
hp OpenView
Service Quality Manager

Information Modeling Reference Guide

Edition: 1.4

for the HP-UX and Microsoft Windows Operating Systems

March 2007

© Copyright 2007 Hewlett-Packard Company, L.P.

2

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed as constituting an
additional warranty. HP shall not be liable for technical or editorial errors or omissions contained
herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor's standard commercial license.

Copyright Notices

© Copyright 2004-2007 Hewlett-Packard Development Company, L.P.

Trademark Notices

Adobe®, Acrobat®, and PostScript® are trademarks of Adobe Systems Incorporated.

HP-UX Release 10.20 and later and HP-UX Release 11.00 and later (in both 32 and 64-bit
configurations) on all HP 9000 computers are Open Group UNIX 95 branded products.

Java™ and all Java based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.

Microsoft®, Windows®, Windows NT® and Windows® XP are U.S. registered trademarks of
Microsoft Corporation.

Oracle® is a registered US trademark of Oracle Corporation, Redwood City, California.

UNIX® is a registered trademark of The Open Group.

3

Contents

Preface..7

Chapter 1 ...9

Introduction to the OpenView SQM Object Model9
1.1 Overview of the SLA Lifecycle ...9
1.2 Introduction to the OpenView SQM Service Object Model10

Chapter 2 ...13

Object Model Concepts ..13
2.1 Service Parameters..13

2.1.1 Primitive Data Types of Parameters ...14
2.1.2 Parameter Binding Types ...14
2.1.3 Parameter Visibility ...15

2.2 Service Properties..15
2.3 Service Components..15

2.3.1 Sharing Service Component Definitions...16
2.3.2 Sharing Service Component Instances ..16
2.3.3 Service Component Visibility ..19

2.4 Service Instances...19
2.5 Object Identifiers ..19

2.5.1 Naming Rules ...20
2.6 Data Feeders and Data Acquisition ...20

2.6.1 Data Feeder Definition..20
2.6.2 Data Feeder Instance ...20

2.7 Expressions..24
2.7.1 Simple Expressions ..24
2.7.2 Aggregation Expressions..26
2.7.3 Calculation Rules..27
2.7.4 Data Type Casting ..28
2.7.5 Auto Propagation Mode ..28
2.7.6 Collection and Computation Error...29

2.8 Service Level..30
2.8.1 Component Service Levels...30
2.8.2 Service Level Objectives ..31
2.8.3 Objective Thresholds ..31
2.8.4 Sharing Service Levels ...33
2.8.5 Example Service Level Validation ..33

2.9 Service Level Agreements ...41
2.9.1 Customer SLA...41
2.9.2 Operational SLA..42
2.9.3 Default SLA and Service Group..43
2.9.4 SLA Compliance ...43

4

2.10 Service Collection Management ...47
2.10.1 Summary of the UML Model ...50

Chapter 3 ...51

Structuring the Service Object Model ...51
3.1 Using UML Packages...51
3.2 Controlling Unit Packages..51
3.3 Proposed Structure ..52

Chapter 4 ...53

Using Expressions..53
4.1 Predefined Expressions ...53

4.1.1 Java Expressions..53
4.1.2 PL/SQL Expressions...55
4.1.3 PL/SQL Expressions and management of “NoValue”57

4.2 Implementing Custom Expressions ...58
4.2.1 When Do You Need to Develop Your Own Expressions?..........................58
4.2.2 Implementing Custom Java Expressions ...59
4.2.3 Implementing Custom PL/SQL Expressions ..59
4.2.4 Managing “NoValue” in Custom PL/SQL Expressions60
4.2.5 Loading Custom Expressions ...61

Chapter 5 ...63

Mapping Subscriber IDs...63
5.1 About Mapping Subscriber IDs ..63
5.2 Creating the Mappings...63

5.2.1 Before You Begin..63
5.2.2 About the Mapping Structure ..63
5.2.3 Writing the Mapping in XML..64
5.2.4 Providing the Mapping File to OpenView SQM ..64
5.2.5 Customer dedicated Data Feeder Instance..65

Chapter 6 ...67

Updating the Object Model...67
6.1 Updating Service Definitions and Expressions ..67

6.1.1 Authorized and unauthorized Service Definition updates...........................67
6.1.2 Implications of Your Changes...69

6.2 Updating Data Feeders..72
6.2.1 Updates You Can Make..72
6.2.2 Implications of Your Updates..72

6.3 Updating Service Level Agreements..73

Chapter 7 ...75

Implementing the Service Model in XML ..75
7.1 Developing Your Own XML Code ..75
7.2 Example of Service Definition ..75

5

Appendix A..77

Service Parameter and Property Attributes..77
A.1 Service Parameter Attributes..77
A.2 Service Property Attributes ..78

Appendix B..79

Acronyms ..79

Glossary ..81

7

Preface

This document provides reference information to help you create and implement a
service with the HP OpenView SQM object model.

Intended Audience
This document addresses:

• Solution architects

• Service designers

Prerequisite Reading
This document assumes that you have read the OpenView SQM Overview.

Associated Documents
The HP OpenView SQM documentation set includes the following documents:

• OpenView SQM SLA Monitoring UI User’s Guide

• OpenView SQM Service Designer UI User’s Guide

• OpenView SQM SLA Administration UI User’s Guide

• OpenView SQM Overview

• OpenView SQM Getting Started Guide

• OpenView SQM Information Modeling and Reference Guide

• OpenView SQM Installation Guide

• OpenView SQM Administration Guide

• OpenView SQM Reference Guide for Oracle Use

• OpenView SQM Datamart User’s Guide

• OpenView SQM Reporting Customization and User’s Guide

Refer to the following document for useful reference information:

• TeleManagement Forum Service Level Agreement Management Handbook, v 1.5

8

Supported Software
The term UNIX is used as a generic reference to the operating system, unless
otherwise specified.

The supported software referred to in this document is as follows:

Product Version Operating System

OpenView Service Quality Manager
1.4

HP-UX 11.11
Windows XP

Typographical Conventions
Courier Font:

• Source code and examples of file contents.

• Commands that you enter on the screen.

• Path names

• Keyboard key names

Italic Text:

• Filenames, programs and parameters.

• The names of other documents referenced in this manual.

Bold Text:

• To introduce new terms and to emphasize important words.

Support
You can visit the HP OpenView support web site at:

http://support.openview.hp.com/support.jsp

This Web site provides contact information and details about the products, services,
and support that HP OpenView offers.

HP OpenView online software support provides customer self-solve capabilities. It
provides a fast and efficient way to access interactive technical support tools needed
to manage your business. As a valued support customer, you can benefit by using the
support site to:

• Search for knowledge documents of interest

• Submit enhancement requests online

• Download software patches

• Submit and track progress on support cases

• Manage a support contract

• Look up HP support contacts

• Review information about available services

• Enter discussions with other software customers

• Research and register for software training

9

Chapter 1

Introduction to the OpenView SQM
Object Model

This chapter introduces the object model implemented by OpenView Service Quality
Manager (SQM). It briefly revisits the Service Level Agreement (SLA) lifecycle and
describes the OpenView SQM service object model.

1.1 Overview of the SLA Lifecycle
This chapter introduces the SLA lifecycle. The SLA lifecycle describes the main
functional components needed to manage service levels and SLAs. It includes the
following phases:

• Service design phase

In the service design phase, you identify all the technical resources needed to
provide an end-to-end service. You model each of these resources as a service
component and describe the service components with a set of parameters. The
service model allows you to use these parameters to evaluate the service quality
you deliver.

The result of this phase is a unique service class, broken down into service
components that provide the relevant service quality parameters.

The service design phase is a critical, stand-alone process that aims to create a
common definition of services, service parameters, and service level objectives.
These common definitions can then be shared between the service provider, users,
suppliers, and partners.

• Class of service definition phase

Once you have described a service and selected the service parameters used to
evaluate the quality of service, you must define a standard class of service, or
service level, for that service.

A service level consists of a set of objectives defined for the service parameters.
Service parameters are evaluated directly from measurements made in the service
infrastructure, or computed from the evaluated parameters. Different service
levels correspond to different objectives set for the same service parameters.

Service levels do not need to be defined for a specific customer, but instead can be
a part of a general service definition.

• Service instantiation phase

Before the service instantiation phase, a negotiation and sales phase occurs that
leads to an SLA contract signature for a particular service. Negotiation and sales
is outside the scope of the SLA lifecycle.

10

In the service instantiation phase, a new service needs to have its quality
monitored. For example, a service model needs to be instantiated when a
customer buys a new service. Service quality management begins as soon as you
launch the service.

This phase results in a service instance and triggers the collection of service
quality parameters.

• SLA creation phase

In this phase, the service provider creates an SLA for a specific service instance or
a group of service instances, depending on the contract. The service provider also
identifies the threshold values of the service level for each service quality
parameter managed for the SLA.

This phase results in an SLA that:

Associates the service instance(s) with the service level and a customer (for
customer SLAs).

Associates the service instance(s) with the service level and an internal
department (for operational SLAs).

• Service monitoring phase

In this phase, the service provider monitors the service and the service level
agreements in real-time.

The goal of the service monitoring phase is to avoid SLA violations by rapidly
responding to service degradations.

• Service reporting phase

In the service level reporting phase, the service provider generates reports about
service quality.

This phase assesses service quality on a long-term basis (monthly or quarterly) to
analyze service trends or to provide customer service quality reports.

After the generation of reports, the service provider can periodically assess the
service quality being provided to a particular service and the overall service quality
for all customers. Depending upon new goals and changing customer needs, the
service provider can make changes to the service design, completing the SLA
lifecycle.

OpenView SQM provides the tools you need to easily manage each phase of the SLA
lifecycle.

1.2 Introduction to the OpenView SQM Service
Object Model

The OpenView SQM service object model represents a service as a collection of
service components. A service component corresponds to hardware, software
elements, or the underlying communications medium used by the service. Services
and service components contain service parameters, values that are periodically
updated and that help determine the quality of service (from either a customer or a
network operator perspective).

Figure 1 illustrates in UML the service object model supported by OpenView SQM.

11

Figure 1 OpenView SQM Object Model

You can use this generic service object model to model any service. For example, an
ISP wants to create a new video service that allows subscribers in the United States
and Europe to download movies over a wireless LAN and watch them on an iPaq
terminal. This video service is composed of a Video Server and several Web servers
(for load balancing). The ISP models this service as described in Figure 2.

Service Definition

Service Component

0..*

0..*

Service Parameter

1

1..*

service
component
parameters

1

0..*

service
parameters

SC-SC Assocation

upper

lower

Property Definition

1

0..*

described by

1

0..*
described by

12

Figure 2 Example Object Model for a Video Service

You can model any type of relationship between service components. To describe
these relationships, OpenView SQM uses cardinality, or a number that indicates how
many instances of each component object can be present.

The OpenView SQM repository manager stores and manages the service object
model. For more information about the database and the architecture of OpenView
SQM, refer to the OpenView SQM Overview.

Platform

IP Access

Video

Web Server

1..*

1..*

1..*

1

0..*

1..1

Dns

1

1..*

Web Cam

0..*

1..1

1

1

13

Chapter 2

Object Model Concepts
This chapter describes the elements of the service object model, including the
following:

• Section 2.1 Service Parameters

• Section 2.2 Service Properties

• Section 2.3 Service Components

• Section 2.4 Service Instances

• Section 2.5 Object Identifiers

• Section 2.6 Data Feeders and Data Acquisition

• Section 2.7 Expressions

• Section 2.8 Service Level

• Section 2.9 Service Level Agreements

• Section 2.10 Service Collection Management

2.1 Service Parameters
The HP OpenView SQM service object model defines service parameters that it
measures globally or for specific customers.

Parameters can depend on customers as follows:

• Global parameters, which measure the quality of service without any
consideration of particular customers. For example, a CPU load parameter
measures the performance of the host component for all customers.

• Customer parameters, which measure the quality of service for a given customer
(organization or corporation) or for a specific member of this organization (a user
or a subscriber). The value of a customer parameter is unique for each customer.
For example, a video player parameter that gives the number of retransmitted
packets contains a value that applies to a particular subscriber.

You can provide the following additional information about the parameter using the
“Category” attribute:

• Gauge, such as a minimum and maximum value that fluctuates.

• Cumulative counter. We recommend that you avoid this type of measure and
instead convert counters into rates when possible.

• Percentage.

• Rate, which provides value for a unit of time.

14

You have the option to organize service parameters in the following logical
partitions:

• QoS metrics (performance, errors, availability)

• State

• Usage

• Characteristics

• Compliance

2.1.1 Primitive Data Types of Parameters
To simplify the object model and service adapters interface, OpenView SQM uses
only the primitive data types listed in Table 1.

Table 1 Primitive Data Types

Data type Size Description Example

Display string 4000 Printable string (can be multiple
lines)

“Mr. Smith
HP Computer Corp”

Integer Signed 64b Signed integer 123

Enumeration Signed 64b Open enumeration definition Off or “4”

Real Signed 64b Signed Float -1E4

1267.43233E12

12.78e-2

Relative Time Signed 64b Number of milliseconds

4623767
(stands for 1h 17min 03sec 767mil)

Absolute Time ISO 8601 CCYY-MM-DD hh:mm:ss.s
Only UTC notation is supported.

1999-05-31 13:20:00.234

2.1.1.1 Enumeration
An enumeration is defined as follows:

<sc:EnumDatatypeDef name="OperState">

<sc:EnumElt name="Enable" value="1"/>
<sc:EnumElt name="Idle" value="2"/>
<sc:EnumElt name="Disable" value="3"/>

</sc:EnumDatatypeDef>

Any integer value is legal, even if there is not a literal definition defined for this
value. You can also use undefined values, such as "6". OpenView SQM displays
these values in the user interfaces.

We recommend that you provide a name for each enumeration definition, even if
version 1 of OpenView SQM does not support type sharing.

2.1.2 Parameter Binding Types
The OpenView SQM object model defines two kinds of parameters:

• Service quality measurements, which OpenView SQM gathers directly from
service adapters.

15

• Service quality parameters. These parameters can be collected directly from a
measure or computed by OpenView SQM from other service quality parameters.

OpenView SQM includes predefined expressions for computing parameters, such as
minimum, maximum, and average. You can create your own expressions using the
following:

• Java for the calculation expressions used to compute service quality
measurements.

• PL/SQL for the calculation expressions used to compute service quality
parameters.

Service parameters are interdependent. For example, an upper service parameter,
such as a service key quality indicator (KQI), can be computed from lower service
parameters, such as service key performance indicators (KPI). This computation can
also occur within the same service component.

Refer to section 2.7 for more information about calculation expressions.

2.1.3 Parameter Visibility
To perform calculations using expressions, the HP OpenView Service Designer UI
adds some parameters that act as auxiliary calculation variables. Refer to section 2.7
for more information about calculations.

When you declare these parameters as “not visible”, by default the HP OpenView
Service Designer UI hides them because they are considered private parameters.
Therefore, these parameters are not displayed by the Service Administration, Service
Monitor and Service Reporting UIs.

The calculation engine never exposes the associated parameter values.

2.2 Service Properties
The Service Designer UI can define some attributes called properties to describe
instances of the following objects:

• Service components

• Services and service groups

• Data feeders

A property receives a value when you first create an instance of the object.

Following are some examples of properties:

• Location

• Inventory Identifier

2.3 Service Components
A service component corresponds to a physical element (such as hardware) or a
logical element (such as the underlying communications medium or a business
process) used to implement a service.

You can create two types of service component definitions:

• Shared definitions. These shared definitions act as a template that other services
can use. OpenView SQM ensures that changes made to the definition are applied
to all the service definitions that share it.

16

• Private definitions that you associate (directly or indirectly) with a service
definition.

The remainder of this section describes sharing service component definitions,
sharing service component instances, and controlling the visibility of service
components.

2.3.1 Sharing Service Component Definitions
When several service definitions share a service component definition, each service
contains a copy of the service component definition. OpenView SQM considers the
first service component definition as the master copy. When you modify the
definition of shared service components, OpenView SQM changes the other involved
service components automatically and transparently.

Figure 3 illustrates an example of two services, Video On Demand (VoD) and
WebConf, which share a component definition for a WebService component. When
OpenView SQM loads the WebService component of the VoD service, it checks that
the definition corresponds to the master definition managed by the WebConf service.

Note

A “private” definition of the WebService component with different component
parameters can be used by another service, such as the Mail service.

Figure 3 Example of a Shared Component Definition

2.3.2 Sharing Service Component Instances

A service component can have several parent service component instances (upper
cardinality greater than 1), belong to several service instances, or both.

OpenView SQM can share instances in the following two ways:

• Locally, between instances of the same service definition.

• Globally, between service instances of different service definitions.

The following sections provide examples of each type of instance sharing.

2.3.2.1 Local Sharing of Service Component Instances
Figure 4 illustrates an example where the Lyon and Paris instances of the Video
service locally share the Web server instance.

+nbOfThreads
+operationalStatus

WebService

Mail

+operationalStatus
+nbOfHits

WebService

VoD WebConf

17

Figure 4 Example of a Locally Shared Component Instance

2.3.2.2 Global Sharing of Service Component Instances
You can share service component instances with service instances that have a
different definition. This type of sharing is called “global,” and only occurs between
service component definitions that share service definitions.

Figure 5 Example of Global Service Component Sharing

OpenView SQM automatically shares all of the service component instances of the
shared service component.

Figure 6 illustrates how the DNS component instance is automatically shared between
the Video and Mail services.

vdo_paris : Video

w2 : Web Server

H1 : Platform H2 : Platform

vdo_london : Video

CPU1 : Processor CPU2 : Processor

dns sec : Dns
dns prim : Dns

pop : IP Access

vdo_paris : Videomail_paris : Mail

18

Figure 6 Sharing of Service Component Instances

2.3.2.3 Example of Component Sharing

Figure 7 illustrates two potential instances of the Video service defined in Section
 1.2.

Figure 7 Instances of the Video Service

The instances in Figure 7 are shared as followed:

• The WebCam instances are not shared.

• The IP Access component is shared globally by both instances of the Video
service and the Mail service.

• The Platform instances are shared locally by the two instances of the same Web
server definition.

IP Access

Video

1..*

1

Dns

1

1..*

Mail
1..*

1

dns sec : Dns
dns prim : Dns

pop : IP Access

vdo_paris : Video

w1 : Web Server
w2 : Web Server

cam : Web Cam

H1 : Platform H2 : Platform

vdo_london : Videomail_paris : Mail

cam : Web Cam

CPU1 : Processor CPU2 : Processor

19

2.3.3 Service Component Visibility
Service components can be visible to the service customer or hidden. You might hide
service components because they are a part of the infrastructure (such as network
elements and resources) or because they are used as part of a calculation and are too
complex or irrelevant to the service operator.

You can set component visibility using an attribute of the service component
definition.

2.4 Service Instances
OpenView SQM can monitor two types of service:

• Customer services: a service provided to several customers. The measures
performed are specific to each customer, such as measuring ADSL access.

• Network services: a service managed globally. All of the parameters in the
service definition of a network service are related to global parameters, such as a
short message service (SMS).

2.5 Object Identifiers
A definition or instance of an object is identified by its name. The “Label” attribute is
used to define and display a more user-friendly name.

The naming of definition objects is structured. For example, a component is unique in
the scope of the service definition.

Unlike definitions, all instances are globally identified in a flat naming space.

Table 2 defines how OpenView SQM uniquely identifies object definitions.

Table 2 OpenView SQM Object Identifiers

Object Identifier

Service Definition <Name>

Service Component Service Def=<Name> + Component=<Name>

Parameter Service Def=<Name> + Component=<Name> + Parameter=<Name>

Service Level <Name>

Component Service Level Service Level=<Name> + Component Service Level=<Name>

SLO Service Level=<Name> + Component Service Level=<Name> + SLO=<Name>

Threshold Service Level=<Name> + Component Service Level=<Name> + SLO=<Name> +
Threshold=<Name>

Service Instance <Name>

Service Group <Name>

Service Component
Instance

<Name>

Customer/Operation <Name>

SLA <Name>

Data Feeder Definition Data Feeder Def=<Name> + DFD=<Version>

20

Object Identifier

Data Feeder Instance Data Feeder Def=<Name> + DFD=<Version>+MRP=<Name> or DFI=<Short
ID>

2.5.1 Naming Rules
For all the Object Identifiers listed in Table 2 above, the <Name> must respect the
following rules:

• The first character is one of a-z or A-Z.

• The other characters can be any of a-z, or A-Z, or [0-9] or ‘-‘, or ‘_’, or ‘:’.

• The maximum number of characters for the Parameter <Name> is 12.

• The maximum number of characters for all the other <Name> is 16.

2.6 Data Feeders and Data Acquisition
HP OpenView SQM service adapters gather performance data and fault statistic data
from various services by using periodic polling mechanisms or by receiving
spontaneous events (attribute values or state changes).

A service adapter exposes one or more data feeders that correspond to potential
logical measurement points existing in the underlying service infrastructure and the
type of information collected. Each data feeder models service resources by defining
one or more data feeder parameters.

The remainder of this section describes what a data feeder definition contains, how
data feeder instances collect data, data feeder identifiers, and how data feeders bind.

2.6.1 Data Feeder Definition
A data feeder definition contains a logical description of parameters that a given data
feeder exposes. The definition is characterized by the following:

• A version (default v1_0).

• A set of data feeder definition parameters. These parameters are used to build
service component measurement parameters. Like service component parameters,
data feeder parameters are either global or customer specific.

• A measurement reference point (MRP) naming scheme. The MRP naming scheme
describes how OpenView SQM names the measurement point (for example, by
concatenating data feed property values with fixed strings).

2.6.2 Data Feeder Instance
A data feeder instance collects parameters (such as usage information, errors, and
performance) for a specific MRP. When a data feeder defines customer parameters, it
measures the QoS perceived by all users and subscribers QoS for a particular MRP.

For information about how the data feeder parameters are associated with service
component parameters, refer to Section 2.6.2.3.

Data feeders are created as follows:

• They are pre-registered by service operators. For example, they are created when
service adapters or service elements are not yet deployed.

• They are discovered automatically by the service adapter, during a process called
declaration.

21

The following sections illustrate how to identify an MRP and define an MRP naming
scheme.

2.6.2.1 Measurement Reference Point
The MRP is a static, logical point in the service infrastructure. It is usually an
interface between two elements of the service value chain (such as a radio domain
and an XGSN domain).

The MRP does not specify which service adapter is used to perform a measure. It
also does not specify the type of information collected, such as performance or fault
statistic parameters.

Figure 8 illustrates a typical case, where a service adapter (SA) interfaces with an
element manager (EMS) to collect performance data for a given customer service
access point to a Web service. The MRP is the “perceived customer QoS from this
access point to a specific Web service”.

Figure 8 Example of a MRP

The MRP is identified by the following:

• IP address of the probe

• Tested Web server

• Specific URL

• Several data feeders can be modeled and defined for this specific MRP:

• IP performance (transit delay, jitter, and so on)

• HTTP performance (bandwidth, and so on)

• The MRP naming scheme is composed of data feeder properties and fixed strings.

For example, a naming scheme is defined as follows
<URL> + _Of_ + <server_hostname> + _From_ +
<probe_location>

The resulting MRP name follows:
“online-shopping_Pf_www.hp.com_from_Paris”

SA

SQM

Get http
Web ServerProbe

Specific pages

EMS

22

2.6.2.2 Data Feeder Instance Identification
A data feeder instance is identified by one of the following:

• Tuples: the data feeder name, the data feeder version, and the MRP name.

• A short name called the data feeder identifier such as char(16). This identifier
is generated automatically from the tuples by the service adapter’s configuration
tools.

2.6.2.3 Data Feeder Binding
The connection of one service component parameter to one or more data feeder
parameters is called data feeder data binding. Any service component in the service
component of a service can be given a value by one or several data feeders.

Figure 9 illustrates the association of two data feeder definitions with a service
component definition.

Figure 9 Associating Service Components and Data Feeder Definitions

All data feeder parameters are not necessarily used to provide a value for a service
component parameter.

For example, in Figure 9 Parameter C of the Apache data feeder is not used.

In the context of a service definition, only one binding can exist between a service
component parameter and a data feeder definition.

Note that it is possible to define different bindings for several versions of a data
feeder definition.

For example, in Figure 10 two bindings are defined for two different versions of the
Apache data feeder definition.

ExprSC
Web Server

Parm A
Parm B
Parm C
Parm D

Data
Feeder
 Apache

A

B
C

Expr

Expr
Data

Feeder
 OS

O

P

T

Data Binding

23

Figure 10 Data Binding for Duplicate Data Feeder Definitions

ExprSC
Web Server

Parm A

Parm B

Parm C

Parm D

 DFD
 Apache

 V1.0

A

B

C

Expr DFD
Apache

V2.0

A

B

T

Data Binding

The measurement type (global or customer related) of a service component parameter
must be the same for all the data feeder parameters used to compute it.

NOTE: There is an exception to this rule.

Because a data feeder instance can be dedicated to one customer, one or more global
data feeder parameters can be used to compute a customer-qualified parameter.

For example, a data feeder definition is defined to model a router and provides global
indicators for each port. When a port is dedicated to a customer, you can use the data
feeder definition to bind it to a customer related service component parameter.

Router Global
Customer

Data
Feeder

Global
Global

ce_01 snmp_probe_ce1

Customer A

Definitions:

Instances:

2.6.2.4 Instance Binding
A service component instance can be associated to only one instance of the same data
feeder definition.

Figure 11 illustrates how an instance of the Web server service component is
associated with two data feeders (from two different data feeder definitions).

Figure 11 Associating a Service Component with Data Feeder Instances

Service adapters can automatically declare data feeder instances. How the data feeder
is defined depends on the configuration and environment of the service adapter.

web1 : Web Server

sap_lyon : Apache

sap_venize : OS

24

When you plug a new service adapter into OpenView SQM, it automatically does the
following:

• Declares the data feeder definitions, including parameters, version, and
characteristics.

• Declares data feeder instances (DFI discovery).

By default, a newly declared data feeder instance does not collect any information
(the administrative state is locked). OpenView SQM determines whether to enable or
disable data collection using the SLA monitoring state and the service instance
administrative state.

2.7 Expressions
You can use expressions in OpenView SQM for three purposes:

• Data feeder binding. Expressions are used to map one or more parameters from a
service adapter to a parameter of a service component (service quality
measurements).

• Service component binding. Expressions compute service quality parameters from
one or several parameters.

• Buffering operations. Expressions are used to define how the calculation engine
will elect a value from a list of values a parameter received during a calculation
interval.

Expressions describe how to calculate the service parameter values from the service
quality parameter data collected. You can use two types of expressions:

• Simple expressions, which are used for parameters coming from one instance.
Simple expressions can be used for data feeder binding operations and service
quality parameter binding.

• Aggregation expressions, which are used for parameters coming from one or more
instances. Aggregation expressions can be used for service quality parameter
binding and buffering.

OpenView SQM provides a set of pre-defined expressions for basic calculations.
However, if you need an expression not provided by OpenView SQM, you can
implement custom expressions in PL/SQL or Java (restricted to data feeder binding).

These custom expressions can be reused elsewhere in the same service or in another
service. OpenView SQM accesses these expressions by reference, meaning that you
do not need to duplicate code.

The remainder of this section describes each type of expression in detail as well as
describing calculation rules, data type casting, store and forward mode, and error
handling.

2.7.1 Simple Expressions
Simple expressions make calculations using parameters from one service component
instance. This section describes the following types of simple expressions:

• Component binding expression

• Data feeder binding expression

2.7.1.1 Component Binding Expressions
You can use simple component binding expressions to:

25

• Calculate a service parameter of an upper service component from one or more
parameters of a directly related lower service component instance.

• Calculate a service parameter from one or more parameters within the same
service component instance.

Component binding expressions are written in PL/SQL and have the following
format:
 f(p1, …, pn) returns an output parameter

Following is an example of a component binding expression:

CREATE OR REPLACE FUNCTION sum_2Int (a NUMBER, b NUMBER) RETURN NUMBER IS
BEGIN
res := a + b;
RETURN res;
END;
/

2.7.1.2 Data Feeder Binding Expressions
You can use simple data feeder binding expressions to calculate measurement
parameters from the data collected by data feeders. These expressions are written in
Java.

Data feeder binding expressions have the following format:

 f(x1, …,xn, version) returns one value (i.e. output parameter)

Each argument in the expression represents an individual argument of the function
with the proper data type. An additional argument provides the version of the data
feeder.

Table 3 Mapping between DFD parameter type and argument type

Data type Argument type

String string

Integer long

Real double

Relative Time long

Absolute Time java.util.Date

Following is an example of a data feeder binding expression:

package com.compaq.temip.servicecenter.expressions;

public class ASimpleCalculationExpression {

 public static double aSimpleCalculationExpression
 (int a,
 double b,
 String dfdVersion) {
 double diff = a-b;
 return diff;
 }
}

26

2.7.2 Aggregation Expressions
OpenView SQM supports instance aggregation expressions that calculate one service
parameter for a service component instance using one or more parameters of several
service component instances.

Aggregation expressions are written in PL/SQL and have the following format:

f(coll p1, …, coll pn) returns a unique value (i.e. output parameter)

Following is an example of an aggregation expression:

CREATE OR REPLACE FUNCTION avg_aggr_Float (a float_coll) RETURN NUMBER IS
 res NUMBER :=0;
 BEGIN
 FOR I IN a.FIRST..a.LAST
 LOOP
 res := res + a(i);
 END LOOP;

 res := res/a.COUNT

 RETURN res;
 END;
 /

2.7.2.1 Buffering Expressions
When the calculation engine receives several collected values between two
calculation runs (for example, during Period 21 illustrated in Figure 12), it elects the
value it will use for its computation with a buffering expression. The buffering
expression is an instance aggregation expression (such as average) defined for each
parameter in the object model.

By default, the buffering expression is “Last”.

Figure 12 illustrates how buffering expressions elect values.

Figure 12 Using Buffering Expressions

The value of parameter z is computed from the values of x and y. When several
values of x are received during an interval of t1 to t2, the engine needs to elect one
value to use in computing z. The buffering aggregation expression defined for x is
used to elect a value (for example, the worst value) at t3.

11h00 11h15 11h30

Period 21 Period 22
10h45

Period 20

P = 2

P = 1

P = 2

P = 2

P = 1

P = 1

SA

Calculation
Engine

Monitoring

27

2.7.3 Calculation Rules
OpenView SQM enforces a set of calculation rules to ease the evolution of a service
definition and provide access to previously stored data and generated reports.

Depending upon whether or not a parameter is provided by a customer, some
expressions are not supported. Figure 13 illustrates whether or not expressions are
supported for customer independent and customer dependent parameters.

Figure 13 Summary of Supported Expressions

Customer-dependent primary
parameters

Customer-independent
primary parameters

Customer-dependent
synthetic parameters

Customer-independent
synthetic parameters

YES

YES

YES NO

Expressions are not supported when a customer-independent parameter has to be
computed from at least one customer-dependent parameter.

Expression must always follow one association between two service components and
its direction. In other words:

• Expressions cannot have input parameters belonging to several service
components.

• You cannot specify expressions between service components that have no
relationship.

• Expressions must be defined between parameters of the same service component
or two consecutive service components. Expressions cannot “jump” services.

• The output parameter is always at the upper service component level (that is, the
service component closest to the service level).

• An expression must be specified on service components that are related.

• An expression cannot have output computed from “higher” inputs.

Figure 14 illustrates incorrectly specified component binding.

28

Figure 14 Inappropriate Component Binding

Parm A

Parm B

Parm C

Parm D

Parm E

Parm F

Upper SC

Parm A

Parm B

Parm CLower SC
Parm E

1

1

Expression

Parm A

Parm B

Parm C

Parm D

Parm E

Parm F

Upper SC

Parm A

Parm B

Parm CLower SC
Parm E

Expression

The common practice to cope with these constraints consists of adding some
parameters dedicated to the calculation (visibility flag to False).

2.7.4 Data Type Casting
To ensure that binding expressions are easily reusable, OpenView SQM uses the type
casting conventions summarized in Table 1.

For example, an expression that works with an input float parameter can be invoked
with an Integer parameter.

Table 4 Data Type Casting

 integer enum float absTime relTime string

Integer

Enum

Float

AbsTime

RelTime

String

2.7.5 Auto Propagation Mode
Figure 15 illustrates the processing performed by the calculation engine for collected
service parameters.

When a measure is received, it is first stored and then, at the end of a period (in this
example, Period 20), the calculation engine publishes changes.

Mapping OK
Mapping not allowed

Warning

29

Figure 15 Auto Propagation After a Period Has Passed

11h00 11h15 11h30

Period 21 Period 22
10h45

Period 20

P = 2

P = 2
P = 2

P = 2

P = 1

P = 1

Service
Adapter

Calculation
Engine

Monitoring

To validate a critical parameter as soon as it is collected, you can publish the
parameter immediately after it is stored by the calculation. You can use the
“Automatic propagation flag” property of the parameter to define this immediate
forwarding behavior.

As illustrated in Figure 16, the value of the parameter P is stored and published as
soon as the calculation engine processes it.

Figure 16 Auto Propagation Immediately After Storage

11h00 11h15 11h30

Period 21 Period 22
10h45

Period 20

P = 2

P = 3

P = 3 P = 1

P = 2 P = 1P = 3

Service
Adapter

Calculation
Engine

Monitoring

P = 2 P = 1

Whenever a service quality parameter is computed from one immediate service
quality measurement, the parameter will be recomputed the next time the expression
is executed.

2.7.6 Collection and Computation Error
When a service adapter encounters a collection error a special value, noValue, is
assigned to faulty parameters.

Errors also occur when the calculation of a collected parameter cannot be performed
(one input parameter is missing) or when a parameter cannot be computed by the
calculation engine (internal error encountered by the expression).

The administrator of OpenView SQM can control the propagation of such errors in
the object model using the “NoValue Propagation” flag. These flags give you control
over propagation between the following:

• From data feeder instance parameters to service quality measurements.

• From service quality measurements to the resulting service quality parameters.

30

Figure 17 illustrates how OpenView SQM collects errors over time.

Figure 17 Example of Error Collection

Start

Published
Measures

Time

Error

2.8 Service Level
A service level is always defined for a given service definition. The following
sections describe component service levels, service level objectives (SLO), objective
thresholds, and example service level validations.

2.8.1 Component Service Levels
A service level is composed of one or more component service levels. The
component service level defines the service level for each component.

Each component service level is defined under the service level (a flat model) as
described in Figure 18. The service level hierarchy does not reflect the service
definition hierarchy.

Figure 18 The Relationship between Definitions and Service Levels

Platform

IP Access

Video

Web Server

1..*

1..*

1..*

1

0..*

1..1

Dns

1

1..*

Web Cam

0..*

1..1

1

1

Processor

1
1

 Gold SL

IP Gold Web Gold
Platform Gold DNS Gold

Definition Service Level

31

2.8.2 Service Level Objectives
Once you have specified service parameters, you can add service level objectives. For
example, a service designer specifies the “Transit Delay” parameter. The service
administrator later adds a service level objective of “ < 60ms” to this parameter.

Each service level objective defines:

• A crossing type (up, down, equal, not equal, is valued). An objective is not met
when the parameter value crosses the critical threshold.

• An action executor, action name, action on (action when quality of service
decreases), action off (action when quality of service increases) and some
additional action information (optional).

• Weight (optional). By default, the weight is 100%.

A service level objective is always associated with a service parameter. However, you
are not required to specify an SLA for a service parameter. For example, if a service
parameter belongs to a service resource (a non-visible service component), it should
not have an objective.

2.8.3 Objective Thresholds
A service level objective is defined using the following thresholds:

• One violation threshold (mandatory).

• One violation clearance (optional).

• Several degradation thresholds (optional).

• One degradation clearance (optional).

You can associate each intermediary threshold with an action and additional
information.

Each threshold is defined by the following:

• A threshold level (that is, a reference value).

• A threshold type (degradation or violation).

• An action executor, action name, action on (action when quality of service
decreases), action off (action when quality of service increases) and some
additional action information (optional).

• A service degradation factor (SDF) that varies from zero (no degradation) to
100% (service failure). Intermediate values characterize a degraded objective.

When a threshold is crossed, the triggered action is deduced from information defined
at threshold level (when it is provided) and then from information defined at the SLO
level. In others words, the action configuration defined at SLO level acts as a default
value.

Figure 19 illustrates the benefits of defining a clearance threshold level. The service
violation ends only when the parameter crosses the clear level, T3, and not T2.

32

Figure 19 Violation Clearance Level

Parameter
Value

Time

Violation Level

Violation Clear Level

T0 T3T2

2.8.3.1 Service Degradation
The result when a parameter value is validated against a service level objective
depends on the service degradation factor. This result is called the service objective
status (SOS). The SOS provides a range varying from 0% (failure) to 100%
(operational). Intermediate values indicate in what proportion the service has altered.

The user interfaces and datamart map the SOS to an elementary state of OK,
Degraded, or Violated. Usually, a clear threshold equals 0%. A violation
threshold is equal to 100%.

Figure 20 illustrates a service level objective with several degradation
thresholds.

Figure 20 Service Degradation

Parameter
Value

Time

Violation Level

Degradation2

Degradation1

SDF=0

SDF=100

SDF=60
SDF=30

Violated

Degraded

Normal

2.8.3.2 Range SLO
To validate that a parameter value is compliant to up and down boundary conditions,
the service designer can define two service level objectives as shown in Figure 21.

33

Figure 21 Setting a Service Level Objective Range

Parameter
Value

Time

Violation Level
Degradation

top SLO

Violation Level

Degradation

bottom SLO

2.8.4 Sharing Service Levels
You can share service levels across multiple SLAs.

There is no concept of sharing component service levels in version 1.x of OpenView
SQM. However, we recommend that you give the same name to duplicated
component service levels.

2.8.5 Example Service Level Validation
This section describes an example of a service level objective and its validation.
Table 5 contains the definition of the service level.

Table 5 Example Service Level

Name TransitDelay

Label Transit Delay SLO

Description “Transit delay is still acceptable”

Crossing Type Up

Threshold Levels

Name Degradation_1

Value 70

Degradation Factor 0.5 (50%)

Action Executor OVOServiceAlarm

Action Name SendMessage

Action On Major

Action Off “”

Action Information “Early congestion detection”

Name Degradation_2

Value 80

Degradation Factor 0.7 (70%)

Action Executor TrafficShaper

34

Action Name DiscardLowPriority

Action On “”

Action Off “”

Action Information “ftp”

Name Degradation Clearance

Value 40

Degradation Factor 0

Action Executor OVOServiceAlarm

Action Name SendMessage

Action On “”

Action Off Normal

Action Information “Not More Problem”

Clearance True

Name Violation

Value 90

Degradation Factor 1 (100%)

Action Executor OVOServiceAlarm

Action Name SendMessage

Action On Critical

Action Off “”

Action Information “not acceptable response time”

Name Violation Clear

Value 60

Action Executor OVOServiceAlarm

Action Name SendMessage

Action On “”

Action Off Major

Action Information “”

Clearance False

The Service Level Monitor sends the results of its validation in a single message. This
message contains three parts:

• The list of triggered actions.

• The crossed thresholds, associated information (such as triggered actions), and
information about the affected customers and SLAs.

• For each SLA affected, the SOS value that results.

Figure 22 illustrates the variation of a parameter value over time.

35

Figure 22 Example SLO Degradation

Time

Violation

Parameter
value

Degradation1
Degradation2

Clearance

0%

100%

50%
70%

Degradation Factor

Clearance

2

1

3
4

5

6

According to Figure 22, when the thresholds are crossed the Service Level
Monitoring function publishes the following Service Status:

• Crossed threshold = Degradation_2
QoS: Decreasing
Degradation: Start
Service Level Objective Status = 50%
Triggered Action= (OVOServiceAlarm, Major , …)

• Crossed threshold = Degradation_1
QoS: Decreasing
Service Level Status = 30%
Triggered Action= (TrafficShaper, “DiscardLowPriority”, …)

• Crossed threshold = Violation
QoS: Decreasing
Violation: Start
Service Level Status = 0%
Triggered Action= (OVOServiceAlarm, Critical , …)

• Crossed threshold = Violation Clearance
QoS: Increasing
Violation: End
Service Level Status = 30%
Triggered Action= (OVOServiceAlarm, Major , …)

• Crossed threshold = Degradation_1
QoS: Increasing,
Service Level Status = 50%
Triggered Action= (TrafficShaper, “DiscardLowPriority”, …)

• Crossed threshold = Degradation_Clearance
QoS: Increasing
Degradation: End
Service Level Status = 100%
Triggered Action= (OVOServiceAlarm, Clear, “No More Pb!”)

36

2.8.5.1 Making Service Objective Status Calculations
From the elementary parameter SOS, the monitoring function computes the resulting
status of the following objects:

• Service components

• Service instances

• SLAs

The upper SOS percentage obtained for the parameters can be aggregated to get the
global SOS for each object.

Each objective specified (whether service level objective or component service level)
is given weight in the overall objective hierarchy. The weight of the objective
determines the SOS at a parent objective level.

You can calculate the following service status objectives:

• Worst

• Weighted worst

• Weighted average

• Weighted sum

Figure 23 Example Weighted Average Formula

 I =SLO n
 ∑ (SLO weight * Service Level Objective Status)
 i=SLO 1

SCI SOS =
 j =SLO n
 ∑ (SLO weight)
 i=SLO 1

 I=SLO n I=SCI n
 ∑ (SI Objective weight * SI SLO Status) + ∑ (CSL weight * SCI SOS)
 I=SLO 1 I=SCI 1

Service SOS =
 I=SLO n I=SCI n
 ∑ (SI SLO weight) + ∑ (CSL weight)
 I=SLO 1 I=SCI 1

 I=SI n
 ∑ (weight * SI Objective Status)
 I=SI 1

SLA SOS =
i=SI n
∑ (weight)

i=SI 1

The first schema in the example introduces the propagation of objective status from
the parameter up to the service.

The second schema illustrates the propagation with instantiation information, using
the Video Service example.

Figure 24 illustrates the objective hierarchy.

37

Figure 24 Objective Hierarchy

2.8.5.2 Examples of Worst Objective Calculation
Following are several examples of worst objective calculations.

Case 1: No Weight, a Service Component Instance is Down

The following table describes the service component weights and their status.

Service Component Weight Status

SC1 100% 0%

SC2 100% 100%

SC3 100% 70%

The service instance status is the status of the service component having the worst
weighted degradation:
 SC1 = 1*(1-0) = 1
 SC2 = 1*(1-1) = 0
 SC3 = 1*(1-0.7) = 0.3
Selected service component is SC1:

SI Status = 0% => Violated

Case 2: Major Service Component Instance is Down

The following table describes the service component weights and their status.

Service Component Weight Status

SC1 50% 0%

SC2 40% 100%

SC3 10% 100%

The service instance status is the status of the service component having the worst
weighted degradation:

 SC1 = 0.5*(1-0) = 0.5
 SC2 = 0.4*(1-1) = 0
 SC3 = 0.1*(1-1) = 0

0.6
1.0

1.0
1.0

0.60.2
w1 : Web Server

w2 : Web Server
H1 : Platform

H2 : Platform
CPU1 : Processor

CPU2 : Processor
w3 : Web Server

w5 : Web Server
w6 : Web Server

Parameter Objectives

Service Component

Service Instance

SLA

vdo_london : Video

compaq : SLA

vdo_paris : Video

P1 : PO
P2 : PO

P1 : PO
P2 : PO

P10 : PO
P11 : PO

P11 : PO
P13 : PO

P20 : PO
0.2

1.0

1.0

0.6
0.6

P20 : PO
1.0

0.6

1.0
0.6

0.61.0

Objective Status

0.2

0.2

0.2

....

38

Selected service component is SC1:

 SI Status = 0% => Violated

Case 3: Minor Service Component Instance is Down

The following table describes the service component weights and their status.

Service Component Weight Status

SC1 50% 100%

SC2 40% 70%

SC3 10% 0%

The service instance status is the status of the service component having the worst
weighted degradation:

SC1 = 0.5*(1-1) = 0

SC2 = 0.4*(1-0.7) = 0.12

SC3 = 0.1*(1-0) = 0.1

Selected service component is SC2:

 SI Status = 70% => Degraded

Case 4: All Service Components have Weight = 0%

The following table describes the service component weights and their status.

Service Component Weight Status

SC1 0% 0%

SC2 0% 50%

SC3 0% 100%

In this special case, the statuses of the service components do not impact the service
instance status (all weight are 0%).

 SI Status = 100% => OK

2.8.5.3 Examples of Weighted Worst Objective Calculation
Following are several examples of weighted worst objective calculations.

Case 1: No Weight, a Service Component Instance is Down

The following table describes the service component weights and their status.

Service Component Weight Status

SC1 100% 0%

SC2 100% 100%

SC3 100% 70%

The service instance status is the weighted status the service component having the
worst weighted degradation. It is calculated as follows:

SI Status = 1 – Max(1*(1-0), 1*(1-1), 1*(1-0.7))
 = 1 – Max(1, 0, 0.3)
 = 1 – 1 = 0% => Violated

39

Case 2: Major Service Component Instance is Down

The following table describes the service component weights and their status.

Service Component Weight Status

SC1 60% 0%

SC2 40% 100%

SC3 10% 100%

The service instance status is the weighted status the service component having the
worst weighted degradation. It is calculated as follows:

SI Status = 1 – Max(0.6*(1-0), 0.4*(1-1), 0.1*(1-1))
 = 1 – Max(0.6, 0, 0)
 = 1 – 0.6 = 40% => Degraded

Case 3: Minor Service Component Instance is Down

The following table describes the service component weights and their status.

Service Component Weight Status

SC1 50% 100%

SC2 40% 70%

SC3 10% 0%

The service instance status is the weighted status of the service component having the
worst weighted degradation. It is calculated as follows:

SI Status = 1 – Max(0.5*(1-1), 0.4*(1-0.7), 0.1*(1-0))
 = 1 – Max(0, 0.12, 0.1)
 = 1 – 0.12 = 88% => OK

2.8.5.4 Examples of Weighted Average Calculation
Following are several examples of weighted average calculations.

Case 1: No Weight, a Service Component Instance is Down

The following table describes the service component weights and their status.

Service Component Weight Status

SC1 100% 0%

SC2 100% 100%

SC3 100% 70%

The service instance status is calculated as follows:

SI Status = (1*0+1*1+1*0.7)/3
 = 56% => Degraded

Case 2: Major Service Component Instance is Down

The following table describes the service component weights and their status.

Service Component Weight Status

SC1 50% 0%

40

SC2 40% 100%

SC3 10% 100%

The service instance status is calculated as follows:

SI Status = (0.5*0+0.4*1+0.1*1)/1
 = 50% => Degraded

Case 3: Minor Service Component Instance is Down

The following table describes the service component weights and their status.

Service Component Weight Status

SC1 50% 100%

SC2 40% 70%

SC3 10% 0%

The service instance status is calculated as follows:

SI Status = (0.5*1+0.4*0.7+0.1*0)/1 =

 = 78% => OK

2.8.5.5 Examples of Weighted Sum Objective Calculation
Following are several examples of weighted sum objective calculations.

Case 1: No Weight, a Service Component Instance is Down

The following table describes the service component weights and their status.

Service Component Weight Status

SC1 100% 0%

SC2 100% 100%

SC3 100% 70%

The service instance status is the sum of the weighted status the service component in
the range [0%, 100%]. It is calculated as follows:

SI Status = 1 – Sum(1*(1-0), 1*(1-1), 1*(1-0.7))
 = 1 – Sum(1, 0, 0.3)
 = 1 – 1.3 = 0% => Violated

Case 2: Major Service Component Instance is Down

The following table describes the service component weights and their status.

Service Component Weight Status

SC1 60% 0%

SC2 40% 80%

SC3 10% 50%

The service instance status is the weighted status the service component in the range
[0%, 100%]. It is calculated as follows:

SI Status = 1 – Sum(0.6*(1-0), 0.4*(1-0.8), 0.1*(1-0.5))
 = 1 – Sum(0.6, 0.08, 0.05)
 = 1 – 0.73 = 27% => Degraded

41

Case 3: Minor Service Component Instance is Down

The following table describes the service component weights and their status.

Service Component Weight Status

SC1 60% 100%

SC2 40% 80%

SC3 10% 0%

The service instance status is the weighted status of the service component in the
range [0%, 100%]. It is calculated as follows:

SI Status = 1 – Sum(0.6*(1-1), 0.4*(1-0.4), 0.1*(1-0))
 = 1 – Sum(0, 0.08, 0.1)
 = 1 – 0.18 = 82% => OK

2.9 Service Level Agreements
A service level agreement (SLA) specifies the service quality to be achieved using the
service levels defined for the targeted service.

A customer uses the service through a set of instances, such as the instances located
in a geographical region. You can gather these individual instances into a group that
is then associated with an SLA. A group of service instances is called a service group.

There are two types of service level agreement:

• Customer SLAs, which are a contract between a service provider and a customer
that specifies in measurable terms what the service provider provides to its
customers.

• Operational SLAs, which the service provider uses internally to define
requirements for everything from help desk services to network performance and
availability, application performance and availability, and internal processes.

An SLA can monitor only one service definition.

Table 6 illustrates the types of service level agreements and how you can use them.

Table 6 Types of Service Level Agreements

SLA Type Service Type Monitoring type

Customer Customer Service Instance

Customer Service Aggregation view. Only customer
independent parameters constitute the
aggregation View Operational

Network Service Instance

2.9.1 Customer SLA
The customer uses the service through the instances of a service group. Therefore, the
customer SLA consists of a service group (to know the set of instances involved) and
a service level (to know the objectives) as described in Figure 25.

42

Figure 25 Components of a Customer SLA

Service
Group

SLA

Service
Level

Service

Note

You can create an SLA without associating any service level. For example, you can
specify the service level later in an SLA after you have identified the right objective
thresholds.

2.9.2 Operational SLA
Operational SLAs (also called OLAs) can be defined to monitor services independent
from the customer. This means that service providers can set their own service levels
on a service instance so that degradations are quickly detected before the customer
encounters a problem.

You can create two types of operational SLAs:

• SLAs that monitor network services with no customer measures (monitored at the
service instance level).

Figure 26 Operational SLA That Monitors the Service Instance

Service
Group

SLA

Service
Level

Service

Service
Group

SLA

Service
Level

Service

• SLAs that monitor only global parameters of a Customer service.

Figure 27 Operational SLA That Monitors Global Parameters

Service
Group

SLA

Service
Level

Service

Service
Group

SLA

Service
Level

Aggregation
View

43

Figure 28 Aggregation View

2.9.3 Default SLA and Service Group

To ease the configuration for each service definition:

• A default service group is automatically provided with all existing service
instances.

• A default SLA is associated to this service group. The SLA contains no specific
service level.

2.9.4 SLA Compliance
OpenView SQM supports both SLA status and SLA compliance. For example, if a
service has an availability objective defined as “99.5% daily availablity,” then the
availability status refers to an instant availability value (99.0%), whereas the
compliance refers to the daily average calculation (99.5% daily average). Therefore,
over the defined period, the SLA compliance can meet the 99.5% daily average value
although some of the SLA status measurements during that day might have been
below 99.5%.

SLA compliance serves the goal of measuring the service availability. The SLA status
is also of high interest to service operators because it alerts service operations staff in
real time to service quality issues. Together with the ability to set multiple thresholds
on service levels, the visualization of the SLA status helps accelerate problem
resolution times, since issues can be prioritized and addressed well before SLA
compliance is at risk.

For OpenView SQM version 1.x the real time compliance violation levels and
monitoring are only supported when there is only one SLA for a given service
instance used by a given customer. For example, Vdo lyon can be used by several
customers, but for MyCorp only one SLA is applicable for this delivered instance.

The compliance is not calculated for Aggregation Views.

2.9.4.1 Compliance Violation Level
The compliance of service quality parameters is calculated based on the comparison
of a parameter against the violation threshold.

VDO London

Customer
Aggregation

C1
C2

C3

VDO Paris

VDO Madrid
C1 C3

C2

Customer
Service Instance

Service Group

VDO C1 C3
C2

VDO London VDO Madrid
VDO Paris

Aggregated SI View

44

When the parameter crosses the violation threshold, then the SLO becomes non-
compliant. Non-compliance time is accumulated until the parameter is under the
violation threshold.

The compliance violation level (CVL) is expressed as the ratio between the non-
compliance accumulated time and the total allowed violation duration for this service
level objective.

The non-compliance time is accumulated over the contractual reporting period, called
the reference period. For example, a reference period could be one month. At the end
of the period, it is reset to zero. Figure 29 illustrates a measurement of compliance
violation levels over time.

The contractual reporting period is defined at the SLA level.

Figure 29 Measuring Compliance Violation Levels

 Value

Non
Compliance

Duration

Time
Reference Period

2.9.4.2 SLA Compliance Example
For a reference period of one month, the service is offered 8-8 M-F, meaning from
8:00 a.m. until 8:00 p.m. Monday to Friday.

So the overall in service time in this reference period is 22 open days * 12 hours * 60
minutes = 15840 minutes.

If the targeted Service Availability (SA%) defined in the contract is 99%, then the
maximum allowed non-compliance duration is 1% of 15840, or 158 minutes.

Value

Parameter

Time

Violation Threshold

t1 t2 t3 t4
dy dx Value

Non
Compliance

Duration

Time

dx

dx + dy

t3 t4
Value

Violation
Level

Time

100%

t1 t3 t4

t1

t2

t2

45

If after 11 days and 2 hours of operation, the non-compliance accumulated time is
100 minutes, then the current compliance violation level at that time will be 100/158
= 63%.

2.9.4.3 “In Service” Hours
Service hours are defined at the SLA level rather that at the instance level.

The “in service” hours are expressed as a compound schedule:

• Recurrence rules: weekly, time per day, days per week. For example, Mo-Fr 8
a.m. – 6 p.m.

• Exclusion rules (optional): exclude exact absolute date. For example, exclude Jul
14 2002.

For example, a service provider wants to have the following in service hours:

Service Hours: 7 days, 24 hours
Except Saturdays from 3:00 p.m. - 6:00 p.m.

This schedule is achieved by defining the following three recurring schedules:

 Days selected: Mo, Tu, We, Th, Fr, Su
 Start Time: 12:00 a.m.
 Finish Time: 12:00 p.m.

 Day selected: Sat
 Start Time: 12:00 a.m.
 Finish Time: 03:00 p.m.

 Day selected: Sat
 Start Time: 06:00 p.m.
 Finish Time: 12:00 p.m

When a service level objective exceeds a violation threshold during “off service”
hours, it does not affect the compliance violation level although it still affects the
service (for example, t3 in Figure 30).

If a service level objective exceeds a violation threshold and accumulates non-
compliance time, it stops accumulating non-compliance time as soon as the service
hours end, even if it is still over the violation threshold. When the “off-service” hours
end, the non-compliance time accumulation will be resumed only if the parameter is
still over the threshold (for example, t4 in Figure 30).

46

Figure 30 Monitoring In Service Hours

2.9.4.4 Instance Compliance Level and SLA Compliance Level
Calculations

Each time a parameter value is validated against a given service level objective (such
as threshold) a service objective status is computed. Note that this status is a
percentage (1 – Service Degradation Factor).

From this elementary SLO service objective status, the Service Level Object engine
SLOM computes the service objective status of:

• Service component instances

• Service instances

• SLAs

The compliance violation level of component instances, service instances, and SLAs
are calculated by applying the same formula as was applied for the SLO compliance.
The formula consists of accumulating the non-compliance time according to the
service hours, that is, the time when the service objective status is violated.

Figure 31 illustrates instance compliance level and SLA compliance level
calculations.

Value

Parameter

Time

Violation Threshold

Value
Non

Compliance
Duration

Time t1 t2 t4 t5

Service hours Non-service hours

t1 t2 t4 t5 t3

47

Figure 31 Compliance Calculations from the Service Objective Status

SLO

SCI

SI

SLA

SLO

SOS

SOS

SOS

SOS

CVL

CVL

CVL

CVL

Compliance

calculation

Compliance

calculation

Compliance

calculation

Service
Objective
Status

Compliance
Violation
Level

2.9.4.5 Operational Compliance Monitoring
The service compliance violation level is monitored as any other parameter: in real
time at the service level objective, service component, service, and SLA levels.

This means that the Service Designer UI can associate specific actions (such as
sending an alarm) when a SLA is not compliant or will soon no longer be compliant
(for example, the jeopardy threshold has been reached).

2.9.4.6 Service Health Indicators
Service objective status, compliance violation levels, and associated status can be
aggregated over time, for example on a monthly basis. The aggregations provide the
following service health indicators:

• Service availability percentage

• Mean time between failure (MTBF)

• Mean time to repair (MTTR)

2.10 Service Collection Management
The OpenView SQM administrator can control how the SLA and service data is
collected.

When an SLA is unlocked, OpenView SQM automatically:

• Enables collection on all service instances.

• Enables all of the requested data feeder instances.

Each level of the data collection chain (data feeder instances, services, service
groups) implements an “Operational” and “Availability” collection status.

The data feeder instances collect the data and propagate it to the SLA. Therefore, the
availability collection state of SLA information depends on the overall instance
hierarchy. When binding fails between service component instances and data feeder
instances, the collection status of upper levels is affected.

48

You can manage the administrative state of SLAs, service instances, and data feeder
instances by setting the administrative state to “unlocked” to activate data collection
or to “locked” to inactivate data collection.

When the administrative state is set to “unlocked” for a data feeder instance, the
responsible service adapter tries to start data collection. If the data feeder instance has
already been deployed, data collection begins automatically.

The administrative state of an SLA indicates whether it is monitored or not.
Moreover, all instances, whatever their level in the hierarchy, have two state
parameters:

• Operational status (disabled and enabled).

• Availability status (in test, failed, power off, off line, off duty, dependency,
degraded, not installed, and log full).

Unlike OSI standard definitions, the availability is not a collection of values. In
addition, an enumeration has been added to represent the valid status (normal).

The state parameters indicate if all data, some data, or no data is collected for a
particular instance. The value of the parameter is calculated from the underlying
instances. Consequently, each time the collection status changes on a data feeder
instance, the data collection status of all upper instances needs to be recomputed.

Finally, descriptive information is associated with the collection status in case further
information about the degradation is available.

Figure 32 describes how a service is monitored.

Figure 32 Monitoring a Service

SLA

Service Group

Service

SCI

DFI

Administrative
 State

Operational Status
Availability Status

Instance
Hierarchy

49

The different administrative states have the following dependencies:

• When an SLA is monitored, data is automatically collected on the involved
service instances and data feeder instances.

• When data collection is enabled on a service instance, data is collected on all data
feeder instances below it.

• When SLA monitoring is stopped, data collection is stopped on all of the
associated service component instances and data feeder instances not used by
another SLA.

• When data collection is disabled on a service instance, collections stops on all of
the data feeder instances not used by another service instance.

When a data feeder instance is not defined for a given service component instance, it
has an availability status of “Failed” and an explanation that indicates it is undefined.
When a data feeder instance of a given service component instance is pre-registered,
it has an availability status of “Not Installed”.

50

2.10.1 Summary of the UML Model

Service Definition

0..*

0..*

Service Parameter

1

1..*

Component Parameters

1

0..*

Service Parameters

Service Level Objective
1 0..*

Monitored metric

Component Service Level
1 0..*

Component objectives

1

1..*

composed of

1

0..*

1

0..*

1 0..*

1

1

violation

Action

ServiceLevel

Threshold Clearance Threshold

0..*

0..1

violation Indication

1

0..*

degradation
1

0..1

violation

1

0..1

degradation

0..*

0..1

Service Component

Service Definition

Service Level Agreement

Service Instance

0..* 1

"instance of"

Service Instance Group

0..*

1..*

Aggregated View

Operation View

0..1

0..*

aggregation view monitoring
0..*

0..1

1
0..*related instances

Customer

ServiceLevel
objectives

0..*

1

51

Chapter 3

Structuring the Service Object
Model

This chapter describes how to structure your service object model using the
OpenView Service Designer UI. The structure of your service model allows you to
benefit from the OpenView Service Designer UI capabilities and facilitates the reuse
of various definitions.

This chapter contains the following sections:

• Section 3.1 Using UML Packages

• Section 3.2 Controlling Unit Packages

• Section 3.3 Proposed Structure

3.1 Using UML Packages
In UML, a package allows you to group any model elements together. Centralizing
the definitions you specify in a package helps you find and reuse them.

We recommend that you:

• Group all of your shared service components in a “Service Components” package
even if they belong to different services.

• Group all of your data feeders in a “Data Feeders” package.

• Group the predefined and custom expressions in an “Expressions” package.

• Group your custom data types in the “Data Types” package.

• Define specific packages for your service models, such as “Video Service”.

3.2 Controlling Unit Packages
A Rose CAT file (.cat) corresponds to control units, packages that are shared. You
can load these files in the OpenView Service Designer UI, meaning that other service
models can reuse definitions included in the package.

Generally, you should share the package units of the following packages:

• The shared service components

• The data feeders

• The expressions

Of course, you can define other packages to suit your needs. However, we do not
recommend using subfolders within packages.

52

Note

When you share a unit package containing service component definitions, the UI
automatically configures the definitions as “Shared Service Definitions”.

3.3 Proposed Structure
The structure of your service model should consist of the following:

• The “Main Class Diagram” in the logical view of the OpenView Service Designer
UI, which contains all of the packages.

• The “Service Components” package, which contains:

• All the service component definitions found in the main class diagram.

• One expression sequence diagram for each service component.

• For each service parameter of a service component, a sequence diagram that
describes how to calculate its values from the data retrieved (either from data
feeders or from the service parameters of other service components).

• The “Data Feeders” package, which contains all of the data feeder definitions
from the main class diagram.

• The “Expressions” package, which contains all of the operations you can use to
build expressions (predefined and custom) in a class diagram. Develop custom
expressions in Java and PL/SQL, the language you use depends on the type of
parameter you are calculating.

• The “Data Types” package, which contains all of the custom data types needed
and their possible values in a class diagram.

• The package for your service (such as “Video Service”), which contains the
following:

• A service model for your service in a class diagram that shows the
relationships between the service and service components, as well as the
associations between the service, service components, and data feeders.

• An expressions sequence diagram of your service. For each service
parameter, the sequence diagram describes how to calculate the parameter’s
values from the data retrieved (either from data feeders or from the service
parameters of other service components).

53

Chapter 4

Using Expressions
This chapter describes how to use the expressions that calculate service parameters.
It contains the following sections:

• Section 4.1 Predefined Expressions

• Section 4.2 Implementing Custom Expressions

4.1 Predefined Expressions
OpenView SQM comes with a list of existing expressions to simplify the creation of
your own service model. These expressions cover most of your needs.

When you install the OpenView SQM Service Designer UI for the first time, the
initial framework comes with all of the predefined expressions so that you can use
them immediately to create your service.

The predefined expressions are also preloaded in OpenView SQM when you install it
for the first time.

Predefined expressions are provided in two formats:

• Java expressions for data feeder binding.

• PL/SQL expression for component binding.

Simple and aggregation expressions are provided in both formats.

4.1.1 Java Expressions
All of the Java expressions are simple expressions. Table 7 lists the Java expressions
provided with OpenView SQM.

Table 7 Simple Expressions Provided by OpenView SQM

Parameters Type Expression Purpose

Input Output

assign_Float Returns a float input
parameter.

float float

assign_Int Returns an integer input
parameter.

integer integer

assign_RelTime Returns a relative time. reltime reltime

assign_String Returns a string. string string

assign_AbsTime Returns an absolute
time.

abstime abstime

54

Parameters Type Expression Purpose

Input Output

assign_Enum Returns an
enumeration.

enum enum

avg_2Float Computes the average
of the two float input
parameters.

float, float float

avg_2RelTime Computes the relative
time from the two input
parameters.

reltime,
reltime

reltime

divide_2Float Divides two float input
parameters (first
parameter/second
parameter).

float, float float

max_2Float Computes the
maximum of two float
parameters.

float, float float

max_2Int Computes the
maximum of two
integer parameters.

integer,
integer

integer

max_2RelTime Computes the
maximum of two
relative time input
parameters.

reltime,
reltime

reltime

min_2Float Computes the minimum
of two float input
parameters.

float, float float

min_2Int Computes the minimum
of two integer input
parameters.

integer,
integer

integer

min_2RelTime Computes the minimum
of two relative times.

reltime,
reltime

reltime

min_2AbsTime Computes the minimum
of two absolute times.

abstime,
abstime

abstime

minus_2Float Subtracts two float
parameters (first
parameter – second
parameter).

float, float float

minus_2Int Subtracts two integer
parameters (first
parameter – second
parameter).

integer,
integer

integer

minus_2RelTime Subtracts two relative
time parameters (first
parameter – second
parameter).

reltime,
reltime

reltime

55

Parameters Type Expression Purpose

Input Output

minus_2AbsTime Subtracts two absolute
time parameters (first
parameter – second
parameter).

abstime,
abstime

abstime

multiply_2Float Multiply two float
parameters (first
parameter * second
parameter).

float, float float

multiply_2Int Multiply two integer
parameters (first
parameter * second
parameter).

integer,
integer

integer

sum_2Float Sums two float
parameters (first
parameter + second
parameter).

float, float float

sum_2Int Sums two integer
parameters (first
parameter + second
parameter).

integer,
integer

integer

sum_2RelTime Sums two relative time
parameters (first
parameter + second
parameter).

reltime,
reltime

reltime

sum_2String Sums two string
parameters (first
parameter + second
parameter).

string,
string

string

4.1.2 PL/SQL Expressions
OpenView SQM provides the same simple expressions in PL/SQL as it does in Java.
Refer to Table 7 for a complete list of simple expressions.

OpenView SQM also provides the aggregation expressions in PL/SQL. Table 8 lists
the aggregation expressions available for your use.

56

Table 8 Aggregation Expressions Provided by OpenView SQM

Parameters Type Expression Purpose

Input Output

avg_agg_Float Computes the average
from a list of float input
parameters.

list of
floats

float

avg_agg_RelTime Computes the average
from a list of relative
time input parameters.

list of
reltimes

reltime

max_agg_Float Computes the
maximum from a list of
float input parameters.

list of
floats

float

max_agg_Int Computes the
maximum from a list of
integer input
parameters.

list of
integers

integer

max_agg_RelTime Computes the
maximum from a list of
relative time input
parameters.

list of
reltimes

reltime

max_agg_AbsTime Computes the
maximum from a list of
absolute time input
parameters.

list of
abstimes

abstime

min_agg_Float Computes the minimum
from a list of float input
parameters.

list of
floats

float

min_agg_Int Computes the minimum
from a list of integer
input parameters.

list of
integers

integer

min_agg_RelTime Computes the minimum
from a list of relative
time input parameters.

list of
reltimes

reltime

min_agg_AbsTime Computes the minimum
from a list of absolute
times input parameters.

list of
abstimes

abstime

sum_agg_Float Computes the sum of a
list of float input
parameters.

list of
floats

float

sum_agg_Int Computes the sum of a
list of integer input
parameters.

list of
integers

integer

sum_agg_RelTime Computes the sum of a
list of relative time
input parameters.

list of
reltimes

reltime

57

Parameters Type Expression Purpose

Input Output

sum_agg_String Computes the sum of a
list of strings input
parameters.

list of
strings

string

union_agg_String Computes a union of a
list of string input
parameters.

list of
strings

string

4.1.3 PL/SQL Expressions and management of “NoValue”
OpenView SQM provides a way to manage the case when there’s no value available
as input of a. PL/SQL expression (i.e. input parameter value is “NoValue”).

Note

Parameters with a “NoValue” are marked as “Not Available” in the OV SQM Real
Time Monitoring User Interface.

The management of the “NoValue” case is based on the SPDM configuration
property “PropagateUnavailableFlag”.

4.1.3.1 Ignore “NoValue” as input of the PL/SQL Expressions
If the “PropagateUnavailableFlag” configuration property is set to “false”, then the
SPDM discards the “NoValue” and it uses instead the latest available parameter value
as input of the PL/SQL expressions.

Example:

param3 = sum_2Int(param1, param2)

At step 1:

param1 = 10 and param2 = 2

 param3 = sum_2Int(10,2) = 10 + 2 = 12

At step 2:

param1 = “NoValue” and param2 = 5

 param3 = sum_2Int(10,5) = 10 + 5 = 15

(To compute the value of param3 with the sum_2Int() expression, the SPDM has
replaced the “NoValue” of param1 by its latest available value).

4.1.3.2 Use “NoValue” as input of the PL/SQL Expressions
If the “PropagateUnavailableFlag” configuration property is set to “true”, then the
SPDM uses “NoValue” as input of the PL/SQL expressions.

This allows full control of the PL/SQL expressions and implementation of the desired
behavior in case of “NoValue” as input of the PL/SQL expressions.

Case 1: Expected behavior of the PL/SQL expression is to return a “NoValue” in case
of input “NoValue”

This behavior is implemented by the simple and aggregated PL/SQL expressions
provided along with OV SQM Service Designer and described in Table 7 and Table
8.

58

Case 2: Expected behavior of the PL/SQL expression is to ignore “NoValue”
provided as input

This behavior is implemented by the simple and aggregated PL/SQL expressions
provided along with OV SQM Service Designer in a specific “IgnoreNoValue”
package.

This package contains a related “IgnoreNoValue” PL/SQL expression for each simple
and aggregated expression described in Table 7 and Table 8.

param3 = sumIgnoreNoValue_2Int(param1, param2)

At step 1:

param1 = 10 and param2 = 2

 param3 = sumIgnoreNoValue_2Int(10,2) = 10 + 2 = 12

At step 2:

param1 = “NoValue” and param2 = 5

 param3 = sumIgnoreNoValue_2Int(“NoValue”,5) = 5

(OV SQM has ignored the “NoValue” of param1).

Case 3: Other expected behavior of the PL/SQL expression

If the expected behavior of the PL/SQL expression does not match case 1 or case 2
(for instance, if a “NoValue” should be replaced by a default value), then it’s possible
to implement a custom PL/SQL expression that manages the input “NoValue”.

Refer to chapter 4.2.4 Managing “NoValue” in Custom PL/SQL Expressions for an
example of custom PL/SQL expression that manages “NoValue” provided as input
value.

4.2 Implementing Custom Expressions
You can create custom expressions to address the particular needs of your service.
This section describes when you need to create custom expressions, how to
implement them in PL/SQL and Java, and how to load them.

4.2.1 When Do You Need to Develop Your Own Expressions?
The predefined expressions should cover most of your needs, but sometimes
calculating a parameter requires operations that are more complex.

You can create custom expressions to address the particular needs of your service.
You can develop any type of expression: simple, aggregation, and buffering.

Note

The primary Custom expressions (Java ones) must not start with the keyword assign.

For example, the Video Service designer wants to calculate the worst operational
state of a set of three operational states (the enum values of Enable, Disable, and
Idle) collected by a service adapter from a Web server component. OpenView
SQM comes with a predefined expression called Max_AggrInt (int a, int b, int c …)
that computes the maximum from a list of Integers given in the parameter. The
Video Service designer can use this expression if the integer value of the disabled
enumeration is the biggest compared to Enable and Idle. Otherwise, the designer
needs to develop a custom expression.

59

The Video Service designer uses the OpenView Service Designer UI to define
custom expressions without implementing them. The implementation and the loading
can be done in another step.

4.2.2 Implementing Custom Java Expressions
You implement expressions with Java when the output parameter is a service quality
measurement.

For example, the video service provider wants to implement the following expression
with Java:

f(x1,…, xn, version)

The expression contains input parameters and a version argument. The version
argument identifies the version of the data feeder definition. As data feeder
definitions evolve, the version argument ensures that different versions of a data
feeder can co-exist and apply their corresponding expressions.

The Java code used to implement the example expression follows:

package com.compaq.temip.servicecenter.expressions;

public class ASimpleCalculationExpression {

 public static double aSimpleCalculationExpression
(int a,
 double b,
 String dfdVersion) {
 double diff = a-b;
 return diff;
 }
}

4.2.3 Implementing Custom PL/SQL Expressions
Expressions need to be implemented in PL/SQL when:

• The output parameter is a service quality parameter.

• The expression defines an election policy.

For example, the video service provider wants to implement the following simple
expression for a service quality parameter:

f(p1, …, pn)

The PL/SQL code used to implement the expression follows:

CREATE OR REPLACE FUNCTION sum_2Int (a NUMBER, b NUMBER) RETURN
NUMBER IS
BEGIN
 res := a + b;
 RETURN res;
END;
/
SHOW ERR;

The video service provider also wants to implement the following aggregation
expression for a service quality parameter:

f(coll p1, …, coll pn)

60

The PL/SQL code used to implement this expression follows:

CREATE OR REPLACE FUNCTION avg_aggr_Float (a float_coll) RETURN
NUMBER IS
 res NUMBER :=0;
BEGIN
 FOR I IN a.FIRST..a.LAST
 LOOP
 res := res + a(i);
 END LOOP;

 res := res/a.COUNT

 RETURN res;
END;
/
SHOW ERR;

4.2.4 Managing “NoValue” in Custom PL/SQL Expressions
Expressions implemented in PL/SQL can take into account the case where a
“NoValue” is provided as input value of an expression.

Reminder: this occurs only when the SPDM “PropagateUnavailableFlag”
configuration property is set to “true”.

A “NoValue” is represented in the PL/SQL code of the expression by a NULL value.

For example, the video service provider wants to implement the following simple
expression for a service quality parameter:

 myFunct(p1, p2)

This function does a sum of p1 and p2.

If p1 or p2 is not available (i.e. “NoValue”), then the video service provider needs to
use 10 as default value for p1 and 20 as default value for p2.

The PL/SQL code used to implement the expression follows:

CREATE OR REPLACE FUNCTION myFunct (p1 NUMBER,p2 NUMBER) RETURN
NUMBER IS
BEGIN

 -- If input for p1 is “NoValue”
 IF (p1 IS NULL)
 THEN
 -- Use 10 as default value
 p1 := 10;
 END IF;

 -- If input for p2 is “NoValue”
 IF (p2 IS NULL)
 THEN
 -- Use 20 as default value
 p2 := 20;
 END IF;

 res := p1 + p2;
 RETURN res;
END;
/
SHOW ERR;

61

4.2.5 Loading Custom Expressions
Once you have created your custom PL/SQL or Java expressions, you need to load
them into OpenView SQM.

First, you need to generate the XML file that will contain the expression source code
required by OpenView SQM. The OpenView Service Designer UI allows you to
generate this XML file. For more information, refer to the OpenView Service
Designer UI User’s Guide.

Next, you need to use the CLUI on your UNIX machine to send the XML file to
OpenView SQM as follows:

temip_sc_load_definition –e Custom_Expression.xml

63

Chapter 5

Mapping Subscriber IDs
This chapter describes how to map subscriber IDs to customers. It contains the
following sections:

• Section 5.1 About Mapping Subscriber IDs

• Section 5.2 Creating the Mappings

• Section 5.3 Using the customer premise flag

5.1 About Mapping Subscriber IDs
An ISP can offer services, such as mail and Web services, to other businesses. These
businesses, in turn, can give employees and subscribers access to the services. For
example, Software House A buys the Video service from the ISP. Software house A
then gives its employees access to this service. For the ISP to manage service quality,
it needs to be able to map service interactions made by Software House A employees
with the correct customer SLA.

To make this mapping between subscribers and customers, OpenView SQM uses
subscriber IDs. The subscriber ID identifies the user of the service in a service
quality measure. The subscriber ID can be an IP address, a user login name, or an
identifier directly linked with a user, such as a DSL port number.

Sometimes, the user happens to be directly the Customer. So, the subscriber ID maps
directly to the customer ID. In such case, that does not require a mapping the domain
is by default the generic “ServiceCenter” domain.

5.2 Creating the Mappings
This section describes how to map subscriber IDs. It tells you what to do before you
begin mapping, describes the structure of a mapping, how to write a mapping in
XML, and how to provide the mapping file to OpenView SQM.

5.2.1 Before You Begin
Customers are created through the OpenView SLA Administration UI and stored in
the OpenView SQM repository. Subscribers are created through an independent tool.

Therefore, before you begin mapping subscriber IDs, you must have previously
created customers using the OpenView SLA Administration UI.

5.2.2 About the Mapping Structure
A subscriber ID mapping has a simple structure that consists of a customer name and
a naming plane. A naming plane defines the customer identifiers for each sub-
domain. These identifiers are:

64

• Explicit (for example, a specific IP address).

• Range of valid identifiers (such as an address that includes regular expressions).

An example of a subscriber ID mapping follows:

Customer Name: MyNewCustomer
Naming Planes:
{
Domain Identifier: IP
ipaddress: {“16.18.*.*”, “16.23.*.*”}
}
{
Domain Identifier: IMSI
ipaddress: {“12202???”, “2002???”}
}
{
Domain Identifier: Mail
ipaddress: {“*@hp.com”}
}

Domain identifiers are free text. However, an IP is a keyword and can be verified as
a valid IP address.

5.2.3 Writing the Mapping in XML
You must provide your subscriber ID mappings to OpenView SQM in an XML file.
The following example illustrates how to set the customer name to the
MyNewCustomer subscriber ID defined previously.

<?xml version = "1.0" encoding = "UTF-8"?>
<!DOCTYPE sc:NewSubscribersReq SYSTEM "DTD/tsc_SubscriberNamingServiceSrv.dtd">
<sc:NewSubscribersReq msg.id = "3" xmlns:sc =
”<http://www.compaq.com/TeMIP/ServiceCenter>"”
customer.name = "MyNewCustomer" customer.label = "My new Customer label">
 <sc:NamingPlanes>
 <sc:NamingPlane subscriber.domain = "IP" domainType = "ip" > <sc:Descr>My
new customer IP domain</sc:Descr>
 <sc:SubscriberNameRanges>
 <sc:SubscriberNameRange subscriber.nameRange="16.18.*.*"/>
 <sc:SubscriberNameRange subscriber.nameRange="16.23.*.*"/>
 </sc:SubscriberNameRanges>
 </sc:NamingPlane>
 <sc:NamingPlane subscriber.domain = "IMSI" domainType = "imsi" >
<sc:Descr>My new customer IMSI domain</sc:Descr>
 <sc:SubscriberNameRanges>
 <sc:SubscriberNameRange subscriber.nameRange="12202???"/>
 <sc:SubscriberNameRange subscriber.nameRange="2002???"/>
 </sc:SubscriberNameRanges>
 </sc:NamingPlane>
 <sc:NamingPlane subscriber.domain = "MAIL" domainType = "mail" >
<sc:Descr>My new customer MAIL domain</sc:Descr>
 <sc:SubscriberNameRanges>
 <sc:SubscriberNameRange subscriber.nameRange="*@hp.com”/>
 </sc:SubscriberNameRanges>
 </sc:NamingPlane>
 </sc:NamingPlanes>
</sc:NewSubscribersReq>

5.2.4 Providing the Mapping File to OpenView SQM
To provide a new naming plan to OpenView SQM, use the following command:

65

temip_sc_ns_admin_tool.sh –platform <Platform> -director
<Director> -application <Naming Service Application> -action
ImportCustomer filename.xml

For a standard SQM installation (typical), the command to enter is:
temip_sc_ns_admin_tool.sh –platform slmv13 -director
slmonitoring -application NS -action ImportCustomer
filename.xml

5.2.5 Customer dedicated Data Feeder Instance
A measurement point can be dedicated to a given customer when for instance a
resource is allocated for a given customer (example a port on a Premise Equipment
Router).

In such case the customer ID is defined when either the Data Feeder Instance is pre-
registered or after it’s discovered.

67

Chapter 6

Updating the Object Model
This chapter describes how to update the service object model and the implications of
your updates. It contains the following sections:

• Updating Service Definitios and Expressions

• Updating Data Feeders

• Updating Service Level Agreements

6.1 Updating Service Definitions and
Expressions

After you have created, implemented, and instantiated a service definition, or an
expression you can update it. The following sections describe the types of updates
you can make to service definitions that are already in product and the implications of
your changes.

6.1.1 Authorized and unauthorized Service Definition
updates

The following table lists authorized/ forbidden update operations. Note that even if
the update is theoretically allowed, this does not necessarily mean that the input XML
is semantically correct (for example a parameter is deleted but the corresponding
bindings are kept: the transition is authorized but an inconsistency will be detected by
the semantic validation because bindings cannot refer to an inexistent parameter).

Add a Service Component
Definition as a leaf

YES

Add a Service Component
Definition hierarchy as a leaf

YES

Add a Service Component
Definition or Service
Component Definition
hierarchy between two
existing Service Component
Definitions

 YES

See Chapter: “Safe” Updates – Object Deletion
(because Service Component Definition
Associations are deleted)

Remove a leaf Service
Component Definition

YES

See Chapter: “Safe” Updates – Object Deletion.

Remove a leaf Service
Component Definition
hierarchy

YES

See Chapter: “Safe” Updates – Object Deletion.

68

Remove a Service Component
Definition or Service
Component Definition
hierarchy between two
existing Service Component
Definitions

 YES

See Chapter: “Safe” Updates – Object Deletion
(because Service Component Definition
Associations are deleted)

Update the SD attributes YES

Update the Service
Component Definition
attributes

YES except the Definition Sharing flag and the
Instance Sharing flag

Add a relationship between
two Service Component
Definitions

YES provided the child Service Component
Definition is added at the same time

Remove a relationship
between two Service
Component Definitions

YES provided the child Service Component
Definition is removed at the same time

Update the cardinalities of a
relationship between two
Service Component
Definitions

YES provided the instantiation is compatible
with the new cardinalities. Indeed the
cardinality update may change the Instantiation
Sharing flag of the Service Component
Definition:

NONE->LOCAL: OK

LOCAL->NONE: This works if no Service
Component Instance (of the Service
Component Definition) is associated to several
Service Instances.

Add a Parameter (SD/Service
Component Definition levels)

YES

Add/Remove/Update a
Buffering expression to a
Parameter

YES

Remove a Parameter
(SD/Service Component
Definition levels)

YES

Update the Parameter
attributes

YES except the datatype

Add a Primary Binding YES

Add a Secondary Binding YES

Remove a Primary Binding YES

Remove a Secondary Binding YES

Change the list of Input
Parameters of a Binding
(Prim/Sec)

YES

Change the expression used
within a Binding (Prim/Sec)

YES

Change the expression source
code

YES

69

You can update a service definition with any combination of these modifications at
the same time.

Any other modification will not be considered as an update of a service definition.
For example, you cannot insert a service component between two other service
components. Instead, you must create a new service definition.

6.1.2 Implications of Your Changes
Your updates to service definitions have the implications described in the following
sections.

6.1.2.1 Processing Time Delay
Updating a service definition in OpenView SQM takes processing time and can delay
the validation of service quality data, as well as the generation of SLA degradation
and violation information in a deployed environment. However, no service quality
data will be lost, as all measures are kept in a queue during the processing time.

Note also that it is not necessary to restart SQM Core components in order to take
into account modifications.

6.1.2.2 Binding Service Components to Data Feeders
When you update a service definition, the old service instances entered with the old
service definition are updated to stay consistent with the service model. As a result,
some modifications that imply a new data feeder or a new service component require
that you do the binding between new service component instances and the associated
data feeder instances for all old service instances.

6.1.2.3 “Safe” Updates – Object Deletion
Most model updates (except the deletion of “global” objects such as Service
Definition, Service Instances… that can be “forced”) are performed in “safe” mode,
which means that it is not authorized to delete an object that has some “external”
dependencies.

For example it is not possible to delete a Service Component Definition which is still
instantiated (Service Component Instances).

As a consequence, the user needs first to remove the object dependencies. Then he
will be able to remove safely the object itself.

Here are the dependencies to take into account when deleting/updating Service
Definitions/ Data Feeder Definitions/ Calculation Expressions.

Safe Operation/Object Dependencies

Delete
Service Definition

• Parameter:
o Any existing binding for which this parameter

is used as input for calculation of another
parameter in another Service Definition

• Service Instances
• Service Levels
• Service Instance Groups
• Service Level Agreements

Update Service
Definition

• If Parameter to be deleted: see related operation
below

• If Property to be deleted: see related operation

70

below
• Update/Delete Service Component Definition (see

related operation below)
• If Primary Binding to be deleted: see related

operation below
• If Service Component Definition Associations to

be deleted: see related operation below

Delete Data Feeder
Definition

• Parameter: see related operation below
• Data Feeder Instances

Update Data Feeder
Definition

• If Parameter to be deleted: see related operation
below

• If Property to be deleted: see related operation
below

Update Service
Component Definition

• If Parameter to be deleted: see related operation
below

• If Property to be deleted: see related operation
below

Delete Service
Component Definition

• Parameter:
o Any existing binding for which this parameter

is used as input for calculation of another
parameter

• Service Component Instances
• Component Service Levels

Delete Parameter
(Service Definition/
Service Component
Definition)

• Service Level Objectives
• Any existing binding for which this parameter is

used as input for calculation of another parameter

Delete Parameter (Data
Feeder Definition)

• Any primary binding which use this Data Feeder
parameter

Delete Property
(Service Definition/
Service Component
Definition/ Data Feeder
Definition)

• Property Values referenced in model instances
(Service Instance Groups, Service Instances, …)

Delete Primary Binding
– Parameter computed
from Data Feeder
Definition parameter(s)

• Primary Associations whose:
o Parent Service Component Instance

references the Service Component Definition
of the binding

o Child DFI references the Data Feeder
Definition of the binding

Delete Service
Component Definition
Association

• Secondary Associations whose:
o Parent Service Component Instance

references the Parent Service Component
Definition of the Association

o Child Service Component Instance references
the Child Service Component Definition of
the Association

Update Calculation
Expression

• None

Delete Calculation
Expression

• Any primary and secondary binding which use this
expression

71

Examples:

1. When the user aims at removing a Service Component Definition through a
Service Definition update (Service Definition being responsible for the Service
Component Definition), he first needs to:

• Remove corresponding Component Service Levels from Service Levels,

• Remove corresponding Service Component Instances from Service
Instances (only “responsible”- see chapter 6.1.2.4 - Service Instances need
to be re-loaded).

• Remove the bindings (in other Service Definitions) that reference as input
parameters the deleted Service Component Definition parameters.

2. When the user aims at removing a Parameter of a Service/Service Component
Definition through a Service Definition update (Service Definition being
responsible for the Parameter), he first needs to:

• Remove corresponding Service Level Objectives from Service Levels.

• Remove the bindings (in other Service Definitions) that reference as input
parameters the deleted parameter.

6.1.2.4 Deletion and Sharing
Service Component Definition deletion:

• The Service Component Definition is not definition shared: whether the Service
Component Definition is deleted from an Update or a Delete Service Definition
request, the Service Component Definition is fully removed from the model.

• The Service Component Definition is definition shared:

o Update Service Definition: if the Service Definition is responsible for this
Service Component Definition, the Service Component Definition and its
sub-hierarchy is automatically deleted from all the Service Definitions that
were referencing the Service Component Definition.

o Update Service Definition: if the Service Definition is not responsible for
this Service Component Definition, the Service Component Definition is not
removed from the SRM model: the Service Component Definition (and its
sub-hierarchy) is just no more referenced in the Service Definition.

o Delete Service Definition:

 When the Service Definition is responsible for the shared Service
Component Definition, the Service Component Definition (and its sub-
hierarchy) is removed from the SRM model.

 When the Service Definition is not responsible for the shared Service
Component Definition, the Service Component Definition (and its sub-
hierarchy) is not removed from the SRM model.

Service Component Instance deletion:

• The Service Component Instance is not shared: Whether the Service Component
Instance is deleted from an Update or a Delete Service Instance request, the
Service Component Instance and its sub-hierarchy is fully removed from the
model.

• The Service Component Instance is shared:

o Update Service Instance: if the Service Instance is responsible for this
Service Component Instance, the Service Component Instance and its sub-
hierarchy is automatically deleted from all the Service Instances that were
referencing the Service Component Instance.

72

o Update Service Instance: if the Service Instance is not responsible for this
Service Component Instance, the Service Component Instance is not
removed from the SRM model: the Service Component Instance (and its
sub-hierarchy) is just no more referenced in the Service Instance.

o Delete Service Instance: whether the Service Instance is responsible or not
for the shared Service Component Instance, the Service Component Instance
(and its sub-hierarchy) is not removed from the SRM model.

Service Component Instance update:

The Service Component Instance updates (whether the Service Component Instance
is shared or not) can only be performed from its “responsible” Service Instance. Let’s
notice that other Service Instances referencing the Service Component Instance don’t
need to be reloaded: the master Service Instance propagates automatically the Service
Component Instance hierarchy structure update to the “secondary” Service Instances.

Service Component Definition update:

The Service Component Definition updates (whether the Service Component
Definition is shared or not) can only be performed from its “responsible” Service Def.

Let’s notice, for definition shared Service Component Definitions, that other Service
Definitions referencing the Service Component Definition don’t need to be reloaded:

• The Service Component Definition is globally shared: the master Service
Definition propagates automatically the Service Component Definition (including
its hierarchy) structure update to the “secondary” Service Definitions.

• The Service Component Definition is not globally shared: the master Service
Definition propagates automatically the Service Component Definition (not its
hierarchy) structure update to the “secondary” Service Definitions.

6.2 Updating Data Feeders
Data feeders have a version, meaning that different versions of the same data feeder
can be used simultaneously. The following sections describe the types of updates you
can make to data feeders and the implications of your changes.

6.2.1 Updates You Can Make
A data feeder definition can be updated as follows:

• Add a new parameter

• Remove an old parameter

6.2.2 Implications of Your Updates
Updates to data feeder definitions affect the definition of the source of service quality
data. Therefore, you may need to update the service adapters that retrieve the service
quality data.

6.2.2.1 Service Adapter Development Requirements
Usually, the generic service adapters provided with OpenView SQM do not need
further development to implement collection of a new parameter. However, if you
are using a custom service adapter, ensure that it can retrieve this new information.

73

6.2.2.2 Configuring the Service Adapter
You need to update the mapping between OpenView SQM and the new parameter on
the data source. Update the mapping in the TiBCO repository. After the update, you
must reload the service adapter.

6.2.2.3 Reloading the Service Adapter
The generic service adapters provided with OpenView SQM service adapters
automatically reload updates to the data feeder definitions. However, if you are using
a custom SA, ensure that the updates have been reloaded.

6.3 Updating Service Level Agreements
Each Service Level Agreement applies to a Customer or an Operation. Updating the
Customer/Operation information for a given SLA is not authorized.

75

Chapter 7

Implementing the Service Model in
XML

This chapter describes how to implement the service model in XML. It includes the
following sections:

• Developing Your Own XML Code

• Example service model in XML

7.1 Developing Your Own XML Code
You can use the command line to interface with OpenView SQM and perform all of
the operations available through the UIs, including:

• Load service definitions.

• Synchronize SQM with an inventory system (service instances).

• Define SLAs, customers, and so on.

Contact your HP representative for the document type definition (DTD) files you
need. The "*"Def.dtd files they will provide you describe the object definitions.

Using these DTD files, write the following XML:

• Data feeder XML files (one for each data feeder).

• Expression XML files (one for each custom expression).

• Service XML files (one for each service).

7.2 Example of Service Definition
Example of XML files are provided under the following folder:

/opt/OV/SQMV120/Definitions/Services/Video/

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE sc:ServiceDef SYSTEM "DTD/tsc_ServiceDef.dtd">

<sc:ServiceDef sd.name="TestServiceDef" version="v1_0" sd.label="Test Service
Definition" xmlns:sc="http://www.compaq.com/TeMIP/ServiceCenter">
 <sc:Descr>Test Service Definition.</sc:Descr>
 <sc:PropertyDefs>
 </sc:PropertyDefs>
 <sc:ParameterDefs>
 <sc:ParameterDef parameter.label="Total number of connected User"
parameter.name="TotNbConUser" datatype="Int" category="Rate" partition="QoS"
bindingType="Secondary" visibility.flag="True" autoForwarding.flag="False"

76

customerDepend.flag="False">
 <sc:Descr>Total number of connected User:
 Sum(Connected User of Server Component)</sc:Descr>
 </sc:ParameterDef>
 </sc:ParameterDefs>
 <sc:SCDefs>
 <sc:SCDef scd.name="ServerGroup" scd.label="Sample Server Group"
stereotype="ServiceResource" instanceSharing.type="None"
definitionSharing.flag="False" visibility.flag="True">
 <sc:Descr> Aggregation of Component Sample Aggregation Component
</sc:Descr>
 <sc:ParameterDefs>
 <sc:ParameterDef parameter.label="Total Nb Connect User"
parameter.name="NbConUser" datatype="Int" category="Rate" partition="QoS"
visibility.flag="True" autoForwarding.flag="False" customerDepend.flag="False">
 </sc:ParameterDef>
 </sc:ParameterDefs>
 <sc:PropertyDefs>
 </sc:PropertyDefs>
 </sc:SCDef>
 </sc:SCDefs>
 <sc:SCDAssociations>
 <sc:SCDAssociation name="TestServiceDef_ServerGroup">
 <sc:AssoParentEnd scd.name="TestServiceDef" card.min="1"
card.max="1"/>
 <sc:AssoChildEnd scd.name="ServerGroup" card.min="1" card.max="1"/>
 </sc:SCDAssociation>
 </sc:SCDAssociations>
 <sc:PrimaryBindings>
 <sc:PrimaryBinding expr.name="assign_Int" expr.language="Java"
sd.name="TestServiceDef" scd.name="ServerGroup" parameter.name="NbConnUser">
 <sc:DFDInputParams>
 <sc:DFDInputParam dfd.name="ServerDFD" dfd.version="v1_0"
parameter.name="NbConnUser"/>
 </sc:DFDInputParams>
 </sc:PrimaryBinding>
 </sc:PrimaryBindings>
 <sc:SecondaryBindings>
 <sc:SecondaryBinding expr.name="assign_Int" expr.language="PL_SQL"
sd.name="TestServiceDef" scd.name="TestServiceDef" parameter.name="TotNbConUser"
type="Simple">
 <sc:SCDInputParams>
 <sc:SCDInputParam scd.name="ServerGroup"
parameter.name="NbConUser"/>
 </sc:SCDInputParams>
 </sc:SecondaryBinding>
 </sc:SecondaryBindings>
</sc:ServiceDef>

77

Appendix A

Service Parameter and Property
Attributes

This appendix describes the attributes of the service parameters and service
properties.

A.1 Service Parameter Attributes

Name Data Type Mandatory Description

Name char (16) Yes Parameter identifier. For
more information about
parameters, refer to
 Chapter 1.

Label char (512) No Presentation label.

Description char (1024) No Description of the
parameter.

Datatype enumeration Yes Primitive data type of the
parameter. For more
information about
parameters, refer to
 Chapter 1.

Category enumeration No For more information
about parameters, refer to
refer to Chapter 1.

Partition enumeration No For more information
about parameters, refer to
refer to Chapter 1.

Units string No Free text that indicates the
units of this parameter (for
example, ms).

Visibility Boolean No By default, visibility is set
to True.

Customer
Specific

Boolean No By default, this parameter
is set to False.

AutoForward Boolean No By default, this parameter
is set to True.

78

Name Data Type Mandatory Description

Buffering
Expression

String No Indicates that the
expression is used to elect
a parameter. By default,
this parameter is set to
Last.

A.2 Service Property Attributes

Name Data Type Mandatory Description

Name char (16) Yes Parameter identifier. For
more information about
parameters, refer to refer to
 Chapter 1.

Label char (512) No Presentation label.

Description char (1024) No Description of the
parameter.

79

Appendix B

Acronyms
The following table describes the acronyms commonly used in this document:

Term Description

ATM Asynchronous Transfer Mode

BI Business Intelligence

BO Business Object

BSS Billing Support System

CNM Customer Network Management

CRM Customer Relationship Management

DC Data Collector

DFD Data Feeder Definition

DFI Data Feeder Instance

DMZ Demilitarized Zone

EAI External Application Interface

GUI Graphical User Interface

IP Internet Protocol

ISP Internet Service Provider

IT Information Technology

MRP Measurement Reference Point

MSL Management Specification Language

MTBF Mean Time Between Faults

MTTR Mean Time To Repair

MVNO Mobile Virtual Network Operator

NOC Network Operation Center

OS Operating System

OSI Open Systems Interconnection

OSA Open Service Architecture

OSS Operation Support System

QoS Quality of Service

80

Term Description

SA Service Adapter

SAI Service Adapter Instance

SAP Service Access Point

SC Service Component

SD Service Definition

SI Service Instance

SIA Service Impact Analysis

SIM Service Integration Map

SLA Service Level Agreement

SLM Service Level Management

SNMP Simple Network Management Protocol

SOC Service Operation Center

SPD Service Parameter Definition

SPDM Service Performance Data Manager

SR Service Resource

SRM Service Repository Manager

SQL Standard Query Language

TeMIP Telecom Management Information Platform

TOM Telecommunications Operation Map

UI User Interface

UML Unified Modeling Language

UMTS Universal Mobile Telecommunications System

XML eXtensible Mark-up Language

WAP Wireless Access Protocol

81

Glossary

This glossary defines terminology commonly used in HP OpenView Service Quality
Manager.

Auto instantiate (SLA Administration)

This action automatically creates an Instance of the Object selected. When the
instance is created, the initial values of its instance variables are assigned.

BI

See business intelligence.

Business intelligence (BI)

A broad category of applications and technologies for gathering, storing, analyzing,
and providing access to data that helps users make better business decisions.

Collected binding

Describes how collected parameters are filled from measurement parameters: either
directly assigned or through a more complex expression.

Collected parameters

Known as KPI in the TMF, they represent the parameters collected from the Service
Adapters (measurement parameters) and mapped into SQM service component
parameters.

Computed binding

Describes how computed parameters are filled from collected parameters: either
directly assigned or through a more complex expression.

Computed parameters

Known as KQI in the TMF, they represent the parameters calculated from collected
parameters.

CNM

See customer network management

Customer

Companies or organizations that make use of the services offered by a service
provider, based on a contractual relationship.

Customer network management

Customer network management is enabled by means of tools that provide business
customers with access to management information originating from the service
provider.

82

Data collection interval

The interval of time over which performance parameters are retrieved from the
monitored service resources. This interval does not have to be the same as the
measurement interval because service adapters or service resources may buffer
statistics.

Data feeder

OpenView Service Quality Manager’s source of data. A data feeder models service
resources by defining one or more service parameters.

Data feeder definition

The static definition of a data feeder that models service resources by defining one or
more service parameters.

Degraded service

The presence of anomalies or defects that cause degradation of the quality of service,
but do not result in the total failure of the service.

Instantiate (SLA Administration)

Instantiate differs from Auto Instantiate in that items are instantiated individually.

Measurement interval

The interval of time over which each service parameter is measured. For example, a
parameter may be the number of discarded packets, measured over a 15-minute
measurement interval.

Measurement parameters

They represent the parameters directly collected by the Service Adapters. These
parameters are defined in the Data Feeders.

Measurement Reference Point (MRP) naming scheme

This is the formal description of how the measurement point name is built, that is, by
concatenating the values of Data Feeder properties and fixed strings.

Mobile virtual network operator

A mobile operator that does not own its own spectrum and usually does not have its
own network infrastructure. Instead, MVNOs have business arrangements with
traditional mobile operators to buy minutes of use for sale to their own customers.

MRP

See Measurement Reference Point.

MVNO

See mobile virtual network operator.

Parameter

A value or set of values that are periodically updated and that help determine the
quality of service.

Parameter objective

A set of objectives for the parameters belonging to a service.

83

Property

Special static parameters that are given a value only when an instance of an
OpenView Service Quality Manager Object is created. For example, a Service
Component can have a property called “location”.

QoS

See quality of service.

Quality of service (QoS)

The ITU-T has defined quality of service as "the collective effect of service
performances that determine the degree of satisfaction of a user of the service".

Service

A Service is a set of independent functions (Service Components) that consist of
hardware and software elements and an underlying communications medium. A
Service can include anything from a single leased-line service, to a complex
application, such as vision conferencing.

Service availability

A measurement made in the context of a service level agreement that is expressed as
a percentage. This percentage indicates the time during which the service is
operational at the respective service access points.

ServiceCenter Repository

The ServiceCenter Repository is the storage center for all Service Quality Manager
data. It receives data from the various Service Quality Manager interfaces and each
interface can request information from the Repository.

Service component

An independent function that is part of a service, such as a hardware or software
element, or the underlying communications medium.

Service component instance

The instance of a Service Component Definition that is active in the network, such as
an instance of the IPAccess Service Component definition called “pop”.

Service level (SL)

Defines Service Parameters and operational data enforced by the Service Level
Agreement (for example, Max Jitter < 10 ms).

Service level agreement (SLA)

There are two type of Service Level Agreement, the Customer Agreement: a contract
between a service provider and a customer, which specifies in measurable terms what
the service provider supplies to its customers, and the Operational Service Level
Agreement, which specifies in measurable terms the operational levels of the Service.
A service level agreement is composed of individual objectives.

Service level objective (SLO)

The set of objectives for the parameters belonging to a Service or Service
Component.

Service parameter

See parameter.

Service provider

A company or organization that provides services as a business. Service providers
may operate networks or may integrate the services of other providers.

84

Service instance (SI)

The instantiated service definition that is active in the network, such as an instance of
the video service definition called “Paris”.

Service instance group (SIG)

A group of service instances against which the service availability must be reported.
Each service instance belongs to one or more Service Instance Groups and each SIG
contains at least one Service Instance. The relationship between the SIG and the
Service Instances is defined in their service level agreement.

Service quality parameters

They represent computed and collected parameters

SI

See Service Instance.

SIG

See Service Instance Group.

SL

See Service Level

SLA

See Service Level Agreement.

SLO

See service level objective.

Subscriber

The entity responsible for the payment of charges incurred by one or more users.

User

An entity designated by a customer to use the services of a telecommunication
network, such as a person using a UMTS mobile station as a portable telephone.

	Overview of the SLA Lifecycle
	Introduction to the OpenView SQM Service Object Model
	Service Parameters
	Primitive Data Types of Parameters
	Enumeration

	Parameter Binding Types
	Parameter Visibility

	Service Properties
	Service Components
	Sharing Service Component Definitions
	Sharing Service Component Instances
	Local Sharing of Service Component Instances
	Global Sharing of Service Component Instances
	Example of Component Sharing

	Service Component Visibility

	Service Instances
	Object Identifiers
	Naming Rules

	Data Feeders and Data Acquisition
	Data Feeder Definition
	Data Feeder Instance
	Measurement Reference Point
	Data Feeder Instance Identification
	Data Feeder Binding
	Instance Binding

	Expressions
	Simple Expressions
	Component Binding Expressions
	Data Feeder Binding Expressions

	Aggregation Expressions
	Buffering Expressions

	Calculation Rules
	Data Type Casting
	Auto Propagation Mode
	Collection and Computation Error

	Service Level
	Component Service Levels
	Service Level Objectives
	Objective Thresholds
	Service Degradation
	Range SLO

	Sharing Service Levels
	Example Service Level Validation
	Making Service Objective Status Calculations
	Examples of Worst Objective Calculation
	Examples of Weighted Worst Objective Calculation
	Examples of Weighted Average Calculation
	Examples of Weighted Sum Objective Calculation

	Service Level Agreements
	Customer SLA
	Operational SLA
	Default SLA and Service Group
	SLA Compliance
	Compliance Violation Level
	SLA Compliance Example
	“In Service” Hours
	Instance Compliance Level and SLA Compliance Level Calculati
	Operational Compliance Monitoring
	Service Health Indicators

	Service Collection Management
	Summary of the UML Model

	Using UML Packages
	Controlling Unit Packages
	Proposed Structure
	Predefined Expressions
	Java Expressions
	PL/SQL Expressions
	PL/SQL Expressions and management of “NoValue”
	Ignore “NoValue” as input of the PL/SQL Expressions
	Use “NoValue” as input of the PL/SQL Expressions

	Implementing Custom Expressions
	When Do You Need to Develop Your Own Expressions?
	Implementing Custom Java Expressions
	Implementing Custom PL/SQL Expressions
	Managing “NoValue” in Custom PL/SQL Expressions
	Loading Custom Expressions

	About Mapping Subscriber IDs
	Creating the Mappings
	Before You Begin
	About the Mapping Structure
	Writing the Mapping in XML
	Providing the Mapping File to OpenView SQM
	Customer dedicated Data Feeder Instance

	Updating Service Definitions and Expressions
	Authorized and unauthorized Service Definition updates
	Implications of Your Changes
	Processing Time Delay
	Binding Service Components to Data Feeders
	“Safe” Updates – Object Deletion
	Deletion and Sharing

	Updating Data Feeders
	Updates You Can Make
	Implications of Your Updates
	Service Adapter Development Requirements
	Configuring the Service Adapter
	Reloading the Service Adapter

	Updating Service Level Agreements
	Developing Your Own XML Code
	Example of Service Definition

