

Mercury QuickTest Professional
.NET Add-in

 Extensibility Developer’s Guide
Version 9.1

Document Release Date: August 1, 2006

Mercury QuickTest Professional .NET Add-in Extensibility Developer’s Guide, Version 9.1

This manual, and the accompanying software and other documentation, is protected by U.S. and
international copyright laws, and may be used only in accordance with the accompanying license
agreement. Features of the software, and of other products and services of Mercury Interactive
Corporation, may be covered by one or more of the following patents: United States: 5,511,185;
5,657,438; 5,701,139; 5,870,559; 5,958,008; 5,974,572; 6,137,782; 6,138,157; 6,144,962; 6,205,122;
6,237,006; 6,341,310; 6,360,332, 6,449,739; 6,470,383; 6,477,483; 6,549,944; 6,560,564; 6,564,342;
6,587,969; 6,631,408; 6,631,411; 6,633,912; 6,694,288; 6,738,813; 6,738,933; 6,754,701; 6,792,460
and 6,810,494. Australia: 763468 and 762554. Other patents pending. All rights reserved.

Mercury, Mercury Interactive, the Mercury logo, the Mercury Interactive logo, LoadRunner,
WinRunner, SiteScope and TestDirector are trademarks of Mercury Interactive Corporation and may
be registered in certain jurisdictions. The absence of a trademark from this list does not constitute a
waiver of Mercury's intellectual property rights concerning that trademark.

All other company, brand and product names may be trademarks or registered trademarks of their
respective holders. Mercury disclaims any responsibility for specifying which marks are owned by
which companies or which organizations.

Mercury provides links to external third-party Web sites to help you find supplemental information.
Site content and availability may change without notice. Mercury makes no representations or
warranties whatsoever as to site content or availability.

Mercury Interactive Corporation
379 North Whisman Road
Mountain View, CA 94043
Tel: (650) 603-5200
Toll Free: (800) TEST-911
Customer Support: (877) TEST-HLP
Fax: (650) 603-5300

© 1992 - 2006 Mercury Interactive Corporation, All rights reserved

If you have any comments or suggestions regarding this document, please send them by e-mail to
documentation@mercury.com.

QTPNETEXT9.1/01

iii

Table of Contents

Welcome to This Guide ...v
 How This Guide Is Organized ...vi
Who Should Read This Guide ...vii
QuickTest Professional Online Documentation viii
Additional Online Resources...x
Documentation Updates ..xi
Typographical Conventions... xii

Chapter 1: Introducing QuickTest Professional .NET Add-in
Extensibility ..1

Understanding .NET Add-in Extensibility ..2
Using the .NET Windows Forms Spy ..4
Understanding Coding Options: .NET DLL and XML..........................5
Understanding Custom Server Run-Time Contexts6
Understanding Test Object Mapping..8

Chapter 2: Installing the Custom Server C# Project Template9
Before You Install ..10
Running the Installation Program ..10
Uninstalling the Project Template ..12

Chapter 3: Using a .NET DLL to Extend Support for a Custom
Control..13

About Using a .NET DLL to Extend Support for a Custom Control ...14
Creating a Custom Server..14
Using the XML Configuration Segment ...18
Implementing Test Record for a Custom Control Using the

.NET DLL ..19
Implementing Test Run for a Custom Control Using the

.NET DLL ..24
Running Code under Application Under Test from the

QuickTest Context..26
API Overview ...27

Table of Contents

iv

Chapter 4: Using an XML File to Extend Support for a Custom
Control..31

About Using an XML File to Extend Support for a Custom
Control ...31

Understanding the Control Definition XML File32
Example of a Control Definition XML File...35

Chapter 5: Using Test Object Configuration Files37
About Using Test Object Configuration Files37
Guidelines for Implementing Test Object Configuration Files38
Understanding the Test Object Configuration File41
Deploying the Test Object Configuration File....................................43

Chapter 6: Configuring QuickTest to Use the Custom Server45
About Configuring QuickTest to Use the Custom Server45
Understanding the QuickTest System Windows Forms

Configuration File ..46

Chapter 7: Tutorial - Step-by-Step Basic Example51
Creating a New Custom Server Project ...51
Implementing Test Record Logic ..55
Implementing Test Run Logic...57
Configuring QuickTest Professional ...58
Testing the Custom Server ..60
Understanding the TrackBarSrv.cs File ...60

Chapter 8: Tutorial - Advanced Example ..63
Toolbar Example ...63
Understanding the ToolBarSrv.cs File ...71

Index ..75

v

Welcome to This Guide

Welcome to QuickTest Professional .NET Add-in Extensibility.

QuickTest Professional .NET Add-in Extensibility enables you to support
testing applications using third-party and custom .NET controls that are not
supported out-of-the-box by the QuickTest Professional .NET Add-in.

This chapter describes: On page:

How This Guide Is Organized vi

Who Should Read This Guide vii

QuickTest Professional Online Documentation viii

Additional Online Resources x

Documentation Updates xi

Typographical Conventions xii

Welcome

vi

How This Guide Is Organized

This guide explains everything you need to know to use QuickTest
Professional .NET Add-in Extensibility to extend QuickTest support for
third-party and custom .NET controls.

This guide should be used together with the QuickTest Professional .NET
Add-in Extensibility API Reference (provided in online Help format). These
documents should also be used in conjunction with the QuickTest
Professional User’s Guide, the QuickTest Professional .NET Add-in Guide, and the
QuickTest Professional Object Model Reference. All of these guides can be
accessed online by choosing Help > QuickTest Professional Help from the
QuickTest main window.

This guide contains:

Chapter 1 Introducing QuickTest Professional .NET Add-in Extensibility

Explains the concepts of extending support to custom .NET controls.

Chapter 2 Installing the Custom Server C# Project Template

Explains how to install the .NET Add-in Extensibility module and how to
configure your QuickTest Professional .NET Add-in project to use
extensibility.

Chapter 3 Using a .NET DLL to Extend Support for a Custom Control

Explains how to extend support for a custom control using a .NET DLL.

Chapter 4 Using an XML File to Extend Support for a Custom Control

Explains how to extend support for a custom control using an XML file.

Chapter 5 Using Test Object Configuration Files

Explains how to use test object configuration files to enable additional
functionality for custom methods and properties.

Welcome

vii

Chapter 6 Configuring QuickTest to Use the Custom Server

Explains how to configure QuickTest to use the Custom Server and describes
the configuration file format.

Chapter 7 Tutorial - Step-by-Step Basic Example

Provides instructions and leads you step-by-step through the process of
creating custom support for a control.

Chapter 8 Tutorial - Advanced Example

Provides instructions for creating custom support for a control that requires
more complex support implementation.

Note: The information, examples, and screen captures in this guide focus
specifically on working with QuickTest tests. However, much of the
information applies equally to components.

Business components and scripted components are part of Mercury Business
Process Testing, which utilizes a keyword-driven methodology for testing
applications. For more information, refer to the QuickTest Professional User’s
Guide and the QuickTest Professional for Business Process Testing User’s Guide.

Who Should Read This Guide

This guide is intended for programmers, QA engineers, systems analysts,
system designers, and technical managers who want to extend QuickTest
support for .NET custom controls and are familiar with:

➤ Major QuickTest features and functionality

➤ QuickTest Professional Object Model

➤ QuickTest Professional .NET Add-in

➤ XML (basic knowledge)

➤ .NET Programming in C#

Welcome

viii

QuickTest Professional Online Documentation

QuickTest Professional includes the following online documentation:

Readme provides the latest news and information about QuickTest. Choose
Start > Programs > QuickTest Professional > Readme.

QuickTest Professional Installation Guide explains how to install and set up
QuickTest. Choose Help > Printer-Friendly Documentation > Mercury
QuickTest Professional Installation Guide.

QuickTest Professional Tutorial teaches you basic QuickTest skills and shows
you how to design tests for your applications. Choose Help > QuickTest
Professional Tutorial.

Product Feature Movies provide an overview and step-by-step instructions
describing how to use selected QuickTest features. Choose Help > Product
Feature Movies.

Printer-Friendly Documentation displays the complete documentation set in
Adobe portable document format (PDF). Online books can be viewed and
printed using Adobe Reader, which can be downloaded from the Adobe Web
site (http://www.adobe.com). Choose Help > Printer-Friendly Documentation.

QuickTest Professional Help includes:

➤ What’s New in QuickTest describes the newest features, enhancements,
and supported environments in the latest version of QuickTest.

➤ QuickTest User's Guide describes how to use QuickTest to test your
application.

➤ QuickTest for Business Process Testing User's Guide provides step-by-step
instructions for using QuickTest to create and manage assets for use with
Business Process Testing.

➤ QuickTest Object Model describes QuickTest test objects, lists the
methods and properties associated with each object, and provides syntax
information and examples for each method and property.

http://www.adobe.com

Welcome

ix

➤ QuickTest Advanced References contains documentation for the
following QuickTest COM and XML references:

• QuickTest Automation provides syntax, descriptive information, and
examples for the automation objects, methods, and properties. It also
contains a detailed overview to help you get started writing QuickTest
automation scripts. The automation object model assists you in
automating test management, by providing objects, methods and
properties that enable you to control virtually every QuickTest feature
and capability.

• QuickTest Test Results Schema documents the XML schema that
enables you to customize your test results.

• QuickTest Test Object Schema documents the XML schema that
enables you to extend test object support in different environments.

• QuickTest Object Repository Automation documents the Object
Repository automation object model that enables you to manipulate
QuickTest object repositories and their contents from outside of
QuickTest.

➤ VBScript Reference contains Microsoft VBScript documentation,
including VBScript, Script Runtime, and Windows Script Host.

Choose Help > QuickTest Professional Help. Online Help is also available
from specific QuickTest windows and dialog boxes by clicking in the
window and pressing F1. You can also view a description, syntax, and
examples for a QuickTest test object, method, or property by placing the
cursor on it and pressing F1.

Note: Your QuickTest Help may contain additional items relevant to any
QuickTest add-ins you have installed. For more information, refer to the
relevant add-in documentation.

Welcome

x

Additional Online Resources

Knowledge Base uses your default Web browser to open the Mercury
Customer Support Web Site directly to the Knowledge Base landing page.
Choose Help > Knowledge Base. The URL for this Web site is
http://support.mercury.com/cgi-bin/portal/CSO/kbBrowse.jsp.

Customer Support Web Site uses your default Web browser to open the
Mercury Customer Support Web site. This site enables you to browse the
Mercury Support Knowledge Base and add your own articles. You can also
post to and search user discussion forums, submit support requests,
download patches and updated documentation, and more. Choose Help >
Customer Support Web Site. The URL for this Web site is
http://support.mercury.com.

Send Feedback enables you to send online feedback about QuickTest to the
product team. Choose Help > Send Feedback.

Mercury Home Page uses your default Web browser to access Mercury’s Web
site. This site provides you with the most up-to-date information on
Mercury and its products. This includes new software releases, seminars and
trade shows, customer support, educational services, and more. Choose
Help > Mercury Home Page. The URL for this Web site is
http://www.mercury.com.

Mercury Best Practices contain guidelines for planning, creating, deploying,
and managing a world-class IT environment. Mercury provides three types
of best practices: Process Best Practices, Product Best Practices, and People
Best Practices. Licensed customers of Mercury software can read and use the
Mercury Best Practices available from the Customer Support site,
http://support.mercury.com.

http://www.mercury.com
http://support.mercury.com/cgi-bin/portal/CSO/kbBrowse.jsp
http://support.mercury.com
http://support.mercury.com

Welcome

xi

Documentation Updates

Mercury is continually updating its product documentation with new
information. You can download the latest version of this document from
the Customer Support Web site (http://support.mercury.com).

To download updated documentation:

 1 In the Customer Support Web site, click the Documentation link.

 2 Under Please Select Product, select QuickTest Professional.

Note that if the required product does not appear in the list, you must add it
to your customer profile. Click My Account to update your profile.

 3 Click Retrieve. The Documentation page opens and lists the documentation
available for the current release and for previous releases. If a document was
updated recently, Updated appears next to the document name.

 4 Click a document link to download the documentation.

http://support.mercury.com

Welcome

xii

Typographical Conventions

This guide uses the following typographical conventions:

UI Elements This style indicates the names of interface elements on
which you perform actions, file names or paths, and
other items that require emphasis. For example, “Click
the Save button.”

Arguments This style indicates method, property, or function
arguments and book titles. For example, “Refer to the
Mercury User’s Guide.”

<Replace Value> Angle brackets enclose a part of a file path or URL
address that should be replaced with an actual value.
For example, <MyProduct installation folder>\bin.

Example This style is used for examples and text that is to be
typed literally. For example, “Type Hello in the edit
box.”

CTRL+C This style indicates keyboard keys. For example, “Press
ENTER.”

Function_Name This style indicates method or function names. For
example, “The wait_window statement has the
following parameters:”

[] Square brackets enclose optional arguments.

{ } Curly brackets indicate that one of the enclosed values
must be assigned to the current argument.

... In a line of syntax, an ellipsis indicates that more items
of the same format may be included. In a
programming example, an ellipsis is used to indicate
lines of a program that were intentionally omitted.

| A vertical bar indicates that one of the options
separated by the bar should be selected.

1

1
Introducing QuickTest Professional .NET
Add-in Extensibility

Welcome to QuickTest Professional .NET Add-in Extensibility.

QuickTest Professional .NET Add-in Extensibility enables you to provide
high-level support for third-party and custom .NET controls that are not
supported out-of-the-box by the QuickTest Professional .NET Add-in.

It is possible to record tests on .NET controls that are not supported out-of-
the-box by the QuickTest Professional .NET Add-in without using the
Extensibility module. However, the recorded script will reflect the low-level
activities passed as Windows messages. By supporting a .NET control with
the Extensibility module, this default low-level support is extended so that
scripts are meaningful, understandable, and easy to modify.

This chapter describes: On page:

Understanding .NET Add-in Extensibility 2

Using the .NET Windows Forms Spy 4

Understanding Coding Options: .NET DLL and XML 5

Understanding Custom Server Run-Time Contexts 6

Understanding Test Object Mapping 8

Chapter 1 • Introducing QuickTest Professional .NET Add-in Extensibility

2

Understanding .NET Add-in Extensibility

QuickTest Professional .NET Add-in Extensibility enables you to support
third-party and custom .NET controls by extending QuickTest test objects
with methods representing the meaningful behaviors of those .NET
controls.

The QuickTest Professional .NET Add-in, without the Extensibility module,
supports many .NET controls out-of-the-box. The .NET Add-in provides test
objects that supply methods representing these controls’ meaningful
behaviors.

The Extensibility module enables you to implement this level of support for
additional .NET controls. Using the Extensibility module, you extend the
.NET Add-in interfaces by overriding existing methods and defining new
ones, creating a Custom Server. When the custom control is mapped to an
existing QuickTest test object, you have the full functionality of a QuickTest
test object, including visibility in IntelliSense, and meaningful steps in the
business component or test script.

Understanding the Concept of Meaningful Behaviors

A control’s meaningful behavior is the behavior that you want to test. For
example, when you click on a button in a radio button group in your
application, you are interested in the value of the selection, not in the Click
event and the coordinates of the click. The meaningful behavior of the radio
button group is the change in the selection.

If you record a test or business component on a custom control without
extending support for the control, you record the low-level behaviors of the
control. For example, the TrackBar control in the sample .NET application
shown below is a control that does not have a corresponding QuickTest test
object.

Chapter 1 • Introducing QuickTest Professional .NET Add-in Extensibility

3

If you record on the TrackBar without implementing support for the
control, the Keyword View looks like this:

In the Expert View, the recorded test looks like this:

SwfWindow("Sample Application").SwfObject("trackBar1").Drag 50,10
SwfWindow("Sample Application").SwfObject("trackBar1").Drop 32,11
SwfWindow("Sample Application").SwfObject("trackBar1").Drag 34,11
SwfWindow("Sample Application").SwfObject("trackBar1").Drop 51,12
SwfWindow("Sample Application").SwfObject("trackBar1").Drag 50,4
SwfWindow("Sample Application").SwfObject("trackBar1").Drop 23,7
SwfWindow("Sample Application").SwfObject("trackBar1").Click 83,10
SwfWindow("Sample Application").SwfObject("trackBar1").Click 91,11
SwfWindow("Sample Application").SwfButton("Close").Click

Note that the methods recorded are Drag, Drop and Click at specific
coordinates in the control display—the low-level actions of the TrackBar
control. These steps are difficult to understand and modify.

If you use .NET Add-in Extensibility to support the TrackBar control, the
result is more meaningful. Below is the Keyword View of a test recorded on
the TrackBar with a Custom Server:

Chapter 1 • Introducing QuickTest Professional .NET Add-in Extensibility

4

In the Expert View, the recorded test looks like this:

SwfWindow("Sample Application").SwfObject("trackBar1").SetValue 5
SwfWindow("Sample Application").SwfObject("trackBar1").SetValue 0
SwfWindow("Sample Application").SwfObject("trackBar1").SetValue 10
SwfWindow("Sample Application").SwfObject("trackBar1").SetValue 6
SwfWindow("Sample Application").Close

QuickTest is now recording a SetValue operation reflecting the new slider
position, instead of the low-level Drag, Drop, and Click operations recorded
without the customized test object. You can understand and modify this test
script more easily.

Using the .NET Windows Forms Spy

The .NET Windows Forms Spy enables you to view details about selected
.NET Windows Forms controls and their run-time properties. You can use
the .NET Windows Forms Spy to help you develop extensibility for .NET
Windows Forms controls.

You can use the .NET Windows Forms Spy when planning .NET Add-in
extensibility implementation to create support for custom .NET Windows
Forms controls. The .NET Windows Forms Spy assists you in examining
.NET Windows Forms controls within your application and seeing which
events cause it to change (to facilitate record and run extensibility
implementation) and how the changes manifest themselves in the control's
state.

You access the .NET Windows Forms Spy by choosing Tools > .NET Windows
Forms Spy in the main QuickTest window.

Chapter 1 • Introducing QuickTest Professional .NET Add-in Extensibility

5

Note: To spy on a .NET Windows Forms application, make sure that the
application is running with Full Trust. If the application is not defined to
run with Full Trust, you cannot spy on the .NET application’s Windows
Forms controls with the .NET Windows Forms Spy. For information on
defining trust levels for .NET applications, refer to Microsoft
documentation.

For more information on the .NET Windows Forms Spy, refer to the
QuickTest Professional .NET Add-in Guide.

Understanding Coding Options: .NET DLL and XML

You can implement QuickTest custom support in two ways:

➤ .NET DLL. Extends support for the control using a .NET Assembly.

➤ XML. Extends support for the control using an XML file.

Guidelines for Selecting a Coding Option

Most Custom Servers are implemented as a .NET DLL. This option is
generally preferred because development is supported by all the services of
the program development environment, such as syntax checking,
debugging, and Microsoft IntelliSense. Furthermore, a Custom Server
implemented as a .NET DLL can perform part of its Test Record functions in
the QuickTest context and part in the Application under test context. For
more information, see “Using a .NET DLL to Extend Support for a Custom
Control” on page 13, and refer to the QuickTest Professional .NET Add-in
Extensibility API Reference.

For information on run-time contexts, see “Understanding Custom Server
Run-Time Contexts” on page 6.

Chapter 1 • Introducing QuickTest Professional .NET Add-in Extensibility

6

The XML implementation is most practical either with relatively simple,
well documented controls, or with controls that map well to an existing
object but for which you need to replace the Test Record implementation, or
replace or add a small number of test object Test Run methods. It is also
useful when a full programming environment is not available, since it
requires only a text editor.

However, when implementing a custom control with XML, you have none
of the support provided by a program development environment. The XML
implementation runs only in the Application under test context. For more
information, see “Using an XML File to Extend Support for a Custom
Control” on page 31.

For information on setting the coding option, see “Configuring QuickTest to
Use the Custom Server” on page 45.

Understanding Custom Server Run-Time Contexts

Classes supplied by a Custom Server may be instantiated in one of two
software processes (run-time contexts):

➤ Application under test

➤ QuickTest

An object created in the Application under test context has direct access to
the .NET control’s events, methods, and properties. However, it cannot
listen to Windows messages.

An object created in the QuickTest context can listen to Windows messages.
However, it does not have direct access to the .NET control’s events,
methods, and properties.

If the Custom Server is implemented as a .NET DLL, an object created in the
QuickTest context can create Assistant objects that run in the Application
under test context.

Chapter 1 • Introducing QuickTest Professional .NET Add-in Extensibility

7

Guidelines for Selecting the Custom Server Run-Time Context

The Custom Server may implement Test Record, Test Run, or both. Test
Record is the software module used in the session in which the actions
performed on the application being tested and the application’s resulting
behaviors are recorded and the recording is converted to a test script. If you
plan to create test scripts using keyword-driven testing, and not by
recording steps on an application, you do not need to implement Test
Record. Test Run is the software module used to run this script and track the
results to test if the application is performing as required.

Test Run is nearly always implemented in the Application under test
context. Direct access to the control makes setting values and calling the
control’s methods straightforward. There is no need to listen to Windows
messages during a Test Run session, so the QuickTest context is not required.
However, if your application uses QuickTest services more than it uses
services of the custom control, it may be more efficient to implement Test
Run in the QuickTest context.

The programming for Test Record is generally simpler in the Application
under test context. However, if it is essential to use Windows messages for
recording, you must use the QuickTest context.

If the .NET DLL Custom Server must both listen to Windows messages and
access control events and properties, use Assistant classes. The Custom
Server running in the QuickTest context can listen to events in the
Application under test context with Assistant class objects that run in the
Application under test context. These objects also provide direct access to
control properties.

For more information, see “Implementing Test Record for a Custom Control
Using the .NET DLL” on page 19.

For more information on Assistant classes, see “Using a .NET DLL to Extend
Support for a Custom Control” on page 13, and refer to the QuickTest
Professional .NET Add-in Extensibility API Reference.

For more information on setting the context, see “Configuring QuickTest to
Use the Custom Server” on page 45.

Chapter 1 • Introducing QuickTest Professional .NET Add-in Extensibility

8

Understanding Test Object Mapping

All Custom Servers are mapped to a parent QuickTest test object. When the
test object is applied to the custom control, the Custom Server extends the
parent test object.

When you map your Custom Server to a functionally similar QuickTest test
object, you do not have to override those Test Run methods of the parent
object which apply without change to your custom object. For example,
most controls have a Click method. If the Click method of the parent object
implements the Click method of the custom object adequately, you do not
need to override the parent’s method.

To cover the Test Run functionality of the custom object that does not exist
in the parent, add new methods in your Custom Server. To cover
functionality that has the same method name, but a different
implementation, override the parent methods. The custom control support
consists of the Test Run members of the parent object or overrides of those
members, and new members added by this Custom Server.

Note that mapping is sometimes sufficient without any programming. If the
parent QuickTest test object adequately covers a control, it is sufficient to
map the control to the QuickTest test object. If the QuickTest test object
adequately covers Test Record, but you need to customize Test Run, do not
implement Test Record.

If you do implement Test Record, the implementation replaces that of the
parent object. You must implement all required Test Record functionality.

If you do not specify a mapping, QuickTest maps the custom control to the
default generic test object, SwfObject.

When you edit a script line that references the custom control, Microsoft
IntelliSense displays the properties and methods of the custom control in
addition to those of the parent QuickTest test object. QuickTest uses test
object configuration files to provide IntelliSense for custom methods and
properties. For more information, see “Using Test Object Configuration
Files” on page 37.

For more information on mapping, see “Configuring QuickTest to Use the
Custom Server” on page 45.

9

2
Installing the Custom Server C# Project
Template

This chapter describes how to install the Custom Server C# Project Template
for Microsoft Visual Studio .NET or Microsoft Visual Studio 2005.

This installation provides a Custom Server project template and the wizard
that runs when the template is selected to create a new project.

The Custom Server template provides a framework of blank code, some
sample code, and the QuickTest project references required to build a
Custom Server.

The wizard simplifies setting up a Microsoft Visual Studio .NET or Microsoft
Visual Studio 2005 project to create a Custom Server .NET DLL using the
.NET Add-in Extensibility module. For more information, see “Using a .NET
DLL to Extend Support for a Custom Control” on page 13.

This chapter describes: On page:

Before You Install 10

Running the Installation Program 10

Uninstalling the Project Template 12

Chapter 2 • Installing the Custom Server C# Project Template

10

Before You Install

Before you install the Custom Server C# Project Template, review the
requirements listed below.

➤ You must have access to the InstWizard.msi file. You can access the
InstWizard.msi file from either a computer on which the QuickTest
Professional .NET Add-in is installed, or from the root folder of the
QuickTest Professional .NET Add-in CD-ROM.

➤ Microsoft Visual Studio .NET or Microsoft Visual Studio .NET 2005 must be
installed on your computer.

Running the Installation Program

The InstWizard.msi file is located in the QuickTest Professional .NET Add-in
installation, and on the QuickTest Professional .NET Add-in CD-ROM.

To install the .NET Add-in Custom Server C# Project Template:

 1 Close all instances of Microsoft Visual Studio.

 2 Locate the InstWizard.msi file. You can find it in one of the following
locations:

➤ In the <QuickTest Professional installation path>\bin\Custom folder on a
computer on which the QuickTest Professional .NET Add-in is installed.

➤ In the root folder of the QuickTest Professional .NET Add-in CD-ROM.

 3 Run the installation by double-clicking on the InstWizard.msi file. The
Custom Server C# Project Template is installed on your computer.

To confirm that the installation was successful:

 1 Open Microsoft Visual Studio .NET or Microsoft Visual Studio 2005.

 2 Choose File > New > Project to open the New Project dialog box.

 3 Select Visual C# Projects in the Project Types list.

Chapter 2 • Installing the Custom Server C# Project Template

11

 4 Confirm that the QuickTest CustomServer template icon appears in the
Templates pane.

Note: The above dialog box is from Microsoft Visual Studio .NET. The New
Project dialog box in Microsoft Visual Studio 2005 differs slightly in
appearance.

Chapter 2 • Installing the Custom Server C# Project Template

12

Uninstalling the Project Template

You can uninstall the Custom Server C# Project Template from the Windows
Control Panel.

To uninstall the project template:

 1 Select Start > Settings > Control Panel > Add/Remove Programs. The
Add/Remove Programs dialog box opens.

 2 In the Add/Remove Programs list, select Mercury CustomWizard.

 3 Click Remove.

13

3
Using a .NET DLL to Extend Support for a
Custom Control

You can support a .NET control by creating a Custom Server implemented as
a .NET DLL.

To create a .NET DLL Custom Server you need to know how to program a
.NET Assembly. The illustrations and instructions in this chapter assume
that you are using Microsoft Visual Studio .NET as your development
environment and that you have installed the Custom Server C# Project
Template. For more information, see “Installing the Custom Server C#
Project Template” on page 9.

This chapter describes: On page:

About Using a .NET DLL to Extend Support for a Custom Control 14

Creating a Custom Server 14

Using the XML Configuration Segment 18

Implementing Test Record for a Custom Control Using the .NET
DLL

19

Implementing Test Run for a Custom Control Using the .NET DLL 24

Running Code under Application Under Test from the QuickTest
Context

26

API Overview 27

Chapter 3 • Using a .NET DLL to Extend Support for a Custom Control

14

About Using a .NET DLL to Extend Support for a Custom
Control

You can create a Custom Server to implement high level support for a
custom .NET control. The Custom Server is a .NET DLL class library that
implements interfaces for Test Record and/or Test Run, and general utilities.
For more information, see “Implementing Test Record for a Custom Control
Using the .NET DLL” on page 19, “Implementing Test Run for a Custom
Control Using the .NET DLL” on page 24, and “API Overview” on page 27.

After creating the Custom Server, configure QuickTest to use it. For more
information, see “Configuring QuickTest to Use the Custom Server” on
page 45.

Creating a Custom Server

To create a Custom Server, set up a .NET project in Microsoft Visual Studio
.NET, code the support for QuickTest Test Record and/or Test Run, and edit
the configuration file so that QuickTest loads the Custom Server.

Setting up the .NET Project

Set up a .NET project in Microsoft Visual Studio .NET using the Custom
Server C# Project Template.

When you set up the .NET project, the template does the following:

➤ Creates an XML file with definitions of the Custom Server that you can copy
into the QuickTest configuration file.

➤ Creates the project files necessary for the build of the .DLL file.

➤ Sets up a C# file with commented code that contains the definitions of
methods that you can override when you implement Test Record or Test
Run.

➤ Provides sample code that demonstrates some Test Record and Test Run
implementation techniques.

Chapter 3 • Using a .NET DLL to Extend Support for a Custom Control

15

To setup a new .NET project:

 1 Start Microsoft Visual Studio .NET.

 2 Choose File > New > Project to open the New Project dialog box, or press
CTRL + SHIFT + N. The New Project dialog box opens.

 3 Select Visual C# Projects in the Project Types list.

Chapter 3 • Using a .NET DLL to Extend Support for a Custom Control

16

 4 Select the QuickTest CustomServer template in the Templates pane. Enter
the name of your new project and the location in which you want to save
the project. Click OK. The QuickTest Custom Server Settings wizard opens.

 5 Make your selections in the Application Settings page of the wizard.

➤ In the Server class name box, provide a descriptive name for your custom
server class.

➤ Check Customize Record process if you intend to implement the Test
Record process in QuickTest.

If you check Customize Record process, the wizard creates a framework
of code for the implementation of recording steps.

Do not select this check box if you are going to create the script manually
in QuickTest, or if you are going to use the Test Record functions of the
parent test object to which this control will be mapped. Note that if you
implement Test Record, the implementation replaces that of the parent
object. You must implement all required Test Record functionality.

Chapter 3 • Using a .NET DLL to Extend Support for a Custom Control

17

➤ Check Customize Run process if you intend to implement the Test Run
functions for the custom control. Enter a name for the Replay Interface
you will create in the Replay interface name box.

If you check Customize Run process, the wizard creates a framework of
code to implement Test Run support.

Check Customize Run process if you are going to override any of the
existing test object’s methods, or extend the test object with new
methods.

➤ Check Generate comments and sample code if you want the wizard to
add comments and samples in the code that it generates.

 6 Click Next. The XML Configuration Settings page of the wizard opens.

 7 Make your selections in the XML Configuration Settings page of the wizard.

➤ Check Auto-generate the XML configuration segment to have the wizard
create a file, Configuration.xml, containing an XML segment with the
configuration information for QuickTest.

Chapter 3 • Using a .NET DLL to Extend Support for a Custom Control

18

➤ In the Customized Control type box, enter the full type name of the
control for which you are creating the Custom Server, including all
wrapping namespaces, for example,
System.Windows.Forms.CustomCheckBox.

➤ In the Mapped to box, select the test object to which you want to map
the Custom Server. If you select No mapping, the Custom Server is
automatically mapped to the SwfObject test object.

For more information, see “Understanding Test Object Mapping” on
page 8.

➤ Select the run-time context for Test Record and/or Test Run: Application
under test or QuickTest.

For more information, see “Understanding Custom Server Run-Time
Contexts” on page 6.

 8 Click Finish. The Wizard closes and the new project opens, ready for coding.

When you click Finish in the wizard, a Configuration.xml file is created and
added to the project. When you are ready to use the Custom Server, update
and modify the configuration information as required and transfer it to the
QuickTest configuration file as described in “Using the XML Configuration
Segment” on page 18.

Using the XML Configuration Segment

The XML segment created by the wizard is used when the Custom Server is
ready for deployment. Before using it, add the information that was not
available when you created the project.

To use the segment when configuring QuickTest:

 1 Edit the Configuration.xml file in the project to ensure that the information
is correct. Set the DllName element value to the location where you will
install the Custom Server. If Test Record and/or Test Run are to be loaded in
different run-time contexts, edit the Context value accordingly.

 2 Copy the entire <Control>...</Control> node. Do not include the enclosing
<Controls> tags.

Chapter 3 • Using a .NET DLL to Extend Support for a Custom Control

19

 3 Open the QuickTest Professional .NET Add-in configuration file, <QuickTest
Professional>\dat\SwfConfig.xml. Paste the Control node from
Configuration.xml at the end of the file, before the closing </Controls> tag.

 4 Save the file. If QuickTest was open, you must close and reopen it for the
SwfConfig.xml changes to take effect.

For more information, see “Configuring QuickTest to Use the Custom
Server” on page 45.

Implementing Test Record for a Custom Control Using the
.NET DLL

Recording a business component or test script on a control means listening
to the activity of that control, translating that activity into test object
method calls, and writing the method calls to the script. Listening to the
activities on the control is done by listening to control events, hooking
Windows messages, or both.

Note: If you plan to create test scripts using keyword-driven testing, and not
by recording steps on an application, you do not need to implement Test
Record.

To implement Test Record, implement the methods in the IRecord interface
created by the wizard. Add all the functionality required by your
application. Your Test Record implementation does not inherit from the
parent test object to which the custom control is mapped. It replaces the
parent object’s Test Record implementation entirely. Therefore, if you need
any of the parent object’s functionality, code it explicitly.

Before reading this section, make sure you are familiar with “Understanding
Custom Server Run-Time Contexts” on page 6.

For more details about the interfaces, classes, enumerations, and methods in
this section, refer to the QuickTest Professional .NET Add-in Extensibility API
Reference.

Chapter 3 • Using a .NET DLL to Extend Support for a Custom Control

20

This section describes:

➤ Implementing the IRecord Interface

➤ Writing Test Object Methods to the Script

Implementing the IRecord Interface

To implement the IRecord interface, override the call-back methods
described in this section, and add the details of your implementation in
your event handlers or message handler.

Callback Method InitEventListener

CustomServerBase.InitEventListener is called by QuickTest when your
Custom Server is loaded. Add your event and message handlers in this
method.

 1 Implement handlers for the control’s events.

A typical handler captures the event and writes a method to the test script.
This is an example of a simple event handler:

public void OnMouseDown(object sender, MouseEventArgs e)
{

// Get the event.
if(e.Button != System.Windows.Forms.MouseButtons.Left)
return;
/*
For more complex events, here you would get any
other information you need from the control.
*/
// Write the test object method to the script
RecordFunction("MouseDown",
RecordingMode.RECORD_SEND_LINE,
e.X,e.Y);

}

For more information, see “Writing Test Object Methods to the Script” on
page 23.

Chapter 3 • Using a .NET DLL to Extend Support for a Custom Control

21

 2 Add your event handlers in InitEventListener:

public override void InitEventListener()
{

.....
// Adding OnMouseDown handler.
Delegate e = new MouseEventHandler(this.OnMouseDown);
AddHandler("MouseDown", e);
.....

}

Note that if Test Record will run in the Application under test context, you
can use the syntax:

SourceControl.MouseDown += e;

If you use this syntax, you must release the handler in ReleaseEventListener.

 3 Add a Remote Event Listener.

If your Custom Server will run in the QuickTest context, use a remote event
listener to handle events. Implement a remote listener of type
EventListenerBase that handles the events, and add a call to
AddRemoteEventListener in method InitEventListener.

public class EventsListenerAssist : EventsListenerBase
{

// class implementation.
}
public override void InitEventListener()
{

...
AddRemoteEventListener(typeof(EventsListenerAssist));
...

}

Chapter 3 • Using a .NET DLL to Extend Support for a Custom Control

22

When you implement a remote event listener, you must override
EventListenerBase.InitEventListener and
EventListenerBase.ReleaseEventListener in addition to overriding these call-
back functions in CustomServerBase. The use of these two EventListenerBase
call-backs is the same as for the CustomServerBase call-backs. For details,
refer to the EventsListenerBase class in the QuickTest Professional .NET Add-in
Extensibility API Reference.

Note that when you handle events from the QuickTest context, the event
arguments must be serialized. For details, refer to
CustomServerBase.AddHandler(String, Delegate, Type) and the
IEventArgsHelper Interface in the QuickTest Professional .NET Add-in
Extensibility API Reference.

To avoid the complications of remote event listeners, run your event
handlers in the Application under test context, as described above.

Callback Method OnMessage

OnMessage is called on any window message hooked by QuickTest. If Test
Record will run in the QuickTest context and message handling is required,
implement the message handling in this method.

If Test Record will run in the Application under test context, do not override
this function.

For details, refer to CustomServerBase.OnMessage in the QuickTest
Professional .NET Add-in Extensibility API Reference.

Callback Method GetWndMessageFilter

If Test Record will run in the QuickTest context and listen to windows
messages, override this method to inform QuickTest whether the Custom
Server will handle only messages intended for the specific custom object
window, or whether it will handle messages from child windows, as well.

For details, refer to IRecord.GetWndMessageFilter in the QuickTest
Professional .NET Add-in Extensibility API Reference.

Chapter 3 • Using a .NET DLL to Extend Support for a Custom Control

23

Callback Method ReleaseEventListener

QuickTest Professional calls this method at the end of the recording session.
In ReleaseEventListener, unsubscribe from all the events to which the
Custom Server was listening. For example, if you subscribed to OnClick in
InitEventListener with this syntax,

SourceControl.Click += new EventHandler(this.OnClick);

you must release it:

public override void ReleaseEventListener()
{

....
SourceControl.Click -= new EventHandler(this.OnClick);
....

}

However, if you subscribe to the event with the AddHandler method,
QuickTest unsubscribes automatically.

Writing Test Object Methods to the Script

When information about activities of the control has been received,
whether in the form of events, Windows messages, or a combination of
both, this information must be processed as appropriate for the application
and a script step written as a test object method call.

To write a script step, use the RecordFunction method of the
CustomServerBase class or the EventsListenerBase, as appropriate.

Since it is sometimes impossible to know how an activity should be
processed until the next activity occurs, there is a mechanism for storing a
script step and deciding in the subsequent call to RecordFunction whether
to write it to the script. For details, refer to RecordingMode Enumeration in
the QuickTest Professional .NET Add-in Extensibility API Reference.

Chapter 3 • Using a .NET DLL to Extend Support for a Custom Control

24

In order to determine the parameter values for the test object method call, it
may be necessary to retrieve information from the control that is not
available in the event arguments or Windows message. If the Custom Server
Test Record object is running in the Application under test context, use the
SourceControl property of the CustomServerBase class to obtain direct
access to the public members of the control. If the control is not thread-safe,
use the ControlGetProperty method to retrieve control state information.

Implementing Test Run for a Custom Control Using the
.NET DLL

Defining test object methods for Test Run means specifying the actions to
perform when the method is encountered in the business component or test
script. Typically, the implementation of a test object method performs
several of the following actions:

➤ Sets the values of attributes of the control object

➤ Calls a method of the control object

➤ Makes mouse and keyboard simulation calls

➤ Reports a step outcome to QuickTest

➤ Reports an error to QuickTest

➤ Makes calls to another library (to show a message box, write custom log, and
so forth)

The custom control is mapped to a parent QuickTest test object. If there is
no explicit mapping, it is mapped to SwfObject. The test object type that
supports the custom control is the new type that consists of the members of
the parent object or overrides of those members, and new members added
by this Custom Server.

Define custom Test Run methods if you are overriding existing methods of
the parent test object, or if you are extending the parent test object by
adding new methods.

Ensure that all test object methods recorded are implemented in Test Run,
either by the parent test object, or by this Custom Server.

Chapter 3 • Using a .NET DLL to Extend Support for a Custom Control

25

To define custom Test Run methods, define an interface and identify it to
QuickTest as the Test Run interface by applying the ReplayInterface attribute
to it. Only one replay interface can be implemented in a Custom Server. If
your interface defines methods with the same names as existing methods of
the parent object, the interface methods override the test object
implementation. Methods that do not have the same name as a method of
the parent object, are added as new methods.

Start a test object method implementation with a call to PrepareForReplay,
specify the activities to perform, and end with a call to ReplayReportStep
and/or ReplayThrowError.

For more details, refer to the QuickTest Professional .NET Add-in Extensibility
API Reference.

Chapter 3 • Using a .NET DLL to Extend Support for a Custom Control

26

Running Code under Application Under Test from the
QuickTest Context

When the Custom Server is running in the QuickTest context, there is no
direct access to the control, which is in a different run-time process. To
access the control directly, run part of the code in the Application under test
context.

To launch code from the QuickTest context that will run under the
Application under test context, implement an assistant class that inherits
from CustomAssistantBase. To create an instance of an assistant class, call
CreateRemoteObject. Before using the object, attach it to the control with
SetTargetControl.

Once SetTargetControl has been called, there are two ways to call methods
of the assistant. If the method can run in any thread of the Application
under test process, read and set control values and call control methods
with the simple obj.Member syntax:

int i = oMyAssistant.Add(1,2);

If the method must run in the control’s thread, use the InvokeAssistant
method:

int i = (int)InvokeAssistant(oMyAssistant, "Add", 1, 2);

EventListenerBase is an assistant class that supports listening to control
events.

Chapter 3 • Using a .NET DLL to Extend Support for a Custom Control

27

API Overview

This section provides a quick reference of the most commonly used API
calls. For more details, refer to the QuickTest Professional .NET Add-in
Extensibility API Reference.

Test Record Methods

Test Record Callback Methods

Test Run Methods

AddHandler Adds an event handler as the first handler of
the event.

RecordFunction Records a line in the Test script.

GetWndMessageFilter Called by QuickTest to set the Windows
Message filter.

InitEventListener Called by QuickTest to load event handlers and
start listening for events.

OnMessage Called when window message hooked by
QuickTest.

ReleaseEventListener Stops listening for events.

DragAndDrop, KeyDown,
KeyUp, MouseClick,
MouseDblClick, MouseDown,
MouseMove, MouseUp,
PressKey, PressNKeys,
SendKeys, SendString

Mouse and keyboard simulation methods.

PrepareForReplay Prepares the control for a replay action.

ReplayReportStep Writes an event to the test report.

ReplayThrowError Generates an error message and changes the
reported step status.

Chapter 3 • Using a .NET DLL to Extend Support for a Custom Control

28

Cross-Process Methods

General Methods

ShowError Displays the .NET warning icon.

TestObjectInvokeMethod Invokes one of the methods exposed by the
test object's IDispatch interface.

AddRemoteEventListener Creates an EventListener instance in the
Application under test process.

CreateRemoteObject Creates an instance of an Assistant object in
the Application under test process.

GetEventArgs (IEventArgs) Retrieves and deserializes the EventArgs
object.

Init (IEventArgsHelper) Initializes the Event Arguments helper class
with an EventArgs object.

InvokeAssistant Invokes a method of a CustomAssistantBase
class in the control's thread.

InvokeCustomServer Invokes the Custom Server’s methods running
in the QuickTest process from the Application
under test process.

SetTargetControl Attaches to the source control object by the
control's window handle.

ControlGetProperty Retrieves a property of a control that is not
thread-safe.

ControlInvokeMethod Invokes a method of a control that is not
thread-safe.

ControlSetProperty Sets a property of a control that is not thread-
safe.

GetSettingsValue Gets a Parameter value from the settings of this
control in the configuration file.

Chapter 3 • Using a .NET DLL to Extend Support for a Custom Control

29

GetSettingsXML Returns the settings of this control as entered
in the configuration file.

Chapter 3 • Using a .NET DLL to Extend Support for a Custom Control

30

31

4
Using an XML File to Extend Support for a
Custom Control

You can extend support for a customized .NET control using an XML file.
Using an XML file enables you to extend support without a program
development environment.

About Using an XML File to Extend Support for a Custom
Control

You can implement custom control support without programming a .NET
DLL by entering the appropriate Test Record and Test Run instructions in a
Control Definition XML file. You can tell QuickTest Professional to load the
instructions by pointing to this control definition file in the QuickTest
configuration file, SwfConfig.xml.

When using this technique, you do not have the support of the .NET
development environment—the object browser and the debugger. However,
by enabling the implementation of custom control support without the
.NET development environment, this technique enables relatively rapid
implementation, even in the field.

This chapter describes: On page:

About Using an XML File to Extend Support for a Custom Control 31

Understanding the Control Definition XML File 32

Example of a Control Definition XML File 35

Chapter 4 • Using an XML File to Extend Support for a Custom Control

32

This feature is most practical either with relatively simple, well documented
controls, or with controls that map well to an existing object but for which
you need to replace the Test Record definitions, or replace or add a small
number of test object Test Run methods.

Understanding the Control Definition XML File

The Control Definition XML file specifies the control events to be captured
during recording and used to generate steps to be written to the business
component or test script. These steps are calls to methods of the custom
control’s test object. The file also specifies the operations QuickTest
performs for each method during Test Run. You do not always need to enter
both a Record and a Run element.

If the custom object is mapped to a parent test object that implements
either all the required Test Record methods or all the required Test Run
methods, you do not need to create the section of the definition file that
defines that element.

If you create a Record element, the definitions replace the Test Record
implementation of the parent object entirely. If you create a Run element, it
inherits the Test Run implementation of the parent object and extends it.
For more information on test object mapping options, see “Understanding
Test Object Mapping” on page 8.

The structure of the Control Definition XML file is:

<?xml version="1.0" encoding="UTF-8" ?>
<Customization>

<Record>
<Events>

<!-- There are 1 to n Event elements -->
<Event name="controlEventName" enabled="true|false">

<RecordedCommand name="theCommandName">
<!-- There are 0 to n Parameter elements -->
<Parameter> param</Parameter>

</RecordedCommand>
</Event>

</Events>

Chapter 4 • Using an XML File to Extend Support for a Custom Control

33

</Record>
<Replay>

<Methods>
<!-- There are 1 to n Method elements -->
<Method name="theCommandName">

<Parameters>
<!-- There are 0 to n Parameter elements -->
<Parameter type="theDataType" name="param 1

name"></Parameter>
</Parameters>
<MethodBody>theCommand</MethodBody>

</Method>
</Methods>

</Replay>
</Customization>

Control Definition File Elements

➤ Customization. The root element.

➤ Record. Information on the conversion of events to steps in a test script.

➤ Events. Collection of control events to capture for generation of test script
steps.

➤ Event. Contains the information needed to convert a specific event to a step
in a test. It has the following attributes:

➤ name. The name of the control event.

➤ enabled. The flag to activate recording for this event. Can be true or false.

➤ RecordedCommand. Defines the step to be written to the script when the
event described in the parent Event element is received. Has the following
attribute:

➤ name. The test object method name to write to the script.

➤ Parameter. Each Parameter element defines a parameter to be written to the
script after the name of the RecordedCommand. The parameters are written
to the script in the order in which they are defined in the Control Definition
XML file.

Chapter 4 • Using an XML File to Extend Support for a Custom Control

34

A Parameter element has two possible formats. It may contain a single line
of text content that will be evaluated and then written to the script.
Alternatively, it may contain a short section of code to be run in order to
produce the value to be written. In this case, the lang attribute must be
specified, and the final value must be assigned to the return value variable,
Parameter.

Several reserved words are available for use in a Parameter element:

➤ Sender. The object that fired the event.

➤ EventArgs. The object that represents EventArgs parameter of the Event
Handler.

➤ Parameter. The return value of the code.

The Parameter element has the following optional attribute:

➤ lang. If the element contains code, the lang attribute specifies the
programming language. Currently, C# is supported.

➤ Replay. information on the conversion of test object methods to the
activities to be performed during the Test Run session.

➤ Methods. Collection of Method elements.

➤ Method. Defines a method added to the test object interface. It has the
following attribute:

➤ name. The test object method name.

➤ Parameters. Collection of Parameter elements.

➤ Parameter. Each Parameter element contains instructions for reading a
command line parameter from the script. The order of Parameter elements
must be the same as the order of the command line parameters in the script.

➤ These parameters are used in the MethodBody element to create the method
call. Each parameter element has the following attributes:

➤ type. The data type of the value as it will be used in the MethodBody.

➤ name. The name by which to refer to the value in the MethodBody.

➤ MethodBody. A series of C# instructions to perform when the test object
method is executed.

The reserved word RtObject refers to the run-time object.

Chapter 4 • Using an XML File to Extend Support for a Custom Control

35

Example of a Control Definition XML File

The following example shows the handling of an object whose value
changes at each MouseUp event. The value is in the Value property of the
object. The MouseUp event handler has Button, Clicks, Delta, X, and Y event
arguments.

The Record element describes the conversion of the MouseUp event to a
SetValue command. The Replay mode defines the SetValue command as
setting the value of the object to the recorded Value and displaying the
position of the mouse pointer for debugging purposes.

<?xml version="1.0" encoding="UTF-8"?>
<Customization>

<Record>
<Events>

<Event name="MouseUp" enabled="true">
<RecordedCommand name="SetValue">

<Parameter>
Sender.Value

</Parameter>
<Parameter lang="C#">

String xy;
xy = EventArgs.X + ";" + EventArgs.Y;
Parameter = xy;

</Parameter>
</RecordedCommand>

</Event>
</Events>

</Record>
<Replay>

<Methods>
<Method name="SetValue">

<Parameters>
<Parameter type="int" name="Value"/>
<Parameter type="String" name="MousePosition"/>

</Parameters>
<MethodBody>

RtObject.Value = Value;

Chapter 4 • Using an XML File to Extend Support for a Custom Control

36

System.Windows.Forms.MessageBox.Show(MousePosition,
"Mouse Position at Record Time");

</MethodBody>
</Method>

</Methods>
</Replay>

</Customization>

37

5
Using Test Object Configuration Files

You can use test object configuration files to enable additional functionality
for custom methods and properties.

About Using Test Object Configuration Files

Test object configuration files contain definitions of test objects (for
example, their identification properties, the test object methods they
support, and so forth). You create a test object configuration file according
to a specific XML schema, and then place the XML file in a specific location
on the QuickTest computer.

You can choose to implement none, one, or multiple test object
configuration files. For example, you can define custom methods for one
test object class in one test object configuration file, and custom methods
for another test object class in a different test object configuration file. You
can also choose to define a group of custom methods for a test object class
in one test object configuration file, and another group of custom methods
for the same test object class in a different test object configuration file.

This chapter describes: On page:

About Using Test Object Configuration Files 37

Guidelines for Implementing Test Object Configuration Files 38

Understanding the Test Object Configuration File 41

Deploying the Test Object Configuration File 43

Chapter 5 • Using Test Object Configuration Files

38

Each time you open QuickTest, it reads all of the test object configuration
files and merges the information for each test object class from the different
files into a single test object definition.

Guidelines for Implementing Test Object Configuration
Files

Implementation of a test object configuration file is optional. If you choose
not to implement the test object configuration file, the test object methods
and properties defined in the .NET Custom Server .DLL or Control
Definition XML files will work as expected, but some additional
functionality will be missing. For example, custom methods will not appear
in IntelliSense, and they will not have tooltips, custom icons,
documentation in the Keyword View Documentation column, or
context-sensitive help.

By creating a test object configuration file, you can implement the
additional functionality described above. When you add a custom method
or property to the test object configuration file, the definition is added to
the existing definition of this test object class, affecting all objects of this
class.

For example, if you add an identification property, it appears in QuickTest in
the list of properties for all objects of this class, but has no value unless it is
implemented for the specific control. If you specify that the identification
property should be available for use in checkpoints, and you create a
checkpoint on this property in a test, the checkpoint will fail if the
identification property does not exist in the relevant control.

Chapter 5 • Using Test Object Configuration Files

39

If you add a test object method, it appears in the IntelliSense list of test
object methods in QuickTest, but if you use the test object method in a test,
and it is not supported for the relevant control, a run-time error occurs. For
this reason, you should only define custom methods and properties in the
test object configuration file if you want them to be available for all test
objects of the specified class. This is because after you implement the test
object configuration file, custom methods and properties automatically
appear in the IntelliSense for all test objects of the relevant class, even if
they are not supported or relevant for a specific test object. Test designers
may use a custom method in a test step without realizing that it is not
relevant for a specific test object, and then the test run will fail.

Tip: It is recommended that you add a unique prefix to all custom method
and property names so that test designers can easily identify the custom
methods and properties and use them in test steps only if they know that
the custom method or property is supported for the specific test object.

You must also make sure that the information you define in the test object
configuration file exactly matches the corresponding information defined
in the .NET Custom Server .DLL or Control Definition XML files. For
example, the test object method names must be exactly the same in both
location. Otherwise, methods will appear (for example, in IntelliSense in the
Keyword View and Expert View) but they will not work, and the test run will
fail if they are used in a test.

Note: When you modify a test object configuration file, the changes take
effect only after you restart QuickTest.

Chapter 5 • Using Test Object Configuration Files

40

Understanding How QuickTest Merges Configuration Files

Each time you open QuickTest, it reads all of the test object configuration
files located in the <QuickTest installation folder>\dat\Extensibility\DotNet
folder. It then merges the information for each test object class from the
different files into a single test object definition, according to the priority of
each test object configuration file.

You define the priority of each test object configuration file using the
Priority attribute of the TypeInformation element. For more information,
refer to the QuickTest Test Object Schema Help (Help > QuickTest Professional
Help > QuickTest Advanced References > QuickTest Test Object Schema).

Note: If the priority of a test object configuration file is higher than the
existing class definitions, it overrides any existing test object class
definitions, including built-in QuickTest information. For this reason, be
aware of any built-in functionality that will be overridden before you
change the priority of a test object configuration file.

The following sections describe the process followed when ClassInfo,
ListOfValues, and Operation elements are defined in multiple test object
configuration files.

ClassInfo Elements

➤ If a ClassInfo element is defined in a test object configuration file with a
higher priority, the information is appended to any existing definition. If a
conflict arises between ClassInfo definitions in different files, the definition
in the file with the higher priority overrides (replaces) the information in
the file with the lower priority.

➤ If a ClassInfo element is defined in a test object configuration file with a
priority that is equal to or lower than the existing definition, the differing
information is appended to the existing definition. If a conflict arises
between ClassInfo definitions in different files, the definition in the file with
the lower priority is ignored.

Chapter 5 • Using Test Object Configuration Files

41

ListOfValues Elements

➤ If a conflict arises between ListOfValues definitions in different files, the
definition in the file with the higher priority overrides (replaces) the
information in the file with the lower priority (the definitions are not
merged). In this case, QuickTest goes through all the classes and reattaches
the enumeration values for arguments of type Enumeration.

➤ If a ListOfValues definition overrides an existing list, the new list is updated
for all arguments of type Enumeration that are defined for operations of
classes in the same test object definition file.

➤ If a ListOfValues is defined in a configuration file with a lower priority than
the existing definition, the lower priority definition is ignored.

Operation Elements

➤ Operation element definitions are either added, ignored, or overridden,
depending on the priority of the configuration file.

➤ If an Operation element is defined in a test object configuration file with a
higher priority, the operation is added to the existing definition for the
class. If a conflict arises between Operation definitions in different files, the
definition in the file with the higher priority overrides (replaces) the
definition with the lower priority (the definitions are not merged).

Understanding the Test Object Configuration File

The test object configuration file contains information on test object classes,
methods, and properties and enables additional functionality that cannot
be implemented in the .NET Custom Server .DLL or Control Definition XML
files. The test object configuration file follows a defined XML schema and is
used in conjunction with the .NET Custom Server .DLL or Control
Definition XML files.

A test object configuration file can include:

➤ the name of the test object class and its attributes

➤ the icon to use for the test object class in the Keyword View, Step Generator,
Test Results, and object repository. (Optional. If not defined, the default test
object icon is used.)

Chapter 5 • Using Test Object Configuration Files

42

➤ the methods and properties for the test object class, including the following
information for each method and property:

➤ the arguments, including the argument type and direction

➤ whether the argument is mandatory, and, if not, its default value

➤ the description (shown as a tooltip in the Keyword View, Expert View,
and Step Generator)

➤ the documentation string (shown in the Documentation column of the
Keyword View and in the Step Generator)

➤ the return value type

➤ the test object method that is selected by default in the Keyword View and
Step Generator when a step is generated for a test object of this class

➤ the identification properties that are available for use in checkpoints

➤ the context-sensitive help topic to open when F1 is pressed on a selected
object, method, or property in the Keyword View and Expert View, or when
the Operation Help button is clicked for a specific method or property in the
Step Generator.

The following example shows parts of the SwfObject test object class
definition in a test object configuration file. The example shows that the
SwfObject is extended by adding a Set method. The method has one
argument (Percent, which defines the percentage to set in the control), and
it also has a documentation string that appears in the Keyword View.

</TypeInformation>
...

<ClassInfo Name="SwfObject"
...

<TypeInfo>
<Operation Name="Set" PropertyType="Method"

ExposureLevel="CommonUsed">
<Description>Set the percentage in the task bar</Description>
<Documentation><![CDATA[Set the %l %t to <Percent> percent.]]>

</Documentation>
<Argument Name="Percent" IsMandatory="true" Direction="In">

<Type VariantType="Integer"/>

Chapter 5 • Using Test Object Configuration Files

43

<Description>The percentage to set in the task bar.
</Description>

</Argument>
</Operation>

</TypeInfo>
</ClassInfo>

</TypeInformation>

For information on the structure and syntax of the test object configuration
file, refer to the QuickTest Test Object Schema Help (Help > QuickTest
Professional Help > QuickTest Advanced References > QuickTest Test Object
Schema).

Deploying the Test Object Configuration File

After you have created the test object configuration file, you must deploy it
by placing it in the correct location, so that the test object definitions are
available to QuickTest. Make sure that QuickTest is closed, and then place
the test object configuration files in the <QuickTest installation
folder>\dat\Extensibility\DotNet folder. If the QuickTest Add-in for Quality
Center is installed, you must also place the test object configuration files in
the <QuickTest Add-in for Quality Center installation
folder>\Dat\Extensibility\DotNet folder.

Each time you open QuickTest, it reads all of the test object configuration
files in this location and merges the information for each test object class
from the different files into a single test object definition.

Chapter 5 • Using Test Object Configuration Files

44

45

6
Configuring QuickTest to Use the Custom
Server

The QuickTest System Windows Forms Configuration File provides
QuickTest with all the information necessary to load your Custom Server
with the required configuration.

About Configuring QuickTest to Use the Custom Server

To instruct QuickTest to load Custom Servers and to pass the required
configuration, enter the information in the QuickTest System Windows
Forms Configuration File. The configuration file, SwfConfig.xml, is located
in the <QuickTest Professional installation path>\dat folder.

Each control is configured in a Control node in the file.

This chapter describes: On page:

About Configuring QuickTest to Use the Custom Server 45

Understanding the QuickTest System Windows Forms Configuration
File

46

Chapter 6 • Configuring QuickTest to Use the Custom Server

46

Understanding the QuickTest System Windows Forms
Configuration File

The structure of the SwfConfig.xml file is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<Controls>

<Control Type=" " MappedTo=”” >
<CustomRecord>

<Component>
<Context> </Context>
<DllName></DllName>
<TypeName></TypeName>

</Component>
</CustomRecord>
<CustomReplay>

<Component>
<Context></Context>
<DllName></DllName>
<TypeName></TypeName>

</Component>
</CustomReplay>
<Settings>

<Parameter Name=""> </Parameter>
</Settings>

</Control>
</Controls>

Configuration File Elements

➤ ?xml. The XML declaration, version="1.0" encoding="UTF-8”?, is required.

➤ Controls. The root element.

➤ Control. The information required to support a custom control.

Attributes:

➤ Type. The custom control’s full type including wrapping namespaces, for
example, System.Windows.Forms.CustomCheckBox.

Chapter 6 • Configuring QuickTest to Use the Custom Server

47

➤ MappedTo. Optional. A QuickTest test object class that has similar
behaviors your Custom Server will inherit, for example, SwfCheckBox or
SwfButton.

➤ Settings. This element is generally a collection of Parameter elements. It has
two uses. For .NET DLL Custom Servers, the element is optional.

The first use is to pass information for the internal use of your Custom
Server. This use is optional. You can use the Parameters for any purpose
appropriate to your application. You may also use a different structure—you
are not bound to a collection of Parameters. However, if you use a different
structure you must parse it yourself in code, whereas the collection of
Parameters structure has straightforward support in the API.

The second use is required when extended control support is implemented
with XML, and you must use the collection of Parameters structure. The full
path and name of the XML file containing the implementation of the
extended control support is passed in a Parameter where the Name attribute
is ConfigPath and the value of the element is the file path name.

➤ Parameter. A value to be passed to the Custom Server at run time.

➤ Name. The name of the Parameter.

➤ CustomRecord. The information required for the Test Record.

➤ CustomReplay. The information required for the Test Run.

The CustomRecord and CustomReplay nodes both contain a Component
node. Not all Component sub-elements apply to both processes.

➤ Component. The Custom Server component data.

➤ Context. The Custom Server run-time context and the coding option. There
are three options:

➤ AUT. The run-time context is the Application under test process. The
support is implemented as a .NET .DLL Custom Server.

➤ QTP. The run-time context is the QuickTest process. The support is
implemented as a .NET DLL Custom Server.

➤ AUT-XML. The run-time context is the Application under test process.
The support is implemented in an XML file.

Chapter 6 • Configuring QuickTest to Use the Custom Server

48

➤ DllName. The filename of the DLL in which the user’s class type is defined.
Applies to the .NET DLL coding option only. There are two formats for
identifying the assembly:

➤ The full path and file name.

➤ If the Custom Server assembly is installed in the global assembly cache
(GAC), pass the type name with the standard syntax, for example:

myQTCustomServer
or

myQTCustomServer, Version=1.0.1234.0
or

myQTCustomServer, Version=1.0.1234.0, Culture="en-US",
PublicKeyToken=b77a5c561934e089c

➤ TypeName. The name of the type created by the Custom Server, including
wrapping namespaces. Applies to the .NET DLL coding option only.

Example of a Configuration XML File

Following is an example of a file that configures QuickTest to recognize two
controls.

Support for the CustomMyListView.CustListView control is implemented in
a .NET DLL Custom Server. MyListView is mapped to the SwfListView test
object, and runs in the Application under test context. The Custom Server is
not installed in the GAC.

Support for the mySmileyControls.SmileyControl2 control is implemented
in an XML file.

<?xml version="1.0" encoding="UTF-8"?>
<Controls>

<Control
Type="MyCompany.WinControls.MyListView “
MappedTo="SwfListView" >

<CustomRecord>
<Component>

<Context>AUT</Context>
<DllName>C:\MyProducts\Bin\CustomMyList View.dll</DllName>

Chapter 6 • Configuring QuickTest to Use the Custom Server

49

<TypeName>CustomMyListView.CustListView</TypeName>
</Component>

</CustomRecord>
<CustomReplay>

<Component>
<Context>AUT</Context>
<DllName>C:\MyProducts\Bin\CustomMyList View.dll</DllName>
<TypeName>CustomMyListView.CustListView</TypeName>

</Component>
</CustomReplay>
<Settings>

<Parameter Name="sample name">sample value</Parameter>
</Settings>

</Control>

<Control Type="mySmileyControls.SmileyControl2">
<Settings>

<Parameter Name="ConfigPath">d:\Qtp\bin\ConfigSmiley.xml
</Parameter>

</Settings>
<CustomRecord>

<Component>
<Context>AUT-XML</Context>

</Component>
</CustomRecord>
<CustomReplay>

<Component>
<Context>AUT-XML</Context>

</Component>
</CustomReplay>

</Control>
</Controls>

Chapter 6 • Configuring QuickTest to Use the Custom Server

50

51

7
Tutorial - Step-by-Step Basic Example

In this tutorial, you will learn how to build a Custom Server for a Microsoft
TrackBar control that enables QuickTest Professional to record and run a
SetValue operation on the control.

This tutorial refers to Visual Studio .NET. However, you can use also Visual
Studio 2005 to build the Custom Server as described in this tutorial.

Creating a New Custom Server Project

The first step in creating support for the TrackBar control is to create a new
Custom Server project.

To create a new Custom Server project:

 1 Open Microsoft Visual Studio .NET.

This chapter describes: On page:

Creating a New Custom Server Project 51

Implementing Test Record Logic 55

Implementing Test Run Logic 57

Configuring QuickTest Professional 58

Testing the Custom Server 60

Understanding the TrackBarSrv.cs File 60

Chapter 7 • Tutorial - Step-by-Step Basic Example

52

 2 Select File > New > Project. The New Project dialog box opens.

 3 Specify the following settings:

➤ Select Visual C# Projects in the Project Types list.

➤ Select QuickTest CustomServer in the Templates pane.

➤ In the Name box, specify the project name QTCustServer.

➤ In the Location box, specify the location in which to save your project.

➤ Accept the rest of the default settings.

Chapter 7 • Tutorial - Step-by-Step Basic Example

53

 4 Click the OK button. The QuickTest Custom Server Settings wizard opens.

 5 In the Application Settings page, specify the following settings:

➤ In the Server class name box, enter TrackBarSrv.

➤ Select the Customize Record process check box.

➤ Select the Customize Run process check box.

➤ Accept the rest of the default settings.

Chapter 7 • Tutorial - Step-by-Step Basic Example

54

 6 Click Next. The XML Configuration Settings page opens.

 7 In the XML Configuration Settings page, specify the following settings:

➤ Make sure the Auto-generate the XML configuration segment check box
is selected.

➤ In the Customized Control type box, enter
System.Windows.Forms.TrackBar.

➤ Accept the rest of the default settings.

Chapter 7 • Tutorial - Step-by-Step Basic Example

55

 8 Click Finish. In the Class View window, you can see that the wizard created a
TrackBarSrv class derived from the CustomServerBase class and
ITrackBarSrvReplay interface.

Implementing Test Record Logic

You will now implement the logic that records a SetValue(X) command
when a ValueChanged event occurs, using an event handler function.

To implement the Test Record logic:

 1 Right-click the TrackBarSrv class name in the Class View window and select
Add > Add Method.

Chapter 7 • Tutorial - Step-by-Step Basic Example

56

The C# Add Method Wizard opens.

 2 Use the C# Add Method Wizard to add a new method with the following
signature:

public void OnValueChanged(object sender, EventArgs e) { }

Note: Alternatively, you can add the new method manually without using
the C# Add Method Wizard.

 3 Add the following implementation to the function we just added:

public void OnValueChanged(object sender, EventArgs e)
{
 System.Windows.Forms.TrackBar trackBar =
(System.Windows.Forms.TrackBar)sender;
 // get the new value
 int newValue = trackBar.Value;

Chapter 7 • Tutorial - Step-by-Step Basic Example

57

 // Record SetValue command to the test script
 RecordFunction("SetValue", RecordingMode.RECORD_SEND_LINE,
newValue);
}

 4 Register the OnValueChanged event handler for the ValueChanged event,
by adding the following code to the InitEventListener method:

public override void InitEventListener()
{
 Delegate e = new System.EventHandler(this.OnValueChanged);
 AddHandler("ValueChanged", e);
}

Implementing Test Run Logic

You will now implement a SetValue method for the test or business
component Test Run.

To implement the Test Run logic:

 1 Add the following method definition to the ITrackBarSrvReplay interface:

[ReplayInterface]
public interface ITrackBarSrvReplay
{
 void SetValue(int newValue);
}

 2 Add the following method implementation to the TrackBarSrv class:

public void SetValue(int newValue)
{
 System.Windows.Forms.TrackBar trackBar =
(System.Windows.Forms.TrackBar)SourceControl;
 trackBar.Value = newValue;
}

 3 Build your project.

Chapter 7 • Tutorial - Step-by-Step Basic Example

58

Note: You can see the full source code of the TrackBarSrv class in
“Understanding the TrackBarSrv.cs File” on page 60.

Configuring QuickTest Professional

Now that you have created the QuickTest Custom Server, you need to
configure QuickTest Professional to use this Custom Server when recording
and running tests on the TrackBar control.

To configure QuickTest Professional to use the Custom Server:

 1 In the Solution Explorer window, click the Configuration.XML file.

The following content should be displayed:

<!-- Merge this XML content into file "<QuickTest Professional>\dat\
SwfConfig.xml". -->
<Control Type="System.Windows.Forms.TrackBar">

<CustomRecord>
<Component>

<Context>AUT</Context>
<DllName>D:\Projects\QTCustServer\Bin\QTCustServer.dll

</DllName>
<TypeName>QTCustServer.TrackBarSrv</TypeName>

</Component>

Chapter 7 • Tutorial - Step-by-Step Basic Example

59

</CustomRecord>
<CustomReplay>

<Component>
<Context>AUT</Context>
<DllName>D:\Projects\QTCustServer\Bin\QTCustServer.dll

</DllName>
<TypeName>QTCustServer.TrackBarSrv</TypeName>

</Component>
</CustomReplay>
<!--<Settings>

 <Parameter Name="sample name">sample value</Parameter>
</Settings> -->

</Control>

 2 Select the <Control>…</Control> segment and select Edit > Copy from the
menu.

 3 Open the SwfConfig.xml file located in <QuickTest Professional installation
folder>\dat.

 4 Paste the <Control>…</Control> segment you copied from
Configuration.xml into SwfConfig.xml, under the <Controls> tag in
SwfConfig.xml. After you paste the segment, the SwfConfig.xml file should
look as follows:

<?xml version="1.0" encoding="UTF-8"?>
<Controls>

<Control Type="System.Windows.Forms.TrackBar">
<CustomRecord>

<Component>
<Context>AUT</Context>
<DllName>D:\Projects\QTCustServer\Bin\QTCustServer.dll

</DllName>
<TypeName>QTCustServer.TrackBarSrv</TypeName>

</Component>
</CustomRecord>
<CustomReplay>

<Component>
<Context>AUT</Context>
<DllName>D:\Projects\QTCustServer\Bin\QTCustServer.dll

</DllName>

Chapter 7 • Tutorial - Step-by-Step Basic Example

60

<TypeName>QTCustServer.TrackBarSrv</TypeName>
</Component>

</CustomReplay>
</Control>

</Controls>

 5 Make sure that the <DllName> elements contain the correct path to your
Custom Server DLL.

 6 Save the SwfConfig.xml file.

Testing the Custom Server

You can now check that QuickTest records and runs tests or components as
expected on the custom TrackBar control.

To test the Custom Server:

 1 Open QuickTest Professional with the .NET Add-in loaded.

 2 Start recording on a .NET application with a
System.Windows.Forms.TrackBar control.

 3 Click the TrackBar control. QuickTest should record commands such as:

SwfWindow("Form1").SwfObject("trackBar1").SetValue 2

 4 Run the test. The TrackBar control should receive the correct values.

Understanding the TrackBarSrv.cs File

Following is the full source code for the TrackBarSrv class.

using System;
using Mercury.QTP.CustomServer;

namespace QTCustServer
{

[ReplayInterface]
public interface ITrackBarSrvReplay
{

Chapter 7 • Tutorial - Step-by-Step Basic Example

61

void SetValue(int newValue);
}
public class TrackBarSrv:

CustomServerBase,
ITrackBarSrvReplay

{
public TrackBarSrv()
{
}

public override void InitEventListener()
{

Delegate e = new System.EventHandler(this.OnValueChanged);
AddHandler("ValueChanged", e);

}

public override void ReleaseEventListener()
{
}

public void OnValueChanged(object sender, EventArgs e)
{

System.Windows.Forms.TrackBar trackBar =
(System.Windows.Forms.TrackBar)sender;

int newValue = trackBar.Value;
RecordFunction("SetValue",

RecordingMode.RECORD_SEND_LINE,
newValue);

}

public void SetValue(int newValue)
{

System.Windows.Forms.TrackBar trackBar =
(System.Windows.Forms.TrackBar)SourceControl;

trackBar.Value = newValue;
}

}
}

Chapter 7 • Tutorial - Step-by-Step Basic Example

62

63

8
Tutorial - Advanced Example

In this tutorial, you will learn how to build a Custom Server for controls that
require more complex implementation solutions, so that QuickTest
Professional can record and run operations on these controls.

The explanations in this chapter assume that you are familiar with .NET
Extensibility concepts and already know how to implement a Custom
Server.

Toolbar Example

This example demonstrates how to implement .NET extensibility for the
Divelements Limited TD.Sandbar.Toolbar control.

You can view the full source code of the final ToolBarSrv.cs class
implementation in “Understanding the ToolBarSrv.cs File” on page 71.

Tip: You can download an evaluation copy of the TD.Sandbar.Toolbar
control from:
http://www.divil.co.uk/net/download.aspx?product=2&license=5.

This chapter describes: On page:

Toolbar Example 63

Understanding the ToolBarSrv.cs File 71

http://www.divil.co.uk/net/download.aspx?product=2&license=5

Chapter 8 • Tutorial - Advanced Example

64

The Toolbar control appears as follows:

The Toolbar control is comprised of a variety of objects, such as:

➤ ButtonItem objects, which represent buttons in the toolbar. ButtonItem
objects contain images and no text. Each ButtonItem object has a unique
tooltip.

➤ DropDownMenuItem objects, which represent drop-down menus in the
toolbar.

Both the ButtonItem object and the DropDownMenuItem object are
derived from the ToolbarItemBase object.

When you implement a Custom Server for a custom control, you want
QuickTest to support recording and replaying the user's actions on the
custom controls. When recording the test, you listen to the control's events
and handle the events to perform certain actions in order to add steps to the
QuickTest test. When running the test, you simulate (replay) the same
actions the user performed on that control.

For example, suppose you want to implement a user pressing a button on a
custom toolbar. Before doing so, you must learn the toolbar object, its
properties, and methods, and understand how you can use them to
implement the Custom Server.

ButtonItem object

DropDownMenuItem
object

ButtonItem tooltip

Chapter 8 • Tutorial - Advanced Example

65

Following are the SandBar ToolBar object's properties, methods, and events:

As you can see in the image above, the ToolBar object has a property called
Items that retrieves the collection of ToolbarItemBase objects assigned to
the ToolBar control. You can also see that the ToolBar control has an event
called ButtonClick. You can listen to the ButtonClick event to know when
a button in the toolbar is clicked. However, this event does not indicate
which specific button in the toolbar is clicked.

Toolbar
object

Items
property

ButtonClick
event

Chapter 8 • Tutorial - Advanced Example

66

Now expand the ButtonItem object and review its properties, methods, and
events:

As shown in the image above, the ButtonItem object is derived from the
ToolbarItemBase object. You can see that the ToolbarItemBase object has a
ToolTipText property, but does not have a Click event or method.

ToolbarItemBase
object

ButtonItem
object

ToolTipText
property

Chapter 8 • Tutorial - Advanced Example

67

When you look at the customized toolbar object, two possible
implementation problems arise:

Problem 1: When recording user actions, when you handle the
ButtonClick event, how can you recognize which button in the toolbar was
actually clicked?

Solution: All of the ToolBar object's events are ToolBarItemEventArgs
events that are derived from the EventArgs object:

The Item property indicates which toolbar item (button) raised the event.
Once you know which toolbar item raised the event, you can use the item’s
unique ToolTipText property to recognize which button was clicked and
add that to the QuickTest test.

ToolBarItemEventArgs
object

Item property

Chapter 8 • Tutorial - Advanced Example

68

To do this, enter the following code in the Record events handlers section of
the ToolBarSrv.cs file:

#region Record events handlers
private void oControl_ButtonClick(object sender,
TD.SandBar.ToolBarItemEventArgs e)
{

TD.SandBar.ToolBar oControl = (TD.SandBar.ToolBar)SourceControl;

//Add a step in the test for the test object with the ClickButton method and the
tooltip text as an argument

base.RecordFunction("ClickButton",
RecordingMode.RECORD_SEND_LINE, e.Item.ToolTipText);

}
#endregion

Now, each time you record a click on a button in the toolbar, a step is added
to the test for the toolbar test object with the ClickButton method and the
tooltip text of the button as its argument. For example:

SwfToolbar("MySandBar").ClickButton "Spelling and Grammar"

Chapter 8 • Tutorial - Advanced Example

69

Problem 2: When running the test (replaying the user’s actions), how do
you perform a step that contains a ClickButton method, when the
ButtonItem object does not have a Click method or event, and you know
only the ButtonItem object’s tooltip text?

Solution: The ToolbarItemBase object has a property called
ButtonBounds:

You can loop through all of the ToolbarItemBase objects until you find a
ToolbarItemBase objects that has the same tooltip text as the ButtonItem
object, find that ToolbarItemBase object’s rectangle boundaries, calculate
the middle of its boundaries, and click that point.

ToolbarItemBase
object

ButtonBounds
property

Chapter 8 • Tutorial - Advanced Example

70

To do this, enter the following code in the Replay interface implementation
section of the ToolBarSrv.cs file:

#region Replay interface implementation
public void ClickButton(string text)
{
TD.SandBar.ToolBar oControl = (TD.SandBar.ToolBar)SourceControl;

//Find the correct item in the toolbar according to its tooltip text.
for(int i=0; i<oControl.Items.Count; i++)
{

//Found the correct ButtonItem
if(oControl.Items[i].ToolTipText == text)
{

//Retrieve the rectangle of the button's boundaries and locate its center
System.Drawing.Rectangle oRect = oControl.Items[i].ButtonBounds;
int x = oRect.X + oRect.Width/2;
int y = oRect.Y + oRect.Height/2;

//Click the middle of the button item
base.MouseClick(x, y, MOUSE_BUTTON.LEFT_MOUSE_BUTTON);
break;

}
}

//Add the step to the report
base.ReplayReportStep("ClickButton",

EventStatus.EVENTSTATUS_GENERAL, text);
}
#endregion

Chapter 8 • Tutorial - Advanced Example

71

Understanding the ToolBarSrv.cs File

Following is the full source code for the ToolBarSrv.cs class, used to
implement QuickTest record and run support for the TD.Sandbar.Toolbar
control:

using System;
using Mercury.QTP.CustomServer;
//using TD.SandBar;

namespace ToolBar
{

[ReplayInterface]
public interface IToolBarSrvReplay
{

void ClickButton(string text);
}
/// <summary>
/// Summary description for ToolBarSrv.
/// </summary>
public class ToolBarSrv:

CustomServerBase,
IToolBarSrvReplay

{
// You shouldn't call Base class methods/properties at the constructor
// since its services are not initialized yet.
public ToolBarSrv()
{

//
// TODO: Add constructor logic here
//

}

#region IRecord override Methods
#region Wizard generated sample code (commented)
/// <summary>
/// To change Window messages filter, implement this method.
/// The default implementation is to get only the control's Windows

messages.

Chapter 8 • Tutorial - Advanced Example

72

/// </summary>
public override WND_MsgFilter GetWndMessageFilter()
{

return(WND_MsgFilter.WND_MSGS);
}

/*
/// <summary>
/// To catch Windows messages, you should implement this method.
/// Note that this method is called only if the CustomServer is running
/// under QuickTest process.
/// </summary>
public override RecordStatus OnMessage(ref Message tMsg)
{

// TODO: Add OnMessage implementation.
return RecordStatus.RECORD_HANDLED;

}
*/
#endregion
/// <summary>
///If you are extending the Record process, you should add your event

handlers
/// in order to listen to the control's events.
/// </summary>
public override void InitEventListener()
{

TD.SandBar.ToolBar oControl = (TD.SandBar.ToolBar)SourceControl;

oControl.ButtonClick += new
TD.SandBar.ToolBar.ButtonClickEventHandler(oControl_ButtonClick);
// AddHandler("ButtonClick", new
TD.SandBar.ToolBar.ButtonClickEventHandler(oControl_ButtonClick));

}

/// <summary>
/// At the end of the Record process, this method is called by QuickTest to

release
/// all the handlers the user added in the InitEventListener method.

Chapter 8 • Tutorial - Advanced Example

73

/// Note that handlers added via QuickTest methods are released by the
QuickTest infrastructure.

/// </summary>
public override void ReleaseEventListener()
{

TD.SandBar.ToolBar oControl = (TD.SandBar.ToolBar)SourceControl;

oControl.ButtonClick -= new
TD.SandBar.ToolBar.ButtonClickEventHandler(oControl_ButtonClick);

}

#endregion

#region Record events handlers
private void oControl_ButtonClick(object sender,

TD.SandBar.ToolBarItemEventArgs e)
{

TD.SandBar.ToolBar oControl = (TD.SandBar.ToolBar)SourceControl;

//Add a step in the test for the test object with the ClickButton method
and the tooltip text as an argument

base.RecordFunction("ClickButton",
RecordingMode.RECORD_SEND_LINE, e.Item.ToolTipText);

}
#endregion

#region Replay interface implementation
public void ClickButton(string text)
{
TD.SandBar.ToolBar oControl = (TD.SandBar.ToolBar)SourceControl;

//Find the correct item in the toolbar according to its tooltip text.
for(int i=0; i<oControl.Items.Count; i++)
{

//Found the correct ButtonItem
if(oControl.Items[i].ToolTipText == text)

Chapter 8 • Tutorial - Advanced Example

74

{
//Retrieve the rectangle of the button's boundaries and locate its center
System.Drawing.Rectangle oRect = oControl.Items[i].ButtonBounds;
int x = oRect.X + oRect.Width/2;
int y = oRect.Y + oRect.Height/2;

//Click the middle of the button item
base.MouseClick(x, y, MOUSE_BUTTON.LEFT_MOUSE_BUTTON);
break;

}
}

//Add the step to the report
base.ReplayReportStep("ClickButton",

EventStatus.EVENTSTATUS_GENERAL, text);
}
#endregion

}
}

75

A

API overview 27
Application under test run-time context 6,

26
Assistant classes 7, 26

C

C# project template
installing 9
uninstalling 12

coding options 5
Component, Configuration XML tag 47
Configuration XML file

example 48
configuration XML file 46
configuring the Custom Server 45
Context, Configuration XML tag 47
Control Definition XML file

example 35
explaining 32

control events 26
Control, Configuration XML tag 46
Controls, Configuration XML tag 46
conventions. See typographical conventions
Cross-Process methods 28
Custom Server 2, 4

configuring 45
installing template 9
mapping 8, 18, 24
uninstalling template 12

CustomAssistantBase class 26
Customization, Control Definition XML tag

33

customizing
Test Record 16
Test Run 17
XML configuration 17

CustomRecord, Configuration XML tag 47
CustomReplay, Configuration XML tag 47

D

DllName, Configuration XML tag 48
documentation updates xi

E

enabled, Event Control Definition XML tag
attribute 33

Event, Control Definition XML tag 33
Events, Control Definition XML tag 33
EventsListenerBase class 20

I

installation, requirements 10
installing Custom Server template 9
InstWizard.msi file 10
IRecord interface 19

K

Knowledge Base x

L

listening to control events 26

Index

Index

76

M

MappedTo, Control Configuration XML tag
attribute 47

mapping 8, 18, 24
Mercury Best Practices x
Mercury Customer Support Web site x
Mercury Home Page x
Method, Control Definition XML tag 34
MethodBody, Control Definition XML tag

34
methods

Cross-Process 28
Test Record 27
Test Record Callback 27
Test Run 27

Methods, Control Definition XML tag 34

N

name
Event Control Definition XML tag

attribute 33
Method Control Definition XML tag

attribute 34
Parameter Control Definition XML

tag attribute 34
RecordedCommand Control

Definition XML tag attribute 33
Name, Parameter Configuration XML tag

attribute 47
.NET DLL Custom Server

creating 14
introduction 13

.NET Windows Forms Spy 4

O

online documentation viii
online resources x

P

Parameter
Configuration XML tag 47
Record element Control Definition

XML tag 33

Run element Control Definition XML
tag 34

Parameters, Control Definition XML tag 34

Q

QuickTest Custom Server Wizard 16
QuickTest run-time context 6
QuickTest, configuring to use Custom Server

45
QuickTest Custom Server 10

R

Readme viii
Record

Control Definition XML tag 33
customizing 16
implementing with a .NET DLL 19

RecordedCommand, Control Definition
XML tag 33

Replay, Control Definition XML tag 34
ReplayInterface 25
requirements, installation 10
Run

customizing 17
implementing with a .NET DLL 24

run-time contexts 6
Application under test 6, 18
guidelines 7
QuickTest 6, 18

S

Settings, Configuration XML tag 47
SwfConfig.xml file 46
SwfObject 24
SwfObject test object 8

T

template
installing Custom Server 9
uninstalling Custom Server 12

test object mapping 8, 18, 24
test object methods, writing to the script 23

Index

77

Test Record
customizing 16
implementing with a .NET DLL 19

Test Record Callback methods 27
Test Record methods 27
Test Run

customizing 17
implementing with a .NET DLL 24

Test Run methods 27
tutorial 51
Type, Control Configuration XML tag

attribute 46
Type, Parameter Control Definition XML tag

attribute 34
TypeName, Configuration XML tag 48
typographical conventions xii

U

uninstalling Custom Server template 12
updates, documentation xi

X

XML configuration, customizing 17
XML Custom Server 31, 37
XML file

Configuration 48

Index

78

	Mercury QuickTest Professional .NET Add-in Extensibility Developer's Guide
	Table of Contents
	Welcome to This Guide
	How This Guide Is Organized
	Who Should Read This Guide
	QuickTest Professional Online Documentation
	Additional Online Resources
	Documentation Updates
	Typographical Conventions

	Introducing QuickTest Professional .NET Add-in Extensibility
	Understanding .NET Add-in Extensibility
	Understanding the Concept of Meaningful Behaviors

	Using the .NET Windows Forms Spy
	Understanding Coding Options: .NET DLL and XML
	Guidelines for Selecting a Coding Option

	Understanding Custom Server Run-Time Contexts
	Guidelines for Selecting the Custom Server Run-Time Context

	Understanding Test Object Mapping

	Installing the Custom Server C# Project Template
	Before You Install
	Running the Installation Program
	Uninstalling the Project Template

	Using a .NET DLL to Extend Support for a Custom Control
	About Using a .NET DLL to Extend Support for a Custom Control
	Creating a Custom Server
	Setting up the .NET Project

	Using the XML Configuration Segment
	Implementing Test Record for a Custom Control Using the .NET DLL
	Implementing the IRecord Interface
	Writing Test Object Methods to the Script

	Implementing Test Run for a Custom Control Using the .NET DLL
	Running Code under Application Under Test from the QuickTest Context
	API Overview
	Test Record Methods
	Test Record Callback Methods
	Test Run Methods
	Cross-Process Methods
	General Methods

	Using an XML File to Extend Support for a Custom Control
	About Using an XML File to Extend Support for a Custom Control
	Understanding the Control Definition XML File
	Control Definition File Elements

	Example of a Control Definition XML File

	Using Test Object Configuration Files
	About Using Test Object Configuration Files
	Guidelines for Implementing Test Object Configuration Files
	Understanding How QuickTest Merges Configuration Files

	Understanding the Test Object Configuration File
	Deploying the Test Object Configuration File

	Configuring QuickTest to Use the Custom Server
	About Configuring QuickTest to Use the Custom Server
	Understanding the QuickTest System Windows Forms Configuration File
	Configuration File Elements
	Example of a Configuration XML File

	Tutorial - Step-by-Step Basic Example
	Creating a New Custom Server Project
	Implementing Test Record Logic
	Implementing Test Run Logic
	Configuring QuickTest Professional
	Testing the Custom Server
	Understanding the TrackBarSrv.cs File

	Tutorial - Advanced Example
	Toolbar Example
	Understanding the ToolBarSrv.cs File

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

