

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Online Guide

WinRunner ® 7.0
Testing Terminal Emulator
Applicationsput name of book here

Table of Contents

Testing Termina Page 2

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Table of Contents

Chapt ... 5
Config ... 6
Creatin ... 7
Synchr ... 8
Check ... 9
Testing .10
Analyz . 10
Learnin .10
Using . 11
Sampl .16
Typogr . 17

Chapt .18
About . 19
Physic .22
Logica . 23
Object . 23
Proper .25
Chang . 27
l Emulator Applications

0

er 1: Introduction..
uring Terminal Emulator Settings..
g Test Scripts ...
onizing The Test Run ...

ing Your Application ..
 VT100 and Text Applications..

ing Results ..
g the Application with BMS Files ...

Default Command Softkeys...
e Application..
aphical Conventions ...

er 2: Context Sensitive Testing...
Context Sensitive Testing ...
al Descriptions ...
l Names ..
 Classes for Terminal Emulators ...
ties ..
ing How Operations are Recorded..

Table of Contents

Testing Page 3

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

. 29

. 30

. 30

.31

. 33

. 34

. 37

. 38

. 38

. 40

. 41

.43

. 44

. 47

. 49

. 50

. 51

. 55

. 57

. 62

. 63
Terminal Emulator Applications

Chapter 3: Synchronizing The Test Run
About Synchronizing Tests..
Waiting for a Response from the Host...
Waiting for a Specific String ..
Waiting for a Specific Field ..
Setting the Synchronization Time..
Synchronizing Screen Changes ..

Chapter 4: Checking Screens and Fields...................................
About Checking Screens and Fields ...
Checking a Single Field or a Screen ...
Checking Two or More Fields..
Checking All Fields in a Screen at Once ...
Checking Dates ...
Properties for Screens and Fields ...

Chapter 5: Checking Text ..
About Checking Text ...
Checking Text Automatically ...
Checking Text Using Softkeys...
Using Filters when Checking Text ...
Reading Text from the Screen...
Searching for Text ...

Table of Contents

Testing Page 4

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

. 64

. 65

. 66

. 68

. 71

. 74

. 79

. 79

.80

. 82

. 85

. 85

. 86

. 87

. 93
Terminal Emulator Applications

Chapter 6: Testing VT100 and Text Applications
About Testing VT100 and Text Applications
Creating Test Scripts ...
Synchronizing The Test Run ...
Checking Text..
TSL Functions ...

Chapter 7: Analyzing Results..
About Viewing Test Results...
Viewing Results of a GUI Checkpoint..
Viewing Results of a Text Checkpoint ...

Chapter 8: Learning the Application with BMS Files
About Learning the Application with BMS Files...............................
Learning the Application the First Time...
Relearning the Application...

Index ...

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Introduction

Testing Termina hapter 1, page 5

Introduction
ications.

lators

rk in
mode,
reens,

re the

r and
l emulator
f. The
emulator
l Emulator Applications C

�

Welcome to WinRunner with add-in support for terminal emulator appl
You can use WinRunner to test mainframe, AS/400, and VAX/HP/UNIX
applications running on 3270, 5250, and VT100 protocol terminal emu
respectively.

When using WinRunner to test terminal emulator applications, you wo
WinRunner’s Context Sensitive recording mode. In Context Sensitive
WinRunner records the operations you perform in the context of the sc
fields, and PF keys of your mainframe, or AS/400 application.

As you work with your application, WinRunner inserts TSL statements
representing your actions into a test script. Among these statements a
checkpoints that define the success criteria for your test.

WinRunner distinguishes between the window of the terminal emulato
screens in the host application. For the purposes of testing, the termina
window consists of the frame and menus of the terminal emulator itsel
terminal emulator window remains constant throughout each terminal
session.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Introduction

Testing hapter 1, page 6

In

isplayed.
 changes.

plications.
 you read

he

Con

unner
ettings,

 on the
l Emulator
Terminal Emulator Applications C

The screen refers to the area of the window in which the application is d
Each time the host responds to user input to the application, the screen

This guide explains how to use WinRunner to test terminal emulator ap
It is recommended that you review the WinRunner User’s Guide before
this guide. If you are performing date testing, make sure to also read t
“Checking Dates” chapter in the WinRunner User’s Guide.

figuring Terminal Emulator Settings

You configure the terminal emulator settings when you install the WinR
Terminal Emulator Add-in. If, however, you need to modify any of the s
select Programs > WinRunner > Terminal Emulator Configuration
Start menu. For additional information, refer to the WinRunner Termina
Add-in Installation Guide.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Introduction

Testing hapter 1, page 7

In

Cre

t Script
 you
ents

st script.

t the script
, and the
lds). Each
pearance.
te objects
itive

minal
n of an
pes the

 how
mment (#)
Terminal Emulator Applications C

ating Test Scripts

A test script consists of statements coded in Mercury Interactive’s Tes
Language (TSL). These statements are generated automatically when
record, in response to input to the application. You can program statem
manually, or mix recorded and programmed statements in the same te

By default, WinRunner records in Context Sensitive mode, meaning tha
reflects the objects on which you operate (such as screens and fields)
type of operation you perform (such as pressing PF keys or typing in fie
object has a defined set of properties that determine its behavior and ap
WinRunner learns these properties and uses them to identify and loca
during a test run. For more information, see Chapter 2, Context Sens
Testing.

The following is a sample of a WinRunner test script recorded on a ter
emulator application. The user presses the Enter key in the first scree
application. WinRunner waits for the screen to change, and the user ty
name “Minnie” in the appropriate field. The recorded statements show
WinRunner ensures that input is directed to the correct window. The co
lines describe the statements.

Activate the Terminal Emulator window
win_activate("RUMBA - DEMO");

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Introduction

Testing hapter 1, page 8

In

elp >

Syn

ts
he
 points
est Run.
Terminal Emulator Applications C

Press the Enter key
TE_send_key(TE_ENTER);

Wait for the next screen to refresh
TE_wait_sync();

Direct input to the Logon screen
set_window("LOGON");

Type in the user id (“Minnie”)
TE_edit_field("USERID","Minnie");

For information on TSL functions, refer to the TSL Online Reference (H
TSL Online).

chronizing The Test Run

When you record a test script, WinRunner inserts synchronization poin
automatically so that during a test run, execution will be delayed until t
application is ready to receive input. You can also add synchronization
manually. For more information, see Chapter 3, Synchronizing The T

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Introduction

Testing hapter 1, page 9

In

Che

expected
ring when

n:

your
d a GUI
re screen.

ion on the
l emulator
formation,
Terminal Emulator Applications C

cking Your Application

WinRunner verifies the behavior of your application by comparing the
results, captured when you created your test, to the actual results appea
you run the test.

You can use two different kinds of checkpoints to verify your applicatio

• GUI Checkpoints

GUI checkpoints compare information about the screens and fields in
application interface disregarding their location on screen. You can ad
checkpoint that checks a single object, two or more objects, or an enti
For more information, see Chapter 4, Checking Screens and Fields.

• Text Checkpoints

Text checkpoints compare on-screen text according to its physical locat
screen. WinRunner can capture the entire screen of the active termina
window, or only the portion of the screen that you specify. For more in
see Chapter 5, Checking Text.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Introduction

Testing hapter 1, page 10

In

Tes

ot support
00, VAX,

 Testing

Ana

that
 For more

Lea

 the
ainframe
taining

ormation,
Terminal Emulator Applications C

ting VT100 and Text Applications

You can use WinRunner to test terminal emulator applications that do n
the EHLLAPI protocol. This includes terminal applications such as VT1
UNIX, HP, and text applications. For more information, see Chapter 6,
VT100 and Text Applications.

lyzing Results

After you execute a test, you can view a report of all the major events
occurred during the test run in order to determine its success or failure.
information, see Chapter 7, Analyzing Results.

rning the Application with BMS Files

Before you can begin Context Sensitive testing, WinRunner must learn
properties of each object in your application. If you are testing a 3270 m
application, you can learn your application directly from a BMS file con
descriptions of the screens and fields in your application. For more inf
see Chapter 8, Learning the Application with BMS Files.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Introduction

Testing hapter 1, page 11

In

Usi

ner reads
e window

A, Extra!,
BA

emulator

ftkey for
70 and
50
etSoft)

ight Alt +
gUp

eft Alt +
1

Terminal Emulator Applications C

ng Default Command Softkeys

Some WinRunner commands can be activated using softkeys. WinRun
input from softkeys even when the WinRunner window is not the activ
on your screen, or when it is minimized.

The following tables show the softkey configurations available for RUMB
and NetSoft Elite. All other terminal emulator applications use the RUM
default.

WinRunner Terminal Emulator Softkeys
The following table shows the softkeys available for testing a terminal
application.

Command
Softkey
for 3270
(RUMBA)

Softkey for
5250
(RUMBA)

Softkey for
VT100
(RUMBA)

Softkey for
3270 and
5250
(Extra!)

So
32
52
(N

CHECK
PARTIAL
TEXT

PgDown Left Ctrl +
F3

Left Ctrl +
F3

Left Ctrl +
F4

R
P

CHECK
TEXT

Left Alt +
PgUp

Left Ctrl +
F1

Left Ctrl +
F1

Left Ctrl +
F2

L
F

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Introduction

Testing hapter 1, page 12

In

eft Alt +
gUp

ight Alt +
gDown

eft Alt +
4

eft Alt +
6

eft Alt +
7

eft Alt +
nd

ftkey for
70 and
50
etSoft)
Terminal Emulator Applications C

CHECK
PARTIAL
DATE

Left Alt +
End

Left Ctrl +
F8

Left Ctrl +
F8

Left Ctrl +
F9

L
P

CHECK
DATE

Left Ctrl +
PgDown

Left Ctrl +
F2

Left Ctrl +
F2

Left Ctrl +
F3

R
P

GET TEXT Left Ctrl +
End

Left Ctrl +
F5

Left Ctrl +
F5

Left Ctrl +
F6

L
F

EXCLUDE
FILTER

Left Alt +
PgDown

Right Ctrl +
F7

Right Ctrl +
F7

Left Ctrl +
F7

L
F

INCLUDE
FILTER

Right Alt
+
PgDown

Left Ctrl +
F7

Left Ctrl +
F7

Left Ctrl +
F8

L
F

WAIT
STRING

Right Ctrl
+ End

Left Ctrl +
F12

Left Ctrl +
F12

Left Ctrl +
F5

L
E

Command
Softkey
for 3270
(RUMBA)

Softkey for
5250
(RUMBA)

Softkey for
VT100
(RUMBA)

Softkey for
3270 and
5250
(Extra!)

So
32
52
(N

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Introduction

Testing hapter 1, page 13

In functions.
inRunner

oftkey for
70 and
50
etSoft)

ight Alt +

ight Alt +

ight Alt +

ight Alt +

ight Alt +

ause
Terminal Emulator Applications C

Standard WinRunner Softkeys
The following table shows the default softkeys for standard WinRunner
Note that the default configurations for these softkeys are unique to W
with support for terminal emulator applications.

Command
Softkey
for 3270
(RUMBA)

Softkey for
5250
(RUMBA)

Softkey for
VT100
(RUMBA)

Softkey for
3270 and
5250
(Extra!)

S
32
52
(N

RUN
FROM
ARROW

Left Ctrl +
7

Left Ctrl +
7

Left Ctrl +
7

Left Ctrl +
7

R
7

RUN
FROM TOP

Left Ctrl +
5

Left Ctrl +
5

Left Ctrl +
5

Left Ctrl +
5

R
5

STEP Left Ctrl +
6

Left Ctrl +
6

Left Ctrl +
6

Left Ctrl +
6

R
6

STEP INTO Left Ctrl +
8

Left Ctrl +
8

Left Ctrl +
8

Left Ctrl +
8

R
8

STOP Left Ctrl +
3

Left Ctrl +
3

Left Ctrl +
3

Left Ctrl +
3

R
3

PAUSE Pause Pause Pause Pause P

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Introduction

Testing hapter 1, page 14

In

eft Alt +
10

croll Lock

eft Alt + 6

ight Alt +

eft Alt +
11

eft Alt + 2

ight Alt +
nd

ight Alt +

oftkey for
70 and
50
etSoft)
Terminal Emulator Applications C

STEP TO
CURSOR

Left Ctrl +
F9

Left Ctrl +
F9

Left Ctrl +
F9

Left Alt + 9 L
F

RECORD Scroll
Lock

Left Alt + 2 Scroll Lock Scroll Lock S

MARK
LOCATOR

Right Ctrl
+ 6

Right Ctrl +
6

Right Ctrl +
6

Left Alt + 6 L

WAIT
BITMAP

Left Ctrl +
0

Left Ctrl +
0

Left Ctrl +
0

Left Ctrl +
0

R
0

CHECK
BITMAP

Left Ctrl +
PgUp

Right Ctrl +
0

Right Ctrl +
0

Left Ctrl +
PageUp

L
F

CHECK
GUI

Right Ctrl
+ 2

Right Ctrl +
2

Right Ctrl +
2

Right Ctrl +
2

L

GUI
CHECK
LIST

Right Ctrl
+ F12

Right Ctrl +
F12

Right Ctrl +
F12

Right Ctrl +
F12

R
E

WAIT
BITMAP
AREA

Left Ctrl +
4

Left Ctrl +
4

Left Ctrl +
4

Left Ctrl +
4

R
4

Command
Softkey
for 3270
(RUMBA)

Softkey for
5250
(RUMBA)

Softkey for
VT100
(RUMBA)

Softkey for
3270 and
5250
(Extra!)

S
32
52
(N

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Introduction

Testing hapter 1, page 15

In

ight Alt +

ight Alt +

ight Alt +

eft Alt + 7

eft Alt + 8

eft Alt +
9

ight Alt +
10

oftkey for
70 and
50
etSoft)
Terminal Emulator Applications C

CHECK
BITMAP
AREA

Left Ctrl +
2

Left Ctrl +
2

Left Ctrl +
2

Left Ctrl +
2

R
2

GET TEXT
AREA

Left Ctrl+1 Left Ctrl+1 Left Ctrl+1 Left Ctrl+1 R
1

GET TEXT
OBJECT

Left Ctrl +
9

Left Ctrl +
9

Left Ctrl +
9

Left Ctrl +
9

R
9

INSERT
FUNCTION
FROM LIST

Left Alt + 7 Left Alt + 7 Left Alt + 7 Left Alt + 7 L

INSERT
FUNCTION

Left Alt + 8 Left Alt + 8 Left Alt + 8 Left Alt + 8 L

WAIT
WINDOW

Left Alt + 9 Left Alt + 9 Left Alt + 9 Left Alt +
F9

L
F

GET TEXT Left Ctrl +
F10

Left Ctrl +
F10

Left Ctrl +
F10

Left Ctrl +
F10

R
F

Command
Softkey
for 3270
(RUMBA)

Softkey for
5250
(RUMBA)

Softkey for
VT100
(RUMBA)

Softkey for
3270 and
5250
(Extra!)

S
32
52
(N

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Introduction

Testing hapter 1, page 16

In

 uses one
 the

tails, refer

Sam

ith testing
 select
 Demo
erations
Terminal Emulator Applications C

Softkey assignments are configurable. If the application you are testing
of the default softkeys preconfigured for WinRunner, you can redefine
softkey by using the Softkey Configuration utility. Select Programs >
WinRunner > Softkey Configuration on the Start menu. For more de
to the WinRunner User’s Guide.

ple Application

WinRunner includes a sample application you can use to experiment w
terminal emulator applications. To start the Flight Reservation system,
Programs > WinRunner > Sample Applications > Date Operations
Server on the Start menu. For more information, refer to the Date Op
Demo Server Read Me.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Introduction

Testing hapter 1, page 17

In

Typ

ents of

tements

 values

 items of
 example,
m that

tions
Terminal Emulator Applications C

ographical Conventions

This book uses the following typographical conventions:

Bold Bold text indicates function names and the elem
the functions that are to be typed in literally.

Italics Italic text indicates variable names.

Helvetica The Helvetica font is used for examples and sta
that are to be typed in literally.

[] Square brackets enclose optional parameters.

{ } Curly brackets indicate that one of the enclosed
must be assigned to the current parameter.

... In a line of syntax, three dots indicate that more
the same format may be included. In a program
three dots are used to indicate lines of a progra
were intentionally omitted.

| A vertical bar indicates that either of the two op
separated by the bar should be selected.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Context Sensitive Testing

Testing Termina hapter 2, page 18

Context Sensitive T
inal
sting with
inRunner

•
•
•
•
•

l Emulator Applications C

�

esting
You can use WinRunner’s Context Sensitive features to test your term
emulators applications. For general information on Context Sensitive te
WinRunner, refer to the “Understanding the GUI Map” section in the W
User’s Guide.

This chapter describes:

Physical Descriptions

Logical Names

Object Classes for Terminal Emulators

Properties

Changing How Operations are Recorded

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Context Sensitive Testing

Testing hapter 2, page 19

In

Abo

pplication
e between
cation
d fields on
essing PF
 screen.

fy each
.

iption of
u have
pplication
on with
ription of
ap Editor.
s Guide.

) contains
 In the test
displayed
Terminal Emulator Applications C

ut Context Sensitive Testing

Context Sensitive testing ensures that non-essential changes in your a
do not affect the test run. WinRunner can handle changes in window siz
testing sessions or modifications in the positioning of fields in an appli
screen. WinRunner records your operations in terms of the screens an
which you operate, and the types of operation you perform (such as pr
keys or typing in fields). It ignores the physical location of fields on the

To perform Context Sensitive testing, WinRunner must uniquely identi
screen and field to be able to locate it in the application you are testing

During Context Sensitive testing, WinRunner learns an accurate descr
each object as it is identified by the terminal emulator application. If yo
access to the BMS files of your application, WinRunner can learn your a
by reading these files directly. See Chapter 8, Learning the Applicati
BMS Files for more information. Otherwise, WinRunner learns a desc
each object using the RapidTest Script wizard, recording, or the GUI M
For more information on these methods, refer to the WinRunner User’

The description of each screen or field (called the physical description
a detailed list of properties. WinRunner places this list in a GUI map file.
script, WinRunner uses a logical name for each screen or field as it is
in the application.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Context Sensitive Testing

Testing hapter 2, page 20

In

ame and
pe your

e screen
Terminal Emulator Applications C

The following example illustrates the connection between the logical n
the physical description. Assume that you record a test in which you ty
user ID in the Login screen of your application.

WinRunner learns the actual description, or list of properties, of both th
and field you operated on:

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Context Sensitive Testing

Testing hapter 2, page 21

In

STEM

ation

t
 for the
cript

t from the
this
Terminal Emulator Applications C

Screen {class:mic_if_win, label:VIRTUAL MACHINE/SY
PRODUCT, mic_if_handles_windows:1}

Field {class:field, attached_text:"USERID"}

WinRunner identifies the screen as the class mic_if_win (a host applic
window), and its label as VIRTUAL MACHINE/SYSTEM PRODUCT;
mic_if_handles_windows is an internal property used by WinRunner.

The USERID field is recognized as the class field with the attached tex
“USERID”. In the test script, WinRunner inserts intuitive logical names
objects. If you start recording and type the user name “Carmen”, the s
segment might look like this:

set_window ("VIRTUAL MACHINE/SYSTEM PRODUCT");
TE_edit_field("USERID","Carmen");

When the test is run, WinRunner reads the logical name of each objec
script and refers to its physical description in the GUI map file. It uses
description to find the object in the terminal emulator application.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Context Sensitive Testing

Testing hapter 2, page 22

In

Phy

pairs, as

ntains

f the GUI
 or field.

erminal
rties used

context of
ription for
Terminal Emulator Applications C

sical Descriptions

The physical description of an object contains a list of property–value
follows:

{property1:value1, property2:value2, property3:value3, ...}

For example, the description of the “Login” screen presented above co
three properties, listed below together with their values:

class: mic_if_win
label: VIRTUAL MACHINE/SYSTEM PRODUCT
mic_if_handles_windows: 1

WinRunner always learns the class property. This indicates the type o
object, such as the terminal emulator window, host application screen,
For each class, WinRunner learns a set of default properties.

For more information on properties that are unique to WinRunner for t
emulators, see Properties on page 25. For information on other prope
by WinRunner, refer to the WinRunner User’s Guide.

Note that WinRunner learns the physical description of an object in the
the window in which it is displayed. This creates a unique physical desc
each object.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Context Sensitive Testing

Testing hapter 2, page 23

In

Log

ript. Once

ject. For
y. The

Ob

pes of
pplication
de
 contain
Terminal Emulator Applications C

ical Names

The logical name is the name WinRunner uses for objects in the test sc
the name is assigned, you can modify it in the GUI map file.

The logical name assigned to an object depends on the class of the ob
example, the logical name of a window is the value of its label propert
logical name of a field is the value of its attached_text property.

ject Classes for Terminal Emulators

WinRunner with add-in support for terminal emulators identifies two ty
objects for terminal emulators: screens and fields. The screen is the a
area. It changes each time input is received from the host. Fields inclu
unprotected fields, which can receive input, and protected fields which
fixed text.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Context Sensitive Testing

Testing hapter 2, page 24

In

r frame of
rty of this

efer to the

field

Applic
screen

Termin
emula
windo
Terminal Emulator Applications C

WinRunner also identifies the window of the terminal emulator, the oute
the terminal emulator including its menus and buttons. The class prope
window is always mic_if_window. For more information on this class, r
WinRunner User’s Guide.

ation

al
tor
w

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Context Sensitive Testing

Testing hapter 2, page 25

In

Pro

lds. For a
unner

e type of
”.

ssigns a

f this
Terminal Emulator Applications C

perties

The following table shows the properties for application screens and fie
full list of properties for all standard Windows objects, refer to the WinR
User’s Guide.

Screens
A screen can have the following properties:

Property Description

class The prime property that WinRunner uses to identify th
GUI object. All screens belong to the class “mic_if_win

label The title of the screen. If there is no title, WinRunner a
unique number.

protected_fields_
number

The number of protected fields in this screen.

input_fields_
number

The number of unprotected fields in this screen.

id A number that WinRunner uses to identify the screen.

mic_if_handles_
windows

An internal property that WinRunner uses. The value o
property is always 1.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Context Sensitive Testing

Testing hapter 2, page 26

In

e type of

his value

 can be

s value is
.

e to the

e to the

1, 2, or 3,

Terminal Emulator Applications C

Fields
A field can have the following properties:

Property Description

class The prime property that WinRunner uses to identify th
GUI object. All fields belong to the class “field”.

attached_text The text that is closest to the field.

protected A value that indicates whether the field is protected. T
is “yes” if the field is protected; otherwise it is “no”.

visible A value that indicates whether the contents of the field
seen: 1 if they are visible, 0 if not.

numeric_only A value that indicates whether the field is numeric. Thi
“yes” if the field is numeric; otherwise the value is “no”

id A number that WinRunner uses to identify the field.

x The x coordinate of the top left corner of a field, relativ
screen origin.

y The y coordinate of the top left corner of a field, relativ
screen origin.

length The length of the field, in characters.

color A value indicating the color of the field. This can be 0,
depending on the terminal emulator’s color definitions.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Context Sensitive Testing

Testing hapter 2, page 27

In

Cha

pport the
sition
ns, fields,
y.

mouse
as
ments.

Runner
lways use

thod. This

cording.
Terminal Emulator Applications C

nging How Operations are Recorded

When working with 3270 and 5250 protocol terminal emulators that su
EHLLAPI protocol, WinRunner records operations using the field or po
method. The field method (default), enables WinRunner to record scree
and PF keys using functions such as TE_edit_field and TE_send_ke

When the position method is used, WinRunner records keyboard and
input only. The operations on objects in your application are recorded
win_type, obj_type, win_mouse_click, and win_mouse_drag state

Note: The record method (field or position) is not the same as the Win
record mode (Context Sensitive or Analog). Note also that you must a
the Context Sensitive record mode.

You use the TE_set_record_method function to change the record me
function has the following syntax:

TE_set_record_method (method);

The method can be one of the following:

• FIELD_METHOD, or (2) (the default): enables full Context Sensitive re

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Context Sensitive Testing

Testing hapter 2, page 28

In

ed.

r you exit
e TSL
Terminal Emulator Applications C

• POSITION_METHOD, or (1): keyboard and mouse input only is record

The current record method remains valid until you change it, even afte
WinRunner and start it again. For more information on TSL, refer to th
Online Reference or the TSL Reference Guide.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Synchronizing The Test Run

Testing Termina hapter 3, page 29

Synchronizing The
the
s that the
his
ccessive

•
•
•
•
•

l Emulator Applications C

�

 Test Run
WinRunner provides complete synchronization between the host and
application you are testing during the test run. Synchronization ensure
test run is delayed until the application is ready to receive new input. T
prevents incidental differences in host response time from affecting su
test runs.

This chapter describes:

Waiting for a Response from the Host

Waiting for a Specific String

Waiting for a Specific Field

Setting the Synchronization Time

Synchronizing Screen Changes

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Synchronizing The Test Run

Testing hapter 3, page 30

In

Abo

 operation
ending on
 also vary.
e test run
atically,

Wa

tement

ntil the

 terminal
Terminal Emulator Applications C

ut Synchronizing Tests

When using a terminal emulator, many factors can affect the speed of
and therefore interfere with the test run. Host response time varies dep
the system load. The screen refresh rate of your terminal emulator can
WinRunner provides different types of synchronization points to pace th
with the system. These points can be inserted into the test script autom
using a softkey, or by programming.

iting for a Response from the Host

During recording, WinRunner automatically generates the following sta
each time the terminal emulator waits for a response from the host:

TE_wait_sync ();

During a test run, this statement ensures that the test run is delayed u
host responds and the new screen is completely redrawn.

Note: The TE_wait_sync function is only available for 3270 and 5250
emulators that support the EHLLAPI protocol.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Synchronizing The Test Run

Testing hapter 3, page 31

In

Wa

it for a
ou can
en for the

zed and a

 a

t_string

nd_row],

u
column
ed text
 and row,
ber of

Terminal Emulator Applications C

iting for a Specific String

Using the TE_wait_string function, you can instruct WinRunner to wa
specific string to appear on the screen before continuing the test run. Y
specify an area of the screen, or WinRunner can search the entire scre
string.

To record a TE_wait_string statement in your test script:

 1 During recording, press the WAIT STRING softkey. WinRunner is minimi
help window displays instructions for capturing the string.

 2 Enclose the text you want WinRunner to look for during the test run in
rectangle: click and drag to enclose the area with a rectangle.

 3 To capture the string, right-click. WinRunner is restored and a TE_wai
statement with the following syntax is inserted into your test script:

TE_wait_string (string, [start_column, start_row, end_column, e
 [timeout]);

The string parameter is the text enclosed in the rectangle. If the text yo
captured exceeds one line, string includes the first line only. The start_
and start_row parameters indicate the column/row at which the captur
starts. The end_column and end_row parameters represent the column
respectively, at which the text ends. The timeout parameter is the num
seconds that WinRunner waits for the specified string to appear before
continuing the test run.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Synchronizing The Test Run

Testing hapter 3, page 32

In

 a menu

ches for
rough 20.

 In this
u can also
eter, then
Terminal Emulator Applications C

The following example shows the statement recorded when the text of
option is captured using the WAIT STRING softkey:

TE_wait_string("Open the mail", 8, 4, 20, 4, 60);

The first parameter, “Open the mail”, is the string that WinRunner sear
on the screen; WinRunner will look for this string in row 4, columns 8 th
The default timeout is 60 seconds.

When you program this statement, you can eliminate the coordinates.
case, WinRunner searches the entire screen for the specified string. Yo
change or eliminate the timeout parameter. If there is no timeout param
the system timeout is used.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Synchronizing The Test Run

Testing hapter 3, page 33

In

Wa

for a
hen the

function is:

t
r of
ontinuing

 terminal
Terminal Emulator Applications C

iting for a Specific Field

Using the TE_wait_field function, you can instruct WinRunner to wait
specific field to appear on the screen before continuing the test run. W
field is displayed, WinRunner resumes the test run. The syntax for this

TE_wait_field (field_logical_name, content, timeout);

The field_logical_name parameter is the name of the field. The conten
parameter is the string contained in the field. The timeout is the numbe
seconds that WinRunner waits for the specified field to appear before c
the test run.

Note: The TE_wait_field function is only available for 3270 and 5250
emulators that support the EHLLAPI protocol.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Synchronizing The Test Run

Testing hapter 3, page 34

In

Set

ime of the
ns enable

aits for the

e that
ing the

d 5250
Terminal Emulator Applications C

ting the Synchronization Time

Two factors that can affect the test running properly are the response t
host and the screen refresh rate of your terminal. The following functio
you to configure WinRunner to handle these variations.

Changing the Screen Refresh Time
The TE_set_refresh_time function determines how long WinRunner w
screen to refresh after the host has responded.

The syntax for this function is:

TE_set_refresh_time (time);

The default time is 1 second. You can increase this if needed to ensur
WinRunner waits until the screen is completely redrawn before continu
test run.

Note: The TE_set_refresh_time function is only available for 3270 an
terminal emulators that support the EHLLAPI protocol.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Synchronizing The Test Run

Testing hapter 3, page 35

Ine that
st run.

seconds
rmation to
g the test

5250
Terminal Emulator Applications C

Changing the Timeout
The TE_set_timeout function determines the maximum amount of tim
WinRunner waits for a response from the host before continuing the te

This statement has the following syntax:

TE_set_timeout (timeout);

The default timeout is 60 seconds. You can modify this if needed.

Setting the System Synchronization Time
The TE_set_sync_time function determines the minimum number of
that WinRunner waits for the host to respond. WinRunner uses this info
determine whether synchronization has been achieved before continuin
run.

This statement has the following syntax:

TE_set_sync_time (time);

Note: The TE_set_sync_time function is only available for 3270 and
terminal emulators that support the EHLLAPI protocol.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Synchronizing The Test Run

Testing hapter 3, page 36

Innds that
mation in
inuing the

5250
Terminal Emulator Applications C

Getting the System Synchronization Time
The TE_get_sync_time function returns the minimum number of seco
WinRunner will wait for the host to respond. WinRunner uses this infor
order to determine that synchronization has been achieved before cont
test run.

This statement has the following syntax:

TE_get_sync_time (time);

Note: The TE_get_sync_time function is only available for 3270 and
terminal emulators that support the EHLLAPI protocol.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Synchronizing The Test Run

Testing hapter 3, page 37

In

Syn

ey in a
r does not
ait_sync

e it in your
een has
as the

he
 input key
monic
or Enter).

ions, refer
Terminal Emulator Applications C

chronizing Screen Changes

In some AS/400 applications, you might have a case where typing a k
specific field causes the screen to change. In such a case, WinRunne
recognize that the screen has changed and does not generate the TE_w
function.

In such cases, you can use the TE_force_send_key function and plac
startup test. This function causes WinRunner to recognize that the scr
changed and to automatically generate TE_wait_sync. This function h
following syntax:

TE_force_send_key (in_screen, in_field, [in_key]);

The in_screen parameter defines the screen in which the field exists. T
in_field parameter defines the field. The in_key parameter defines the
which causes the screen to change (optional). You can use a key mne
(such as @E for Enter) or the WinRunner macros (such as TE_Enter f

The TE_reset_all_force_send_key resets the execution of the
TE_force_send_key function. For more information about these funct
to the TSL Online Reference.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Checking Screens and Fields

Testing Termina hapter 4, page 38

Checking Screens
reen
s contents

•
•
•
•
•

About Ch

ation. For
reen. Or
 visible.
l Emulator Applications C

�

and Fields
WinRunner identifies the terminal emulator application window as a sc
containing fields. You can capture information about each screen and it
and store the information as a basis for comparison.

This chapter describes:

Checking a Single Field or a Screen

Checking Two or More Fields

Checking All Fields in a Screen at Once

Checking Dates

Properties for Screens and Fields

ecking Screens and Fields

GUI checkpoints enable you to check screens and fields in your applic
example, you can check the number of protected or input fields in a sc
you can check the content of a specific field, whether it is protected or

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Checking Screens and Fields

Testing ter 4, page 39

In

ecks
e
se

erted

ation
ot
ed in

al
fer to

tion
 refer

er of

e.
Terminal Emulator Applications Chap

To create a GUI checkpoint, you point to a screen or field and define the ch
you want to perform. Information about the screens and fields as well as th
checks is saved in a checklist. WinRunner captures the current state of the
screens and fields and saves this information as expected results. A GUI
checkpoint is automatically inserted into the test script. This checkpoint is ins
in the test script as an obj_check_gui or win_check_gui statement.

When you run the test, WinRunner compares the current state of the applic
to the expected results. If the expected results and the current results do n
match, the GUI checkpoint fails. The results of the checkpoint can be view
the WinRunner Test Results window.

The information in this chapter applies specifically to GUI checks on termin
emulator applications. For additional information about GUI checkpoints, re
the “Checking GUI Objects” chapter in the WinRunner User’s Guide.

You can use date checkpoints to check how your terminal emulator applica
performs date operations. For additional information about checking dates,
to the “Checking Dates” chapter in the WinRunner User’s Guide.

Note: You can use the TE_get_screen_size function to retrieve the numb
rows and columns in a terminal emulator application screen. For additional
information, refer to the TSL Online Reference or the TSL Reference Guid

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Checking Screens and Fields

Testing hapter 4, page 40

In

Che

he type of

reen,

n the field
 a screen

 For more

t in the
heck_gui
Terminal Emulator Applications C

cking a Single Field or a Screen

You can check a single field or screen by pointing at it and specifying t
checks you want to perform.

To check a single field or a screen:

 1 Choose Create > GUI Checkpoint > For Object/Window, or click the
GUI Checkpoint for Object/Window button on the User toolbar.

 2 Double-click on the field or screen you want to check. (To check the sc
double-click on an empty area of the screen.)

Note: You can perform WinRunner’s default checks by clicking once o
or screen. The default check for a field is Date. The default checks for
are ‘Number of protected fields’ and ‘Number of input fields’.

 3 Select the checks you want to perform from the Check GUI dialog box.
information, see Properties for Screens and Fields on page 47.

 4 Click OK. WinRunner captures the screen or field information, stores i
test’s expected results folder, and inserts a obj_check_gui or a win_c
statement in your test script.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Checking Screens and Fields

Testing hapter 4, page 41

In

Che

he fields

e
 Create

 GUI
Terminal Emulator Applications C

cking Two or More Fields

You check two or more fields by creating a checklist while clicking on t
you want to check.

To check two or more fields in a screen:

 1 Choose Create > GUI Checkpoint > For Multiple Objects, or click th
GUI Checkpoint for Multiple Objects button on the User toolbar. The
GUI Checkpoint window opens.

 2 Click the Add button.

 3 Click once on each field you want to check.

 4 Click the right mouse button to stop the selection process. The Create
Checkpoint window opens.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Checking Screens and Fields

Testing hapter 4, page 42

In

ecked.

e

ptures the
. A
Terminal Emulator Applications C

The Objects column lists the name of the screen and the fields you ch
The Properties column lists the properties for the selected field.

 5 To modify a check, select the field in the Objects column and select th
properties to be checked in the Properties column.

 6 To save the checklist and perform the checks, click OK. WinRunner ca
information about the fields and stores it in the expected results folder
win_check_gui statement is inserted in the test script.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Checking Screens and Fields

Test ter 4, page 43

In

Checking All Fields in a Screen at Once

t

in the
the
n the

st’s

st
ing Terminal Emulator Applications Chap

You can check all fields in a screen at once. WinRunner creates a checklis
containing the default check (‘Date’) for all fields in the screen.

To check all the fields in a screen:

 1 Choose Create > GUI Checkpoint > For Object/Window, or click the
GUI Checkpoint for Object/Window button on the User toolbar.

 2 Click once on an empty area of the screen.

The Add All dialog box opens.

 3 Select Objects, Menus, or both to indicate the types of objects to include
checklist. When you select only Objects (the default setting), all objects in
window except for menus are included in the checklist. To include menus i
checklist, select Menus.

 4 Click OK to close the dialog box.

WinRunner captures the information about the fields and stores it in the te
expected results folder. (This may take several seconds.) The WinRunner
window is restored and a win_check_gui statement is inserted into the te
script.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Checking Screens and Fields

Testing hapter 4, page 44

In

Che

perations.
stomers.
nt date
he
l

 screen

inRunner
ure dates
following
Terminal Emulator Applications C

cking Dates

You can check how your terminal emulator application performs date o
Suppose your application is used by European and North American cu
You may want to check how your application will respond to the differe
formats used by these customers. For additional information, refer to t
“Checking Dates” chapter in the WinRunner User’s Guide. For termina
emulators, you can:

• choose how WinRunner identifies dates

• choose how WinRunner identifies date fields

• check all or some dates in the current terminal emulator screen

• automatically create date checkpoints whenever the terminal emulator
changes

Setting How WinRunner Identifies Dates
You can use the date_set_capture_mode function to determine how W
captures dates in terminal emulator applications. WinRunner can capt
either by date field or by position on the screen. This function has the
syntax:

date_set_capture_mode (mode);

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Checking Screens and Fields

Testing hapter 4, page 45

In

lds in your
ode.

pture
t do not

ou must

aptured

 mode for
s index or

ED TEXT.
Terminal Emulator Applications C

The mode is one of the following date capture modes:

• FIELD_METHOD: Captures dates in the context of the screens and fie
terminal emulator application (Context Sensitive). This is the default m

• POSITION_METHOD: Identifies and captures dates according to the
unformatted view of the screen.

If you use the default FIELD_METHOD mode, WinRunner can only ca
dates that start at the beginning of a field. In order to capture dates tha
appear at the beginning of a field (for example, "Tuesday 03/31/98") y
use the POSITION_METHOD mode. This mode captures dates in an
unformatted screen view. When you run a test, WinRunner looks for c
dates according to their row and column number on the screen.

Setting How WinRunner Identifies Date Fields
You can use the date_set_attr function to set the record configuration
a field. This determines whether WinRunner identifies a date field by it
by its attached text. This function has the following syntax:

date_set_attr (mode);

The mode is the record configuration mode: either INDEX or ATTACH

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Checking Screens and Fields

Testing hapter 4, page 46

Inates in all
ction has

d_row]);

ckpoint.

gins.

ds.

 generate
e screen
ing syntax:

r the

e, refer to
Terminal Emulator Applications C

Checking All Dates in a Terminal Emulator Screen
You can use the date_check function to create a date checkpoint for d
or part of the current screen of a terminal emulator application. This fun
the following syntax:

date_check (filename [, start_column, start_row, end_column, en

The filename is the file containing the expected results of the date che

The start_column/row is the column/row at which the captured date be

The end_column/row is the column/row at which the captured date en

Automatically Creating Date Checkpoints
You can use the date_set_auto_date_verify function to automatically
a date checkpoint (by inserting a date_check statement) whenever th
changes in a terminal emulator application. This function has the follow

date_set_auto_date_verify (ON|OFF);

If this is ON, WinRunner automatically generates a date checkpoint fo
current screen.

For additional information about date_ functions and examples of usag
the TSL Online Reference or the TSL Reference Guide.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Checking Screens and Fields

Testing hapter 4, page 47

In

Pro

ecks to

he screen

e screen

d, relative
Terminal Emulator Applications C

perties for Screens and Fields

When you create a GUI checkpoint, you can determine the types of ch
perform on screens and fields in your application.

Screen Checks
For a screen you can check the following properties:

Number of protected fields: checks the number of protected fields in t
(default check).

Number of input fields: checks the number of unprotected fields in th
(default check).

Label: checks the label (title) of the screen.

Field Checks
For a field you can check the following properties:

x and y: checks the x and y coordinates of the top left corner of the fiel
to the screen origin.

Length: checks the length of the field, in characters.

Color: checks the color of the field.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Checking Screens and Fields

Testing hapter 4, page 48

In
Terminal Emulator Applications C

Numeric only: checks whether the field is numeric only.

Protected: checks whether the field is protected.

Visible: checks whether the field is visible.

Attached text: checks the attached text of the field.

Content: checks the content of the field.

Date: checks the date of the field (default check)

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Checking Text

Testing Termina hapter 5, page 49

Checking Text
l emulator

•
•
•
•
•

l Emulator Applications C

�

You can use WinRunner to check the text in the screen of your termina
application.

This chapter describes:

Checking Text Automatically

Checking Text Using Softkeys

Using Filters when Checking Text

Reading Text from the Screen

Searching for Text

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Checking Text

Testing hapter 5, page 50

In

Abo

t

ntents of

Runner
s it in the
Runner

ier. You

e screen
ted are
hange the
 in the
Terminal Emulator Applications C

ut Checking Text

WinRunner provides different methods of checking the text in your hos
application screen. You can:

• capture all or part of the screen contents while recording a test.

• instruct WinRunner to automatically capture all or part of the screen co
the active terminal emulator window.

While creating a test, you indicate the text that you want to check. Win
inserts a checkpoint in the script, captures the specified text, and store
expected results directory (exp) of the test. When you run the test, Win
recaptures the text and compares it to the expected text captured earl
can view both the expected and the actual test results. In the case of a
mismatch, you can also view any differences between them.

You can also use WinRunner to read text from a selected portion of th
and store it in a variable. The screen coordinates of the text you indica
inserted into the test script. You could use this feature, for example, to c
logical flow of a test run during the test run according to the text found
indicated area.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Checking Text

Testing hapter 5, page 51

In

Che

e active
ree main

tes

e window

tement in

tatement:
Terminal Emulator Applications C

cking Text Automatically

You can instruct WinRunner to automatically capture the contents of th
terminal emulator window each time a new screen is displayed. The th
options for automatic text checkpoints are:

• check full screen

• check partial screen

• check partial screen using the previous “check partial screen” coordina

Checking Full Screens
When full screen automatic text check is active, all of the text in the activ
is captured each time a new screen is displayed.

To activate a full screen automatic text check, execute the following sta
your test script:

TE_set_auto_verify (ON);

To deactivate automatic full screen text check, execute the following s

TE_set_auto_verify (OFF);

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Checking Text

Testing hapter 5, page 52

Into the test

 5250

ified area

e a

nd_row);

at which
red text
Terminal Emulator Applications C

Each time a new full screen text screen is displayed in the window, a
TE_check_text statement like the following is automatically inserted in
script.

TE_check_text ("Trm1");

Note: The TE_set_auto_verify function is only available for 3270 and
terminal emulators that support the EHLLAPI protocol.

Checking Partial Screens
When partial screen automatic text check is active, the text in the spec
of the active window is captured each time a new screen is displayed.

To activate a partial screen automatic text check, program and execut
statement with the following syntax in your test script:

TE_set_auto_verify (ON, start_column, start_row, end_column, e

ON activates the automatic check; start_column indicates the column
the captured text starts; start_row indicates the row at which the captu
starts; and end_column and end_row represent the column and row,
respectively, at which the text ends.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Checking Text

Testing hapter 5, page 53

In

atically

statement

ent:

 5250

e partial
statement

ment with
Terminal Emulator Applications C

The example below shows the statement you would execute to autom
check the text in columns 22 through 31, rows 10 through 14.

TE_set_auto_verify (ON, 22, 10, 31, 14);

Each time a new screen is displayed in the window, a TE_check_text
similar to the following is automatically inserted into the test script.

TE_check_text ("Prt1", 22, 10, 31, 14);

To deactivate automatic partial text check, execute the following statem

TE_set_auto_verify (OFF);

Note: The TE_set_auto_verify function is only available for 3270 and
terminal emulators that support the EHLLAPI protocol.

Checking Partial Screens Using Previous Coordinates
When you choose the first/last partial text option, the coordinates for th
screen automatic text check are taken from a previous TE_check_text
in the test run.

To activate first/last partial screen automatic text check, execute a state
the following syntax in your test script:

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Checking Text

Testing hapter 5, page 54

In

ial screen
test run. If
st
d during

 the entire

 following

 5250
Terminal Emulator Applications C

TE_set_auto_verify (ON, FIRST|LAST);

If you use the FIRST parameter, the coordinates for the automatic part
text check will be taken from the first TE_check_text statement in the
you use the LAST parameter, the coordinates will be taken from the la
TE_check_text statement in the test run. The coordinates are update
the test run with each TE_check_text statement.

Note that if there is no TE_check_text statement in the test script, then
screen is captured.

To deactivate first/last partial screen automatic text check, execute the
statement in your test script:

TE_set_auto_verify (OFF);

Note: The TE_set_auto_verify function is only available for 3270 and
terminal emulators that support the EHLLAPI protocol.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Checking Text

Testing hapter 5, page 55

In

Che

he entire
tion of the

 terminal

ant to

ed in your

d (even if
t such as

ll screen
ASCII file
Terminal Emulator Applications C

cking Text Using Softkeys

During recording, you can use softkeys to check text. You can check t
contents of the terminal emulator screen or you can check a specific por
screen. All captured text is stored as ASCII text.

Checking a Full Screen
Use a full screen text check to capture the entire contents of the active
emulator screen.

To capture the contents of the screen:

 1 During recording, make sure that the terminal emulator window you w
check is active.

 2 Press the CHECK TEXT softkey. A TE_check_text statement is generat
test script.

The entire contents of the active terminal emulator screen are capture
not all of the text is visible in the window). A TE_check_text statemen
the following is inserted into the test script:

TE_check_text ("Trm1");

The default name that WinRunner assigns to the first incidence of a fu
text checkpoint in a test script is called Trm1. The text is stored as an
in the expected results folder of the test.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Checking Text

Tes hapter 5, page 56

In

When you run the test, WinRunner compares the text currently displayed on the
Trm1,
Runner

 stored in

ext on the

con and a

n the left
ired area.

text

lumns 51
ncidence

rence.
ting Terminal Emulator Applications C

screen with the expected text captured earlier (the contents of the file
stored in the expected results folder). In the event of a mismatch, Win
captures the actual text and generates a difference file that shows the
discrepancy between the expected and the actual results. Both files are
the current verification results folder.

Checking a Partial Screen
Use a partial text checkpoint when you want to capture only part of the t
screen.

To capture text in an area of the screen:

 1 Press the CHECK PARTIAL TEXT softkey. WinRunner is minimized to an i
dialog box displays instructions for capturing the text.

 2 Enclose the text to be captured within a rectangle. Press and hold dow
mouse button and drag the mouse until the rectangle encloses the des

 3 Click the right mouse button: WinRunner is restored and a TE_check_
statement such as the following is inserted in the test script:

TE_check_text ("Prt1", 51, 13, 60, 13);

The example shows the statement recorded when the text in line 13, co
through 60 is captured. The default file name “Prt1” indicates the first i
of captured partial text in any test script.

For more information on TE_check_text, refer to the TSL Online Refe

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Checking Text

Testing hapter 5, page 57

In

Us

l emulator
 an entire
the

. For
aining the
 Terminal Emulator Applications C

ing Filters when Checking Text

WinRunner lets you use filters to include or exclude regions of a termina
window when checking text. In cases where you do not want to check
window, you can define parts of the window that will be filtered during
comparison. You can use two types of filters: exclude and include.

Note: You can also create filters to check dates on your screen.

Exclude and Include Filters
An exclude filter defines the area to be ignored during the comparison
example, you can create an exclude filter on a region of a window cont
current date and time.

AUT window

Exclude filter

AUT window with exclude filter

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Checking Text

Testing hapter 5, page 58

In

gram
 area is
ing a
from

hich the
rest. For
ter is
 the area
Terminal Emulator Applications C

An include filter is used in combination with an exclude filter. In the dia
below, the white areas are included in the comparison and the shaded
excluded. This is achieved by defining an exclude filter and then defin
smaller include filter on top of it. The result is a “ring” that is excluded
comparison.

Note that when you combine exclude and include filters, the order in w
filters are activated in the test script determines the actual area of inte
example, if an exclude filter that fully or partially overlaps an include fil
activated after the include filter, the overlapped region is excluded from
of interest.

AUT window

Exclude filter

Include filter

AUT window with exclude filter
and include filter

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Checking Text

Testing hapter 5, page 59

Inlter during

TER
s

n the left
a.

de filter is
inal

);

r is
ine
Terminal Emulator Applications C

Creating Filters
You use the EXCLUDE FILTER and INCLUDE FILTER softkeys to create a fi
recording.

To create a filter during recording:

 1 During recording, press the appropriate softkey (FILTER EXCLUDE or FIL

INCLUDE). WinRunner is minimized to an icon and a dialog box display
instructions for defining the filter area.

 2 Enclose the area to be filtered inside a rectangle. Press and hold dow
mouse button and drag the mouse until the rectangle encloses the are

 3 To record the filter, click the right button.

WinRunner is restored. The filter is added to the test’s db folder and a
TE_set_filter statement is inserted into your test script.

The following example shows what WinRunner records when an exclu
defined on row 23, columns 1 through 30 of all the screens in the term
emulator application.

TE_set_filter ("Filter0",1, 23, 30, 23, EXCLUDE, "ALL_SCREENS"

When a TE_set_filter statement is executed during a test run, the filte
activated. For more information on TE_set_filter, refer to the TSL Onl
Reference.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Checking Text

Testing hapter 5, page 60

In

 but is
 following

d type,

following
Terminal Emulator Applications C

Note: You can set up to 256 filters using TE_set_filter.

Deactivating and Deleting Filters
When you deactivate an existing filter, it remains in the test’s db folder
inactive for the test. To deactivate a filter, execute a statement with the
syntax in your test script:

TE_reset_filter (filter_name);

You can also define the filter to be deactivated using its coordinates an
instead of its name. Execute a statement with the following syntax:

TE_reset_filter (start_column, start_row, end_column, end_row,
EXCLUDE | INCLUDE, screen_name);

To deactivate all active filters, execute the following statement:

TE_reset_all_filters();

To delete a filter from the test database, execute a statement with the
syntax in your test script:

TE_delete_filter (filter_name);

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Checking Text

Testing hapter 5, page 61

In folder for
it by
ilter.

test script:

mn,

st.
Terminal Emulator Applications C

Creating and Activating Filters Separately
In some cases you may wish to create a filter and store it in the test’s db
later use. Use the TE_create_filter function to create a filter; activate
executing a TE_set_filter statement containing only the name of the f

To create a filter, execute a statement with the following syntax in your

TE_create_filter (filter_name, start_column, start_row, end_colu
end_row,

EXCLUDE | INCLUDE, screen_name);

The filter_name can be up to 16 characters long.

To activate a filter, execute the following statement in the script:

TE_set_filter (filter_name);

The filter_name must be the name of an existing filter for the current te

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Checking Text

Testi pter 5, page 62

In

R

xt in a
u use
m the

indow

og box

ft
 area.

 the
ariable

pear
ng Terminal Emulator Applications Cha

eading Text from the Screen

Using the TE_get_text function, you can instruct WinRunner to read the te
specified area of the screen and store it in a variable. During recording, yo
the mouse to define the area of the screen to be read. You can also progra
TE_get_text function.

To read text from the screen:

 1 Make sure that you are in recording mode and that the terminal emulator w
you want to read from is in focus.

 2 Press the GET TEXT softkey. WinRunner is minimized to an icon and a dial
displays instructions for capturing the string.

 3 Enclose the text to be read within a rectangle. Press and hold down the le
mouse button and drag the mouse until the rectangle encloses the desired

 4 Click the right mouse button to read the text. A TE_get_text statement is
inserted in the test script. This statement has the following syntax:

t = TE_get_text (x1, y1, x2, y2);

For more information on TE_get_text, refer to the TSL Online Reference.

Each new line of text that is captured is preceded by the characters “\n” in
variable. The following example shows how two lines of text appear in the v
t:

t = "Fill in your User ID and press Enter \n(Your password will not ap
 when you type it)"

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Checking Text

Testing hapter 5, page 63

In

Sea

d_text
cation on

arameter,
 define

]);

nce.
Terminal Emulator Applications C

rching for Text

You can search for text in a terminal emulator screen using the TE_fin
function. This function looks for a specified text string and returns its lo
the screen as an x coordinate and a y coordinate. Using an optional p
you can restrict the search to a rectangular area of the screen that you
using pairs of x, y coordinates.

The TE_find_text function has the following syntax:

TE_find_text (string, out_x_location, out_y_location [x1, y1, x2, y2

For more information on TE_find_text, refer to the TSL Online Refere

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing VT100 and Text Applications

Testing Termina hapter 6, page 64

Testing VT100 and
ot support
uch as

•
•
•
•

l Emulator Applications C

�

Text Applications
You can use WinRunner to test terminal emulator applications that do n
the EHLLAPI protocol. These include terminal emulator applications s
VT100, VAX, UNIX, HP, and text applications.

This chapter describes:

Creating Test Scripts

Synchronizing The Test Run

Checking Text

TSL Functions

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing VT100 and Text Applications

Testing hapter 6, page 65

In

Abo

. The text
d 5250
s,
 objects in
ick, and

d to insert
Terminal Emulator Applications C

ut Testing VT100 and Text Applications

When working with VT100 terminal emulators, the text method is used
method is similar to the position method which can be used in 3270 an
terminal emulators that support the EHLLAPI protocol. In both method
WinRunner records keyboard and mouse input only. The operations on
your application are recorded as win_type, obj_type, win_mouse_cl
win_mouse_drag statements.

However, unlike the position method, the text method does not insert
synchronization statements into your test script automatically. You nee
synchronization statements using softkeys or by programming.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing VT100 and Text Applications

Testing hapter 6, page 66

In

Cre

 keyboard
 recorded
atements.

100
ements.
Terminal Emulator Applications C

ating Test Scripts

When using VT100 terminal emulator applications, WinRunner records
and mouse input only. The operations on objects in your application are
as win_type, obj_type, win_mouse_click, and win_mouse_drag st

The following is a sample of a WinRunner test script recorded on a VT
terminal emulator application. The comment (#) lines describe the stat

Activate the Terminal Emulator window
win_activate ("RUMBA - DEMO");

Direct input to the screen
set_window ("RUMBA - DEMO", 1);

Type in the user id “Minnie”
obj_type ("AfxWnd40","minnie");

Press the Enter key
obj_type ("AfxWnd40","<kReturn>");

Wait for a string to appear on the next screen.
TE_wait_string(" MENU ", 1, 1, 53, 1, 60);

Type a menu option.
obj_type ("AfxWnd40","90");

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing VT100 and Text Applications

Testing hapter 6, page 67

In

 to
rected to

 to appear
Terminal Emulator Applications C

In the above example, the user clicks on the terminal emulator window
activate it. WinRunner records that action to ensure that the input is di
the correct window. Then the user types the user name “Minnie” in the
appropriate field and presses the Enter key.

A wait statement is added to ensure that WinRunner waits for the string
on the next screen. The user types an option.

For information on TSL functions, refer to the TSL Online Reference.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing VT100 and Text Applications

Testing hapter 6, page 68

In

Syn

ronization

it for a
ou can
en for the

nd_row],

 you
column
ed text
 and row,
ber of

 in
Terminal Emulator Applications C

chronizing The Test Run

When using VT100 terminal emulator applications, you can insert synch
points to your test script in order to pace the test run with the system.

Waiting for a Specific String
Using the TE_wait_string function, you can instruct WinRunner to wa
specific string to appear on the screen before continuing the test run. Y
specify an area of the screen, or WinRunner can search the entire scre
string. This function has the following syntax:

TE_wait_string (string, [start_column, start_row, end_column, e
 [timeout]);

The string parameter lists the text enclosed in the rectangle. If the text
captured exceeds one line, string includes the first line only. The start_
and start_row parameters indicate the column/row at which the captur
starts. The end_column and end_row parameters represent the column
respectively, at which the text ends. The timeout parameter is the num
seconds that WinRunner waits for the specified string to appear before
continuing the test run.

For more information, see the “Waiting for a Specific String” section
Chapter 3, Synchronizing The Test Run.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing VT100 and Text Applications

Testing hapter 6, page 69

Ine that
t run. This

 that
e test run.
Terminal Emulator Applications C

Changing the Timeout
The TE_set_timeout function determines the maximum amount of tim
WinRunner waits for a response from the host before continuing the tes
function has the following syntax:

TE_set_timeout (timeout);

The default timeout is 60 seconds. You can modify this if needed.

Returning the Current Synchronization Time
The TE_get_timeout function returns the maximum time, in seconds,
WinRunner waits for response from the mainframe before continuing th
This function has the following syntax:

TE_get_timeout (timeout);

The default timeout is 60 seconds.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing VT100 and Text Applications

Testing hapter 6, page 70

Inle
When
ludes a
ppear or

 comma
inRunner

s one of
_UNTIL

e in which
Runner
Terminal Emulator Applications C

Setting Synchronization Keys
Using the TE_define_sync_keys function you can set keys that enab
automatic synchronization in type, win_type and obj_type functions.
WinRunner executes a type, win_type or obj_type statement that inc
synchronization key, WinRunner waits for a specified string to either a
disappear from the screen. This function has the following syntax:

TE_define_sync_keys (keys, string, mode [, x1, y1, x2, y2]);

The keys parameter is the keys that will enable synchronization. Use a
as the delimiter between keys. The string parameter is the string that W
waits for to appear or disappear on the screen. The mode parameter i
the following: SYNC_WHILE (waits until the string disappears), SYNC
(waits until the string appears), SYNC_DEFAULT (waits the default
synchronization time). The parameters x1, y1, x2, y2 define a rectangl
to search for the string (optional). If these parameters are missing, Win
searches the entire screen.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing VT100 and Text Applications

Testing hapter 6, page 71

In

Che

 selected
e text you

xt in a

n,

at
rameters

which the

n in
Terminal Emulator Applications C

cking Text

While creating a test, you indicate the text that you want to check from a
portion of the screen and store it in a file. The screen coordinates of th
indicated are inserted into your test script.

Checking Text of a Terminal Emulator Screen
The TE_check_text function statement captures and compares the te
terminal emulator window. This function has the following syntax:

TE_check_text (file_name [,start_column, start_row, end_colum
end_row]);

The file_name parameter is a string expression given by WinRunner th
identifies the captured window. The start_column and the start_row pa
are the column and row at which the captured text begins.

The end_column and end_row parameters are the column and row at
captured text ends.

For more information, see the “Checking Text Using Softkeys” sectio
Chapter 5, Checking Text.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing VT100 and Text Applications

Testing hapter 6, page 72

Ind_text
cation on

arameter,
 define

]);

ation
t string.
oordinate
at defines

nce.
Terminal Emulator Applications C

Searching for Text
You can search for text in a terminal emulator screen using the TE_fin
function. This function looks for a specified text string and returns its lo
the screen as an x coordinate and a y coordinate. Using an optional p
you can restrict the search to a rectangular area of the screen that you
using pairs of x, y coordinates.

This function has the following syntax:

TE_find_text (string, out_x_location, out_y_location [x1, y1, x2, y2

The string parameter is the text that you want to locate. The out_x_loc
parameter is the output variable that stores the x coordinate of the tes
The out_y_location parameter is the output variable that stores the y c
of the text string. The x1, y1, x2, y2 parameters describe a rectangle th
the limits of the search area.

For more information on TE_find_text, refer to the TSL Online Refere

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing VT100 and Text Applications

Testing hapter 6, page 73

Ine text in a
s the

ext to be
site

n in

or window
e window,
rison. For
n in
Terminal Emulator Applications C

Reading Text from the Screen
Using the TE_get_text function, you can instruct WinRunner to read th
specified area of the screen and store it in a variable. This function ha
following syntax:

t = TE_get_text (x1, y1, x2, y2);

The x1, y1, x2, y2 parameters describe a rectangle that encloses the t
read. The pairs of coordinates can designate any two diagonally oppo
corners of the rectangle.

For more information, see the “Reading Text from the Screen” sectio
Chapter 5, Checking Text.

Using Filters
You can create filters to include or exclude regions of a terminal emulat
when checking text. In cases where you do not want to check an entir
you can define parts of the window that will be filtered during the compa
more information, see the “Using Filters when Checking Text“ sectio
Chapter 5, Checking Text.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing VT100 and Text Applications

Testing hapter 6, page 74

In

TSL

inal
he TSL

e the test

wing

. It has

ts for a
Terminal Emulator Applications C

 Functions

You can use the following TSL functions when testing your VT100 term
emulator application. For more information on TSL functions, refer to t
Online Reference.

Synchronization Functions
You can insert synchronization points to your test script in order to pac
run with the system.

• The TE_define_sync_keys function sets keys that enable automatic
synchronization in win_type and obj_type commands. It has the follo
syntax:

TE_define_sync_keys (keys, string, mode [, x1, y1, x2, y2]);

• The TE_get_timeout function returns the current synchronization time
the following syntax:

TE_get_timeout ();

• The TE_set_timeout function sets the maximum time WinRunner wai
response from the server. It has the following syntax:

TE_set_timeout (timeout);

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing VT100 and Text Applications

Testing hapter 6, page 75

In

 has the

nd_row],

rminal

ptures

eld. It has

part of the
yntax:

d_row]);
Terminal Emulator Applications C

• The TE_wait_string function waits for a string to appear on screen. It
following syntax:

TE_wait_string (string, [start_column, start_row, end_column, e
[timeout]);

Date Operation Functions
You can set how WinRunner identifies dates and date fields in your te
emulator application, and how it creates date checkpoints.

• The date_set_capture_mode function determines how WinRunner ca
dates in terminal emulator applications. It has the following syntax:

date_set_capture_mode (mode);

• The date_set_attr function sets the record configuration mode for a fi
the following syntax:

date_set_attr (mode);

• The date_check function creates a date checkpoint for dates in all or
current screen of a terminal emulator application. It has the following s

date_check (filename [, start_column, start_row, end_column, en

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing VT100 and Text Applications

Testing hapter 6, page 76

In

ate
ation. It

ates on
r the TSL

tion.

inal

,

has the

]);

ng. It has
Terminal Emulator Applications C

• The date_set_auto_date_verify function automatically generates a d
checkpoint whenever the screen changes in a terminal emulator applic
has the following syntax:

date_set_auto_date_verify (ON|OFF);

For additional information about the date_ functions, see Checking D
page 44. For examples of usage, refer to the TSL Online Reference o
Reference Guide.

Text Functions
You can check the text in the screen of your terminal emulator applica

• The TE_check_text function captures and compares the text in a term
emulator window. It has the following syntax:

TE_check_text (file_name [,start_column, start_row, end_column
end_row]);

• The TE_find_text function returns the location of a specified string. It
following syntax:

TE_find_text (string, out_x_location, out_y_location [x1, y1, x2, y2

• The TE_get_text function reads text from screen and stores it in a stri
the following syntax:

TE_get_text (x1, y1, x2, y2);

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing VT100 and Text Applications

Testing hapter 6, page 77

Inr screen.

as the

mn,

It has the

ed active

w,

 are
yntax:

t has the
Terminal Emulator Applications C

Filter Functions
You can create filters to check text and dates on your terminal emulato

• The TE_create_filter function creates a filter in the test database. It h
following syntax:

TE_create_filter (filter_name, start_column, start_row, end_colu
end_row,

EXCLUDE | INCLUDE, screen_name);

• The TE_delete_filter deletes a specified filter from the test database.
following syntax:

TE_delete_filter (filter_name);

• The TE_get_active_filter function returns the coordinates of a specifi
filter. It has the following syntax:

TE_get_active_filter (filter_num [out_start_column, out_start_ro
out_end_column, out_end_row], screen_name);

• The TE_get_auto_reset_filter function indicates whether or not filters
automatically deactivated at the end of a test run. It has the following s

TE_get_auto_reset_filters ();
• The TE_get_filter function returns the properties of a specified filter. I

following syntax:

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing VT100 and Text Applications

Testing hapter 6, page 78

In

 the

llowing

wing

, end_row,

set of

 all
Terminal Emulator Applications C

TE_get_filter (filter_name [,out_start_column, out_start_row,
out_end_column,

out_end_row, out_type, out_active, screen_name]);
• The TE_reset_all_filters function deactivates all filters in a test. It has

following syntax:

TE_reset_all_filters ();
• The TE_reset_filter function deactivates a specified filter. It has the fo

syntax:

TE_reset_filter (filter);
• The TE_set_filter function creates and activates a filter. It has the follo

syntax:

TE_set_filter (filter_name [,start_column, start_row, end_column
EXCLUDE | INCLUDE, screen_name]);

• The TE_set_auto_reset_filters function deactivates the automatic re
filters when a test run is completed. It has the following syntax:

TE_set_auto_reset_filters (ON|OFF);
• The TE_set_filter_mode function specifies whether to assign filters to

screens or to the current screen. It has the following syntax:

TE_set_filter_mode (mode);

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Analyzing Results

Testing Termina hapter 7, page 79

Analyzing Results
occurred

•
•

About Vie

inRunner
lts or click
he results
ults in the
 results of
inRunner
l Emulator Applications C

�

After you run a test, you can view a report of all the major events that
during the test run in order to determine its success or failure.

This chapter describes:

Viewing Results of a GUI Checkpoint

Viewing Results of a Text Checkpoint

wing Test Results

When a test run is completed, you can view detailed test results in the W
Test Results window. To open the dialog box, select Tools > Test Resu
the Test Results button. The Test Results window opens and displays t
of the current test. You can view expected, debug, and verification res
Test Results window. By default, the Test Results window displays the
the most recently executed test run. For more information, refer to the W
User’s Guide.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Analyzing Results

Testing hapter 7, page 80

In

Vie

ation. You
dow. If a
nces

“end GUI
d; passed
Terminal Emulator Applications C

wing Results of a GUI Checkpoint

A GUI checkpoint compares expected and actual results in your applic
can view the expected and actual results through the Test Results win
mismatch is detected during a verification run, you can view the differe
between the expected and actual results.

To view the results of a GUI checkpoint:

 1 Open the Test Results window. In the test log, look for entries that list
checkpoint” in the Event column. Failed GUI checkpoints appear in re
GUI checkpoints appear in green.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Analyzing Results

Testing hapter 7, page 81

In

hlight the
GUI

l values
Terminal Emulator Applications C

 2 Double-click an “end GUI checkpoint” entry in the log. Alternatively, hig
entry and choose Options > Display or click the Display button. The
Checkpoint Results dialog box opens.

 3 Click an object in the Objects column.

 4 Select a property from the Properties column.

If the property is a field_date, click the Compare expected and actua
button. The Check Date Results dialog box opens.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Analyzing Results

Testing hapter 7, page 82

In

Vie

. You can
 mismatch
he

“check
ed text

entry and
Terminal Emulator Applications C

wing Results of a Text Checkpoint

A text checkpoint compares expected and actual text in your application
view the expected and actual results using the Test Results window. If a
is detected during a verification run, you can also view a file showing t
differences between the expected and actual results.

To view the results of a text checkpoint:

 1 Open the Test Results window. In the test log, look for entries that list
text” in the Event column. Failed text checkpoints appear in red; pass
checkpoints appear in green.

 2 Double-click a “check text” entry in the log. Alternatively, highlight the
choose Options > Display or click the Display button.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Analyzing Results

Testing hapter 7, page 83

In

r an entry
Terminal Emulator Applications C

For an entry with no mismatch, the Terminal Display Dialog opens. Fo
with a mismatch, the Check Text Verify Viewer opens.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Analyzing Results

Testing hapter 7, page 84

In

 Terminal

m

Terminal Emulator Applications C

 3 To view the results in a mainframe view, double-click the row entry. The
Display Dialog opens.

 4 Click OK to close the Terminal Display Dialog.

ismatch

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Learning the Application with BMS Files

Testin pter 8, page 85

Le

a GUI

A

ou can
n your
 and
s these
mes or
unction

as your
terface
 to the

e
unner
g Terminal Emulator Applications Cha

�

arning the Application with BMS Files
The Learn BMS Files feature can teach WinRunner your 3270 mainframe
application by inserting information about screens and fields directly into
map file. This chapter describes:

• Learning the Application the First Time

• Relearning the Application

bout Learning the Application with BMS Files

If you have access to the BMS file of your 3270 mainframe application, y
use the Learn BMS Files feature. This feature enables WinRunner to lear
application directly from a BMS file containing descriptions of the screens
fields in your application. When you use Learn BMS File, WinRunner learn
descriptions and inserts them into a GUI map file. You can change the na
descriptions as desired, as with any other GUI map file. You use the TSL f
TE_bms2gui to learn the BMS file.

The RELEARN option lets you update the GUI map file you created earlier
application changes during the development cycle. An interactive user in
guides you through the process. It helps you retain desired modifications
descriptions in the GUI map file while changing others as needed.

It is recommended that you be familiar with Chapter 2, Context Sensitiv
Testing, as well as the “Understanding the GUI Map” section in the WinR
User’s Guide before you use the Learn BMS Files feature.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Learning the Application with BMS Files

Tes ter 8, page 86

In

Learning the Application the First Time

 This

ation.

 file.
orm
ade

s
ith
nd

script.
t
I map

s2gui

ting Terminal Emulator Applications Chap

You use the TE_bms2gui function to learn (and to relearn) your BMS file.
function has the following syntax:

TE_bms2gui ("bms_file_name", "gui_file_name", learn_mode);

The bms_file_name parameter is the full path of the BMS file of your applic
The gui_file_name parameter is the full path of the GUI map file in which
WinRunner inserts the descriptions of the objects in your application. If no
parameter is specified, the temporary GUI map file is used.

The learn_mode parameter determines how WinRunner handles the BMS
Use the LEARN option the first time that you learn a BMS file. Do not perf
LEARN twice for the same GUI map file. Use RELEARN when you have m
changes to your application and updated the BMS file. When RELEARN i
specified, WinRunner compares the descriptions in the current BMS file w
those in the specified GUI map file. It notifies you of any inconsistencies a
enables you to make changes as desired.

To learn the BMS files, execute the TE_bms2gui function in a WinRunner
In the following example, TE_bms2gui is used to teach WinRunner objec
descriptions from a BMS file called Mail_app.txt and place them into a GU
file called Mail_1.gui:

TE_bms2gui ("Mail_app.txt", "Mail_1.gui", LEARN);

You can edit names or descriptions in the GUI map file created by TE_bm
and make any other desired changes, using the GUI Map Editor. For more
information on the GUI Map Editor, refer to the WinRunner User’s Guide.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Learning the Application with BMS Files

Tes er 8, page 87

In

Relearning the Application

e to
ens

 as
.txt
nt:

e
, a

ges
er,
t

 the
ting Terminal Emulator Applications Chapt

You use the RELEARN option each time you want to update the GUI map fil
reflect changes in your application. RELEARN enables you to add new scre
and fields to the GUI map file while maintaining or changing the names and
descriptions that appear in the existing GUI map file, as desired.

To relearn a BMS file, you execute the TE_bms2gui function using RELEARN
the learn_mode parameter. For example, to relearn a BMS file called Mail_app
into an existing GUI map file called Mail_1.gui, execute the following stateme

TE_bms2gui ("Mail_app.txt", "Mail_1.gui", RELEARN);

As WinRunner converts the BMS file into the GUI map file, it looks for
discrepancies between the BMS file learned using the LEARN option and th
current file, on which RELEARN is performed. Each time it finds a mismatch
dialog box is displayed on screen and prompts you how to proceed.

In most cases, accepting the default option ensures that the intentional chan
made to your application are reflected accurately in the GUI map file. Howev
WinRunner always gives you the option of changing the name of the relevan
screen or field.

The following paragraphs describe the different Relearn forms that may be
displayed during the RELEARN process and the options they provide.

Note: The forms are identical for fields and for screens, with the exception of
word “field” or “screen” in the relevant location.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Learning the Application with BMS Files

Tes er 8, page 88

In

Object Exists in the GUI Map File with Different Attributes

in
the
list
new

ged

er
ting Terminal Emulator Applications Chapt

WinRunner found a screen in the BMS file with the same name as a screen
the existing GUI map file, but with different properties. The current name of
screen is displayed in the list on the left side of the Relearn dialog box. The
on the right shows all the properties of the selected object, according to the
BMS file. By default, WinRunner updates the GUI map to include the new
properties.

Click OK. The following message is displayed: “Screen BG112AF is now chan
and gets new properties”. Click OK.

To use a different name for the screen, select it from the list or type in anoth
name.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Learning the Application with BMS Files

Testing hapter 8, page 89

In

ancel.

n existing
Terminal Emulator Applications C

To continue the RELEARN operation without making changes, click C

To choose a new name for the object, type it in or select the name of a
object from the list.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Learning the Application with BMS Files

Testing hapter 8, page 90

In

 with the
ield is
n the right
S file.

me
yed:
Terminal Emulator Applications C

Object Is Not in the Original GUI Map File

WinRunner found a field that it recognizes as a new one: no other field
same name or properties exists in the GUI map file. The name of the f
displayed in the list on the left side of the Relearn dialog box. The list o
shows all the properties of the selected field, according to the new BM

By default, WinRunner adds the object to the GUI map file with the na
specified. The Relearn dialog box closes and a message box is displa
“WinRunner added a new field with the name ‘DATAOO1.’”

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Learning the Application with BMS Files

Te ter 8, page 91

In

To continue the Relearn operation without making changes, click Cancel.

er

ith a
 as it

sting Terminal Emulator Applications Chap

To choose a new name for the object, type it in or select the name of anoth
screen from the list.

Object Has a Different Name in the GUI Map File

WinRunner found a field with the same properties as an existing field, but w
different name. By default, WinRunner retains the original name for the field
is displayed in the GUI map. This ensures that you can replay existing tests
containing the original name for the field without changing them.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Learning the Application with BMS Files

Testi ter 8, page 92

In

Click OK to retain the original name for the field. The Relearn dialog box closes
d

m the
ng Terminal Emulator Applications Chap

and the following message is displayed: ”WinRunner uses the existing fiel
‘DATA002’”.

To use the name in the new BMS file or to select a new name, select it fro
list or type it in.

Index

Testing Page 93

B X Y ZA

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

B

BMS
le
re

C

check
check

al
da
de
fie
sc
si
tw

check
fu
pa
us

check
fu
pa

config
Conte

6

on 46, 76
 44, 75

lds 47

0
Index
Terminal Emulator Applications

QE F G H J K L RPI M N O S T U V WC D

files 85–92
arning the application 86
learning the application 87

ing date operations 44
ing screens and fields 38–48
l fields at once 43
tes 44
fault checks 40
ld checks 47
reen checks 47
ngle screen/field 40
o or more fields 41
ing text automatically 51
ll screen 51
rtial screen 52
ing previous coordinates 53
ing text using softkeys
ll screen 55
rtial screen 56
uring terminal emulator settings 6
xt Sensitive testing 18–28

D

Date Operations Demo Server 1
date operations, checking 44
date_check function 46, 75
date_set_attr function 45, 75
date_set_auto_date_verify functi
date_set_capture_mode function
dates, checking 44

F

filters 57–62
exclude 57
include 58

finding text 63, 72

G

GUI checkpoints 9, 38–48
default checks 40
properties for screens and fie

L

Learn BMS Files 85
logical names 23

Index

Testin Page 94

X Y ZA

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

O

ob
ob

P

ph
pro

R

rea
rec

res

S

sa
scr
scr

se

 76

70, 74

 77

 78
ction 37

n 78
g Terminal Emulator Applications

QE F G H J K LB RPI M N O S T U V WC D

j_type function 27
ject classes 23

ysical description 22
perties
field 25
screen 25

ding text 62, 73
ord
field method 27
position method 27
text method 65

ults, viewing 79

mple application 16
een refresh time, setting 34
ipts
creating 7
creating VT100 and text applications 66

arching for text 63, 72

softkeys 11
synchronizing tests 29–37

T

TE_bms2gui function 86
TE_check_text function 55, 71,
TE_create_filter function 61, 77
TE_define_sync_keys function
TE_delete_filter function 60, 77
TE_edit_field function 27
TE_find_text function 63, 72, 76
TE_force_send_key function 37
TE_get_active_filter function 77
TE_get_auto_reset_filter function
TE_get_filter function 77
TE_get_screen_size function 39
TE_get_sync_time function 36
TE_get_text function 62, 73, 76
TE_get_timeout function 69, 74
TE_reset_all_filters function 60,
TE_reset_all_force_send_key fun
TE_reset_filter function 60, 78
TE_send_key function 27
TE_set_auto_reset_filters functio
TE_set_auto_verify function 51
TE_set_filter function 59, 61, 78
TE_set_filter_mode function 78

Index

Testin Page 95

X Y ZA

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

TE
TE
TE
TE
TE
TE
TE
ter
tex

tex
tex

tim

V

VT
g Terminal Emulator Applications

QE F G H J K LB RPI M N O S T U V WC D

_set_record_method function 27
_set_refresh_time function 34
_set_sync_time function 35
_set_timeout function 35, 69, 74
_wait_field function 33
_wait_string function 31, 68, 75
_wait_sync function 30, 37
minal emulator configuration 6
t
checking 49–63, 71
finding 63, 72
reading 62, 73

t checkpoints 9, 49–63, 71
t method testing, see VT100 and text

applications
eout, setting 35, 69

100 and text applications 64–78
checking text 71
date operation functions 75
filter functions 77
record method 65
synchronization functions 74
synchronizing the test run 68
text functions 76

W

win_mouse_click function 27
win_mouse_drag function 27
win_type function 27

WinRunner - Testing Terminal Emulator Applications, Version 7.01

© Copyright 1994 - 2001 by Mercury Interactive Corporation

All rights reserved. All text and figures included in this publication are the exclusive property of Mercury
Interactive Corporation, and may not be copied, reproduced, or used in any way without the express
permission in writing of Mercury Interactive. Information in this document is subject to change without notice
and does not represent a commitment on the part of Mercury Interactive.

Mercury Interactive may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents except as
expressly provided in any written license agreement from Mercury Interactive.

WinRunner, XRunner, LoadRunner, TestDirector, TestSuite, and WebTest are registered trademarks of
Mercury Interactive Corporation in the United States and/or other countries. Astra, Astra SiteManager, Astra
SiteTest, RapidTest, QuickTest, Visual Testing, Action Tracker, Link Doctor, Change Viewer, Dynamic Scan,
Fast Scan, and Visual Web Display are trademarks of Mercury Interactive Corporation in the United States
and/or other countries.

This document also contains registered trademarks, trademarks and service marks that are owned by their
respective companies or organizations. Mercury Interactive Corporation disclaims any responsibility for
specifying which marks are owned by which companies or organizations.

If you have any comments or suggestions regarding this document, please send them via e-mail to
documentation@merc-int.com.

Mercury Interactive Corporation
1325 Borregas Avenue
Sunnyvale, CA 94089
Tel. (408) 822-5200 (800) TEST-911
Fax. (408) 822-5300

WRTEUG7.01/01

	WinRunner® - Testing Terminal Emulator Applications
	Table of Contents
	Introduction
	Configuring Terminal Emulator Settings
	Creating Test Scripts
	Synchronizing The Test Run
	Checking Your Application
	Testing VT100 and Text Applications
	Analyzing Results
	Learning the Application with BMS Files
	Using Default Command Softkeys
	Sample Application
	Typographical Conventions

	Context Sensitive Testing
	About Context Sensitive Testing
	Physical Descriptions
	Logical Names
	Object Classes for Terminal Emulators
	Properties
	Changing How Operations are Recorded

	Synchronizing The Test Run
	About Synchronizing Tests
	Waiting for a Response from the Host
	Waiting for a Specific String
	Waiting for a Specific Field
	Setting the Synchronization Time
	Synchronizing Screen Changes

	Checking Screens and Fields
	About Checking Screens and Fields
	Checking a Single Field or a Screen
	Checking Two or More Fields
	Checking All Fields in a Screen at Once
	Checking Dates
	Properties for Screens and Fields

	Checking Text
	About Checking Text
	Checking Text Automatically
	Checking Text Using Softkeys
	Using Filters when Checking Text
	Reading Text from the Screen
	Searching for Text

	Testing VT100 and Text Applications
	About Testing VT100 and Text Applications
	Creating Test Scripts
	Synchronizing The Test Run
	Checking Text
	TSL Functions

	Analyzing Results
	About Viewing Test Results
	Viewing Results of a GUI Checkpoint
	Viewing Results of a Text Checkpoint

	Learning the Application with BMS Files
	About Learning the Application with BMS Files
	Learning the Application the First Time
	Relearning the Application

	Index

