

HP OpenView
Service Quality Manager

SQL Service Adapter Toolkit

Installation, Configuration and User’s Guide

Edition: 1.4

March 2007

© Copyright 2007 Hewlett-Packard Company, L.P.

2

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed as constituting an
additional warranty. HP shall not be liable for technical or editorial errors or omissions contained
herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor's standard commercial license.

Copyright Notices

© Copyright 2004-2005, 2007 Hewlett-Packard Development Company, L.P.

Trademark Notices

Adobe®, Acrobat®, and PostScript® are trademarks of Adobe Systems Incorporated.

HP-UX Release 10.20 and later and HP-UX Release 11.00 and later (in both 32 and 64-bit
configurations) on all HP 9000 computers are Open Group UNIX 95 branded products.

Java™ and all Java based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.

Microsoft®, Windows®, Windows NT® and Windows® XP are U.S. registered trademarks of
Microsoft Corporation.

Oracle® is a registered US trademark of Oracle Corporation, Redwood City, California.

UNIX® is a registered trademark of The Open Group.

3

Contents

Chapter 1 ...9

Introduction...9
1.1 Service Quality Manager..10
1.2 SQL SA and SQL SA Toolkit product components ...11
1.2.1 SQL Service Adapter ..11
1.2.2 SQL Service Adapter customization...18

Chapter 2 ...19

SQL SA Toolkit installation..19
2.1 Software Requirements ...19
2.2 Hardware Requirements ..19
2.3 Installing the Software..20
2.3.1 Installing on Windows ...20
2.3.2 Installing on HP-UX...23
2.3.3 Uninstalling the Software on Windows ...26
2.3.4 Uninstalling the Software on HP-UX...28

Chapter 3 ...31

SQL SA Customization process ..31
3.1 Validation check list, before customization project ..32
3.1.1 SQL database cookbook ..32
3.2 Setting up the SQL SA Toolkit ...33
3.2.1 Configuring the SQL SA Toolkit license ...35
3.3 Starting the SQL SA Toolkit ...36
3.4 Creating a customization project..37
3.5 Creating a connection ..39
3.6 Modeling/Mapping a DFD ..41
3.6.1 Importing a DFD from a Service Designer XML file....................................41
3.6.2 Defining a Data Feeder using the Toolkit ...43
3.6.3 Mapping the DFD parameters ..45
3.6.4 Mapping the DFD properties...48
3.7 Defining the collection request...52
3.7.1 Mapping the timestamp column..52
3.7.2 Mapping customer or subscriber ..55
3.7.3 Modifying the collection query ..57
3.8 Defining the DFI discovery request..59
3.9 Generating the Customized SA ...60
3.10 Saving the SQL SA Custom Project ..62
3.11 Testing the customization ..63
3.12 Modifying the customization...63

4

Chapter 4 ...65

SQL SA customization installation and configuration65
4.1 Installing a customized SQL SA...65
4.1.1 Software requirements..65
4.1.2 Installing on HP-UX...65
4.1.3 Installing on Windows ...66
4.1.4 Configuring the SQM Kernel...66
4.2 Configuring a customized SQL SA application ..67
4.2.1 Configuring on HP-UX ..67
4.2.2 Configuring on Windows...70
4.2.3 Configuring the JDBC driver CLASSPATH ..72
4.2.4 Configuring the SQL SA Runtime license...73
4.2.5 Advanced application configuration..74
4.3 Discovering and loading DFIs ..80
4.3.1 Raw discovery phase..82
4.3.2 Filtering phase ..84
4.3.3 Loading phase ..86
4.3.4 One shot discovery and loading ...88
4.3.5 Scheduling the DFI discovery ...89
4.4 Starting/Stopping customized SQL SA ..90
4.5 Upgrading a customized SQL SA ..90
4.6 Deployment..91
4.6.1 Application distribution..91
4.6.2 Load balancing..92
4.6.3 Performance tuning...94

Chapter 5 ...97

Advanced customization..97
5.1 Adding synthetics parameters..97
5.2 Creating SQL views ...98
5.2.1 Why creating views?...98
5.2.2 Creating views for SQL SA ...98
5.2.3 How to execute SQL statements (or SQL view creations) on the

database? ...99
5.3 Executing an Oracle PL/SQL function in a SQL SA request101
5.3.1 Why performing an Oracle PL/SQL function? ..101
5.3.2 How performing an Oracle PL/SQL function? ..101
5.4 Generating a Customization Kit using the SQL Toolkit command line..........103

Chapter 6 ...105

Request per DFD...105
6.1 What is the request per DFD? ...105
6.2 Specific customization ...107
6.3 What does it change? ..108
6.4 What are the SQL queries supported? ..109
6.5 As a typical example ..110
6.6 How to build with the SQL SA Toolkit v1.2? ..112

Appendix A..115

5

Installation Directory Structure ...115

Appendix B..117

SQL Database configuration requirements ..117

Appendix C..119

SQL Discovery request file example ...119

Appendix D..121

DFI inventory file example ...121

Appendix E ..123

Filtering script example..123

Appendix F ..127

Troubleshooting..127

Appendix G..129

Acronyms ..129

7

Preface

This document describes how to install and use the hp OpenView Service Quality
Manager (SQM) SQL SA Toolkit. The Toolkit provides a user-friendly tool to
customize an SQL Service Adapter. The SQL Service Adapter, once customized, is
able to connect to an SQL database and collect raw data used by SQM to measure the
quality of service.

This document describes how to:

• Install the SQL SA Toolkit

• Customize an SQL Service Adapter using the Toolkit

• Generate the SQL Service Adapter customization

• Deploy the SQL Service Adapter customization

Intended Audience
This document is intended for Service Quality Manager administrators and
integrators.

Required Knowledge
It is assumed that the reader is familiar with the functionality of Service Quality
Manager and has previous experience of the following:

• System administration and operations

• SQL database administration and operations

• Service Level Management

It is assumed that the reader is familiar with the concepts described in the following
books:

• OpenView Service Quality Manager Overview.

• OpenView Service Quality Manager Service Adapter User's Guide.

• OpenView Service Quality Manager Administration Guide.

Software Versions
The software versions referred to in this document are specified in “SQL Service
Adapter Toolkit Installation”, section 2.1.

8

Typographical Conventions

Courier Font

• Source code and examples of file contents.

• Commands that you enter on the screen.

• Pathnames.

• Keyboard key names.

Italic Text

• File names, programs, and parameters.

• The names of other documents referenced in this manual.

Bold Text

• New terms and to emphasize important words.

Associated Documents
For a full list of Service Quality Manager user documentation, refer to the HP
OpenView Service Quality Manager Overview.

Support
You can visit the HP OpenView support web site at:

http://www.hp.com/managementsoftware/support

This Web site provides contact information and details about the products, services,
and support that HP OpenView offers.

HP OpenView online software support provides customer self-solve capabilities. It
provides a fast and efficient way to access interactive technical support tools needed
to manage your business. As a valued support customer, you can benefit by using the
support site to:

• Search for knowledge documents of interest

• Submit enhancement requests online

• Download software patches

• Submit and track progress on support cases

• Manage a support contract

• Look up HP support contacts

• Review information about available services

• Enter discussions with other software customers

• Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in.
Many also require a support contract.

To find more information about access levels, go to:

http://www.hp.com/managementsoftware/access_level

To register for an HP Passport ID, go to:

http://www.managementsoftware.hp.com/passport-registration.html.

9

Chapter 1

Introduction
The hp OpenView Service Quality Manager (SQM) uses the SQL Service Adapter to
collect Quality of Service (QoS) indicators data from SQL databases and expose them
to SQM. The SQL Service Adapter is a generic Service Adapter. After a
customization and configuration process, this Service Adapter is able to:

• Access an SQL database, tables, and columns,

• Collect data from the database,

• Map data to user defined Data Feeder parameters,

• Publish the collected data into SQM.

This section provides a brief overview of SQM and its acquisition layer, describes the
SQL Service Adapter functionalities and the role of the SQL SA Toolkit.

For a detailed description of SQM, refer to the hp OpenView Service Quality
Manager Overview.

For a detailed description of Service Adapters, refer to the hp OpenView Service
Quality Manager Service Adapter User's Guide.

10

1.1 Service Quality Manager
SQM provides a complete service quality management solution. It consolidates
quality indicators across all domains — telecom, IT networks, servers, and
applications — providing end-to-end visibility on service quality. SQM links service
quality degradations to potential effects on business, allowing network support
personnel to address problems and prioritize actions proactively.

SQM monitors the service quality by aggregating information coming from all data
sources, such as the network, the IT infrastructure, and the service provider’s business
processes. Using this information, service operators can pinpoint infrastructure
problems and identify their potential effects on customers, services, and service level
agreements (SLAs).

Figure 1 shows the main SQM components:

Figure 1 Service Quality Manager Main Components

Service Adapters interface with SQM Core applications to:

• Retrieve configuration information and definitions (for instance, how to connect
to an SQL database as well as the way to map the raw data from SQL to the SQM
parameter format),

• Publish the collected QoS indicators used by the Service Level Management, SLA
Management and Historical Reporting layers.

The SQM Core layers receive and store all measurement data from the Service
Adapters, then calculate the status of each service to determine whether a service has
failed to meet a service level (SL).

Real Time Monitoring
&

Historical Reporting

Definition
&

Configuration

 OpenView Service Quality Manager Core

User
Experience

Mngt System

IT , Network
Infrastructure
Mngt System

Business
Processes

Mngt System

 Gateways GU GUI

Service Level & SLA
Degradations, Violations

sent as Alarms,
Troubles Tickets, emails…

Gateways

Service Level
Management

SLA
Management

Historical
Reporting

Service Adapters Service Adapters Service Adapters

11

1.2 SQL SA and SQL SA Toolkit product
components
This following picture presents the different components of the SQL SA and the role
of the SQL SA Toolkit.

• The SQL SA Toolkit provides a tool to customize an SQL Service Adapter. The

customization consists in defining the configuration parameters that will be used
by the SQL Service Adapter to connect to an SQL database and collect raw data.

• The SQL Service Adapter component provides generic data collection and
discovery functions:

The SQL SA Collection function performs a SQL query to the targeted database to
collect the parameters.

The SQL SA DFI discovery identifies the points of measure on which the values will
be collected. Once discovered, the definition of these points of measure is loaded into
SQM.

1.2.1 SQL Service Adapter
The SQL Service Adapter acts as a bridge between SQM and the SQL database:

collecting QoS data from SQL tables,

exposing the SQL data values through Data Feeder Definition parameters,

Raw data
collection

DFI
discovery

SQL SA Runtime

SQL SA Toolkit

SQL SA
Customization
 files

12

Feeding SQM with the collected indicators.

1.2.1.1 Definitions
The following chapters summarize the main definitions associated to Service
Adapters and applied to the SQL Service Adapter. For more information about these
important SQM notions, please refer to the hp OpenView Service Adapters User’s
Guide.

Data Feeder

A Data Feeder identifies a specific measurement point which provides a set of
indicators (called parameters) about the quality aspect of a resource type (for
example, Response Time from a given service access point).

The SQL Service Adapter can expose one or several Data Feeders. Each Data Feeder
is associated to a SQL database table.

Data Feeder Definition

The Data Feeder Definition (DFD), for an SQL Service Adapter, contains the logical
description of the parameters that are fed by an SQL table.

The following information is mandatory for each DFD:

• A name

• A version

• A set of data feeder definition parameters

A parameter can be considered as global (not linked to any subscriber information) or
customer specific (collected for a particular customer). When a parameter is customer
specific, one parameter can have different values for different customers.

In the case of the SQL Service Adapter, a parameter corresponds to an SQL table
column from which the parameter values are extracted.

If a parameter is customer specific, another column of the same SQL table should
provide the customer or subscriber information associated to the collected data.

• A set of properties.

Properties are not parameters (not performance indicators). They identify the context
of the collected parameters. The value of the property is set at the time of
configuration of the data feeder instance.

• A Measurement Reference Point (MRP) naming schema.

The MRP naming schema is the way to build a unique identifier (based on
concatenation of DFD properties) of each point of measure.

Data Feeder Instance

A data feeder instance (DFI) publishes the collected values according to a data feeder
definition for one specific measurement point.

When a DFD parameter is customer dependant, the DFI collects the perceived QoS
from a MRP for any subscriber of a specific customer.

Data Feeder Instances are created as follows:

• They are pre-registered by Service Operators when service adapters are not yet
deployed (pre-registration is done through the SL Administration User Interface)

• They are discovered automatically by the Service Adapter and declared to SQM.

13

The SQL Service Adapter offers a DFI auto discovery feature. If requested, it is able
to connect to the SQL database, collect each DFI property value(s) and declare each
discovered DFI to SQM.

The SQL Service Adapter discovery feature also offers the capability:

• To filter the discovered DFIs (select only some of the discovered DFIs to be
declared to SQM and supported by the SQL Service Adapter application),

• To synchronize the discovered DFI with SQM repository.

Timestamp Management

There are two cases:

• The timestamp is present as a column in the SQL table. This information is used
directly by the SQL Service Adapter for publishing collected values and identifies
the values last inserted into the database (difference between the timestamp and
last collected timestamp).

• there is no measurement time indication in the SQL table and in such case the
SQL Service Adapter will use its polling current time in order to timestamp the
collected data.

For a standard collection of the SQL Service Adapter, the timestamp information has
to be present in the SQL database and provided at the SQL Service Adapter
customization. If no timestamp is provided, a specific column containing this
information can be created through an SQL view or script. Please refer to the
Advanced customization chapter for more information.

Customer and Subscriber

As previously mentioned, DFD parameter values can be collected for a specific
customer (organization or corporation) or for a specific member of this organization
(a user or a subscriber). The SQL Service Adapter is able to retrieve QoS data directly
for a customer, or for a subscriber.

The customer or subscriber information has to be a column of the SQL table
associated to the DFD.

To make the mapping between subscribers and customers, OpenView SQM uses
subscriber IDs. The subscriber ID identifies the user of the service in a service quality
measure. The subscriber ID can be an IP address, a user login name, or an identifier
directly linked with a user, such as a DSL port number.

Sometimes, the user happens to be directly the Customer. So, the subscriber ID maps
directly to the customer ID. In such case, that does not require a mapping, the domain
is by default the generic “ServiceCenter” domain.

To associate a Subscriber ID to a customer, a mapping structure is necessary
(available in the SQM Central Repository). The structure contains:

• The customer name

• The naming plan. A naming plan defines the customer identifiers in each sub-
domain. A domain logically groups customer identifiers.

Here is an example of mapping:

14

Customer Name: MyNewCustomer
Naming Planes:
{
Domain Identifier: IP
ipaddress: {“16.18.*.*”, “16.23.*.*”}
}
{
Domain Identifier: IMSI
ipaddress: {“12202???”, “2002???”}
}
{
Domain Identifier: Mail
ipaddress: {“*@hp.com”}

}

Refer to the SQM Information Modeling Reference Guide for more information
about Subscriber ID mappings.

Note

For customer or subscriber dependant parameters, one column of the DFD table has
to contain the customer or subscriber information.

If a subscriber column exists, it has to provide subscriber IDs for a single subscriber
domain.

Connection definition

The connection is a configuration component of the SQL Service Adapter. This
component contains all necessary information for the SQL SA to connect to the SQL
database.

The following parameters are requested to define the SQL SA connector:

• JDBC driver: should be the driver that has been installed to connect to the
database

• Database URL: A JDBC URL provides a way of identifying a data source so that
the appropriate driver will recognize it and establish a connection with it.

• User Identifier: login name to access the database

• User Password: associated login password.

The connection information is provided at the configuration of the SQL Service
Adapter. The user identified for the connection should have enough access rights to
extract the data from the database table or view.

Example

The following chapter will illustrate the previous definitions with a concrete use case.

For instance, a Performance Agent is installed on several systems to collect the
following performance indicators and store them into an SQL database:

• CPU usage

• Disk Usage

• Memory usage

Each indicator is collected per user and per system.

In our example, the SQL Service Adapter will access an SQL table to collect statistics
on system resource usage.

15

The collected parameters are CPU Usage, Memory usage and Disk Usage. Each
parameter is represented as a table column in the database.

To uniquely identify from where data are collected, the “System Name” property is
used as the MRP.

As the parameters are collected per user connected on the system, the user
(subscriber) information is present in the SQL table.

The SQL table associated to the previously defined Data Feeder will be created as
follows. If this is not the case, some pre-customization steps (such as view creation)
will have to be performed

 DFD Parameters MRP property Subscriber DFD Properties

Timestamp CPU_U
SE

MEM_U
SE

DISK_U
SE

SYSTEMNAME USER IPADDRESS

2003-10-23
10:00:00

30.00 500 5000 host1.emea.hp.net grant 15.23.456.34

2003-10-23
10:05:00

23.00 450 5000 host1.emea.hp.net smith 15.23.456.34

2003-10-23
10:00:00

50.00 395 4598 host2.emea.hp.net grant 16.156.67.15

2003-10-23
10:05:00

20.00 630 6879 host2.emea.hp.net smith 16.156.67.15

In the table, two MRP property values which identify two Data Feeder Instances are
currently available: host1.emea.hp.net and host2.emea.hp.net.

This use case will be used to illustrate the following SQL SA Toolkit customization
steps.

1.2.1.2 Data collection overview
The SQL Service Adapter connects to the database through the JDBC driver provided
by the database manufacturer. This driver implements the standard JDBC API that is
used by the application to send the SQL queries and collect the raw data. The SQL
Service Adapter is also in charge of opening and managing the physical connections
with the database, especially in case of unexpected disconnection.

Depending on the physical configuration and the environment requirements, the
Service Adapter will need to be installed on the SQL database server, or need to
access the database remotely. Both configurations can be considered, but some
restrictions need to be checked:

• If remote access is possible, the connection to the dedicated database port has to
be validated.

• If local access is mandatory, the SQL-Service-Adapter-supported Operating
System must be checked.

The SQL Service Adapter uses a polling mechanism to collect the performance data.
At each polling period, the Service Adapter connects to the database to perform an
SQL collection query that will retrieve data values. The collected data are then
mapped to the defined DFD parameters and published with timestamps to SQM Core
layer (Service Level Monitoring). The DFD mapping definition is one of the
customization steps of an SQL SA customization that is illustrated by the following
picture.

16

SQL
Database

Table

SQL SA
with customized

Data Feeders

OV-SQM

Pa
ra

m
E

Pa
ra

m
F

Pa
ra

m
G Service

Component

2003-10-20 10:00:000.23NotAvail45

2003-10-20 08:00:0020.1Avail10

TimeColumn3Column2Column1

Param1 Param2 Param3

DFD mapping

Data FeederSQL SA

Parameter
binding

SQM SLM Server layers

2

1

Id
SQL

Database
Table

SQL SA
with customized

Data Feeders

OV-SQM

Pa
ra

m
E

Pa
ra

m
F

Pa
ra

m
G Service

Component

2003-10-20 10:00:000.23NotAvail45

2003-10-20 08:00:0020.1Avail10

TimeColumn3Column2Column1

Param1 Param2 Param3

DFD mapping

Data FeederSQL SA

Parameter
binding

SQM SLM Server layers

2

1

Id
SQL

Database
Table

SQL SA
with customized

Data Feeders

OV-SQM

Pa
ra

m
E

Pa
ra

m
F

Pa
ra

m
G Service

Component

2003-10-20 10:00:000.23NotAvail45

2003-10-20 08:00:0020.1Avail10

TimeColumn3Column2Column1

Param1 Param2 Param3

DFD mapping

Data FeederSQL SA

Parameter
binding

SQM SLM Server layers

2

1

Id

1.2.1.3 DFI discovery overview
The SQL Service Adapter provides the Data Feeder Instance discovery capability.
This functionality consists in retrieving from the SQL database the list of existing
rows related to Data Feeder Instances. It uses a SQL discovery query. This list of
DFIs can be filtered by the user (to support only a subset of instances) and loaded into
the SQM Service Repository Manager. Once declared in the repository, the Data
Feeder Instances can be linked to SQM Service Component Instances (binding) using
the SQM SL Administration User Interface, and the collection can be activated.

1.2.1.4 Database requirements

Supported operating systems

The SQL Service Adapter v1.3 is running on the following Operating Systems:

• HP-UX 11.11

• Windows XP

Supported SQL databases

The SQL Service Adapter V1.3 supports the following SQL databases:

• Oracle 8i and 9i

• Sybase 11.9.2

• SQL Server 2000

• MySQL 4.0.15

If the support of other databases is necessary, the user may request the validation of
the new database to their hp Sales Representative. For new database support, the
minimum required is that the SQL database is accessible through a JDBC driver
version 3.0.

17

Supported SQL data types

The following table associates a supported SQL data type to each SQM data type:

SQM data type Database data type
 Oracle Sybase SqlServer MySQL

String VARCHAR2 varchar

smalldatetime

VARCHAR DATE

VARCHAR

Enum NUMBER

INT

Int INT INT

Float FLOAT Float FLOAT FLOAT

Int NUMBER

INT

Int

smallint

INT

smallint

INT

AbsTime TIMESTAMP datetime datetime TIMESTAMP

RelativeTime INT,INTEGER Int INT INT

This list of SQL supported data types can augment. Please contact the SQM Support
Team to have an updated list of supported databases and data types.

Any timestamp column that has to be collected by SQL Service Adapter must be
previously formatted to a GMT time.

Example

For example, the Timestamp column for an Oracle database, has to be defined with
TIMESTAMP data type, and its value can be calculated with the following Oracle
function: SYS_EXTRACT_UTC(SYSTIMESTAMP)

If a parameter is collected from a table column whose data type is not supported, a
specific view or script has to be created to convert the column data type to a
supported data type (refer to the Advanced customization chapter for more
information about view creation). If there is no possibility to convert the column data
type to a supported type, a specific function has to be developed in the SQL Service
Adapter to support the specific type. For such advanced development request, please
contact your hp Sales Representative.

Note concerning SQM RelativeTime data type

By default, a SQL column maps into a SQM RelativeTime data type must be
expressed in second in the SQL database.

Anyway the SQL SA can be configured to consider that the SQL column represent a
relative time expressed in milliseconds. To configure the SQL SA, edit its property
file located in:

On Windows:

“%TEMIP_SC_HOME%”\ServiceAdapters\Sql\v1_2\<SACustomName>_<SAversion>\pro
perties\TeSC<SACustomName>.properties

On Unix:

$TEMIP_SC_HOME\ServiceAdapters\Sql\v1_2\<SACustomName>_<SAversion>
\properties\TeSC<SACustomName>.properties

18

Add the following property to the file:

parameter.relativetime.insecond=false

Setting this property all relative time parameters are considered as being expressed in
milliseconds in the SQL table.

1.2.2 SQL Service Adapter customization
In order to dramatically shorten the time necessary to customize an SQL Service
Adapter and allow easy modifications of the SQL Service Adapter collection, the
SQL SA Toolkit provides a powerful and user-friendly customization environment.
The customization of an SQL Service Adapter does not require any coding, only
definition and integration tasks.

The SQL SA Toolkit comes with a Graphical User interface to go through the
following SQL Service Adapter customization steps:

• Define SQL SA customization project

The definition of an SQL SA customization project is the primary step of the
customization with the toolkit. The project is a file that contains all the SQL SA
Customization properties (SA description, SQL connection definition, DFD
mappings…).

• Configure SQL Service Adapter connector

Configuring the database connection consists in providing connection parameters
necessary to access the SQL database.

• Model SQL Service Adapter Data Feeders and define collection and discovery
queries

This modeling phase is composed of several subtasks:

DFD Parameter definition, which consists in providing the DFD name, id, version,
description and associated SQL table.

Data Feeder Parameter Mapping, which consists in browsing the database table/view
associated the Data Feeder and defining the mapping between the DFD parameter and
the SQL table/view column.

Data Feeder Property Mapping consists in browsing the database table/view and
mapping the table columns to DFD properties.

The SQL Collection query definition consists in declaring the SQL request that is
performed to collect the parameter values from the database.

The SQL Discovery query definition is the declaration of the SQL request that
discovers the Data Feeder Instances.

• 4. Generate SQL Service Adapter customization

This phase creates a customization zip file that is used to deploy the SQL Service
Adapter customization.

Prior to these steps, it is necessary for the user to correctly identify the context,
environment and requirements associated with this SQL Service Adapter
customization. Chapter 3 of this document provides the full process flow of an SQL
Service Adapter customization.

19

Chapter 2

SQL SA Toolkit installation
This chapter describes how to install the SQL SA Toolkit on HP-UX or Windows.
After installation steps have been completed, please follow the instructions in Chapter
3 to use the SQL SA toolkit and customize an SQL Service Adapter.

2.1 Software Requirements
Operating System

• HP-UX 11.11 or Windows XP

• SQM Software

• HP OpenView Service Quality Manager V1.3 (Kernel subset)

• HP OpenView SA Common V1.3 (SQMSAGTWCOMMON)

• HP OpenView SQL Service Adapter Runtime V1.3 (SQMSASQL)

• JDBC drivers for the targeted SQL database

• The following URLs are pointers to the supported SQL Service Adapter JDBC
drivers:

Microsoft SQL Server 2000 (msbase.jar, mssqlserver.jar, msutil.jar)

• http://www.microsoft.com/downloads/details.aspx?FamilyID=4f8f2f01-1ed7-
4c4d-8f7b-3d47969e66ae&DisplayLang=en

Sybase

 http://www.sybase.com/products/middleware/jconnectforjdbc

Oracle 8.1.7 (classes12.zip)

• http://otn.oracle.com/software/tech/java/sqlj_jdbc

Oracle 9.2.0.6 (Ojdbc14.jar)

• http://otn.oracle.com/software/tech/java/sqlj_jdbc

MySQL (mysql-connector-java-3.0.8-stable-bin.jar)

• http://www.mysql.com/products/connector-j/

2.2 Hardware Requirements
For hardware requirements, refer to the HP OpenView Service Quality Manager
Installation Guide.

• Minimum of 6 MB disk space. 10 MB recommended.

20

2.3 Installing the Software
To install the SQL SA Toolkit, perform the following steps:

2.3.1 Installing on Windows

2.3.1.1 Installing SQM Kernel Subset
The SQM Core Kernel subset is a pre-requisite for the installation of the SQL SA
Toolkit.

Insert the hp OpenView SQM Core CD in your CD-ROM drive, navigate in the SQM-
1.30.00-COREWIN\Windows\User_Interfaces folder, and run the SQMKERNEL-
1.30.00.exe installer.

1. Click ‘Next’ to proceed.

21

2. Select the destination directory of your OV SQM. If SQM has already been
installed (for SLA Monitoring use for instance), you MUST install in the same
directory. Click ‘Next’ to proceed.

3. This window allows you to check the selected options. Click ‘Install’ to perform
else ‘Previous’ to modify them.

4. Click ‘Done’ to end installation process.

2.3.1.2 Installing the SQL SA Toolkit
To install the SQL SA Toolkit, perform the following steps:

First install the SA Common component if necessary (if already done go to step 4)

22

1. Insert the Service Adapters and Gateways media in your CD-ROM drive, navigate
to the SQM-1.30.00-SAGTW\Windows folder, and run the SQMSAGTWCOMMON-
1.30.00.exe installer.

2. The software is installed and the Install Complete window is displayed.

3. To end the installation process, click Done

4. Run the SQMSASQL-1.30.00.exe installer. If this steps is already performed,
switch to step 7)

5. The software is installed and the Install Complete window is displayed.

6. To end the installation process, click Done.

23

7. Run the SQMSQLSATK-1.30.00.exe installer.

8. The software is installed and the Install Complete window is displayed.

9. To end the installation process, click Done.

2.3.2 Installing on HP-UX

2.3.2.1 Installing the SQM Kernel subset
The SQM Core Kernel subset is a pre-requisite for the installation of the SQL SA
Toolkit.

1. Connect as “root” user.

2. Mount the hp OpenView SQM Core CD-ROM on /cdrom :

cd /cdrom
sqm_install /opt/OV/SQM /cdrom/SQM-1.30.00/HPUX/KIT minimal

2.3.2.2 Installing the SQL SA Toolkit
To install the SQL SA Toolkit, perform the following steps.

3. First, connect as “root” user on the system.

4. Install the SA Common component if necessary (if already done go to step 4)

5. Mount the hp OpenView Service Adapters and Gateways CD-ROM on /cdrom
directory and execute:

cd /cdrom/SQM-1.30.00-SAGTW/HPUX
export DISPLAY=<Your Display>
export $TEMIP_SC_HOME=/opt/OV/SQM
. $TEMIP_SC_HOME/jre/jre-setup.sh
./SQMSAGTWCOMMON-1.30.00.bin

24

6. The software is installed and the Install Complete window is displayed.

7. Mount the hp OpenView SQM Service Adapters and Gateways CD-ROM on
/cdrom directory and execute (If this steps is already performed, switch to step 7)

cd /cdrom/SQM-1.30.00-SAGTW/HPUX

export DISPLAY=<Your Display>

export $TEMIP_SC_HOME=/opt/OV/SQM

. $TEMIP_SC_HOME/jre/jre-setup.sh

./SQMSASQL-1.30.00.bin

8. The software is installed and the Install Complete window is displayed.

9. To end the installation process, click Done.

10. Mount the hp OpenView SQM Service Adapters and Gateways CD-ROM on
/cdrom directory and execute:

25

cd /cdrom/SQM-1.30.00-SAGTW/HPUX

export DISPLAY=<Your Display>

export $TEMIP_SC_HOME=/opt/OV/SQM

. $TEMIP_SC_HOME/jre/jre-setup.sh

./SQMSQLSATK-1.30.00.bin

11. The software is installed and the Install Complete window is displayed.

12. To end the installation process, click Done.

26

2.3.3 Uninstalling the Software on Windows
To uninstall the SQL SA Toolkit software:

1. Select menu: All Programs -> HP OpenView -> SQM -> Sql SA
Toolkit v1_2 -> Uninstall

The Uninstall window is displayed.

2. Click Uninstall. The software is uninstalled from your system.

3. To finish, click Done.

If no additional SQL Service Adapters are running on the system, un-install the
SQL SA v1_2 runtime kit.

4. Select menu: All Programs -> HP OpenView -> SQM ->
ServiceAdapters -> Sql v1_2 -> Uninstall

27

5. Click Uninstall. The software is uninstalled from your system.

6. To finish, click Done.

If no Service Adapters or Gateways are running on the system, un-install the SA
Common v1_2 kit.

7. Select menu: All Programs -> HP OpenView -> SQM ->
ServiceAdapters -> Common v1_2 -> Uninstall

28

8. Click Uninstall. The software is uninstalled from your system.

9. To finish, click Done.

2.3.4 Uninstalling the Software on HP-UX
To uninstall the SQL SA Toolkit software:

10. Log on as root user

11. Load the SQM environment variables
(/var/opt/OV/SQM/slmv12/temip_sc_env.sh)

12. Perform the following commands on the SQM platform where the SQL SA
Toolkit has been installed:

cd $TEMIP_SC_HOME

. /ServiceAdaptersToolkit/Sql/v1_2/UninstallerDataSqlTk/Uninstall_SqlTk

29

13. Click Uninstall. The software is uninstalled from your system.

14. To finish, click Done in the following window.

15. If no additional SQL Service Adapters are running on the system, uninstall the
SQL SA v1_2 runtime kit.

cd $TEMIP_SC_HOME

. /ServiceAdapters/Sql/v1_2/UninstallerDataSql /Uninstall_Sql

16. If no Service Adapters or Gateways are running on the system, uninstall the SA
Common v1_2 kit.

30

cd $TEMIP_SC_HOME

. /ServiceAdapters/Common/v1_2/Uninstaller_SAGTWCOMMON

/Uninstall_SAGTWCOMMON

17. Click Uninstall. The software is uninstalled from your system.

18. To finish, click Done in the following window.

31

Chapter 3

SQL SA Customization process
This chapter provides the mandatory steps to customize an SQL Service Adapter.

The following diagram summarizes the SQL SA Customization phases.

For
each
DFD

Pre-customization
checklist

Start the SQL SA
Toolkit

Create a SQL SA
connection

Create a SQL
Customization project

Model and Map a DFD
(parameters and

properties)

1

2

3

4

5

Define collection and
discovery queries

6

Create SQL View if
necessary1.1

Generate SQL SA
Customization kit

7

32

3.1 Validation check list, before
customization project
Before starting the proper toolkit customization, it is necessary to specify the
SQL Service Adapter, by:

• Fully understand the SQL SA development context

• Bringing out the expected environment requirements (targeted database type
and version)

• Identifying the SQL database, tables and columns that will be used for
collecting raw data (determine if a specific SQL view or script needs to be
created to adapt to the SQL Service Adapter collection)

3.1.1 SQL database cookbook
 The following questions need to be addressed before starting the customization.

What is the targeted SQL Database (ex: Oracle, Sybase…)
and what is the associated version?

The list of supported SQL databases and versions is provided in the chapter
Supported SQL databases. A crosscheck is necessary to anticipate any support
issue.

Can the Service Adapter be connected remotely to the SQL
Database or does it need to be installed on the same host as
the SQL Database?

–If the SQL Service Adapter has to be installed on the same
system as the SQL database (due to access rights, firewall
limitation), what is the targeted Operating System of the SQL
Database?

If the SQL Service Adapter has to run on the SQL database system, it is
recommended to check the supported Operating systems in the chapter
Supported operating systems.

What is the database schema (table/columns)?

 Is there any information to be collected from several tables
for one SQL Service Adapter DFD?

Is the data to be collected really available in the identified
table columns (is there any specific calculation to perform on
this data before publishing the parameter values in SQM)?

The previous questions will help in validating the mapping between the SQM
DFD parameters and the SQL table columns:

It is necessary to check that the expected DFD parameter values are really
available in the SQL table columns. If any specific calculation is to be performed
on the SQL Database raw data to retrieve the expected DFD parameter value, it is
recommended to use SQL views or scripts to perform the calculation algorithm
(see 5.2)

The mapping between the DFD and the SQL database table has to be straight
forward, using the following rules:

• One DFD has to be associated to one SQL Table

• Each DFD parameter has to be associated to one Table column

33

• Each MPR property has to be associated to one Table column

• Several DFD properties can be part of the MRP

• If the database schema does not offer these mapping rules, it is necessary to
consider the use of SQL views (see 5.2 section)

To perform the customization steps with the SQL SA Toolkit, it is recommended
to retrieve a dump of the targeted SQL database to directly access the database
information (table, view, columns) from the Toolkit User interface, and avoid any
mapping mistakes.

3.2 Setting up the SQL SA Toolkit
From the previous chapter the targeted SQL database types and versions have
been identified. The user will now need to retrieve the associated JDBC drivers
that will be used by the Toolkit and the SQL Service Adapter to connect to the
database.

Note

It is recommended to copy all the drivers on the system where has been installed
the SQL SA Toolkit in the Directory:

On Windows

<SQM Installation directory>\ServiceAdaptersToolkit\Sql\v1_2\lib\jdbc

On Unix

<SQM Installation directory>/ServiceAdaptersToolkit/Sql/v1_2/lib/jdbc

Then the SQL SA Toolkit setup can be performed.

On Windows
• Select menu: All Programs -> HP OpenView -> SQM -> Sql SA
Toolkit v1_2 -> Setup

A Command Line window appears and prompts the user to set:

The TEMIP_SC_VAR_HOME environment variable if it is not defined. The
corresponding directory is used by the SQL SA Toolkit for logging and tracing.

The SQM installation directory is proposed as a default value.

Note

The given directory must exist and have the proper access rights (rw for the user).

34

The TEMIP_SC_JDBC_DRIVER_CLASSPATH environment variable which
contains the list of JDBC driver paths.

If the user has copied all the drivers in the directory: <SQM Installation
directory>\ServiceAdaptersToolkit\Sql\v1_2\lib\jdbc, the setup will prompt
the list of discovered JDBC drivers, and, by simply pressing “Return” key, the
default value is used. If no driver exists in this directory the user will have to
enter each driver full path separated by “;” (see example below).

To provide new drivers (after a previous setup), it is necessary to run again the
setup. The previous TEMIP_SC_JDBC_DRIVER_CLASSPATH value is
proposed. The user must copy/paste the existing variable value and add new
driver paths separated by “;”.

Note

Each driver path must be separated by “;”.

Example:

If all the drivers have been installed in C:\Program Files\database, the
TEMIP_SC_JDBC_DRIVER_CLASSPATH will be set to:

C:\Program Files\database\jconn2.jar;C:\Program
Files\database\msbase.jar;C:\Program Files\database\mssqlserver.jar;C:\Program
Files\database\msutil.jar;C:\Program Files\database\ojdbc14.jar;C:\Program
Files\database\Opta2000.jar

• No ‘“’character must be inserted in the JDBC Drivers CLASSPATH on
Windows.

On Unix

Connect as “root” user

Load the SQM environment variables
(/var/opt/OV/SQM/slmv12/temip_sc_env.sh)

Perform the following commands:

cd
$TEMIP_SC_HOME/ServiceAdaptersToolkit/Sql/v1_2/bin

./temip_sc_setup_sqltk.sh

The setup command will prompt the user to set:

The TEMIP_SC_VAR_HOME environment variable if it is not defined. The
corresponding directory is used by the SQL SA Toolkit for logging and tracing.

35

Note

The given directory must exist and have the proper access rights (rw for the user).

The TEMIP_SC_JDBC_DRIVER_CLASSPATH environment variable which
contains the list of JDBC driver paths.

If the user has copied all the drivers in the directory: <SQM Installation
directory>/ServiceAdaptersToolkit/Sql/v1_2/lib/jdbc, the setup will prompt
the list of discovered JDBC drivers, and, by simply pressing “Return” key, the
default value is used.

If no driver exists in this directory the user will have to enter each driver full path
separated by “:” (see example below).

Example:

If all the drivers have been installed in /opt/database, the
TEMIP_SC_JDBC_DRIVER_CLASSPATH will be set to:

/opt/database/jconn2.jar:/opt/database/msbase.jar:/opt/database/mssqlserver.jar:/o
pt/database/msutil.jar:/opt/database/ojdbc14.jar:/opt/database/Opta2000.jar

Note

If additional drivers have to be supported, the SQL SA Toolkit setup needs to be
performed again. A new setup will override the previous JDBC Driver
CLASSPATH. If previous drivers still need to be supported, the user needs
copy/paste the old CLASSPATH and add the new drivers path.

3.2.1 Configuring the SQL SA Toolkit license
The SQM utility to manage the licenses is temip_sc_license.

To run the SQL SA Toolkit, it is necessary to configure the SQM-
SQL_SA_TOOLKIT license.

At Kernel installation, a temporary SQM-SQL_SA_TOOLKIT license is
installed. This temporary license allows a 90 days trial period and is activated on
the first license check (when the application is started the first time).

Once Autopass is installed (in the same kit as the SQM Kernel) and SQL SA
Toolkit has been configured, perform the following commands to check that the
licenses have been correctly setup.

On Windows:

Open a command line and execute:

cd %TEMIP_SC_HOME%\bin

To check that the license has been setup

temip_sc_license –check

On Unix:

Connect as “root” user

Set the TEMIP_SC_HOME environment variable, and check the license:

export TEMIP_SC_HOME=<SQM installation directory>

cd %TEMIP_SC_HOME%\bin

temip_sc_license –check

36

When this temporary license key has expired, the SQL SA Toolkit cannot start
anymore. A permanent license is then required. Please refer to the hp Openview
SQM Administration Guide where is explained how to retrieve SQM licenses
and import them into Autopass (with temip_sc_license utility).

3.3 Starting the SQL SA Toolkit
To start the SQL SA Toolkit, the following commands have to be executed.

On Windows
• Select menu: All Programs -> HP OpenView -> SQM -> Sql SA
Toolkit v1_2 -> Launch

On Unix

Connect as “sqmadm” user

Load the SQM environment variables
(/var/opt/OV/SQM/slmv12/temip_sc_env.sh)

Perform the following commands:

export DISPLAY=<display>

cd $TEMIP_SC_HOME/ServiceAdaptersToolkit/Sql/v1_2/bin

./temip_sc_start_sqltk.sh

The SQL SA Toolkit main window appears and the customization steps can start.

37

3.4 Creating a customization project
The definition of a customization project is the first mandatory step when using
the SQL SA Toolkit.

By selecting the File menu from the main window, the following project
submenus appear:

• New Project… (to enter a new project characteristics).

• Load… (to load an existing project workspace).

 Choosing the option New Project… will open the Project characteristic window
below to collect the project inputs:

In the Project Window, the user will have to provide:

38

• Project Folder: Folder where the project source files will be placed, and the
kit will be generated.

• Service Adapter

• Identifier: Name of the SQL Service Adapter customization (SA Name)

• Version: Version of the SQL Service Adapter customization. The user may
want to define incremental versions of the same Service Adapter with
different mappings. The version syntax is: v<major version>_<minor
version>.

• Ex: v1_0.

• Description: brief description of the SQL Service Adapter customization

• Generation options:

• Kit name: Name of the zip file that will be generated by the customization.
The name is defined by the user, and it is recommended that the name
contains the Service Adapter Name and version (to avoid any confusion).
Avoid using space characters in the kit name.

• Targeted platform: Platform on which the SQL Service Adapter
customization will run. If both platforms are selected, in this case, the
generated kit will be installable on MS Windows and HP-Unix.

Once the customization project is created, the following project directory layout
is initialized by the SQL SA Toolkit in the project directory mentioned by the
user.

39

To modify the Project Folder location, the user may select the menu:

File -> Properties

This action will open the project definition window and provide access to the
project characteristics.

3.5 Creating a connection
The database connection parameters can be defined by selecting the menu:

Tools -> Setup Connection

40

• The connection window appears.

The user will enter the following connection characteristics:

• Connector name: the name that will be used by the SQL Service Adapter to
store the connection parameters

• JDBC driver: should be the driver that has been installed to connect to the
database

• Database URL: A JDBC URL provides a way of identifying a data source so
that the appropriate driver will recognize it and establish a connection with it.

The standard syntax for JDBC URLs is shown here. It has three parts, which are
separated by colons.

 jdbc:<subprotocol>:<subname>

The three parts of a JDBC URL are broken down as follows:

The protocol in a JDBC URL is always jdbc

<subprotocol>-the name of the driver or the name of a database connectivity
mechanism, which may be supported by one or more drivers

<subname>-a way to identify the data source. In our example, it is the system
name and port number.

• User identifier: login name to access the database

• User password: associated login password.

• You need to make sure, that the chosen connection user has enough rights to
view the database tables.

Here are examples of connection characteristics adapted to the previously
recommended JDBC drivers:

41

Oracle 9i (8i):

 DriverName: oracle.jdbc.driver.OracleDriver

 Url: jdbc:oracle:thin:@host.domaint:port:mydb

Sybase:

DriverName: com.sybase.jdbc2.jdbc.SybDriver

Url: jdbc:sybase:Tds:host.domain:port/mydb

 Microsoft SQL Server:

 DriverName: com.microsoft.jdbc.sqlserver.SQLServerDriver

Url:jdbc:microsoft:sqlserver://host.domain:port;DatabaseName=mydb

Please refer to Appendix B for SQL database configuration
requirements.

Using the Test button, the SQL Service Adapter Toolkit will try to connect to the
database. The result of the test will be displayed in the console. If any error
returned, please check your connection parameters.

By Using Apply button, the SQL SA Toolkit will try to retrieve SQL table
information from the database.

When the connection is successful, the connected mode is identified by the icon

 at the right bottom of the window.

If the database is not accessible, the connector information will be saved, but the
next Data Feeder modeling phase will have to be done without the table/view
columns information (the table/view column will be entered manually by the user
and is not prompted automatically). This is called offline mode.

3.6 Modeling/Mapping a DFD
The Data Feeder modeling and mapping phase starts with the definition of the
Data Feeder characteristics: Name, Identifier, Version and Description.

These Data Feeder definition characteristics can be retrieved:

• By loading an existing DFD definition that has been generated from Service
Designer user interface

• By prompting the user to enter the DFD characteristics.

Both ways are presented within the following chapters.

3.6.1 Importing a DFD from a Service Designer XML file
If the user has previously designed a Service Model and associated data feeders
using the Service Designer, the toolkit is able to import the generated data feeder
XML definition.

The following steps need to be performed:

From the Details tab, select the Import… button. A file browser is opened to
locate the DFD XML definition file.

42

Select Import button to load the file.

43

1. Click on Modify button to edit the DFD definition and select Database table
name (or view) which will be used for the mapping (the list of available table or
views is only available if the connection to the database was successful,
otherwise, the user will enter the table name manually)

Once the Data Feeder definition file is loaded, the parameter mapping can start
(refer to the Mapping the DFD parameters section).

Important Note

• If the user has defined a specific MRP Naming Schema containing
properties and fixed strings (in SQM Service Designer), the import DFD XML
definition will remove from the MRP Naming Schema the fixed strings, and the
generated DFD will not contain these strings anymore (only the properties that
are part of the MRP will be restituted in the DFD definition).

• The SQL SA Toolkit does not offer the possibility to define SQM
Enumeration parameter data type from the User Interface. It is recommended to
define the SQM Enumeration parameters from the Service Designer and use the
Import feature to load the Enumerate definition into the SQL SA Toolkit.

• An Export feature is also available from the Toolkit User Interface (Tools
-> Export DFD), it the user needs to export a DFD to work in Service
Designer, and re-import it after.

3.6.2 Defining a Data Feeder using the Toolkit
If the user does not have an existing data feeder XML definition file, he has to
manually enter all the DFD characteristics using the following steps:

44

1. Select the Details tab in the main window.

2. Click New then fill the Details panel to provide the DFD characteristics:

The following DFD characteristics have to be entered:

• Identifier: The DFD identifier which cannot exceed 16 characters.

• Label: display name of the DFD.

• Description: a brief description of the DFD.

• Database table: SQL table or view associated to the DFD. This table or view
will be used to collect the DFD parameter values.

45

• Version: DFD version. The version syntax is: v<major version>_<minor
version>.Ex: v1_0.

3. If the connection to the database has been successful, the list of tables will be
presented, otherwise, the user will enter the table name manually.

4. Click on Apply button to accept the DFD details. Then the other Toolkit tabs
will be accessible for DFD mapping.

3.6.3 Mapping the DFD parameters
The parameter mapping phase will allow the association of a Table/View column
with a DFD parameter.

46

By clicking on the Parameters tab in the toolkit main window, the parameter
mapping window will appear.

The following possibilities are available at the Data Feeder parameter mapping
phase:

• New

By selecting the New button, a new parameter entry will be created in the table
and the Parameter Detail window becomes editable.

• Copy

Selecting an existing parameter in the table and clicking on the Copy button will
create the same parameter (with its associated mapping) in the table. The
parameter copy has to be edited and modified.

• Delete

Selecting a parameter in the table and clicking on the Delete button will remove
the parameter from the Data Feeder definition (along with the associated
mapping).

• Apply all

The “Apply all” button, will apply all modifications performed on the parameters
listed in the table. Parameters, for which modifications have not been applied yet,
are presented in grey color.

For each parameter defined, once selected, the user has access to the mapping
information in the Selected parameter details panel (lower part of the window)
by clicking on the “Modify” button. The user can modify the mapping

47

information (change the database column associated to the Data Feeder parameter
and modify the parameter data type, category, units, description or identifier).
Once the modification has been performed, click on Apply button to confirm the
parameter mapping modification.

If the connection to the database is available (this is determined at the connection
definition phase), the user interface will prompt the existing table/view columns
in the database.

Here are the steps to create, edit and modify a parameter mapping:

1. Click on New button to create and edit a parameter.

2. Fill in the Selected parameter details pane with:

• Identifier: DFD parameter identifier (limited to 16 characters).

• Label: DFD parameter label.

• Datatype: parameter data type which can be one of the SQM available data
types (String, Int, Float, AbsTime, RelativeTime).

• Category: parameter category which can be one of the SQM available
categories (Rate, Percent, Counter, Gauge, Other).

• Description: brief description of the parameter.

• Database column: the SQL database column from which the parameter values
will be collected. This column name can be chosen among available table
columns if the connection to the database could be done, otherwise the user
will manually enter the table column name.

48

• Database column datatype: SQL column data type (retrieved from the SQL
database).

• Is customer dependant: indicates if the parameter is customer (subscriber)
dependant or not. If the parameter is customer dependant, at the collection
request definition, the Customer or Subscriber information will need to be
provided (refer to section Defining the collection request)

• Units: parameter unit. The unit is used at the SQM User interface (SLA
Monitoring) to display the parameter value information.

3. Click Apply to take into account the modifications.

The same processing needs to be done for each parameter that is to be mapped to
a table column.

3.6.4 Mapping the DFD properties
The property mapping phase will allow the association of a Table/View column
to a DFD property.

By clicking on the Properties tab in the toolkit main window, the property
mapping window will appear.

49

The following possibilities are available at the Data Feeder property mapping
phase:

• New

By selecting the New button, a new property entry will be created in the table.

• Copy

Selecting an existing property in the table and clicking on the Copy button will
create the same property (along with its associated mapping) in the table. The
property copy must be edited and modified.

• Delete

Selecting a property in the table and clicking on the Delete button will remove
the property from the Data Feeder definition (along with the associated mapping).

• Apply all

The “Apply All” button, will apply all modifications performed on the properties
listed in the table. Properties, for which modifications have not been applied, are
presented in grey color.

50

For each property defined, once selected, the user has access to the mapping
information in the Selected property details pane (lower part of the window) by
clicking on the “Modify” button. The user can modify the mapping information
(change the database column associated to the Data Feeder property and modify
the property data type, description or identifier, and decide whether this property
is part of the DFD MRP or not).

Note

The user has to insert the properties according to their order in the MRP Naming
Schema.

If the connection to the database is available (this is determined at the connection
definition phase), the user interface will prompt the existing table/view columns.

Here are the steps to create, edit and modify a property mapping:

1. Click on New button to create and edit a property.

2. Fill in the Selected property details pane with:

• Identifier: DFD property identifier (limited to 16 characters).

51

• Label: DFD property label.

• Datatype: property data type which can be one of the SQM available data

types (String, Int, Float, AbsTime, RelativeTime).

• Category: parameter category which can e one of the SQM available
categories (Rate, Percent, Counter, Gauge, Other).

• Description: brief description of the parameter.

• Database column: the SQL database column from which the property value
will be retrieved. This column name can be chosen among available table
columns if the connection to the database could be done, otherwise the user
will manually enter the table column name.

• Database column datatype: SQL column data type (retrieved from the SQL
database)

• Part of MRP: indicates if the property is part of the MRP or not.

3. Click Apply to take the modifications into account.

The same processing has to be done for each property that is to be mapped to a
table column.

At the end of this phase, the user may choose to check if the mapping is correct,
using the Validate DFD button. This function checks that all parameters are
correctly mapped to a column name, and if all mandatory parameter fields are
presents for future load onto the SQM repository.

52

This Validate DFD will not validate the mapping against the database (it will not
validate that a specified column in the mapping definition exists in the
table/view).

3.7 Defining the collection request
At this step, the user defines the SQL request that will be performed to the
database for collecting the Data Feeder parameter values (collection request).

By selecting the Requests tab in the main toolkit window, the request
configuration window appears.

Before customizing the collection request, the user needs to identify the
timestamp column (if it exists), and the Subscriber or Customer column if the
DFD parameters are customer dependant.

3.7.1 Mapping the timestamp column
If the SQL database associated to the DFD contains a timestamp column, it is
necessary to provide the mapping information to this column.

53

1. To do so, select the Requests tab, and, in the Collection query part, click on
Modify to edit the Timestamp mapping.

2. Select the name of the database column which contains the timestamp
information. If the Toolkit is not connected to the database, enter manually the
column name.

54

3. The Timestamp check box is automatically selected.

4. Click Apply button to accept changes. The collection query is updated.

Important Note

If no timestamp column is available in the database, the previous actions will
not be performed. It is important to edit the default collection query and remove
any reference to the [TIMESTAMP] keyword (in the SELECT and WHERE
clauses of the collection request. The user will have to find the appropriate
WHERE clause that will return the expected parameter values at the SQL SA
polling period.

55

3.7.2 Mapping customer or subscriber
As previously explained in section Definitions, if the DFD parameters are
customer dependant, it is necessary to associate to the collected values, the
customer or subscriber information. Such information has to exist in the database
as a table column. This section explains how to map this information.

3.7.2.1 Mapping a subscriber
1. Select the Requests tab, and in the Collection query part, click on Modify to
edit the Subscriber or Customer mappings.

2. If the database contains a subscriber ID column, select in the Subscriber pane,
the subscriber table column. Then provide the naming domain (Subscriber’s
naming plan) that will permit to associate the subscriber ID to a customer ID.
The Subscriber’s naming plan is a fixed string. The Customer, Subscriber,
Naming Plan definitions have been presented in the chapter Definitions. Please
refer to this chapter and to the SQM Information Modeling Reference Guide for
details about SQM customers and subscribers information.

56

3. Then click Apply to accept changes.

3.7.2.2 Mapping a customer
1. Select the Requests tab, and in the Collection query part, click on Modify to
edit the Customer mapping.

57

2. If the database contains a customer ID column, select in the Customer pane,
the customer table column.

3. Then click Apply button to accept changes.

3.7.3 Modifying the collection query
A standard SQL collection request is proposed to the user. This request contains
some predefined keywords that are processed by the SQL Service Adapter.

The default request is as follows:

SELECT [PARAMETERS], [TIMESTAMP],[SUBSCRIBER],
[SUBSCRIBER_DOMAIN] FROM [TABLES] WHERE [MRP_PROPERTIES] AND
[TIMESTAMP]<=[CURRENT_GMT_TIME] AND
[TIMESTAMP]>=[LAST_TIMESTAMP]

This default request is valid if the database table or view associated to a DFD, has
the standard columns presented in chapter Definitions (with Timestamp,
Parameters, Customer or Subscriber, MRP property columns).

This request collects all DFD parameter raw data for specific MRPs, whose
timestamp is between the current GMT time and the last collected timestamp
value for the Data Feeder Instance.

58

Important Note

The default collection request has to be modified when the TIMESTAMP, the
CUSTOMER or SUBSCRIBER columns are not available.

If there is no timestamp column, remove all references to the [TIMESTAMP]
keyword, and provide a WHERE clause that returns the last inserted parameter
values for a specific DFI.

If no customer or subscriber information is provided in the database, remove the
keywords [SUBSCRIBER] and [SUBSCRIBER_DOMAIN] from the
collection query, in the SELECT clause.

The following keywords can be used at the edition of the collection query.

For SELECT clause:

The following keywords are used in the select clause of the collection request
template:

• [PARAMETERS]: will be replaced by the list of parameters defined in the
DFD.

• [TIMESTAMP]: will be replaced by timestamp column name

• [SUBSCRIBER]: will be replaced by subscriber column name

• [SUBSCRIBER_DOMAIN] : will be replaced by subscriber domain column
name

For FROM clause:

List of tables or view from which data will be selected (the table that has been
associated to the Data Feeder definition phase). The keyword [TABLES]: will be
replaced by table/view name associated to the Data Feeder.

For WHERE clause:

Restricts the rows selected to those for which the condition is TRUE. If you omit
this clause, the database returns all rows from the tables or views in the FROM
clause. The SQL Service Adapter supports the following keywords in this clause:

• [MRP_PROPERTIES] is replaced by DFI properties columns name =
property value which are part of the MRP.

• [CURRENT_SYSTEM_TIME] current local time

• [POLLING_PERIOD_BEFORE_CURRENT_GMT_TIME] current
GMT time - Service Adapter Polling period value

• [LAST_POLL_TIME_BEFORE_CURRENT_GMT_TIME] this is the
last GMT time at which a given DFI data has been polled. At the first polling
period this keyword is equal to the current time in GMT - Service Adapter
Polling period value.

• [LAST_TIMESTAMP] this keyword can be used if a timestamp is defined
in the database table. It represents the last timestamp value retrieved for a
given DFI collection. When multiple rows are retrieved for a DFI in a single
polling period, the greater timestamp is kept.

If the user wants to modify the default collection query for this Data Feeder, he
edits the template (using Edit template… button), and manually define the SQL
collection request.

59

After modification of the collection query, click on Apply button to accept
changes or Cancel. The Default button retrieves the default collection query.

The Toolkit does not provide a test function. The user should copy/paste the
collection query presented in the main windows into an SQL editor. Replace the
“?” characters by real TIMESTAMP and MRP PROPERTIES. Then run the
query to check that it returns the expected values.

3.8 Defining the DFI discovery request
The DFI discovery request will be used by the SQL SA customization to create
the Data Feeder Instances with their property values.

For the discovery request, a default request is also provided from the property
mapping that has been defined in a previous customization step.

The default discovery query:

Select distinct [MRP_PROPERTIES] from [TABLES]

The user may decide to edit the default request and modify it if necessary using
Edit Template… button, in the Data feeder instance discovery pane.

60

This request should return in the SELECT clause, all the DFD property values
that will identify a DFI.

The toolkit does not provide a test function. The user should copy/paste the DFI
discovery query into an SQL editor, run it, and check that the query returns the
expected DFD property values.

3.9 Generating the Customized SA
As soon as the project has been defined (the first step of the customization), the
following project directory layout is created:

If the user wants to include some specific documentation, scripts or utilities, the
following directories should be augmented:

• database directory contains the SQL files that will be used to create the
custom views within the database. The default mechanism will handle these
SQL files, one by one, following the alphabetical order of their names.

61

Therefore, the best practice is to name the files: 01_my_global_stuff.sql,
02_my_types.sql, 03_my_first_view.sql, 04_my_special_view.sql, etc. Thus,
the content of all the existing .sql files gets executed on the database server, in
the right order, and therefore the associated types and views will be created.
In case this convenient mechanism is not adequate, the user can use a
different mechanism by adding, to this directory, scripts named
temip_sc_create_db_view.sh (for Unix) and temip_sc_create_db_view.bat
(for Windows). These alternate scripts have to keep these names, in order to
allow the temip_sc_configure -view command to execute them, during
the installation and configuration of the generated SQL SA custom. For
details on the temip_sc_configure command, refer to paragraph 4.2
Configuring a customized SQL SA application

• doc directory contains the SQL Service Adapter customization user
documentation

• lib directory contains the JDBC drivers associated to the SQL database

• util directory contains any user specific utilities.

Note

All the JDBC drivers jar files necessary for running the SQL SA Custom have to
be placed into the lib directory before generating the SQL SA Customization kit.
The Generate Kit function will automatically include these drivers into the
CLASSPATH of the SQL Service Adapter launcher.

Even if this JDBC CLASSPATH is updated for the SQL SA Customization
launcher, this variable has to be part of the standard SQM environment variables
on the system where the customization will run. So, at the customization
installation, do not forget to update the temip_sc_env.sh file on Unix, or the
temip_sc_env.bat file on Windows as described in chapter Configuring the
JDBC driver CLASSPATH.

After the project directories have been filled, the customization kit can be
validated. By selecting the menu File -> Validate the SQL SA Toolkit will
validate that the project parameters and DFD mappings are correct before
generating the kit file.

From the SQL Service Adapter Toolkit menu File -> Generate kit, the user can
generate the zip file of the SQL SA Customization kit.

62

The kit zip file will be generated at the following location:

<Project Directory>/kit/<KitName>.zip

3.10 Saving the SQL SA Custom Project
The SQL SA Customization project can be saved, using the menu:
File-> Save As…

The user then selects the folder and provides the file name of the customization to
be saved. At this file name will be added the SQL SA Toolkit .sqltk extension.

63

The by clicking on the button “Save as” the project will be saved.

3.11 Testing the customization
The SQL SA Toolkit does not provide a testing environment, but the user can at
least copy/paste the collection and discovery queries to execute them on the
targeted database in order to check the returned values.

In order to execute the queries on the targeted database, either use an SQL editor,
or use the temip_sc_start_sqlexec tool. For details refer to 5.2.3 How to execute
SQL statements (or SQL view creations) on the database?.

3.12 Modifying the customization
To modify an existing customization, the user can reload a previously saved SQL
SA Toolkit project using the menu:
File -> Load…

Then select an existing SQL SA Custom project file.

After clicking on the Load button, the main SQL SA Toolkit window appears
and the user can access the Data Feeders definition and the mapping information.

64

Modifying the existing mappings and queries, and adding or deleting DFDs is
possible from main window tabs.

When all modifications are validated (with the File -> Validate menu) the user
can re-generate the customization kit for testing.

65

Chapter 4

SQL SA customization installation
and configuration

4.1 Installing a customized SQL SA

4.1.1 Software requirements
As for the SQL SA Toolkit, the SQL SA Customization kit requires that the
following software:

• HP-UX V11.11 or Windows 2000 / Windows XP

• HP OpenView Service Quality Manager V1.3 (Kernel subset)

• HP OpenView SA Common V1.3 (SQMSAGTWCOMMON)

• HP OpenView SQL Service Adapter Runtime V1.3 (SQMSASQL)

• SQL Database JDBC driver

Prior to the SQL SA Customization installation, the SQM Kernel, The Service
Adapter Common component (SQMSAGTWCOMMON), and the SQL SA
Runtime V1.3 (SQMSASQL) will have been installed. Please refer to the
previous SQL SA Toolkit installation chapter 2.3 for details.

4.1.2 Installing on HP-UX
On HP-UX, here are the steps to install the SQL SA Customization zip file. The
Customization zip file has been previously generated by the Toolkit into
<Project Directory>/kit/<KitName>.zip

• Connect as “root” user

• Set the TEMIP_SC_HOME environment variable to the SQM Root directory:

export TEMIP_SC_HOME=<SQM installation directory>

• Change directory to the SQM Root:

cd $TEMIP_SC_HOME

• Unzip the SQL Service Adapter custom kit.

unzip <Kit Full Path>

• Execute the installation script to set the correct access rights to the installed
files:

66

cd
$TEMIP_SC_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<SAversion>/bin

where the <SACustomName> and <SAversion> are the SA name and Version
provided at the SQL SA Toolkit project creation.

sh temip_sc_complete_install.sh

4.1.3 Installing on Windows
For an installation on Windows:

• Unzip the SQL Service Adapter custom kit in the %TEMIP_SC_HOME%
directory.

• (the file has been previously generated by the Toolkit at the following
location: <Project Directory>\kit\<KitName>.zip)

4.1.4 Configuring the SQM Kernel
The SQM Kernel needs to be setup to run a SQL SA Customization. To perform
the setup, the following configurations may be considered:

1. The SQL SA customization is installed on the HP-UX SQM SLM Primary
Server:

 In this case, please refer to hp Openview SQM Installation Guide to perform the
setup of the SQM Server.

2. The SQL SA Customization is installed on a HP-UX system distinct from the
SQM SLM Primary Server where the SQM Kernel has not been configured:

In this case, it is necessary to retrieve the SLM Server platform description file:

a. Create the sqmadm administration user on the targeted Unix system
(refer to the hp Openview SQM Installation Guide for the user account
creation)

a. Retrieve the file
$TEMIP_SC_VAR_HOME/setupconfig/platform_desc.cfg from the
SQM SLM Primary Server, and copy on the SQL SA customization
HP-UX system in $TEMIP_SC_HOME/tmp

b. Connect as root user run the commands:

export TEMIP_SC_HOME=<SQM installation
directory>

cd $TEMIP_SC_HOME/setup/bin

temip_sc_setup –all –NI

3. The SQL SA customization is installed on Windows where the SQM Kernel
has not been configured:

It is also necessary to retrieve the SLM Primary Server platform description
file:

a. Retrieve the file
$TEMIP_SC_VAR_HOME/setupconfig/platform_desc.cfg from the
SQM SLM Primary Server, and copy on the SQL SA Customization
Windows system in %TEMIP_SC_HOME%/tmp

b. Open a command line and execute:

67

cd %TEMIP_SC_HOME%\setup\bin

temip_sc_setup –all –NI

4.2 Configuring a customized SQL SA
application

General processing

Important Note

Before the SQL SA Customization configuration, it is mandatory that the SQM
Kernel setup has been performed (see previous chapter).

The setup and configuration of the SQL Service Adapter customization is done in
3 steps:

The application setup step, which declares the SQL SA application into the SQM
Central Repository and create the SQL SA Customization application Data Tree
into TEMIP_SC_VAR_HOME.

The application configuration step, which prompts the user for the connection
characteristics, and load the connection and Data Feeder definitions into the SQM
Central Repository.

The database view creation step, which executes the user defined SQL views
creation files, delivered within the SQL SA customization directory: database.
This SQL files has to be provided during the customization steps (refer to
Generating the Customized SA chapter).

4.2.1 Configuring on HP-UX
The configuration tool is located in:

$TEMIP_SC_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<SAve
rsion>/bin

where the <SACustomName> and <SAversion> are the SA name and
Version provided at the SQL SA Toolkit project creation.

4.2.1.1 Application setup and configuration steps
The following steps are to be performed to setup and configure the application on
Unix:

Application creation

This phase consists in creating a SQL SA customization application on the SQM
platform (on a specified director) and setup the SQM kernel if necessary.

Command:

Connect as “root” user.

Load the SQM environment variables
($TEMIP_SC_VAR_HOME/temip_sc_env.sh)

Perform the following commands:

cd
$TEMIP_SC_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<SAversion>/bin

#temip_sc_configure.sh –setup –dirName <director name> <application

68

name>

--

where <director name> is the director on which will be created the
application. (by default the director name is acquisition)

The application name has to be provided by the user.

Output:

This command will declare the SQL Service Adapter application to the SQM
Central Repository and create the application Data Tree in:

$TEMIP_SC_VAR_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<
SAversion>

As follows:
TEMIP_SC_VAR_HOME/Service Adapters/
TEMIP_SC_VAR_HOME/ServiceAdapters/Sql/
TEMIP_SC_VAR_HOME/ServiceAdapters/Sql/v1_2/
TEMIP_SC_VAR_HOME/ServiceAdapters/Sql/v1_2/SACustomName_SAVersion/
TEMIP_SC_VAR_HOME/ServiceAdapters/Sql/v1_2/SACustomName_SAVersion/config/
TEMIP_SC_VAR_HOME/ServiceAdapters/Sql/v1_2/SACustomName_SAVersion/config/
SaSqlDiscoveryMtLogging.properties
TEMIP_SC_VAR_HOME/ServiceAdapters/Sql/v1_2/SACustomName_SAVersion/config/
SaSqlDiscoveryTraceLogging.properties
TEMIP_SC_VAR_HOME/ServiceAdapters/Sql/v1_2/SACustomName_SAVersion/config/
slmv120_acquisitionHP_perfSA.properties
TEMIP_SC_VAR_HOME/ServiceAdapters/Sql/v1_2/SACustomName_SAVersion/discove
ry/
TEMIP_SC_VAR_HOME/ServiceAdapters/Sql/v1_2/SACustomName_SAVersion/discove
ry/filter/
TEMIP_SC_VAR_HOME/ServiceAdapters/Sql/v1_2/SACustomName_SAVersion/discove
ry/inventory/
TEMIP_SC_VAR_HOME/ServiceAdapters/Sql/v1_2/SACustomName_SAVersion/discove
ry/inventory/raw/
TEMIP_SC_VAR_HOME/ServiceAdapters/Sql/v1_2/SACustoName_SAVersion/discover
y/inventory/filtered/
TEMIP_SC_VAR_HOME/ServiceAdapters/Sql/v1_2/SACustomName_SAVersion/discove
ry/repository/
TEMIP_SC_VAR_HOME/ServiceAdapters/Sql/v1_2/SACustomName_SAVersion/reposit
ory/

Application configuration

The configuration consists in defining the SQL SA connection parameters and
loading the connection and data feeder configuration into the SQM Central
Repository.

Command:

Load the SQM environment variables
($TEMIP_SC_VAR_HOME/temip_sc_env.sh)

Perform the following command:

cd
$TEMIP_SC_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<SAversion>/bin

#temip_sc_configure.sh –configure <application name>

--

where <application name> is the application name provided at the setup
command.

69

Output:

This command will prompt the user for SQL database connection information
(login, password, database URL, JDBC driver) and load the SQL Service Adapter
Data Feeders definitions and connector definition into the SQM Central
Repository.

Configure the "perfSA" application ...

Please enter the database URL
[jdbc:oracle:thin:@hotel.vbe.cpqcorp.net:1521:spdm]:

Please enter the database username [spdm]:

Please enter the database password [********]:

Please enter the database JDBC Driver
[oracle.jdbc.driver.OracleDriver]:

Load the Connector in the Tibco Repository

Backup written at the following location:
/var/opt/OV/SQM/slmv120/ServiceAdapters/Sql/v1_2/PerfSA_v1_4/repos
itory/connectors_data.exp.2004_1_22_03_46_03

/var/opt/OV/SQM/slmv120/ServiceAdapters/Sql/v1_2/PerfSA_v1_4/repos
itory/connectors_data.exp has been imported into the Repository

Load the Data Feeder Definitions in the SRM

load DFD: PerfDFD - v1_2
(../repository/NewDFDReq_PerfDFD.v1_2.xml) ... succeed.

Load the Data Feeder Definitions in the Tibco Repository

/var/opt/OV/SQM/slmv120/ServiceAdapters/Sql/v1_2/PerfSA_v1_4

Backup written at the following location:
/var/opt/OV/SQM/slmv120/ServiceAdapters/Sql/v1_2/PerfSA_v1_4/repos
itory/PerfSA_dfds_data.exp.2004_1_22_03_46_18

../repository/PerfSA_dfds_data.exp has been imported into the
Repository

Configuration succeed.

SQL view creation

If custom views are required, the user has to write the SQL files, used to create
these custom views. During the customization of the SQL Service Adapter, the
SQL files that have been placed into the SQL SA Toolkit project directory (refer
to paragraph 3.9 Generating the Customized SA) will be used by the following
command to create the custom views within the database.

Command:

Load the SQM environment variables
($TEMIP_SC_VAR_HOME/temip_sc_env.sh)

Perform the following command:

cd
$TEMIP_SC_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<SAversion>/bin

#temip_sc_configure.sh –view <application name>

--

where <application name> is the application name provided at the setup
command.

70

4.2.2 Configuring on Windows
The configuration tool is located in:

%TEMIP_SC_HOME%\ServiceAdapters\Sql\v1_2\<SACustomName>_<SAv
ersion>\bin

where the <SACustomName> and <SAversion> are the SA name and
Version provided at the SQL SA Toolkit project creation.

4.2.2.1 Application setup and configuration steps
Here are the commands to be performed to setup and configure the application on
Windows:

Application creation

This phase consists in creating a SQL SA customization application on the SQM
platform, on a specified director.

Command:

Open a Command Line

Perform the following commands

call “%TEMIP_SC_VAR_HOME%”\temip_sc_env.bat

cd
“%TEMIP_SC_HOME%”\ServiceAdapters\Sql\v1_2\<SACustomName>_<SAversion>\bin

#temip_sc_configure –setup –dirName <director name> <application name>

--

where <director name> is the director on which will be created the
application (by default the director name is acquisition).

The application name has to be provided by the user.

Do not create two Service Adapters with the same SA application name on 2
different directors.

Output:

This command will declare the SQL Service Adapter application to the SQM
Central Repository and create the application Data Tree in:

%TEMIP_SC_VAR_HOME%\ServiceAdapters\Sql\v1_2\<SACustomName>_
<SAversion>

as follows:

71

TEMIP_SC_VAR_HOME\Service Adapters\
TEMIP_SC_VAR_HOME\ServiceAdapters\Sql
TEMIP_SC_VAR_HOME\ServiceAdapters\Sql\v1_2\
TEMIP_SC_VAR_HOME\ServiceAdapters\Sql\v1_2\SACustomName_SAVersion\
TEMIP_SC_VAR_HOME\ServiceAdapters\Sql\v1_2\SACustomName_SAVersion\config\
TEMIP_SC_VAR_HOME\ServiceAdapters\Sql\v1_2\SACustomName_SAVersion\config\
SaSqlDiscoveryMtLogging.properties
TEMIP_SC_VAR_HOME\ServiceAdapters\Sql\v1_2\SACustomName_SAVersion\config\
SaSqlDiscoveryTraceLogging.properties
TEMIP_SC_VAR_HOME\ServiceAdapters\Sql\v1_2\SACustomName_SAVersion\config\
slmv10_acquisitionWin_perfSA.properties
TEMIP_SC_VAR_HOME\ServiceAdapters\Sql\v1_2\SACustomName_SAVersion\discove
ry\
TEMIP_SC_VAR_HOME\ServiceAdapters\Sql\v1_2\SACustomName_SAVersion\discove
ry\filter\
TEMIP_SC_VAR_HOME\ServiceAdapters\Sql\v1_2\SACustomName_SAVersion\discove
ry\inventory\
TEMIP_SC_VAR_HOME\ServiceAdapters\Sql\v1_2\SACustomName_SAVersion\discove
ry\inventory\raw\
TEMIP_SC_VAR_HOME\ServiceAdapters\Sql\v1_2\SACustomName_SAVersion\discove
ry\inventory\filtered\
TEMIP_SC_VAR_HOME\ServiceAdapters\Sql\v1_2\SACustomName_SAVersion\discove
ry\repository\
TEMIP_SC_VAR_HOME\ServiceAdapters\Sql\v1_2\SACustomName_SAVersion\reposit
ory\

Application configuration

Open a Command Line

Perform the following commands

call “%TEMIP_SC_VAR_HOME%”\temip_sc_env.bat

cd
“%TEMIP_SC_HOME%”\ServiceAdapters\Sql\v1_2\<SACustomName>_<SAversion>\bin

#temip_sc_configure –configure <application name>

--

where <application name> is the application name provided at the setup
command.

This command will prompt the user for SQL database connection information
and load the SQL Service Adapter Data Feeders definitions and connector
definition into the SQM Central Repository.

Output:

72

>>>temip_sc_configure -configure XPPerf
Configure the "XPPerf" application ...
Please enter the database URL
[jdbc:oracle:thin:hammam.vbe.cpqcorp.net:1521:spdm]:
Please enter the database username [spdm]:
Please enter the database password [********]:
Please enter the database JDBC Driver [oracle.jdbc.driver.OracleDriver]:
Load the Connector in the Tibco Repository
Backup written at the following location: C:\Program Files\HP
OpenView\SQM\slmv120\ServiceAdapters\Sql\v1_2\PerfSA_v1_4\repository\
connectors_data.exp.2004_1_22_15_25_11
C:\Program Files\HP
OpenView\SQM\slmv120\ServiceAdapters\Sql\v1_2\PerfSA_v1_4\repository\
connectors_data.exp has been imported into the Repository
Load the Data Feeder Definitions in the SRM
load DFD: PerfDFD - v1_2 (..\repository\NewDFDReq_PerfDFD.v1_2.xml) ... succeed.
Load the Data Feeder Definitions in the Tibco Repository
C:\Program Files\HP OpenView\SQM\slmv120\ServiceAdapters\Sql\v1_2\PerfSA_v1_4
Backup written at the following location: C:\Program Files\HP OpenView\SQM\slmv1
10\ServiceAdapters\Sql\v1_2\PerfSA_v1_4\repository\PerfSA_dfds_data.exp.2004_1_2
2_15_25_24
..\repository\PerfSA_dfds_data.exp has been imported into the Repository
Configuration succeed.

SQL view creation

If custom views are required, the user has to write the SQL files, used to create
these custom views. During the customization of the SQL Service Adapter, the
SQL files that have been placed into the SQL SA Toolkit project directory (refer
to paragraph 3.9 Generating the Customized SA) will be used by the following
command to create the custom views within the database.

Command:

call “%TEMIP_SC_VAR_HOME%”\temip_sc_env.bat

cd
“%TEMIP_SC_HOME%”\ServiceAdapters\Sql\v1_2\<SACustomName>_<SAversion>\bin

temip_sc_configure –view <application name>

--

where <application name> is the application name provided at the setup
command.

4.2.3 Configuring the JDBC driver CLASSPATH
As for the SQL SA Toolkit, the variable
TEMIP_SC_JDBC_DRIVER_CLASSPATH has to be configured.

If the user has placed the drivers in the SQL SA Customization project folder
(refer to Generating the Customized SA chapter), the drivers should be
available in the following directory:

On Windows:
%TEMIP_SC_HOME%\ServiceAdapters\Sql\v1_2\<SACustomName>_<SAv
ersion>\lib

• where the <SACustomName> and <SAversion> are the SA name and
Version provided at the SQL SA Toolkit project creation

73

On Unix:

• $TEMIP_SC_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<SAver
sion>/lib

• where the <SA Custom Name> and <version> are the SA name and Version
provided at the SQL SA Toolkit project creation

• If it is not the case, the user has to install the driver(s) on the system where
the SQL SA Customization will run.

• In all cases, SQM environment variable file has to be updated as follows:

On Windows:

• Edit the file %TEMIP_SC_VAR_HOME%\temip_sc_env.bat

• Augment the file with:

• set TEMIP_SC_JDBC_DRIVER_CLASSPATH=<Driver 1
FIllPath>;<Driver2 FullPath>; ….

Note

On Windows, the driver paths have to be separated by “;” characters and no “””
character should be included.

On Unix:

• Edit the file $TEMIP_SC_VAR_HOME/temip_sc_env.sh

• Augment the file with:

• TEMIP_SC_JDBC_DRIVER_CLASSPATH=<Driver 1
FIllPath>:<Driver2 FullPath>: ….

• export TEMIP_SC_JDBC_DRIVER_CLASSPATH

Note

On Unix, the driver paths have to be separated by “:” characters.

Important Note

After the variable TEMIP_SC_JDBC_DRIVER_CLASSPATH has been
updated, it is necessary to source the environment.

Restarting the SQM platform and Kernel is required only if at the SQL SA
Customization kit generation, the drivers have not been included in the
generated kit.

4.2.4 Configuring the SQL SA Runtime license

The SQM utility to manage the licenses is temip_sc_license.

To run a SQL SA Customization, it is necessary to configure the SQM-SA-
GENERATED_RT license. There should be one SQM-SA-GENERATED_RT
license per SQL SA Custom installed on the system.

At Kernel installation, a temporary SQM-SA-GENERATED_RT license is
installed. This temporary license allows a 90 days trial period and is activated on
the first license check (when the application is started the first time).

Once Autopass is installed and SQM Kernel configured (this has been done by
the previous steps), perform the following commands to check the licenses.

74

On Windows:

Open a command line and execute:
> cd %TEMIP_SC_VAR_HOME%\bin
> temip_sc_license -check

On Unix:

Connect as “root” user

Load the SQM environment variables
($TEMIP_SC_VAR_HOME/temip_sc_env.sh)

Perform the following command

temip_sc_license -check

When this temporary license key has expired, the SQL SA Customization runs in
degraded mode. A permanent license is then required. Please refer to the hp
Openview SQM Administration Guide where is explained how to retrieve SQM
licenses and import them into Autopass (with temip_sc_license utility).

4.2.5 Advanced application configuration
This chapter describes how to setup the SQL Service Adapter application
configuration variables and the available application self-management directives.
To access these capabilities, it is necessary to edit the SQM Central Repository
using the Tibco Designer or start the Tibco Hawk Display console. These
applications are described in the hp OpenView SQM Administration Guide.
Please refer to this document for more information about these administration
tools.

4.2.5.1 Application, connection and DFD configuration variables
For SQL Service Adapter application advanced configuration, the user may open
the SQM Central Repository and edit the following URL using the TIBCO
Designer (see SQM Administration Guide):

/ tibco / private / adapter / ServiceCenter / ServiceAdapters /
<SACustomName>/<SA version>/<application name>_config

A general description of the Service Adapters application configuration variables
is available in the hp OpenView SQM Administration Guide. The following
section will describe only the variables that influence the SQL SA behavior.

75

Variable Name Default Description

pollingPeriod %%SCData
Acquisition
Period(min)
%%.

(Global
variable)

This polling period applies to all the
data collection by all of the data feeder
instances managed by this service
adapter application. Each time this
period is reached, each data feeder
instance gets the parameter values
coming from the SQL database. This
does not mean that all data collections
are done at the same time, but that their
frequency is equal to the pollingPeriod.
This variable is applicable to the SQL
Service Adapter. It is recommended to
set it, depending the SQL database data
refresh rate. It has to be greater to this
database refresh period.

The minimum pollingPeriod is 0.5
which corresponds to 30 seconds.

MonitoredConnectorList The MonitoredConnectorList variable
contains a list of the connector’s logical
names that are used by this service
adapter instance.

ConnectorList The ConnectorList variable contains all
the connection data. All the monitored
connectors should be found inside the
configuration list.

MonitoredDataFeederLis
t

 The MonitoredDataFeederList variable
contains a list of the data feeder
definitions managed by this service
adapter instance. Each data feeder
definition is identified by its name and
its version.

DataFeederDefConfigLis
t

 The DataFeederDefConfigList variable
contains all the configuration data of
Data Feeder Definitions. All the
monitored Data Feeder Definitions
should be found inside the
configuration list.

SQL Database connection parameters can be configured by opening the SQM
Central Repository and editing the same URL:

/ tibco / private / adapter / ServiceCenter / ServiceAdapters / <SACustomName>
/ SA<version>/ <application name>_config

76

In the ConnectorList variable the SQL database connection is described, and the
following parameters can be configured:

Variable Name Default Description

reconnectionPeriod_min 3 When the connection is in error, a
polling mechanism starts and
attempts to reopen the connection.
The reconnection tentative is done
at every reconnectionPeriod (the
value is specified in minutes).

nbReconnection 0 The nbReconnection variable
represents the maximum number of
reconnection tentatives. When the
value is “0”, this means attempting
to reconnect an infinite number of
times.

77

DbMaxPooledConnection 20 This variable represents the
maximum of simultaneous
connections opened to the database.

Note: the database must be
configured to support such a
number of connections. For
instance on an Oracle database this
maximum number of connections is
configured by the variable named
‘processes’ in the file located in:
$ORACLE_HOME/../../admin/<dat
abase name>/pfile/init<database
name>.ora

DbMinPooledConnection 2 Minimum number of connections
initialized by the SQL SA to the
database.

RequestTimeout %%SCDR
equestTim
eout(ms)%
%.

(Global
variable)

Request timeout for all requests
towards Database.

SQL SA Data Feeder definition parameters can be configured by opening the
SQM Central Repository and editing the same URL:

/ tibco / private / adapter / ServiceCenter / ServiceAdapters / <SACustomName>
/ <SAversion>/ <application name>_config

78

In the DataFeederDefConfigList, the following parameter can be configured:

Variable Name Default Description

NoValueWhenParameterIsNot
Available

True When “True”, this variable
determines if a “no value” is
returned when a parameter value has
not been retrieved from the database.
If “False”, the parameter is not
encoded in the performance
message.

4.2.5.2 AMI directives
The following self-management commands are available using TIBCO Hawk
Display User Interface (refer to the SQM Administration Guide where is
explained how to use this console):

setTraceLogLevel, getTraceLogLevel setMtLogLevel, getMtLogLevel

As for all other SQM components

Dump

As for the other SQM components, the Dump method creates a Dump file in the
trace files directory:

Argument : Dump Mode, can be one of the following:

Config: the current configuration loaded in the module

Memory: all the models and the current statuses

Topics: the topics to which the module is subscribing

All: all of the above (Config + Memory + Topics)

quietMode: stops the service adapter instance from publishing performance
messages on the collection bus.

reloadConfig: prompts the service adapter instance to reload its configuration.
This directive stops all data collection and re-activates them with the latest
configuration data. The following application parameters can be reloaded using
this directive:

pollingPeriod (the minimum pollingPeriod is 0.5, which corresponds to 30
seconds)

RequestRepliesNbRetry

internalRequestRepliesTimeout

4.2.5.3 SQL Init collection query
At startup (or at restart), the current behavior of the SQL SA is to collect data
available in the following time window:

79

[Current Time – Polling Period] Current Time

Therefore, if no data is available in the database on this period of time, no value
is published by the SQL SA at startup or restart. It will be necessary to wait for
the next polling period (if new value has been inserted into the database).

To provide initial parameter values to SQM at a startup or restart of the Service
Adapter (and by the way, synchronize SQM with last values inserted into the
database), the user may customize a specific collection query that will be
executed when the application is started.

This query is called the Initialization Query. This query is called each time a
Data Feeder Instance is unlocked. It means at Service Adapter Startup when the
DFI is unlocked and if the DFI is locked when SA is running at the next unlock
message the initial request will be executed for the DFI.

An example of default init query is defined as follows (for ORACLE):

SELECT [SUBSCRIBER], [SUBSCRIBER_DOMAIN],
[PARAMETERS], [TIMESTAMP] FROM (SELECT [SUBSCRIBER],
[SUBSCRIBER_DOMAIN] , [PARAMETERS], [TIMESTAMP] FROM
[TABLES] WHERE [MRP_PROPERTIES] AND
[TIMESTAMP]<=[CURRENT_GMT_TIME] ORDER BY [TIMESTAMP]
DESC) WHERE rownum = 1

The Initialization query has to return the same parameters as the collection query,
and in the same order. Except that it selects the row that has the most recent
timestamp. The timestamp extracted by this query will be assigned to the
keyword [LAST_TIMESTAMP] of the SQL SA. This keyword in then used by
the collection query (if the user has not modified the default collection query) as
explained in the chapter Defining the collection request).

The initialization query has to be customized in the following file.

 On Windows:

“%TEMIP_SC_HOME%”\ServiceAdapters\Sql\v1_2\<SACustomName>_<SAversion>\pro
perties\TeSC<SACustomName>.properties

On Unix:

$TEMIP_SC_HOME\ServiceAdapters\Sql\v1_2\<SACustomName>_<SAversion>
\properties\TeSC<SACustomName>.properties

 The default initialization query is applicable for all DFD.

T0: SA
startup

SA Polling
Period

T0 – Polling
Period

80

Default Initialization query (example for ORACLE)
Sql.DefaultInitQuery.Pattern=SELECT [SUBSCRIBER],
[SUBSCRIBER_DOMAIN], [PARAMETERS], [TIMESTAMP] FROM
(SELECT [SUBSCRIBER], [SUBSCRIBER_DOMAIN] ,
[PARAMETERS], [TIMESTAMP] FROM [TABLES] WHERE
[MRP_PROPERTIES] AND [TIMESTAMP]<=[CURRENT_GMT_TIME]
ORDER BY [TIMESTAMP] DESC) WHERE rownum = 1

This query has to be adapted to the chosen database type (ex: MS SQL,
MySQL…).

But the user may provide a specific initialization query per DFD, and in this case
the following syntax is applicable (in the SQL query property file):

Initialization query per DFD
Sql.InitQuery.Pattern.<DFD Name>.<DFD
Version>=<Customized SQL initialization template
request>

Example:
Sql.InitQuery.Pattern.MyDFD.v1_2 = SELECT
[SUBSCRIBER], [SUBSCRIBER_DOMAIN] , [PARAMETERS],
[TIMESTAMP] FROM (SELECT [SUBSCRIBER],
[SUBSCRIBER_DOMAIN] , [PARAMETERS], [TIMESTAMP] FROM
[TABLES] WHERE [MRP_PROPERTIES] AND
[TIMESTAMP]<=[CURRENT_GMT_TIME] ORDER BY [TIMESTAMP]
DESC) WHERE rownum = 1

SA behavior at startup and reconnection

If the default initialization request is defined and no specific DFD initialization
request exists:

For the first collection, this default initialization request is executed.

For the other polling period the collection request is used.

If a DFD initialization request is defined:

For the first collection, this DFD initialization request is executed.

For the other polling period the collection request is used.

If no default or DFD initialization request are defined:

No initialization, but only collection requests are executed.

4.2.5.4 Time synchronization
Synchronizing the targeted SQL database (especially the SQL timestamp column
value used for the data collection) with the SQM system where the SQL SA is
running, is mandatory. Without this, the SQL SA application may never return
the expected column data.

The user may choose to use NTP or other existing tool to align system clock.

4.3 Discovering and loading DFIs
The DFI discovery is an important feature provided by the SQL Service Adapter.
It allows discovering and loading automatically the Data Feeder Instances that
will be managed by the SQL SA Application.

81

Discovery script

The discovery script is located in the following directory:

On Windows:
%TEMIP_SC_HOME%\ServiceAdapters\Sql\v1_2\<SACustomName>_<SAv
ersion>\bin\temip_sc_discovery.bat

where the <SA Custom Name> and <SAversion> are the SA name
and Version provided at the SQL SA Toolkit project creation.

On Unix:
$TEMIP_SC_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<SAve
rsion>/bin/temip_sc_discovery.sh

General Processing

The discovery is done in 3 steps:

Raw discovery phase: that performs the discovery request defined by the
customization, and retrieves all discovered DFIs into a raw inventory file.

Filtering phase: that executes a user-defined script that will filter the DFIs
declared in the raw inventory file. It will generate a new filtered inventory file
with only the desired DFIs to be managed by the application.

Loading phase, that will load the filtered DFIs into SQM repository, base on 3
algorithms:

• -diff no

This option will load all the filtered Data Feeder Instances into SQM repository.

• -diff offline

This option will compare the list of discovered/filtered Data Feeder Instances to a
discovery reference file (provided by the user).

If a Data Feeder Instance exists in the inventory file but does not exist in the
reference file, the Data Feeder instance is created.

If the Data Feeder Instance does not exist in the inventory file but exists in the
reference file, the Data Feeder is deleted from the SQM repository.

If the Data Feeder Instance exists in both (inventory file and reference file), it
will not be reloaded.

• -diff online

This option performs the same Data Feeder Instances comparisons as the offline
mode, but instead of considering a reference file, the declaration will depend on
the existence of the Data Feeder Instance in SQM.

Note

The next chapters will describe in details each phase presented above.

The same processing can be done in a single command (with a default loading of
all filtered Data Feeder Instances: -diff no). Please refer to chapter One shot
discovery and loading for more details on this command.

Pre-requisite

The SQM SRM must be started before performing the Data Feeders discovery.
To start it:

Connect as “sqmadm” user.

82

Load the SQM environment variables

 (default: /var/opt/OV/SQM/slmv12/temip_sc_env.sh)

Perform the following commands:

temip_sc_start_application –platform slmv12 –director slmonitoring –
application SRM

4.3.1 Raw discovery phase
This initial phase will load the discovery request definition file and perform the
discovery query to retrieve all the SQL SA Data Feeder Instance definitions.

Input

To perform the Raw discovery, the SQL SA will load the Discovery query that
has been defined by the customization (refer to Defining the DFI discovery
request chapter).

This request has been generated in the customization kit, and is available at:

On Unix:

$TEMIP_SC_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<SAversio
n>/properties/TeSCSqlDiscovery.xml

On Windows:
%TEMIP_SC_HOME%\ServiceAdapters\Sql\v1_2\<SACustomName>_<SAver
sion>\properties\TeSCSqlDiscovery.xml

Note

It is possible to specify a different discovery file by adding the option –cfg to the
discovery tool:

 temip_sc_discovery –cfg <discovery file>

Please refer to Appendix C for an example of discovery request file.

Command

The discovery request has to be performed as follows:

On Unix:

Connect as “sqmadm” user.

Load the SQM environment variables

 (default: /var/opt/OV/SQM/slmv12/temip_sc_env.sh)

Perform the following commands:

cd
$TEMIP_SC_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<SAversion>/bin

#temip_sc_discovery.sh –platform <platform name> –director <director
name> -application <application name> -discover

 where:

 the <platform name> is the one that has been defined at the SQM
Server setup and available in the variable ($KERNEL_ID).

83

 the <director name> is the director on which has been created
the application at the setup phase. (by default the director name is
acquisition).

 the <application name> is the one that has been provided at the
application setup.

On Windows:

Open a Command line window:

cd
“%TEMIP_SC_HOME%”\ServiceAdapters\Sql\v1_2\<SACustomName>_<SAversion>\bin

#temip_sc_discovery –platform <platform name> -director <director name> -
application <application name> -discover

--

 where:

 the <platform name> is the one that has been defined at the SQM
Server setup and available in the variable ($KERNEL_ID).

 the <director name> is the director on which has been created the
application at the setup phase. (by default the director name is
acquisition).

 the <application name> is the one that has been provided at the
application setup.

Output

The raw discovery phase output will generate the following files.

The discovered DFI inventory file, located in:

On Unix:
$TEMIP_SC_VAR_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<
SAVersion>/discovery/inventory/raw/<platform name>_<director
name>_<application name>.xml

On Windows:
%TEMIP_SC_VAR_HOME%\ServiceAdapters\Sql\v1_2\<SACustomName>_
<SAVersion>\discovery\inventory\raw\<platform
name>_<director name>_<application name>.xml

An example of inventory file is provided in Appendix D.

The DFI declaration and deletion XML files, located in:

On Unix:
$TEMIP_SC_VAR_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<
SAVersion>/discovery/repository/DeclareDFIReq_<DFDName>.<DFD
version>.<DFIID>.xml

$TEMIP_SC_VAR_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<
SAVersion>/discovery/repository/DelDFIReq_<DFDName>.<DFDvers
ion>.<DFIID>.xml

84

On Windows:
%TEMIP_SC_VAR_HOME%\ServiceAdapters\Sql\v1_2\<SACustomName>_
<SAVersion>\discovery\repository\DeclareDFIReq_<DFDName>.<DF
Dversion>.<DFIID>.xml

%TEMIP_SC_VAR_HOME%\ServiceAdapters\Sql\v1_2\<SACustomName>_
<SAVersion>\discovery\repository\DelDFIReq_<DFDName>.<DFDver
sion>.<DFIID>.xml

4.3.2 Filtering phase
The discovery filtering phase consists in creating a filtering script that will be
launched by the discovery tool.

This filtering script will parse the raw discovery file (output of the previous
command). The filtering script will remove the DFI definitions that will not be
managed by the SQL SA application.

This filtering is mainly used for load balancing (share the DFI load on several
SQL SA applications).

This script will generate a new DFI inventory file containing only the DFIs that
the SQL SA application will manage.

By default, a filtering script is provided with the SQL SA Customization, and this
script only copy the input raw inventory file to the filtered inventory file, without
any processing.

The user/integrator will have to customize this script if necessary.

Input

The filtering script is located at:

On Unix:
$TEMIP_SC_VAR_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<
SAversion>/discovery/filter/<platform name>_<director
name>_<application name>_filter.sh

On Windows:
%TEMIP_SC_VAR_HOME%\ServiceAdapters\Sql\v1_2\<SACustomName>_
<SAversion>\discovery\filter\<platform name>_<director
name>_<application name>_filter.bat

Note

The filtering script can be customized by the integrator. The script accepts two
input arguments:

• Raw inventory file name (full path of the raw inventory file)

• Filtered inventory file name (full path of the file that will be generated by
the script).

An example of filtering script is provided in Appendix E.

The raw DFI inventory file is located at:

On Unix:
$TEMIP_SC_VAR_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<
SAVersion>/discovery/inventory/raw/<platform name>_<director
name>_<application name>.xml

85

On Windows:
%TEMIP_SC_VAR_HOME%\ServiceAdapters\Sql\v1_2\<SACustomName>_
<SAVersion>\discovery\inventory\raw\<platform
name>_<director name>_<application name>.xml

Command

The discovery filtering request has to be performed as follows:

On Unix:

Connect as “sqmadm” user.

Load the SQM environment variables

 (default: /var/opt/OV/SQM/slmv12/temip_sc_env.sh)

Perform the following commands

cd
$TEMIP_SC_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<SAversion>/bin

#temip_sc_discovery.sh –platform <platform name> –director <director
name> -application <application name> -filter

 where:

 the <platform name> is the one that has been defined at the SQM
Server setup and available in the variable ($KERNEL_ID).

 the <director name> is the director on which has been created
the application at the setup phase. (by default the director name is
acquisition).

 the <application name> is the one that has been provided at the
application setup.

On Windows:

Open a Command line window:

cd
“%TEMIP_SC_HOME%”\ServiceAdapters\Sql\v1_2\<SACustomName>_<SAversion>\bin

#temip_sc_discovery –platform <platform name> -director <director name> -
application <application name> -filter

--

 where:

 the <platform name> is the one that has been defined at the SQM
Server setup and available in the variable (%KERNEL_ID%).

 the <director name> is the director on which has been created the
application at the setup phase. (by default the director name is
acquisition).

 the <application name> is the one that has been provided at the
application setup.

86

Output

Once the raw DFI discovery file is filtered, the script will generate the filtered
inventory file into:

On Unix:
$TEMIP_SC_VAR_HOME/ServiceAdapters/Sql/<SACustomName>_<SAver
sion>/discovery/inventory/filtered/<platform name>_<director
name>_<application name>.xml

On Windows:
%TEMIP_SC_VAR_HOME%\ServiceAdapters\Sql\v1_2\<SACustomName>_
<SAversion>\discovery\inventory\filtered\<platform
name>_<director name>_<application name>.xml

4.3.3 Loading phase
Depending on the “-diff” option provided when launching the discovery script,
the following actions will be performed (by default the option “-diff no” is used
to load all filtered Data Feeder Instances):

• -diff no

This option will load all the filtered Data Feeder Instances into SQM repository.

• -diff offline

This option will compare the list of discovered/filtered Data Feeder Instances
against a DFI reference file. The reference file must be located in
$TEMIP_SC_VAR_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<SA
version>/discovery/repository/<platform name>_<director name>_<application
name>_discovery_reference.xml
This reference file must be managed manually by the user.

If a Data Feeder instance exists in the inventory file but does not exist in the
reference file, the Data Feeder instance is created.

If the Data Feeder Instance does not exist in the inventory file but exists in the
reference file, the Data Feeder is deleted from the SQM repository.

If the Data Feeder Instance exists in both (inventory file and reference file), it
will not be reloaded.

• -diff online

This option performs the same Data Feeder Instances comparisons as the offline
mode, but instead of considering a reference file, the declaration will depend on
the existence of the Data Feeder Instance in SQM.

Input

The DFI filtered inventory file (output from the previous command) is mandatory
as input for this phase.

It is available at:

On Unix:
$TEMIP_SC_VAR_HOME/ServiceAdapters/Sql/<SACustomName>_<SAver
sion>/discovery/inventory/filtered/<platform name>_<director
name>_<application name>.xml

87

On Windows:
%TEMIP_SC_VAR_HOME%\ServiceAdapters\Sql\v1_2\<SACustomName>_
<SAversion>\discovery\inventory\filtered\<platform
name>_<director name>_<application name>.xml

The inventory reference file may be necessary for the loading option: -diff
offline.

The file must be present at the following location:

On Unix:
$TEMIP_SC_VAR_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<
SAversion>/discovery/repository/<platform name>_<director
name>_<application name>_discovery_reference.xml

On Windows:
%TEMIP_SC_VAR_HOME%\ServiceAdapters\Sql\v1_2\<SACustomName>_
<SAversion>\discovery\repository\<platform name>_<director
name>_<application name>_discovery_reference.xml

Command

The discovery loading request has to be performed as follows:

On Unix:

Connect as “sqmadm” user.

Load the SQM environment variables

 (default: /var/opt/OV/SQM/slmv12/temip_sc_env.sh)

Perform the following commands

cd
$TEMIP_SC_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<SAversion>/bin

#temip_sc_discovery.sh –platform <platform name> –director <director
name> -application <application name> -load -diff [no | offline |
online]

 where:

 the <platform name> is the one that has been defined at the SQM
Server setup and available in the variable ($KERNEL_ID).

 the <director name> is the director on which has been created
the application at the setup phase. (by default the director name is
acquisition).

 the <application name> is the one that has been provided at the
application setup.

On Windows:

Open a Command line window:

cd
“%TEMIP_SC_HOME%”\ServiceAdapters\Sql\v1_2\<SACustomName>_<SAversion>\bin

#temip_sc_discovery –platform <platform name> -director <director name> -
application <application name> -load -diff [no | offline | online]

88

--

 where:

 the <platform name> is the one that has been defined at the SQM
Server setup and available in the variable (%KERNEL_ID%).

 the <director name> is the director on which has been created the
application at the setup phase. (by default the director name is
acquisition).

 the <application name> is the one that has been provided at the
application setup.

Output

The status of each DFI loading (Successful, Failure, partial) will be logged.

The discovery loading procedure will log the result of each DFI declaration into:

On Unix:
$TEMIP_SC_VAR_HOME/ServiceAdapters/Sql/<SACustomName>_<SAver
sion>/discovery/repository/<platform name>_<director
name>_<application name>_discovery_cmds.log

 On Windows:
%TEMIP_SC_VAR_HOME%\ServiceAdapters\Sql\v1_2\<SACustomName>_
<SAversion>\discovery\repository\<platform name>_<director
name>_<application name>_discovery_cmds.log

In case of failure, the following script can be run manually by the user, to restart
the DFI loading process:

On Unix:
$TEMIP_SC_VAR_HOME/ServiceAdapters/Sql/<SACustomName>_<SAver
sion>/discovery/repository/<platform name>_<director
name>_<application name>_discovery_cmds.sh

On Windows:
%TEMIP_SC_VAR_HOME%\ServiceAdapters\Sql\v1_2\<SACustomName>_
<SAversion>\discovery\repository\<platform name>_<director
name>_<application name>_discovery_cmds.bat

4.3.4 One shot discovery and loading
If the user does not want to call separately the DFI discovery steps described
above (discover, filter, load), the DFI discovery can be performed in a single
command, as described below:

Command

On Unix:

Connect as “sqmadm” user.

Load the SQM environment variables

 (default: /var/opt/OV/SQM/slmv12/temip_sc_env.sh)

Perform the following commands

89

cd
$TEMIP_SC_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<SAversion>/bin

#temip_sc_discovery.sh –platform <platform name> –director <director
name> -application <application name> -all

 where:

 the <platform name> is the one that has been defined at the SQM
Server setup and available in the variable ($KERNEL_ID).

 the <director name> is the director on which has been created
the application at the setup phase. (by default the director name is
acquisition).

 the <application name> is the one that has been provided at the
application setup.

On Windows:

Open a Command line window:

cd
“%TEMIP_SC_HOME%”\ServiceAdapters\Sql\v1_2\<SACustomName>_<SAversion>\bin

#temip_sc_discovery –platform <platform name> -director <director name> -
application <application name> -all

--

 where:

 the <platform name> is the one that has been defined at the SQM
Server setup and available in the variable (%KERNEL_ID%).

 the <director name> is the director on which has been created the
application at the setup phase. (by default the director name is
acquisition).

 the <application name> is the one that has been provided at the
application setup.

Output

The discovery will perform:

The raw DFI discovery request

Filter the discovered DFI with the appropriate filters

Load all the discovered DFIs into the SQM Service Repository Manager (default
load option: -diff no)

4.3.5 Scheduling the DFI discovery
It is recommended to encapsulate all the previously DFI discovery commands
into specific scripts that can run in a crontab (for Unix) or as a scheduled task (on
Windows).

The discovery will be run in batch mode, to load automatically newly discovered
DFIs from the database.

90

4.4 Starting/Stopping customized SQL SA
Starting and stopping an SQL Service Adapter application is done through the
standard SQM management commands (described in the hp OpenView SQM
Administration Guide).

Prior to the stop and start commands, the user must:

On Unix:

Connect as “sqmadm” user

Load the SQM environment variables

On Windows:

Open a command line window

Load the SQM environment variables:
cd “%TEMIP_SC_VAR_HOME%

call temip_sc_env.bat

The commands are as follows:

• To start the application:

Temip_sc_start_application –platform <platform name> –
director <director name> –application <application name>

 where:

 the <platform name> is the one that has been
defined at the SQM Server setup and available in the
variable (%KERNEL_ID%).

 the <director name> is the director on which has
been created the application at the setup phase. (by
default the director name is acquisition).

 the <application name> is the one that has been
provided at the application setup.

• To stop the application:

Temip_sc_start_application –platform <platform name> –
director <director name> –application <application name>

 where:

 the <platform name> is the one that has been
defined at the SQM Server setup and available in the
variable (%KERNEL_ID%).

 the <director name> is the director on which has
been created the application at the setup phase. (by
default the director name is acquisition).

 the <application name> is the one that has been
provided at the application setup.

4.5 Upgrading a customized SQL SA
When a defined and deployed SQL SA Customization requires some
enhancements (adding new DFDs, adding new DFD parameters), it is
recommended to perform the customization upgrade using the following steps:

91

1. Open the Customization Project with the SQL SA Toolkit, and modify the
project properties:

a. Project Folder

b. SA Version (ex: v1_2)

c. Kit Name (including the new version)

2. Save your new customization project into another project name (using File
-> Save as option)

3. Add DFDs (with their associated mapping) or Modify existing DFDs:

1. Upgrade the DFD version (for existing DFDs) ex: v1_2 instead
of v1_0

2. Add parameters and mapping definitions to the existing DFDs

3. Add new DFDs and parameters mapping

4. Generate the SQL SA Customization for this new version.

5. Install the new SQL SA Version on the targeted host:
The installation of this new version can be done on the same host as the
previous customization: two versions of the same SQL SA can be installed
and run on the same host.

6. Configure a new application for this new SQL SA version.

7. Discover the new application DFIs and load them into SQM.

Note

Prior the to these steps, the user will have upgraded its SQM Service Model to
support the New DFDs (with their new versions) and have created the appropriate
Service Component instances which will be associated to the new discovered
Data Feeder instances

8. Now that the DFIs are loaded into SQM, the binding to the Service
Component Instances can be done using the SQM SL Administration User
Interface. The collection on the new Data Feeder Instances can then be
started.

Note

When the old SQL SA version will become obsolete on the platform, its
associated application/DFD/DFIs will be deleted using the following commands:

#temip_sc_delete_application

#temip_sc_delete_dfd

The detail of these commands is described in the SQM Administration Guide.

4.6 Deployment

4.6.1 Application distribution
As the SQL SA will need to be configured to connect to an SQL database, run on
a different system from the SQM SLM Primary Server, support multiple DFIs on
multiple applications, it is really important to plan in advance, where it will be
installed and how it will be configured to provide the best performance for data
acquisition.

92

As described in the SQM Administration Guide, a SQM platform configuration
can be distributed on several hosts. Applications can be logically grouped into
platform directors.

Several SQL SA Customizations can run on the same host.

Several versions of the same SQL SA customization can also run on the same
host.

Even if there is no restriction concerning the installation of SQL SA
Customizations on a system, you can group SQL SA customization applications
into SQM directors using the following criteria:

Technology driven. You use one director for each SQL SA Customization,
meaning that all the applications of the same SQL SA customization share the
same director.

OS driven. You use one director for each OS, so that, for example, all the SQL
SA applications on Windows belong to Windows director and all the SQL SA
applications installed on HP-UX system belong to the HP-UX system director.

Geography driven. You use one director (or host) for each location, so that, for
example, all SQL SA applications collecting on databases located in Paris belong
to the “Paris” director.

To group SQL SA applications into directors, keep in mind that all applications
of one director can be started or stopped in one command on that director, you
should group your applications in the same director considering that each time
the database is restarted they can all be restarted at once.

4.6.2 Load balancing
Even if the number of applications is not limited on a SQM host, and the number
of DFIs supported by a SQL SA can be important, to optimize performances and
to be able to support the collection load, the following configuration points have
to be considered:

• Number of DFIs supported by a SQL SA application

Number of applications running on a single system

The performance of the targeted database (concurrent access to the tables and
views)

To have the best possible configuration, the following parameters can be tuned:

• The Number of DFIs per SQL SA Application can be defined at the DFI
discovery and filtering phase. The user may group the DFIs of a SQL SA
application:

Per DFD

Per DFI property (MRP)

Per customer

Note

At DFI load balancing configuration, make sure that the ratio of DFIs per SQL
SA application is correctly balanced (avoid having an oversized application
compared to other SQL SA applications on the same system)

Depending on the system sizing (CPU, Memory…), the number of SQL SA
application running on a single system has to be tuned. Please refer to the SQM
Planning Guide document for more information.

93

The performance of the SQL SA Application can be tuned using the following
parameters:

pollingPeriod

DbMaxPooledConnection (tuning this variable depends on the database type
which support or not the connection pool)

DbMinPooledConnection (tuning this variable depends on the database type
which support or not the connection pool)

Refer to the Advanced application configuration chapter for more information
about these variables and on the next chapter (Performance tuning).

• About the database tuning, the DB administrator will make sure that:

The access to the database tables is optimized through a good partitioning of the
information into multiple views (split the data per customer, geography,
technology and map this partitioning to the DFD definition and DFI repartition).

The view of database table will provide the best performance for the SQL SA
collection query.

4.6.2.1 Examples of load balancing

The load balancing can be done thank to the discovery tools, by dispatching DFIs
on multiple SQL SA applications. A scenario is explained here:

• There is a single Service Adapter Application managing a set of DFIs. It has been decided to
create a second Service Adapter Application, to dispatch DFIs equitably of each application.

To dispatch the DFIs on both Service Adapter Applications perform the
following actions:

1. It is supposed that a first Service Adapter Application is already running and
the DFI discovery phases have been performed on this application

2. Create a new Service Adapter Applications (see chapter 4.2.2.1 for more
information):
temip_sc_configure.sh –setup <application Name> -dirName <director
name>

3. Configure the newly created application:
temip_sc_configure.sh –configure <application Name> -dirName <director
name>

4. Perform the DFI discovery phase
temip_sc_discovery –application <application name> -director <director
name> -platform <platform name> -discover

5. Filter manually (or use a script) discovered DFIs by:

a. Copy the input raw inventory file to the filtered inventory file.
cp

$TEMIP_SC_VAR_HOME/ServiceAdapters/Sql/v1_2/<SA

CustomName>_<SAversion>/discovery/raw/<platform

>_<director>_<application>.xml

$TEMIP_SC_VAR_HOME/ServiceAdapters/Sql/v1_2/<SA

CustomName>_<SAversion>/discovery/filtered/<pla

tform>_<director>_<application>.xml

94

b. Edit the DFI filtered file to remove 50% of the discovered DFI
(the other 50% are already managed by the initial SA
application)

6. Load DFIs in the SRM
temip_sc_discovery –application <application name> -director <director
name> -platform <platform name> -load
DFIs initially assigned to the first SA application are now assigned to the
second SA application

7. Stop/Start the first SA application

8. Start the second SA application

4.6.3 Performance tuning

As previously explained, the SQL SA performance depends on the following
parameters:

• Number of DFIs

• Remote or local database

• Indexed SQL Table or not

• Number of connection allowed on the SQL database (SQL SA parameter
DbMaxPooledConnection)

• Polling period

• Size of the collection pool. This parameter determines the maximum number
of collection running in parallel. It can be configured in the Tibco repository
by the Collection variable named ‘maxPoolSize’

95

The main important performance parameters are the number of DFIs to pool and
the elapsed time to perform the SQL Request. The Service Adapter performance
tuning will consist in increasing the following parameters according to the
number of DFIs to pool:

• The number of connections allowed on the SQL database (SQL SA parameter
DbMaxPooledConnection). Increase this parameter when DFIs number is
greater than 1500.
The following other parameters must be greater than
DbMaxPooledConnection:

• Number of connections supported by the database: this parameter must be
configured on the Oracle database. It is configurable by setting the variable
named ‘processes’ in the file located in:
$ORACLE_HOME/../../admin/<database name>/pfile/init<database
name>.ora

 maxPoolSize of the collection pool which determines the
maximum number of collections running in parallel. It can be
configured in the Tibco repository by the Collection variable
named ‘maxPoolSize’: maxPoolSize=
DbMaxPooledConnection+20

 The collection polling period must be also increased according
to the number of DFIs to poll. This parameter is determined by
the variable named ‘pollingPeriod’ in the Tibco repository (see
chapter Application, connection and DFD configuration
variables)

97

Chapter 5

 Advanced customization

5.1 Adding synthetics parameters
The SQL SA Toolkit allows defining synthetics parameters to a DFD. A
synthetic parameter is a DFD parameter which is not mapped onto the SQL Table
column but which is computed from a dedicated request.

For instance:

We need to add a parameter representing the number of rows retrieved at each
request execution (SA polling period):
SELECT CPU_USE, COUNTER
FROM [TABLES],
 (SELECT COUNT(*) as COUNTER FROM [TABLES] where
 [MRP_PROPERTIES] and
 [TIMESTAMP]<=[CURRENT_GMT_TIME] and
 [TIMESTAMP]>[LAST_TIMESTAMP])
WHERE [MRP_PROPERTIES] and
 [TIMESTAMP]<=[CURRENT_GMT_TIME] and
 [TIMESTAMP]>[LAST_TIMESTAMP])

To define such parameter, when creating a new DFD parameter, instead of
selecting a SQL column, enter a SQL column alias (the field is editable). This
alias is computed by a sub-query.

Note

The timestamp field in the Request configuration windows is also editable

In the previous example, to define the COUNTER parameter:

Click on the ‘Parameters’ tab in the toolkit main windows, the parameter
mapping window will appear

Click on New button to create and edit the new ‘COUNTER’ parameter.

Fill in the Selected parameter details pane, for the field named ‘Database
column’, instead of selecting a SQL database column type the SQL alias name,
here ‘COUNTER’.

Click on the ‘Requests’ tab in the toolkit main windows, the request
configuration window will appear

Edit the ‘Collection Query’ request by clicking on the ‘Edit template …’ button
and enter the SQL query computing the COUNTER value:
SELECT [PARAMETERS], [TIMESTAMP]
FROM [TABLES],
 (SELECT COUNT(*) AS COUNTER
 FROM [TABLES]

98

 WHERE [MRP_PROPERTIES] AND
 [TIMESTAMP]<=[CURRENT_GMT_TIME] AND
 [TIMESTAMP]>[LAST_TIMESTAMP])
WHERE [MRP_PROPERTIES] AND
 [TIMESTAMP]<=[CURRENT_GMT_TIME] AND
 [TIMESTAMP]>[LAST_TIMESTAMP]

The instantiated SQL query will look like:
SELECT CPU_USE, COUNTER,TS
FROM PERFDB,
 (SELECT COUNT(*) AS COUNTER
 FROM PERFDB
 WHERE SYSTEMNAME= ? AND TS<=? AND TS>?)
WHERE SYSTEMNAME= ? AND TS<=? AND TS>?

5.2 Creating SQL views

5.2.1 Why creating views?
If the database has the possibility of managing views, the following remarks will
be helpful in deciding to employ them or not.

• A view can be used to simplify the vision of a complex database for a
particular user or application. The view may contain:

Only a summary of the table, rather than the full detail, using aggregation (group
by).

Joined tables, combining tables that have been split due to normalization.

• A view can be used to give a name (and therefore a convenient way to use) a
frequently used sub-query.

• A view can be used to make conversion of units (and therefore a convenient
way to use).

• A view can be used for security. A user can be given access to a view, even if
the user cannot access the underlying table. A user can be provided with an
abridged or summarized view, while keeping certain data hidden.

• A view can be made read-only.

5.2.2 Creating views for SQL SA
The SQL SA Toolkit does not provide an automatic way to create views.
Therefore the user has to create them and to test them.

The SQL Service Adapter has been designed to access database tables or views
that map with the definition of the DFDs that it exposes to SQM. As explained in
previous chapters, a DFD is associated to an SQL table that has the following
column definition:

99

 DFD Parameters MRP properties Subscriber DFD Properties

Timestamp Param1 ParamN MRP1 MRPN SubCol Prop1 PropN

If:

• The DFD parameters are to be collected from several tables,

• The DFD associated table does not have the previous characteristics,

• The DFD associated table contains columns with unsupported SQL data
types,

• Some raw data columns request specific calculation to map to DFD
parameters.

In this case, the creation of a view or the usage of SQL scripts is necessary.

Example

Please find below some useful example of view creation scripts.

The following view creates two columns NbOderIn and NbOrderOk which
values are calculated from a number of rows of other tables.

create or replace view MNPLoading as
(select distinct o.COD_OLO as Operator,
(SELECT COUNT(*) FROM richieste_donor2 WHERE COD_DONATING = o.COD_OLO AND
tipo_msg='01' AND num_file IN
(SELECT NUM_FILE FROM nome_file WHERE TRUNC(data_elab)=TRUNC(sysdate -1)
AND tipo='OLO')) as NbOrderIn,
(SELECT COUNT(*) FROM richieste_donor2 WHERE COD_DONATING = o.COD_OLO AND
tipo_msg='01' AND num_file IN
(SELECT num_file FROM nome_file WHERE TRUNC(data_elab)=TRUNC(SYSDATE -1)
AND tipo='OLO')
AND num_file_olo_presa IS NOT NULL) as NbOrderOk,
(select to_char(sysdate - 1/24,'YYYY-MM-DD HH24:MI:SS') from dual) as GMT
from operator o);

5.2.3 How to execute SQL statements (or SQL view
creations) on the database?

On Unix:

1. Connect as “sqmadm” user.

2. Load the SQM environment variables

 (default: /var/opt/OV/SQM/slmv12/temip_sc_env.sh)

3. Perform the following commands

cd $TEMIP_SC_HOME/bin

temip_sc_start_sqlexec.sh –jdbcclass <jdbc driver class name> –url
<jdbc url for connection> -user <session user name> –passwd <session
user password> –requestFiles <file1 containing sql request> <file2>...

 where:

 the <jdbc driver class name> is the full qualified JDBC driver

100

entry class name provided by the database driver vendor.

 the <jdbc url for connection> is the URL that allow the JDBC
driver to uniquely identify the server and the database to which it
should connect. The syntax of this URL is vendor specific.

 the <session user name> is the user name to be used to connect
to the database. This user has to have the adequate rights (role) to
execute the request.

 the <session user password> is the user password to be used for
the specified user name, in order to connect to the database.

 the <file1 containing sql request> <file2>... is the list of SQL
files, whose content should be executed on the database. CAUTION: refer
to the latter Note.

On Windows:

1. Open a Command line window:

#cd “%TEMIP_SC_HOME%”\bin

#temip_sc_start_sqlexec –jdbcclass <jdbc driver class name> –url <jdbc
url for connection> -user <session user name> –passwd <session user
password> –requestFiles <file1 containing sql request> <file2>...

 where:

 the <jdbc driver class name> is the full qualified JDBC driver
entry class name provided by the database driver vendor.

 the <jdbc url for connection> is the URL that allow the JDBC
driver to uniquely identify the server and the database to which it
should connect. The syntax of this URL is vendor specific.

 the <session user name> is the user name to be used to connect to
the database. This user has to have the adequate rights (role) to execute
the request.

 the <session user password> is the user password to be used for
the specified user name, in order to connect to the database.

 the <file1 containing sql request> <file2>... is the list of SQL
files, whose content should be executed on the database. CAUTION: refer
to the below Note.

The SQL files have to contain only one statement at a time. Thus, for example,
the SQL statements:

create or replace view myView1 as
((select distinct o.COD_OLO as Operator from operator o),
 (select to_char(sysdate - 1/24,'YYYY-MM-DD HH24:MI:SS') from dual) as
GMT);
create or replace view myView2 as
((select count(*)as OperatorCount from operator o),
 (select to_char(sysdate - 1/24,'YYYY-MM-DD HH24:MI:SS') from dual) as
GMT);

have to be split, and placed into two different files:

• myView1.sql
create or replace view myView1 as
((select distinct o.COD_OLO as Operator from operator o),
 (select to_char(sysdate - 1/24,'YYYY-MM-DD HH24:MI:SS') from dual) as
GMT)

101

• myView2.sql
create or replace view myView2 as
((select count(*)as OperatorCount from operator o),
 (select to_char(sysdate - 1/24,'YYYY-MM-DD HH24:MI:SS') from dual) as
GMT)

Caution

Remove the semi-colon characters from the end of the SQL statements, indeed
only PL/SQL statements should be ended by a semi-colon character

5.3 Executing an Oracle PL/SQL function
in a SQL SA request

5.3.1 Why performing an Oracle PL/SQL function?
In most cases the SQL request performed by the SQL SA look like:

SELECT [PARAMETERS], [TIMESTAMP] FROM [TABLE] WHERE
[MRP_PROPERTIES] AND [TIMESTAMP]<=[CURRENT_GMT_TIME]
AND [TIMESTAMP]>[LAST_TIMESTAMP]

When this type of request is not sufficient for our needs, by executing an Oracle
PL/SQL request all limitations can be raised. In could help for:

• Performing a second SQL request which will for instance update the
retrieved database rows

• Performing advanced synchronization requests. For instance marking the
retrieved rows

• Any specific and complex requirement

A PL/SQL call function can be performed by executing the following kind of
request:

SELECT [PARAMETERS], [TIMESTAMP] FROM
FUNCTION_NAME([MRP_PROPERTIES],[CURRENT_GMT_TIME],[LAST_
TIMESTAMP])

Note

A PL/SQL function can only be performed in the FROM clause of the SQL
request. In this FROM clause the SQL SA will replace the keyword
[MRP_PROPERTIES] by each properties part of MRP separated by the character
‘,’.

This rule is also applicable on the SQL Initial query.

5.3.2 How performing an Oracle PL/SQL function?
To call an Oracle PL/SQL function instead of perform a standard SQL request the
recommended method is:

1. Define your PL/SQL function in a dedicated PL/SQL package. The function
must return a SQL TABLE. It is recommended to:

2. Define a record SQL type. This record represents the result of the selection
of a single table’s row. For instance if we expect to retrieve parameters
‘Param1’, ‘Param2’ and a timestamp for each DFI the record must define

102

these parameters and the timestamp. Put the definition of this data type in a
SQL file located in the project directory named ‘database’. This SQL file
will be executed on the SQL Server during the view creation step of the
Service Adapter configuration phase (temip_sc_configure –view ….) (Refer
to the paragraph Sql View Creation in chapter Application setup and
configuration steps). For instance, in a file named sql_01_record.sql:

CREATE OR REPLACE TYPE MY_RECORD AS OBJECT (

 CPU_USE Float,

MEM_USE Float,

DISK_USE Float,

 TS DATE);

3. Define a SQL Table based on this record. This is the SQL table returned by
the PL/SQL function. As for the record definition, put this table definition in
a SQL file. For instance, in a file named sql_02_table.sql:

CREATE OR REPLACE TYPE MY_TABLE IS TABLE OF MY_RECORD;

4. Declare a PL/SQL package for defining the PL/SQL function. This function
must have in arguments which are the DFD MRP properties and least a
timestamp. As for the record definition, put this declaration in a SQL file.
For instance, in a file named sql_03_declare.sql:

CREATE OR REPLACE package MY_SA_PKG as

TYPE REF_CURSOR IS REF CURSOR;

FUNCTION retrieve_dfi_rows (systemname_arg IN VARCHAR2,

 current_gmt_time_arg IN DATE) RETURN
MY_TABLE;

END MY_SA_PKG;

5. Define the body of the PL/SQL function. As for the record definition, put
this declaration in a SQL file. For instance, in a file named sql_04_body.sql.
In the following example, we want to mark all retrieved SQL rows to
resynchronise SQM with the 3PP if the SA is stopped. sql:

CREATE OR REPLACE package body MY_SA_PKG as

 FUNCTION retrieve_dfi_rows (systemname_arg IN VARCHAR2,

 current_gmt_time_arg IN DATE)

 RETURN MY_TABLE IS pragma autonomous_transaction;

-- the pragma autonomous_transaction allows performing an

-- update in the function

 ccur REF_CURSOR;

 retrieved_rows_tab MY_TABLE;

BEGIN

 -- Perform the SQL Request to retrieve DFI rows on the given

-- MRP property

 OPEN ccur FOR SELECT CAST (MULTISET(SELECT CPU_USE,MEM_USE,
DISK_USE, TS FROM PERFDB WHERE SYSTEMNAME= systemname_arg
AND TS <= current_gmt_time AND already_retrieved=0) AS
MY_TABLE) FROM DUAL;

 FETCH ccur INTO retrieved_rows_tab;

CLOSE ccur;

103

 -- Post execution: mark the retrieved Columns

 UPDATE AVANTEL_ALARMS SET already_retrieved = 1 WHERE
SYSTEMNAME= systemname_arg AND TS <= current_gmt_time AND
already_retrieved=0;

 COMMIT;

 RETURN retrieved_rows_tab;

END;

END MY_SA_PKG;

6. Customize your Service Adapter thank to the SQL SA Toolkit UI:
a) Instead of specifying a database table name in the Details tab of the main

window, enter the call to the PL/SQL function (this call must be cast). You must
enter in the database field:

TABLE(CAST(SA_PKG.RETRIEVE_DFI_ROWS([MRP_PROPERTIES],[CURREN
T_GMT_TIME]) AS MY_TABLE))

b) Define the DFD parameters and properties. As no table has been specified, it is
impossible to select a database column. You must enter ‘column’ names
manually. In fact here it is necessary to enter the defined SQL record field’s
name.

c) Define the Collection request. As the filtering is performed by the PL/SQL
function the WHERE clause of the SQL request is no longer useful. The
collection request is:

SELECT [PARAMETERS],[TIMESTAMP] FROM [TABLE]
The Sql SA will instantiate this template request as:
SELECT CPU_USE, MEM_USE, DISK_USE, TS FROM
TABLE(CAST(SA_PKG.RETRIEVE_DFI_ROWS(SYSTEM_NAME,<CURRENT_GMT
_TIME>) AS MY_TABLE))

d) Define the Discovery request, specifying the manually SQL table on which the
discovery should be performed. For instance

SELECT DISTINCT [MRP_PROPERTIES] FROM MY_TABLE

5.4 Generating a Customization Kit using
the SQL Toolkit command line
If a SQL SA Toolkit customization project has previously been saved, it is
possible to automatically generate the SA Customization kit without using the
Graphical User Interface.

The command line is available at the following location:

On Unix:

<SQM Installation Directory>/ServiceAdaptersToolkit/Sql/v1_2/bin/
temip_sc_start_sqltk.sh

104

On Windows:

<SQM Installation Directory>\ServiceAdaptersToolkit\Sql\v1_2\bin\
temip_sc_start_sqltk.bat

To launch the Command line in interactive mode:

temip_sc_start_sqltk[.sh .bat] –clui

The following commands are available at the Command Line prompt:

audit Audit/Check mapping of the current
loaded project

kit Generate the kit of the current
loaded project

load
<filen
ame>

Load a project

Quit To exit

To launch the Command line and provide a script file to execute:
temip_sc_start_sqltk[.sh .bat] -file buildkit.txt

with buildkit.txt look like:

load project
load d:\Documents and Settings\smith.EMEA.000\My
Documents\PerfSA.sqltk
generate kit
kit
quit
quit

105

Chapter 6

Request per DFD
The goal of the request per DFD feature is to minimize the number of SQL
requests performed by the SQL SA, to reduce the impact on the database and to
improve the collection performance.

To reach this goal, the SQL SA performs one request per data definition (Data
Feeder Definition), instead of one request per measurement point (Data Feeder
Instance).

By default the SQL SA executes one SQL request per DFI at each polling period.
The collection performance thus depends on:

• The number of DFIs

• The number of rows to collect

• The complexity of the SQL request

• The number of connections to the database

With the request per DFD, the SQL SA executes one SQL request per DFD at
each polling period as well. The collection performance thus depends on:

• The number of rows to collect

• The complexity of the SQL request

Note

For requests per DFD, the associated SQL request is more complex.

The SQL SA still gathers the changes that occur since the last successful polling.

6.1 What is the request per DFD?
The SQL SA performance improvement implies performing a single request per
DFD. At each polling period, the Service Adapter performs a single SQL request
per DFD and then dispatches request results to the right DFIs.

The SQL request per DFD is quite different from the request per DFI. To support
a request per DFD, this request must be compliant with the following rules:

1. The ‘WHERE’ clause of the request can no longer be specified. It means
that it is no longer possible to determine which rows of the SQL table
must be retrieved (these rows are identified by the time window,
[LAST_TIMESTAMP ... CURRRENT_GMT_TIME], when performing
a request per DFI)

2. The SQL request returns a result set. This result set is composed of rows
which must be structured as:

i. DFI properties part of MRP

106

ii. DFI parameter values

iii. A timestamp [optional] (when the timestamp is not provided,
this timestamp is SA collection time)

iv. DFI customer data [optional]

3. The SQL request must only return rows referencing monitored DFIs
(unlocked DFIs). Therefore the request has to determine which DFIs are
monitored. This requirement will be discussed later in the document.

4. The SQL request must determine which rows must be retrieved:

i. Rows retrieved in a previous SQL request execution (previous
polling period), must not be retrieved in a current request
execution (current polling period). Therefore the requests must
always maintain (persistent) the ID (timestamp) of the last
retrieved (processed) row.

ii. The SQL request is able to handle failover cases. In case of
interruption of the SQM collection processing, lost of
connection with the database, the request is able to determine
the non-collected rows during the failing period (this case is
detailed later in the document).

These conditions on the SQL request imply that the targeted SGBD supports a
procedural language such as PL/SQL on Oracle. Indeed, it is necessary to
perform multiple actions per SQL request:

• Perform a SELECT request to retrieve the data

• Mark the retrieved rows (marks rows on the targeted SQL table or in a
dedicated table)

• Handle the monitored DFIs

=> the database must support the following kind of SQL request

SELECT [PARAMETER], [MRP_PROPERTIES] [customer parameters],
[TIMESTAMP]]> FROM MyFonction()

Where the function interface is:

FUNCTION <function name>(<parameters>) RETURN TABLE.

This solution has only been validated on Oracle database (9.0.x). Consequently,
the support of the SQL request per DFD is only supported on Oracle.

As the function needs to determine the monitored DFIs, it is necessary to define
on the third party database a table to store the DFIs states. This table is managed
by the SQL Service Adapter which is enhanced to perform dedicated SQL
requests when a DFI is unlocked and locked. Two new hooks for defining these
SQL requests are provided in the Service Adapter property file:

• An Unlock request, for instance:

o INSERT INTO <collection state table>
VALUES([MRP_PROPERTIES])

• Lock request, for instance:

o DELETE FROM <collection state table> WHERE
[MRP_PROPERTIES]

107

Note

The lock/unlock request could result in a performance degradation at SA startup
and when a SQM Service is suspended. As in this situation the (lock/unlock)
requests are indeed performed per DFIs.

The collection status table can also be used for storing per DFI the last measure
identifier.

To sum up a SQL Service Adaptor customization performing a single SQL
request per DFD is:

• a standard SQL SA customization with the SQL request per DFD enabled
calling a SQL function

• a SQL script file, creating the SQL table for monitoring the DFI states

• a SQL script file, defining the SQL function used to perform data collection.
This SQL function used for performing SQL request/DFD is responsible for:

o Collecting data on the monitored DFIs

o Marking the retrieved rows already retrieved

6.2 Specific customization
The DFD Collection request, the DFI Lock and Unlocked requests are specified
in the Service Adapter property file, located in:

$TEMIP_SC_HOME\ServiceAdapters\Sql\v1_2\<SACustomName>_<SAversio
n>\properties\TeSC<SACustomName>.properties

A flag in this property file indicates if the Service Adapter must perform a
request per DFI or per DFD. It is not possible to mix both modes. When the flag
is not set, SQL request are performed per DFI.

Request mode (DFD | DFI)

Sql.DFDQuery.Mode=true

3rd Party database

SQL SA

Measure ID MRP Row ID

Last
Measure ID

Collection
Status

MRP

SQL Function

Sql Request/DFD

DFD table

use

collection table

SQL Requests:
lock/unlock DFI

Param

108

CAUTION

Even when running in request per DFD mode, the property file has to contain the
Sql.DefaultQuery.Pattern property, as generated by the SQL SA Toolkit.
Therefore, when you perform your SQL SA customization, using the SQL SA
Toolkit, provide as table, the KPI table name! The record table KPI_TABLE,
used for the request per DFD should only be provided by hand within the
property file, once the SQL SA has been generated. (Confer later details)

In case the Sql.DFDQuery.Mode variable not defined, or with a wrong value the
request per DFI mode is activated.

Default DFD Request (global request used by all the defined DFDs)

Sql.DFDDefaultQuery.Pattern=SELECT [MRP_PROPERTIES],
[PARAMETERS], [SUBSCRIBER], [SUBSCRIBER_DOMAIN],
[TIMESTAMP] FROM <Fonction name>()

DFD Request per DFD

Sql.DFDQuery.Pattern.<DFD Name>.<DFD Version>=SELECT
[MRP_PROPERTIES], [PARAMETERS], [SUBSCRIBER],
[SUBSCRIBER_DOMAIN], [TIMESTAMP] FROM <Fonction name>()

Default DFD State Requests (lock/unlock requests)

These requests must be specified per DFD

Sql.DFIUnlockQuery.Pattern.<DFD Name>.<DFD Version>=INSERT INTO
<collection state table> VALUES ([MRP_PROPERTIES])

Sql.DFILockQuery.Pattern.<DFD Name>.<DFD Version>=DELETE FROM
<collection state table> WHERE [MRP_PROPERTIES]

To help the integration of the DFD request, at set of SQL scripts will be
provided, as example, here after.

6.3 What does it change?
The Service Adapter keeps the same processing. The Sql Request per DFD is
performed in background mode, independently of the DFI collection scheduling.
Request execution is scheduled at regular polling period. The request polling
period is the same as the DFI collection polling period.

The SQL request execution is scheduled once a DFI is unlocked (only for the
first DFI unlocked). But a delay is set before starting the request execution at
regulator period. Indeed it is necessary to wait that all or at least some monitored
DFIs have been unlocked before executing the SQL request. The delay is
configurable per DFD in the property file with the property:

Sql.DFDQuery.Delay.<DFD Name>.<DFD Version>=<delay in ms>

When unlocking a DFI, a dedicated SQL request is executed on the database to
update the table managing the DFI collection state. The function called by the
SQL request uses this dedicated table for retrieving DFIs rows. And so it is
necessary to wait a given elapsed time for updating the DFI collection state table
before executing the collection request.

This processing does not guarantee a result for each DFI at the first polling
period, but at the second polling period we are sure to get the expected results
(without loosing any data).

The SQL request per DFD is stopped once all DFI are locked.

109

Note

The SQL Service Adapter therefore uses two delays:

• Sql.DFDQuery.Delay.<DFD Name>.<DFD Version>, provided within the
properties file

• pollingPeriod (§4.6.2)

6.4 What are the SQL queries supported?
The SQL Service Adapter supports the same kind of request for the request per
DFD:

1. SELECT <column name>[,<column name>]* FROM <table name> |
<sql_function> WHERE <conditions>
Note: conditions no more on MRP properties and select clause includes
MRP properties in addition to the DFD parameters
Example from Model12 SA:
SELECT [MRP_PROPERTIES], [PARAMETERS], [SUBSCRIBER],
[SUBSCRIBER_DOMAIN], [TIMESTAMP] FROM TABLE(CAST
(SQM_SA_PKG.DFD_1_F() AS DFD_1_DFI_KPI_TABLE))

The SQL Service Adapter supports the following kind of requests for the lock |
unlock of a DFI:

1. INSERT INTO <table name> (<column name1>[, <column nameN>]*)
VALUES (<value1>[,<valueN>]*)
Note: same order between column names and values (MRP properties
mainly)
Example from Model12 SA:
INSERT INTO DFI_COLLECTION_STATE ([MRP_PROPERTIES])
VALUES ([MRP_PROPERTIES])

2. DELETE FROM <table name> WHERE <conditions>
Note: conditions on MRP properties
Example from Model12 SA:
DELETE FROM DFD_1_DFI_STATE WHERE [MRP_PROPERTIES]

3. MERGE INTO <table_name> USING dual ON (<column name>[and
<column name>]*) WHEN NOT MATCHED THEN <INSERT syntax>
WHEN MATCHED THEN <UPDATE syntax>
Example from PerfDB SA:
MERGE INTO PERFDB_COLLECTION_STATE USING dual ON (
[MRP_PROPERTIES]) WHEN NOT MATCHED THEN INSERT
([MRP_PROPERTIES],COLLECTION_STATE) VALUES
([MRP_PROPERTIES],1) WHEN MATCHED THEN UPDATE SET
COLLECTION_STATE=1

4. UPDATE <table name> SET <column name>=<value>[,<column
name>=<value>]* WHERE <conditions>
Note: conditions on MRP properties
Example from TeMIP Fault Statistics SA:
UPDATE MANAGEDOBJECTS SET DFISTATE=1 WHERE
[MRP_PROPERTIES]

Of course the combination of these requests for the lock and unlock requests
depends on the integrator, especially what are the tables supported and the
permissions allowed in the database (no collection state table, one for both lock
and unlock, one for each, existing vs new one, restricted access…).

110

When no table is defined to handle the DFI lock and unlock mechanism in the
database or if there is no request defined for the lock and unlock of a DFI of a
given DFD, the SQL SA logs then some messages to indicate that the processor
of the requests failed to initialize but the SQL SA still collects.

It is neither supported nor recommended for several reasons such as performance
degradation, bandwidth usage or pertinence of the data collected if they are not
processed by the SQL SA…

6.5 As a typical example
This chapter provides an example of implementation of SQL request per DFD.

Take an example for the SQL table containing the KPIs to retrieve is structured
as:

KPI TABLE

ROWID HOSTNAME CPU_USE TS

• [ROWID: an Oracle index identifying a row]

• HOSTNAME: property part of MRP defined in the DFD (it is recommended
to create indexes on these properties)

• CPU_USE: the KPI to retrieve

• TS: measure timestamp.

An additional SQL table is required to maintain the DFI collection states. This
table is updated on one hand by the Service Adapter, upon DFI unlock /lock
operations, and on the other hand read by the SQL request per DFD, through the
associated PL/SQL function call:

COLLECTION_STATE TABLE

ROWID HOSTNAME LAST_TIMESTAMP DFI_STATE

• [ROWID: an Oracle index identifying a row]

• HOSTNAME: property part of MRP defined in the DFD (it is recommended
to create indexes on these properties)

• LAST_TIMESTAMP: the timestamp of the last KPI (row Id) returned by the
PL/SQL function.

• DFI_STATE: flag, indicating whether the DFI identified by the hostname
(MRP) is currently locked or unlocked.

o 1 -> UNLOCKED

o 0 -> LOCKED

The SQL Service Adapter is customized with the following SQL request:

• DFD request. The role of this SQL request is to:

o Data Collection

o Mark the collected data

111

Sql.DFDQuery.Pattern.<DFD Name>.<DFD Version>=SELECT
[PARAMETER], [MRP_PROPERTIES],[TIMESTAMP] FROM
TABLE(CAST (SQM_SA_PKG.COLLECT() AS KPI_TABLE))

CAUTION

Even when running in request per DFD mode, the property file has to contain the
Sql.DefaultQuery.Pattern property, as generated by the SQL SA Toolkit.
Therefore, when you perform your SQL SA customization, using the SQL SA
Toolkit, provide as table, the KPI table name! The record table KPI_TABLE,
used for the request per DFD should only be provided by hand within the
property file, once the SQL SA has been generated. (Confer later details)

In case the Sql.DFDQuery.Mode variable not defined, or with a wrong value the
request per DFI mode is activated.

• Unlock request, used to indicate to the DFD request which are the monitored
DFIs:

Sql.DFIUnlockQuery.Pattern.<DFD Name>.<DFD
Version>=INSERT INTO COLLECTION_STATE VALUE
([MRP_PROPERTIES],1,NULL)

• Lock request, used to indicate to the DFD request that a DFI is no longer
monitored

Sql.DFILockQuery.Pattern.<DFD Name>.<DFD
Version>=DELETE FROM COLLECTION_STATE WHERE
[MRP_PROPERTIES]

Here is the SQL that could be used to create these two tables:

CREATE TABLE KPI (HOSTNAME VARCHAR2(36), CPU_USE
FLOAT, TS TIMESTAMP);
CREATE TABLE COLLECTION_STATE (HOSTNAME VARCHAR2(36),
LAST_TIMESTAMP TIMESTAMP, DFI_STATE NUMBER(1));

The PL/SQL package implementing the function is:

Package declaration (must be put in a sql script in ‘database’ directory of the
SQL SA customization working area):

CREATE OR REPLACE TYPE KPI_RECORD AS OBJECT (
 HOSTNAME VARCHAR2(36),
 CPU_USE FLOAT,
 TS TIMESTAMP);

CREATE OR REPLACE TYPE KPI_TABLE IS TABLE OF
KPI_RECORD;

CREATE OR REPLACE package SQM_SA_PKG as
 TYPE REF_CURSOR IS REF CURSOR;
 FUNCTION COLLECT() RETURN KPI_TABLE;
END SQM_SA_PKG;

Package body (must be put in a sql script in ‘database’ directory of the SQL SA
customization working area):

CREATE OR REPLACE package body SQM_SA_PKG as
FUNCTION COLLECT () RETURN KPI_TABLE IS pragma
autonomous_transaction;

 single_row KPI_RECORD;
 ccur REF_CURSOR;

112

 retreived_rows KPI_TABLE;
 maxtime KPI.TS%TYPE;
 curhost KPI.HOSTNAME%TYPE;
BEGIN
 -- Perform the data collection using an OUTER JOIN
between
 -- KPI and COLLECTION_STATE tables
 OPEN ccur FOR
 SELECT CAST (MULTISET(
 SELECT KPI.HOSTNAME,KPI.CPU_USE,KPI.TS
 FROM KPI,COLLECTION_STATE
 WHERE KPI.HOSTNAME=COLLECTION_STATE.HOSTNAME
(+)
 AND COLLECTION_STATE.DFI_STATE=1
 AND (KPI.TS > COLLECTION_STATE.LAST_TIMESTAMP
OR COLLECTION_STATE.LAST_TIMESTAMP IS NULL)
) AS KPI_TABLE) FROM DUAL;
 FETCH ccur INTO retreived_rows;
 CLOSE ccur;

 -- For each DFI Store the greater retreived
timestamp in
 -- in the COLLECTION_STATE TABLE
 OPEN ccur FOR
 SELECT HOSTNAME,MAX(TS)
 FROM TABLE(CAST(retreived_rows AS KPI_TABLE))
 GROUP BY HOSTNAME;
 LOOP
 FETCH ccur into curhost,maxtime;
 EXIT WHEN ccur%NOTFOUND;

 UPDATE COLLECTION_STATE
 SET COLLECTION_STATE.LAST_TIMESTAMP =maxtime
 WHERE COLLECTION_STATE.HOSTNAME=curhost;

 END LOOP;
 CLOSE ccur;
 COMMIT;
 RETURN retreived_rows;
END;
END SQM_SA_PKG;

6.6 How to build with the SQL SA Toolkit
v1.2?
The SQL SA Toolkit is not designed for customizing a SQL Service Adapter
implementing a SQL request per DFD.

 In this context the customization process will require manual customization
steps.

The whole process will be:

1. Launch the SQL SA Toolkit

2. Standard customization of the Sql Service Adapter

3. Once the DFD is fully designed

113

a. replace the SQL table name defined at DFD level by the SQL
procedure name (PL/SQL function name)

b. edit the SQL request to remove the WHERE clause and to add
the [MRP_PROPERTIES] keyword in the SELECT clause

4. Put in the directory ‘database’ of SA project area, the necessary SQL
scripts to be pushed on the SQL database. It is necessary to write SQL
scripts for:

a. The PL/SQL function call by the Service Adapter

b. The creation of the SQL table dedicated to DFI collection
status

5. Generate the SQL SA kit

6. Unzip the kit in a temporary directory

7. Update manually the SQL SA property file to set the properties enabling
the SQL request per DFD mode and defining the SQL requests
performed on DFI unlock and lock events

8. Re-zip the kit

9. Install the SQL SA kit

115

Appendix A

Installation Directory Structure
The following directories and files are installed by the SQL SA Toolkit:

TEMIP_SC_HOME/ServiceAdaptersToolkit/Sql/v1_2/bin/temip_sc_start_sqltk.sh.templ
TEMIP_SC_HOME/ServiceAdaptersToolkit/Sql/v1_2/bin/temip_sc_start_sqltk.sh
TEMIP_SC_HOME/ServiceAdaptersToolkit/Sql/v1_2/bin/temip_sc_start_sqltk.ico
TEMIP_SC_HOME/ServiceAdaptersToolkit/Sql/v1_2/bin/temip_sc_start_sqltk.bat.templ
TEMIP_SC_HOME/ServiceAdaptersToolkit/Sql/v1_2/bin/temip_sc_start_sqltk.bat
TEMIP_SC_HOME/ServiceAdaptersToolkit/Sql/v1_2/bin/temip_sc_setup_sqltk.sh
TEMIP_SC_HOME/ServiceAdaptersToolkit/Sql/v1_2/bin/temip_sc_setup_sqltk.pl
TEMIP_SC_HOME/ServiceAdaptersToolkit/Sql/v1_2/bin/temip_sc_setup_sqltk.ico
TEMIP_SC_HOME/ServiceAdaptersToolkit/Sql/v1_2/bin/temip_sc_setup_sqltk.bat
TEMIP_SC_HOME/ServiceAdaptersToolkit/Sql/v1_2/config/SaSqlToolkitMtLogging.properties
TEMIP_SC_HOME/ServiceAdaptersToolkit/Sql/v1_2/config/SaSqlToolkitMtLogging.properties.templ
TEMIP_SC_HOME/ServiceAdaptersToolkit/Sql/v1_2/config/TeSC_SqlTk_Messages.properties
TEMIP_SC_HOME/ServiceAdaptersToolkit/Sql/v1_2/config/TeSC_SqlTkClui_Messages.properties
TEMIP_SC_HOME/ServiceAdaptersToolkit/Sql/v1_2/config/SaSqlToolkitTraceLogging.properties
TEMIP_SC_HOME/ServiceAdaptersToolkit/Sql/v1_2/config/SaSqlToolkitTraceLogging.properties.te
mpl
TEMIP_SC_HOME/ServiceAdaptersToolkit/Sql/v1_2/jar/TeSCSQLTK.jar
TEMIP_SC_HOME/ServiceAdaptersToolkit/Sql/v1_2/jar/TeSCSQLTKDataModel.jar
TEMIP_SC_HOME/ServiceAdaptersToolkit/Sql/v1_2/jar/TeSCSQLTKGui.jar

TEMIP_SC_HOME/ServiceAdaptersToolkit/Sql/v1_2/properties/SaSqlTkKitting.properties
TEMIP_SC_HOME/ServiceAdaptersToolkit/Sql/v1_2/resources/ConnectedModeIcon.gif
TEMIP_SC_HOME/ServiceAdaptersToolkit/Sql/v1_2/resources/CriticalMsgLevelIcon.gif
TEMIP_SC_HOME/ServiceAdaptersToolkit/Sql/v1_2/resources/DisconnectedModeIcon.gif
TEMIP_SC_HOME/ServiceAdaptersToolkit/Sql/v1_2/resources/InfoMsgLevelIcon.gif
TEMIP_SC_HOME/ServiceAdaptersToolkit/Sql/v1_2/resources/SaSqlToolkitGuiResources.properties
TEMIP_SC_HOME/ServiceAdaptersToolkit/Sql/v1_2/resources/SaSqlToolkitMtLogMessages.propertie
s
TEMIP_SC_HOME/ServiceAdaptersToolkit/Sql/v1_2/resources/SqlSaToolkitIcon.gif
TEMIP_SC_HOME/ServiceAdaptersToolkit/Sql/v1_2/resources/WarningMsgLevelIcon.gif
TEMIP_SC_HOME/ServiceAdaptersToolkit/Sql/v1_2/UninstallerDataSqlTk/.com.zerog.registry.xml
TEMIP_SC_HOME/ServiceAdaptersToolkit/Sql/v1_2/UninstallerDataSqlTk/Uninstall/SqlTk.exe
TEMIP_SC_HOME/ServiceAdaptersToolkit/Sql/v1_2/UninstallerDataSqlTk/Uninstall/Uninstall
SqlTk.lax
TEMIP_SC_HOME/ServiceAdaptersToolkit/Sql/v1_2/UninstallerDataSqlTk/Uninstall/uninstaller.ja
r
TEMIP_SC_HOME/ServiceAdaptersToolkit/Sql/v1_2/UninstallerDataSqlTk/resource/iawin32.dll
TEMIP_SC_HOME/ServiceAdaptersToolkit/Sql/v1_2/UninstallerDataSqlTk/resource/remove.exe
TEMIP_SC_HOME/ServiceAdaptersToolkit/Sql/v1_2/UninstallerDataSqlTk/resource/ZGWin32LaunchHe
lper.exe

The following directories and files are installed by the SQL SA Customization:

116

TEMIP_SC_HOME/adapter/bin/<SACustomName>_<SAVersion>_launch.bat
TEMIP_SC_HOME/adapter/bin/<SACustomName>_<SAVersion>_launch.sh
TEMIP_SC_HOME/etc/addOn/<SACustomName>_<SAVersion>_unix.tmpl_cfg
TEMIP_SC_HOME/etc/addOn/<SACustomName>_<SAVersion>_windows.tmpl_cfg
TEMIP_SC_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<SAVersion>/bin/temip_sc_complete_install.sh
TEMIP_SC_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<SAVersion>/bin/temip_sc_configure.bat
TEMIP_SC_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<SAVersion>/bin/temip_sc_configure.sh
TEMIP_SC_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<SAVersion>/bin/temip_sc_create_datatree.bat
TEMIP_SC_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<SAVersion>/bin/temip_sc_create_datatree.sh
TEMIP_SC_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<SAVersion>/bin/temip_sc_create_db_view.bat
TEMIP_SC_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<SAVersion>/bin/temip_sc_create_db_view.sh
TEMIP_SC_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<SAVersion>/bin/temip_sc_discovery.bat
TEMIP_SC_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<SAVersion>/bin/temip_sc_discovery.sh
TEMIP_SC_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<SAVersion>/bin/temip_sc_discovery_tmpl.bat
TEMIP_SC_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<SAVersion>/bin/temip_sc_discovery_tmpl.sh
TEMIP_SC_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<SAVersion>/bin/temip_sc_setup_connector.bat
TEMIP_SC_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<SAVersion>/bin/temip_sc_setup_connector.sh
TEMIP_SC_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<SAVersion>/config/SaSqlDiscoveryMtLogging.pr
operties
TEMIP_SC_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<SAVersion>/config/SaSqlDiscoveryTraceLogging
.properties
TEMIP_SC_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<SAVersion>/config/SCPlatform_SCDirector_SCAp
plication.properties
TEMIP_SC_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<SAVersion>/database/…..
TEMIP_SC_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<SAVersion>/doc/….
TEMIP_SC_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<SAVersion>/lib/…
TEMIP_SC_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<SAVersion>/properties/saname.properties
TEMIP_SC_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<SAVersion>/properties/TeSC<SACustomName>.pro
perties
TEMIP_SC_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<SAVersion>/properties/TeSC<SACustomName>_Mes
sages.properties
TEMIP_SC_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<SAVersion>/properties/TeSCSql_Version.proper
ties
TEMIP_SC_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<SAVersion>/properties/TeSCSqlDiscovery.xml
TEMIP_SC_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<SAVersion>/repository/DelDFDReq_<DFDName>.<D
FDVersion>.xml
TEMIP_SC_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<SAVersion>/repository/NewDFDReq_<DFDName>.<D
FDVersion>.xml
TEMIP_SC_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<SAVersion>/repository/<SACustomName>_Connect
ors_data.exp
TEMIP_SC_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<SAVersion>/repository/<SACustomName>_dfds_da
ta.exp
TEMIP_SC_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<SAVersion>/repository/<SACustomName>_v1_4_se
tup.cfg
TEMIP_SC_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<SAVersion>/repository/<SACustomName>_v1_4_te
mplate.exp
TEMIP_SC_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<SAVersion>/util/….

117

Appendix B

SQL Database configuration
requirements

To take advantage of the SQL SA Toolkit connected mode feature and allow the
Toolkit to connect to a database and extract the tables and columns definitions,
the following steps have to be performed:

For Sybase

Log on the sybase server, and install one of the following stored procedures:

sql_server.sql installs stored procedures on Adaptive Server Enterprise
versions 11.9.2 and earlier.

sql_server12.sql installs stored procedures on Adaptive Server Enterprise
version 12.0.

sql_server12.5.sql installs stored procedures on Adaptive Server Enterprise
versions 12.5.x.

sql_asa.sql installs stored procedures on SQL Anywhere and Adaptive Server
Anywhere databases.

Example:

Here is the command to install the required stored procedures within the Sybase
database:

${SYBASE_HOME}/bin/isql -Usa -Smy_sybase_server_name -

Dmy_database_name -i${JDBC_HOME}\sp\sql_server.sql

Sybase documentation:

http://manuals.sybase.com/onlinebooks/group-
jc/jcp0550e/jconnig/@Generic__BookTextView/928;pt=928#X

For Oracle

Log on the oracle server as oracle user (being member of dba).

set ORACLE_SID=my_oracle_database_instance_name

sqlplus /nolog

connect / as sysdba

@${ORACLE_HOME}/rdbms/admin/catalog.sql

@${ORACLE_HOME}/rdbms/admin/catproc.sql

119

Appendix C

SQL Discovery request file
example

This file defines the SQL Discovery request for each SQL SA customized DFD.
This file has been created by the SQL SA Toolkit from the user property
mapping.

Once the SQL SA Customization is installed, it is located in:

On Unix:

$TEMIP_SC_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<SAversio
n>/properties/TeSCSqlDiscovery.xml

On Windows:
%TEMIP_SC_HOME%\ServiceAdapters\Sql\v1_2\<SACustomName>_<SAver
sion>\properties\ TeSCSqlDiscovery.xml

It has the following syntax:

<?xml version="1.0" encoding="UTF-8"?>
<Discoveries>
 <Discovery dfd.name="PerfDFD" dfd.version="v1_2"
 mrp.name="%SystemName%"
 query="select distinct SYSTEMNAME, IPADDRESS from PERFDB"
sa.name="SystemPerfSA" sa.version="v1_2" sql.version="v1_2">
 <Properties>
 <sc:PropertyFilter datatype="String" property.column="1"
property.name="SystemName"/>
 <sc:PropertyFilter datatype="String" property.column="2"
property.name="IPAdress"/>
 <sc:PropertyValue datatype="String"
property.name="SqlConnector">PerfConnector</sc:PropertyValue>
 </Properties>
 </Discovery>
</Discoveries>

 Each declared property is defined, indicated in which order the property
appears in the discovery request output.

The SqlConnector property is mandatory for the SQL SA (it does not appear at
the Graphical User Interface).

121

Appendix D

DFI inventory file example
The DFI inventory file is used as input/output for each DFI discovery phase. Here is
an example of inventory file, which syntax is important when customizing the
filtering script.

<?xml version="1.0" encoding="UTF-8"?>
<inventory>
 <DFIEntry dfd.name="PerfDFD" dfd.version="v1_2"
 dfi.id="PerfDF_835227133"
mrp.name="host1.vbe.cpqcorp.net"
 sa.name="PerfSA" sa.version="v1_2"
sai.id="slmv12_acquisition_myPerf"/>

 <DFIEntry dfd.name="PerfDFD" dfd.version="v1_2"
 dfi.id="PerfD__151287840"
mrp.name="host2.vbe.cpqcorp.net"
 sa.name="PerfSA" sa.version="v1_2"
sai.id="slmv12_acquisition_myPerf"/>

 <DFIEntry dfd.name="PerfDFD" dfd.version="v1_2"
 dfi.id="PerfDF_849885112"
mrp.name="host3.vbe.cpqcorp.net"
 sa.name="PerfSA" sa.version="v1_2"
sai.id="slmv12_acquisition_myPerf"/>
</inventory>

In the previous example, 3 DFIs have been discovered. Each DFI is identified by the
tag DFIEntry. The DFI filtering script, is supposed to remove each entry that must
not be loaded into SQM.

123

Appendix E

Filtering script example
The following example provides a DFI filtering program written in Perl language.

This program filters a raw discovery inventory file containing discovered DFI entries.
The filtering is done on the MRP name: depending on the MRP name value, the DFI
entry will be kept or not.

The output file is the Filtered inventory file.

To call the Perl program, the default filtering script has to be modified as follows:

On Unix:
$TEMIP_SC_VAR_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<SAv
ersion>/discovery/filter/<platform name>_<director
name>_<application name>_filter.sh

#!/bin/sh
Usage:
$1: raw file
$2: filtered file

RAWFILE=$1
FILTERFILE=$2

Execute perl discovery filter

perl
$TEMIP_SC_VAR_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<SAversion>/disco
very/filter/filter.pl –in $RAWFILE –out $FILTERFILE

status=$?

echo "Filtering completed."

exit $status

On Windows:
%TEMIP_SC_VAR_HOME%\ServiceAdapters\Sql\v1_2\<SACustomName>_<SA
version>\discovery\filter\<platform name>_<director
name>_<application name>_filter.bat

@echo off
REM Usage:
REM %1%: raw file
REM %2%: filtered file
set RAWFILE=%1%
set FILTERFILE=%2%
REM Execute the perl discovery filter
perl
"%TEMIP_SC_VAR_HOME%”\ServiceAdapters\Sql\v1_2\<SACustomName>_<Savers
ion>\discovery\filter\filter.pl -in %RAWFILE% -out %FILTERFILE%

set status=%ERRORLEVEL%
echo "Filtering completed."

exit %status%

Then the following Perl script has to be placed in the same directory as the filtering
script:

On Unix:
$TEMIP_SC_VAR_HOME/ServiceAdapters/Sql/v1_2/<SACustomName>_<SAv
ersion>/discovery/filter/filter.pl

On Windows:
%TEMIP_SC_VAR_HOME%\ServiceAdapters\Sql\v1_2\<SACustomName>_<SA
version>\discovery\filter\filter.pl

125

use strict;
use Getopt::Long;
use XML::Simple;

Constants
#######################
my $DFI_ENTRY_TAG = "DFIEntry";
my $MRP_NAME_ATTR = "mrp.name";
my $DFI_ID_ATTR = "dfi.id";
my $INVENTORY_ENTRY_TAG = "inventory";
main();

filterInputDiscoveryFile
Filter the input file on the MRP name value and put the resulting
parsed XML into the specified output file
Arguments:
inputDiscoveryFile : input XML file (raw discovery file)
outputDiscoveryFile : output XML file (filtered discovery file)
sub filterInputDiscoveryFile {
 my ($inputDiscoveryFile,$outputDiscoveryFile) = (@_);
 ## Check if the file exists
 ## if yes, open it and parse it
 ## ==============================
 if (-f $inputDiscoveryFile) {

 if (-r $inputDiscoveryFile) {
 ##
 ## Filtering consists in selecting DFIs where the MRP name
contains 'MyString'
 ##

 my $xmlParser = new XML::Simple(keeproot => 1, forcearray =>
['${DFI_ENTRY_TAG}']);
 my $inventory = $xmlParser->XMLin("${inputDiscoveryFile}");

 my $counter=0;

 # For each DFI Entry
 foreach my $dfiEntry (@{$inventory->{"${INVENTORY_ENTRY_TAG}"}-
>{"${DFI_ENTRY_TAG}"}}) {
 my $dfiID=${dfiEntry}->{"${DFI_ID_ATTR}"};
 $_=${dfiEntry}->{"${MRP_NAME_ATTR}"};
 if (/MyString/) {
 # The MRP Name matches the keyword 'MyString' so keep this
DFI
 print "$dfiID is kept\n";
 } else {
 # The MRP Name does NOT match the keyword 'MyString' so
delete this DFI
 print "$dfiID is filtered-out\n";
 delete $inventory->{"${INVENTORY_ENTRY_TAG}"}-
>{"${DFI_ENTRY_TAG}"}[$counter];
 }
 $counter++;
 }
 # Generate the filtered Discovery file
 XMLout($inventory,keeproot => 1 , suppressempty => 1,keyattr =>
['${DFI_ENTRY_TAG}'], outputfile => $outputDiscoveryFile);

 # Hack: re-parse the filtered file to remove empty values and
regenerate the output file
 my $xmlParser2 = new XML::Simple(keeproot => 1, suppressempty =>
1,forcearray => ['${DFI_ENTRY_TAG}']);
 my $inventory2 = $xmlParser2->XMLin("${outputDiscoveryFile}");
 XMLout($inventory2,keeproot => 1 , suppressempty => 1,keyattr =>
['${DFI_ENTRY_TAG}'], outputfile => $outputDiscoveryFile);

 } else {
 print ("Warning: cannot read file: ${inputDiscoveryFile}\n");
 }
 } else {
 print ("Warning: cannot find file: ${inputDiscoveryFile}\n");
 }
}
###
##########
Main

arguments:
-in <file> : raw discovery file
-out <file> : filtered discovery file
###
##########
sub main {
 my $inputFile;
 my $outputFile;
 my $optStatus=&GetOptions('in=s' => \$inputFile,
 'out=s' => \$outputFile);

 if (!$optStatus) {
 print ("ERROR: invalid option \n");
 exit 2;
 }
 filterInputDiscoveryFile($inputFile,$outputFile);
}

127

Appendix F

Troubleshooting
The SQL SA Toolkit logging and tracing is done in the TEMIP_SC_VAR_HOME
directory if this variable was defined at the SQL SA Toolkit setup. Otherwise, the
traces and logs are redirected into the directory provided at the setup:
TEMIP_SC_VAR_HOME/log

TEMIP_SC_VAR_HOME/trace

The files are identified as follows:

SQMSaSqlToolkit_<ID>.log

For the SQL SA Customization application, as for other SQM components, you can
refer the HP OpenView Service Quality Manager Administration Guide for
troubleshooting information.

129

Appendix G

Acronyms
The following table lists the acronyms commonly used in this document:

Term Description

API Application programming interface

DFD Data feeder definition

DFI Data feeder instance

MRP Measurement reference point

SAI Service Adapter Application Name (or Service Adapter
instance)

SLA Service level agreement

SLM Service level management

SLO Service level objective

SRM Service Repository Manager

XML eXtensible Mark-up Language

	Service Quality Manager
	SQL SA and SQL SA Toolkit product components
	SQL Service Adapter
	Definitions
	Data collection overview
	DFI discovery overview
	Database requirements

	SQL Service Adapter customization

	Software Requirements
	Hardware Requirements
	Installing the Software
	Installing on Windows
	Installing SQM Kernel Subset
	Installing the SQL SA Toolkit

	Installing on HP-UX
	Installing the SQM Kernel subset
	Installing the SQL SA Toolkit

	Uninstalling the Software on Windows
	Uninstalling the Software on HP-UX

	Validation check list, before customization project
	SQL database cookbook

	Setting up the SQL SA Toolkit
	Configuring the SQL SA Toolkit license

	Starting the SQL SA Toolkit
	Creating a customization project
	Creating a connection
	Modeling/Mapping a DFD
	Importing a DFD from a Service Designer XML file
	Defining a Data Feeder using the Toolkit
	Mapping the DFD parameters
	Mapping the DFD properties

	Defining the collection request
	Mapping the timestamp column
	Mapping customer or subscriber
	Mapping a subscriber
	Mapping a customer

	Modifying the collection query

	Defining the DFI discovery request
	Generating the Customized SA
	Saving the SQL SA Custom Project
	Testing the customization
	Modifying the customization
	Installing a customized SQL SA
	Software requirements
	Installing on HP-UX
	Installing on Windows
	Configuring the SQM Kernel

	Configuring a customized SQL SA application
	Configuring on HP-UX
	Application setup and configuration steps

	Configuring on Windows
	Application setup and configuration steps

	Configuring the JDBC driver CLASSPATH
	Configuring the SQL SA Runtime license
	Advanced application configuration
	Application, connection and DFD configuration variables
	AMI directives
	SQL Init collection query
	Time synchronization

	Discovering and loading DFIs
	Raw discovery phase
	Filtering phase
	Loading phase
	One shot discovery and loading
	Scheduling the DFI discovery

	Starting/Stopping customized SQL SA
	Upgrading a customized SQL SA
	Deployment
	Application distribution
	Load balancing
	Examples of load balancing

	Performance tuning

	Adding synthetics parameters
	Creating SQL views
	Why creating views?
	Creating views for SQL SA
	How to execute SQL statements (or SQL view creations) on the

	Executing an Oracle PL/SQL function in a SQL SA request
	Why performing an Oracle PL/SQL function?
	How performing an Oracle PL/SQL function?

	Generating a Customization Kit using the SQL Toolkit command
	What is the request per DFD?
	Specific customization
	What does it change?
	What are the SQL queries supported?
	As a typical example
	How to build with the SQL SA Toolkit v1.2?

