
HP Connect-It Software
Software version: 3.80

SDK

Legal Notices
Warranty
The only warranties for HP products and services are set forth in the express warranty
statements accompanying such products and services.
Nothing herein should be construed as constituting an additional warranty.
HP shall not be liable for technical or editorial errors or omissions contained herein.
The information contained herein is subject to change without notice.

Restricted Rights Legend
Confidential computer software.
Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor's standard commercial license.

Copyright
© Copyright 1994-2007 Hewlett-Packard Development Company, L.P.

Brands
n Adobe®, Adobe Photoshop® and Acrobat® are trademarks of Adobe Systems Incorporated.
n Corel® and Corel logo® are trademarks or registered trademarks of Corel Corporation or

Corel Corporation Limited.
n Java™ is a US trademark of Sun Microsystems, Inc.
n Linux is a U.S. registered trademark of Linus Torvalds
n Microsoft®, Windows®, Windows NT® and Windows® XP are U.S. registered trademarks

of Microsoft Corporation.
n Oracle® is a registered US trademark of Oracle Corporation, Redwood City, California.
n UNIX® is a registered trademark of The Open Group.

Build number: 35

Introduction . 7
Who is this guide intended for? 7
Terminology . 7
General information . 8

Chapter 1. Data exchange 9
Data and data types . 9
Models . 10

Chapter 2. Design-Time 15
DesignTimeFactory interface 15
ObjectTypeProvider interface 18

Chapter 3. Runtime 21
Outbound communications 21
Inbound communications 25

Chapter 4. Deployment 27

Chapter 5. Configuration 29

Connect-It 3.80 - SDK | 3

Table of Contents

Description file . 29
Icon file . 30
Configuration file . 30
Wizard file . 30
JVM configuration file . 32

Chapter 6. Packaging 33
Java archive . 34

Chapter 7. Use . 35
Authorization certificate 35
Generate a key . 35

I. Appendix . 37

Chapter 8. Wizard file 39
General structure . 39
Wizard element . 39
Include element . 40
Page element . 41
Property element . 42
Control element . 43
Linebreak and separator elements 46
Transition element 47
Script attribute . 47
Included attribute . 48
Functions . 48

Chapter 9. Configuration file 51
Configuration element 52
Property element . 52
Definition element 52
Export element . 53
Class element . 53
Property types . 53

Chapter 10. JVM configuration file 55
jvmConfiguration element 56
jarLocation element 56
Jars element . 57

4 | Connect-It 3.80 - SDK

jvmOptions element 59
Import element . 59

Chapter 11. Database description file 61
File structure . 61
Properties . 61
Example . 64
Additional information 65

Chapter 12. Java code 67
JavaBeans . 67
Logging . 68
Internationalization 69

Index . 71

Connect-It 3.80 - SDK | 5

6 | Connect-It 3.80 - SDK

The Connect-It Development Kit enables you to develop and implement your
own connectors. This development kit uses a Java interface based on the J2EE
Connector Architecture (1.5) standard. The JCA standard defines a set of Java
interfaces used to simplify the integration of enterprise applications (ERP,
database applications, etc).

Who is this guide intended for?

This guide is destined for developers who have sufficient expertise in Java and
the JCA standard. For more information about this standard, consult the
following Web site: J2EE Connector Architecture
[http://java.sun.com/j2ee/connector].

Terminology

The following acronyms are used throughout this guide:
n JCA: J2EE Connector Architecture
n RA: Resource Adapter
n EIS: Enterprise Information System
n CCI: Common Client Interface

Connect-It 3.80 - SDK | 7

Introduction

http://java.sun.com/j2ee/connector

n SPI: Service Provider Interface
n JDBC: Java Database Connectivity

General information

The API defines an extension to the JCA 1.5 API which enables the connector
to be integrated into the application. The following diagram shows how this
works:

The communication mode with the connector depends on the information system
(EIS) to which it is connected.
Two communication possibilities exist:
n Outbound communications (synchronous)

The client initiates the data exchange. This occurs, for example, when a
query is sent to a database.

n Inbound communications (asynchronous)
The EIS initiates the data exchange. The connector is in listening mode.
This is what takes place for messaging.

SPI Extensions
The SDK supplies an extension to the SPI classes to enable the support of
metadata descriptions.

CCI Extensions
The SDK supplies a client layer that can manage access to a system, whether
it be a relational database or not. This extension groups functions from the
standard CCI API and the JDBC API.

8 | Connect-It 3.80 - SDK

The goal of a connector designed using the SDK is to standardize data exchange
with information systems. Data exchanges include sending and receiving data.

Data and data types

Before data can be exchanged, the structure of the data must be known. This
structure is what is called metadata. The SDK requires that the structure of
the data be known before any operations are done using the data. This is done
via two interfaces:
com.hp.ov.cit.connector.cci.ObjectRecord - represents a specific piece of data.
And
com.hp.ov.cit.connector.cci.ObjectType - represents the structure that a set of
related data must have.
Since it is required to describe each piece of data that is sent or received, an
ObjectRecord instance is linked to its ObjectType description.
Data supplied via a connector are generally organized within a hierarchy or
graph. Their metadata is also hierarchical. Metadata is said to be 'complex'
when it contains other metadata. The 'child' metadata make up the fields of
the data. Metadata is said to be 'simple' when it does not contain other metadata.
This metadata contains no fields.
An ObjectRecord graph is composed of:

Connect-It 3.80 - SDK | 9

Data exchange1

n A single ObjectRecord root data item.
n Each of the ObjectRecords can be accessed by traversing the fields

recursively.

Models

The SDK provides two distinct data models described by the ObjectType,
ObjectRecord pair. These models are the Class/Instance model and the
XMLSchema/XML model. Only one model is possible per connector.

Class/Instance model
This model is an object representation of a data structure. This model is based
on the Java notions of class and instance.

Class
A class has a name and belongs to a package which forms its namespace. It is
made up of fields that are associated with classes.
Within this model, a class makes up the metadata. It can be accessed via the
ObjectType interface and has the following methods:

public String getName();
public String getNamespace();

public Class getObjectClass();
public boolean isSimple();
public Field getField(String fieldName);
public Field[] getFields();

A field accessed by the com.hp.ov.cit.connector.cci.Field interface contains its
own information and the information that is related to its class. A class has
the following characteristics:
n It can be modified
n It can have a default value
n It can appear several times and when it appears in a list it is described as

being indexed
n It can be required to have a value
This is done through the Field interface via the following methods:

public String getName();
public ObjectType getType();
public Object getDefault();
public boolean isIndexed();

10 | Connect-It 3.80 - SDK

public boolean isReadOnly();
public boolean isRequired();

Instance
An instance is associated with a class and contains values for one or more of
its fields.
Within this model, an instance forms a piece of data. It is represented via the
ObjectRecord interface and has the following methods:

public Object get(String fieldName);
public Object get(String fieldName, int fieldIndex);
public void set(String fieldName, Object value);
public void set(String fieldName, int fieldIndex, Object value);
public void remove(String fieldName);
public void remove(String fieldName, int fieldIndex);

Simple types
The following table provides the list of Java simple types that are supported
by the SDK.

java.lang.Boolean
java.lang.Byte
java.lang.Short
java.lang.Integer
java.lang.Long
java.lang.Float
java.lang.Double
java.lang.String
java.util.Date
byte[]
char[]

Example
Consider the data model below:

A
|- String
|- int
|- B
|- String
|- C*
|- boolean

Business classes are thus represented as:

public class A
{
private String stringField = "This is a string";
private int intField;

Connect-It 3.80 - SDK | 11

private B bField;
}

public class B
{
private String stringField;
private List<C> listOfCField;
}

public class C
{
private boolean booleanField;
}

Operations on types can be done as follows:

ObjectType objectTypeA = ...;
Field field = objectTypeA.getField("stringField");
boolean isSimple = field.getType().isSimple(); // true
Object defaultValue = field.getDefault(); // "This is a string"
...
field = objectTypeA.getField("bField");
isSimple = field.isSimple(); // false
ObjectType objectTypeB = field.Type();
field = objectTypeB.getField("listOfCField");
boolean isIndexed = field.isIndexed(); //true;

Data can be stored in the following manner:

ObjectRecord objectA = ...;
ObjectRecord objectB = ...;
ObjectRecord objectC = ...;

objectA.set("intField", 5);
objectA.set("bField", objectB);

java.util.List<C> list = new java.util.ArrayList<C>();
list.add(objectC);
objectB.set("listOfCField", list);

XMLSchema/XML model
This representation model is adapted to systems handling XML data. Metadata
is formed from a set of independent XML schemas. This model limits the use
of the interfaces described above. In this case, the only pertinent methods of
the ObjectType interface are:

public String getName();
public String getNamespace();

public boolean isXSD();
public org.w3c.dom.ls.LSInput[] getXSD();

12 | Connect-It 3.80 - SDK

This model also supposes that metadata identified by its name and namespace
is always simple. This means that it cannot contain any fields, and may only
contain one or more XML schemas.
Data itself can be accessed in the ObjectRecord interface via the following
methods:

public void readXML(org.w3c.dom.ls.LSInput input);
public void writeXML(org.w3c.dom.ls.LSOutput output);

These methods enable the XML representation to be imported or exported:
n org.w3c.dom.ls.LSInput - represents an input source for the XML data.
n org.w3c.dom.ls.LSOutput - represents an output source for the XML data.

Connect-It 3.80 - SDK | 13

14 | Connect-It 3.80 - SDK

This section describes elements that are used by a connector to connect to an
EIS and discover its metadata.

DesignTimeFactory interface

The com.hp.ov.cit.connector.spi.designtime.DesignTimeFactory interface
centralizes all the information required to:
n Obtain a connection
n Describe the structure of the data exchanges with the EIS

Communication mode
The methods

public boolean supportsOutbound()
And

public boolean supportsInbound()
are used to determine the communication mode used by the EIS. Within
Connect-It these two modes are exclusive.A connector implementation can only
support one mode at a time.

Connect-It 3.80 - SDK | 15

Design-Time2

Design-time connection
Data exchange types must be described regardless of the communication mode.
To do this a connection is used, whether it be a real one or not. For outbound
communications it is also possible that this connection be different from the
connection that is used for the data exchange itself. For example, in the case
of a web service, metadata is described using a WSDL file that can be accessed
via an FTP connection whereas communication with the web service is done
using the http protocol.
The API of the DesignTimeFactory class provides the following methods:
n public boolean requiresSeparateMetaDataConnection()

Determines if the EIS distinguishes between the two connection types. This
method is not used for inbound communications.

n public javax.resource.cci.ConnectionSpec
createMetaDataConnectionSpec()
This method returns a JavaBean implementation of the ConnectionSpec
interface. The object contains client-specific information such as "user" and
"password" that are used to connect during the design-time phase. The
method involved for outbound communications that do not differentiate
design-time connections from run-time connections is:

n public javax.resource.cci.ConnectionSpec createConnectionSpec()
For example, the url must be known if metadata is accessed via an http
connection:

package com.myeis;

import java.net.URL;
import javax.resource.cci.ConnectionSpec;

public class MyEISConnectionSpec implements ConnectionSpec
{
private URL url;

public URL getUrl()
{
return url;
}

public void setUrl(String url)
{
this.url = url;
}
}

Once the connection information is retrieved, the metadata can be described.

16 | Connect-It 3.80 - SDK

Retrieving metadata
The method
public ObjectTypeProvider
getObjectTypeProvider(javax.resource.cci.ConnectionSpec metaDataConnSpec)
returns an object which is used to obtain the description of the data that is
exchanged with the EIS. The required connection information makes up its
parameters.

Example
The operations described above are shown in the following diagram.The diagram
shows an outbound communication which requiring specific connection to access
the metadata:

A client queries the DesignTimeFactory to see if the connector supports the
outbound communication. If it does, it queries to see if the connection to the
metadata is distinct from the connection used to exchange data. Depending on
the response, the client will either call the createMetaDataConnectionSpec
method or the createConnectionSpec method in order to retrieve a connection's
description. The client then sets the properties of the method and calls the
DesignTimeFactory to retrieve the ObjectTypeProvider which is used to describe
the metadata.

Connect-It 3.80 - SDK | 17

ObjectTypeProvider interface

The com.hp.ov.cit.connector.spi.designtime.ObjectTypeProvider interface is used
to describe EIS data types. This description may be infinite. For example, an
A data type may contain a B data type itself containing an A data type. To
avoid recursion problems, instead of describing data types in one block, the
interface is based on a navigable model.This makes it possible to find first level
data first. Then, as subsequent calls are made to the interface, the other levels
of data can be described. As these types are retrieved via a connection, calling
the method:

public void close()
closes the connection.
The following methods are used to describe first-level metadata:

public java.util.List<ObjectType> getReceivedTypes();
public java.util.List<ObjectType> getRequestTypes();
public java.util.List<ObjectType> getResponseTypes();

Depending on the EIS type and communication mode (inbound or outbound),
these methods will need to be supported or not supported. Supported methods
are implemented as follows:

public java.util.List<ObjectType> getXXXTypes()
{
java.util.List<ObjectType> types = new java.util.ArrayList<ObjectType>();
types.add(new MyEISObjectType());
...
return types;
}

For unsupported methods:

public java.util.List<ObjectType> getXXXTypes() throws javax.resource.NotS
upportedException
{
throw new javax.resource.NotSupportedException();
}

Inbound communications
Only the following method is supported in this mode:

public java.util.List<ObjectType> getReceivedTypes()

This method must return the list of events that could be received from the EIS.

18 | Connect-It 3.80 - SDK

Outbound communications
Two types of data exchange modes are supported:
n Request/response (such as an HTTP request)
n Query (such as an SQL SELECT query)
Data types from queries are retrieved via:

public java.util.List<ObjectType> getRequestTypes()

This method must return the list of query types that could be sent to the EIS.

Once a query produces a response, such as when the getPurchaseOrder(int
id) function returns a "PurchaseOrder" object, the following method must be
used to describe the expected response type:

public java.util.List<ObjectType> getResponseTypes()

Once a query leads to its response, such as when the
"getPurchaseOrders(PurchaseOrderType)" function returns a "PurchaseOrder"
object, the following method:

public java.util.List<ObjectType> getReceivedTypes()

is used. Instead of sending a query containing data, the EIS is queried to find
elements via their metadata.

Note that the getResponseTypes() method is not supported separately. An
EIS response cannot be received if a query has not been sent to it.

Navigation
Once the first level types have been retrieved, the following method is called
to return the sub-types of the other levels:

public ObjectType getType(String namespace, String name)

Using the information from the namespace, name couple sent as parameter by
the caller, it is possible to know the level that is to be described. Once a level
is terminal, the method must return null.

Connect-It 3.80 - SDK | 19

20 | Connect-It 3.80 - SDK

This section describes elements that are used by a connector to connect to an
EIS and exchange data.

Outbound communications

Configuration
The key class of this communication mode is the one that implements the
javax.resource.spi.ManagedConnectionFactory interface. This class must also
implement the javax.resource.spi.ResourceAdapter interface. As outlined by the
JCA specifications, this class must be a JavaBean. The fields of this JavaBean
object represent information that is required by the connection regardless of
the client. For example, for a database accessed via an ODBC connection, the
name of this database is required regardless of the client.

package com.mycompany.myeis;

import javax.resource.spi.ManagedConnectionFactory;
import javax.resource.spi.javax.resource.spi.ResourceAdapter

public class MyEISManagedConnectionFactory implements ManagedConnectionFac
tory, ResourceAdapter
{
private String dataSourceName;

Connect-It 3.80 - SDK | 21

Runtime3

public String getDataSourceName()
{
return dataSourceName;
}

public void setDataSourceName(String dataSourceName)
{
this.dataSourceName = dataSourceName;
}

...
}

Connection
Client connection's obtained from a connector built using the SDK complies
with the JCA standard.
A javax.resource.cci.ConnectionSpec object representing the connection
information must be retrieved first. This is done as shown in the following
schema:

The client accesses EIS via the javax.resource.cci.ConnectionFactory interface
to create a connection from the information that is supplied. To simplify the
example, certain details have been omitted (connection pooling, connection
listener).

22 | Connect-It 3.80 - SDK

All implementations must return a com.hp.ov.cit.connector.cci.Connection type
connection object.

Exchange
Once the connection has been established, the client application (Connect-It)
is capable of exchanging data with the external system. At this stage, two
exchange modes are possible in accordance with design-time information:
n Request with or without a response
n Query

Request/Response mode
Most exchanges with an EIS can be grouped into this category. For example,
inserting a record into a relational database. Accessing this feature is done via
the method:

public Interaction createInteraction()
The following com.hp.ov.cit.connector.cci.Interaction interface is used:

public interface Interaction
{
...
public ObjectRecord execute(ObjectRecord request) throws ResourceException
;
}
}

Data is supplied as input and a response or no response is returned.

Query mode
A prototype of expected data is sent to the EIS via a query. By analogy, an SQL
SELECT query specifies in the input which columns are expected in the records
that are retrieved.
Accessing this feature is done via the method:

public Statement createStatement()
The following com.hp.ov.cit.connector.cci.Statement interface is used:

public interface Statement
{
...
public ObjectResultSet executeQuery(ObjectRecord prototype) throws Resourc
eException;
}
}

The next() and getObjectRecord() methods are used to iterate through the
result set to retrieve the data.

Connect-It 3.80 - SDK | 23

public interface ObjectResultSet
{
public boolean next();
public ObjectRecord getObjectRecord();
public void close() throws ResourceException;
}

Schemas
Creating a piece of data from design-time metadata:

Creating an interaction with data that was retrieved:

Querying from a data prototype that was retrieved:

24 | Connect-It 3.80 - SDK

Inbound communications

Configuration
The key class of this communication mode is the one that implements the
javax.resource.spi.ResourceAdapter interface. As outlined by the JCA
specifications, this class must be a JavaBean.The fields of this JavaBean object
represent information that is required by the connection regardless of the client.

Connection
The class that implements the javax.resource.spi.ActivationSpec interface
represents the information required to establish a client connection. As for the
javax.resource.spi.ResourceAdapter class, it must be a JavaBean object.

Exchange
The EIS initiates the exchange. The connector acts as an event listener. When
events are received, the connector notifies the client via the
javax.resource.spi.endpoint.MessageEndPointFactory object passed as parameter
when it was started. This allows it to create a ConnectionListener object whose
interface is:

public interface ConnectionListener extends MessageListener
{
public void onException(Exception exception);
public ObjectRecord onRecord(ObjectRecord record);
}

Schemas
Retrieving connection information (design-time):

Connect-It 3.80 - SDK | 25

Life cycle of the ResourceAdapter class:

26 | Connect-It 3.80 - SDK

To use the connector with Connect-It you must first create a deployment file.
The SDK uses its own deployment descriptor file and not the ra.xml descriptor
from the JCA standard.This XML file is based on the context notion introduced
by the Spring framework. It must be named designtime-beans.xml and
saved to the root of the connector's JAR archive.
The following information is included:
n Complete name of the

com.hp.ov.cit.connector.spi.designtime.DesignTimeFactory class.
n Complete name of the javax.resource.spi.ResourceAdapter class. For outbound

communications, the javax.resource.spi.ManagedConnectionFactory class
is implemented.
An example is given below:

<beans>

<bean id="designTimeFactory" class="com.mycompany.myeis.MyEisDesignTime
Factory">
<property name="resourceAdapter">
<ref bean="resourceAdapter"/>
</property>
</bean>

<bean id="resourceAdapter" class="com.mycompany.myeis.MyEisManagedConne
ctionFactory"/>

</beans>

Connect-It 3.80 - SDK | 27

Deployment4

28 | Connect-It 3.80 - SDK

A certain number of configuration files are required by Connect-It in order to
use the connector. This name must be unique among all existing Connect-It
connectors.We recommend that you follow "Java" package naming conventions.
In this example we will use the name com.mycompany.myeis for our connector.

Description file

This is main file for the actual description of the connector. It groups all the
properties related to the connector such as its unique name, the references to
file names described after and its activation key. The extension of this file must
be .dsc. We recommend that you name the file myeis.dsc.

Example:

{CONNECTORDESC
InternalName=com.mycompany.myeis
ParentInternalName=Application_connectors
Name=My EIS
HTMLHelp=This is a description of my connector
Key=XX
XXXXXXXXX
IconFile=myeis.bmp
Sched.CanUsePointer=0
Cnx.HasCnx=1
Wizard.File=myeis-wizard.xml
Java.Class=com.hp.ov.cit.container.RAContainer
Java.Configuration.File=myeis-config.xml

Connect-It 3.80 - SDK | 29

Configuration5

Java.JVMConfiguration.File=myeis-jvmconf.xml
Java.HasOptions=1
}

Icon file

You must supply a 16x16 bitmap to view an icon in the connectors navigation
tree. This file can be named myeis.bmp.

Configuration file

This file contains the set of JavaBeans properties that must be configured by
the user. This file is also used to specify which properties will be included in
the scenario configuration that is exported via this command line:

conitsvc -export[:<property file>] <scenario>

Example of a myeis-config.xml file:

<configuration>
<property name="ra_url" type="String" export="true">
<definition>
<default/>
</definition>
<export>
<description>URL</description>
</export>
</property>
<property name="cs_userName" type="String" export="true">
<definition>
<default/>
</definition>
<export>
<description>User</description>
</export>
</property>
</configuration>

Wizard file

An XML-format wizard definition file for the connector.

30 | Connect-It 3.80 - SDK

It is used to describe the pages that are used to configure the connector in
Connect-It. It contains a connection definition page. Interface controls are also
described in terms of notions (text, checkbox, button), labels, position, etc.
All JavaBeans properties that must be configured by the user must be in this
file. The following naming convention must be used:
n The prefix ra_ must be added to each property that is related to the

implementation of the javax.resource.spi.ResourceAdapter interface.
n The prefix mdcs_ must be added to each property that is related to the

implementation of the designtime (metadata)
javax.resource.cci.ConnectionSpec interface.

n The prefix cs_ must be added to each property that is related to the
implementation of the javax.resource.cci.ConnectionSpec interface.

n The prefix as_ must be added to each property that is related to the
implementation of the javax.resource.spi.ActivationSpec interface.

Example of a myeis-wizard.xml file:

<wizard>

<page name="pgConnector">
<title>Connection</title>

<description>Configure connection to MyEIS</description>

<description>Enter the URL</description>
<control type="Textbox" name="ra_url">
<Value>$(GetValue[ra_url])</Value>
<label>URL</label>
<XOffset>2500</XOffset>
<labelLeft>1</labelLeft>
<Mandatory>1</Mandatory>
<MandatoryMsg>You must specify an URL value</MandatoryMsg>
<bind>Value</bind>
</control>

<description>Enter the user name</description>
<control type="Textbox" name="cs_userName">
<Value>$(GetValue[cs_userName])</Value>
<label>User</label>
<XOffset>2500</XOffset>
<labelLeft>1</labelLeft>
<bind>Value</bind>
</control>

<Transition>
<To script="true">{trConnector}</To>
</Transition>
</page>

</wizard>

Connect-It 3.80 - SDK | 31

JVM configuration file

You must provide the application with the classpath configuration file in order
to start the JVM.
Connect-It requires a minimum configuration regardless of the connector built
using the SDK. This configuration is described in the file located at
CONNECT-IT_HOME/config/shared/jca-container-jvmconf.xml. It must be
included in your own JVM configuration file.
Example of a myeis-jvmconf.xml file:

<jvmConfiguration id="com.mycompany.myeis">
<jarLocation>./com.mycompany.myeis</jarLocation>
<jars>
<jar groupId="com.mycompany.myeis" optional="false" provided="true"
version="1.00" versionNeeded="true">myeis</jar>
</jars>
<import>../shared/jca-container-jvmconf.xml</import>
</jvmConfiguration>

32 | Connect-It 3.80 - SDK

The connector must be packaged with the Connect-It installation in the following
manner:

Connect-It/
|
|- lib/
| |- com.mycompany.myeis/
| |- myeis-1.00.jar
| |- myeis-3rdparty1.jar
| |- myeis-3rdparty2.jar
| |- ...
|
|- config/
|- com.mycompany.myeis/
|- myeis.bmp
|- myeis-jvmconf.xml
|- myeis.dsc
|- myeis-wizard.xml
|- myeis-config.xml

Note:

To ensure that names are unique, the connector's configuration and archive directories
must follow the "Java" package naming conventions. The name
com.mycompany.myeis in the example above follows these conventions.

Connect-It 3.80 - SDK | 33

Packaging6

Java archive

The following structure must be used for the myeis-1.00.jar archive:

myeis-1.00.jar
|
|- designtime-beans.xml
|
|- com/
| |- mycompany/
| |- myeis/
| |- MyEisDesignTimeFactory.class
| |- MyEisManagedConnectionFactory.class
| |- MyEisConnectionManager.class
| |- ...
|
|- META-INF/
| |- Manifest.mf

34 | Connect-It 3.80 - SDK

Implementing a connector developed using the SDK, is linked to:
n An SDK access declaration in the Connect-It authorization certificate.
n A key that has been generated for the connector created using the SDK.

Authorization certificate

The authorization certificate activates:
n The runtime that enables the connector created using the SDK to be used.
n The menu used to generate a key for the newly created connector (key used

by the runtime).
 Connect-It - User's guide, Installation chapter, Entering the authorization

certificate.

Generate a key

A key allows the connector to be used.
To generate a key:
1 Launch the Connect-It scenario builder
2 Select Java/ Generate SDK activation key

Connect-It 3.80 - SDK | 35

Use7

3 In the window that is displayed, enter:
n The name of the connector.
n Its mode (production, consumption).

4 The key that is generated must be copied to the description file
 Connect-It Guide - SDK, section Database description file [page 61].

This key is linked to the authorization certification which enables the connector
to be activated and used.

36 | Connect-It 3.80 - SDK

I. Appendix

Connect-It 3.80 - SDK | 37

AppendixI

38 | Connect-It 3.80 - SDK

This section provides information about the syntax used for the connector's
configuration wizard's XML file.

General structure

A wizard is made up of pages. Each pages can have input fields, labels and
descriptions. Each page defines a transition to the next page.

<wizard>

<include/>
<property/>
<page>
<transition/>
</page>

</wizard>

Wizard element

The root element must be wizard.
Possible sub-elements are:

Connect-It 3.80 - SDK | 39

Wizard file8

DescriptionOptionalElement
Used to include definitions
from external files.

Yesinclude

Used to define scripted proper-
ties.

Yesproperty

Defines pages that make up
the wizard.

Yespage

Include element

Used to include a file. The syntax is as follows:

<include type="..." [basedir="..."]>the file name</include>

DescriptionOptionalAttribute
Defines the inclusion typeNotype
Defines the directory of the file
to include

Yesbasedir

Used to ignore or not to ignore
the element

Yesincluded

The inclusion types are:
n string
n wizard

String inclusion type
Used to include a resources file (localization strings). By default, the path of
the file to include is relative to the current file.
Strings that are defined in this file are accessed using the following syntax:
$(IDS_NAME_OF_THE STRING).
For example:
Let's examine the myeisstrings.str file

EIS_TITLE, "Title for the EIS"
EIS_DESCRIPTION, "Description of the EIS"
....

The resources are used in the wizard file by including the string IDs:

<wizard>
<include type="string">eisstrings.str</include>
<title>$(IDS_EIS_TITLE)</title>
...
</wizard>

40 | Connect-It 3.80 - SDK

Note:

n Access to the resources is only effective for elements defined after the inclusion.
n The inclusion is taken into account when the wizard is generated. Its value cannot

be scripted.

Wizard inclusion type
Used to include another wizard file. The elements that can specify this type of
inclusion are wizard and page.
Parameters can be sent to the included wizard and can be accessed using this
syntax:

$(GetValue[NAME_OF_THE PARAMETER])

For example, to send the parameter myParameter whose value is myValue to
the myIncludedWizard.xml wizard, the following syntax is required:

<include type="wizard" myParameter="myValue>myIncludedWizard.xml</include>

Page element

A wizard is made up of pages. Possible attributes are:

DescriptionOptionalAttribute
Defines the name of the page.

Each page name is unique.

Noname

Used to ignore or not to ignore
the element.

Yesincluded

Possible sub-elements are:

DescriptionOptionalElement
Defines the transition to the
next page.

NoTransition

Use to add a description to the
page, a page section or a con-
trol.

YesDescription

Defines the title of the page.YesTitle
Used to define scripted proper-
ties.

Yesproperty

Connect-It 3.80 - SDK | 41

DescriptionOptionalElement
Defines the controls on the
page.

Yescontrol

Defines line breaks.Yeslinebreak
Defines a horizontal separator.Yesseparator

<page name="..." included="...">

<title/>
<image/>
<description/>
<property/>
<control/>
<linebreak/>

<separator/>
<transition/>

</page>

Note:

The first page of a connector's wizard must be named pgConnector.

Property element

A property is a basic value type such as string or long. Possible attributes are:

DescriptionOptionalAttribute
Defines the name of the prop-
erty.

Noname

Used to ignore or not to ignore
the element.

Yesincluded

Used to specify scripted con-
tent.

Yesscript

Example:

<page name="myPage">
<property name="IsVisible" type="Long" script="true">RetVal = 1</property>
</page>

<property name="DelimString" script="true">RetVal = ""</property>

A property is used via the property full path syntax which references the
complete path (without the root) of the property in the XML tree structure.

42 | Connect-It 3.80 - SDK

Example:

<visible script="true">{myPage.IsVisible} <> 1</visible>
<value script="true">{DelimString}</value>

Control element

Used to define a graphical control. Possible attributes are:

DescriptionOptionalAttribute
Defines the name of the prop-
erty.

Noname

Defines the control type.

It must be unique for the page.

Notype

Used to ignore or not to ignore
the element.

Yesincluded

Used to specify scripted con-
tent.

Yesscript

Possible sub-elements, regardless of the control type, are:

DescriptionTypeOptionalElement
Specifies whether or
not the control is vis-
ible.

booleanYesvisible

Specifies whether or
not the control is
grayed out.

booleanYesenabled

Specifies whether or
not the control can be
edited.

booleanYesreadonly

Specifies whether or
not the control re-
quires a value.

booleanYesmandatory

Specifies the error
message if no value is
provided when the
mandatory attribute
is present and is equal
to 1.

stringYesmandatorymsg

Defines text above the
control.

stringYeslabel

If '1' or 'true', posi-
tions the label to the
left.

booleanYeslabelleft

Connect-It 3.80 - SDK | 43

DescriptionTypeOptionalElement
Defines the space to
the left of the control.

longYesxoffset

Specifies the control
elements whose val-
ues were taken into
account when its asso-
ciated page was valid-
ated.

Example:
<bind>value</bind>
used to take into ac-
count the value of the
element <value>.

stringYesbind

Used to define scrip-
ted properties.

stringYesproperty

Other sub-elements are available depending on the type of control that is
involved. The main controls and their sub-elements are:

DescriptionTypeSub-elementControl type
Value of the input
text.

stringvaluetextbox

0 = single line

otherwise percentage
of the control size

longmultiline

Value specifying
whether or not the
field is encrypted. 1 =
encrypted field

booleanpassword

Specifies whether or
not the control is
checked.

booleanvaluecheckbox

Control labelstringcaption
Value of the selected
item.

stringvaluecombobox

List of possible items
(label=value) separ-
ated by commas.

Example: <val-
ues>Eng-
lish=en,French=fr<val-
ues>

stringvalues

Numerical value for
the control.

longvaluenumbox

Specifies the minim-
um value.

longminvalue

44 | Connect-It 3.80 - SDK

DescriptionTypeSub-elementControl type
Specifies the maxim-
um value.

longmaxvalue

Control labelstringcaptionlabel
Path of the selected
file.

stringvaluefileedit

Defines the editing
type:
n 1 = OPEN

n 2 = SAVE

n 4 = OPEN_DIR

n 8 = SAVE_DIR

n 16 = APPEND

longopenmode

Defines a file filter.

Example: <fil-
ters>XML files
(*.xml)|*.xml|XMLS-
chema files
(*.xsd)|*.xsd|</fil-
ters>

stringfilters

Default extension to
use.

Example: <de-
fext>txt</defext>

stringdefext

Defines the id of the
file selection control.
Several controls can
use the same id. This
id is used to save the
path of the last selec-
ted file.

stringserializationId

Value of the selected
item.

stingvalueoptionbuttons

List of possible items
(label=value) separ-
ated by commas.

Example: <val-
ues>ISO-8859-
1=0,UTF-8=1,Shift-
JIS=2<values>

stringvalues

Specifies whether or
not the control has a
frame.

booleanborder

Example:

<control type="TextBox" name="Server">
<value>$(GetValue[Server])</value>

Connect-It 3.80 - SDK | 45

<label>$(IDS_SERVER_LABEL)</label>
<xoffset>2500</xoffset>
<labelleft>1</labelleft>
<bind>value</bind>
</control>

Bind attribute
The bind attribute is used to link a control to a configuration property of a
connector. Currently, only the value value is supported by the SDK. When it
is specified for a control named 'cs_myprop', the value of the control's <value>
element is sent to the connector as the value for the 'cs_myprop' configuration
property (as the value of the 'myprop' property of the connector's
ConnectionSpec property).

Password management
Managing configuration properties such as passwords requires specific handling
in the wizards. If the property containing the password is 'cs_password', the
name of the wizard control for this property must be 'clearcs_password'.
Example:

<control type="TextBox" name="clearcs_password">
<value>$(GetValue[cs_password])</value>
<password>1</password>
<label>$(IDS_PASSWORD_LABEL)</label>
<xoffset>2500</xoffset>
<labelleft>1</labelleft>
<bind>value</bind>
</control>

Linebreak and separator elements

These elements are used to format the wizard page. Possible attributes are:

46 | Connect-It 3.80 - SDK

DescriptionOptionalAttribute
Used to ignore or not to ignore
the element.

Yesincluded

Transition element

Every page must have a transition element. This element specifies what the
next page is. Possible attributes are:

DescriptionOptionalAttribute
Used to specify scripted con-
tent.

Yesscript

Examples:

<transition><to>nextPage</to></transition>

<transition>
<to script="true">
if($(GetValue[ShowAdvancedWiz]) = 1) then
RetVal = "pgAdvanced"
else
RetVal = {trConnector}
end if
</to>
</transition>

Note:

The transition of the last page of a connector's wizard must be equal to the scripted
value {trConnector}.

Script attribute

Wizards support simple scripts written using Basic syntax. These scripts are
evaluated when the wizard is executed.
The script attribute is available for all elements containing a value. It is used
to specify the value of the element as a scripted expression which is evaluated
when the value of the attribute is true.
Example:

<... script="true">
if {Protocol.Value} = "ftp" or {Protocol.Value} = "http" then

Connect-It 3.80 - SDK | 47

RetVal = 1
else
RetVal = 0
end if
</...>

In Basic scripts used in the wizards, the syntax {...} references the value of a
wizard control or property. These values are referenced using the complete
path (without the root) of the property in the XML tree structure.

Included attribute

This attribute is available for most elements. It is optional. It contains a boolean
value which specifies if the element in question is to be ignored or not.
The different values that this attribute can have are:
n 0 or 1 (or any other that is not 0)
n false or true
n An expression that uses the and, or and not operators.
When the value of this attribute is false, the contents of the element to which
it belongs will be ignored.

Note:

The value of this attribute is evaluated when the wizard is generated and not when
it is executed. Therefore, including an element cannot depend on the value of a
control or any other scripted expression. The value of this attribute is generally
evaluated using the GetValue function.

Functions

The functions defined below are not Basic script functions. They are functions
that are evaluated when the wizard is generated and not when it is executed.
Format of the functions:

$(FunctionName[param1,param2<,optionalparam>,...])

48 | Connect-It 3.80 - SDK

GetValue function
This function is used to dynamically retrieve a value from the wizard. This
function is the most used wizard function since it allows the current value of
a connector's configuration property to be retrieved.
The syntax is as follows:

$(GetValue[name,default])

The name parameter specifies the name of the value to find. The default
parameter defines a default value if the current value is not found.
Several existing values have predefined names:
n OSUnix: Returns 1 if the platform is Unix and 0 otherwise.
n OSWindows: Returns 1 if the platform is Windows and 0 otherwise
n WizardDir: Returns the complete path of the installation wizard directory

(CONNECT-IT_HOME/config/wiz)
n NameID: Returns the name of the connector
n ShowAdvancedWiz: Returns 1 if the wizard is in advanced mode and 0

otherwise
n ConfigDir: Returns the complete path of the connector's configuration

directory
When the GetValue function is called, the search for the value is done on:
1 Specific values defined in the description file.
2 The connector's configuration properties.
3 Predefined values.
Example:

<value>$(GetValue[mylogin])</value>

<property name="trConnector" script="true">
if($(GetValue[Cnx.HasCnx, 1]) = 1 then
RetVal = "pgConnection"
else
...
</property>

<control type="checkbox" name="UseWindowsRegistry" included="$(GetValue[OS
Windows])">
<value>$(GetValue[UseWindowsRegistry])</value>
<label>$(IDS_SERVER_LABEL)</label>
<xoffset>2500</xoffset>
<labelleft>1</labelleft>
<bind>value</bind>
</control>

Connect-It 3.80 - SDK | 49

Dump function
This function is used to format a string for use in a script.The string is enclosed
by quotation marks and quotation marks in the string are escaped.This function
is very useful in scripts that retrieve strings using the GetValue function or
with strings from an .str file. The syntax is as follows:

$(Dump[string])

Example:

<value script="true">RetVal = $(Dump[$(GetValue[theValue])])</value>

EspaceCommas function
This function is used to escape commas in a string. The function can be used
when the string is a sub-element of a string that uses a comma as character
separator (for example, the values element of the optionbuttons control). The
syntax is as follows:

$(EscapeCommas[string])

File function
This function is used to retrieve the full path of a file. The syntax is as follows:

$(File[name,basedir])

The name parameter specifies the file's name. The basedir parameter defines
the file's directory. The default directory is the wizard's directory.
Example:



50 | Connect-It 3.80 - SDK

This section provides information about the syntax used for the configuration
file.
The file is structured in the following manner:

configuration>

<property>
<definition>
<default/>
</definition>
<export>
<description/>
</export>
</class>
</property>

<property>
<definition>
<default/>
</definition>
<export>
<description/>
</export>
</class>
</property>

</configuration>

Connect-It 3.80 - SDK | 51

Configuration file9

Configuration element

The root element must be configuration. Possible sub-elements are:

DescriptionOptionalElement
Defines one or more properties
required by the connector's
Java code.

Yesproperty

Property element

Specifies a Java configuration property.
Possible attributes are:

DescriptionTypeOptionalAttribute
Defines the name of
the property.

stringNoname

Specified the property
type.

stringNotype

Specifies whether or
not the property needs
to be taken into ac-
count during export (-
export option).

BooleanYesexport

Possible sub-elements are:

DescriptionOptionalElement
Property definition.YesDefinition
Definition of the export.Yesexport
Definition of the corresponding
Java class.

Yesclass

Definition element

Has the following sub-elements:

52 | Connect-It 3.80 - SDK

DescriptionTypeOptionalElement
Specifies the default
value that is used
when initializing the
wizard.

stringYesdefault

Export element

Has the following sub-elements:

DescriptionTypeOptionalElement
Specifies the descrip-
tion used when the
property is exported.

Appears as a comment
in the exported proper-
ties file.

stringYesDescription

Class element

A Java class is implicitly associated with each property type. This element lets
you overload the implicit class of the property type.
In the example below, a String property type is declared and corresponds to a
JavaBean property in the java.net.URI class.

<property name="myURIProperty" type="String" export="true">
<class>java.net.URI</class>
</property>

Property types

The following table lists the supported property types and their default
JavaBean property type.

JavaBean TypeType
java.lang.BooleanBoolean
java.lang.ByteByte
java.lang.ShortShort
java.lang.IntegerLong

Connect-It 3.80 - SDK | 53

JavaBean TypeType
java.lang.LongLingInt
java.lang.FloatFloat
java.lang.DoubleDouble
java.lang.StringString
java.lang.StringMemo
java.util.DateDate
java.sql.TimeTime
java.sql.TimestampTimestamp
java.lang.StringPassword
java.io.FileFile
java.net.URLUrl

Please consult the JavaBeans documentation for the complete list of supported
JavaBean types.

54 | Connect-It 3.80 - SDK

This section provides information about the syntax used for the JVM
configuration file.
The file is structured in the following manner:

<jvmConfiguration>

<jarLocation/>
<jarLocation/>

<jars>
<jar/>
<jar/>
<jar/>
</jars>

<jvmOptions>
<jvmOption/>
<jvmOption/>
</jvmOptions>

<import/>
<import/>

</jvmConfiguration>

Connect-It 3.80 - SDK | 55

JVM configuration file10

jvmConfiguration element

The root element must be jvmConfiguration.
Possible attributes are:

DescriptionTypeOptionalAttribute
Defines a unique
identifier for the con-
figuration.

stringNoid

Possible sub-elements are:

DescriptionTypeOptionalElement
Defines the paths of
the classpath used by
the connector.

stringYesjarLocation

Defines the archives
used by the connector.

Yesjars

Used to include a
classpath from an ex-
ternal file.

stringYesimport

Used to define JVM
options.

YesjvmOptions

jarLocation element

The connector's classpath comprises one or more paths which reference the
different archives required for code execution. For each connector it is possible
to define the paths to search for the archives. The path value is either relative
to the Connect-It installation lib directory or an absolute path. The archives
are searched in the order that the paths are declared.
Example:

<jarLocation>./com.mycompany.myeis</jarLocation>
<jarLocation>c:/myEIS/myEISPath</jarLocation>

By default, if no jarLocation element is specified, the path used is the Connect-It
installation lib directory.

56 | Connect-It 3.80 - SDK

Jars element

Possible sub-elements are:

DescriptionTypeOptionalElement
Defines an archive
entry for the
classpath.

stringYesjar

Jar element
Possible attributes are:

DescriptionDefaultTypeOptionalAttribute
Defines a group
identifier for the
archive.

stringNogroupId

Specifies if the
archive in question
is from one of the
classpath search
paths or if the path
needs to be provided
by the user.

The value 'true' indic-
ates that it is sup-
plied by the installa-
tion (search paths).
In this case, the 'op-
tional' attribute is
ignored.

truebooleanYesprovided

Connect-It 3.80 - SDK | 57

DescriptionDefaultTypeOptionalAttribute
Specifies if the
archive is optional.

The value 'false' indic-
ates that the archive
must be present in
one of the classpath
search paths, or in
the additional
classpath defined in
the application
('Java/ Configure the
JVM' menu) or in the
connector (on the
wizard's 'Configure
the JVM' page).

falsebooleanYesoptional

Used to append
archive version to
the archive.

The full name of the
archive becomes
name-version.jar.

stringYesversion

Indicates if archive
must be searched us-
ing its name and
version.
n The value 'true'

indicates that the
search is on the
name and the
version.

n The value 'false'
indicates that the
search is on the
name and the
version, then just
the name for
each path.

truebooleanYesversionNeeded

The value must reference the name of the archive to be added.
Sample classpath entry for the xercesImpl-2.6.2.jar library that is provided
with the application:

<jar groupId="xerces" optional="false" provided="true" version="2.6.2" ver
sionNeeded="true">xercesImpl</jar>

58 | Connect-It 3.80 - SDK

jvmOptions element

This element is used to define additional JVM options
Possible sub-elements are:

DescriptionTypeOptionalElement
Defines a JVM option.stringYesjvmOption

Example:

<jvmOptions>
<jvmOption>-Xmx125m</jvmOption>
<jvmOption>-Dcom.sun.management.jmxremote</jvmOption>
</jvmOptions>

Import element

In addition to the connector's configuration, it is possible to provide additional
JVM configuration elements. Theses elements are declared in one or more files
which use the same syntax. Depending on where the import declaration is
made, the declarations can come before or after the current definitions. The
value must reference the relative path of the file to import.
Example:

<import>../shared/jca-container-javaconf.xml</import>

Connect-It 3.80 - SDK | 59

60 | Connect-It 3.80 - SDK

This section provides information about the syntax used for the description file.

File structure

The file is structured in the following manner:

{CONNECTORDESC
//property list
//property name=property value
Name=
InternalName=
...
}

Properties

The following table list the connectors' properties:

DescriptionDefault valueOptionalTypeProperty
Common proper-
ties

Connect-It 3.80 - SDK | 61

Database description file11

DescriptionDefault valueOptionalTypeProperty
Connector name
that is displayed.

NostringName

Internal name of
the connector
(unique).

NostringInternalName

Name of the par-
ent node that it
belongs to.

YesstringParentInternal-
Name

HTMLHelp
string yes De-
scription in html
format.

Activation keyNostringKey
Icon

Relative path to
the connector's
icon (.bmp)

NostringIconFile

Schedulers
The SDK does
not provide sup-
port for schedule
pointers. This
value must be set
to 0.

Sched.CanUsePoint-
er=0

trueYesbooleanSched.CanUsePoint-
er

Cache
The SDK does
not provide sup-
port for the
metadata cache.
This value must
be set to 0.

Cache.Support-
Cache=0

trueYesbooleanCache.Support-
Cache

Timezone
The SDK does
not provide sup-
port for server
time differences.
This value must
be set to 0.

Tmz.HandleServer-
Delay=0

trueYesbooleanTmz.HandleServer-
Delay

External formats

62 | Connect-It 3.80 - SDK

DescriptionDefault valueOptionalTypeProperty
The SDK does
not provide sup-
port for extended
formats. This
value must be set
to 0.

ExtFmt.Use=0

trueYesbooleanExtFmt.Use

Wizard
Relative path of
the Wizard file.

YesstringWizard.File

Java
Specifies the con-
nector's Java
class. Must be:

Java.Class=com.
hp.ov.cit.conta
iner.RAContaine
r

NostringJava.Class

Relative path of
the configuration
file.

YesstringJava.Configura-
tion.File

Relative path of
the JVM configur-
ation file.

YesstringJava.JVMConfig-
uration.File

This value should
be set to 1.
Java.HasOp-
tions=1

falseYesstringJava.HasOptions

Miscellaneous

Connect-It 3.80 - SDK | 63

DescriptionDefault valueOptionalTypeProperty
If the properties
in this list are
modified, the
connector must
be redeployed.

Example:

RedeployOnChang
e=cs_CacertsFil
e cs_KeystoreFi
le as_KeystoreP
assword

YesstringRedeployOn-
Change

Example

Below is a sample configuration file for an outbound type connector built using
the SDK.

{CONNECTORDESC
Name=MyEIS
InternalName=com.mycompany.myeis
ParentInternalName=com.mycompany
HTMLHelp=Connector to interact with my eis
Key=XX
XXXXXXXXX
IconFile=myeis.bmp

EventDriven=0
SupportParallelization=1
Transac.CanSupportTransactions=1
Cnx.HasCnx=1
Cnx.CanDisableReconnection=0
Wizard.File=myeis-wizard.xml
Java.Class=com.hp.ov.cit.container.RAContainer
Java.Configuration.File=myeis-config.xml
Java.JVMConfiguration.File=myeis-jvmconf.xml
Java.HasOptions=1

// The following properties must always have these values
Sched.CanUsePointer=0
Cache.SupportCache=0
Tmz.HandleServerDelay=0
ExtFmt.Use=0
}

64 | Connect-It 3.80 - SDK

Additional information

Multiple descriptions
A description file can contain several descriptions each of which corresponds
to a CONNECTORDESC section. Although it is recommended to write a single
description file for each connector, including several descriptions in the same
file can be useful when defining connector categories or when managing different
versions of the same EIS.

Connector hierarchy
The ParentInternalName property is used to specify the internal name of the
parent node, or category, in the connector hierarchy. Categories are also defined
in description files in a more simplified format:

{CONNECTORDESC
InternalName=...
ParentInternalName=...
Name=...
HTMLHelp=...
IconFile=...
}

If no ParentInternalName property is specified, the category (or the connector)
will be located at the root of the hierarchy.
Connect-It has a certain number of predefined categories:

Internal nameCategory
Application_connectorsApplication connectors
Protocol_connectorsProtocol connectors
ERP_connectorsERP connectors
GatewaysInventory connectors

Connect-It 3.80 - SDK | 65

66 | Connect-It 3.80 - SDK

JavaBeans

Supported types
A certain number of interfaces from the JCA specifications must be implemented
as JavaBeans. The following interfaces are used by the SDK:

javax.resource.spi.ManagedConnectionFactory
javax.resource.spi.ResourceAdapter
javax.resource.cci.ConnectionSpec
javax.resource.spi.ActivationSpec

The following table lists the value types that are authorized for their properties:

java.lang.Boolean
java.lang.String
java.lang.Integer
java.lang.Double
java.lang.Byte
java.lang.Short
java.lang.Long
java.lang.Float
java.lang.Character

The SDK extends this list to other frequently used types. The following types
are supported:

Connect-It 3.80 - SDK | 67

Java code12

java.util.Date
java.sql.Time
java.sql.Timestamp
java.io.File
java.net.URL
java.net.URI

Validation
In some cases, the value that a JavaBean object property can have depends on
another property. Since the object does not control the order in which the
properties are updated, the SDK provides an alternative to this problem via
the interface.

public interface ValidatingBean
{
public void validate() throws InvalidPropertyException;
}

This interface is used to manage a validation or initialization phase on the
JavaBean that implements it once all of its properties have been updated.

Logging

The SDK uses the Jakarta Commons Logging (JCL) framework to log messages
in the Connect-It log. Include the following code to use this function from a
Java class:

package com.mycompany.myeis;

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

public class MyEISClass
{
private static final Log log = LogFactory.getLog(MyEISClass.class);

...
}

JCL defines a priority level for each message. The following levels are used by
Connect-It:
n error - Error messages
n info - Information
n warn - Warning messages
n debug - Debug messages Logged only when 'debug' mode is activated.

68 | Connect-It 3.80 - SDK

To log messages to the Connect-It log, use these org.apache.commons.logging.Log
interface methods:

log.error(Object message);
log.error(Object message, Throwable t);
log.warn(Object message);
log.warn(Object message, Throwable t);
log.info(Object message);
log.info(Object message, Throwable t);
log.debug(Object message);
log.debug(Object message, Throwable t);

Internationalization

The SDK uses Java's standard internationalization mechanism. To implement
this mechanism with your code, you will need to create one or more properties
files that will contain the strings required for internationalization.

Example
com/mycompany/myeis/i18n/mymessages.properties file

connection.error = Connection error.
execution.failed = Execution failed.

com/mycompany/myeis/i18n/mymessages_fr.properties file

connection.error = Erreur de connexion.
execution.failed = Echec de l'exécution.

com/mycompany/myeis/MyEISClass.java file

package com.mycompany.myeis;

import java.util.ResourceBundle;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

public class MyEISClass
{
private static final ResourceBundle bundle = ResourceBundle.getBundle("com
.mycompany.myeis.i18n.mymessages");
private static final Log log = LogFactory.getLog(MyEISClass.class);

public void execute()
{
try
{
...
}

Connect-It 3.80 - SDK | 69

catch(Exception e)
{
log.error(bundle.getString("execution.failed"), e);
}
}
}

70 | Connect-It 3.80 - SDK

	Introduction
	Who is this guide intended for?
	Terminology
	General information
	SPI Extensions
	CCI Extensions

	1.Data exchange
	Data and data types
	Models
	Class/Instance model
	Class
	Instance
	Simple types
	Example

	XMLSchema/XML model

	2.Design-Time
	DesignTimeFactory interface
	Communication mode
	Design-time connection
	Retrieving metadata
	Example

	ObjectTypeProvider interface
	Inbound communications
	Outbound communications
	Navigation

	3.Runtime
	Outbound communications
	Configuration
	Connection
	Exchange
	Request/Response mode
	Query mode
	Schemas

	Inbound communications
	Configuration
	Connection
	Exchange
	Schemas

	4.Deployment
	5.Configuration
	Description file
	Icon file
	Configuration file
	Wizard file
	JVM configuration file

	6.Packaging
	Java archive

	7.Use
	Authorization certificate
	Generate a key

	I.Appendix
	8.Wizard file
	General structure
	Wizard element
	Include element
	String inclusion type
	Wizard inclusion type

	Page element
	Property element
	Control element
	Bind attribute
	Password management

	Linebreak and separator elements
	Transition element
	Script attribute
	Included attribute
	Functions
	GetValue function
	Dump function
	EspaceCommas function
	File function

	9.Configuration file
	Configuration element
	Property element
	Definition element
	Export element
	Class element
	Property types

	10.JVM configuration file
	jvmConfiguration element
	jarLocation element
	Jars element
	Jar element

	jvmOptions element
	Import element

	11.Database description file
	File structure
	Properties
	Example
	Additional information
	Multiple descriptions
	Connector hierarchy

	12.Java code
	JavaBeans
	Supported types
	Validation

	Logging
	Internationalization
	Example

	Index

