
HP OpenView Business Process Insight
For the Windows® Operating System

Software Version: 02.10
Integration Training Guide - Customizing the Business
 Process Dashboard
Document Release Date: January 2007

Software Release Date: January 2007

Legal Notices

Warranty

Hewlett-Packard makes no warranty of any kind with regard to this document, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be held liable for errors contained herein or direct, indirect, special,
incidental or consequential damages in connection with the furnishing, performance, or use of
this material.

A copy of the specific warranty terms applicable to your Hewlett-Packard product can be
obtained from your local Sales and Service Office.

Restricted Rights Legend

Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause in
DFARS 252.227-7013.

Hewlett-Packard Company
United States of America

Rights for non-DOD U.S. Government Departments and Agencies are as set forth in FAR
52.227-19(c)(1,2).

Copyright Notices

© Copyright 2005 - 2007 Hewlett-Packard Development Company, L.P.

No part of this document may be copied, reproduced, or translated into another language
without the prior written consent of Hewlett-Packard Company. The information contained in
this material is subject to change without notice.

Trademark Notices

Java™ is a US trademark of Sun Microsystems, Inc.

Microsoft® is a US registered trademark of Microsoft Corporation.

UNIX® is a registered trademark of The Open Group.

Windows® and MS Windows® are US registered trademarks of Microsoft Corporation.
2

Documentation Updates

This manual’s title page contains the following identifying information:

• Software version number, which indicates the software version

• Document release date, which changes each time the document is updated

• Software release date, which indicates the release date of this version of the software

To check for recent updates, or to verify that you are using the most recent edition of a
document, go to:

http://ovweb.external.hp.com/lpe/doc_serv/

You will also receive updated or new editions if you subscribe to the appropriate product
support service. Contact your HP sales representative for details.
3

Support

Please visit the HP OpenView support Web site at:

http://www.hp.com/managementsoftware/support

This Web site provides contact information and details about the products, services, and
support that HP OpenView offers.

HP OpenView online software support provides customer self-solve capabilities. It provides a
fast and efficient way to access interactive technical support tools needed to manage your
business. As a valuable support customer, you can benefit by using the support site to:

• Search for knowledge documents of interest

• Submit enhancement requests online

• Download software patches

• Submit and track progress on support cases

• Manage a support contract

• Look up HP support contacts

• Review information about available services

• Enter discussions with other software customers

• Research and register for software training

Most of the support areas require that you register as an HP Passport user and log in. Many
also require a support contract.

To find more information about access levels, go to:

http://www.hp.com/managementsoftware/access_level

To register for an HP Passport ID, go to:

http://www.managementsoftware.hp.com/passport-registration.html
4

Contents
1 Using The OVBPI Dashboard . 11

A Generic Dashboard . 12
Starting the Dashboard . 13

Logging On . 13
Basic Operation . 14
Flow Status. 15
Node Rates . 16
My Flows/My Services . 17

My Flows . 17
My Services . 18

Superseded Flows . 19
Default View . 19
My Flows . 20
Do Not Show Superseded Flows. 20

Directory Structure . 21
Configuration . 22

Hidden Settings . 23
Maintaining The Dashboard . 24
Localization . 25

The i18n Tag . 25
The i18n Bundle . 25
Text Within the JSPs . 26
Obvious Labels . 28

Tomcat Specific Settings . 29
Tomcat Startup Options . 29
Stdout/Stderr Log Output . 32

Lab - Using the OVBPI Dashboard. 33
5

My Flows . 33
My Services . 34
Superseded Flows . 34
New Browser . 35

2 Customizing The Dashboard . 37

Basics . 38
Using the OVBPI Database . 38
Required Skill Sets . 38

Tomcat JSP Compilation Logs . 39
More Directory Structure . 40

Creating a Custom Dashboard. 40
Architectural Overview . 41
Java Server Pages (JSPs) . 42
Taglibs. 43

Available Libraries . 43
Documentation (Javadocs) . 44
Basic Operation. 44
Two Types of Tags. 46

Java Beans . 50
Documentation (Javadocs) . 50

The Next Step. 51

3 Working With Flows . 53

<flow> Tag Hierarchy . 54
Accessing Flow Details . 56

Listing Flow Definitions . 56
Filtering Flows By Name . 57
Multiple Flow Names (<util:args>) . 58
Filtering By Flow Status . 59
Getting the Flow ID . 61
Listing Node Instance Details . 62

Drawing Flow Diagrams . 64
Flow Diagram <flowImage>. 64
Flow Instance Diagram <flowInstanceImage> . 66
Flow Instance Timeline <flowInstanceTimelineImage> . 68
6

Setting Background Color . 69
Activating Node URLs . 70
Showing Metric Flags . 72
Further Customization . 72

Flow Annotations . 73
DefaultFlowAnnotationBean . 74
Developing Your Own Annotation . 76
How to Write an Annotation . 79
Setting Left Text . 87
Setting Right Text. 89
Setting Left Text Color . 91
Setting Right Text Color. 92
Setting Node Label Text . 93
Setting Node Label Text Color . 94
Setting Node Tooltip . 95
Setting Node Image . 97
Example Flow Diagrams . 99

The OVBPI Dashboard . 101
Custom Flow Drawing . 101
Flow Drawing . 101
Flow Instance Drawing. 102
Example - Flow Diagram . 103
Example - Flow Instance Diagram . 104

Lab - Drawing Flows . 106
Basic Flow Settings . 106
Custom Left/Right Node Text. 106
Custom Colors . 107
OVBPI Business Process Dashboard . 107

4 Working With Sliders . 109

The Slider Bean . 110
Javadocs . 110
Setting Up The Slider. 110
Producing a Slider Picture . 112
Displaying a Slider . 113
Resulting HTML Page . 114
7

Setting Range Colors . 114
Multiple Sliders on a Page . 116
Adding a URL . 117

Lab - Drawing Sliders . 118
Basic Flow Definition List . 118
Adding a Slider . 118
Linking the Slider with a URL . 118

5 Working With Metrics . 119

Definitions . 120
Code Examples . 122

Statistical Data and Graphs . 126
metricStatistics . 126
metricStatisticsList . 127
buildGraphDataset . 127
statisticalGraph . 127
Code Examples . 128

Instance Values . 137
flowInstanceMetricValueList . 137
flowInstanceMetricValue . 138
Code Example . 138

Dials . 140
Code Examples . 141

Alerts . 151
raisedAlertList . 151
latestRaisedAlert . 151
maximumAlertStatus . 152
Code Example . 152

The OVBPI Dashboard . 155
Custom Metric Threshold Tables . 156
Example - Displaying a Specific Metric Threshold . 157
Example - Displaying a Metric Threshold of Any Type . 160
Example - Displaying Multiple Metric Thresholds. 169

6 Direct OVBPI Database Access . 171

Connecting . 172
8

Issuing SQL Statements . 174
Fixed SQL Statements . 174
Prepared SQL Statements . 177
Which One to Use? . 179

Additional Helper Beans . 180
Constants Bean. 180
DBSql Bean . 181

Associated Data Table . 182
Getting the Name of the Data Table . 182
Displaying the Associated Data Table Name . 184

SQL Issues . 185
Deadlocks When Using a Microsoft SQL Server Database . 185
Select Columns by Name . 186

Example Customizations . 187
Listing Specific Flow Instances . 187
Joining the Associated Data. 193

Lab - Direct SQL . 198
Time to a Node . 198
9

10

1 Using The OVBPI Dashboard
OpenView Business Process Insight (OVBPI) provides a Business Process
Dashboard which allows you to monitor your business.

The OVBPI Business Process Dashboard enables you to:

• View the overall status of your business and IT services - including links
to OpenView Operations (OVO), OpenView Internet Services (OVIS),
Service Oriented Architecture (SOA) Manager and OpenView Service
Desk (OVSD) information

• View all the flows within your OVBPI system

• View individual flow instances and associated data values

• Visualize your business flows as flow diagrams

• View your business metrics

• View the flows that depend on any given IT service

• ...and much more!

This chapter looks at how to use the OVBPI Business Process Dashboard and
its basic operation.
 11

A Generic Dashboard

The OVBPI Business Process Dashboard is written to visually display
information about any business flow. That is, it is a “generic” business
dashboard. This makes it extremely useful when you are first developing your
business flows, as you are able to get the flow running and immediately view
the OVBPI (and IT) statistics. However, not every customer is going to want
to report their business in the same way, or with the same look-and-feel.

Although a great deal of care has been taken to provide a well engineered,
fully functional, fully localizable, Business Process Dashboard - with an
intuitive user interface - it is not intended to be the only way to view your
business information. Indeed, the OVBPI Business Process Dashboard is
provided as an example of how you might build a business dashboard; see
Chapter 2, Customizing The Dashboard for details of how to extend and
customize the OVBPI Business Process Dashboard.
12 Chapter 1

Starting the Dashboard

The OVBPI Business Process Dashboard runs within a Web browser. Before
starting the OVBPI Business Process Dashboard, make sure that you have
started the Servlet Engine component using the OVBPI Administration
Console.

To start the OVBPI Business Process Dashboard you can either select:

 start->Programs->HP OpenView->Business Process Insight->Dashboard 2.10

...or...

Start a Web browser and use the following URL:

http://hostname:44080/ovbpidashboard2-10

where:

• hostname is the host name on which the Servlet Engine component is
running.

• 44080 is the default port number for the Servlet Engine.

Indeed, you can also use the URL:

http://hostname:44080/ovbpidashboard

This URL redirects you to the latest installed version of the Business Process
Dashboard.

Logging On

When OVBPI is first installed there is no logon required to use the OVBPI
Business Process Dashboard. You can simply start up the Business Process
Dashboard and see all of your flows and their data.

The OVBPI Administration Console allows you to specify whether you require
people to give a user name and password when running the OVBPI Business
Process Dashboard. You then have a choice of authorization mechanisms. You
can even restrict users such that they can only see certain flows, based on
their logon details. (See the OVBPI System Administration guide for more
details.)
Using The OVBPI Dashboard 13

Basic Operation

The Business Process Dashboard consists of a set of Java Server Pages (JSPs)
and Java beans that use the data in the OVBPI database to represent flow
information to the browser.

Figure 1 Basic Dashboard Operation

where:

1. When you browse to the Business Process Dashboard URL, a JSP is
invoked.

2. The JSP then calls the appropriate underlying Java beans to load up the
dashboard configuration and access the OVBPI SQL database. The Java
beans retrieve the requested OVBPI data.

3. The JSP then formats this data to the user’s Web browser.

OVBPI Flow
Data

HTML

SQL queries

Dashboard Configuration

JSP

Java
Bean

Java
Bean

Web
Server

Java
Bean

...

Configuration data
14 Chapter 1

Flow Status

When displaying the status of a flow, the OVBPI Business Process Dashboard
uses the following terms:

• Blocked

This means that at least one instance of the flow is active in a node that
cannot proceed due to a problem in an underlying IT service.

• At Risk

This means that there are no flow instances in a blocked state, however
there are flow instances coming along that may hit the blockage sometime
in the future.

• Healthy

This means that all active flow instances are currently passed the
blockage and can therefore continue to run to completion.
Using The OVBPI Dashboard 15

Node Rates

Within the OVBPI Business Process Dashboard you can display the overall
details of a flow and then drill into any node to see overall statistics for that
node. Such statistics include the current node Instance Rate and current
node Weight Rate. These rate values give you an idea of the current
throughput at a given node. These rates are expressed as a value per hour - in
much the same way as the speedometer in your car tells you how far you
would travel in a hour if you kept traveling at your current speed.

Be aware that these rate values can give slightly incorrect values when the
node activity is low.

The rates eventually reset themselves to zero, if there is a prolonged period of
inactivity.
16 Chapter 1

My Flows/My Services

The main screen of the OVBPI Business Process Dashboard - the Business
Health Scorecard screen - shows you all your currently deployed flows and
associated IT services. The idea is that on one screen you see right across your
business.

What if you are only interested in one, or a few, of the listed flows? Maybe you
are responsible for monitoring the Orders flow, and therefore do not really
wish to have the other flows listed on your view of the OVBPI system?

You can tell the OVBPI Business Process Dashboard which flows, and which
IT services, you wish to see when you enter this screen.

My Flows

When you run the OVBPI Business Process Dashboard, you can click on the
Edit My Flows button:

Figure 2 Edit My Flows

You are then presented with a list of available flows. You simply select the
one(s) that you are interested in, and press the Save button.

Back at the main screen, you can now click on the select list and choose Show
My Flows:

Figure 3 Show My Flows
Using The OVBPI Dashboard 17

The page now shows only those flows that you selected.

You can also select to only show your flows if they are currently impacted in
some way.

My Services

Just as you can specify the flows that you are interested in, you can specify
the IT services that you are interested in.

Through the use of the Edit My Services button you can select the IT
service(s) that you wish to monitor.

You can then specify that you only wish to see these services - by selecting
Show My Services in the service pull down:

Figure 4 Show My Services

You can also select to only show your IT services if they are currently
impacted in some way.
18 Chapter 1

Superseded Flows

When you re-deploy a business flow, the OVBPI Business Impact Engine
wants to delete the previously deployed version of the flow. However, if there
are still flow instances for this old flow in the system then the Business
Impact Engine cannot simply delete them. So, in this situation, the OVBPI
Business Impact Engine marks the previously deployed flow as “superseded”.

Default View

By default, the OVBPI Business Process Dashboard lists all your superseded
flow definitions. These are shown on the main Business Health Scorecard
screen underneath the main flow summary table.

Figure 5 Superseded Flow List

Listing the superseded flows like this is useful when you are developing your
flows as you are able to see when/if your flows have become superseded.
Using The OVBPI Dashboard 19

However, what if you are giving a demonstration of the product and you have
re-deployed the demo flow a number of times - and therefore have many
superseded versions of the demo flow. Do you really want these superseded
flow versions displayed across the main screen for the customer to see?
Probably not; see Do Not Show Superseded Flows on page 20 to find out how
to turn off display of superseded flows.

My Flows

By default, if you have selected the Show My Flows option on the main
Business Health Scorecard page, the OVBPI Business Process Dashboard
also list superseded versions of your selected flows.

Do Not Show Superseded Flows

If you do not want the OVBPI Business Process Dashboard to list superseded
flows then you can disable this feature.

The steps to turn off display of superseded flows are as follows:

• Run the OVBPI Administration Console

• Select Business Process Dashboard/General Settings in the
left-hand navigation pane

• Un-check the option Show superseded flows?

• Press the Apply button

When the Confirmation applied dialog appears, click OK

• Refresh your Web browser, or start up a new OVBPI Business Process
Dashboard, and the superseded flow table is no longer shown

This change affects all OVBPI Business Process Dashboards.
20 Chapter 1

Directory Structure

The Business Process Dashboard is installed as part of OVBPI in the
following directory:

OVBPI-install-dir\nonOV\jakarta-tomcat-5.0.19\webapps\ovbpidashboard2-10

The Business Process Dashboard uses Tomcat as its Servlet Container.

The following is a brief explanation of the main sub directories that make up
the Business Process Dashboard:

• gen

This directory contains the JSPs that make up the Business Process
Dashboard.

• style

This directory contains the cascading style sheets (CSS) that determine
the look-and-feel for the Business Process Dashboard.

• images

This directory contains some images used by the JSPs.

• images\generated

The Business Process Dashboard saves all run-time pictures (flow
diagram, time lines, etc.) into this directory. You should see files created in
this directory as users run the Business Process Dashboard; refer to
Maintaining The Dashboard on page 24 for details of how to clean up
these files.

• WEB-INF

This directory contains two sub directories:

— classes

This contains the source code for some of the additional Java beans
used by the JSPs.

This is also where the Business Process Dashboard’s configuration file
is located; see section Configuration on page 22.

— lib

This contains the JAR files (Java code libraries) required by the JSPs.
Using The OVBPI Dashboard 21

Configuration

The OVBPI Business Process Dashboard reads its configuration settings from
the file: WEB-INF\classes\DashboardConfig.properties.

Although you can edit this file directly, it is not recommended. This file is
maintained using the OVBPI Administration Console.

So if you need to alter a configuration setting within the Business Process
Dashboard it is best to use the OVBPI Administration Console.

The most likely options that you might wish to reconfigure are:

• The Page refresh delay time

For example, you could set this to 0 (zero) to disable automatic page
refresh.

• The Show superseded flows? option

When you use the OVBPI Administration Console to apply configuration
changes to the Business Process Dashboard, it actually rebuilds the
WEB-INF\classes\DashboardConfig.properties file, based on a template
found in OVBPI-install-dir\newconfig\DataDir\conf\bia.

Each time a JSP is run from a browser, it checks the time stamp on this
DashboardConfig.properties file. If the time stamp has changed, the JSP
re-reads this new configuration. Any changes made to the configuration affect
all running Business Process Dashboards when they next access a JSP or
refresh their current page.

You should always use the OVBPI Administration Console to make
configuration changes to the Business Process Dashboard.

Any changes you make directly to the DashboardConfig.properties file
are overwritten the next time you make any configuration changes through
the OVBPI Administration Console.
22 Chapter 1

Hidden Settings

The DashboardConfig.properties file does contain settings that are not
available through the OVBPI Administration Console. These are settings that
an administrator might wish to set up at install time and typically never
change again. Some examples of these kinds of settings are:

• The images used to show whether a node is active, completed or impacted

• The images used to show underlying IT Service states - of Normal,
Warning, Minor, Major and Critical

To alter such configuration options requires you to edit the template files in
the following directory:

OVBPI-install-dir\newconfig\DataDir\conf\bia

The files are named:

DashboardConfig.mssql.properties
DashboardConfig.oracle.properties

You need to make the changes to both of these files and then make the
changes directly to the active DashboardConfig.properties file (in your
WEB-INF\classes directory). The reason you need to make the changes to the
template files is in case you make any future configuration changes using the
OVBPI Administration Console - this includes any configuration changes,
even those not related to the Business Process Dashboard.
Using The OVBPI Dashboard 23

Maintaining The Dashboard

When the OVBPI Business Process Dashboard builds flow diagrams and time
lines, these images are created and held on disc, on the Tomcat server, in the
directory images\generated; see Directory Structure on page 21.

The number of files in this directory should not grow over time as the Java
classes that create these files remove them when the Web session comes to an
end. Therefore, this directory contains only images that are being used by
active Web sessions. Note that, by default, a Web session expires after 30
minutes of inactivity. If you close a Web browser, any session flow pictures are
removed after a further 30 minutes has elapsed.

However, it looks like these files are not cleaned up when you shutdown the
Tomcat server :-(So, your Web administrator should monitor this directory
to ensure that any files left behind are removed.

If the Web administrator wants to remove files from this directory they have
two main options:

1. They can shutdown the Servlet Engine (Tomcat) and remove all the files
from this generated directory

2. They can leave the Servlet Engine running and just remove all files that
are over (for example) one day in age. The idea is that you do not want to
remove any files that are being served to Web browsers at the moment, so
you might decide that if the files have been sitting there for more than a
day then it is safe to remove them
24 Chapter 1

Localization

The OVBPI Business Process Dashboard is fully localizable.

All of the text strings used on the Web pages (JSPs) are held in an external
Java resource bundle (external file) allowing you to localize them as required
to produce a localized version of the Business Process Dashboard.

Let’s take a look at how this is achieved.

The i18n Tag

Rather than a JSP containing hard-coded text strings, each JSP loads up an
external file (called a “Resource Bundle”) that contains all the text strings it
needs. Each of these text strings has been assigned a unique label (a key).

A Java bean is provided that allows access to a resource bundle. This bean is
called: com.hp.ov.bia.views.taglibs.i18n.

So the first thing the JSP must do is to say that it wishes to use this Java
bean...and give it a name. The line that declares this is as follows:

<%@ taglib uri="com.hp.ov.bia.views.taglibs.i18n" prefix="i18n" %>

Now, any markup that begins with <i18n: refers to calls supported by the
Java bean com.hp.ov.bia.views.taglibs.i18n.

The i18n Bundle

The JSP then needs to load up its resource bundle. This is achieved with the
following line:

<i18n:bundle baseName="dashboard_localization" />

This tells the i18n Java bean to go looking for a resource bundle called
dashboard_localization. Resource bundle file names end in .properties,
so the default resource bundle therefore has the name:
dashboard_localization.properties.

However, here is the clever bit... Resource bundles belong to families whose
members share a common base name, but whose names also have additional
components that identify their locales. So, if, for example, you wanted to make
Using The OVBPI Dashboard 25

use of a German version of the dashboard text strings, these could be provided
in a resource bundle called dashboard_localization_de.properties. Each
resource bundle in a family contains the same items, but the items have been
translated for the locale represented by that resource bundle. If there are
different resources for different countries, you can make specializations: for
example, dashboard_localization_de_CH.properties would contain the
text strings for the German language (de) in Switzerland (CH).

The dashboard_localization resource bundles are found within the JAR
file:

WEB-INF\lib\bia-views-resources.jar

Text Within the JSPs

With the resource bundle loaded, the JSPs are able to display this localized
text wherever it needs, using the <i18n:message> tag.

Let’s look at some examples:

Simple Text

Consider the JSP: flowInstance.jsp

At the point where the JSP lists the nodes that make up the flow definition, it
needs to display a title for this table. Rather than just having the text Node
List, you see the code:

<i18n:message key="FlowInstance.nodeList" />

This retrieves the text labelled FlowInstance.nodeList from the resource
bundle. In the English-locale resource bundle there is an entry as follows:

FlowInstance.nodeList=Node List

Which means that the string Node List is returned. So the
<i18n:message...> tag is replaced in the resulting HTML with the actual
text: Node List.
26 Chapter 1

Text with Parameters

How does it handle message strings that are not just fixed text?

Within the resource bundle some of the strings are defined to take
parameters. In these cases, you see the args= option used.

Consider the JSP: flowInstance.jsp

At the point where the JSP is listing the associated flow instance data, it
wants to display a heading that includes the actual name of the associated
data definition.

The code is as follows:

<i18n:message key="FlowInstance.assocData"
 args="<%= new Object[] {flowInstanceDataBean.getName()} %>" />

For the English-locale resource bundle, the text labelled
FlowInstance.assocData contains the string: Associated Data ({0})

The {0} specifies that the first parameter (they number from zero) is to be
placed at this point.

The args= option needs to pass in a Java Object array (Object []) with the
zero’th element containing the name of the associated data definition for this
flow.

So, if the associated data table name was Orders/My Data, the message
string would become: Associated Data (Orders/My Data)
Using The OVBPI Dashboard 27

Obvious Labels

To make it easier for developers to read and understand the JSPs, the labels
assigned to each text string have been given meaningful names. The text
labels tend to take the form:

<area/screen name>.<text name>

For example:

• FlowInstance.nodeList

This is to do with a page that displays flow instances, and the text says
something about a node list.

• FlowInstance.assocData

This is to do with a page that displays flow instances, and the text
displays something about the associated data.

• ServiceHealth.priority

This is to do with a page that displays service health, and the text
displays something about the priority.
28 Chapter 1

Tomcat Specific Settings

The Servlet Engine that comes pre-configured with OVBPI is Apache Tomcat.

The version of Tomcat that ships with OVBPI is required for OVBPI
components other than the Business Process Dashboard. You can use a
different Servlet Engine for your customized dashboard; however the version
of Tomcat that is installed with OVBPI is the one that is tested and
recommended.

There are some Tomcat configuration settings that are set by the OVBPI
installation, and they are as follows:

Tomcat Startup Options

When Tomcat is started, the following environment variables are set:

• CATALINA_HOME

This is set to the version of Tomcat that comes installed with OVBPI.

The setting takes the form:

CATALINA_HOME=OVBPI-install-dir\nonOV\jakarta-tomcat-5.0.19

• CATALINA_OPTS

This is set to pass in the details of the logging configuration for Tomcat.

The setting takes the form:

CATALINA_OPTS=-DOV_INSTALL_DIR="OVBPI-install-dir"
 -DOV_DATA_DIR="OVBPI-install-dir\data"
 -Djava.util.logging.config.file=

 "OVBPI-install-dir\data\conf\bia
 \bia_tomcat_loggingconfig.properties"
Using The OVBPI Dashboard 29

Logging

The logging level for the Business Process Dashboard is configured through
the OVBPI Administration Console.

The OVBPI Business Process Dashboard log level is maintained in the file:

OVBPI-install-dir\data\conf\bia\
 bia_tomcat_loggingconfig.properties

When Tomcat is started, this logging configuration file is passed in (see
section Tomcat Startup Options on page 29) and the logging output is
redirected to the file:

OVBPI-install-dir\data\log\bia_tomcat0_0.log

If you want to see more detailed log information then use the OVBPI
Administration Console to turn the Servlet Engine logging up to FINER, and
restart the Servlet Engine.

Any JSP output to standard output (stdout) or standard error (stderr) is not
redirected to this log file! (see Stdout/Stderr Log Output on page 32)
30 Chapter 1

Auto Compiling JSPs

When Tomcat runs in development mode, it checks each JSP it displays to see
if the page has been modified since the last time it was displayed. If the page
has been modified, Tomcat compiles the page and you see this latest version.

The OVBPI installation of Tomcat defaults to a development mode.

Running Tomcat in development mode is advantageous when you are
developing, but is not recommended for a production environment. The
Tomcat documentation recommends that when running in a production
environment that you set the development flag to false.

To set your Tomcat installation to run in a non-development mode, you need
to edit the following file:

OVBPI-install-dir\nonOV\jakarta-tomcat-5.0.19\conf\web.xml

Set the development flag to false, then restart Tomcat (The Servlet
Engine component using the OVBPI Administration Console).

The code segment within this web.xml file looks something like the
following:

<servlet>
 <servlet-name>jsp</servlet-name>
 <servlet-class>org.apache.jasper.servlet.JspServlet
 </servlet-class>
...

<init-param>
 <param-name>development</param-name>
 <param-value>false</param-value>
</init-param>

...

To set Tomcat back to development mode, set the development option back to
true, and restart Tomcat.
Using The OVBPI Dashboard 31

Stdout/Stderr Log Output

If your JSPs issue any output to stdout or stderr, this output is sent directly to
the OVBPI Servlet Engine’s stdout/stderr. This stderr/stdout output is not
captured by the OVBPI Servlet Engine log files.

When OVBPI starts up the Servlet Engine (Tomcat), two files are created to
capture any stdout/stderr output. These two files are:

OVBPI-install-dir\data\log\tomcat_stdout.log
OVBPI-install-dir\data\log\tomcat_stderr.log

The tomcat_stderr.log file captures any errors that might occur during
the start-up of the Tomcat servlet engine.

The tomcat_stdout.log file captures both stdout and stderr output from
your JSPs.

So if your JSPs issue any output direct to stdout or stderr, look in the
data\log\tomcat_stdout.log file.

If you restart the OVBPI Servlet Engine, this restarts Tomcat and this
overwrites any previous output contained within the tomcat_stdout.log
and tomcat_stderr.log files.
32 Chapter 1

Lab - Using the OVBPI Dashboard

The purpose of this lab is to get you using the OVBPI Business Process
Dashboard and explore some basic configuration options.

This lab assumes that you have already worked your way through the OVBPI
Integration Training Guide - Modeling Flows, and completed that lab work.

My Flows

• Start up the OVBPI Business Process Dashboard

You should see at least the following flows listed:

Insurance Claim
Order Flow

Let’s configure your Web browser to focus on Order Flow:

• Click on the Edit My Flows button

• Check Order Flow

• Click the Save button

Now, back on the main screen:

• Select Show My Flows from the pull-down list

Your Web page should now only list the flow: Order Flow.
Using The OVBPI Dashboard 33

My Services

Let’s do the same now for the IT service list, and narrow that down to just
show the services that you are interested in:

• Click on the Edit My Services button

• Check the two services: OrdersDB and ShippingDB

• Click the Save button

Now, back on the main screen:

• Select Show My Services from the pull-down list

Your Web page should now only list the services: OrdersDB and ShippingDB.

Superseded Flows

Let’s now remove any mention of superseded flows from this main screen. For
this, you need to run the OVBPI Administration Console:

• Start up the OVBPI Administration Console

• In the left-hand navigation pane, click on the General settings option,
within the Business Process Dashboard option

• In the right-hand pane, un-check the option Show superseded flows?

• Press the Apply button

• When the confirmation dialog appears - click OK

Now, back in your Web browser:

• Refresh your browser...

Your Business Process Dashboard main-page is now tailored to focus on the
Order Flow and your screen is not cluttered-up with any mention of
superseded flows.
34 Chapter 1

New Browser

• Close your Web browser (File->Close)

• Start a fresh OVBPI Business Process Dashboard

Notice that your Business Process Dashboard starts up with the My Flow/My
Service settings that you previously configured. Very useful!

Well done! You have reached the end of the lab.
Using The OVBPI Dashboard 35

36 Chapter 1

2 Customizing The Dashboard
The Business Process Dashboard provided with OVBPI is a generic dashboard
written to present the flow data in a generic way. Although it is a useful tool
for initially monitoring your run time OVBPI system, it is not intended to be
the only way for you to access and view OVBPI information. Your business is
likely to have its specific needs for business reporting, for example, within an
existing portal. Indeed, the OVBPI Business Process Dashboard is provided as
an example of how you might build a business dashboard. You can extend and
replace the example Business Process Dashboard according to your business
requirements.

This chapter looks at the basic components that make up the OVBPI Business
Process Dashboard, and the skill sets required to customize your own
dashboard.
 37

Basics

Using the OVBPI Database

The Business Process Dashboard derives its statistics and information from
the OVBPI database. For example, when the Business Process Dashboard
needs to determine the state of a particular flow, it simply accesses the
OVBPI database, reads the flow’s state and reports this to the screen.

The OVBPI database is essentially divided into two main areas:

1. The Business Impact Engine tables

These tables hold the details for your deployed flows. The tables track
things such as: flow instances, node instances, and service impacts.

2. The Metric Engine Tables

These tables hold all the current, and historical, details for any defined
business metrics.

When customizing your own reporting dashboard you can simply extend the
example OVBPI Business Process Dashboard code, or write your own
dashboard.

When writing or extending the Business Process Dashboard it is important
that you understand the OVBPI database schema; the schema is fully
described in the OVBPI Reference Guide.

Required Skill Sets

The Business Process Dashboard accesses the OVBPI database using SQL
calls. These results are then displayed to the Web browser through JSPs -
with embedded Java.

The basic skill sets required for anyone who wants to customize the Business
Process Dashboard are:

• SQL - Structure Query Language

• Java

• JSP - Java Server Pages

• CSS - Cascading Style Sheets
38 Chapter 2

Tomcat JSP Compilation Logs

When you start developing your own JSPs you may get compilation errors.

With earlier versions of Tomcat these compilation errors used to appear in the
Web browser that was trying to run the new JSP. However, with the version
used by OVBPI, when a compilation error occurs, Tomcat normally displays a
standard error message in the browser saying that something went wrong
and then directs you to the Tomcat log files.

This standard error message contains text similar to the following:

No Java compiler was found to compile the generated source for the JSP.
This can usually be solved by copying manually $JAVA_HOME/lib/tools.jar from
the JDK to the common/lib directory of the Tomcat server, followed by a Tomcat
restart. If using an alternate Java compiler, please check its installation
and access path.

This message seems to be telling you that your Tomcat is not installed
correctly and that you should try copying files around and checking all sorts of
things.

...Stop!...

This message simply means:

“There was a compilation error - check the log file.”

You can view these Tomcat (Servlet Engine) log files using the OVBPI
Administration Console.

So whenever you see the “No Java compiler...” message, simply run the OVBPI
Administration Console and click to view the logs for the Servlet Engine
component. Scroll down to the end of the file and you should be able to see
your compilation error(s).
Customizing The Dashboard 39

More Directory Structure

At install time, the OVBPI Business Process Dashboard is actually installed
into two different locations:

• OVBPI-install-dir\nonOV\jakarta-tomcat-5.0.19\
 webapps\ovbpidashboard2-10

This contains the installed version of the files. That is, these are the files
that are used when you run the Business Process Dashboard.

• OVBPI-install-dir\examples\bia\BusinessProcessDashboard

This contains a complete copy of the files that make up the Business
Process Dashboard.

The idea is that these files provide a set of original Business Process
Dashboard files.

See section Directory Structure on page 21 for details of each sub directory.
The directory structure is the same for both the installed and the example
dashboards.

Creating a Custom Dashboard

When writing your own custom dashboard you can work under the
webapps\ovbpidashboard2-10 directory.

Make a copy of the gen directory and then do your work in the copy directory.
For example, if you create a copy of the gen directory, called myDashboard,
then the URL to run your dashboard is:

http://hostname:44080/ovbpidashboard2-10/myDashboard

By working in a copy of the gen directory, you leave the gen directory to
provide the default Business Process Dashboard behavior.
40 Chapter 2

Architectural Overview

The OVBPI Business Process Dashboard consists of a set of JSPs making use
of a collection of JSP custom tag libraries (Taglibs) and back-end Java beans.

Figure 6 Architectural Overview

where:

• There is a set of Java beans that provide access to the OVBPI database,
localized text strings, dashboard configuration, etc. In other words, a set of
Java beans that can provide the data.

• The JSPs call methods on these Java beans to retrieve the data they
require, and display this in the Web browser.

• To simplify this, most of the common tasks required by the JSPs have
been wrapped-up into JSP Taglibs. This greatly simplifies the JSP code as
there is little or no need to actually write Java. The JSP can simply invoke
a Taglib (written as an HTML tag) and this generates the necessary Java
code to call the appropriate Java bean, retrieving the required data from
the database.

Let’s look at this in more detail...

OVBPI Flow
Data

SQL queries

Dashboard Configuration

JSP

Java
Bean

...

Taglibs

Java
Bean Java

Bean
Java
Bean

Localized Text
Customizing The Dashboard 41

Java Server Pages (JSPs)

The JSPs are available in the gen directory and are designed to be self
explanatory.

For example:

• flowInstance.jsp shows the details of a selected flow instance

• instances.jsp lists the flow instances for a given flow

If you wish to know what a page does, simply run the Business Process
Dashboard and as you display each screen, the URL shows you which JSP
page is being invoked.

There are some JSPs that are reused across multiple pages; these are:

• common.jsp

This holds all the utility methods that are common and used across all the
pages. This page is included at the top of other JSP pages.

• footer.jsp

This is called at the end of every page.

• alertPage.jsp

This is called whenever there is an error that the page is coded to handle -
such as a required parameter not being passed to a page, etc.

• errorPage.jsp

This is called whenever an unexpected occurs.

The JSP pages are all commented throughout and are the best way to learn
how the Business Process Dashboard is written and operates.
42 Chapter 2

Taglibs

There are JSP custom tag libraries (Taglibs) for doing most of the standard
things required within the Business Process Dashboard.

Available Libraries

The following tag libraries are available:

• flow

This tag library provided tags that allow you to retrieve flow information
from OVBPI. You can get lists of flows, lists of flow instances, flow
statistics, flow diagrams, etc..

• i18n

This tag library is how the Business Process Dashboard is able to use
localizable text; see Localization on page 25 for more details about this
taglib.

• metrics

This tag library provided tags that allow you to retrieve metric
information from OVBPI. You can list metric and threshold definitions,
draw statistical graphs, draw metric dials, etc.

• ovis

This tag library allows you to retrieve information from OV Internet
Services (OVIS) and display statistics or diagrams.

• ovsd

This tag library allows you to retrieve information from OV Service Desk
(OVSD) and display statistics or diagrams.

• ovsn

This tag library allows you to retrieve IT service information from OV
Operations (OVO) and display statistics or diagrams (such as service
hierarchy maps).

The taglib is called “ovsn” as it refers to the part of OVO known as “OV
Service Navigator”.
Customizing The Dashboard 43

• service

This tag library allows you to retrieve specific OVBPI information about
the IT services within a flow.

• util

This tag library contains a set of utilities - such as error handling. It also
provides some utility mechanisms you can use when calling the other tag
libraries.

Documentation (Javadocs)

Full documentation for the Taglibs is provided on the OVBPI product CD -
under the docs directory.

You can read the documentation by using a Web browser and opening the file:

docs\html\OVBPITagLibs\index.html

This documentation helps you find out the available list of tags and their
syntax. However, the best way to really learn about how these tags are used is
by reading the JSP code directly, and by referring to the worked examples
later in this training guide.

Basic Operation

The taglibs act as a layer between you and the OVBPI database. You specify
the tag, and it makes the necessary calls to the OVBPI database (using
back-end Java beans) to retrieve the information.

But how does it give you back this information? Most of the tags return their
information by passing back a Java bean which contains the information
gathered from the OVBPI database.

The javadoc for each tag shows what type of Java bean it returns, and there is
a separate set of javadocs that describes all these return beans; see Java
Beans on page 50 for more details.
44 Chapter 2

Let’s consider an example:

The <flow:flow> tag returns details of a given flow. You pass in the
specific flow ID that you are interested in, and you are returned a Java
bean that contains the flow details for that flow.

You call the tag like this:

<flow:flow flowId="<%= flowId %>" var="myFlowBean" />

where:

— You pass in the Java variable flowId which you have pre-set to be
the flow ID of the flow you want

— You specify the var= attribute to provide the name for a Java bean

This Java bean is created by the flow tag and returned to you in the
variable: myFlowBean. Within your JSP you can then refer to the
variable myFlowBean, and call methods on it to obtain the flow
specific information that is returned by the tag.

The javadoc for the flow tag tells you that the bean returned to you
is of type FlowBean. And the javadoc for the FlowBean tells you that
you have methods available such as: getActiveCount(), getNodes(),
etc.
Customizing The Dashboard 45

Two Types of Tags

Generally speaking, within most of the tag libraries, you find two types of
tags:

1. List tags

2. Specific tags

List Tags

Some examples of “list” tags are:

• <flow:flowOutlineList>

• <flow:flowInstanceOutlineListCount>

• <ovis:serviceObjectiveList>

These are tags that return “lists” of items.

When calling a “list” tag, be aware that the tag actually sets up a “loop” within
your JSP code.

Let’s explain by an example:

Suppose you want to loop through all the flows currently active in your
OVBPI system, displaying each flow name. You could use the following
code segment:

<table>
 <flow:flowOutlineList var="flowOutlineBean">
 <tr>
 <td><%= flowOutlineBean.getName() %></td>
 </tr>
 </flow:flowOutlineList>
</table>

The above code segment produces code that basically loops through your
flow definitions, displaying the name of each flow.

So a “list” tag typically spreads over a few lines, and expands into a code-loop
that loops through the returned results.
46 Chapter 2

Specific Tags

A specific tag is a “non-list” tag. It returns a single object or value.

For example:

The <flow:flow> tag is a “non-list” tag. Suppose you have the flow ID
for a particular flow definition. You can use the <flow:flow> tag to get
the details for the given flow.

The code looks like this (assuming the flow ID is held in a Java variable
called flowId):

<flow:flow flowId="<%= flowId %>" var="flowBean" />

where:

— This tag does not produce any loops. It simply retrieves the data for
the requested flow ID and returns a bean containing the details for
this flow

— The tag is executed, the flowBean variable is loaded up with data,
and control then moves on to the next line of code in the JSP

Error Handling

There are utility tags for handling errors that may be returned from other
tags. For example, <util:onerror ...> can be placed after a tag call to
catch any error that might get thrown.

For example, consider the following JSP code segment:

<jsp:useBean id="errorInfoBean"
 class="com.hp.ov.bia.views.taglibs.util.ErrorInfoBean" scope="session" />

...

<flow:flowInstance flowInstanceId="<%= flowInstId %>"
 var="flowInstanceBean" errorInfoBean="<%= errorInfoBean %>"
/>

<util:onerror errorInfoBean="<%= errorInfoBean %>">
 <jsp:forward page="../gen/alertPage.jsp">
 <jsp:param name="alert" value="It all went wrong!"/>
 </jsp:forward>
</util:onerror>

<flow:flowInstanceImage flowInstanceBean="<%= flowInstanceBean %>" />
Customizing The Dashboard 47

where:

• The <flow:flowInstance> tag gets the instance details for the given
flow instance ID. The result is returned in a FlowInstanceBean

• Because the <flow:flowInstance> tag has specified an
errorInfoBean= parameter, any error information is returned to the
calling JSP code

• If the <flow:flowInstance> tag throws an error then the code between
the <util:onerror> mark-up is executed. As this example forwards to
another JSP, it terminates this page

A possible error might be if the value in the variable flowInstId
variable does not match any flow instance ID within the OVBPI database.

• If the <flow:flowInstance> tag has no errors then the
<util:onerror> code is skipped and the JSP moves on to the next line
(which in this case is the <flow:flowInstanceImage> tag)

• The errorInfoBean must be declared as a session wide bean, hence the
<jsp:useBean: tag

The most obvious error that you can expect to see is when you ask for an
object (flow, flow instance, node, node instance, etc.) that doesn’t exist. For
example, you ask for a specific flow but have not supplied the correct flow ID.

Access Error

If your OVBPI installation is configured to require a logon to access the
Business Process Dashboard then you may have access errors returned from a
tag. For example, you may be using the <flow:flow> tag to access a
particular flow ID but your logon may not give you access to this flow. If your
tag includes an errorInfoBean, then this will contain the access error
details.

List Tags

Be aware that when using a “list” tag, you may not always get errors thrown.
In particular, the “list” tags tend not to throw any error if no objects are found.

For example:

<flow:flowOutlineList var="flowOutlineBean" nameFilter="Order Flow" />
48 Chapter 2

The flowOutlineList tag sets up a loop and finds all flow definitions that
match any given criteria. In this case, you have asked to retrieve only flows
whose name matches the given flow name: Order Flow.

You might expect to be able to place some <util:onerror> code after this
call to catch the condition where the flow name was not found....wrong!

The flowOutlineList tag in the above example, loops through the flow
definitions trying to match them against the given filter. If there are no
matches then that is a valid outcome!

In other words, a “list” tag does not consider “no return values” to be an error.
Customizing The Dashboard 49

Java Beans

The OVBPI Business Process Dashboard provides a number of back-end Java
beans for accessing the OVBPI data. Some of these work in conjunction with
the taglibs, and others are there as helpers if you need to start writing
bespoke SQL and issuing this against the OVBPI database.

Documentation (Javadocs)

Full documentation for all the Business Process Dashboard Java beans is
provided on the OVBPI product CD - under the docs directory.

You can read the documentation by using a Web browser and opening the file:

docs\html\OVBPIJavadoc\index.html

You can broadly categorize the beans into two main groups:

• Taglib Beans

com.hp.ov.bia.views.taglibs.*

These beans are the ones you need to know about when using the taglibs.

• Helper Beans

com.hp.ov.bia.views.*
com.hp.ov.bia.views.util.*

These are the additional beans that might be useful as/when you start
doing customization that cannot be performed within a taglib. The most
obvious example of this would be if you want to issue custom SQL
statements directly against the OVBPI database; see Chapter 6, Direct
OVBPI Database Access.
50 Chapter 2

The Next Step

With the Business Process Dashboard JSP code as an example, and all the
Taglib and Java bean documentation, it is pretty easy to understand how
everything works.

To help your understanding, the remaining chapters of this guide lead you
through many worked examples.
Customizing The Dashboard 51

52 Chapter 2

3 Working With Flows
This chapter looks at the <flow> tag library. It provides an overview of the
typical calling sequence, and then takes you through a series of worked
examples.

This chapter then look at how to customize the flow diagrams within the
OVBPI Business Process Dashboard.
 53

<flow> Tag Hierarchy

The following diagram lists the main <flow> tags, and shows how they relate
together:

Figure 7 <flow> Tag Hierarchy

On the diagram:

• Each box lists the tag name, and underneath that is the type of Java bean
that the tag returns. For those tags that do not return a Java bean it lists
what the tag produces.

<flowOutlineList>
FlowOutlineBean

<flow>
FlowBean

flowId

<flowNodeList>
FlowNodeBean

<flowImage>
Picture

<flowNodeTimesImage>
Picture

<flowInstanceOutlineList>
FlowInstanceOutlineBean

flowInstanceId

<flowInstance>
FlowInstanceBean

<flowInstanceNodeList>
FlowInstanceNodeBean

<flowInstanceImage>
Picture

<flowInstanceTimelineImage>
Picture

<flowInstanceData>
FlowInstanceDataBean

<flowInstanceDataPropertyList>
FlowInstanceDataPropertyBean

nodeId

<node>
FlowNodeBean

nodeInstanceId
54 Chapter 3

• There is a little “loop” symbol to the right of each “list” tag to indicate that
this tag typically loops through the return values.

The idea of the diagram is to help you see the typical calling sequence for the
tags. For example:

• You typically start with the flowOutlineList tag to loop through the
available flows and pull out the flowId

• Once you have the flowId, you might then call the flow tag, passing it
this flowId. The flow tag returns to you a FlowBean

• You can then pass this FlowBean to the flowImage tag and have it draw
you a flow diagram

Alternatively, if you wanted to drill down into the flow instance details:

• Once you have the flowId, you can call the flowInstanceOutlineList
tag. This allows you to loop through the flow instances for this flowId.

For each flow instance you get a FlowInstanceOutlineBean, and from
this, you can extract the flowInstanceId

• You can then pass this flowInstanceId to the flowInstance tag, and
it returns to you a FlowInstanceBean

• You can then pass this FlowInstanceBean to the flowInstanceImage
tag and it draws you a flow instance diagram
Working With Flows 55

Accessing Flow Details

Listing Flow Definitions

To simply loop through your flow definitions and list information about each,
you use the flowOutlineList tag.

In its simplest form, you call the tag and just specify the variable name for the
return results. By default the tag returns all non-superseded flow definitions:

<%@ taglib uri="com.hp.ov.bia.views.taglibs.flow" prefix="flow" %>

<html>
 <head><title>Simple Flow Listing</title></head>
 <body>
 <table cellSpacing=0 border=1>
 <th>Flow List</th>
 <flow:flowOutlineList var="flowOutlineBean">
 <tr>
 <td><%= flowOutlineBean.getName() %></td>
 </tr>
 </flow:flowOutlineList>
 </table>
 </body>
</html>

where:

• You declare the taglib:

<%@ taglib uri="com.hp.ov.bia.views.taglibs.flow" prefix="flow" %>

This tells the JSP that you want to use the Java taglib
com.hp.ov.bia.views.taglibs.flow. The prefix option says that you
will refer to this taglib within the rest of the JSP by the tag name flow.

You can now start your flow tags with: <flow:whatever>, and end the
tags with </flow:whatever>.

• If your OVBPI installation is configured to require you to log on before
accessing the Business Process Dashboard, then the <flowOutlineList>
tag only returns the flows that you have access to.
56 Chapter 3

The above example code simply loops through, outputting the name of each
flow definition. The javadocs for the return bean type (FlowOutlineBean) tells
you that you can output lots of information about the flow using methods such
as:

getActiveCount()
getBlockedWeight()
getAverageDuration()
getFlowId()
getItStatus()
getStatus()

and many more.

Filtering Flows By Name

You can specify that the flowOutlineList tag only retrieve flow definitions
where the flow name matches a certain name, or list of names.

To match on a single flow name:

<%@ taglib uri="com.hp.ov.bia.views.taglibs.flow" prefix="flow" %>

<html>
 <head><title>Flow List - simple filter</title></head>
 <body>
 <table cellSpacing=0 border=1>
 <th>Flow Name</th>
 <th>Active</th>
 <th>Business Health</th>
 <flow:flowOutlineList var="flowOutlineBean" nameFilter="Order Flow" >
 <tr>
 <td><%= flowOutlineBean.getName() %></td>
 <td><%= flowOutlineBean.getActiveCount() %></td>
 <td><%= flowOutlineBean.getStatus() %></td>
 </tr>
 </flow:flowOutlineList>
 </table>
 </body>
</html>

To specify more than one flow name, you need to make use of the
<util:args> tag...
Working With Flows 57

Multiple Flow Names (<util:args>)

To specify more than one flow name, you need to build up an ArgsBean which
can then be passed to the flowOutlineList tag. You can do this by using the
<util:args> tag:

<%@ taglib uri="com.hp.ov.bia.views.taglibs.flow" prefix="flow" %>
<%@ taglib uri="com.hp.ov.bia.views.taglibs.util" prefix="util" %>

<html>
 <head><title>Flow List - util:args filter</title></head>
 <body>

 <util:args var="flowNameArgsBean">
 <util:arg name="Order Flow"/>
 <util:arg name="Insurance Claim"/>
 </util:args>

 <table cellSpacing=0 border=1>
 <th>Flow Name</th>
 <th>Active</th>
 <th>Business Health</th>
 <flow:flowOutlineList var="flowOutlineBean"
 nameFilter="<%= flowNameArgsBean %>" >
 <tr>
 <td><%= flowOutlineBean.getName() %></td>
 <td><%= flowOutlineBean.getActiveCount() %></td>
 <td><%= flowOutlineBean.getStatus() %></td>
 </tr>
 </flow:flowOutlineList>
 </table>
 </body>
</html>
58 Chapter 3

Filtering By Flow Status

The flowOutlineList tag also lets you filter the flow list by the current
state of the flow definition.

Valid states are listed in the javadoc, and they are as follows:

• ACTIVE

This matches flows that are “healthy”; see Flow Status on page 15

• IMPEDED

This matches flows that are “at risk”; see Flow Status on page 15

• BLOCKED

This matches flows that are “blocked”; see Flow Status on page 15

• DELETED

This matches flows that have been superseded by a newer version.
Internally, within OVBPI, the flow is referred to as being marked for
deletion (hence the status DELETED), but within the Business Process
Dashboard the flow is referred to as a “superseded” flow.

• NOT DELETED

This is the default. It matches flows that are in any state other than
DELETED.

Using this filter is the same as a filter of ACTIVE|IMPEDED|BLOCKED.

• ALL

Simply matches all flows in all states.
Working With Flows 59

Here is an example that lists only the superseded flow definitions:

<%@ taglib uri="com.hp.ov.bia.views.taglibs.flow" prefix="flow" %>

<html>
 <head><title>Flow List - by flow status</title></head>
 <body>
 <table cellSpacing=0 border=1>
 <th>Flow Name</th>
 <th>Active</th>
 <th>Business Health</th>
 <flow:flowOutlineList var="flowOutlineBean"
 nameFilter="Order Flow"
 statusFilter="DELETED" >
 <tr>
 <td><%= flowOutlineBean.getName() %></td>
 <td><%= flowOutlineBean.getActiveCount() %></td>
 <td><%= flowOutlineBean.getStatus() %></td>
 </tr>
 </flow:flowOutlineList>
 </table>
 </body>
</html>
60 Chapter 3

Getting the Flow ID

To convert a flow name into a flow ID, you can use the flowOutlineList tag.

Specify the name of the flow (nameFilter=) and flowOutlineList returns
the active version of that flow definition. You can then pull out the flow ID
from the returned FlowOutlineBean.

For example:

<%@ taglib uri="com.hp.ov.bia.views.taglibs.flow" prefix="flow" %>

<html>
 <head><title>Flows - get the flow ID</title></head>
 <body>
 <%
 String flowId = "";
 %>

 <flow:flowOutlineList var="flowOutlineBean" nameFilter="Order Flow" />

 <%
 if (flowOutlineBean != null)
 {
 flowId = flowOutlineBean.getFlowId();
 }
 %>

 <!-- Display the result -->

 Flow ID = [<%= flowId %>]

 </body>
</html>

where:

• After the flowOutlineList tag, you check to see if flowOutlineBean is
null.

You do this because, if the flowOutlineList tag cannot find any flows
that match the given criteria, it does not allocate a return bean and hence
when you go to access flowOutlineList, it might be null.
Working With Flows 61

Listing Node Instance Details

Let’s look at an example where you have found the flow ID and you now want
to loop through all the flow instances for this flow ID. For each flow instance
you then want to loop through any node instances.

The basic flow of tags is as follows:

• Pass the flow ID to the flowInstanceOutlineList tag and set up a loop
to go through all the returned flow instances

• Within this loop, you can display some overall flow instance details, and
then call the flowInstance tag to get further details about each flow
instance

• You can then pass this flow instance information into the
flowInstanceNodeList tag and set up a loop to go through each of the
node instances
62 Chapter 3

The JSP code segment might look something like this:

<%-- Loop through the flow instance details --%>

<flow:flowInstanceOutlineList var="flowInstanceOutlineBean"
 idFilter="<%= flowId %>"
 maxInstances="100" >
 <%
 // Pull out the flow instance Id
 String flowInstId = flowInstanceOutlineBean.getFlowInstanceId();
 %>

 <%-- Print some basic flow instance details --%>

 <h1>Flow Instance:</h1>

 Flow InstId: <%= flowInstId %>

 Identifier : <%= flowInstanceOutlineBean.getIdentifier() %>

 <%-- Now loop through and list the node instance details --%>

 <h2>Node Instances:</h2>

 <%-- Get the flow instance object --%>

 <flow:flowInstance flowInstanceId="<%= flowInstId %>"
 var="flowInstanceBean" />

 <%-- Now get the list of node instances --%>
 <%-- and loop through displaying the node instance ids --%>

 <flow:flowInstanceNodeList flowInstanceBean="<%= flowInstanceBean %>"
 var="flowInstanceNodeBean" >
 Node Name : <%= flowInstanceNodeBean.getName() %>

 Node InstId : <%= flowInstanceNodeBean.getNodeInstanceId() %>

 Node Duration: <%= flowInstanceNodeBean.getOverallDuration() %><p />
 </flow:flowInstanceNodeList>

</flow:flowInstanceOutlineList>
Working With Flows 63

Drawing Flow Diagrams

There are three main types of “flow” diagram available to you, and a
corresponding taglib for each of these. They are:

• Flow Diagram: <flowImage>

This shows the overall flow diagram, showing the number of flow
instances active at each node, and any IT service impact that might be
impacting the flow.

• Flow Instance Diagram: <flowInstanceImage>

This shows where a particular flow instance currently is in the flow,
showing which nodes have been completed, which are active, and whether
any are currently impacted by an IT service impact.

• Flow Instance Timeline: <flowInstanceTimelineImage>

This shows the flow instance details as a time line, so you can easily see
the order in which nodes are being executed, and visually see the length of
time spent in each node.

Flow Diagram <flowImage>

To draw an overall flow diagram is very simple.

The basic steps are:

• Get the flow ID

• Use the flow tag to get a FlowBean for your flow

• Pass this FlowBean to the flowImage tag
64 Chapter 3

For example:

<%@ taglib uri="com.hp.ov.bia.views.taglibs.flow" prefix="flow" %>

<html>
 <head><title>Flow Diagram Page</title></head>
 <body>
<%
 String flowName = "Order Flow";
 String flowId = "";
%>
 <%-- Get the flowId --%>

 <flow:flowOutlineList var="flowOutlineBean"
 nameFilter="<%= flowName %>" />
<%
 // Grab the flowId
 if (flowOutlineBean == null)
 {
 String errorText = "Unable to find flow [" + flowName + "]";
 %>
 <jsp:forward page="../gen/alertPage.jsp">
 <jsp:param name="alert" value="<%= errorText %>"/>
 </jsp:forward>
 <%
 }
 flowId = flowOutlineBean.getFlowId();
%>

 <%-- Now you have the flowId, you can get the flow --%>

 <flow:flow flowId="<%= flowId %>" var="flowBean" />

 <%-- Now draw the flow --%>

 <flow:flowImage flowBean="<%= flowBean %>" />

 </body>
</html>
Working With Flows 65

Flow Instance Diagram <flowInstanceImage>

To draw a specific flow instance image is very simple.

The basic steps are:

• Get the flow ID

• Use the flowInstanceOutlineList tag to return the flow instances

• Find the flow instance that you want

• Use the flowInstance tag to get the FlowInstanceBean for this
instance

• Pass this FlowInstanceBean to the flowInstanceImage tag

Here is an example that gets the first (up to) 100 flow instances and displays
flow instance diagrams for each one:

<%@ taglib uri="com.hp.ov.bia.views.taglibs.flow" prefix="flow" %>

<html>
 <head><title>Flow Instance Diagram Page</title></head>
 <body>
<%
 String flowName = "Order Flow";
 String flowId = "";
%>

 <%-- Get the flowId --%>

 <flow:flowOutlineList var="flowOutlineBean"
 nameFilter="<%= flowName %>" />
<%
 ...test that flowOutlineBean is not null...

 flowId = flowOutlineBean.getFlowId();
%>
 <%-- Now you have the flowId, you can get the list of flow instances --%>

 <flow:flowInstanceOutlineList var="flowInstanceOutlineBean"
 idFilter="<%= flowId %>"
 maxInstances="100" >
<%
 // Pull out the flow instance Id
 String flowInstId = flowInstanceOutlineBean.getFlowInstanceId();
%>
66 Chapter 3

 <%-- Print some basic flow instance details --%>

 <h1>Flow Instance:</h1>

 Identifier: <%= flowInstanceOutlineBean.getIdentifier() %> <p />

 <%-- Get the flow instance object --%>
 <flow:flowInstance flowInstanceId="<%= flowInstId %>"
 var="flowInstanceBean" />

 <%-- Now draw the flow instance diagram --%>
 <flow:flowInstanceImage flowInstanceBean="<%= flowInstanceBean %>" />

 </flow:flowInstanceOutlineList>

 </body>
</html>
Working With Flows 67

Flow Instance Timeline <flowInstanceTimelineImage>

To produce a flow instance time line, you follow the same basic code steps as
for a flow instance diagram (see Flow Instance Diagram <flowInstanceImage>
on page 66), however, once you have the flow instance details you use the
flowInstanceTimelineImage tag to produce the actual picture.

The basic steps are:

• Get the flow ID

• Use the flowInstanceOutlineList tag to return the flow instances

• Find the flow instance that you want

• Use the flowInstance tag to get the FlowInstanceBean for this
instance

• Pass this FlowInstanceBean to the flowInstanceTimelineImage tag

For example, once you have the flow instance ID, you produce a flow instance
timeline with the following code:

 <%-- Get the flow instance object --%>

 <flow:flowInstance flowInstanceId="<%= flowInstId %>"
 var="flowInstanceBean" />

 <%-- Now draw the flow instance timeline --%>

 <flow:flowInstanceTimelineImage flowInstanceBean="<%= flowInstanceBean %>"
 axisWidth="500" />
68 Chapter 3

Setting Background Color

You can alter the background color for your flow diagrams by using the
bgColor parameter.

If this parameter is not passed into the tag then the background defaults to
the value as specified in the DashboardConfig.properties file. The
property that sets the default background color is FlowBackgroundColor.

The bgColor parameter accepts either HTML color values (specified as
hexidecimal strings preceded by the ‘#’ character) or color names as defined
within the java.awt.Color class.

Some examples of color names known to java.awt.Color are: red, white,
black, cyan. Refer to the Java SDK documentation for more details.

Some examples of HTML colors are #ff0000, #E4E9EE, etc., where the
hexidecimal numbers represent the shades of red, green and blue (#rrggbb).

Here are some examples setting the background for a flow diagram:

Named Color

<flow:flowImage flowBean="<%= flowBean %>" bgColor="purple" />

HTML (Hex) Color

<flow:flowImage flowBean="<%= flowBean %>" bgColor="#ddeeaa" />
Working With Flows 69

Activating Node URLs

If you want the nodes in your flow diagrams to be hyperlinks, then you can
use the nodeBaseUrl parameter. This is available when drawing overall flow
diagrams or instance diagrams/timelines.

The parameter is called nodeBaseURL because it is the “base” for the
resultant URL that is built for each node within the diagram. This is because
the node ID might be added to the URL. Let’s explain...

Fixed URL

If you supply a simple URL string with no parameters, then that URL string
is used for each node.

For example, if your tag is:

<flow:flowImage flowBean="<%= flowBean %>" nodeBaseUrl="myPage.html" />

the flow diagram is drawn and when you click on any of the nodes within the
flow diagram, the Web browser redirects to the page myPage.html.

Dynamic URL

If your URL contains at least one HTML parameter, then the flow diagram
appends the node ID to the resultant URL. This means that your URL
contains the node ID of the node the user clicked on.

All that gets appended to your base URL string is the value of the node ID. So
for the resultant URL to be correctly formed you should end your base URL
with the name of the node ID parameter and an equals (=) sign.

For example, if you want the resultant URL to contain the node ID, you could
specify the following tag:

<flow:flowImage flowBean="<%= flowBean %>" nodeBaseUrl="myPage.jsp?nodeid="/>

When the user clicks on a node within the flow diagram, the Web browser
redirects to myPage.jsp passing in the parameter nodeid set to the value
for the node the user clicked on. This allows myPage.jsp to know which node
the user clicked on, and behave accordingly.
70 Chapter 3

Multiple Parameters on the Base URL

If you want to pass in other parameters on the base URL, you can, but there is
something that is worth knowing about.

You can construct the URL as follows:

<flow:flowImage flowBean="<%= flowBean %>"
 nodeBaseUrl="myPage.jsp?flowid=12345&nodeid=" />

and this works fine. It passes in the two parameters (flowid and nodeid) to
myPage.jsp.

However, it is more typical within a JSP, to want to pass in parameters and
set the values to Java variables. For example, you might have the flow ID in a
variable called flowId, and you want to pass this value into the node base
URL. The obvious thing to try is this:

<flow:flowImage flowBean="<%= flowBean %>"
 nodeBaseUrl="myPage.jsp?flowid=<%= flowId %>&nodeid=" />

For some reason...this does not work :-(It seems that JSPs are unable to
understand this substitution within parameters of tags.

So...if you need to build a compound URL, you need to build the URL first,
within Java, and then pass the result as one variable into the tag.

For example:

<%
 String theURL = "myPage.jsp?flowid=" + flowId + "&nodeid=";
%>
<flow:flowImage flowBean="<%= flowBean %>" nodeBaseUrl="<%= theURL %>" />
Working With Flows 71

Showing Metric Flags

The flowImage tag lets you draw a flow diagram and specify whether you
want it to display metric flags on any particular nodes.

You do not need to have any actual business metrics defined for your flow. You
are able to have the flow drawn with metric flags wherever you decide.

The parameters are startMetric and endMetric.

You need to specify both parameters for the diagram to show metrics.

For each parameter, you specify the name of the node on which to place the
metric flag. If either one of the specified node names does not exist then none
of the metric flags are shown.

Here is an example where you draw the metric flags between the Process
Order and Ship Order nodes:

<flow:flowImage flowBean="<%= flowBean %>"
 startMetric="Process Order"
 endMetric="Ship Order" />

Further Customization

You have seen that it is easy to customize things such as background color,
node URLs and metric flags. But what if you wanted to change the color of the
text that shows the name of each node? Why can’t you set that from within the
tag? Where is the “nodeTextColor” parameter?

The reason there is no “nodeTextColor” parameter on the flowImage tag is
because the tags need to allow people to not just change/set the text color for
all nodes, but also allow people to set the text color for each node individually
- if they so desired. That is, there are loads of additional customizations that
you might want to make, but they are actually qualities of each node within
the flow diagram and therefore not simply a “diagram wide” option.

The way that you specify node specific customizations is by using an
“annotation”. (see Flow Annotations on page 73)
72 Chapter 3

Flow Annotations

When calling a tag to draw a flow diagram, you can set the annotationBean
parameter. This parameter allows you to pass in a Java bean that implements
the com.hp.ov.bia.views.taglibs.flow.FlowAnnotation interface.

So what does that mean?

When a flow diagram is being drawn, the code drawing the flow can make
call-outs to find out things like “what color to use for this node name?”, or
“what image to use when displaying this node?”. You are able to supply a Java
bean which can provide the answers to these questions. This bean that you
supply is called “an annotation”.

To write an annotation, your Java bean must implement the FlowAnnotation
interface. This just means that your bean needs to provide a particular set of
methods as defined in the FlowAnnotation interface.

So what kind of methods are defined in this FlowAnnotation interface? It
basically defines methods such as:

getNodeText()
getNodeTextColor()
getArcColor()
getMetricArcColor()
getNodeTooltip()
etc...

So when the flow is being drawn, as the flow drawer draws each node it calls
the method getNodeText() to get the actual text to display for this node.
The default is the actual name of the node. The drawer then calls the method
getNodeTextColor() to see what color this node’s text should be. It
continues through the various methods as it gathers all the necessary
information it needs to draw each node.

This mechanism of calling out to an annotation means that the flow drawer is
highly configurable.
Working With Flows 73

DefaultFlowAnnotationBean

What if you are not a Java guru! How are you supposed to write a Java bean
that implements the FlowAnnotation interface?

Well...you don’t. There is one already written for you, and it is called:

com.hp.ov.bia.views.taglibs.flow.DefaultFlowAnnotationBean

This Java bean allows you to set things such as the color of the node text, and
the color of the arcs within the diagram, etc..

Your JSP needs to instantiate this bean - within Java code...and that is not too
difficult if you have an example to follow...

Example 1

To use the DefaultFlowAnnotationBean bean you need to import its
definition at the top of the JSP.

You also need to import java.awt.Color. This is because the methods within
DefaultFlowAnnotationBean, that allow you to set colors, all expect the color
to be defined as a Java color.

So at the top of the JSP you have the import line:

<%@ page import="com.hp.ov.bia.views.taglibs.flow.DefaultFlowAnnotationBean,
 java.awt.Color"%>

When you are about to display your flow diagram, you need some Java code to
instantiate a DefaultFlowAnnotationBean, and then set various colors.

You then call the flowImage tag, passing it your instantiation of the default
annotation bean.
74 Chapter 3

Your code might look something like this:

 <%-- Assuming you have the flowId set, you can get the flow --%>

 <flow:flow flowId="<%= flowId %>" var="flowBean" />

 <%-- Set up the default annotation --%>
<%
 DefaultFlowAnnotationBean defAnno = new DefaultFlowAnnotationBean();

 defAnno.setArcColor(Color.pink);
 defAnno.setNodeTextColor(Color.decode("#ddeeaa"));
%>

 <flow:flowImage flowBean="<%= flowBean %>"
 annotationBean="<%= defAnno %>" />

where this example draws the arcs of the flow in pink, and the color of the
node labels is set to “#ddeeaa” - which is a nice yellow’ish-green’ish color.

Example 2

This example code segment uses the default annotation bean to set more
colors. The example also sets the additional flowImage tag parameters to
alter the background color and show metric flags:

<%
 DefaultFlowAnnotationBean defAnno = new DefaultFlowAnnotationBean();

 defAnno.setArcColor(Color.pink);
 defAnno.setMetricArcColor(Color.white);
 defAnno.setNodeLeftTextColor(Color.orange);
 defAnno.setNodeRightTextColor(Color.blue);
 defAnno.setNodeTextColor(Color.decode("#ddeeaa"));
%>

 <flow:flowImage flowBean="<%= flowBean %>"
 bgColor="#aaaaaa"
 startMetric="Process Order"
 endMetric="Ship Order"
 annotationBean="<%= defAnno %>" />
Working With Flows 75

Developing Your Own Annotation

To do further customization, such as:

• Specifying what the left and/or right text should be for a node

• Setting different colors for the text on different nodes

• Setting different images for each node

• etc..

you need to supply your own annotation.

As stated earlier, you could do this by writing a Java bean that implements
the FlowAnnotation interface. However, an easier way is to write a Java
bean that extends the default annotation bean:
DefaultFlowAnnotationBean.

By extending DefaultFlowAnnotationBean, you only need to provide
methods for the ones that you wish to alter. That is, you override the methods
within DefaultFlowAnnotationBean that you want to change.

So if the easiest way to provide an annotation is to override methods within
DefaultFlowAnnotationBean, what methods does this bean offer and which
ones are typically worth overriding?

The full list of methods is described in the javadocs (see Documentation
(Javadocs) on page 50).
76 Chapter 3

Typical Methods To Override

The methods that you might typically want to override are:

• getNodeLeftText()
getNodeRightText()
getNodeLeftTextColor()
getNodeRightTextColor()

These allow you to specify what is displayed as left and right text above
each node, and the individual colors. For example, you could specify
different values and/or colors for each node.

• getNodeText()
getNodeTextColor()

These allow you to alter the text that is displayed underneath each node
as its label, and the color to use. For example, you might specify different
colors for each node label.

• getNodeTooltip()

This allows you to specify what data/text is put into the tooltip that
appears when the user moves the cursor over each node.

• getNodeTypeImage()

This allows you to specify the actual image used when displaying a node.
For example, you might set an image based on the type of node, or set the
image differently for each node.
Working With Flows 77

Method Parameters

All these methods are passed three parameters:

1. The current node (FlowNode)

This is passed as a FlowNode object.

The method is able to access all the node details from within this object.
Details such as the node name, node type, etc.

The method is also able to derive from this FlowNode object whether this
node is part of an overall flow diagram or part of a flow instance diagram.

2. The current JSP page context (PageContext)

This passes the current Web context to the method.

3. The current Web browser locale (Locale)

This allows the method to determine things such as whether to use
dollar($) signs or pound(£) sign...etc..

FlowNode Parameter

As mentioned above, the node that is being drawn, is passed to the method as
a FlowNode object. You can think of this object definition (class) as being a
general definition for any node.

When a method is passed this FlowNode object, the method is able to ask
whether the node is an instance of a FlowNodeBean class or a
FlowInstanceNodeBean class. This allows the method to know whether it is
drawing an overall flow diagram or a flow instance diagram. It also allows the
method to know what kind of node information the bean contains.

Hence you can write your methods to behave differently depending on
whether they are drawing a flow diagram or a flow instance diagram.
78 Chapter 3

Within the method you can construct your code as follows (assuming that the
FlowNode object is passed in a variable called node:

if (node instanceof FlowNodeBean)
{
 // You are drawing a flow diagram

 FlowNodeBean fNode = (FlowNodeBean)node;

 ...your code here...referencing the fNode...
}
else
{
 // You are drawing a flow instance diagram

 FlowInstanceNodeBean fiNode = (FlowInstanceNodeBean)node;

 ...your code here...referencing fiNode...
}

If you are writing an annotation that you intend to use only when calling a
flow diagram (<flowImage>), then you do not need to worry about testing the
node type. You could just assume that it is a FlowNodeBean. Indeed, typically
you write an annotation for a specific flow diagram. But at least you have the
ability to write more generic/reusable annotations if you wish.

How to Write an Annotation

There are two main ways that you can write an annotation:

1. As a separate Java bean, compiled by you, and placed underneath
WEB-INF\classes or within a JAR file in WEB-INF\lib

2. As code within a JSP page
Working With Flows 79

As a Separate Java Bean

Let’s work through an example where you create an external Java annotation
bean:

Create a Subdirectory

Create a subdirectory under WEB-INF\classes and give this new directory
the name extra

Create a Source File

Create your new Java source file in this WEB-INF\classes\extra directory
and make sure that you specify the package name to be extra

The first line of your file should be:

package extra;

For this example, your Java source file is called:
AnnotateCountAndValue.java

Write the Code

The Java class that you write must have the same name as the basename of
the source file, so you define your Java class to be called
AnnotateCountAndValue and have it extend DefaultFlowAnnotationBean

You source code looks something like this:

package extra;

public class AnnotateCountAndValue extends DefaultFlowAnnotationBean
{

}

You now write the method(s) that you want to override.

In this example, you might provide the following methods:

• getNodeLeftText()

Having it return the active value (weight) in each node.

• getNodeRightText()

Having it return the active flow instance count in each node.
80 Chapter 3

The code might look something like this:

package extra;

import com.hp.ov.bia.views.taglibs.flow.DefaultFlowAnnotationBean;
import com.hp.ov.bia.views.taglibs.flow.FlowNode;
import com.hp.ov.bia.views.taglibs.flow.FlowNodeBean;
import com.hp.ov.bia.views.util.FlowNodeType;
import javax.servlet.jsp.PageContext;
import java.text.NumberFormat;
import java.util.Locale;

public class AnnotateCountAndValue extends DefaultFlowAnnotationBean
{
 public String getNodeLeftText(FlowNode node,
 PageContext pageContext, Locale locale)
 {
 String text = "";
 NumberFormat nf = NumberFormat.getCurrencyInstance(locale);

 FlowNodeBean fNode = (FlowNodeBean)node;
 if ((FlowNodeType.END_NODE).equals(fNode.getType()))
 {
 text = "T = " + nf.format(fNode.getTotalWeight() / 1000000) + "M";
 }
 else
 {
 text = nf.format(fNode.getActiveWeight() / 1000000) + "M";
 }

 return text;
 }

 public String getNodeRightText(FlowNode node,
 PageContext pageContext, Locale locale)
 {
 String text = "";

 FlowNodeBean fNode = (FlowNodeBean)node;
 if (fNode.getType().equals(FlowNodeType.END_NODE))
 {
 text = "T = " + fNode.getTotalCount();
 }
 else
 {
 text = new Long(fNode.getActiveCount()).toString();
 }
 return text;
 }
}

Working With Flows 81

where:

• The getNodeLeftText() method returns a different value depending on
whether it is an end node or not

For an end node, the method returns the total weight that has passed
through this node. For all other nodes it returns the active weight at the
node.

• getNodeRightText() returns active or total instance counts at each
node, depending on whether it is an end node or not

• These methods assume that the node being drawn is part of a flow
diagram. That is why you see the lines:

FlowNodeBean fNode = (FlowNodeBean)node;

The method assumes that it is a flow node and not a flow instance node.

Compile Your Annotation Code

To do this, you need to be in the WEB-INF\classes\extra directory.

You need to compile your code with the following JAR files in your classpath:

• OVBPI Jar files from the WEB-INF\lib directory:

bia-views.jar
bia-flowviewer.jar

• Tomcat libraries from the jakarta-tomcat-5.0.19\common\lib
directory:

jsp-api.jar
servlet-api.jar

Your compilation looks something like this (for MS Windows):

set CP=..
set CP=%CP%;../../lib/bia-views.jar
set CP=%CP%;../../../../../common/lib/jsp-api.jar
set CP=%CP%;../../lib/bia-flowviewer.jar
set CP=%CP%;../../../../../common/lib/servlet-api.jar

javac -classpath %CP% AnnotateCountAndValue.java
82 Chapter 3

Use the Annotation from a JSP

You can now call this annotation from a JSP when displaying a flow diagram

 <h1>Flow Diagram - calling external annotation</h1>
<%
 extra.AnnotateCountAndValue myAnno = new extra.AnnotateCountAndValue();
%>
 <flow:flowImage flowBean="<%= flowBean %>"
 annotationBean="<%= myAnno %>" />

Issues With This Technique

This is probably the most “standard Java” way to write an annotation.
However, be aware that once you run your JSP, and it successfully loads and
uses your annotation, if you make any further modifications to your
annotation (and recompile your Java code) the Servlet Engine (Tomcat) does
not reload the annotation code! It keeps using the currently loaded version of
your annotation.

You need to restart the Servlet Engine (Tomcat) to force it to reload the new
version of the annotation.

This behavior is OK for a production system, but can be frustrating when you
are in development mode and trying to fine-tune your annotation code.

Also, writing your annotation this way means that you have to manually
recompile the annotation whenever you make changes.

There is a “slightly easier” alternative that you might wish to consider when
developing annotations...
Working With Flows 83

An Annotation Within a JSP

When writing your annotation code within a JSP, you write the same basic
code, however, there are two things that make this a good way to work:

• Your annotation code is automatically compiled when the Web browser
needs to run it.

• If you make any changes, the annotation is recompiled and the new
version is automatically picked up by the Web browser.

Code Structure

You can write the annotation directly in the calling JSP or in a separate JSP
of its own. It’s a good idea to write the annotation in a separate JSP as this
allows you to reuse the annotation amongst many JSPs - you simply need to
include the file in the other JSPs and they are then able to reference the
annotation.

The typical structure of the annotation JSP is as follows:

<%@ page import=" ...import the Java classes needed for your annotation... "
%>

<%!
public class AnnoLeftRightText extends DefaultFlowAnnotationBean
{

 ...your annotation methods in here

}
%>

where:

• At the top of the annotation JSP file you have a line to import all the
necessary Java classes.

• The actual class definition is then placed between the tags <%! and %>.

These mark the code as global/reusable, hence you are able to define your
class.

So an annotation that provided methods to set the left and right text color
looks something like this:
84 Chapter 3

<%@ page import="com.hp.ov.bia.views.taglibs.flow.DefaultFlowAnnotationBean,
 com.hp.ov.bia.views.taglibs.flow.FlowNode,
 com.hp.ov.bia.views.taglibs.flow.FlowNodeBean,
 com.hp.ov.bia.views.util.FlowNodeType,
 java.util.Locale,
 java.text.NumberFormat"
%>

<%!

public class AnnoNodeLeftRightText extends DefaultFlowAnnotationBean
{
 public String getNodeLeftText(FlowNode node,
 PageContext pageContext, Locale locale)
 {
 String text = "";

 NumberFormat nf = NumberFormat.getCurrencyInstance(locale);

 FlowNodeBean fNode = (FlowNodeBean)node;
 if ((FlowNodeType.END_NODE).equals(fNode.getType()))
 {
 text = "T=" + nf.format(fNode.getTotalWeight() / 1000000) + "M";
 }
 else
 {
 text = nf.format(fNode.getActiveWeight() / 1000000) + "M";
 }

 return text;
 }

 public String getNodeRightText(FlowNode node,
 PageContext pageContext, Locale locale)
 {
 ...your code in here...
 }
}
%>

where:

• The getNodeLeftText() method returns a different value depending on
whether it is an end node or not.

For an end node, the method returns the total weight that has passed
through this node. For all other nodes it returns the active weight at each
node.
Working With Flows 85

• getNodeRightText() does whatever you require it to do.

• These methods assume that the node being drawn is part of a flow
diagram. That is why you see the lines:

FlowNodeBean fNode = (FlowNodeBean)node;

The method assumes that it is a flow node and not a flow instance node.

Use the Annotation from a JSP

You can now include the JSP, that defines the annotation, within a JSP that
wants to draw a flow using the annotation, as follows:

<%@ include file="ex_anno_nodeLeftRightText_flowOnly.jsp" %>

<h1>Flow Diagram - calling JSP annotation</h1>
<%
 AnnoNodeLeftRightTextFlowOnly myAnno = new AnnoNodeLeftRightTextFlowOnly();
%>
 <flow:flowImage flowBean="<%= flowBean %>"
 annotationBean="<%= myAnno %>" />

where:

• You use the <%@ include markup to include the JSP that contains the
code for the annotation.

• You then instantiate one of these annotations.

• You then pass this annotation into the <flow:flowImage> tag.
86 Chapter 3

Setting Left Text

Your annotation must extend DefaultFlowAnnotationBean.

By overriding the method getNodeLeftText() you are able to provide the
code that is called as the flow drawer draws each node. If you return a text
string, this text is placed above-and-to-the-left of that node within the flow
diagram.

In the following example:

• The weight field of the flow is assumed to be a currency value.

• The method behaves differently depending on whether it is drawing a flow
diagram or a flow instance diagram.

For a flow diagram, it returns:

— The total weight that has been through the node - if the node is an end
node.

— The current weight at a node - if the node is a start node or activity
node.

For a flow instance diagram it simply returns whatever the default is.

• The weight value is formatted as currency, using the local settings, and
the value is shown in millions - hence it is divided by 1000000 and
displayed with the letter “M” appended.
Working With Flows 87

Here is the code:

public String getNodeLeftText(FlowNode node,
 PageContext pageContext, Locale locale)
{
 String text = "";

 NumberFormat nf = NumberFormat.getCurrencyInstance(locale);

 if (node instanceof FlowNodeBean)
 {
 // It is a flow diagram

 FlowNodeBean fNode = (FlowNodeBean)node;

 if ((FlowNodeType.END_NODE).equals(fNode.getType()))
 {
 text = "T=" + nf.format(fNode.getTotalWeight() / 1000000) + "M";
 }
 else if ((FlowNodeType.START_NODE).equals(fNode.getType())
 ||
 (FlowNodeType.ACTIVITY_NODE).equals(fNode.getType())
)
 {
 text = nf.format(fNode.getActiveWeight() / 1000000) + "M";
 }
 }
 else
 {
 // It is for a flow instance

 // Just set it to the default
 text = super.getNodeLeftText(node, pageContext, locale);
 }

 return text;
}

88 Chapter 3

Setting Right Text

Your annotation must extend DefaultFlowAnnotationBean.

By overriding the method getNodeRightText() you are able to provide the
code that is called as the flow drawer draws each node. If you return a text
string, this text is placed above-and-to-the-right of that node within the flow
diagram.

In the following example:

• The method behaves differently depending on whether it is drawing a flow
diagram or a flow instance diagram.

For a flow diagram, it returns:

— The total flow instance count that has been through the node - if the
node is an end node.

— The current flow instance count at a node - if the node is a start node
or an activity node.

For a flow instance diagram it simply returns whatever the default is.
Working With Flows 89

Here is the code:

public String getNodeRightText(FlowNode node,
 PageContext pageContext, Locale locale)
{
 String text = "";

 if (node instanceof FlowNodeBean)
 {
 // It is for a flow diagram

 FlowNodeBean fNode = (FlowNodeBean)node;
 if (fNode.getType().equals(FlowNodeType.END_NODE))
 {
 text = "T=" + fNode.getTotalCount();
 }
 else if ((FlowNodeType.START_NODE).equals(fNode.getType())
 ||
 (FlowNodeType.ACTIVITY_NODE).equals(fNode.getType())
)
 {
 text = new Long(fNode.getActiveCount()).toString();
 }
 }
 else
 {
 // It is for a flow instance

 // Just set it to the default
 text = super.getNodeRightText(node, pageContext, locale);
 }

 return text;
}

90 Chapter 3

Setting Left Text Color

Your annotation must extend DefaultFlowAnnotationBean.

By overriding the method getNodeLeftTextColor() you are able to provide
the code that is called as the flow drawer draws each node. If you return a
color, this color is used to display the left node text.

In the following example:

• You return a different color depending on the name of the node

— If the node being displayed has the name Process Order, then you
return a color of green.

— If the node being displayed has the name End, then you return a color
of white.

— For all other nodes, you return the default color.

• The color that you return must be of type java.awt.Color

java.awt.Color lets you chose from a few “known” color names, or you
can specify the color by setting the RGB values (in Hex) using the
Color.decode() method.

Here is the code:

public Color getNodeLeftTextColor(FlowNode node,
 PageContext pageContext, Locale locale)
{
 // Default the color to what it would normally be

 Color theColor = super.getNodeLeftTextColor(node, pageContext, locale);

 // Here is specific color handling based on the name of the node

 if (node.getName().equals("Process Order"))
 {
 // If it is the process order node - make it green
 theColor = Color.green;
 }
 else if (node.getName().equals("End"))
 {
 // If it is the End node - make it white
 theColor = Color.decode("#ffffff");
 }
 return theColor;
}

Working With Flows 91

Setting Right Text Color

Your annotation must extend DefaultFlowAnnotationBean.

By overriding the method getNodeRightTextColor() you are able to
provide the code that is called as the flow drawer draws each node. If you
return a color, this color is used to display the right node text.

In the following example:

• The method returns a different color depending on the name of the node.

— If the node being displayed has the name New Order, then it returns a
color of pink.

— If the node being displayed has the name Process Order, then it
returns a color of yellow.

— For all other nodes, it return the default color.

• The color that you return must be of type java.awt.Color

java.awt.Color lets you chose from a few “known” color names, or you
can specify the color by setting the RGB values (in Hex) using the
Color.decode() method.

Here is the code:

public Color getNodeRightTextColor(FlowNode node,
 PageContext pageContext, Locale locale)
{
 // Default the color to what it would normally be

 Color theColor = super.getNodeRightTextColor(node, pageContext, locale);

 // Here is specific color handling based on the name of the node

 if (node.getName().equals("New Order"))
 {
 // If it is the new order node - make it pink
 theColor = Color.pink;
 }
 else if (node.getName().equals("Process Order"))
 {
 // If it is the process order node - make it yellow
 theColor = Color.yellow;
 }
 return theColor;
}

92 Chapter 3

Setting Node Label Text

Your annotation must extend DefaultFlowAnnotationBean.

By overriding the method getNodeText() you are able to provide the code
that is called as the flow drawer draws each node. If you return a text string,
this text is placed below the node, as its label (or “node text”) within the flow
diagram.

In the following example:

• If the name of the node is Process Order, the method returns the text
The Order is Processed! For all other nodes, it simply returns the
default text (which happens to be the name of the node).

Here is the code:

public String getNodeText(FlowNode node,
 PageContext pageContext, Locale locale)
{
 // If the node has a certain name, you provide substitute text...else you
 // return the default text.

 if (node.getName().equals("Process Order"))
 {
 return "The Order is Processed!";
 }
 else
 {
 return super.getNodeText(node, pageContext, locale);
 }
}

Working With Flows 93

Setting Node Label Text Color

Your annotation must extend DefaultFlowAnnotationBean.

By overriding the method getNodeTextColor() you are able to provide the
code that is called as the flow drawer draws each node. If you return a color,
this color is used to display the label text for the node.

In the following example:

• You return a different color depending on the name of the node.

— If the node being displayed has the name Process Order, then you
return a color of orange.

— For all other nodes, you return the default color.

• The color that you return must be of type java.awt.Color

java.awt.Color lets you chose from a few “known” color names, or you
can specify the color by setting the RGB values (in Hex) using the
Color.decode() method.

Here is the code:

public Color getNodeTextColor(FlowNode node,
 PageContext pageContext, Locale locale)
{
 // If the node has a certain name, you provide a substitute color...
 // else you return the default color.

 if (node.getName().equals("Process Order"))
 {
 return Color.ORANGE;
 }
 else
 {
 return super.getNodeTextColor(node, pageContext, locale);
 }
}

94 Chapter 3

Setting Node Tooltip

Your annotation must extend DefaultFlowAnnotationBean.

By overriding the method getNodeTooltip() you are able to provide the
code that is called as the flow drawer draws each node. If you return a text
string, this text becomes the tooltip that appears when the user moves their
cursor over that node within the flow diagram.

In the following example:

• If the method is called while drawing a flow instance, it simply returns
the default tooltip.

• If the method is called while drawing a flow diagram then it builds a
tooltip that contains:

— The type of the node.

— The name of the node.

— The total flow instances that have been through this node.

— If the node is either a start node or an activity node, it adds the
number of active flow instances currently at this node.

• Notice that each line of the tooltip is separated by a “\n” character.
Working With Flows 95

Here is the code:

public String getNodeTooltip(FlowNode node,
 PageContext pageContext, Locale locale)
{
 // Set the tooltip to include the standard Node type and Node name.

 String tooltip = "Type: " +
 getLocalizedNodeType(node.getType(),pageContext,locale)
 + "\n" +
 "Name: " + node.getName();

 if (node instanceof FlowNodeBean)
 {
 FlowNodeBean fNode = (FlowNodeBean)node;
 if (FlowNodeType.START_NODE.equals(fNode.getType())
 ||
 FlowNodeType.ACTIVITY_NODE.equals(fNode.getType())
)
 {
 tooltip += "\nActive Count: " +
 getNumberFormat(locale).format(fNode.getActiveCount());
 }
 else if (FlowNodeType.END_NODE.equals(fNode.getType()))
 {
 tooltip += "\nTotal Count: " +
 getNumberFormat(locale).format(fNode.getTotalCount());
 }
 }
 else
 {
 // It's a flow instance - just leave it as the default tooltip

 tooltip = super.getNodeTooltip(node, pageContext, locale);
 }

 return tooltip;
}

96 Chapter 3

Setting Node Image

Your annotation must extend DefaultFlowAnnotationBean.

By overriding the method getNodeTypeImage() you are able to provide the
code that is called as the flow drawer draws each node. If you return an
image, this image is used to draw that node within the flow diagram.

The image is automatically scaled to fit the size of the standard node image.

In the following example:

• If you are drawing a flow instance image, you just return the default
image for the node.

• If drawing a flow diagram:

— If the node is called New Order, you return the image
phone_receiver.gif

— If the node is called Process Order, you return the image
engineer.gif

— etc. for the different node names.

• You could obviously decide on your images based on something other than
just the node name.

• This method must return an actual java.awt.Image object and this is
achieved by calling the method: PictureGenerator.getImage(), passing
in the name of the image to be returned.

The full name for the PictureGenerator class is:
com.hp.ov.bia.common.picturegenerator.PictureGenerator

• The image name that you return must be available to the
PictureGenerator class.

This means that the image file you return must be on the classpath of
your calling JSP. To achieve this, place your image in the
WEB-INF\classes directory.
Working With Flows 97

Here is the code:

protected Image getNodeTypeImage(FlowNode node,
 PageContext pageContext, Locale locale)
{
 // Initialise to the default image

 Image theImage = super.getNodeTypeImage(node, pageContext, locale);

 if (node instanceof FlowNodeBean)
 {
 if (node.getName().equals("New Order"))
 {
 ImageIcon image = PictureGenerator.getImage("phone_receiver.gif");
 theImage = image.getImage();
 }
 else if (node.getName().equals("Process Order"))
 {
 ImageIcon image = PictureGenerator.getImage("engineer.gif");
 theImage = image.getImage();
 }
 else if (node.getName().equals("Ship Order"))
 {
 ImageIcon image = PictureGenerator.getImage("ship_order.gif");
 theImage = image.getImage();
 }
 else if (node.getName().equals("End"))
 {
 ImageIcon image = PictureGenerator.getImage("success.gif");
 theImage = image.getImage();
 }
 }

 return theImage;
}

98 Chapter 3

Example Flow Diagrams

To give you an idea of the way annotations can be used to alter a flow
diagram, here are some examples for a flow called Order Flow:

Default Flow Diagram

With Left/Right Text

where:

• The annotation sets:

— The left text to be the amount of orders currently in each node - except
for the end node which shows the total value of orders that have been
processed

— The right text shows the current number of orders active in each node
- except for the end node which lists the total number of orders that
have been processed. (This is the same as for the default flow
diagram.)
Working With Flows 99

With Different Images

where:

• The node label text for the Process Order node has been changed to
show the text: The Order is Processed!

• The images for each node have been changed

• The left and right node text are displayed using individual colors
100 Chapter 3

The OVBPI Dashboard

Now that you know how to draw flow diagrams with annotations, let’s look at
how easy it is to customize the flow diagrams within the OVBPI Business
Process Dashboard.

Custom Flow Drawing

The Business Process Dashboard allows you to provide custom JSPs for
drawing flow diagrams.

This means that you can write a standalone JSP that draws the flow diagram,
using your own custom annotation, and the Business Process Dashboard is
able to embed this within the standard Business Process Dashboard Web
pages.

The Business Process Dashboard looks in the directory:

ovbpidashboard2-10\customFlowImageDrawer

for all custom flow drawing JSPs. If you are adding your own custom flow
drawing JSPs then you need to create the customFlowImageDrawer
directory.

Flow Drawing

To provide a custom flow drawer JSP for a flow diagram, the file must be
named:

flowname.jsp

where flowname must match the name of the flow to be drawn. (It is
case-sensitive.)

The flowname.jsp page is passed the following parameters:

• flowid

The flow ID of the flow to be drawn.

• nodebaseurl (optional)

The base URL for each node within the flow diagram,

• metricstartnode (optional)
Working With Flows 101

The name of the node from which the metric starts.

• metricendnode (optional)

The name of the node at which the metric ends.

• callingpagename (optional)

The name of the page that invoked this JSP.

You are able to write a standalone JSP that uses some, or all, of these
parameters to locate the flow, and then produce the flow diagram.

Flow Instance Drawing

To provide a custom flow drawer JSP for a flow instance diagram, the file
must be named:

flowname-instance.jsp

where flowname must match the name of the flow to be drawn. (It is
case-sensitive.)

The flowname-instance.jsp page is passed the following parameters:

• flowinstanceid

The flow instance ID of the flow instance to be drawn.

• view

The view to be drawn. Possible values are: timeline or flowDiagram.

• nodebaseurl (optional)

The base URL for each node within the flow diagram,

• axiswidth (optional)

The width (in pixels) of the timeline drawing.

• callingpagename (optional)

The name of the page that invoked this JSP.

You are able to write a standalone JSP that uses some, or all, of these
parameters to locate the flow instance and then produce the flow instance
diagram or timeline.
102 Chapter 3

Example - Flow Diagram

If your flow is called Order Flow, then creating the following and saving it in
the file:

ovbpidashboard2-10\customFlowImageDrawer\Order Flow.jsp

provides a custom flow diagram for the Order Flow when displayed within
the OVBPI Business Process Dashboard:

<%@ page errorPage="/gen/errorPage.jsp" %>

<%
 // Get parameters

 String flowId = request.getParameter("flowid");
 String nodeBaseUrl = request.getParameter("nodebaseurl");
%>

<%@ taglib uri="com.hp.ov.bia.views.taglibs.flow" prefix="flow" %>

 <!-- Get the flow bean for this flow ID -->

 <flow:flow flowId="<%= flowId %>" var="flowBean" />

 <!-- Now draw the customized flow image -->

<%@ include file="ex_anno_theLot.jsp" %>
<%
 AnnotateTheLot myAnno = new AnnotateTheLot();
%>
 <flow:flowImage flowBean="<%= flowBean %>"
 annotationBean="<%= myAnno %>"
 nodeBaseUrl="<%= nodeBaseUrl %>" />
Working With Flows 103

Example - Flow Instance Diagram

If your flow is called Order Flow, then creating the following and saving it in
the file:

ovbpidashboard2-10\customFlowImageDrawer\Order Flow-instance.jsp

provides a custom flow instance diagram for the Order Flow when displayed
within the OVBPI Business Process Dashboard:

<%@ page errorPage="/gen/errorPage.jsp" %>
<%
 // Get parameters

 String flowInstId = request.getParameter("flowinstanceid");

 String view = request.getParameter("view");
 String nodeBaseUrl = request.getParameter("nodebaseurl");
 String axisWidthText = request.getParameter("axiswidth");
 Integer axisWidth = (axisWidthText != null && axisWidthText != "" ?
 Integer.valueOf(axisWidthText) :
 new Integer(500)); // Default 500 pixels.
%>

<%@ taglib uri="com.hp.ov.bia.views.taglibs.flow" prefix="flow" %>

 <!-- Get the flow instance bean for this flow instance ID -->

 <flow:flowInstance flowInstanceId="<%= flowInstId %>"
 var="flowInstanceBean" />

 <!-- Now draw the customized flow instance image -->

<%@ include file="ex_anno_theLot.jsp" %>

<%
 AnnotateTheLot myAnno = new AnnotateTheLot();

 if (view != null && view.equalsIgnoreCase("timeline"))
 {
%>
 <!-- Draw the flow instance timeline image -->
 <flow:flowInstanceTimelineImage flowInstanceBean="${flowInstanceBean}"
 nodeBaseUrl="<%= nodeBaseUrl %>"
 axisWidth="<%= axisWidth %>"
 annotationBean="<%= myAnno %>" />
<%
 }
 else
104 Chapter 3

 {
%>
 <!-- Draw the flow instance image -->
 <flow:flowInstanceImage flowInstanceBean="${flowInstanceBean}"
 nodeBaseUrl="<%= nodeBaseUrl %>"
 annotationBean="<%= myAnno %>" />
<%
 }
%>
Working With Flows 105

Lab - Drawing Flows

The purpose of this lab is to give you some practise drawing flow diagram and
to help you write annotations.

Basic Flow Settings

• Create a new (empty) JSP file

• Write the code to display a flow diagram for the flow: Order Flow (that
you developed during the OVBPI Integration Training Guide - Modeling
Flows)

Display the Order Flow using the flowImage tag, letting everything
default. (Refer to Figure 7 on page 54 for help on the correct sequence of
tags to call.)

• Now change your JSP so that the flow displays with a “purple”
background

• Now show Metric flags between the nodes Process Order and Ship
Order

• Change the color of the arcs (that join the nodes) to be “red”

• Change the color of the right-node-text to be “blue”

Custom Left/Right Node Text

• In the labs directory, locate the file: myAnnotation.jsp

• Your mission is to read the comments for the methods inside, and write
the code. This should give your flow diagram left and right node text

Good luck :-)
106 Chapter 3

Custom Colors

• Add a new method to your myAnnotation.jsp, such that you set different
colors for the left-node-text for each of the nodes. Try something like:

— New Order - yellow

— Process Order - blue

— Ship Order - pink

— End - orange

• Add the necessary methods to your myAnnotation.jsp, such that the
node label for the End node says: The End at Last!!! and that this
text is shown in red.

• In the labs directory, locate the file: phone_receiver.gif

Add the necessary method(s) to your myAnnotation.jsp, such that the
New Order node displays this phone_receiver.gif image instead of the
standard start node image.

OVBPI Business Process Dashboard

Now that you have a standalone JSP that displays the Order Flow flow, let’s
use it within the OVBPI Business Process Dashboard:

• Locate the directory: webapps\ovbpidashboard2-10

• Create a subdirectory called: customFlowImageDrawer

• Now copy your standalone JSP page (that draws the Order Flow) into
this webapps\ovbpidashboard2-10\customFlowImageDrawer directory.

• Rename your JSP page to be: Order Flow.jsp

• Edit this Order Flow.jsp page as follows:

— Remove any html heading tags such as: <html>,<head>,<body> and
the closing tags at the end of the page.

— Make sure that any references to any external files (such as the
annotation) are now correct, given the new location of this file.

• Run the OVBPI Business Process Dashboard and drill into the Order
Flow flow. When you display the Business Flow & Resource Summary
page you should see your custom Order Flow flow diagram.
Working With Flows 107

The standalone JSP that you have written to display the Order Flow
flow is hard coded to display that flow...which is fine. You could alter your
page now to use the flowid, and other parameters, passed into the page
from the Business Process Dashboard. But as you have seen, you don’t
even need to do that.

• In the Business Process Dashboard, go back to the home page and drill
into another flow.

Notice that all other flows are displayed using the default flow drawer
built into the Business Process Dashboard. By providing your Order
Flow.jsp file you have provided a custom flow image drawer just for the
Order Flow flow.

Well done! You have reached the end of the lab.
108 Chapter 3

4 Working With Sliders
The Business Process Dashboard provided with OVBPI is a generic set of JSP
pages that display flow information within a Web browser. The way the
various pieces of data are rendered on each screen is completely
customizable...assuming you have the JSP and HTML skills to do so.

To assist with customization, there is an additional Java bean that allows you
to display a value as a “slider”. For example:

You can configure the colors, the range of each color, and (obviously) set the
actual value to be displayed.

The “slider” is a simple Java bean offered to assist with making your
dashboards a bit more interesting. It is just an example to help you with your
dashboard customization. A full-time Web designer may well have their
preferred way of displaying results graphically - that’s fine. But if you don’t
have access to any drawing utilities, the simple “slider” might be of use.

Let’s look at some examples.
 109

The Slider Bean

The slider bean is:

com.hp.ov.bia.views.SliderPictureGenerator

This is a Java bean that can draw sliders.

These sliders are created as pictures (.png files), which you can then display
within your HTML as you desire.

Unfortunately, there are no taglibs for using this slider bean, you must do it
all yourself in Java code. Actually, this does involve a bit of setup code, but
once you have that in place it is pretty easy to use.

Javadocs

The full javadoc for the SliderPictureGenerator bean can be found in
OVBPI-CD\docs\html\OVBPIJavadoc\index.html.

Let’s now look at a worked example of using a slider...

Setting Up The Slider

To initialize the slider, you need to:

• Set up variables that point to the directory in which you want the slider to
save its .png picture files.

• Set the size of the slider (width/height).

• Set up the range of the slider - Overall maximum, and the two mid points.

• Set up the colors for each sub-range (Default is green/yellow/red).

• Set up some variables that are used to build each picture.

This set-up code is pretty much “generic” code that is the same for all
dashboards.
110 Chapter 4

The set-up code looks like this:

<%
 // Set up a slider

 // Locate the directory where the JSP is running
 String myServletPath = request.getServletPath();
 File myJspDir = new File(application.getRealPath(myServletPath));
 myJspDir = new File(myJspDir.getParent());

 // Set up the variables for the slider
 String sliderUniquePrefix = session.getId();
 String sliderRelPath = "../images/generated";

 // Open the images directory
 File sliderDir = new File(myJspDir, sliderRelPath);

 // Set the absolute path
 String sliderAbsPath = sliderDir.getAbsolutePath();

 // Set up a slider picture generator (Width, Height)
 SliderPictureGenerator gSlider = new SliderPictureGenerator(120, 45);
 gSlider.setRange(0, 33, 66, 100);

 // You now have a slider ready for generating pictures

 // These variables are used to build each picture
 String sliderFNameBase = sliderUniquePrefix + "-slider-";
 File sliderFile; // Points to the picture file
 String sliderFName; // Holds the file name for this picture
%>

This set-up code gives you the following variables:

• gSlider - This is used to generate the slider pictures

• sliderRelPath - The relative path to where the pictures is saved

• sliderAbsPath - The absolute path to where the pictures is saved

• sliderFile and sliderFName - Used to build each picture file

• sliderFNameBase - The base name to be used when you create each
picture file name. This prefixes every picture file with the session ID of
the Web Browser so that the pictures do not conflict with other Web users.

Notice that in this example, the slider ranges are 0, 33, 66, 100. This suits
showing a percentage value, or values where anything over 100 is simply
considered too high. If you display a value greater than the maximum, the
slider simply shows it at the very top (right) of the scale - a bit like a
speedometer in a car.
Working With Sliders 111

Producing a Slider Picture

Now that the slider is set up and ready to go, you can use it to generate
pictures. You can display any value you like - an actual number, an average, a
percentage - whatever you have calculated and wish to show as a slider.

Here is an example where the flowOutlineList tag is used to get the details
for a flow. This example shows the active flow instance count within a slider.
When the slider was set up earlier, the maximum was set to 100, so if the
active instance value is greater than 100 then it simply shows as being at the
maximum of your slider.

This code pulls out the active flow instance count from the flowOutlineBean,
and uses the previously defined slider picture generator (gSlider) to generate
a picture:

<%
 // Build a picture for the Active instance Count

 long activeCount = flowOutlineBean.getActiveCount();

 // Set the slider to this value
 gSlider.setValue(activeCount);

 // Prepare a picture
 gSlider.preparePicture();

 // Build a unique file name for your picture
 sliderFName = sliderFNameBase + System.currentTimeMillis() + ".png";

 // Save the picture to this file
 sliderFile = new File(sliderAbsPath + "/" + sliderFName);
 sliderFile.mkdirs();
 gSlider.savePicture(sliderFile);

 // Assign a variable to hold the necessary HTML to display this picture
 String sliderImg_activeCount = "<img src=\"" + sliderRelPath + "/" +
 sliderFName + "\" width=\"" +
 gSlider.getWidth() +
 "\" height=\"" + gSlider.getHeight() +
 "\" border=\"1\" >";
%>

You now have your picture, and the variable sliderImg_activeCount holds
the necessary HTML to display it.
112 Chapter 4

Displaying a Slider

With the HTML for displaying the slider picture held in a Java variable
(sliderImg_activeCount) you simply need to display this variable on the
page.

In this code example, the slider is displayed as a column within a table. The
actual value used within the slider (the active instance count) is also
displayed underneath the slider:

<%@ page import="java.io.File,
 com.hp.ov.bia.views.SliderPictureGenerator"%>

<%@ taglib uri="com.hp.ov.bia.views.taglibs.flow" prefix="flow" %>

<html>
 <head><title>Slider - basic page</title></head>
 <body>
<%
 ...the code to set up the slider...
%>
 <table cellSpacing=0 border=1>
 <th>Flow Name</th>
 <th>Active Instances</th>
 <th>Business Health</th>

 <flow:flowOutlineList var="flowOutlineBean" nameFilter="Order Flow" >

 <tr>
 <td><%= flowOutlineBean.getName() %></td>

 <%
 ...code to generate the picture...
 ...and set up sliderImg with the HTML...
 %>

 <td align=center>
 <%= sliderImg_activeCount %>

 <%= activeCount %>
 </td>
 <td><%= flowOutlineBean.getStatus() %></td>
 </tr>

 </flow:flowOutlineList>

 </table>

 </body>
</html>
Working With Sliders 113

Resulting HTML Page

For this example JSP, the result might look as follows:

So the slider might be of interest as an alternative way of displaying data
within your Business Process Dashboard.

Setting Range Colors

The slider is designed to show three ranges - denoted by colors. The default
colors being green, yellow and red. You can set these to be whatever colors you
require. Indeed, you may decide that for your needs you want all three colors
to be the same.

The method to set the range colors is: setRangeColor()

It takes three parameters, specifying the left, middle and right colors. Each
color being a java.awt.Color.

So, for your slider generator called gSlider, you could set colors as follows:

• To set the colors to be yellow/pink/blue:

gSlider.setRangeColor(java.awt.Color.yellow,
 java.awt.Color.pink,
 java.awt.Color.blue);
114 Chapter 4

• You can also use the decode() method offered by java.awt.Color, to
choose HTML colors using hexidecimal values. For example:

gSlider.setRangeColor(java.awt.Color.yellow,
 java.awt.Color.decode("#fdeeaa"),
 java.awt.Color.decode("#f0edff"));

• To set the slider to have just the one color (for example: green):

gSlider.setRangeColor(java.awt.Color.green,
 java.awt.Color.green,
 java.awt.Color.green);

• To set the slider colors back to the default:

gSlider.setRangeColor(java.awt.Color.green,
 java.awt.Color.yellow,
 java.awt.Color.red);
Working With Sliders 115

Multiple Sliders on a Page

Once you have a slider generator defined within your JSP you can use it to
produce all your slider pictures. You can also alter things such as the slider
picture size, colors, ranges, etc..

Java Variables

Any Java variables you declare within a “list” tag (for example, the
flowOutlineList tag) is only known within that “loop”.

If you want variables to be known within the loop and outside the loop, then
declare them before the tag.

Unique File Names

Your Web server may be able to process the Web page fast enough that it can
create more than one slider picture within one millisecond. So creating file
names and using the time in milliseconds may not be enough to create a
unique file name. You may wish to create the file name something like this:

int sldCount = 1;

sliderFName = sliderFNameBase + System.currentTimeMillis()
 + "_" + sldCount++ + ".png";

where each file name created is unique even if the millisecond time is the
same.
116 Chapter 4

Adding a URL

You might want to make the slider “active” such that a user can click on the
slider image and be taken to another Web page.

To do this, you simply need to alter the JSP such that the image is displayed
within an HTML tag specifying the necessary HTML href.

For example:

<td align=center>
 <a href=show_more_details.jsp?count=<%= activeCount %> >
 <%= sliderImg_activeCount %>

 <%= activeCount %>
</td>

When the user clicks on the slider image they are taken to the JSP
show_more_details.jsp, passing in the count parameter.
Working With Sliders 117

Lab - Drawing Sliders

The purpose of this lab is to get you using the slider bean, drawing sliders on
your own custom dashboard.

Basic Flow Definition List

• Create yourself a new JSP

• Now write the code to loop through all the OVBPI flows on your system,
displaying an HTML table containing the following information for each
flow:

— Flow Name

— Flow State

— Active Count

— Total Count

Adding a Slider

• Alter your JSP to display the Total Count as a slider, where:

— The ranges of the slider are: 0, 50, 100, 400

— The range colors are: White, Blue, Pink

Linking the Slider with a URL

• Alter your JSP so that if the user clicks on a slider, they are taken to the
/gen/instances.jsp page where they can see all the flow instances for
that particular flow

Well done! You have reached the end of the lab.
118 Chapter 4

5 Working With Metrics
This chapter looks at the <metrics> tag library.

Overall, the tag library can be divided into five main groups:

• Definitions

• Statistical data and graphs

• Instance values

• Dials

• Alerts

This chapter looks at each group, and provides worked examples showing how
to call the tags.

This chapter then looks at how to customize the display of thresholds within
OVBPI Business Process Dashboard.
 119

Definitions

The following diagram lists the <metrics> tags used for accessing metric and
threshold definitions:

Figure 8 <metrics> Tags - Definitions

On the diagram:

• Each box lists the tag name, and underneath that is the type of Java bean
that the tag returns.

• There is a little “loop” symbol to the right of each “list” tag to indicate that
this tag typically loops through the return values.

The goal of the diagram is to help you see the typical calling sequence for the
tags. For example:

• All metric definitions refer to a specific flow, thus you need to start with a
flowId. You can use the flowOutlineList tag to loop through the
available flows and get the flowId.

<flowOutlineList>
FlowOutlineBean

flowId

<metricDefinitionList>
MetricDefinitionBean

metricId

<metricDefinition>
MetricDefinitionBean

+ Metric Name

<thresholdDefinitionList>
ThresholdDefinitionBean

<thresholdDefinition>
ThresholdDefinitionBean

+ Threshold Name

thresholdId
120 Chapter 5

• Once you have the flowId, you might then call the
metricDefinitionList tag, passing in this flowId. The
metricDefinitionList loops through all the metrics defined for this
flowId and, within each loop, returns to you a MetricDefinitionBean.

Alternatively, once you have the flowId, if you know the name of the
particular metric you are interested in, you can pass the flowId and the
name of the metric to the metricDefinition tag. This returns a
MetricDefinitionBean for your metric.

• Once you have the MetricDefinitionBean you are able to get the
metricId.

• Once you have the metricId, you can then use the
thresholdDefinitionList tag to loop through the thresholds defined
for this metric - passing in the metricId.

Alternatively, if you know the name of the threshold you are interested in,
you can pass the metricId and the name of the threshold to the
thresholdDefinition tag.
Working With Metrics 121

Code Examples

Here are some example JSPs that use the <metrics> tags to display details of
the metric and threshold definitions.

Accessing Definitions By Name

<%@ taglib uri="com.hp.ov.bia.views.taglibs.metrics" prefix="metrics" %>
<%@ taglib uri="com.hp.ov.bia.views.taglibs.flow" prefix="flow" %>

<html>
 <head><title>Metrics - Metric/Threshold definitions by name</title></head>
 <body>
 <!-- 1 -->
 <%
 String flowId = "";
 String flowName = "Call System";
 %>

 <flow:flowOutlineList var="flowOutlineBean" nameFilter="<%= flowName %>" />

 <%
 if (flowOutlineBean != null)
 {
 flowId = flowOutlineBean.getFlowId();
 }
 %>

 <h1>Metric/Threshold Details - using names</h1>

 <!-- 2 -->
 <metrics:metricDefinition var="metricDefBean"
 flowId="<%= flowId %>"
 metricName="Call Assignment Time" />

 <%
 if (metricDefBean == null)
 {
 return;
 }
 %>

 Metric Name: [Call Assignment Time]

 Description: [<%= metricDefBean.getMetricDescription() %>]

 Type: [<%= metricDefBean.getMetricType() %>] <p />
122 Chapter 5

 <!-- 3 -->
 <metrics:thresholdDefinition var="thresholdDefBean"
 metricId="<%= metricDefBean.getMetricId() %>"
 thresholdName = "Call Assignment SLA" />

 Threshold: [<%= thresholdDefBean.getThresholdName() %>]

 Description: [<%= thresholdDefBean.getThresholdDescription() %>]

 Type: [<%= thresholdDefBean.getThresholdType() %>]

 Alert: [<%= thresholdDefBean.getCurrentAlertLevel() %>]

 </body>
</html>

where:

• You declare the taglib:

<%@ taglib uri="com.hp.ov.bia.views.taglibs.metrics" prefix="metrics" %>

This tells the JSP that you want to use the Java taglib
com.hp.ov.bia.views.taglibs.metrics. The prefix option says that
you will refer to this taglib within the rest of the JSP by the tag name
metrics.

• Step 1 uses the flowOutlineList flow tag to determine the flowId for
the flow Call System.

• Step 2 uses the metricDefinition tag, passing in the flowId and the
name of a specific metric. The JSP then displays some data from the
returned MetricDefinitionBean.

• Step 3 uses the thresholdDefinition tag, passing in the metricId
and a specific threshold name. The JSP then displays some of the data
available from the returned ThresholdDefinitionBean.
Working With Metrics 123

Accessing Definitions Using Lists

<%@ taglib uri="com.hp.ov.bia.views.taglibs.metrics" prefix="metrics" %>
<%@ taglib uri="com.hp.ov.bia.views.taglibs.flow" prefix="flow" %>

<html>
 <head><title>Metrics - List Metric/Threshold definitions</title></head>
 <body>
 <!-- 1 -->
 <%
 String flowId = "";
 String flowName = "Call System";
 %>

 <flow:flowOutlineList var="flowOutlineBean" nameFilter="<%= flowName %>" />

 <%
 if (flowOutlineBean != null)
 {
 flowId = flowOutlineBean.getFlowId();
 }
 %>

 <h1>Metric/Threshold Details - using lists</h1>

 <table border=1>

 <tr>
 <th align="left">Name</th>
 <th align="left">Description</th>
 <th align="left">Type</th>
 <th align="left">Status</th>
 </tr>
124 Chapter 5

 <!-- 2 -->
 <metrics:metricDefinitionList var="metricDefBean" flowId="<%= flowId %>">
 <tr>
 <td align="left"><%= metricDefBean.getMetricName() %></td>
 <td align="left"><%= metricDefBean.getMetricDescription() %></td>
 <td align="left"><%= metricDefBean.getMetricType() %></td>
 <td> </td>
 </tr>

 <!-- 3 -->
 <metrics:thresholdDefinitionList var="thresholdDefBean"
 metricId="<%= metricDefBean.getMetricId() %>">
 <tr>
 <td align="right"><%= thresholdDefBean.getThresholdName() %></td>
 <td align="left"><%=thresholdDefBean.getThresholdDescription()%></td>
 <td align="left"><%= thresholdDefBean.getThresholdType() %></td>
 <td align="left"><%= thresholdDefBean.getCurrentAlertLevel() %></td>
 </tr>
 </metrics:thresholdDefinitionList>

 </metrics:metricDefinitionList>

 </table>

 </body>
</html>

where:

• You declare the taglib:

<%@ taglib uri="com.hp.ov.bia.views.taglibs.metrics" prefix="metrics" %>

This tells the JSP that you want to use the Java taglib
com.hp.ov.bia.views.taglibs.metrics. The prefix option says that
you will refer to this taglib within the rest of the JSP by the tag name
metrics.

• Step 1 uses the flowOutlineList flow tag to determine the flowId for
the flow Call System.

• Step 2 uses the metricDefinitionList tag to loop through all the
defined metrics for the given flowId.

• Step 3 uses the thresholdDefinitionList tag to loop through all the
thresholds that are defined for each metric.
Working With Metrics 125

Statistical Data and Graphs

The following diagram lists the <metrics> tags used for accessing metric
statistics, and for producing historical graphs:

Figure 9 <metrics> Tags - Statistical Data and Graphs

On the diagram:

• Each box lists the tag name, and underneath that is the type of Java bean
that the tag returns. For the statisticalGraph tag, that does not return
a Java bean, it produces an actual picture.

• There is a little “loop” symbol to the right of the metricStatisticsList
tag to indicate that this tag typically loops through the return values.

metricStatistics

The metricStatistics tag accesses the metric_fact_statistics table
within the OVBPI database.

You can request the latest set of statistics and this gives you the statistics
calculated over the most recent collection interval. You can also ask for the
statistics from a specific collection interval.

metricId

<metricStatisticsList>
MetricStatisticsBean

<metricStatistics>
MetricStatisticsBean

<buildGraphDataset>
TreeMap

<statisticalGraph>
Picture

(ThresholdDefinitionBean)
126 Chapter 5

You are also able to ask for the statistics over a longer period of time, for
example, the statistics over the last hour. If you ask for the statistics over a
time period, the metricStatistics tag gives you a single bean containing
the results of the overall average, overall standard deviation, etc. calculated
across the time period specified.

metricStatisticsList

The metricStatisticsList tag accesses the metric_fact_statistics
table within the OVBPI database.

You can request the statistics over a specified period of time, for example, the
statistics over the last hour. The metricStatisticsList tag enables you to
iterate through each set of results across the specified time period.

buildGraphDataset

The buildGraphDataset tag accesses the metric_fact_statistics table
within the OVBPI database.

The buildGraphDataset tag provides an easy way to get the statistical
metric data over a period of time, and build a Java bean that is ready to be
passed in to the statisticalGraph tag. Basically, the result of the
buildGraphDataset tag is a sorted list (a Java TreeMap) of statistical values
over the time period specified. When you call the buildGraphDataset tag
you specify the time period and the particular field, or fields, of data that you
wish to retrieve.

statisticalGraph

The statisticalGraph tag draws a time-series graph based on the data as
passed in from the buildGraphDataset tag.

If you wish the graph to have a legend showing the threshold settings then
you can also pass in a ThresholdDefinitionBean.
Working With Metrics 127

Code Examples

Here are some example JSPs that use the <metrics> tags to display the
statistical metric data, and to display statistical graphs.

Listing Metric Statistics

<%@ taglib uri="com.hp.ov.bia.views.taglibs.metrics" prefix="metrics" %>
<%@ taglib uri="com.hp.ov.bia.views.taglibs.flow" prefix="flow" %>

<html>
 <head><title>Metrics - List the statistics</title></head>
 <body>
 <%
 String flowId = "";
 String flowName = "Call System";
 %>
 ...get the flow Id (see Accessing Definitions By Name on page 122)...

 <!-- 1 -->
 <metrics:metricDefinition var="metricDefBean"
 flowId="<%= flowId %>"
 metricName = "Calls Resolved ON Contract" />

 <h1>Statistics - over last hour</h1>

 <table border=1>
 <tr>
 <th>Time Recorded</th>
 <th>Average</th>
 <th>Standard Deviation</th>
 <th>Sample Count</th>
 </tr>
 <!-- 2 -->
 <metrics:metricStatisticsList var="metricStatsBean"
 metricId="<%= metricDefBean.getMetricId() %>"
 infoType="Completed"
 timeFrom="-1 H" >
 <tr>
 <td><%= metricStatsBean.getTimeOfLastUpdate() %></td>
 <td><%= metricStatsBean.getAverage() %></td>
 <td><%= metricStatsBean.getStandardDeviation() %></td>
 <td><%= metricStatsBean.getCount() %></td>
 </tr>

 </metrics:metricStatisticsList>

 </table>
128 Chapter 5

 </body>
</html>

where:

• Step 1 uses the flowId to look up the metric definition for the Calls
Resolved ON Contract metric.

• Step 2 uses this metricId to call the metricStatisticsList tag. This
tag loops through all the metric statistics returned.

The metricStatisticsList tag accesses the metric_fact_statistics
table (within the OVBPI database). At the end of each collection interval
three records are written to this table: Active, Completed and Total.
The infoType parameter allows you to specify whether you want the
Active, Completed or Total statistics record.

There are two parameters that allow you to specify the time period for
which you want the statistical data, timeFrom and timeTo.

— The timeFrom parameter allows you to specify the start time. This
can be an actual Java date/time object or a relative time from now. The
above example shows the use of a relative time, -1 H, which means
“The previous one hour”.

— If no timeTo parameter is supplied then the tag assumes that you
want everything up to now.
Working With Metrics 129

Graphing Statistical Data - Example 1

<%@ taglib uri="com.hp.ov.bia.views.taglibs.metrics" prefix="metrics" %>
<%@ taglib uri="com.hp.ov.bia.views.taglibs.flow" prefix="flow" %>

<html>
 <head><title>Metrics - Show a bar/line graph</title></head>
 <body>
 <%
 String flowId = "";
 String flowName = "Call System";
 %>
 ...get the flow Id (see Accessing Definitions By Name on page 122)...

 <!-- 1 -->
 <metrics:metricDefinition var="metricDefBean"
 flowId="<%= flowId %>"
 metricName = "Calls Resolved ON Contract" />

 <!-- 2 -->
 <metrics:thresholdDefinition var="thresholdDefBean"
 metricId="<%= metricDefBean.getMetricId() %>"
 thresholdName = "ON Contract Calls Resolved" />

 <h1>Bar Graph</h1>

 <!-- 3 -->
 <metrics:buildGraphDataset var="graphDataset"
 metricId="<%= metricDefBean.getMetricId() %>"
 infoType="Completed"
 timeFrom="-1 H"
 fields="avg"/>

 <!-- 4 -->
 <metrics:statisticalGraph imageBackgroundColor="#FFFFFF"
 data="<%= graphDataset %>"
 XAxisTitle="Time"
 YAxisTitle="Percent (%)"
 graphTitle="<%= thresholdDefBean.getThresholdName() %>"
 thresholdDefinitionBean="<%= thresholdDefBean %>"
 graphType="bar"
 timeFrom="-1 H"
 collectionInterval="<%= metricDefBean.getCollectionInterval() %>"
 width="700"
 height="400"/>

 </body>
</html>
130 Chapter 5

where:

• Step 1 uses the flowId to look up the metric definition for the Calls
Resolved ON Contract metric.

• Step 2 gets a ThresholdDefinitionBean for the threshold ON Contract
Calls Resolved. The only reason for getting this threshold bean is so you
can pass it into the statisticalGraph tag and have it draw the
threshold legend on the graph.

• Step 3 builds the data to be graphed.

The infoType parameter allows you to specify which statistics you are
retrieving - Active, Completed or Total.

The time period for the data retrieved is specified with the timeFrom and
timeTo parameters. If no timeTo parameter is passed in then the tag
assumes that you want the statistics up to now. The times can be specified
as an actual Java date/time object or, as shown in this example, a relative
time. Passing timeFrom=-1 H means “the previous one hour”.

The fields parameter specifies which statistical data attributes you
wish the tag to retrieve from the database. For example, you could ask for
avg|min|max and this would retrieve those three values for each set of
statistics over the time period. The above example retrieves the average
value (fields="avg").

• Step 4 passes the statistical data set to the statisticalGraph tag and
draws this data as a bar graph.

The statisticalGraph tag allows you to specify timeFrom and timeTo
parameters. This allows you to draw only that period from the data set
you are passing in. The above example displays the same time period as
the graph data set contains (-1 H).

The collectionInterval parameter is required so that the graph
knows the time interval that each bar on the graph represents. In other
words, it allows the bar graph to show the correct width of each bar.
Working With Metrics 131

When you run the JSP it might produce a graph as shown in Figure 10:

Figure 10 Statistical Bar Graph
132 Chapter 5

Graphing Statistical Data - Example 2

<%@ taglib uri="com.hp.ov.bia.views.taglibs.metrics" prefix="metrics" %>
<%@ taglib uri="com.hp.ov.bia.views.taglibs.flow" prefix="flow" %>

<html>
 <head><title>Metrics - Show a bar/line graph using groups</title></head>
 <body>
 <%
 String flowId = "";
 String flowName = "Call System";
 %>
 ...get the flow Id (see Accessing Definitions By Name on page 122)...

 <!-- 1 -->
 <metrics:metricDefinition var="metricDefBean"
 flowId="<%= flowId %>"
 metricName = "Call Processing Time" />

 <h1>Bar Graph - showing groups</h1>

 <!-- 2 -->
 <metrics:thresholdDefinition var="thresholdDefBean"
 metricId="<%= metricDefBean.getMetricId() %>"
 thresholdName = "Call Processing Speed" />
 <!-- 3 -->
 <metrics:buildGraphDataset var="graphDataset"
 metricId="<%= metricDefBean.getMetricId() %>"
 infoType="Completed"
 getGroupInfo="true"
 timeFrom="-1 H"
 fields="avg"/>
 <!-- 4 -->
 <metrics:metricStatistics var="metricStatsBean"
 metricId="<%= metricDefBean.getMetricId() %>"
 infoType="Total"
 age="LATEST" />
<%
 String heading = thresholdDefBean.getThresholdName() + " grouped by: "
 + metricDefBean.getGroupName();
%>
Working With Metrics 133

 <!-- 5 -->
 <metrics:statisticalGraph imageBackgroundColor="#FFFFFF"
 data="<%= graphDataset %>"
 XAxisTitle="Time of day"
 graphTitle="<%= heading %>"
 autoScaleYAxis = "true"
 thresholdDefinitionBean="<%= thresholdDefBean %>"
 graphType="bar"
 timeFrom="-2 H"
 graphSeriesColors="blue,green,black"
 collectionInterval="<%= metricDefBean.getCollectionInterval() %>"

 average="<%= metricStatsBean.getAverage() %>"
 standardDeviation="<%= metricStatsBean.getStandardDeviation() %>"

 width="700"
 height="400"/>

 </body>
</html>

where:

• Step 1 uses the flowId to look up the metric definition for the Call
Processing Time metric.

• Step 2 gets a ThresholdDefinitionBean for the threshold Call
Processing Speed. The only reason for getting this threshold bean is so
you can pass it into the statisticalGraph tag and have it draw the
threshold legend on the graph.

Be aware that this Call Processing Speed threshold is a Relative
threshold, and this means that when you come to pass the statistical data
to the statisticalGraph tag, you need to pass in the average and
standardDeviation parameters (see step 4).

• Step 3 builds the data to be graphed.

The getGroupInfo="true" parameter tells the buildGraphDataset
tag to retrieve the statistical data for each individual group.

• Step 4 is necessary to get the MetricStatisticsBean. You need to get
the overall average and standard deviation for this metric so that these
can be passed into the statisticalGraph tag. These are required purely
so that the threshold (a Relative threshold) can be correctly displayed
within the graph.
134 Chapter 5

By calling the metricStatistics tag with infoType="Total" and
age="LATEST", you retrieve a MetricStatisticsBean that contains the
details for the overall metric statistics - the statistics since the metric was
first defined. This included the overall average and standard deviation for
the metric.

• Step 5 is where you call the statisticalGraph tag to draw your graph.

You pass in the overall average and standard deviation because you are
graphing a Relative threshold.

Because the values being graphed are duration values, you can choose the
autoScaleYAxis parameter. This means that the statisticalGraph
tag automatically scales the Y axis to fit the data being displayed. It also
means that you do not need to provide a Y axis title.

This example also shows that the timeFrom parameter is -2 H whereas
the time period retrieved by the buildGraphDataset tag is -1 H. This
means that the graph shows a longer time period than the retrieved data,
which means that the graph shows no values for the first hour. This is just
shown here to show that the time periods of the statisticalGraph tag
and the buildGraphDataset tag can be different.
Working With Metrics 135

When you run the JSP it might produce a graph as shown in Figure 11:

Figure 11 Statistical Bar Graph - showing groups
136 Chapter 5

Instance Values

The following diagram lists the <metrics> tags used for accessing metric
instance values for individual flow instances:

Figure 12 <metrics> Tags - Instance Values

where:

• Each box lists the tag name, and underneath that is the type of Java bean
that the tag returns.

• There is a little “loop” symbol to the right of the
flowInstanceMetricValueList tag to indicate that this tag typically
loops through the return values.

flowInstanceMetricValueList

This tag accesses the metric_fact_values table within the OVBPI
database.

This tag returns all the metric instance values that have been recorded for the
given metricId. The tag returns an InstanceMetricValueBean for each
metric instance value.

For each metric instance value returned, you are able to get the
flowInstanceId of the actual flow instance that generated the metric
instance.

metricId

<flowInstanceMetricValue>
InstanceMetricValueBean

<flowInstanceMetricValueList>
InstanceMetricValueBean

flowInstanceId
Working With Metrics 137

flowInstanceMetricValue

This tag accesses the metric_fact_values table within the OVBPI
database.

This tag is used when you know the metricId and the flowInstanceId
that you are interested in. This allows you to retrieve the metric value
produced when this flow instance ran.

Because a flow instance might generate a number of metric instances, you
have the ability to specify an index (starting from zero).

Code Example

Here is an example JSP that uses the <metrics> tags to display the metric
instance data.

Listing Metric Instance Values

<%@ taglib uri="com.hp.ov.bia.views.taglibs.flow" prefix="flow" %>
<%@ taglib uri="com.hp.ov.bia.views.taglibs.metrics" prefix="metrics" %>

<html>
 <head><title>Metric Instance Values</title></head>
 <body>
 <%
 String flowId = "";
 String flowName = "Call System";
 %>

 ...get the flow Id (see Accessing Definitions By Name on page 122)...

 <h1>Metric Values:</h1>
138 Chapter 5

 <!-- 1 -->
 <metrics:metricDefinitionList var="metricDefBean" flowId="<%= flowId %>" >

 <h2><%= metricDefBean.getMetricName() %></h2>

 <table border="1">
 <tr>
 <th>FlowInstId</th>
 <th>Start</th>
 <th>End</th>
 <th>Value</th>
 <th>Status</th>
 </tr>
 <!-- 2 -->
 <metrics:flowInstanceMetricValueList var="InstanceMetricValueBean"
 metricId="<%= metricDefBean.getMetricId() %>"
 maxInstances="20">
 <tr>
 <td><%= InstanceMetricValueBean.getFlowInstanceId() %></td>
 <td><%= InstanceMetricValueBean.getStartTime() %></td>
 <td><%= InstanceMetricValueBean.getEndTime() %></td>
 <td><%= InstanceMetricValueBean.getValue() %></td>
 <td><%= InstanceMetricValueBean.getStatus() %></td>
 </tr>

 </metrics:flowInstanceMetricValueList>

 <table>

 </metrics:metricDefinitionList>

 </body>
</html>

where:

• Step 1 uses the flowId to loop through all the metric definitions.

• Step 2 loops through all the metric instance values recorded for the given
metricId. For each metric instance value, the JSP displays some of the
details, including the flow instance that produced each metric instance
value.
Working With Metrics 139

Dials

The following diagram shows the <metrics> tag used for producing dials:

Figure 13 <metrics> Tags - Dials

The valueGraph tag is a general purpose tag that allows you to draw a dial
representing a value. If you pass in a threshold definition bean then the dial is
drawn showing the threshold and the value is represented against that
threshold.

The valueGraph tag is able to draw two types of dials:

1. A regular dial (graphType="dial")

A regular dial is to be used when you are graphing a value against a
threshold that is one of the types:

— Absolute Duration/Weight/Value

— Backlog

— Throughput

In the <metrics> Java docs, these thresholds are collectively referred to
as overValue and underValue threshold types. This is because they are
thresholds that measure whether a metric value is over or under specific
values.

If you call the valueGraph tag, asking to draw a dial, and you pass in a
ThresholdDefinitionBean that is not of type Absolute, Backlog or
Throughput, the threshold is not shown on the graph.

<valueGraph>
Picture

A Value

(ThresholdDefinitionBean)
140 Chapter 5

2. A swing dial (graphType="swingdial")

A swing dial, or “upside down dial”, is used when you are graphing a value
against a threshold that is one of the types:

— Relative

— Deadline

In the <metrics> Java docs, the Relative threshold type is referred to
by the terms overUsual, underUsual and unusual. This is because the
Relative threshold type is measuring where a metric value is relative to
the “usual” behavior.

If you call the valueGraph tag, asking to draw a swingdial, and you
pass in a ThresholdDefinitionBean that is not of type Relative or
Deadline, the threshold is not shown on the graph.

Code Examples

Here are some example JSPs that use the <metrics> tags to display dials.

Dial - Most Recent Average

<%@ taglib uri="com.hp.ov.bia.views.taglibs.metrics" prefix="metrics" %>
<%@ taglib uri="com.hp.ov.bia.views.taglibs.flow" prefix="flow" %>

<html>
 <head><title>Metrics - Show a dial</title></head>
 <body>
 <%
 String flowId = "";
 String flowName = "Call System";
 %>
 ...get the flow Id (see Accessing Definitions By Name on page 122)...

 <!-- 1 -->
 <metrics:metricDefinition var="metricDefBean"
 flowId="<%= flowId %>"
 metricName = "Calls Resolved ON Contract" />

 <!-- 2 -->
 <metrics:thresholdDefinition var="thresholdDefBean"
 metricId="<%= metricDefBean.getMetricId() %>"
 thresholdName = "ON Contract Calls Resolved" />
Working With Metrics 141

<%
 if (thresholdDefBean == null)
 return;
%>
 <h1>Most recent average value:</h1>

 <!-- 3 -->
 <metrics:metricStatistics var="metricStatisticsBean"
 metricId="<%= metricDefBean.getMetricId() %>"
 infoType="Completed"
 age="LATEST" />
 <%
 Float value = null;
 String formattedValue = "";

 <!-- 4 -->
 if (metricStatisticsBean != null)
 {
 value = metricStatisticsBean.getAverage();
 if (value == null)
 {
 formattedValue = "No value available!";
 }
 else
 {
 formattedValue = value + " Percent";
 }
 %>
 <table border="0">
 <tr>
 <td align="center"><%= thresholdDefBean.getThresholdName() %></td>
 </tr>
 <tr>
 <td>
 <!-- 5 -->
 <metrics:valueGraph imageBackgroundColor="white"
 width="150"
 height="100"
 graphType="dial"
 graphBackgroundColor="#EBEBEB"
 legend="false"
 value="<%= value %>"
 thresholdDefinitionBean="<%= thresholdDefBean %>"
 graphValueLabel="<%= formattedValue %>" />
 </td>
 </tr>
 </table>
 <%
 }
 %>
142 Chapter 5

 </body>
</html>

where:

• Step 1 uses the flowId to look up the metric definition for the Calls
Resolved ON Contract metric.

• Step 2 gets a ThresholdDefinitionBean for the threshold ON Contract
Calls Resolved. The code then checks that the threshold actually exists.
The code gets the threshold so that the threshold can be passed into the
valueGraph tag when drawing the dial.

• Step 3 is where you get the actual value to be graphed.

In this example, the value to be graphed is the most recent average, and to
get this data you need to ask for the latest information on all completed
metrics - hence the parameters infoType="Completed" and
age="LATEST".

• Step 4 checks that there is a valid MetricStatisticsBean.

If there is a valid MetricStatisticsBean, the code then tries to retrieve
the average. The code then builds a formatted display string that is to be
used when displaying the dial.

• Step 5 calls the valueGraph tag to produce the dial picture showing the
average value against the threshold.

The code just passes in the raw value to the tag. If you wanted the value
rounded to (for example) two decimal places then your code needs to do
this before passing the value into the valueGraph tag.
Working With Metrics 143

When you run the JSP it might produce a dial as shown in Figure 14:

Figure 14 Dial - Most Recent Average
144 Chapter 5

Dial - Over Time

<%@ taglib uri="com.hp.ov.bia.views.taglibs.metrics" prefix="metrics" %>
<%@ taglib uri="com.hp.ov.bia.views.taglibs.flow" prefix="flow" %>
<html>
 <head><title>Metrics - Show a dial over time</title></head>
 <body>
 <%
 String flowId = "";
 String flowName = "Call System";
 %>
 ...get the flow Id (see Accessing Definitions By Name on page 122)...

 <!-- 1 -->
 <metrics:metricDefinition var="metricDefBean"
 flowId="<%= flowId %>"
 metricName = "Calls Resolved ON Contract" />
 <!-- 2 -->
 <metrics:thresholdDefinition var="thresholdDefBean"
 metricId="<%= metricDefBean.getMetricId() %>"
 thresholdName = "ON Contract Calls Resolved" />
<%
 if (thresholdDefBean == null)
 return;
%>

 <h1>Average value over time:</h1>

 <!-- 3 -->
 <metrics:metricStatistics var="metricStatisticsBean"
 metricId="<%= metricDefBean.getMetricId() %>"
 infoType="Completed"
 age="-1 H"
 untilLatest="true" />
 <%
 Float value = null;
 String formattedValue = "";

 if (metricStatisticsBean != null)
 {
 value = metricStatisticsBean.getAverage();
 if (value == null)
 {
 formattedValue = "No value available!";
 }
 else
 {
 formattedValue = value + " Percent";
 }
 %>
Working With Metrics 145

 <table border="0">
 <tr>
 <td align="center"><%= thresholdDefBean.getThresholdName() %></td>
 </tr>
 <tr>
 <td>
 <!-- 4 -->
 <metrics:valueGraph imageBackgroundColor="white"
 width="150"
 height="100"
 graphType="dial"
 graphBackgroundColor="#EBEBEB"
 legend="false"
 value="<%= value %>"
 thresholdDefinitionBean="<%= thresholdDefBean %>"
 graphValueLabel="<%= formattedValue %>"
 />
 </td>
 </tr>
 </table>
 <%
 }
 %>

 </body>
</html>

where:

• Step 1 uses the flowId to look up the metric definition for the Calls
Resolved ON Contract metric.

• Step 2 gets a ThresholdDefinitionBean for the threshold ON Contract
Calls Resolved. The code then checks that the threshold actually exists.
The code gets the threshold so that the threshold can be passed into the
valueGraph tag when drawing the dial.

• Step 3 is where you get the actual value to be graphed.

The age="-1 H" parameter you are asking for the metric statistic from
the previous one hour. But by also passing the parameter
untilLatest="true" you are asking the metricStatistics tag to
calculate and return the overall statistics for the entire one hour period.

• Step 4 actually draws the dial.

The code just passes in the raw value to the tag. If you wanted the value
rounded to (for example) two decimal places then your code needs to do
this before passing the value into the valueGraph tag.
146 Chapter 5

When you run the JSP it might produce a dial as follows:

Figure 15 Dial - Average Over Time
Working With Metrics 147

Swing Dial

<%@ taglib uri="com.hp.ov.bia.views.taglibs.metrics" prefix="metrics" %>
<%@ taglib uri="com.hp.ov.bia.views.taglibs.flow" prefix="flow" %>

<html>
 <head><title>Metrics - Show a swing dial</title></head>
 <body>
 <%
 String flowId = "";
 String flowName = "Call System";
 %>
 ...get the flow Id (see Accessing Definitions By Name on page 122)...

 <!-- 1 -->
 <metrics:metricDefinition var="metricDefBean"
 flowId="<%= flowId %>"
 metricName = "Call Processing Time" />
 <!-- 2 -->
 <metrics:thresholdDefinition var="thresholdDefBean"
 metricId="<%= metricDefBean.getMetricId() %>"
 thresholdName = "Call Processing Speed" />

 <h1>Swing Dial</h1>

 <!-- 3 -->
 <metrics:metricStatistics var="metricStatisticsBeanTotal"
 metricId="<%= metricDefBean.getMetricId() %>"
 infoType="Total"
 age="LATEST" />
 <%
 Float overallAvg = null;
 Float overallStdDev = null;

 if (metricStatisticsBeanTotal != null)
 {
 overallAvg = metricStatisticsBeanTotal.getAverage();
 overallStdDev = metricStatisticsBeanTotal.getStandardDeviation();
 }
 else
 {
 overallAvg = new Float(0);
 overallStdDev = new Float(0);
 }
 %>
148 Chapter 5

 <!-- 4 -->
 <metrics:metricStatistics var="metricStatisticsBean"
 metricId="<%= metricDefBean.getMetricId() %>"
 infoType="Completed"
 age="LATEST" />
 <%
 if (metricStatisticsBean != null)
 {
 Float value = metricStatisticsBean.getAverage();
 String formattedValue;
 if (value == null)
 {
 formattedValue = "No value available!";
 }
 else
 {
 formattedValue = value.toString() + " Seconds";
 }
 %>

 <table border="0">
 <tr>
 <td align="center">
 <%= thresholdDefBean.getThresholdName() %>
 </td>
 </tr>
 <tr>
 <td>
 <!-- 5 -->
 <metrics:valueGraph imageBackgroundColor="white"
 width="150"
 height="100"
 graphType="swingdial"
 graphBackgroundColor="#EBEBEB"
 legend="false"
 value="<%= value %>"
 thresholdDefinitionBean="<%= thresholdDefBean %>"
 graphValueLabel="<%= formattedValue %>"
 standardDeviation="<%= overallStdDev %>"
 average="<%= overallAvg %>" />
 </td>
 </tr>
 </table>
 <%
 }
 %>

 </body>
</html>
Working With Metrics 149

where:

• Step 1 uses the flowId to look up the metric definition for the Call
Processing Time metric.

• Step 2 gets a ThresholdDefinitionBean for the threshold Call
Processing Speed. The code then checks that the threshold actually
exists. The code gets the threshold so that the threshold can be passed
into the valueGraph tag when drawing the dial.

• Step 3 gets the latest total for the statistics. This is so you can get the
overall average and standard deviation. You require the overall average
and standard deviation so you can pass them to the valueGraph tag.

• Step 4 is where you get the actual value to be graphed.

In this example, the value to be graphed is the most recent average, and to
get this data you need to ask for the latest information on all completed
metrics - hence the parameters infoType="Completed" and
age="LATEST".

• Step 5 calls the valueGraph tag to produce the swingdial picture
showing the average value relative to the threshold. Because you are
drawing a swingdial, you are required to pass in the overall average and
standard deviation.

The code just passes in the raw value to the tag. If you wanted the value
rounded to (for example) two decimal places then your code needs to do
this before passing the value into the valueGraph tag.

When you run the JSP it might produce a swing dial as follows:

Figure 16 Swing Dial
150 Chapter 5

Alerts

The following diagram lists the <metrics> tags used for accessing metric
alerts:

Figure 17 <metrics> Tags - Alerts

where:

• Each box lists the tag name, and underneath that is the type of Java bean
that the tag returns. For the maximumAlertStatus tag, that does not
return a Java bean, it returns the string value of the maximum alert.

• There is a little “loop” symbol to the right of the raisedAlertList tag to
indicate that this tag typically loops through the return values.

raisedAlertList

This tag allows you to get the alerts that have been raised in a specified time
period. There are parameters that you can pass in to the tag to specify the
particular metric or flow that you are interested in.

You can use this tag to loop through the alerts that have been raised.

latestRaisedAlert

For a particular threshold, you are able to get the latest alert that has been
raised.

thresholdId

<latestRaisedAlert>
RaisedThresholdAlertBean

<raisedAlertList>
RaisedThresholdAlertBean

<maximumAlertStatus>
String

metricId | flowId | flowInstanceId
Working With Metrics 151

maximumAlertStatus

This tag allows you to find out the overall highest alert that has occurred
against a given metric, or flow, or flow instance. This tag is used on the main
page of the OVBPI Business Process Dashboard to show the overall maximum
alert against each flow.

Code Example

Here is an example JSP that uses the <metrics> tags to display alerts.

Displaying Alerts

<%@ taglib uri="com.hp.ov.bia.views.taglibs.metrics" prefix="metrics" %>
<%@ taglib uri="com.hp.ov.bia.views.taglibs.flow" prefix="flow" %>

<html>
 <head><title>Metrics - List the alerts</title></head>
 <body>
 <%
 String flowId = "";
 String flowName = "Call System";
 %>
 ...get the flow Id (see Accessing Definitions By Name on page 122)...

 <!-- 1 -->
 <metrics:metricDefinition var="metricDefBean"
 flowId="<%= flowId %>"
 metricName = "Calls Resolved ON Contract" />

 <h1>Alerts - over last 12 hours</h1>

 <table border=1>
 <tr>
 <th>Metric Name</th>
 <th>Threshold Name</th>
 <th>Status</th>
 <th>Time Raised</th>
 </tr>
152 Chapter 5

 <!-- 2 -->
 <metrics:raisedAlertList var="raisedAlertBean"
 metricId="<%= metricDefBean.getMetricId() %>"
 noOfEntries="1000"
 timeFrom="-12 H" >
 <tr>
 <td><%= raisedAlertBean.getMetricName() %></td>
 <td><%= raisedAlertBean.getThresholdName() %></td>
 <td><%= raisedAlertBean.getAlertStatus() %></td>
 <td><%= raisedAlertBean.getRaisedTime() %></td>
 </tr>

 </metrics:raisedAlertList>
 </table>

 <h1>Latest Raised Alert</h1>

 <table border=1>
 <tr>
 <th>Threshold Name</th>
 <th>Metric Name</th>
 <th>Status</th>
 <th>Time Raised</th>
 </tr>
 <!-- 3 -->
 <metrics:thresholdDefinitionList var="thresholdDefBean"
 metricId="<%= metricDefBean.getMetricId() %>" >

 <metrics:latestRaisedAlert var="raisedAlertBean1"
 thresholdId="<%= thresholdDefBean.getThresholdId() %>" />
 <tr>
 <td><%= raisedAlertBean1.getThresholdName() %></td>
 <td><%= raisedAlertBean1.getMetricName() %></td>
 <td><%= raisedAlertBean1.getAlertStatus() %></td>
 <td><%= raisedAlertBean1.getRaisedTime() %></td>
 </tr>

 </metrics:thresholdDefinitionList>
 </table>
Working With Metrics 153

 <h1>Highest Overall Alert for flow (<%= flowName %>)</h1>

 <!-- 4 -->
 <metrics:maximumAlertStatus var="overallStatus" flowId="<%= flowId %>" />

 <table border=1>
 <tr>
 <th>Status</th>
 </tr>
 <tr>
 <td><%= overallStatus %></td>
 </tr>
 </table>

 </body>
</html>

where:

• Step 1 uses the flowId to look up the metric definition for the Calls
Resolved ON Contract metric.

• Step 2 calls the raisedAlertList tag and loops through the alerts that
have occurred during the past 12 hours, for the specified metric.

The noOfEntries parameter allows you to limit the number of alerts
returned to your code.

• Step 3 loops through all the thresholds defined for the given metric,
showing the latest alert that has been raised for each threshold.

• Step 4 uses the maximumAlertStatus tag to find out the overall
maximum alert against the given flowId.
154 Chapter 5

The OVBPI Dashboard

Now that you know how to draw metric diagrams, let’s look at how easy it is to
customize the OVBPI Business Process Dashboard.

When you select a flow on the OVBPI Business Process Dashboard’s main
page, you are presented with the Business Flow and Resource Summary
page for that flow. This page displays the overall flow diagram, and then
displays any metric thresholds that are defined for this flow. These metric
thresholds are displayed in a table headed Metric Threshold Summary.

The Business Process Dashboard is written to be a generic dashboard. When
the Business Flow and Resource Summary page is displaying the details
for a flow, the Metric Threshold Summary table is where all metrics with
defined thresholds get displayed. The JSP page simply loops through the
metric definitions in alphabetical order, and for each metric definition,
displays a dial or table to represent the performance of that metric against
each defined threshold.

You may wish to have some control over which metrics get displayed, and in
which order they get displayed.

You can write a standalone JSP that draws, for a given flow, the metric
threshold summary table the way you want it displayed. You can then have
the Business Process Dashboard use this JSP whenever it displays the
Business Flow and Resource Summary page for the given flow.

The Business Process Dashboard looks in the directory:

ovbpidashboard2-10\CustomMetricThresholdSummaryTable

for all custom metric threshold table JSPs. If you are adding your own custom
metric threshold table JSP(s) then you need to create the
CustomMetricThresholdSummaryTable directory.
Working With Metrics 155

Custom Metric Threshold Tables

To provide a custom metric threshold table JSP for a flow, the file must be
named:

flowname.jsp

where flowname matches the name of the flow being drawn. (It is
case-sensitive.)

The flowname.jsp page is passed the following parameters:

• flowid

The flow ID of the flow being displayed.

• flowname (optional)

The name of the flow being displayed.

• origTimeperiod (optional)

The time period to be used when displaying the metrics.

Possible values are:

— 0 - over the most current collection interval.

— 1, 2, 4, 12, 24, 168 - over the past 1, 2, etc. hours.

— ALL - over the interval since the metric was defined.

• callingURL (optional)

The name of the page that invoked this JSP.

This will be set to businessFlowAndResourceSummary.jsp.

• urlParameters (optional)

A HashMap of parameters passed in to this JSP.

To display the metrics against their thresholds, you only require the flowid
and the origTimeperiod parameters. The flowid allows you to locate your
metrics, and you then show the results over the time period specified in
origTimeperiod.
156 Chapter 5

Example - Displaying a Specific Metric Threshold

If your flow is called Call System, then creating the following JSP code and
saving it in the file:

ovbpidashboard2-10\CustomMetricThresholdSummaryTable\Call System.jsp

provides a custom metric threshold summary table for the Call System flow
when displayed within the OVBPI Business Process Dashboard.

This code example shows how to draw a dial to display the single metric, Call
Assignment Time, against the threshold called Call Assignment Backlog:

<%@ page import="com.hp.ov.bia.views.taglibs.metrics.ValidMetricFieldEnum,
 com.hp.ov.bia.views.taglibs.metrics.ThresholdTypeEnum"
 errorPage="/gen/errorPage.jsp" %>

<%@ taglib uri="com.hp.ov.bia.views.taglibs.metrics" prefix="metrics" %>

<%
 // Step 1
 String flowId = request.getParameter("flowid");
%>
 <table class=container>
 <tbody>
 <tr>
 <td>

 <!-- Step 2 -->
 <table class=vertical cellSpacing=0 border=0>
 <caption>
 <table class="horizontal"
 cellpadding="0" cellspacing="0"
 border="0" style="margin:0px" >
 <tr>
 <td id=captionleft >
 My Metric Threshold Summary Table
 </td>
 </tr>
 </table>
 </caption>

 <!-- Step 3 -->
 <metrics:metricDefinition var="metricVar"
 flowId="<%= flowId %>"
 metricName="Call Assignment Time" />
 <metrics:thresholdDefinition var="thresholdVar"
 metricId="<%= metricVar.getMetricId() %>"
 thresholdName="Call Assignment Backlog" />
Working With Metrics 157

 <%
 // Step 4
 String graphTitle = thresholdVar.getThresholdName();
 String age = "LATEST";
 ThresholdTypeEnum thresholdType =
 thresholdVar.getThresholdType();
 ValidMetricFieldEnum thresholdField =
 thresholdVar.getThresholdColumnName();

 // Step 5
 %>
 <metrics:metricStatistics var="metricStatsBean"
 metricId="<%= thresholdVar.getMetricId()%>"
 infoType="<%= thresholdType.toString() %>"
 age="<%= age %>"
 untilLatest="true"
 />
 <%
 Float value =
 metricStatsBean.getValidMetricFieldValue(thresholdField);
 String formattedString = value.intValue() + " Calls";
 %>

 <!-- Step 6 -->
 <tr>
 <td align="center"><%= graphTitle %></td>
 </tr>
 <tr>
 <td align="center">
 <a href="flowMetricThresholds.jsp?thresholdId=
 <%= thresholdVar.getThresholdId() %>">
 <metrics:valueGraph imageBackgroundColor="#FFFFFF"
 width="150" height="100"
 graphType="dial"
 graphBackgroundColor="#EBEBEB"
 legend="false"
 value="<%= value %>"
 field="<%= thresholdField.toString() %>"
 thresholdDefinitionBean="<%= thresholdVar %>"
 graphValueLabel="<%= formattedString %>"
 />

 </td>
 </tr>
 </table>
 </td>
 </tr>
 </tbody>
 </table>
158 Chapter 5

where:

• Step 1 gets the flowid for the flow you are working with.

• Step 2 sets up the table that will contain your metric dial. It then sets the
caption for the table.

• Step 3 uses the flowid to get the metric definition that you are going to
display. The metric name is: Call Assignment Time. It then gets the
threshold definition, Call Assignment Backlog, which this metric is to
be displayed with.

• Step 4 sets up various details such as the graph title, the time period
(LATEST = over the most current collection interval), threshold type and
the name of the threshold attribute.

• Step 5 gets the metric statistics bean. This gives you the value of the
metric to be graphed.

• Step 6 actually draws the metric dial.

If you run this example, the Business Process Dashboard looks as shown in
Figure 18. Notice the Call Assignment Backlog threshold is shown within
the table My Metric Threshold Summary Table.

Figure 18 A Specified Metric Threshold
Working With Metrics 159

Example - Displaying a Metric Threshold of Any Type

The JSP code shown in Example - Displaying a Specific Metric Threshold on
page 157 works well, however, it is hard-coded to only show the metric over
the most recent (LATEST) collection interval, and it only works for the specified
metric and threshold type.

Let’s now look at how to write a more generic JSP page that uses more of the
Business Process Dashboard built-in procedures and calls, to be able to
display any metric type, and display this over any given time interval.

If your flow is called Call System, then creating the following JSP code and
saving it in the file:

ovbpidashboard2-10\CustomMetricThresholdSummaryTable\Call System.jsp

provides a custom metric threshold summary table for the Call System flow
when displayed within the OVBPI Business Process Dashboard.

In this code example, the metric name and threshold name are specified in
variables at the top of the JSP. The code then shows how to display the given
metric depending on the type of threshold specified - either an instance
threshold or a statistical threshold.

Here is the code:

<%@ page errorPage="/gen/errorPage.jsp" %>
<%@ include file="/gen/common.jsp" %>
<%@ taglib uri="com.hp.ov.bia.views.taglibs.metrics" prefix="metrics" %>

<%
 // Step 1
 // Set the metric and threshold names.

 String myMetricName = "Call Assignment Time";
 String myThresholdName = "Call Assignment Backlog";

 // Step 2
 // Get the parameters passed in to this JSP.

 HashMap urlParameters = (HashMap) request.getAttribute("urlParameters");
 String flowId;
 try
 {
 flowId = getRequestParameter(pageContext, "flowid");
 }
 catch (IllegalArgumentException e)
 {
160 Chapter 5

 return; // no param - getRequestParameter() redirects to alert page.
 }
 String callingURL = getOptionalRequestParameter(pageContext,
 "callingURL", "DefaultURL");
 String origTimePeriod = getOptionalRequestParameter(pageContext,
 "origTimeperiod", "0");
 String flowName = getOptionalRequestParameter(pageContext,
 "flowname", null);

 // Used to construct the URL behind the graphing period pull-down.
 String thisUrl;
%>
 <table class=container>
 <tbody>
 <tr>
 <td>
 <table class=vertical cellSpacing=0 border=0>

 <!-- Step 3 -->
 <!-- Set the caption (heading) for this table -->

 <caption>
 <table class="horizontal" cellpadding="0"
 cellspacing="0" border="0" style="margin:0px" >
 <tr>
 <td id=captionleft >
 My Metric Threshold Summary Table
 </td>

 <td id=captionright>
 Graphing Period

<!-- Step 4 -->
<!-- Build the Graphing Period pull-down, with URLs behind each entry. -->

 <select name="timeperiod"
 onchange="window.location=this.options[this.selectedIndex].value;">
 <%
 thisUrl = buildURL(callingURL, urlParameters, "timeperiod") +
 "&timeperiod=0";
 %>
 <option value="<%= thisUrl %>"
 <%= origTimePeriod.equals("0") ? "selected" : "" %> >Current</option>
 <%
 thisUrl = buildURL(callingURL, urlParameters, "timeperiod") +
 "&timeperiod=1";
 %>
 <option value="<%= thisUrl %>"
 <%= origTimePeriod.equals("1") ? "selected" : "" %> >1 hour</option>
 <%
Working With Metrics 161

 thisUrl = buildURL(callingURL, urlParameters, "timeperiod") +
 "&timeperiod=2";
 %>
 <option value="<%= thisUrl %>"
 <%= origTimePeriod.equals("2") ? "selected" : "" %> >2 hours</option>

 ...etc... for values 4, 12 and 24 ...
 <%
 thisUrl = buildURL(callingURL, urlParameters, "timeperiod") +
 "&timeperiod=168";
 %>
 <option value="<%= thisUrl %>"
 <%= origTimePeriod.equals("168") ? "selected" : "" %> >1 week</option>
 <%
 thisUrl = buildURL(callingURL, urlParameters, "timeperiod") +
 "&timeperiod=ALL";
 %>
 <option value="<%= thisUrl %>"
 <%= origTimePeriod.equals("ALL") ? "selected" : "" %> >All</option>

 </select>
 </td>
 </tr>
 </table>
 </caption>

 <!-- Now display the threshold dial (or instance alert table) -->

 <%
 String graphTitle = "";
 boolean insufficientData = false;
 %>

 <tr>
162 Chapter 5

 <!-- Step 5 -->
 <!-- Get the Metric and Threshold beans -->

 <metrics:metricDefinition var="metricVar"
 flowId="<%= flowId %>"
 metricName="<%= myMetricName %>" />
 <metrics:thresholdDefinition var="thresholdVar"
 metricId="<%= metricVar.getMetricId() %>"
 thresholdName="<%= myThresholdName %>" />

 <!-- Also get the metric statistics bean’s total details -->

 <metrics:metricStatistics var="totalMetricStatsBean"
 metricId="<%= metricVar.getMetricId() %>"
 infoType="Total" />
 <%
 graphTitle = thresholdVar.getThresholdName();
 insufficientData = false;

 // Step 6
 // Set the three objects that are to be used by a JSP
 // that you will include further down this page.

 request.setAttribute("metricObject", metricVar);
 request.setAttribute("thresholdObject", thresholdVar);
 request.setAttribute("totalMetricStatisticsObject",
 totalMetricStatsBean);

 // Step 7
 // Check that there are enough metric details to be graphed.

 if (metricVar.getCreatedDate() == null
 ||
 (origTimePeriod != null &&
 !origTimePeriod.equals("") &&
 !origTimePeriod.equals("0") &&
 !origTimePeriod.equals("ALL") &&
 metricVar.getCreatedDate().getTime() >
 System.currentTimeMillis()
 - Long.parseLong(origTimePeriod)
 * 3600000)
)
 {
 insufficientData = true;
 }
Working With Metrics 163

 else if (

 thresholdVar.getThresholdType().equals(ThresholdTypeEnum.Instance)
 &&
 thresholdVar.getCreatedDate() != null &&
 origTimePeriod != null &&
 !origTimePeriod.equals("") &&
 !origTimePeriod.equals("0") &&
 !origTimePeriod.equals("ALL") &&
 thresholdVar.getCreatedDate().getTime() >
 System.currentTimeMillis()
 - Long.parseLong(origTimePeriod)
 * 3600000
)
 {
 insufficientData = true;
 }
else if (thresholdVar.getThresholdType().equals(ThresholdTypeEnum.Instance))
 {
 // Step 8
 // Display the instance metric as a table of alerts.

 %>
 <td valign="top">
 <jsp:include page="/gen/drawThresholdAlertsTable.jsp">
 <jsp:param name="graphTitle" value="<%= graphTitle %>"/>
 <jsp:param name="timePeriod" value="<%=origTimePeriod%>"/>
 </jsp:include>
 </td>
 <%
 }
 else
 {
 // Step 9
 // Display the average for the metric as a dial.

 %>
 <td valign="top">
 <jsp:include page="/gen/drawThresholdDialTable.jsp">
 <jsp:param name="graphTitle" value="<%= graphTitle %>"/>
 <jsp:param name="timePeriod" value="<%=origTimePeriod%>"/>
 </jsp:include>
 </td>
 <%
 }
164 Chapter 5

 // Step 10
 if (insufficientData)
 {
 %>
 <td valign="top">
 <table id="my_nodata_table" align="center" border="0"
 cellspacing="0" cellpadding="0">
 <tbody>
 <tr><td align="center"><%= graphTitle %></td></tr>
 <tr><td align="center"> </td></tr>
 <tr>
 <td align="center">
 Insufficient Data...sorry!
 </td>
 </tr>
 </tbody>
 </table>
 </td>
 <%
 }
 %>

 </tr>
 </table>
 </td>
 </tr>
 </tbody>
 </table>

where:

• Step 1 defines the metric name and the threshold name.

• Step 2 gets all the parameters that are passed into this JSP.

The methods getRequestParameter() and
getOptionalRequestParameter() are provided in /gen/common.jsp.

• Step 3 sets up the table and the table headings.
Working With Metrics 165

• Step 4 builds the graphing time period pull-down.

For each option in the pull-down, the code builds a URL such that when/if
the user selects an option, the URL refreshes the page, but using the
specified time period from this pull-down option.

Let’s look at how the option for 1 hour is set up:

 <%
 thisUrl = buildURL(callingURL, urlParameters, "timeperiod") +
 "&timeperiod=1";
 %>
 <option value="<%= thisUrl %>"
 <%= origTimePeriod.equals("1") ? "selected" : "" %> >1 hour</option>

The buildURL() method is supplied in /gen/common.jsp. The
buildURL() method constructs a URL that starts with the first
parameter (callingURL). It then append the contents of the second
parameter (urlParameters)...but...if urlParameters contains the
variable timeperiod (the third parameter) this parameter is stripped
out and not used. In other words, this call to buildURL() constructs a
URL to call the calling page (which will be
businessFlowAndResourceSummary.jsp) plus the parameters that were
passed to this page (urlParameters) but without any mention of the
timeperiod parameter. The code then adds the timeperiod parameter
and sets it to the value 1 (for one hour).

The code then outputs the HTML to show the option labelled 1 hour,
with the newly constructed URL behind it.

Notice also that there is a test to see whether to make this option the
currently selected one or not. That is, if the user selects this option from
the pull-down, the page is refreshed and you want this option to appear as
the selected option.
166 Chapter 5

• Step 5 makes calls to set up three objects:

— metricVar

Uses the flowid and the metric name to retrieve the
MetricDefinitionBean object for this metric.

— thresholdVar

Uses the metric id and threshold name to retrieve the
ThresholdDefinitionBean object for this threshold.

— totalMetricStatsBean

Uses the metric id to retrieve the MetricStatisticsBean object
containing the total statistics information. This is only needed when
displaying a relative threshold. This object provides the code with
overall averages and standard deviation details, and these are
required to display relative thresholds.

The reason you get these three objects is so you can pass them on to a
sub-JSP....see Step 6.

• Step 6

The three objects retrieved in Step 5 need to be set into the request
object. This allows you to pass them on to another JSP that actually
handles the displaying of your metric threshold details.

The variables you need to set up in the request object are:

— metricObject - set this to your MetricDefinitionBean.

— thresholdObject - set to your ThresholdDefinitionBean.

— totalMetricStatisticsObject - set to your
MetricStatisticsBean.

• Step 7 calculates whether enough metric data exists for the time period
that you have specified. If not enough metric data exists then the page
will display some text telling the user that there is insufficient data
available (see Step 10)

• Step 8

If the threshold is an instance type of threshold, then invoke the code
within the JSP /gen/drawThresholdAlertsTable.jsp. This JSP builds
a table showing how many instance alerts there have been, for each
severity, over the specified time period.
Working With Metrics 167

• Step 9

If the threshold is a statistical type of threshold, then invoke the code
within the JSP /gen/drawThresholdDialTable.jsp. This JSP displays
a dial showing the average of the metric over the specified time period.

• Step 10 is called if there is not enough metric data to display.

If you run this example, the Business Process Dashboard looks as shown in
Figure 19. Notice that My Metric Threshold Summary Table contains the
metric dial, and has a pull-down where the user can select the graphing time
period.

Figure 19 A Metric Threshold of Any Type
168 Chapter 5

Example - Displaying Multiple Metric Thresholds

The code shown in Example - Displaying a Metric Threshold of Any Type on
page 160 is generic code that works for any given metric and threshold name.

You can hopefully see how easy it would be to extend this generic code
example to loop through an array of metric/threshold pairs.

For example:

• Define a metric/threshold array.

Instead of defining the metric and threshold names as:

String myMetricName = "Call Assignment Time";
String myThresholdName = "Call Assignment Backlog";

You define an array of metric./threshold pairs, as follows:

String newline = "CR";

// --
// Set the metric and threshold names here.
// --

String[] myMetricThresholdPairs = {

 "Call Assignment Time", "Call Assignment Backlog",
 "Call Processing Time", "Call Processing Speed",

 newline, newline,

 "Call Assignment Time", "Call Assignment SLA",
 "Call Processing Time", "Call Time SLA",

 newline, newline
 };

So this is asking to display the metric Call Assignment Time against
the threshold Call Assignment Backlog, then the metric Call
Processing Time against the threshold Call Processing Speed. It
then contains an entry that means you want to start a new line within the
metric threshold table. It then specifies two more metric threshold pairs,
and a new line to finish the table.

• Get the request parameters as before.

• Display the table, caption and graphing period pull-down as before.
Working With Metrics 169

• Put a loop around the code where you get the metric bean, statistics bean
and totals bean, and then display the metric:

for (int i=0; i<myMetricThresholdPairs.length; i=i+2)
{
 ...code to get and display each metric threshold...
}

• Add code within the loop to detect the newline entries, such that you
issue the necessary HTML to finish the current table line and start a new
one.

Your custom metric threshold table might look as shown in Figure 20:

Figure 20 A Custom Metric Threshold Summary Table
170 Chapter 5

6 Direct OVBPI Database Access
Using the OVBPI JSP tag libraries, you are able to retrieve most of the details
that you would typically need for a business dashboard. However, there may
be situations where you require extra details. Maybe some custom calculation
that you would like to make across your flow instances, or something that the
standard tag libraries just don’t provide.

OVBPI maintains all its information in an SQL database. The schema for this
database is published in the OVBPI Reference Guide.

This chapter looks at accessing the OVBPI database directly from within your
custom dashboard.
 171

Connecting

The OVBPI Business Process Dashboard provides a bean that allows you to
connect to the OVBPI database. The bean is:

com.hp.ov.bia.views.DBConnection

This bean uses the standard Business Process Dashboard configuration
details (from the DashboardConfig.properties file) to connect to the
OVBPI database.

The DBConnection bean provides a pooled database connection. That is,
when you close a connection it is actually pooled and made available for
another user. (This pooling mechanism makes use of the Database Connection
Pooling library from the Apache organization.)

Before the DBConnection bean can be used, it needs to be initialized
correctly. To make it easy for you, the OVBPI Business Process Dashboard
provides a method that does this for you.

The method is called: getDatabaseConnection() and it is found in the JSP:
gen/common.jsp

This method requires that you pass in the current JSP page context object
(which is in the pre-defined JSP variable pageContext).

This “pooled” database connection must be closed before the end of the JSP
page. If your JSP does not close the connection, you may cause the underlying
database system to run out of resources and your custom dashboard may
eventually hang.

To close the database connection, you simply call the method:
closeConection() (yes...it is spelt incorrectly :-)

So to access the OVBPI database directly within your JSP, you need to:

• Include common.jsp

• Call getDatabaseConnection()

• Do whatever SQL you need...

• Close this database connection
172 Chapter 6

The overall outline of your JSP code is as follows:

<%@ include file="/gen/common.jsp" %>

<%
 // Get a pooled connection
 DBConnection dbConn = getDatabaseConnection(pageContext);
%>

 ...your database access in here...

<%
 // Close the database connection for this page
 dbConn.closeConection();
%>
Direct OVBPI Database Access 173

Issuing SQL Statements

Once you have a database connection you can issue SQL statements against
the OVBPI database.

The DBConnection bean provides some methods to assist with issuing SQL
statements.

There are two main types of SQL queries you can make:

• Fixed SQL statements

• Prepared SQL statements

Fixed SQL Statements

A fixed SQL statement is where you have a complete SQL statement that you
wish to execute.

For example:

select flow_id, ActiveFlows, flowname, status
 from flows
 where status != 'Deleted'

This example returns the specified column values from the flows data table,
for all flows that were not marked for deletion. (That is, all non-superseded
flows.)

Within your Java code can build the required SQL statement and include
values from your code. For example:

sql = "select flow_id, ActiveFlows, flowname, status from " + flowsTable +
 " where status != '" + flowStatus + "'";

This example substitutes the current values for the variables flowsTable
and flowStatus to produce a complete SQL statement. The variable sql
contains this complete SQL statement.

To execute complete/fixed SQL statements like these, you use the
DBConnection method: executeQuery()
174 Chapter 6

For example:

<%@ page import="java.sql.ResultSet"%>
<%@ include file="/gen/common.jsp" %>
<%
 ResultSet results;
 String sql;

 String flowName = "";
 String flowId = "";
 long activeCount = 0;
 String flowStatus = "";

 DBConnection dbConn = getDatabaseConnection(pageContext);

 sql = "select flow_id, ActiveFlows, flowname, status from flows " +
 " where status != 'Deleted'";

 results = dbConn.executeQuery(sql);
%>
 <h1>Flow Definition List</h1>
 <table cellspacing="0" border="1">
 <tr>
 <th>Flow Name</th>
 <th>Flow ID</th>
 <th>Active Flow Count</th>
 <th>Flow Status</th>
 </tr>
<%
 while (results.next())
 {
 flowId = results.getString("flow_id");
 flowName = results.getString("flowname");
 activeCount = results.getLong("ActiveFlows");
 flowStatus = results.getString("status");
%>
 <tr>
 <td><%= flowName %></td>
 <td><%= flowId %></td>
 <td><%= activeCount %></td>
 <td><%= flowStatus %></td>
 </tr>
<%
 }
%>
 </table>
<%
 // Close the database connection for this page
 dbConn.closeConection();
%>
Direct OVBPI Database Access 175

where:

• You get the database connection:

DBConnection dbConn = getDatabaseConnection(pageContext);

• You use this database connection to issue the SQL statement:

results = dbConn.executeQuery(sql);

This returns the results in a JDBC result set (java.sql.ResultSet).

• You then loop through the results, pulling out the values that you want in
your JSP:

 flowId = results.getString("flow_id");
 flowName = results.getString("flowname");
 activeCount = results.getLong("ActiveFlows");
 flowStatus = results.getString("status");

• You display these values on the Web page

• You close the database connection when you are finished
176 Chapter 6

Prepared SQL Statements

The underlying databases supported by OVBPI offer the ability to “prepare”
SQL statements. This is where you submit the statement to the database
management system (DBMS) and it pre-compiles the statement. This
pre-compiled version is then stored internally within the DBMS. You are then
able to tell the DBMS to run this pre-compiled (prepared) version of the
statement whenever you need it. What’s more, you can specify variables in
this prepared statement and provide values for them at run time.

Prepared statements are used when you have a statement that you are likely
to want to run over and over again. By preparing it once, all subsequent
executions are quicker.

Working with a prepared statement is a two step process. First you need to
prepare the statement, then you can execute it.

Preparing the Statement

A prepares SQL statement is stored against your database connection. So the
method to prepare a statement is provided by the DBConnection bean.

The method is:

public PreparedStatement prepareStatement(String sql)

You provide the SQL statement (as a String) and you are returned a
PreparedStatement object.

Executing a Prepared Statement

Once you have prepared the statement you are able to execute it whenever
you need by passing the PreparedStatement object to the method:

public ResultSet executePreparedQuery(PreparedStatement prepStatement)

This runs your prepared statement and returns the results in a Java result
set (java.sql.ResultSet) object.
Direct OVBPI Database Access 177

Substituting Values

Prepared statements are able to have values passed in to them at execution
time. You mark where these substitutions are to occur by using the question
mark (?) character within your SQL. You can not substitute SQL keywords or
table names, just data values.

For example:

<%@ page import="java.sql.PreparedStatement,
 java.sql.ResultSet"%>
<%@ include file="/gen/common.jsp" %>

<%
 flowName = "Order Flow";
 myStatus = "Deleted";

 PreparedStatement prepStatement;

 sql = "select flow_id, ActiveFlows, AvrgTime, status from flows " +
 " where flowname = ? " +
 " and status != ? ";

 // Prepare the statement
 prepStatement = dbConn.prepareStatement(sql);

 // Set the values to be used with this execution of the statement
 prepStatement.setString(1, flowName);
 prepStatement.setString(2, myStatus);

 // Execute the prepared statement
 results = dbConn.executePreparedQuery(prepStatement);
%>

where:

• You construct the SQL statement as normal, however, you specify a
question mark (?) wherever you wish to substitute a run-time value

• You use the DBConnection method prepareStatement() to prepare
this statement, and it returns a PreparedStatement object
178 Chapter 6

• When you come to execute this prepared statement, you need to set values
for all of your substitutions

Here you set the two string values for the flow name that you want to find
and the flow status that you require.

If you were substituting a non-string value you have a range of different
methods available. For example:

setInt()
setDouble()
setTimestamp()
etc.

Refer to the Java JDK documentation of java.sql.PreparedStatement
for all available methods.

• You call the executePreparedQuery() method (on the database
connection) to execute the prepared statement, and get the results

Which One to Use?

Most of your queries are probably going to be fixed SQL statements.

There are times when it is best to use a prepared statement. Here are some
tips:

• If you need to substitute a date/time value into an SQL statement then
you may find it easier to use a prepared statement

With a fixed SQL statement it can be difficult to get the date format
correct.

• If you need to issue an SQL statement while you are looping through a
previous SQL statement’s result set, you need to use prepared statements

If you try to do nested SQL using fixed SQL statements you get a “Result
set closed” error when you try to issue the second/inner SQL statement.
Direct OVBPI Database Access 179

Additional Helper Beans

There are two additional Java beans that are worth knowing about:

• com.hp.ov.bia.views.util.Constants

• com.hp.ov.bia.views.DBSql

Constants Bean

This bean contains a set of defined constants that might be helpful when
writing your SQL.

The following SQL statement was shown in an earlier code example:

 sql = "select flow_id, ActiveFlows, flowname, status from flows " +
 " where status != 'Deleted'";

The status != 'Deleted' relies on the fact that the string written into the
OVBPI flows data table for a superseded flow is 'Deleted'. There is nothing
wrong with using this, however you might wish to write your SQL where any
OVBPI text strings are listed externally in one place. The Constants bean
provides a list of known OVBPI strings used within the database.

You can refer to the javadocs for the Constants bean for all the available
constants. (see OVBPI-CD\docs\html\OVBPIJavadoc\index.html)

Some example constants:

FLOW_STATE_COMPLETED = 'Completed'
FLOW_STATE_DELETED = 'Deleted'
FLOW_STATE_IMPACTED = 'Blocked'
FLOW_STATE_IMPEDED = 'Impeded'

As well as the javadocs, you can also access the Java code for the Constants
bean. The code is located in:

webapps\ovbpidashboard2-10\WEB-INF\classes\
 com\hp\ov\bia\views\util\Constants.java
180 Chapter 6

This means that, instead of writing your SQL as:

 sql = "select flow_id, ActiveFlows, flowname, status from flows " +
 " where status != 'Deleted'";

you could write it as:

 sql = "select flow_id, ActiveFlows, flowname, status from flows " +
 " where status != '" + Constants.FLOW_STATE_DELETED + "'";

The only difference is that, should OVBPI ever change the text values used
within the database, then the Constants file would also be updated to reflect
the new values...and the second code example (that uses the constants from
the Constants bean) continues to work.

DBSql Bean

This bean contains a set of methods that issue SQL calls against the OVBPI
database. These methods were written for the first generation of the OVBPI
Business Process Dashboard - called the “Web console”. These methods are all
still valid.

Most of the methods within the DBSql bean provide information that you can
already request using the flow tag library, so you probably do not need to
use them.
Direct OVBPI Database Access 181

Associated Data Table

One of the reasons you would typically need to write custom SQL against the
OVBPI database is if you need to construct a query across both your flow
instances and their associated/related data instances. That is, your flow might
be tracking orders and, for each order, you are holding information such as:

OrderID
ShipAddress
Value
CustID
CustAddress
CustType

If you want to construct an SQL query that filters all flow instances for
certain customers and orders, you need to be able to join the flow instance
data table with this flow’s associated data table. (see OVBPI Reference Guide
for details of the database schema.)...but how can you get the name of this
associated data table?

Getting the Name of the Data Table

Each flow definition, within the Flows table, contains the ID of its
associated/related data table. This data table ID is held in the
Primary_Entity column. The Primary_Entity value corresponds to an
entry in the Data_Objects table. When you look up the entry in the
Data_Objects table, the column InstanceTable contains the name of the
associated/related data table.

Let’s look at some example code for returning the data table name, given a
connection to the OVBPI database and the flowID. (This example code is
written within a JSP so that it can be included easily in calling JSPs. You can
obviously choose to write this as a standalone Java bean if you wish.)
182 Chapter 6

Here is a JSP code example that returns the name of the associated data
table, given a connection to the OVBPI database and a flow ID:

<%!
public String getDataTableForFlowID(DBConnection dbConn, String flowId)
 throws Exception
{
 String sql;
 java.sql.ResultSet results = null;

 // Find the ID of the table name
 // -----------------------------
 sql = "select primary_entity from flows where flow_id = '" + flowId + "'";

 results = dbConn.executeQuery(sql);

 String dataTableId = "";
 if (results.next())
 {
 dataTableId = results.getString("primary_entity");
 }

 // Now look up the actual table name in the Data_Objects table
 // ---
 sql = "select InstanceTable from data_objects where model_id = '" +
 dataTableId + "'";
 results = dbConn.executeQuery(sql);

 String dataTable = "";
 if (results.next())
 {
 dataTable = results.getString("InstanceTable");
 }

 return dataTable;
}
%>

where:

• This example is written within a JSP structure

• The code uses the Flows table to locate the ID of the associated data
table within the Data_Objects table.

• Once you have the data table ID, the code looks this up in the
Data_Objects table to get the actual name of the data table.
Direct OVBPI Database Access 183

Displaying the Associated Data Table Name

Here’s in a example code segment that calls the getDataTableForFlowID()
method to display the associated data table name for a given flow:

<%
 // Get the flow ID
 // ---------------

 String flowId = "";
 String flowName = "Order Flow";
%>

<h1>Flow Name is: <%= flowName %></h1>
<flow:flowOutlineList var="flowOutlineBean" nameFilter="<%= flowName %>" />

<%
 if (flowOutlineBean != null)
 {
 flowId = flowOutlineBean.getFlowId();
 }

 // Get the associated data table name
 // ----------------------------------
 DBConnection dbConn = getDatabaseConnection(pageContext);
%>

<%@ include file="ex_db_methods.jsp" %>
<%
 String dataTable = getDataTableForFlowID(dbConn, flowId);
%>

<h3>Associated Datatable name is: <%= dataTable %></h3>
<%
 // Close the database connection for this page
 dbConn.closeConection();
%>

where:

• The code to return the name of the associated data table is held in the file
ex_db_methods.jsp.

• The getDataTableForFlowID() method then returns the name of the
associated data table for this flow

You pass in both the current database connection and the flow ID.
184 Chapter 6

SQL Issues

Deadlocks When Using a Microsoft SQL Server Database

It seems that, when using the MSSQL database system, you can create
deadlocks quite easily.

The Deadlock Issue

If you issue SQL select statements that join tables together, it is possible to
create a deadlock situation with other applications joining the same table...if
they join the tables in a different order to you.

So, if you intend to use SQL select statements that join multiple tables
together, you are advised to set the priority for database access to be low. You
do this using the following MS SQL statement:

set deadlock_priority low;

You then need to write your custom dashboard to retry the SQL statement if it
fails to access the data.

This prevents deadlock situations occurring in cases where your custom
dashboard and the OVBPI Business Impact Engine are accessing database
tables at the same time. In this case, your custom dashboard might initially
fail to access the data; however, it would subsequently retry.

By setting the access priority to low for applications, the OVBPI Business
Impact Engine has priority and its performance is not impacted by an
application that requires only read-access to the data; see The DBConnection
Bean on page 185.

This deadlock issue does not apply to an OVBPI implementation using an
Oracle Server.

The DBConnection Bean

The DBConnection bean sets the deadlock priority to low and all SQL
statements are performed within a retry loop. So, if you use the
DBConnection bean to issue all your SQL statements against the OVBPI
database, all deadlock and retry issues are handled for you.
Direct OVBPI Database Access 185

Select Columns by Name

When developing your own SQL statements, you are advised against using
select * statements; you are advised to specify all the required columns by
name. The reason for this is one of future maintenance. If you select the
columns by name, this continues to work if and when any additional columns
are added to that table in a future product release. However, if you use the
select * command, it may cause your customized dashboard to fail when
used with a later version of OVBPI.
186 Chapter 6

Example Customizations

Listing Specific Flow Instances

Let’s consider an example where you put together a JSP page that lists all the
flow instances that have taken longer than two hours to get to a given node

Assume you are given three things:

• The name of the flow

• The name of the node

This is the node that flow instances must have reached within the
specified duration limit.

• The duration limit

The basic steps you need to follow are:

• Given the flow name, use the flowOutlineList tag to get the flow ID

• Convert the given node name into a node ID

Use the flow tag, followed by the flowNodeList tag (with a name
filter).

• Get a connection to the OVBPI database

• Issue the SQL

This needs to find all flow instances that are currently active and have not
yet reached the given node ID. This means that the node ID is in a state of
“Initial”.

• Loop through the returned list and display those that have been running
for longer than the specified time (two hours)

• Close the database connection

Let’s consider this in two parts, looking firstly at the required SQL query, and
then how to call this SQL from within your JSP.
Direct OVBPI Database Access 187

The SQL Query

The actual SQL required for this customization can be written as a reusable
method. You could then place this method within the calling JSP, in its own
JSP or within something like gen/common.jsp.

The method you require is as follows:

<%!
 public java.sql.ResultSet notYetHere(DBConnection dbConn, String nodeId)
 throws Exception
 {
 String sql;
 java.sql.PreparedStatement prepStatement;
 java.sql.ResultSet results;

 sql = "select flow_instance.flowinstance_id, flow_instance.identifier," +
 " flow_instance.starttimelongmillis " +
 " from node_instance, flow_instance " +
 " where node_instance.flowinstance_id = flow_instance.flowinstance_id " +
 " and node_instance.status = '" + Constants.NODE_STATE_NOT_STARTED + "'" +
 " and node_instance.node_id = ?" +
 " and flow_instance.status != '" + Constants.FLOW_STATE_COMPLETED + "'";

 prepStatement = dbConn.prepareStatement(sql);
 prepStatement.setString(1, nodeId);

 results = dbConn.executePreparedQuery(prepStatement);

 return results;
 }
%>

Let’s look at the SQL statement in more detail:

• The selected columns

select flow_instance.flowinstance_id, flow_instance.identifier,
 flow_instance.starttimelongmillis

This selects three columns from the database. All three columns come
from the flow_instance data table. The reason each column name is
prefixed with the actual name of the flow_instance table is because
some of the selected column names also appear in the node_instance
table. The prefix makes sure that you fully specify each column to say
exactly which data table you are referring to.
188 Chapter 6

• The FROM clause

 from node_instance, flow_instance

The columns are selected from a join of two data tables. This select
statement joins the node_instance table with the flow_instance
table.

• The WHERE clause

where node_instance.flowinstance_id = flow_instance.flowinstance_id

Because the select is joining two tables together, it must specify the
column on which the tables are to be joined. This is specified in the WHERE
clause of the select statement.

This part of the where clause is saying that the select must join entries
where the value in the flowinstance_id column of the node_instance
table, must match the value in the flowinstance_id column of the
flow_instance table. In other words, match up the entries for the same
flow instance ID.

and node_instance.status = '" + Constants.NODE_STATE_NOT_STARTED + "'"

This part of the where clause says that the select statement should
match entries only where the status of the node instance is equal to the
string Initial. (Constants.NODE_SATE_NOT_STARTED = “Initial”)

and node_instance.node_id = ?

This part of the where clause specifies that the node ID will be passed in
to this statement at run time.

and flow_instance.status != '" + Constants.FLOW_STATE_COMPLETED + "'"

This part of the where clause says that the select statement should select
entries only where the status column in the flow_instance table is
not equal to the string Completed. (Constants.FLOW_STATE_COMPLETED
= “Completed”)

In other words, select only flow instances that are still actively running.
Direct OVBPI Database Access 189

The above SQL select statement joins the node_instance table with the
flow_instance table, to return all flow instances that have not yet reached
the given node ID. It returns a Java result set containing an entry for each
matching flow instance. Each entry within this result set contains the
following three columns:

flowinstance_id
identifier
starttimelongmillis

The caller of this method is then able to loop through and process this result
set.

The Calling JSP

Let’s look at a code extract from a JSP that uses your notYetHere() method
to display flow instances (for the flow: Order Flow) that have taken longer
than two hours to reach the node Ship Order.

When displaying the list of slow flow instances, the JSP provides a link to the
gen/flowInstance.jsp page to enable the user to see further details for any
of the instances:

<%
 String flowId = "";
 String flowName = "Order Flow";

 String nodeId = "";
 String nodeName = "Ship Order";

 final long oneHour = 3600000; // 1 hour = 1*60mins*60secs*1000mSecs
 long durationLimit = 2 * oneHour;
%>

<!-- Get the Flow ID for the flow -->

<flow:flowOutlineList var="flowOutlineBean" nameFilter="<%= flowName %>" />
<%
 if (flowOutlineBean != null)
 {
 flowId = flowOutlineBean.getFlowId();
 }
%>
190 Chapter 6

<!-- Get the node ID for the node -->

<flow:flow flowId="<%= flowId %>" var="flowBean" />
<flow:flowNodeList flowBean="<%= flowBean %>" var="flowNodeBean"
 nameFilter="<%= nodeName %>" />
<%
 if (flowNodeBean != null)
 {
 nodeId = flowNodeBean.getNodeId();
 }
%>

 <!-- Get a database connection -->
<%
 DBConnection dbConn = getDatabaseConnection(pageContext);

 // Call the notYetHere() method

 ResultSet results = notYetHere(dbConn, nodeId);

 // Set up some variable

 long flowInstanceStartTime = 0;
 long nowTime = System.currentTimeMillis(); // Sets the time to now!
 double duration;

 String flowInstanceId = "";
 String identifier = "";

 // Some helpers to display the duration in hours
 NumberFormat df = DecimalFormat.getNumberInstance();
 df.setMaximumFractionDigits(2); // 2-digit precision

 %>

 <!-- Loop through displaying slow flow instances -->

 <table cellspacing="0" border="1">
 <tr>
 <th>Identifier</th>
 <th>Duration</th>
 </tr>
 <%
Direct OVBPI Database Access 191

 while(results.next())
 {
 flowInstanceStartTime = results.getLong("starttimelongmillis");

 // Check how long this flow instance has been running for...
 duration = nowTime - flowInstanceStartTime;
 if (duration > durationLimit)
 {
 // Display this one to the screen

 flowInstanceId = results.getString("flowinstance_id");
 identifier = results.getString("identifier");
 %>
 <tr>
 <td>
 <a href=../gen/flowInstance.jsp?flowinstanceid=<%= flowInstanceId %> >
 <%= identifier %>
 </td>
 <td>
 <%= df.format(duration/oneHour) %> Hours
 </td>
 </tr>
 <%
 }
 }

%>
 </table>
<%
 // Close the database connection for this page
 dbConn.closeConection();
%>
192 Chapter 6

Joining the Associated Data

When deriving statistics from the OVBPI database you often do not need to
use anything more that the standard tables such as:

flows
flow_instance
nodes
node_instance

The schemas (layouts) for these tables are all listed in the OVBPI Reference
Guide.

You might need to produce statistics that require additional “business” data
associated with each flow instances.

This “business” data is held in an associated (related) data table that is
uniquely named for each deployed flow, and the layout of each of these data
tables is unique for that data definition.

To get the name of the associated data table for a given flow, refer to
Associated Data Table on page 182.

Once you have the name of the associated data table, you need to join it to the
flow instance table. This is done by joining the following two fields together:

flow_instance.primary_entity_inst
datatablename.id
Direct OVBPI Database Access 193

Let’s consider an example:

You have been asked to produce a customized dashboard that lists the
instances of the Order Flow showing the individual order data.

That is, produce a list of flow instances for the Order Flow, and for each
flow instance, list the order details such as: order number, customer ID
and order value (showing the actual currency type)

To do this, you need to do the following:

• Get the flow ID for the Order Flow

• Get the name of the associated data table for this flow

• Issue an SQL query that returns all the active order details. This query
needs to:

— Join the flow instance table with the associated data table

— select the fields: ordernumber, customerid, value and value_code,
for all active flow instances

If it also selects the flow instance ID, then the resultant Web page can set
up a link from each order to the gen/flowInstance.jsp page.

• Display the list of orders

Let’s consider this in two parts, looking firstly at the required SQL query, and
then how to call this SQL from within your JSP.
194 Chapter 6

The SQL Query

The SQL is written as a reusable method. You can place this method within
the calling JSP, in its own JSP or within something like gen/common.jsp.

The method to return the order details is as follows:

<%!
 public java.sql.ResultSet getOrderDetails(DBConnection dbConn,
 String dataTable,
 String flowId)
 throws Exception
 {
 String sql;
 java.sql.PreparedStatement prepStatement;
 java.sql.ResultSet results;

 // This joins the flow_instance and assoc data table together.

 // It returns the flowinstance_id followed by columns specific
 // to the order data definition.
 // It only selects flows that are still active.

 sql = "select flow_instance.flowinstance_id, " +
 dataTable + ".ordernumber, " +
 dataTable + ".customerID, " +
 dataTable + ".value, " +
 dataTable + ".value_code " +
 " from flow_instance, " + dataTable +
 " where flow_instance.primary_entity_inst = " + dataTable + ".id" +
 " and flow_instance.flow_id = ?" +
 " and flow_instance.status != '" + Constants.FLOW_STATE_COMPLETED + "'";

 prepStatement = dbConn.prepareStatement(sql);
 prepStatement.setString(1, flowId);

 results = dbConn.executePreparedQuery(prepStatement);

 return results;
 }
%>
Direct OVBPI Database Access 195

The Calling JSP

Let’s look at a code extract from a JSP that uses this getOrderDetails()
method to display the list of active orders (for the flow: Order Flow)

When it displays each order, it provides a link to the gen/flowInstance.jsp
page to enable the user to see further details for any of the orders:

<%
 String flowId = "";
 String flowName = "Order Flow";
%>
<!-- Get the Flow ID for the flow -->

<flow:flowOutlineList var="flowOutlineBean" nameFilter="<%= flowName %>" />
<%
 if (flowOutlineBean != null)
 {
 flowId = flowOutlineBean.getFlowId();
 }
%>
<!-- Get a database connection -->

<%
 DBConnection dbConn = getDatabaseConnection(pageContext);
%>

<!-- Get the name of the associated data table for this flow -->

<jsp:useBean id="sqlBean" class="com.hp.ov.bia.views.DBSql" scope="page"/>
<%
 String dataTable = sqlBean.dbGetDataTableForFlowID(dbConn, flowId);
%>

<%
 // Call the SQL query

 ResultSet results = getOrderDetails(dbConn, dataTable, flowId);

 String flowInstanceId = "";
 String orderNumber = "";
 String custId = "";
 double value = 0;
 String valueCode = "";

 // These are here to help with the display of the value field
 NumberFormat df = DecimalFormat.getNumberInstance();
 df.setMaximumFractionDigits(2); // 2-digit precision
 %>
196 Chapter 6

 <h1>Current Orders</h1>
 <table cellspacing="0" border="1" >
 <tr>
 <th>Order Number</th>
 <th>Customer ID</th>
 <th>Value</th>
 </tr>
 <%
 // Now loop through the returned orders - displaying them as you go.
 while(results.next())
 {
 flowInstanceId = results.getString("flowinstance_id");
 orderNumber = results.getString("ordernumber");
 custId = results.getString("customerID");
 value = results.getDouble("value");
 valueCode = results.getString("value_code");
 %>
 <tr>
 <td><a href=../gen/flowInstance.jsp?flowinstanceid=<%= flowInstanceId %>>
 <%= orderNumber %>
 </td>
 <td><%= custId %></td>
 <td><%= df.format(value) %> <%= valueCode %></td>
 </tr>
 <%
 }
%>
 </table>
<%
 // Close the database connection for this page
 dbConn.closeConection();
%>
Direct OVBPI Database Access 197

Lab - Direct SQL

The purpose of this lab is to get you accessing the OVBPI database directly
from within your JSPs.

Time to a Node

• Create a new JSP

• This JSP is to list flow instances for the flow Order Flow, but only show
flow instances that have taken longer than 30 minutes to get to the node:
Ship Order

Once this is working, change the JSP to report as follows:

• Report against the flow: Call System

• Only list flow instances that have taken longer than 10 minutes to get to
the node: Open

Well done! You have reached the end of the lab.
198 Chapter 6

 199

200 Chapter

	Integration Training Guide - Customizing the Business Process Dashboard
	Contents
	1 Using The OVBPI Dashboard
	A Generic Dashboard
	Starting the Dashboard
	Logging On

	Basic Operation
	Flow Status
	Node Rates
	My Flows/My Services
	My Flows
	My Services

	Superseded Flows
	Default View
	My Flows
	Do Not Show Superseded Flows

	Directory Structure
	Configuration
	Hidden Settings

	Maintaining The Dashboard
	Localization
	The i18n Tag
	The i18n Bundle
	Text Within the JSPs
	Simple Text
	Text with Parameters

	Obvious Labels

	Tomcat Specific Settings
	Tomcat Startup Options
	Logging
	Auto Compiling JSPs

	Stdout/Stderr Log Output

	Lab - Using the OVBPI Dashboard
	My Flows
	My Services
	Superseded Flows
	New Browser

	2 Customizing The Dashboard
	Basics
	Using the OVBPI Database
	Required Skill Sets

	Tomcat JSP Compilation Logs
	More Directory Structure
	Creating a Custom Dashboard

	Architectural Overview
	Java Server Pages (JSPs)
	Taglibs
	Available Libraries
	Documentation (Javadocs)
	Basic Operation
	Two Types of Tags
	List Tags
	Specific Tags
	Error Handling

	Java Beans
	Documentation (Javadocs)

	The Next Step

	3 Working With Flows
	<flow> Tag Hierarchy
	Accessing Flow Details
	Listing Flow Definitions
	Filtering Flows By Name
	Multiple Flow Names (<util:args>)
	Filtering By Flow Status
	Getting the Flow ID
	Listing Node Instance Details

	Drawing Flow Diagrams
	Flow Diagram <flowImage>
	Flow Instance Diagram <flowInstanceImage>
	Flow Instance Timeline <flowInstanceTimelineImage>
	Setting Background Color
	Named Color
	HTML (Hex) Color

	Activating Node URLs
	Fixed URL
	Dynamic URL
	Multiple Parameters on the Base URL

	Showing Metric Flags
	Further Customization

	Flow Annotations
	DefaultFlowAnnotationBean
	Example 1
	Example 2

	Developing Your Own Annotation
	Typical Methods To Override
	Method Parameters
	FlowNode Parameter

	How to Write an Annotation
	As a Separate Java Bean
	An Annotation Within a JSP

	Setting Left Text
	Setting Right Text
	Setting Left Text Color
	Setting Right Text Color
	Setting Node Label Text
	Setting Node Label Text Color
	Setting Node Tooltip
	Setting Node Image
	Example Flow Diagrams
	Default Flow Diagram
	With Left/Right Text
	With Different Images

	The OVBPI Dashboard
	Custom Flow Drawing
	Flow Drawing
	Flow Instance Drawing
	Example - Flow Diagram
	Example - Flow Instance Diagram

	Lab - Drawing Flows
	Basic Flow Settings
	Custom Left/Right Node Text
	Custom Colors
	OVBPI Business Process Dashboard

	4 Working With Sliders
	The Slider Bean
	Javadocs
	Setting Up The Slider
	Producing a Slider Picture
	Displaying a Slider
	Resulting HTML Page
	Setting Range Colors
	Multiple Sliders on a Page
	Java Variables
	Unique File Names

	Adding a URL

	Lab - Drawing Sliders
	Basic Flow Definition List
	Adding a Slider
	Linking the Slider with a URL

	5 Working With Metrics
	Definitions
	Code Examples
	Accessing Definitions By Name
	Accessing Definitions Using Lists

	Statistical Data and Graphs
	metricStatistics
	metricStatisticsList
	buildGraphDataset
	statisticalGraph
	Code Examples
	Listing Metric Statistics
	Graphing Statistical Data - Example 1
	Graphing Statistical Data - Example 2

	Instance Values
	flowInstanceMetricValueList
	flowInstanceMetricValue
	Code Example
	Listing Metric Instance Values

	Dials
	Code Examples
	Dial - Most Recent Average
	Dial - Over Time
	Swing Dial

	Alerts
	raisedAlertList
	latestRaisedAlert
	maximumAlertStatus
	Code Example
	Displaying Alerts

	The OVBPI Dashboard
	Custom Metric Threshold Tables
	Example - Displaying a Specific Metric Threshold
	Example - Displaying a Metric Threshold of Any Type
	Example - Displaying Multiple Metric Thresholds

	6 Direct OVBPI Database Access
	Connecting
	Issuing SQL Statements
	Fixed SQL Statements
	Prepared SQL Statements
	Preparing the Statement
	Executing a Prepared Statement
	Substituting Values

	Which One to Use?

	Additional Helper Beans
	Constants Bean
	DBSql Bean

	Associated Data Table
	Getting the Name of the Data Table
	Displaying the Associated Data Table Name

	SQL Issues
	Deadlocks When Using a Microsoft SQL Server Database
	The Deadlock Issue
	The DBConnection Bean

	Select Columns by Name

	Example Customizations
	Listing Specific Flow Instances
	The SQL Query
	The Calling JSP

	Joining the Associated Data
	The SQL Query
	The Calling JSP

	Lab - Direct SQL
	Time to a Node

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e006700730020007700680065006e0020007300750062006d0069007400740069006e006700200074006f002000410053004d002000610074000d004800650077006c006500740074002d005000610063006b006100720064002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

