes
and sends a report message.

E_RULE_NOT_FOUND -10405 Cannot write to a merged field after all
merged fields were reset.

125

7
Alphabetical Reference

This chapter contains an alphabetical reference of all TSL functions in WinRunner.
The name of each function appears, along with the type and the category to
which the function belongs. The following additional information is provided for
each function:

➤ description

➤ complete syntax

➤ parameter definitions

➤ return values

➤ availability

For additional information and examples of usage, refer to the TSL Online
Reference. You can open the TSL Online Reference from the WinRunner group in the
Start menu or from WinRunner’s Help menu. To open the online reference to a
specific function, click the context-sensitive Help button and then click a TSL
statement in your test script, or place your cursor on a TSL statement in your test
script and then press the F1 key. Check Mercury Interactive’s Customer Support
Web site for updates to the TSL Online Reference.

TSL Reference Guide

126

ActiveBar_combo_select_item Context Sensitive • Active Bar

selects an item in a ComboBox tool.

ActiveBar_combo_select_item (band_tool , item_name);

band_tool A string containing the band identifier (Name or Caption)
and tool identifier (Name, Caption or ToolID), separated
by semicolon (;).

The band identifier can be specified either by Name or
Caption

The tool identifier can be specified either by Name,
Caption, or ToolID. The ampersand character (&) in
Caption is ignored.

item_name Either item text or item number in the "#" format.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is supported for DataDynamics ActiveBar 1.0.

Note: This function is not recordable.

Chapter 7 • Alphabetical Reference

127

ActiveBar_dump Context Sensitive • Active Bar

stores information about ActiveBar bands and tools. This information includes captions,
names, types and IDs.

ActiveBar_dump (file_name);

file_name The file pathname in which the ActiveBar information
will be dumped.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is supported for DataDynamics ActiveBar 1.0 and Sheridan
ActiveToolbars 1.01.

Note: This function is not recordable.

TSL Reference Guide

128

ActiveBar_select_menu Context Sensitive • Active Bar

selects a menu item in a toolbar.

ActiveBar_select_menu (band_tool [, events_only]);

band_tool A string containing the band identifier (Name or Caption)
and tool identifier (Name, Caption or ToolID), separated
by semicolon (;).

The band identifier can be specified either by Name or
Caption

The tool identifier can be specified either by Name,
Caption, or ToolID. The ampersand character (&) in
Caption is ignored.

events_only TRUE or FALSE.

If this parameter set to TRUE, then executing this function
during a test run uses events.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is supported for DataDynamics ActiveBar 1.0 and Sheridan
ActiveToolbars 1.01.

Note: The events_only parameter is supported only for the DataDynamics
ActiveBar.

Chapter 7 • Alphabetical Reference

129

ActiveBar_select_tool Context Sensitive • Active Bar

selects a tool in the toolbar.

ActiveBar_select_tool (band_tool [, events_only]);

band_tool A string containing the band identifier (Name or Caption)
and tool identifier (Name, Caption or ToolID), separated
by semicolon (;).

The band identifier can be specified either by Name or
Caption

The tool identifier can be specified either by Name,
Caption, or ToolID. The ampersand character (&) in
Caption is ignored.

events_only TRUE or FALSE.

If this parameter set to TRUE, then executing this function
during a test run uses events.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is supported for DataDynamics ActiveBar 1.0 and Sheridan
ActiveToolbars 1.01.

Note: The events_only parameter is supported only for the DataDynamics
ActiveBar.

TSL Reference Guide

130

ActiveX_activate_method Context Sensitive • ActiveX/VIsual Basic

invokes an ActiveX method of an ActiveX control.

ActiveX_activate_method (object, ActiveX_method, return_value
[,param4,…,param8]);

object The name of the object.

ActiveX_method The ActiveX control method to be invoked.

Tip: You can use the ActiveX tab in the GUI Spy to view the methods of an
ActiveX control.

return_value Return value of the method.

param4,…,param8 The parameters of the method (optional). These
parameters may only be call variables and not constants.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available only for the following add-ins: ActiveX, PowerBuilder,
Visual Basic, or WebTest.

Chapter 7 • Alphabetical Reference

131

ActiveX_get_info Context Sensitive • ActiveX/VIsual Basic

returns the value of an ActiveX/Visual Basic control property. The property can have no
parameters or a one or two-dimensional array. Properties can also be nested.

For an ActiveX property without parameters, the syntax is as follows:

ActiveX_get_info (ObjectName, PropertyName, OutValue [, IsWindow]);

For an ActiveX property that is a one-dimensional array, the syntax is as follows:

ActiveX_get_info (ObjectName, PropertyName (X) , OutValue [, IsWindow]);

For an ActiveX property that is a two-dimensional array, the syntax is as follows:

ActiveX_get_info (ObjectName, PropertyName (X , Y) , OutValue [, IsWindow]);

ObjectName The name of the ActiveX/Visual Basic control.

PropertyName Any ActiveX/Visual Basic control property.

Tip: You can use the ActiveX tab in the GUI Spy to view the properties of an
ActiveX control.

OutValue The output variable that stores the property value.

IsWindow An indication of whether the operation is performed on a
window. If it is, set this parameter to TRUE.

Note: The IsWindow parameter should be used only when this function is applied
to a Visual Basic form to get its property or a property of its sub-object. In order to
get a property of a label control you should set this parameter to TRUE.

TSL Reference Guide

132

Note: To get the value of nested properties, you can use any combination of
indexed or non-indexed properties separated by a dot. For example:

ActiveX_get_info("Grid", "Cell(10,14).Text", Text);

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available only for the following add-ins: ActiveX, PowerBuilder,
Visual Basic, or WebTest.

ActiveX_set_info Context Sensitive • ActiveX/VIsual Basic

sets the value of an ActiveX/Visual Basic control property. The property can have no
parameters or a one or two-dimensional array. Properties can also be nested.

For an ActiveX property without parameters, the syntax is as follows:

ActiveX_set_info (ObjectName, PropertyName, Value [, Type [, IsWindow]]);

For an ActiveX property that is a one-dimensional array, the syntax is as follows:

ActiveX_set_info (ObjectName, PropertyName (X) , Value [, Type [, IsWindow]]);

For an ActiveX property that is a two-dimensional array, the syntax is as follows:

ActiveX_set_info (ObjectName, PropertyName (X , Y) , Value [, Type [, IsWindow]]);

ObjectName The name of the ActiveX/Visual Basic control.

PropertyName Any ActiveX/Visual Basic control property.

Chapter 7 • Alphabetical Reference

133

Tip: You can use the ActiveX tab in the GUI Spy to view the properties of an
ActiveX control.

Value The value to be applied to the property.

Type The value type to be applied to the property. The
following types are available:

IsWindow An indication of whether the operation is performed on a
window. If it is, set this parameter to TRUE.

Note: The IsWindow parameter should be used only when this function is applied
to a Visual Basic form to set its property or a property of its sub-object. In order to
get a property of a label control you should set this parameter to TRUE.

Note: To set the value of nested properties, you can use any combination of
indexed or non-indexed properties separated by a dot. For example:

ActiveX_set_info("Book", "Chapter(7).Page(2).Caption", "SomeText");

VT_I2 (short) VT_I4 (long) VT_R4 (float)

VT_R8 (float double) VT_DATE (date) VT_BSTR (string)

VT_ERROR (S code) VT_BOOL (boolean) VT_UI1 (unsigned char)

TSL Reference Guide

134

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available only for the following add-ins: ActiveX, PowerBuilder,
Visual Basic, or WebTest.

add_cust_record_class Customization • Custom Record

associates a custom record function or a logical name function with a custom class.

add_cust_record_class (MSW_class, dll_name [, rec_func [, log_name_func]]);

MSW_class The custom class with which the function is associated.

dll_name The full path of the DLL containing the function.

rec_func The name of the custom record function defined in the
DLL. This custom record function returns the statement
recorded in the test script.

log_name_func The name of the logical name function defined in the
DLL. This logical name function supplies custom logical
names for GUI objects in the custom class, MSW_class.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

135

add_dlph_obj Context Sensitive • Delphi

adds a Delphi object.

add_dlph_obj (MSW_class, class, oblig_attr, optional_attr, default _check_prop, item);

MSW_class The custom class with which the function is associated.

class The name of the Mercury class, MSW_class, or X_class.

oblig_attr A list of obligatory properties (separated by blank spaces).

optional_attr A list of optional properties (separated by blank spaces), in
descending order, to add to the description until the
object is uniquely identified.

default_check_prop The default status of the object.

item Indicates whether the item is an object or a grid.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available only for WinRunner with Delphi support.

TSL Reference Guide

136

add_record_attr Customization • Custom Record

registers a custom property.

add_record_attr (attr_name, dll_name, query_func_name, verify_func_name);

attr_name The name of the custom property to register. This cannot
be a standard WinRunner property name.

dll_name The full path of the DLL in which the query and verify
functions are defined.

query_func_name The name of the query function included in the DLL.

verify_func_name A WinRunner standard property verification function (see
below) or a custom property verification function
included in the DLL.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

add_record_message Customization • Custom Record

adds a message to the list of Windows messages.

add_record_message (message_number);

message_number The number or identifier of the Windows message.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

137

ascii Standard • String

returns the ASCII code of the first character in a string.

ascii (string);

string A string expression.

Return Values

This function returns the ASCII code of the first character in the string.

Availability

This function is always available.

atan2 Standard • Arithmetic

returns the arctangent of y/x.

atan2 (y, x);

Return Values

This function returns a real number.

Availability

This function is always available.

button_check_info Context Sensitive • Button Object

checks the value of a button property.

button_check_info (button, property, property_value);

button The logical name of the button.

property The property to check.

property_value The property value.

TSL Reference Guide

138

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

button_check_state Context Sensitive • Button Object

checks the state of a radio or check button.

button_check_state (button, state);

button The logical name of the button.

state The state of the button. The value can be 1 (ON) or 0
(OFF). A value of 2 indicates that the button is DIMMED.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

button_get_info Context Sensitive • Button Object

returns the value of a button property.

button_get_info (button, property, out_value);

button The logical name of the button.

property Any of the properties listed in the User’s Guide.

out_value The output variable that stores the value of the specified
property.

Chapter 7 • Alphabetical Reference

139

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

button_get_state Context Sensitive • Button Object

returns the state of a radio or check button.

button_get_state (button, out_state);

button The logical name of the button.

out_state The output variable that stores the state of the button. For
check and radio buttons, the value can be 1 (ON) or 0
(OFF). A value of 2 indicates that the button is DIMMED.
For push buttons, the value is 0.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

button_press Context Sensitive • Button Object

clicks on a push button.

button_press (button);

button The logical name of the button.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

TSL Reference Guide

140

Availability

This function is always available.

button_set Context Sensitive • Button Object

sets the state of a radio or check button.

button_set (button, state);

button The logical name of the button.

state For a radio button, one of the following states can be
specified: DIMMED, ON, OFF, or TOGGLE. The TOGGLE
option reverses the current state between ON and OFF.

For a check button, the state can be ON or OFF.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

button_wait_info Context Sensitive • Button Object

waits for the value of a button property.

button_wait_info (button, property, value, time);

button The logical name of the button.

property Any of the properties listed in the WinRunner User’s Guide.

value The property value.

time Indicates the maximum interval, in seconds, before the
next statement is executed.

Chapter 7 • Alphabetical Reference

141

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

calendar_activate_date Context Sensitive • Calendar

double-clicks the specified date in a calendar.

calendar_activate_date (calendar, date);

calendar The logical name of the calendar.

date The date in the calendar.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is supported for ActiveX controls.

This function is available for calendars included in Visual Studio version 6 and
higher and in Internet Explorer Active Desktop version 4 and higher.

TSL Reference Guide

142

calendar_get_selected Context Sensitive • Calendar

retrieves and counts the selected dates in a calendar.

calendar_get_selected (calendar, selected_dates, selected_dates_count
[, selected_time]);

calendar The logical name of the calendar.

selected_dates The output variable that stores the dates selected in the
calendar.

selected_dates_count The output variable that stores the total number of
selected dates in the calendar.

selected_time The output variable that stores the time selected. This
parameter is valid for the Date Time control only.

Return Values

This function returns a string representing the date and an integer representing
the number of dates chosen.

Availability

This function is supported for ActiveX controls.

This function is available for calendars included in Visual Studio version 6 and
higher and in Internet Explorer Active Desktop version 4 and higher.

calendar_get_status Context Sensitive • Calendar

retrieves the selection status.

calendar_get_status (calendar, selection_status);

calendar The logical name of the calendar.

selection_status The status of the date; it may either be valid or invalid.

Based on the validity of the date, calendar_get_status retrieves the integer 1
(valid) or 0 (invalid).

Chapter 7 • Alphabetical Reference

143

Return Values

This function returns an integer, 1 or 0, based on whether or not the status is valid
or invalid.

Availability

This function is supported for the Date Time control only.

This function is available for calendars included in Visual Studio version 6 and
higher and in Internet Explorer Active Desktop version 4 and higher.

calendar_get_valid_range Context Sensitive • Calendar

retrieves the range of allowed values for a calendar control.

calendar_get_valid_range (calendar, in_range_type, allowed_min_time,
allowed_max_time);

calendar The logical name of the calendar.

in_range_type DATE_TYPE (1) minimum and maximum allowed date
values for the control.

TIME_TYPE (0) minimum and maximum allowed time
values for the control.

allowed_min_time The minimum allowed date or time of the control,
according to the in_range_type parameter.

allowed_max_time The maximum allowed date or time of the control,
according to the in_range_type parameter.

Return Values

This function returns two strings representing the minimum and maximum dates
allowed.

Availability

This function is available for the Date Time and Month Calendar controls only.

This function is available for calendars included in Visual Studio version 6 and
higher and in Internet Explorer Active Desktop version 4 and higher.

TSL Reference Guide

144

calendar_select_date Context Sensitive • Calendar

clicks the specified date in a calendar.

calendar_select_date (calendar, date);

calendar The logical name of the calendar.

date The date is recorded in the following format: DD-MMM-
YYYY. Numbers as well letters may be used for months.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is supported for ActiveX controls only.

This function is available for calendars included in Visual Studio version 6 and
higher and in Internet Explorer Active Desktop version 4 and higher.

calendar_select_range Context Sensitive • Calendar

selects a range of dates in the DD-MM-YYYY date format.

calendar_select_range (calendar, start_date, end_date);

calendar The logical name of the calendar.

start_date The first day in the range.

end_date The last day in the range.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Chapter 7 • Alphabetical Reference

145

Availability

This function is available for the Month Calendar control with the multiple
selection policy only.

This function is available for calendars included in Visual Studio version 6 and
higher and in Internet Explorer Active Desktop version 4 and higher.

calendar_select_time Context Sensitive • Calendar

when a date is recorded with a time, WinRunner records the time using this function in the
HH:MM:SS time format.

calendar_select_time (calendar, time);

calendar The logical name of the calendar.

time The time selected in the HH:MM:SS format.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is valid for the Date Time control only.

This function is available for calendars included in Visual Studio version 6 and
higher and in Internet Explorer Active Desktop version 4 and higher.

calendar_set_status Context Sensitive • Calendar

sets the selection status.

calendar_set_status (calendar, selection_status);

calendar The logical name of the calendar.

selection_status The status of the date may be valid (1) or invalid (2). The
valid selection status selects the check box and the invalid
selection clears the check box.

TSL Reference Guide

146

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is valid for the Date Time control only.

This function is available for calendars included in Visual Studio version 6 and
higher and in Internet Explorer Active Desktop version 4 and higher.

call Standard • Call Statements

invokes a test from within a test script.

call test_name ([parameter1, parameter2, ... parametern]);

test_name The name of the test to invoke.

parameter The parameters defined for the called test.

Note: You can parameterize a call statement using the eval function in order to
call several tests and the relevant parameters for each within a single call loop. For
more information, see eval on page 230.

Return Values

The call statement returns an empty string, unless the called test returns an
expression using treturn or texit.

Availability

This function is always available.

Note: The call statement is not a function. Therefore, it does not appear in the
Function Generator.

Chapter 7 • Alphabetical Reference

147

call_chain_get_attr Standard • Call Statements

returns information about a test or function in the call chain.

call_chain_get_attr (property, level, out_value);

property One of the properties listed in the table below.

level A number indicating the test or function in the call chain.
0 indicates the current test/function; 1 indicates the
test/function that called the current item; 2 indicates two
levels above the current item, etc.

out_value The output variable that stores the value of the specified
property.

Return Values

This statement returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

call_chain_get_depth Standard • Call Statements

returns the number of items in the call chain.

call_chain_get_depth ();

The call_chain_get_depth statement returns the number of tests or functions in
the current call chain.

Property Description

testname The name of the test/function specified by level.

line_no The line number where the test call statement or function call appears.

type Indicates whether the call item is a test or a function.

function If the specified call item is a function, its name.

TSL Reference Guide

148

Return Values

This statement returns the number of items in the call chain, or 0 when the call
chain is empty.

Availability

This function is always available.

call_close Standard • Call Statements

invokes a test from within a script and closes the test when the test is completed.

call_close test_name ([parameter1, parameter2, ... parametern]);

test_name The name of the test to invoke.

parameter The parameters defined for the called test.

Note: You can parameterize a call_close statement using the eval function in
order to call several tests and the relevant parameters for each within a single
call_close loop. For more information, see eval on page 230.

Return Values

The call_close statement returns an empty string, unless the called test returns an
expression using treturn or texit.

Availability

This statement is always available.

Note: The call_close statement is not a function. Therefore, it does not appear in
the Function Generator.

Chapter 7 • Alphabetical Reference

149

call_ex Standard • Call Statements

invokes an Astra QuickTest test from within a WinRunner test script.

call_ex (Astra_test_path);

Astra_test_path The full pathname of the Astra QuickTest test in quotation
marks. Alternatively you may enter a variable that has
previously been defined with the full pathname of the
test.

The call_ex statement invokes an Astra test from with a WinRunner test script. If
Astra QuickTest is not installed on the computer running the calling test, the
statement returns a "General Error" result.

If the statement does not return a “pass” return value, the calling test fails.

Note that since WinRunner and Astra QuickTest use similar technologies to run
tests, not all environments are fully supported when running Astra QuickTest tests
from within WinRunner.

Return Values

The call_ex statement returns 1 if the Astra test runs completely and passes, or 0
for any other result.

Availability

This function is always available. If Astra QuickTest is not installed on the
computer running the calling test, however, the statement returns a "General
Error" result.

check_window Analog • Bitmap Checkpoint

compares a bitmap of a window to an expected bitmap.

Note: This function is provided for backward compatibility only. You should use
the corresponding Context Sensitive win_check_bitmap and obj_check_bitmap
functions.

TSL Reference Guide

150

check_window (time, bitmap, window, width, height, x, y [, relx1, rely1, relx2, rely2]);

time Indicates the interval between the previous input event
and the bitmap capture, in seconds. This interval is added
to the timeout_msec testing option. The sum is the interval
between the previous event and the bitmap capture, in
seconds.

bitmap A string identifying the captured bitmap. The string
length is limited to 6 characters.

window A string indicating the name in the window banner.

width, height The size of the window, in pixels.

x, y The position of the upper left corner of the window
(relative to the screen).

In the case of an MDI child window, the position is
relative to the parent window.

relx1, rely1 For an area bitmap: the coordinates of the upper left
corner of the rectangle, relative to the upper left corner of
the client window (the x and y parameters).

relx2, rely2 For an area bitmap: the coordinates of the lower right
corner of the rectangle, relative to the lower right corner
of the client window (the x and y parameters).

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

The check_window function is not available for LoadRunner GUI Vusers running
on UNIX platforms. In this case, check_window statements are treated as
wait_window statements.

Chapter 7 • Alphabetical Reference

151

click Analog • Input Device

inputs a mouse button click.

click (mouse_button [, time]);

mouse_button The name of the mouse button to be activated. The names
(Left, Right, Middle) are defined by the XR_INP_MKEYS
system parameter in the system configuration file.

time The interval that elapses before the click is entered, in
seconds. The default, if no time is specified, is 0.

Return Values

The return value of the function is always 0.

Availability

This function is always available.

click_on_text Analog• Input Device

clicks on a string.

Note: This function is provided for backward compatibility only. You should use
the corresponding Context Sensitive obj_click_on_text and win_click_on_text
functions.

click_on_text (string, x1, y1,x2, y2 [, click_sequence]);

string A complete string, preceded and followed by a space
outside the quotation marks. A regular expression with no
blank spaces can be specified.

x1,y1,x2,y2 The area of the screen to be searched, specified by the
coordinates x1,y1,x2,y2 , which define any two diagonal
corners of a rectangle. The interpreter searches for the text
in the area defined by the rectangle.

TSL Reference Guide

152

click_sequence The mouse button clicks that are part of the string’s input.
The mouse button input is evaluated to a string using the
conventions of the click function. (For further details, see
the description under click.) The default, if no
click_sequence is specified, is a single click of the left mouse
button.

Return Values

This function returns 0 if the text is located. If the text is not found, the function
returns 1.

Availability

This function is always available.

compare_text Standard • String

compares two strings.

compare_text (str1, str2 [, chars1, chars2]);

str1, str2 The two strings to be compared.

chars1 One or more characters in the first string.

chars2 One or more characters in the second string. These
characters are substituted for those in chars1.

Return Values

This function returns the value 1 when the two strings are the same, and 0 when
they are different.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

153

cos Standard • Arithmetic

calculates the cosine of an angle.

cos (x);

x Specifies an angle, expressed in radians.

Return Values

This function returns a real number.

Availability

This function is always available.

create_browse_file_dialog Customization • Custom User Interface

displays a browse dialog box from which the user selects a file.

create_browse_file_dialog (filter1 [; filter2; filter3; ...filtern]);

filter Sets one or more filters for the files to display in the
browse dialog box. You must use wildcards to display all
files (*.*) or only selected files (*.exe or *.txt, etc.), even if
an exact match exists. Multiple files are separated by
semicolons and all the filters together are considered a
single string.

Return Values

This function returns a string representing the label of the selected file.

Availability

This function is always available.

TSL Reference Guide

154

create_custom_dialog Customization • Custom User Interface

creates a custom dialog box.

create_custom_dialog (function_name, title, button_name, edit_name1 [, edit_name2,
check_name1 [, check_name2]]);

function_name The name of the function that is executed when you press
the "execute" button.

title An expression that appears in the window banner of the
dialog box.

button_name The label that will appear on the "execute" button. You
press this button to execute the contained function.

edit_name The labels of the edit box(es) of the dialog box. Multiple
edit box labels are separated by commas, and all the labels
together are considered a single string. If the dialog box
has no edit boxes, this parameter must be an empty string
(empty quotation marks).

check_name Contains the labels of the check boxes in the dialog box.
Multiple check box labels are separated by commas, and
all the labels together are considered a single string. If the
dialog box has no check boxes, this parameter must be an
empty string (empty quotation marks).

Return Values

This function returns a string representing the return value of the function
executed when the Execute button is clicked and an empty string is returned
when the Cancel button is clicked.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

155

create_input_dialog Customization • Custom User Interface

creates a dialog box with an edit box.

create_input_dialog (message);

message Any expression. This expression will appear in the dialog
box as a single line.

Return Values

This function returns a string. If no string is found or if the Cancel button is
pressed within the dialog box, then the function returns NULL.

Availability

This function is always available.

create_list_dialog Customization • Custom User Interface

creates a dialog box with a list of items.

create_list_dialog (title, message, item_list);

title The expression that appears in the banner of the dialog
box.

message The message for the user.

item_list The items that make up the list, separated by commas.

Return Values

This function returns a string. If no string is found or if the Cancel button is
pressed within the dialog box, then this function returns NULL.

Availability

This function is always available.

TSL Reference Guide

156

create_password_dialog Customization • Custom User Interface

creates a password dialog box.

create_password_dialog (login, password, login_out, password_out
[, encrypt_password]);

login The label of the first edit box, used for user-name input. If
you specify an empty string (empty quotation marks), the
default label "Login" is displayed.

password The label of the second edit box, used for password input.
If you specify an empty string (empty quotation marks),
the default label "Password" is displayed. When the user
enters input into this edit box, the characters do not
appear on the screen, but are represented by asterisks.

login_out The name of the parameter to which the contents of the
first edit box (login) are passed. Use this parameter to
verify the contents of the login edit box.

password_out The name of the parameter to which the contents of the
second edit box (password) are passed. Use this parameter
to verify the contents of the password edit box.

encrypt_password A Boolean parameter which allows the output edit field
value to be encrypted. If this parameter is left blank, the
default value is FALSE.

Return Values

This function returns the number “1” if the OK button is pressed and “0” if the
Cancel button is pressed.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

157

datawindow_get_info Context Sensitive • PowerBuilder

retrieves the value of a DataWindow object property.

datawindow_get_info (DataWindow_object, property, out_value);

DataWindow_object The logical name of the DataWindow object.

property The full property description (similar to the formats in the
PowerBuilder Describe function, e.g. obj.property…).

out_value The output variable that stores the value of the specified
property (maximum size 2,000 characters).

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118 and “Return Values for PowerBuilder and
Table Functions,” on page 123.

Availability

This function is available whenever the PowerBuilder add-in is loaded.

datawindow_text_click Context Sensitive • PowerBuilder

clicks a DataWindow text object.

datawindow_text_click (DataWindow_object, DataWindow_text_object);

DataWindow_object The logical name of the DataWindow object.

DataWindow_text_object The text property of the DataWindow object
(and NOT the internal PowerBuilder name).

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118 and “Return Values for PowerBuilder and
Table Functions,” on page 123.

Availability

This function is available whenever the PowerBuilder add-in is loaded.

TSL Reference Guide

158

datawindow_text_dbl_click Context Sensitive • PowerBuilder

double-clicks a DataWindow text object.

datawindow_text_dbl_click (DataWindow_object, DataWindow_text_object);

DataWindow_object The logical name of the DataWindow object.

DataWindow_text_object The text property of the DataWindow object
(and NOT the internal PowerBuilder name).

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118 and “Return Values for PowerBuilder and
Table Functions,” on page 123.

Availability

This function is available whenever the PowerBuilder add-in is loaded.

date_age_string Context Sensitive • Date Operations

(formerly Y2K_age_string)

ages a date string and returns the aged date.

date_age_string (date, years, month, days, new_date);

date The date to age.

years The number of years to age the date.

month The number of months to age the date.

days The number of days to age the date.

new_date The new date after the date string is aged the specified
number of years, months, and days.

Chapter 7 • Alphabetical Reference

159

Return Values

This function returns 0 if it succeeds; -1 if it fails.

Availability

This function is always available.

date_align_day Context Sensitive • Date Operations

(formerly Y2K_align_day)

ages dates to a specified day of the week or type of day.

date_align_day (align_mode, day_in_week);

align_mode You can select one of the following modes:

Mode Description

NO_CHANGE No change is made to the aged dates.

BUSINESSDAY_BACKWARD Ages dates to the closest business day before the actual
aged date. For example, if the aged date falls on Saturday,
WinRunner changes the date so that it falls on Friday.

BUSINESSDAY_FORWARD Ages dates to the closest business day after the actual
aged date. For example, if the aged date falls on a
Saturday, WinRunner changes the date so that it falls on a
Monday.

DAYOFWEEK_BACKWARD Ages dates to the closet week day before the actual aged
date. For example, if the aged date falls on a Sunday,
WinRunner changes the date so that it falls on a Friday.

DAYOFWEEK_FORWARD Ages dates to the closest week day after the actual aged
date. For example, if the aged date falls on a Sunday,
WinRunner changes the date so that it falls on a Monday.

TSL Reference Guide

160

day_in_week A day of the week (Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday, or Sunday.) This parameter is
only necessary when the DAYSOFWEEK_BACKWARD or
DAYSOFWEEK_FORWARD option is specified for
align_mode.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

date_calc_days_in_field Context Sensitive • Date Operations

(formerly Y2K_calc_days_in_field)

calculates the number of days between two date fields.

date_calc_days_in_field (field_name1, field_name2);

field_name1 The name of the 1st date field.

field_name2 The name of the 2nd date field.

SAMEDAY_BACKWARD Ages dates to the same day of the week, occurring before
the actual aged date. For example, if the original date falls
on a Thursday, and the aged date falls on a Friday,
WinRunner changes the date so that it falls on the
Thursday before the Friday.

SAMEDAY_FORWARD Ages dates to the same day of the week, occurring after
the actual aged date. For example, if the original date falls
on a Thursday, and the aged date falls on a Friday,
WinRunner changes the date so that it falls on the
Thursday after the Friday.

Mode Description

Chapter 7 • Alphabetical Reference

161

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

date_calc_days_in_string Context Sensitive • Date Operations

(formerly Y2K_calc_days_in_string)

calculates the number of days between two numeric strings.

date_calc_days_in_string (string1, string2);

string1 The name of the 1st string.

string2 The name of the 2nd string.

Return Values

This function returns 0 if it succeeds; -1 if it fails.

Availability

This function is always available.

TSL Reference Guide

162

date_change_field_aging Context Sensitive • Date Operations

(formerly Y2K_change_field_aging)

overrides the aging on a specified date object.

date_change_field_aging (field_name, aging_type, days, months, years);

field_name The name of the date object.

aging_type The type of aging to apply to the date object:

INCREMENTAL: Ages the date a specified number of days,
months, and years.

STATIC: Ages the date to a specific date, for example, "9, 2,
2005" (February 9, 2005). Note that the year must be in
YYYY format.

DEFAULT_AGING: Ages the date using the default aging
applied to the entire test, and ignores the days, months,
and years parameters.

days The number of days to increment the test script.

months The number of months to age the test script.

years The number of years to age the test script.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Chapter 7 • Alphabetical Reference

163

date_change_original_new_formats Context Sensitive • Date Operations

(formerly Y2K_change_original_new_formats)

overrides the automatic date format for an object.

date_change_original_new_formats (object_name, original_format, new_format
[, TRUE|FALSE]);

object_name The name of the object.

original_format The original date format used to identify the object.

new_format The new date format used to identify the object.

TRUE|FALSE TRUE tells WinRunner to use the original date format.
FALSE (default) tells WinRunner to use the new date
format. This parameter is optional.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

TSL Reference Guide

164

date_check Context Sensitive • Terminal Emulator

(formerly Y2K_check_date)

checks all dates in the current screen of a terminal emulator application.

date_check (filename [, start_column, start_row, end_column, end_row]);

filename The file containing the expected results of the date
checkpoint.

start_column/row The column/row at which the captured date begins.

end_column/row The column/row at which the captured date ends.

Return Values

This function return 0 if it succeeds or 1 if it fails.

Availability

This function is supported only for WinRunner7.01 and higher with Terminal
Emulator Add-in support.

date_disable_format Context Sensitive • Date Operations

(formerly Y2K_disable_format)

disables a date format.

date_disable_format (format);

format The name of a date format or "ALL" to choose all formats.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

165

date_enable_format Context Sensitive • Date Operations

(formerly Y2K_enable_format)

enables a date format.

date_enable_format (format);

format The name of a date format.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

date_field_to_Julian Context Sensitive • Date Operations

(formerly Y2K_field_to_Julian)

translates a date field to a Julian number.

date_field_to_Julian (date_field);

date_field The name of the date field.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

TSL Reference Guide

166

date_is_field Context Sensitive • Date Operations

(formerly Y2K_is_date_field)

determines whether a field contains a valid date.

date_is_field (field_name, min_year, max_year);

field_name The name of the field containing the date.

min_year Determines the minimum year allowed.

max_year Determines the maximum year allowed.

Return Values

This function returns 1 if the field contains a valid date and 0 if the field does not
contain a valid date.

Availability

This function is always available.

date_is_leap_year Context Sensitive • Date Operations

(formerly Y2K_is_leap_year)

determines whether a year is a leap year.

date_is_leap_year (year);

year A year, for example "1998".

Return Values

This function returns 1 if a year is a leap year, or 0 if it is not.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

167

date_is_string Context Sensitive • Date Operations

(formerly Y2K_is_date_string)

determines whether a string contains a valid date.

date_is_string (string, min_year, max_year);

string The numeric string containing the date.

min_year Determines the minimum year allowed.

max_year Determines the maximum year allowed.

Return Values

This function returns 1 if the string contains a valid date and 0 if the string does
not contain a valid date.

Availability

This function is always available.

TSL Reference Guide

168

date_leading_zero Context Sensitive • Date Operations

(formerly Y2K_leading_zero)

determines whether to add a zero before single-digit numbers when aging and translating
dates.

date_leading_zero (mode);

mode One of two modes can be specified: ON or OFF.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

date_month_language Context Sensitive • Date Operations

(formerly Y2K_month_language)

sets the language used for month names.

date_month_language (language);

language The language used for month names.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

169

date_set_aging Context Sensitive • Date Operations

(formerly Y2K_set_aging)

sets aging in the test script.

date_set_aging (format, type, days, months, years);

format The date format to which aging is applied (default is ALL).

aging_type The type of aging to apply to the test script:

INCREMENTAL: Ages the test script a specified number of
days, months, and years.

STATIC: Ages the test script to a specific date, for example,
"9, 2, 2005" (February 9, 2005).

DEFAULT_AGING: Ages the test script using the default
aging applied to the entire test, and ignores the days,
months, and years parameters.

days The number of days to increment the test script.

months The number of months to age the test script.

years The number of years to age the test script.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

TSL Reference Guide

170

date_set_attr Context Sensitive • Terminal Emulator

(formerly Y2K_set_attr)

sets the record configuration mode for a field.

date_set_attr (index);

index The record configuration mode (INDEX or ATTACHED
TEXT).

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is supported only for WinRunner 7.01 and higher with Terminal
Emulator Add-in support.

date_set_auto_date_verify Context Sensitive • Terminal Emulator

(formerly Y2K_set_auto_date_verify)

automatically generates a date checkpoint for the current screen in a terminal emulator
application.

date_set_auto_date_verify (ON|OFF);

ON|OFF If ON, WinRunner automatically generates a date
checkpoint for the current screen.

The date_set_auto_date_verify function automatically captures all date
information in a screen of a terminal emulator window and inserts a date
checkpoint in the test script.

Chapter 7 • Alphabetical Reference

171

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is supported only for WinRunner 7.01 and higher with Terminal
Emulator Add-in support.

date_set_capture_mode Context Sensitive • Terminal Emulator

(formerly Y2K_set_capture_mode)

determines how WinRunner captures dates in terminal emulator applications.

date_set_capture_mode (mode);

mode The date capture mode. Use one of the following modes:

FIELD_METHOD: Captures dates in the context of the
screens and fields in your terminal emulator application
(Context Sensitive). This is the default mode.

POSITION_METHOD: Identifies and captures dates
according to the unformulated view of the screen.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is supported only for WinRunner 7.01 and higher with Terminal
Emulator Add-in support.

TSL Reference Guide

172

date_set_run_mode Context Sensitive • Date Operations

(formerly Y2K_set_replay_mode)

sets the Date Operations run mode in the test script.

date_set_run_mode (mode);

mode The Date Operations run mode. Use one of the following
modes:

NO_CHANGE: No change is made to objects containing
dates during the test run.

AGE: Performs aging during the test run.

TRANSLATE: Translates dates to the new date format.

TRANSLATE_AND_AGE: Translates date formats and
performs aging.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

173

date_set_system_date Context Sensitive • Date Operations

(formerly Y2K_set_system_date)

sets the system date and time.

date_set_system_date (year, month, day [, hour, minute, second]);

year The year, for example, "2005".

month The month, for example, "8" (August).

day The day, for example, "15".

hour The hour, for example, "2". (optional)

minute The minute, for example, "15". (optional)

second The second, for example, "30". (optional)

Return Values

This function always returns 0.

date_set_year_limits Context Sensitive • Date Operations

(formerly Y2K_set_year_limits)

sets the minimum and maximum years valid for date verification and aging.

date_set_year_limits (min_year, max_year);

min_year The minimum year to be used during date verification and
aging.

max_year The maximum year to be used during date verification and
aging.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

TSL Reference Guide

174

date_set_year_threshold Context Sensitive • Date Operations

(formerly Y2K_set_year_threshold)

sets the year threshold.

date_set_year_threshold (number);

number The threshold number.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

date_string_to_Julian Context Sensitive • Date Operations

(formerly Y2K_string_to_Julian)

translates a string to a Julian number.

date_string_to_Julian (string);

string The numeric date string.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

175

date_type_mode Context Sensitive • Date Operations

(formerly Y2K_type_mode)

disables overriding of automatic date recognition for all date objects in a GUI application.

date_type_mode (mode);

mode The type mode. Use one of the following modes:

DISABLE_OVERRIDE: Disables all overrides on date
objects.

ENABLE_OVERRIDE: Enables all overrides on date objects.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

db_check Context Sensitive • Database

compares current database data to expected database data.

db_check (checklist, expected_results_file [, max_rows [, paramater_array]]);

checklist The name of the checklist specifying the checks to
perform.

expected_results_file The name of the file storing the expected database data.

max_rows The maximum number of rows retrieved in a database. If
no maximum is specified, then by default the number of
rows is not limited. If you change this parameter in a
db_check statement recorded in your test script, you must
run the test in Update mode before you run it in Verify
mode.

TSL Reference Guide

176

paramater_array The array of parameters for the SQL statement. For
information on working with this advanced feature, refer
to the “Checking Databases” chapter in the WinRunner
User’s Guide.

Return Values

This function returns 1 for a successful bitmap capture or comparison. Otherwise,
this function returns 0. For more information, see “General Return Values,” on
page 118 and “Return Values for Database Functions,” on page 122.

Availability

This function is always available.

db_connect Context Sensitive • Database

creates a new database session and establishes a connection to an ODBC database.

db_connect (session_name, connection_string);

session_name The logical name of the database session.

connection_string The connection parameters to the ODBC database.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118 and “Return Values for Database
Functions,” on page 122.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

177

db_disconnect Context Sensitive • Database

disconnects from the database and ends the database session.

db_disconnect (session_name);

session_name The logical name of the database session.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118 and “Return Values for Database
Functions,” on page 122.

Availability

This function is always available.

db_dj_convert Context Sensitive • Database

runs a Data Junction export file (*.djs file).

db_dj_convert (djs_file [, output_file [, headers [, record_limit]]]);

djs_file The Data Junction export file.

output_file An optional parameter to override the name of the target
file.

headers An optional Boolean parameter that will include or
exclude the column headers from the Data Junction
export file.

record_limit The maximum number of records that will be converted.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118 and “Return Values for Database
Functions,” on page 122.

Availability

This function is only available for users working with Data Junction.

TSL Reference Guide

178

db_execute_query Context Sensitive • Database

executes the query based on the SQL statement and creates a record set.

db_execute_query (session_name, SQL, record_number);

session_name The logical name of the database session.

SQL The SQL statement.

record_number An out parameter returning the number of records in the
result query.

For information on this advanced feature, refer to the “Checking Databases”
chapter in the WinRunner User’s Guide.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118 and “Return Values for Database
Functions,” on page 122.

Availability

This function is always available.

db_get_field_value Context Sensitive • Database

returns the value of a single field in the database.

db_get_field_value (session_name, row_index, column);

session_name The logical name of the database session.

row_index The numeric index of the row. (The first row is always
numbered “#0”.)

column The name of the field in the column or the numeric index
of the column within the database. (The first column is
always numbered “#0”.)

Chapter 7 • Alphabetical Reference

179

Return Values

In case of an error, an empty string will be returned. For more information, see
“General Return Values,” on page 118 and “Return Values for Database
Functions,” on page 122.

Availability

This function is always available.

db_get_headers Context Sensitive • Database

returns the number of column headers in a query and the content of the column headers,
concatenated and delimited by tabs.

db_get_headers (session_name, header_count, header_content);

session_name The logical name of the database session.

header_count The number of column headers in the query.

header_content The column headers concatenated and delimited by tabs.
Note that if this string exceeds 1024 characters, it is
truncated.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118 and “Return Values for Database
Functions,” on page 122.

Availability

This function is always available.

db_get_last_error Context Sensitive • Database

returns the last error message of the last ODBC or Data Junction operation.

db_get_last_error (session_name, error);

session_name The logical name of the database session.

error The error message.

TSL Reference Guide

180

Note: When working with Data Junction, the session_name parameter is ignored.

Return Values

If there is no error message, an empty string will be returned.

Availability

This function is always available.

db_get_row Context Sensitive • Database

returns the content of the row, concatenated and delimited by tabs.

db_get_row (session_name, row_index, row_content);

session_name The logical name of the database session.

row_index The numeric index of the row. (The first row is always
numbered “0”.)

row_content The row content as a concatenation of the fields values,
delimited by tabs.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118 and “Return Values for Database
Functions,” on page 122.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

181

db_record_check Context Sensitive • Database

compares information that appears in the application under test during a test run with the
current values in the corresponding record(s) in your database. You insert db_record_check
statements by using the Runtime Record Verification wizard. For more information, refer to
the WinRunner User’s Guide.

db_record_check (ChecklistFileName , SuccessConditions, RecordNumber);

ChecklistFileName A file created by WinRunner and saved in the test’s
checklist folder. The file contains information about the
data to be captured during the test run and its
corresponding field in the database. The file is created
based on the information entered in the Runtime Record
Verification wizard.

SuccessConditions Contains one of the following values:

DVR_ONE_OR_MORE_MATCH - The checkpoint passes if
one or more matching database records are found.

DVR_ONE_MATCH - The checkpoint passes if exactly one
matching database record is found.

DVR_NO_MATCH - The checkpoint passes if no matching
database records are found.

RecordNumber An out parameter returning the number of records in the
database.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118 and “Return Values for Database
Functions,” on page 122.

Availability

This function is always available.

TSL Reference Guide

182

db_write_records Context Sensitive • Database

writes the record set into a text file delimited by tabs.

db_write_records (session_name, output_file [, headers [, record_limit]]);

session_name The logical name of the database session.

output_file The name of the text file in which the record set is written.

headers An optional Boolean parameter that will include or
exclude the column headers from the record set written
into the text file.

record_limit The maximum number of records in the record set to be
written into the text file. A value of NO_LIMIT (the default
value) indicates there is no maximum limit to the number
of records in the record set.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118 and “Return Values for Database
Functions,” on page 122.

Availability

This function is always available.

dbl_click Analog • Input Device

double-clicks a mouse button.

dbl_click (mouse_button [, time]);

mouse_button The mouse button to activate. The names ("Left," "Right,"
"Middle") are defined by the XR_INP_MKEYS system
parameter in the system configuration file.

time The interval that elapses before the click is entered, in
seconds. The default, if no time is specified, is 0.

Chapter 7 • Alphabetical Reference

183

Return Values

This function always returns 0.

Availability

This function is always available.

ddt_close Context Sensitive • Data-Driven Test

closes a data table file.

ddt_close (data_table_name);

data_table_name The name of the data table. The name may be the table
variable name, the Microsoft Excel file or a tabbed text file
name, or the full path and file name of the table. The first
row in the file contains the names of the parameters.

Note: ddt_close does NOT save changes to the data table. If you make any
changes to the data table, you must use the ddt_save function to save your
changes before using ddt_close to close the table.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

TSL Reference Guide

184

ddt_close_all_tables Context Sensitive • Data-Driven Test

closes all open tables in all open tests.

ddt_close_all_tables();

Note: This close function includes any tables that are open in the table editor,
tables that were opened using the ddt_open or ddt_show functions or using the
DataDriven Tests Wizard.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

ddt_export Context Sensitive • Data-Driven Test

exports the information of one data table file into a different data table file.

ddt_export (data_table_filename1, data_table_filename2);

data_table_filename1 The source data table filename.

data_table_filename2 The destination data table filename.

Note: You must use a ddt_open statement to open the source data table before
you can use any other ddt_ functions.

Chapter 7 • Alphabetical Reference

185

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

ddt_get_current_row Context Sensitive • Data-Driven Test

retrieves the active row of a data table.

ddt_get_current_row (data_table_name, out_row);

data_table_name The name of the data table. The name may be the table
variable name, the Microsoft Excel file or a tabbed text file
name, or the full path and file name of the table. The first
row in the file contains the names of the parameters. This
row is labeled row 0.

out_row The output variable that stores the active row in the data
table.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

ddt_get_parameters Context Sensitive • Data-Driven Test

returns a list of all parameters in a data table.

ddt_get_parameters (table, params_list, params_num);

table The pathname of the data table.

params_list This out parameter returns the list of all parameters in the
data table, separated by tabs.

TSL Reference Guide

186

params_num This out parameter returns the number of parameters in
params_list.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

ddt_get_row_count Context Sensitive • Data-Driven Test

retrieves the number of rows in a data table.

ddt_get_row_count (data_table_name, out_rows_count);

data_table_name The name of the data table. The name may be the table
variable name, the Microsoft Excel file or a tabbed text file
name, or the full path and file name of the table. The first
row in the file contains the names of the parameters.

out_rows_count The output variable that stores the total number of rows in
the data table.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

187

ddt_is_parameter Context Sensitive • Data-Driven Test

returns whether a parameter in a data table is valid.

ddt_is_parameter (data_table_name, parameter);

data_table_name The name of the data table. The name may be the table
variable name, the Microsoft Excel file or a tabbed text file
name, or the full path and file name of the table.

parameter The parameter name to check in the data table.

Return Values

This functions returns TRUE when rc=0. The function returns FALSE in all other
cases.

Availability

This function is always available.

ddt_next_row Context Sensitive • Data-Driven Test

changes the active row in a data table to the next row.

ddt_next_row (data_table_name);

data_table_name The name of the data table. The name may be the table
variable name, the Microsoft Excel file or a tabbed text file
name, or the full path and file name of the table. The first
row in the file contains the names of the parameters.

Return Values

If the active row is the last row in a data table, then the E_OUT_OF_RANGE value
is returned.

Availability

This function is always available.

TSL Reference Guide

188

ddt_open Context Sensitive • Data-Driven Test

creates or opens a data table file so that WinRunner can access it.

ddt_open (data_table_name [, mode]);

data_table_name The name of the data table. The name may be the table
variable name, the Microsoft Excel file or a tabbed text file
name, or the full path and file name of the table. The first
row in the file contains the names of the parameters. This
row is labeled row 0.

mode The mode for opening the data table: DDT_MODE_READ
(read-only) or DDT_MODE_READWRITE (read or write).
When the mode is not specified, the default mode is
DDT_MODE_READ.

Note: If you make any changes to the data table, you must use the ddt_save
function to save your changes before using ddt_close to close the table.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

189

ddt_report_row Context Sensitive • Data-Driven Test

reports the active row in a data table to the test results.

ddt_report_row (data_table_name);

data_table_name The name of the data table. The name may be the table
variable name, the Microsoft Excel file or a tabbed text file
name, or the full path and file name of the table. The first
row in the file contains the names of the parameters. This
row is labeled row 0.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

ddt_save Context Sensitive • Data-Driven Test

saves the information in a data table.

ddt_save (data_table_name);

data_table_name The name of the data table. The name may be the table
variable name, the Microsoft Excel file or a tabbed text file
name, or the full path and file name of the table.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

TSL Reference Guide

190

ddt_set_row Context Sensitive • Data-Driven Test

sets the active row in a data table.

ddt_set_row (data_table_name, row);

data_table_name The name of the data table. The name may be the table
variable name, the Microsoft Excel file or a tabbed text file
name, or the full path and file name of the table. The first
row in the file contains the names of the parameters. This
row is labeled row 0.

row The new active row in the data table.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

ddt_set_val Context Sensitive • Data-Driven Test

sets a value in the current row of the data table.

ddt_set_val (data_table_name, parameter, value);

data_table_name The name of the data table. The name may be the table
variable name, the Microsoft Excel file or a tabbed text file
name, or the full path and file name of the table. This row
is labeled row 0.

parameter The name of the column into which the value will be
inserted.

value The value to be written into the table.

Chapter 7 • Alphabetical Reference

191

Notes:

You can only use this function if the data table was opened in
DDT_MODE_READWRITE (read or write mode).

To save the new or modified contents of the table, add a ddt_save statement after
the ddt_set_val statement. At the end of your test, use a ddt_close statement to
close the table.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

ddt_set_val_by_row Context Sensitive • Data-Driven Test

sets a value in a specified row of the data table.

ddt_set_val_by_row (data_table_name, row, parameter, value);

data_table_name The name of the data table. The name may be the table
variable name, the Microsoft Excel file or a tabbed text file
name, or the full path and file name of the table. The first
row in the file contains the names of the parameters. This
row is labeled row 0.

row The row number in the table.

parameter The name of the column into which the value will be
inserted.

value The value to be written into the table.

TSL Reference Guide

192

Notes:

You can only use this function if the data table was opened in
DDT_MODE_READWRITE (read or write mode).

To save the new or modified contents of the table, add a ddt_save statement after
the ddt_set_val statement. At the end of your test, use a ddt_close statement to
close the table.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

ddt_show Context Sensitive • Data-Driven Test

shows or hides the table editor of a specified data table.

ddt_show (data_table_name, show_flag);

data_table_name The name of the data table. The name may be the table
variable name, the Microsoft Excel file or a tabbed text file
name, or the full path and file name of the table.

show_flag The value indicating whether the editor is to be shown.
The show_flag value is 1 if the table editor is to be shown
and is 0 if the table editor is to be hidden.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

193

ddt_update_from_db Context Sensitive • Data-Driven Test

imports data from a database into a data table.

ddt_update_from_db (data_table_name, file, out_row_count [, max_rows]);

data_table_name The name of the data table. The name may be the table
variable name, the Microsoft Excel file or a tabbed text file
name, or the full path and file name of the table.

file Either an *.sql file containing an ODBC query or a *.djs file
containing a conversion defined by Data Junction.

out_row_count An out parameter containing the number of rows retrieved
from the data table.

max_rows An in parameter specifying the maximum number of rows
to be retrieved from a database. If no maximum is
specified, then by default the number of rows is not
limited.

Note: You must use a ddt_open statement to open the data table in READWRITE
mode before you can use this function.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

TSL Reference Guide

194

ddt_val Context Sensitive • Data-Driven Test

returns the value of a parameter in the active row in a data table.

ddt_val (data_table_name, parameter);

data_table_name The name of the data table. The name may be the table
variable name, the Microsoft Excel file or a tabbed text file
name, or the full path and file name of the table. The first
row in the file contains the names of the parameters.

parameter The name of the parameter in the data table.

Return Values

This functions returns the value of a parameter in the active row in a data table.

In the case of an error, this function returns an empty string.

Availability

This function is always available.

ddt_val_by_row Context Sensitive • Data-Driven Test

returns the value of a parameter in the specified row in a data table.

ddt_val_by_row (data_table_name, row_number, parameter);

data_table_name The name of the data table. The name may be the table
variable name, the Microsoft Excel file or a tabbed text file
name, or the full path and file name of the table. The first
row in the file contains the names of the parameters. This
row is labeled row 0.

row_number The number of the row in the data table.

parameter The name of the parameter in the data table.

Chapter 7 • Alphabetical Reference

195

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

declare_rendezvous Standard • Load Testing

declares a rendezvous.

declare_rendezvous (rendezvous_name);

rendezvous_name The name of the rendezvous. This must be a string
constant and not a variable or an expression. The
rendezvous_name can be a maximum of 128 characters. It
cannot contain any spaces.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for LoadRunner GUI Vusers only.

declare_transaction Standard • Load Testing

declares a transaction.

declare_transaction (transaction_name);

transaction_name The name of the transaction. This must be a string
constant and not a variable or an expression. The
transaction_name can be a maximum of 128 characters. It
cannot contain any spaces. The first character cannot be
number.

TSL Reference Guide

196

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for LoadRunner GUI Vusers only.

define_object_exception Standard • Exception Handling

defines an object exception.

define_object_exception (exception_name, handler, window, object, property
[, value]);

exception_name The name of the exception.

handler The name of the handler function.

window The logical name of the window.

object The logical name of the object.

property An object property.

value The value of the object property to detect.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

197

define_popup_exception Standard • Exception Handling

defines a popup exception.

define_popup_exception (exception_name, handler, window);

exception_name The name of the exception.

handler The name of the handler function. The handler can be a
built-in handler or a user-defined handler. For a list of
built-in handlers, see below.

window The name of the popup window.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

Built-In Handler Function Description

win_press_cancel Clicks the Cancel button in the window

win_press_ok Clicks the OK button in the window

win_press_return Presses the Return key (the equivalent of clicking the
default button in the window

TSL Reference Guide

198

define_tsl_exception Standard • Exception Handling

defines a TSL exception.

define_tsl_exception (exception_name, handler, return_code [, function]);

exception_name The name of the exception.

handler The name of the handler function.

return_code The return code to detect. To detect any return code with a
value less than zero, you can set E_ANY_ERROR as the
argument.

function The TSL function to monitor.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

delete Standard • Array

removes an element from an array.

delete array [subscript];

array The array from which the element is deleted.

subscript An expression that specifies the subscript of the array
element to delete.

Return Values

This function always returns an empty string.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

199

delete_record_attr Customization • Custom Record

removes a custom property that was registered using add_record_attr.

delete_record_attr (attr_name [, dll_name, query_func_name, verify_func_nam]);

attr_name The name of the custom property to remove. Note that
you cannot remove any standard WinRunner properties.

dll_name The full path of the DLL (Dynamic Link Library) in which
the query and verify functions are defined.

query_func_name The name of the user-defined query function that was
called by the add_record_attr statement which registered
the custom property.

verify_func_name The name of the verify function that was called by the
add_record_attr statement which registered the custom
property (either a WinRunner standard property
verification function or a custom property verification
function included in the DLL).

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

TSL Reference Guide

200

dlph_edit_set Context Sensitive • Delphi

replaces the entire contents of a Delphi edit object.

dlph_edit_set (edit, text);

edit The logical name of the Delphi edit object.

text The new contents of the Delphi edit object.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available only for WinRunner with Delphi support.

dlph_list_select_item Context Sensitive • Delphi

selects a Delphi list item.

dlph_list_select_item (list, item);

list The logical name of the Delphi list.

item The item to select in the Delphi list.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available only for WinRunner with Delphi support.

Chapter 7 • Alphabetical Reference

201

dlph_obj_get_info Context Sensitive • Delphi

retrieves the value of a Delphi object.

dlph_obj_get_info (name, property, out_value);

name The logical name of the Delphi object.

property Any property associated with the Delphi object.

out_value The value of the property.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available only for WinRunner with Delphi support.

dlph_obj_set_info Context Sensitive • Delphi

sets the value of a Delphi object.

dlph_obj_set_info (name, property, in_value);

name The logical name of the Delphi object.

property Any property associated with the Delphi object.

in_value The new value of the Delphi property.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available only for WinRunner with Delphi support.

TSL Reference Guide

202

dlph_panel_button_press Context Sensitive • Delphi

clicks a button within a Delphi panel.

dlph_panel_button_press (panel, button, x, y);

panel The object.

button The Delphi name.

x, y The location that is pressed on the button, expressed as x
and y (pixel) coordinates, relative to the top left corner of
the button.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available only for WinRunner with Delphi support.

Chapter 7 • Alphabetical Reference

203

dos_system Standard • Operating System

executes a DOS system command from within a WinRunner test script.

dos_system (expression);

expression A string expression specifying the system command to be
executed.

Note: When using MS-DOS Prompt (Windows 95/98), or command.com
(Windows NT), then the expression in dos_system is limited to 127 characters.
When using Command Prompt (Windows NT), the expression can hold more
characters.

If the limitation is problematic, try to use shorter commands and split long
commands into shorter ones. For example, if you want to copy file1 to file2 and
both files have very long names, instead of using dos_system("copy file1 file2") use
a third file with a shorter name (e.g. tmpfile) in the following commands:

dos_system("copy file1 tmpfile") ;
dos_system("copy tmpfile file2") ;

Return Values

The return value of the function is the return value of the DOS system command
that was executed.

Availability

This function is available for WinRunner and LoadRunner GUI Vusers running on
PC platforms only. To execute Windows executables, use invoke_application. To
execute UNIX system commands, use system. To execute OS2 commands, use
os2_system.

TSL Reference Guide

204

edit_activate Context Sensitive • Oracle

double-clicks an object in an Oracle or Java application.

edit_activate (object);

object The logical name of the object.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WinRunner with Oracle or Java Add-in support.

edit_check_info Context Sensitive • Edit Object

checks the value of an edit object property.

edit_check_info (edit, property, property_value);

edit The logical name of the edit object.

property The property to check.

property_value The property value.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

205

edit_check_selection Context Sensitive • Edit Object

checks that a string is selected.

edit_check_selection (edit, selected_string);

edit The logical name of the edit object.

selected_string The selected string. The string is limited to 256 characters.
It cannot be evaluated automatically when used with the
Function Generator.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

edit_check_text Context Sensitive • Edit Object

checks the contents of an edit object.

edit_check_text (edit, text, case_sensitive);

edit The logical name of the edit object.

text The contents of the edit object (up to 256 characters).

case_sensitive Indicates whether the comparison is case sensitive. This
value is either TRUE or FALSE.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

TSL Reference Guide

206

edit_delete Context Sensitive • Edit Object

deletes the contents of an edit object.

edit_delete (edit, start_column, end_column);

edit The logical name of the edit object.

start_column The column at which the text starts.

end_column The column at which the text ends. Note that if this is
greater than the last column of the first line, then part of
the following line will also be deleted.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

edit_delete_block Context Sensitive • Edit Object

deletes a text block from an edit object.

edit_delete_block (edit, start_row, start_column, end_row, end_column);

edit The logical name of the edit object.

start_row The row at which the text block starts.

start_column The column at which the text block starts.

end_row The row at which the text block ends.

end_column The column at which the text block ends.

Chapter 7 • Alphabetical Reference

207

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

edit_get_block Context Sensitive • Edit Object

returns block of text in an edit object.

edit_get_block (edit, start_row, start_column, end_row, end_column, out_string);

edit The logical name of the edit object.

start_row The row at which the text block starts.

start_column The column at which the text block starts.

end_row The row at which the text block ends.

end_column The column at which the text block ends.

out_string The output variable that stores the text string.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

TSL Reference Guide

208

edit_get_info Context Sensitive • Edit Object

returns the value of an edit object property.

edit_get_info (edit, property, out_value);

edit The logical name of the edit object.

property Any of the properties listed in the User’s Guide.

out_value The output variable that stores the value of the specified
property.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

edit_get_row_length Context Sensitive • Edit Object

returns the length of a row in an edit object.

edit_get_row_length (edit, row, out_length);

edit The logical name of the edit object.

row The row to measure.

out_length The output variable that stores the number of characters
in the row.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

209

edit_get_rows_count Context Sensitive • Edit Object

returns the number of rows written in an edit object.

edit_get_rows_count (edit, out_number);

edit The logical name of the edit object.

out_number The output variable that stores the number of rows written
in the edit object.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

edit_get_selection Context Sensitive • Edit Object

returns the selected string in an edit object.

edit_get_selection (edit, out_string);

edit The logical name of the edit object.

out_string The output variable that stores the selected string. The
string is limited to 256 characters. It cannot be evaluated
automatically when used with the Function Generator.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

TSL Reference Guide

210

edit_get_selection_pos Context Sensitive• Edit Object

returns the position at which the selected block starts and ends.

edit_get_selection_pos (edit, out_start_row, out_start_column, out_end_row,
out_end_column);

edit The logical name of the edit object.

out_start_row The output variable which stores the row at which the
selected block starts.

out_start_column The output variable which stores the column at which the
selected block starts.

out_end_row The output variable which stores the row at which the
selected block ends.

out_end_column The output variable which stores the column at which the
selected block ends.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

211

edit_get_text Context Sensitive • Edit Object

returns the text in an edit object.

edit_get_text (edit, out_string);

edit The logical name of the edit object.

out_string The output variable that stores the string found in the edit
object.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

edit_insert Context Sensitive • Edit Object

inserts text in the first line of an edit object.

edit_insert (edit, text, column);

edit The logical name of the edit object.

text The text to be inserted in the edit object.

column The column at which the insertion is made.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

TSL Reference Guide

212

edit_insert_block Context Sensitive • Edit Object

inserts text in a multi-line edit object.

edit_insert_block (edit, text, row, column);

edit The logical name of the edit object.

text The text to be inserted in the edit object.

row The row at which the insertion is made.

column The column at which the insertion is made.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

edit_replace Context Sensitive • Edit Object

replaces the contents of an edit object.

edit_replace (edit, text, start_column, end_column);

edit The logical name of the edit object.

text The new contents of the edit object.

start_column The column at which the text block starts.

end_column The column at which the text block ends.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

213

edit_replace_block Context Sensitive • Edit Object

replaces a block of text in an edit object.

edit_replace_block (edit, text, start_row, start_column, end_row, end_column);

edit The logical name of the edit object.

text The new contents of the edit object.

start_row The row at which the text block starts.

start_column The column at which the text block starts.

end_row The row at which the text block ends.

end_column The column at which the text block ends.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

edit_set Context Sensitive • Edit Object

replaces the entire contents of an edit object.

edit_set (edit, text);

edit The logical name of the edit object.

text The new contents of the edit object.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

TSL Reference Guide

214

edit_set_focus Context Sensitive • Edit Object

focuses on an object in an Oracle application.

edit_set_focus (object);

object The logical name of the object.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

edit_set_insert_pos Context Sensitive • Edit Object

places the cursor at a specified point in an edit object.

edit_set_insert_pos (edit, row, column);

edit The logical name of the edit object.

row The row position at which the insertion point is placed.

column The column position at which the insertion point is
placed.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

215

edit_set_selection Context Sensitive • Edit Object

selects text in an edit object.

edit_set_selection (edit, start_row, start_column, end_row, end_column);

edit The logical name of the edit object.

start_row The row at which the selection starts.

start_column The column at which the selection starts.

end_row The row at which the selection ends.

end_column The column at which the selection ends.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

edit_type Context Sensitive • Edit Object

types a string in an edit object.

edit_type (edit, text);

edit The logical name of the edit object.

text The string to type into the edit object.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

TSL Reference Guide

216

edit_wait_info Context Sensitive • Edit Object

waits for the value of an edit object property.

edit_wait_info (edit, property, value, time);

edit The logical name of the edit object.

property Any of the properties listed in the WinRunner User’s Guide.

value The property value.

time The maximum amount of time the test will wait before
resuming execution.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

end_transaction Standard • Load Testing

marks the end of a transaction for performance analysis.

end_transaction (transaction [, status]);

transaction A string, with no spaces, naming the transaction.

status The status of the transaction: pass (0), or fail (any non-
zero value). If no value is specified, the default value is
pass.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for LoadRunner GUI Vusers only.

Chapter 7 • Alphabetical Reference

217

error_message Standard • Load Testing

sends an error message to the controller.

error_message (message);

message Any string.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for LoadRunner GUI Vusers only.

EURO_check_currency Context Sensitive • EURO

captures and compares the currencies in a window.

EURO_check_currency (file_name, x1, y1, x2, y2);

file_name The file containing the expected results of the EURO
checkpoint.

x1, y1 The position of the upper left corner of the area to be
checked.

x2, y2 The position of the lower right corner of the area to be
checked.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WinRunner EURO only.

TSL Reference Guide

218

EURO_compare_columns Context Sensitive • EURO

compares two currency columns (dual display) and returns the number of mismatches.

EURO_compare_columns (check_name, column1_field1, column1_fieldn, column2_field1,
column2_fieldn);

check_name The file name that stores the data.

column1_field1 The first column first field to be included in the
comparison.

column1_fieldn The first column last field to be included in the
comparison.

column2_field1 The second column first field to be included in the
comparison.

column2_fieldn The second column last field to be included in the
comparison.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WinRunner EURO only.

Chapter 7 • Alphabetical Reference

219

EURO_compare_fields Context Sensitive • EURO

compares two fields while converting.

EURO_compare_fields (field1, field2, currency1, currency2, align_mode, align_value);

field1 The name of the first field.

field2 The name of the second field.

currency1 The country whose currency you want to compare to
currency_2 One of the following countries can be
specified: Austria, Belgium, Finland, France, Germany,
Ireland, Italy, Luxembourg, Netherlands, Portugal, Spain,
Great Britain, Denmark, Greece, Sweden, and EURO.

currency2 The country whose currency is compared to currency_1.
One of the following countries can be specified: Austria,
Belgium, Finland, France, Germany, Ireland, Italy,
Luxembourg, Netherlands, Portugal, Spain, Great Britain,
Denmark, Greece, Sweden, and EURO.

align_mode One of the following modes can be specified:

ALIGN_NONE: No currency alignment

ALIGN_ROUND: Rounds the converted currency to the
nearest multiple specified in align_value.

ALIGN_SUFFIX_DOWN: Rounds down the converted
currency value to end with the suffix value indicated in
align_value.

ALIGN_SUFFIX_UP: Rounds up the converted currency
value to end with the suffix value indicated in align_value.

ALIGN_TRUNC: Rounds the converted currency value
down to the nearest unit.

align_value The value to align the currency.

TSL Reference Guide

220

Return Values

The EURO_compare_fields function returns E_OK or E_DIFF.

Availability

This function is available for WinRunner EURO only.

EURO_compare_numbers Context Sensitive • EURO

compares two numbers while converting.

EURO_compare_numbers (number1, number2, currency1, currency2, align_mode,
align_value);

number1 The first number to compare.

number2 The second number to compare.

currency1 The country whose currency you want to compare to
currency_2 One of the following countries can be
specified: Austria, Belgium, Finland, France, Germany,
Ireland, Italy, Luxembourg, Netherlands, Portugal, Spain,
Great Britain, Denmark, Greece, Sweden, and EURO.

currency2 The country whose currency is compared to currency_1.
One of the following countries can be specified: Austria,
Belgium, Finland, France, Germany, Ireland, Italy,
Luxembourg, Netherlands, Portugal, Spain, Great Britain,
Denmark, Greece, Sweden, and EURO.

align_mode One of the following modes can be specified:

ALIGN_NONE: No currency alignment

ALIGN_ROUND: Rounds the converted currency to the
nearest multiple specified in align_value.

ALIGN_SUFFIX_DOWN: Rounds down the converted
currency value to end with the suffix value indicated in
align_value.

Chapter 7 • Alphabetical Reference

221

ALIGN_SUFFIX_UP: Rounds up the converted currency
value to end with the suffix value indicated in align_value.

ALIGN_TRUNC: Rounds the converted currency value
down to the nearest unit.

align_value The value to align the currency.

Return Values

The EURO_compare_numbers function returns E_OK or E_DIFF.

Availability

This function is available for WinRunner EURO only.

EURO_convert_currency Context Sensitive • EURO

returns the converted currency value between two currencies.

EURO_convert_currency (number, original_currency, new_currency, align_mode,
align_value);

number The amount of currency to be converted.

original_currency The country from whose currency you want to compute
its value in the new_currency. One of the following
countries can be specified: Austria, Belgium, Finland,
France, Germany, Ireland, Italy, Luxembourg,
Netherlands, Portugal, Spain, Great Britain, Denmark,
Greece, Sweden, and EURO.

new_currency The country to whose currency the original_currency is
being computed. One of the following countries can be
specified: Austria, Belgium, Finland, France, Germany,
Ireland, Italy, Luxembourg, Netherlands, Portugal, Spain,
Great Britain, Denmark, Greece, Sweden, and EURO.

align_mode One of the following modes can be specified:

ALIGN_NONE: No currency alignment

ALIGN_ROUND: Rounds the converted currency to the
nearest multiple specified in align_value.

TSL Reference Guide

222

ALIGN_SUFFIX_DOWN: Rounds down the converted
currency value to end with the suffix value indicated in
align_value.

ALIGN_SUFFIX_UP: Rounds up the converted currency
value to end with the suffix value indicated in align_value.

ALIGN_TRUNC: Rounds the converted currency value
down to the nearest unit.

align_value The value to align the currency.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WinRunner EURO only.

EURO_override_field Context Sensitive • EURO

overrides the original currency in a field to a new currency.

EURO_override_field (field_name, original_currency, new_currency, align_mode,
align_value);

field_name The name of the field in which you want to override the
currency.

original_currency The country from whose currency you want to override to
new_currency. One of the following countries can be
specified: Austria, Belgium, Finland, France, Germany,
Ireland, Italy, Luxembourg, Netherlands, Portugal, Spain,
Great Britain, Denmark, Greece, Sweden, and EURO.

new_currency The country to whose currency the original_currency is
being overridden. One of the following countries can be
specified: Austria, Belgium, Finland, France, Germany,
Ireland, Italy, Luxembourg, Netherlands, Portugal, Spain,
Great Britain, Denmark, Greece, Sweden, and EURO.

Chapter 7 • Alphabetical Reference

223

align_mode One of the following modes can be specified:

ALIGN_NONE: No currency alignment

ALIGN_ROUND: Rounds the converted currency to the
nearest multiple specified in align_value.

ALIGN_SUFFIX_DOWN: Rounds down the converted
currency value to end with the suffix value indicated in
align_value.

ALIGN_SUFFIX_UP: Rounds up the converted currency
value to end with the suffix value indicated in align_value.

ALIGN_TRUNC: Rounds the converted currency value
down to the nearest unit.

align_value The value to align the currency.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WinRunner EURO only.

EURO_set_auto_currency_verify Context Sensitive • EURO

activates/deactivates automatic EURO verification.

EURO_set_auto_currency_verify (mode);

mode The mode can be set to ON or OFF.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WinRunner EURO only.

TSL Reference Guide

224

EURO_set_capture_mode Context Sensitive • EURO

determines how WinRunner EURO captures currency in terminal emulator applications.

EURO_set_capture_mode (capture_mode);

capture_mode The currency capture mode. One of the following modes
can be specified:

FIELD_METHOD: Captures currencies in the context of
the screens and fields in your terminal emulator
application (Context Sensitive). This is the default mode.

POSITION_METHOD: Identifies and captures currencies
according to the unformatted view of the screen.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WinRunner EURO only.

EURO_set_conversion_mode Context Sensitive • EURO

sets the EURO conversion run mode in the test script.

EURO_set_conversion_mode (conversion_mode);

conversion_mode The EURO conversion run mode. One of the following
modes can be specified:

NO_CHANGE: No change is made to objects containing
numeric values during the test run.

CONVERT: Performs EURO conversion during the test run.

Chapter 7 • Alphabetical Reference

225

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WinRunner EURO only.

EURO_set_conversion_rate Context Sensitive • EURO

sets the conversion rate between the EURO currency and a national currency.

EURO_set_conversion_rate (currency, rate);

currency The country whose currency rate you want to set. One of
the following countries can be specified: Austria, Belgium,
Finland, France, Germany, Ireland, Italy, Luxembourg,
Netherlands, Portugal, Spain, Great Britain, Denmark,
Greece, Sweden, and EURO.

rate The conversion rate of the specified country’s currency to
the EURO.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WinRunner EURO only.

TSL Reference Guide

226

EURO_set_cross_rate Context Sensitive • EURO

sets the cross rate method between two currencies.

EURO_set_cross_rate (currency1, currency2, conversion_mode, decimal, direct_rate);

currency1 The country whose currency you want to compare to
currency2 One of the following countries can be specified:
Austria, Belgium, Finland, France, Germany, Ireland, Italy,
Luxembourg, Netherlands, Portugal, Spain, Great Britain,
Denmark, Greece, Sweden, and EURO.

currency2 The country whose currency is compared to currency_1.
One of the following countries can be specified: Austria,
Belgium, Finland, France, Germany, Ireland, Italy,
Luxembourg, Netherlands, Portugal, Spain, Great Britain,
Denmark, Greece, Sweden, and EURO.

conversion_mode The cross rate method of conversion. You can specify one
of the following rates:

EURO Triangulation (default): indicates that the cross rates
conversion from one national currency unit into another
is done via the EURO currency, and that the EURO
amount is rounded to no less than three decimal places.

Direct Cross Rate: indicates that the conversion is not
done via triangulation.

decimal Indicates the number of decimals to which the EURO
amount is rounded (default is set to 3).

direct_rate The direct cross rate to be used for the conversion between
the two currencies.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WinRunner EURO only.

Chapter 7 • Alphabetical Reference

227

EURO_set_currency_threshold Context Sensitive • EURO

sets the minimum value of an integer which will be considered a currency.

EURO_set_currency_threshold (threshold);

threshold The minimum value.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WinRunner EURO only.

EURO_set_decimals_precision Context Sensitive • EURO

sets the number of decimals in the conversion results.

EURO_set_decimals_precision (decimals);

decimals Indicates the number of decimals to be displayed in the
results (STANDARD, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15).

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WinRunner EURO only.

TSL Reference Guide

228

EURO_set_original_new_currencies Context Sensitive • EURO

sets the original and new currencies of the application.

EURO_set_original_new_currencies (original_currency, new_currency, align_mode,
align_value);

original_currency The country whose currency you want to set to
new_currency. One of the following countries can be
specified: Austria, Belgium, Finland, France, Germany,
Ireland, Italy, Luxembourg, Netherlands, Portugal, Spain,
Great Britain, Denmark, Greece, Sweden, and EURO.

new_currency The country to whose currency you want to convert
original_currency.

align_mode One of the following modes can be specified:

ALIGN_NONE: No currency alignment

ALIGN_ROUND: Rounds the converted currency to the
nearest multiple specified in align_value.

ALIGN_SUFFIX_DOWN: Rounds down the converted
currency value to end with the suffix value indicated in
align_value.

ALIGN_SUFFIX_UP: Rounds up the converted currency
value to end with the suffix value indicated in align_value.

ALIGN_TRUNC: Rounds the converted currency value
down to the nearest unit.

align_value The value to align the currency.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WinRunner EURO only.

Chapter 7 • Alphabetical Reference

229

EURO_set_regional_symbols Context Sensitive • EURO

sets the character used as decimal separator and the character used to separate groups of
digits to the left of the decimal.

EURO_set_regional_symbols (decimal_symbol, grouping_symbol);

decimal_symbol The decimal symbol: "."

grouping_symbol The grouping symbol: ","

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WinRunner EURO only.

EURO_set_triangulation_decimals Context Sensitive • EURO

sets the default decimals precision for the EUR triangulation.

EURO_set_triangulation_decimals (decimals);

decimals The number of decimals to which the EURO amount is
rounded. (The default is set to 3.)

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WinRunner EURO only.

TSL Reference Guide

230

EURO_type_mode Context Sensitive • EURO

disables/enables overriding of automatic currency recognition for all integer objects in a
GUI application.

EURO_type_mode (mode);

mode The type mode. One of the following modes can be
specified:

DISABLE_OVERRIDE: Disables all overrides on integer
objects.

ENABLE_OVERRIDE: Enables all overrides on integer
objects.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WinRunner EURO only.

eval Standard • Miscellaneous

evaluates and executes the enclosed TSL statements.

eval (statement1 [; statement2; ... statementn ;]);

statement Can be composed of one or more TSL statements.

Return Values

This function normally returns an empty string. For the treturn statement, eval
returns the value of the enclosed parameter.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

231

exception_off Standard • Exception Handling

disables exception handling.

exception_off (exception_name);

exception_name The name of the exception.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

exception_off_all Standard • Exception Handling

disables handling of all exceptions.

exception_off_all ();

Return Values

This function has no return value.

Availability

This function is always available.

TSL Reference Guide

232

exception_on Standard • Exception Handling

enables exception handling.

exception_on (exception);

exception A string expression that names the exception. The string
cannot contain any spaces.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

exp Standard • Arithmetic

calculates the exponential function, ex, where e is the natural logarithm base and “x” is the
exponent.

exp (x);

Return Values

This function returns a real number.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

233

file_close Standard • I/O

closes a file that was opened with file_open.

file_close (file_name);

file_name The name of the file to close.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

file_compare Standard • I/O

compares the contents of two files.

file_compare (file1, file2 [, save_file]);

file1 The name of a file to compare to file2. If the file is not in
the current test directory, then include the full path.

file2 If the file is not in the current test directory, then include
the full path.

save_file The name of a file that saves the files for future viewing.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

TSL Reference Guide

234

file_getline Standard • I/O

reads the next line from a file and assigns it to a variable.

file_getline (file_name, out_line);

file_name The name of an open file.

out_line The output variable that stores the line that is read.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

file_open Standard • I/O

opens a file or creates a new file.

file_open (file_name, mode);

file_name The name of the file to open or create.

mode The file mode:

FO_MODE_READ, or 0 (read only);
FO_MODE_WRITE, or 1 (write only);
FO_MODE_APPEND, or 2 (write only, to the end of the
file).

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

235

file_printf Standard • I/O

prints formatted output to an open file.

file_printf (file_name, format, exp1 [, exp2, ... exp30]);

file_name The file to which the output is printed.

format May include both literal text to be printed and formatting
specifications.

exp1, exp2,... exp30 The expressions to format and print.

Formatting Specifications

The first character of the format argument is always a percent sign (%). The last
character of format is a letter code that determines the type of formatting. One or
more format modifiers can appear between the first and last character of the
format argument (see below). The possible letter codes are as follows:

c Prints a character from its decimal ASCII code.

d Prints the decimal integer portion of a number.

e Converts input to scientific notation.

f Pads with zeros to the right of the decimal point.

g Prints a decimal value while suppressing non-significant
zeros.

o Prints the octal value of the integer portion of a number.

s Prints an unmodified string.

x Prints the hexadecimal value of the integer portion of a
number.

% Prints a literal percent sign (%).

TSL Reference Guide

236

Modifying Formats

The output generated by a particular formatting code can be modified. Three types
of modifiers can appear between the percent sign (%) and the format code
character:

- (justification) A hyphen (-) indicates that the printed output is to be left-
justified in its field.

field width A number by itself or to the left of a decimal point,
indicates how many characters the field should be padded.
When this number is preceded by a 0, the padding is done
with zeros to the left of the printed value.

precision A number to the right of a decimal point indicates the
maximum width of the printed string or how many digits
are printed to the right of the output decimal point.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

237

find_text Analog • I/O

searches for a string in an area of the screen.

Note: This function is provided for backward compatibility only. You should use
the corresponding Context Sensitive win_find_text and obj_find_text functions.

find_text (string, out_coord_array, search_area [, string_def]);

string The string that is searched for. The string must be
complete, contain no spaces, and it must be preceded and
followed by a space outside the quotation marks. To
specify a literal, case-sensitive string, enclose the string in
quotation marks. Alternatively, you can specify the name
of a string variable. In this case, the string variable can
include a regular expression.

out_coord_array The name of the array that stores the screen coordinates of
the text (see explanation below).

search_area The area to search, specified as coordinates x1,y1,x2,y2.
These define any two diagonal corners of a rectangle. The
interpreter searches for the text in the area defined by the
rectangle.

string_def Defines the type of search to perform. If no value is
specified, (0 or FALSE, the default), the search is for a
single complete word only. When 1, or TRUE, is specified,
the search is not restricted to a single, complete word.

Return Values

If the text is located, this function returns 0. If the text is not found, this function
returns 1.

Availability

This function is always available.

TSL Reference Guide

238

generator_add_category Customization • Function Generator

adds a category to the Function Generator.

generator_add_category (category_name);

category_name The name of the category to add.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

generator_add_function Customization • Function Generator

adds a TSL function to the Function Generator.

generator_add_function (function_name, description, arg_number, arg_name1,
arg_type1, default_value1 [, ... arg_namen, arg_typen, default_valuen]);

function_name The name of the function being defined, expressed as a
string.

description A brief description of the function. This need not be a
valid string expression, meaning it may have spaces
within the sentence.

arg_number The number of arguments in the function being defined.
This can be any number from zero to eight.

Chapter 7 • Alphabetical Reference

239

For each argument in the function being defined, repeat each of the parameters
below; generator_add_function can be used to define a function with up to eight
arguments.

arg_name The name of the argument.

arg_type Defines how the user fills in the value of the argument in
the Function Generator. This can be:

browse(): user points to a file in a browse file dialog box

point_window: user points to a window

point_object: user points to a GUI object

select_list(0 1): user selects a value from a list. The select_list
argument is defined in the Function Generator by using a
combo box.

type_edit: user types in a value

default_value The default value of the argument.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

TSL Reference Guide

240

generator_add_function_to_category Customization • Function Generator

adds a function in the Function Generator to a category.

generator_add_function_to_category (category_name, function_name);

category_name The name of an existing category.

function_name The name of an existing function.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

generator_add_subcategory Customization • Function Generator

adds a subcategory to a category in the Function Generator.

generator_add_subcategory (category_name, sub_category_name);

category_name The name of an existing category.

sub_category_name The name of an existing category.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

241

generator_set_default_function Customization • Function Generator

sets a default function for a category in the Function Generator.

generator_set_default_function (category_name, function_name);

category_name An existing category.

function_name An existing function.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

get_aut_var Standard • Testing Option

returns the value of a variable that determines how WinRunner learns descriptions of
objects, records tests, and runs tests on Java applets or applications.

get_aut_var (variable, value);

variable The variable to get.

value The value of the variable.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available only for WinRunner with Java support.

TSL Reference Guide

242

get_class_map Context Sensitive • GUI Map Configuration

returns the standard class associated with a custom class.

get_class_map (custom_class, out_standard_class);

custom_class The name of the custom class.

out_standard_class The output variable that stores the Mercury class or the
standard MS Windows class associated with the custom
class.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WinRunner and LoadRunner GUI Vusers on PC
platforms only.

get_host_name Standard • Load Testing

returns the name of a host.

get_host_name ();

Return Value

This function returns the host name if the operation is successful or null if the
operation fails.

Availability

This function is available for LoadRunner GUI Vusers only.

Chapter 7 • Alphabetical Reference

243

get_master_host_name Standard • Load Testing

returns the name of the controller’s host.

get_master_host_name ();

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for LoadRunner GUI Vusers only.

get_record_attr Context Sensitive • GUI Map Configuration

returns the properties learned for an object class.

get_record_attr (class, out_obligatory, out_optional, out_selector);

class The name of the Mercury class, MSW_class, or X_class.

out_obligatory The output variable that stores the list of obligatory
properties that are always recorded.

out_optional The output variable that stores the list of optional
properties.

out_selector The output variable that stores the selector used for this
GUI object class.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

TSL Reference Guide

244

get_record_method Context Sensitive • GUI Map Configuration

returns the record method used for an object class.

get_record_method (class, out_method);

class The name of the object class.

out_method The record method used for the object class, as described
below:

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

Method Description

RM_RECORD Records operations using Context Sensitive functions. This is the
default method for all the standard classes, except the object class
(for which the default is MIC_MOUSE).

RM_IGNORE Turns off recording.

RM_AS_OBJECT Instructs WinRunner to record all functions on a GUI object as
though its class were “object” class.

RM_PASSUP Records mouse operations (relative to the parent of the object) and
keyboard input.

Chapter 7 • Alphabetical Reference

245

get_text Analog • Text Checkpoint

reads text from the screen.

Note: This function is provided for backward compatibility only. You should use
the corresponding Context Sensitive win_get_text and obj_get_text functions.
When working with RTL-style windows, use the str_map_logical_to_visual
function.

get_text (location);

The get_text function reads text from the area of the screen indicated by location.
The location can be any one of the following:

x1,y1,x2,y2 Describes a rectangle that encloses the text to be read. The
pairs of coordinates can designate any two diagonally
opposite corners of the rectangle.

x, y The coordinates of a particular point on the screen. This
parameter causes the string closest to the specified point
to be read. The search radius around the specified point is
defined by the XR_TEXT_SEARCH_RADIUS parameter.

() When no location is specified (empty parentheses), the
string closest to the mouse pointer position is read. The
search radius around the pointer position is defined by the
XR_TEXT_SEARCH_RADIUS parameter.

Return Values

This function returns a string. By default, the returned string does not include
blanks at the beginning or end of the string. (This is determined by the
XR_TEXT_REMOVE_BLANKS parameter in the wrun.ini file). If no string is found, an
empty string is returned.

Availability

This function is always available.

TSL Reference Guide

246

get_time Standard • Time-Related

returns the current system time, expressed in terms of the number of seconds that have
elapsed since 00:00 GMT, January 1, 1970.

get_time ();

Return Values

This function returns an integer.

Availability

This function is always available.

get_x Analog • Input Device

returns the x-coordinate of the current position of the mouse pointer.

get_x ();

Return Values

This function returns an integer.

Availability

This function is always available.

get_y Analog • Input Device

returns the y-coordinate of the current position of the mouse pointer.

get_y ();

Return Values

This function returns an integer.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

247

getenv Standard • Miscellaneous

returns the value of any environment variable, as defined in the [WrCfg] section of wrun.ini
or in the WinRunner runtime environment.

getenv (environment_variable);

environment_variable A variable chosen from the environment variable list in
the [WrCfg] section of the wrun.ini file.

Return Values

This function returns the value of the specified environment variable.

Availability

This function is always available.

getvar Standard • Testing Option

returns the value of a testing option.

getvar (option);

option A testing option.

The getvar function reads the current value of a testing option. For a list and an
in-depth explanation of getvar options, refer to the “Setting Testing Options from
a Test Script” chapter in the WinRunner User’s Guide.

Return Values

This function returns the value of the specified testing option.

Availability

This function is always available.

TSL Reference Guide

248

GUI_add Context Sensitive • GUI Map Editor

adds an object to a GUI map file.

GUI_add (file path, window, object, physical_desc);

file The GUI map file to which the object is added. If an empty
string is entered, the object is added to the temporary GUI
map file.

window The logical name of the window containing the object.

object The logical name of the object.

physical_desc The physical description of the object.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

GUI_buf_get_desc Context Sensitive • GUI Map Editor

returns the physical description of an object in a GUI map file.

GUI_buf_get_desc (file, window, object, out_desc);

file The full path of the GUI map file containing the object.

window The logical name of the window containing the object.

object The logical name of the object. If a null string is specified,
the function returns the physical description of the
window itself.

out_desc The output variable that stores the physical description.

Chapter 7 • Alphabetical Reference

249

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

GUI_buf_get_desc_attr Context Sensitive • GUI Map Editor

returns the value of a GUI object property in a GUI map file.

GUI_buf_get_desc_attr (file, window, object, property, out_prop_value);

file The full path of the GUI map file containing the object.

window The logical name of the window containing the object.

object The logical name of the object. If no object is specified,
the function returns the physical description of the
window itself.

property The property whose value is to be returned.

out_prop_value The output variable that stores the property value.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

TSL Reference Guide

250

GUI_buf_get_logical_name Context Sensitive • GUI Map Editor

returns the logical name of an object in a GUI map file.

GUI_buf_get_logical_name (file, physical_desc, window, out_name);

file The full path of the GUI map file containing the object.

physical_desc The physical description of the GUI object.

window The window containing the GUI object.

out_name The output variable that stores the logical name.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

GUI_buf_new Context Sensitive • GUI Map Editor

creates a new GUI map file.

GUI_buf_new (file);

file The GUI map file to create.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

251

GUI_buf_set_desc_attr Context Sensitive • GUI Map Editor

sets the value of a property for an object in a GUI map file.

GUI_buf_set_desc_attr (file, window, object, property, value);

file The full path of the GUI map file containing the object.

window The window containing the object.

object The logical name of the object.

property The property whose value is to be set.

value The value set for the property.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

GUI_close Context Sensitive • GUI Map Editor

closes a GUI map file.

GUI_close (file);

file The full path of the GUI map file to be closed.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

TSL Reference Guide

252

GUI_close_all Context Sensitive • GUI Map Editor

closes all GUI map files except the temporary GUI map file. To close the temporary GUI
map file, use the GUI_close function.

GUI_close_all ();

The GUI_close_all function closes all GUI map files that are currently loaded or
open.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

GUI_delete Context Sensitive • GUI Map Editor

deletes an object from a GUI map file.

GUI_delete (file, window, obj);

file The full path of the GUI map file containing the object.

window The logical name of the window containing the object.

obj The logical name of the object to delete.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

253

GUI_desc_compare Context Sensitive • GUI Map Editor

compares two physical descriptions.

GUI_desc_compare (desc1, desc2);

desc1, desc2 The physical descriptions to compare.

Return Value

This function returns 1 when the comparison fails and returns 0 when it succeeds.

Availability

This function is always available.

GUI_desc_get_attr Context Sensitive • GUI Map Editor

gets the value of a property from a physical description.

GUI_desc_get_attr (physical_desc, property, out_property_value);

physical_desc The physical description of a GUI object.

property The property to return.

out_property_value The output variable that stores the property value.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

TSL Reference Guide

254

GUI_desc_set_attr Context Sensitive • GUI Map

sets the value of a property.

GUI_desc_set_attr (physical_desc, property, value);

physical_desc The physical description of an object. This must be a
variable and not a constant.

property The property name.

value The property value.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

GUI_get_name Context Sensitive • GUI Map Editor

returns the type of GUI for the application under test.

GUI_get_name (out_name, out_version);

out_name An output variable that stores the name of the current
GUI.

out_version An output variable that stores the current version of the
GUI, as described below:

Operating System Name Version

Microsoft Windows 95 “Windows 95” “4.0”

Microsoft Windows 98 “Windows 95” “4.1”

Microsoft Windows NT “Windows NT” “4.0”

Microsoft Windows 2000 “Windows 2000” “5.0”

Chapter 7 • Alphabetical Reference

255

Note: Windows 98 is called Windows 95 for purposes of backward compatibility.
The major version number for both operating systems is 4. The minor version
number is 0 for Windows 95 or 1 for Windows 98.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

GUI_get_window Context Sensitive • GUI Map Editor

returns the active window in the GUI map.

GUI_get_window ();

Return Values

This function returns the name of the active window if it succeeds, or an empty
string if it fails.

Availability

This function is always available.

TSL Reference Guide

256

GUI_list_buf_windows Context Sensitive • GUI Map Editor

lists all windows in a GUI map file.

GUI_list_buf_windows (file, out_windows, out_number);

file The full path of the GUI map file.

out_windows The output variable that stores all windows in the GUI
map file in an array.

out_number The output variable assigned to the number of windows in
the GUI map file.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

GUI_list_buffers Context Sensitive • GUI Map Editor

lists all open GUI map files.

GUI_list_buffers (out_files, out_number);

out_files The output variable array that stores all open GUI map
files in an array.

out_number The output variable that stores the number of opened GUI
map files.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

257

GUI_list_desc_attrs Context Sensitive • GUI Map Editor

lists property values for a GUI object.

GUI_list_desc_attrs (physical_desc, out_array);

physical_desc The physical description of a GUI object.

out_array The output variable that stores the object’s properties and
values in an array. The subscript of each array element is
the name of the property. The value of each array element
is the value of the property. For instance, if the out_array is
called property_value, then: property_value ["attr1"] = "val1".

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

GUI_list_map_buffers Context Sensitive • GUI Map Editor

lists all loaded GUI map files.

GUI_list_map_buffers (out_file, out_number);

out_file The output variable that stores all loaded GUI map files in
an array.

out_number The output variable that stores the number of loaded GUI
map files.

Note: The GUI map files must be loaded and not simply open.

TSL Reference Guide

258

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

GUI_list_win_objects Context Sensitive • GUI Map Editor

lists all objects in a window.

GUI_list_win_objects (file, window, out_objects, out_number);

file The full path of the GUI map file.

window The name of the window containing the objects.

out_objects The output variable that stores all objects in the window
in an array.

out_number The output variable that stores the number of objects in
the window.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

259

GUI_load Context Sensitive • GUI Map Editor

loads a GUI map file.

GUI_load (file_name);

file_name The full path of the GUI map.

Note: If you do not specify a full path, then WinRunner searches for the GUI map
relative to the current file system directory. Therefore, you must always specify a
full path to ensure that WinRunner will find the GUI map.

Note: If you are working in the GUI Map File per Test mode, you should not
manually load or unload GUI map files.

Return Values

This function always returns 0.

Availability

This function is always available.

TSL Reference Guide

260

GUI_map_get_desc Context Sensitive • GUI Map Editor

returns the description of an object in the GUI map.

GUI_map_get_desc (window, object, out_desc, out_file);

window The name of the window containing the GUI object.

object The logical name of the GUI object.

out_desc The output variable that stores the description of the GUI
object.

out_file The output variable that stores the GUI map file
containing the description.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

GUI_map_get_logical_name Context Sensitive • GUI Map Editor

returns the logical name of an object in the GUI map.

GUI_map_get_logical_name (physical_desc, window, out_obj, out_file);

physical_desc The physical description of the object. For more
information regarding physical descriptions, refer to the
“Introducing the GUI Map” chapter in the WinRunner
User’s Guide.

window The logical name of the window containing the object. If
no window is specified, the function looks for one.

out_obj The output variable that stores the object’s logical name.

out_file The output variable that stores the name of the GUI map
file containing the object.

Chapter 7 • Alphabetical Reference

261

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

GUI_open Context Sensitive • GUI Map Editor

opens a GUI map file.

GUI_open (file_name);

file_name The full path of the GUI map file to open.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

GUI_save Context Sensitive • GUI Map Editor

saves a GUI map file.

GUI_save (file_name);

file_name The full path of the GUI map file to save.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

TSL Reference Guide

262

GUI_save_as Context Sensitive • GUI Map Editor

saves a GUI map file under a new name.

GUI_save_as (current_file_name, new_file_name);

current_file_name The name of the GUI map file to save.

new_file_name The name of the new file.

Note: When you save the temporary GUI map file, which doesn’t have a
current_file_name, the statement should have the following syntax:

GUI_save_as (“”, “new_file_name”);

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

GUI_set_window Context Sensitive • GUI Map Editor

sets the scope for GUI object identification within the GUI map.

GUI_set_window (window_name);

window_name The name of the window to be activated.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

263

GUI_unload Context Sensitive • GUI Map Editor

unloads a GUI map file.

GUI_unload (file);

file The full path of the GUI map file to unload.

Return Values

This function always returns 0.

Availability

This function is always available.

Note: If you are working in the GUI Map File per Test mode, you should not
manually load or unload GUI map files.

GUI_unload_all Context Sensitive • GUI Map Editor

unloads all loaded GUI map files.

GUI_unload_all ();

Return Values

The return value of this function is always 0 and is returned when all the GUI map
files have been unloaded.

Availability

This function is always available.

Note: If you are working in the GUI Map File per Test mode, you should not
manually load or unload GUI map files.

TSL Reference Guide

264

gui_ver_add_check Customization • GUI Checkpoint

registers a new GUI check.

gui_ver_add_check (check_name, capture_function, comparison_function
[, display_function [, type]]);

check_name The name of the check to add.

capture_function The name of the capture function defined for the check.

comparison_function The name of the comparison function defined for the
check. If no comparison_function is specified, the default
display is used.

display_function The name of the function that displays check results.

type The type of GUI object on which this check operates:
1 for a window, 0 for any other GUI object class. If no type
is specified, the default 0 is assumed.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

gui_ver_add_check_to_class Customization • GUI Checkpoint

adds a check to an object class, which can be viewed in the GUI Checkpoint dialog boxes.

gui_ver_add_check_to_class (class, check_name);

class The name of the class.

check_name The name of the check to add, as defined with
gui_ver_add_check.

Chapter 7 • Alphabetical Reference

265

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

gui_ver_add_class Customization • GUI Checkpoint

Creates a GUI checkpoint for a new class.

gui_ver_add_class (TOOLKIT_class [, ui_function [, default_check_function]]);

TOOLKIT_class The MSW_class or X_class of the object.

ui_function The name of the function used to develop and display the
GUI checkpoint dialog boxes with a customized user
interface.

default_check_function The name of the function that controls the default checks
for the object.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

gui_ver_set_default_checks Customization • GUI Checkpoint

sets the default GUI checks for an object class.

gui_ver_set_default_checks (class, check_names);

class The name of the object class.

check_names The names of the checks set as defaults, separated by
spaces.

TSL Reference Guide

266

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

icon_move Context Sensitive • Icon Object

moves an icon to a new location on the screen.

icon_move (icon, x, y);

icon The logical name of the icon.

x, y The new position of the upper left corner of the icon.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WinRunner and LoadRunner GUI Vusers running on
PC platforms only.

icon_select Context Sensitive • Icon Object

selects an icon with a mouse click.

icon_select (icon);

icon The logical name of the icon.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Chapter 7 • Alphabetical Reference

267

Availability

This function is available for WinRunner and LoadRunner GUI Vusers running on
PC platforms only.

index Standard • String

indicates the position of one string within another.

index (string1, string2);

string1, string2 Two string expressions.

Return Values

The return value indicates the position of the string. The value 0 is returned if the
string does not exist.

Availability

This function is always available.

int Standard • Arithmetic

returns the integer portion of a positive real number.

int (x);

Return Values

This function returns an integer.

Availability

This function is always available.

TSL Reference Guide

268

invoke_application Standard • Operating System

invokes a Windows application from within a test script.

invoke_application (file, command_option, working_dir, show);

file The full path of the application to invoke.

command_option The command line options to apply.

working_dir The working directory for the specified application.

show Specifies how the application appears when opened. This
parameter can be one of the following constants:

Value Description

SW_HIDE hides the window and passes activation to another
window

SW_MINIMIZE minimizes the window and activates the top-level
window in the system list

SW_RESTORE activates and displays the window. If the window is
minimized or maximized, WinRunner restores it to its
original size and position (same as SW_SHOWNORMAL).

SW_SHOW activates the window and displays it in its current size
and position

SW_SHOWMAXIMIZED activates the window and displays it as a maximized
window

SW_SHOWMINIMIZED activates the window and displays it as an icon

SW_SHOWMINNOACTIVE displays the window as an icon. The window that is
currently active remains active.

SW_SHOWNA displays the window in its current state. The currently
active window remains active.

Chapter 7 • Alphabetical Reference

269

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WinRunner and LoadRunner GUI Vusers running on
PC platforms only.

java_activate_method Context Sensitive • Java

invokes the requested Java method for the given object.

int java_activate_method (object, method, retval [, param1, ... param8]);

object The object name

method The name of the java method to invoke

retval An output variable that will hold a return value from the
invoked method*

*Required even for void Java methods

param1...8 Parameters to be passed to the Java method. The
Parameters must belong to one of the following supported
types: Boolean, boolean, Integer, int, String, or any jco
object. For information on jco objects, see jco_create on
page 271.

SW_SHOWNOACTIVATE displays the window in its most recent size and position.
The currently active window remains active.

SW_SHOWNORMAL activates and displays the window. If the window is
minimized or maximized, WinRunner restores it to its
original size and position (same as SW_SHOWRESTORE).

Value Description

TSL Reference Guide

270

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WinRunner with Java support only.

java_fire_event Context Sensitive • Java

Simulates an event on a Java object.

java_fire_event (object , class [, constructor_param1,..., constructor_paramX]);

object The logical name of the Java object.

class The name of the Java class representing
the event to be activated.

constructor_param1...constructor_paramX The required parameters for the object
constructor (excluding the object source,
which is specified in the object
parameter).

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WinRunner with Java support only.

Chapter 7 • Alphabetical Reference

271

jco_create Context Sensitive • Java

Creates a Java object within your application or applet, or within the context of an existing
object in your application or applet.

jco_create (object , jco , class [, constructor_param1 , ... , constructor_param8])

object The object that is used as the context in
which the new object will be created. This
can be the main application or applet
window, or any other Java object within
the application or applet.

jco The new object to be returned.

class The Java class name.

constructor_param1...constructor_paramx A list of all constructor parameters.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WinRunner with Java support only.

jco_free Context Sensitive • Java

frees the specified jco object from memory.

jco_free (object_name);

object_name The name of the jco object to be freed.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WinRunner with Java support only.

TSL Reference Guide

272

jco_free_all Context Sensitive • Java

frees all jco objects from memory.

jco_free_all();

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WinRunner with Java support only.

jdc_aut_connect Context Sensitive • Java

establishes a connection between WinRunner and Java applications.

jdc_aut_connect (in_timeout);

timeout Time (in seconds) that is added to the regular timeout for
checkpoints and CS statements (Settings > General
Options > Run Tab), resulting in the maximum interval
before the next statement is executed.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WinRunner with Java support only.

Chapter 7 • Alphabetical Reference

273

length Standard • String

counts the number of characters in a string.

length (string);

string A valid string expression.

Return Values

The return value of the function indicates the number of characters in the
argument string. If no string is included, length returns the value 0.

Availability

This function is always available.

list_activate_item Context Sensitive • List Object

activates an item in a list.

list_activate_item (list, item [, offset]);

list The logical name of the list.

item The item to activate within the list.

offset The horizontal offset (in pixels) of the click location
relative to the left margin of the item’s text (optional).

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

TSL Reference Guide

274

list_check_info Context Sensitive • List Object

checks the value of a list property.

list_check_info (list, property, property_value);

list The logical name of the list.

property The property to be checked.

property_value The expected property value.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

list_check_item Context Sensitive • List Object

checks the content of an item in a list.

list_check_item (list, item_num, item_content);

list The logical name of the list.

item_num The location of the item in the designated list. Note that
the first item in a list is numbered 0.

item_content The expected contents of the item.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

275

list_check_selected Context Sensitive • List Object

checks that the specified item is selected.

list_check_selected (list, selected_items);

list The logical name of the list.

selected_item The item(s) that should be selected in the list. If there are
multiple items, they should be separated by commas. This
argument should be a string or a list of strings.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

list_collapse_item Context Sensitive • List Object

hides items in a TreeView object.

list_collapse_item (list, item [, mouse_button]);

list The logical name of the list.

item The expanded heading under which the items appear.

mouse_button A constant that specifies the mouse button to use. The
value can be LEFT, MIDDLE, or RIGHT. The default is the
left button.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is supported for TreeView objects only.

TSL Reference Guide

276

list_deselect_item Context Sensitive • List Object

deselects an item in a list.

list_deselect_item (list, item [, mouse_button [, offset]]);

list The logical name of the list.

item The item to deselect from the list.

mouse_button A constant that specifies the mouse button to use. The
value can be LEFT, MIDDLE, or RIGHT. If no button is
specified, the default is the left button.

offset The horizontal offset (in pixels) of the click location
relative to the left margin of the item’s text (optional).
This parameter may only be used if the mouse_button
argument is used

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

list_deselect_range Context Sensitive • List Object

deselects all items between two specified items.

list_deselect_range (list, item1, item2 [, offset]);

list The logical name of the list.

item1 The first item of the range.

item2 The last item of the range.

offset The horizontal offset (in pixels) of the click location
relative to the left margin of the item’s text (optional).

Chapter 7 • Alphabetical Reference

277

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

list_drag_item Context Sensitive • List Object

drags an item from a source list.

list_drag_item (source_list, item [, mouse_button]);

source_list The logical name of the list.

item The item to drag from the list.

mouse_button A constant that specifies the mouse button to hold down
while dragging the item. The value can be LEFT, MIDDLE,
or RIGHT. If no button is specified, the default is the
button that performs the select function.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is not supported for ListBox objects.

list_drop_on_item Context Sensitive • List Object

drops an object onto a target list item.

list_drop_on_item (target_list, target_item);

target_list The logical name of the list.

target_item The list item on which to drop the source object.

TSL Reference Guide

278

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is not supported for ListBox objects.

list_expand_item Context Sensitive • List Object

displays hidden items in a TreeView object.

list_expand_item (list, item [, mouse_button]);

list The logical name of the list.

item The expandable heading under which the items will be
displayed.

mouse_button A constant that specifies the mouse button to use. The
value can be LEFT, MIDDLE, or RIGHT. The default is the
left button.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is supported for TreeView objects only.

Chapter 7 • Alphabetical Reference

279

list_extend_item Context Sensitive • List Object

adds an item to a list of selected items.

list_extend_item (list, item [, button [, offset]]);

list The logical name of the list.

item The item to add from the list.

button The mouse button used (optional). In the case of a combo
object or a list that is not a ListView or a TreeView, only
the left mouse button can be used.

offset The horizontal offset (in pixels) of the click location
relative to the left margin of the item’s text (optional).
This argument can be used only if the button argument is
defined.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

list_extend_multi_items Context Sensitive • List Object

adds multiple items to the items already selected in a list.

list_extend_multi_items (list, item_list, [, mouse_button [, offset]]);

list The logical name of the list.

item_list The items to select, separated by commas.

mouse_button A constant that specifies the mouse button to use. The value can
be LEFT, MIDDLE, or RIGHT. The default is the left button.

offset The horizontal offset (in pixels) of the click location relative to
the left margin of the item’s text (optional). This argument can
be used only if the button argument is defined.

TSL Reference Guide

280

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

list_extend_range Context Sensitive • List Object

selects a range of items and adds them to the current selection.

list_extend_range (list, item1, item2 [, button [, offset]]);

list The logical name of the list.

item1 The first item of the range.

item2 The last item of the range.

button The mouse button used (optional). In the case of a combo
object or a list that is not a ListView or a TreeView, only
the left mouse button can be used.

offset The horizontal offset (in pixels) of the click location
relative to the left margin of the item’s text (optional).
This argument can be used only if the button argument is
defined.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

281

list_get_checked_items Context Sensitive • List Object

retrieves the number and the value of items marked as checked.

list_get_checked_items (list, items, number);

list The logical name of the ListView or TreeView with check
boxes.

items The concatenated list of the returned values of the items
with selected check boxes.

number The number of items with selected check boxes.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

list_get_column_header Context Sensitive • List Object

returns the value of a ListView column header.

list_get_column_header (listview_object, in_column_index, out_header_value);

listview_object The name of the list.

in_column_index The column index.

out_header_value The column header that is returned.

Note: The list_get_column_header function is effective for ListView objects
having a report view (style) only.

TSL Reference Guide

282

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

The list_get_column_header function is effective for ListView objects having a
report view (style) only.

list_get_info Context Sensitive • List Object

returns the value of a list property.

list_get_info (list, property, out_value);

list The logical name of the list.

property Any of the properties listed in the WinRunner User’s Guide.

out_value The output variable that stores the value of the specified
property.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

list_get_item Context Sensitive • List Object

returns the contents of a list item.

list_get_item (list, item_num, out_value);

list The logical name of the list.

item_num The location of the item in the designated list. Note that
the first item in a list is numbered 0.

out_value The contents of the designated item.

Chapter 7 • Alphabetical Reference

283

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

list_get_item_coord Context Sensitive • List Object

returns the dimensions and coordinates of the list item.

list_get_item_coord (list, item, out_x, out_y, out_width, out_height);

list The list name

item The item string

out_x, out_y The output variables that store the x,y coordinates of the
item rectangle

out_width, out_height The output variables that store the width and height of
the item rectangle

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available only for list and tree objects in JFC.

TSL Reference Guide

284

list_get_item_info Context Sensitive • List Object

returns the state of a list item.

list_get_item_info (list, item, state, out_value);

list The logical name of the list.

item The item in the list.

state The state property of the item. The state property can be
either CHECKED or SELECTED.

out_value The output variable that stores the value of the state
property.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

list_get_item_num Context Sensitive • List Object

returns the position of a list item.

list_get_item_num (list, item, out_num);

list The logical name of the list.

item The string of the item.

out_num The output variable that stores the position of the list
item.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

285

list_get_selected Context Sensitive • List Object

returns the numeric and string values of the selected item in a list.

list_get_selected (list, out_item, out_num);

list The logical name of the list.

out_item The output variable that stores the name of the selected
items. For a multi-selection list, the variable contains a list
of items, sorted alphabetically, and separated by the
character that is set in the Miscellaneous tab of the
Settings > General Options dialog box. The default
character is a comma (,).

Note: When using this function with the Java Add-in, always use special character
ASCII 24 (thick vertical bar) as the separator, and not the character set in the
Miscellaneous tab as described above.

out_num The output variable that stores the items. Note that the
first item in a list is numbered 0. For a standard list, stores
the index of the selected item. For a multi-selection list,
stores the number of selected items.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

TSL Reference Guide

286

list_get_subitem Context Sensitive • List Object

returns the value of a ListView subitem.

list_get_subitem (list, item, subitem_index, subitem);

list The logical name of the ListView.

item The name of the item.

subitem_index The index indicating the field of the requested subitem.

subitem The value of the returned subitem.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

list_rename_item Context Sensitive • List Object

activates the edit mode on the label of a ListView or a TreeView item in order to rename it.

list_rename_item (list, item);

list The logical name of the ListView or TreeView.

item The item to select and rename.

Note: A list_rename_item statement must be followed by a type statement in
order to rename the item. The item can be denoted by its logical name or numeric
index.

Chapter 7 • Alphabetical Reference

287

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

list_select_item Context Sensitive • List Object

selects a list item.

list_select_item (list, item [,button [, offset]]);

list The logical name of the list.

item The item to select in the list.

button The mouse button used (optional). In the case of a combo
object or a list that is not a ListView or a TreeView, only
the left mouse button can be used.

offset The horizontal offset (in pixels) of the click location
relative to the left margin of the item’s text (optional).
This argument can be used only if the button argument is
defined.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

TSL Reference Guide

288

list_select_multi_items Context Sensitive • List Object

selects multiple items in a list.

list_select_multi_items (list, item_list [, mouse_button [, offset]]);

list The logical name of the list.

item_list The items to select, separated by commas.

mouse_button A constant that specifies the mouse button to use. The
value can be LEFT, MIDDLE, or RIGHT. The default is the
left button.

offset The horizontal offset (in pixels) of the click location
relative to the left margin of the item’s text (optional).
This argument can be used only if the button argument is
defined.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

list_select_range Context Sensitive • List Object

selects all items between two specified items.

list_select_range (list, item1, item2 [, button [, offset]]);

list The logical name of the list.

item1 The first item of the range.

item2 The last item of the range.

button The mouse button used (optional). In the case of a combo
object or a list that is not a ListView or a TreeView, only
the left mouse button can be used.

Chapter 7 • Alphabetical Reference

289

offset The horizontal offset (in pixels) of the click location
relative to the left margin of the item’s text (optional).
This argument can be used only if the button argument is
defined.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

list_set_item_state Context Sensitive • List

sets the state of an icon of the specified ListView or TreeView.

list_set_item_state (list, item, value [, button]);

list The logical name of the ListView or TreeView.

item The name of the icon.

value The value of the state icon (check box). The value can be 1
(ON) or 0 (OFF).

button The mouse button (optional).

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

TSL Reference Guide

290

list_wait_info Context Sensitive • List Object

waits for the value of a list property.

list_wait_info (list, property, value, time);

list The logical name of the list.

property Any of the properties listed in the User’s Guide.

value The property value.

time Indicates the maximum interval, in seconds, before the
next statement is executed.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

load Standard • Compiled Module

loads a compiled module into memory.

load (module_name [,1|0 [,1|0]]);

module_name A string expression indicating the name of an existing
compiled module.

1|0 1 indicates a system module. 0 indicates a user module.
The default value is 0.

1|0 1 indicates that a user module will not remain open after it
is loaded.

0 indicates that the module remains open in the
WinRunner window. The default value is 0.

Chapter 7 • Alphabetical Reference

291

Note: If you make changes to a function in a loaded compiled module, you must
unload and reload the compiled module in order for the changes to take effect.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function returns 0 for success, and 1 for failure.

load_16_dll Standard • Miscellaneous

performs a runtime load of a 16-bit dynamic-link (external) library.

load_16_dll (pathname);

pathname The full pathname of the dynamic-link library (DLL) to be
loaded.

Note: To call an external function, you must declare it with the extern function
declaration.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

TSL Reference Guide

292

load_dll Standard • Miscellaneous

performs a runtime load of a dynamic-link (external) library.

load_dll (pathname);

pathname The full pathname of the dynamic-link library (DLL) to be
loaded.

Note: To call an external function, you must declare it with the extern function
declaration.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

log Standard • Arithmetic

returns the natural (base e) logarithm of the specified number.

log (x);

x Specifies a positive, nonzero number.

Return Values

This function returns a real number.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

293

lov_get_item Context Sensitive • Oracle

retrieves an item from a list of values in an Oracle application.

lov_get_item (list, column, row, out_value);

list The name of the list of values.

column The column number of the item.

row The row number of the item.

out_value The parameter where the item will be stored.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

lov_select_item Context Sensitive • Oracle

selects an item from a list of values in an Oracle application.

lov_select_item (list, item);

list The list name.

item The logical name of the item.

Note: This function cannot be recorded.

TSL Reference Guide

294

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is supported for WinRunner with Developer 2000 support only.

lr_whoami Standard • Load Testing

returns information about the Vuser executing the script.

lr_whoami (vuser [, sgroup]);

vuser The output variable that stores the ID of the Vuser.

sgroup The output variable that stores the name of the Sgroup.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for LoadRunner GUI Vusers only.

match Standard • String

finds the occurrence of a regular expression in a string.

match (string, regular_expression);

string The enclosing string.

regular_expression The expression to locate in the string.

Chapter 7 • Alphabetical Reference

295

Return Values

This function returns the character position at which the regular expression starts.
If no match is found, the value 0 is returned.

Availability

This function is always available.

menu_get_desc Context Sensitive • Menu Object

returns the physical description of a menu.

menu_get_desc (menu, oblig, optional, selector, out_desc);

menu The full menu path, consisting of the menu’s logical name
and the menu item, separated by a semicolon (such as
file;open). For submenus, the path includes the menu
name, menu item, and submenu item.

oblig The list of obligatory properties (separated by blank
spaces).

optional The list of optional properties (separated by blank spaces).

selector The type of selector to be used (location or index).

out_desc The output variable that stores the description of the
menu.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

TSL Reference Guide

296

menu_get_info Context Sensitive • Menu Object

returns the value of a menu property.

menu_get_info (menu, property, out_value);

menu The full menu path, consisting of the menu’s logical name
and the menu item, separated by a semicolon (such as
file;open). For submenus, the path includes the menu
name, menu item, and submenu item.

property The property to be checked. The following properties may
be specified: class, label, value, enabled, MSW_id,
sub_menu, count, sys_menu, and position.

out_value The output variable that stores the value of the specified
property.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

menu_get_item Context Sensitive • Menu Object

returns the contents of a menu item.

menu_get_item (menu, item_number, out_contents);

menu The logical name of the menu. For submenus, the full
path, consisting of the menu’s logical name and the menu
item, separated by a semicolon (such as file;type).

item_number The numeric position of the item in the menu. Note that
the first position is numbered 0.

out_contents The output variable to which the value of the designated
menu item is assigned.

Chapter 7 • Alphabetical Reference

297

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

menu_get_item_num Context Sensitive • Menu Object

returns the position of a menu item.

menu_get_item_num (menu, item, out_position);

menu The logical name of the menu. For submenus, the full
path, consisting of the menu’s logical name and the menu
item separated by a semicolon (such as file;type).

item The name (string value) of the item as it appears in the
menu.

out_position The output variable which stores the numeric value of the
item.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

menu_select_item Context Sensitive • Menu Object

selects a menu item.

menu_select_item (menu; item [x, y]);

menu The logical name of the menu.

item The item to select.

TSL Reference Guide

298

x,y The position of the mouse click, expressed as x- and y-
(pixel) coordinates.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118

Availability

This function is always available.

menu_wait_info Context Sensitive • Menu Object

waits for the value of a menu property.

menu_wait_info (menu, property, value, time);

menu The logical name of the menu.

property Any of the properties listed in the User’s Guide.

value The property value.

time Indicates the maximum interval, in seconds, before the
next statement is executed.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

299

method_wizard Context Sensitive • Java

Launches the Java Method wizard. The wizard enables you to view the methods associated
with any jco object in your application or applet and to generate the appropriate
java_activate_method statement for one of the displayed methods.

method_wizard ([object]);

object The name of the object whose methods will be displayed
in the Java Method wizard.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WinRunner with Java support only.

move_locator_abs Analog • Input Device

moves the mouse pointer to a new absolute position.

move_locator_abs (x, y [, time]);

x, y The absolute screen coordinates of the new pointer
position, in pixels.

time The interval, in milliseconds, that elapses before the
locator is moved.

Return Values

This function always returns 0.

Availability

This function is always available.

TSL Reference Guide

300

move_locator_rel Analog • Input Device

moves the mouse pointer to a new relative position.

move_locator_rel (x, y [, time]);

x, y The screen coordinates of the new pointer position, in
pixels, relative to the current pointer position.

time The interval that elapses before the locator is moved, in
milliseconds.

Return Values

The return value of the function is always 0.

Availability

This function is always available.

move_locator_text Analog • Input Device

moves the screen pointer to a string.

move_locator_text (string, search_area [, x_shift [,y_shift]]);

string A valid string expression. The string must be complete,
and preceded and followed by a space. A regular
expression with no blank spaces can be specified.

search_area The area to search, specified as x1, y1, x2, y2 coordinates
that define any two diagonal corners of a rectangle. The
interpreter searches for the text in the area defined by the
rectangle.

x_shift, y_shift Indicates the offset of the pointer position from the
specified string, in pixels.

Return Values

This function returns 0 if the text is located, and 1 if the text is not found.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

301

move_locator_track Analog • Input Device

moves the mouse pointer along a prerecorded track.

move_locator_track (track_id);

track_id A code that points to tracking information stored in the
test database. The specified track is a series of continuous
pointer movements uninterrupted by input from
keyboard or mouse.

Return Values

This function always returns the value 0.

Availability

This function is always available.

mtype Analog• Input Device

specifies mouse button input.

mtype (button_input [, technical_id]);

button_input A string expression representing mouse button input.

technical_id Points to internal timing and synchronization data. This
parameter is only present when the mtype statement is
recorded.

Return Values

This function always returns the value 0.

Availability

This function is always available.

TSL Reference Guide

302

nargs Standard • Miscellaneous

returns the number of arguments passed.

nargs ();

Return Values

This function returns the number of arguments actually passed, not the number
specified in the definition of the function or test.

Availability

This function is always available.

obj_check_bitmap Context Sensitive • Object

compares an object bitmap to an expected bitmap.

obj_check_bitmap (object, bitmap, time [, x, y, width, height]);

object The logical name of the GUI object. The object may
belong to any class.

bitmap A string expression that identifies the captured bitmap.

time The interval, which is added to the timeout_msec testing
option, marking the maximum delay between the
previous input event and the capture of the current
bitmap, in seconds. For more information, refer to the
“Setting Testing Options from a Test Script” chapter in the
WinRunner User’s Guide.

x, y For an area bitmap: the coordinates of the upper left
corner, relative to the window in which the area is located.

width, height For an area bitmap: the size of the area, in pixels.

Chapter 7 • Alphabetical Reference

303

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

obj_check_gui Context Sensitive • Object

compares current GUI object data to expected data.

obj_check_gui (object, checklist, expected_results_file, time);

object The logical name of the GUI object. The object may
belong to any class.

checklist The name of the checklist defining the GUI checks.

expected_results_file The name of the file that stores the expected GUI data.

time The interval, which is added to the timeout test option,
marking the maximum delay between the previous input
event and the capture of the current GUI data, in seconds.
This interval is added to the timeout testing option during
test execution.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

TSL Reference Guide

304

obj_check_info Context Sensitive • Object

checks the value of an object property.

obj_check_info (object, property, property_value);

object The logical name of the GUI object. The object may
belong to any class.

property The property to check.

property_value The property value.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

obj_click_on_text Context Sensitive • Object

clicks on text in an object.

obj_click_on_text (object, string [, search_area [, string_def [, mouse_button]]]);

object The logical name of the object to search.

string The text to locate. To specify a literal, case sensitive string,
enclose the string in quotation marks. Alternatively, you
can specify a string variable, which can include a regular
expression. The regular expression need not begin with an
exclamation mark.

search_area The region of the object to search, relative to the object.
This area is defined as a pair of coordinates, with
x1,y1,x2,y2 specifying any two diagonally opposite corners
of the rectangular search region. If no search_area is
defined, then the entire object is considered as the search
area.

Chapter 7 • Alphabetical Reference

305

string_def Defines how the text search is performed. If no string_def is
specified (0 or FALSE, the default parameter), the
interpreter searches for a single, complete word only. If 1,
or TRUE, is specified, the search is not restricted to a
single, complete word.

mouse_button Specifies the mouse button that clicks on the text string.
The value can be LEFT, MIDDLE, or RIGHT. If no button is
specified, the default is the left button. Note that if you
specify 1, or TRUE, for string_def, then you must specify
the mouse button to use. Similarly, if you specify the
mouse button to use, then you must specify the string_def.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

obj_drag Context Sensitive • Object

drags an object from a source object.

obj_drag (source_object, x, y [, mouse_button]);

source_object The logical name of the GUI object. The object may
belong to any class.

x, y The x,y coordinates of the mouse pointer when clicked on
the source object, relative to the upper left corner of the
source object.

mouse_button A constant that specifies the mouse button to hold down
while dragging. The value can be LEFT, MIDDLE, or
RIGHT. If no button is specified, the default is the button
that performs the select function. This optional parameter
is available for WinRunner only.

TSL Reference Guide

306

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

obj_drop Context Sensitive • Object

drops an object onto a target object.

obj_drop (target_object, x, y);

target_object The logical name of the GUI object. The object may
belong to any class.

x, y The x, y coordinates of the pointer when released over the
target object, relative to the upper left corner of the target
object.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

obj_exists Context Sensitive • Object

checks whether an object is displayed on the screen.

obj_exists (object [, time]);

object The logical name of the object. The object may belong to
any class.

time The amount of time (in seconds) that is added to the
default timeout setting (specified with the timeout_msec
testing option), yielding a new maximum wait time before
the subsequent statement is executed.

Chapter 7 • Alphabetical Reference

307

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

obj_find_text Context Sensitive • Object

returns the location of a string within an object.

obj_find_text (object, string, result_array [, search_area [, string_def]]);

object The logical name of the object. The object may belong to
any class.

string A valid string expression or the name of a string variable,
which can include a regular expression. The regular
expression should not include an exclamation mark (!),
however, which is treated as a literal character.

result_array The name of the four-element array that stores the
location of the string. The elements are numbered 1 to 4.
Elements 1 and 2 store the x- and y-coordinates of the
upper left corner of the enclosing rectangle; elements 3
and 4 store the coordinates for the lower right corner.

search_area Indicates the area of the screen to search as coordinates
that define any two diagonal corners of a rectangle,
expressed as a pair of x,y coordinates. The coordinates are
stored in result_array.

string_def Defines the type of search to perform. If no value is
specified (0 or FALSE, the default), the search is for a
single, complete word only. When 1, or TRUE, is specified,
the search is not restricted to a single, complete word.

TSL Reference Guide

308

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

obj_get_desc Context Sensitive • Object

returns an object’s physical description.

obj_get_desc (object, oblig, optional, selector, out_desc);

object The logical name of the GUI object. The object may
belong to any class.

oblig The list of obligatory properties (separated by blank
spaces).

optional The list of optional properties (separated by blank spaces).

selector The type of selector used for this object class (location or
index).

out_desc The output variable that stores the description of the GUI
object.

Return Values

If the oblig, optional, and selector parameters are null strings, obj_get_desc returns
the current learning configuration for the object.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

309

obj_get_info Context Sensitive • Object

returns the value of an object property.

obj_get_info (object, property, out_value);

object The logical name of the GUI object. The object may
belong to any class.

property Any of the properties listed in the User’s Guide.

out_value The output variable that stores the value of the property.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

obj_get_text Context Sensitive • Object

reads text from an object.

obj_get_text (object, out_text [, x1, y1, x2, y2]);

object The logical name of the GUI object. The object may
belong to any class.

out_text The name of the output variable that stores the captured
text.

x1,y1,x2,y2 An optional parameter that defines the location from
which text will be read, relative to the specified object.
The pairs of coordinates can designate any two diagonally
opposite corners of a rectangle.

TSL Reference Guide

310

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

obj_highlight Context Sensitive • Object

highlights an object.

obj_highlight (object [, flashes]);

object The logical name of the object. The object may belong to
any class.

flashes The number of times the object flashes. The default
number is four.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

obj_key_type Context Sensitive • Java

sends KeyEvents to a Java component.

obj_key_type (object, keyboard_input);

object The logical name of the GUI object.

keyboard_input A string expression that represents keystrokes.

Chapter 7 • Alphabetical Reference

311

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WinRunner with Java support only.

obj_mouse_click Context Sensitive • Object

clicks on an object.

obj_mouse_click (object, x, y [, mouse_button [, modifier]]);

object The logical name of the object. The object may belong to
any class.

x, y The position of the mouse click expressed as x and y
(pixel) coordinates. Coordinates are relative to the upper
left corner of the GUI object.

mouse_button A constant that specifies the mouse button to click. The
value can be LEFT, MIDDLE, or RIGHT. If no button is
specified, the default is the button that performs the select
function.

modifier A constant that specifies the modifier key used with the
mouse button. The value can be CONTROL, SHIFT, or
CONTROL_SHIFT.

Note: When running a test with an obj_mouse_click statement, the object that
the mouse clicks must be fully displayed.

TSL Reference Guide

312

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

obj_mouse_dbl_click Context Sensitive • Object

performs a double-click within an object.

obj_mouse_dbl_click (object, x, y [, mouse_button [, modifier]]);

object The logical name of the GUI object. The object may
belong to any class.

x, y The position of the double-click expressed as x and y
(pixel) coordinates. Coordinates are relative to the upper
left corner of the GUI object.

mouse_button A constant that specifies the mouse button to click. The
value can be LEFT, MIDDLE, or RIGHT. If no button is
specified, the default is the button that performs the select
function.

modifier A constant that specifies the modifier key used with the
mouse button. The value can be CONTROL, SHIFT, or
CONTROL_SHIFT.

Note: When running a test with an obj_mouse_dbl_click statement, the object
that the mouse clicks must be fully displayed.

Chapter 7 • Alphabetical Reference

313

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

obj_mouse_drag Context Sensitive • Object

drags the mouse within an object.

obj_mouse_drag (object, start_x, start_y, end_x, end_y [, mouse_button [, modifier]]);

object The logical name of the object. The object may belong to
any class.

start_x, start_y The x and y coordinates of the start point of the mouse
drag. The coordinates are relative to the upper left corner
of the GUI object.

end_x, end_y The x and y coordinates of the end point of the mouse
drag. The coordinates are relative to the upper left corner
of the GUI object.

mouse_button A constant that specifies the mouse button to hold down.
The value can be LEFT, MIDDLE, or RIGHT. If no button is
specified, the default is the button that performs the select
function.

modifier A constant that specifies the modifier key used with the
mouse button. The value can be CONTROL, SHIFT, or
CONTROL_SHIFT.

Note: When running a test with an obj_mouse_drag statement, the object that
the mouse drags must be fully displayed.

TSL Reference Guide

314

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

obj_mouse_move Context Sensitive • Object

moves the mouse pointer within an object.

obj_mouse_move (object, x, y);

object The logical name of the GUI object. The object may
belong to any class.

x, y The position of the mouse pointer, expressed as x and y
(pixel) coordinates. Note that the specified coordinates are
relative to the upper left corner of the object. This position
is relative to the upper left corner of the object.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

315

obj_move_locator_text Context Sensitive • Object

moves the mouse pointer to a string in an object.

obj_move_locator_text (object, string [, search_area [, string_def]]);

object The logical name of the object.

string The text to locate. To specify a literal, case sensitive string,
enclose the string in quotation marks. Alternatively, you
can specify the name of a string variable. The value of the
string variable can include a regular expression (the
regular expression need not begin with an exclamation
mark).

search_area The region of the object to search, relative to the window.
This area is defined as a pair of coordinates, with
x1,y1,x2,y2 specifying any two diagonally opposite corners
of the rectangular search region. If this parameter is not
defined, then the entire object is considered the search
area.

string_def Defines how the text search is performed. If no string_def is
specified, (0 or FALSE, the default parameter), the
interpreter searches for a complete word only. If 1, or
TRUE, is specified, the search is not restricted to a single,
complete word.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

TSL Reference Guide

316

obj_set_info Context Sensitive • Java

sets the value of an object property.

obj_set_info (object, property, value);

object The logical name of the Java object. The object may
belong to any class.

property Any property that has a set method.

value The variable that stores the new value of the property.

Return Values

This function returns one of the standard return values. It returns
E_ATTR_NOT_SUPPORTED for a specified property (for example, value) if one of
the following events occur:

➤ The object does not have the method setValue.

➤ The method setValue exists, but it either has more than one parameter or the
parameter does not belong to one of the following Java classes: String, int,
boolean, Integer, Boolean.

➤ The parameter given in a TSL call statement cannot be converted to one of
the Java classes mentioned above.

➤ The method setValue throws a Java exception when using the parameters provided
in the call statement.

Availability

This function is available for WinRunner with Java support only.

Chapter 7 • Alphabetical Reference

317

obj_type Context Sensitive • Object

sends keyboard input to an object.

obj_type (object, keyboard_input);

object The logical name of the GUI object.

keyboard_input A string expression that represents keystrokes.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

obj_wait_bitmap Context Sensitive • Object

waits for an object bitmap to be drawn on the screen.

obj_wait_bitmap (window, bitmap, time [, x, y, width, height]);

object The logical name of the object. The object may belong to
any class.

bitmap A string expression that identifies the captured bitmap.

time Indicates the interval between the previous input event
and the capture of the current bitmap, in seconds. This
parameter is added to the timeout_msec
testing option and the sum indicates how much time
WinRunner will wait for the capture of the bitmap.

x, y For an area bitmap: the coordinates of the upper left
corner, relative to the object in which the selected region
is located.

width, height For an area bitmap: the size of the selected region, in
pixels.

TSL Reference Guide

318

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

obj_wait_info Context Sensitive • Object

waits for the value of an object property.

obj_wait_info (object, property, value, time);

object The logical name of the object.

property Any of the properties listed in the User’s Guide.

value The property value for which the function waits.

time The interval, in seconds, before the next statement is
executed.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

319

output_message Standard • Load Testing

sends a message to the controller.

output_message (message);

message Any string.

The output_message function sends a message from a Vuser script to the
controller’s Output window.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118

Availability

This function is available for LoadRunner GUI Vusers only.

password_edit_set Standard • Password

sets the value of a password edit field to a given value.

password_edit_set (edit_object, encrypted_password);

edit_object The logical name of the edit object.

encrypted_password The encrypted password as it appears in the script.

Note: You can also use the edit_set, type, and obj_type TSL functions to set a
password, however the password_edit_set function provides extra security by
eliminating the password from the test script.

TSL Reference Guide

320

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

password_encrypt Context Sensitive • Password

encrypts a plain password.

password_encrypt (password);

password The plain password.

Return Values

This function returns the encrypted password.

Availability

This function is always available.

pause Standard • I/O

pauses test execution and displays a message box.

pause ([expression]);

expression Any valid expression.

Return Values

This function always returns 0.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

321

phone_append_text Context Sensitive • WAP

appends the specified text string to the current contents of the phone editor.

phone_append_text (text);

text The text string to append in the phone editor.

Note: This function works only while the phone is in editing mode. Trying to use
this function while the phone is not in editing mode will return an illegal
operation.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is supported for the WAP Add-in. This function is supported for both
the Nokia and Phone.com emulators.

phone_edit_set Context Sensitive • WAP

replaces the contents of the phone editor with the specified text string.

phone_edit_set (text);

text The text string to insert in the phone editor.

Note: This function works only while the phone is in editing mode. Trying to use
this function while the phone is not in editing mode will return an illegal
operation.

TSL Reference Guide

322

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is supported for the WAP Add-in. This function is supported for both
the Nokia and Phone.com emulators.

phone_get_name Context Sensitive • WAP

returns the model name of the phone.

phone_get_name (name);

name The model name of the phone.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is supported for the WAP Add-in. This function is supported for both
the Nokia and Phone.com emulators.

phone_GUI_load Context Sensitive • WAP

unloads the currently loaded GUI map file and loads the GUI map for the specified
Phone.com phone.

phone_GUI_load ([name]);

name The model name of the phone.

Chapter 7 • Alphabetical Reference

323

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is supported for the WAP Add-in. This function is supported for the
Phone.com emulator only.

phone_key_click Context Sensitive • WAP

clicks a phone key.

phone_key_click (key [, delay [, timeout]]);

key The logical name of the phone key.

delay The Boolean parameter indicating that there is an
additional delay to compensate for inserting a new letter
while editing.

timeout The amount of time (in milliseconds) between pressing
and releasing the key.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is supported for the WAP Add-in. This function is supported for both
the Nokia and Phone.com emulators.

phone_navigate Context Sensitive • WAP

directs the phone to connect to the specified site.

phone_navigate (URL [, timeout]);

URL The URL to which the phone navigates.

TSL Reference Guide

324

timeout The amount of time (in milliseconds) the phone waits
while trying to establish a connection.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is supported for the WAP Add-in. This function is supported for both
the Nokia and Phone.com emulators.

phone_sync Context Sensitive • WAP

recorded after any phone navigation on the Nokia emulator, and instructs WinRunner to
wait until the phone is ready to handle the next operation.

phone_sync ([redirect [, timeout]]);

redirect An optional Boolean parameter indicating that the phone
will wait an additional amount of time to redirect to
another URL.

timeout The amount of time (in milliseconds) that the phone will
wait to try to establish a connection.

Note: This function is inserted automatically to the test scripts after a
phone_key_click statement is recorded on a Nokia phone that included
navigation. The timeout is the expected period of time during which WinRunner
expects the navigation to be concluded.

Chapter 7 • Alphabetical Reference

325

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is supported for the WAP Add-in.

This function is supported for recording on the Nokia emulator only. This
function is supported for running tests on both the Nokia and the phone.com
emulators.

popup_select_item Context Sensitive • Java

selects an item from a Java popup menu.

popup_select_item ("menu component;menu item");

menu The logical name of the Java component containing the
menu.

item The item to select.

Note: When using popup_menu_select on JDK 1.2 - 1.2.2_001, insert the
following statement before the set_window statement of the popup menu’s
parent window:

set_aut_var("USE_LOW_LEVEL_EVENTS", "all");

You can change this parameter back to "none" using the following statement:

set_aut_var("USE_LOW_LEVEL_EVENTS", "none");

TSL Reference Guide

326

qt_force_send_key Standard • QuickTest 2000

instructs WinRunner to recognize an edit field which prompts a screen change when
information is inserted.

qt_force_send_key (window_name, field_name [, additional_key]);

window_name The name of the window.

field_name The name of the edit field.

additional_key The key which causes the screen change.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for QuickTest 2000 only.

qt_reset_all_force_send_key Standard • QuickTest 2000

negates screen change configurations previously made using the qt_force_send_key
function.

qt_reset_all_force_send_key ();

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

327

rand Standard • Arithmetic

returns a pseudo-random floating point number (n) in the range of 0 < n < 1.

rand ();

Return Values

This function returns a real number.

Availability

This function is always available.

reload Standard • Compiled Module

removes a compiled module from memory and loads it again.

reload (module_name [,1|0 [,1|0]]);

module_name A string expression indicating the name of an existing
compiled module.

1|0 1 indicates a system module. 0 indicates a user module.
The default values is 0.

1|0 This parameter is optional and only implemented if the
second parameter is implemented. 1 indicates that a user
module will not remain open after it is loaded.

0 indicates that the module remains open in the
WinRunner window. The default value is 0.

Note: If you make changes to a function in a loaded compiled module, you must
unload and reload the compiled module in order for the changes to take effect. For
additional information, refer to the “Creating Compiled Modules” chapter in the
WinRunner User’s Guide.

TSL Reference Guide

328

Return Values

This function returns 0 for success, and 1 for failure.

Availability

This function is always available.

rendezvous Standard • Load Testing

sets a rendezvous point in a Vuser script.

rendezvous (rendezvous_name);

rendezvous_name The name of the rendezvous declared in a
declare_rendezvous statement.

Return Value

This function returns 0 if the operation is successful, or one of the following error
codes if it fails:

Availability

This function is available for LoadRunner GUI Vusers only.

Error code Number Description

E_OK 0 operation successful

E_TIMEOUT -10016 timeout reached before operation performed

E_REND_NF -10218 rendezvous not defined

E_REND_NOT_MEM -10219 vuser not defined as a participant in the
rendezvous

E_REND_INVALID -10220 rendezvous disabled

Chapter 7 • Alphabetical Reference

329

report_msg Standard • I/O

writes a message in the test report.

report_msg (message);

message A valid string expression.

Return Values

This function always returns 0.

Availability

This function is always available.

return Standard • Call Statements

returns an expression to the calling function or test.

return [expression];

expression The expression to return.

The return statement returns an expression to the calling function or test. It is
used exclusively in functions. It also halts execution of the called function and
passes control back to the calling function or test.

TSL Reference Guide

330

Note about arrays: You cannot return an array from a function. In order to return
values in an array, you must declare the array as an OUT parameter in the
function.

The return value of a function can be one of the following:

➤ char (signed and unsigned)

➤ string (equivalent to C char*)

➤ short (signed and unsigned)

➤ int (signed and unsigned)

➤ long (signed and unsigned)

➤ float

➤ double

Return Values

If no expression is used, then an empty string is returned. Otherwise, the return
statement does not have a return value.

Availability

This statement is always available.

Note: The return statement is not a function. Therefore, it does not appear in the
Function Generator.

Chapter 7 • Alphabetical Reference

331

scroll_check_info Context Sensitive • Scroll Object

checks the value of a scroll property.

scroll_check_info (scroll, property, property_value);

scroll The logical name of the scroll.

property The property to be checked.

property_value The expected property value.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

scroll_check_pos Context Sensitive • Scroll Object

checks the current position of a scroll.

scroll_check_pos (scroll, position);

scroll The logical name of the scroll.

position A number indicating the expected scroll position.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

TSL Reference Guide

332

scroll_drag Context Sensitive • Scroll Object.

scrolls to the specified location.

scroll_drag (scroll, orientation, position);

scroll The logical name of the scroll.

orientation The direction of the scroll; either VSCROLL (vertical) or
HSCROLL (horizontal).

position The absolute position within the scroll.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function can be used for scroll bar and slider objects.

scroll_drag_from_min Context Sensitive • Scroll Object

scrolls from the minimum position.

scroll_drag_from_min (scroll, orientation, position);

scroll The logical name of the scroll object.

orientation The direction of the scroll; either VSCROLL (vertical) or
HSCROLL (horizontal).

Note: The orientation parameter is not available for Java objects.

position The number of units from the minimum position to drag
the scroll.

Chapter 7 • Alphabetical Reference

333

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function can be used for scroll bar and slider objects.

scroll_get_info Context Sensitive • Scroll Object

returns the value of a scroll property.

scroll_get_info (scroll, property, out_value);

scroll The logical name of the scroll.

property Any of the properties listed in the WinRunner User’s Guide.

out_value The output variable that stores the value of the specified
property.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function can be used for scroll bar and slider objects.

scroll_get_max Context Sensitive • Scroll Object

returns the maximum (end) position of a scroll.

scroll_get_max (scroll, orientation, out_max);

scroll The logical name of the scroll.

orientation The direction of the scroll; either VSCROLL (vertical) or
HSCROLL (horizontal).

out_max The output variable which stores the maximum value of
the scroll.

TSL Reference Guide

334

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function can be used for scroll bar and slider objects.

scroll_get_min Context Sensitive • Scroll Object

returns the minimum (start) position of a scroll.

scroll_get_min (scroll, orientation, out_min);

scroll The logical name of the scroll.

orientation The direction of the scroll; either VSCROLL (vertical) or
HSCROLL (horizontal).

out_min The output variable that stores the minimum (starting)
value of the scroll.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function can be used for scroll bar and slider objects.

scroll_get_pos Context Sensitive • Scroll Object

returns the current scroll position.

scroll_get_pos (scroll, orientation, out_pos);

scroll The logical name of the scroll.

orientation The direction of the scroll; either VSCROLL (vertical) or
HSCROLL (horizontal).

out_pos The output variable which stores the current position of
the scroll.

Chapter 7 • Alphabetical Reference

335

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function can be used for scroll bar and slider objects.

scroll_get_selected Context Sensitive • Scroll Object

returns the minimum and maximum values of the selected range on a slider.

scroll_get_selected (slider, min_value, max_value);

slider The logical name of the slider.

min_value The output variable that stores the minimum value of the
selected range.

max_value The output variable that stores the maximum value of the
selected range.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

The scroll_get_selected function works only for slider objects, for which the
TBS_ENABLESELRANGE flag is set. This flag allows a selection range within the
scroll to be displayed.

scroll_line Context Sensitive • Scroll Object

scrolls the specified number of lines.

scroll_line (scroll, orientation, [+|-] lines);

scroll The logical name of the scroll.

orientation The direction of the scroll; either VSCROLL (vertical) or
HSCROLL (horizontal).

TSL Reference Guide

336

[+|-] lines The number of scrolled lines. "+" indicates the scroll is
performed downward or to the right; "-" indicates the
scroll is performed upward or to the left. The default is "+".

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function can be used for scroll bar and slider objects.

scroll_max Context Sensitive • Scroll Object

sets a scroll to its maximum (end) position.

scroll_max (scroll, orientation);

scroll The logical name of the scroll.

orientation The direction of the scroll; either VSCROLL (vertical) or
HSCROLL (horizontal).

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function can be used for scroll bar and slider objects.

scroll_min Context Sensitive • Scroll Object

sets the scroll to its minimum (start) position.

scroll_min (scroll, orientation);

scroll The logical name of the scroll object.

orientation The direction of the scroll; either VSCROLL (vertical) or
HSCROLL (horizontal).

Chapter 7 • Alphabetical Reference

337

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function can be used for scroll bar and slider objects.

scroll_page Context Sensitive • Scroll Object

moves the scroll the specified number of pages.

scroll_page (scroll, orientation, [+|-] pages);

scroll The logical name of the scroll.

orientation The direction of the scroll; either VSCROLL (vertical) or
HSCROLL (horizontal).

[+|-] pages The number of scrolled pages. "+" indicates that the scroll
is performed downward or to the right; "-" indicates that
the scroll is performed upward or to the left. The default is
’+’.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function can be used for scroll bar and slider objects.

scroll_wait_info Context Sensitive • Scroll Object

waits for the value of a scroll property.

scroll_wait_info (scroll, property, value, time);

scroll The logical name of the scroll.

property Any of the properties listed in the WinRunner User’s Guide.

value The property value.

TSL Reference Guide

338

time The interval, in seconds, before the next statement is
executed.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function can be used for scroll bar and slider objects.

set_aut_var Standard • Testing Option

sets how WinRunner learns descriptions of objects, records tests, and runs tests on Java
applets or applications.

set_aut_var (variable, value);

variable The variable to set.

value The value of the variable.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available only for WinRunner with Java support.

set_class_map Context Sensitive • GUI Map Configuration

associates a custom class with a standard class.

set_class_map (custom_class, standard_class);

custom_class The name of the custom class used in the application.

standard_class The name of the Mercury class or the MS Windows
standard class with the same behavior as the custom class.

Chapter 7 • Alphabetical Reference

339

Note: You should store set_class_map statements in a startup test.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WinRunner and GUI Vusers running on PC platforms
only.

set_record_attr Context Sensitive • GUI Map Configuration

sets the properties to learn for an object class.

set_record_attr (class, oblig_prop, optional_prop, selector);

class The name of the Mercury class, MSW_class, or X_class.

oblig_prop A list of properties (separated by blank spaces) to always
learn.

optional_prop A list of descending properties (separated by blank spaces)
to add to the description until unique identification of the
object is achieved.

selector The type of selector to be applied in case both obligatory
and optional properties do not achieve a unique object
identification. This may be either index or location.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

TSL Reference Guide

340

set_record_method Context Sensitive • GUI Map Configuration

specifies the record method for a class.

set_record_method (class, method);

class The name of a standard class, MSW_class, or
TOOLKIT_class.

method The record method to use, as described in the table below.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

Method Description

RM_RECORD Records operations using Context Sensitive functions. This is
the default method for all the standard classes, except the
object class (for which the default is MIC_MOUSE).

RM_IGNORE Turns off recording.

RM_PASSUP Records mouse operations (relative to the parent of the
object) and keyboard input.

RM_AS_OBJECT Records all windows or objects as general “object” class
objects (obj_mouse_click or win_mouse_click).

Chapter 7 • Alphabetical Reference

341

set_window Context Sensitive • Window Object

specifies the window to receive subsequent input and (optionally) specifies the amount of
time to wait for the specified window.

set_window (window [,time]);

window The logical name of the window.

time The amount of time, in seconds, added to the timeout
option (set in the Run tab of the Settings > General
Options dialog box) to give the maximum interval before
the next statement is executed (WinRunner). If the
Window is found before the maximum time is reached,
the test continues to run.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

_set_window Context Sensitive • Window Object

specifies a window to receive input.

_set_window (desc, time);

desc The physical description of the window.

time The time is added to the timeout_msec testing option to
give the maximum interval, in seconds, before the next
statement is executed.

TSL Reference Guide

342

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

setvar Standard • Testing Option

sets the value of a testing option.

setvar (option, value);

option A testing option.

value The value to assign to the testing option.

The setvar function changes the value of a testing option. For a list and an in-
depth explanations of setvar options, refer to the “Setting Testing Options from a
Test Script” chapter in the WinRunner User’s Guide.

Return Values

This function always returns 0.

Availability

This function is always available.

siebel_click_history Context Sensitive • Siebel

clicks the Siebel History button.

siebel_click_history (thread_bar_object);

thread_bar_object The logical name of the Siebel bar object containing the
History button.

Chapter 7 • Alphabetical Reference

343

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is supported for WinRunner with Siebel support.

siebel_connect_repository Context Sensitive • Siebel

connects to the Siebel repository database.

siebel_connect_repository (connection_string);

connection_string The string that activates the connection to the Siebel
repository database.

Note: You only need to call this function once per connection.

If you encounter difficulties connecting the repository using an existing DSN, use
the ODBC Data Source Administrator from the Windows Control Panel to define a
new User Data Source (DSN) that refers to the Siebel Repository database.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is supported for WinRunner with Siebel support.

TSL Reference Guide

344

siebel_get_active_applet Context Sensitive • Siebel

returns the active applet name.

siebel_get_active_applet (applet_name);

applet_name The output variable that stores the name of the active
applet.

Note: A set_window statement must precede this function in order to direct the
input to the correct application window.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is supported for WinRunner with Siebel support.

siebel_get_active_buscomp Context Sensitive • Siebel

returns the active business component name.

siebel_get_active_buscomp (bus_comp_name);

bus_comp_name The output variable that stores the name of the active
business component.

Note: A set_window statement must precede this function in order to direct the
input to the correct application window.

Chapter 7 • Alphabetical Reference

345

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is supported for WinRunner with Siebel support.

siebel_get_active_busobj Context Sensitive • Siebel

returns the active business object name.

siebel_get_active_busobj (bus_obj_name);

bus_obj_name The output variable that stores the name of the active
business object.

Note: A set_window statement must precede this function in order to direct the
input to the correct application window.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is supported for WinRunner with Siebel support.

siebel_get_active_control Context Sensitive • Siebel

returns the active control name.

siebel_get_active_control (control_name);

control_name The output variable that stores the name of the active
control.

TSL Reference Guide

346

Notes: This function makes it possible to use the siebel_get_control_value and
siebel_set_control_value functions. A set_window statement must precede this
function in order to direct the input to the correct application window.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is supported for WinRunner with Siebel support.

siebel_get_active_view Context Sensitive • Siebel

returns the active view name.

siebel_get_active_view (view_name);

view_name The output variable that stores the name of the active
View object.

Note: A set_window statement must precede this function in order to direct the
input to the correct application window.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is supported for WinRunner with Siebel support.

Chapter 7 • Alphabetical Reference

347

siebel_get_chart_data Context Sensitive • Siebel

returns the legend data and chart values from the specified chart.

siebel_get_chart_data (chart_object, ret_legend_array, ret_values_array);

chart_object The logical name of the chart or the chart’s legend.

ret_legend_array The output variable that stores the array of legend
elements.

ret_values_array The output variable that stores the array of chart values.

Note: Either the legend or the chart may be selected, and that both will return the
same data.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is supported for WinRunner with Siebel support.

siebel_get_control_value Context Sensitive • Siebel

returns the value of the active control.

siebel_get_control_value (value);

value The output variable that stores the value of the active
control.

Note: The siebel_set_active_control function must precede this statement in
order to establish the active control.

TSL Reference Guide

348

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is supported for WinRunner with Siebel support.

siebel_goto_record Context Sensitive • Siebel

navigates to the specified record.

siebel_goto_record (direction);

direction The direction in which to move to get to the desired
record from the current location. Possible values are:
"First", "Last", "Previous", or "Next".

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is supported for WinRunner with Siebel support.

siebel_navigate_view Context Sensitive • Siebel

navigates to the specified view.

siebel_navigate_view (view_name);

view_name The internal name of the view to be reached.

Note: Navigation is sensitive to the record context.

Chapter 7 • Alphabetical Reference

349

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is supported for WinRunner with Siebel support.

siebel_obj_get_info Context Sensitive • Siebel

returns the value of a single Siebel property from the Siebel repository database.

siebel_obj_get_info (obj_type, obj_name, applet_name, property_name, ret_prop_val);

obj_type The Siebel type for which to retrieve the attribute.

Possible values for this parameter are:

S_APPLET, S_BUSCOMP, S_BUSOBJ, S_CONTROL,
S_FIELD, or S_VIEW

obj_name The internal object name for which to retrieve the
attribute.

applet_name The applet name

Required only with obj_type: CONTROL or FIELD. For all
other obj_types, enter "".

property_name The name of the property to retrieve.

ret_prop_val The output variable that stores the value of the specified
object property.

Note: You must connect to the Siebel repository database with a
siebel_connect_repository statement before you use this function.

TSL Reference Guide

350

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is supported for WinRunner with Siebel support.

siebel_obj_get_properties Context Sensitive • Siebel

returns all properties of a specified Siebel in the Siebel repository database.

siebel_obj_get_properties (obj_type, obj_name, applet_name, ret_prop_array);

obj_type The Siebel type for which to retrieve the properties.

Possible values for this parameter are:

S_APPLET, S_BUSCOMP, S_BUSOBJ, S_CONTROL,
S_FIELD, or S_VIEW

obj_name The internal object name for which to retrieve the
properties.

applet_name The applet name.

Required only with obj_type: CONTROL or FIELD. For all
other obj_types, enter "".

ret_prop_array The output variable that stores the array of values for the
specified object property.

Note: You must connect to the Siebel repository database with a
siebel_connect_repository statement before you use this function.

Chapter 7 • Alphabetical Reference

351

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is supported for WinRunner with Siebel support.

siebel_select_alpha Context Sensitive • Siebel

selects a letter key from the alpha tab bar.

siebel_select_alpha (alpha_tab_object, key);

alpha_tab_object The logical name of the alpha tab object; usually "alpha
tab".

key The letter key to select from the alpha tab.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is supported for WinRunner with Siebel support.

siebel_set_active_applet Context Sensitive • Siebel

sets the specified applet as the active applet.

siebel_set_active_applet (applet_name);

applet_name The internal name of the of the applet to activate.

If you do not know the applet’s internal name, you may
use the siebel_get_active_applet to retrieve it.

TSL Reference Guide

352

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is supported for WinRunner with Siebel support.

siebel_set_active_control Context Sensitive • Siebel

sets the specified control as the active control.

siebel_set_active_control (control_name);

control_name The internal name of the control to activate.

If you do not know the control’s internal name, you can
use the siebel_get_active_applet function to retrieve it.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is supported for WinRunner with Siebel support.

siebel_set_control_value Context Sensitive • Siebel

sets the value of the active control.

siebel_set_control_value (new_value);

new_value The value to be assigned to the active control.

Note: The siebel_set_active_control function must precede this statement in
order to establish the active control.

Chapter 7 • Alphabetical Reference

353

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is supported for WinRunner with Siebel support.

siebel_terminate Context Sensitive • Siebel

closes the Siebel application.

siebel_terminate ();

Note: Call this function to terminate the Siebel application or immediately after
manually closing the application.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is supported for WinRunner with Siebel support.

sin Standard • Arithmetic

calculates the sine of an angle expressed in radians.

sin (x);

Return Values

This function returns a real number.

Availability

This function is always available.

TSL Reference Guide

354

spin_get_info Context Sensitive • Spin Object

returns the value of a spin property.

spin_get_info (spin, property, out_value);

spin The logical name of the spin object.

property Any of the properties listed in the User’s Guide.

out_value The output variable that stores the value of the specified
property.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

spin_get_pos Context Sensitive • Spin Object

returns the current position of a spin object.

spin_get_pos (spin, out_value);

spin The logical name of the spin object.

property Any of the properties listed in the User’s Guide.

out_value The output variable that stores the value of the specified
property.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

355

spin_get_range Context Sensitive • Spin Object

returns the minimum and maximum positions of a spin object.

spin_get_range (spin, out_min_pos, out_max_pos);

spin The logical name of the spin object.

out_min_pos The output variable that stores the minimum position of
the spin object.

out_max_pos The output variable that stores the maximum position of
the spin object.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

spin_max Context Sensitive • Spin Object

sets a spin object to its maximum value.

spin_max (spin);

spin The logical name of the spin object.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

TSL Reference Guide

356

spin_min Context Sensitive • Spin Object

sets a spin object to its minimum value.

spin_min (spin);

spin The logical name of the spin object.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

spin_next Context Sensitive • Spin Object

sets a spin object to its next value.

spin_next (spin [, index]);

spin The logical name of the spin object.

index The number of the text field in the spin object.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

357

spin_prev Context Sensitive • Spin Object

sets a spin object to its previous value.

spin_prev (spin);

spin The logical name of the spin object.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

spin_set Context Sensitive • Spin Object

sets a spin object to an item.

spin_set (spin, item);

spin The logical name of the spin object.

item The item to select in the spin object.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

TSL Reference Guide

358

spin_up Context Sensitive • Spin Object

scrolls a spin control up the specified number of times.

spin_up (spin_obj, spins);

spin_obj The name of the spin control.

spins The number of times the control is moved up.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is supported for WinRunner with Visual Basic support.

spin_wait_info Context Sensitive • Spin Object

waits for a spin property to attain a specified value.

spin_wait_info (spin, property, value, time);

spin The logical name of the spin.

property Any of the properties listed in the WinRunner User’s Guide.

value The property value for which the function waits.

time The interval, in seconds, before the next statement is
executed.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

359

split Standard • Array

divides an input string into fields and stores them in an array.

split (string, array [, field_separators]);

string A valid string expression.

array The name of the storage array.

field_separators The characters in the string which designate where the
string is to be split into fields. Each single character is used
as a separator.

Note: The first element in the array index is numbered 1. The number of elements
in the array equals the result of the split. As in any array, they are sequential
integers.

Return Values

This function returns the number of elements in the array.

Availability

This function is always available.

sprintf Standard • I/O

returns a formatted string to a variable.

sprintf (format, exp1, exp2, ... expn);

format May include both a literal string to be printed and
formatting specifications.

exp The expressions to format.

TSL Reference Guide

360

Return Values

This function returns a formatted string.

Availability

This function is always available.

sqrt Standard • Arithmetic

returns the square root of its argument.

sqrt (x);

x A variable.

Return Values

This function returns a real number.

Availability

This function is always available.

srand Standard • Arithmetic

defines a seed parameter for the rand function, which returns a pseudo-random floating
point number (n) within the range of 0 < n < 1.

srand ([x]);

x Specifies the seed parameter. If no seed is entered, the time
of day is the value of the seed.

Note: The seed parameter provided by srand starts the random sequence.

Chapter 7 • Alphabetical Reference

361

Return Values

This function returns a real number indicating the user-defined seed parameter, or,
if no seed is given, the value returned by get_time.

Availability

This function is always available.

start_transaction Standard • Load Testing

marks the beginning of a transaction for performance analysis.

start_transaction (transaction_name);

transaction_name A string expression that names the transaction. The string
must not contain any spaces.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for LoadRunner GUI Vusers only.

static_check_info Context Sensitive • Static Text Object

checks the value of a static text object property.

static_check_info (static, property, property_value);

static The logical name of the static text object.

property The property to check.

property_value The expected property value.

TSL Reference Guide

362

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

static_check_text Context Sensitive • Static Text Object

checks the content of a static text object.

static_check_text (static, text, case_sensitive);

static The logical name of the static text object.

text The contents of the static text object.

case_sensitive Indicates whether the comparison is case sensitive. This
value is either TRUE or FALSE.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

static_get_info Context Sensitive • Static Text Object

returns the value of a static text object property.

static_get_info (static, property, out_value);

static The logical name of the static text object.

property Any of the properties listed in the User’s Guide.

out_value The output variable that stores the value of the specified
property.

Chapter 7 • Alphabetical Reference

363

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

static_get_text Context Sensitive • Static Text Object

returns the contents of a static text object.

static_get_text (static, out_string);

static The logical name of the static text object.

out_string The output variable that stores the string found in the
static text object.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

static_wait_info Context Sensitive • Static Text Object

waits for the value of a static text object property.

static_wait_info (static, property, value, time);

static The logical name of the static text object.

property Any of the properties listed in the User’s Guide.

value The expected property value.

time The maximum interval, in seconds, before the next
statement is executed.

TSL Reference Guide

364

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

statusbar_get_field_num Context Sensitive • Statusbar

returns the numeric index of a field on a status bar.

statusbar_get_field_num (statusbar, field, field_index);

statusbar The logical name of the status bar.

field The text in the status bar field. If the text in the field
changes, you can use a regular expression.

field_index The output variable that stores the numeric index of the
field. Note that the first field in the status bar is numbered
0.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

statusbar_get_info Context Sensitive • Statusbar

returns the value of a status bar property.

statusbar_get_info (statusbar, property, out_value);

statusbar The logical name of the status bar.

Chapter 7 • Alphabetical Reference

365

property The following properties may be specified: abs_x, abs_y,
active, attached_text, class, count, displayed, enabled, focus,
handle, height, label, MSW_class, MSW_id, nchildren, parent,
value (default), width, x, y

out_value The output variable that stores the value of the specified
property.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

statusbar_get_text Context Sensitive • Statusbar

reads text from a field on a status bar.

statusbar_get_text (statusbar, field_index, out_text);

statusbar The logical name of the status bar.

field_index The index number of the field containing the text you
want to read. The first field in the status bar is numbered
0.

out_text The name of the output variable that stores the text.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

TSL Reference Guide

366

statusbar_wait_info Context Sensitive • Statusbar

waits for the value of a status bar property.

statusbar_wait_info (statusbar, property, value, time);

statusbar The logical name of the status bar.

property The property to wait for. The following properties may be
specified: abs_x, abs_y, active, attached_text, class, count,
displayed, enabled, focus, handle, height, label, MSW_class,
MSW_id, nchildren, parent, value (default), width, x, y

value The property value.

time Indicates the interval, in seconds, before the next
statement is executed.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

str_map_logical_to_visual Standard • I/O

converts a logical string to a visual string or vice-versa.

str_map_logical_to_visual (logical_string, visual_string);

logical_string A valid logical string expression.

visual_string The corresponding returned valid visual string expression.

The str_map_logical_to_visual function returns a valid visual string expression
for a valid logical string expression. Alternatively, it returns a valid logical string
expression for a valid visual string expression.

Chapter 7 • Alphabetical Reference

367

Note: This function is primarily intended for use with RTL-style windows. When
working with applications with RTL-style windows, the get_text function
sometimes returns a logical string instead of a visual string.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

substr Standard • String

extracts a substring from a string.

substr (string, position [, length]);

string A valid string expression.

position An integer that indicates the position of the first character
of the substring. The position of the first character of the
string is 1, the second is 2, etc.

length Defines the number of characters (starting from position)
to include in the substring.

Return Values

This function returns a string. If the value of position is greater than the length of
the specified string, then the function returns the null string.

Availability

This function is always available.

TSL Reference Guide

368

system Standard • Operating System

executes an operating system command.

system (expression);

expression A string expression that specifies the system command to
execute.

Return Values

The return value of the function is the value of the operating system command
executed.

Availability

This function is available for WinRunner and LoadRunner GUI Vusers on UNIX
platforms. The system function is also supported on other platforms for purposes
of porting and backward compatibility.

Chapter 7 • Alphabetical Reference

369

tab_get_info Context Sensitive • Tab Object

returns the value of a tab property.

tab_get_info (tab, property, out_value);

tab The logical name of the tab object.

property Any of the properties listed in the WinRunner User’s Guide.

out_value The output variable that stores the value of the specified
property.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

tab_get_item Context Sensitive • Tab Object

returns the name of a tab item.

tab_get_item (tab, item_num, out_item);

tab The logical name of the tab.

item_num The location of the tab item. Note that the first tab item in
a property sheet is numbered 0.

out_item The output variable that stores the tab name.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

TSL Reference Guide

370

tab_get_selected Context Sensitive • Tab Object

returns the name and number of the selected tab item.

tab_get_selected (tab, out_item, out_num);

tab The logical name of the tab.

out_item The output variable that stores the name of the selected
tab item. Note that the first tab item in a property sheet is
numbered 0.

out_num The output variable that stores the index of the selected
tab item.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

tab_select_item Context Sensitive • Tab Object

selects a tab item.

tab_select_item (tab, item);

tab The logical name of the tab.

item The item to select. The item can be denoted by either its
name or its numeric index. The index is specified as a
string preceded by the character #. The first tab item is
numbered 0.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

371

tab_wait_info Context Sensitive • Tab Object

waits for the value of a tab property.

tab_wait_info (tab, property, value, time);

tab The logical name of the tab.

property Any of the properties listed in the User’s Guide.

value The property value for which the function waits.

time The maximum interval, in seconds, before the next
statement is executed.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

TSL Reference Guide

372

tbl_activate_cell Context Sensitive • Table

double-clicks the specified cell in a table.

tbl_activate_cell (table, row, column);

table The logical name of the table.

row By location: # <row_location>
The location of the row within the table, specified by a
string preceded by the character #, such as "#2".

For WinRunner with PowerBuilder support, the row can
also be in the following format:

By content: <Column_name>=<column_content1
[column_contentn....]>
The contents of one or more cells in the row, separated by
semicolons and preceded by the name of the column in
which they appear and an equal sign, such as
"Flight_Number=306;From=LAX". The contents of all the
cells specified must be present in order to specify the row.
Choose this format to specify a row by the contents of
cells in that row. If the contents of some cells appear in
multiple rows, specify multiple cells whose contents will
uniquely identify the row.

column The column can be either:

By location: # <column_location> The location of the
column within the table, specified by a string preceded by
the character #, such as "#2".

By content: <Column_name> The column name, such as
"Flight_Number". When the column name is specified,
WinRunner takes the name from the database itself, and
not from the application.

Note for PowerBuilder users: When row is specified by content, column must also
be specified by content.

Chapter 7 • Alphabetical Reference

373

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for PowerBuilder and
Table Functions,” on page 123.

Availability

This function is not supported for WebTest.

This function is supported for WinRunner with Java support. It is supported for
the following Java toolkit packages: JFC, EWT (Oracle), and KLG.

This function is supported for WinRunner with PowerBuilder or Siebel support.

This function is supported for the following ActiveX controls:

ActiveX Control MSW_class

Data Bound Grid Control MSDBGrid.DBGrid

FarPoint Spreadsheet Control FPSpread.Spread.1

MicroHelp MH3d List Control MHGLBX.Mh3dListCtrl.1

Microsoft Grid Control MSGrid.Grid

Sheridan Data Grid Control SSDataWidgets.SSDBGridCtrl.1

True DBGrid Control TrueDBGrid50.TDBGrid, TrueDBGrid60.TDBGrid,
and TrueOleDBGrid60.TDBGrid

TSL Reference Guide

374

tbl_activate_col Context Sensitive • Table

double-clicks the specified column in a table.

tbl_activate_col (table, column);

table The logical name of the table.

column The column can be either:

By location: # <column_location> The location of the
column within the table, specified by a string preceded by
the character #, such as "#2".

By content: <Column_name> The column name, such as
"Flight_Number".

When the column name is specified, WinRunner takes the
name from the database itself, and not from the
application.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for PowerBuilder and
Table Functions,” on page 123.

Availability

This function is available only for WinRunner with Java support. It is supported
for the following Java toolkit packages: JFC and KLG.

Chapter 7 • Alphabetical Reference

375

tbl_activate_header Context Sensitive • Table

double-clicks the specified column header in a table.

tbl_activate_header (table, column);

table The logical name of the table.

column The column can be either:

By location: # <column_location> The location of the
column within the table, specified by a string preceded by
the character #, such as "#2".

By content: <Column_name> The column name, such as
"Flight_Number".

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for PowerBuilder and
Table Functions,” on page 123.

Availability

This function is not supported for WebTest.

This function is supported for WinRunner with Siebel support.

This function is supported for the following ActiveX controls:

ActiveX Control MSW_class

Data Bound Grid Control MSDBGrid.DBGrid

FarPoint Spreadsheet Control FPSpread.Spread.1

MicroHelp MH3d List Control MHGLBX.Mh3dListCtrl.1

Microsoft Grid Control MSGrid.Grid

Sheridan Data Grid Control SSDataWidgets.SSDBGridCtrl.1

True DBGrid Control TrueDBGrid50.TDBGrid, TrueDBGrid60.TDBGrid,
and TrueOleDBGrid60.TDBGrid

TSL Reference Guide

376

tbl_activate_row Context Sensitive • Table

double-clicks the specified row in a table.

tbl_activate_row (table, row);

table The logical name of the table.

row The row can be either

By location: # <column_location> The location of the row
within the table, specified by a string preceded by the
character #, such as "#2".

By content: <row_name> The row name, such as
"Flight_2".

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for PowerBuilder and
Table Functions,” on page 123.

Availability

This function is available for WinRunner with Java support. It is supported for the
following Java toolkit packages: JFC, Visual Cafe, and KLG.

This function is supported for WinRunner with Siebel support.

tbl_click_cell Analog • Table

clicks in a cell in a JFC JTable object.

tbl_click_cell (table_name, cell_index, column_name [, mouse_button]);

table_name The name of the table.

cell_index An index number denoting the position of the cell in the
column. The index number is preceded by #, for example
#2.

column_name The name of the column in which the cell is located.

mouse_button The mouse button used to click on the cell (optional).

Chapter 7 • Alphabetical Reference

377

Note: WinRunner records this function only after the set_aut_var function is used
to set the TABLE_RECORD_METHOD variable to ANALOG.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for PowerBuilder and
Table Functions,” on page 123.

Availability

This function is available only for WinRunner with Java Add-in support.

tbl_dbl_click_cell Analog • Table

double-clicks in a cell in a JFC JTable object.

tbl_dbl_click_cell (table_name, cell_index, column_name [, mouse_button]);

table_name The name of the table.

cell_index An index number denoting the position of the cell in the
column. The index number is preceded by #, for example
#2.

column_name The name of the column in which the cell is located.

mouse_button The mouse button used to click on the cell (optional).

Note: WinRunner records this function only after the set_aut_var function is used
to set the TABLE_RECORD_METHOD variable to ANALOG.

TSL Reference Guide

378

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for PowerBuilder and
Table Functions,” on page 123.

Availability

This function is available only for WinRunner with Java Add-in support.

tbl_deselect_col Context Sensitive • Table

deselects the specified column in a table.

tbl_deselect_col (table, column);

table The logical name of the table.

column The column can be either:

By location: # <column_location> The location of the
column within the table, specified by a string preceded by
the character #, such as "#2".

By content: <column_name> The column name, such as
"Flight_Number".

When the column name is specified, WinRunner takes the
name from the database itself, and not from the
application.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for PowerBuilder and
Table Functions,” on page 123.

Availability

This function is available only for WinRunner with Java support. It is supported
for the JFC Java toolkit package.

Chapter 7 • Alphabetical Reference

379

tbl_deselect_cols_range Context Sensitive • Table

deselects the specified range of columns in a table.

tbl_deselect_cols_range (table, from_column, to_column);

table The logical name of the table.

from_column The from_column can be either:

By location: # <column_location> The location of the
column within the table, specified by a string preceded by
the character #, such as "#2".

By content: <column_name> The column name, such as
"Flight_Number".

When a column name is specified, WinRunner takes the
name from the database itself, and not from the
application.

to_column The to_column can be either:

By location: # <column_location> The location of the
column within the table, specified by a string preceded by
the character #, such as "#2".

By content: <column_name> The column name, such as
"Flight_Number".

When a column name is specified, WinRunner takes the
name from the database itself, and not from the
application.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for PowerBuilder and
Table Functions,” on page 123.

Availability

This function is available only for WinRunner with Java support. It is supported
for the JFC Java toolkit package.

TSL Reference Guide

380

tbl_deselect_row Context Sensitive • Table

deselects the specified row in a table.

tbl_deselect_row (table, row);

table The logical name of the table.

row The row can be either:

By location: # <row_location> The location of the row
within the table, specified by a string preceded by the
character #, such as "#2".

By content: <row_name> The row name, such as
"Flight_2".

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for PowerBuilder and
Table Functions,” on page 123.

Availability

This function is available only for WinRunner with Java Add-in support. It is
supported for the following Java toolkit packages: JFC, Visual Cafe, and KLG.

tbl_deselect_rows_range Context Sensitive • Table

deselects the specified range of rows in a table.

tbl_deselect_rows_range (table, from_row, to_row);

table The logical name of the table.

from_row The from_row can be either:

By location: # <row_location> The location of the row
within the table, specified by a string preceded by the
character #, such as "#2".

By content: <row_name> The row name, such as
"Flight_2".

Chapter 7 • Alphabetical Reference

381

to_row The to_row can be either:

By location: # <row_location> The location of the row
within the table, specified by a string preceded by the
character #, such as "#2".

By content: <row_name> The row name, such as
"Flight_2".

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for PowerBuilder and
Table Functions,” on page 123.

Availability

This function is available only for WinRunner with Java Add-in support. It is
supported for the following Java toolkit packages: JFC and Visual Cafe.

tbl_drag Analog • Table

drags a cell to a different location within a JFC JTable object.

tbl_drag (table_name, start_row, start_col, end_row, end_col [, mouse_button]);

table_name The name of the table.

start_row The row name or an index number denoting the row
which contains the cell before the drag operation is
performed. The index number is preceded by #, for
example #3.

start_col The column name or an index number denoting the
column which contains the cell before the drag operation
is performed. The index number is preceded by #, for
example #2.

end_row The row name or an index number denoting the row
which contains the cell after the drag operation is
performed. The index number is preceded by #, for
example #5.

TSL Reference Guide

382

end_col The column name or an index number denoting the
column which contains the cell after the drag operation is
performed. The index number is preceded by #, for
example #7.

mouse_button The mouse button used to drag the cell (optional).

Note: WinRunner records this function only after the set_aut_var function is used
to set the TABLE_RECORD_METHOD variable to ANALOG.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for PowerBuilder and
Table Functions,” on page 123.

Availability

This function is available only for WinRunner with Java Add-in support.

tbl_extend_col Context Sensitive • Table

adds a column to the currently selected columns in a table.

tbl_extend_col (table, column);

table The logical name of the table.

column The column can be either:

By location: # <column_location> The location of the
column within the table, specified by a string preceded by
the character #, such as "#2".

By content: <Column_name> The column name, such as
"Flight_Number".

When the column name is specified, WinRunner takes the
name from the database itself, and not from the
application.

Chapter 7 • Alphabetical Reference

383

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for PowerBuilder and
Table Functions,” on page 123.

Availability

This function is available only for WinRunner with Java Add-in support. It is
supported for the JFC Java toolkit package.

tbl_extend_cols_range Context Sensitive • Table

adds columns to the currently selected columns in a table.

tbl_extend_cols_range (table, from_column, to_column);

table The logical name of the table.

from_column The from_column can be either:

By location: # <column_location> The location of the
column within the table, specified by a string preceded by
the character #, such as "#2".

By content: <column_name> The column name, such as
"Flight_Number".

When a column name is specified, WinRunner takes the
name from the database itself, and not from the
application.

to_column The to_column can be either:

By location: # <column_location> The location of the
column within the table, specified by a string preceded by
the character #, such as "#2".

By content: <column_name> The column name, such as
"Flight_Number".

When a column name is specified, WinRunner takes the
name from the database itself, and not from the
application.

TSL Reference Guide

384

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for PowerBuilder and
Table Functions,” on page 123.

Availability

This function is available only for WinRunner with Java Add-in support. It is
supported for the JFC Java toolkit package.

tbl_extend_row Context Sensitive • Table

adds a row to the currently selected rows in a table.

tbl_extend_row (table, row);

table The logical name of the table.

row The row can either:

By location: # <row_location> The location of the row
within the table, specified by a string preceded by the
character #, such as "#2".

By content: <row_name> The row name, such as
"Flight_2".

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for PowerBuilder and
Table Functions,” on page 123.

Availability

This function is available only for WinRunner with Java Add-in support. It is
supported for the following Java toolkit packages: JFC, Visual Cafe, and KLG.

Chapter 7 • Alphabetical Reference

385

tbl_extend_rows_range Context Sensitive • Table

adds rows to the currently selected rows in a table.

tbl_extend_rows_range (table, from_row, to_row);

table The logical name of the table.

from_row The from_row can be either:

By location: # <row_location> The location of the row
within the table, specified by a string preceded by the
character #, such as "#2".

By content: <row_name> The row name, such as
"Flight_2".

to_row The to_row can be either:

By location: # <row_location> The location of the row
within the table, specified by a string preceded by the
character #, such as "#2".

By content: <row_name> The row name, such as
"Flight_2".

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for PowerBuilder and
Table Functions,” on page 123.

Availability

This function is available only for WinRunner with Java Add-in support. It is
supported for the following Java toolkit packages: JFC and Visual Cafe.

TSL Reference Guide

386

tbl_get_cell_data Context Sensitive • Table

retrieves the contents of the specified cell from a table.

tbl_get_cell_data (table, row, column, out_text);

table The logical name of the table.

row By location: # <row_location> The location of the row
within the table, specified by a string preceded by the
character #, such as "#2".

For WinRunner with PowerBuilder or Java, support, the
row can also be in the following format:

By content: <Column_name>=<column_content1
[column_contentn....]>
The contents of one or more cells in the row, separated by
semicolons and preceded by the name of the column in
which they appear and an equal sign, such as
"Flight_Number=306;From=LAX". The contents of all the
cells specified must be present in order to specify the row.
Choose this format to specify a row by the contents of
cells in that row. If the contents of some cells appear in
multiple rows, specify multiple cells whose contents will
uniquely identify the row.

column By location: # <column_location> The location of the
column within the table, specified by a string preceded by
the character #, such as "#2".

By content: <Column_name> The column name, such as
"Flight_Number". When the column name is specified,
WinRunner takes the name from the database itself, and
not from the application.

Chapter 7 • Alphabetical Reference

387

out_text For WinRunner with Oracle, Java, or WebTest support,
out_text is the output variable that stores the string found
in the specified cell.

For WinRunner with PowerBuilder support, out_text is the
output variable that stores the string found in the
specified cell; the actual string retrieved depends on the
style of the cell, as follows:

DropDown: The name of the item selected.

Radio Button: The label of the selected radio button in the
cell. (PowerBuilder only)

Edit: The contents of the cell.

EditMask: The contents of the cell.

Checkbox: Either "OFF" or "ON".

Note: The maximum table size supported by WinRunner is 327,680 bytes. If the
table is larger than this, the value of the out_text parameter may be "!" or "Null".

Note for PowerBuilder, Java, and WebTest support users: When row is specified
by content, column must also be specified by content.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for PowerBuilder and
Table Functions,” on page 123.

Availability

This function is available for WinRunner the Java Add-in support. It is supported
for the following Java toolkit packages: JFC, Visual Cafe, EWT (Oracle), and KLG.

This function is supported for WebTest and for WinRunner with Oracle,
PowerBuilder, or Siebel support.

TSL Reference Guide

388

This function is supported for the following ActiveX controls:

tbl_get_cols_count Context Sensitive • Table

retrieves the number of columns in a table.

tbl_get_cols_count (table, out_cols_count);

table The logical name of the table.

out_cols_count The output variable that stores the total number of
columns in the table.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for PowerBuilder and
Table Functions,” on page 123.

Availability

This function is available for WinRunner with Java Add-in support. It is supported
for the following Java toolkit packages: JFC, Visual Cafe, EWT (Oracle), and KLG.

This function is supported for WebTest and for WinRunner with Oracle,
PowerBuilder, or Siebel support.

ActiveX Control MSW_class

Data Bound Grid Control MSDBGrid.DBGrid

FarPoint Spreadsheet Control FPSpread.Spread.1

MicroHelp MH3d List Control MHGLBX.Mh3dListCtrl.1

Microsoft Grid Control MSGrid.Grid

Sheridan Data Grid Control SSDataWidgets.SSDBGridCtrl.1

True DBGrid Control TrueDBGrid50.TDBGrid, TrueDBGrid60.TDBGrid,
and TrueOleDBGrid60.TDBGrid

Chapter 7 • Alphabetical Reference

389

This function is supported for the following ActiveX controls:

tbl_get_column_name Context Sensitive • Table

retrieves the column header name of the specified column in a table.

tbl_get_column_name (table, col_index, out_col_name);

table The logical name of the table.

col_index The numeric index of the column within the table,
specified by an integer.

out_col_name The parameter into which the retrieved name is stored.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for PowerBuilder and
Table Functions,” on page 123.

Availability

This function is available for WinRunner with Java Add-in support. It is supported
for the following Java toolkit packages: JFC, Visual Cafe, and KLG.

This function is supported for WebTest and for WinRunner with Siebel support.

ActiveX Control MSW_class

Data Bound Grid Control MSDBGrid.DBGrid

FarPoint Spreadsheet Control FPSpread.Spread.1

MicroHelp MH3d List Control MHGLBX.Mh3dListCtrl.1

Microsoft Grid Control MSGrid.Grid

Sheridan Data Grid Control SSDataWidgets.SSDBGridCtrl.1

True DBGrid Control TrueDBGrid50.TDBGrid, TrueDBGrid60.TDBGrid,
and TrueOleDBGrid60.TDBGrid

TSL Reference Guide

390

This function is supported for the following ActiveX controls:

tbl_get_column_names Context Sensitive • Table

retrieves the names and number of columns in a table.

tbl_get_column_names (table, out_col_names, out_cols_count);

table The name of the table.

out_col_names The output variable that stores the names of the columns
in the table.

out_cols_count The output variable that stores the total number of
columns in the table.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for PowerBuilder and
Table Functions,” on page 123.

Availability

This function is supported only for WinRunner with PowerBuilder support. The
corresponding function for WinRunner without PowerBuilder support is
tbl_get_column_name.

This function is not supported for WebTest.

ActiveX Control MSW_class

Data Bound Grid Control MSDBGrid.DBGrid

FarPoint Spreadsheet Control FPSpread.Spread.1

MicroHelp MH3d List Control MHGLBX.Mh3dListCtrl.1

Microsoft Grid Control MSGrid.Grid

Sheridan Data Grid Control SSDataWidgets.SSDBGridCtrl.1

True DBGrid Control TrueDBGrid50.TDBGrid, TrueDBGrid60.TDBGrid,
and TrueOleDBGrid60.TDBGrid

Chapter 7 • Alphabetical Reference

391

tbl_get_rows_count Context Sensitive • Table

retrieves the number of rows in the specified table.

tbl_get_rows_count (table, out_rows_count);

table The logical name of the table.

out_rows_count The output variable that stores the total number of rows in
the table.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for PowerBuilder and
Table Functions,” on page 123.

Availability

This function is available for WinRunner with Java Add-in support. It is supported
for the following Java toolkit packages: JFC, Visual Cafe, EWT (Oracle), and KLG.

This function is supported for WebTest and for WinRunner with Oracle,
PowerBuilder or Siebel support.

This function is supported for the following ActiveX controls:

ActiveX Control MSW_class

FarPoint Spreadsheet Control FPSpread.Spread.1

MicroHelp MH3d List Control MHGLBX.Mh3dListCtrl.1

Microsoft Grid Control MSGrid.Grid

Sheridan Data Grid Control SSDataWidgets.SSDBGridCtrl.1

True DBGrid Control TrueDBGrid50.TDBGrid, TrueDBGrid60.TDBGrid,
and TrueOleDBGrid60.TDBGrid

TSL Reference Guide

392

tbl_get_selected_cell Context Sensitive • Table

returns the cell currently in focus in a table.

tbl_get_selected_cell (table, out_row, out_column);

table The logical name of the table.

out_row By location: # <row_location>
The location of the row within the table, specified by a
string preceded by the character #, such as "#2".

For WinRunner with PowerBuilder support, the out_row
can also be in the following format:

By content: <Column_name>=<column_content1
[column_contentn....]>
The contents of one or more cells in the row, separated by
semicolons and preceded by the name of the column in
which they appear and an equal sign, such as
"Flight_Number=306;From=LAX". The contents of all the
cells specified must be present in order to specify the row.
Choose this format to specify a row by the contents of
cells in that row. If the contents of some cells appear in
multiple rows, specify multiple cells whose contents will
uniquely identify the row.

out_column The output variable that stores the column name of the
cell.

Note for PowerBuilder users: When out_row is specified by content, out_column
must also be specified by content.

 Note for Java add-in users: When using this function for Java tables, the row and
column parameters are returned as numeric indexes (without the # character).

Chapter 7 • Alphabetical Reference

393

Notes: The column name is taken from the database itself and not from the
application. If multiple cells are selected, WinRunner retrieves the row and
column number of the first selected cell in the table.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for PowerBuilder and
Table Functions,” on page 123.

Availability

This function is available for WinRunner with Java Add-in support. It is supported
for the following Java toolkit packages: JFC, EWT (Oracle), and KLG.

This function is supported for WebTest and for WinRunner with PowerBuilder,
Oracle, or Siebel support.

This function is supported for the following ActiveX controls:

ActiveX Control MSW_class

Data Bound Grid Control MSDBGrid.DBGrid

FarPoint Spreadsheet Control FPSpread.Spread.1

MicroHelp MH3d List Control MHGLBX.Mh3dListCtrl.1

Microsoft Grid Control MSGrid.Grid

Sheridan Data Grid Control SSDataWidgets.SSDBGridCtrl.1

True DBGrid Control TrueDBGrid50.TDBGrid, TrueDBGrid60.TDBGrid,
and TrueOleDBGrid60.TDBGrid

TSL Reference Guide

394

tbl_get_selected_row Context Sensitive • Table

returns the row currently selected in a table.

tbl_get_selected_row (table, row);

table The logical name of the table.

row By location: # <row_location> The location of the row
within the table, specified by a string preceded by the
character #, such as "#2".

For WinRunner with PowerBuilder support, the row can
also be in the following format:

By content: <Column_name>=<column_content1
[column_contentn....]>
The contents of one or more cells in the row, separated by
semicolons and preceded by the name of the column in
which they appear and an equal sign, such as
"Flight_Number=306;From=LAX". The contents of all the
cells specified must be present in order to specify the row.
Choose this format to specify a row by the contents of
cells in that row. If the contents of some cells appear in
multiple rows, specify multiple cells whose contents will
uniquely identify the row.

For WinRunner with PowerBuilder support, row specifies
the selected row following the row whose index is
specified in the function.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for PowerBuilder and
Table Functions,” on page 123.

Availability

This function is available for WinRunner with Java Add-in support. It is supported
for the following Java toolkit packages: JFC, Visual Cafe, and KLG.

This function is supported for WinRunner with PowerBuilder, Oracle or Siebel
support.

Chapter 7 • Alphabetical Reference

395

This function is not supported for WebTest.

This function is supported for the following ActiveX controls:

tbl_select_cells_range Context Sensitive • Table

clicks the specified range of cells in a table.

tbl_select_cells_range (table, start_row, start_col, end_row, end_col);

table The logical name of the table.

start_row The start_row can be either:

By location: # <row_location> The location of the row
within the table, specified by a string preceded by the
character #, such as "#2".

By content: <row_name> The row name, such as
"Flight_2".

start_col The start_column can be either:

By location: # <column_location> The location of the
column within the table, specified by a string preceded by
the character #, such as "#2".

By content: <Column_name> The column name, such as
"Flight_Number".

ActiveX Control MSW_class

Data Bound Grid Control MSDBGrid.DBGrid

FarPoint Spreadsheet Control FPSpread.Spread.1

MicroHelp MH3d List Control MHGLBX.Mh3dListCtrl.1

Sheridan Data Grid Control SSDataWidgets.SSDBGridCtrl.1

True DBGrid Control TrueDBGrid50.TDBGrid, TrueDBGrid60.TDBGrid,
and TrueOleDBGrid60.TDBGrid

TSL Reference Guide

396

end_row The end_row can be either:

By location: # <row_location> The location of the row
within the table, specified by a string preceded by the
character #, such as "#2".

By content: <row_name> The row name, such as
"Flight_2"

end_col The end_column can be either:

By location: # <column_location> The location of the
column within the table, specified by a string preceded by
the character #, such as "#2".

By content: <Column_name> The column name, such as
"Flight_Number".

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for PowerBuilder and
Table Functions,” on page 123.

Availability

This function is available only for WinRunner with Java support. It is supported
for the following Java toolkit packages: JFC and KLG

tbl_select_col_header Context Sensitive • Table

selects the specified column header of a table.

tbl_select_col_header (table, column);

table The logical name of the table.

column The column can be either:

By location: # <column_location> The location of the
column within the table, specified by a string preceded by
the character#, such as "#2".

By content: <Column_name> The column name, such as
"Flight_Number".

Chapter 7 • Alphabetical Reference

397

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for PowerBuilder and
Table Functions,” on page 123.

Availability

This function is available for WinRunner with Siebel or Java add-in support. It is
supported for the following Java toolkit packages: JFC, Visual Cafe, and KLG.

This function is not supported for WebTest.

This function is supported for the following ActiveX controls:

ActiveX Control MSW_class

Data Bound Grid Control MSDBGrid.DBGrid

FarPoint Spreadsheet Control FPSpread.Spread.1

MicroHelp MH3d List Control MHGLBX.Mh3dListCtrl.1

Microsoft Grid Control MSGrid.Grid

Sheridan Data Grid Control SSDataWidgets.SSDBGridCtrl.1

True DBGrid Control TrueDBGrid50.TDBGrid, TrueDBGrid60.TDBGrid,
and TrueOleDBGrid60.TDBGrid

TSL Reference Guide

398

tbl_select_cols_range Context Sensitive • Table

clicks the specified range of columns in a table.

tbl_select_cols_range (table, from_column, to_column);

table The logical name of the table.

from_column The from_column can be either:

By location: # <column_location> The location of the
column within the table, specified by a string preceded by
the character #, such as "#2".

By content: <column_name> The column name, such as
"Flight_Number".

When a column name is specified, WinRunner takes the
name from the database itself, and not from the
application.

to_column The to_column can be either:

By location: # <column_location> The location of the
column within the table, specified by a string preceded by
the character #, such as "#2".

By content: <column_name> The column name, such as
"Flight_Number".

When a column name is specified, WinRunner takes the
name from the database itself, and not from the
application.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for PowerBuilder and
Table Functions,” on page 123.

Availability

This function is available only for WinRunner with Java Add-in support. It is
supported for the following Java toolkit packages: JFC and KLG.

Chapter 7 • Alphabetical Reference

399

tbl_select_rows_range Context Sensitive • Table

selects the specified range of rows in a table.

tbl_select_rows_range (table, from_row, to_row);

table The logical name of the table.

from_row The from_row can be either:

By location: # <row_location> The location of the row
within the table, specified by a string preceded by the
character #, such as "#2".

By content: <row_name> The row name, such as "
Flight_2".

When a row name is specified, WinRunner takes the name
from the database itself, and not from the application.

to_row The to_row can be either:

By location: # <row_location> The location of the row
within the table, specified by a string preceded by the
character #, such as "#2".

By content: <row_name> The row name, such as "
Flight_2".

When a row name is specified, WinRunner takes the name
from the database itself, and not from the application.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for PowerBuilder and
Table Functions,” on page 123.

Availability

This function is available only for WinRunner with Java Add-in support. It is
supported for the following Java toolkit packages: JFC, Visual Cafe, and KLG.

TSL Reference Guide

400

tbl_set_cell_data Context Sensitive • Table

sets the contents of a cell to the specified text in a table.

tbl_set_cell_data (table, row, column, data);

table The logical name of the table.

row By location: # <row_location>
The location of the row within the table, specified by a
string preceded by the character #, such as "#2".

For WinRunner with PowerBuilder, Java, or WebTest
support, the row can also be in the following format:

By content: <Column_name>=<column_content1
[column_contentn....]>
The contents of one or more cells in the row, separated by
semicolons and preceded by the name of the column in
which they appear and an equal sign, such as
"Flight_Number=306;From=LAX". The contents of all the
cells specified must be present in order to specify the row.
Choose this format to specify a row by the contents of
cells in that row. If the contents of some cells appear in
multiple rows, specify multiple cells whose contents will
uniquely identify the row.

column By location: # <column_location> The location of the
column within the table, specified by a string preceded by
the character #, such as "#2".

By content: <Column_name> The column name, such as
"Flight_Number".

Chapter 7 • Alphabetical Reference

401

data For WinRunner with Oracle, Java, or WebTest support, the
data is a string denoting the contents to be entered into
the specified cell.

For WinRunner with PowerBuilder support, data is a string
denoting the contents to be entered into the specified cell;
the nature of the string depends on the style of the cell, as
follows:

DropDown DataWindow: The name of the item selected.

Radio Button: The label of the selected radio button in the
cell.

Edit: The contents of the cell.

EditMask: The contents of the cell.

Checkbox: Either "OFF" or "ON".

Note for PowerBuilder users: When row is specified by content, column must also
be specified by content.

When a column name is specified, WinRunner takes the name from the database
itself and not from the application.

For a column with a DropDown DataWindow style, data can specify the contents
of any of the columns, and not only the one that is displayed in the table. (See the
example below.) For a column with a DropDown DataWindow or DropDown list
style, the item can be a string denoting the row number of the cell, preceded by
the character #.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for PowerBuilder and
Table Functions,” on page 123.

Availability

This function is available for WinRunner with Java Add-in support. It is supported
for the following Java toolkit packages: JFC, EWT (Oracle), and KLG.

TSL Reference Guide

402

This function is not supported for WebTest.

This function is supported for WinRunner with PowerBuilder, Oracle, or Siebel
support.

This function is supported for the following ActiveX controls:

tbl_set_cell_focus Context Sensitive • Table

sets the focus to the specified cell in a table.

tbl_set_cell_focus (table, row, column);

table The logical name of the table.

row The column can be either:

By location: # <row_location>

The location of the row within the table, specified by a
string preceded by the character #, such as "#2".

ActiveX Control MSW_class

Data Bound Grid Control MSDBGrid.DBGrid

FarPoint Spreadsheet Control FPSpread.Spread.1

MicroHelp MH3d List Control MHGLBX.Mh3dListCtrl.1

Microsoft Grid Control MSGrid.Grid

Sheridan Data Grid Control SSDataWidgets.SSDBGridCtrl.1

True DBGrid Control TrueDBGrid50.TDBGrid, TrueDBGrid60.TDBGrid,
and TrueOleDBGrid60.TDBGrid

Chapter 7 • Alphabetical Reference

403

By content: <column_name>=<column_content1
[column_contentn....]>

The contents of one or more cells in the row, separated by
semicolons and preceded by the name of the column in
which they appear and an equal sign, such as
"Flight_Number=306;From=LAX". The contents of all the
cells specified must be present in order to specify the row.
Choose this format to specify a row by the contents of
cells in that row. If the contents of some cells appear in
multiple rows, specify multiple cells whose contents will
uniquely identify the row. If the values match more then
one row WinRunner refers to the first matching row.

column The column can be either:

By location: # <column_location> The location of the
column within the table, specified by a string preceded by
the character #, such as "#2".

By content: <column_name> The column name, such as
"Flight_Number".

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for PowerBuilder and
Table Functions,” on page 123.

Availability

This function is supported only for WinRunner with Siebel support.

TSL Reference Guide

404

tbl_set_selected_cell Context Sensitive • Table

selects (clicks) the specified cell in a table.

tbl_set_selected_cell (table, row, column);

table The logical name of the table.

row By location: # <row_location>
The location of the row within the table, specified by a
string preceded by the character #, such as "#2".

For WinRunner with PowerBuilder support, the row can
also be in the following format:

By content: <Column_name>=<column_content1
[column_contentn....]>
The contents of one or more cells in the row, separated by
semicolons and preceded by the name of the column in
which they appear and an equal sign, such as
"Flight_Number=306;From=LAX". The contents of all the
cells specified must be present in order to specify the row.
Choose this format to specify a row by the contents of
cells in that row. If the contents of some cells appear in
multiple rows, specify multiple cells whose contents will
uniquely identify the row.

column By location: # <column_location> The location of the
column within the table, specified by a string preceded by
the character #, such as "#2".

By content: <Column_name> The column name, such as
"Flight_Number". When a column name is specified,
WinRunner takes the name from the database itself and
not from the application.

Note for PowerBuilder users: When row is specified by content, column must also
be specified by content.

Chapter 7 • Alphabetical Reference

405

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for PowerBuilder and
Table Functions,” on page 123.

Availability

This function is available for WinRunner with Java Add-in support. It is supported
for the following Java toolkit packages: JFC, Visual Cafe, EWT (Oracle), and KLG.

This function is not supported for WebTest.

This function is supported for WinRunner with PowerBuilder, Oracle, or Siebel
support.

This function is supported for the following ActiveX controls:

ActiveX Control MSW_class

Data Bound Grid Control MSDBGrid.DBGrid

FarPoint Spreadsheet Control FPSpread.Spread.1

MicroHelp MH3d List Control MHGLBX.Mh3dListCtrl.1

Microsoft Grid Control MSGrid.Grid

Sheridan Data Grid Control SSDataWidgets.SSDBGridCtrl.1

True DBGrid Control TrueDBGrid50.TDBGrid, TrueDBGrid60.TDBGrid,
and TrueOleDBGrid60.TDBGrid

TSL Reference Guide

406

tbl_set_selected_col Context Sensitive • Table

selects the specified column in a table.

tbl_set_selected_col (table, column);

table The logical name of the table.

column The column can be either:

By location: # <column_location> The location of the
column within the table, specified by a string preceded by
the character #, such as "#2".

By content: <Column_name> The column name, such as
"Flight_Number".

When a column name is specified, WinRunner takes the
name from the database itself, and not from the
application.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for PowerBuilder and
Table Functions,” on page 123.

Availability

This function is available only for WinRunner with Java Add-in support. It is
supported for the following Java toolkit packages: JFC and EWT (Oracle).

Chapter 7 • Alphabetical Reference

407

tbl_set_selected_row Context Sensitive • Table

selects the specified row in a table.

tbl_set_selected_row (table, row);

table The logical name of a table.

row By location: # <row_location>
The location of the row within the table, specified by a
string preceded by the character #, such as "#2".

For WinRunner with PowerBuilder support, the row can
also be in the following format:

By content: <Column_name>=<column_content1
[column_contentn....]>
The contents of one or more cells in the row, separated by
semicolons and preceded by the name of the column in
which they appear and an equal sign, such as
"Flight_Number=306;From=LAX". The contents of all the
cells specified must be present in order to specify the row.
Choose this format to specify a row by the contents of
cells in that row. If the contents of some cells appear in
multiple rows, specify multiple cells whose contents will
uniquely identify the row.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for PowerBuilder and
Table Functions,” on page 123.

Availability

This function is available for WinRunner with Java Add-in support. It is supported
for the following Java toolkit packages: JFC, Visual Cafe, EWT (Oracle), and KLG.

This function is not supported for WebTest.

This function is supported for WinRunner with PowerBuilder, Oracle, or Siebel
support.

TSL Reference Guide

408

This function is supported for the following ActiveX controls:

tddb_get_step_value Standard • TestDirector

returns the value of a field in the "dessteps" table in a TestDirector project database.

tddb_get_step_value (field, step_index [, td_path]);

field The logical name of the field.

step_index The index of the step.

td_path The TestDirector test path (optional argument - the default
is the current test).

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

The tddb_get_step_value function is only available when WinRunner is
connected to a TestDirector project database.

ActiveX Control MSW_class

Data Bound Grid Control MSDBGrid.DBGrid

FarPoint Spreadsheet Control FPSpread.Spread.1

MicroHelp MH3d List Control MHGLBX.Mh3dListCtrl.1

Microsoft Grid Control MSGrid.Grid

True DBGrid Control TrueDBGrid50.TDBGrid, TrueDBGrid60.TDBGrid,
and TrueOleDBGrid60.TDBGrid

Chapter 7 • Alphabetical Reference

409

tddb_get_test_value Standard • TestDirector

returns the value of a field in the "test" table in a TestDirector project database.

tddb_get_test_value (field [, td_path]);

field The logical name of the field.

td_path The TestDirector test path (optional argument - the default
is the current test).

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

The tddb_get_test_value function is only available when WinRunner is
connected to a TestDirector project database.

tddb_get_testset_value Standard • TestDirector

returns the value of a field in the "testcycl" table in a TestDirector project database.

tddb_get_testset_value (field [, td_path [, test_set]]);

field The logical name of the field.

td_path The TestDirector test path (optional argument - the default
is the current test).

test_set The name of the test_set (optional argument - the default
is the current TestSet).

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

The tddb_load_attachment function is only available when WinRunner is
connected to a TestDirector project database.

TSL Reference Guide

410

tddb_load_attachment Standard • TestDirector

downloads a test’s file attachment to the local cache and returns the file system path of the
local cache, to which the file is downloaded.

tddb_load_attachment (attachment [, path]);

attachment The name of the file attachment.

path The system path of the location from which the file is
loaded. Note that if this path is not to the current test, it is
ignored.

Return Values

This function returns the path to the local cache, to which the attached file is
downloaded.

Availability

The tddb_load_attachment function is only available when WinRunner is
connected to a TestDirector project database.

TE_add_screen_name_location Context Sensitive • Terminal Emulator

adds a screen name location.

TE_add_screen_name_location (x, y, length);

x The x-coordinate of the new area to search.

y The y-coordinate of the new area to search.

length The number of characters to the right of the Y position
that WinRunner will search for a string.

Chapter 7 • Alphabetical Reference

411

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for Terminal Emulator
Functions,” on page 124.

Availability

This function is supported for WinRunner EURO and WinRunner with Terminal
Emulator Add-in support only.

TE_bms2gui Context Sensitive • Terminal Emulator

teaches WinRunner the user interface from a BMS file.

TE_bms2gui (bms_filename, gui_filename, LEARN|RELEARN);

bms_filename The full path of the BMS file containing the description of
the application’s user interface.

gui_file_name The full path of the GUI map file into which the
descriptions are learned. If no file name is given, the
default is the temporary GUI map file of the test.

LEARN|RELEARN Instructs WinRunner how to deal with name/description
conflicts in the BMS file.

Return Values

This function has no return value.

Availability

This function is available for applications running on 3270 mainframes only.

This function is supported for WinRunner EURO and WinRunner with Terminal
Emulator Add-in support only.

TSL Reference Guide

412

TE_check_text Context Sensitive • Terminal Emulator

captures and compares the text in a terminal emulator window.

TE_check_text (file_name [, start_column, start_row, end_column, end_row]);

file_name A string expression given by WinRunner that identifies the
captured window.

start_column/row The column/row at which the captured text begins.

end_column/row The column/row at which the captured text ends.

Return Values

This function returns 0 if the function succeeds, -1, if it fails, and 1 if a mismatch
is found; otherwise, it returns a standard value. For more information, see
“General Return Values,” on page 118, and “Return Values for Terminal Emulator
Functions,” on page 124.

Availability

This function is supported for WinRunner EURO and WinRunner with Terminal
Emulator Add-in support only.

TE_create_filter Context Sensitive • Terminal Emulator

creates a filter in the test database.

TE_create_filter (filter_name, start_column, start_row,
 end_column, end_row, EXCLUDE|INCLUDE, screen_name);

filter_name The filter name.

start_column/row The column/row at which the filter starts.

end_column/row The column/row at which the filter ends.

EXCLUDE/INCLUDE The type of filter.

screen_name The name of the screen to which you want to create the
filter or ALL_SCREENS to create the filter for all screens in
the application.

Chapter 7 • Alphabetical Reference

413

Return Values

This function returns 0 if the function succeeds; -1 in the case of an illegal number
of parameters; 2 if the filter already exists; and 5 in case of an IO error. For more
information, see “General Return Values,” on page 118, and “Return Values for
Terminal Emulator Functions,” on page 124.

Availability

This function is supported for WinRunner EURO and WinRunner with Terminal
Emulator Add-in support only.

TE_define_sync_keys Context Sensitive • Terminal Emulator

sets keys that enable automatic synchronization in type, win_type and obj_type
commands.

TE_define_sync_keys (keys, string, mode [, x1, y1, x2, y2]);

keys The keys that will enable automatic synchronization. Use
a comma as the delimiter between keys.

string The string that WinRunner waits for to appear or
disappear on the screen.

mode The waiting mode:

SYNC_WHILE: WinRunner waits until the string
disappears.

SYNC_UNTIL: WinRunner waits until the string appears.

SYNC_DEFAULT: WinRunner waits the default
synchronization time used by the TE_wait_sync function.

x1, y1, x2, y2 Optional parameters that define a rectangle on the screen
in which to search for the string. If these parameters are
missing, the entire screen is used.

TSL Reference Guide

414

Return Values

This function always returns 0.

Availability

This function is supported for WinRunner EURO and WinRunner with Terminal
Emulator Add-in support only.

TE_delete_filter Context Sensitive • Terminal Emulator

deletes a specified filter from the test database.

TE_delete_filter (filter_name);

filter_name The filter to be deleted.

Return Values

This function returns 0 if the function succeeds; -1 in the case of an illegal number
of parameters; 1 if the filter cannot be found in the database; and 5 in case of an
IO error. For more information, see “General Return Values,” on page 118, and
“Return Values for Terminal Emulator Functions,” on page 124.

Availability

This function is supported for WinRunner EURO and WinRunner with Terminal
Emulator Add-in support only.

TE_edit_field Context Sensitive • Terminal Emulator

inserts text into an unprotected field.

TE_edit_field (field_logical_name, string [, x_shift]);

field_logical_name The logical name of the field into which the string is
inserted.

string The text to be inserted in the field.

x_shift Indicates the offset of the insertion position from the first
character in the field, in characters. If no offset is specified,
the default is 0.

Chapter 7 • Alphabetical Reference

415

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for Terminal Emulator
Functions,” on page 124.

Availability

This function is supported for WinRunner EURO and WinRunner with Terminal
Emulator Add-in support only.

TE_edit_hidden_field Context Sensitive • Terminal Emulator

inserts text into a hidden field.

TE_edit_hidden_field (field_logical_name, coded_string);

field_logical_name The logical name of the field.

coded_string A pointer to a coded string that WinRunner decodes and
inserts into the field.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for Terminal Emulator
Functions,” on page 124.

Availability

This function is supported for WinRunner EURO and WinRunner with Terminal
Emulator Add-in support only.

TE_edit_screen Context Sensitive • Terminal Emulator

types a string in the specified location in a screen.

TE_edit_screen (x, y, string);

x,y The screen coordinates at which the string is inserted.

string The text to be written on the screen.

TSL Reference Guide

416

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for Terminal Emulator
Functions,” on page 124.

Availability

This function is supported for WinRunner EURO and WinRunner with Terminal
Emulator Add-in support only.

TE_find_text Context Sensitive • Terminal Emulator

returns the location of a specified string

TE_find_text (string, out_x_location, out_y_location [, x1, y1, x2, y2]);

string The text that you want to locate.

out_x_location The output variable that stores the x coordinate of the test
string.

out_y_location The output variable that stores the x coordinate of the test
string.

x1, y1, x2, y2 Describe a rectangle that define the limits of the search
area.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for Terminal Emulator
Functions,” on page 124.

Availability

This function is supported for WinRunner EURO and WinRunner with Terminal
Emulator Add-in support only.

Chapter 7 • Alphabetical Reference

417

TE_force_send_key Context Sensitive • Terminal Emulator

defines a key causing a screen to change.

TE_force_send_key (in_screen, in_field [, in_key]);

in_screen The name of the screen containing the field.

in_field The name of the field.

in_key The name of the key causing the screen to change
(optional). The key name can be a mnemonic (such as @E
for Enter) or one of the WinRunner macros. See the
TE_send_key function for details.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for Terminal Emulator
Functions,” on page 124.

Availability

This function is supported for WinRunner EURO and WinRunner with Terminal
Emulator Add-in support only.

TE_get_active_filter Context Sensitive • Terminal Emulator

returns the coordinates of a specified active filter.

TE_get_active_filter (filter_num [, out_start_column, out_start_row, out_end_column,
out_end_row] , screen_name);

filter_num The filter number representing the order in which filters
were activated for the test, beginning with 0.

out_start_column The output variable that stores the starting column of the
filter.

out_start_row The output variable that stores the starting row.

out_end_column The output variable that stores the end column.

out_end_row The output variable that stores the end row.

TSL Reference Guide

418

screen_name The output variable that stores the name of the screen in
which the active filter is located. If the filter appears on all
screens in the application, the function returns
ALL_SCREENS.

Return Values

This function returns 0 if the filter exists, -1 if there is an illegal number of
parameters and 1 if the filter cannot be found in the database. For more
information, see “General Return Values,” on page 118, and “Return Values for
Terminal Emulator Functions,” on page 124.

Availability

This function is supported for WinRunner EURO and WinRunner with Terminal
Emulator Add-in support only.

TE_get_auto_reset_filters Context Sensitive • Terminal Emulator

indicates whether or not filters are automatically deactivated at the end of a test run.

TE_get_auto_reset_filters ();

Return Values

This function returns ON to indicate that all filters are automatically deactivated
at the end of a test run; OFF indicates that filters are not automatically
deactivated. For more information, see “General Return Values,” on page 118, and
“Return Values for Terminal Emulator Functions,” on page 124.

Availability

This function is supported for WinRunner EURO and WinRunner with Terminal
Emulator Add-in support only.

Chapter 7 • Alphabetical Reference

419

TE_get_auto_verify Context Sensitive • Terminal Emulator

indicates whether automatic text verification is on or off.

TE_get_auto_verify ();

Return Values

This function returns ON if automatic text verification is active; OFF indicates that
automatic text verification is not active. For more information, see “General
Return Values,” on page 118, and “Return Values for Terminal Emulator
Functions,” on page 124.

Availability

This function is supported for WinRunner EURO and WinRunner with Terminal
Emulator Add-in support only.

TE_get_cursor_position Context Sensitive • Terminal Emulator

returns the position of the cursor.

TE_get_cursor_position (x, y);

x,y The current screen coordinates of the cursor.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for Terminal Emulator
Functions,” on page 124.

Availability

This function is supported for WinRunner EURO and WinRunner with Terminal
Emulator Add-in support only.

TSL Reference Guide

420

TE_get_field_content Context Sensitive • Terminal Emulator

returns the contents of a field to a variable.

TE_get_field_content (field_name, content);

field_name The logical name of the field.

content The output variable that stores the contents of the field as
a string.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for Terminal Emulator
Functions,” on page 124.

Availability

This function is supported for WinRunner EURO and WinRunner with Terminal
Emulator Add-in support only.

TE_get_filter Context Sensitive • Terminal Emulator

returns the properties of a specified filter.

TE_get_filter (filter_name [, out_start_column, out_start_row, out_end_column,
out_end_row, out_type, out_active, screen_name]);

filter_name The name of the filter.

out_start_column The output variable that stores the starting column of the
filter.

out_start_row The output variable that stores the starting row.

out_end_column The output variable that stores the end column.

out_end_row The output variable that stores the end row.

out_type The output variable that stores the filter type
(INCLUDE|EXCLUDE).

Chapter 7 • Alphabetical Reference

421

out_active The output variable that stores the filter state.

screen_name The variable that stores the screen name.

Return Values

This function returns 0 if the function succeeds; -1 if illegal parameters are used; 1
if a filter is not found; 2 if the parameter value is incorrect. For more information,
see “General Return Values,” on page 118, and “Return Values for Terminal
Emulator Functions,” on page 124.

Availability

This function is supported for WinRunner EURO and WinRunner with Terminal
Emulator Add-in support only.

TE_get_merge_rule Context Sensitive • Terminal Emulator

gets the rule for merging fields in a terminal emulator application.

TE_get_merge_rule (from_field, to_field, rule);

from_field The logical name of the first field to be merged.

to_field The logical name of the last field to be merged.

rule The merging rule.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for Terminal Emulator
Functions,” on page 124.

Availability

This function is supported for WinRunner EURO and WinRunner with Terminal
Emulator Add-in support only.

TSL Reference Guide

422

TE_get_refresh_time Context Sensitive • Terminal Emulator

returns the time WinRunner waits for the screen to refresh.

TE_get_refresh_time ();

Return Values

The return value of this function is an integer representing the refresh time. For
more information, see “General Return Values,” on page 118, and “Return Values
for Terminal Emulator Functions,” on page 124.

Availability

This function is supported for WinRunner EURO and WinRunner with Terminal
Emulator Add-in support only.

TE_get_screen_name_location Context Sensitive • Terminal Emulator

returns the screen name location.

TE_get_screen_name_location (index, x, y, length);

index A number between 0 - 10. 0 indicates that the screen name
location was set by the function
TE_set_screen_name_location. 1 – 10 indicates that the
screen name was added with the function
TE_add_screen_name_location.

x,y The screen coordinates where WinRunner locates the
logical name of the screen name.

length The number of characters to the right of the y position
that WinRunner locates the screen name string. The
default length is 30 (maximum).

Chapter 7 • Alphabetical Reference

423

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for Terminal Emulator
Functions,” on page 124.

Availability

This function is supported for WinRunner EURO and WinRunner with Terminal
Emulator Add-in support only.

TE_get_sync_time Context Sensitive • Terminal Emulator

returns the system synchronization time.

TE_get_sync_time ();

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for Terminal Emulator
Functions,” on page 124.

Availability

This function is supported for WinRunner EURO and WinRunner with Terminal
Emulator Add-in support only.

TE_get_text Context Sensitive • Terminal Emulator

reads text from screen and stores it in a string.

TE_get_text (x1, y1, x2, y2);

x1, y1, x2, y2 Describes a rectangle that encloses the text to be read. The
pairs of coordinates can designate any two diagonally
opposite corners of the rectangle.

TSL Reference Guide

424

Return Values

This function returns the text read from the screen. For more information, see
“General Return Values,” on page 118, and “Return Values for Terminal Emulator
Functions,” on page 124.

Availability

This function is supported for WinRunner EURO and WinRunner with Terminal
Emulator Add-in support only.

TE_get_timeout Context Sensitive • Terminal Emulator

returns the current synchronization time.

TE_get_timeout ();

Return Values

The return value is the current value of the timeout. For more information, see
“General Return Values,” on page 118, and “Return Values for Terminal Emulator
Functions,” on page 124.

Availability

This function is supported for WinRunner EURO and WinRunner with Terminal
Emulator Add-in support only.

TE_merge_fields Context Sensitive • Terminal Emulator

sets the rule for merging fields in a terminal emulator application.

TE_merge_fields (rule);

rule The merging rule.

Chapter 7 • Alphabetical Reference

425

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for Terminal Emulator
Functions,” on page 124.

Availability

This function is supported for WinRunner EURO and WinRunner with Terminal
Emulator Add-in support only.

TE_reset_all_filters Context Sensitive • Terminal Emulator

deactivates all filters in a test.

TE_reset_all_filters ();

Return Values

The return value of this function is always 0.

Availability

This function is supported for WinRunner EURO and WinRunner with Terminal
Emulator Add-in support only.

TE_reset_all_force_send_key Context Sensitive • Terminal Emulator

deactivates the execution of TE_force_send_key functions.

TE_reset_all_force_send_key ();

Return Values

This function always returns 0.

Availability

This function is supported for WinRunner EURO and WinRunner with Terminal
Emulator Add-in support only.

TSL Reference Guide

426

TE_reset_all_merged_fields Context Sensitive • Terminal Emulator

deactivates the merging of fields in a Terminal Emulator application.

TE_reset_all_merged_fields ();

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for Terminal Emulator
Functions,” on page 124.

Availability

This function is supported for WinRunner EURO and WinRunner with Terminal
Emulator Add-in support only.

TE_reset_filter Context Sensitive • Terminal Emulator

deactivates a specified filter.

TE_reset_filter (filter_name);

filter_name Indicates the name of the filter to be deactivated.

Return Values

This function returns 0 if the function succeeds; -1 if illegal parameters are used; 1
if a filter is not found; 2 if the parameter value is incorrect. For more information,
see “General Return Values,” on page 118, and “Return Values for Terminal
Emulator Functions,” on page 124.

Availability

This function is supported for WinRunner EURO and WinRunner with Terminal
Emulator Add-in support only.

Chapter 7 • Alphabetical Reference

427

TE_reset_screen_name_location Context Sensitive • Terminal Emulator

Resets the screen name location to 0.

TE_reset_screen_name_location ();

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for Terminal Emulator
Functions,” on page 124.

Availability

This function is supported for WinRunner EURO and WinRunner with Terminal
Emulator Add-in support only.

TE_send_key Context Sensitive • Terminal Emulator

sends to the mainframe the specified F-key function.

TE_send_key (key);

key The F-key that is sent. The keys supported for this function
are described in the TSL Online Reference.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for Terminal Emulator
Functions,” on page 124.

Availability

This function is supported for WinRunner EURO and WinRunner with Terminal
Emulator Add-in support only.

TSL Reference Guide

428

TE_set_auto_reset_filters Context Sensitive • Terminal Emulator

deactivates the automatic reset of filters when a test run is completed.

TE_set_auto_reset_filters (ON|OFF);

ON|OFF ON indicates that upon completion of a test run, all filters
are deactivated. OFF indicates that filters are not
automatically deactivated. The default value is ON.

Return Values

This function returns 0 if it succeeds and -1 if it fails. For more information, see
“General Return Values,” on page 118, and “Return Values for Terminal Emulator
Functions,” on page 124.

Availability

This function is supported for WinRunner EURO and WinRunner with Terminal
Emulator Add-in support only.

TE_set_auto_transaction Context Sensitive • Terminal Emulator

defines a recorded TE_wait_sync statement as a transaction.

TE_set_auto_transaction (ON|OFF);

ON|OFF ON activates set automatic transaction. OFF (the default)
disables set automatic transaction is disabled.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for Terminal Emulator
Functions,” on page 124.

Availability

This function is supported for WinRunner EURO and WinRunner with Terminal
Emulator Add-in support only.

Chapter 7 • Alphabetical Reference

429

TE_set_auto_verify Context Sensitive • Terminal Emulator

activates/deactivates automatic text verification.

TE_set_auto_verify (ON|OFF [, x1 ,y1 ,x2 ,y2 [, FIRST|LAST]]);

ON|OFF Activates or deactivates automatic text verification during
recording.

x1, y1, x2, y2 Describes a rectangle that encloses the text to be verified.
The pairs of coordinates can designate any two diagonally
opposite corners of the rectangle.

FIRST|LAST An optional parameter indicating the partial check
coordinates to use: FIRST indicates the first incidence of
partial text capture in the script, LAST indicates the partial
text immediately before the current statement.

Return Values

The return value of this function is always 0.

Availability

This function is supported for WinRunner EURO and WinRunner with Terminal
Emulator Add-in support only.

TE_set_BMS_name_tag Context Sensitive • Terminal Emulator

allows you to change a name tag that appears in your BMS file.

TE_set_BMS_name_tag (name);

name The name being set.

TSL Reference Guide

430

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for Terminal Emulator
Functions,” on page 124.

Availability

This function is available for applications running on 3270 mainframes only.

This function is supported for WinRunner EURO and WinRunner with Terminal
Emulator Add-in support only.

TE_set_cursor_position Context Sensitive • Terminal Emulator

defines the position of the cursor at the specified location on the screen of your mainframe
application.

TE_set_cursor_position (x, y);

x,y The current screen coordinates of the cursor.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for Terminal Emulator
Functions,” on page 124.

Availability

This function is supported for WinRunner EURO and WinRunner with Terminal
Emulator Add-in support only.

TE_set_field Context Sensitive • Terminal Emulator

specifies the field that will receive subsequent input.

TE_set_field (field_logical_name [, x_offset]);

field_logical_name The name of the field.

Chapter 7 • Alphabetical Reference

431

x_offset Indicates the offset of the insertion position from the first
character in the field, in characters. If no offset is specified,
the default is 0. The property byte is -1.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for Terminal Emulator
Functions,” on page 124.

Availability

This function is supported for WinRunner EURO and WinRunner with Terminal
Emulator Add-in support only.

TE_set_filter Context Sensitive • Terminal Emulator

creates and activates a filter.

TE_set_filter (filter_name [, start_column, start_row, end_column, end_row,
EXCLUDE|INCLUDE, screen_name]);

filter_name The name of the filter.

start_column/row The column/row at which the filter starts.

end_column/row The column/row at which the filter ends.

EXCLUDE/INCLUDE The type of filter.

screen_name The name of the screen in which you want to set the filter
or ALL_SCREENS to set the filter in all screens in the
application.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for Terminal Emulator
Functions,” on page 124.

Availability

This function is supported for WinRunner EURO and WinRunner with Terminal
Emulator Add-in support only.

TSL Reference Guide

432

TE_set_filter_mode Context Sensitive • Terminal Emulator

specifies whether to assign filters to all screens or to the current screen.

TE_set_filter_mode (mode);

mode The mode:

ALL_SCREENS: assigns filters to all screens.

CURRENT_SCREEN: assigns filters to the current screen
(default).

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for Terminal Emulator
Functions,” on page 124.

Availability

This function is supported for WinRunner EURO and WinRunner with Terminal
Emulator Add-in support only.

TE_set_record_method Context Sensitive • Terminal Emulator

specifies the recording method for operations on terminal emulator objects.

TE_set_record_method (method);

method This can be one of two constants: FIELD_METHOD (or 2),
or POSITION_METHOD (or 1). FIELD_METHOD, the
default, is full Context Sensitive recording. When
POSITION_METHOD (partial Context Sensitive) is
specified, keyboard and mouse input only is recorded for
operations on objects in mainframe applications.

Chapter 7 • Alphabetical Reference

433

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for Terminal Emulator
Functions,” on page 124.

Availability

This function is supported for WinRunner EURO and WinRunner with Terminal
Emulator Add-in support only.

For applications running on VT100, only POSITION_METHOD is available.

TE_set_refresh_time Context Sensitive • Terminal Emulator

sets the interval that WinRunner waits for the screen to refresh.

TE_set_refresh_time (time);

time The interval (in seconds) WinRunner waits for the screen
to refresh. The default time is one second.

Return Values

This function always returns 0.

Availability

This function is supported for WinRunner EURO and WinRunner with Terminal
Emulator Add-in support only.

TE_set_screen_name_location Context Sensitive • Terminal Emulator

resets the screen name location to 0 and then instructs WinRunner where to look for the
logical name of a screen.

TE_set_screen_name_location (x, y, length);

x,y The screen coordinates where WinRunner begins looking
for the logical name of all screens in the test. The default
location is 1,1.

TSL Reference Guide

434

length The number of characters to the right of the y position
that WinRunner will search for a string. The default length
is 30 (maximum).

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for Terminal Emulator
Functions,” on page 124.

Availability

This function is supported for WinRunner EURO and WinRunner with Terminal
Emulator Add-in support only.

TE_set_sync_time Context Sensitive • Terminal Emulator

defines the system synchronization time.

TE_set_sync_time (time);

time The minimum number of seconds that WinRunner will
wait for the host to respond in order to determine that
synchronization has been achieved before continuing test
execution.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for Terminal Emulator
Functions,” on page 124.

Availability

This function is supported for WinRunner EURO and WinRunner with Terminal
Emulator Add-in support only.

Chapter 7 • Alphabetical Reference

435

TE_set_timeout Context Sensitive • Terminal Emulator

sets the maximum time WinRunner waits for a response from the server.

TE_set_timeout (timeout);

timeout The interval (in seconds) WinRunner waits for a response
from the server before continuing test execution. The
default timeout is 60 seconds.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for Terminal Emulator
Functions,” on page 124.

Availability

This function is supported for WinRunner EURO and WinRunner with Terminal
Emulator Add-in support only.

TE_set_trailing Context Sensitive • Terminal Emulator

Determines whether WinRunner types spaces and tabs in fields during test execution.

TE_set_trailing (mode, field_length);

mode One of two modes can be specified. ON or OFF.

field_length The field length affected by the trailing mode. For
example, if the field length is 5, the trailing mode affects
fall fields containing up to five spaces. Fields above the
designated field length are not affected.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for Terminal Emulator
Functions,” on page 124.

Availability

This function is supported for WinRunner EURO and WinRunner with Terminal
Emulator Add-in support only.

TSL Reference Guide

436

TE_user_attr_comment Context Sensitive • Terminal Emulator

enables a user to add a user-defined comment property to the physical description of fields
in the GUI map.

TE_user_attr_comment (name);

name The name of the user-defined comment property.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for Terminal Emulator
Functions,” on page 124.

Availability

This function is supported for WinRunner EURO and WinRunner with Terminal
Emulator Add-in support only.

TE_user_reset_all_attr_comments Context Sensitive • Terminal Emulator

Resets all user-defined comment properties.

TE_user_reset_all_attr_comments ();

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118, and “Return Values for Terminal Emulator
Functions,” on page 124.

Availability

This function is supported for WinRunner EURO and WinRunner with Terminal
Emulator Add-in support only.

Chapter 7 • Alphabetical Reference

437

TE_wait_field Context Sensitive • Terminal Emulator

waits for a specified string in a specified field to appear on screen.

TE_wait_field (field_logical_name, content, timeout);

field_logical_name The logical name of the field.

content The text string WinRunner waits for.

timeout The number of seconds that WinRunner waits for the
string to appear before continuing test execution.

Return Values

This function returns 0 if the string is found; 1 if the string is not found; -1 if the
function fails. For more information, see “General Return Values,” on page 118,
and “Return Values for Terminal Emulator Functions,” on page 124.

Availability

This function is supported for WinRunner EURO and WinRunner with Terminal
Emulator Add-in support only.

TE_wait_string Context Sensitive • Terminal Emulator

waits for a string to appear on screen.

TE_wait_string (string [, start_column, start_row, end_column, end_row [, timeout]]);

string The text WinRunner waits for.

start_column/row The starting column/row at which the text will be
searched for.

end_column/row The end column/row at which the text will be searched
for.

timeout The number of seconds that the interpreter waits for the
string to appear before continuing test execution.

TSL Reference Guide

438

Return Values

This function returns 0 if the string is found; 1 if the string is not found; -1 if the
function fails. For more information, see “General Return Values,” on page 118,
and “Return Values for Terminal Emulator Functions,” on page 124.

Availability

This function is supported for WinRunner EURO and WinRunner with Terminal
Emulator Add-in support only.

TE_wait_sync Context Sensitive • Terminal Emulator

instructs WinRunner to wait for the terminal emulator screen to be redrawn.

TE_wait_sync ();

The TE_wait_sync function instructs WinRunner to wait, during execution, for
the screen of the terminal emulator to be redrawn before continuing test
execution.

Return Values

This function returns the actual time that the terminal emulator screen took to
redraw. For more information, see “General Return Values,” on page 118, and
“Return Values for Terminal Emulator Functions,” on page 124.

Availability

This function is supported for WinRunner EURO and WinRunner with Terminal
Emulator Add-in support only.

It is superfluous for the VT100.

Chapter 7 • Alphabetical Reference

439

texit Standard • Call Statement

stops execution of the current test.

texit ([expression]);

expression The value that is returned to the call statement that
invokes the called test.

Return Values

The texit statement is a keyword, not a function. It does not have a return value.

Availability

This statement is always available.

Note: The texit statement is not a function. Therefore, it does not appear in the
Function Generator.

time_str Standard • Time-Related

converts the integer returned by the get_time function to a string.

time_str ([expression]);

expression The value of this expression must be expressed in the
format generated by get_time (the time expressed in the
number of seconds that have elapsed since 00:00 GMT,
January 1, 1970). If expression is not included (null),
time_str converts the current value returned by get_time.

Return Values

This function returns a string in the format "Day Month Date Hour:Min:Sec Year."

Availability

This function is always available.

TSL Reference Guide

440

tl_step Standard • Miscellaneous

divides a test script into sections and inserts a status message in the test results for the
previous section.

tl_step (step_name, status, description);

step_name the name of the test step.

status sets whether the step passed or failed. Set to 0 for pass, or
any other integer for failure.

description a short explanation of the step.

The tl_step function divides test scripts into sections and determines whether
each section passes or fails. When the test run is completed, you view the test
results in the Test Results window. The report displays a result (pass/fail) for each
step you defined.

When WinRunner is connected to a TestDirector project, the message is inserted
in the TestDirector “step” table as well.

Return Values

This function returns 0 if the step passes. If the return value is not zero, the step
fails.

Availability

This function is always available.

tl_step_once Standard • Miscellaneous

divides a test script into sections and inserts a status message in the test results for the
previous section.

tl_step_once (step_name, status, description);

step_name the name of the test step.

status sets whether the step passed or failed. Set to 0 for pass, or
any other integer for failure.

description a short explanation of the step.

Chapter 7 • Alphabetical Reference

441

The tl_step_once function divides test scripts into sections and determines
whether each section passes or fails. When the test run is completed, you view the
test results in the Test Results window. The report displays a result (pass/fail) for
each step you defined.

When WinRunner is connected to a TestDirector project, the message is inserted
in the TestDirector “step” table as well. Note that the message is inserted in the
TestDirector “step” table once per step_name.

Return Values

This function returns 0 if the step passes. If the return value is not zero, the step
fails.

Availability

This function is always available.

tolower Standard • String

converts all uppercase characters in a string to lowercase.

tolower (string);

string A string expression.

Return Values

This function returns a lower case string.

Availability

This function is always available.

TSL Reference Guide

442

toolbar_button_press Context Sensitive • Toolbar Object

clicks on a toolbar button.

toolbar_button_press (toolbar, button, mouse_button);

toolbar The logical name of the toolbar.

button The button to press. This can be either the logical name or
the numeric index of the button. The logical name reflects
the button’s attached text (tooltip). The index is specified
as a string preceded by the character #. The first button in
a toolbar is #0.

mouse_button The name of the mouse button pressed when pressing the
button in the toolbar. The names (Left, Right, Middle) are
defined by the XR_INP_MKEYS system parameter in the
system configuration file. This parameter is optional.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

toolbar_get_button Context Sensitive • Toolbar Object

returns the name of toolbar button.

toolbar_get_button (toolbar, button_num, out_text);

toolbar The logical name of the toolbar.

button_num The numeric index of the button in the toolbar.

out_text The output variable that stores the text.

Chapter 7 • Alphabetical Reference

443

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

toolbar_get_buttons_count Context Sensitive • Toolbar Object

returns the number of buttons in a toolbar.

toolbar_get_buttons_count (toolbar, out_num);

toolbar The logical name of the toolbar.

out_num The output variable that stores the number of buttons on
the toolbar.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

toolbar_get_button_info Context Sensitive • Toolbar Object
returns the value of a toolbar button property.

toolbar_get_button_info (toolbar, button, property, out_value);

toolbar The logical name of the toolbar.

button The logical name or the numeric index of the button. The
logical name reflects the button’s attached text (tooltip).
The index is specified as a string preceded by the character
#. The first button in a toolbar is #0.

property Any of the properties listed in the "Configuring the GUI
Map" in the WinRunner User’s Guide.

TSL Reference Guide

444

out_value The output variable that stores the value of the specified
property.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

toolbar_get_button_num Context Sensitive • Toolbar Object

returns the position of a toolbar button.

toolbar_get_button_num (toolbar, button, out_num);

toolbar The logical name of the toolbar.

button The logical name of the button. The logical name reflects
the button’s attached text. The index is specified as a
string preceded by the character #. The first button in a
toolbar is #0.

out_num The output variable that stores the numeric position of the
button on the toolbar. The first button is automatically
number 0.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

445

toolbar_get_buttons_count Context Sensitive • Toolbar Object

returns the number of buttons in a toolbar.

toolbar_get_buttons_count (toolbar, out_num);

toolbar The logical name of the toolbar.

out_num The output variable that stores the number of buttons on
the toolbar.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

toolbar_select_item Context Sensitive • Toolbar Object

selects an item from a menu-like toolbar, as in Microsoft Internet Explorer 4.0 or the Start
menu in Windows 98.

toolbar_select_item (toolbar, toolbar_item_chain [, mouse_button]);

toolbar The logical name of the toolbar containing the first item
in toolbar_item_chain.

toolbar_item_chain The chain of toolbar items separated by the TreeView
separator (by default, a semi-colon). You can configure the
separator in the General Options dialog box. If the item
string is not available, then the item index will be
recorded instead.

mouse_button The name of the mouse button pressed when selecting the
last item in toolbar_item_path. The names (Left, Right,
Middle) are defined by the XR_INP_MKEYS system parameter
in the system configuration file. This parameter is
optional.

TSL Reference Guide

446

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

toupper Standard • String

converts all lowercase characters in a string to uppercase.

toupper (string);

string A string expression.

Return Values

This function returns an uppercase string.

Availability

This function is always available.

treturn Standard • Call Statements

stops a called test and returns control to the calling test.

treturn [(expression)];

expression The value that is returned to the call statement invoking
the called test. If no value is specified, then the return
value of the call statement is 0.

The treturn statement is used when calling a test. This statement stops execution
of the current test and returns control to the calling test. The treturn statement
also provides a return value for the called test.

Chapter 7 • Alphabetical Reference

447

Note: The treturn statement is not a function. Therefore, it does not appear in the
Function Generator.

Return Values

The treturn statement is a keyword, not a function, and does not have a return
value.

Availability

This statement is always available.

Note: The treturn statement is not a function. Therefore, it does not appear in the
Function Generator.

type Analog • Input Device

specifies keyboard input.

type (keyboard_input [, technical_id]);

keyboard_input A string expression that represents keystrokes.

technical_id Points to timing and synchronization data. This parameter
is only present when the type statement is generated
during recording.

The type function depicts the keyboard input sent to the application under test.
Keyboard input is evaluated to a string using the following conventions. The TSL
Online Reference contains the conventions for evaluating keyboard input to a
string.

TSL Reference Guide

448

Return Values

The return value of the function is always 0.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

449

unload Standard • Compiled Module

removes a compiled module or selected functions from memory.

unload ([module | test [, function_name]]);

module | test A string expression indicating the name of an existing
compiled module or test.

function_name A string expression indicating the name of an existing
compiled function.

The unload function can remove an entire module from memory, or a selected
function. When only a module or test name is specified, all functions within that
module/test are removed.

If no arguments are specified, unload removes all compiled modules from
memory.

A system module is generally a closed module that is “invisible” to the tester. It is
not displayed when it is loaded, cannot be stepped into, and is not stopped by a
pause command. A system module is not unloaded when you execute an unload
statement with no parameters (global unload).

A user module is the opposite of a system module in these respects. Generally, a
user module is one that is still being developed. In such a module you might want
to make changes and compile them incrementally.

Note: If you make changes to a function in a loaded compiled module, you must
unload and reload the compiled module in order for the changes to take effect.

Return Values

This function returns 0 for success, and 1 for failure.

Availability

This function is always available.

TSL Reference Guide

450

unload_16_dll Standard • Miscellaneous

unloads a 16-bit DLL from memory.

unload_16_dll (pathname);

pathname The full pathname of the Dynamic Link Library (DLL) to
be unloaded.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

unload_dll Standard • Miscellaneous

unloads a DLL from memory.

unload_dll (pathname);

pathname The full pathname of the Dynamic Link Library (DLL) to
be unloaded.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

451

unset_class_map Context Sensitive • GUI Map Configuration

unbinds a custom class from a standard class.

unset_class_map (custom_class);

custom_class The name of the custom class to unbind.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WinRunner and GUI Vusers running on PC platforms
only.

user_data_point Standard • Load Testing

records a user-defined data sample.

int user_data_point (sample_name, value);

sample_name A string indicating the name of the sample type.

value The value to record.

Return Values

This function returns 0 if it succeeds, and -1 if it fails to write the sampled data.

Availability

This function is available for LoadRunner GUI Vusers only.

TSL Reference Guide

452

vb_get_label_names Context Sensitive • ActiveX/Visual Basic

retrieves the names of all label controls in the given form window. The names are stored as
subscripts of an array.

vb_get_label_names (window, name_array, count);

window The logical name of the Visual Basic form.

name_array The out parameter containing the name of the storage
array.

count The out parameter containing the number of elements in
the array.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available only for the Visual Basic add-in.

wait Standard • Time-Related

pauses test execution.

wait (seconds [, milliseconds]);

seconds The length of the pause, in seconds. The valid range of
this parameter is from 0 to 32,767 seconds.

milliseconds The number of milliseconds that are added to the seconds.

Return Values

The return value of the function is always 0.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

453

wait_window Analog • Synchronization Functions

waits for a window bitmap to appear.

Note: This function is provided for backward compatibility only. The Context
Sensitive versions of this function are win_check_bitmap and
obj_check_bitmap. You should use these functions instead.

wait_window (time, image, window, width, height, x, y [, relx1, rely1, relx2, rely2]);

time The time is added to the timeout_msec testing option to
give the maximum interval between the previous input
even and the screen capture.

image A string expression identifying the captured bitmap.

window A string expression indicating the name in the window
banner.

width, height The size of the window, in pixels.

x, y The position of the upper left corner of the window.

relx1, rely1 For an area bitmap: the coordinates of the upper left
corner of the rectangle, relative to the upper left corner of
the window, expressed in pixels (the x and y parameters).

relx2, rely2 For an area bitmap: the coordinates of the lower right
corner of the rectangle, relative to the lower right corner
of the window (the x and y parameters).

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

TSL Reference Guide

454

web_browser_invoke Context Sensitive • Web

invokes the browser and opens a specified site.

web_browser_invoke (browser, site);

browser The name of browser (Microsoft Internet Explorer or
Netscape).

site The address of the site.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WebTest only.

web_cursor_to_image Context Sensitive • Web

moves the cursor to an image on a page.

web_cursor_to_image (image, x, y);

image The logical name of the image.

x,y The x- and y-coordinates of the mouse pointer when
moved to an image, relative to the upper left corner of the
image.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WebTest only.

Chapter 7 • Alphabetical Reference

455

web_cursor_to_label Context Sensitive • Web

moves the cursor to a label on a page.

web_cursor_to_label (label, x, y);

label The name of the label.

x,y The x- and y- coordinates of the mouse pointer when
moved to a label, relative to the upper left corner of the
label.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WebTest only.

web_cursor_to_link Context Sensitive • Web

moves the cursor to a link on a page.

web_cursor_to_link (link, x, y);

link The name of the link.

x,y The x- and y- coordinates of the mouse pointer when
moved to a link, relative to the upper left corner of the
link.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WebTest only.

TSL Reference Guide

456

web_cursor_to_obj Context Sensitive • Web

moves the cursor to an object on a page.

web_cursor_to_obj (object, x, y);

object The name of the object.

x,y The x- and y-coordinates of the mouse pointer when
moved to an object, relative to the upper left corner of the
object.

The web_cursor_to_obj function moves the cursor to an object on a frame. The x-
and y-coordinates of the mouse pointer when moved to an object are relative to
the upper left corner of the object.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WebTest only.

This function is available only when using Microsoft Internet Explorer.

web_event Context Sensitive • Web

runs an event on the specified object.

web_event (object, event_name [, x, y]);

object The logical name of the recorded object.

event_name The name of an event handler. Use one of the following
events:

blur: An event occurs when an object loses focus, or when
a window or a frame loses focus.

change: An event occurs when a value of an object has
been modified.

click: An event occurs when an object is clicked.

Chapter 7 • Alphabetical Reference

457

focus: An event occurs when an object receives focus by
clicking the mouse or by tabbing with the keyboard.

mousedown: An event occurs when the mouse button is
clicked down.

mouseout: An event occurs when the mouse pointer
leaves an object from inside that object.

mouseover: An event occurs when the mouse pointer
moves over an object from outside that object.

mouseup: An event occurs when the mouse button is
released.

x,y The x- and y-coordinates of the mouse pointer when
moved to an object, relative to the upper left corner of the
object.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WebTest only.

web_file_browse Context Sensitive • Web

clicks a browse button.

web_file_browse (object);

object A file-type object.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WebTest only.

This function is available only when using Microsoft Internet Explorer.

TSL Reference Guide

458

web_file_set Context Sensitive • Web

sets the text value in a file-type object.

web_file_set (object, value);

object A file-type object.

value A text string.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WebTest only.

This function is available only when using Microsoft Internet Explorer.

web_find_text Context Sensitive • Web

returns the location of text within a frame.

web_find_text (frame, text_to_find, result_array [, text_before, text_after, index,
show]);

frame The name of the frame.

text_to_find The specified text string to locate.

result_array The name of the output variable that stores the location of
the string as a four-element array.

text_before Defines the start of the search area for a particular text
string.

text_after Defines the end of the search area for a particular text
string.

index The occurrence number to locate. (The default parameter
number is numbered 1.)

Chapter 7 • Alphabetical Reference

459

show Indicates whether to highlight the location of the string. If
TRUE (default parameter) is specified, the text location is
highlighted. If FALSE is specified, the text location is not
highlighted.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WebTest only.

web_frame_get_text Context Sensitive • Web

retrieves the text content of a frame.

web_frame_get_text (frame, out_text [, text_before, text_after, index]);

frame The name of the frame.

out_text The captured text content.

text_before Defines the start of the search area for a particular text
string.

text_after Defines the end of the search area for a particular text
string.

index The occurrence number to locate. (The default parameter
number is numbered 1).

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WebTest only.

TSL Reference Guide

460

web_frame_get_text_count Context Sensitive • Web

returns the number of occurrences of a regular expression in a frame.

web_frame_get_text_count (frame, regex_text_to_find, count);

frame The name of the frame.

regex_text_to_find The specified regular expression to locate.

count The output variable that stores the count number.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WebTest only.

web_frame_text_exists Context Sensitive • Web

returns a text value if it is found in a frame.

web_frame_text_exists (frame, text_to_find [, text_before, text_after]);

frame The name of the frame to search.

text_to_find The string that is searched for.

text_before Defines the start of the search area for a particular text
string.

text_after Defines the end of the search area for a particular text
string.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WebTest only.

Chapter 7 • Alphabetical Reference

461

web_get_run_event_mode Context Sensitive • Web

returns the current run mode.

web_get_run_event_mode (out_mode);

out_mode The run mode in use. If the mode is FALSE (the default)
the test runs by mouse operations. If TRUE is specified, the
test runs by events.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WebTest only.

web_get_timeout Context Sensitive • Web

returns the maximum time that WinRunner waits for response from the web.

web_get_timeout (out_timeout);

out_timeout The maximum response interval in seconds.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WebTest only.

TSL Reference Guide

462

web_image_click Context Sensitive • Web

clicks a hypergraphic link or an image.

web_image_click (image, x, y);

image The logical name of the image.

x,y The x- and y-coordinates of the mouse pointer when
clicked on a hypergraphic link or an image. The
coordinates are relative to the upper left corner of the
image.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WebTest only.

web_label_click Context Sensitive • Web

clicks the specified label.

web_label_click (label);

label The name of the label.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WebTest only.

Chapter 7 • Alphabetical Reference

463

web_link_click Context Sensitive • Web

clicks a hypertext link.

web_link_click (link);

link The name of link.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WebTest only.

web_link_valid Context Sensitive • Web

checks whether a URL name of a link is valid (not broken).

web_link_valid (name, valid);

name The logical name of a link.

valid The status of the link may be valid (TRUE) or invalid
(FALSE)

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WebTest only.

TSL Reference Guide

464

web_obj_click Context Sensitive • Web

clicks an object in a frame.

web_obj_click (object, x, y);

object The name of an object.

x,y The x- and y-coordinates of the mouse pointer when
clicked on an object. The coordinates are relative to the
upper left corner of the object.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WebTest only.

This function is available only when using Microsoft Internet Explorer.

web_obj_get_child_item Context Sensitive • Web

returns the description of the children in an object.

web_obj_get_child_item (object, table_row, table_column, object_type, index,
out_object);

object The name of object.

table_row The row number in the table.

table_column The column number in the table.

object_type Specifies the object type.

index Unique number assigned to the object.

out_object The output variable that stores the description.

Chapter 7 • Alphabetical Reference

465

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WebTest only.

web_obj_get_child_item_count Context Sensitive • Web

function returns the count of the children in an object.

web_obj_get_child_item_count (object, table_row, table_column, object_type,
object_count);

object The name of object.

table_row The row number in the table.

table_column The column number in the table.

object_type Specifies the object type.

object_count The output variable that stores the object count number.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WebTest only.

TSL Reference Guide

466

web_obj_get_info Context Sensitive • Web

returns the value of an object property.

web_obj_get_info (object, property_name, property_value);

object The name of the object.

property_name The name of the property (PARENT, SCR, TEXT, TYPE,
URL).

property_value The output variable that stores the value of the property.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WebTest only.

web_obj_get_text Context Sensitive • Web

returns a text string from an object.

web_obj_get_text (object, table_row, table_column, out_text [, text_before, text_after,
index]);

object The name of the object.

table_row If the object is a table, it specifies the location of the row
within a table. The string is preceded by the # character.

table_column If the object is a table, it specifies the location of the
column within a table. The string is preceded by the #
character.

out_text The output variable that stores the text string.

text_before Defines the start of the search area for a particular text
string.

Chapter 7 • Alphabetical Reference

467

text_after Defines the end of the search area for a particular text
string.

index The occurrence number to locate. (The default parameter
number is numbered 1).

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WebTest only.

web_obj_get_text_count Context Sensitive • Web

returns the number of occurrences of a regular expression in an object.

web_obj_get_text_count (object, table_row, table_column, regex_text_to_find, count);

object The name of the object.

table_row If the object is a table, it specifies the location of the row
within a table. The string is preceded by the character #.

table_column If the object is a table, it specifies the location of the
column within a table. The string is preceded by the
character #.

regex_text_to_find The specified regular expression to locate.

count The output variable that stores the count number.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WebTest only.

TSL Reference Guide

468

web_obj_text_exists Context Sensitive • Web

returns a text value if it is found in an object.

web_obj_text_exists (object, table_row, table_column, text_to_find [, text_before,
text_after]);

object The name of the object to search.

table_row If the object is a table, it specifies the location of the row within
a table. The string is preceded by the character #.

table_column If the object is a table, it specifies the location of the column
within a table. The string is preceded by the character #.

text_to_find The string that is searched for.

text_before Defines the start of the search area for a particular text string.

text_after Defines the end of the search area for a particular text string.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WebTest only.

web_password_encrypt Context Sensitive • Web

encrypts a password on a Web page.

web_password_encrypt (password);

password The password on the Web page.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WebTest only.

Chapter 7 • Alphabetical Reference

469

web_refresh Context Sensitive • Web

resets WinRunner’s connection to the specified frame.

web_refresh (frame);

frame The logical name of the frame.

Tip: Call this function when the frame changes dynamically and
WinRunner does not capture the change.

Note: This function is not recordable.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WebTest only.

web_restore_event_default Context Sensitive • Web

resets all events to their default settings.

web_restore_event_default ();

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WebTest only.

TSL Reference Guide

470

web_set_event Context Sensitive • Web

sets the event status.

web_set_event (class, event_name, event_type, event_status);

class The MSW class of the object.

event_name The name of an event handler. Use one of the following:

blur: An event occurs when an object loses focus, or when
a window or a frame loses focus.

change: An event occurs when a value of an object has
been modified.

click: An event occurs when an object is clicked.

focus: An event occurs when an object receives focus by
clicking the mouse or by tabbing with the keyboard.

mousedown: An event occurs when the mouse button is
clicked down.

mouseout: An event occurs when the mouse pointer
leaves an object from inside that object.

mouseover: An event occurs when the mouse pointer
moves over an object from outside that object.

mouseup: An event occurs when the mouse button is
released.

event_type The name of an event type. Use one of the following:

ANYCASE: Connects to the event in any case.

BEHAVIOR: Connects to an event only when the behavior
is associated with the object class.

HANDLER: Connects to an event only when the handler
exists in the HTML script.

BEHAVIOR_OR_HANDLER: Connects to an event only
when the handler exists in the HTML script, or when the
behavior is associated with the object class.

Chapter 7 • Alphabetical Reference

471

event_status The name of an event status. Use one of the following:

ENABLE: The event is recordable.

DISABLE: Disables the recordable event for an object
class, but the information is saved in the configuration file
of recordable events.

DELETE: Disables the recordable event for an object class,
and removes the information from the configuration file
of recordable events.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WebTest only.

web_set_run_event_mode Context Sensitive • Web

sets the event run mode.

web_set_run_event_mode (mode);

mode The event run mode can be set to TRUE or FALSE. If set to
FALSE, the test runs by mouse operations. If set to TRUE,
the test runs by events.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WebTest only.

TSL Reference Guide

472

web_set_timeout Context Sensitive • Web

sets the maximum time WinRunner waits for a response from the Web.

web_set_timeout (timeout);

timeout The maximum interval in seconds.

The web_set_timeout function sets the maximum time WinRunner waits for a
response from the web.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WebTest only.

web_set_tooltip_color Context Sensitive • Web

sets the colors of the WebTest ToolTip.

web_set_tooltip_color (fg_color, bg_color);

fg_color A hexadecimal number denoting a color value of the
foreground color. Default color is set to black.

bg_color A hexadecimal number denoting a color value of the
background color. Default color is set to aqua.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WebTest only.

Chapter 7 • Alphabetical Reference

473

web_sync Context Sensitive • Web

waits for the navigation of a frame to be completed.

web_sync (timeout);

time The maximum interval in seconds.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WebTest only.

web_tbl_get_cell_data Context Sensitive • Web

retrieves the contents of the specified cell from a Web table, starting from the specified
character.

web_tbl_get_cell_data (table, row, column, starting_pos, out_text,
out_actual_text_length);

table The logical name of the table.

row By location: # <row_location> The location of the row
within the table, specified by a string preceded by the
character #, such as "#2".

The row can also be in the following format:

column By location: # <column_location> The location of the
column within the table, specified by a string preceded by
the character #, such as "#2".

starting_pos The index of the character in the cell from which
WinRunner starts retrieving the text string.

TSL Reference Guide

474

out_text The output variable that stores the string found in the
specified cell.

out_actual_text_length The actual length of the text string in the table. Note that
this length cannot exceed 1023 characters.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WebTest only.

web_url_valid Context Sensitive • Web

checks whether a URL is valid.

web_url_valid (URL, valid);

URL Address of a link.

valid The status of the link may be valid (TRUE) or invalid
(FALSE).

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WebTest only.

Chapter 7 • Alphabetical Reference

475

win_activate Context Sensitive • Window Object

activates a window.

win_activate (window);

window The logical name of the window.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available in WinRunner only.

win_check_bitmap Context Sensitive • Window Object

compares a window bitmap to an expected bitmap.

win_check_bitmap (window, bitmap, time [, x, y, width, height]);

window The logical name of the window.

bitmap A string expression that identifies the captured bitmap.

time The interval marking the maximum delay between the
previous input event and the capture of the current
bitmap, in seconds. This interval is added to the
timeout_msec testing option.

x, y For an area bitmap: the coordinates or the upper left
corner, relative to the window in which the selected area is
located.

width, height For an area bitmap: the size of the selected area, in pixels.

The analog version of win_check_bitmap is check_window.

TSL Reference Guide

476

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

win_check_gui Context Sensitive • Window Object

compares current GUI data to expected GUI data for a window.

win_check_gui (window, checklist, expected_results_file, time);

window The logical name of the window.

checklist The name of the checklist specifying the checks to
perform.

expected_results_file The name of the file storing the expected GUI data.

time The time is added to the timeout_msec testing option to
give the maximum interval between the previous input
even and the screen capture.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

477

win_check_info Context Sensitive • Window Object

checks the requested window property.

win_check_info (window, property, property_value);

window The logical name of the window.

property The property to check.

property_value The expected value of the property.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

win_click_help Context Sensitive • Window Object

clicks the help button in a window title bar.

win_click_help (window);

window The logical name of the window.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

TSL Reference Guide

478

win_click_on_text Context Sensitive • Window Object

searches for text in a window.

win_click_on_text (window, string [,search_area [, string_def [, mouse_button]]]);

window The logical name of the window.

string The text to locate. To specify a literal, case sensitive string,
enclose the string in quotation marks. Alternatively, you
can specify the name of a string variable. The value of the
string variable can include a regular expression (the
regular expression need not begin with an exclamation
mark).

search_area The region of the object to search, relative to the window.
This area is defined as a pair of coordinates, with
x1,y1,x2,y2 specifying any two diagonally opposite
corners of the rectangular search region. If this parameter
is not defined, then the entire window specified is
considered the search area.

string_def Defines how the text search is performed. If no string_def is
specified, (0 or FALSE, the default parameter), the
interpreter searches for a complete word only. If 1, or
TRUE, is specified, the search is not restricted to a single,
complete word.

mouse_button Specifies the mouse button that clicks on the text string.
The value can be LEFT, MIDDLE, or RIGHT. If no button is
specified, the default is the left button.

The analog version of this function is click_on_text.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

479

win_close Context Sensitive • Window Object

closes a window.

win_close (window);

window The logical name of the window.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

win_drag Context Sensitive • Window Object

drags an object from a source window.

win_drag (source_window, x, y [, mouse_button]);

source_window The logical name of the window.

x,y The coordinates of the mouse pointer when clicked on the
source window, relative to the upper left corner of the
client area of the source window expressed in pixels.

mouse_button A constant that specifies the mouse button to hold down
while dragging. The value can be LEFT, MIDDLE, or
RIGHT. If no button is specified, the default is the button
that performs the select function.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

TSL Reference Guide

480

win_drop Context Sensitive • Window Object

drops an object onto a target window.

win_drop (target_window, x, y);

target_window The logical name of the window.

x,y The coordinates of the mouse pointer when released over
the target window, relative to the upper left corner of the
client area of the target window, expressed in pixels.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

win_exists Context Sensitive • Window Object

checks whether a window is displayed on the screen.

win_exists (window [, time]);

window The logical name of the window.

time The amount of time (in seconds) that is added to the
default timeout setting (specified with the timeout_msec
testing option), yielding a new maximum wait time before
the subsequent statement is executed.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

481

win_find_text Context Sensitive • Window Object

returns the location of a string within a window.

win_find_text (window, string, result_array [, search_area [, string_def]]);

window The logical name of the window to search.

string The text to locate. To specify a literal, case sensitive string,
enclose the string in quotation marks. Alternatively, you
can specify the name of a string variable. The value of the
string variable can include a regular expression. The
regular expression should not include an exclamation
mark (!), however, which is treated as a literal character.

result_array The name of the output variable that stores the location of
the string as a four-element array.

search_area The region of the object to search, relative to the window.
This area is defined as a pair of coordinates, with
x1,y1,x2,y2 specifying any two diagonally opposite
corners of the rectangular search region. If this parameter
is not defined, then the entire window is considered the
search area.

string_def Defines how the text search is performed. If no string_def is
specified, (0 or FALSE, the default parameter), the
interpreter searches for a complete word only. If 1, or
TRUE, is specified, the search is not restricted to a single,
complete word.

The Analog version of this function is find_text.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

TSL Reference Guide

482

win_get_desc Context Sensitive • Window Object

returns the physical description of a window.

win_get_desc (window, obligatory, optional, selector, out_desc);

window The logical name of the window.

obligatory The list of obligatory properties (separated by spaces).

optional The list of optional properties (separated by spaces).

selector The type of selector used for this object class (location or
index).

out_desc The output variable that stores the description of the
window.

Return Values

This function returns the value 0 if it succeeds and -1 if it fails. If obligatory,
optional, and selector are null strings, win_get_desc returns the current learning
configuration for the object

Availability

This function is always available.

win_get_info Context Sensitive • Window Object

returns the value of a window property.

win_get_info (window, property, out_value);

window The logical name of the window.

property Any of the properties listed in the User’s Guide.

out_value The variable that stores the value of the specified property.

Chapter 7 • Alphabetical Reference

483

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

win_get_text Context Sensitive • Window Object

reads text from the indicated area of a window.

win_get_text (window, out_text [, x1, y1, x2, y2]);

window The window from which text is read.

out_text The output variable that holds the captured text.

x1,y1,x2,y2 An optional parameter that defines the location from
which to read text relative to the specified window in
pixels. The coordinate pairs can designate any two
diagonally opposite corners of a rectangle. The interpreter
searches for the text in the area defined by the rectangle.

The Analog version of this function is get_text.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

TSL Reference Guide

484

win_highlight Context Sensitive • Window Object

highlights the specified window.

win_highlight (window [, flashes]);

window The logical name of the window.

flashes The number of times the window flashes on screen.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

win_max Context Sensitive • Window Object

maximizes a window to fill the entire screen.

win_max (window);

window The logical name of the window.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WinRunner and LoadRunner GUI Vusers running on
PC platforms only.

Chapter 7 • Alphabetical Reference

485

win_min Context Sensitive • Window Object

minimizes a window to an icon.

win_min (window);

window the logical name of the window.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is available for WinRunner and LoadRunner GUI Vusers running on
PC platforms only.

win_mouse_click Context Sensitive • Window Object

performs a mouse click within a window.

win_mouse_click (window, x, y [, mouse_button [, modifier]]);

window The logical name of the window.

x, y The position of the mouse click expressed as x and y
(pixel) coordinates. Coordinates are relative to the upper
left corner of the client area of the window, and not to the
screen.

mouse_button A constant specifying the mouse button to click. The value
can be LEFT, MIDDLE, or RIGHT. If no mouse_button is
specified, the default is the button performing the select
function.

modifier A constant specifying the modifier key used with the
mouse button. The value can be CONTROL, SHIFT, or
CONTROL_SHIFT.

TSL Reference Guide

486

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

win_mouse_dbl_click Context Sensitive • Window Object

performs a double-click within a window.

win_mouse_dbl_click (window, x, y [, mouse_button [, modifier]]);

window The logical name of the window.

x, y The position of the double-click expressed as x and y
(pixel) coordinates. Coordinates are relative to the upper
left corner of the client area of the window, and not to the
screen.

mouse_button A constant specifying the mouse button to click. The value
can be LEFT, MIDDLE, or RIGHT. If no mouse_button is
specified, the default is the button performing the select
function.

modifier A constant specifying the modifier key used with the
mouse button. The value can be CONTROL, SHIFT, or
CONTROL_SHIFT.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

487

win_mouse_drag Context Sensitive • Window Object

performs a mouse drag within a window.

win_mouse_drag (window, start_x, start_y, end_x, end_y [, mouse_button
[,modifier]]);

window The logical name of the window.

start_x, start_y The x- and y-coordinates of the start point of the mouse
drag in pixels. Coordinates are relative to the upper left
corner of the client area of the window, and not to the
screen.

end_x, end_y The x- and y-coordinates of the end point of the mouse
drag in pixels. Coordinates are relative to the upper left
corner of the client area of the window, and not to the
screen.

mouse_button A constant specifying the mouse button to click (LEFT,
MIDDLE, RIGHT). If no mouse_button is specified, the
default is the one performing the selection.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

TSL Reference Guide

488

win_mouse_move Context Sensitive • Window Object

moves the mouse pointer to the designated position within a window.

win_mouse_move (window, x, y);

window The logical name of the window.

x, y The position of the mouse pointer, expressed as x and y
(pixel) coordinates. The coordinates are relative to the
upper left corner of the client area of the window, and not
to the screen.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

win_move Context Sensitive • Window Object

moves a window to a new absolute location.

win_move (window, x, y);

window The logical name of the window.

x, y The x and y coordinates are relative to the upper left
corner of the screen.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

489

win_move_locator_text Context Sensitive • Window Object

moves the mouse pointer to a string in a window.

win_move_locator_text (window, string [, search_area [,s tring_def]]);

window The logical name of the window.

string The text to locate. To specify a literal, case sensitive string,
enclose the string in quotation marks. Alternatively, you
can specify the name of a string variable. The value of the
string variable can include a regular expression (the
regular expression need not begin with an exclamation
mark).

search_area The region of the object to search, relative to the window.
This area is defined as a pair of coordinates, with
x1,y1,x2,y2 specifying any two diagonally opposite
corners of the rectangular search region. If this parameter
is not defined, then the entire window specified is
considered the search area.

string_def Defines how the text search is performed. If no string_def is
specified, (0 or FALSE, the default parameter), the
interpreter searches for a complete word only. If 1, or
TRUE, is specified, the search is not restricted to a single,
complete word.

The Analog version of this function is move_locator_text.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

TSL Reference Guide

490

win_open Context Sensitive • Window Object

opens an application window.

win_open (window);

window the logical name of the window.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

win_resize Context Sensitive • Window Object

resizes a window.

win_resize (window, width, height);

window The logical name of the window.

width The new width of the window, in pixels.

height The new height of the window, in pixels.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

491

win_restore Context Sensitive • Window Object

restores a window to its previous size.

win_restore (window);

window The logical name of the window.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

win_type Context Sensitive • Window Object

sends keyboard input to a window.

win_type (window, keyboard_input);

window The logical name of the window.

keyboard_input A string expression that represents keystrokes.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

TSL Reference Guide

492

win_wait_bitmap Context Sensitive • Window Object

waits for a window bitmap.

Note: This function is provided for backward compatibility only. You should use
the win_check_bitmap and obj_check_bitmap functions instead of this
function.

win_wait_bitmap (window, bitmap, time [, x, y, width, height]);

window The logical name of the window.

bitmap A string expression identifying the captured bitmap.

time The time is added to the timeout_msec testing option to
give the maximum interval between the previous input
even and the screen capture.

x, y For an area bitmap: the coordinates of the upper left
corner, relative to the window in which the selected
region is located in pixels.

width, height For an area bitmap: the size of the selected region, in
pixels.

For an Analog version of the win_wait_bitmap, see wait_window.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

Chapter 7 • Alphabetical Reference

493

win_wait_info Context Sensitive • Window Object

waits for the value of a window property.

win_wait_info (window, property, value, time);

window The logical name of the window.

property Any of the properties listed in the User’s Guide.

value The property value for which the function waits.

time The interval, in seconds, before the next statement is
executed.

Return Values

This function returns one of a list of return values. For more information, see
“General Return Values,” on page 118.

Availability

This function is always available.

TSL Reference Guide

494

495

Symbols

! operator 14
!= operator 13
&& operator 14
< operator 13
<= operator 13
== operator 13
> operator 13
>= operator 13
|| operator 14

A

Acrobat Reader vi
ActiveBar functions 60
ActiveBar_combo_select_item function 126
ActiveBar_dump function 127
ActiveBar_select_menu function 128
ActiveBar_select_tool function 129
ActiveX functions 60
ActiveX_activate_method function 130
ActiveX_get_info function 131
ActiveX_set_info function 132
add_cust_record_class function 134
add_dlph_obj function 135
add_record_attr function 136
add_record_message function 136
ampersand character 13
Analog functions

by category 56–58
coordinate conventions 3
numbering conventions 3
overview 3

and operator 14
arithmetic functions 102

arithmetical operators 12
applying to string 9
assignment 15

array operator 26
arrays 22–28

declaration 23
for loop 27
functions 28, 102
initializing 25
multidimensional 25
operator 26

ascii function 137
assignment operators 15
associativity 16
atan2 function 137
auto 51
auto variables 10

B

bitmap checkpoint functions
Analog 56
Context Sensitive 61

break statement 21
built-in functions 29–30

return value 29
syntax 29

button object functions 61
button_check_enabled 51
button_check_info function 137
button_check_state function 138
button_get_info function 138
button_get_state function 139
button_get_value 51
button_press function 139
button_set function 140
button_wait_info function 140

Index

TSL Reference Guide

496

C

calendar function 62
calendar_activate_date function 141
calendar_get_selected function 142
calendar_get_status function 142
calendar_get_valid_range function 143
calendar_select_date function 144
calendar_select_range function 144
calendar_select_time function 145
calendar_set_status function 145
call statement 146
call statements 103
call_chain_get_attr statement 147
call_chain_get_depth statement 147
call_close statement 148
call_ex statement 149
case 51
char 51
check_file 51
check_wid 51
check_window function 150
click function 151
click_on_text function 151
comments 29
compare_text function 152
compiled module functions 103
concatenation operator 13
conditional operator 14
const 51
constant declarations 11
constants 7–11
Context Sensitive functions

by category 58–67
numbering conventions 4
object naming conventions 4
overview 3

continue 51
continue statement 22
control flow 17–22

break statement 21
continue statement 22
do statement 21
for statement 20
if-else statement 17
loop statement 21

control flow (continued)
switch statement 19
while statement 20

coordinate conventions, Analog functions 3
cos function 153
create_browse_file_dialog function 153
create_custom_dialog function 154
create_input_dialog function 155
create_list_dialog function 155
create_password_dialog function 156
custom record functions 99
custom user interface functions 99
Customization functions

by category 98–100
overview 5

D

Data Junction 64
data objects 7
database functions 62

for working with Data Junction 64
return values for 122

data-driven test functions 64
datawindow_text_click function 157
datawindow_text_dbl_click function 158
Date Operation functions 65
date_age_string function 158
date_align_day function 159
date_calc_days_in_field function 160
date_calc_days_in_string function 161
date_change_field_aging function 162
date_change_original_new_formats function

163
date_check function 164
date_disable_format function 164
date_enable_format function 165
date_field_to_Julian function 165
date_is_field function 166
date_is_leap_year function 166
date_is_string function 167
date_leading_zero function 168
date_month_language function 168
date_set_aging function 169
date_set_attr function 170
date_set_auto_date_verify function 170

Index

497

date_set_capture_mode function 171
date_set_run_mode function 172
date_set_system_date function 173
date_set_year_limits function 173
date_set_year_threshold function 174
date_string_to_Julian function 174
date_type_mode function 175
db_check function 175
db_connect function 176
db_disconnect function 177
db_dj_convert function 177
db_execute_query function 178
db_get_field_value function 178
db_get_headers function 179
db_get_last_error function 179
db_get_row function 180
db_record_check function 181
db_write_records function 182
dbl_click function 182
ddt_close function 183
ddt_export function 184
ddt_get_current_row function 185
ddt_get_parameters function 185
ddt_get_row_count function 186
ddt_is_parameter function 187
ddt_next_row function 187
ddt_open function 188
ddt_report_row function 189
ddt_save function 189
ddt_set_row function 190
ddt_set_val function 190
ddt_set_val_by_row function 191
ddt_show function 192
ddt_update_from_db function 193
ddt_val function 194
ddt_val_by_row function 194
declare_rendezvous function 195
declare_transaction function 195
default 51
define_object_exception function 196
define_popup_exception function 197
define_tsl_exception function 198
delete function 28, 198
delete_record_attr function 199
Delphi functions 67
display_date_result 51

display_euro_result 51
dlph_button_panel_press function 202
dlph_edit_set function 200
dlph_list_select_item function 200
dlph_obj_get_info function 201
dlph_obj_set_info function 201
do statement 21
dos_system function 203
double 51

E

edit object functions 68
edit_activate function 204
edit_check_content 51
edit_check_format 51
edit_check_info function 204
edit_check_selection function 205
edit_check_text function 205
edit_delete function 206
edit_delete_block function 206
edit_get_block function 207
edit_get_info function 208
edit_get_row_length function 208
edit_get_rows_count function 209
edit_get_selection function 209
edit_get_selection_pos function 210
edit_get_text function 211
edit_insert function 211
edit_insert_block function 212
edit_replace function 212
edit_replace_block function 213
edit_set function 213
edit_set_focus function 214
edit_set_insert_pos function 214
edit_set_selection function 215
edit_type function 215
edit_wait_info function 216
else 51
end_transaction function 216
endif 51
equal to (relational) operator 13
error_message function 217
EURO functions 69
EURO_check_currency function 217
EURO_compare_columns function 218

TSL Reference Guide

498

EURO_compare_fields function 219
EURO_compare_numbers function 220
EURO_convert_currency function 221
EURO_override_field function 222
EURO_set_auto_currency_verify function

223
EURO_set_capture_mode function 224
EURO_set_conversion_mode function 224
EURO_set_conversion_rate function 225
EURO_set_cross_rate function 226
EURO_set_currency_threshold function 227
EURO_set_decimals_precision function 227
EURO_set_original_new_currencies function

228
EURO_set_regional_symbols function 229
EURO_set_triangulation_decimals function

229
EURO_type_mode function 230
eval function 230
exception handling functions 104
exception_off function 231
exception_off_all function 231
exception_on function 232
exception_on_print 51
exit 51
exp function 232
expressions 12–16
extern 51

declarations 32–34
variables 10

F

file_close function 233
file_compare function 233
file_getline function 234
file_open function 234
file_printf function 235
find_text_function 237
float 51
for statement 20
function 51
Function Generator functions 99
function types, overview 2

G

general return values 118–122
generator_add_category function 238
generator_add_function function 238
generator_add_function_to_category

function 240
generator_add_subcategory function 240
generator_set_default_function function 241
get_aut_var function 241
get_class_map function 242
get_host_name function 242
get_lang 51
get_master_host_name function 243
get_obj_record_method 51
get_record_attr function 243
get_record_method function 244
get_runner_str 51
get_text function 245
get_time function 246
get_x function 246
get_y function 246
getenv function 247
getline 51
getvar function 247
grab 51
greater than operator 13
greater than or equal to operator 13
gsub 51
GUI checkpoint functions

Context Sensitive 71
Customization 100

GUI map configuration functions 71
GUI map editor functions 72
GUI_add function 248
GUI_buf_get_data 51
GUI_buf_get_data_attr 51
GUI_buf_get_desc function 248
GUI_buf_get_desc_attr function 249
GUI_buf_get_logical_name function 250
GUI_buf_new function 250
GUI_buf_set_data_attr 52
GUI_buf_set_desc_attr function 251
GUI_close function 251
GUI_close_all function 252
GUI_data_get_attr 52
GUI_data_set_attr 52

Index

499

GUI_delete function 252
GUI_desc_compare function 253
GUI_desc_get_attr function 253
GUI_desc_set_attr function 254
GUI_get_name function 254
GUI_get_window function 255
GUI_list_buf_windows function 256
GUI_list_buffers function 256
GUI_list_data_attrs 52
GUI_list_desc_attrs function 257
GUI_list_map_buffers function 257
GUI_list_win_objects function 258
GUI_load function 259
GUI_map_get_desc function 260
GUI_map_get_logical_name function 260
GUI_mark 52
GUI_open function 261
GUI_point_to 52
GUI_replay_wizard 52
GUI_save function 261
GUI_save_as function 262
GUI_set_window function 262
GUI_unload function 263
GUI_unload_all function 263
gui_ver_add_check function 264
gui_ver_add_check_to_class function 264
gui_ver_add_class function 265
gui_ver_set_default_checks function 265

I

i/o functions 104
icon object functions 74
icon_move function 266
icon_select function 266
if 52
if/else statement 17
in 52
index function 267
inout 52
input device functions 57
input/output functions 28
input_to_description_int 52
int function 267
invoke_application function 268

J

Java function 74
java_activate_method function 269
jco_create function 271
jco_free function 271
jco_free_all function 272
jdc_aut_connect function 272

L

length function 273
less than operator 13
less than or equal to operator 13
list object functions 75
list_activate_item function 273
list_check_info function 274
list_check_item function 274
list_check_multi_selection 52
list_check_row_num 52
list_check_selected function 275
list_check_selection 52
list_collapse_item function 275
list_deselect_item function 276
list_deselect_range function 276
list_drag_item function 277
list_drop_on_item function 277
list_expand_item function 278
list_extend_item function 279
list_extend_multi_items function 279
list_extend_range function 280
list_get_checked_items function 281
list_get_column_header function 281
list_get_info function 282
list_get_item function 282
list_get_item_info function 284
list_get_item_num function 284
list_get_items_count 52
list_get_multi_selected 52
list_get_selected function 285
list_get_subitem function 286
list_rename_item function 286
list_select_item function 287
list_select_multi_items function 288
list_select_range function 288
list_set_item_state function 289
list_wait_info function 290

TSL Reference Guide

500

load function 290
load testing functions 105
load_16_dll function 291
load_dll function 292
log function 292
logical operators 14
long 52
loop modification statements 21
looping statements 20
lov_get_item function 293
lov_select_item function 293
lr_whoami function 294

M

match function 294
menu object functions 77
menu_get_desc function 295
menu_get_info function 296
menu_get_item function 296
menu_get_item_num function 297
menu_get_items_count 52
menu_select_item function 297
menu_verify 52
menu_wait_info function 298
method_wizard function 299
miscellaneous functions 106
move_locator_abs function 299
move_locator_rel function 300
move_locator_text function 300
move_locator_track function 301
move_mouse_abs 52
move_mouse_rel 52
move_window 52
mtype function 301
multidimensional arrays 25

N

next 52
not (unary) operator 14
not equal to (relational) operator 13
numbering conventions

Analog functions 3
Context Sensitive functions 4

O

obj_check_attr 52
obj_check_bitmap function 302
obj_check_enabled 52
obj_check_focused 52
obj_check_gui function 303
obj_check_info function 304
obj_check_label 52
obj_check_pos 52
obj_check_size 52
obj_check_style 52
obj_click_on_text function 304
obj_drag function 305
obj_drop function 306
obj_exists function 306
obj_find_text function 307
obj_get_desc function 308
obj_get_info function 309
obj_get_text function 309
obj_highlight function 310
obj_key_type function 310
obj_mouse_click function 311
obj_mouse_dbl_click function 312
obj_mouse_drag function 313
obj_mouse_move function 314
obj_move_locator_text function 315
obj_set_focus 52
obj_set_info function 316
obj_type function 317
obj_verify 52
obj_wait_bitmap function 317
obj_wait_info function 318
object functions 77
object naming conventions, Context

Sensitive functions 4
online help vii
online resources vi
operating system functions 106
operators 12–16

arithmetical 12
assignment 15
conditional 14
precedence and associativity 16
relational 13
string 13

or (logical) operator 14

Index

501

oracle functions 78
out 52
output_message function 319

P

password functions 107
password_edit_set function 319
password_encrypt function 320
pause function 320
pause_test 52
phone functions 92
phone_append_text function 321
phone_edit_set function 321
phone_get_name function 322
phone_GUI_load function 322
phone_key_click function 323
phone_navigate function 323
phone_sync function 324
popup_select_item function 325
PowerBuilder functions 79

return values for 123
precedence 16
printf 52
process_return_value 52
prvars 52
public 52
public variables 10

Q

qt_force_send_key function 326
qt_reset_all_force_send_key function 326
quad_click 52
QuickTest 2000 functions 107

R

rand function 327
Readme file vi
relational operators 9, 13
reload function 327
rendezvous function 328
report_event 52
report_msg function 329
report_param_msg 52
reserved words 51–53

reset_filter 52
reset_internals 52
return 52
return statement 32, 329
return values 117–124

for database functions 122
for PowerBuilder functions 123
for table functions 123
for terminal emulator functions 124
general 118–122

S

sample tests vii
save_report_info 52
scroll object functions 79
scroll_check_info function 331
scroll_check_pos function 331
scroll_drag function 332
scroll_drag_from_min function 332
scroll_get_info function 333
scroll_get_max function 333
scroll_get_min function 334
scroll_get_pos function 334
scroll_get_selected function 335
scroll_get_value 52
scroll_line function 335
scroll_max function 336
scroll_min function 336
scroll_page function 337
scroll_wait_info function 337
set_aut_var function 338
set_class_map function 338
set_filter 52
set_obj_record_method 52
set_record_attr function 339
set_record_method function 340
set_window function 341
setvar function 342
short 52
siebel_click_history function 342
siebel_connect_repository function 343
siebel_get_active_applet function 344
siebel_get_active_buscomp function 344
siebel_get_active_busobj function 345
siebel_get_active_control function 345

TSL Reference Guide

502

siebel_get_active_view function 346
siebel_get_chart_data function 347
siebel_get_control_value function 347
siebel_goto_record function 348
siebel_navigate_view function 348
siebel_obj_get_info function 349
siebel_obj_get_properties function 350
siebel_select_alpha function 351
siebel_set_active_applet function 351
siebel_set_active_control function 352
signed 52
sin function 353
spin object functions 83
spin_get_info function 354
spin_get_pos function 354
spin_get_range function 355
spin_max function 355
spin_min function 356
spin_next function 356
spin_prev function 357
spin_set function 357
spin_up function 358
spin_wait_info function 358
split function 28, 359
sprintf function 359
sqrt function 360
srand function 360
Standard functions

by category 101–116
overview 5

start_transaction function 361
statements 17
static 53
static text object functions 83
static variables 10
static_check_info function 361
static_check_text function 362
static_get_info function 362
static_get_text function 363
static_wait_info function 363
statusbar functions 84
statusbar_get_field_num function 364
statusbar_get_info function 364
statusbar_get_text function 365
statusbar_wait_info function 366
str_map_logical_to_visual function 366

string 53
functions 108
operators 13

strings 8
sub 53
substr function 367
support information vii
switch statement 19
synchronization functions

Analog 57
Context Sensitive 84

system function 368

T

tab object functions 85
tab_get_info function 369
tab_get_item function 369
tab_get_page 53
tab_get_selected function 370
tab_get_selected_page 53
tab_select_item function 370
tab_select_page 53
tab_wait_info function 371
table functions

Analog 57
Context Sensitive 85
for WebTest 96
return values for 123

tbl_activate_cell function 372
tbl_activate_col function 374
tbl_activate_header function 375
tbl_activate_row function 376
tbl_click_cell function 376
tbl_dbl_click_cell function 377
tbl_deselect_col function 378
tbl_deselect_cols_range function 379
tbl_deselect_row function 380
tbl_deselect_rows_range function 380
tbl_drag function 381
tbl_extend_col function 382
tbl_extend_cols_range function 383
tbl_extend_row function 384
tbl_extend_rows_range function 385
tbl_get_cell_coords 53
tbl_get_cell_data function 386

Index

503

tbl_get_cols_count function 388
tbl_get_column_name function 389
tbl_get_column_names function 390
tbl_get_rows_count function 391
tbl_get_selected_cell function 392
tbl_get_selected_row function 394
tbl_select_cells_range function 395
tbl_select_col_header function 396
tbl_select_cols_range function 398
tbl_select_rows_range function 399
tbl_set_cell_data function 400
tbl_set_selected_cell function 404
tbl_set_selected_col function 406
tbl_set_selected_row function 407
tbl_synchronize 53
TDAPI functions

defect tracking functions 111
design steps functions 110
project administration functions 114
project connection functions 109
test functions 109
test plan tree functions 113
test run functions 112
test set functions 111
test step functions 113

TDAPI functions by category 109–114
database administration functions

114
database connection functions 109
defect tracking functions 111
design steps functions 110
test functions 109
test plan tree functions 113
test run functions 112
test set functions 111
test step functions 113

tddb_get_step_value function 408
tddb_get_test_value function 409
tddb_get_testset_value function 409
tddb_load_attachment function 410
TE_add_screen_name_location function 410
TE_bms2gui function 411
TE_check_text function 412
TE_create_filter function 412
TE_define_sync_keys function 413
TE_delete_filter function 414

TE_edit_field function 414
TE_edit_hidden_field function 415
TE_edit_screen function 415
TE_find_text function 416
TE_force_send_key function 417
TE_get_active_filter function 417
TE_get_auto_reset_filters function 418
TE_get_auto_verify function 419
TE_get_cursor_position function 419
TE_get_field_content function 420
TE_get_filter function 420
TE_get_merge_rule function 421
TE_get_refresh_time function 422
TE_get_screen_name_location function 422
TE_get_sync_time function 423
TE_get_text function 423
TE_get_timeout function 424
TE_merge_fields function 424
TE_reset_all_filters function 425
TE_reset_all_force_send_key function 425
TE_reset_all_merged_fields function 426
TE_reset_filter function 426
TE_reset_screen_name_location function

427
TE_send_key function 427
TE_set_auto_reset_filters function 428
TE_set_auto_transaction function 428
TE_set_auto_verify function 429
TE_set_BMS_name_tag function 429
TE_set_cursor_position function 430
TE_set_field function 430
TE_set_filter function 431
TE_set_filter_mode function 432
TE_set_record_method function 432
TE_set_refresh_time function 433
TE_set_screen_name_location function 433
TE_set_sync_time function 434
TE_set_timeout function 435
TE_set_trailing function 435
TE_user_attr_comment function 436
TE_user_reset_all_attr_comments function

436
TE_wait_field function 437
TE_wait_string function 437
TE_wait_sync function 438
tech 53

TSL Reference Guide

504

technical support online vii
terminal emulator functions 87

return values for 124
TestDirector functions 115
testing option functions 115
tests, sample vii
texit statement 439
text checkpoint functions

Analog 58
Context Sensitive 91

time_str function 439
time-related functions 116
tl_get_status 53
tl_set_status 53
tl_setvar 53
tl_step function 440
tl_step_once function 440
tolower function 441
toolbar object functions 91
toolbar_button_press function 442
toolbar_get_button function 442
toolbar_get_button_info function 443
toolbar_get_button_num function 444
toolbar_get_buttons_count function 443,

445
toolbar_get_info 53
toolbar_select_item function 445
toolbar_wait_info 53
toupper function 446
treturn 53
treturn statement 446
trpl_click 53
TSL language 7–34

introduction 1–5
TSL Online Reference vii
tsl_set_module_mark 53
tsl_test_is_module 53
type (of constant or variable) 8
type function 447
typographical conventions viii

U

ungrab 53
unload function 449
unload_16_dll function 450

unload_dll function 450
unsigned 53
user_data_point function 451
user-defined functions 30–32

class 30
declarations 31
parameters 30
return statement 32

V

variables 7–11
declarations 9–11
names 7
undeclared 9

vendor 53
Visual Basic functions 60
vuser_status_message 53

W

wait function 452
wait_stable_window 53
wait_window function 453
WAP functions 92
Web functions 93

See also WebTest functions
web_browser_invoke function 454
web_cursor_to_image function 454
web_cursor_to_label function 455
web_cursor_to_link function 455
web_cursor_to_obj function 456
web_event function 456
web_file_browse function 457
web_file_set function 458
web_find_text function 458
web_frame_get_text function 459
web_frame_get_text_count function 460
web_frame_text_exists function 460
web_get_run_event_mode function 461
web_get_timeout function 461
web_image_click function 462
web_label_click function 462
web_link_click function 463
web_link_valid function 463
web_obj_click function 464

Index

505

web_obj_get_child_item function 464
web_obj_get_child_item_count function 465
web_obj_get_info function 466
web_obj_get_text function 466
web_obj_get_text_count function 467
web_obj_text_exists function 468
web_password_encrypt function 468
web_refresh function 469
web_restore_event_default function 469
web_set_event function 470
web_set_run_event_mode function 471
web_set_timeout function 472
web_set_tooltip_color function 472
web_sync function 473
web_tbl_get_cell_data function 473
web_url_valid function 474
WebTest functions 93

for tables 96
What’s New in WinRunner help vi
while statement 20
win_activate function 475
win_check_attr 53
win_check_bitmap function 475
win_check_gui function 476
win_check_info function 477
win_check_label 53
win_check_pos 53
win_check_size 53
win_click_help function 477
win_click_on_text function 478
win_close function 479
win_drag function 479
win_drop function 480
win_exists function 480
win_find_text function 481
win_get_desc function 482
win_get_info function 482
win_get_text function 483
win_highlight function 484
win_max function 484
win_min function 485
win_mouse_click function 485
win_mouse_dbl_click function 486
win_mouse_drag function 487
win_mouse_move function 488
win_move function 488

win_move_locator_text function 489
win_open function 490
win_press_cancel 53
win_press_ok 53
win_press_return 53
win_resize function 490
win_restore function 491
win_set_focus 53
win_type function 491
win_verify 53
win_wait_bitmap function 492
win_wait_info function 493
window object functions 96
WinRunner

context-sensitive help vii
online resources vi
sample tests vii

WinRunner Customization Guide vi
WinRunner Installation Guide vi
WinRunner Tutorial vi
WinRunner User’s Guide v, vi

X

XRunner 2

Y

Y2K_age_string function, See date_age_string
Y2K_align_day function, See date_align_day

function 159
Y2K_calc_days_in_field function, See

date_calc_days_in_field function 160
Y2K_calc_days_in_string function, See

date_calc_days_in_string function
161

Y2K_change_field_aging function, See
date_change_field_aging function
162

TSL Reference Guide

506

Y2K_change_original_new_formats
function, See
date_change_original_new_formats
function 163

Y2K_check_date function, See date_check
function 164

Y2K_disable_format function, See
date_disable_format function 164

Y2K_enable_format function, See
date_enable_format function 165

Y2K_field_to_Julian function, See
date_field_to_Julian function 165

Y2K_is_date_field function, See 166
Y2K_is_date_string function, See

date_is_string function 167
Y2K_is_leap_year function, See

date_is_leap_year function 166
Y2K_leading_zero function, See

date_leading_zero function 168
Y2K_month_language function, See

date_month_language function 168
Y2K_set_aging function, See date_set_aging

function 169
Y2K_set_attr function, See date_set_attr

function 170
Y2K_set_auto_date_verify function, See

date_set_auto_date_verify function
170

Y2K_set_capture_mode function, See
date_set_capture_mode function 171

Y2K_set_replay_mode function, See
date_set_run_mode function 172

Y2K_set_system_date function, See
date_set_system_date function 173

Y2K_set_year_limits function, See
date_set_year_limits function 173

Y2K_set_year_threshold function, See
date_set_year_threshold function 174

Y2K_string_to_Julian function, See
date_string_to_Julian function 174

Y2K_type_mode function, See
date_type_mode function 175

Mercury Interactive Corporation
1325 Borregas Avenue
Sunnyvale, CA 94089 USA

Main Telephone: (408) 822-5200
Sales & Information: (800) TEST-911
Customer Support: (877) TEST-HLP
Fax: (408) 822-5300

Home Page: www.mercuryinteractive.com
Customer Support: support.mercuryinteractive.com :5 7 6 / 5() � � � � � � �

	WinRunner®
	Table of Contents
	Welcome to TSL v
	Using This Guide
	WinRunner Documentation Set
	Online Resources
	Typographical Conventions

	Introduction
	Function Types
	Analog Functions
	Context Sensitive Functions
	Customization Functions
	Standard Functions

	Language
	Variables and Constants
	Operators and Expressions
	Statements
	Control Flow
	Arrays
	Input-Output
	Comments
	Built-in Functions
	User-Defined Functions
	External Function Declarations

	Guidelines for Working with TSL
	Test Scripts
	Flow Control
	Return Values
	Path Names
	tl_step Function
	GUI Map
	Libraries and Functions

	Reserved Words
	Functions by Category
	Analog Functions
	Context Sensitive Functions
	Customization Functions
	Standard Functions

	Return Values
	General Return Values
	Return Values for Database Functions
	Return Values for PowerBuilder and Table Functions
	Return Values for Terminal Emulator Functions

	Alphabetical Reference
	Index

