
HP OpenView Business Process Insight
For the Windows® Operating System

Software Version: 02.10
Integration Training Guide - Defining Business Process Metrics
Document Release Date: January 2007

Software Release Date: January 2007

Legal Notices

Warranty

Hewlett-Packard makes no warranty of any kind with regard to this document, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be held liable for errors contained herein or direct, indirect, special,
incidental or consequential damages in connection with the furnishing, performance, or use of
this material.

A copy of the specific warranty terms applicable to your Hewlett-Packard product can be
obtained from your local Sales and Service Office.

Restricted Rights Legend

Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause in
DFARS 252.227-7013.

Hewlett-Packard Company
United States of America

Rights for non-DOD U.S. Government Departments and Agencies are as set forth in FAR
52.227-19(c)(1,2).

Copyright Notices

© Copyright 2006, 2007 Hewlett-Packard Development Company, L.P.

No part of this document may be copied, reproduced, or translated into another language
without the prior written consent of Hewlett-Packard Company. The information contained in
this material is subject to change without notice.

Trademark Notices

Java™ is a US trademark of Sun Microsystems, Inc.

Microsoft® is a US registered trademark of Microsoft Corporation.

UNIX® is a registered trademark of The Open Group.

Windows® and MS Windows® are US registered trademarks of Microsoft Corporation.
2

Documentation Updates

This manual’s title page contains the following identifying information:

• Software version number, which indicates the software version

• Document release date, which changes each time the document is updated

• Software release date, which indicates the release date of this version of the software

To check for recent updates, or to verify that you are using the most recent edition of a
document, go to:

http://ovweb.external.hp.com/lpe/doc_serv/

You will also receive updated or new editions if you subscribe to the appropriate product
support service. Contact your HP sales representative for details.
3

Support

Please visit the HP OpenView support web site at:

http://www.hp.com/managementsoftware/support

This web site provides contact information and details about the products, services, and
support that HP OpenView offers.

HP OpenView online software support provides customer self-solve capabilities. It provides a
fast and efficient way to access interactive technical support tools needed to manage your
business. As a valuable support customer, you can benefit by using the support site to:

• Search for knowledge documents of interest

• Submit enhancement requests online

• Download software patches

• Submit and track progress on support cases

• Manage a support contract

• Look up HP support contacts

• Review information about available services

• Enter discussions with other software customers

• Research and register for software training

Most of the support areas require that you register as an HP Passport user and log in. Many
also require a support contract.

To find more information about access levels, go to:

http://www.hp.com/managementsoftware/access_level

To register for an HP Passport ID, go to:

http://www.managementsoftware.hp.com/passport-registration.html
4

Contents
1 Business Metrics . 9

Introduction . 10
Metric Definer . 12

Running the Metric Definer . 12
Logon User/Password . 13
Deployed Flows . 13

Creating a Business Metric . 14
The Flow Diagram . 16
Metric Name . 16
Metric Description . 16
Metric Scope . 16
Metric Value Type. 17
Statistics Collection . 18
Apply Filter . 21
Group Results By . 22
Deadline Property . 23

Filters . 24
Creating a Filter . 24
Example Filters. 26

Modifying a Metric . 27
Creating a Threshold . 28

Threshold Type . 29
Warning/Minor/Major/Critical Alert . 32
Alert Message . 32

Alerts . 33
Instance and Statistical Thresholds/Alerts . 33
Alert Levels . 34

Options . 35
5

Refreshing the Metric Definer . 35
Exporting Metrics . 35
Importing Metrics . 36
Metric Definer Help . 36

Lab - Defining Metrics . 37
The Scenario . 37
Defining the Flow . 38
Understanding the Flow. 39
Defining the Metrics . 40
The Flow Simulator . 47
Running the Call Center . 47
End of The Lab . 53

2 Metric Engine . 55

How Metrics Work . 56
Metric Values . 56
Metric Statistics . 58
Metric Alerts . 60
Metric Notifications . 61
The Big Picture . 63

Alert Timings . 64
Instance Thresholds . 64
Statistical Thresholds. 65

Metric Engine Off/Restart . 66
Alerts . 66
Statistical Metrics (“Back Filling”) . 66

Instance Cleaner Settings . 68
Metric Instance Cleaner . 68
Business Impact Engine Instance Cleaner . 68

Metric Database Schema (Star) . 69

3 Custom Metrics . 71

Metric Scope . 72
Defining A Custom Metric. 73

The Stored Procedure . 73
The Metric Definer . 78
6

Example - A Data Property . 80
The Stored Procedure . 81
The Custom Metric Type Definition . 85

Example - Percentage Path Flow . 86
Metric Scope . 87
The Stored Procedure(s) . 87
The Custom Metric Type Definitions. 93
Defining The Metrics . 94
Defining Thresholds . 96
The OVBPI Business Process Dashboard . 97

SQL Errors . 98
OVBPI on Oracle. 98
OVBPI on MSSQL . 98

Lab - Custom Metrics. 99
The Call System Flow. 99
The Required Metrics . 99

4 Further Topics . 103

OVBPI 1.1 Metric Tables . 104
Metric/Threshold Activation . 105

Detecting Thresholds . 105
Instance Alerts . 108
Deadline Metric Value is Fixed . 108
Redeploying Flows/Metrics . 109

Superseded Flows/Metrics . 110
Deleting Flow Metrics/Thresholds . 110
Avoiding Notification Storms . 111
No Collection Interval Defined . 112
Business Process Dashboard and Alerts. 113

Business Health Scorecard Page . 113
7

8

1 Business Metrics
This chapter looks at how to create and use business metrics using the
OpenView Business Process Insight (OVBPI) Metric Definer.
 9

Introduction

Once an OVBPI flow is deployed and running, the OVBPI Business Impact
Engine maintains basic statistics about the flow, such as:

• The overall state of the flow.

• The number of active flow instances.

• Specific flow instance statistics such as:

— The start and stop times of each node.

— Node durations.

These statistics are held in the OVBPI database. The OVBPI database tables
are fully described in the OVBPI Reference Guide.

In addition to the standard flow and node statistics that are maintained for all
flows, by the Business Impact Engine, you can specify additional flow
statistics, known as business process metrics. For example, you can
measure business process metrics such as:

• The time taken to process an order.

• The current backlog of flights waiting to get airborne.

• The average value of an order.

Once you have configured one or more business process metrics for a flow, you
can configure thresholds. This allows OVBPI to raise an alert when a
business process metric exceeds one of your thresholds. For example, you may
configure the following thresholds:

• Issue an alert when the time taken to process an order exceeds four hours.

• Issue a warning alert when the current backlog of flights waiting to get
airborne is greater than 10. Issue a critical alert when this number
exceeds 50.

• Issue an alert when the value of a particular order is more than two
standard deviations greater than the normal average order. In other
words, issue an alert when a particularly oversized order is in the system.

Once you have defined your metrics and thresholds, the metric values and
alerts are reported in the OVBPI Business Process Dashboard.
10 Chapter 1

All metric, threshold and alert data is maintained in the OVBPI database so
you can also provide your own reporting directly from these tables, or use a
third party reporting tool to produce any custom reports.
Business Metrics 11

Metric Definer

Once a flow is defined and deployed, you use the OVBPI Metric Definer to
define metrics and thresholds for that flow.

Running the Metric Definer

The Metric Definer runs within a Web browser, thus you need to make sure
that you have the OVBPI Servlet Engine running, and that the OVBPI
database is up and running.

To run the Metric Definer you can either go to:

 Start->Programs->HP OpenView->Business Process Insight->Metric Definer

or, start a Web browser with the URL:

http://hostname:44080/ovbpimetricdefiner

where:

• hostname is the hostname of your OVBPI installation

• 44080 is the default port for the Servlet Engine

For example:

http://localhost:44080/ovbpimetricdefiner

This works if your Business Impact Engine is installed on the same
machine as your Web browser.
12 Chapter 1

Logon User/Password

When you run the Metric Definer, it asks you to log on as a valid user.

The default user name/password details are:

User: admin
Password: ovbpi

To change the admin user password, and to configure the underlying
authorization mechanism, refer to the OVBPI System Administration Guide.

Deployed Flows

You can create metrics only for flows that are already deployed.

If while you are running the Metric Definer, a new flow is deployed, you can
select View->Refresh from within the left-hand Navigator frame of the
Metric Definer (not the Web browser’s toolbar). This refreshes the list of
deployed flows available to you within the Metric Definer.
Business Metrics 13

Creating a Business Metric

To create a business metric you must first select the flow. You simply click on
the required flow in the left-hand Navigator frame within the Metric Definer.

For example:

Figure 1 Metric Definer - Selecting a Flow

When the flow is selected, the right-hand frame gives you three tab options:

• Flow Summary

Clicking this tab gives you a picture of the flow definition and some basic
details of the flow - such as description and deployment date.

• Filters

This tab allows you to create and modify filters. This is explained in more
detail in Filters on page 24.

• Metrics and Thresholds

This tab allows you to create/modify metrics and create/modify thresholds.
This is the default tab when you click on a flow in the left-hand frame.

Once a flow is selected, you click on the Create Metric button, in the
right-hand frame. You are then presented with the details you need to
complete to create a new metric.
14 Chapter 1

For example:

Figure 2 Metric Definer - Create a new Metric

Let’s consider each of the fields in more detail...
Business Metrics 15

The Flow Diagram

The flow diagram is displayed and two metric flags (red colored flags) are
drawn on one of the nodes. These metric flags define the start and end of the
metric you are defining. Initially these flags are placed on a single node, and
as you define the metric more fully, these flags move to reflect your
configuration.

Metric Name

You need to give your metric a unique name. This name must be unique across
all your metrics.

Metric Description

You can provide your metric with some description text. This is optional.

Metric Scope

The following options are available to you.

Whole Flow

Selecting this option causes the metric flags to disappear.

Setting a Whole Flow metric means that when a flow instance first starts (at
whatever node actually starts the flow instance), a metric instance is started.
This metric instance completes when the flow instance completes.

A Whole Flow metric is also known as a Flow Execution Time (FET)
metric. You see this FET abbreviation if you access the metric definition
directly within the OVBPI database.

Single Node

Setting a Single Node metric means that a metric instance starts when a
flow instance enters the specified node. This metric instance completes when
the flow instance exits this same node.
16 Chapter 1

A Single Node metric is also known as a Node Execution Time (NET)
metric. You see this NET abbreviation if you access the metric definition
directly within the OVBPI database.

Metric Start Node

When selecting a Single Node metric, you are also asked to specify the node
itself. As you specify this node, the metric flags within the flow diagram move
to highlight this node.

Multiple Nodes

Setting a Multiple Nodes metric means that this metric measures between
two nodes within the flow diagram.

A Multiple Nodes metric is also known as a Time Between Nodes (TBN)
metric. You see this TBN abbreviation if you access the metric definition
directly within the OVBPI database.

Metric Start Node

You select the start node for your metric. You specify whether it is the start or
completion of this node that starts each metric instance.

Metric End Node

You select the end node for your metric. You specify whether it is the start or
completion of this node that completes each metric instance.

Metric Value Type

Here you select the type of metric. There are two metric types available by
default:

• Duration

The metric measures a duration. You measure the time taken from the
start of the metric to the end of the metric, as specified in the scope of the
metric.

• Weight

The metric measures the weight. The weight is the value contained in the
weight attribute as defined within the flow definition.
Business Metrics 17

For example, you may wish to measure the value of each order (assuming
that your flow holds the order value within the weight attribute).

You have the capability of adding your own Metric Value Types, known as
Custom types. (See Chapter 3, Custom Metrics for more details and
examples.)

Statistics Collection

Recording Metric Values

Selecting the scope of the metric determines when the actual metric
instance value is recorded.

For example, suppose you configure a metric, and set the metric scope to be
from the start of the node Assigned to the end of the node Resolved.

Figure 3 Example Metric Definition

When a flow instance enters the Assigned node, a new metric instance is
instantiated and OVBPI records the time this metric instance starts. If the
metric is defined as a weight metric, then OVBPI also records the current
weight value.

When this flow instance eventually completes the Resolved node, OVBPI
completes the associated metric instance and records the time it completes. If
the metric is defined as a duration metric, then OVBPI calculates the
overall duration that this metric instance has taken to complete. If the metric
is defined as a weight metric, then OVBPI records the final weight value of
this metric instance.

As each metric instance starts, OVBPI records the start time for the metric
instance. As each metric instance completes, OVBPI determines the duration,
or weight value, for the metric. This duration, or weight, represents the
“value” for this completed metric instance. So the “value” of the metric
instance is recorded at the completion of each metric instance, as defined by
the scope of the metric.

Assigned Resolved
18 Chapter 1

Calculating Statistics

If the “value” of the metric instance is recorded at the completion of each
metric instance, as defined by the scope of the metric, then why do you need to
enable Statistics Collection?

Yes, each metric instance value is recorded as the metric instance completes.
But what about being able to calculate the average of all your orders? or
whether a particular incoming order rate is faster or slower than normal?

To be able to calculate things such as averages, throughput rates and
backlogs, you need to enable Statistics Collection.

Collection Interval

If you enable Statistics Collection, you need to specify how often you want the
statistics to be calculated. This is specified by the Collection Interval.

If you were to specify a collection interval of 15 minutes, then every 15
minutes OVBPI would look back through the last 15 minutes of metric data
values that had been collected and produce statistics. These statistics would
include calculations such as the average of all metric instances completed in
the last 15 minutes, the minimum/maximum/standard deviation and
throughput of all the metric instances completed within the last 15 minutes,
and the count of all metric instances still active at the end of the last 15
minute period (also known as the backlog). As you will see in a later section
(Creating a Threshold on page 28) you can then set thresholds against these
statistics such that (for example) if the average time to complete an order for
the last 15 minutes is more than two standard deviations slower than the
normal average for completing orders, then raise an alert.

Collection Interval Timings

Suppose the time is 11:12am and you have just created a new metric and
specified a collection interval of 15 minutes. As you create the new metric,
within the Metric Definer, it is activated within OVBPI the moment you press
the OK button. So the question is, does the collection interval run every 15
minutes from 11:12 (the time you created the metric)? Answer.....No!

When you create a metric and specify a collection interval, OVBPI wants to
align the collection interval to an “easily understandable” time slot. That is, if
you specify a collection period of 15 minutes, it makes sense to run the
Business Metrics 19

collection interval on the hour and at 15, 30 and 45 minutes past the hour. To
achieve this, OVBPI typically shortens the first collection interval so that they
can be aligned within the hour.

So, in this example, where you defined the metric at 11:12am, the collection
intervals runs as follows:

• 11:12 -> 11:15

• 11:15 -> 11:30

• 11:30 -> 11:45

• 11:45 -> 12:00

• etc...

where the first collection interval is less than the specified 15 minutes.

If you specified a collection interval of one day then the first collection period
ends that night at midnight. The intervals then run from midnight to
midnight.

If you specify a collection interval of one week then the first collection interval
ends the following Saturday night at midnight. The week then runs from
Saturday midnight to Saturday midnight.

Choosing a Collection Interval

The time you specify for the collection interval needs some thought.

For example, suppose you wanted to track the average throughput of your
orders on a daily basis. That is, you want to calculate your average daily order
rate. You could set the collection interval to be one day and this would give
you exactly what you want. However, be aware that this order throughput is
only calculated each collection interval. That is, the throughput is calculated
at the end of each day. Thus you would not see the order throughput rate for
today until midnight tonight. And this throughput rate is not changed until
the following day (at midnight). That is, each day it shows you yesterday’s
order throughput rate.

Now, suppose that you want to track the average throughput rate of your
orders such that you can set a threshold that raises an alert whenever you
start to see orders going through your system too slowly. Setting a collection
interval of one day is probably not appropriate. With a collection interval of
one day you do not see any statistical data until the next day. Also, if there is a
20 Chapter 1

slow down of orders that lasts for maybe one hour, this may not have any real
effect on the overall throughput figures for that day. You probably want to set
a smaller collection interval - maybe one hour, maybe less.

So the collection interval determines how frequently OVBPI calculates metric
statistics, and these statistics are a view of what has happened over the
defined collection interval.

Do You Need To Collect Statistics?

You may not need a collect any metric statistics.

For example, you may define a metric that simply measures the time taken for
each of your orders to be processed. You may then have a threshold that raises
an alert whenever any individual order takes more than a certain time to
complete. In this situation you do not require any averages, throughputs or
standard deviations...you are simply measuring and testing the time taken on
a individual order basis.

If your metric is simply measuring the duration (or weight) of flow instances
then you do not need to collect statistics. OVBPI is able to monitor thresholds
and raise alerts based purely on the active and completed metric instances.

An example might be where you wish to have a metric that measures the time
it takes for you to close your priority-1 support calls. If any call is taking
longer than four hours then raise an alert. For this sort of metric and alert
scenario you do not need to collect statistics. If on the other hand you wanted
to monitor whether the average call resolution time for priority-1 call is faster
or slower than the normal average resolution time, then you would need to
collect statistics.

Apply Filter

The Apply Filter option lets you select a filter to apply to your metric
definition. You must have first created a filter before trying to select it when
creating (or modifying) a metric.

By selecting a filter, you are able to restrict the number of metric instances
recorded. For example, you might apply a filter that filters out only those
orders placed by gold customers.
Business Metrics 21

When applying a filter to a metric you must make sure that the attribute(s)
tested within your filter actually have values at the time each metric instance
is started. Otherwise, your filter always evaluates to false and no metric
instances ever start.

See Filters on page 24 for more details about creating metric filters.

Group Results By

The Group Results By field allows you to select one attribute from the
flow’s related data definition. The metric data and statistics are then collected
and grouped by the values within that data attribute.

For example, suppose you are defining the metrics for an airport that has four
flight terminals. You might choose to group the results by the airport
terminal. This would allow you to see at a glance the performance for each
terminal.

The attribute you select for Group Results By must be a String attribute.

Group Name

If you select a Group Results By attribute, the Metric Definer displays an
additional field called Group Name. This allows you to specify a display name
to be used within the OVBPI Business Process Dashboard when displaying
the metric data in groups.

Within the OVBPI Business Process Dashboard you are able to display the
metric data in overall terms, or in groups. When displaying the metric data in
groups the OVBPI Business Process Dashboard uses your Group Name text
in the heading of the graph.
22 Chapter 1

Deadline Property

The Deadline Property field allows you to select an attribute of data type
date, from the flow’s related data definition.

By selecting a Deadline Property you give the metric the ability to provide
a Deadline threshold. You are able to specify a threshold that raises an alert
if a metric instance is still running relative to the date value specified within
your Deadline Property attribute.

For example, suppose you have a flow that monitors mortgage applications.
You want to set a threshold that raises an alert if a mortgage does not reach a
certain step in the flow within 20 days of the mortgage application date. By
setting the Deadline Property to a data attribute, which contains the
mortgage application date within the data definition, you can specify such a
threshold.
Business Metrics 23

Filters

When creating, or modifying, a metric you can apply a filter. But before you
can select a filter you must have defined one.

Creating a Filter

A filter consists of an expression, and the form of the expression is the same
as that used when defining event subscription filters within the OVBPI
Modeler (see OVBPI Reference Guide for the details of the filter expression
syntax).

For example, a filter of:

data.Customer_Type == "Gold"

filters only those instances where the Customer_Type data attribute is set to
the string value Gold.

Within the Metric Definer, once you have selected your flow (in the left-hand
navigator frame), you then click on the Filters tab in the right-hand frame.
You then click the Create Filter button and you can create your filter.

An example filter creation screen might look as shown in Figure 4.

Figure 4 Metric Definer - Filter Creation
24 Chapter 1

Let’s consider each of the fields in more detail...

Filter Name

When you define a filter you assign it a name. This must be unique across all
the filters defined for this flow.

Filter Description

You can provide description text for this filter.

Filter Expression

You are required to provide a filter expression. This filter expression involves
the testing of data within the flow’s related data definition and must produce
a true or false result.

To help you formulate your filter expression, the flow’s related data definition
attributes are displayed for you in the Data Definition text box. You can
select an attribute within the Data Definition text box and click the Paste
button. Your expression can involve multiple data attributes and you can use
AND, OR logic.

All data attribute names are prefixed by the name of the data definition
relationship as defined in the flow’s definition. That is, if the related data
definition is related using the name data then the attributes are specified as
data.attributeName.

When defining a metric filter, make sure that data attribute(s) you use within
your filter expression have values at the start of the metric when each flow
instance is running. That is, you cannot filter on (for example)
Customer_Type == "Gold" if at the start of the metric, the flow instance has
not yet set the Customer_Type attribute to a value.
Business Metrics 25

Example Filters

data.Priority == 1

Filters only those instances where the Priority attribute value is set to the
number 1 (one).

data.Status == "1"

Filters only those instances where the Status attribute value is set to the
string value 1 (one).

data.StateValue.in("1", "2", "3")

Filters only those instances where the StateValue attribute is a string value
that is in the set of values 1, 2, or 3.

 data.FlightCarrier.starts("QF")
|| data.FlightCarrier.starts("BA")

Filters only those instances where the FlightCarrier attribute value starts
with either the string QF or BA.

 data.FlightCarrier.starts("QF")
&& data.ClientType.contains("Gold")

Filters only those instances where the FlightCarrier attribute value starts
with the string QF and the ClientType attribute value contains the string
Gold.
26 Chapter 1

Modifying a Metric

Once you have defined a metric for a flow, it is listed in the right-hand frame
of the Metric Definer, along with any other metrics you have defined.

To view the detailed definition of a metric you select the metric (by clicking
on the metric definition in the right-hand frame) and then click on the Modify
Metric button. This shows you the full metric definition and allows you to
view, or modify, the metric. Once you have seen the definition of the metric you
can click the Cancel button and the metric is unchanged. As well as the
Cancel button there are two other options: Update and Replace...

Once you have defined a metric within the Metric Definer that metric is active
within OVBPI and collecting metric data. If you decide that you wish to make
a modification to the metric definition you have two choices:

• Update the metric

You can choose to make the modification to the metric but keep all the
previously collected metric data. This is achieved by using the Update
option.

By pressing the Update button you are telling OVBPI to keep all
currently collected metric data, and to start collecting new data according
to the newly modified metric definition.

You obviously need to be careful about using the Update button. If you
were simply modifying the description of the metric definition then the
Update button is the button to use. However, you would need to think
carefully if you were modifying the metric to add (for example) a filter, as
this would mean that any previously collected data and the newly
collected data might represent different things and this may lead to
confusion when you display all the metric data together.

• Replace the metric

If you are modifying the metric in such a way that it does not make sense
to keep the previously collected data, then you should use the Replace
option. For example, if you are modifying an existing metric definition
such that it now has a filter, it may not make sense to keep any previously
collected metric data. By modifying the metric definition and clicking
Replace, you are telling OVBPI to delete all previously collected metric
data for this metric definition, and threshold alarms, and start collecting
afresh.
Business Metrics 27

Creating a Threshold

Once you create a metric, the metric data is collected and stored in the OVBPI
database. The OVBPI Business Process Dashboard allows you to report on
this data.

As well as defining metrics, the Metric Definer also lets you define (create)
Thresholds. For example, suppose you are collecting metrics to measure the
time it takes for you to process your orders. You may wish to set up a
threshold to alert you when any individual order is taking more than four
days to be processed.

Within the Metric Definer, once you have created a metric, you are then able
to create one or more thresholds against this metric.

To create a threshold:

• Select the flow definition - in the left-hand navigator frame

• Select the metric definition - in the right-hand frame

• Click the Create Threshold button...

The screen appears in the right-hand frame, to create a new threshold. An
example screen might appear as shown in Figure 5.

Figure 5 Metric Definer - Create Threshold

The flow and metric details are automatically filled in for you.

You provide a name for this threshold. This name must be unique across
all the thresholds for this flow.
28 Chapter 1

You can then (optionally) provide a description for this threshold.

You then select the Threshold Type from the pull-down list, and this
determines the remainder of the screen details. Let’s consider the
remaining options for this screen...

Threshold Type

The following threshold types are available:

Absolute (Duration/Weight/Value)

An absolute threshold allows you to set a threshold against an absolute value.

The text for the threshold type, and the units available on the threshold
definition page, are dependent on the Metric Value Type as defined for the
underlying metric. If the Metric Value Type for the metric is Duration,
then the threshold type is called Absolute Duration. If the Metric Value
Type for the metric is Weight, then the threshold type is called Absolute
Weight. If the Metric Value Type for the metric is a custom defined metric
(see Chapter 3, Custom Metrics) then the threshold type is called Absolute
Value.

Threshold Measure

You can set the threshold measure to be any specific instance, or a recent
average/minimum/maximum.

• Any Specific Instance

This allows you to set a threshold to raise an alert when any metric
instance takes longer/shorter than the set time. Or when the weight of
any metric instance is greater/smaller than a set value.

This threshold measure means that the moment a metric instance exceeds
the threshold, an alert is triggered. For example, if your threshold is
monitoring that orders take less than four hours to complete, the moment
an order has been running for four hours the threshold raises the alert.
Business Metrics 29

• Recent

This allows you to set a threshold to alert when the recent average (or
minimum/maximum) is greater/smaller than a set value.

The term recent means the value calculated over the last collection
interval of your underlying metric. If the collection interval is 15 minutes
then this threshold checks for any alerts every 15 minutes.

Backlog

The backlog threshold type measures the number of metric instances that are
active at the end of each collection interval for the underlying metric. So,
setting a backlog threshold type means that the value is tested at the end of
each collection interval.

Threshold Measure

You can test the Count of active metric instances, or the Total weight of
active metric instances.

Deadline

The Deadline threshold type is available only if the underlying metric
definition specified a Deadline Property attribute.

Setting a deadline threshold type allows you to measure that any metric
instance has reached a deadline.

For example, you might say that you wish to raise an alert if a metric instance
is still running and the current time is 20 days after the date/time specified in
this instance’s Deadline Property. Or you might like to raise an alert if a
metric instance is still running and the current time has reached the date/
time specified in this instance’s Deadline Property.

Relative (Duration/Weight/Value)

A relative threshold allows you to set a threshold against the standard
deviation of your collected metric values.

The text for the threshold type is dependent on the Metric Value Type as
defined for the underlying metric. If the Metric Value Type for the metric is
Duration, then the threshold type is called Relative Duration. If the
Metric Value Type for the metric is Weight, then the threshold type is
30 Chapter 1

called Relative Weight. If the Metric Value Type for the metric is a
custom defined metric (see Chapter 3, Custom Metrics) then the threshold
type is called Relative Value.

Threshold Measure

You can set the threshold measure to be any specific instance, or a recent
average/minimum/maximum.

• Any Specific Instance

This allows you to set a threshold to alert when any metric instance takes
longer/shorter than a number of standard deviations from your overall
average time. Or when the weight of any metric instance is greater/
smaller than a number of standard deviations from your overall average
weight.

This threshold measure means that the moment a metric instance hits the
threshold, an alert is triggered.

• Recent

This allows you to set a threshold to alert when the recent average (or
minimum/maximum) is greater/smaller than a number of standard
deviations from your overall average.

The term recent means the value calculated over the last collection
interval of your underlying metric. If the collection interval is 15 minutes
then this threshold checks for any alerts every 15 minutes.

Throughput

The throughput threshold type measures the metric instances that completed
in the last collection interval for the underlying metric. So, setting a
throughput threshold type means that the value is tested at the end of each
collection interval.

Rate

You can test the Count or Weight of completed metric instances expressed
as a value over a given time period.
Business Metrics 31

Warning/Minor/Major/Critical Alert

You can specify values for the different alert levels. You do not need to specify
values for all alert levels, but you must provide at least one alert level value.

As a threshold crosses any specified alert values, an alert is raised within
OVBPI. (See Alerts on page 33 for further details.)

Alert Message

You can specify a text message to be issued when each alert is raised. This
field can contain only simple text.
32 Chapter 1

Alerts

When thresholds are exceeded, alerts are generated.

The alerts are sent to two places:

• The Notification Server

The alerts are sent to the Notification server and if you have configured
any notification subscriptions then these are handled accordingly.

• The OVBPI Database

The alerts are also written to the OVBPI database. This allows the OVBPI
Business Process Dashboard to report and show alerts raised. You can
also access the alerts data tables directly and produce any customized
alerting mechanism you desire.

See the OVBPI Reference Guide for further details about the OVBPI alert
data tables.

Instance and Statistical Thresholds/Alerts

As discussed in the section Threshold Type on page 29, some thresholds are
measured on an “individual instance” basis and some are measured on a
“collection interval” basis.

Consider setting an absolute threshold that measures when any specific
metric instance duration is greater than four hours. The moment an
individual metric instance has been running for more than four hours, an
alert is issued. You can think of this threshold as an “instance threshold”,
where alerts are issued based on each individual metric instance.

Now consider setting a backlog threshold that raises an alert when the
backlog count is greater than 100. A backlog threshold applies to multiple
metric instances and thus is calculated at the end of each collection interval
(the collection interval of the underlying metric). So this threshold is not
calculated for any individual metric instance, instead it is calculated for all
metric instances over the last collection interval. You can think of this metric
as a “statistical threshold”, where alerts are issued for the whole collection
interval.
Business Metrics 33

Alert Levels

Within the Metric Definer you can choose to raise alerts at the levels Warning,
Minor, Major and Critical.

If the alert is based on a statistical threshold, OVBPI additionally raises a
Normal alert once the measurement has dropped back below the warning
level. A statistical threshold is one that is calculated for each collection
interval.
34 Chapter 1

Options

Within the Metric Definer there are a couple of options in the left-hand
navigator frame.

Refreshing the Metric Definer

If you have just deployed a new flow and you want the Metric Definer to pick
up this, and any other, new definition, simply click View -> Refresh and the
Metric Definer re-reads all deployed flow definitions.

Exporting Metrics

If you have defined some metrics for a flow you can export them to an external
(zip) file, as follows:

1. Select the flow - in the left-hand navigator frame

2. Select File->Export

and save your metric definitions, thresholds and filters to an external file
name of your choice.

If you have metrics defined for multiple flows, you can export all metric
definitions, thresholds and filters to a single external (zip) file by selecting
File->Export All
Business Metrics 35

Importing Metrics

If you have an external (zip) file that contains metric definitions, thresholds
and filters as exported from a Metric Definer, you can import them into your
Metric Definer, as follows:

1. Select File->Import

2. Browse and open the desired input file

3. Click the Import Definitions button

4. Select the set of metrics to import

5. Click the Import Definitions button

6. Click OK

If your import file contains custom metric definitions then you must have
previously loaded in the necessary SQL stored procedures used by these
custom metrics. If these stored procedures are not present at the time of the
metric import, the import fails. (See Chapter 3, Custom Metrics for more
details about how to create and work with custom metrics)

Metric Definer Help

If you select Help->Help Topics the Metric Definer help system is displayed
in a separate window.
36 Chapter 1

Lab - Defining Metrics

In this lab you define a new flow to monitor the handling of support calls and
then define a series of business process metrics. You then configure thresholds
against these metrics.

The Scenario

You have been brought in to monitor a call center.

In this center, customers call up with a problem and it gets logged into the
system. The customer may or may not have a support contract. If the
customer has a support contract, the call is then looked at by a supervisor who
assigns a priority and then assigns this call to an engineer within the team. If
the customer does not have a contract then the supervisor still looks at the
call and decides whether they want to take the time to answer the call. This
allows the supervisor to answer calls for “potential” new customers. When a
call is assigned to an engineer, they solve the problem, communicate this to
the customer, and then mark the call as resolved. If a non-contract call is not
assigned to an engineer, the call is simply marked closed and ignored.

This whole call system runs on a database with a front end call management
application that allows the call takers, supervisors and engineers to log and
update calls.

The call system is very simple. As a call comes in, it is written to the call
database and the call state is set to either “Contract” or “NoContract”. As the
call goes through the various stages, this state field is updated to say where it
is in the process.

The call states are:

• “Contract” - this is a new call from a customer with a support contract

• “NoContract” - this is a new call from a customer with no support contract

• “Assigned” - the call is assigned to an engineer

• “Open” - the call is being worked on by the engineer

• “Resolved” - the call has been resolved

• “Closed” - the call is non-contract and to be ignored
Business Metrics 37

The call center would like to be able to visually see their call system on a
dashboard, showing where calls are at any time. They would also like to
collect the following metrics:

• The time it takes to assign contract calls

Raising an alert if the assignment time takes too long, and monitoring the
backlog of calls waiting to be assigned over time.

• The time it takes to process a call once it has been assigned

Raising an alert if a call takes too long to be resolved, and an indication of
how fast or slow the engineers are resolving calls compared to their
average resolution rate.

Defining the Flow

The flow definition for this lab is already defined for you. The flow diagram is
as shown in Figure 6.

Figure 6 Call System Flow Diagram

To load up this flow definition:

• Use the OVBPI Administration Console and start all Components.

• Run the OVBPI Modeler.

• Locate the file: labs\CallSystem.zip

Import this file into the OVBPI Modeler.

• Deploy the flow: Call System
38 Chapter 1

Understanding the Flow

Now that the flow definition is loaded into the OVBPI Modeler and deployed
to the Business Impact Engine, let’s take a few moments to understand how it
works.

Data Definition

The data definition, Calls/Data, has the following data attributes:

Name Type Constraint Unique
Call_ID String 30 Yes
Customer_ID String 30
Call_Status String 20
Engineer_Name String 50
Call_Priority String 2
Call_Entry_Date Date

Progression Rules

The progression rules are all based around the value of the Call_Status
attribute.

When a new call comes in, the Call_Status attribute is set to either
Contract or NoContract. The valid states then correspond to the names of
the nodes.

Events

There are three event definitions, as follows:

• Calls/New with properties:

Call_ID
Customer_ID
Call_Status
Call_Entry_Date
Business Metrics 39

• Calls/Assigned with properties:

Call_ID
Engineer_Name
Call_Priority

The Call_Status property is set to Assigned by event subscription. For
contract calls, the supervisor assigns a priority of either 1, 2 or 3; 1
being the highest priority. If the supervisor wants to assign and resolve a
non-contract call, they assign a priority of 9.

• Calls/Update with properties:

Call_ID
Call_Status

Defining the Metrics

The metrics as specified by the customer are as follows:

• The time it takes to assign contract calls

Raising an alert if the assignment time takes too long, and monitoring the
backlog of calls waiting to be assigned over time.

• The time it takes to process a call once it has been assigned

Raising an alert if a call takes too long to be resolved, and an indication of
how fast or slow the engineers are resolving calls compared to their
average resolution rate.

So this can be achieved by defining two metrics and then defining a set of
thresholds for these metrics.
40 Chapter 1

Time to Assign Contract Calls

You need to define a metric that measures the time spent in the Contract
node of the flow. That is, a metric from the start of Contract to the end of
Contract.

To define this...

• Start up the OVBPI Metric Definer

• Select the Call System flow

• Click on Create Metric

• Define the metric as follows:

— Metric Name: Call Assignment Time

— Metric Description: Measure time to assign a contract call

— Metric Scope: Single Node

— Metric Start Node: Contract

— Metric Value Type: Duration

— Statistics Collection: On

— Collection Interval: 5 minutes

— Apply Filter: None

— Group Results By: None

— Deadline Property: None

• Click OK

You have now defined a metric that measures the time that contract calls
spend waiting to be assigned.

In the real world you would probably choose the default collection interval or
a larger collection interval, however, in this lab situation you are choosing a
smaller collection interval just so you have quicker results within the lab time
of the class.
Business Metrics 41

Raise an Alert if Duration Too Long

You now need to define a threshold for this metric to raise an alert if the time
it takes to assign any individual call takes too long. In the real world the term
“too long” might be four hours, or one day, but for this lab let’s make that a lot
smaller. Let’s make the limit six minutes:

• Within the Metric Definer, select the Call Assignment Time metric

• Click Create Threshold

• Create a threshold as follows:

— Threshold Name: Call Assignment SLA

— Threshold Type: Absolute duration

— Threshold Measure: Any specific instance duration

— Duration Units: Minutes

— Test Condition: Greater than or equal to

— Critical Alert: 6

• Click OK

Call Assignment Backlog

The customer also wants you to monitor the backlog of calls waiting to be
assigned:

• Select the Call Assignment Time metric

• Click Create Threshold

• Create a threshold as follows:

— Threshold Name: Call Assignment Backlog

— Threshold Type: Backlog

— Threshold Measure: Count

— Test Condition: Greater than or equal to

— Major Alert: 15

— Critical Alert: 25

• Click OK
42 Chapter 1

Time to Process Assigned Calls

To define a metric to measure the time taken to resolve a call once it has been
assigned, seems straight forward. You just need to define a metric with a
multiple node scope that measures from the start of the Assigned node to
the end of the Resolved node. However, there are some additional
considerations:

• The customer only wants to measure this for actual contract calls. So you
would want a filter that filtered this metric such that only contract calls
(calls with a priority of 1, 2 or 3) were included.

• When a support call is placed, the call comes in with a Call_Entry_Date.
The SLA that the customer has is that all contract calls are handled
within a certain time from the time the call is entered into the system.
That is, the call resolution time has a deadline based on the
Call_Entry_Date.

• You decide that the customer might like to be able to view the processed
calls information grouped by call priority. This would enable them to view
the day’s calls and see not just the volume of calls, but a breakdown of
calls by priority.

So, let’s define the metric...

But first...you must define the filter:

• Select the Call System flow (in the left-hand navigator pane)

• Select the Filters tab

• Click Create Filter

• Set the filter name to be: Call On Contract

• In the Data Definition text box click on the Call_Priority attribute
and then click on the Paste button

This pastes the full name of this data attribute into the Filter
Expression text box below.

• In the Filter Expression text box, complete the expression so that it
ends up looking as follows:

data.Call_Priority.in("1", "2", "3")

• Click OK
Business Metrics 43

Now to define the metric:

• Select the Call System flow

• Click Create Metric

• Define the metric as follows:

— Metric Name: Call Processing Time

— Metric Scope: Multiple nodes

— Metric Start Node: Assigned (start)

— Metric End Node: Resolved (complete)

— Metric Value Type: Duration

— Statistics Collection: On

— Collection Interval: 5 minutes

— Apply Filter: Call On Contract

— Group Results By: Call_Priority

— Group Name: Call Priority

— Deadline Property: Call_Entry_Date

• Click OK

Again, because this is a lab scenario and you want to see results more quickly,
you are configuring a small collection interval.
44 Chapter 1

Now to define the thresholds...

Raise an Alert if Deadline Not Met

The support agreement (SLA) is that contract calls must be resolved within a
certain time from when they were entered. Again, being a lab scenario, let’s
make this time short so you can test it out without having to wait too long.

Let’s configure a threshold to issue a critical alert if the time to process a
contract call is 35 minutes from the time the call was entered. Let’s also issue
an additional minor alert if the call reaches 20 minutes from the time the call
was entered:

• Select the Call Processing Time metric

• Click Create Threshold

• Create a threshold as follows:

— Threshold Name: Call Time SLA

— Threshold Type: Deadline

— Minor Alert: 20 Minutes After

— Critical Alert: 35 Minutes After

• Click OK
Business Metrics 45

Call Processing Speed

The customer also requested to monitor how fast or slow the engineers are
resolving calls compared to their average resolution rate:

• Select the Call Processing Time metric

• Click Create Threshold

• Create a threshold as follows:

— Threshold Name: Call Processing Speed

— Threshold Type: Relative duration

— Threshold Measure: Recent Average duration

— Test Condition: Less than or greater than usual

— Warning Alert: 1.0

— Minor Alert: 1.5

— Major Alert: 2.0

— Critical Alert: 2.5

• Click OK

Great! You should have the following metrics and thresholds defined for your
Call System flow:

Metric: Call Assignment Time (Single node, duration)

 Threshold: Call Assignment Backlog (Backlog)
 Threshold: Call Assignment SLA (Absolute)

Metric: Call Processing Time (Multiple node, duration)

 Threshold: Call Processing Speed (Relative)
 Threshold: Call Time SLA (Deadline)

Now that these metrics are defined within the Metric Definer, they are active.
Indeed, your metric collection intervals may have already kicked into action
and data may have already started to collect in the OVBPI database. Of
course, the statistics at the moment simply record lots of zeros because there
are no calls moving through your system. So how are you going to get loads of
calls into the system so that you can track and measure their performance?
The answer is the Flow Simulator...
46 Chapter 1

The Flow Simulator

The Flow Simulator is a contributed utility that allows you to inject events
into OVBPI. The big benefit of the Flow Simulator is that you can store these
events as Test Cases, and then run these test cases as and when you need.
The Flow Simulator can drive any flow, and has some pre-defined tokens that
allows you to substitute special values such as unique IDs and date/times.

The Flow Simulator is located on the OVBPI product CD, under the contrib
directory.

To install the Flow Simulator, you just need to copy the entire contrib
directory (and all its contents) to your OVBPI installation directory. This way
you end up with the directory:

OVBPI-install-dir\contrib\FlowSimulator

To run the Flow Simulator, you just need to double-click the
FlowSimulator.bat file in the
OVBPI-install-dir\contrib\FlowSimulator directory

If you want to learn more about how to use the Flow Simulator, please refer to
the documentation provided in the contrib\FlowSimulator directory.

Running the Call Center

For this lab, you are provided with a pre-defined set of test cases to run within
the Flow Simulator. These test cases inject contract and non-contract calls
through the Call System flow, allowing you to run the OVBPI Business
Process Dashboard and monitor the calls and the metrics.

Let’s load up the Flow Simulator:

• Make sure that the Flow Simulator is installed and that you have the
directory: OVBPI-install-dir\contrib\FlowSimulator

• Run the script: FlowSimulator.bat

This runs the Flow Simulator in a separate GUI
Business Metrics 47

• In the Flow Simulator GUI, select: File->Open Test Suite

• Open the file: labs\Calls.xml

The Flow Simulator should load this file and you should now see a
number of test cases shown in the top-left-hand corner of the Flow
Simulator window.

Test Cases

The test cases have names that describe what they do. Let’s go through them:

• NoContract-Resolved

This set of events send through a call that is from a non-contract
customer. The call is assigned to an engineer and resolved.

• NoContract-Closed

This set of events send through a call that is from a non-contract
customer. The call is not-assigned to an engineer and simply closed.

• Contract-Pri-1

This set of events send through a call that is from a contract customer.
The call is assigned to an engineer with a priority of “1”, and resolved.

• Contract-Pri-2

This set of events send through a call that is from a contract customer.
The call is assigned to an engineer with a priority of “2”, and resolved.

• Contract-Pri-3

This set of events send through a call that is from a contract customer.
The call is assigned to an engineer with a priority of “3”, and resolved.
48 Chapter 1

Running the Suite of Tests

Now that you have loaded the Flow Simulator with a set of test cases, let’s run
them:

• Within the Flow Simulator GUI, click on the Test Suite Runner tab

This displays the individual test cases with Start and Stop buttons for
each. It also displays a slider control to adjust how often each test case is
run.

Each test case is made up of a set of events. Below the Event Injectors
heading you see a start/stop control and a slider control for each event.

All the sliders are pre-set to initial values appropriate for this lab.

• Click the Start Suite button at the bottom of the screen and this starts
the test suite.

The sliders are pre-set such that calls take a while to be assigned. You
should start to notice a build-up of calls waiting to be assigned.

Running the OVBPI Business Process Dashboard

• With the Flow Simulator still running, start up the OVBPI Business
Process Dashboard and drill into the Call System flow.

You should start to see a gradual build up of calls in the Contract node.

Notice that as well as seeing the flow diagram for the Call System flow
you also see dials and tables representing the four thresholds that you
defined. You may not see the dials until the first collection intervals have
occurred. Remember that statistical thresholds are only updated after
each collection interval.

The OVBPI Business Process Dashboard displays the following graphics
for defined thresholds:

— A dial for each statistical thresholds (excluding Relative thresholds)

— An upside-down dial for each Relative statistical threshold

— A table of instance alerts for each instance threshold

These graphics help you see the overall state of your business at a glance.
Business Metrics 49

• Let the Flow Simulator run for five minute...

• After the first collection interval is complete you should see the dials for
your metrics.

Call Processing Speed Dial

The Call Processing Speed dial is shown as an upside-down dial, called a
“swing dial”, because it is showing the relative movement towards one side or
the other. That is, the needle represents the most recent average time taken to
process calls. Remember that the most recent average is the average over the
most recent collection interval, which is five minutes in this case. The needle
points straight down (to the center of the green area) if the most recent
average is the same as the overall average (the average since the metric was
first defined). If the most recent average is faster than the overall average
then the needle swings to the right. If the most recent average is slower than
the overall average, then the needle swings back towards the left side.

So the swing dial is used to represent relative thresholds, and the needle
position indicates the relative position towards “faster than the average” or
“slower than the average”.

The value shown under the swing dial is the most recent average value. If this
value is greater than the overall average than the needle swings to the right,
other wise the needle swings to the left.

The swing dial allows you to visually see whether your call processing time is
getting slower (a swing to the right) or getting faster (a swing to the left).
50 Chapter 1

More Graphs

• Click on the Call Assignment Backlog dial and/or the Call
Processing Speed dial to see historical graphing of the values

This may not be very exciting until your Call Center events have been
running through the system for a few collection intervals.

You can also see a number of different types of graphs for the underlying
metrics:

• In the OVBPI Business Process Dashboard, on the main Business Flow
& Resource Summary page - the page that shows the flow diagram and
the threshold dials - click on the tab marked: Metrics

• Click on the metric called: Call Processing Time

By default this shows you a graph displaying the Average/Minimum/
Maximum values for each collection interval.

• Select the Data Source for the graph to be: Completed - Count

This shows you the number of calls that have been resolved within each
collection interval.

• Now select Chart by group to be: Yes

You now see the number of calls that have been closed within each
collection interval, but now showing the numbers for each call priority.

Many of these graphs may not show much data as you have only just started
collecting metrics. At the end of this lab you should leave the Flow Simulator
running and thus, collect more data that you can drill into during the next lab.
Business Metrics 51

Adjusting the Flow Simulator

• Once the OVBPI Business Process Dashboard is showing alerts for the
Call Assignment SLA threshold you need to go back to the Flow
Simulator and speed up the time it takes for calls to be assigned.

• In the Flow Simulator, move the slider for the event Calls/Assigned to
the left. You should move the slider until the number to the right of the
slider is showing (about) 5000ms.

This tells the Flow Simulator to handle these events at one event every
5000 milliseconds (five seconds) and thus the calls currently in the
Contract and No Contact nodes are processed more quickly.

Back in the OVBPI Business Process Dashboard, you should notice that
calls waiting in the Contract node start to reduce.

• After the next collection interval, notice how the dials indicate that there
is less of a call assignment backlog and that orders are starting to take a
little longer to be processed (the Call Processing Speed dial swings to
the right).
52 Chapter 1

End of The Lab

• At this point, you have finished the lab! However, you should leave the
Flow Simulator running

• During the rest of the class, make periodic adjustments to the Flow
Simulator sliders to simulate changes in the speed at which calls are
being handled.

As you make any changes, leave them in place for about 10 minutes before
changing them again.

For example:

— Move the Calls/Update slider down (left) to a very small time value

This simulates calls being resolved very quickly.

— Move the Calls/Update slider up (right) to a large value

This simulates calls being resolved very slowly.

— Move the Contract-Pri-1 slider all the way to the right

This simulates few priority-1 calls coming into the system

• Hopefully when you have breaks during the lectures you can view the
metric data in the OVBPI Business Process Dashboard and see the affects
of your changes.

Well done! You have reached the end of the lab.
Business Metrics 53

54 Chapter 1

2 Metric Engine
The central Business Impact Engine processes all incoming events and
progresses all flow instances. Rather than increase the workload of the
Business Impact Engine by asking it to also calculate all business metrics, it
was decided to create a separate OVBPI component to handle metrics. This
component is called the Metric Engine.

This chapter looks at the Metric Engine and the SQL data tables that are used
to hold metric data.
 55

How Metrics Work

As flow and node instances are created and updated, the central Business
Impact Engine updates the tables within the OVBPI database. By placing
triggers on some of the key tables, as a flow instance enters a node that starts
a metric, a new metric instance is created. The same is true when a flow
instance triggers the fact that a metric has completed.

Metric Values

The database triggers on the flow and node instance tables, update the
Metric_Fact_Values table. As a new metric instance is created, an entry is
made in the Metric_Fact_Values table. When that metric instance
completes, the corresponding entry within the Metric_Fact_Values table is
updated to contain the actual duration and/or weight for this metric instance.

There is also a database trigger on the Metric_Fact_Values table. As metric
instances are created and updated within the Metric_Fact_Values table,
this trigger creates entries within another table, called
Metric_Staging_Statistics. The Metric_Staging_Statistics table is
used as a staging area, or work area, for the future calculation of the metric
statistics after each collection interval. You do not really need to know (or
worry) about the Metric_Staging_Statistics data table as it is just a
temporary work area for the Metric Engine. It is just mentioned here because
it plays a part in the production of metric statistics.

This arrangement of triggers is shown in Figure 7 on page 57.
56 Chapter 2

Figure 7 Metric Values and Triggers

where:

• The Metric_Fact_Values table holds one record for each metric
instance.

• The Metric_Staging_Statistics table holds intermediate data that
enables the Metric Engine to calculate statistics when each metric
collection interval occurs.

OVBPI
Business

Impact Engine

Database
Triggers

Metric_Staging_Statistics

Metric_Fact_Values

Database
Trigger
Metric Engine 57

Metric Statistics

Metric statistics are produced at the end of each collection interval. These
statistics are generated from the data collected within the
Metric_Staging_Statistics data table. Let’s draw the picture and then
explain this in more details...

Figure 8 Metric Statistics

where:

• The Metric Engine is polling the Metric_Staging_Statistics table
every 60 seconds.

This poll period is called the Statistical Generation Polling
Interval and is configurable through the OVBPI Administration
Console. The default setting is 60 seconds.

• If a collection interval has occurred, the Metric Engine writes three
summary records into the Metric_Fact_Statistics table.

The Metric Engine produces three records to summarize that collection
interval:

— Active

The records record details for the metric instances that are still active.

— Completed

The metric instances that have completed within that collection
interval

— Total

The overall total for all metric instances completed over all collection
intervals so far.

Metric
Engine

Metric_Fact_Statistics

Metric_Staging_Statistics

60 Seconds
Every

collection
interval

Active
Completed
Total
58 Chapter 2

So the Metric_Fact_Statistics table is probably the table that can grow
the fastest. Every collection interval, three records are being written to this
table for every metric defined on your system. These three records are written
every collection interval even if nothing else has happened on your system.

Group Results By

If you have configured a metric to have a Group Results By property, then
the Metric Engine writes more than three summary records at each collection
interval.

When a metric is defined to have a Group Results By property, the Metric
Engine writes out the following records at the end of each collection interval:

• A set of three records (Active/Completed/Total) for each current group
within the metric.

• A set of three records (Active/Completed/Total) for the metric overall.

For example, suppose you are collecting metrics for an airport and grouping
the metric data by each airport terminal. If there are four airport terminals,
then at each collection interval the Metric Engine is writing 15 records to the
Metric_Fact_Statistics table. These 15 records consist of three records for
each terminal, and three records for the overall statistics.
Metric Engine 59

Metric Alerts

With metric values being recorded in the Metric_Fact_Values table as they
happen, and metric statistics being calculated and stored in the
Metric_Fact_Statistics table every collection interval, the Metric Engine
can monitor these two tables to see when any thresholds have been exceeded.

As a threshold is exceeded, an alert can be raised.

The handling of alerts looks as follows:

Figure 9 Metric Alerts

where:

• The Metric Engine polls the Metric_Fact_Values and the
Metric_Fact_Statistics tables every 60 seconds looking to see if any
thresholds have been exceeded.

This poll period is called the Threshold Polling Interval and is
configurable through the OVBPI Administration Console. The default
setting is 60 seconds.

Instance thresholds are measured against the metric values held in the
Metric_Fact_Values table. Statistical thresholds are measured against
the statistics collected in the Metric_Fact_Statistics table.

• If a threshold has been exceeded the Metric Engine writes the alert into
the Metric_Fact_Alerts data table. These alerts are then visible from
within the Business Process Dashboard.

Metric
Engine

Metric_Fact_Alerts

Metric_Fact_Values

Metric_Fact_Statistics
60 Seconds
60 Chapter 2

Metric Notifications

With the Metric_Fact_Alerts table holding all the alerts, the Metric
Engine can monitor this table and send these alerts to the OVBPI Notification
Server as Flow Metric Threshold Alert notifications; see Figure 10 on
page 62.

The Metric Engine polls the Metric_Fact_Alerts table every 300 seconds.
This poll period is called the Threshold alert notification polling
interval and is configurable through the OVBPI Administration Console.

You can also configure the maximum number of alert notifications that are to
be sent to the OVBPI Notification Server within any single polling period, and
this maximum is applied separately for each threshold. This maximum is set
to 10 by default, but you can configure this using the OVBPI Administration
Console. The idea of setting a maximum number of notifications for each poll
period is to help guard against creating and sending too many notifications at
each polling interval.

For example, suppose you have two thresholds - Thresh-A and Thresh-B.
Let’s suppose that, during one polling interval (of 300 seconds) 100 metric
instances breach Thresh-A and 50 metric instances breach Thresh-B.
Rather than send out 150 notifications, the Metric Engine sends out the most
recent 10 notifications for Thresh-A and the most recent 10 notifications for
Thresh-B. All the alerts (all 150 of them) remain in the Metric_Fact_Alerts
table, but only 20 notifications are sent to the OVBPI Notification Server.

Each notification message sent to the OVBPI Notification Server contains the
details of the individual notification, as well as a summary table that shows
how many alerts occurred during the 300 seconds polling period. This
summary table shows the alerts grouped by severity. Each notification sent
for this polling period contains the same summary table.
Metric Engine 61

Figure 10 Metric Notifications

where:

• The Metric Engine polls the Metric_Fact_Alerts table every 300
seconds looking to see any new alerts.

This poll period is called the Threshold alert notification polling
interval and is configurable through the OVBPI Administration
Console. The default setting is 300 seconds.

• The alerts are sent to the OVBPI Notification Server as Flow Metric
Threshold Alert notifications.

The overall number of notifications sent at each polling interval can be
limited. This is configurable from within the OVBPI Administration
Console.

Metric
Engine

Metric_Fact_Alerts

300 Seconds

Notification
Server

Flow Metric
Threshold Alert
62 Chapter 2

The Big Picture

Putting all the diagrams together that describe how metric values, statistics
and alerts are processed, gives you the overview diagram shown in Figure 11.

Figure 11 Metrics Overview

Metric
Engine

Metric
Engine

Metric_Staging
_Statistics

Metric_Fact_Values

OVBPI
Business

Impact Engine

Metric_Fact_Statistics

60 Seconds

Every
collection
interval

Active
Completed
Total

Metric_Fact_Alerts

Notification
Server

60 Seconds

Triggers Trigger

300 Seconds

Metric
Engine

Flow Metric
Threshold Alert
Metric Engine 63

Alert Timings

When you have configured a threshold you may ask yourself the question:
“Exactly when is the alert going to be raised?”

If you look at Figure 11 on page 63 you see that there are some small delays
when the Metric Engine is polling the various data tables. This can mean that
the alerts may be raised a few seconds/minutes after the threshold has
actually been exceeded. And of course, if the threshold is based on a statistical
metric then there is also the collection interval to be considered.

Don’t forget that the metric polling periods can all be configured using the
OVBPI Administration Console.

Let’s look at the maximum delays that may occur when raising alerts, and
using the default metric polling periods.

Instance Thresholds

Let’s consider thresholds that are set against instances. For example, a
threshold that tests an instance taking longer than four hours to get to a
certain node within a flow.

There is up to a 60 second delay before the Metric_Fact_Values table is
polled to look for instance threshold violations.

So there is up to a 60 second delay before an alert is raised when an instance
exceeds a threshold.

The actual delay is less than or equal to 60 seconds because it depends when
the violation occurs. For example, the violation might be written to the
Metric_Fact_Values table one second before the next poll of that table, so
the total delay in spotting the violation might be only a few seconds.

When an alert is written to the Metric_Fact_Alerts data table, it records
both the time the alert occurred and the time the alert was actually spotted by
the Metric Engine.

There is then a further delay of up to 300 second before any notification alert
is sent to the OVBPI Notification Server.
64 Chapter 2

Statistical Thresholds

When the threshold is set against a statistical value (such as an average
value, or a backlog), the potential delays are as follows:

There is the actual collection interval. If the collection interval is set to 30
minutes then the statistical value is not calculated until that 30 minutes has
passed.

There is up to a 60 second delay before the Metric_Staging_Statistics
table is polled to see if a collection interval has occurred. Then the statistical
results are written to the Metric_Fact_Statistics table

There is up to a 60 second delay before the Metric_Fact_Statistics table
is polled to look for instance threshold violations.

So the total, potential delay in raising an alert for a statistical threshold is:

60 seconds + 60 seconds + Collection Interval

When an alert is written to the Metric_Fact_Alerts data table, it records
both the time the alert occurred and the time the alert was actually spotted by
the Metric Engine.

There is then a further delay of up to 300 second before any notification alert
is sent to the OVBPI Notification Server.
Metric Engine 65

Metric Engine Off/Restart

If you look at Figure 11 on page 63 you realize that you can turn off the Metric
Engine and not lose any metric data. With the Metric Engine turned off, the
metric values are written to the Metric_Fact_Values table and the metric
statistics staging data accumulates in the Metric_Staging_Statistics
table.

When the Metric Engine is restarted, after being off for a period of time, the
Metric_Staging_Statistics table is processed and the metric statistics
recorded in to the Metric_Fact_Statistics table in the normal way.

Alerts

Whilst the Metric Engine is turned off, no alerts are going to be raised.
However, when the Metric Engine is restarted the metric data is processed
and alerts may well be raised. The alerts are raised showing both the time the
alert actually occurred on your system and the time the Metric Engine
actually spotted the alert.

Statistical Metrics (“Back Filling”)

When the Metric Engine is restarted, after being off for a period of time, it
must calculate the statistics for each metric for each collection interval for all
the time the Metric Engine was switched off.

That is, if you have a metric with a collection interval set to (for example) five
minutes and you have turned the Metric Engine off for four hours, when you
restart the Metric Engine it goes through and calculates statistic records for
all the five minute boundaries across the last four hours and writes these into
the Metric_Fact_Statistics table. In other words, the Metric Engine
“back fills” the statistics so that they appear as if the Metric Engine has never
been turned off.

This “back filling” of statistical data is fine if the Metric Engine has just been
off for a few minutes or hours. In these situations you want the Metric Engine
to keep all the metric statistics up to date. But what if you have turned off the
Metric Engine for a week? Do you really want the Metric Engine to go through
and “back fill” all the statistics for the last week? Possibly not.
66 Chapter 2

The Metric Engine has a user configurable setting that tells the Metric
Engine how far back to calculate statistics after a restart. This setting is
called:

Maximum age of generated statistics on startup

and it is measured in days.

The default setting is one day.

So, by default, if you turn the Metric Engine off for anything less than a day
the Metric Engine calculates all the statistics for the time it was turned off.
But if you turn the Metric Engine off for longer than a day, statistics are only
calculated back for one day’s worth.
Metric Engine 67

Instance Cleaner Settings

Metric Instance Cleaner

In the OVBPI Administration Console you can configure the Metric Instance
Cleaner to remove metric values (Active and Completed), metric statistics and
metric alerts. You can configure to remove some or all of these record types
and you can configure the age of the data to be removed.

Metric instances and statistics can grow quite large, so you need to make sure
that your OVBPI database, and your server’s disc space, is large enough for
the amount of metric data you need to have available. By configuring the
Metric Instance Cleaner you can help prevent the metric data from growing to
large.

Business Impact Engine Instance Cleaner

The Business Impact Engine has its own Instance Cleaner which can be
configured to remove old flow and data instances from the OVBPI database.

If the Business Impact Engine Instance Cleaner removes a flow instance for
which there is metric data, that is ok. When the metric record is written to the
Metric_Fact_Values and Metric_Staging_Statistics data tables, it
contains all the data required to record the metric. The Metric Engine does
not require any other flow instance or data instance data to calculate the
metric statistics.

Mind you, within the OVBPI Business Process Dashboard, when displaying
metric details, if a metric links to a flow instance, the Business Process
Dashboard wants to show this metric data with a live link to the related flow
instance data. If at the time of display the related flow instance has been
removed by the Business Impact Engine Instance Cleaner, the Business
Process Dashboard simply shows the metric data without an active link to the
flow.
68 Chapter 2

Metric Database Schema (Star)

As shown in Figure 11 on page 63, the database tables that contains metrics
and alerts are:

Metric_Fact_Values
Metric_Fact_Statistics
Metric_Fact_Alerts

but these contain attributes such as Metric_ID and Date_ID. How do you
cross reference these IDs to their actual names?

The Metric Engine maintains its data in a set of “fact” and “dimension” data
tables. The idea is that the actual metric data (values, statistics and alerts) is
referred to as the “facts” and the indexes into these facts are referred to as
“dimensions”. These terms form something known as a “Star Schema”.

A star schema gets its name from the shape it forms when drawn. It is said to
“look like the shape of a star”. For example:

Figure 12 A Star Schema

where:

• You have a central facts table

• You have a dimension for each index that you would like to be able to
search by.

If you were to add a new index into your fact table you would be said to
have “Added a new dimension to the search ability.” Hence the indexes are
called dimensions.

• The dimensions tables can hold additional data for each index.

Dimension Dimension

Facts

Dimension Dimension
Metric Engine 69

Some of the main tables in the Metric Engine’s star schema are as follows:

Figure 13 Metric Engine Star Schema

All these tables are fully described in the OVBPI Reference Guide - Appendix
A.

You are encouraged to write custom reports of your own against these metric
tables and/or use third party database reporting tools to produce whatever
reports you require for your business.

Metric_Dim_Flow_Instances

Metric_Fact_Values

Metric_Fact_Statistics

Metric_Fact_Alerts

Metric_Dim_Dates

Metric_Dim_ThresholdsMetric_Dim_Flows

Metric_Dim_Metrics

Metric_Dim_Groups
70 Chapter 2

3 Custom Metrics
What if the OVBPI metrics do not give you the exact metric that you wish to
measure? Maybe you need to measure the value of your orders however the
value you need is not held in the weight property? Maybe you need to measure
the percentage of orders that have gone through a particular node?

If the metric you need to record is not available using the standard
out-of-the-box metrics, you can add your own.

This chapter looks at how to add and use your own custom metrics.
 71

Metric Scope

The scope of the metric determines when the start of each metric instance is
recorded and when the end of the metric instance is recorded.

For example, suppose you configure a metric, and set the metric scope to be
from the start of the node Assigned to the end of the node Resolved:

Figure 14 Metric Scope

When a flow instance enters the Assigned node, a new metric instance is
started. When this flow instance leaves the Resolved node, the metric
instance is completed.

In How Metrics Work on page 56 you learned that the start and end of the
metric instance is captured by triggers on the Business Impact Engine tables.
These triggers capture the starting metric value and write this to the
Metric_Fact_Values table. The triggers also capture the final metric value
at completion and updates the Metric_Fact_Values table.

The triggers that capture the start and end of a metric instance, call
predefined SQL stored procedures to capture the metric value. You are able to
provide your own custom stored procedures and have these called when a
metric starts and completes. Thus you can write a custom stored procedure to
capture whatever value you are required to measure.

Assigned Resolved
72 Chapter 3

Defining A Custom Metric

There are two main parts to defining a custom metric:

1. The stored procedure

Writing the stored procedure to determine the actual metric value.

2. The Metric Definer

Making this stored procedure available within the Metric Definer such
that users can define metrics that use this stored procedure.

The Stored Procedure

For your stored procedure to be called correctly it must accept the following
parameters:

Metric Id
Flow Id
Flow Instance Id
Flow Instance Identifier
Flow Instance start time
Weight
Data Definition ID
Data Instance ID
Event type
Event time
Index

Parameter Values

Let’s consider the values to be contained in these input parameters:

• Metric Id

This is the database unique ID for the metric.
Custom Metrics 73

• Flow Id
Flow Instance Id
Flow Instance Identifier
Flow Instance start time
Weight

These are the IDs and values for the flow instance for which this metric
value is to be determined.

• Data Definition ID

This is the unique ID for the flow’s related data table entry in the
Data_Objects table.

• Data Instance ID

This is the unique ID of this flow’s related data instance entry within the
related data table.

• Event type

This is a string attribute that contains one of two values:

— Started

This is the start of a new metric instance.

— Completed

This is the completion of the metric instance.

• Event time

The time that this metric is being recorded.

• Index

It may be that a flow instance passes through the node that starts the
metric, more than once. You can use the index value to code for this.

Zero (0) means that it is the first time through this node. One (1) means
this is the second time through this node, etc.
74 Chapter 3

SQL Parameter Syntax

As the SQL syntax for MSSQL and Oracle is different when defining stored
procedures, here are two examples for how to define the parameters:

For MSSQL:

@Metric_ID NVARCHAR(36),
@Flow_ID NVARCHAR(36),
@FlowInstance_ID NVARCHAR(36),
@FlowInstIdentifier NVARCHAR(40),
@FlowInstStartTime DATETIME,
@Weight FLOAT,
@DataDefinition_ID NVARCHAR(36),
@DataInstance_ID NVARCHAR(36),
@EventType NVARCHAR(12),
@EventTime DATETIME,
@Idx INTEGER

For Oracle:

Metric_ID VARCHAR2,
Flow_ID VARCHAR2,
FlowInstance_ID VARCHAR2,
FlowInstIdentifier VARCHAR2,
FlowInstStartTime DATE,
Weight FLOAT,
DataDefinition_ID VARCHAR2,
DataInstance_ID VARCHAR2,
EventType VARCHAR2,
EventTime DATE,
Idx NUMBER
Custom Metrics 75

The Metric Value

Once your stored procedure has determined the metric value, it needs to write
this value into the Metric_Fact_Values data table. To do this, there is a
pre-defined stored procedure called METRIC_SEND_EVENT.

The METRIC_SEND_EVENT stored procedure accepts the following parameters:

Metric Id
Flow Id
Flow Instance Id
Flow Instance Identifier
Flow Instance start time
Weight
Data Definition ID
Data Instance ID
Event type
Event time
Metric Value
Index

These are the same parameters as were passed into your stored procedure,
with the addition of the Metric Value parameter.

As the SQL syntax for MSSQL and Oracle is different when calling stored
procedures, here are two examples for how to define the call to the
METRIC_SEND_EVENT stored procedure:

For MSSQL:

 EXECUTE METRIC_SEND_EVENT @Metric_ID,
 @Flow_ID,
 @FlowInstance_ID,
 @FlowInstIdentifier,
 @FlowInstStartTime,
 @Weight,
 @DataDefinition_ID,
 @DataInstance_ID,
 @EventType,
 @EventTime,
 @Value,
 @Idx
76 Chapter 3

For Oracle:

 METRIC_SEND_EVENT (Metric_ID,
 Flow_ID,
 FlowInstance_ID,
 FlowInstIdentifier,
 FlowInstStartTime,
 Weight,
 DataDefinition_ID,
 DataInstance_ID,
 EventType,
 EventTime,
 Value,
 Idx);

Metric Backlog

Your stored procedure is called both at the start of the metric and the
completion of the metric. Indeed, your stored procedure is able to test whether
it is being called for the start or completion of a metric by testing the
EventType parameter.

Suppose the custom metric that you are measuring always has a zero start
value. In this case you might decide that you do not need to write any metric
record at the start of the metric, and only write a metric record at the
completion of the metric. That is, only calculate the metric value and call
METRIC_SEND_EVENT if the EventType is Completed.

Only writing completing metric records cuts down on some metric processing
time and works just fine. However, if you choose to not write any metric record
at the start of the metric, you are not able to observe and graph the backlog
for your metric. Without any start-of-metric records there is no way to show
how many metric instances are currently active and hence no way to
represent the metric backlog. So if you want to be able to monitor your custom
metrics, including the backlog, then call METRIC_SEND_EVENT for all
invocations of your stored procedure.
Custom Metrics 77

Stored Procedure Ownership

When you create your custom metric stored procedure, you need to ensure
that your stored procedure is owned by the same user that owns the OVBPI
data tables. The default user name for this is ovbpiuser, however this name
is configurable at OVBPI installation time.

If your custom metric stored procedure is not owned by the same user as the
OVBPI data tables, the OVBPI Business Impact Engine may not be able to
invoke it, and this may cause the OVBPI Business Impact Engine to logs
errors and be unable to execute.

The Metric Definer

Once you have defined and installed your stored procedure to capture and
record your metric values, you need to make this available to the Metric
Definer so that users can associate this stored procedure with a metric
definition.

The Metric Definer looks in the table METRIC_CustomTypes to locate any
custom metric types that are defined.

Defining a Custom Type

You need to add a record to the METRIC_CustomTypes table to describe your
new custom metric and connect it to your stored procedure.

The METRIC_CustomTypes table has the following columns:

• CustomMetricName

You specify the name for your custom metric. This name appears in the
Metric Value Type attribute in the Metric Definer when defining a
metric. The user are able to select this metric from the pull-down list.

• CustomMetricDescription

You provide a description for your custom metric. This is purely for your
own documentation purposes.

• CustomSPName

This is where you specify the name of your custom stored procedure.
78 Chapter 3

• ValueUnits

You can specify the display name to be used within the OVBPI Business
Process Dashboard when displaying the values of this custom metric.

Here is an example SQL command to create a new metric custom type
definition:

INSERT INTO METRIC_CustomTypes
 (CustomMetricName,
 CustomMetricDescription,
 CustomSPName,
 ValueUnits)
 VALUES
 ('Calls Resolved ON Contract',
 'Calculates percentage calls resolved ON contract.',
 'BPI_Contract_Resolved_Calls',
 'Percent');

where:

• The new metric type is called Calls Resolved ON Contract.

• The associated stored procedure that writes out the metric values is called
BPI_Contract_Resolved_Calls.

• The display text for the measurement units for this metric type is
Percent.
Custom Metrics 79

Example - A Data Property

Suppose the metric you wish to record is contained in a data property but this
data property is not the weight of the flow. You can set up a custom metric
that simply pulls out the data property and writes that as the metric value
instead of the weight.

Suppose your data definition contains the property Discount, and that is the
property you wish to measure as your metric.

Your stored procedure needs to locate the value for this property and return
its value. The stored procedure is passed a number of parameters, and these
include:

• Data Definition ID

This is the unique ID for the flow’s related data table entry in the
Data_Objects table.

• Data Instance ID

This is the unique ID of this flow’s related data instance entry within the
related data table.

You can use the Data Definition ID to get the name of the related data
table, and then use the Data Instance Id to look up the actual data row
within this related data table.
80 Chapter 3

The Stored Procedure

Let’s look at both an MSSQL example, and an Oracle example, for how to
write the stored procedure.

MSSQL Example

Here is an example stored procedure for MSSQL:

CREATE PROCEDURE BPI_Discount_Value
 @Metric_ID NVARCHAR(36), @Flow_ID NVARCHAR(36),
 @FlowInstance_ID NVARCHAR(36), @FlowInstIdentifier NVARCHAR(40),
 @FlowInstStartTime DATETIME, @Weight FLOAT,
 @DataDefinition_ID NVARCHAR(36), @DataInstance_ID NVARCHAR(36),
 @EventType NVARCHAR(12), @EventTime DATETIME, @Idx INTEGER
AS
 DECLARE @DiscountValue FLOAT
 DECLARE @DataTableName NVARCHAR(128)
 DECLARE @DataSqlStmt NVARCHAR(256)
BEGIN

 -- (1) Use the DataDefinition_ID to get the name of the data table.

 select @DataTableName = InstanceTable
 from Data_Objects do
 where do.model_id = @DataDefinition_ID;

 -- (2) Now use DataInstance_ID to look up the actual data record
 -- and pull out the discount column value.

 CREATE TABLE Temp_BPI_CustomTable (tValue FLOAT)
 SET @DataSqlStmt = 'insert into Temp_BPI_CustomTable(tValue) ' +
 ' select Discount from ' + @DataTableName +
 ' where id = ''' + @DataInstance_ID + ''''
 EXECUTE (@DataSqlStmt)
 SELECT @DiscountValue = tValue from Temp_BPI_CustomTable
 DROP TABLE Temp_BPI_CustomTable

 -- (3) Now write the metric value.

 EXECUTE METRIC_SEND_EVENT @Metric_ID, @Flow_ID, @FlowInstance_ID,
 @FlowInstIdentifier, @FlowInstStartTime, @Weight, @DataDefinition_ID,
 @DataInstance_ID, @EventType, @EventTime, @DiscountValue, @Idx

END;
Custom Metrics 81

where:

• This defines a stored procedure called BPI_Discount_Value.

• Step (1) shows the SQL to determine the name of the related data table.
This is the data table that holds the flow instance’s related data record.

• Step (2) shows how to use this related data table name to locate the data
record and pull out the discount attribute value.

The SQL you logically want to use at this point is:

 select @DiscountValue = Discount
 from @DataTableName dot
 where dot.id = @DataInstance_ID;

However, MSSQL does not let you issue a select statement in this form
where the table name is a variable. Hence you need to create a temporary
table and use the Execute() command to execute the select statement.

• Step (3) shows the writing of the metric value to the
Metric_Fact_Values table.

The above MSSQL example may have performance issues. The creating and
deleting of temporary tables within MSSQL can have a significant impact on
your system’s performance.
82 Chapter 3

Oracle Example

Here is an example stored procedure for Oracle:

CREATE or REPLACE PROCEDURE BPI_Discount_Value(
 Metric_ID VARCHAR2, Flow_ID VARCHAR2, FlowInstance_ID VARCHAR2,
 FlowInstIdentifier VARCHAR2, FlowInstStartTime DATE, Weight FLOAT,
 DataDefinition_ID VARCHAR2, DataInstance_ID VARCHAR2,
 EventType VARCHAR2, EventTime DATE, Idx NUMBER)
IS
 DiscountValue FLOAT;
 DataTableName VARCHAR2(128);
 DataSqlStmt VARCHAR2(256);
BEGIN

 -- (1) Use the DataDefinition_ID to get the name of the data table

 select InstanceTable into DataTableName
 from Data_Objects do
 where do.model_id = BPI_Discount_Value.DataDefinition_ID;

 -- (2) Now use DataInstance_ID to look up the actual data record
 -- and pull out the discount column value

 DataSqlStmt := 'select Discount from ' || DataTableName || ' where id = :1';
 EXECUTE IMMEDIATE DataSqlStmt INTO DiscountValue using DataInstance_ID;

 -- (3) Now write the metric value.

 METRIC_SEND_EVENT (Metric_ID, Flow_ID, FlowInstance_ID, FlowInstIdentifier,
 FlowInstStartTime, Weight, DataDefinition_ID, DataInstance_ID,
 EventType, EventTime, DiscountValue, Idx);
END;

where:

• This defines a stored procedure called BPI_Discount_Value.

• Step (1) shows the SQL to determine the name of the related data table.
This is the data table that holds the flow instance’s related data record.
Custom Metrics 83

• Step (2) shows how to use this related data table name to locate the data
record and pull out the discount attribute value.

The SQL you logically want to use at this point is:

 select Discount into DiscountValue
 from :DataTableName dot
 where dot.id = :DataInstance_ID;

However, Oracle does not let you issue a select statement in this form
where the table name is a variable. Hence you need to build the SQL
statement in a variable, and then execute this variable passing in the
DataInstance_ID.

• Step (3) shows the writing of the metric value to the
Metric_Fact_Values table.
84 Chapter 3

The Custom Metric Type Definition

Once the stored procedure has been installed into your database you need to
tell the Metric Definer about it.

You create an entry in the METRIC_CustomTypes table defining a name for
your custom metric and linking this to your stored procedure.

For example:

 INSERT INTO METRIC_CustomTypes (CustomMetricName,
 CustomMetricDescription,
 CustomSPName,
 ValueUnits)
 VALUES('Orders - discount',
 'Calculates the percentage discount given on this order.',
 'BPI_Discount_Value',
 'Percent');

When you defines a metric in the Metric Definer you are now able to select
your stored procedure by selecting the Metric Value Type of
Orders - discount. This is shown in Figure 15 on page 85.

Figure 15 Custom Metric Type
Custom Metrics 85

Example - Percentage Path Flow

Suppose you have a flow that looks as follows:

Figure 16 Flow with Multiple Paths

This flow is the Call System flow from an earlier lab (Lab - Defining Metrics
on page 37). It monitors support calls as they come into the call center. The
calls include some that are under a support agreement and some that are not.
What’s more, the supervisor may choose to handle a non-contract call because
he/she feels the caller is a potential customer and therefore worth looking
after.

Your job is to measure the calls that are being processed and report the
following percentages:

• The percentage of contract calls being resolved.

• The percentage of non-contract calls being resolved.

• The percentage of non-contract calls being closed.

In other words, you need to measure the different outcomes of the flow and
show these outcomes as percentages.

This requires defining some custom metrics.
86 Chapter 3

Metric Scope

You want to be able to measure the state of each flow instance when it has
completed. So you want to define some stored procedures that are run at the
completion of each flow instance. This means that when you come to configure
these metrics within the Metric Definer (once all the stored procedures are
defined and in place) you set the metric scope to be Whole Flow. This ensures
that the metric is collected at the start and the end of each flow instance.

The Stored Procedure(s)

You need to write a stored procedure for each outcome of the flow. That is, you
write a stored procedure that measures the flow instances that end at the
Closed node. You write another stored procedure that measures the flow
instances that terminate at the Resolved node having gone through the
Contract node, and another procedure that measures the flow instances that
terminate at Resolved node having gone through the NoContract node.

But what is it that you measure? What value do you return as the metric
value? And how do you calculate this value?

You write the stored procedures to return the value of either 0 or 100.

Let’s consider the stored procedure that is going to measure the flow instances
that have terminated at the Resolved node having come through the
Contract node. The stored procedure uses the flow instance Id passed in, to
find out whether this flow instance actually terminated at the Resolved
node. It does this by accessing the Node_Instance table and looks to see if
there is a completed node instance for the Resolved node for this flow
instance. If the flow instance did terminate at the Resolved node, then the
stored procedure looks to see if the Contract node is also completed for this
flow instance. If both of these tests are true, then this flow instance
terminated at the Resolved node having also completed the Contract node,
and therefore the stored procedure returns a value of 100. If the flow instance
did not terminate at the Resolved node or did not complete the Contract
node, the stored procedure returns a value of 0.

By returning a metric value of either 0 or 100, the Metric Engine can collect
all the metric values. Every collection interval the Metric Engine calculates,
among other things, the average of these values. Thus, the Metric Engine
produces the average of your metric values, which is indeed the percentage.
Custom Metrics 87

Contract Resolved Calls

The stored procedure for counting the instances of contract calls that are
resolved looks as follows (for MSSQL):

CREATE PROCEDURE BPI_Contract_Resolved_Calls
 @Metric_ID NVARCHAR(36), @Flow_ID NVARCHAR(36),
 @FlowInstance_ID NVARCHAR(36), @FlowInstIdentifier NVARCHAR(40),
 @FlowInstStartTime DATETIME, @Weight FLOAT,
 @DataDefinition_ID NVARCHAR(36), @DataInstance_ID NVARCHAR(36),
 @EventType NVARCHAR(12), @EventTime DATETIME, @Idx INTEGER
AS
 DECLARE @RetVal FLOAT
 DECLARE @Count1 FLOAT
 DECLARE @Count2 FLOAT
BEGIN

 -- For this flowinstanceID, is the 'Resolved' node completed
 -- and the 'Contract' node completed
 -- If so = set value to 100
 -- If not = set value to 0

 -- (1) If this is the start of the metric, then simply return.
 -- NOTE: This means that no backlog information is available.
 IF (@EventType = 'Started')
 BEGIN
 RETURN;
 END

 -- Assume a false outcome
 SET @RetVal = 0

 -- (2) Did the flow instance terminate at the 'Resolved' node
 -- (For this flowInstanceID, is the 'Resolved' node 'Completed')
 SET @Count1 = 0
 SELECT @count1 = count(ni.flowinstance_id)
 from node_instance ni, nodes
 where ni.node_id = nodes.node_id
 and ni.flowinstance_id = @FlowInstance_ID
 and (nodes.nodename = 'Resolved' and ni.status = 'Completed')
88 Chapter 3

 -- Only do this check if this instance terminated at the 'Resolved' node.
 IF (@Count1 != 0)
 BEGIN
 -- (3) Check whether the 'Contract' node is also 'Completed'
 SET @Count2 = 0
 SELECT @Count2 = count(ni.flowinstance_id)
 from node_instance ni, nodes
 where ni.node_id = nodes.node_id
 and ni.flowinstance_id = @FlowInstance_ID
 and (nodes.nodename = 'Contract' and ni.status = 'Completed')
 END

 -- (4) If it did go through the nodes, set the return value to 100
 IF (@Count1 != 0 AND @Count2 != 0)
 BEGIN
 SET @RetVal = 100
 END

 -- (5) Now write the result to the metric engine

 EXECUTE METRIC_SEND_EVENT @Metric_ID, @Flow_ID, @FlowInstance_ID,
 @FlowInstIdentifier, @FlowInstStartTime, @Weight, @DataDefinition_ID,
 @DataInstance_ID, @EventType, @EventTime, @RetVal, @Idx

END;

where:

• Step (1) tests if this is the start of the metric, simply return. You only
wish to measure completed instances. This means that the Business
Process Dashboard is unable to show any backlog numbers for this metric.

• Step (2) tests that this flow instance has actually completed at the
Resolved node.

• Step (3) tests that, if the flow instance has completed at the Resolved
node, did it also complete the Contract node.

• Step (4) tests whether all conditions have been met. If so, it sets the
return value to be 100.

• Step (5) sends the metric result to the Metric Engine.
Custom Metrics 89

Non-Contract Resolved Calls

The stored procedure for counting the instances of non-contract calls that are
resolved looks as follows (for MSSQL):

CREATE PROCEDURE BPI_Off_Contract_Resolved_Calls
 @Metric_ID NVARCHAR(36), @Flow_ID NVARCHAR(36),
 @FlowInstance_ID NVARCHAR(36),
 @FlowInstIdentifier NVARCHAR(40), @FlowInstStartTime DATETIME,
 @Weight FLOAT, @DataDefinition_ID NVARCHAR(36),
 @DataInstance_ID NVARCHAR(36), @EventType NVARCHAR(12),
 @EventTime DATETIME, @Idx INTEGER
AS
 DECLARE @RetVal FLOAT
 DECLARE @Count1 FLOAT
 DECLARE @Count2 FLOAT
BEGIN

 -- (1) If this is the start of the metric, then simply return.
 -- NOTE: This means that no backlog information is available.
 IF (@EventType = 'Started')
 BEGIN
 RETURN;
 END

 -- Assume a false outcome
 SET @RetVal = 0

 -- (2) Did the flow instance terminate at the 'Resolved' node
 -- (For this flowInstanceID, is the end node 'Completed')
 SET @Count1 = 0
 SELECT @count1 = count(ni.flowinstance_id)
 from node_instance ni, nodes
 where ni.node_id = nodes.node_id
 and ni.flowinstance_id = @FlowInstance_ID
 and (nodes.nodename = 'Resolved' and ni.status = 'Completed')

 -- Only do this check if this instance terminated at the 'Resolved' node.
 IF (@Count1 != 0)
 BEGIN
 -- (3) Check whether the 'No Contract' node is also 'Completed'
 SET @Count2 = 0
 SELECT @Count2 = count(ni.flowinstance_id)
 from node_instance ni, nodes
 where ni.node_id = nodes.node_id
 and ni.flowinstance_id = @FlowInstance_ID
 and (nodes.nodename = 'No Contract' and ni.status = 'Completed')
 END
90 Chapter 3

 -- (4) If it did go through the nodes, set the return value to 100
 IF (@Count1 != 0 AND @Count2 != 0)
 BEGIN
 SET @RetVal = 100
 END

 -- (5)

 EXECUTE METRIC_SEND_EVENT @Metric_ID, @Flow_ID, @FlowInstance_ID,
 @FlowInstIdentifier, @FlowInstStartTime, @Weight, @DataDefinition_ID,
 @DataInstance_ID, @EventType, @EventTime, @RetVal, @Idx

END;

where:

• Step (1) tests if this is the start of the metric, simply return. You only
wish to measure completed instances. This means that the Business
Process Dashboard is unable to show any backlog numbers for this metric.

• Step (2) tests that this flow instance has actually completed at the
Resolved node.

• Step (3) tests that, if the flow instance has completed at the Resolved
node, did it also complete the No Contract node.

• Step (4) tests whether all conditions have been met. If so, it sets the
return value to be 100.

• Step (5) sends the metric result to the Metric Engine.
Custom Metrics 91

Non-Contract Closed Calls

The stored procedure for counting the instances of non-contract calls that are
simply closed (ignored), looks as follows (for MSSQL):

CREATE PROCEDURE BPI_Off_Contract_Closed_Calls
 @Metric_ID NVARCHAR(36), @Flow_ID NVARCHAR(36),
 @FlowInstance_ID NVARCHAR(36), @FlowInstIdentifier NVARCHAR(40),
 @FlowInstStartTime DATETIME, @Weight FLOAT,
 @DataDefinition_ID NVARCHAR(36), @DataInstance_ID NVARCHAR(36),
 @EventType NVARCHAR(12), @EventTime DATETIME, @Idx INTEGER
AS
 DECLARE @RetVal FLOAT
 DECLARE @Count1 FLOAT
BEGIN

 -- (1) If this is the start of the metric, then simply return.
 -- NOTE: This means that no backlog information is available.
 IF (@EventType = 'Started')
 BEGIN
 RETURN;
 END

 -- Assume a false outcome
 SET @RetVal = 0

 -- (2) Did the flow instance terminate at the 'Closed' node
 -- (For this flowInstanceID, is the end node 'Completed')
 SET @Count1 = 0
 SELECT @count1 = count(ni.flowinstance_id)
 from node_instance ni, nodes
 where ni.node_id = nodes.node_id
 and ni.flowinstance_id = @FlowInstance_ID
 and (nodes.nodename = 'Closed' and ni.status = 'Completed')

 -- (3) If it did go through the 'Closed' node, set the return value to 100
 IF (@Count1 != 0)
 BEGIN
 SET @RetVal = 100
 END

 -- (4)

 EXECUTE METRIC_SEND_EVENT @Metric_ID, @Flow_ID, @FlowInstance_ID,
 @FlowInstIdentifier, @FlowInstStartTime, @Weight, @DataDefinition_ID,
 @DataInstance_ID, @EventType, @EventTime, @RetVal, @Idx
END;
92 Chapter 3

where:

• Step (1) tests if this is the start of the metric, simply return. You only
wish to measure completed instances. This means that the Business
Process Dashboard is unable to show any backlog numbers for this metric.

• Step (2) tests that this flow instance has actually completed at the
Closed node.

• Step (3) tests whether the condition has been met. If so, it sets the
return value to be 100.

• Step (4) sends the metric result to the Metric Engine.

The Custom Metric Type Definitions

Once the stored procedures are installed into your database you need to tell
the Metric Definer about them and give them names.

You create an entry in the METRIC_CustomTypes table defining a name for
your custom metric and linking this to your stored procedure.

For example, to load in the three stored procedures, you issue the following
commands:

 INSERT INTO METRIC_CustomTypes (CustomMetricName,
 CustomMetricDescription,
 CustomSPName,
 ValueUnits)
 VALUES('Calls Resolved ON Contract',
 'Calculates the percentage calls resolved ON contract.',
 'BPI_Contract_Resolved_Calls',
 'Percent');

 INSERT INTO METRIC_CustomTypes (CustomMetricName,
 CustomMetricDescription,
 CustomSPName,
 ValueUnits)
 VALUES('Calls Resolved OFF Contract',
 'Calculates the percentage calls resolved OFF contract.',
 'BPI_Off_Contract_Resolved_Calls',
 'Percent');

 INSERT INTO METRIC_CustomTypes (CustomMetricName,
 CustomMetricDescription,
 CustomSPName,
Custom Metrics 93

 ValueUnits)
 VALUES('Calls Closed OFF Contract',
 'Calculates the percentage OFF contract calls closed.',
 'BPI_Off_Contract_Closed_Calls',
 'Percent');

When you define a metric in the Metric Definer, you are now able to select
your stored procedures by selecting one of the defined Metric Value Types
as shown in Figure 17 on page 94

Figure 17 Custom Percentage Metric Types

Defining The Metrics

As there are three possible outcomes for the Call System flow, you define
three metrics. Each metric must produce results for every flow instance going
through the Call System flow, as this enables the Metric Engine to produce
an average. So you define three metrics, each with a scope of Whole Flow.

You can set the collection interval to be whatever you require. Remember that
the collection interval determines the frequency with which the percentage is
calculated and updated.

With each metric definition, you select the Metric Value Type from the
three custom metric types you defined.
94 Chapter 3

For example, to configure the metric that measures the percentage of contract
calls that are resolved, you define the metric as follows:

Figure 18 Metric Definition - Resolved Contract Calls

You would define two more metrics, to measure the non-Contract Resolved
calls and the non-Contract Closed calls.
Custom Metrics 95

Defining Thresholds

To see your percentages within the OVBPI Business Process Dashboard as
dials, you can define thresholds for each metric.

You can define thresholds that measure the recent average as this is the
percentage. This allows you to set percentage values as the ranges for
warning, minor, major and critical.

For example:

Figure 19 Threshold Definition - Resolved Contract Calls

This threshold alerts you whenever the percentage of resolved contract calls
drops below 80 percent.
96 Chapter 3

The OVBPI Business Process Dashboard

Now that the metrics and thresholds are defined, you can view the
percentages within the OVBPI Business Process Dashboard. When you view
the Call System flow, the three threshold dials show the percentages of your
calls.

For example:

Figure 20 Business Process Dashboard - Percentages

These dials give you the current averages (or percentages in this case). You
can use the Graphing Period pull-down to show the averages (percentages)
over a longer period.

You can also click on any of these dials to see the average (percent) since the
metric was defined. This allows you to see the percentages over time and spot
trends.
Custom Metrics 97

SQL Errors

When you write a stored procedure to produce a custom metric value, your
stored procedure is invoked when the Business Impact Engine updates the
OVBPI database tables. The updating of the OVBPI tables and the running of
your stored procedure all occur within a single database transaction. This
means that if your stored procedure encounters a problem it may affect the
Business Impact Engine transaction and thus the flow instance. It all depends
on the underlying database being used by OVBPI.

OVBPI on Oracle

If you are running OVBPI against an Oracle database then any problems
within your metric stored procedure are logged in the Business Impact
Engine’s log file, and this does not affect the Business Impact Engine or the
processing of the flow instance.

The Oracle database system allows the stored procedure to throw an error,
and have this treated separately within the overall Business Impact Engine’s
transaction. The Business Impact Engine is able to trap, and log, any errors
and keep processing.

Obviously the metrics are not recorded correctly if the stored procedure is in
error, but the flow keeps running.

OVBPI on MSSQL

If you are running OVBPI against an MSSQL database then any problems
within your metric stored procedure cause the Business Impact Engine to
abort the entire transaction. The error is logged to the Business Impact
Engine’s log file and it causes both the metric and the current flow instance to
not be updated correctly.
98 Chapter 3

Lab - Custom Metrics

This lab gives you experience setting up custom metrics.

The Call System Flow

For this lab you are going to continue working with the Call System flow
you set up during the previous lab (Lab - Defining Metrics on page 37). The
flow diagram is as follows:

Figure 21 Flow Diagram

This flow monitors support calls as they come into the call center. The calls
include some that are under a support agreement and some that are not. The
supervisor may choose to handle a non-contract call because he/she feels the
caller is a potential customer and therefore worth looking after.

The Required Metrics

Your job is to measure the calls that are being processed, and report the
following percentages:

• The percentage of contract calls being resolved

• The percentage of non-contract calls being resolved

• The percentage of non-contract calls being closed
Custom Metrics 99

In other words, you need to measure the different outcomes of the flow and
show these outcomes as percentages.

The way to set up these metrics is fully explained earlier in this chapter in the
section: Example - Percentage Path Flow on page 86. You are to refer to that
section for guidance as needed.

Your job in this lab is to do the following:

• Define the three required stored procedures, and define metric type
entries such that the Metric Definer knows about your stored procedures.

To help you get started, the SQL for defining the stored procedure
BPI_Contract_Resolved_Calls, and for defining the metric value type
Calls Resolved ON Contract, is located in the file:

 labs\custom_ResolvedContractCalls.sql

This file contains the SQL for working with a MSSQL database.

• Define metrics to use these metric types.

Define three metrics. All of these metric are to be set to a scope of Whole
Flow. These metrics should invoke your stored procedures. Set the
collection interval to be five minutes.

• Define a threshold for each of your metrics, to measure the recent average
and set alerts between the values of 0 and 100.

• Use the Flow Simulator to send through more calls and monitor the
percentages in the OVBPI Business Process Dashboard.

Make sure when you use the Flow Simulator you ensure the Instance ID
is greater than any previous run of the Flow Simulator. That is, make sure
that the Flow Simulator injects new instances with new unique IDs.
100 Chapter 3

When you have the OVBPI Business Process Dashboard showing the
percentages, take some time to look at the other metrics that you defined in
the first lab.

If you kept the Flow Simulator running since the first lab, you should be able
to use the OVBPI Business Process Dashboard to view the details of your
metrics over time.

For example:

• In the OVBPI Business Process Dashboard, on the main Business Flow
& Resource Summary page - the page that shows the flow diagram and
the threshold dials - click on the tab marked: Metrics

• Click on the metric called: Call Processing Time

By default this shows you a graph displaying the Average/Minimum/
Maximum values for each collection interval.

• Select the Data Source for the graph to be: Completed - Count

This shows you the number of calls that have been resolved within each
collection interval.

• Now select Chart by group to be: Yes

You now see the number of calls that have been closed within each
collection interval, but now showing the numbers for each call priority.

This shows you the completion statistics since the first lab when you set
up the Call Processing Time metric.

Feel free to explore all your metrics using the OVBPI Business Process
Dashboard and the many options available to you.

Well done! You have reached the end of the lab.
Custom Metrics 101

102 Chapter 3

4 Further Topics
This chapter looks at additional topics to do with OVBPI metrics.
 103

OVBPI 1.1 Metric Tables

The OVBPI release 1.1 had the ability to define metrics. These metrics were
stored in the two tables, Metrics and Metric_Values. The OVBPI 2.0
release replaced the old metric system, and as such, used a new set of data
tables.

For compatibility reasons OVBPI releases later than 1.1, maintains two
database views called Metrics and Metric_Values. These views provide
OVBPI 1.1 views onto the newer OVBPI metric data.

If you are running existing 1.1 database reports against these new views be
aware of a subtle change. There are more than just TBN metric types.

The metric type for OVBPI 1.1 used to always be TBN. The metric type can
now have four possible values:

• TBN - Time between nodes

• NET - Node execution time

• FET - Flow execution time

• CUSTOM - A custom metric

In OVBPI 1.1 terms, the three types TBN, NET and FET are all just TBN
metrics.

These views, and all the metric tables, are fully described in the OVBPI
Reference Guide.
104 Chapter 4

Metric/Threshold Activation

When does a metric definition become active? The answer is, the moment you
click the OK button within the Metric Definer. This means that metrics only
begin to be recorded from the time you click the OK button when defining a
new metric.

Suppose you have a flow as follows:

Figure 22 Simple Flow

and you already have some flow instances that are sitting in Node3.

You then define a metric to measure from the start of Node2 to the end of
Node4.

The flow instances that are currently in Node3 are past the start of the
metric so you do not see any start metrics for these flow instances. When
these flow instances move out of Node4, end metric records are generated.

When you modify a metric definition and click the Replace button, all
previous metric history and alerts are removed, and the metric starts
recording data afresh as if it were a brand new metric definition.

Detecting Thresholds

When you modify a time-based threshold be careful if you update the alert
time.

Suppose you define a metric for the flow shown in Figure 22 on page 105, and
this metric measures the time it takes for instances to move from the start of
Node2 to the end of Node4. You then define a threshold to raise an alert if any
specific instance takes longer than 10 minutes.

To test this out, you then send in a flow instance and progress it to Node3. You
leave the flow instance in Node3 for 10 minutes and wait for the alert to be
issued.

Node2 Node4Node1 Node3 Node5
Further Topics 105

After waiting for four minutes you think “Why am I waiting all this time?” so
you decide to modify the threshold definition and update it to issue an alert if
any specific instance takes longer than just one minute. You assume that you
now only have to wait one more minute to see the alert appear.

You wait...and wait...and after 15 minutes of waiting, and seeing no alert, you
think something has gone wrong.

You then assume that the alert is not going to happen, so you decide to
progress the flow instance and see what happens when it reaches the end of
Node4. Sure enough, when the flow instance exits Node4, you suddenly see an
alert raised within the OVBPI Business Process Dashboard. This alert shows
that the metric instance did indeed take far longer than one minute to be
completed.

So what happened?

It all has to do with the way the Metric Engine looks for threshold violations
while metrics are still active.

The Metric Engine constantly monitors active metric instances in case they
exceed a threshold while still active. That is, if you want an alert raised when
an instance takes longer than (for example) one hour to be completed, you
don’t want to be told this once the instance has completed. You want the alert
raised the moment the instance has been running for more than your specified
time period.

To identify active metric instances that have been running for longer than a
specified time period, the Metric Engine monitors active metric instances. But
the Metric Engine only needs to monitor the metric instances that have
started within the specified time period. In this example, the original
threshold time period was set to 10 minutes. So every poll period the Metric
Engine checks all metric instances that have started within the last 10
minutes and looks to see if they are still running. If they are, then they have
exceeded the threshold and an alert is raised.

The problem came about when you updated the threshold definition and
changed the alert time period from 10 minutes to one minute. This meant that
the Metric Engine started monitoring active instances, but only within the
last one minute period. Thus the original instance that you had started was
out of the time range for active monitoring. This is why no alert was raised the
moment the metric instance took longer than one minute.
106 Chapter 4

Of course, when the metric instance finally does complete, the Metric Engine
detects this and raises an alert to say that the metric instance took too long.

So, be careful about updating threshold times and making them shorter. This
may cause alerts to not be raised until the completion of some of the metric
instances.
Further Topics 107

Instance Alerts

If you create a threshold and define threshold alerts for Warning, Minor,
Major and Critical, do not be surprised if you see a metric instance raise (for
example) a Warning alert followed by a Critical alert. That is, just because you
have specified alerts at all levels, an individual metric instance may not raise
them all. Let’s explain...

Thresholds are checked every 60 seconds. (This time period is configurable
within the OVBPI Administration Console.) When the threshold values are
checked for a metric instance, an alert is raised only for the highest (most
severe) alert that has occurred within that 60 seconds. So, for example, if a
metric instance has raised a Minor alert, a Major alert and a Critical alert all
within the last 60 seconds, the Metric Engine only raises a single alert
showing that the metric instance has now gone critical.

Deadline Metric Value is Fixed

With a deadline metric, the value of the deadline property is read at the start
of the metric instance.

Suppose you have created a metric and specified a Deadline Property. As
each instance of this metric is instantiated, the value within the deadline
property is read from the flow’s related data definition, and stored with the
metric instance. Thresholds are then measured against this deadline
attribute value held within the metric instance. If the value within the
deadline attribute (within the data definition) changes during the life of the
metric instance, the metric instance does not see this. The metric instance
uses the attribute value it stored when it started.
108 Chapter 4

Redeploying Flows/Metrics

Suppose you have defined metrics and thresholds on a deployed flow. What
happens if you need to redeploy the flow?

If you redeploy a flow that has metrics and thresholds defined, the new flow is
deployed and the deployer defines all the metrics and thresholds for this new
flow. In other words, the newly deployed flow ends up having the same set of
metrics and thresholds defined for it. However, the newly defined metrics and
thresholds are new, and therefore the new metrics and thresholds do not
inherit any history from the previous version of the metrics or thresholds.

When redeploying a flow that currently has metrics and thresholds defined
for it, the deployer may not be able to set up all the metrics and thresholds.
For example, if you are deploying a new version of the flow where you have
removed a node, then the deployer is not able to redefine any metrics that
were based on that node. So when you redeploy a flow, the deployer tries to set
up all the metrics and thresholds as defined on the superseded flow definition.
However, depending on what changes are within the newly deployed flow, you
may not end up with all the metrics in place. You need to check your metric
and threshold definitions within the Metric Definer to ensure that they are
set up as you require on the newly redeployed flow.

If you undeploy a flow definition then any subsequent redeployment results in
the flow being deployed but with no metric definitions.

Once you have defined a set of metrics and thresholds for a deployed flow, it is
a good idea to export these metric and threshold definitions from within the
Metric Definer (see Exporting Metrics on page 35) and save them to a file.
This allows you to reinstate these metric and threshold definitions should you
ever have the scenario where you redeploy a flow and find that the metric and
threshold definitions have not been applied to the newly deployed flow.
Further Topics 109

Superseded Flows/Metrics

By redeploying flow definitions that have metrics and thresholds defined, you
can potentially end up with many metric and threshold definitions. For
example, suppose you are developing a flow and you have defined five metrics.
You then deploy this flow and start up a number of flow instances, which in
turn start up some metric instances. If you then make some changes to this
flow, redeploy the flow and then start up some new flow/metric instances, you
now have ten metrics active; the five for the superseded flow and the five for
the newly deployed version of the flow. Every time you redeploy the flow
where the previously deployed flow had active instances, you are adding
another five metric definitions to your OVBPI system. So you need to be
careful about your flow development once you start adding metrics and
thresholds.

Once you have redeployed a flow definition that has metrics and thresholds
defined, you might consider using the OVBPI Intervention Client to delete the
superseded version of the flow and its metric and threshold definitions.

Deleting Flow Metrics/Thresholds

If you undeploy a flow from the OVBPI Business Impact Engine, the flow is
undeployed and any metric or threshold definitions for this flow are deleted.
However, if there are still superseded versions of this flow definition, then any
metric and threshold definitions for these superseded flows are still active and
generating metric statistics.

If you are deleting a flow and you want to ensure that all metric and threshold
data is removed for this flow, you need to remove the most recently deployed
version of the flow, and all superseded versions of the flow.
110 Chapter 4

Avoiding Notification Storms

When you are configuring your thresholds, and any notification subscriptions,
you need to give some thought to how many alerts this might end up sending.
That is, configuring your thresholds to send out potentially hundreds of email
alert notifications may not be helpful. This can be a particular issue when you
set up an instance threshold, as this can lead to alerts being raised for many
individual instances. Indeed, you can also encounter the problem where
OVBPI may send out alerts faster than the email SMTP server can handle.
This can lead to alert emails being delayed by the SMTP server.

When an alert is generated it is written to the Metric_Fact_Alerts table
within the OVBPI database. The Metric Engine is polling this alert table and
every 300 seconds, the Metric Engine sends the new alerts to the OVBPI
Notification Server. You do not have to set up subscriptions in the Notification
Server and send all alerts to someone’s email box. It may be better to
configure OVBPI to send a single alert notification to an email box and then
have that person access the Metric_Fact_Alerts table within the OVBPI
database to see all the individual alert details.

When configuring your alerts you might want to consider the approach of
configuring more than one threshold. You configure the threshold that you
actually want to monitor, and this causes alerts to be raised as and when they
happen. These alerts are all written into the OVBPI database. You then
configure an “overall” threshold - ideally a statistical threshold - that alarms
when (for example) a maximum, or average, is above/below a certain
threshold. You then set up an email notification subscription to this “overall”
threshold alert.

Refer to Metric Notifications on page 61 to see how you can also limit the
actual number of notifications that get raised for each polling interval.
Further Topics 111

No Collection Interval Defined

It is possible to define a metric to have no collection interval. For example, if
you are measuring the time an instance takes to get to a particular node, and
raising an alert if this time is greater than four hours, then you do not need to
set any collection interval.

The OVBPI Business Process Dashboard uses the metric’s collection interval
to make certain calculations. For example, the Business Health Scorecard
page displays the most severe alert for a flow over the last collection interval
for each defined metric. But what period does it use for metrics that have no
collection interval defined?

For metrics that have no collection interval specified, the OVBPI Business
Process Dashboard uses a period of:

2 * Threshold Polling Interval

The Threshold Polling Interval is configurable within the OVBPI
Administration Console, and defaults to 60 seconds.
112 Chapter 4

Business Process Dashboard and Alerts

Business Health Scorecard Page

When you run the OVBPI Business Process Dashboard, the Business
Health Scorecard page displays each deployed flow name and shows a
Business Flow Metric Status column.

The idea is that as business metric alerts occur, the Business Health
Scorecard page reflects these in the Business Flow Metric Status
column. Because instance alerts (see Instance and Statistical Thresholds/
Alerts on page 33) have no way of being reset, the home page of the OVBPI
Business Process Dashboard has been written to only include alerts that have
occurred within the last collection interval across all the thresholds defined
for this flow.

For thresholds where there is no collection interval configured see the
discussion in No Collection Interval Defined on page 112.

So, the Business Flow Metric Status column represents the highest (most
severe) alert that has occurred within the last collection interval across all the
thresholds defined for this flow.
Further Topics 113

114 Chapter 4

 115

116 Chapter

	Integration Training Guide - Defining Business Process Metrics
	Contents
	1 Business Metrics
	Introduction
	Metric Definer
	Running the Metric Definer
	Logon User/Password
	Deployed Flows

	Creating a Business Metric
	The Flow Diagram
	Metric Name
	Metric Description
	Metric Scope
	Whole Flow
	Single Node
	Multiple Nodes

	Metric Value Type
	Statistics Collection
	Recording Metric Values
	Calculating Statistics
	Collection Interval
	Collection Interval Timings
	Choosing a Collection Interval
	Do You Need To Collect Statistics?

	Apply Filter
	Group Results By
	Group Name

	Deadline Property

	Filters
	Creating a Filter
	Filter Name
	Filter Description
	Filter Expression

	Example Filters

	Modifying a Metric
	Creating a Threshold
	Threshold Type
	Absolute (Duration/Weight/Value)
	Backlog
	Deadline
	Relative (Duration/Weight/Value)
	Throughput

	Warning/Minor/Major/Critical Alert
	Alert Message

	Alerts
	Instance and Statistical Thresholds/Alerts
	Alert Levels

	Options
	Refreshing the Metric Definer
	Exporting Metrics
	Importing Metrics
	Metric Definer Help

	Lab - Defining Metrics
	The Scenario
	Defining the Flow
	Understanding the Flow
	Data Definition
	Progression Rules
	Events

	Defining the Metrics
	Time to Assign Contract Calls
	Time to Process Assigned Calls

	The Flow Simulator
	Running the Call Center
	Test Cases
	Running the Suite of Tests
	Running the OVBPI Business Process Dashboard
	Call Processing Speed Dial
	More Graphs
	Adjusting the Flow Simulator

	End of The Lab

	2 Metric Engine
	How Metrics Work
	Metric Values
	Metric Statistics
	Group Results By

	Metric Alerts
	Metric Notifications
	The Big Picture

	Alert Timings
	Instance Thresholds
	Statistical Thresholds

	Metric Engine Off/Restart
	Alerts
	Statistical Metrics (“Back Filling”)

	Instance Cleaner Settings
	Metric Instance Cleaner
	Business Impact Engine Instance Cleaner

	Metric Database Schema (Star)

	3 Custom Metrics
	Metric Scope
	Defining A Custom Metric
	The Stored Procedure
	Parameter Values
	SQL Parameter Syntax
	The Metric Value
	Metric Backlog
	Stored Procedure Ownership

	The Metric Definer
	Defining a Custom Type

	Example - A Data Property
	The Stored Procedure
	MSSQL Example
	Oracle Example

	The Custom Metric Type Definition

	Example - Percentage Path Flow
	Metric Scope
	The Stored Procedure(s)
	Contract Resolved Calls
	Non-Contract Resolved Calls
	Non-Contract Closed Calls

	The Custom Metric Type Definitions
	Defining The Metrics
	Defining Thresholds
	The OVBPI Business Process Dashboard

	SQL Errors
	OVBPI on Oracle
	OVBPI on MSSQL

	Lab - Custom Metrics
	The Call System Flow
	The Required Metrics

	4 Further Topics
	OVBPI 1.1 Metric Tables
	Metric/Threshold Activation
	Detecting Thresholds

	Instance Alerts
	Deadline Metric Value is Fixed
	Redeploying Flows/Metrics
	Superseded Flows/Metrics

	Deleting Flow Metrics/Thresholds
	Avoiding Notification Storms
	No Collection Interval Defined
	Business Process Dashboard and Alerts
	Business Health Scorecard Page

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e006700730020007700680065006e0020007300750062006d0069007400740069006e006700200074006f002000410053004d002000610074000d004800650077006c006500740074002d005000610063006b006100720064002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

