
A.2

HP OpenView
Service Quality Manager

SA proxy

Installation, Configuration and User Guide

Edition: 1.4

March 2007

© Copyright 2007 Hewlett-Packard Company, L.P.

2

Legal Notices

Warranty

Hewlett-Packard makes no warranty of any kind with regard to this manual, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Hewlett-Packard
shall not be held liable for errors contained herein or direct, indirect, special, incidental or
consequential damages in connection with the furnishing, performance, or use of this material.

A copy of the specific warranty terms applicable to your Hewlett-Packard product can be obtained
from your local Sales and Service Office.

Restricted Rights Legend

Use, duplication or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause in DFARS
252.227-7013.

Hewlett-Packard Company

United States of America

Rights for non-DOD U.S. Government Departments and Agencies are as set forth in FAR 52.227-
19(c)(1,2).

Copyright Notices

© Copyright 2002, 2004-2007 Hewlett-Packard Development Company, L.P.

No part of this document may be copied, reproduced, or translated to another language without the
prior written consent of Hewlett-Packard Company. The information contained in this material is
subject to change without notice.

Trademark Notices

HP-UX Release HP-UX Release 11.11 and later (in both 32 and 64-bit configurations) on all HP 9000
computers are Open Group UNIX 95 branded products.

Java™ and all Java based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.

Microsoft® and Windows® are U.S. registered trademarks of Microsoft Corporation.

UNIX® is a registered trademark of The Open Group.

All other product names are the property of their respective trademark or service mark holders and are
hereby acknowledged.

A.3 3

Contents

Preface ...5

Chapter 1 ...7

SA Topology..7
1.1 Platform view..7
1.2 Software component view..8
1.3 SA proxy – SA interoperability ...8
1.4 Preliminary “design” phase ..9

Chapter 2 ...11

SA proxy installation and configuration ...11
2.1 Installing a SA proxy ..11
2.1.1 Software requirements..11
2.1.2 Installing the SA Common subset...11
2.1.3 Installing on HP-UX...12
2.1.4 Configuring the SQM Kernel...12
2.2 Setting up a SA proxy application..13
2.2.1 Configuring on HP-UX ..13
2.3 Discovering and loading Data Feeder Definitions (DFDs)...............................19
2.3.1 Raw discovery phase..20
2.3.2 Loading phase ..21
2.3.3 One shot discovery and loading ...22
2.4 Discovering and loading Data Feeder Instances (DFIs)..................................23
2.4.1 Raw discovery phase..24
2.4.2 Filtering phase ..25
2.4.3 Loading phase ..26
2.4.4 One shot discovery and loading ...28
2.4.5 Scheduling the DFI discovery ...29
2.4.6 DFI discovery advanced configuration..29
2.5 Advanced application configuration ...29
2.5.1 Application and connection configuration variables....................................30
2.5.2 AMI directives ...33
2.6 Starting / Stopping SA proxy..34
2.7 Deployment..35
2.7.1 Application distribution..35
2.7.2 Load balancing..35

Appendix A..37

DFI inventory file example ...37

Appendix B..38

4

Filtering script example..38

Appendix C..41

Troubleshooting..41
Proxy Service Adapter trouble shooting...41
Discovery tool trouble shooting ..41

Appendix D..42

Acronyms ..42

A.4 5

Preface

This document describes how to install and use the hp OpenView Service Quality
Manager (SQM) Service Adapter proxy. The Service Adapter proxy application, once
configured, is able to interoperate with a Service Adapter (Web Services) in order to
configure it, to discover the Data Feeder Definitions (DFD) and Instances (DFI) it
manages, to control and finally to retrieve the quality of service measures of the these
DFIs.

This document describes how to:

• Use Service Adapter proxy applications

• Install and setup a Service Adapter proxy application

Intended Audience
This document is intended for Service Quality Manager administrators and
integrators.

Required Knowledge
It is assumed that the reader is familiar with the functionality of Service Quality
Manager and has previous experience of the following:

• System administration and operations

• Service Level Management

It is assumed that the reader is familiar with the concepts described in the following
books:

• HP OpenView Service Quality Manager Overview

• HP OpenView Service Quality Manager Service Adapter User's Guide

• HP OpenView Service Quality Manager Administration Guide

Software Versions
The software versions referred to in this document are specified in the chapter 2.1.1

6

Typographical Conventions

Courier Font

• Source code and examples of file contents.

• Commands that you enter on the screen.

• Pathnames.

• Keyboard key names.

Italic Text

• File names, programs, and parameters.

• The names of other documents referenced in this manual.

Bold Text

• New terms and to emphasize important words.

Associated Documents
For a full list of Service Quality Manager user documentation, refer to the HP
OpenView Service Quality Manager Overview.

Support
You can visit the HP OpenView support web site at:

http://support.openview.hp.com/support.jsp

This Web site provides contact information and details about the products, services,
and support that HP OpenView offers.

HP OpenView online software support provides customer self-solve capabilities. It
provides a fast and efficient way to access interactive technical support tools needed
to manage your business. As a valued support customer, you can benefit by using the
support site to:

• Search for knowledge documents of interest

• Submit enhancement requests online

• Download software patches

• Submit and track progress on support cases

• Manage a support contract

• Look up HP support contacts

• Review information about available services

• Enter discussions with other software customers

• Research and register for software training

7

Chapter 1

SA Topology

1.1 Platform view
The SQM platform southbound is today composed of various data sources integration
modules. The integration modules are specific to a category of data source. SQM
provides various integration modules, like for example an OVIS integration module
for OVIS data sources, or a TeMIP integration module for TeMIP data sources. A
module also provides the data model, describing the data source. This data model is
required by the SQM platform to be able to perform collections on the data source.

The Web Service based Service Adapters (SA) whereas belong to a different category
of data sources. Indeed, these data sources, opposed to the OVIS or TeMIP data
source, could be configured, discovered, controlled and collected through a common
and standard interface, the Service Adapter interface (WSDL). Therefore, only one
single integration module, the SA Proxy, is used to interoperate with this new kind of
data sources, called the Service Adapters.

The schema below represents, at the bottom the various possible Service Adapters
and at the top the SQM platform including the dedicated integration module: a SA
proxy.

Indeed, the SA proxy is decomposed into a Service Adapter configuration tool, a Data
Feeder discovery tool and the Service Adapter proxy it self. Refer to the [SQM
Overview] and [SQM Model] for further details on the Data Feeder terminology.

8

1.2 Software component view
The generic Service Adapter proxy is a software component part of SQM, which has
to be installed on the SQM platform.

A Service Adapter whereas is most likely installed on the platform that runs the Third
Party Product that the Service Adapter has to wrap.

To run a SA Proxy connecting to a given Service Adapter, the SA Proxy software has
first to be installed (confer 2.1 Installing a SA proxy) and then set-up accordingly to
the Service Adapter(s) (X, Y, Z and/or T) it should connect to. Note that the SA
proxy has to be installed only once. Indeed, the SA Proxy setup effectively creates a
SA Proxy application, also known as Service Adapter Instance (SAI). Although the
SA proxy applications run independently from each other (different processes), they
share the same SA proxy software binaries.

The SA proxy setup is composed of the following steps:

• SA proxy application (SAI) creation

• SA proxy (connector) configuration

• Service Adapter and Third Party Product configuration

• Data Feeder model (DFD and DFI) discovery per Service Adapter

1.3 SA proxy – SA interoperability
The following schema describes the possible interconnections between the SA proxy
applications and given Service Adapters it could collect from. Note that the SA proxy
applications use different (named) connectors to interoperate with their associated
Service Adapters.

Z 3PP Y 3PP X Third Party Product platform

Z Service Adapter Y Service Adapter X Service Adapter

Firewall

SQM platform

Service
Adapter
config tool

Data Feeder
discovery
tool

Service
Adapter
proxy

Service Adapters interface (WSDL)

9

Indeed, Service Adapters are visible as Web Services that implement the standard SA
interface, delivered by the SQM SA SDK. The SA proxy, like any other web proxy,
could interoperate with these Service Adapter Web Services, using an URL. This
URL contains the host name, the port number, as well as the name of the Service
Adapter which is available at this location.

1.4 Preliminary “design” phase
Please take a while before setting up a SA Proxy application! Indeed, it is important
to know exactly how many and which Service Adapters you would like to integrate
into SQM.

As exposed in 1.3 SA proxy – SA interoperability, the SA proxy application could
interoperate with one or several Service Adapters. You have to choose the SA Proxy /
Service Adapter (Third Party Product) combination that will match the requirements.

Let us take the Z SA Proxy as an example. We have two platforms B and C which
both run a Z Third Party Product, like for example TeMIP. So we would like to setup
a TeMIP SA Proxy, which interoperates with these both TeMIP platforms. First of all
we attribute a unique name to the SA proxy application, lets say:
Corporate_TeMIP_SA_Proxy. This proxy will interoperate, i.e. connect to both a
France subsidiary TeMIP Service Adatper and a Germany subsidiary TeMIP Service
Adapter. It is important to attribute a meaningful name to these SA connectors, like
France_TeMIP_SA and Germany_TeMIP_SA. These connector names are required
during the Corporate_TeMIP_SA_Proxy setup and later upon the Data Feeder
discovery.

Platform D
SQM platform

SQM platform

Platform C

SQM platform

X SA Proxy

X Service Adapter

Y Service Adapter

T SA Proxy T Service Adapter

Z SA Proxy

Z Service Adapter

Z Service Adapter
or

Platform B

Platform A

or

X Connector

Y Connector

Z1 Connector

Z2 Connector

Z Connector

Y SA Proxy

10

In the following chapter, the SA proxy application name will be designated through
<Application name>, and the name (id) of the Service Adapter dedicated connectors
through <Connector name>.

In theory, the <Connector name> could look like hotel.cpqcorp.net_8080_TeMIP_SA
(a concatenation of the Service Adapter host name followed by its port and finally the
Service Adapter name). But following the best practice, it is safer to use a name like
France_TeMIP_SA, as the Service Adapter’s host and port will most likely change
over time.

11

Chapter 2

SA proxy installation and
configuration

2.1 Installing a SA proxy

2.1.1 Software requirements
As for the SA proxy, the SA proxy kit requires that the following software:

• HP-UX V11.11

• HP OpenView Service Quality Manager V1.2 (Kernel subset)

• HP OpenView SA Common V1.21 (SQMSACOMMON)

Prior to the SA Proxy installation, the SQM Kernel and the Service Adapter Common
components have to be installed.

2.1.2 Installing the SA Common subset
If necessary, install the SA Common component by doing the following. If this has
already been done, go directly to “Error! Reference source not found.” on page
Error! Bookmark not defined..

1. First, log on to the system as root user.

2. Mount the HP OpenView Service Adapters and Gateways CD-ROM on your
system.

3. Go to <mount directory>/SQM-1.20.00
and execute the following command:

./SQMSACOMMON-1.21.00.bin

12

4. The software is installed and the Install Complete window is displayed.

2.1.3 Installing on HP-UX
On HP-UX, follow the below listed steps to install the SA proxy kit.

• First, log on to the system as root user.

• Mount the HP OpenView Service Adapters and Gateways CD-ROM on your
system.

• Go to <mount directory>/SQM-1.20.00

• Set the TEMIP_SC_HOME environment variable to the SQM Root directory:

export TEMIP_SC_HOME=<SQM installation directory>

• Install the Service Adapter proxy InstallAnyWhere kit.

SQMSAPROXY-1.20.00.bin

2.1.4 Configuring the SQM Kernel
The SQM Kernel needs to be setup to run a SA proxy. Three different setups apply,
depending on the platform environment:

5. The SA proxy is installed on the HP-UX SQM SLM Primary Server:

In this case, please refer to hp Openview SQM Installation Guide to perform the
setup of the SQM SLM Primary Server.

6. The SA proxy is installed on a HP-UX system distinct from the SQM SLM
Primary Server where the SQM Kernel has not been configured:

In this case, it is necessary to retrieve the SLM Server platform description file:

13

o Create the sqmadm administration user on the targeted Unix system (refer
to the hp Openview SQM Installation Guide for the user account creation)

a. Retrieve the file
$TEMIP_SC_VAR_HOME/setupconfig/platform_desc.cfg from the SQM
SLM Primary Server, and copy it on the SA proxy HP-UX system in
$TEMIP_SC_HOME/tmp

b. Connect as root user to run the following commands:

export TEMIP_SC_HOME=<SQM installation
directory>

cd $TEMIP_SC_HOME/setup/bin

temip_sc_setup –all –NI

2.2 Setting up a SA proxy application

Before setting up a SA proxy application

Please read carefully paragraph 1.4 Preliminary “design” phase.

General processing

Important Note

Before the SA proxy setup, it is mandatory that the SQM Kernel setup has been
performed (see previous chapter).

The setup and configuration of the Service Adapter proxy is done in 2 steps:

• The application setup step, which declares the SA proxy application into the
SQM Central Repository and creates the SA proxy application data tree within the
$TEMIP_SC_VAR_HOME/ServiceAdapters/Proxy/v1_2/ location.

• The creation of the connectors to the remotes Service Adaptors. This
configuration step, which prompts the user for the Service Adapter Web Service host
name, host port and SA name. This configuration data is not only loaded into the
SQM Central Repository, but is also used to add sub-directories within the SA proxy
application data tree.

2.2.1 Configuring on HP-UX
The setup tool is located in:

$TEMIP_SC_HOME/ServiceAdapters/Proxy/v1_2/bin

2.2.1.1 Application setup
CAUTION: Remember that the SA proxy application names have to be unique cross
platform and director!

The following steps have to be performed to setup and configure the application:

Application creation

This phase consists in creating a SA proxy application on the SQM platform (on a
specified director).

1) Check the kernel is running: the temip_sc_setup command stops the kernel at the
end of the process. If kernel is not started, perform the following command:

14

temip_sc_kernel_start

2) Check if SRM is running. If not, start the application by performing the
following command:

temip_sc_start_application –platform <platform_name> –director
slmonitoring –application SRM

--

 where:

 the <platform name> is the one that has been defined at the SQM
Server setup

Command:

• Connect as “root” user.

• Load the SQM environment variables
($TEMIP_SC_VAR_HOME/temip_sc_env.sh)

• Perform the following commands to create a SA Proxy Application:

cd $TEMIP_SC_HOME/ServiceAdapters/Proxy/v1_2/bin

temip_sc_configure.sh –dirName <director name> –applicationName
<application name> –setup

--

 where:

 the <director name> is the director on which has been created the
application at the setup phase. (by default the director name is
acquisition).

 the <application name> is the one that has been provided ?? at the
application setup. Confer the SA proxy name.

The application name has to be provided by the user.

Output:

This command creates a Service Adapter proxy application, by updating SQM
Central Repository and a adding an application data tree at the following location.

$TEMIP_SC_VAR_HOME/ServiceAdapters/Proxy/v1_2/<Application
name>

This location contains:

• config/SaProxyDiscoveryMtLogging.properties: Discovery tool logging properties file

• config/SaProxyDiscoveryTraceLogging.properties: Discovery tool tracing properties file

• config/<director name>_<platform name>_<application name>.properties: SA Proxy
Application tracing and logging property file

• repository/

--

 where:

 the <platform name> is the one that has been defined at the SQM
Server setup and available in the variable ($KERNEL_ID).

15

 the <director name> is the director on which has been created the
application at the setup phase. (by default the director name is
acquisition).

 the <application name> is the one that has been provided at the
application setup. See <SA proxy name>

2.2.1.2 Associating SA Proxy to Service Adapters through connectors
The configuration consists in creating or deleting connectors (URLs) that associate
the SA proxy application to existing Service Adapter (Web Services).

A connector thus contains the parameters (or URL) that allows the localization
(access) to a Service Adapter. The connector is identified by a unique name, and its
configuration is loaded into the SQM Central Repository.

Associate a new Service Adapter (create a connector)

Command:

• Connect as “sqmadm” user.

• Load the SQM environment variables
($TEMIP_SC_VAR_HOME/temip_sc_env.sh)

• Perform the following command:

cd $TEMIP_SC_HOME/ServiceAdapters/Proxy/v1_2/bin

temip_sc_configure.sh –applicationName <application name> -addConnector
<Connector name>

--

 where:

 the <connector name> of the connector that designates a Service
Adapter.

 the <application name> is the one that has been provided at the
application setup.

This command will prompt the user for Service Adapter (Web Service) location
parameters: SA host name (including the domain name), Web Service port number,
SA name (for example SampleSA_v1_0). The command not only loads these
parameters into the SQM Central Repository, but also uses the connector name to
extend the application data tree as follow:

$TEMIP_SC_VAR_HOME/ServiceAdapters/Proxy/v1_2/<Application
name>/<Connector name>

This location contains:

• SAConfig/: remote Service Adapter configuration file (reserved for future use)

• discovery/filter/: directory containing the discovery DFI filtering script

• discovery/inventory/: discovery directory

• discovery/inventory/raw/: directory containing the raw discovery information

• discovery/inventory/filtered/: directory containing the discovery information after filering

• discovery/repository/: directory containing DFD and DFI XML files (resulting of the
discovery phase) and also Tibco repository backup files

Output (including interactive prompts):

16

Add connector "<connector name>" to "<application name>"
application ...

Create the Connector datatree.

/var/opt/OV/SQM_OL_V120/slmv12/ServiceAdapters/Proxy/v1_2/<applica
tion name>/<connector name> (created)

/var/opt/OV/SQM_OL_V120/slmv12/ServiceAdapters/Proxy/v1_2/<applica
tion name>/<connector name>/SAConfig (created)

/var/opt/OV/SQM_OL_V120/slmv12/ServiceAdapters/Proxy/v1_2/<applica
tion name>/<connector name>/discovery (created)

/var/opt/OV/SQM_OL_V120/slmv12/ServiceAdapters/Proxy/v1_2/<applica
tion name>/<connector name>/discovery/filter (created)

/var/opt/OV/SQM_OL_V120/slmv12/ServiceAdapters/Proxy/v1_2/<applica
tion name>/<connector
name>/discovery/filter/slmv12_acquisition_SAProxy_OL_filter.sh
(created)

/var/opt/OV/SQM_OL_V120/slmv12/ServiceAdapters/Proxy/v1_2/<applica
tion name>/<connector name>/discovery/inventory (created)

/var/opt/OV/SQM_OL_V120/slmv12/ServiceAdapters/Proxy/v1_2/<applica
tion name>/<connector name>/discovery/inventory/raw (created)

/var/opt/OV/SQM_OL_V120/slmv12/ServiceAdapters/Proxy/v1_2/<applica
tion name>/<connector name>/discovery/inventory/filtered
(created)

/var/opt/OV/SQM_OL_V120/slmv12/ServiceAdapters/Proxy/v1_2/<applica
tion name>/<connector name>/discovery/repository (created)

Warning: parameter config file
/var/opt/OV/SQM_OL_V120/slmv12/ServiceAdapters/Proxy/v1_2/<applica
tion name>/config/<connector name>.cfg not found

Please enter the Service Adapter (Web Service) Name: SampleSA_v1_0

Please enter the Service Adapter (Web Service) Host Name:
hard.vbe.cpqcorp.net

Please enter the Service Adapter (Web Service) Port Number: 1973

Load the Connector in the Tibco Repository

INFO: Backup written at the following location:
/var/opt/OV/SQM_OL_V120/slmv12/ServiceAdapters/Proxy/v1_2/<applica
tion name>/repository.2005_4_28_17_58_51

INFO:
/var/opt/OV/SQM_OL_V120/slmv12/ServiceAdapters/Proxy/v1_2/<applica
tion name>/repository/connectors_data.exp has been imported into
the Repository

INFO: Backup written at the following location:
/var/opt/OV/SQM_OL_V120/slmv12/ServiceAdapters/Proxy/v1_2/<applica
tion name>/repository.2005_4_28_17_59_08

INFO:
/var/opt/OV/SQM_OL_V120/slmv12/ServiceAdapters/Proxy/v1_2/<applica
tion name>/repository/monitored_connectors_data.exp has been
imported into the Repository

Add Connector succeed.

17

2.2.1.3 List all associated Service Adapters (list all connectors)
Command:

• Connect as “sqmadm” user.

• Load the SQM environment variables
($TEMIP_SC_VAR_HOME/temip_sc_env.sh)

• Perform the following command:

cd $TEMIP_SC_HOME/ServiceAdapters/Proxy/v1_2/bin

temip_sc_configure.sh –applicationName <application name> -
listConnectors

--

where <application name> is the application name provided at the setup
command.

This command lists all the connectors (name and parameters) that are available within
the SQM Central Repository for the given SA Proxy application.

Output example:

<InternalReference>

 <Hard_SampleSA_v1_0>

 <RepairDFServiceInterval>60000</RepairDFServiceInterval>

 <HostName>hard.vbe.cpqcorp.net</HostName>

 <SAName>SampleSA_v1_0</SAName>

<SAProvidesAtLeast1DFMeasureAfterTimeout>50000</SAProvidesAtLeast1DFMeasureAfterTimeout>

 <NbRetryOnConnectionFailure>3</NbRetryOnConnectionFailure>

 <URL>http://__HostName__:__PortNumber__/__SAName__/services</URL>

 <PortNumber>1973</PortNumber>

 <StartDFServiceInterval>30000</StartDFServiceInterval>

 <StopDFServiceInterval>30000</StopDFServiceInterval>

<RetrieveDFMeasuresServiceRetryInterval>30000</RetrieveDFMeasuresServiceRetryInterval>

 <RetrieveDFMeasuresBundlesMaxSize>150</RetrieveDFMeasuresBundlesMaxSize>

 <ControlDFBundlesMaxSize>150</ControlDFBundlesMaxSize>

 <ServiceOperationsTimeout>60000</ServiceOperationsTimeout>

 </Hard_SampleSA_v1_0>

</InternalReference>

2.2.1.4 Disassociate a Service Adapter (remove a connector)
Command:

• Connect as “sqmadm” user.

• Load the SQM environment variables
($TEMIP_SC_VAR_HOME/temip_sc_env.sh)

• Perform the following command:

18

cd $TEMIP_SC_HOME/ServiceAdapters/Proxy/v1_2/bin

temip_sc_configure.sh –applicationName <application name> -
removeConnector <Connector name>

--

 where:

 the <connector name> of the connector that designates a Service
Adapter.

 the <application name> is the one that has been provided at the
application setup.

This command removes the specified connector from the SQM Central Repository.
Note that associated DFDs are not removed from the Service Adapter Proxy
Application repository. Use the next command (2.2.1.5) to dissociate a monitored
DFD.

2.2.1.5 Disassociate a monitored DFD
Command:

• Connect as “sqmadm” user.

• Load the SQM environment variables
($TEMIP_SC_VAR_HOME/temip_sc_env.sh)

• Perform the following command:

cd $TEMIP_SC_HOME/ServiceAdapters/Proxy/v1_2/bin

temip_sc_configure.sh –applicationName <application name> -removedfd -
dfdName <dfd name> -dfdv <dfd version>

--

 where:

 the <application name> is the one that has been provided at the
application setup.

 the <dfd name> identifies the Data Feeder Definition to dissociate

 the <dfd version> is the Data Feeder Definition version to
dissociate.

This command dissociates the specified Data Feeder Definition from the given SA
Proxy Application. Once dissociated, the DFD won’t be any longer monitored by the
application. Nevertheless, the DFD is not removed from the SRM (use the command
temip_sc_delete_dfd to remove a DFD from the SRM)

2.2.1.6 Checking connector availability
Command:

• Connect as “sqmadm” user.

• Load the SQM environment variables
($TEMIP_SC_VAR_HOME/temip_sc_env.sh)

• Perform the following command:

19

cd $TEMIP_SC_HOME/ServiceAdapters/Proxy/v1_2/bin

temip_sc_discovery.sh –application <application name> -director
<director name> -platform <platform name> -connector <connector name> -
check

 where:

 the <connector name> of the connector that designates the Service
Adapter on which the Data Feeder Definitions have to be discovered. This
connector has been declared during the SA proxy application
configuration.

 the <platform name> is the one that has been defined at the SQM
Server setup and available in the variable ($KERNEL_ID).

 the <director name> is the director on which has been created the
application at the setup phase. (by default the director name is
acquisition).

 the <application name> is the one that has been provided at the
application setup.

This command checks the specified connector availability by sending requests to the
remote Service Adaptor. It allows:

• validating that the connector parameters (hostname, service adapter name and port
number) are well set

• validating that the remote Web Container is running

• validating that the remote Service Adapter is deployed

2.3 Discovering and loading Data Feeder
Definitions (DFDs)

The DFD discovery is an important feature provided by the Service Adapter proxy.
The discovery indeed retrieves the DFD exposed by the Service Adapters that has
been associated to this SA proxy application, during the connector creation. These
DFD are then be automatically loaded in the SQM Service Repository Manager.

Discovery script

The discovery script is located in the following directory:

$TEMIP_SC_HOME/ServiceAdapters/Proxy/v1_2/bin/temip_sc_discover
y.sh

Script Usage

temip_sc_discovery.sh -connector <value> -platform <value> -director <value> -
application <value> -dfd (-discover | -load | -all)

The discovery parameters:

• -connector: The name (id) of the connector that designates the Service Adapter on
which the Data Feeder Definitions have to be discovered. This connector has been
declared during the SA proxy application configuration.

• –application: the SA Proxy application name defining the provided connector

• –platform: the platform’s name the application belong to

• -directory: the director’s name the application belong to

20

• –discover: perform the discovery phase only

• –load: performs the loading phase only: discovered DFDs are loaded in the SRM

• –all: perform discovery and loading phases

Script Options

The script supports the following options:

• -repoUrl: This option set the repository location, even if already defined by
TEMIP_SC_REPOSITORY_LOCATION system environment variable.

• -configUrl: This option set the repository configuration url. If this option is not
used, default value is /tibco/private/adapter/ServiceCenter/ServiceAdapters/

The discovery is done in 2 steps for a DFD:

• Raw discovery phase: retrieves all the DFDs which have been discovered on the
Service Adapter designated through the connector name.

• Loading phase, that will load the discovered DFDs into SQM repository

Note

The next chapters will describe in details each phase presented above.

The same processing can be done in a single command (with a default loading of all
discovered Data Feeder Definitions). Please refer to chapter One shot discovery and
loading for more details on this command.

2.3.1 Raw discovery phase
This initial phase will retrieve the DFD exposed by the Service Adapters that has
been associated to this SA proxy application, during the connector creation.

Command

The discovery request has to be performed as follows:

• Connect as “sqmadm” user.

• Load the SQM environment variables

 (default: /var/opt/OV/SQM/slmv11/temip_sc_env.sh)

• Perform the following commands:

cd $TEMIP_SC_HOME/ServiceAdapters/Proxy/v1_2/bin

temip_sc_discovery.sh –platform <platform name> –director <director
name> -application <application name> -connector <connector name> -dfd -
discover

 where:

 the <connector name> of the connector that designates the Service
Adapter on which the Data Feeder Definitions have to be discovered. This
connector has been declared during the SA proxy application
configuration.

 the <platform name> is the one that has been defined at the SQM
Server setup and available in the variable ($KERNEL_ID).

 the <director name> is the director on which has been created the

21

application at the setup phase. (by default the director name is
acquisition).

 the <application name> is the one that has been provided at the
application setup.

Output

The raw discovery phase output will generate the following files.

• The discovered DFD xml files that could be used to manually add or remove the
DFD into the SRM, located in:

$TEMIP_SC_VAR_HOME/ServiceAdapters/Proxy/v1_2<application
name>/<connectorname>/discovery/repository/NewDFDReq_<DFDName>.
<DFDVersion>.xml

$TEMIP_SC_VAR_HOME/ServiceAdapters/Proxy/v1_2<application
name>/<connectorname>/discovery/repository/DelDFDReq_<DFDName>.
<DFDVersion>.xml

After this discovery phase, it is possible to update the Dafa Feeder Defnition by
updating the XML files.

Note

Each time that a Data Feeder Discovery is performed, the XML files located in the
directory are backuped to avoid loading old DFD XML files during the loading
phase.

2.3.2 Loading phase

Command

The discovery loading request has to be performed as follows:

• Connect as “sqmadm” user.

• Load the SQM environment variables

 (default: /var/opt/OV/SQM/slmv11/temip_sc_env.sh)

• Perform the following commands

cd $TEMIP_SC_HOME/ServiceAdapters/Proxy/v1_2/bin

temip_sc_discovery.sh –platform <platform name> –director <director
name> -application <application name> -connector <connector name> -dfd -
load

 where:

 the <connector name> of the connector that designates the Service
Adapter for which the Data Feeder Definitions or Instances have to be
discovered. This connector has been declared during the SA proxy
application configuration.

 the <platform name> is the one that has been defined at the SQM
Server setup and available in the variable ($KERNEL_ID).

 the <director name> is the director on which has been created the
application at the setup phase. (by default the director name is
acquisition).

22

 the <application name> is the one that has been provided at the
application setup.

The command loads into the SQM Service Repository Manager the Data Feeder
Definition (XML files) located in:

 $TEMIP_SC_VAR_HOME/ServiceAdapters/Proxy/v1_2<application
name>/<connectorname>/discovery/repository/

2.3.3 One shot discovery and loading
If the user does not want to call separately the DFD discovery steps described above
(discovery and load), the DFD discovery can be performed in a single command, as
described below:

Command

• Connect as “sqmadm” user.

• Load the SQM environment variables

 (default: /var/opt/OV/SQM/slmv11/temip_sc_env.sh)

• Perform the following commands

cd $TEMIP_SC_HOME/ServiceAdapters/Proxy/v1_2/bin

temip_sc_discovery.sh –platform <platform name> –director <director
name> -application <application name> -connector <connector name> -dfd -
all

 where:

 the <connector name> of the connector that designates the Service
Adapter for which the Data Feeder Definitions or Instances have to be
discovered. This connector has been declared during the SA proxy
application configuration.

 the <platform name> is the one that has been defined at the SQM
Server setup and available in the variable ($KERNEL_ID).

 the <director name> is the director on which has been created the
application at the setup phase. (by default the director name is
acquisition).

 the <application name> is the one that has been provided at the
application setup.

Output

The discovery will perform:

• The raw DFD discovery request

• Load all the discovered DFDs into the SQM Service Repository Manager

23

2.4 Discovering and loading Data Feeder
Instances (DFIs)

The DFI discovery is an important feature provided by the Service Adapter proxy.
The discovery indeed retrieves the DFI exposed by the Service Adapters that has been
associated to this SA proxy application, during the connector creation. These DFI are
then be automatically loaded in the SQM Service Repository Manager.

Important Note

Before performing discovery phases, it is mandatory to setup a SA Proxy application
(see chapter 2.2.1.1) and to create a connector on a remote Service Adapter (see
chapter 2.2.1.2).

Discovery script

The discovery script is located in the following directory:

$TEMIP_SC_HOME/ServiceAdapters/SaProxy/v1_2/bin/temip_sc_discov
ery.sh

Script Usage

temip_sc_discovery.sh –dfi -connector <connector name> -platform <platform
name> -director <directory name> -application <application name>
(-discover | -filter | -load [-diff (no| reffile | srm)] | -all)

The discovery parameters:

• -connectorName: The name (id) of the connector that designates the Service
Adapter on which the Data Feeder Definitions have to be discovered. This
connector has been declared during the SA proxy application configuration.

• –application: the SA Proxy application name defining the provided connector

• –platform: the platform’s name the application belong to

• -directory: the director’s name the application belong to

• –discover: performs the discovery phase only

• -filter: performs the discovery filtering phase only.

• –load: performs the loading phase only: discovered DFDs are loaded in the SRM

• -diff: allows specifying the options of the loading phase (default: -diff no)

• –all: perform discovery, filtering and loading phases

The discovery is done in 3 steps for DFIs:

• Raw discovery phase: retrieves all the DFIs which have been discovered on the
Service Adapter designated through the connector name, into a raw inventory file.

• Filtering phase: that executes a user-defined script that will filter the DFIs
declared in the raw inventory file. It will generate a new filtered inventory file with
only the desired DFIs to be managed by the application.

24

• Loading phase, that will load the filtered DFIs into SQM repository, base on 3
algorithms:

 -diff no

This option will load all the filtered Data Feeder Instances into SQM
repository.

 -diff reffile

This option will compare the list of discovered/filtered Data Feeder
Instances to a discovery reference file (provided by the user).

If a Data Feeder Instance exists in the inventory file but does not exist in the
reference file, the Data Feeder Instance is created.

If the Data Feeder Instance does not exist in the inventory file but exists in
the reference file, the Data Feeder Instance is deleted from the SQM
repository.

If the Data Feeder Instance exists in both (inventory file and reference file),
it will not be reloaded.

 -diff srm

This option performs the same Data Feeder Instances comparisons as the
reffile mode, but instead of considering a reference file, the declaration will
depend on the existence of the Data Feeder Instance in SQM repository.

Note

The next chapters will describe in details each phase presented above.

The same processing can be done in a single command (with a default loading of all
filtered Data Feeder Instances: -diff no). Please refer to chapter One shot discovery
and loading for more details on this command.

2.4.1 Raw discovery phase
This initial phase will retrieve the DFI exposed by the Service Adapters that has been
associated to this SA proxy application, during the connector creation.

Command

The discovery request has to be performed as follows:

• Connect as “sqmadm” user.

• Load the SQM environment variables

 (default: /var/opt/OV/SQM/slmv11/temip_sc_env.sh)

• Perform the following commands:

cd $TEMIP_SC_HOME/ServiceAdapters/Proxy/v1_2/bin

temip_sc_discovery.sh –platform <platform name> –director <director
name> -application <application name> -connector <connector name>-dfi -
discover

 where:

 the <connector name> of the connector that designates the Service
Adapter on which the Data Feeder Definitions or Instances have to be
discovered. This connector has been declared during the SA proxy
application configuration.

25

 the <platform name> is the one that has been defined at the SQM
Server setup and available in the variable ($KERNEL_ID).

 the <director name> is the director on which has been created the
application at the setup phase. (by default the director name is
acquisition).

 the <application name> is the one that has been provided at the
application setup.

Output

The raw discovery phase output will generate the following files.

• The discovered DFI inventory file, located in:

$TEMIP_SC_VAR_HOME/ServiceAdapters/Proxy/v1_2/<application
name>/<connector name>/discovery/inventory/raw/<platform
name>_<director name>_<application name>.xml

• The associated DFI XML files that could be used to manually add or remove the
DFI into the SRM, located in:

$TEMIP_SC_VAR_HOME/ServiceAdapters/Proxy/v1_2/<application
name>/<connectorname>/discovery/repository/DeclareDFIReq_<DFDNa
me>.<DFDversion>.<DFIID>.xml

$TEMIP_SC_VAR_HOME/ServiceAdapters/Proxy/v1_2<application
name>/<connectorname>/discovery/repository/DelDFIReq_<DFDName>.
<DFDversion>.<DFIID>.xml

2.4.2 Filtering phase
The discovery filtering phase consists in creating a filtering script that will be
launched by the discovery tool.

This filtering script will parse the raw discovery file (output of the previous
command). The filtering script will remove the DFI that should not be managed by
the SA proxy application.

This filtering is mainly used for load balancing (share the DFI load on several SA
proxy applications).

This script will generate a new DFI inventory file containing only the DFI that the SA
proxy application will manage.

By default, a filtering script is provided with the SA proxy, and this script only copy
the input raw inventory file to the filtered inventory file, without any processing.

The user/integrator will have to customize this script if necessary.

Input

• The filtering script is located at:

$TEMIP_SC_VAR_HOME/ServiceAdapters/Proxy/v1_2/<application
name>/<connector name>/discovery/filter/<platform
name>_<director name>_<application name>_filter.sh

26

Note

The filtering script can be processed by the integrator. The script accepts two input
arguments:

• Raw inventory file name (full path of the raw inventory file)

• Filtered inventory file name (full path of the file that will be generated by the
script).

An example of filtering script is provided in Appendix C.

• The raw DFI inventory file is located at:

$TEMIP_SC_VAR_HOME/ServiceAdapters/Proxy/v1_2/<application
name>/<connector name>/discovery/inventory/raw/<platform
name>_<director name>_<application name>.xml

Command

The discovery filtering request has to be performed as follows:

• Connect as “sqmadm” user.

• Load the SQM environment variables

 (default: /var/opt/OV/SQM/slmv11/temip_sc_env.sh)

• Perform the following commands

cd $TEMIP_SC_HOME/ServiceAdapters/Proxy/v1_2/bin

#temip_sc_discovery.sh –platform <platform name> –director <director
name> -application <application name> -connector <connector name> -dfi -
filter

 where:

 the <connector name> of the connector that designates the Service
Adapter for which the Data Feeder Instances have to be filtered. This
connector has been declared during the SA proxy application
configuration.

 the <platform name> is the one that has been defined at the SQM
Server setup and available in the variable ($KERNEL_ID).

 the <director name> is the director on which has been created the
application at the setup phase. (by default the director name is
acquisition).

 the <application name> is the one that has been provided at the
application setup.

Output

Once the raw DFI discovery file is filtered, the script will generate the filtered
inventory file into:

$TEMIP_SC_VAR_HOME/ServiceAdapters/Proxy/<application
name>/<connectorname>/discovery/inventory/filtered/<platform
name>_<director name>_<application name>.xml

2.4.3 Loading phase
This phase loaded the DFIs defined in the filetered inventory file into the SQM SRM.

27

Depending on the “-diff” option provided when launching the discovery script, the
following actions will be performed (by default the option “-diff no” is used to load
all filtered Data Feeder Instances):

• -diff no

This option will load all the filtered Data Feeder Instances into SQM repository.

• -diff reffile

This option will compare the list of discovered/filtered Data Feeder Instances against
a DFI reference file.

If a Data Feeder Instance exists in the inventory file but does not exist in the
reference file, the Data Feeder Instance is created.

If the Data Feeder Instance does not exist in the inventory file but exists in the
reference file, the Data Feeder Instance is deleted from the SQM repository.

If the Data Feeder Instance exists in both (inventory file and reference file), it will
not be reloaded.

• -diff srm

This option performs the same Data Feeder Instances comparisons as the reffile
mode, but instead of considering a reference file, the declaration will depend on the
existence of the Data Feeder Instance in SQM repository.

Input

• The DFI filtered inventory file (output from the previous command) is
mandatory as input for this phase.

It is available at:

$TEMIP_SC_VAR_HOME/ServiceAdapters/Proxy/<application
name>/<connectorname>/discovery/inventory/filtered/<platform
name>_<director name>_<application name>.xml

$TEMIP_SC_VAR_HOME/ServiceAdapters/Proxy/v1_2/<application
name>/<connector name>/discovery/repository/<platform
name>_<director name>_<application
name>_discovery_reference.xml

Command

The discovery loading request has to be performed as follows:

• Connect as “sqmadm” user.

• Load the SQM environment variables

 (default: /var/opt/OV/SQM/slmv11/temip_sc_env.sh)

• Perform the following commands

cd $TEMIP_SC_HOME/ServiceAdapters/Proxy/v1_2/bin

#temip_sc_discovery.sh –platform <platform name> –director <director
name> -application <application name> -connector <connector name> -dfi -
load [-diff (no | reffile | srm)]

 where:

 the <connector name> of the connector that designates the Service
Adapter for which the Data Feeder Instances have to be discovered. This

28

connector has been declared during the SA proxy application
configuration.

 the <platform name> is the one that has been defined at the SQM
Server setup and available in the variable ($KERNEL_ID).

 the <director name> is the director on which has been created the
application at the setup phase. (by default the director name is
acquisition).

 the <application name> is the one that has been provided at the
application setup.

Output

• The status of each DFI loading (Successful, Failure, partial) will be logged.

The discovery loading procedure will log the result of each DFI declaration into:

$TEMIP_SC_VAR_HOME/ServiceAdapters/Proxy/<applicationname>/
<connector name>/discovery/repository/<platformname>_
<directorname>_<applicationname>_discovery_cmds.log

$TEMIP_SC_VAR_HOME/ServiceAdapters/Proxy/<applicationname>/
<connector name>/discovery/repository/<platformname>_
<director name>_<applicationname>_discovery_cmds.sh

2.4.4 One shot discovery and loading
If the user does not want to call separately the DFI discovery steps described above
(discover, filter, load), the DFI discovery can be performed in a single command, as
described below:

Command

• Connect as “sqmadm” user.

• Load the SQM environment variables

 (default: /var/opt/OV/SQM/slmv11/temip_sc_env.sh)

• Perform the following commands

cd $TEMIP_SC_HOME/ServiceAdapters/Proxy/v1_2/bin

#temip_sc_discovery.sh –platform <platform name> –director <director
name> -application <application name> -connector <connector name> -dfi -
all

 where:

 the <connector name> of the connector that designates the Service
Adapter for which the Data Feeder Instances have to be discovered. This
connector has been declared during the SA proxy application
configuration.

 the <platform name> is the one that has been defined at the SQM
Server setup and available in the variable ($KERNEL_ID).

 the <director name> is the director on which has been created the
application at the setup phase. (by default the director name is
acquisition).

 the <application name> is the one that has been provided at the

29

application setup.

Output

The discovery will perform:

• The raw DFI discovery request

• Filter the discovered DFI with the appropriate filters

• Load all the discovered DFIs into the SQM Service Repository Manager (default
load option: -diff no)

2.4.5 Scheduling the DFI discovery
It is recommended to encapsulate all the previously DFI discovery commands into
specific scripts that can run in a crontab.

The discovery will be run in batch mode, to load automatically newly discovered
DFIs from the remoter Service Adapters.

2.4.6 DFI discovery advanced configuration
This section describes some configuration parameters of the discovery tool
(temip_sc_discovery application).

The application configuration file is located in:

$TEMIP_SC_HOME/ServiceAdapters/Proxy/v1_2/properties/SaProxyDiscovery.pro
perties.

Configuration parameters allow controlling Data feeder loading in SQM SRM. There
are 2 available parameters:

• discovery.dfi.max_dfi_per_message: this parameter defines the maximum
number of DFI declarations is a single message sent to the SRM. Default value:
10000. If the number of messages exceeds this limit, the discovery tool splits in
multiple messages.

• discovery.dfi.srm_timeout_in_sec: timeout in seconds when sending DFI
declaration request to the SRM. Default value=600. When there is an important
number of a DFI declaration, it is recommended to increase this value. The
number of DFI declaration per message can also be reduced to avoid timeout.

Note

It is not recommended to modify other configuration parameters.

2.5 Advanced application configuration
This chapter describes how to setup the Service Adapter proxy application
configuration variables and the available application self-management directives. To
access these capabilities, it is necessary to edit the SQM Central Repository using the
Tibco Designer or start the Tibco Hawk Display console. These applications are
described in the hp OpenView SQM Administration Guide. Please refer to this
document for more information about these administration tools.

30

2.5.1 Application and connection configuration variables
For Service Adapter proxy application advanced configuration, the user may open the
SQM Central Repository and edit the following URL using the TIBCO Designer (see
SQM Administration Guide):

/tibco/private/adapter/ServiceCenter/ServiceAdapters/ServiceAdapters/SaProxy/v1_2
/<applicationname>_config/ConnectorList/InternalReference/<Connector name>

A general description of the Service Adapters application configuration variables is
available in the hp OpenView SQM Administration Guide. The following section
will describe only the variables that influence the SA proxy behavior.

Variable
Name

Default Description

SAName n/a SA (Web Service) name
(eventually including the
SA version)

HostName n/a SA (Web Service)
hostname (including the
domain)

PortNumber n/a SA (Web Service port on
HTTP server)

URL
http://__HostName__:__ PortNumber__
/__SAName__/services SA (Web Service) URL

The URL variable defines a default URL pattern composed of the values of the
SAName, HostName and PortNumber variables. Note that the leading and ending
“__” strings should not be removed, as these are mandatory to allow variable
substitutions. Of course, the URL could be changed to other valid URL. In most cases
it is not necessary to modify this variable.

Here after a screenshot of the TIBCO Designer editing the
/tibco/private/adapter/ServiceCenter/ServiceAdapters/ServiceAdapters/SaProxy/v1_2
/<applicationname>_config/ConnectorList/InternalReference/<Connector name>

31

In the ConnectorList variable lists the connection parameters used to access the
different Service Adapters, as well as the following parameters that could be
configured:

Variable Name Default Description

NbRetryOnConnectionFailure 3

StartDFServiceInterval %%SCStartDF
ServiceInterval
(ms)%%

Global variable

10000 ms

Elapsed time (in milliseconds)
before propagating a DFI
unlock request to the remote
Service Adapter. This time
interval allows sending unlock
requests in batch mode to the
service adapter.

StopDFServiceInterval %%SCStopDF
ServiceInterval
(ms)%%

Global variable

10000 ms

Elapsed time (in milliseconds)
before propagating a DFI lock
request to the remote Service
Adapter. This time interval
allows sending lock requests in
batch mode to the service
adapter.

32

RepairDFServiceInterval %%SCRepairD
FServiceInterv
al(ms)%%

Global variable

15000 ms

Elapsed time (in milliseconds)
before propagating a repair
request to the remote Service
Adapter. This time interval
allows sending repair requests
in batch mode to the service
adapter. Such a request is sent
to re-activate a DFI collection
after a collection error.

ServiceOperationsTimeout %%SCService
OperationsTim
eout(ms)%%.

(Global
variable)

60000ms

Operation timeout (in
milliseconds) for all service
requests towards the remote
Service Adapter.

SAProvidesAtLeast1DFMeas
ureAfterTimeout

%%SCSAProv
idesAtLeast1D
FMeasureAfter
Timeout%%.

(Global
variable)

50000ms

Service Adapter timeout (in
milliseconds) to provide at least
one Data Feeder measure.

RetrieveDFMeasuresServiceR
etryInterval

%%SCRetrieve
DFMeasuresSe
rviceRetryInter
val%%.

(Global
variable)

10000ms

Retrieve Data Feeder measures
service retry interval (in
milliseconds).

ControlDFBundlesMaxSize %%SCControl
DFBundlesMa
xSize%%.

(Global
variable)

150

Maximum control (start, stop or
repair) Data Feeders per service
operation.

RetrieveDFMeasuresBundles
MaxSize

%%SCRetrieve
DFMeasuresBu
ndlesMaxSize
%%.

(Global
variable)

60000ms

Maximum size of Data Feeder
Measures bundles retrieved
from the Service Adapter.

33

ShouldLogDFMeasuresIncom
patibleWithState

%%SCShould
LogDFMeasur
esIncompatible
WithState%%.

(Global
variable)

False

The flag which indicated if the
Proxy should log the Data
Feeder measures, which are
incompatible with the
associated Data Feeder
collections' current states on the
Proxy.

/tibco/private/adapter/ServiceCenter/ServiceAdapters/ServiceAdapters/SaProxy/v1_2
/<applicationname>_config/DataFeederDefConfigList/InternalReference/<Data
Feeder Def>

In the DataFeederDefConfigList, the following parameter can be configured:

Variable Name Default Description

NoValueWhenParameterIsNot
Available

True When “True”, this variable
determines if a “no value” is
returned when a parameter value has
not been retrieved from the database.
If “False”, the parameter is not
encoded in the performance
message.

2.5.2 AMI directives
The following self-management commands are available using TIBCO Hawk Display
User Interface (refer to the SQM Administration Guide where is explained how to
use this console):

34

setTraceLogLevel, getTraceLogLevel setMtLogLevel, getMtLogLevel

As for all other SQM components

Dump

As for the other SQM components, the Dump method creates a Dump file in the trace
files directory:

Argument : Dump Mode, can be one of the following:

• Config: the current configuration loaded in the module

• Memory: all the models and the current statuses

• Topics: the topics to which the module is subscribing

• All: all of the above (Config + Memory + Topics)

quietMode: stops the service adapter instance from publishing performance messages
on the collection bus.

reloadConfig: prompts the service adapter instance to reload its configuration. This
directive stops all data collection and re-activates them with the latest configuration
data. The following application parameters can be reloaded using this directive:

• pollingPeriod (the minimum pollingPeriod is 0.5, which corresponds to 30
seconds)

• RequestRepliesNbRetry

• internalRequestRepliesTimeout

2.6 Starting / Stopping SA proxy
Starting and stopping an Service Adapter proxy application is done through the
standard SQM management commands (described in the hp OpenView SQM
Administration Guide).

Prior to the stop and start commands, the user must:

• Connect as “sqmadm” user

• Load the SQM environment variables

The commands are as follows:

• To start the application:

temip_sc_start_application –platform <platform name> –
director <director name> –application <application name>

 where:

 the <platform name> is the one that has been defined at
the SQM Server setup and available in the variable
(%KERNEL_ID%).

 the <director name> is the director on which has been
created the application at the setup phase. (by default the
director name is acquisition).

 the <application name> is the one that has been
provided at the application setup.

• To stop the application:

Temip_sc_stop_application –platform <platform name> –
director <director name> –application <application name>

35

 where:

 the <platform name> is the one that has been defined at
the SQM Server setup and available in the variable
(%KERNEL_ID%).

 the <director name> is the director on which has been
created the application at the setup phase. (by default the
director name is acquisition).

 the <application name> is the one that has been
provided at the application setup.

2.7 Deployment

2.7.1 Application distribution
As the SA proxy will need to be configured to connect to Web Container
applications, run on a different system from the SQM SLM Primary Server, support
multiple DFIs on multiple applications, it is really important to plan in advance,
where it will be installed and how it will be configured to provide the best
performance for data acquisition.

As described in the SQM Administration Guide, a SQM platform configuration can be
distributed on several hosts. Applications can be logically grouped into platform
directors.

Several SA proxy applications can run on the same host.

Several versions of the same SA proxy can also run on the same host.

Even if there is no restriction concerning the installation of SA proxy s on a system,
you can group SA proxy applications into SQM directors using the following criteria:

• Technology driven. You use one director for each SA proxy, meaning that all the
applications of the same SA proxy share the same director.

• OS driven. You use one director for each OS, so that, for example, all the SA
proxy applications on Windows belong to Windows director and all the SA proxy
applications installed on HP-UX system belong to the HP-UX system director.

• Geography driven. You use one director (or host) for each location, so that, for
example, all SA proxy applications collecting on databases located in Paris belong to
the “Paris” director.

To group SA proxy applications into directors, keep in mind that all applications of
one director can be started or stopped in one command on that director, you should
group your applications in the same director considering that each time the database
is restarted they can all be restarted at once.

2.7.2 Load balancing
Even if the number of applications is not limited on a SQM host, and the number of
DFIs supported by a SA proxy can be important, to optimize performances and to be
able to support the collection load, the following configuration points have to be
considered:

• Number of DFIs supported by a SA proxy application

• Number of applications running on a single system

• The performance of the targeted remote Service Adapter

To have the best possible configuration, the following parameters can be tuned:

36

• The Number of DFIs per SA proxy Application can be defined at the DFI
discovery and filtering phase. The user may group the DFIs of a SA proxy
application:

a. Per DFD

b. Per DFI property (MRP)

c. Per customer

Note

At DFI load balancing configuration, make sure that the ratio of DFIs per SA proxy
application is correctly balanced (avoid having an oversized application compared to
other SA proxy applications on the same system)

• Depending on the system sizing (CPU, Memory…), the number of SA proxy
application running on a single system has to be tuned. Please refer to the SQM
Planning Guide document for more information.

Refer to the Advanced application configuration chapter for more information
about these variables.

37

Appendix A

DFI inventory file example
The DFI inventory file is used as input/output for each DFI discovery phase. Here is
an example of inventory file, which syntax is important when customizing the
filtering script.

<?xml version="1.0" encoding="UTF-8"?>

<inventory>

 <DFIEntry dfd.name="PerfDFD" dfd.version="v1_1"
 dfi.id="PerfDF_835227133" mrp.name="host1.vbe.cpqcorp.net"
 sa.name="PerfSA" sa.version="v1_1" sai.id="slmv11_acquisition_myPerf"/>

 <DFIEntry dfd.name="PerfDFD" dfd.version="v1_1"
 dfi.id="PerfD__151287840" mrp.name="host2.vbe.cpqcorp.net"
 sa.name="PerfSA" sa.version="v1_1" sai.id="slmv11_acquisition_myPerf"/>

 <DFIEntry dfd.name="PerfDFD" dfd.version="v1_1"
 dfi.id="PerfDF_849885112" mrp.name="host3.vbe.cpqcorp.net"
 sa.name="PerfSA" sa.version="v1_1" sai.id="slmv11_acquisition_myPerf"/>

</inventory>

In the previous example, 3 DFIs have been discovered. Each DFI is identified by the
tag DFIEntry. The DFI filtering script, is supposed to remove each entry that must
not be loaded into SQM.

38

Appendix B

Filtering script example
The following example provides a DFI filtering program written in Perl language.

This program filters a raw discovery inventory file containing discovered DFI entries.
The filtering is done on the MRP name: depending on the MRP name value, the DFI
entry will be kept or not.

The output file is the Filtered inventory file.

To call the Perl program, the default filtering script has to be modified as follows:

$TEMIP_SC_VAR_HOME/ServiceAdapters/Proxy/v1_2/<application
name>/<connector name>/discovery/filter/<platform
name>_<director name>_<application name>_filter.sh

#!/bin/sh
Usage:
$1: raw file
$2: filtered file

RAWFILE=$1
FILTERFILE=$2

Execute perl discovery filter

perl $TEMIP_SC_VAR_HOME/ServiceAdapters/Proxy/v1_2/<application
name>/<connector name>/discovery/filter/filter.pl –in $RAWFILE –out
$FILTERFILE

status=$?

echo "Filtering completed."

exit $status

Then the following Perl script has to be placed in the same directory as the filtering
script:

$TEMIP_SC_VAR_HOME/ServiceAdapters/Proxy/v1_2/<application
name>/<connector name>/discovery/filter/filter.pl

39

use strict;
use Getopt::Long;
use XML::Simple;

Constants
#######################
my $DFI_ENTRY_TAG = "DFIEntry";
my $MRP_NAME_ATTR = "mrp.name";
my $DFI_ID_ATTR = "dfi.id";
my $INVENTORY_ENTRY_TAG = "inventory";
main();

filterInputDiscoveryFile
Filter the input file on the MRP name value and put the resulting
parsed XML into the specified output file
Arguments:
inputDiscoveryFile : input XML file (raw discovery file)
outputDiscoveryFile : output XML file (filtered discovery file)
sub filterInputDiscoveryFile {
 my ($inputDiscoveryFile,$outputDiscoveryFile) = (@_);
 ## Check if the file exists
 ## if yes, open it and parse it
 ## ==============================
 if (-f $inputDiscoveryFile) {

 if (-r $inputDiscoveryFile) {
 ##
 ## Filtering consists in selecting DFIs where the MRP name
contains 'MyString'
 ##

 my $xmlParser = new XML::Simple(keeproot => 1, forcearray =>
['${DFI_ENTRY_TAG}']);
 my $inventory = $xmlParser->XMLin("${inputDiscoveryFile}");

 my $counter=0;

 # For each DFI Entry
 foreach my $dfiEntry (@{$inventory->{"${INVENTORY_ENTRY_TAG}"}-
>{"${DFI_ENTRY_TAG}"}}) {
 my $dfiID=${dfiEntry}->{"${DFI_ID_ATTR}"};
 $_=${dfiEntry}->{"${MRP_NAME_ATTR}"};
 if (/MyString/) {
 # The MRP Name matches the keyword 'MyString' so keep this
DFI
 print "$dfiID is kept\n";
 } else {
 # The MRP Name does NOT match the keyword 'MyString' so
delete this DFI
 print "$dfiID is filtered-out\n";
 delete $inventory->{"${INVENTORY_ENTRY_TAG}"}-
>{"${DFI_ENTRY_TAG}"}[$counter];
 }
 $counter++;
 }
 # Generate the filtered Discovery file
 XMLout($inventory,keeproot => 1 , suppressempty => 1,keyattr =>
['${DFI_ENTRY_TAG}'], outputfile => $outputDiscoveryFile);

40

 # Hack: re-parse the filtered file to remove empty values and
regenerate the output file
 my $xmlParser2 = new XML::Simple(keeproot => 1, suppressempty =>
1,forcearray => ['${DFI_ENTRY_TAG}']);
 my $inventory2 = $xmlParser2->XMLin("${outputDiscoveryFile}");
 XMLout($inventory2,keeproot => 1 , suppressempty => 1,keyattr =>
['${DFI_ENTRY_TAG}'], outputfile => $outputDiscoveryFile);

 } else {
 print ("Warning: cannot read file: ${inputDiscoveryFile}\n");
 }
 } else {
 print ("Warning: cannot find file: ${inputDiscoveryFile}\n");
 }
}
###
##########
Main

arguments:
-in <file> : raw discovery file
-out <file> : filtered discovery file
###
##########
sub main {
 my $inputFile;
 my $outputFile;
 my $optStatus=&GetOptions('in=s' => \$inputFile,
 'out=s' => \$outputFile);

 if (!$optStatus) {
 print ("ERROR: invalid option \n");
 exit 2;
 }
 filterInputDiscoveryFile($inputFile,$outputFile);
}

41

Appendix C

Troubleshooting

Proxy Service Adapter trouble shooting
The SA Proxy logging and tracing is done in the TEMIP_SC_VAR_HOME directory
if this variable was defined at the SA proxy setup. Otherwise, the traces and logs are
redirected into the directory provided at the setup:

TEMIP_SC_VAR_HOME/log

TEMIP_SC_VAR_HOME/trace

The files are identified as follows:

<platform>_<director>_<application>.log

To enable Proxy Service Adapter tracing facilities, set required trace information by
updating the application configuration file located in:

$TEMIP_SC_VAR_HOME/ServiceAdapters/Proxy/v1_2/config/<platform>_<direct
or>_<application>.properties

For the SA proxy application, as for other SQM components, you can refer the HP
OpenView Service Quality Manager Administration Guide for troubleshooting
information.

Discovery tool trouble shooting
The SA Proxy discovery tool (temip_sc_discovery.sh) logging and tracing is done at
the following location:

TEMIP_SC_VAR_HOME/log

TEMIP_SC_VAR_HOME/trace

The files are identified as follows:

SQM_Proxy_v1_2_<application>_Discovery.log

To enable discovery tracing facilities, set required trace information by updating the
application configuration file located in:

$TEMIP_SC_VAR_HOME/ServiceAdapters/Proxy/v1_2/<application>/config/SaPro
xyDiscoveryTraceLogging.properties

To enable all levels of trace set the property named ‘.level’ to ‘ALL.

This property file defines also the location of the trace file thank to the variable
named ‘com.compaq.temip.servicecenter.common.logging.FileHandler.pattern’

42

Appendix D

Acronyms
The following table lists the acronyms commonly used in this document:

Term Description

API Application programming interface

DFD Data feeder definition

DFI Data feeder instance

DF Data feeder = Data feeder instance

MRP Measurement reference point

SAI Service Adapter Application Name (or Service Adapter
instance)

SLA Service level agreement

SLM Service level management

SLO Service level objective

SRM Service Repository Manager

XML eXtensible Mark-up Language

	Platform view
	Software component view
	SA proxy – SA interoperability
	Preliminary “design” phase
	Installing a SA proxy
	Software requirements
	Installing the SA Common subset
	Installing on HP-UX
	Configuring the SQM Kernel

	Setting up a SA proxy application
	Configuring on HP-UX
	Application setup
	Associating SA Proxy to Service Adapters through connectors
	List all associated Service Adapters (list all connectors)
	Disassociate a Service Adapter (remove a connector)
	Disassociate a monitored DFD
	Checking connector availability

	Discovering and loading Data Feeder Definitions (DFDs)
	Raw discovery phase
	Loading phase
	One shot discovery and loading

	Discovering and loading Data Feeder Instances (DFIs)
	Raw discovery phase
	Filtering phase
	Loading phase
	One shot discovery and loading
	Scheduling the DFI discovery
	DFI discovery advanced configuration

	Advanced application configuration
	Application and connection configuration variables
	AMI directives

	Starting / Stopping SA proxy
	Deployment
	Application distribution
	Load balancing

