
HP OpenView Select Identity
Software Version: 4.10
Connector Developer Guide
Software Release Date: November 2006

Document Release Date: November 2006

Legal Notices

Warranty

Hewlett-Packard makes no warranty of any kind with regard to this document, including, but not limited to,
the implied warranties of merchantability and fitness for a particular purpose. Hewlett-Packard shall not be
held liable for errors contained herein or direct, indirect, special, incidental or consequential damages in
connection with the furnishing, performance, or use of this material.

A copy of the specific warranty terms applicable to your Hewlett-Packard product can be obtained from your
local Sales and Service Office.

Restricted Rights Legend

Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in subparagraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause in DFARS 252.227-7013.

Hewlett-Packard Company
United States of America

Rights for non-DOD U.S. Government Departments and Agencies are as set forth in FAR 52.227-19(c)(1,2).

Copyright Notices

© 2006 Hewlett-Packard Development Company, L.P.

No part of this document may be copied, reproduced, or translated into another language without the prior
written consent of Hewlett-Packard Company. The information contained in this material is subject to change
without notice.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/).
Portions Copyright (c) 1999-2003 The Apache Software Foundation. All rights reserved.

Select Identity uses software from the Apache Jakarta Project including:

• Commons-beanutils.

• Commons-collections.

• Commons-logging.

• Commons-digester.

• Commons-httpclient.

• Element Construction Set (ecs).

• Jakarta-poi.

• Jakarta-regexp.

• Logging Services (log4j).

Additional third party software used by Select Identity includes:

• JasperReports developed by SourceForge.

• iText (for JasperReports) developed by SourceForge.

• BeanShell.

• Xalan from the Apache XML Project.

• Xerces from the Apache XML Project.

• Java API for XML Processing from the Apache XML Project.
2

• SOAP developed by the Apache Software Foundation.

• JavaMail from SUN Reference Implementation.

• Java Secure Socket Extension (JSSE) from SUN Reference Implementation.

• Java Cryptography Extension (JCE) from SUN Reference Implementation.

• JavaBeans Activation Framework (JAF) from SUN Reference Implementation.

• OpenSPML Toolkit from OpenSPML.org.

• JGraph developed by JGraph.

• Hibernate from Hibernate.org.

• BouncyCastle engine for keystore management, bouncycastle.org.

This product includes software developed by Teodor Danciu http://jasperreports.sourceforge.net). Portions
Copyright (C) 2001-2005 Teodor Danciu (teodord@users.sourceforge.net). All rights reserved.

Portions Copyright 1994-2005 Sun Microsystems, Inc. All Rights Reserved.

This product includes software developed by the Waveset Technologies, Inc. (www.waveset.com). Portions
Copyright © 2003 Waveset Technologies, Inc. 6034 West Courtyard Drive, Suite 210, Austin, Texas 78730. All
rights reserved.

Portions Copyright (c) 2001-2005, Gaudenz Alder. All rights reserved.

Trademark Notices

UNIX® is a registered trademark of The Open Group.

This product includes software provided by the World Wide Web Consortium. This software includes xml-apis.
Copyright © 1994-2000 World Wide Web Consortium, (Massachusetts Institute of Technology, Institute
National de Recherche en Informatique et en Automatique, Keio University). All Rights Reserved.
http://www.w3.org/Consortium/Legal/

Intel and Pentium are trademarks or registered trademarks of Intel Corporation in the United States, other
countries, or both.

AMD and the AMD logo are trademarks of Advanced Micro Devices, Inc.

BEA and WebLogic are registered trademarks of BEA Systems, Inc.

WebSphere Application Server is a trademark of International Business Machines Corporation.

VeriSign is a registered trademark of VeriSign, Inc. Copyright © 2001 VeriSign, Inc. All rights reserved.

All other product names are the property of their respective trademark or service mark holders and are
hereby acknowledged.
3

4

Contents
1 Select Identity Connectors . 11

Connector Types. 11
Select Identity API Architecture. 12
Select Identity Connector Architecture . 12
Select Identity Connector API Interfaces and Classes . 14
New Features in the Connector Interface. 17
Select Identity Web Services . 17

2 Functional Requirements and Development Phases . 19

Platform Support . 19
Agent Communication, Security, and Logging . 19
Identity Objects and Schema Mapping. 20

Supporting and Mapping Identity Objects . 20
Provisioning, Detecting Changes, and Post-provisioning . 21

User/Entitlements Discovery . 21
User Provisioning . 21
Entitlement Provisioning . 22
Change Detection . 23
Post Provisioning . 24

Internationalization Compliance . 24
Performance and Scalability . 24
Development Phases . 24

Requirements Phase . 24
Design Phase. 26
Implementation. 27
Integration . 28
Packaging . 28
Documentation . 28

3 Connector SDK . 35

Simplified Connector Interface . 37
XML Schema Handling . 37
Generic JCA Interface and Connector Implementation . 38
Connector Tester Tool . 38
Connector Template . 39

4 Implementing a Select Identity Connector . 43

Development Requirements . 43
Steps to Implement a Connector for Select Identity . 44
 5

Step 1: Start with the Connector Template. 44
Step 2: Gather Connector Details . 44

Resource Details . 44
Resource Schema Details . 44
Connector Code-Related Details . 45

Step 3: Working with the Connector Template . 45
1. Prepare the Connector Template Files . 45
2. Check the Library JAR Files. 48
3. Implement the Connector . 49

Sample SPML Requests for Reconciliation . 49
Authoritative Reconciliation SPML Requests . 49
Add User. 49
Non-Authoritative Reconciliation SPML Requests . 52
Add User Entitlements . 52
Delete Service Membership. 53
Change User Entitlements . 54

Building a Connector for Forward Provisioning. 55
Agent-less Forward Provisioning . 55
Agent-based Forward Provisioning . 61

Building a Connector for Reverse Provisioning . 62
Agentless Reverse Provisioning . 62

Implementing getChangeLog(ChangeLogCursor) . 62
Agent-based Reverse Provisioning. 64

Mapping Select Identity Attributes to the Resource Schema . 66
General Attribute Information. 66
Creating a Mapping File. 70

Some Coding Guidelines . 72
Key Value Return . 73
Key Value Computation . 73
User Modification . 74

Loading Existing User From Resource. 75
Computing Changes to Be Made . 75

Matching Managed Connections . 79
Schema Reloading. 81

5 Connector Tester Tool . 83

Installing the Tester Tool. 84
Testing the Connector . 85

Step 1: Get the connection parameters of your connector. . 85
Step 2: Prepare the properties file with names and values of these connection parameters. 86
Step 3: Test the connection to the resource. 86
Step 4: Run the Tester Tool client using one of the scripts. . 87

Tester Tool Scripts . 87
Initial Connectivity-Related Scripts . 87
Provisioning-Related Scripts . 88
Bulk Provisioning Scripts. 89
6

6 Installation and Deployment . 95

Installing a Connector On WebLogic . 95
Configuring a Connector in Select Identity . 96

7 Connector Migration . 99

Reasons to Migrate . 99
Interface Changes . 100

Connector API Changes . 100
Classes and Interfaces. 101
Connector Interface . 102

Attribute Operations . 105
Schema Changes . 105

Entity Definition . 106
Relationship Definition . 106
XML Mapping File Changes . 106

Steps to Migrate Connectors . 107
Step 1: Change the Connector Implementation . 107

Implement the SIConnector . 107
ConnectorFactory Implementation . 115

Step 2: Change the XML Mapping File . 115
ObjectClass Definition. 115
Attribute Mapping Definitions . 116
Relationship Definition . 117

Step 3: Remove Deprecated Methods. 117
Step 4: Use Commons Logging. 117
Step 5: Package the Connector. 118
Step 6: Use the Connector Tester Tool. 118

8 The Connector Template . 127

Template Files . 127
Connector Template Code . 127

Index . 133
7

8

9

10

1 Select Identity Connectors
HP OpenView Select Identity (Select Identity) lets you connect to enterprise applications and
resources to configure and manage users, groups, and entitlements. Access to resources from
Select Identity occurs via connectors. Connectors are plug-in modules that are implemented
as resource adapters, and are based on the J2EE Connector Architecture (JCA) framework.

Connectors synchronize the provisioning information between Select Identity and the
resources that store identity information. That is, connectors replicate the changes performed
in Select Identity to the resources and from the resources to Select Identity.

This chapter provides the high-level knowledge required to develop and implement
connectors. Topics in this chapter include conceptual information about the framework,
diagrams outlining the API and connector architectures, and descriptions of API classes and
interfaces.

• Connector Types on page 11

• Select Identity API Architecture on page 12

• Select Identity Connector Architecture on page 12

• Select Identity Connector API Interfaces and Classes on page 14

• New Features in the Connector Interface on page 17

Connector Types

Select Identity connectors can be unidirectional or bi-directional (duplex).

• Unidirectional connectors support only forward provisioning operations from Select
Identity to the resource.

• Bidirectional connectors support reconciliation or reverse synchronization from the
resource to the Select Identity server.

The connectors can also be classified as agent-less or agent-based connectors.

• Agent-less connectors interact with the resources directly through APIs or the remote
protocols supported by the resource.

• Agent-based connectors use agents to communicate with the resource. Agents may be
required based on various factors. For example, the resource does not provide remote APIs
or resource-specific logic to be developed to reconcile the changes in the resource to Select
Identity.

Figure 1 illustrates the flow of data between an Select Identity agent-based connector and an
agent.
11

Figure 1 Data Flow Between Agent-Based Connector and Agent

Select Identity API Architecture

Figure 2 illustrates the Select Identity API architecture, showing the relationship of the
Connector API to Select Identity and the other APIs.

Figure 2 Select Identity API Architecture

Select Identity Connector Architecture

Figure 3 illustrates the high-level architecture of a Select Identity connector.
12 Chapter 1

Figure 3 Select Identity connector architecture

The Select Identity connector is J2EE Connector Architecture (JCA) compliant and is
designed to be deployed as a RAR (Resource Archive) module on the Select Identity server.
The connector runs as a plug-in RAR module on the same application server as Select
Identity.

All connectors must implement the SIConnector interface and other JCA-related interfaces. To
simplify the connector development process from the intricacies of JCA, a generic connector
implementation is provided. This implements the required SIConnector and JCA interfaces.
This generic connector only requires implementation of the SIConnector interface. For more
details, see Select Identity Connector API Interfaces and Classes on page 14.

Thus, there are two ways to develop a connector:

• Option 1: Implement the SIConnector interface and all JCA-related interfaces.

• Option 2: Use the Generic Connector implementation (which also provides a generic
implementation for the SIConnector interface and JCA interface specification) and
implement only the SIConnectorInterface interface.

As the picture shows above, it is also possible to use existing 3.3.x connectors with Select
Identity 4.0.

For a general overview of JCA, refer to the following web page:

http://java.sun.com/j2ee/white/connector.html

Select Identity implements only the Connector Management portion of the
JCA specification.
Select Identity Connectors 13

http://java.sun.com/j2ee/white/connector.html

Select Identity Connector API Interfaces and Classes

The following interfaces and classes are provided by the Connector API. Online help (Javadoc)
is provided for this API on the HP OpenView Select Identity CD, in the docs/api_help/
connectors/Javadoc directory:

• SIConnector

Provides the top-level interface that maps identity information to a resource type. This
interface is an extension of the JCA CCI Connection interface. This is the main interface
to implement to build an Select Identity connector to any resource.

• SIConnectorFactory

Factory to create instances of connection handles for resources. The connection handle is
an implementation of SIConnector.

• SIUserModel

The interface that contains user information that is being provisioned into a resource.

• SIJCAUserModel

Implementation of the SIUserModel interface. All user attribute information passed from
Select Identity to connectors is passed in an instance of this class.

• EntitlementModel

Interface that contains the identity of an entitlement in the resource. Represents all types
of entitlements on a resource including groups, roles, privileges, access control lists
(ACLs), responsibilities, and any generic entitlement.

• JCAEntitlementModel

Implementation of the EntitlementModel. Entitlement information passed from Select
Identity to connectors is passed in an instance of this class.

• SIChangeLogModel

Class representing the changes that occurred in the resource. This contains
ChangeLogEntry instances representing each specific change (add, modify, delete) made
for each user.

— ChangeLogEntry

Represents a change in resource for each user (example add/modify/delete). There can
be multiple instances of this class in the SIChangeLogModel.

— ChangeLogAttribute

Models changes to user attributes. This class represents one attribute in the change
log along with the operation performed.

Following is a diagram illustrating the structure of SIChangeLogModel:
14 Chapter 1

Figure 4 SIChangeLogModel Structure

• ChangeLogAttrSubValue

Models changes to user attributes. This class represents each of the sub-values of an
attribute along with the operation performed.

• ChangeLogCursor

Models a cursor used with change detection. This class represents a cursor that models a
check point to a previous call to getChangeLog() invoked on the connector.

• TAConnectorRequestIntf

Provides a generic interface that sends a request to the connector. Use this interface if
there is a requirement that cannot be supported by the existing provisioning API
methods.

• TAConnectorRequest

Implements the TAConnectorRequestIntf interface. This is to be used as an extension to
the existing API methods.

• TAConnectorResponseIntf

Provides a generic interface that stores responses from the connector. Use this
interface if there is a requirement that cannot be supported by the existing
provisioning API methods.

• TAConnectorResponse

Implements the TAConnectorResponseIntf interface. This is to be used as an extension
to the existing API methods.

• TAAttrValueBean

Main class containing the attribute value passed in SIJCAUserModel. This contains
details on the attribute name. The attribute value could be single or multi-valued.
This also contains attribute-level operations, which are useful in the case of a user
modify operation.

• TAAttrMemberValueBean
Select Identity Connectors 15

Represents each of the multiple values of the attribute given in TAAttrValueBean.

Following is a diagram illustrating the contents of SIJCAUserModel:

Figure 5 SIJCAUserModel Contents

• TAConnectorParamBean

Describes a configuration parameter needed by the connector. Examples of such
parameters include URLs or configuration parameters like wait time. Select Identity
retrieves a list of these beans to create a user interface to obtain values from the user.

• TAConnectorParameterFactory

Obtains connection-specific beans that contain connection parameter values.

• TAConnectorParamValueBean

An abstract class that represents the connection parameter values needed to establish
a connection to a resource. It also contains all parameters needed to access the
resource for user provisioning.

• TAStatus

Represents the status of an operation. This class contains the operation called as well
as the actual operation performed by the connector on the resource, including any
details. This is used as a return value of most of the methods on SIConnector.

• EntitySupport

Defines the actions that can be performed on an entity, which is an object that is managed
by Select Identity, such as a user, group, role, or stage.

• RelationSupport

Specifies an association between identity object types, such as between a user and
entitlement and vice versa.

• UserEntitySupport

Shows the level of support for user objects in the repository. In addition to supporting
create, read, update, and delete tasks, UserEntitySupport specifies whether the
password can be reset or changed in the resource.

• SIConnectorInterface
16 Chapter 1

Simplified version of the SIConnector interface that is used by the connector developer
using the Generic Connector implementation.

SIConnectorInterface helps you focus on the efforts involved in provisioning to the resource
while avoiding the details of JCA and the Select Identity user model.

New Features in the Connector Interface

The Connector API has been enhanced to include support for the following additional
features:

• Multi-valued attributes

• Large attribute values

• Addition/deletion/emptying of attributes

• Association/dissociation of entitlements in bulk

• Query criteria with multiple filters for entitlements retrieval

• Consolidated model for supporting different types of entitlements, such as groups, roles,
privileges, ACLs and so on

• Connector SDK

Software Development Kit, which can be used to easily develop Select Identity connectors
(see Connector SDK on page 35 for details). The SDK also contains the Connector
Template, which provides a real example of connector implementation (see The Connector
Template on page 127 for details).

Select Identity Web Services

The HP OpenView Select Identity Web Services Guide provides information about using SPML
Web Services requests. Refer to this guide when developing SPML files for use with Select
Identity.

If you are implementing the simplified connector interface SIConnectorInterface, you will not
be working with most of the above classes/interfaces. The main classes and interfaces you will
be working with are: SIConnectorInterface, TAAttrValueBean, and TAAttrMemberValueBean.
Select Identity Connectors 17

18 Chapter 1

2 Functional Requirements and Development
Phases
Before implementing a connector, ensure that you meet the high-level requirements outlined
in this chapter. Then, review the development phases to ensure that the connector is robust
and all questions are answered before implementation.

This chapter contains the following sections:

• Platform Support

• Agent Communication, Security, and Logging

• Identity Objects and Schema Mapping

• Internationalization Compliance

• Performance and Scalability

• Development Phases

Platform Support

The connector must be implemented and deployed as a plug-in module (J2EE Connector
Architecture 1.0 resource adapter) on a J2EE-based application server hosting the Select
Identity server. Specifically, the connector is required to run in the following environment:

• Select Identity version: 4.x or higher

• Application server: BEA WebLogic 8.1.4

• Operating system: Red Hat Linux 11

• Database: Oracle 10G

• Resource platform: Depends on the resource, though in general, the most recent version
is required to be supported on the most commonly supported operating systems

Agent Communication, Security, and Logging

If an agent is implemented for the connector, the agent must be implemented as a
continuously-running daemon or process that is deployed on the resource. It must handle
requests sent from the connector and send responses to the connector synchronously. The

Not all combinations of these platforms and systems are supported by Select
Identity. The connector is required to run on a valid combination as published
in the HP OpenView Select Identity Release Notes.
19

connector must issue a request according to the resource’s specifications. When the agent
issues a request to Select Identity’s Web Service, it must use the SOAP protocol to send an
SPML (version 1.0) payload over HTTP or HTTPS.

The connector is required to communicate with the resource (or the agent on the resource)
over a secure channel, to ensure the security of the user data that is exchanged. The following
encryption standards or protocols are required to be supported:

• 128 bit AES

• SSL

The connector must support logging at all levels to a configurable file that may be different
from the one used by the Select Identity server.

Identity Objects and Schema Mapping

This section describes the identity objects (attributes) and operations that must be supported
by the connector. It also describes the Attribute Mapping Utility, which can be used to retrieve
and map resource attributes to Select Identity attributes.

Supporting and Mapping Identity Objects

The following identity objects must be supported by the connector:

• Users — This is the primary identity object that must be supported. The Select Identity
User object is mapped to the resource user, and the connector must support all attributes
of the user that are supported by the resource, including single-valued and multi-valued
attributes.

• Entitlements — Entitlements include organizational units, groups, entitlements,
privileges, and access control lists on the resource. A user profile can be assigned to and
de-assigned from an entitlement. Select Identity entitlements are mapped to resource
entitlements

An Attribute Mapping Utility is provided by Select Identity to retrieve user and entitlement
schema data from a resource and to map Select Identity attributes to resource attributes. The
utility can retrieve the complete schema from the resource, including user and group profiles
and their relationships. The Attribute Mapping Utility is integrated and invoked from Select
Identity, so a common interface is provided. You can implement the connector to use the
Attribute Mapping Utility. If so, user interface pages are required for displaying the resource
schema and allowing resource attributes to be mapped to Select Identity attributes.

The following is a list of user attributes that can be retrieved:

• Name

• Type (text or binary)

• Size

• Permissions (create, read, update, or delete)

• Operation support (user creation, user update, reset password, ignore all operations)

• Format/Pattern

• Description (rules to consider while providing values)
20 Chapter 2

• Encryption Required

• Is Password

• Is Sensitive

• Is Multi-valued

• Entitlement relationships

The following is a list of entitlement attributes that can be retrieved:

• Name

• Type (Group, Role, Entitlement, Access Level, Privilege, or Resource profile)

• Size

• Format/Pattern

• Description (rules to consider while providing values)

• User relationships (whether the entitlement can be associated or dissociated with or from
a user)

Provisioning, Detecting Changes, and Post-provisioning

The following provisioning operations must be supported by the connector:

• User/Entitlements Discovery

• User Provisioning

• Entitlement Provisioning

• Change Detection

• Post Provisioning

User/Entitlements Discovery

The following operations must be supported by the connector for User discovery:

• Retrieval of user IDs from the resource with filtering

• Retrieval of details of a given user from the resource

• Retrieval of all entitlement IDs from the resource with filtering

User Provisioning

The following provisioning operations must be supported by the connector:

• Add users — Add a new user object to the resource.

• Check for users’ existence — Verify that the user exists on the resource.

• Modify users — Modify user attributes on the resource, including changing the value or
number (single-valued or multi-valued) of the attribute, removing an attribute, or adding
an attribute. If multi-valued attributes are supported by the resource, the connector must
support the following modifications to that type of attribute:
Functional Requirements and Development Phases 21

— Add one or more attributes

— Remove one or more attributes

— Replace an attribute value with a new value

— Modify the attribute value

— Add one or more sub-values

— Remove one or more sub-values

• Modify entitlements of users — Add one or more entitlements to the user or remove one or
more entitlements from the user. The association can be one-way or two-way:

user —> entitlement, entitlement —> user

This operation can associate a user with an entitlement on the resource or associate an
entitlement with a user, or both.

• Get user details — Retrieve the details of a user from the resource.

• Reset password — Change the password of the user to a new password.

• Expire password — Set the password as expired on the resource or set the password of a
user as un-expired on the resource.

• Delete user — Delete an existing user from the resource.

• Retrieve all entitlements associated with a user — Retrieve the IDs and types of all
entitlements to which a user is assigned. The connector must also support filtering on
entitlements to be retrieved.

• Retrieve all users associated with an entitlement — Retrieve the IDs of all users that are
assigned to a given entitlement.

• Filter users to be retrieved — Filter the retrieved users based on criteria.

• Disable user — Disable the user on the resource. Following are examples of the result of
this operation on the resource:

— Disable

— De-activate

— Revoke account

— Revoke login access

— Delete all entitlements

• Enable user — Enable the user on the resource. Following are examples of the result of
this operation on the resource:

— Enable

— Re-activate

— Restore account

— Grant login access

— Add previously held entitlements back to user

Entitlement Provisioning

The following provisioning operations must be supported by the connector:
22 Chapter 2

• Add entitlement — Add a new entitlement object to the resource.

• Modify entitlement — Modify the entitlement attributes on the resource.

• Check for entitlement existence — Verify the existence of the entitlement on the resource.

• Get entitlement details — Retrieve the details of an entitlement from the resource.

• Delete entitlement — Delete an existing user from the resource.

• Add a child entitlement — Add an entitlement as a child of another entitlement with a
link to the parent.

• Delete a child entitlement — Remove a parent-child relationship.

• Get children of an entitlement — Get IDs of all child entitlements of the given
entitlement.

• Get parent entitlement — Get the ID of the parent entitlement of the given entitlement.

• Enable entitlement — Enable an entitlement on the resource.

• Disable entitlement — Disable an entitlement on the resource.

Change Detection

Synchronizing Select Identity with identity changes on the resource. This can be implemented
in the following ways:

• Detection methods — The connector can support a pull model where the connector
implements the SIChangeLogModel class. Either Select Identity or a standalone program
calls the connector to get the changes from the last call. The connector can also support a
push model where the connector or the agent detects changes on the resource and
prepares and sends an SPML Web Service request to Select Identity over HTTP or
HTTPS.

• Add user — Add a user to the resource.

• Modify user — Detect attribute value, single-value type, or multi-value type changes on
the resource, remove an attribute, or add an attribute. If an attribute value change is
detected, the connector must capture the new value. Depending on resource support, the
connector is required to support multi-valued attribute modifications. If multi-values are
supported, the following operations must be supported:

— Replace the complete multi-value

— Add one or more sub-values

— Remove one or more sub-values

• Password changes — Capture the new password of the user.

• Modify entitlements of user — Change the assigned entitlements including adding or
removing one or more entitlements.

• Delete user — Delete a user in the resource.

• Disable user — Disable a user in the resource.

• Enable user — Enable a user in the resource.

• Move user — Move a user from one container to another. This is usually not detected as
an attribute change. A container could be an organizational unit.
Functional Requirements and Development Phases 23

Post Provisioning

This is the support of an interface that is called by the connector after a provisioning
operation. The implementation of this interface is independent of the connector.

Internationalization Compliance

All modules of the connector are required to support internationalization (I18N), which
enables the complete connector to be localized to any foreign language without code changes.
The following must be I18N-compliant:

• If the connector is implemented to use the Attribute Mapping Utility for schema mapping,
all strings displayed on the Attribute Mapping Utility console, including attribute names
and values

• All messages generated within the connector that are directly propagated to Select
Identity or combined with resource messages

• All values for user and entitlement attributes

• All user and entitlement attribute names

• If an agent is implemented, all text displayed on the agent console

Performance and Scalability

The connector must support at least 100 provisioning transactions per minute. One
transaction could mean one user addition or modification or deletion, and so on. Likewise, the
connector must support at least 100 change-detection transactions per minute.

Regarding scalability, the connector must support one million users and one million
entitlements, and is required to scale to support 10,000 resources.

Development Phases

This section outlines the steps that are typically involved in the development of a connector. It
is strongly recommended that you take the time to address each phase and plan for the
connector’s development carefully.

Requirements Phase

Ensure that the resource supports a mechanism for user provisioning by external clients, in a
secure and reliable manner. You must have an understanding of the underlying resource,
including knowledge of the resource’s tools and administration API. You may also need to
obtain an administrative account that has privileges to provision.

Collect requirements for development, as follows:

1 Determine the requirements based on the resource system.
24 Chapter 2

— What identity information will be provisioned (users or other objects)?

— What are the entitlements supported by the resource? Typically, resources support
groups (groups or users), roles, access control levels (ACLs), privileges, and so on.

— What are the supported attributes of the identity object based on the schema in the
resource?

— How is the schema retrieved from the resource?

— How is the identity object addressed on the resource? This could be a DN (for
LDAP-type of resources), an SSN, a user ID, hierarchical naming, and so on. This will
be used as the primary key to address the identity object. The unique identifier can
also be a combination of two or more attributes. In such a case, the identity object will
be a combination of these attributes. The connector will build/parse this unique key
within to address the identity.

— How does the resource application support connectivity for external systems to
provision identity information? This might mean accessing the system through API
calls, RMI, JMS, a Web Service, a CLI such as telnet, ssh, and so on.

— If the resource already supports a connector interface, how can you develop the Select
Identity connector leveraging the existing connector?

— Does the resource support an SDK or a development toolkit for administration, which
might include JAR files or libraries for making calls to access and provision
information?

— Are there security requirements to consider? Is SSL or any proprietary encryption/
decryption information required between the connector and the resource?

— What are the performance requirements? How many objects can the resource support?
How may entitlements? How many users can the connector create, read, update, or
delete in a second, minute, or hour?

— What are the scalability requirements? How many connections does it support? Can
the same connector support similar resources through configuration support for
transactions?

— Does the resource support synchronous or asynchronous connectivity? It is possible
that the resource cannot finish provisioning immediately and might finish the job at a
later time. How does the connector know when the resource operation is done and how
does it handle the response from the resource?

— Is the connector required to maintain state? If so, what is the required schema?

2 Determine access requirements for the resource.

— What are the addressing parameters such as TCP/IP address, port number, URL, and
secure IDs?

— Is there authentication information (user ID and password)?

— Are there secure channel parameters?

— Does the connection pass through a proxy server or a firewall? If so, what are the
parameters involved?

3 Determine the requirements for error reporting.

— What errors are supported by the resource?

— What kind of exceptions are reported to Select Identity?

— What kind of errors in the resource are reported to Select Identity?
Functional Requirements and Development Phases 25

— What are the recoverable and non-recoverable exceptions?

4 Determine the requirements for reverse synchronization.

— What changes to identity objects on the resource must be synchronized with Select
Identity. For example, if a user's password or address changes on the resource, is there
a requirement that Select Identity should be notified about this?

— How often do changes occur? Are they done in real time or as a batch job at the end of
the day?

— How is information obtained from the resource? The resource might support an audit
log of all changes on the resource, or it might support a log of all events that are
triggered by someone like an administrator. How is this information retrieved from
the resource? Should the connector support a pull model or a push model?

5 Determine the requirements for child transactions.

— Is an operation invoked on the resource that might trigger child operations within the
resource?

— How should the connector notify Select Identity of the status of child operations?

— What status information about child operations should be reported to Select Identity?

— Is the operation “atomic” or a “best-effort?”

— How does the connector determine when the operation is done?

— Does the resource automatically rollback all previous successful child operations if
one child operation fails?

6 Determine requirements for the policies supported by the resource.

— What are the policies for the identity objects? For example, the primary key of the
identity object must be obtained from another external system.

— What are the attribute policies? For example, password policy might restrict in the
size, content (maximum length, minimum length, maximum number of alphabetic
characters, minimum number of numeric characters, and so on), encryption (one-way
or two-way), and so on. What are the limitations on attribute size, masking, and other
parameters?

Design Phase

Design the connector you will implement following these guidelines:

1 Provide a high-level design of the approach taken for the provisioning process. Provide the
following:

— Mapping of functionality to be supported by the connector to the functionality
supported by the resource.

— Mapping of the Select Identity schema to the schema (attribute information)
supported by the resource. This is also referred to as the forward mapping.

— The Connector API methods that are supported by the connector implementation.

— Reverse mapping of the attribute information at the time of reverse synchronization.

— How the implementation solves the cyclic update problem. For example, a change in
object's information triggers an update on the resource, which might in turn trigger a
reverse synchronization with Select Identity for the same object, and vice-versa.
26 Chapter 2

— Use of the JCA framework in the design. Define how the connector makes use of the
framework to address some of the requirements.

— Resource product version. Provide any functionality changes between versions of the
resource application.

2 Provide information about how to address the various requirements: synchronous versus
asynchronous processing, scalability, performance, security, and so on.

— Can the connector handle a large number of identity objects, such as users?

— Can it handle large number of entitlements? Is caching, paging, batch loading, or file
loading is used by the connector?

— Can it handle large number of resources?

3 Define whether the connector is agent-based or agent-less.

— Agent-based requires that an agent is installed on the resource with which the
connector implementation interacts. The agent in turn interacts with the resource or
the operating system. Reverse synchronization is generally possible with an
agent-based solution. On the other hand, an agent-based implementation requires an
installation effort and administration on the resource system.

— An agent-less connector requires complete out-of-box support for all provisioning
operations by the resource or through an SDK.

— Address the advantages and disadvantages for both solutions.

Implementation

Specific information about how to implement the JCA and Connector API methods is provided
in Implementing a Select Identity Connector on page 43. This procedure provides a general
overview.

1 Start with a sample application that can provision identity objects and perform
entitlement assignment s on the identity objects in the resource.

2 Implement all of the required Select Identity connector methods to create, read, update,
and identity objects, leveraging the connector template. The main interface to implement
is SIConnectorInterface.

3 Implement all entitlement association and dissociation methods.

4 Pick up all the Log and error strings from a Resource Bundle so that they can be localized.

5 If necessary, implement an agent to run on the resource machine.

6 Implement a secure way of communication between the connector and resource, and vice
versa. If necessary, use certificates.

7 Implement modules to send SOAP messages containing SPML to the Select Identity Web
Service for reverse synchronization (password synchronization and identity object reverse
synchronization).

8 If necessary, deploy the connector Tester Tool for testing the connector.

9 Use IDEs for the development and Apache ANT for build tools.

10 Use the JDK, J2EE, and third-party libraries for further development.
Functional Requirements and Development Phases 27

Integration

Verify the connector’s integration with Select Identity as follows:

1 Verify that Select Identity is able to look up and use the connector as a resource adapter to
communicate with the new resource.

2 Create a Service that uses this resource.

3 Provision users in the Service, verifying that they are successfully created in the resource.

4 Associate and disassociate entitlements with users.

5 Verify integration with the Select Identity Web Service for user provisioning through
SPML payloads.

Packaging

Package the connector as follows:

1 Include all libraries required by the connector in a RAR file.

2 If you are packaging the JAKARTA project JAR files (commons-*.jar), they should be of
the same version as being used with Select Identity.

3 Test the client for unit testing.

4 Determine any schema information (ddl, dml) needed by the connector.

5 Obtain all third-party software licenses and their installation procedures.

Documentation

For future maintenance and distribution, compile the following information about the
connector:

• Detailed documentation on the requirements and design

• User guides

• Configuration guides

• Functionality mapping document

• Schema (or attribute) mapping document

• Installation guides, for agent-less and agent-based solutions

• Javadoc

• Documentation of encryption/decryption used, port numbers of agent, size of agent foot
print, and so on

• Requirements on the system administrator to install the agent on the resource

• Administration documents

You need not package some of the generic JAR files that are
available with Select Identity.
28 Chapter 2

Functional Requirements and Development Phases 29

30 Chapter 2

Functional Requirements and Development Phases 31

32 Chapter 2

Functional Requirements and Development Phases 33

34 Chapter 2

3 Connector SDK
As of Select Identity 4.0, a connector Software Development Kit (SDK) is included to facilitate
connector development. The SDK includes the following modules:

• Simplified Connector Interface

• XML Schema Handling

• Generic JCA Interface and Connector Implementation

• Connector Tester Tool

• Connector Template

The SDK provides a generic framework to quickly develop connectors for Select Identity.
There is no need to know details of JCA and RAR packaging to use this SDK. Most of the
details of the Connector mapping file parsing and interpreting are transparent. You just need
to focus on the actual connectivity to the resource, and how best to provision user and
entitlement information into it.

The SDK includes a connector template to speed up development, and shows how this
template can be customized to build your own connector.

The Connector SDK includes the following folders/files:

Figure 6 Connector SDK Folder/File Structure
35

Following is a brief description of the contents of the SDK:

Folder File Description

Lib Contains the library Jar files used
to develop your connectors.

Connector.jar Main Connector interface Jar that
includes SIConnector interface,
SIUserModel interface and related
interfaces.

connectorimpl.jar Implementation classes for
SIUserModel, XML schema loader
and so on.

Lib genConnectorImpl.jar Generic Implementation of the
SIConnector interface along with
JCA interface implementation. This
provides the simplified connector
interface SIConnectorInterface.

utils-log.jar Some utility classes include common
log implementation.

ConnectorUtils.jar SPML utility classes.

Template Contains the connector template. A
fully compilable and deployable
dummy connector implementation
that can be customized to write your
own connectors easily. This uses the
generic connector implementation
and implements the simplified
connector interface.

TesterTool Contains a .war file that includes a
tester servlet that can be deployed
and used to test any Select Identity
connector. Also included is a tar.gz
file (for UNIX) that contains the
tester tool client and scripts to
invoke the tester. Several sample
scripts are included that can be
used to send all kinds of
provisioning operations to the
connector.

WebService This includes sample SPML
requests for Web service
provisioning into Select Identity. It
has two folders for forward
provisioning and reconciliation
samples.
36 Chapter 3

Simplified Connector Interface

In addition to the existing SIConnector interface, a simplified interface is introduced in the
Select Identity 4.0 connector framework. This can be used to quickly develop Select Identity
connectors.

The following diagram illustrates the new architecture.

Figure 7 Simplified Connector Interface Architecture

Figure 4 is annotated as follows:

1 Select Identity

2 Generic Connector Implementation Library

3 SIConnectorInterface

4 Resource-specific part of the connector that communicates directly with the resource or
with the agent

5 Agent implementation (for agent-based connectors)

6 Select Identity Web Service

Highlights of the Simplified Connector interface are described in the following sections.

XML Schema Handling

The XML schema mapping file is pre-processed and resource attributes are provided in the
simplified interface. Therefore, you do not need to understand the structure of the XML file
and how to parse it.

Advanced users can still access the schema mapping. A java image of the XML file data is
passed to the connector implementation and can be used to get details of the mapping.
Connector SDK 37

Generic JCA Interface and Connector Implementation

All the required JCA class/interface implementations are provided. You only need to focus on
the resource interface. This eliminates the need to spend time trying to understand JCA
architecture and data flow.

A single jar file genConnectorImpl.jar is provided with all the required Generic
Connector implementation files. The genConnectorImpl.jar file needs to be packaged
with the connector along with your resource-specific part of the connector.

You also need to implement the simplified interface SIConnectorInterface, which contains all
provisioning operations.

Connector Tester Tool

The SDK includes a Tester Tool that can be used to test and certify your connector before you
deploy it in Select Identity.

After you build the connector, you can use the connector tester tool to test provisioning
operations. The tool consists of the following:

• A standalone servlet WAR module, which invokes the connector directly.

• Sample scripts with SPML requests for all provisioning operations.

• A simple HTTP client to send requests to the tester servlet.

You use the client to run the SPML scripts, which send SPML requests to the servlet. These
SPML requests include instructions for forward-provisioning operations. The servlet converts
SPML requests to Connector API requests and invokes the connector. The connector then
sends the results or errors back to the servlet. All components of the tester tool are deployed
or installed on the application server where the Select Identity server and target connector
reside.

To use the tester tool, you must deploy a WAR file on the application server (in addition to
your connector implementation). Then, you can issue SPML requests to the servlet using the
client. The servlet sends the requests to the connector, to verify that it can receive requests
and issue responses.

See Connector Tester Tool on page 83 for details.

The following diagram shows how the Tester Tool is used.
38 Chapter 3

Figure 8 Connector Tester Tool

Some highlights of the Tester Tool are:

• Standalone connector development

The servlet can be deployed in the application server along with the connector and testing
can proceed without Select Identity. The tester servlet directly talks to the connector and
this gives the advantage of pre-certifying the connector before it is staged to Select
Identity.

• Test Scripts

The Tester Tool provides many scripts with SPML requests for all operations that can be
done through Select Identity.

• Performance and Scalability tests

The Tester client can be used to perform bulk/iterative operations to regression test the
connector. Multiple clients can also be used to drive one connector.

Connector Template

The SDK comes with a connector template named Dummy connector. This is a fully
implemented connector and serves as a real example of connector implementation. The only
missing part is the resource interaction which is different for different resources.

The Dummy connector implements the simplified interface and can be used as a reference for
developing connectors. See The Connector Template on page 127 for details.
Connector SDK 39

40 Chapter 3

Connector SDK 41

42 Chapter 3

4 Implementing a Select Identity Connector
This chapter describes how to build a connector, including the connector interface methods to
be implemented and the requirements of the agent.

This chapter contains the following sections:

• Development Requirements

• Steps to Implement a Connector for Select Identity

• Building a Connector for Forward Provisioning

• Building a Connector for Reverse Provisioning

• Mapping Select Identity Attributes to the Resource Schema

• Some Coding Guidelines

Development Requirements

You must have an understanding of the Java Developer Kit (JDK), version 1.4, and be
familiar with the JCA, version 1.0. In addition, Select Identity provides a Connector SDK that
you can use to write your own connectors (see Connector SDK on page 35 for details). You can
download the JCA specification from the following page:

http://java.sun.com/j2ee/connector/download.html

Also, refer to http://e-docs.bea.com/wls/docs81/jconnector/index.html if you are creating
a WebLogic connector.

For information about the J2EE APIs, including those for connectors, refer to http://
java.sun.com/j2ee/1.4/docs/api/index.html.

For an overview of the Select Identity Connector APIs, see Select Identity Connector API
Interfaces and Classes on page 14.

When implementing a connector using the J2EE Connector APIs and the Select Identity
Connector APIs, it is expected that the operations on the connector instances are called within
transactions and from multiple threads. Also, the connectors must implement adequate
synchronization to prevent data corruption.

For the development environment, the following tools are necessary:

• Java Integrated Development Environment (IDE) — Any Java IDE supporting JDK 1.4.1
or later, such as Eclipse 3.0, is required.

• Build tool — It is recommended that you use Apache ANT 1.6 or later.

• Connector SDK
43

http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/j2ee/1.4/docs/api/index.html
http://java.sun.com/j2ee/1.4/docs/api/index.html
http://e-docs.bea.com/wls/docs81/jconnector/index.html

Steps to Implement a Connector for Select Identity

The following steps describe how to implement a connector for Select Identity:

• Step 1: Start with the Connector Template

• Step 2: Gather Connector Details

• Step 3: Working with the Connector Template

Step 1: Start with the Connector Template

The connector template and details of files included are explained in The Connector Template
on page 127. This is a starting point to build your own connector for forward provisioning and
also for communicating with an agent, in the case of an agent-based connector.

The template includes build files, a property file, library Jar files, an XML mapping file, and a
dummy implementation of the SIConnectorInterface. You need to gather your
connector-specific information to be able to work with the template.

Step 2: Gather Connector Details

Before starting to write your own connector, you must collect the following information:

Resource Details

• Connection parameters

Details needed to access the resource and perform the provisioning operations, such as IP
address, port, admin account, password etc.

Along with the names of these parameters, it is required to have further details about
these connection parameters such as displayName, default Value, min-length, max
length, required or not, encryption needed or not. This information is needed to populate
the GUI page that is integrated with SI where you provide values for these connection
parameters at the time of deploying the resource.

• Max number of supported connections

• Resource EIS details

Such as Name, Provider, Version. This is needed as part of the RAR definition.

Resource Schema Details

• Name and details of resource user attributes:

Attribute names such as UserName, Email, Password, CN, SN, GivenName and so on.

The resource may support and store attributes in one of many ways. Following are some
examples:

— Physical attributes — The resource may support physical attributes that can be set
with values. Resources that support physical attributes include LDAP servers and
SQL databases. In this case, the connector can directly assign the Select Identity
attribute value to the resource attribute value.
44 Chapter 4

— An abstraction of attributes — Some resources do not support physical attributes,
such as UNIX and Windows systems. For these resources, the connector can define an
intermediate attribute that is used to store the values defined by Select Identity.

— API — The resource may support an API to perform provisioning operations. Such
resources include IBM Tivoli Access Manager and Netegrity SiteMinder. In this case,
the connector must call the appropriate API method and pass the attribute value to
the method.

Also needed are further details about each attribute such as: default value, display name,
min-length, max-length, required or not.

• Entitlements supported

Connector Code-Related Details

• Connector Name

• Connector Short Name — Used as a prefix for re-naming the template files

• Java Package name

Step 3: Working with the Connector Template

Once you have the details on developing the connector, as listed in the above section, you can
use the Connector Template to customize and build your connector.

Following are some of the main steps involved. See each step for details:

1. Prepare the Connector Template Files

2. Check the Library JAR Files

3. Implement the Connector

1. Prepare the Connector Template Files

Complete the following steps to prepare the Connector Template files:

a Create folders for the connector template files.

We will assume the following sample values for the connector parameters:

Parameter Name Parameter Value Description

Connector src Folder MainDir This is the main folder with all the
connector-related files.

Connector Name My Sample Connector A descriptive name for the
connector.

Connector Short Name com.my.sample

Connection Parameters hostName
port
userName
password
Implementing a Select Identity Connector 45

— Create a folder by the name MyConnector and copy the connector template files under
the name dummy into this new folder.

— Create folders MainDir/src/com/my/sample and move the files under src/com/hp/
Select Identity/connector/dummy to this folder.

— Go to MainDir/src/com/my/sample and rename the files DummyConnector.java to
MyConnector.java and DummyParamResources.properties to
MyConnectorParamResources.properties.

b Edit the Connection Properties file.

— Edit MyConnectorParamResources.properties so that the connection
parameters are defined according to your resource requirements.

Each connection parameter has some properties associated with it as shown below
for the "hostName" connection parameter:

hostName-displayName=Host Name

hostName-defaultValue=MyHost

hostName-helpString=Host name of the server

hostName-minLength=1

hostName-maxLength=80

hostName-pattern=[.]+

hostName-required=false

hostName-tipString=

hostName-type=java.lang.String

hostName-encryptValue=false

— Provide the details for all connection parameters in this file.

— Finally, set the order of the connection parameters to appear in the property
paramOrder at the end of this file.

Each connection parameter is separated by commas. This is the order in which
Select Identity shows the connection parameters when the resource is being
deployed/modified/viewed.

c Edit the Connector Implementation file.

Max # of connections 10

Resource User Attributes userId
password
directory
firstName
lastName
middleName
fullName
department

userId is the primary Key in the
resource.

Resource Entitlement ID groupId groupId is the primary Key in the
resource.

Parameter Name Parameter Value Description
46 Chapter 4

The connector main code is to be started from MyConnector.java which is
explained in step 3. Implement the Connector on page 49. Edit this file to change all
occurrences of the word DummyConnector in this file to MyConnector.

Change the package name to com.my.sample.

d Edit the XML Mapping file.

Go to MainDir/schema, and rename DummyConnectorMapping.xml to
MyConnectorMapping.xml.

This file contains the mappings of user and entitlement attributes from the Select
Identity model to the resource schema. For example, if you called an attribute userid
in the resource, you may have called it User Name in Select Identity. This mapping
must be given even if the names are the same.

As explained in Resource Schema Details on page 44, there may not be any physical
attribute on the resource that you can map to, but just have an API. In such cases, you
still need to come up with a set of logical attributes for the user and use this mapping
file to map onto these logical attributes. In your connector code, you take these logical
attribute names and provision the user with their values.

Each user attribute mapping is specified in the objectClassDefinition with name
"SIUser", using an attributeDefinitionReference shown as follows:

<attributeDefinitionReference name="User Name" required="true"
concero:init="true" concero:tafield="User Name"
concero:resfield="userName" concero:isKey="true" />

The above line in the XML mapping file has the following meanings:

You can have a combination of Select Identity attributes mapped onto the same
resource attribute. In this case, the tafield will have a combination. Following is
another example:

<attributeDefinitionReference name="Full Name" required="false"
concero:tafield="[First Name] [Middle Name] [Last Name]"
concero:resfield="fullName"/>

In this example, you enclose the Select Identity attribute names in square brackets to
prepare the combination.

e Edit the ra.xml file.

Mapping Name Description

required Specifies whether this attribute is required or
an optional attribute. The values it can take are
"true", "false".

concero:init Specifies whether this attribute is needed
during the creation of the user. "true" means
this is needed, "false" means not needed.

concero:tafield Name of Select Identity attribute.

concero:resfield Name of the resource attribute or the logical
attribute.

concero:isKey Specifies whether this is the identifying
attribute of the user in the resource. This can be
"true" only on one mapping.
Implementing a Select Identity Connector 47

Go to the MainDir/META-INF folder and edit the file ra.xml, to change the Resource
adapter-specific parameters. Change the following:

f Edit the weblogic-ra.xml file.

If you are going to use BEA WebLogic to deploy this connector, go to MainDir/
META-INFO, and edit the file named weblogic-ra.xml:

g Edit the build.properties file.

Edit the build.properties file to enter all the packaging-related information:

2. Check the Library JAR Files

Make sure you have the latest versions of the jar files under the following folders:

• connector_lib

Change To

display-name value My Sample Connector

vendor-name value Name of your company

eis-type value Type of the Resource EIS. Example
UNIX box, My Application, and so on

Version value Resource EIS version

eis/DummyConnector-
ParamFactory

"eis/MyConnector-Param
Factory"

com.hp.ovsi.connector.d
ummy.DummyConnector

"com.my.sample.MyConnector"

com/hp/ovsi/connector/
dummy/DummyParam
Resources.properties

"com/my/sample/MyConnector
ParamResources.properties"

eis/DummyConnector "eis/MyConnector"

initial-capacity value 0

This is the number of connections to
be open when the connector is
deployed. Typically this is 0 and
increased upon demand.

connector.build.dir /tmp

This is the folder where you would
like the build files to be placed.

connector.pkg com/my/sample

connector.rar.file MyConnector.rar

schema.jar.file MyConnectorSchema.jar

connection.params.props.
file

MyConnectorParamResources.
properties

connector.name My Sample Connector

connector.version 1.0.1
48 Chapter 4

• external_lib

3. Implement the Connector

You start with writing code in MyConnector.java.

The files as they are prepared in the previous section should be ready to compile. First,
make sure you can compile the source using the Apache ANT tool for the build.xml
file in the MainDir directory and see if you can output the following files:

— MyConnector.rar

— MyConnectorSchama.jar

• Verify that MyConnector.rar contains MyConnector.class, ra.xml,
weblogic-ra.xml.

• Verify that MyConnectorSchema.jar contains MyConnectorMapping.xml.

Sample SPML Requests for Reconciliation

There are two types of SPML requests based on the type of resource. The resource could be an
authoritative resource or non-authoritative.

Authoritative Reconciliation SPML Requests

This section shows sample authoritative reconciliation SPML requests for the following
actions:

• Add user

• Delete user

• Modify user

Add User

Following is a sample SPML request for an auth-add reconciliation request:

Note the following:

• keyFields must be <resourceName>_KEY

• all attribute names are Select Identity resource attribute names or the names given in the
concero:tafield in the XML mapping file

 <addRequest requestID="12345"
execution="urn:oasis:names:tc:SPML:1:0#asynchronous">
 <operationalAttributes>
 <attr
name="urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName">
 <value>sisa</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#password">
 <value>abc123</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#resourceId">
 <value>LDAP71</value>
 </attr>
Implementing a Select Identity Connector 49

 <attr name="urn:trulogica:concero:2.0#keyFields">
 <value>LDAP71_KEY</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#reverseSync">
 <value>true</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#taUserName">
 <value>WSu7301</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#taResourceKey">
 <value>WSu7301</value>
 </attr>
 </operationalAttributes>

 <attributes>
 <attr name="UserName">
 <value>WSu7301</value>
 </attr>
 <attr name="Email">
 <value>user.email@hp.com</value>
 </attr>
 <attr name="State">
 <value>TX</value>
 </attr>
 <attr name="FirstName">
 <value>Abigail</value>
 </attr>
 <attr name="LastName">
 <value>Anderson</value>
 </attr>
 <attr name="Employee ID">
 <value>HP</value>
 </attr>
 <attr name="Zip">
 <value>75000</value>
 </attr>
 </attributes>
 </addRequest>

Delete User

Following is a sample SPML request for auth-delete recon request:

Note the following:

• keyFields must be <resourceName>_KEY

• resource key value of the user is given in the identifier section of the SPML request

 <deleteRequest requestID="12345"
execution="urn:oasis:names:tc:SPML:1:0#asynchronous">
 <operationalAttributes>
 <attr
name="urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName">
 <value>sisa</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#password">
 <value>abc123</value>
50 Chapter 4

 </attr>
 <attr name="urn:trulogica:concero:2.0#resourceId">
 <value>LDAP71</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#keyFields">
 <value>LDAP71_KEY</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#reverseSync">
 <value>true</value>
 </attr>
 </operationalAttributes>

 <identifier xmlns=""
type="urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName">
 <id>WSu7224</id>
 </identifier>
 </deleteRequest>

Modify User

Following is a sample SPML request for auth-delete recon request:

Note the following:

• keyFields must be <resourceName>_KEY

• resource key value of the user is given in the identifier section of the SPML request

• all attribute names are SI resource attribute names or the names given in the
concero:tafield in the XML mapping file

• only the mapped attributes must be passed in the request

 <modifyRequest requestID="12345"
execution="urn:oasis:names:tc:SPML:1:0#asynchronous">
 <operationalAttributes>
 <attr
name="urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName">
 <value>sisa</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#password">
 <value>abc123</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#resourceId">
 <value>LDAP71</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#keyFields">
 <value>LDAP71_KEY</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#reverseSync">
 <value>true</value>
 </attr>
 </operationalAttributes>

 <identifier xmlns=""
type="urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName">
 <id>WSu7212</id>
Implementing a Select Identity Connector 51

 </identifier>

 <modifications>
 <modification name="FirstName" operation="replace">
 <value>ANNA</value>
 </modification>
 <modification name="LastName" operation="replace">
 <value>ALENDALE</value>
 </modification>
 <modification name="Address 1" operation="replace">
 <value>1525 EAST GATE DRIVE, WITCHITA</value>
 </modification>
 <modification name="Zip" operation="replace">
 <value>62005</value>
 </modification>
 <modification name="State" operation="replace">
 <value>KS</value>
 </modification>
 </modifications>
 </modifyRequest>

Non-Authoritative Reconciliation SPML Requests

Following are sample requests from a non-authoritative resource. A non-authoritative
resource can only send changes to user entitlements in Select Identity or delete service
membership.

This section shows sample non-authoritative reconciliation SPML requests for the following
actions:

• Add user entitlements

• Delete service membership

• Change user entitlements

Add User Entitlements

Following is a request to add entitlements:

Note the following:

• keyFields must be <resourceName>_KEY

• resource key value of the user is given in the identifier section of the SPML request

 <addRequest requestID="12345"
execution="urn:oasis:names:tc:SPML:1:0#asynchronous">
 <operationalAttributes>
 <attr
name="urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName">
 <value>sisa</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#password">
 <value>abc123</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#resourceId">
 <value>LDAP70</value>
 </attr>
52 Chapter 4

 <attr name="urn:trulogica:concero:2.0#keyFields">
 <value>LDAP70_KEY</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#reverseSync">
 <value>true</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#taResourceKey">
 <value>WSu7221</value>
 </attr>
 </operationalAttributes>

 <identifier xmlns=""
type="urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName">
 <id>WSu7221</id>
 </identifier>

 <attributes>
 <attr name="urn:trulogica:concero:2.0#groups">
 <value>HR Managers</value>
 <value>PD Managers</value>
 </attr>
 </attributes>
 </addRequest>

Delete Service Membership

Note the following:

• keyFields must be <resourceName>_KEY

• resource key value of the user is given in the identifier section of the SPML request

 <deleteRequest requestID="12345"
execution="urn:oasis:names:tc:SPML:1:0#asynchronous">
 <operationalAttributes>
 <attr
name="urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName">
 <value>sisa</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#password">
 <value>abc123</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#resourceId">
 <value>LDAP70</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#keyFields">
 <value>LDAP70_KEY</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#reverseSync">
 <value>true</value>
 </attr>
 </operationalAttributes>

 <identifier xmlns=""
type="urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName">
 <id>WSu7235</id>
Implementing a Select Identity Connector 53

 </identifier>

 </deleteRequest>

Change User Entitlements

Note the following:

• keyFields must be <resourceName>_KEY

• resource key value of the user is given in the identifier section of the SPML request

 <modifyRequest requestID="12345"
execution="urn:oasis:names:tc:SPML:1:0#asynchronous">
 <operationalAttributes>
 <attr
name="urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName">
 <value>sisa</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#password">
 <value>abc123</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#resourceId">
 <value>LDAP70</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#keyFields">
 <value>LDAP70_KEY</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#reverseSync">
 <value>true</value>
 </attr>
 </operationalAttributes>

 <identifier xmlns=""
type="urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName">
 <id>WSu7233</id>
 </identifier>

 <modifications>
 <modification name='urn:trulogica:concero:2.0#groups'
operation='delete'>
 <value>HR Managers</value>
 </modification>

 <modification name='urn:trulogica:concero:2.0#groups'
operation='add'>
 <value>$UNIX2</value>
 </modification>
 </modifications>

 </modifyRequest>
54 Chapter 4

Building a Connector for Forward Provisioning

Forward provisioning is the process of provisioning users and their entitlements on the
resource. To build a connector that performs this function, implement an agent-less or
agent-based connector, as described in the following sections.

Agent-less Forward Provisioning

This section describesthe required methods of implementing SIConnectorInterface. This part is
common for both agent-based and agent-less implementations. The only difference is that for
agent-based implementation, you implement the methods so that you communicate with your
agent, where as in agent-less implemenation you need to directly provision into the resource.

To build an agent-less connector, follow these guidelines:

1 Implement a connector for Select Identity as described in Steps to Implement a Connector
for Select Identity on page 44.

2 Implement the SIConnectorInterface.

The generated template includes a skeleton implementation of SIConnectorInterface.
You must expand each of the methods in the generated template to communicate with the
resource and perform the provisioning process.

You must implement the following methods:

• doTest()

Purpose: Performs a connectivity test.

Usage: This is called when a new resource is deployed, or an existing resource is
modified in Select Identity and the user clicks Test and Submit.

Implementation: The connection parameters bean instance called mConInfoBean
contains values for all parameters. Using this connection information, try to establish
a connection to the resource and validate the connection information.

• isUserExists(String keyField, String keyValue, boolean keyExistsFlg)

Purpose: Checks for the existence of a user.

Usage: This method is used to check if a user is present in the resource. The keyField
argument identifies the attribute that is marked as key in the attribute mapping and
keyValue contains the value of this key field.

In most cases, the key field of a user in Select Identity is the same as the key field of
the user in the resource. However, in certain cases, they might be different and
sometimes indeterminate until the user is actually created in the resource.

The createUser() method should get the user’s key field value after the user is
created in the resource and return it the value to the caller (and eventually Select
Identity). In this case, the keyExistsFlg argument will be true, which means that
the user was created earlier, after an initial successful user creation. You can use this
to determine if this method is being called for the first time or to verify if the user
exists in the resource.

Implementation: Using the key value to check if the user exists in the resource and
return the result.

• createUser(String keyField, String keyValue, String passwd, Map
attrMap)
Implementing a Select Identity Connector 55

Purpose: Creates a user.

Usage: This method is called to add a user to the resource.

Implementation: Create the user account in the resource using the given key value,
password, and attribute name-value pairs. All attribute name-value pairs are passed
in the attrMap argument. The name of the attribute is the resource attribute name
as specified in the mapping file. The value is in the form of Object[] representing
multiple sub-values of the attribute, if any. For single-valued attributes, only the first
element of the array is populated.

The following sample code can be used to read attribute values:

 String lAttrId = null;

 Object[] lAttrValue = null;

 Iterator lIter = attrMap.keySet().iterator();

 while (lIter.hasNext())

 {

 lAttrId = (String) lIter.next();

 lAttrValue = (Object[]) attrMap.get(lAttrId);

 // …

 }

Use the lAttrValue to set the value of the attribute for creation. If the resource
supports multi-valued attributes, use the Object[] to set all of the multiple values. If
not, you may either set the first one in the array or combine them into a single value.

After a user is successfully created, the effective key value of the user should be
returned. This may be the same as the one passed in by Select Identity. Select
Identity will save it and pass it back to the connector for subsequent operations on the
same user.

• updateUser(String keyField, String keyValue, Map attrMap)

Purpose: Updates a user.

Usage: This method is called when user’s attributes are modified.

Implementation: The attributes of the user to be modified are given in attrMap with
values as instances of TAAttrValueBean. The Operation field in the
TAAttrValueBean defines what must be done on each of the attributes passed in the
attrMap: replace, add, delete, or modify, where modify could mean the addition or
deletion of sub-values.

Details of TAAttrValueBean for a user modify operation:

The following examples highlight the user modify operation and detail of the contents
of TAAttrValueBean passed in the above method

The following abbreviations are used in the examples provided in the tables:

TAAttrValueBean=av

TAAttrMemberValueBean=amv

The keyValue argument that is passed will be the new key value
that is returned if the user is successfully created.
56 Chapter 4

Example 1: User Modify

Example 2: User Modify

Please note that all the attributes marked in the Service are required and are sent no
matter if their value has changed. If the value has not changed, the contents of
TAAttrValueBean for those attributes will have an operation type of
TAAttrValueBean.OP_NOCHANGE.

Exception: Throw ObjectNotFoundException if the user does not exist in the
resource. For all other error conditions, throw TAConnectorException with the
appropriate resource-specific error message.

• deleteUser(String keyField, String keyValue)

Purpose: Deletes a user.

Usage: This is called when a user is terminated.

User Modify Operation
Details Contents of TAAttrValueBean

Attribute a1 changed its
value to a new value

a1 - av=[OP_REPLACE, List=[{--.
a1sv2}]]
(a1sv2 is the new value.)

Attribute a2 has a new
subvalue

a2 - av=[OP_MODIFY,
List=[amv={OP_ADD, a2mv3}]]
(This adds subvalue a2mv3 to the two
subvalues.)

Attribute a3 has not changed a3 - av=[OP_NOCHANGE,
List=[amv={---,a3sv1}]]
(only given for required fields)

Attribute a4 has a new
attribute added

a4 - av=[OP_ADD,
List=[amv={---,a4sv1}]]
(This adds a new attribute.)

Attribute a5 is deleted a5 - av=[OP_DELETE, List=null]
(An attribute in Select Identity is deleted.)

User Modify Operation
Details Contents of TAAttrValueBean

Attribute a1 is deleted a1 - av=[OP_DELETE, List=null]

Attribute a2 has changed its
value to a new value

a2 - av=[OP_REPLACE,
List=[amv={---, a2sv4}]
(The value changed to a single subvalue.)

Attribute a3 is nullified a3 - av=[OP_REPLACE,
List=[amv=null]]
(only given for required fields)

Attribute a4 is emptied a4 - av=[OP_REPLACE,
List=[amv={---,””}]]
(Use ““ as a way to empty the value.)

The keyValue argument that is passed will be the new key value
that is returned if the user is successfully created.
Implementing a Select Identity Connector 57

Implementation: Perform the delete operation on the resource.

Exception: Throw ObjectNotFoundException if the user does not exist in the
resource. For all other error conditions, throw TAConnectorException with the
appropriate resource-specific error message.

• setUserStatus(String keyField, String keyValue, int status)

Purpose: Enables or disables a user.

Usage: This is called when a Disable All Services or Enable All Services operation is
performed using the Select Identity console, with the value of status given as
TAConnector.DISABLED or TAConnector.ENABLED respectively.

Implementation: Depending on the resource support, the user account is required to be
disabled or enabled, which also might mean performing lock or unlock operations or
revoke or restore operations.

Exception: Throw ObjectNotFoundException if the user does not exist in the
resource. For all other error conditions, throw TAConnectorException with the
appropriate resource-specific error message.

• findUser(String keyField, String keyValue, Map attrMap, boolean
keyExistsFlg)

Purpose: Gets user details.

Usage: This is an optional method and Select Identity does not call on this directly.
However, it is required using user discovery phase where all users are retrieved from
the resource to synchronize with the Select Identity database. In this case, this
method is used to get all attributes of the user from the resource.

Implementation: Get all attribute values from the resource for the user, if the user
exists. The value of the attribute should be an instance of TAAttrValueBean.

Exception: Throw ObjectNotFoundException if the user does not exist in the
resource. For all other error conditions, throw TAConnectorException with the
appropriate resource-specific error message.

• resetPassword(String keyField, String keyValue, String passwd)

Purpose: Resets a user’s password.

Usage: This method is called when the user’s password is to be changed to a new
password.

Implementation: Use the new password passed in by the passwd argument to change
the user's password in the resource.

Exception: Throw ObjectNotFoundException if the user does not exist in the
resource. For all other error conditions, throw TAConnectorException with the
appropriate resource-specific error message.

The keyValue argument that is passed will be the new key value
that is returned if the user is successfully created.

The keyValue argument that is passed will be the new key value
that is returned if the user is successfully created.

The keyValue argument that is passed will be the new key value
that is returned if the user is successfully created.
58 Chapter 4

• expirePassword(String keyField, String keyValue, boolean flg)

Purpose: Expires or unexpires a user’s password.

Usage: This is called when a user’s password is required to be expired or unexpired.

Implementation: If the value of flg is true, expire the user’s password. After this
operation is successful, the user should not be able to use the existing password to log
in to the resource. If the value of flg is false, unexpire the password.

This method is different from resetPassword() in that the old password is still
valid on the resource but the user will not be able to use it.

Exception: Throw ObjectNotFoundException if the user does not exist in the
resource. For all other error conditions, throw TAConnectorException with the
appropriate resource-specific error message.

• getAllUsers(String keyField, TAQuery query)

Purpose: Gets all users in a resource.

Usage: This method is not called by Select Identity but is useful when the connector is
used to get all users in the resource for user discovery.

Implementation: Get the key values (IDs) of all users in the resource that match the
given search criteria in the query argument.

• getUsers(String userKeyField, String entKeyField, String entType,
String entKeyValue)

Purpose: Gets all users with a specified entitlement.

Usage: This method is not called by Select Identity for general provisioning but is used
for reporting purposes when all entitlements of a user are required to be reported.

Implementation: Using the entKeyField, entType, and entKey values, locate the
entitlement in the resource and return IDs of all users that are assigned to this
entitlement.

• getEntitlementTypes()

Purpose: Gets all additional entitlement types.

Usage: This method is called during the initial deployment of the resource in Select
Identity and is useful only when the connector and resource support multiple types of
entitlements, such as groups, roles, entitlements, privileges, ACLs, and
responsibilities. If the connector and resource support only one kind of entitlement,
this method is optional and the default entitlement type is used.

Implementation: Return all additional types in the form of String instances.

• getAllEntitlements(String keyField, TAQuery query)

Purpose: Gets all entitlements in the resource.

Usage: The following uses are supported:

– Retrieve all entitlements in the resource
This is the normal usage of this method, where VSI calls on the connector to
retrieve all entitlements before provisioning a user. These entitlements are
assigned to the user after a successful create operation.

The keyValue argument that is passed will be the new key value
that is returned if the user is successfully created.
Implementing a Select Identity Connector 59

The value and operation fields of the TAFilter elements in TAQuery are used to
enforce a search criteria. The name field specifies the entitlement type to indicate
retrieval of all entitlements of the given type.

– Validation of a given entitlement
This is used when Select Identity tries to verify that a given entitlement is present
in the resource. The value field of TAFilter element in TAQuery identifies the
entitlement and operation field is EQUALITY.

– Retrieval of all possible values of a given attribute
This is useful if you want to provide a list of possible values to any attribute
during user provisioning. Generally, the value is entered but giving a choice
restricts invalid values. This is done by configuring the attribute in Select Identity
with a Search Connector function. The name field in the TAFilter contains the
name of the attribute.

Implementation: If the resource does not support entitlements, this is an optional
method and should return an empty collection.

Use the TAQuery parameter to identify the usage of this method and retrieve all
values from the resource. In some cases, the resource supports a primary or default
entitlement on a user, which is set automatically when the user is created in the
resource. The connector should filter and not return such entitlements to Select
Identity. Such entitlements can be managed through separate attributes on the user
rather than having them as entitlements.

• getEntitlements(String userKeyField, String userKeyValue, String
entKeyField)

Purpose: Gets all entitlements of a user.

Usage: This method is not called by Select Identity for general provisioning but is used
when all entitlements of a given user are required to be reported.

Implementation: Return a Collection of EntitlementModel instances.

Exception: Throw ObjectNotFoundException if the user does not exist in the
resource. For all other error conditions, throw TAConnectorException with the
appropriate resource-specific error message.

• link(String userKeyField, String userKeyValue, String entKeyField,
String entType, List entIds)

Purpose: Assigns entitlements to a user.

Usage: This method is called when trying to assign entitlements to a user that already
exists in the resource. It is required if entitlements are supported by the connector
and resource.

Implementation: Assigning an entitlement to a user might mean adding the user to the
entitlement or adding the entitlement to the user (or both). These can be different
depending on the resource. Once the user is assigned to the given entitlement, the
user gets the underlying privilege or authority when he or she accesses the resource.

The connector should ignore the error condition arising from the situation where the
entitlement is already assigned to the user. It can simply log the error and not throw
an exception to Select Identity.

Exception: Throw ObjectNotFoundException if the user does not exist in the
resource. For all other error conditions, throw TAConnectorException with the
appropriate resource-specific error message.
60 Chapter 4

• unlink(String userKeyField, String userKeyValue, String
entKeyField, String entType, List entIds)

Purpose: Unassigns entitlements from the user.

Usage: This method is called when trying to unassign entitlements from a user that
exists in the resource and is required if entitlements are supported by the connector
and resource.

The connector should ignore the error condition arising from the situation where the
entitlement is already unassigned from the user. It can simply log the error and not
throw an exception to Select Identity.

Implementation: This is the reverse operation of assigning entitlements to user.

3 Package the connector.

You can use the Apache ANT build scripts and deployment descriptors that are provided
with the generated templates. Run Apache ANT using the build.xml script. The
following are the files that are generated by this script:

— RAR (resource adaptor archive) file, which is a deployable module that contains all of
the classes and library JAR files for the connector.

— Schema (JAR) file, which contains the XML attribute mapping file and any XSL file,
for reverse mapping, to be used with the connector. The contents of this file must be
extracted into a folder that is in the class path of the application server.

Agent-based Forward Provisioning

Developing a connector that uses an agent for forward provisioning involves developing an
agent that resides on the resource platform. The agent communicates with the resource
application for all forward provisioning operations.

The following are some of the general requirements for an agent to perform provisioning:

• Implementing a connector for Select Identity— See Steps to Implement a Connector for
Select Identity on page 44 for details.

• Provisioning users and entitlements — The agent is required to support provisioning of
users and their entitlements on the resource.

• Availability — The agent must be a constantly running daemon or process so that it can
accept and process provisioning requests from the client-side of the connector.

• Scalability — The agent must support a large number of requests.

• Install and Uninstall — The agent must be cleanly installable and uninstallable. This is
particularly important if the agent is deployed on a large number of resource platforms.

• Security and Reliability — Communication between the client-side of the connector and
agent must be over a secure channel.

The client side of the connector is the JCA side that implements SIConnectorInterface. The
implementation should prepare and send requests for all forward provisioning operations to
the agent residing on the resource platform and handle responses.

The agent should handle all requests by performing provisioning operations on the resource
application and return the results or error cases.
Implementing a Select Identity Connector 61

Building a Connector for Reverse Provisioning

Reverse provisioning is the process of synchronizing changes that occurred in the resource
with Select Identity. Changes can include user additions, modifications, deletions, password
resets, entitlement changes, and so on. The connector can implement this as described in the
following sections.

Agentless Reverse Provisioning

When an agent is not implemented to detect changes on the resource, the connector should be
able to poll the resource for changes. You must implement the SIConnectorInterface interface
and the getChangeLog(ChangeLogCursor cursor) method. The purpose of this method is
to receive a change that occurred in the resource. Select Identity can be configured to poll any
connector to detect changes in the resource. When configured this way, Select Identity calls
this method with the appropriate value of the cursor.

To implement getChangeLog, the connector must detect changes that occurred in the
resource and prepare a data structure (SIChangeLogModel) with the change log entries. This
instance can hold all changes that occurred in one particular polling interval in the
ChangeLogEntry instances. As a checkpoint of the last change detected, a cursor is
maintained on the resource so that the connector’s next call only retrieves changes made since
the last call. This checkpoint could be a timestamp or some sequence number (for example
highest USN). Select Identity will store this value and give it back to the connector when it
calls for the next time.

Implementing getChangeLog(ChangeLogCursor)

This method should check the resource for all changes that occurred after the previous call to
this method and must prepare an instance of SIChangeLogModel with the details of these
changes.

SIChangeLogModel represents the changes that occurred in the resource, in a normalized
format. Any resource-specific API return values or format returned must be parsed and
converted into an instance of this class. This class contains the following main methods:

• setCursor(ChangeLogCursor)

The new value of the cursor must be set in SIChangeLogModel. A cursor identifies a
checkpoint in the resource change log so that a next call to getChangeLog() will read the
changes past this checkpoint.

The cursor class contains an int member to represent the changelog number. The
changelog number is determined by the resource and/or how you detect changes
occurred in the resource. The resource might already be using a number like this, for
example the USN number in case of Active Directory. This change log number could also
be a derivation of timestamp on the change that occurred in the resource. For example, it
could be a number of seconds since Jan 1 1970 and an int is good till the end of the year
2036.

Use this integer value on the ChangeLogCursor. setNumber(int) method.

• addCLEntry(ChangeLogEntry)

One instance of SIChangeLogModel can contain multiple instances of ChangeLogEntry
instances, which represents each change. A change could be that a user is added,
modified, deleted.
62 Chapter 4

Internally, SIChangeLogModel uses an ArrayList as a collection of ChangeLogEntry
instances, and so the order of the entries is maintained when the changes are sent to
Select Identity for reconciliation.

ChangeLogEntry has the following methods:

— setUserId(String)

This is used to set the id of the user in the resource.

— setChangeType(int)

This is to set the type of change that occurred in the resource. The possible types are
as follows::

ChangeLogEntry.USER_ADDED

ChangeLogEntry.USER_MODIFIED

ChangeLogEntry.USER_DELETED

ChangeLogEntry.USER_ENABLED

ChangeLogEntry.USER_DISABLED

ChangeLogEntry.USER_RESET_PASSWD

addAttrEntry(ChangeLogAttribute)

setChangeType(int)is used to add the attribute value in the change. This contains
the id and value of the attribute. The id should represent the Select Identity id of the
attribute and not the physical resource attribute. If these are different, re-mapping of
the name must be done.

As an illustration, let us say you have the forward mapping of attribute as follows:

The name on the left side (Select Identity resource attribute) is the attribute that
Select Identity gives to the connector in SIUserModel during forward provisioning.
The name on the right is the name of the attribute in the resource that you must set
on the resource with the given value.

Now, when you report the attributes in ChangeLogAttribute, the change detection
on the resource will give you the physical resource attribute name, such as mail or
givenName, and this must be converted back to Email or FirstName.

If you are using XML mapping file for forward provisioning, the connector framework
provides you access to the Java representation of this mapping in the form of an
instance of TASchema class, by calling the setSchema(TASchema) method on
SIConnectorInterface. The default implementation of this method is to store this
instance in a member variable of the SIConnectorInterface implementation, and this
can be used for reverse mapping of the attribute names. Here is an example of how to
use this.

Assume we have the following definition:

Select Identity
Resource Attribute

Physical Resource
Attribute

UserName uid

Email mail

FirstName givenName

LastName Sn
Implementing a Select Identity Connector 63

Private TASchema mTaSchema;

Then, in getChangeLog() implementation you could access the following:

TASchemaParamBean[] lBeans = mTaSchema.getUserSchema();

for (int ii=0; ii<lBeans.length; ii++)

{

 TASchemaParamBean lBean = lBeans[ii];

 lBean.getMappingField() ... // gives the SIResourceAttribute (or
tafield in XML file)

 lBean.getResField() ... // gives the Physical resource attribute (or
resfield)

Standard name for entitlement identifiers (IDs):

When you are reporting ChangeLogAttribute for entitlements, you use the
following keyword to represent an entitlement:

urn:trulogica:concero:2.0#groups

Agent-based Reverse Provisioning

The agent is notified of changes that occurred in the resource and notifies Select Identity with
all detected changes. The agent notifies Select Identity using SPML requests sent over HTTP
or HTTPS to the Select Identity Web Service URL. Select Identity consumes these changes by
processing them for reconciliation.

In addition to the requirements mentioned in Agent-based Forward Provisioning on page 61,
the following are also required:

• Configuration — The agent’s operational parameters for the SPML requests, the Select
Identity Web Service URL, resource identification, and response handling must be
configurable.

• Response handling — The agent should be able to handle the response to the SPML
request sent to Select Identity. If the response indicates a success, proceed with the next
event. If not, check if a retry policy should be applied.

• Retry Policy — The agent should support a policy that defines what must be done if a
request does not reach Select Identity or if Select Identity cannot process the request for
any reason. Some of the points to consider are as follows:

— Retry count

— Retry interval

— Event drop

— Request delay

The agent’s change detection capabilities can include adding, modifying, or deleting a user, or
resetting a user’s password. The agent must prepare and send an SPML request to the Select
Identity Web Service URL to notify Select Identity of this change. The following events are
captured on the resource and a corresponding SPML request must be sent to Select Identity:

• Adding a user
A new user is added on the resource. To propagate this change back to Select Identity, an
SPML <addRequest> must be sent that includes all of the user’s attributes.
64 Chapter 4

• Changing user attributes
User attributes are modified on the resource. An SPML <modifyRequest> must be sent
to the Select Identity server to synchronize these changes.

• Adding entitlement to a user or removing entitlements from a user
Entitlements are associated or disassociated with an existing user on the resource. An
SPML <modifyRequest> must be sent with the new entitlements added or removed.

• Changing a user’s password
A user’s password is changed or reset on the resource. An SPML <extendedRequest>
must be sent containing the new password.

• Deleting a user
A user is deleted from the resource. An SPML <deleteRequest> request must be sent
for the deleted user.

• Enabling or disabling a user
A user is enabled or disabled on the resource. A SPML <modifyRequest> request
containing all of the user attributes must be sent to propagate the change(s) to Select
Identity.

How the changes are captured and how the SPML request is generated are resource specific.
Each generated SPML request is parsed by Select Identity using an XSL file that corresponds
to the XML mapping file that enables Select Identity to push data to the resource. (See
Mapping Select Identity Attributes to the Resource Schema on page 66 for more information
about creating this mapping file.)

The SPML request that is generated for reverse synchronization includes the following
information:

• Operational attributes — Relate to the properties of the Select Identity instance to which
the reverse synchronization request is being sent.

• Resource attributes — Define user attributes on the resource.

The following is an example of the operational attributes section of an SPML request:

<operationalAttributes>
<attr name='urn:trulogica:concero:2.0#reverseSync'>
<value>true</value>

</attr>
<attr name='urn:trulogica:concero:2.0#resourceId'>
<value>AD</value>

</attr>
<attr name='urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName'>
<value>sisa</value>

</attr>
<attr name='urn:trulogica:concero:2.0#resourceType'>
<value>activedirectory</value>

</attr>
<attr name='urn:trulogica:concero:2.0#password'>
<value>abc123</value>

</attr>
</operationalAttributes>

The <attr> elements in this block are as follows:

• urn:trulogica:concero:2.0#reverseSync

Specifies whether this request is a reverse synchronization request. The value is a boolean
set to true if the request is a reverse synchronization request.
Implementing a Select Identity Connector 65

• urn:trulogica:concero:2.0#resourceId

The name of the resource (in Select Identity) to which this request is sent.

• urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName

The username of an administrative user in Select Identity.

• urn:trulogica:concero:2.0#password

The password of the administrative user.

• urn:trulogica:concero:2.0#resourceType

The name of the XSL file (without the .xsl extension) that is associated with the
resource and that parses the reverse synchronization request.

See SPML Examples on page 125 for examples that are generated for each type of user change
on the resource.

Mapping Select Identity Attributes to the Resource Schema

You must create a file that maps the Select Identity fields defined for a user to the fields used
by the resource. The connector will reference this mapping file to understand the target fields
on the resource for each user value. This section provides an overview of the mapping file.

The LDAP connector provides three mapping files: one for an Active Directory server
(ActiveDir.xml), one for an iPlanet server (iPlanet.xml), and one for ETrust
(CAEtrust.xml). The files are created in XML, according to SPML standards, and are
bundled in a JAR file called schema.jar. In general, all connectors that provide XML
mapping files must provide the following content.

General Attribute Information

The following operations can be performed in the mapping file:

• Add a new attribute mapping

• Delete an existing attribute mapping

• Modify attribute mappings

Following is an explanation of the elements in the XML mapping files provided by the LDAP
connectors:

• <Schema>, <providerID>, and <schemaID>

Provides standard elements for header information.

• <objectClassDefinition>

Defines the actions that can be performed on the specified object as defined by that name
attribute (in the <properties> element block) and the Select Identity-to-resource field
mappings for the object (in the <memberAttributes> block). In general, the XML
mapping file supports two types of entities: users and groups. These entities are defined
in the mapping file by an <objectClassDefinition> block.

This mapping file is always stored in the com/trulogica/truaccess/connector/
schema/spml directory and the parent folder is packaged in the schema JAR file.
66 Chapter 4

• <properties>
Defines the operations that are supported on the object. This can be used to control
the operations that are performed through Select Identity. The following operations
can be controlled:

— Create (CREATE)

— Read (READ)

— Update (UPDATE)

— Delete (DELETE)

— Enable (ENABLE)

— Disable (DISABLE)

— Reset password (RESET_PASSWORD)

— Change password (CHANGE_PASSWORD)

— Assign entitlements (LINK)

— Unassign entitlements (UNLINK)

— Retrieve entitlements (GETALL)

The operation is assigned as the name of the <attr> element and access to the
operation is assigned to a corresponding <value> element. You can set the values as
follows:

— true — the operation is supported by the connector

— false — the operation is not supported by the connector and will throw a
permission exception

— bypass — the operation is not supported by the connector but will not throw an
exception; the operation is simply bypassed

Following is an example:

<objectClassDefinition name="SIUser" description="Oracle ERP User">
 <properties>
<attr name="GETCHILDREN">
<value>true</value>

</attr>
<attr name="DELETE">
<value>true</value>

</attr>
<attr name="EXPIREPASSWORD">
<value>false</value>

</attr>
<attr name="GETALL">
<value>true</value>

</attr>
...

• <memberAttributes>
Defines the attribute mappings. This element contains
<attributeDefinitionReference> elements that describe the mapping for each
attribute. Each <attributeDefinitionReference> can be followed by an
<attributeDefinition> element that specifies details such as minimum length,
maximum length, and so on.
Implementing a Select Identity Connector 67

Each <attributeDefinitionReference> element contains the following
attributes:

— name — The name of the attribute definition reference. Make sure this is followed
by an <attributeDefinition> block whose name attribute matches this name.

— required— Whether this attribute is required in the provisioning process (set to
true or false).

— concero:tafield — The name of the attribute in Select Identity. In general, the
attribute assigned to tafield should be the same as the physical resource attribute,
or at least the connector attribute. For example, it is recommended to have the
following:

<attributeDefinitionReference name="FirstName" required="false"
concero:tafield="[givenname]" concero:resfield="givenname"
concero:init="true" concero:isMulti="true"/>

instead of this:

<attributeDefinitionReference name="FirstName" required="false"
concero:tafield="[FirstName]" concero:resfield="givenname"
concero:init="true" concero:isMulti="true"/>

— concero:resfield — The name of the attribute from the resource schema. If
the resource does not support physical attributes, this can be a tag field that
indicates a resource attribute mapping.

Also, the attribute name may be case-sensitive; for example, if the attribute is
defined in all uppercase letters on the resource, be sure to specify it in all
uppercase letters here.

— concero:isKey — An optional attribute that, when set to true, specifies that
this is the key field to identify the object on the resource. Only one
<attributeDefinitionReference> can be specified where isKey="true".
This key field does not need to be the same as the key field of the identity object in
Select Identity.

Note that for a key field mapping where isKey="true" and tafield is not
assigned the UserName attribute, UserName should not be used in any other
mapping. That is, UserName can be assigned to tafield only in cases where it is
mapped to the key field in the resource. For example:

<attributeDefinitionReference name="UserName" required="true"
concero:tafield="[UserName]" concero:resfield="uid"
concero:isKey="true" concero:init="true"/>

— concero:init — Set this to true if this attribute needs to be passed as part of
the creation of the user. You can use this parameter to control which attributes
must be specified during creation and which must be specified when a user is
modified.

— concero:isPassword — Set this to true if the attribute is a password.

— concero:isMulti — Set this to true if the resource attribute is multi-valued.

— concero:isSensitive — Set this to true if the attribute is case-sensitive.

Here is an example:

<memberAttributes>
<attributeDefinitionReference name="ATTR_UserName"
required="true" concero:tafield="UserName"
68 Chapter 4

concero:resfield="[x_user_name][USER_NAME][][VARCHAR]"
concero:isKey="true" concero:init="true"/>

...

The interpretation of the mapping between the connector field (as specified by the
Concero:tafield attribute) and the resource field (as specified by the
Concero:resfield attribute) is determined by the connector.

• <attributeDefinition>

Defines the properties of each object’s attribute. For example, the attribute definition for
the Directory attribute defines that it must be between one and 50 characters in length
and can contain the following letters, numbers, and characters: a-z, A-Z, 0-9, @, +, and a
space.

Here is an example:

<attributeDefinition name="ATTR_ResponsibilityKey"
description="Responsibility Key" type="xsd:string" >
<properties>
<attr name="minLength">
<value>1</value>

</attr>
<attr name="maxLength">
<value>128</value>

</attr>
<attr name="pattern">
<value><![CDATA[[a-zA-Z0-9@]+]]> </value>

</attr>

</properties>
</attributeDefinition>

• <concero:entitlementMappingDefinition>

Defines how entitlements are mapped to users. Defining this element for each entitlement
enables you to control the entitlements from the XML mapping file, instead of the
requiring that the connector retrieve a list of entitlements from the resource. Using this
element may not be appropriate in all cases, but this is one way to do it:

<concero:entitlementMappingDefinition>
<concero:entitlementMap name="Administrators" />

</concero:entitlementMappingDefinition>
<concero:entitlementMappingDefinition>
<concero:entitlementMap name="Backup Operators" />

</concero:entitlementMappingDefinition>
<concero:entitlementMappingDefinition>
<concero:entitlementMap name="Guests" />

</concero:entitlementMappingDefinition>
<concero:entitlementMappingDefinition>
<concero:entitlementMap name="Network Config Operators" />

</concero:entitlementMappingDefinition>
<concero:entitlementMappingDefinition>
<concero:entitlementMap name="Power Users" />

</concero:entitlementMappingDefinition>
<concero:entitlementMappingDefinition>
<concero:entitlementMap name="Remote Desktop Users" />

</concero:entitlementMappingDefinition>
<concero:entitlementMappingDefinition>
Implementing a Select Identity Connector 69

<concero:entitlementMap name="Replicator" />
</concero:entitlementMappingDefinition>
<concero:entitlementMappingDefinition>
<concero:entitlementMap name="Users" />

</concero:entitlementMappingDefinition>

<concero:entitlementMappingDefinition>
<concero:entitlementMap name="Debugger Users" />

</concero:entitlementMappingDefinition>
<concero:entitlementMappingDefinition>
<concero:entitlementMap name="HelpServicesGroup" />

</concero:entitlementMappingDefinition>

• <concero:objectStatus>

Defines how to assign status to a user.

• <concero:relationshipDefinition>

Defines how to create relationships between users and groups (entitlements). Here is an
example:

<concero:relationshipDefinition>
<properties>
<attr name="CREATE">
<value>true</value>

</attr>
<attr name="NAVIGATE">
<value>true</value>

</attr>
<attr name="DELETE">
<value>true</value>

</attr>
</properties>
<concero:party concero:entity="SIUser"
 concero:cardinality="ZERO_OR_MORE" concero:start="false" />
<concero:party concero:entity="Group"
 concero:cardinality="ZERO_OR_MORE" concero:start="false" />

</concero:relationshipDefinition>

This example defines the following:

• user-to-group link can be created

• connector and resource support this operation

• user-to-group link may be deleted

• user can be unassigned from an entitlement

Creating a Mapping File

Create a mapping file that maps each attribute on the physical resource to an attribute on the
connector. (To complete this mapping, attributes must be created using the Select Identity
client to map a name on the server to this name on the connector.) For example, the connector
may store the user ID in a field called userID and the resource may store the ID in a field
called user_id. The connector will reference the mapping file to understand the target field
on the resource for each user value.
70 Chapter 4

The following illustrates the relationship between the fields in Select Identity, the connector,
and the resource.

Figure 9 Relationship Between Fields in Select Identity, Connector and Resource

Instances of SIUserModel and EntitlementModel are populated and provided by Select
Identity when it calls the SIConnector methods. Obtain user and group attributes from here
and map them to the resource using map file.

You determine the format of the mapping file. The connector may require only a simple
mapping stored in a text file. Here is a simple text file example where the Select Identity field
is specified first and a pipe (|) separates the fields:

User Name|UserId
Password|Password
User Name|cn
First Name|givenName
Last Name|sn
[First Name] [Last Name]|displayName
Title|Title
Directory|homeDirectory
Email|Mail
Address 1|streetAddress

Or, the connector may require a format that supports robust mapping, such as an XML file.
XML mapping files are used by all connectors built and provided by HP. Here is an excerpt
from the iPlanet.xml file, which is provided with the LDAP connector. Refer to Mapping
Select Identity Attributes to the Resource Schema on page 66 for a full description of the file.

<objectClassDefinition name="User" description="LDAP User">
<properties>
<attr name="CREATE">
<value>true</value>
Implementing a Select Identity Connector 71

</attr>
<attr name="READ">
<value>true</value>

</attr>
<attr name="UPDATE">
<value>true</value>

</attr>
<attr name="DELETE">
<value>true</value>

</attr>
<attr name="ENABLE">
<value>true</value>

</attr>
<attr name="DISABLE">
<value>true</value>

</attr>
<attr name="RESET_PASSWORD">
<value>true</value>

</attr>
<attr name="EXPIRE_PASSWORD">
<value>false</value>

</attr>
<attr name="CHANGE_PASSWORD">
<value>true</value>

</attr>
</properties>
<memberAttributes>
<!-- For iPlanet -->
<attributeDefinitionReference name="UserName" required="true"
 concero:tafield="[UserName]" concero:resfield="uid"
 concero:isKey="true" concero:init="true"/>
<attributeDefinitionReference name="Password" required="false"
 concero:tafield="[Password]" concero:resfield="userpassword"
 concero:init="true" />

Some Coding Guidelines

Following are code examples for some of the commonly used functions. This assumes that you
are implementing SIConnector to implement the connector.

The code examples are in the following sections:

• Key Value Return

• Key Value Computation

• User Modification

If you are directly implementing the simplified connector interface
SIConnectorInterface, you can still make use of the logic in these
snippets, but the exact methods will not be the same.
72 Chapter 4

Key Value Return

After a successful creation of the user in the resource, the connector is supposed to know the
key value of the user in the resource. This needs to be propagated back to Select Identity for
later referral.

Following is a code snippet to do the above. Basically, you need to call
theSIUserModel.setResUserId() method.

 public TAStatus add(SIUserModel userModel) throws TAConnectorException {
 String lFuncName = "add(SIUserModel)";
 if (msLogger.isDebugEnabled()) {
 msLogger.debug("ENTER:\r\n"+userModel);
 }
 TAStatus lStatus = new TAStatus(TAStatus.OP_CREATE);

// compute key value
keyValue = …;

…
// add the user in resource
…

 userModel.setResUserId(keyValue);
 catch (TAConnectorException tae) {
 throw tae;
 }
 catch (Exception e) {
 if (msLogger.isWarnEnabled()) {
 msLogger.warn("Unable to create user:" + keyValue, e);
 }
 TAConnectorException tac = new TAConnectorException("Unable to create
user:" + userModel.getResUserId());
 tac.setLinkedException(e);
 throw tac;
 }
 finally {
 if (msLogger.isDebugEnabled()) {
 msLogger.debug("EXIT");
 }
 }

Key Value Computation

At several occurrences during the writing of the connector, the user in the resource needs to be
identified with a key value, and this key value needs to be used with the underlying resource
API or other methods.

It is quite possible that the key value of the user in Select Identity might be different from the
key value of the same user in the resource.

To properly address this user, you may want use the following code snippet:

 private String getKeyValue(SIUserModel um, TASchemaParamBean[] schema)
 throws TAConnectorException
 {
Implementing a Select Identity Connector 73

 String keyValue = null;

 // first use the resource key value
 if (um.getResUserId() != null)
 {
 keyValue = um.getResUserId();
 }

 // Check if the key attribute value is set
 if ((null == keyValue) || (keyValue.trim().length() == 0)) {
 for (int i = 0; i < schema.length; i++) {
 if (schema[i].isKey()) {
 keyValue = getSingleValue(um, schema[i].getMappingField());
 break;
 }
 }
 }

 // finally use the OVSI user id
 if ((null == keyValue) || (keyValue.trim().length() == 0)) {
 keyValue = um.getUserId();
 }

 if ((null == keyValue) || (keyValue.trim().length() == 0)) {
 String lError = "No primary key specified";
 if (msLogger.isWarnEnabled()) {
 msLogger.warn(lError);
 }
 throw new InvalidParameterException(lError);
 }
 keyValue = keyValue.trim();

 if (msLogger.isInfoEnabled()) msLogger.info("Resource Key
Value="+keyValue);
 um.setResUserId(keyValue);
 return keyValue;
 }

The above code makes sure that you compute the key in this order:

• resource user id field of SIUserModel if available, or

• value of the key attribute as defined in the mapping

• value of the Select Identity UserID field of SIUserModel

If all of the above fail to produce a valid key field value, then you should throw an exception to
the caller.

User Modification

User modification might mean any of the following:

• Add a new attribute (with some value)

• Delete an existing attribute

• Add a new value to an existing multi-valued attribute
74 Chapter 4

• Delete an existing value from a multi-valued attribute

• Clearing out all values of an attribute

• Replacing an attribute with a new value

Loading Existing User From Resource

To perform most of the above operations, it might be necessary to load the existing value of
the user from the resource. In such cases, you may want to load only those attributes that are
being modified.

In Select Identity 4.0, it is now possible to find out what attributes of the user are being
modified by looking at the contents of SIUserModel. Following is a code snippet to do this:

 // List of attr Ids to be loaded from resource, for update

TASchemaParamBean[] schemaBeans = getUserSchema();
String resKeyField = getKeyField(schemaBeans, "User");
String keyValue = getKeyValue(userModel, schemaBeans);

List lRetAttrIds = new ArrayList();
for (int index = 0; (index < schemaBeans.length); index++) {
 bean = schemaBeans[index];
 lTaField = schemaBeans[index].getMappingField();

 // pick up only those attrs that can be updated
 if ((!bean.isUpdate()) || // not updateable
 (!userModel.isAttrPresent(lTaField)) || // not being modified
 bean.getResField().equalsIgnoreCase(resKeyField) || // key field
 hasCompositeMapping(schemaBeans[index])) // has composite
mapping
 {
 continue;
 }

 lRetAttrIds.add(bean.getResField());
 }

 String ctx = getContext(schemaBeans, userModel, "User", false);
 Attributes lResAttrs = loadResourceAttrs(ctx, resKeyField, keyValue,
lRetAttrIds);

Computing Changes to Be Made

Once the user attributes are loaded, a thorough check is needed on each attribute to see what
value is being changed and the difference to be executed on the resource.

Following is a code snippet from an LDAP connector to compute this change and prepare a
modification:

 /**
 * Build ModificationItems based on functions on th attribute value and attr
member values
 *
 * @param mods ModificatoionItem List to be updated
Implementing a Select Identity Connector 75

 * @param userModel passed in by OVSI
 * @param bean the attribute being modified
 * @param attrValueBean value of the attribute given by OVSI
 * @param resAttr Value of the attribute in resource
 */
 public static void buildAndAddModifications(
 List mods,
 SIUserModel userModel,
 TASchemaParamBean bean,
 TAAttrValueBean attrValBean,
 Attribute resAttr)

 throws Exception
 {
 String lFuncName = "buildAndAddModifications()";
 if (msLogger.isDebugEnabled()) {
 msLogger.debug("ENTER");
 }

 Object[] value = null;
 ModificationItem modItem = null;
 Attribute siAttr = null;
 Attribute lMergedAttr = resAttr;

 switch (attrValBean.getOperation()) {
 case TAAttrValueBean.OP_REPLACE:
 {
 value = attrValBean.getValues();
 siAttr = buildLdapAttribute(bean.getResField(), value);
 mods.add(new ModificationItem(DirContext.REPLACE_ATTRIBUTE,
siAttr));
 }
 break;

 case TAAttrValueBean.OP_ADD:
 {
 value = attrValBean.getValues();
 siAttr = buildLdapAttribute(bean.getResField(), value);
 lMergedAttr = mergeAttributes(resAttr, DirContext.ADD_ATTRIBUTE,
siAttr);
 if (lMergedAttr != null)
 {
 mods.add(new ModificationItem(DirContext.REPLACE_ATTRIBUTE,
lMergedAttr));
 }
 }
 break;

 case TAAttrValueBean.OP_DELETE:
 {
 if ((resAttr != null) && (resAttr.size() > 0))
 {
 mods.add(new ModificationItem(DirContext.REMOVE_ATTRIBUTE,
 new BasicAttribute(bean.getResField(), null)));
 }
76 Chapter 4

 }
 break;

 case TAAttrValueBean.OP_MODIFY:
 {
 ArrayList lAddValues = new ArrayList();
 ArrayList lDelValues = new ArrayList();
 attrValBean.categorizeValues(lAddValues, lDelValues);

 if (lAddValues.size() > 0) {
 siAttr = buildLdapAttribute(
 bean.getResField(), lAddValues.toArray(new String[0]));
 lMergedAttr = mergeAttributes(lMergedAttr,
DirContext.ADD_ATTRIBUTE, siAttr);
 if (lMergedAttr == null)
 {
 lMergedAttr = resAttr;
 }
 }
 if (lDelValues.size() > 0) {
 siAttr = buildLdapAttribute(
 bean.getResField(), lDelValues.toArray(new String[0]));
 lMergedAttr = mergeAttributes(lMergedAttr,
DirContext.REMOVE_ATTRIBUTE, siAttr);
 }
 if (lMergedAttr != null)
 {
 mods.add(new ModificationItem(DirContext.REPLACE_ATTRIBUTE,
lMergedAttr));
 }
 }
 break;

 default:
 }
 }

 /**
 * Merge the resource and si attrs based on operation:
 * return (resAttr - siAttr) or
 * return (resAttr + siAttr) or
 * return siAttr if (resAttr != siAttr)
 *
 * @param siAttr
 * @param op
 * @param resAttr
 * @return
 * @throws Exception
 */
 public static Attribute mergeAttributes(Attribute resAttr, int op, Attribute
siAttr)
 throws Exception
 {
 Attribute lAttr = null;
 Object lAttrVal = null;
Implementing a Select Identity Connector 77

 boolean lNoChangeFlg = true;

 switch (op)
 {
 case DirContext.ADD_ATTRIBUTE:
 {
 if (resAttr == null)
 {
 lAttr = siAttr;
 lNoChangeFlg = false;
 }
 else
 {
 lAttr = (Attribute) resAttr.clone();
 NamingEnumeration ne = siAttr.getAll();
 while (ne.hasMoreElements())
 {
 lAttrVal = ne.nextElement();
 if (!lAttr.contains(lAttrVal))
 {
 lAttr.add(lAttrVal);
 lNoChangeFlg = false;
 }
 }
 }
 }
 break;

 case DirContext.REMOVE_ATTRIBUTE:
 {
 if (resAttr != null)
 {
 lAttr = (Attribute) resAttr.clone();
 NamingEnumeration ne = siAttr.getAll();
 while (ne.hasMoreElements())
 {
 lAttrVal = ne.nextElement();
 if (lAttr.contains(lAttrVal))
 {
 lAttr.remove(lAttrVal);
 lNoChangeFlg = false;
 }
 }
 }
 }
 break;

 default:
 case DirContext.REPLACE_ATTRIBUTE:
 {
 if (resAttr == null)
 {
 lAttr = siAttr;
 lNoChangeFlg = false;
 }
78 Chapter 4

 else
 {
 NamingEnumeration resAttrEnum = resAttr.getAll();
 while (resAttrEnum.hasMoreElements())
 {
 lAttrVal = resAttrEnum.nextElement();
 if (!siAttr.contains(lAttrVal))
 {
 lNoChangeFlg = false;
 }
 }

 if (lNoChangeFlg)
 {
 NamingEnumeration siAttrEnum = siAttr.getAll();
 while (siAttrEnum.hasMoreElements())
 {
 lAttrVal = siAttrEnum.nextElement();
 if (!resAttr.contains(lAttrVal))
 {
 lNoChangeFlg = false;
 }
 }
 }

 lAttr = siAttr; // in case, we have to replace
 }
 }
 }

 return (lNoChangeFlg) ? null : lAttr;
 }

Matching Managed Connections

Connections (or instances of SIConnector) are created by the application server on a demand
basis, when an operation is called on the connector. This connection is returned back to the
application server connection pool upon completion of the operation. However, the physical
connection to the resource need not be destroyed until the application server explicitly makes
the request.

The application server calls on the ManagedConnectionFactory implementation to match
connections in the pool before creating a new connection. The criteria for matching the
connection must depend on all the connection parameters that are passed in the
TAConnectorParamValueBean implementation.

Following is a code snippet to show the matching:

public ManagedConnection matchManagedConnections(
Set arg0,
Subject arg1,
ConnectionRequestInfo arg2)
throws ResourceException {

if (!(arg2 instanceof TAConnectorParamValueBean)) {
throw new ResourceException(
Implementing a Select Identity Connector 79

"Invalid parameter:Expected "
+

LDAPParamValueBean.class.getName());

}

// Make a local copy of the bean
 LDAPParamValueBean lBean = new

LDAPParamValueBean((TAConnectorParamValueBean) arg2);

for (Iterator it = arg0.iterator(); it.hasNext();) {
Object conn = it.next();
if (conn instanceof LDAPManagedConnection) {

LDAPManagedConnection ldapc = (LDAPManagedConnection) conn;
LDAPParamValueBean o = ldapc.getBean();
if (o.equals(lBean)) {

if (msLogger.isInfoEnabled()) msLogger.info("Found matched
Connection:"+ldapc);

return ldapc;
}

}
}
if (msLogger.isDebugEnabled()) msLogger.warn("Unable to find matched

connection");
return null;

}

The equals() method of LDAPParamValueBean looks like this:

public boolean equals(LDAPParamValueBean other) {
 return hashCode() == other.hashCode();
 }

 public int hashCode()
 {
 return this.toString().hashCode();
 }

 public String toString() {
 StringBuffer sb = new StringBuffer("LDAPParamValueBean[");

 String lKey = null;
 java.util.Iterator lIter = mValuesMap.keySet().iterator();
 while (lIter.hasNext())
 {
 lKey = (String) lIter.next();
 sb.append(lKey).append("=").append(get(lKey)).append(",");
 }
 sb.append("]");
 return sb.toString();
 }

And so it depends on all the connection parameters kept in mValuesMap.
80 Chapter 4

Schema Reloading

The attribute mapping file (or the file that has this mapping) must be reloaded only when
test() method is called. This method is called when the Select Identity resource using this
connector implementation is either newly deployed or updated. Following are the steps
involved:

• Clear out the old mapping information

• Reload the file and mapping again
Implementing a Select Identity Connector 81

82 Chapter 4

5 Connector Tester Tool
After you build the connector, you can use the connector tester tool to test provisioning
operations. The tool certifies the connector before it is deployed in OVSI. It consists of the
following:

• A standalone servlet WAR module, which is deployed on the application server where the
OVSI server is deployed and where the target connector is installed

• SPML scripts that perform all forward-provisioning operations supported by OVSI

• A client that sends requests to the servlet (by running the SPML scripts)

The following diagram illustrates how the tester tool communicates with the connector.

Figure 10 Connector Tester Tool Communication with the Connector

Using the client, you run the scripts, which send SPML requests to the servlet. The servlet
converts SPML requests to Connector API requests and invokes the connector. The connector
then sends the requests to the resource application. The connector then sends results or
errors back to the servlet.

The client can be used to perform bulk or iterative operations, for regression testing of the
connector. You can use multiple clients for this purpose.

This chapter contains the following sections:

• Installing the Tester Tool

• Testing the Connector

• Tester Tool Scripts
83

Installing the Tester Tool

The Connector Tester Tool is part of the Connector SDK as shown in the following figure:

Figure 11 Connector SDK Structure With the Tester Tool

The following files are provided:

• ConnectorTester.war -— The web application module that contains the servlet.

• CTClient.tar.gz — The client library and sample scripts if you intend to install the
client on a UNIX application server

Complete the following steps to deploy and install the servlet WAR module, SPML scripts,
client, and connector:

1 Copy the ConnectorTester.war file (for UNIX) from the
/ConnectorSDK/ directory on the OVSI Connector CD to the local system.

2 Deploy the WAR file in the application server. Here is an example of how to deploy the file
on WebLogic:

a Log on to the WebLogic Server Console. (To load the console, load its URL in a
browser. The URL is typically http://localhost:7001/console.)

b Navigate to My_domain → Deployments.

c Click Web Application Modules.

d In the right side of the page, click Deploy a new Web Application Module... .

e Locate and select the ConnectorTester.war file, then click the Target Module button.

f Click the Deploy button.

WebLogic loads and deploys the WAR file. It should report "Success" in the Status of Last
Action column on the next page.

For further verification, enter the URL of the tester servlet in an Internet Explorer
browser: http://localhost:port/ConnectorTester (where localhost and port are those of
the application server). If the servlet is deployed correctly, the following is displayed:
84 Chapter 5

http://localhost:port/ConnectorTester

SI TestConnector servlet is up !!!

3 To install the client and scripts, extract the contents of the CTClient.tar.gz file to a
directory on the server. The following directories and files are created in the target
directory:

4 Install and deploy your implementation of the connector on the application server. Refer
to Installing a Connector On WebLogic on page 95 and Configuring a Connector in Select
Identity on page 96 for instructions.

To verify that the connector is deployed properly, make sure that the JNDI names for the
connector's connection factory and parameter factory are listed in the application server's
JNDI tree view.

Testing the Connector

Complete the following steps to test the connector using the tester tool. See each step for
details:

• Step 1: Get the connection parameters of your connector.

• Step 2: Prepare the properties file with names and values of these connection parameters.

• Step 3: Test the connection to the resource.

• Step 4: Run the Tester Tool client using one of the scripts.

Step 1: Get the connection parameters of your connector.

a Be sure the JAVA_HOME environment variable is set.

b Change directories to the install_dir/bin directory and run run.ksh (on UNIX) to
invoke the tester client.

c Be sure you have the following information to work with the tester tool scripts:

— JNDI name of the connection factory

— All parameters (and values) defined by the TAConnectorParameterFactory
implementation and contained in the extension of TAConnectorParamValueBean

You can use the script getConnectionParams.xml to get the connection parameters of
the connector you are testing. Following is an example:

Edit the ctOpAttributes.properties file to set the correct Connection factory
JNDI Name of your connector. For example eis/LDAPv3 and run it against the Tester
Tool as follows:

run ../samplescripts/getConnectionParams.xml
http://localhost:7001/ConnectorTester

Subdirectory Contents

bin/ The run.ksh file (for UNIX), which run the client

lib/ The library JAR files needed by the client to invoke
an HTTP request that is sent to the servlet

samplescripts/ The sample scripts that perform forward-provisioning
operations through the connector
Connector Tester Tool 85

You will see a response like this:

<spml:extendedResponse xmlns:spml='urn:oasis:names:tc:SPML:1:0'
xmlns:dsml='urn:oasis:names:tc:DSML:2:0:core' requestID='1769'
result='urn:oasis:names:tc:SPML:1:0#success'>
 <spml:operationalAttributes>
 <dsml:attr name='urn:trulogica:concero:2.0#resourceId'>
 <dsml:value>eis/LDAPv3</dsml:value>
 </dsml:attr>
 <dsml:attr name='urn:trulogica:concero:2.0#elapsedTime'>
 <dsml:value>511</dsml:value>
 </dsml:attr>
 <dsml:attr name='urn:trulogica:concero:2.0#connectionParams'>
 <dsml:value>accessURL</dsml:value>
 <dsml:value>suffix</dsml:value>
 <dsml:value>rootDN</dsml:value>
 <dsml:value>rootPassword</dsml:value>
 <dsml:value>userPrefix</dsml:value>
 <dsml:value>userSuffix</dsml:value>
 <dsml:value>userObjectClass</dsml:value>
 <dsml:value>groupSuffix</dsml:value>
 <dsml:value>groupObjectClass</dsml:value>
 <dsml:value>groupIdAsDn</dsml:value>
 <dsml:value>cleanUpGrpsOnDel</dsml:value>
 <dsml:value>mappingFile</dsml:value>
 </dsml:attr>
 </spml:operationalAttributes>
</spml:extendedResponse>

Step 2: Prepare the properties file with names and values of these connection parameters.

You can use the response from the above operation to put all the connection parameters
for your connector. Then provide values for each of these parameters in this file.

Following is an example of the properties file for an LDAP resource:

urn\:trulogica\:concero\:2.0#resourceId=eis/LDAPv3
accessURL=ldap://127.0.0.1:62394
suffix=dc=americas,dc=hpqcorp,dc=net
rootDN=cn=Directory Manager
rootPassword=abcd1234
userPrefix=
userSuffix=ou=People
userObjectClass=top,person,organizationalPerson,inetorgperson
groupSuffix=ou=Groups
cleanUpGrpsOnDel=true
groupObjectClass=top,groupofuniquenames
mappingFile=iPlanet.xml

Step 3: Test the connection to the resource.

Run the doTest.xml script to test the connectivity between the connector and the
resource (or agent).

You need to do this next after running the getConnectionParams.xml script and
setting up your ctOpAttributes.properties file.

Following is a sample result of doTest:

Failure Case (Invalid resource password used):
86 Chapter 5

<spml:extendedResponse xmlns:spml='urn:oasis:names:tc:SPML:1:0'
xmlns:dsml='urn:oasis:names:tc:DSML:2:0:core' requestID='1769'
result='urn:oasis:names:tc:SPML:1:0#failure'
error='urn:oasis:names:tc:SPML:1:0#customError'>
 <spml:operationalAttributes>
 <dsml:attr name='urn:trulogica:concero:2.0#resourceId'>
 <dsml:value>eis/LDAPv3</dsml:value>
 </dsml:attr>
 <dsml:attr name='errorMessages'>
 <dsml:value>Code=urn:trulogica:concero:2.0#generalError, Message=[LDAP: error
code 49 - Invalid Credentials]</dsml:value>
 </dsml:attr>
 </spml:operationalAttributes>
 <spml:errorMessage>Failure in Handling request</spml:errorMessage>
</spml:extendedResponse>

Success Case:

<spml:extendedResponse xmlns:spml='urn:oasis:names:tc:SPML:1:0'
xmlns:dsml='urn:oasis:names:tc:DSML:2:0:core' requestID='1769'
result='urn:oasis:names:tc:SPML:1:0#success'>
 <spml:operationalAttributes>
 <dsml:attr name='urn:trulogica:concero:2.0#resourceId'>
 <dsml:value>eis/LDAPv3</dsml:value>
 </dsml:attr>
 <dsml:attr name='urn:trulogica:concero:2.0#elapsedTime'>
 <dsml:value>3826</dsml:value>
 </dsml:attr>
 </spml:operationalAttributes>
</spml:extendedResponse>

Step 4: Run the Tester Tool client using one of the scripts.

Following is an example of sending an Add User Request to the connector:

run ../samplescripts/addUser.xml http://localhost:7001/
ConnectorTester

This sends the contents of the addUser.xml script to the servlet deployed in the local
application server instance. See Tester Tool Scripts on page 87 for a list and description of
each SPML script available for use with the tester client.

Tester Tool Scripts

The servlet is driven by SPML requests. The sample scripts provide a basis for creating (or
generating) your own scripts to test the connector implementation. The following sections
describe the sample scripts and the operations they perform.

Initial Connectivity-Related Scripts

• getConnectionParams.xml
Retrieves the connection parameters for the resource. The properties file (created in step
Step 2: Prepare the properties file with names and values of these connection parameters.
Connector Tester Tool 87

on page 86) must specify the urn\:trulogica\:concero\:2.0#resourceId value set to
the JNDI name. All others are retrieved from the connector. This is useful in the initial
stage if you do not have the connection parameter information.

• getUserAttrDefinitions.xml
Retrieves all user attributes as configured in the schema mapping.

• getEntAttrDefinitions.xml
Retrieves all entitlement attributes.

• doTest.xml
Performs a connectivity test between the connector and the resource, where all the
connection parameters are validated. Typically, if this fails, one or more connection
parameters is not given or is assigned an invalid value.

Provisioning-Related Scripts

• getAllEntitlements.xml
Retrieves all entitlements in the resource. Optionally, you can set the value of the
identifier element with the user ID to get all entitlements of the given user.

• getFilteredEntitlements.xml
Performs a filtered search for entitlements.

• isUserExists.xml
Verifies that a user exists in the resource.

• addUser.xml
Adds a new user.

• addUser-ents.xml
Adds a user with a set of entitlements.

• addUser-mva.xml
Adds a user with one multi-valued attribute.

• modifyUser.xml
Modifies an attribute value of the user.

• modifyUser-attr-del.xml
Modifies a user by deleting an attribute from the user.

• modifyUser-ents-add.xml
Modifies a user by adding an entitlement.

• modifyUser-ents-del.xml
Modifies a user by deleting an entitlement.

• modifyUser-mva-add.xml
Modifies a user by adding a sub-value to a multi-valued attribute.

• modifyUser-mva-del.xml
Modifies a user by deleting a sub-value from a multi-valued attribute.

• modifyUser-mva-replace.xml
Modifies a user by replacing all sub-values of a multi-valued attribute.

• resetPassword.xml
Resets a user’s password.

• expirePassword.xml
Expires or unexpires a user's password.
88 Chapter 5

• disable.xml
Disables a user.

• disableSvcMembership.xml
Removes all entitlements from a user.

• enable.xml
Enables a user.

• enableSvcMembership.xml
Adds a list of entitlements to a user.

• getUser.xml
Retrieves the current attribute values for a user in the resource.

• getUserEntitlements.xml
Retrieves all user entitlements.

• deleteUser.xml
Deletes a user.

Bulk Provisioning Scripts

• batchAdd.xml
Adds a list of users.

• batchModify.xml
Modifies one attribute on a list of users.
Connector Tester Tool 89

90 Chapter 5

Connector Tester Tool 91

92 Chapter 5

Connector Tester Tool 93

94 Chapter 5

6 Installation and Deployment
This chapter describes how to install and deploy your connector once you have built it.

This chapter contains the following sections:

• Installing a Connector On WebLogic

• Configuring a Connector in Select Identity

Installing a Connector On WebLogic

To deploy the connector on the Select Identity server, you must copy the connector files to the
target locations and configure the application server. The following procedures provide
general guidelines for installing a connector on the supported application servers; the details
will depend on how the connector was implemented and the type of application server.

Complete the following steps to install the connector on the WebLogic Server:

1 Create a subdirectory in the Select Identity home directory where the connector’s RAR file
will reside.

2 Copy the RAR file to the connector subdirectory.

3 Create a schema subdirectory in the Select Identity home directory where the connector’s
mapping file(s) will reside.

4 Extract the contents of the JAR file to the schema subdirectory.

5 Ensure that the CLASSPATH environment variable in the WebLogic server startup script
references the schema subdirectory.

6 Modify the mapping file to reflect the attribute names in Select Identity and on the
resource, if necessary.

7 Start the application server if it is not currently running.

8 Log on to the WebLogic Server Console.

9 Navigate to My_domain → Deployments → Connector Modules.

10 Click Deploy a New Connector Module.

11 Locate and select the RAR file from the list. It is stored in the connector subdirectory.

12 Click Target Module.

13 Select the My Server (your server instance) check box.

14 Click Continue. Review your settings.

15 Keep all default settings and click Deploy. The Status of Last Action column should
display Success.
95

If the connector is a two-way connector and uses an agent, install and configure the agent on
the resource with which the connector communicates to provision users. The agent may also
be used to synchronize changes to the identity objects, pushing the changes from the resource
to Select Identity.

Configuring a Connector in Select Identity

After you create a connector, you can configure it for use by Select Identity using the Select
Identity client (interface). The following provides an overview of the procedures you must
complete in order to deploy your connector:

1 After you build and install the connector, you must register it with Select Identity. Do so
on the home page of the Connectors tab by clicking the Deploy New Connector button.
Complete this procedure, referencing your connector files, as described in the
“Connectors” chapter of the HP OpenView Select Identity Administrator Guide.

2 You must deploy the resource that uses the newly created connector. On the home page of
the Resources tab, click the Deploy New Resource button. Complete the steps in this
procedure, referencing the new connector created in step 1, as described in the
“Resources” chapter of the HP OpenView Select Identity Administrator Guide.

3 Create attributes that link Select Identity to the connector. For each mapping in the
connector’s mapping file, create an attribute using the Attributes capability on the Select
Identity client. Refer to the “Attributes” chapter in the HP OpenView Select Identity
Administrator Guide for more information.

4 Create a Service that will use the newly created resource. To do so, click the Deploy New
Service button on the home page of the Services tab. Complete this procedure as described
in “Services” of the HP OpenView Select Identity Administrator Guide. You will reference
your new resource created in step 2 while creating this Service.
96 Chapter 6

Installation and Deployment 97

98 Chapter 6

7 Connector Migration
This chapter provides detailed information on migrating Select Identity 3.3.x connectors to
Select Identity 4.0.

This chapter contains the following:

• Reasons to Migrate

• Interface Changes

• Steps to Migrate Connectors

Reasons to Migrate

The Connector API has been enhanced with Select Identity 4.0 with the additional support of
the following features. You need to update your Select Identity 3.3.x-based connector to take
advantage of the new features.

However, the Select Identity 3.3.x connector should be able to run without any changes with
Select Identity 4.0, using the new connector.jar file in the CLASSPATH.

• Multi-value attributes

Each attribute can have multiple values in Select Identity 4.0. The value passed to the
Connector by Select Identity is in an instance of TAAttrValueBean which holds the
complete value of the attribute. Refer to the Javadoc of this class to explain the details on
how to get the value of the attribute, specifically for add and modify operations.

• Multiple entitlement types

Depending on resource support, connectors can now support multiple types of
entitlements such as groups, roles, ACLs and so on.

There is a type field in EntitlementModel which contains the entitlement type.

• Addition/deletion/modification/emptying of attributes

Modify user might mean not only replacing the attribute value, but also the addition of a
new attribute, deletion of an existing attribute, cleaning up all the values of the attribute,
or modifying the attribute. This might further mean adding/deleting sub-values. All this
can be done with Select Identity 4.0 connectors.

• Enhanced User Modify

The user modify operation called by Select Identity now contains only the changed
attributes, as compared to earlier versions where all attributes are passed and the
connector does not know which ones are changed.

This allows the connector to update only the changed attributes on the resource.

• Bulk association/dissociation of entitlements
99

The Select Identity 3.3.x interface supports assignment and removal of entitlements one
at a time. For example, if you are adding a user with ten entitlements in Select Identity
3.3.x, there will be one call to add the user on the connector, followed by ten calls to assign
each entitlement to the user.

With the Select Identity 4.0 interface, all the entitlements are given in a single list
instance, it is up to the connector to carry out the bulk assignment or call multiple times
on the resource.

• Enhanced search criteria for entitlement retrieval

Multiple search criteria can be given to retrieve entitlements from the resource.

Interface Changes

This section lists all the changes in the Select Identity 4.0 connector API. Follow this section
closely to understand what needs to be done to migrate your Select Identity 3.3.x connector.

This section contains the following subsections:

• Connector API Changes

• Attribute Operations

• Schema Changes

Connector API Changes

The tables in the following sections show the changes on the Select Identity Connector API:

• Classes and Interfaces

• Connector Interface
100 Chapter 7

Classes and Interfaces

Select Identity 3.3
framework

Select Identity 4.0
framework Comments

TAConnector SIConnector This is the main
connector interface.
That is the interface
that Select Identity
uses to talk to every
connector. The name
of this interface has
changed along with
cleanup of some of the
unused methods.

AbstractTAConnector AbstractSIConnector Connector
implementation can
alternatively extend
this abstract class,
which provides some
dummy
implementation for
the rarely used
methods. Removed
some un-used
methods.

TAConnectorFactory SIConnectorFactory This is the factory for
the new connector
implementation.

UserModel SIUserModel Main Java interface
that holds the user
attribute data. This is
what is passed from
Select Identity to the
connector. There are
many changes in this
Java interface to
support more
granular support for
attribute level
operations.

JCAUserModel SIJCAUserModel Implementation class
for SIUserModel Java
interface.
Connector Migration 101

Connector Interface

This section details the connector interface. The following table shows the main changes to
the SIConnector interface:

GroupModel EntitlementModel Java interface that
holds the user
entitlement data.
This has been
enhanced to hold
different types of
entitlements such as
groups, roles,
privileges, ACLs,
responsibilities, or
any generic
entitlement type.

JCAGroupModel JCAEntitlementModel Implementation class
for EntitlementModel
Java interface.

RoleModel Removed Not used any longer.

EntitlementModel Removed Not used any longer.

ChangeLogModel SIChangeLogModel This is the Java class
to report changes that
occurred in the
resource when Select
Identity polls the
connector. This class
has been enhanced to
use a cursor class.
This cursor replaces
the interface used
earlier, which is not
sufficient in most
cases.

Absent TAConnectorRequest
Intf,
TAConnectorResponse
Intf,
TAConnectorRequest,
TAConnectorResponse

Introducing a generic
interface to address
all future API
changes.

Select Identity 3.3
framework

Select Identity 4.0
framework Comments

Select Identity 3.3
framework

Select Identity 4.0
framework Comments

All provisioning methods
that have UserModel
argument

Changed to use
SIUserModel
102 Chapter 7

Select Identity 3.3
framework

Select Identity 4.0
framework Comments

Methods that have
GroupModel argument

Changed to have
EntitlementModel

All methods that get
entitlements from the
resource, link and
unlink methods to
associate and
dissociate
entitlements to/from
users must now use
the
EntitlementModel
interface — actually
the implementation
class
JCAEntitlementMode
l) instead of
GroupModel (or
JCAGroupModel
class).

link(UserModel,
GroupModel)unlink(User
Model, GroupModel)

link(SIUserModel,
List)unlink(SIUserModel,
List)

All single link/unlink
operations must now
change to link/unlink
multiple entitlements
that are passed in the
Java List instance.
This helps limit the
number of times
Select Identity calls
the entitlements. It is
up to the connector
and resource to
support bulk link/
unlink operations.

getGroups() and
getGroups(TAFilter)

getEntitlements(TAQu
ery)

Earlier use of
TAFilter had the
limitation of just one
filter. TAQuery is a
combination of a
many TAFilter
instances. This API
supports multiple
search criteria
provided by Select
Identity.

getUsers() getUsers(TAQuery) This method is
mainly used for User
Import. This now
supports filtered
retrieval of users.
Connector Migration 103

getUserAttributes() getUserAttributes() Name of API has no
change, but the
implementation now
must return all
different entitlement
types that are
supported by the
connector and
resource.
Example: GROUP,
ROLE, ACL, and so
on.
Default is
ENTITLEMENTS (if
no entitlement types
are returned).

String attribute value TAAttrValueBean and
TAAttrMemberValue
Bean

Enhanced way of
more granular control
over attribute values
and operations on
these values.
Example: add/delete/
modify attributes
sent as part of a
modify user.
Modify attribute
value might further
be add/delete
sub-values.

void API return TAStatus Return status of API
methods.

getChangeLog(int) getChangeLog(ChangeL
ogCursor)

Cursor for iterative
retrieval of records.
Earlier it was just a
single integer which
might not be
sufficient in all cases.

Select Identity 3.3
framework

Select Identity 4.0
framework Comments
104 Chapter 7

Attribute Operations

Starting with Select Identity 4.0 the following operations are supported with an update user
operation. This information is carried in the TAAttrValueBean instance.

• Replace attribute value

This was the only operation supported in earlier operations, to replace the attribute value
with a new value.

• Add attribute

Add a new attribute to the user in resource, with a possible value.

• Modify attribute value

For multi-valued attributes a Modify operation is supported which might mean:

— Add one or more sub-values

— Remove one or more sub-values

• Delete attribute

Remove the attribute from user in the resource.

• No change

This means that Select Identity has not changed this attribute, but is being given to the
connector since it is marked as a required attribute in the mapping. Do not modify the
user attribute in the resource. However, you may use the value given — for example, to
address the user in the resource.

Schema Changes

The XML schema mapping file has added more properties for each mapping. The tables in the
following sections explain the changes to the XML schema mapping file:

Absent loadResourceSchema() New method
introduced for
connectors to load
schema from the
resource. Can be used
by attribute mapper.

Absent process(TAConnectorR
equestIntf)

Added a new method
to support any/all
future API change
requirements.
Generic enough to
hold any data agreed
upon by the caller and
the connector
implementation.

Select Identity 3.3
framework

Select Identity 4.0
framework Comments
Connector Migration 105

• Entity Definition

• Relationship Definition

• XML Mapping File Changes

Entity Definition

This defines how entities (users and entitlements) are mapped onto the resource. The
following table shows the change in the objectClassDefinition of the XML mapping file.

Relationship Definition

This defines the entity relationships. The following table shows the change in the
relationshipDefinition of the XML mapping file..

XML Mapping File Changes

This defines each attribute mapping from the Select Identity attribute onto the resource/
connector attribute. The following table shows the changes in the
attributeDefinitionReference in the new interface.

s

Select Identity 3.3
framework

Select Identity 4.0
framework Comments

name="User" "Name="SIUser" To identify the user
model co-relating to
SIUserModel.

Select Identity 3.3
framework

Select Identity 4.0
framework Comments

concero:entity="User" "concero:entity=
"SIUser"

To identify the user
model co-relating to
SIUserModel.

The old mapping file will still work without any changes with the new
interface. Change the mapping file only to take advantage of the new features
as shown in the following table.

Select Identity 3.3
framework

Select Identity 4.0
framework Comments

name name no change

required required no change

concero:tafield concero:tafield no change

concero:resfield concero:resfield no change

concero:init concero:init no change
106 Chapter 7

Steps to Migrate Connectors

Following are the main steps to migrate existing connectors to the new interface. See details
in each step:

• Step 1: Change the Connector Implementation

• Step 2: Change the XML Mapping File

• Step 3: Remove Deprecated Methods

• Step 4: Use Commons Logging

• Step 5: Package the Connector

• Step 6: Use the Connector Tester Tool

Step 1: Change the Connector Implementation

Change the Connector implementation so that it now implements the SIConnector interface
and all the required methods in it.

Change all occurrences of UserModel to SIUserModel and all occurrences of GroupModel to
EntitlementModel.

Implement the SIConnector

Change your current implementation of TAConnector to SIConnector interface. Follow the
details in the Java doc of the SIConnector to implement all the required interface methods. It
might be better to extend the abstract class AbstractSIConnector, which has default
implementations for most of the rarely used methods so that you could focus only on the
mainly required methods.

Following is a detailed explanation of the changes to be done in each of the most commonly
implemented connector methods:

• getUserAttributes()

absent concero:isPassword Added this to identify
the password
attribute mapping.

absent concero:isMulti To specify if the
resource attribute can
take a multi-valued
value.

absent concero:isSensitive To identify mappings
of sensitive
attributes. May be
used to avoid logging
these values.

Select Identity 3.3
framework

Select Identity 4.0
framework Comments
Connector Migration 107

This method should return all the attributes supported by the connector/resource. In
addition to what the earlier version of this method does, you need to return all the types of
entitlements supported as follows:

 ArrayList attrList = new ArrayList();

// Add all attribute TAConnectorParamBean instances first
...
...

// add all entitlement types here
 TAConnectorParamBean entitlementBean = new TAConnectorParamBean(
"ENTITLEMENTS",

TAConnectorParamBean.ATTR_TYPE_ENTITLEMENT);
 entitlementBean.setMaxLength(255);
 entitlementBean.setMultiValued(true);
 entitlementBean.setRequired(true);
 attrList.add(entitlementBean);

 ret = (TAConnectorParamBean[]) attrList.toArray(new TAConnectorParamBean[0
]);
 return ret;

The above example shows the return of only the default entitlement type. This could very
well return all types of entitlements supported by the connector and the resource.
Following is another example returning 3 types:

 ArrayList attrList = new ArrayList();

// Add all attribute TAConnectorParamBean instances first
...
...

// add all entitlement types here
 TAConnectorParamBean entitlementBean = new TAConnectorParamBean("GROUPS",

TAConnectorParamBean.ATTR_TYPE_ENTITLEMENT);
 entitlementBean.setMaxLength(255);
 entitlementBean.setMultiValued(true);
 entitlementBean.setRequired(true);
 attrList.add(entitlementBean);

entitlementBean = new TAConnectorParamBean("ROLES",

TAConnectorParamBean.ATTR_TYPE_ENTITLEMENT);
 entitlementBean.setMaxLength(255);
 entitlementBean.setMultiValued(true);
 entitlementBean.setRequired(true);
 attrList.add(entitlementBean);

entitlementBean = new TAConnectorParamBean("ACLs",

TAConnectorParamBean.ATTR_TYPE_ENTITLEMENT);
 entitlementBean.setMaxLength(255);
 entitlementBean.setMultiValued(true);
 entitlementBean.setRequired(true);
 attrList.add(entitlementBean);
108 Chapter 7

 ret = (TAConnectorParamBean[]) attrList.toArray(new TAConnectorParamBean[0
]);
 return ret;

Note that the same type is returned to the connector in the getEntitlements(), link() and
unlink() methods in the TAFilter instance in TAQuery. These methods are explained
below.

• getEntitlementAttributes()

Earlier method: This was getGroupAttributes().

This must now be changed to getEntitlementAttributes()

• add(SIUserModel)

New signature of this method is:

public TAStatus add(SIUserModel userModel) throws TAConnectorException

userModel has been changed to SIUserModel. The value of each attribute obtained is no
longer a Java String as in the earlier userModel. It is now an instance of a bean class
TAAttrValueBean. Change your code to now work with this bean instance.

Following are some of the important methods in SIUserModel:

— getUserId()

This returns the Select Identity user id value. That means this is the key identifying
value of the user in Select Identity

— getResUserId()

This returns the user id value in the resource. After an initial add() operation is
successful, the connector returns the key value of the user in the resource by calling
the method setResUserId(). This key value can be brought back for use in other
methods, by calling getResUserId(). This is useful in cases where the key value of the
user is different in Select Identity and the resource. Even if the key value is the same
in Select Identity and the resource, you must call setResUserId() with the key value at
the end of a successful add() operation.

— get(String)

The signature of this method shows the return value as Object, but the method
actually now returns an instance of the TAAttrValueBean class. This bean represents
the value of the attribute passed to the connector by Select Identity. See the Javadoc of
this class for details on how to extract the attribute value.

— getStrValue()

For connectors that support only single valued attributes, there is a new method in
SIUserModel to return the string value of the attribute passed in by Select Identity.
This is a convenience method and if the connector implementation knows that the
value is single valued, it can directly use this method instead of SIUserModel.get(),
which returns TAAttrValueBean and extracts the single string value out of it.

— getAttrNames()

This returns the names of attributes present in userModel. In Select Identity 3.3.x, it
was not possible to get this list, and the connector had to iterate through all the
mappings in the XML mapping file. It is possible that Select Identity is currently
interested in only a few of the attributes that are mapped in the mapping file.
Connector Migration 109

Following is a brief explanation of the value contained in TAAttrValuBean for the
passed in SIUserModel add() operation:

abbreviation:
 TAAttrValueBean=av
 TAAttrMemberValueBean=amv

 default operation=replace

Let's say we are adding a user with the following attributes:

a1 - a single value attribute
a2 - a multi-valued attribute
a3 - another single-valued attribute

SIUserModel looks like this:
SIUserModel {
a1 - av=[---, List=[amv={---, a1sv1}]], // single-valued
a2 - av=[---, List=[amv={---, a2mv1}, amv={---, a2mv2}]],

// two values
a3 - av=[---, List=[amv={---, a3sv1}]], // also single-valued

 ...
 }

Use the above methods to change your add() implementation. The above explained
methods are useful in other connector methods as well.

You must set the key value of the user in the resource upon a successful add operation
by calling the userModel.setResUserId(String) method.

Finally return the result of the add() operation in the TAStatus instance.

• update(SIUserModel)

Use the SIUserModel.getResUserId() to get the key value of the user so that it can be
addressed in the resource.

The major change in this method is a more granular support for user modifications. A
user modify may generally mean replacing an existing user's attributes with a new set of
values. With the Select Identity 4.0 interface, it is now possible to go a step deeper where
you could add attributes, delete attributes, replace attribute values, clear attribute values,
and add/delete sub-values in a multi-valued attribute.

All this is possible now, but it depends on resource support. For example, it is possible to
think of such a level of granularity with LDAP or DB provisioning. In some cases, it is
simply not possible to do this and the resource or resource API only supports replace
attribute value.

The value of the attribute value contained in TAAttrValueBean has details on the
attribute level operations. Following is a brief description with an example:

abbreviation:
 TAAttrValueBean=av
 TAAttrMemberValueBean=amv
 --- = not to be considered

user modify (example 1):
 Let's say a1 changed its value to a new value
 a2 has a new sub-value
 a3 has not changed

You must have called SIUserModel.setResUserId() in the
add(SIUserModel) method.
110 Chapter 7

 a4 a new attribute added
 a5 got deleted
SIUserModel looks like this:

 SIUserModel {
 a1 - av=[replace, List=[{---, a1sv2}]], // a1svc2 is the new value

 a2 - av=[modify, List=[amv={add, a2mv3}]], // add sub-value a2mv3 to
the two sub-values

 a3 - av=[nochange, List=[amv={---, a3sv1}]], // only given for
required fields
 // non-required fields are not given with nochange
operation

 a4 - av=[add, List=[amv={---, a4sv1}]] // new attribute added
 a5 - av=[delete, List=null] // attribute deleted in Select Identity
 }

user modify (example 2):
 Let's say a1 attribute is deleted
 a2 value completely changed
 a3 is nullified
 a4 is emptied
 SIUserModel looks like this:

 SIUserModel {
 a1 - av=[delete, List=null],
 a2 - av=[replace, List=[amv={---, a2sv4}], // value changed to a
single sub-value
 a3 - av=[replace, List=[amv=null]]
 a4 - av=[replace, List=[amv={replace, ""}]] // use "" as a function
to empty the value
 }

Use the above examples to convert your update() method to do the required user level as
well as attribute level operations.

• isUserExists(SIUserModel)

• Only the changed attributes are now passed to the connector.
The earlier interface used to pass all attribute values and the
connector had to replace all given values.

• All attributes marked as required attributes when returning
the attribute list (in getUserAttributes()) method, are passed in
with all operations. The operation in TAAttrValueBean
instance for these attributes is marked with NOCHANGE, so
that you know this need not be updated on the resource.
Connector Migration 111

This is a new method introduced in Select Identity 4.0 and is called by Select Identity to
check if a user exists in the resource. Earlier implementation of get(UserModel) must be
changed to this method, with a small change as shown in the following note.

• get(SIUserModel)

This method is not used by Select Identity to check for user existence any longer. This
changed to isUserExists(SIUserModel) as explained above.

get(SIUserModel) is used in User Import to get the details of a user in a resource. It must
throw ObjectNotFoundException if the user does not exist.

• remove(SIUserModel)

Use SIUserModel.getResUserId() to perform the delete user operation in resource. If the
user is not present, this method must throw ObjectNotFoundException.

• getEntitlements(TAQuery)

This method was called getGroups(). This method should return all entitlements in the
resource. Note that there is a new argument TAQuery, which might include a TAFilter,
which gives the type of entitlement that Select Identity is looking for.

If TAQuery and its TAFilter list is not empty, you must return only those types of
entitlements.

TAQuery is a grouping of TAFilter instances. Following are some of the main methods in
this class:

— getTaFilterList()

This returns a Java List of TAFilter instances.

— getMaxResults()

This contains the maximum number of values to be returned.

— isFilterListAnded()

This is a boolean indicating whether the TAFilter instances need to be ANDed or
ORed. If true, this means that all TAFilter instances must match, and if false this
means that any of the TAFilter instances can match.

TAFilter is a filter criteria to match the results of an operation. Following are some of the
main methods in this class:

— getName()

As noted earlier all the required attributes are passed in
SIUserModel. If you need to compute the key you may use these
attributes.

This method returns a Boolean and should not throw
ObjectNotFoundException if the user does not exist in the resource.
Instead, it should return false.

All attributes marked as required when returning the attribute list
(in the getUserAttributes()) method, are passed in with all
operations.

This method may also be used to verify entitlements that were
returned earlier. In this case, the TAFilter instances in TAQuery
contain values and operations to match the specific entitlement.
This is a required part of the implementation of this method, to
return only the entitlements asked for in TAQuery.
112 Chapter 7

This returns the name of the TAFilter. In the context of entitlements this means the
type of entitlement. If the connector implements only one type of entitlement, then
this name can be ignored. If it implements multiple types, then this contains one of
the types returned in the getUserAttributes() method.

— getOperation()

This returns the operation or criteria for the filter. The value returned is one of the
following:

TAFilter.EQUALITY

TAFilter.BEGINS_WITH

TAFilter.ENDS_WITH

TAFilter.CONTAINS

TAFilter.GTE

TAFilter.LTE

TAFilter.NOT_EQUAL

TAFilter.NOT_CONTAINS

• link(SIUserModel, List)

This method was called link(UserModel, GroupModel). This new method now allows bulk
link operation from Select Identity. It is up to the connector to do it one-by-one or in a
group.

Use SIUserModel.getResUserId() to get the resource key value of the user.

The List contains instances of JCAEntitlementModel class. Following are some of the
useful methods in this class:

— getId()

This method was called GroupModel.getGroupId(), and returns the id of the
entitlement. Now change all places where you called getGroupId() to getId().

— getType()

This method is useful in cases where the connector/resource supports multiple
entitlement types. This type returns the type of entitlement being linked to the user.

• unlink(SIUserModel, List)

This method was called unlink(UserModel, GroupModel). This new method now allows
the bulk unlink operation from Select Identity. It is up to the connector to do it one-by-one
or in a group.

Use SIUserModel.getResUserId() to get the resource key value of the user.

The List contains instances of the JCAEntitlementModel class. Following are some of the
useful methods in this class:

— getId()

This method was called GroupModel.getGroupId(), and returns the id of the
entitlement. Now, change all places where you called getGroupId() to getId().

— getType()

This is one of the types that you returned in the
getUserAttributes() method.
Connector Migration 113

This method is useful in cases where the connector/resource supports multiple
entitlement types. This type returns the type of entitlement being linked to the user.

• setStatus(SIUserModel, int)

Earlier method: setStatus(UserModel, int)

Use SIUserModel.getResUserId() to get the resource key value of the user.

• resetPassword(SIUserModel)

Earlier method: resetPassword(UserModel)

Use the method SIUserModel.getPassword() to get the new value of the password to
replace with on the resource.

• expirePassword(SIUserModel, boolean)

Earlier method: expirePassword(UserModel, boolean)

Use SIUserModel.getResUserId() to get the resource key value of the user.

• getChangeLog(ChangeLogCursor)

Earlier method: getChangeLog(int)

This method should check the resource for all changes that occurred after the previous
call to this method and must prepare an instance of SIChangeLogModel with the details
of these changes.

The SIChangeLogModel method represents the changes that occurred in the resource, in
a normalized format. Any resource-specific API return values or format returned, must be
parsed and converted into an instance of this class. This class contains the following main
methods:

— setCursor(ChangeLogCursor)

The new value of the cursor must be set in SIChangeLogModel. A cursor identifies a
checkpoint in the resource change log, so that a next call to getChangeLog() will read
the changes past this checkpoint.

With Select Identity 3.3.x, an integer number was used as the checkpoint, which may
not be sufficient. With Select Identity 4.0, you can use this cursor which has an
integer along with a Java Serializable object, which can hold more information about
this checkpoint.

— addCLEntry(ChangeLogEntry)

One instance of SIChangeLogModel can contain multiple instances of
ChangeLogEntry instances which represents each change. For example, user added,
user modified, user deleted are all different changes that can be reported.

ChangeLogEntry contains the following useful methods:

– setUserId(String)

This is used to set the id of the user in the resource.

– setChangeType(int)

This is to set the type of change that occurred in a resource. Following are the
possible types:

ChangeLogEntry.USER_ADDED

This is one of the types that you returned in getUserAttributes()
method.
114 Chapter 7

ChangeLogEntry.USER_MODIFIED

ChangeLogEntry.USER_DELETED

ChangeLogEntry.USER_ENABLED

ChangeLogEntry.USER_DISABLED

ChangeLogEntry.USER_RESET_PASSWD

– addAttrEntry(ChangeLogAttribute)

This is used to add the attribute value in the change. Select Identity contains the
ID and value of the attribute. The ID should represent the Select Identity
attribute ID and not the physical resource attribute. If these two are different,
re-mapping of the name must be done.

ConnectorFactory Implementation

This is a factory of SIConnector instances which are returned by calling the method:
getConnection(TAConnectorParamValueBean).

The factory must implement SIConnectorFactory. Earlier implementation used to implement
ConnectorFactory. This must be changed.

Step 2: Change the XML Mapping File

If you are using XML Mapping file to map Select Identity attributes onto resource attributes,
you must change the following (see each section for details):

• ObjectClass Definition

• Attribute Mapping Definitions

• Relationship Definition

ObjectClass Definition

Change the name of the user object class to SIUser. Earlier this was "User". Following is an
example:

<objectClassDefinition name="SIUser" description="LDAP User">
<properties>

<!--
 "value" can be one of: true/false/bypass

true: the operation is supported
false: operation is not supported and results in an exception

being thrown
bypass: not supported, but exception is suppressed
 (currently on CREATE, UPDATE, DELETE)

-->
<attr name="CREATE">

<value>true</value>
</attr>
<attr name="READ">

<value>true</value>
</attr>
Connector Migration 115

<attr name="UPDATE">
<value>true</value>

</attr>
<attr name="DELETE">

<value>true</value>
</attr>
<attr name="ENABLE">

<value>true</value>
</attr>
<attr name="DISABLE">

<value>true</value>
</attr>
<attr name="RESET_PASSWORD">

<value>true</value>
</attr>
<attr name="EXPIRE_PASSWORD">

<value>false</value>
</attr>
<attr name="CHANGE_PASSWORD">

<value>true</value>
</attr>

</properties>
...
...

Attribute Mapping Definitions

You can now mark an attribute as multi-valued, password, sensitive and so on. This is
optional, in the sense that the same mapping file that was used with the Select Identity 3.3.x
connector can be used with the Select Identity 4.0 interface.

The following is an example taken from iPlanet.xml:

<memberAttributes>
<!-- For iPlanet -->
<attributeDefinitionReference name="UserName" required="true"

concero:tafield="[UserName]" concero:resfield="uid" concero:isKey="true"
concero:init="true"/>

<attributeDefinitionReference name="Password" required="false"
concero:tafield="[Password]" concero:resfield="userpassword" concero:init="true"
concero:isPassword="true"/>

<attributeDefinitionReference name="Email" required="false"
concero:tafield="[Email]" concero:resfield="mail" concero:init="true"
concero:isMulti="true"/>

<attributeDefinitionReference name="FirstName" required="false"
concero:tafield="[FirstName]" concero:resfield="givenname" concero:init="true"
concero:isMulti="true"/>

<attributeDefinitionReference name="LastName" required="false"
concero:tafield="[LastName]" concero:resfield="sn" concero:init="true"
concero:isMulti="true"/>

<attributeDefinitionReference name="Common Name" required="true"
concero:tafield="[FirstName] [LastName]" concero:resfield="cn" concero:init="true"
concero:isMulti="true"/>
116 Chapter 7

<attributeDefinitionReference name="employeenumber" required="false"
concero:tafield="[Employee ID]" concero:resfield="employeenumber" concero:init="true"/
>

<attributeDefinitionReference name="telephoneNumber" required="false"
concero:tafield="[Business Phone]" concero:resfield="telephoneNumber"
concero:init="true" concero:isMulti="true"/>

...

...

</memberAttributes>

Relationship Definition

Change the user entity name in the relationship definition to use "SIUser". Following is an
example:

<concero:relationshipDefinition>
<properties>
<attr name="CREATE">
<value>true</value>
</attr>
<attr name="NAVIGATE">
<value>true</value>
</attr>
<attr name="DELETE">
<value>true</value>
</attr>
</properties>
<concero:party concero:entity="SIUser" concero:cardinality="ZERO_OR_MORE"

concero:start="false" />
<concero:party entity="Group" concero:cardinality="ZERO_OR_MORE"

concero:start="true" concero:linkfield="uniqueMember"/>
</concero:relationshipDefinition>

Step 3: Remove Deprecated Methods

Many of the unused methods in the Select Identity 3.3.x interface are now deprecated or
removed. Compile your code with the Java compile option depreciation="true", so that all
usages of deprecated methods are displayed. Fix all these in your code, as they are no longer
supported by Select Identity 4.0.

Step 4: Use Commons Logging

Earlier connectors used the Select Identity-provided utils logging. This is comparatively
slower and it is highly recommended to use the commons logging API. Following is sample
code to show the usage:

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

…

public class LDAPConnector extends AbstractSIConnector {
Connector Migration 117

 private static final String msClsName = LDAPConnector.class.getName();
 private static final Log msLogger = LogFactory.getLog(msClsName);

…

 public TAStatus add(SIUserModel userModel) throws TAConnectorException {
 if (msLogger.isDebugEnabled()) {
 msLogger.debug("ENTER:\r\n"+userModel);
 }

…
…

 if (msLogger.isInfoEnabled()) msLogger.info("Resource Key Value="+keyValue);
 um.setResUserId(keyValue);

Step 5: Package the Connector

Make sure you package the connector as one single RAR and it includes all the required
library Jar files that are used within the connector.

All schema files (XML mapping file or any others) are to be packaged in a single JAR file.

Step 6: Use the Connector Tester Tool

With Select Identity 4.0, a connector tester tool is packaged along with sample scripts. Use
this tool to perform complete functionality testing of the connector. This saves time, and once
this is done, the connector can be quickly integrated with Select Identity.

This is not any different from the previous version, but just a recommended
style.
118 Chapter 7

Connector Migration 119

120 Chapter 7

Connector Migration 121

122 Chapter 7

Connector Migration 123

124 Chapter 7

Connector Migration 125

126 Chapter 7

8 The Connector Template
This chapter contains the following sections:

• Template Files

• Connector Template Code

Template Files

The connector template comes with the following files. The following table briefly explains the
main files included in this template:

Connector Template Code

A sample called the Dummy Connector is provided in the Connector SDK/Template
directory on the HP OpenView Select Identity product CD.

File Name Description

ra.xml Deployment descriptor for the
Resource Adapter (RA)
representing the connector.

weblogic-ra.xml WebLogic-specific additional
deployment descriptor for the RA.

DummyConnectorMapping.xml XML Schema mapping file that
maps Select Identity attribute
names onto resource attribute
names.

DummyConnector.java Main connector implementation.

DummyParamResources.properties Connection parameter definitions.

Build.xml Main build file for Apache ANT
tool.

build_rar.xml RAR build file for Apache ANT tool.

build.properties Properties file for building the
connector, which includes the
details of the name and package
name of the connector being built.
127

This section provides snapshots of the source code that implements the Dummy Connector,
the build files used to build the connector, and the schema JAR and RAR files. Use this
example to help you build your own connector.

The following snapshot shows the hierarchy of the Dummy Connector source:

Figure 12 Hierarchy of the Dummy Connector Source

Following is an explanation of the folders:

• The connector-related JAR files are in the connector_lib folder and the external JAR
files are in external_lib folder.

• ra.xml and weblogic-ra.xml are in the META-INF folder.

• Source code and the connection parameters properties file are in the src/com/hp/ovsi/
connector/dummy folder.

• The schema mapping file called DummyConnectorMapping.xml is in src/com/
trulogica/truaccess/connector/schema/spml (the file must reside in this location
when it is installed).

• All build files are in the main folder:

— build.properties contains all properties needed to build the connector including
the connector-specific properties such as the name, package name, RAR name, and so
on.

— build.xml is the overall build file that invokes build_rar.xml.

— build_rar.xml compiles and builds the connector RAR and the schema JAR
containing the mapping XML.

Following are the contents of the RAR file that is built from the Dummy Connector source:

Figure 13 RAR File Contents Built From the Dummy Connector Source
128 Chapter 8

Following are the contents of the schema JAR file, which contains only one mapping file called
DummyConnectorMapping.xml:

Figure 14 Schema JAR File Contents
129

130 Chapter 8

131

132 Chapter 8

Index
A
agent-based

forward provisioning, 61
reverse provisioning, 64

Agent communication, security, and logging, 19

agent-less
forward provisioning, 55
reverse provisioning, 62

API
architecture, 12
interfaces and classes, 14

architecture
OVSI API, 12
OVSI connector, 12

B
building a connector

for forward provisioning, 55
for reverse provisioning, 62

C
coding guidelines, 72

computing changes to be made example, 75
key value computation, 73
key value return, 73
loading existing user from resource example, 75
matching managed connections code example, 79
schema reloading, 81
user modification, 74

connectors
API interfaces and classes, 14
architecture of OVSI connector, 12
deploying, 96
installing, 95
introduction, 11
mapping file, 70
types, 11

connector SDK, 35
connector template, 39
connector tester tool, 38
simplified connector interface, 37
XML schema handling, 37

connector template
code, 127
files, 127

D
deploying a connector, 96

F
forward provisioning

agent-based, 61
agent-less, 55
building a connector, 55

I
identity objects, schema mapping, and provisioning,

20

implementing
getChangeLog(ChangeLogCursor), 62
OVSI connector, 43

installing
connector on WebLogic, 95
Tester Tool, 84

K
key value computation code example, 73

key value return code example, 73

L
LDAP connector

mapping files, 66

M
mapping

creating a mapping file, 70
OVSI attributes to resource schema, 66

mapping file
LDAP connector, 66
overview, 70
simple example, 71
 133

migration, 99
attribute operations, 105
connector API changes, 100
interface changes, 100
reasons, 99
schema changes, 105
schema changes,entity definition, 106
schema changes,relationship definition, 106
schema changes,XML mapping changes, 106
steps to migrate connectors, 107

N
new features in 4.0, 17

generic JCA interface implementation, 38

O
OVSI API

architecture, 12
interfaces and classes, 14

OVSI connector
architecture, 12

P
platform support, 19

R
reverse provisioning

agent-based, 64
agent-less, 62
building a connector, 62

S
schema reloading code example, 81

T
Tester Tool

files, 84
installing, 84
overview, 83
testing the connector, 85

Tester Tool scripts, 87
bulk provisioning, 89
initial connectivity-related, 87
provisioning-related, 88

types of connectors, 11

U
user modification code examples, 74

W
WebLogic

installing a connector, 95

X
XML schema handling, 37
134

	Connector Developer Guide
	1 Select Identity Connectors
	Connector Types
	Select Identity API Architecture
	Select Identity Connector Architecture
	Select Identity Connector API Interfaces and Classes
	New Features in the Connector Interface
	Select Identity Web Services

	2 Functional Requirements and Development Phases
	Platform Support
	Agent Communication, Security, and Logging
	Identity Objects and Schema Mapping
	Supporting and Mapping Identity Objects

	Provisioning, Detecting Changes, and Post-provisioning
	User/Entitlements Discovery
	User Provisioning
	Entitlement Provisioning
	Change Detection
	Post Provisioning

	Internationalization Compliance
	Performance and Scalability
	Development Phases
	Requirements Phase
	Design Phase
	Implementation
	Integration
	Packaging
	Documentation

	3 Connector SDK
	Simplified Connector Interface
	XML Schema Handling
	Generic JCA Interface and Connector Implementation
	Connector Tester Tool
	Connector Template

	4 Implementing a Select Identity Connector
	Development Requirements
	Steps to Implement a Connector for Select Identity
	Step 1: Start with the Connector Template
	Step 2: Gather Connector Details
	Resource Details
	Resource Schema Details
	Connector Code-Related Details

	Step 3: Working with the Connector Template
	1. Prepare the Connector Template Files
	2. Check the Library JAR Files
	3. Implement the Connector

	Sample SPML Requests for Reconciliation
	Authoritative Reconciliation SPML Requests
	Add User
	Non-Authoritative Reconciliation SPML Requests
	Add User Entitlements
	Delete Service Membership
	Change User Entitlements

	Building a Connector for Forward Provisioning
	Agent-less Forward Provisioning
	Agent-based Forward Provisioning

	Building a Connector for Reverse Provisioning
	Agentless Reverse Provisioning
	Implementing getChangeLog(ChangeLogCursor)

	Agent-based Reverse Provisioning

	Mapping Select Identity Attributes to the Resource Schema
	General Attribute Information
	Creating a Mapping File

	Some Coding Guidelines
	Key Value Return
	Key Value Computation
	User Modification
	Loading Existing User From Resource
	Computing Changes to Be Made

	Matching Managed Connections
	Schema Reloading

	5 Connector Tester Tool
	Installing the Tester Tool
	Testing the Connector
	Step 1: Get the connection parameters of your connector.
	Step 2: Prepare the properties file with names and values of these connection parameters.
	Step 3: Test the connection to the resource.
	Step 4: Run the Tester Tool client using one of the scripts.

	Tester Tool Scripts
	Initial Connectivity-Related Scripts
	Provisioning-Related Scripts
	Bulk Provisioning Scripts

	6 Installation and Deployment
	Installing a Connector On WebLogic
	Configuring a Connector in Select Identity

	7 Connector Migration
	Reasons to Migrate
	Interface Changes
	Connector API Changes
	Classes and Interfaces
	Connector Interface

	Attribute Operations
	Schema Changes
	Entity Definition
	Relationship Definition
	XML Mapping File Changes

	Steps to Migrate Connectors
	Step 1: Change the Connector Implementation
	Implement the SIConnector
	ConnectorFactory Implementation

	Step 2: Change the XML Mapping File
	ObjectClass Definition
	Attribute Mapping Definitions
	Relationship Definition

	Step 3: Remove Deprecated Methods
	Step 4: Use Commons Logging
	Step 5: Package the Connector
	Step 6: Use the Connector Tester Tool

	8 The Connector Template
	Template Files
	Connector Template Code

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue true
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /Futura-Bold
 /Futura-Book
 /Futura-BookItalic
 /Futura-Heavy
 /Futura-Light
 /Futura-Medium
 /Futura-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /Symbol
 /SymbolMT
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /Times-Roman
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfDingbats
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

