




Mercury QuickTest Professional
Java™ Add-in

Guide
Version 9.1

Document Release Date: October 1, 2006

      



Mercury QuickTest Professional Java Add-in Guide, Version 9.1

This manual, and the accompanying software and other documentation, is protected by U.S. and 
international copyright laws, and may be used only in accordance with the accompanying license 
agreement. Features of the software, and of other products and services of Mercury Interactive 
Corporation, may be covered by one or more of the following patents: United States: 5,511,185; 
5,657,438; 5,701,139; 5,870,559; 5,958,008; 5,974,572; 6,137,782; 6,138,157; 6,144,962; 6,205,122; 
6,237,006; 6,341,310; 6,360,332, 6,449,739; 6,470,383; 6,477,483; 6,549,944; 6,560,564; 6,564,342; 
6,587,969; 6,631,408; 6,631,411; 6,633,912; 6,694,288; 6,738,813; 6,738,933; 6,754,701; 6,792,460 
and 6,810,494.  Australia: 763468 and 762554.  Other patents pending. All rights reserved.

Mercury, Mercury Interactive, the Mercury logo, the Mercury Interactive logo, LoadRunner, 
WinRunner, SiteScope and TestDirector are trademarks of Mercury Interactive Corporation and may 
be registered in certain jurisdictions.  The absence of a trademark from this list does not constitute a 
waiver of Mercury's intellectual property rights concerning that trademark.

All other company, brand and product names may be trademarks or registered trademarks of their 
respective holders.  Mercury disclaims any responsibility for specifying which marks are owned by 
which companies or which organizations.

Mercury provides links to external third-party Web sites to help you find supplemental information.  
Site content and availability may change without notice.  Mercury makes no representations or 
warranties whatsoever as to site content or availability. 

Mercury Interactive Corporation
379 North Whisman Road
Mountain View, CA 94043
Tel: (650) 603-5200
Toll Free: (800) TEST-911
Customer Support: (877) TEST-HLP
Fax: (650) 603-5300

©  1992 - 2006 Mercury Interactive Corporation, All rights reserved

If you have any comments or suggestions regarding this document, please send them by e-mail to 
documentation@mercury.com.

QTPJAVAGD9.1/01



iii

Table of Contents

Welcome to This Guide .........................................................................v
How This Guide Is Organized ..............................................................vi
Who Should Read This Guide .............................................................vii
QuickTest Professional Online Documentation ............................... viii
Additional Online Resources.................................................................x
Documentation Updates ......................................................................xi
Typographical Conventions............................................................... xii

PART I:  SETTING UP JAVA ADD-IN SUPPORT

Chapter 1: Installing the Java Add-in....................................................3
Before You Install ..................................................................................4
Understanding Java Add-in Dependencies and Conflicts ....................4
Running the Setup Program..................................................................5

Chapter 2: Activating Java Add-in Support ........................................15
Loading QuickTest with Java Add-in Support.....................................16
Loading QuickTest without Java Add-in Support ...............................18
Repairing and Uninstalling the Java Add-in .......................................19

PART II:  WORKING WITH THE JAVA ADD-IN

Chapter 3: Creating and Running Steps on Java Objects...................27
About Creating and Running Steps on Java Objects ..........................28
Understanding the Java Test Object Model ........................................29
Defining Java Testing Options ............................................................32
Defining Java Settings for Individual Tests and Components............39
Defining Active Screen Capture Options for Tests .............................43
Defining Record and Run Options for Tests .......................................45
Recording Tests and Components on Java Objects ............................49
Running Tests and Components on Java Applications 

and Applets .....................................................................................56



Table of Contents

iv

Chapter 4: Enhancing Your Java Test .................................................57
About Enhancing Your Java Test ........................................................58
Viewing the Full Object Hierarchy......................................................59
Checking Java Objects and Outputting Values...................................61
Using Java Objects, Methods, and Properties to Enhance 

Your Test .........................................................................................63

Chapter 5: Troubleshooting Testing Java Applets 
and Applications .............................................................................71

Identifying and Solving Common Problems and Solutions...............72
Checking Java Environment Variables Settings..................................74
Locating the Java Console...................................................................75
Running an Application or Applet with the Same Settings................78
Running the Java Add-in on Java 2, Java 5, and Java 6 

Environments .................................................................................78
Disabling Dynamic Transformation Support (Advanced) ..................80

Index....................................................................................................83



v

Welcome to This Guide

Welcome to the QuickTest Professional Java Add-in.

The QuickTest Professional Java Add-in enables you to create and run tests 
on Java applets and applications. You can create and run steps on Java 
objects in Internet Explorer, Netscape Browser, Mozilla Firefox, Java Web 
Start, Applet Viewer, and in stand-alone Java applications.

The Java Add-in records user operations on applets and applications, and on 
the standard Java objects within them. For information on supported Java 
toolkits and versions, refer to the Java Add-in Readme file. 

QuickTest provides customized Java test objects, methods, and properties 
that make tests and components simple to read, maintain, enhance, and 
parameterize, enabling both advanced and novice users to create 
sophisticated tests and components on Java applets and applications.
 

This chapter describes: On page:

How This Guide Is Organized vi

Who Should Read This Guide vii

QuickTest Professional Online Documentation viii

Additional Online Resources x

Documentation Updates xi

Typographical Conventions xii



Welcome

vi

How This Guide Is Organized

This guide explains everything you need to know to install the QuickTest 
Professional Java Add-in and to use QuickTest Professional to successfully 
test Java applets and applications. 

This guide should be used in conjunction with the QuickTest Professional 
User’s Guide and the QuickTest Professional Object Model Reference. In addition, 
the QuickTest Professional Java Add-in Extensibility Developer’s Guide explains 
how to create support for custom Java controls. All of these guides can be 
accessed online by choosing Help > QuickTest Professional Help from the 
QuickTest main window. 

This guide contains:

 Part I Setting Up Java Add-in Support

Details the process of setting up the QuickTest Professional Java Add-in, 
including:

➤ Installing the Java Add-in

➤ Activating Java Add-in Support

 Part II Working with the Java Add-in

Explains how to use the QuickTest Professional Java Add-in to test Java 
objects, including:

➤ Creating and Running Steps on Java Objects

➤ Enhancing Your Java Test

➤ Troubleshooting Testing Java Applets and Applications



Welcome

vii

Note: The information, examples, and screen captures in this guide focus 
specifically on working with QuickTest tests. However, much of the 
information applies equally to components.

Business components and scripted components are part of Mercury Business 
Process Testing, which utilizes a keyword-driven methodology for testing 
applications. For more information, refer to the QuickTest Professional User’s 
Guide and the QuickTest Professional for Business Process Testing User’s Guide.

Who Should Read This Guide

This guide is intended for QuickTest Professional users at all levels who want 
to use the QuickTest Professional Java Add-in to test Java applications. 

Readers should already have some understanding of functional testing 
concepts and processes, and know which aspects of their application they 
want to test.

Note: The Java Add-in takes advantage of commonly used QuickTest 
features such as the object repository, Keyword View, and checkpoints and 
output value steps to enable you to test your applet or application. You 
should have at least a basic understanding of these concepts before you 
begin working with the QuickTest Professional Java Add-in. 



Welcome

viii

QuickTest Professional Online Documentation

QuickTest Professional includes the following online documentation:

Readme provides the latest news and information about QuickTest. Choose 
Start > Programs > QuickTest Professional > Readme.

QuickTest Professional Installation Guide explains how to install and set up 
QuickTest. Choose Help > Printer-Friendly Documentation > Mercury 
QuickTest Professional Installation Guide.

QuickTest Professional Tutorial teaches you basic QuickTest skills and shows 
you how to design tests for your applications. Choose Help > QuickTest 
Professional Tutorial.

Product Feature Movies provide an overview and step-by-step instructions 
describing how to use selected QuickTest features. Choose Help > Product 
Feature Movies.

Printer-Friendly Documentation displays the complete documentation set in 
Adobe portable document format (PDF). Online books can be viewed and 
printed using Adobe Reader, which can be downloaded from the Adobe Web 
site (http://www.adobe.com). Choose Help > Printer-Friendly Documentation.

QuickTest Professional Help includes:

➤ What’s New in QuickTest describes the newest features, enhancements, 
and supported environments in the latest version of QuickTest.

➤ QuickTest User's Guide describes how to use QuickTest to test your 
application.

➤ QuickTest for Business Process Testing User's Guide provides step-by-step 
instructions for using QuickTest to create and manage assets for use with 
Business Process Testing.

➤ QuickTest Object Model describes QuickTest test objects, lists the 
methods and properties associated with each object, and provides syntax 
information and examples for each method and property.

http://www.adobe.com


Welcome

ix

➤ QuickTest Advanced References contains documentation for the 
following QuickTest COM and XML references:

• QuickTest Automation provides syntax, descriptive information, and 
examples for the automation objects, methods, and properties. It also 
contains a detailed overview to help you get started writing QuickTest 
automation scripts. The automation object model assists you in 
automating test management, by providing objects, methods and 
properties that enable you to control virtually every QuickTest feature 
and capability.

• QuickTest Test Results Schema documents the XML schema that 
enables you to customize your test results.

• QuickTest Test Object Schema documents the XML schema that 
enables you to extend test object support in different environments.

• QuickTest Object Repository Automation documents the Object 
Repository automation object model that enables you to manipulate 
QuickTest object repositories and their contents from outside of 
QuickTest.

➤ VBScript Reference contains Microsoft VBScript documentation, 
including VBScript, Script Runtime, and Windows Script Host.

Choose Help > QuickTest Professional Help. Online Help is also available 
from specific QuickTest windows and dialog boxes by clicking in the 
window and pressing F1. You can also view a description, syntax, and 
examples for a QuickTest test object, method, or property by placing the 
cursor on it and pressing F1.

Note: Your QuickTest Help may contain additional items relevant to any 
QuickTest add-ins you have installed. For more information, refer to the 
relevant add-in documentation.



Welcome

x

Additional Online Resources

Knowledge Base uses your default Web browser to open the Mercury 
Customer Support Web Site directly to the Knowledge Base landing page. 
Choose Help > Knowledge Base. The URL for this Web site is 
http://support.mercury.com/cgi-bin/portal/CSO/kbBrowse.jsp.

Customer Support Web Site uses your default Web browser to open the 
Mercury Customer Support Web site. This site enables you to browse the 
Mercury Support Knowledge Base and add your own articles. You can also 
post to and search user discussion forums, submit support requests, 
download patches and updated documentation, and more. Choose Help > 
Customer Support Web Site. The URL for this Web site is 
http://support.mercury.com. 

Send Feedback enables you to send online feedback about QuickTest to the 
product team. Choose Help > Send Feedback.

Mercury Home Page uses your default Web browser to access Mercury’s Web 
site. This site provides you with the most up-to-date information on 
Mercury and its products. This includes new software releases, seminars and 
trade shows, customer support, educational services, and more. Choose 
Help > Mercury Home Page. The URL for this Web site is 
http://www.mercury.com.

Mercury Best Practices contain guidelines for planning, creating, deploying, 
and managing a world-class IT environment. Mercury provides three types 
of best practices: Process Best Practices, Product Best Practices, and People 
Best Practices. Licensed customers of Mercury software can read and use the 
Mercury Best Practices available from the Customer Support site, 
http://support.mercury.com.

http://support.mercury.com/cgi-bin/portal/CSO/kbBrowse.jsp
http://support.mercury.com
http://www.mercury.com
http://support.mercury.com


Welcome

xi

Documentation Updates

Mercury is continually updating its product documentation with new 
information. You can download the latest version of this document from 
the Customer Support Web site (http://support.mercury.com).

To download updated documentation:

 1 In the Customer Support Web site, click the Documentation link.

 2 Under Please Select Product, select QuickTest Professional.

Note that if the required product does not appear in the list, you must add it 
to your customer profile. Click My Account to update your profile.

 3 Click Retrieve. The Documentation page opens and lists the documentation 
available for the current release and for previous releases. If a document was 
updated recently, Updated appears next to the document name.

 4 Click a document link to download the documentation.

http://support.mercury.com


Welcome

xii

Typographical Conventions

This guide uses the following typographical conventions:

UI Elements This style indicates the names of interface elements on 
which you perform actions, file names or paths, and 
other items that require emphasis. For example, “Click 
the Save button.”

Arguments This style indicates method, property, or function 
arguments and book titles. For example, “Refer to the 
Mercury User’s Guide.”

<Replace Value> Angle brackets enclose a part of a file path or URL 
address that should be replaced with an actual value. 
For example, <MyProduct installation folder>\bin.

Example This style is used for examples and text that is to be 
typed literally. For example, “Type Hello in the edit 
box.”

CTRL+C This style indicates keyboard keys. For example, “Press 
ENTER.”

Function_Name This style indicates method or function names. For 
example, “The wait_window statement has the 
following parameters:”

[ ] Square brackets enclose optional arguments.

{ } Curly brackets indicate that one of the enclosed values 
must be assigned to the current argument. 

... In a line of syntax, an ellipsis indicates that more items 
of the same format may be included. In a 
programming example, an ellipsis is used to indicate 
lines of a program that were intentionally omitted.

| A vertical bar indicates that one of the options 
separated by the bar should be selected.



Part I

Setting Up Java Add-in Support



2



3

1
Installing the Java Add-in

This chapter lists the pre-installation requirements and explains how to 
install the Java Add-in.

This chapter describes: On page:

Before You Install 4

Understanding Java Add-in Dependencies and Conflicts 4

Running the Setup Program 5



Part I • Setting Up Java Add-in Support

4

Before You Install

Before you begin to install the Java Add-in, review the system requirements 
listed below.

To work successfully with the Java Add-in, your system configuration should 
meet the requirements as specified for QuickTest Professional 9.1 (in the 
QuickTest Professional 9.1 Readme), plus the following add-in specific 
requirements:

Understanding Java Add-in Dependencies and Conflicts

The QuickTest Professional Java Add-in can be installed and run together 
with any other QuickTest Professional add-in (core or external). When 
testing Java applets in a Web browser, you must load the Web Add-in as well 
as the Java Add-in, and use the Web tab of the Record and Run Settings 
dialog box to specify your record and run preferences.

QuickTest Professional Java Add-in 9.1 is compatible with the WinRunner 
Java and/or Oracle Add-in 7.6 only. To work with the QuickTest Professional 
Java Add-in 9.1 and the WinRunner Java and/or Oracle Add-in 7.6 on the 
same computer, you must install the Java/Oracle patch for WinRunner 7.6 
(WR76DualAgentPatch.exe, located in the WR76DualAgentPatch folder on 
the QuickTest Professional Java Add-in 9.1 installation CD-ROM).

Prerequisites: QuickTest Professional 9.1.
(The QuickTest Professional Web Add-in must also be 
installed if you plan to test Java applets in a Web browser.)

Hard Disk Space: 77 MB of free hard disk space is required on the disk on 
which you want to install the Java Add-in, in addition to 
the space required for the QuickTest Professional 
installation. 

In addition, the disk on which Windows is installed 
(system disk) requires 115 MB of free hard disk space while 
the Java Add-in is being installed. After the installation is 
complete, 38 MB of this disk space is released (meaning 
that 77 MB of the system disk remains in use by QuickTest 
Professional). 



Setting Up Java Add-in Support • Installing the Java Add-in

5

When you install the QuickTest Professional Java Add-in 9.1, the Setup 
program checks whether the WinRunner Java and/or Oracle Add-in 7.6 are 
installed on the same computer. If either or both of these add-ins are 
installed, a message prompts you to install the Java/Oracle patch for 
WinRunner 7.6 after you finish the add-in installation. If you do not install 
this patch, you will not be able to use the WinRunner Java and/or Oracle 
Add-in on this computer.

After you install this patch, you can work with the QuickTest Professional 
Java Add-in 9.1 and the WinRunner Java and/or Oracle Add-in 7.6 on the 
same computer and also load them simultaneously.

Note: Do not install WinRunner Java or Oracle Add-in versions earlier than 
version 7.6 on a QuickTest Professional 9.1 computer.

Running the Setup Program

The Setup program installs add-in support in your QuickTest Professional 
installation folder for testing Java applications.

Notes:

To install the Java Add-in, you must be logged on with administrator 
privileges.

You must not run any other installation at the same time as you run the Java 
Add-in installation.

You must have QuickTest Professional 9.1 installed on your computer. Refer 
to the QuickTest Professional Installation Guide for information on installing 
QuickTest Professional.



Installing the Java Add-in

6

To install the Java Add-in:

 1 Close any instances of QuickTest Professional. It is also recommended to 
close all other open applications.

 2 Insert the CD-ROM into the CD-ROM drive.

➤ If the CD-ROM drive is on your local computer, the QuickTest 
Professional Java Add-in Setup window opens.

➤ If you are installing from a network drive, browse to it and double-click 
autorun.exe in the root folder of the CD-ROM. The QuickTest 
Professional Java Add-in Setup window opens.  



Setting Up Java Add-in Support • Installing the Java Add-in

7

The QuickTest Professional Java Add-in Setup window contains the 
following options:

➤ Add-in Setup. Starts the Java Add-in installation program.

➤ Product Information. Opens the product information site 
(http://www.mercury.com/us/products/quality-center/
functional-testing/quicktest-professional/).

➤ Readme. Opens the QuickTest Professional Java Add-in Readme file.

➤ Extensibility SDK Setup. Starts the Java Add-in Extensibility SDK 
installation program. For more information, refer to the QuickTest 
Professional Java Add-in Extensibility Developer’s Guide.

➤ Contact Mercury. Opens the contact information page on the Mercury 
Interactive Web site (http://www.mercury.com/us/company/corporate-
info/contact-us/).

➤ Support. Opens the Mercury Interactive Customer Support Web site 
(http://support.mercury.com).

➤ Browse CD. Displays the contents of the QuickTest Professional Java 
Add-in CD-ROM.

➤ Exit. Exits the Setup program.

 3 To start the Java Add-in Setup program, click Add-in Setup. The Java Add-in 
Setup program starts.

Note: The Setup program checks whether the WinRunner Java and/or 
Oracle Add-in 7.6 are installed on this computer. If either or both of these 
add-ins are installed, a message prompts you to install the Java/Oracle patch 
for WinRunner 7.6 (WR76DualAgentPatch.exe, located in the 
WR76DualAgentPatch folder on the QuickTest Professional Java Add-in 9.1 
installation CD-ROM) after you finish the add-in installation. If you choose 
not to install the patch, you will not be able to use the WinRunner Java 
and/or Oracle Add-in on this computer.

http://www-svca.mercuryinteractive.com/products/quicktestpro/" target="_blank
http://www.mercury.com/us/products/quality-center/functional-testing/quicktest-professional/
http://www.mercury.com/us/products/quality-center/functional-testing/quicktest-professional/
http://www.mercuryinteractive.com/contact_us" target="_blank
http://www.mercury.com/us/company/corporate-info/contact-us/
http://www.mercury.com/us/company/corporate-info/contact-us/
http://support.mercuryinteractive.com" target="_blank
http://support.mercury.com


Part I • Setting Up Java Add-in Support

8

 4 The License Agreement screen opens. Read the agreement.

To install QuickTest Professional add-in support for testing Java applets and 
applications, you must accept the terms of the license agreement by 
selecting the I accept the terms in the license agreement option and 
clicking Yes. If you click No, the Setup program closes.



Chapter 1 • Installing the Java Add-in

9

 5 In the Review Settings screen, review the installation settings you selected.  

To change your settings, click Back. To confirm the settings, click Next. The 
installation process begins.



Part I • Setting Up Java Add-in Support

10

 6 In the Customer Registration screen, you can specify whether to register 
your copy of the QuickTest Professional Java Add-in.  

If you register, you receive:

➤ access to the Mercury Interactive award-winning Customer Support Web 
site.

➤ notification of new product releases and upgrades.

➤ membership to the Mercury Interactive worldwide community of testers.

To register now, confirm that the Register now check box is selected. Click 
Next to proceed. Your browser opens to the Mercury Interactive Customer 
Support site: http://support.mercury.com. You can also choose to register at a 
later time by going directly to the Mercury Interactive Customer Support 
site.

Click Next to proceed.

http://support.mercury.com
http://support.mercuryinteractive.com


Chapter 1 • Installing the Java Add-in

11

 7 During the installation process, the Setup program checks whether there are 
any critical updates to be installed for the version of the Java Add-in you are 
installing. It also checks whether there are any critical updates to be 
installed for your version of QuickTest Professional and any other external 
add-ins that are installed on your computer.

If no critical updates are found, the installation continues with step 9.

If the Setup program finds any critical updates to be installed, the Select 
Updates screen opens.  

Choose one of the following options:

➤ Download critical updates. Downloads any critical updates to the 
specified destination folder. This option is selected by default.

➤ Install critical updates. Installs any downloaded critical updates. This 
option is selected by default.



Part I • Setting Up Java Add-in Support

12

Note: If the Setup program finds any critical updates to be installed, it is 
highly recommended to install them immediately. (You can also check for 
updates at a later time by choosing Start > Programs > QuickTest 
Professional > Check for Updates.)

A default download folder is displayed in the Destination Folder box. To 
select a different location to which to download the file, click Browse, 
choose a folder, and click OK.

Click Next to proceed. If you chose to download and (optionally) install 
critical updates, a list of all available critical updates opens. Otherwise, 
continue with step 9.  



Chapter 1 • Installing the Java Add-in

13

 8 Select the updates that you want to download and (optionally) install. Clear 
the updates that you do not want to download or install.

Click Next to proceed. QuickTest downloads the specified critical updates, 
according to the option you selected in step 7. If you chose to download and 
install the updates, they are installed at the end of the add-in installation 
process, after you restart your computer. (Note that you are always 
prompted to restart your computer if you choose to download and install 
critical updates.)

 9 If the screen prompts you to restart your computer, you can choose to 
restart your computer at a later time, but you must restart your computer 
before you use QuickTest Professional.

Note: If you are prompted to restart, it is strongly recommended that you do 
so as soon as possible. Delaying the system restart could result in 
unexpected system behavior.

If you are not prompted to restart, proceed to step 10. Otherwise, step 10 
occurs after the restart.



Part I • Setting Up Java Add-in Support

14

 10 The Setup Complete screen opens. If you want to open the QuickTest 
Professional Java Add-in Readme file at the end of the Setup process, select the 
View Readme file check box.  

Click Finish to complete the Setup program.

In the Readme file, you can view the latest technical and troubleshooting 
information for the Java Add-in. To open the Readme file at another time, 
choose Start > Programs > QuickTest Professional > Add-ins > Java Add-in 
Readme.



15

2
Activating Java Add-in Support

Before you can work with the QuickTest Professional Java Add-in, you must 
make sure that the Java Add-in is loaded. You can load QuickTest without 
add-in support for Java if you do not want to test Java applets and 
applications. You can also repair or uninstall your Java Add-in 
installation. 

This chapter describes: On page:

Loading QuickTest with Java Add-in Support 16

Loading QuickTest without Java Add-in Support 18

Repairing and Uninstalling the Java Add-in 19



Part I • Setting Up Java Add-in Support

16

Loading QuickTest with Java Add-in Support

You use the Add-in Manager to load support for testing Java applets and 
applications.

Notes: 

For optimal performance when testing Java applications, it is strongly 
recommended that you work with only the Java Add-in and Web Add-in 
loaded. Note that the QuickTest Professional Web Add-in does not need to 
be loaded when using the Java Add-in; it is required only if you are testing 
Java applets in a Web browser.

When testing applications that do not contain Java objects, it is strongly 
recommended that you do not load the Java Add-in.

To start QuickTest with add-in support for testing Java applications:

 1 Choose Start > Programs > QuickTest Professional > QuickTest Professional. 
The QuickTest Professional - Add-in Manager dialog box opens.

(If the Add-in Manager dialog box does not open, see “Displaying the 
Add-in Manager Dialog Box” on page 18.)



Chapter 2 • Activating Java Add-in Support

17

 2 In the add-in list, select Java (or select Java and Web if you plan to test Java 
applets in a Web browser). 

 3 Click OK.

For more information on the Add-in Manager dialog box, refer to the 
QuickTest Professional User’s Guide.



Part I • Setting Up Java Add-in Support

18

Displaying the Add-in Manager Dialog Box

You can set an option in QuickTest to determine whether the Add-in 
Manager opens when you open QuickTest, or whether it automatically loads 
the same add-ins that were loaded in the previous QuickTest session.

To instruct the Add-in Manager dialog box to open when you open 
QuickTest:

 1 Choose Start > Programs > QuickTest Professional > QuickTest Professional 
to start QuickTest.

 2 From the QuickTest menu, choose Tools > Options and click the General 
tab.

 3 Select Display Add-in Manager on startup.

 4 Click OK to close the Options dialog box.

 5 Close and reopen QuickTest.

 Loading QuickTest without Java Add-in Support

If you want to work with QuickTest without support for Java, you can load 
QuickTest without the Java Add-in.

To load QuickTest without add-in support for Java:

 1 Choose Start > Programs > QuickTest Professional > QuickTest Professional. 
The QuickTest Professional Add-in Manager dialog box opens. (If the Add-in 
Manager dialog box does not open, see “Displaying the Add-in Manager 
Dialog Box” above.)

 2 Clear the Java check box and click OK. QuickTest opens without add-in 
support for Java.



Chapter 2 • Activating Java Add-in Support

19

Repairing and Uninstalling the Java Add-in

You can repair a QuickTest Professional Java Add-in 9.1 installation that has 
become corrupted. In addition, you can uninstall the QuickTest Professional 
Java Add-in 9.1 without uninstalling QuickTest or any other add-ins.

Note: You can also uninstall the QuickTest Professional application entirely. 
If you uninstall QuickTest Professional, the uninstall program also removes 
all installed features, including any external add-ins that are installed. For 
more information on uninstalling QuickTest Professional, refer to the 
QuickTest Professional Installation Guide.

Repairing the Java Add-in Installation

Your QuickTest Professional Java Add-in 9.1 CD-ROM enables you to repair 
an existing Java Add-in 9.1 installation, by replacing any missing or 
damaged files from your previous Java Add-in installation. 

To repair your Java Add-in installation:

 1 Insert the QuickTest Professional Java Add-in CD-ROM into the CD-ROM 
drive. If the CD-ROM drive is on your local computer, the QuickTest 
Professional Java Add-in Setup window opens.

If the CD-ROM is in a network drive, double-click autorun.exe in the root 
folder of the CD-ROM. The QuickTest Professional Java Add-in Setup 
window opens.

Note: You must use the CD-ROM with the exact same version of the Java 
Add-in that you used for the original installation.



Part I • Setting Up Java Add-in Support

20

 2 Click Add-in Setup. The Welcome screen opens. 

 3 In the Welcome screen, select Repair and click Next.

The maintenance program repairs your QuickTest Professional Java Add-in 
installation.



Chapter 2 • Activating Java Add-in Support

21

 4 The Maintenance Complete screen may prompt you to restart your 
computer. If it does, you can choose to restart your computer at a later time, 
but you must restart your computer before you use QuickTest Professional.

Note: You can save any open files, but you should restart your computer as 
soon as possible. Delaying the system restart could result in unexpected 
system behavior.

 5 Click Finish to complete the repair process.

Uninstalling the Java Add-in

You can uninstall the Java Add-in using either the Add/Remove Programs 
option in the Windows Control Panel, or using the QuickTest Professional 
Java Add-in CD-ROM.

To uninstall the Java Add-in using the Add/Remove Programs option:

 1 Make sure that QuickTest is closed.

 2 Choose Start > Settings > Control Panel.

 3 Double-click the Add/Remove Programs option.

 4 In the Add/Remove Programs dialog box, select QuickTest Professional Java 
Add-in and then click Change/Remove.

 5 A message prompts you to confirm your decision to uninstall the QuickTest 
Professional Java Add-in. Click Yes to uninstall the Java Add-in. The 
uninstall program removes the Java Add-in from your computer. QuickTest 
Professional and any other installed add-ins remain on your computer.

Note: Clicking No keeps the Java Add-in installed on your computer.



Part I • Setting Up Java Add-in Support

22

 6 The Maintenance Complete screen may prompt you to restart your 
computer. If it does, you can choose to restart your computer at a later time, 
but you must restart your computer before you use QuickTest Professional.

Note: You can save any open files, but you should restart your computer as 
soon as possible. Delaying the system restart could result in unexpected 
system behavior.

 7 Click Finish to complete the uninstall process.

To uninstall the Java Add-in using the QuickTest Professional Java Add-in 
CD-ROM:

 1 Insert the QuickTest Professional Java Add-in CD-ROM into the CD-ROM 
drive. If the CD-ROM drive is on your local computer, the QuickTest 
Professional Java Add-in Setup window opens.

If the CD-ROM is in a network drive, double-click autorun.exe in the root 
folder of the CD-ROM. The QuickTest Professional Java Add-in Setup 
window opens.

Note: You must use the CD-ROM with the exact same version of the Java 
Add-in that you used for the original installation.



Chapter 2 • Activating Java Add-in Support

23

 2 Click Add-in Setup. The Welcome screen opens. 

 3 In the Welcome screen, select Remove and click Next.

 4 A message prompts you to confirm your decision to uninstall the QuickTest 
Professional Java Add-in. Click OK to uninstall the Java Add-in. The 
uninstall program removes the Java Add-in from your computer. QuickTest 
Professional and any other installed add-ins remain on your computer.

Note: Clicking Cancel keeps the Java Add-in installed on your computer and 
returns to the previous screen.



Part I • Setting Up Java Add-in Support

24

 5 The Maintenance Complete screen may prompt you to restart your 
computer. If it does, you can choose to restart your computer at a later time, 
but you must restart your computer before you use QuickTest Professional.

Note: You can save any open files, but you should restart your computer as 
soon as possible. Delaying the system restart could result in unexpected 
system behavior.

 6 Click Finish to complete the uninstall process.



Part II

Working with the Java Add-in



26



27

3
Creating and Running Steps on Java 
Objects

This chapter explains how to use QuickTest to set testing preferences and to 
record and run steps on Java applets and applications. The chapter assumes 
basic knowledge of QuickTest features and capabilities. For more 
information about working with QuickTest, refer to the QuickTest 
Professional User’s Guide. 

This chapter describes: On page:

About Creating and Running Steps on Java Objects 28

Understanding the Java Test Object Model 29

Defining Java Testing Options 32

Defining Java Settings for Individual Tests and Components 39

Defining Active Screen Capture Options for Tests 43

Defining Record and Run Options for Tests 45

Recording Tests and Components on Java Objects 49

Running Tests and Components on Java Applications and Applets 56



Part II • Working with the Java Add-in

28

About Creating and Running Steps on Java Objects

After installing the Java Add-in, Microsoft Internet Explorer, Netscape 
Browser, Mozilla Firefox, and other Java applications will always open with 
Mercury Java support active. You can confirm that your Java environment 
has opened properly by checking the Java console for a message similar to 
the following confirmation message: "Loading Mercury Interactive QuickTest 
Professional Java Support (version x.x.x.x) (<App> version x.x.x.x)."(where 
<App> is IE, IBM, or SUN). 

Before creating or running steps on Java objects, you can set Java-specific 
preferences in the Java tab of the Options dialog box and the Java tab of the 
Test Settings or Business Component Settings dialog box for the specific test 
or component, or in the Application Area Settings dialog box for all 
associated components.

When working with tests, you can also use the Active Screen tab of the 
Options dialog box to set additional preferences that control the way 
QuickTest captures information for Java objects in the Active Screen. 

Each time you begin recording or running a test, you can use the Java tab of 
the Record and Run Settings dialog box to instruct QuickTest to activate a 
specified Java application or applet. Alternatively, you can instruct 
QuickTest to record and run on any open Java application or applet. If you 
are running a test on an applet that uses Internet Explorer, Netscape 
Browser, or Mozilla Firefox, you can also use the Web tab of the Record and 
Run Settings dialog box to instruct QuickTest to open the relevant browser 
at the beginning of the run session.

When working with components, the Record and Run Settings dialog box is 
not available. Therefore, when you record or run a component on a Java 
application or applet, you must either open and connect to it manually, or 
create a step using the OpenApp operation or a user-defined function that 
instructs QuickTest to open and connect to the Java application or applet 
(using the SystemUtil utility object). For more information on working with 
components and user-defined functions, refer to the QuickTest Professional 
for Business Process Testing User’s Guide.



Chapter 3 • Creating and Running Steps on Java Objects

29

As you record on a Java application or applet, QuickTest inserts steps into 
your test or component that represent the operations you perform. The 
QuickTest Professional Java Add-in recognizes Java objects such as tree, edit, 
and table objects. It records these objects in relation to the data selected or 
entered, and to the object within its parent object.

Instead of recording, you can also instruct QuickTest to learn the objects in 
your application or applet. You do this by creating a repository of all of the 
relevant test objects. (You can use the Object Repository Manager’s Navigate 
and Learn or Add Objects options to create the object repository.) Then, you 
create each step by choosing the required object and operation (keyword), 
and then specifying the arguments (values) that apply to that step. This 
process is known as keyword-driven testing. If you are working with the 
SWT toolkit, you must use keyword-driven testing to create your test or 
component. Recording on SWT-based Java objects is not supported. For 
more information on QuickTest functionality, refer to the QuickTest 
Professional User’s Guide.

You run tests or components on Java applications or applets just as you 
would with any other QuickTest test or component. The test results tree 
displays the same icons for Java objects as those used in the Keyword View, 
and if you choose to save screen captures to the test results (Tools > 
Options > Run tab), the bottom right pane of the Test Results window 
displays the page captured during the run session. 

Understanding the Java Test Object Model

The test object model is the set of object types, or classes, that QuickTest 
uses to represent the objects in your application. Each test object class has a 
list of properties that can uniquely identify objects of that class and a set of 
relevant methods that QuickTest can perform during a run session. 

A test object is an object that QuickTest creates in the test or component to 
represent the actual object in your application and to store information 
about that object. This information, stored in the object repository, helps 
QuickTest identify and check the object during a run session.

A run-time object is the actual object in your Java applet or application on 
which methods are performed during a run session.



Part II • Working with the Java Add-in

30

When you perform an operation on your Java applet or application while 
recording a test or component, QuickTest:

➤ identifies the run-time Java object on which you performed the operation 
(method) and creates a corresponding test object.

➤ reads the current property values of the object in your application and stores 
them in the object repository as the test object’s identification property 
values. In addition, for tests, QuickTest stores other properties in the Active 
Screen data (depending on the capture level).

➤ chooses a unique name for the object, generally using the value of one of its 
prominent identification properties.

➤ records the operation (method) that you performed on the object, and 
displays the operation as a step in the Keyword View (for tests and 
components) and the Expert View (for tests only).

For example, suppose you select a radio button next to a specific flight class 
type in a dialog box in a Flight Reservation Java applet. This radio button 
has the text First Class attached to it.

QuickTest identifies the field as a JavaRadioButton object. It creates a 
JavaRadioButton test object with the name First Class and records the 
following property and value as the description for the First Class 
JavaRadioButton. 

It also records that you performed a Set method on the JavaRadioButton 
object.

QuickTest displays your step in the Keyword View like this (last row): 

QuickTest displays your step in the Expert View like this:

Window("Microsoft Internet Explorer").JavaApplet("FlightApplet").
JavaRadioButton("First Class").Set 



Chapter 3 • Creating and Running Steps on Java Objects

31

Note: When you select a step in the Keyword View or the Expert View in a 
test, the corresponding object is highlighted in the Active Screen. 

When you run a test or component, QuickTest identifies each object in your 
application by its test object class and its description—the set of 
identification properties and values used to uniquely identify the object. 

In the previous example, during the run session, QuickTest searches in the 
object repository for the JavaRadioButton object with the name First Class 
to look up its description. Based on the description it finds 
(attached text = First Class), QuickTest then looks in the application for a 
JavaRadioButton object with the attached text First Class. When it finds the 
object, it performs the Set method to change the field value to ON (selects 
the radio button).

Tip: You can view all the properties and methods of any object in your Java 
applet or application using the Object Spy (except for SWT-based JavaMenu 
objects). For more information on the Object Spy, refer to the QuickTest 
Professional User’s Guide.

For general information on the test object model and the object repository, 
refer to the relevant chapters in the QuickTest Professional User’s Guide.

For more information on Java test objects and methods, refer to the Java 
section in the QuickTest Professional Object Model Reference.



Part II • Working with the Java Add-in

32

Defining Java Testing Options

The Java tab of the Options dialog box (Tools > Options > Java tab) enables 
you to configure how QuickTest records and runs tests on Java applets or 
applications. 

The Java tab is available only when the Java or Oracle Add-ins are installed 
and loaded. If you are using the Oracle Add-in, and you add steps to your 
test for Java objects within your Oracle application (or your Oracle test was 
created using version 6.5 of the Oracle Add-in), the options in this 
tab/dialog box are relevant for the Java steps in your test.

For more information on the Options dialog box, refer to the QuickTest 
Professional User’s Guide.



Chapter 3 • Creating and Running Steps on Java Objects

33

The Java tab includes the following options:

Option Description

Record items mode Determines how QuickTest records operations on items in 
List box, Combo box, Tree view, and Tab control objects. 
Select one of the following options for each object:

• By name. Records operations on an item within the 
object (for example, selected list item or tab) according 
to the item’s name.

• By index. Records operations on an item within the 
object (for example, selected list item or tab) according 
to the item’s position within the Java object.

Default value: By name

Note: If you choose the By index option for Tree view, do 
not specify "#" as the default separator in the Tree view 
path separator option below.

Search radius for 
attached text

Sets the maximum distance in pixels to search for 
attached text.

Default value: 100

Note: This option is relevant only when the label_attr 
run-time property is unavailable.

Tree view path 
separator

Specifies the default separator used to separate entries in a 
path to a node of a Tree view control.

Default value: ; 

Possible value: Any single character 

Notes: If you specify more than one character, QuickTest 
treats each of the characters as a separator (but not both of 
them in sequence). For example, if you specify %$ for this 
option and a particular path contains 
MyNode$%MySubNode, then QuickTest treats the $ 
character (one of the two characters you specified) as the 
separator, but treats the % character as the first character 
of the second node.

If you choose the By index option for Tree View in the 
Record Items mode area above, do not specify "#" as the 
default separator.



Part II • Working with the Java Add-in

34

Understanding the Advanced Java Options Dialog Box

The Advanced Java Options dialog box (Tools > Options > Java tab > 
Advanced button) enables you to specify additional Java options. You can 
configure table record mode preferences, enable support for text 
checkpoints and text output values, and specify lists of controls.

Reset Resets the Java test settings to their default values.

Advanced Opens the Advanced Java Options dialog box. For more 
information, see “Understanding the Advanced Java 
Options Dialog Box”, below.

Option Description



Chapter 3 • Creating and Running Steps on Java Objects

35

Note: If you are using the Oracle Add-in, and you add steps to your test for 
Java objects within your Oracle application (or your Oracle test was created 
using version 6.5 of the Oracle Add-in), the options in this tab/dialog box 
are relevant for the Java steps in your test.

The Advanced Java Options dialog box includes the following options:

JavaTable record mode

Sets the record mode for table objects. Choose one of the following modes:

➤ Context Sensitive. Records operations on table objects in context-sensitive 
mode. 

➤ Analog. Records only low-level (analog) table methods: ClickCell, 
DoubleClickCell, and Drag. 

Default value: Context sensitive 

Note: This option corresponds to the Setting.Java("table_record_mode") 
variable.

Checkpoint and output value options

Sets preferences for checkpoint and output value steps on Java objects. It 
contains the following option:

➤ Enable text checkpoints and text output values

Enables you use the QuickTest text recognition mechanism to check or 
retrieve text values displayed in Java objects.

Default value: Disabled 



Part II • Working with the Java Add-in

36

Note: Because the text recognition mechanism is supported only for Java 
objects that meet very specific criteria, this option is disabled by default. For 
more information, see “Considerations for Using Text Checkpoints and Text 
Output Value Steps with Java Objects” on page 38.

Table cell controls

Sets preferences for the way that QuickTest identifies controls inside table 
cells. It includes the following options:

➤ Controls to identify as separate test objects

Specifies the list of controls that you want QuickTest to identify as separate 
test objects and not as part of a JavaTable object. Use this option to access 
methods that are specific to the object type or to otherwise improve the 
functionality of steps that QuickTest would normally record and run as 
operations on a JavaTable object. 

Notes: 

➤ This option is relevant for JTable Swing toolkit tables.

➤ Specify control class names separated by a space, tab, newline, or return 
character. Values are case sensitive.

➤ This option corresponds to the Setting.Java("table_internal_editors_list") 
variable.

For information on changing the settings for this option, see “Modifying 
Table Cell Controls Options” on page 37.

➤ Controls to treat as part of the JavaTable test object

Specifies the list of controls for which you want QuickTest to record and run 
JavaTable operations. Use this option to record and run JavaTable operations 
(such as SetCellData and Select) on controls that QuickTest would normally 
treat as separate test objects. 



Chapter 3 • Creating and Running Steps on Java Objects

37

Notes: 

➤ This option is relevant for JTable Swing toolkit tables. 

➤ Specify editor class names separated by a space, tab, newline, or return 
character. Values are case sensitive. 

➤ This option corresponds to the Setting.Java("table_external_editors_list") 
variable.

For information on changing the settings for this option, see “Modifying 
Table Cell Controls Options” on page 37.

Modifying Table Cell Controls Options

In the Advanced Java Options dialog box, you can specify a list of table cell 
controls that you want QuickTest to identify as separate test objects. You can 
also specify a list of table cell controls for which you want QuickTest to 
record and run JavaTable operations.

To modify a Table Cell Controls option:

 1 In the Advanced Options dialog box, click the relevant option once to 
highlight it.

 2 Click the option again or press F2 to open an edit box in which you can add 
or modify a list of controls.

 3 Change the value as necessary.

Note: Specify editor class names separated by a space, tab, newline, or return 
character. Values are case sensitive.

 4 When you finish editing the value, click another location in the dialog box 
to set the value.

 5 When you finish making all of the required changes in this dialog box, 
click OK and close the dialog box.



Part II • Working with the Java Add-in

38

Notes: 

➤ Your changes are not applied to the currently open test or component. To 
apply your changes, close your test or component and reopen it.

➤ You can restore the default settings in the Advanced Java Options dialog 
box by clicking the Reset button.

Considerations for Using Text Checkpoints and Text Output 
Value Steps with Java Objects

When working with tests, you can use checkpoints or output values to 
check that text in your Java application or applet displays correctly. Similar 
to many other supported environments, it is recommended to retrieve and 
check text from your Java applet or application by inserting a standard 
checkpoint or output value for the object containing the desired text, and 
selecting to check or output its text (or similar) identification property (for 
example, text, attached text, or label). 

If the object you want to work with does not have an appropriate 
identification property, or, if for any other reason, the above 
recommendation does not answer your needs (for example, the text before 
or after the selected text is important), you can consider inserting a 
QuickTest text checkpoint or text output value step for a Java object if it 
meets the following criteria:

➤ Text checkpoints and text output values do not work for custom drawn 
controls. 

➤ The object must draw text by overriding the paint() method and calling the 
standard graphics.drawString() method to draw text. For example, the 
object cannot use special drawing methods for writing text, such as using a 
method that can draw oval circles to draw the letter O.

➤ The object cannot use the double (image) buffering drawing technique.



Chapter 3 • Creating and Running Steps on Java Objects

39

Note: Because many Java objects do not answer these criteria, the text 
checkpoint and text output mechanism for Java objects is disabled by 
default. 

Defining Java Settings for Individual Tests and Components

You set Java test or component variables using the Test Settings, Business 
Component Settings, or Application Area Settings dialog box. (By default, 
the Business Component Settings dialog box displays the options selected in 
the Application Area Settings dialog box. However, you can modify the 
options in the Business Component Settings dialog box to suit your 
component’s needs.) 



Part II • Working with the Java Add-in

40

Note: The options shown in the Java tab of the Test Settings dialog box 
(above) are the same options that are available in the Application Area 
Settings dialog box and the Business Component Settings dialog box. 

The Java tab is available only when the Java or Oracle Add-ins are installed 
and loaded. If you are using the Oracle Add-in, and you add steps to your 
test for Java objects within your Oracle application (or your Oracle test was 
created using version 6.5 of the Oracle Add-in), the options in this 
tab/dialog box are relevant for the Java steps in your test. 

For more information on the Test Settings dialog box, refer to the QuickTest 
Professional User’s Guide. For more information on the Business Component 
Settings and Application Area Settings dialog boxes, refer to the QuickTest 
Professional for Business Process Testing User’s Guide.

The Java tab in the Test, Component, and Application Area Settings dialog 
boxes includes the following options:

When running JavaEdit.Set steps

Specifies how operations are performed on edit boxes during a test run. It is 
recommended not to modify these settings unless you fully understand Java 
key events and input methods, as well as the implications of sending or not 
sending these events. Note that JavaEdit.Set steps may fail during a run 
session if an incorrect value is used for these settings. You can set one or 
more of the following options:

➤ Send KEY_PRESSED event. Sends a KEY_PRESSED event to the object for 
every character from the input string. (Selected by default.)

This setting corresponds to the P value of the 
Setting.Java("edit_replay_mode") variable.

➤ Send KEY_TYPED event. Sends a KEY_TYPED event to the object for every 
character from the input string. (Selected by default.)

This setting corresponds to the T value of the 
Setting.Java("edit_replay_mode") variable.



Chapter 3 • Creating and Running Steps on Java Objects

41

➤ Send KEY_RELEASED event. Sends a KEY_RELEASED event to the object for 
every character from the input string. (Selected by default.)

This setting corresponds to the R value of the 
Setting.Java("edit_replay_mode") variable.

➤ Use Java API. Sends the setValue() method to set a value of the edit object.

This setting corresponds to the S value of the 
Setting.Java("edit_replay_mode") variable. 

➤ Send InputMethod event. Sends an InputMethod event to the object for 
every character from the input string. This event is used with Unicode 
applications (for example, for some non-English applications).

This setting corresponds to the I value of the 
Setting.Java("edit_replay_mode") variable. 

➤ Send FOCUS_LOST event at end. Generates a FOCUS_LOST event after 
running the step.

This setting corresponds to the F value of the 
Setting.Java("edit_replay_mode") variable.

For more information about AWT-based Java key events and input methods, 
refer to Java documentation at http://java.sun.com.

For more information about SWT-based Java key events, refer to Java 
documentation at http://www.eclipse.org/SWT. 

Characters to exclude

Instructs QuickTest to ignore the specified characters during a run session. 
This option is relevant only if the Use Java API check box is selected in the 
upper section of this dialog box, or if the value of the 
Setting.Java("edit_replay_mode") variable is set to S. List characters 
consecutively, without a separator.

Default value: \t\n\r

This setting corresponds to the Setting.Java("exclude_control_chars") 
variable.

http://java.sun.com/
http://www.eclipse.org/SWT


Part II • Working with the Java Add-in

42

Perform mouse/keyboard operations at device level for these 
selected methods

By default, QuickTest performs mouse operations at the context-sensitive 
level. You can use this option to select specific operations to perform using 
device-level replay. Device-level replay simulates mouse or key operations 
exactly as if they occur on the mouse or keyboard drivers. When a mouse 
action is simulated on device replay, the mouse pointer moves on the screen 
to the point where the action is to be performed during the run session. You 
can select from the following mouse and keyboard methods: 

➤ Click

➤ DoubleClick

➤ Type

➤ Drag / Drop

Default value: All check boxes are cleared.

This option corresponds to the Setting.Java("device_replay_mode") variable. 



Chapter 3 • Creating and Running Steps on Java Objects

43

Defining Active Screen Capture Options for Tests

When working with tests, the Active Screen tab of the Options dialog box 
(Tools > Options > Active Screen) enables you to specify active screen 
capture settings for all environments. The Custom Active Screen Capture 
Settings dialog box (Tools > Options > Active Screen > Custom Level) enables 
you to customize how QuickTest captures and saves Active Screen 
information for specific environments. 

In addition to the core options described in the QuickTest Professional User’s 
Guide, the Custom Active Screen Capture Settings dialog box contains the 
following Java-specific options:

➤ Capture level. You can specify for which Java objects identification 
properties are captured when a Java applet or application is captured for the 
Active Screen:

➤ Complete. Instructs QuickTest to save all identification properties of all 
objects in the application or applet’s open window/dialog box in the 
Active Screen of each step.



Part II • Working with the Java Add-in

44

➤ Partial. (Default) Instructs QuickTest to save all identification properties 
of all objects in the application or applet’s open window/dialog box in 
the Active Screen of the first step performed in that window, plus all 
properties of the recorded object only, in subsequent steps in the same 
window.

➤ Minimum. Instructs QuickTest to save all identification properties for the 
recorded object plus all identification properties for the parent objects in 
the recording hierarchy.

➤ None. Disables capture of Active Screen files for Java applets or 
applications.

Depending on your testing requirements, you can choose between different 
levels of Active Screen capture. However, you should take into consideration 
that the less information captured for the Active Screen, the better the 
performance. 

For example, if you choose Complete, you can add checkpoints to every test 
object that is displayed in any Active Screen capture, but it will take more 
time and use more disk space to record a single operation. Alternatively, if 
you choose Minimum or Partial, QuickTest can record faster and use less disk 
space, but there may be limitations on the operations you can perform from 
the Active Screen after recording.

➤ Disable capture of the following objects. Prevents QuickTest from capturing 
the data of steps performed on other objects for the selected test object types 
in the Active Screen. These objects will be visible in the Active Screen as 
images only. This setting is relevant only when the Complete or Minimal 
capture levels are selected.

Note: If you record on a specific test object, its identification properties will 
be captured even if the Disable capture of the following objects option is 
selected.

Default = JavaObject and JavaMenu selected (meaning that identification 
properties are not captured for these objects).



Chapter 3 • Creating and Running Steps on Java Objects

45

Tip: When you apply custom Active Screen settings, you override your 
previous capture-level settings with all of the settings in the Custom Active 
Screen Capture Settings dialog box. If you want to customize only specific 
settings, use the Reset to option to ensure that all other settings are using 
the capture-level setting you prefer and then modify the specific settings 
you need.

Defining Record and Run Options for Tests

You can use the Java tab of the Record and Run Settings dialog box 
(Automation > Record and Run Settings > Java tab) to instruct QuickTest to 
open your Java applet or application each time you begin a recording 
session, or to instruct QuickTest to record on any open Java application. 

Note: Components do not require specific record and run settings to work 
with Java applets and applications. To record a component, you need to first 
open the Java applet or application manually. Alternatively, you can include 
steps in your component that connect to the Java applet or application, for 
example, you can include a step that contains the OpenApp operation.

When you begin recording a new component, the Applications dialog box 
opens (unless you previously specified a Windows environment in the 
Application Area Settings or Business Component Settings dialog box). 
Simply close the dialog box to begin recording. For more information on the 
Applications tab and Applications dialog box, refer to the QuickTest 
Professional User’s Guide.



Part II • Working with the Java Add-in

46

If you do not modify the record and run settings before you begin recording, 
the Record and Run Settings dialog box opens automatically when you 
begin recording a new test (by clicking Record or choosing Automation > 
Record). You can also open this dialog box by choosing Automation > 
Record and Run Settings. 

Notes: 

➤ When testing Java applets in a Web browser, you must load both the Web 
Add-in and the Java Add-in. In this case, you use the Web tab of the 
Record and Run Settings dialog box to specify your record and run 
preferences. For more information on the Web tab, refer to the QuickTest 
Professional User’s Guide.

➤ The Java and Web tabs shown in the image above are available only 
when the corresponding add-ins are installed and loaded. If other 
add-in(s) are loaded, the corresponding tabs (if any) are also displayed. 



Chapter 3 • Creating and Running Steps on Java Objects

47

When you run the test, or if you begin a new recording session on an 
existing test, QuickTest automatically uses the existing record and run 
settings for the test and does not open the Record and Run Settings dialog 
box. However, it is important to confirm that the options in the Record and 
Run Settings Java tab are appropriate for the first step of your test before 
running it because you (or someone else) may have modified the Record and 
Run Settings dialog box manually in a prior record session.

The Java tab includes the following options:

Option Description

Record and run test on 
any open Java application

Instructs QuickTest to record and run the test on 
any open Java application or applet.

Open the following 
application when a record 
or run session begins

Instructs QuickTest to open a new Java application 
or applet using the specified application details.

Note: When working with a Java applet inside a 
browser, use the Web tab of the Record and Run 
dialog box to open the URL containing the applet.

Application details Defines details of the Java application on which to 
run the test:

• Executable file. Instructs QuickTest to open the 
specified executable or batch file.

• Command line. Instructs QuickTest to open the 
application from the specified command line.

• Working directory. Instructs QuickTest to run 
the specified executable file or command line 
from the specified directory. Make sure you 
specify the full directory path, for example, 
C:\Program Files\Java\jre1.6.0\bin. 

Note: If you define values for the EXEPATH_ENV, 
CMDLINE_ENV, and/or WORKDIR_ENV test 
environment variables, these values override the 
values in the Executable file, Command line, and 
Working Directory boxes of the Java tab during a 
run session. For more information, see “Defining 
Application Details Environment Variables for 
Tests” on page 48.



Part II • Working with the Java Add-in

48

Defining Application Details Environment Variables for Tests

You can use application details environment variables to specify the 
applications you want to use for recording and running your test. If you 
define any of these application details environment variables, they override 
the values in the Executable file, Command line, and Working directory 
boxes in the Java tab of the Record and Run Settings dialog box. For more 
information, see “Defining Record and Run Options for Tests” on page 45.

Use the variable names listed in the table below to define Java application 
details:

For more information on defining and working with environment variables, 
refer to the QuickTest Professional User’s Guide.

Optimizing Settings for Other Record and Run Settings Dialog 
Box Tabs

In addition to setting the appropriate settings in the Java tab (or Web tab for 
applets in browsers), you should confirm that the other tabs in the dialog 
box have the appropriate settings for your test. The following settings are 
recommended:

➤ Windows Applications tab. Choose Record and run on these applications 
(opened when a session begins) and confirm that the list of Windows 
applications is empty.

➤ Other tabs. (If displayed.) Choose the option to record and run on any open 
application (upper radio button of each tab).

Option Variable Name Description

Executable file EXEPATH_ENV The executable file or a batch 
file to open.

Command line CMDLINE_ENV The command line to use to 
open the file.

Working directory WORKDIR_ENV The folder to which the 
specified command line or 
executable file refers.



Chapter 3 • Creating and Running Steps on Java Objects

49

While these settings do not directly affect your record or run sessions when 
working with Java applets and applications, these settings prevent you from 
inadvertently recording operations performed on Windows applications 
(such as e-mail) during your recording session. These settings also prevent 
QuickTest from opening unnecessary applications when you record or run 
tests on Java applets and applications. 

For more information on the Record and Run Settings dialog box, refer to 
the QuickTest Professional User’s Guide.

Recording Tests and Components on Java Objects

When you record an operation on an applet, application, or Java object, 
QuickTest records the appropriate object icon next to the step in the 
Keyword View (for tests and components) and adds the relevant statement 
in the Expert View (for tests only). 

If you try to record an operation on an unsupported or custom Java object, 
QuickTest records a generic JavaObject.Click statement that includes the 
coordinates of the click and the mouse button (that is, left or right) that was 
clicked. You can create support for your custom object using the QuickTest 
Professional Java Add-in Extensibility. For more information, refer to the 
QuickTest Professional Java Add-in Extensibility Developer’s Guide.

Note: The way in which QuickTest records operations depends on the type 
of JTable cell editor in the table cell. For more information, see Recording on 
Table Objects.



Part II • Working with the Java Add-in

50

The QuickTest recorded hierarchy is composed of two or three levels of Java 
test objects. The top level is represented by the JavaApplet, JavaDialog, or 
JavaWindow object, as appropriate. The actual object on which you 
performed an operation may be recorded as a second or third level object. If 
the object is located directly in the top level object, it is recorded as a second 
level object (for example, JavaApplet.JavaButton). If a JavaDialog or 
JavaInternalFrame exists at the second level, then the object on which you 
performed the operation is recorded as a third level object (for example, 
JavaWindow.JavaDialog.JavaButton).

When testing applets in a browser, the two- or three-level hierarchy is 
recorded within the standard Web object hierarchy (for example, 
Browser.Page.JavaApplet.JavaTestObject.SubJavaTestObject).

Even though the object on which you record may be embedded in several 
levels of objects, the recorded hierarchy does not include these objects. For 
example, if the JavaList object on which you record is actually contained in 
several JPanel objects, which are all contained in a JavaWindow, the 
recorded hierarchy is only JavaWindow.JavaList.

For example, in a test, if you record a click on a Java check box, the Keyword 
View may be displayed as follows:

QuickTest records this step in the Expert View as:

Window("Microsoft Internet Explorer").JavaApplet("Periodic").
JavaCheckBox("Toggle").Set "ON"

In a component, if you record a click on this same Java check box, the 
Keyword View would displayed as follows:

You can view the recorded hierarchy of a test object in the object repository. 



Chapter 3 • Creating and Running Steps on Java Objects

51

For information on accessing the full hierarchy of a test object, see “Viewing 
the Full Object Hierarchy” on page 59.

Recording on Table Objects 

When you record an operation that changes the data in a cell of a Java table 
object, QuickTest generally records the end result of the data in the cell in 
the form of a JavaTable.SetCellData statement. (JavaTable.SetCellData is 
not used when the JavaTable record mode is set to Analog. For more 
information on JavaTable record mode, see “Understanding the Advanced 
Java Options Dialog Box” on page 34.)

Recording on Standard Cell Editors in Swing JTable Tables

The QuickTest Professional Java Add-in also provides built-in support for 
several standard Swing JTable cell editor types. This means that by default, 
QuickTest records operations on these standard cell editors in the same way 
as other table objects, using SetCellData statements. 

Recording on Custom Cell Editors in Swing JTable Tables

When a JTable contains a custom (non-standard) cell editor, the default 
SetCellData statement cannot be recorded. For example, if a cell contains 
both a check box and a button that opens a dialog box, then a SetCellData 
statement may not always provide an accurate description of the 
operation(s) performed inside the cell.

If you record an operation on a custom cell editor, QuickTest records a 
statement that reflects the operation you performed on the object inside of 
the cell. For example, if the cell editor contains a custom check box, 
QuickTest might record the following statement:

Browser("Periodic").Page("Periodic").JavaWindow("CoolJava").JavaDialog("Set
Options").JavaCheckBox("MyCheckBox").Set "ON"

instead of: 

Browser("Periodic").Page("Periodic").JavaWindow("CoolJava").JavaDialog("Set
Options").JavaTable("MyTable").SetCellData "ON" 



Part II • Working with the Java Add-in

52

Modifying the Default JTable Recording Behavior (Advanced)

In most cases, the default recording behavior for JTables (described in the 
preceding sections) works well and maximizes the readability of your test. 
However, if you are not satisfied with the value that QuickTest records for 
the SetCellData statement of a particular editor, you can set that editor to 
be recorded, like a custom cell editor, in terms of the operation performed 
on the object inside the cell. 

To do this, use the Table cell controls > Controls to identify as separate test 
objects option in the Advanced Java Options dialog box and specify specific 
cell editor type(s) that should always be treated as separate objects, and not 
as part of a JavaTable object. Alternatively, use a Setting.Java 
("table_internal_editors_list") statement. For more information, see 
“Understanding the Advanced Java Options Dialog Box” on page 34 and 
refer to the QuickTest Professional Object Model Reference.

Finding the Toolkit Class of a JTable Cell Editor

If you do not know the value of the toolkit class for an editor for use with 
the table_external_editors_list variable, you can find it either by using the 
Object Spy (tests and components), by running a short test in QuickTest to 
retrieve the value (tests only), or by creating a user-defined function and 
inserting it as a step (tests and components).

To find the toolkit class of a JTable cell editor using the Object Spy:

 1 Open the table and activate a cell in the cell editor column. For example, 
make sure the cursor is blinking inside an edit field or display the 
drop-down list of a combo box.

 2 With the appropriate cell activated, use the Object Spy to point to the active 
cell. For information on using the Object Spy, refer to the QuickTest 
Professional User’s Guide.



Chapter 3 • Creating and Running Steps on Java Objects

53

 3 Make sure the Properties tab of the Object Spy is displayed and select the 
Test Object Properties radio button.

 4 In the Properties column, scroll to toolkit class.

 5 In the Values column, select the value of the toolkit class. The value is 
displayed in the box below the Properties tab.



Part II • Working with the Java Add-in

54

 6 Copy and paste the value from the Object Spy to the Table cell controls > 
Controls to identify as separate test objects option or your Setting.Java 
("table_internal_editors_list") statement.

Finding the Toolkit Class of a JTable Editor by Running a QuickTest 
Script

For some cell editors, it is difficult or impossible to capture an activated cell 
with the Object Spy because the cell does not stay activated for a long 
enough period of time. For example, after a check box is selected or cleared, 
the cell is no longer active. If you need to find the toolkit class value to use 
for these types of cell editors, you can run a short test in QuickTest to 
retrieve the value. If you are working with components, you can create a 
user-defined function and insert it as a step.

When working with Java 2 JVMs, insert steps similar to the following 
example:

' Sample test for Java 2 JVMs to retrieve the toolkit class of a table cell editor
' that cannot be made continuously active 

Set table = JavaWindow("TableDemo").JavaTable("Left table").Object
Set JTableCS = table.mic_get_supp_class()
Set comp = JTableCS.getComponentAt(table, 0, 6) ‘row 0, col 6
MsgBox comp.getClass().getName()

' Set the value of TABLE_EXTERNAL_EDITORS_LIST
Setting.Java("TABLE_EXTERNAL_EDITORS_LIST") = 
comp.getClass().getName()



Chapter 3 • Creating and Running Steps on Java Objects

55

When working with Java 1 JVMs (JDK 1.1.x-based), insert steps similar to 
the following example:

' Sample test for Java 1.1.x JVMs to retrieve the toolkit class of a table cell editor
' that cannot be made continuously active 

Set table = JavaWindow("TableDemo").JavaTable("Left table").Object
Set editor = table.getCellEditor(0, 6)
Set comp = editor.getTableCellEditorComponent(table, 
editor.getCellEditorValue(), 0, 0, 6) 
MsgBox comp.getClass().getName()

' Set the value of TABLE_EXTERNAL_EDITORS_LIST
Setting.Java("TABLE_EXTERNAL_EDITORS_LIST") = 
comp.getClass().getName()

Recording on SWT-based Java Objects

If you record on a context menu in an SWT-based Java application, 
QuickTest identifies and records the object as a Standard Windows 
WinMenu (instead of a Java object), for example:

JavaWindow("Java - CustomClassReplayMethod").WinMenu("ContextMenu")
.Select "MyProject"

In general, recording is not supported for SWT-based Java objects. If you 
want to include an SWT-based Java object in a step, you must first add it to 
the object repository. You can then choose the required object and 
operation for the step, and specify the values for that step. For more 
information, refer to the QuickTest Professional User’s Guide.



Part II • Working with the Java Add-in

56

Running Tests and Components on Java Applications and 
Applets

You run tests and components containing Java test objects in the same way 
you run any other test or component. For tests, you can use the Record and 
Run Settings dialog box to instruct QuickTest to open your Java application 
or applet each time you begin running your test, or you can instruct 
QuickTest to run on open applications or applets. For components, you can 
open and connect to your Java application or applet manually, or you can 
insert a step using the OpenApp operation (or a user-defined function) to 
open the Java application or applet.

You can view the details of your run session in the Test Results window. The 
test results tree displays the same Java test object icons as those used in the 
Keyword View. If you choose to save screen captures to the test results 
(Tools > Options > Run tab), the bottom right pane of the Test Results 
window displays the page captured during the run session. The 
corresponding Java object is highlighted in the captured screen as you move 
through each step in the test results tree.

For more information on running tests and components, and analyzing the 
results, refer to the QuickTest Professional User’s Guide.



57

4
Enhancing Your Java Test

After you create your test, you can enhance it by adding checkpoints and 
outputting values, parameterizing values, and inserting Java objects, 
methods, and properties into your test.

Note: Most of the features described in this chapter are relevant only for 
tests (and scripted components). For information on the features that are 
available when working with business components, refer to the QuickTest 
Professional for Business Process Testing User’s Guide.

This chapter describes: On page:

About Enhancing Your Java Test 58

Viewing the Full Object Hierarchy 59

Checking Java Objects and Outputting Values 61

Using Java Objects, Methods, and Properties to Enhance Your Test 63



Part II • Working with the Java Add-in

58

About Enhancing Your Java Test

After you create a test, you can use a variety of options to enhance it. This 
section describes some of the options you can use to create comprehensive 
tests for your Java application or applet.

Note: Checkpoints and output values are not available for business 
components. 

➤ You can add checkpoints to your test to check that the actual Java objects in 
your application match expectations. A checkpoint is a step in your test that 
compares actual values during a run session with expected values, which are 
stored in your test. This enables you to identify whether or not your Java 
application or applet is functioning correctly. 

For example, you can create a checkpoint on a JavaButton object to make 
sure the button is not enabled before a particular step (such as selecting a 
check box that enables a button) and another checkpoint to confirm that 
the same button is enabled after that step is performed. For more 
information about checkpoints, see “Checking Java Objects and Outputting 
Values” on page 61.

The results of the checkpoint can be viewed in the QuickTest Test Results 
window. For more information on the Test Results window, refer to the 
QuickTest Professional User’s Guide.

➤ You can retrieve values from your application during the test run and store 
them as output values. You can subsequently use these values as input 
parameters in your test. For more information about output values, see 
“Checking Java Objects and Outputting Values” on page 61.

➤ You can parameterize steps to replace fixed values with values from an 
external source during your run session. The values can come from a data 
table, environment variables that you define, or values that QuickTest 
generates during the run session. For more information about 
parameterizing tests, refer to the QuickTest Professional User’s Guide.



Chapter 4 • Enhancing Your Java Test

59

➤ You can specify test or action parameters to pass values into and from your 
test, and between actions in your test. For more information, refer to the 
QuickTest Professional User’s Guide. 

Note: You can pass data between components using component parameters. 
You can pass data within the steps of the current component using local 
parameters. For more information, refer to the QuickTest Professional for 
Business Process Testing User’s Guide.

➤ You can insert statements containing Java test object methods and 
properties in the Keyword View, in the Expert View, or using the Step 
Generator (Insert > Step > Step Generator). This enables you to include 
other operations that may not have been added while recording, such as 
retrieving property values, checking that objects exist, and checking other 
elements of your application. For more information about Java test object 
methods and properties, see “Using Java Objects, Methods, and Properties to 
Enhance Your Test” on page 63 and the Java section of the QuickTest 
Professional Object Model Reference.

Viewing the Full Object Hierarchy

The Java Add-in enables you to view the full object hierarchy of each of the 
objects in your application in the Object Spy and Object Selection dialog 
boxes. In contrast to the recorded object hierarchy, the full object hierarchy 
shows you all of the parent objects associated with the clicked locations 
and, in some cases, the child objects of the clicked object. 

The full object hierarchy enables you to view associated methods and 
properties of non-recorded objects in the Object Spy. When working with 
tests, you can also access non-recorded objects from the Object Selection 
dialog box that opens when using the Step Generator or when inserting a 
checkpoint or output value step during a recording session. 



Part II • Working with the Java Add-in

60

The Object Spy and Object Selection dialog boxes enable you to insert 
statements or perform operations even for elements of an object (class 
components) that are not recorded, such as java.awt.Component. 
For example, you can access the edit box, drop-down list, and button 
elements of a combo box.

Notes: 

➤ The bottommost object in the Object Selection dialog box hierarchy may 
be a child of the object you selected using the pointing hand mechanism. 
Therefore, when you insert a checkpoint, output value, or method on an 
object while recording, make sure that you select the required object in 
the Object Selection dialog box.

➤ The Active Screen captures only the recorded object hierarchy. Therefore 
you cannot view the full object hierarchy in the Object Selection dialog 
box when inserting steps from the Active Screen.

For more information on the Object Spy and Object Selection dialog boxes, 
refer to the QuickTest Professional User’s Guide.

Note: You cannot add SWT-based JavaMenu objects directly to an object 
repository using the Add Objects to Local button in the Object Repository 
window or the Add Objects button in the Object Repository Manager. If you 
want to add an SWT-based JavaMenu object to the object repository, you 
can use the Add Objects or Add Objects to Local button to add its parent 
object and then select to add the parent object together with its 
descendants. 



Chapter 4 • Enhancing Your Java Test

61

Identifying Java Objects in the Object Spy or Object Selection 
Dialog Box

The Object Spy and Object Selection dialog boxes display the name of each 
object in the hierarchy with an icon that shows the object class. The 
following is a list of Java-specific test object classes and icons:

Note: The Object Spy is not supported for SWT-based JavaMenu objects.

Checking Java Objects and Outputting Values

After you record a test, you can use a variety or options to enhance it. The 
Java Add-in provides a variety of checkpoint verifications to ensure that 
your Java applet or application works as expected. You can check object 
property values, table cell content, and the external appearance of any 
object or area in your applet or application. You can also output property or 
text values from the objects in your Java application or applet for use later in 
your test.

Icon Test Object Class Icon Test Object Class

JavaApplet JavaRadioButton

JavaButton JavaSlider

JavaCheckBox JavaSpin

JavaDialog JavaStaticText

JavaEdit JavaTab

JavaInternalFrame JavaTable

JavaList JavaToolbar

JavaMenu JavaTree

JavaObject JavaWindow



Part II • Working with the Java Add-in

62

You use checkpoints and output values for Java objects similar to the way 
you check or output the values for any other object. The following 
checkpoints and output values are supported when testing Java objects:

➤ Standard checkpoints check the property values of an object in your Java 
application or applet. You can also insert a standard output value step to 
retrieve object property values. 

➤ Table checkpoints check information within a table in your Java application 
or applet. You can also create a table output value from the contents of a 
table cell.

➤ Bitmap checkpoints check an area of your Java application or applet as a 
bitmap. 

➤ Text checkpoints check that a text string is displayed in the appropriate 
place in your Java applet or application. You can also create a text output 
value from a text string. 

Note: Because text checkpoints and text output values are supported only 
for Java objects that meet certain criteria, these features are disabled for Java 
objects by default. For more information, see “Considerations for Using Text 
Checkpoints and Text Output Value Steps with Java Objects” on page 38.

For more information about checkpoints and output values, refer to the 
QuickTest Professional User’s Guide.



Chapter 4 • Enhancing Your Java Test

63

Using Java Objects, Methods, and Properties to Enhance 
Your Test

A test consists of statements coded in Microsoft VBScript. These statements 
are composed of objects, methods, and/or properties that instruct QuickTest 
to perform operations or retrieve information. When you record, these 
statements are generated automatically in response to input to the 
application. You can add non-recordable functionality and otherwise 
enhance your test by adding and modifying statements manually in the 
Keyword View, Expert View, or using the Step Generator. You can mix 
recorded and programmed statements in the same test.

After you record a basic test and enhance it with checkpoints, parameters, 
and output values, you may also want to add statements containing test 
object methods using the Step Generator (Insert > Step Generator). You can 
also enter VBScript programming statements in the Expert View. This 
enables you to include operations in your test that you did not, or could 
not, add while recording. These can include retrieving property values, 
checking that objects exist, enumerating objects, and checking other 
elements of your application.

The Java Add-in supports IntelliSense and statement completion in the 
Expert View. The Java Add-in also supports generating statements that 
access run-time methods and properties in the Step Generator.

You can use Java test object identification property values to confirm that 
objects in your application look and behave as expected. In addition to 
checking property values using standard checkpoints, or you can retrieve 
the values of identification properties during the run session using the 
GetROProperty or GetROProperties methods. 

Tip: You can use the Object Spy to view all identification properties for any 
Java test object (except for SWT-based JavaMenu objects).

For more information about the Keyword View, Expert View, and Step 
Generator, refer to the QuickTest Professional User’s Guide. 



Part II • Working with the Java Add-in

64

For detailed information, syntax, and examples of all test object methods 
and properties, refer to the Java section of the QuickTest Professional Object 
Model Reference.

Activating Methods Associated with a Java Object

In addition to the Java-specific test objects and methods, you can also use 
the Object property to activate a protected, private, or public Java method 
for any Java object. The Object property is available for all Java objects.

Note: When working with the Microsoft Internet Explorer Virtual Machine, 
you can activate only public methods using the Object property. 

If you are not sure which methods your object uses or which arguments you 
need to send to the method, you can use the Object Spy to view the 
run-time methods of any object in your applet or application (except for 
SWT-based JavaMenu objects). For more information, refer to the QuickTest 
Professional User’s Guide.

Activating a method for a Java object has the following syntax:

JavaTestObject.Object.Method_to_activate( )

For example, suppose the getBounds method is supported for your 
JavaButton. To activate the getBounds method, insert the following 
statement into your test script:

Set rect=Browser("Browser").Page("PushButtonDemo").JavaApplet
("pushbutton.html").JavaButton("Enter").Object.getBounds()

By storing the Java object returned from a prior Object property statement 
in an object reference, you can later use that object to activate its methods. 
You activate the methods of a returned object directly (without using the 
Object property).



Chapter 4 • Enhancing Your Java Test

65

For example, you can use the following statement to return the BtnObj:

Set BtnObj = Browser("Flight Reservation").Page("Flight Reservation").
JavaApplet("FlightLogin").JavaButton("OK").Object

Then you can invoke the BtnObj’s getBounds method, store the returned 
rectangle, and invoke the returned rectangle’s toString() method.

Set Rect = BtnObj.getBounds()
MsgBox Rect.toString()

Note: A recommended alternative to using the Object property is to extend 
QuickTest support for the required Java object using QuickTest Java Add-in 
Extensibility. For more information, refer to the QuickTest Professional Java 
Add-in Extensibility Developer’s Guide.

Setting and Retrieving Java Object Properties

You can set or retrieve the value of any Java object using the Object 
property. If you are not sure which properties your object has, you can use 
the Object Spy to view the run-time properties of any object in your applet 
or application (except for SWT-based JavaMenu objects).

Note: When working with the Microsoft Internet Explorer Virtual Machine, 
you can set and retrieve only public properties using the Object property.

Setting the value of a property for a Java object has the following syntax:

JavaTestObject.Object.Property=Value

For example, suppose the label property is supported for your JavaButton. To 
set a new value for this property, insert the following statement in your 
script:

Browser("Browser").Page("PushButtonDemo").JavaApplet("pushbutton.html"). 
JavaButton("Enter").Object.label = "Click me"



Part II • Working with the Java Add-in

66

Retrieving the value of a property for a Java object has the following syntax:

val=JavaTestObject.Object.Property

or

Set val=JavaTestObject.Object.Property

Alternatively, suppose the height property is supported for your JavaButton. 
To retrieve a value for this property, insert the following statement in your 
script:

height= 
Browser("Browser").Page("PushButtonDemo").JavaApplet("pushbutton.html"). 
JavaButton("Enter").Object.height

The Object property is also useful for checking the value of properties that 
are not available using a standard Java checkpoint.

The following example uses the Object property to access a JavaButton 
object, retrieve its name and size, and display this information in message 
boxes.

set btnObj = Browser("Java Examples").Page("Java Examples").
Frame("MAIN").JavaApplet("PushButtonAWTApplet").
JavaButton("Text button").Object
msgbox btnObj.label
msgbox btnObj.width
msgbox btnObj.height

Creating Objects in Your Applet or Application (Advanced)

You can use the CreateObject method to create an instance of any Java 
object within your applet or application. The CreateObject method returns 
an object reference to the newly created Java object.

The CreateObject method has the following syntax:

JavaTestObject.CreateObject( ClassName, [consArg1 , ... , consArgX] ) 

The ClassName argument is the Java class name. consArg1...consArgX are the 
required arguments for that object constructor.



Chapter 4 • Enhancing Your Java Test

67

You can activate the methods of an object you create in the same way as you 
would activate the methods of any returned object from a prior call. Because 
the CreateObject method returns an object reference, there is no need to 
use the Object property when activating methods of the created object.

For example, you can use the CreateObject method to create a rectangle 
object. The return value is an object reference.

Set Rect = 
Browser("Periodic").Page("Periodic").JavaApplet("Periodic").JavaObject
("Panel").CreateObject ("java.awt.Rectangle", 10, 20)

Note: The CreateObject method can be performed on any Java test object. 
The Java test object serves as an anchor object. The class loader of the 
anchor object is used to load the class of the newly created Java object.

It is recommended to use the CreateObject method on a Java test object 
from the same toolkit as the object you want to create. For example, to 
create a Swing/JFC object, use the CreateObject method on an existing 
Swing/JFC Java test object.

Working with Static Members

You can invoke any static method, or you can set or retrieve the value of any 
static property of a Java class using the GetStatics method. 

The GetStatics method has the following syntax:

JavaTestObject.GetStatics(ClassName)

GetStatics returns a reference to an object that can access static members of 
the specified class. The GetStatics method must be invoked on a Java test 
object that serves as an anchor object. Note that it is the class loader of the 
anchor object that is used to load the class specified as a parameter of the 
GetStatics method.



Part II • Working with the Java Add-in

68

For example, to invoke the gc method of class.java.lang.System, which runs 
the garbage collector on the application, you can insert a statement similar 
to the following:

Browser("Browser").Page("Page").JavaApplet("mybuttonapplet.htm"). 
JavaObject("MyButton").GetStatics("java.lang.System").gc

To retrieve the value of the out property of the java.lang.System class, you 
can insert a statement similar to the following:

Set OutStream= 
Browser("Browser").Page("Page").JavaApplet("mybuttonapplet.htm"). 
JavaObject("MyButton").GetStatics("java.lang.System").out

To print a message to the Java console, you can insert a statement similar to 
the following:

Set OutStream= 
Browser("Browser").Page("Page").JavaApplet("mybuttonapplet.htm"). 
JavaObject("MyButton").GetStatics("java.lang.System").out
OutStream.println "Hello, World!"

Firing Java Events

You can simulate an event on a Java object during a run session with the 
FireEvent and FireEventEx methods. The FireEvent method simulates an 
event on a Java object using one of several pre-defined event constants (refer 
to the Java section of the QuickTest Professional Object Model Reference for a 
complete list). If the list of pre-defined constants does not cover the event 
you want to fire, you can use the FireEventEx method to fire any Java 
event. 

The FireEvent method has the following syntax:

JavaObjectName.FireEvent ( EventType [, EventParam(s)] )

The FireEventEx method has the following syntax:

JavaObjectName.FireEventEx ( JavaClassName, EventID [, EventParam(s)] )



Chapter 4 • Enhancing Your Java Test

69

For example, you can use the FireEvent method to fire a MouseClick event 
on the JavaObject called MyButton_0.

Browser("Browser").Page("Page").Applet("mybuttonapplet.htm").JavaObject
("MyButton_0").FireEvent micMouseClick, 0, "BUTTON1_MASK", 4, 4, 1, "OFF":

Alternatively, you can use the FireEventEx method to fire the same event as 
follows:

Browser("Browser").Page("Page").Applet("mybuttonapplet.htm").JavaObject
("MyButton_0").FireEventEx "java.awt.event.MouseEvent", 
"MOUSE_CLICKED", 0, "BUTTON1_MASK", 4,4, 1, "False"

Note that you can pass any Java constant that is used as one of the event’s 
parameters using its string, rather than its value. In the example above, the 
"java.awt.event.MouseEvent" Java constant MOUSE_CLICKED is supplied as a 
string argument instead of its value (500 in this example).



Part II • Working with the Java Add-in

70



71

5
Troubleshooting Testing Java Applets and 
Applications

This chapter is intended to help pinpoint and resolve some common 
problems that may occur when testing Java applets and applications.

This chapter describes: On page:

Identifying and Solving Common Problems and Solutions 72

Checking Java Environment Variables Settings 74

Locating the Java Console 75

Running an Application or Applet with the Same Settings 78

Running the Java Add-in on Java 2, Java 5, and Java 6 Environments 78

Disabling Dynamic Transformation Support (Advanced) 80



Part II • Working with the Java Add-in

72

Identifying and Solving Common Problems and Solutions

The QuickTest Professional Java Add-in provides a number of indicators that 
help you identify whether your add-in is properly installed and functioning. 
The following table describes the indicators you may see when your add-in 
is not functioning properly and suggests possible solutions:

Indicator Solution

You cannot record or run 
tests on Java applets or 
applications, or the Object 
Spy identifies Java objects 
as Standard Windows 
objects.

Make sure that the Java Add-in is loaded with 
QuickTest. To check this, choose Help > About 
QuickTest Professional 9.1 and verify that the Java 
Add-in check box is selected.

You load the Java Add-in using the Add-in Manager. 
For more information, see “Loading QuickTest with 
Java Add-in Support” on page 16.

The Java console does not 
display a line containing 
the text "Loading Mercury 
Interactive Java Support".

Check that the settings in your environment 
correspond to the environment settings defined in 
this chapter, or check for a batch file that may 
override the settings.

For more information, see:

• “Checking Java Environment Variables Settings” 
on page 74

• “Locating the Java Console” on page 75

A different applet or 
application works with the 
QuickTest Professional 
Java Add-in, but the 
application you want to 
test does not work.

First check whether you can record and run tests if 
you invoke the other Java applet or application 
using exactly the same settings.

Check that the settings in your environment 
correspond to the environment settings defined in 
this chapter, or check for a batch file that may 
override the settings.

For more information, see:

• “Running an Application or Applet with the 
Same Settings” on page 78

• “Checking Java Environment Variables Settings” 
on page 74



Chapter 5 • Troubleshooting Testing Java Applets and Applications

73

If, after reviewing the above indicators and solutions, you are still unable to 
record and run tests on your Java applet or application, contact Mercury 
Customer Support.

The add-in does not 
function properly with 
applications that run with 
the -Xincgc option.

Either remove the -Xincgc option, or run without 
dynamic transformation support.

For more information, see:

• “Running the Java Add-in on Java 2, Java 5, and 
Java 6 Environments” on page 78

• “Disabling Dynamic Transformation Support 
(Advanced)” on page 80

Your Java console contains 
the line: Could not find 
-Xrun library: jvmhook.dll.

Check that the jvmhook.dll is located within your 
java.library.path For more information, see 
“Running the Java Add-in on Java 2, Java 5, and 
Java 6 Environments” on page 78.

Your SWT- or Eclipse-based 
application crashes on 
startup. 

Make sure that the ActiveX Add-in is not loaded 
with QuickTest. To check this, choose Help > About 
QuickTest Professional 9.1 and verify that the 
ActiveX Add-in check box is cleared.

Note: If you want to test an ActiveX object that is 
embedded in your SWT- or Eclipse-based 
application, you must first disable Java support. To 
do this, rename the _JAVA_OPTIONS or 
IBM_JAVA_OPTIONS environment variables. This 
instructs QuickTest to treat the ActiveX object as if 
it is embedded in a Standard Windows application. 
In addition, the container application objects will 
be identified as Standard Windows objects.

Indicator Solution

http://www.mercury.com/support
http://www.mercury.com/support


Part II • Working with the Java Add-in

74

Checking Java Environment Variables Settings

This section describes the environment variables that need to be set when 
you load your Java application with QuickTest Java Add-in support. For all 
of the environments, you need to set one or more environment variables to 
the short path name of the Java Add-in support classes folder.

Sun Java 2 or Later (Version 1.2 or Later) or IBM Java 2 or Later 
(Version 1.2 or Later)

Set the _JAVA_OPTIONS environment variable (Sun) or the 
IBM_JAVA_OPTIONS environment variable (IBM) as follows:

-Xrunjvmhook -Xbootclasspath/a:<common_files>\MERCUR~1\FUNCTI~1\
Java\classes;<common_files>\MERCUR~1\FUNCTI~1\Java\classes\jasmine.
jar

The above settings should appear on one line (no newline separators).

Note: <common_files> denotes the short path of the Common Files folder 
located under Program Files. For example, if the Common Files folder is 
located in C:\Program Files\Common Files, then the value for 
-Xbootclasspath is as follows:

-Xbootclasspath/a:C:\PROGRA~1\COMMON~1\MERCUR~1\FUNCTI~1\Java\
classes;C:\PROGRA~1\COMMON~1\MERCUR~1\FUNCTI~1\Java\classes\
jasmine.jar

Tip: If needed, you can temporarily remove Java support by renaming the 
_JAVA_OPTIONS or IBM_JAVA_OPTIONS environment variable. For 
example, you must remove Java support if you want to test ActiveX controls 
that are embedded in SWT- or Eclipse-based applications.



Chapter 5 • Troubleshooting Testing Java Applets and Applications

75

If you are working with Sun Java 6 (version 1.6), you must set an additional 
environment variable, JAVA_TOOL_OPTIONS, with the following value: 
-agentlib:jvmhook

Microsoft Java Virtual Machine (JVM) - Internet Explorer/JView

Make sure that the MSJAVA_ENABLE_MONITORS variable is set to 1. This is 
relevant when the user who installed QuickTest with Java Add-in support is 
not the user running the application.

Netscape Browser 8.x

Netscape 8.x uses the Java 2, Java 5, or Java 6 Virtual Machine as an external 
plug-in. For more information, see “Sun Java 2 or Later (Version 1.2 or Later) 
or IBM Java 2 or Later (Version 1.2 or Later)” on page 74.

Mozilla Firefox

Mozilla Firefox uses the Java 2, Java 5, or Java 6 Virtual Machine as an 
external plug-in. For more information, see “Sun Java 2 or Later (Version 1.2 
or Later) or IBM Java 2 or Later (Version 1.2 or Later)” on page 74.

Locating the Java Console

The Java console is the window in which your Java application or applet 
displays messages. The location of the Java console changes according to 
your application setup. Your Java application can be: 

➤ a standalone application 

➤ run in an applet viewer

➤ an applet run in Microsoft Internet Explorer, Netscape Browser, or Mozilla 
Firefox



Part II • Working with the Java Add-in

76

If your Java application is a standalone application:

➤ Open the batch file or shortcut that invokes the application and look for the 
command that launches Java (java.exe, javaw.exe, jre.exe, or jrew.exe).

➤ If the application was run with java.exe or jre.exe, it will load with a 
console (Command prompt window).

➤ If the application was run with javaw.exe or jrew.exe, it will not load 
with a console (the console is unavailable). You can check for Java Add-in 
support by invoking the application with java.exe or jre.exe. Do this by 
altering your batch file or the shortcut invoking your application. 

Note: java.exe and javaw.exe are nearly identical, as are jre.exe and 
jrew.exe. The only difference between them is whether they launch a 
console window. 

If your Java application runs in an applet viewer:

➤ Look in the DOS command prompt window that invoked the applet viewer.

➤ If there is no DOS command prompt window, your applet viewer may be 
run by a batch file similar to a standalone application. For more 
information, see the information about javaw and jrew in the standalone 
application section above. 



Chapter 5 • Troubleshooting Testing Java Applets and Applications

77

If your Java applet runs in Microsoft Internet Explorer, Netscape Browser, or 
Mozilla Firefox:

➤ If your applet runs in Microsoft Internet Explorer or Netscape Browser using 
the Sun Java plug-in:

Right-click the Java (plug-in) icon in your taskbar tray and click the option 
that opens the console (for example, Open Console or Show Console, 
depending on the installed version). 

If you do not see the Java (plug-in) icon in your taskbar tray, choose Start > 
Settings > Control Panel and double-click the Java icon or option (choose 
the Java version used by your application). Then, in the displayed dialog 
box, select the option to show the Java console (for example, Show console). 
Note that the actual name of the option, and its location in the dialog box, 
depend on the Java version used by your application.) Confirm the change 
(for example, by clicking Apply). Restart the browser.

Note: To find out whether your Microsoft Internet Explorer works with the 
Sun Java plug-in, select Tools > Internet Options > Advanced. Under Java 
(Sun) verify that Use Java is selected. Java plug-in version 1.3 or later 
automatically configures Internet Explorer to work with the Sun Java 
plug-in. 

➤ If your applet runs using the Microsoft Internet Explorer internal Virtual 
Machine: 

In Microsoft Internet Explorer, select Tools > Internet Options. In the 
Advanced tab, look for Microsoft VM. Select Java console enabled (requires 
restart) and click OK. Restart the browser and invoke your application. 
Select View > Java Console.

➤ If your applet runs in Mozilla Firefox: 

In Mozilla Firefox, select Tools > Java Console. If you do not see the Java 
Console option in the Tools menu, install the Open Java Console extension 
from https://addons.mozilla.org/firefox/141/. This extension provides the menu 
option on the Tools menu for opening the Java Console from Mozilla 
Firefox. It also provides a toolbar button in the JavaScript Console for 
opening Java Console.

https://addons.mozilla.org/firefox/141/


Part II • Working with the Java Add-in

78

Running an Application or Applet with the Same Settings

In some cases, running another Java application or applet with the exact 
same settings helps determine whether you are encountering a general 
problem with the Java Add-in or an application-specific problem.

To run an application or applet with the same settings:

➤ Determine whether the application is a standalone application or an applet.

➤ If the application is an applet, check the browser type.

➤ If the applet is executed from a shortcut, execute the applet with the same 
command.

➤ If the applet is executed from a batch file, copy the batch file and change 
only the class file that invokes the applet. 

Note: If the classpath must also be changed, add only the new items needed. 
Do not remove any of the items from the original application or applet 
classpath.

Running the Java Add-in on Java 2, Java 5, and Java 6 
Environments

When you run the Java Add-in on Java 2 or Java 5 environments, the add-in 
uses a mechanism that supports multiple Java environments (such as, 
Microsoft Internet Explorer internal virtual machine, SUN JRE, and IBM JRE) 
and multiple Java versions (such as, JDK 1.3.1, 1.4.2, 1.5.0, and 1.6.0) 
without requiring any configuration changes. This mechanism, known as 
the dynamic transformation support mechanism, uses the profiler interface 
of the Java Virtual Machine (JVM) to adjust the Java Add-in support classes 
according to the Java environment and version used. 



Chapter 5 • Troubleshooting Testing Java Applets and Applications

79

The dynamic transformation support mechanism is invoked by the 
-Xrunjvmhook option, which is supplied to the JVM. If the -Xrunjvmhook 
option is specified, the JVM hook profiler (part of the Java Add-in support) is 
loaded with every Java 2 application or applet that loads. The JVM hook 
profiler dynamically transforms the necessary classes to enable 
context-sensitive Java support. 

When you run the Java Add-in on Java 6 environments, the dynamic 
transformation support mechanism is invoked by the -agentlib:jvmhook, 
which is defined in the JAVA_TOOL_OPTIONS environment variable.

Note: When working with Java 6, there is no conflict between 
-agentlib:jvmhook (defined in the JAVA_TOOL_OPTIONS environment 
variable) and -Xrunjvmhook (defined in the _JAVA_OPTIONS environment 
variable) because Java 6 ignores -Xrunjvmhook.

The Java agent searches for the jvmhook.dll according to the 
java.library.path system property. You can identify any override of this 
system property using the Java command line: -djava.library.path = <path>
However, although you can override the java.library.path system property, it 
is recommended to extend the java.library.path and not to overwrite it. 

By default, the value of the java.library.path system property is the system 
path. If your application is loaded with a different library path, you must 
either add the jvmhook.dll to a location within the java.library.path, or 
change the java.library.path to contain <Windows installation 
folder>/system32.

The <JRE root folder>/bin folder is always located in the java.library.path. If 
needed, you can manually copy the jvmhook.dll to this folder. However, if 
you need to modify more than one computer, it is recommended to modify 
the batch file that alters the java.library.path.



Part II • Working with the Java Add-in

80

Disabling Dynamic Transformation Support (Advanced)

If the dynamic transformation support mechanism does not work properly, 
you can disable it and manually configure the Java environment to use the 
Java Add-in without dynamic transformation support.

In addition, the dynamic transformation support mechanism is not 
supported when using the incremental garbage collector (-Xincgc option). 
Therefore, if you absolutely must use the -Xincgc option, you need to 
disable dynamic transformation support.

You disable dynamic transformation support by performing the following 
steps:

➤ Saving the dynamically transformed classes, as described on page 80

➤ Disabling dynamic transformation support by disabling the JVM hook 
profiler, as described on page 81 

After you perform these steps, the saved transformed classes will be used 
instead of dynamic transformation.

To save the dynamically transformed classes:

 1 Specify the folder in which to save the dynamically transformed classes that 
will be generated during the preliminary launching of your Java applet or 
application.

To do this, open the registry editor (choose Start > Run, type regedit in the 
Open box and click OK) and navigate to the JavaAgent main key, located in: 
HKEY_LOCAL_MACHINE\SOFTWARE\Mercury Interactive\JavaAgent. 
Define a new string value named ClassesDumpFolder, and set its value data 
to an existing folder (preferably empty) on your computer, for example, 
C:\JavaSupportClasses.

Note: If the ClassesDumpFolder string value already exists, you can modify 
its value data to an existing folder on your computer. 



Chapter 5 • Troubleshooting Testing Java Applets and Applications

81

 2 If you are using the -Xincgc option, temporarily remove it from the 
command line to enable the JVM hook profiler to transform and save the 
necessary classes. 

 3 Launch your applet or application and perform some basic operations on it. 
This ensures that all of the necessary classes are transformed and saved. 
Close your applet or application. All of the dynamically transformed classes 
are now saved in the folder you specified in the previous step (for example, 
C:\JavaSupportClasses).

 4 If you temporarily removed the -Xincgc option from the command line in 
step 2, you can restore it now.

Now that you have saved the transformed classes, you are ready to disable 
dynamic transformation support.

To disable dynamic transformation support:

 1 Remove the -Xrunjvmhook option from the _JAVA_OPTIONS (or 
IBM_JAVA_OPTIONS for IBM VM-based applications) environment variable.

 2 Add the following option instead:
-Xbootclasspath/p:<ClassesDumpfolder>\Final where <ClassesDumpfolder> 
is the value of the folder in which the dynamically transformed classes were 
saved (step 1 on page 80). For example, after your modification the 
_JAVA_OPTIONS environment variable might look like this:

-Xbootclasspath/p:C:\JavaSupportClasses\Final -
Xbootclasspath/a:C:\PROGRA~1\COMMON~1\MERCUR~1\FUNCTI~1\Java\cl
asses;C:\PROGRA~1\COMMON~1\MERCUR~1\FUNCTI~1\Java\classes\
jasmine.jar



Part II • Working with the Java Add-in

82



83

Numerics

1_APP_ENV variable 48
1_DIR_ENV variable 48

A

action parameters 59
Active Screen

defining capture settings 43
Add-in Manager dialog box 16
add-ins

loading with add-in support 16
loading without add-in support 18
repairing 19
uninstalling external 21

administrator privileges for installing 5
application details environment variables 48

B

BROWSER_ENV variable 48

C

cell editors, JTable
working with 51

checking
Java objects 61

checkpoints
accessibility options 43

CMDLINE_ENV variable 48
component parameters 59
conventions. See typographical conventions
Custom Active Screen Capture Settings 

dialog box 43
Customer Registration screen 10
customer support site 10

D

disabling dynamic transformation support 
80

disk space requirements 4
documentation updates xi
dynamic transformation support mechanism 

78
dynamic transformation support, disabling 

80

E

environment variables
application details 48
checking settings 74

EXEPATH_ENV variable 48
Expert View 49, 63
external add-ins

uninstalling 21

F

Firefox, Mozilla
environment variables 75
Java console 77

full object hierarchy, viewing 59

G

GetStatics method 67
GetTOProperty method 63

H

hard disk space requirements 4

Index



Index

84

I

IBM Java
environment variables 74

installation requirements 4

J

Java
classes, working with static members 

67
console 75
environment variables 74
objects, methods and events 63

Java Add-in
Advanced Java Options dialog box 34
checking environment settings 74
Java tab, Options dialog box 32
troubleshooting 71

Java console, locating 75
JTable cell editors

custom 51
finding the toolkit class using a 

QuickTest script 54
finding the toolkit class using the 

Object Spy 52
recording on 51
standard 51

JView
environment variables 75

JVM
environment variables 75

K

Keyword View 63
Knowledge Base x

L

License Agreement screen 8
loading

with add-in support 16
without add-in support 18

locating the Java console 75

M

Mercury Best Practices x
Mercury Customer Support Web site x
Mercury Home Page x
methods 63

test object 63
Microsoft Internet Explorer

environment variables 75
Java console 77

Microsoft Internet Explorer Virtual Machine
Java console 77

Mozilla Firefox
environment variables 75
Java console 77

N

Netscape Browser
environment variables 75
Java console 77

O

object hierarchy
full 59
recorded 49

Object Spy 67
online documentation viii
online resources x
Options dialog box

Java tab 32
outputting

Java values 61

P

parameters 59
prerequisites, installation 4
properties

unique to Java test objects 63

Q

QuickTest
loading with add-in support 16
loading without add-in support 18



Index

85

R

Readme viii
Record and Run Settings dialog box

optimizing other tab settings 48
Web tab 48
Windows Applications tab 48

recorded object hierarchy 49
recording and running tests on Java objects, 

about 28
repairing add-ins 19
requirements, installation 4
running tests on Java objects 56

S

Select Updates screen 11
SetCellData method 51
setup

Customer Registration screen 10
License Agreement screen 8
running 5
Setup Complete screen 14

statements 63
Step Generator 63
Sun Java

environment variables 74
SWT-based Java objects 55
system requirements 4

T

table_external_editors_list variable 51
test object model 29
test objects 63
test parameters 59
toolkit class, of a cell editor 51
Tree View 49
troubleshooting, testing Java objects 71
typographical conventions xii

U

uninstalling external add-ins 21
updates, documentation xi
URL_ENV variable 48

V

VBScript 63

W

Web tab, Record and Run Settings dialog box 
48

Windows Applications tab, Record and Run 
Settings dialog box 48

WORKDIR_ENV variable 48



Index

86


	Mercury QuickTest Professional Java™ Add-in Guide
	Table of Contents
	Welcome to This Guide
	How This Guide Is Organized
	Who Should Read This Guide
	QuickTest Professional Online Documentation
	Additional Online Resources
	Documentation Updates
	Typographical Conventions

	Setting Up Java Add-in Support
	Installing the Java Add-in
	Before You Install
	Understanding Java Add-in Dependencies and Conflicts
	Running the Setup Program

	Activating Java Add-in Support
	Loading QuickTest with Java Add-in Support
	Loading QuickTest without Java Add-in Support
	Repairing and Uninstalling the Java Add-in
	Repairing the Java Add-in Installation
	Uninstalling the Java Add-in



	Working with the Java Add-in
	Creating and Running Steps on Java Objects
	About Creating and Running Steps on Java Objects
	Understanding the Java Test Object Model
	Defining Java Testing Options
	Understanding the Advanced Java Options Dialog Box
	Modifying Table Cell Controls Options
	Considerations for Using Text Checkpoints and Text Output Value Steps with Java Objects

	Defining Java Settings for Individual Tests and Components
	Defining Active Screen Capture Options for Tests
	Defining Record and Run Options for Tests
	Defining Application Details Environment Variables for Tests
	Optimizing Settings for Other Record and Run Settings Dialog Box Tabs

	Recording Tests and Components on Java Objects
	Recording on Table Objects
	Recording on SWT-based Java Objects

	Running Tests and Components on Java Applications and Applets

	Enhancing Your Java Test
	About Enhancing Your Java Test
	Viewing the Full Object Hierarchy
	Identifying Java Objects in the Object Spy or Object Selection Dialog Box

	Checking Java Objects and Outputting Values
	Using Java Objects, Methods, and Properties to Enhance Your Test
	Activating Methods Associated with a Java Object
	Setting and Retrieving Java Object Properties
	Creating Objects in Your Applet or Application (Advanced)
	Working with Static Members
	Firing Java Events


	Troubleshooting Testing Java Applets and Applications
	Identifying and Solving Common Problems and Solutions
	Checking Java Environment Variables Settings
	Locating the Java Console
	Running an Application or Applet with the Same Settings
	Running the Java Add-in on Java 2, Java 5, and Java 6 Environments
	Disabling Dynamic Transformation Support (Advanced)


	Index



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


