Peregrine

AssetCenter

v
&
o
<%
c
N
-~
O
<3
(o]
c
3
D
]
-+
o
o
)
5

Programmer's reference

Part No. DAC-441-EN09 & Pe reg Eisng

nE
© I ————
|

© Copyright 2005 Peregrine Systems, Inc.
All Rights Reserved.

Information contained in this document is proprietary to Peregrine Systems, Incorporated, and may be used or disclosed only with written
permission from Peregrine Systems, Inc. This manual, or any part thereof, may not be reproduced without the prior written permission of
Peregrine Systems, Inc. This document refers to numerous products by their trade names. In most, if not all, cases these designations are
claimed as Trademarks or Registered Trademarks by their respective companies.

Peregrine Systems @ and AssetCenter © are trademarks of Peregrine Systems, Inc. or its subsidiaries.

This document and the related software described in this manual are supplied under license or nondisclosure agreement and may be used
or copied only in accordance with the terms of the agreement. The information in this document is subject to change without notice and
does not represent a commitment on the part of Peregrine Systems, Inc. Contact Peregrine Systems, Inc., Customer Support to verify the
date of the latest version of this document.

The names of companies and individuals used in the sample database and in examples in the manuals are fictitious and are intended to
illustrate the use of the software. Any resemblance to actual companies or individuals, whether past or present, is purely coincidental.

If you need technical support for this product, or would like to request documentation for a product for which you are licensed, contact
Peregrine Systems, Inc. Customer Support by email at support@peregrine.com.

If you have comments or suggestions about this documentation, contact Peregrine Systems, Inc. Technical Publications by email at
doc_comments@peregrine.com.

This edition applies to version 4.4 of the licensed program

AssetCenter

Peregrine Systems, Inc.

3611 Valley Centre Drive San Diego, CA 92130
858.481.5000

Fax 858.481.1751

www.peregrine.com

PEREGRINE

Table of Contents

l. Introduction .

Chapter 1. Programming fundamentals .

Introduction to variables .
Control structures
Operators

File management

Chapter 2. Classification of functions .

Families of functions . .o
Scope of application of functions
Application modules

Chapter 3. Conventions .

Notation .
Format of Date+Time constants in scripts .

Format of Duration type constants in scripts .

Chapter 4. Definitions .

Definition of a function e
Definition of the CurrentUser virtual link .
Definition of a handle .

Definition of an error code .

17

19

19
25
30
34

39

39
40
40

43

43
44
45

47

47
48
49
49

AssetCenter 4.4 - Programmer's reference | 3

Chapter 5. Function typing and parameters 51

Listoftypes 5
Type of a function B2
Type of a parameter b2

Il. UsingtheAPI 55

Chapter 6. Introduction 57

Waming b8
Installaton b8
.in1i configuration file associated with the DLL 58

Chapter 7. Methodology 6]

Chapter 8. Conceptsand examples 63

Concepts L L oL 63
Handlingdates 64
Firstexample 64
Secondexample 65

lll. Alphabetical reference 67

Chapter 9. Alphabetical reference 69

Abs() L ... L. 89
AmActionDde() 70
AmActionExec() T2
AmActionMail) 73
AmActionPrint) 715
AmActionPrintPreview() 76
AmActionPrintTo() 77
AmAddAIIPOLinesTolnv() 78
AmAddCatRefAndCompositionToPOrder() 79
AmAddCatRefToPOrder() 81
AmAddEstimLinesToPO() 82
AmAddEstimLineToPO() 84
AmAddLicContentToRequest() 85
AmAddPOLineTolnv() 86
AmAddPOrderLineToReceipt() T < 1
AmAddReceiptLineTolnvoice() 89
AmAddRegLinesToEstim() 9
AmAddReqLinesToPO() 92
AmAddReqgLineToEstm() 93

4 | AssetCenter 4.4 - Programmer's reference

AmAddReqLineToPO() 9%
AmAddRequestLineToPOrder() 95
AmAddTemplateToPOrder() 97
AmAddTemplateToRequest() 98
AmArchiveRecord() Lo Lo L. 99
AmAttribCmdAvailability() 101
AmBackupRecord() 102
AmBuildNumber() . 103
AmBusinessSecondsinDay() 104
AmCalcConsolidatedFeature() 105
AmCalcDepr() 106
AmCalculateCatRefQty() 108
AmCalculateReqgLineQty() 110
AmCbkReplayEvent() 112
AmCheckTraceDone() 113
AmCleanup() L .o Lo 114
AmClearLastError() 115
AmCloseAllChildren() 116
AmCloseConnection() 117
AmCommit() . . . T B
AmComputeAIIL|cAndInstaIICounts() e e e e 118
AmComputeLicAndInstallCounts() 119
AmConnectionName() 120
AmConnectTrace() 121
AmConvertCurrency() . . T P2
AmConvertDateBasmToUn|x() e e e e ... 125
AmConvertDateIntlToUnix() 126
AmConvertDateStringToUnix() 127
AmConvertDateUnixToBasic() 128
AmConvertDateUnixTolntl() 130
AmConvertDateUnixToString() 131
AmConvertDoubleToString() 132
AmConvertMonetaryToString() 133
AmConvertStringToDouble() 134
AmConvertStnngToMonetary() e e 135
AmCounter() T 174
AmCreateAssetPort() e C e e e 138
AmCreateAssetsAwaltlngDellvery() e 10
AmCreateCable() 141
AmCreateCableBundle() 143
AmCreateCableLink() 144
AmCreateDelivFromPO() 146
AmCreateDevice() 147
AmCreateDeviceLink() 149
AmCreateEstimFromReq() 150

AssetCenter 4.4 - Programmer's reference | 5

AmCreateEstimsFromAllReqLines() 152
AmCreatelnvFromPO() 153
AmCreateLink() e e e e 154
AmCreateOrUpdatel nv0|ceFrom Recelpt() e e e e 155
AmCreatePOFromEstim() 157
AmCreatePOFromReq() 158
AmCreatePOrderFromRequest() 159
AmCreatePOrdersFromRequest() 160
AmCreatePOsFromAllReqLines() 161
AmCreateProjectCable() 163
AmCreateProjectDevice() 164
AmCreateProjectTrace() 165
AmCreateReceiptFrom POrder() e e e e 167
AmCreateRecord() . . e e e e 168
AmCreateRequestTol nv0|ce() T [G3¢]
AmCreateRequestToPOrder() 17
AmCreateRequestToReceipt() 172
AmCreateReturnFromReceipt() 174
AmCreateTraceHist() 175
AmCreateTraceLink() 176
AmCryptPassword() 178
AmCurrentDate() 179
AmCurrentlsoLang() 180
AmCurrentLanguage() 181
AmCurrentServerDate() L. 182
AmDaDepAddComputers() 183
AmDaDepCopylnstance() 185
AmDaDepCreatelnstance() 187
AmDateAdd()o 189
AmDateAddLogical() 191
AmbDateDiff() oL o L 193
AmDbExecAql() oL 194
AmDbGetDate() 0oL 195
AmDbGetDouble()o oL oL 196
AmDbGetList() o o ... 197
AmDbGetListEx() 199
AmDbGetLong() oL Lo 200
AmDbGetPk() 201
AmDbGetString() o 202
AmDbGetStringex() 205
AmDeadLine() . . . e e e e . e 206
AmDecrementLogLeveI() e e e e oo ... o208
AmDefAssignee() 209
AmbDefaultCurrency() oL L. 210
AmDefEscalationScheme() 211

6 | AssetCenter 4.4 - Programmer's reference

AmDefGroup() o ... 212
AmbDeleteLink() 215
AmbDeleteRecord() 216
AmDisconnectTrace() 217
AmDuplicateRecord() 218
AmEndOfNthBusinessDay() 219
AmEnumValList() 220
AmEvalScript() o 222
AmExecTransition() 223
AmExecuteActionByld() 224
AmExecuteActionByName() 225
AmExportDocument() 227
AmExportReport() 228
AmFindCable() 229
AmFindDevice() L. ... 230
AmFindRootLink() oL 232
AmFindTermDevice() 233
AmFindTermField() 234
AmFlushTransaction() 236
AmFormatCurrency() 237
AmFormatLong() . 238
AmGeneratePlanningData() 239
AmGenSqIlName() 241
AmGetCatRef() . . . 2 v
AmGetCatRefFromCatProduct() 22 1
AmGetComputeString() oL L. 245
AmGetCurrentNTDomain() 246
AmGetCurrentNTUser() 247
AmGetFeat()o oL 248
AmGetFeatCount() 249
AmGetField() oL Lo Lo 250
AmGetFieldCount() . . . e e e ..o ... 251
AmGetF|eIdDateOnIyVaIue() e e e 252
AmGetFieldDateValue() 254
AmGetFieldDescription() 255
AmGetFieldDoubleValue() 256
AmGetFieldFormat() 257
AmGetFieldFormatFromName() 259
AmGetFieldFromName() 260
AmGetFieldLabel() 261
AmGetFieldLabelFromName() 262
AmGetFieldLongValue() 263
AmGetFieldName() 265
AmGetFieldRights() 266
AmGetFieldSize() . 267

AssetCenter 4.4 - Programmer's reference | 7

AmGetFieldSgIName() 269
AmGetFieldStrvalue() 270
AmGetFieldType() 271
AmGetFieldUserType() 273
AmGetForeignKey() 275
AmGetindex() 276
AmGetindexCount() 277
AmGetindexField() oL 278
AmGetindexFieldCount() 279
AmGetindexFlags() 280
AmGetindexName() 281
AmGetLink() .. . 283
AmGetLinkCardinality() 284
AmGetLinkCount() L. 285
AmGetLinkDstField() oL 286
AmGetLinkFeatureValue() 287
AmGetLinkFromName() 288
AmGetLinkType() . 289
AmGetMainField() oo Lo 290
AmGetMemoField() o 29
AmGetNextAssetPin() 292
AmGetNextAssetPort() 293
AmGetNextCableBundle() 295
AmGetNextCablePair() 297
AmGetNTDomains() 298
AmGetNTMachinesInDomain() 299
AmGetNTUsersInDomain() 300
AmGetPOLinePrice() 301
AmGetPOLinePriceCur() 303
AmGetPOLineReference() 304
AmGetRecordFromMainld() 305
AmGetRecordHandle() 306
AmGetRecordld() . 307
AmGetRelDstField() 308
AmGetRelSrcField() 309
AmGetRelTable() 310
AmGetReverseLink()o Lo L. 311
AmGetScriptvalue() 312
AmGetSelfFromMainid() 313
AmGetSourceTable() 314
AmGetTable() 315
AmGetTableCount() 316
AmGetTableDescription() 317
AmGetTableFromName() 318
AmGetTableLabel() 319

8 | AssetCenter 4.4 - Programmer's reference

AmGetTableName() 320
AmGetTableRights() 322
AmGetTableSgIName() 323
AmGetTargetTable() 324
AmGetTrace() 85
AmGetTraceFromHist() 327
AmGetTypedLinkField() 328
AmGetUserEnvSessionltem() 329
AmGetVersion() oo 330
AmHasAdminPrivilege() o . L. 331
AmHasRelTable() . 33
AmHasRightsForCreation() 333
AmHasRightsForDeletion() 334
AmHasRightsForFieldUpdate() 336
AmHelpdeskCanCloseFile() 337
AmHelpdeskCanProceed() 338
AmHelpdeskCanSaveCall() 839
AmlmportDocument() 340
AmlmportReport() . 342
AmlincrementLoglLevel() L. 343
AmlnsertRecord() . 344
AmlinstantiateReqLine() 345
AminstantiateRequest() 346
AmlisConnected() . 348
AmlsFieldForeignKey() 348
AmlsFieldindexed() 349
AmisFieldPrimaryKey() 350
AmlsHelpdeskAdmin() 351
AmlsHelpdeskMember() 353
AmlsHelpdeskSuper() 354
AmisLink() L oL oL Lo 355
AmlisModuleAuthorized() 356
AmlsTypedLink() . 358
AmLastError() . 35
AmLastErrorMsg() oL oL L Lo 360
AmListToString() . 361
AmLog()o 362
AmLoginld() 363
AmLoginName() oL 364
AmMapSubReqgLineAgent() 366
AmMoveCable() Lo oL 367
AmMoveDevice() . 368
AmMsgBox() L L oL 369
AmOpenConnection() 370
AmOpenScreen() 371

AssetCenter 4.4 - Programmer's reference | 9

AmOverflowTables() 373
AmPagePath() 374
AmProgress()o 375
AmPurgeRecord() oL L. 376
AmQueryCreate() . 378
AmQueryExec()o 379
AmQueryGet() .. 380
AmQueryNext() . . . C e e e e e e e 381
AmQuerySetAddMa|nF|eId() T 1< 24
AmQuerySetFullMemo() 383
AmQueryStartTable() 385
AmQueryStop() oL 386
AmReceiveAllPOLines() 387
AmReceivePOLiNe() 388
AmRefreshAllCaches() 389
AmRefreshLabel() 0oL 390
AmRefreshProperty() 391
AmRefreshTraceHist() 392
AmReleaseHandle() 393
AmRemoveCable() 3%
AmRemoveDevice() 395
AmResetPassword() 397
AmResetUserEnvSession() 398
AmResetUserPassword() 399
AmRestoreRecord() 400
AmReturnAsset() 401
AmReturnContract() 402
AmReturnPortfolioltem() 404
AmReturnTraining() 405
AmReturnWorkOrder() 406
AmRevCryptPassword() 407
AmRgbColor() .. 409
AmRollback() . . . C e e e e e 410
AmSetFleIdDateOnIyVaIue() A
AmSetFieldDateValue() 412
AmSetFieldDoubleValue() 414
AmSetFieldLongValue() 415
AmSetFieldStrvalue() 416
AmSetLinkFeatureValue() 417
AmSetProperty() . . . - R <
AmSetUserEnvSessmnItem() - S k¢
AmShowCableCrossConnect() 420
AmShowDeviceCrossConnect() 421
AmSqlTextConst() 422
AmStandIn() ... 423

10 | AssetCenter 4.4 - Programmer's reference

I

AmStandinGroup() 425
AmStartTransaction() 427
AmStartup() 428
AmTableDesc() 428
AmTaxRate()o L0 430
AmUpdateDetail() 43
AmUpdatelossLines() 432
AmUpdateRecord() 433
AmUpdateUser() 434
AmValueOf()o L 435
AmWizChain() .. 437
AmWorkTimeSpanBetween() 438
AppendOperand() 439
ApplyNewVals() 441
Asc() L o L oL s 442
An() L 443
BasicTolLocalDate() 445
BasicToLocalTime() 446
BasicToLocalTimeStamp() 447
Beep() 448
CDbl() A48
ChDir() 450
ChDrive() 4A
chr) oL 4b2
CInt) e 453
Cbng() 454
Cos()o s e 455
CountOccurences() 457
Countvalues() . 458
CSng() L. 45
CStr() 460
CurDir() 462
Cvar() 4e2
DaContext() .. . 4863
DaCopy() 466
DaDbDeleteList() . 468
DaDbGetList() .. 469
DaDbSetList() 47
DaDelete() 473
DaDownload() .. 474
DaDumpContext() 476
DaExec() 478
DaExecAction() 479
DaExecuteActionByName() 481
DaFileATime() . 482

AssetCenter 4.4 - Programmer's reference | 11

DaFileCRC() 483
DaFileCTime() 484
DaFileLanguage() . 485
DaFileMTime() . 486
DaFileSize() .. 487
DaFileType() 488
DaFileVersion() oL 489
DaFind() 49
DaFindNext() 492
DaFirstEnv() . 493
DaGetEnv() 495
DaGetFilelnfo() . 497
Dalmpersonate() . 498
DaMkDir() bOo
DaMove() . . . - O} |
DaNetIpFromName() C e e e e e 503
DaNetNBTName() 504
DaNetPing() 505
DaNetWakeOnLan() 507
DaNetWinAddressByName() 508
DaNextEnv() . 509
DaNTFileCopyTo() 510
DaNTFileCreateDir() 511
DaNTFileDelete() . bi2
DaNTFileDeleteDir() b13
DaNTFileDirCopyTo() bl4
DaNTFileDirDownload() 515
DaNTFileDirUpload() 516
DaNTFileDownload() 517
DaNTFileUpload() . . C e e e e 518
DaNTReglstryLMAddStnngVaIue() A e
DaNTRegistryLMCreateKey() 520
DaNTRegistryLMDeleteKey() 521
DaNTRegistryLMDeleteValue() 522
DaNTRegistryLMGetLongValue() 523
DaNTRegistryLMGetStringValue() 524
DaNTRegistryLMSetLongValue() 525
DaNTRegistryLMSetStringValue() 526
DaNTServicelnstall() 527
DaNTServiceStart() b29
DaNTServiceStatus() 530
DaNTServiceStop() 53
DaNTServiceUninstall() 532
DaNTWMIExecMethod() 533
DaNTWMIExecQuery() 534

12 | AssetCenter 4.4 - Programmer's reference

DaNTWMIGetCurrentArrayValue()
DaNTWMIGetCurrentPropertyValue()
DaNTWMIGetinstanceCount() .
DaNTWMIGetPropertyValue()
DaNTWMIGetTotalPropertiesValue()
DaNTWMINextltem() e
DaNTWMIResetEnumeration() .
DaRegCreateKey()
DaRegDeleteKey()
DaRegExec() . .
DaRegGetValue() .
DaRegOutputValue()
DaRegSetValue() .
DaRegStrValue() . .
DaRegVarValue() .
DaRename() .
DaReturnValue()

DaRmDir() .

DaSendMail()

DaSetContext() .
DaSetOption() .
DaSetReturnValue() .

Date()

DateAdd() . . .
DateAddLogical() .

DateDiff() .

DateSerial() .

DateValue() .
DaTrackingDelete()
DaTrackingGet()
DaTrackingSet() .
DaTrackingTest() .
DaUpload()

DaWait()

Day() Coe
EnumToComboBox()
EscapeSeparators() .

ExeDir() . .

Exp() . . .

ExtractValue(

FileCopy() .

FileDateTime() .

FileExists()

FileLen()

Fix() .

535
537
538
540
541
543
544
545
546
547
548
549
550
551
552
553
555
556
557
559
561
563
564
565
566
567
569
570
571
572
574
575
576
578
579
581
582
583
584
585
587
588
589
590
591

AssetCenter 4.4 - Programmer's reference | 13

nE
© I ————
|

FormatDate() 592
FormatResString() 594
FV) b9
GetEnwvar() ... by
GetListitem() oL oo oL 598
Hex() L 599
Hour() 600
InStr() 602
Int) 603
IPMT() 604
IsNumeric() 606
Kill) 607
LCase() 608
LeftG) 609
LeftPart) 61
LeftPartFromRight¢) 612
Len() b14
LocalToBasicDate() 615
LocalToBasicTime() 616
LocalToBasicTimeStamp() 617
LocalToUTCDate() o618
Log) 619
LTrim() 620
MakelnvertBool() . 622
Mid) 623
Minute() L oL 624
MkDir() 625
Month() ©b26
Name() 627
Now()o 629
NPER() 629
Oct) 631
ParseDate() ... 863
ParseDMYDate() 634
ParseMDYDate() . 63
ParseYMDDate() . 636
PMT() 637
PPMT() 63
PV()o s s A
Randomize() . 643
RATE() b4
RemoveRows() 646
Replace() b48
Right) 649
RightPart() L0 650

14 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

RightPartFromLeft() 652
RmAllInDir() 654
RmDir() 655
Rnd() L 656

AssetCenter 4.4 - Programmer's reference | 15

AssetCenter

16 | AssetCenter 4.4 - Programmer's reference

Introduction

PART

AssetCenter 4.4 - Programmer's reference | 17

AssetCenter

18 | AssetCenter 4.4 - Programmer's reference

CHAPTER

Programming fundamentals

This chapter presents the fundamentals of programming using the Basic language
available in AssetCenter. If you already experience in programming and have
used other languages, most of the information presented in this chapter will be
familiar to you. However, we do recommend reading throught this chapter
because certain classic functions have been volontarily left out of or limited in
the implementation of Basic in AssetCenter.

Introduction to variables

Variables are used to store data during the execution of a program. They are
identified by:

= Their name, used to reference the value contained by the variable.
= Their type, which determines which data can be stored in the variable.

In general, a distinction is made between two types of variables:
= Arrays,

= Scalar variables, which include all variables that are not arrays.

AssetCenter 4.4 - Programmer's reference | 19

o
Declaring a variable

Variables must be explicitly declared before being used. The syntax of the
declaration is as follows:

|Dim <Name of the variable> [As <Type of the variable>]

/ Note:

The expicit declaration of variables in AssetCenter Basic is the same as using the
Option Explicit keyword in Microsoft Visual Basic.

Variable names must meet the following constraints:
= Start with an uppercase or lowercase letter,
= Must have no more than 40 characters,

= Can contain the letters A to Z and a to z, the numbers 0 to 9, and the
underscore character ("_").

/ Note:

Accented characters are authorized but are advised against.

= Reserved keywords may not be used. For example, names of Basic functions
and clauses are reserved keywords.

The optional As clause enables you to define the type of the defined variable.
The type specifies the type of information stored in the variable. The available
data types include: String, Integer, Variant, ...

If the As clause is omitted, the variable is considered as a Variant type.

Single declaration

In the case of a single declaration, each declaration statement concerns a single
variable, as shown in the following example:

Dim I As Integer
Dim strName As String
Dim dNumber As Double

Combined declaration

In the case of a combined declaration, each declaration statement may concern
any number of variables, as shown in the following example:

20 | AssetCenter 4.4 - Programmer's reference

s ref

Dim I As Integer, strName As String, dNumber As Double

Dim A, B, C As Integer

/ Note:

As already described, when the type of the variable is not specified, by default
it is considered as a Variant. Thus, in the second line of the above example, the
type of the variables A and B is Variant and C is an Integer.

Data types

The following table summarizes the various types available for a function or a
parameter:

Integer Integer from -32 768 to +32 767.

Long Integer from -2 147 483 647 to +2 147 483 646.

Single 4-bype floating-point number (single preci-
sion).

Double 8-byte floating-point number (double preci-
sion).

String Text in which all characters are accepted.

Date Date or Date+Heure.

Variant Generic type that can represent any other type.

/ Note:

These types are not available from an external tool. Only the types Long, Double
and String are available. Variant does not exist and Integer and Date type objects
are represented by a Long.

Numerical types

The Basic language available in AssetCenter offers several numerical types:
Integer, Long, Single and Double. Numerical data types usually use less memory
than a Variant.

If you are sure a variable will systematically store integers (such as 123) and not
fractions (such as 3.14), it is better to declare it as an Integer or a Long. Operations
performed on these data types are faster and required less memory than other
data types. These data types are particularly well suited to counters used in loops.

AssetCenter 4.4 - Programmer's reference | 21

C N ——
If a variable must contain a fractional number, declare is as a Single or Double.

/ Note:

Floating point numbers (Single or Double) can be subject to rounding errors.

The String type

If you are sure a variable will only store a character string, declare it as String:

|Dim MyString As String

You will then be able to store character strings in this variable and manipulate
its contents using the dedicated character string processing functions:

MyString
MyString

"This is a string"
Right (MyString, 6)

By default, a String type variable is of variable size. The allotted size used to store
character strings changes according to the size of the data assigned to the
variable. However, it is possible to declare a String type variable using the
following syntax:

|Dim <Name of the variable> As String * <Size of the stored strings>

The following example declares a variable containing 20 characters:

[pim MyString As String * 20

If you use this variable to store a string of less than 20 characters, spaces will be
added to the end of the string as padding up until the intended size. On the
other hand, if you store a string over 20 characters, the string will be truncated
from the 21st character.

The Variant type

The Variant type is a generic type that can substitute for all other types. You do
not need to worry about conversion issues between the different data types and
Variant. Conversion is performed automatically, as shown in the following

example:

Dim MyVariant As Variant
MyVariant = "123"

MyVariant = MyVariant - 23
MyVariant = "Top " & MyVariant

Even though conversion is automatic, make sure you follow the following rules:
= If you perform arithmetic operations on a Variant, it must contain a number,
even if it is represented by a character string.

22 | AssetCenter 4.4 - Programmer's reference

= If a concatenation operation involves a Variant, use the & operator rather
than the + operator.

A Variant can also contain two special values: The empty value and the Null
value.

The empty value

Before a value is assigned for the first time to a Variant, it contains the empty
value. This value is a particular value and is not the same as 0, an empty string
or the Null value. To test whether a Variant contains the empty value, use the
Basic function IsEmpty(), as shown in the following example:

Dim MyFirstVariant As Variant

Dim MySecondVariant As Variant

If IsEmpty (MyFirstVariant) Then MyFirstVariant = 0
MySecondVariant = 0

If IsEmpty(MySecondVariant) Then MySecondVariant = 123

A Variant containing the empty value can be used in expressions. Depending
on the situation, it will be processed as the value 0 or an empty string. To reassign
the empty value to a Variant, use the keyword Empty, as shown in the following
example:

Dim MyVariant As Variant
MyVariant = 123
MyVariant = Empty

The Null value

The Null value is often used in databases to specify missing or unknown values.

This value has special qualities:

= Expression that include the Null value always return the Null value. The Null
value is said to be propagated in the expressions. If part of the expression is
Null, then all of the expression is Null.

= Asageneral rule, if a function parameter is set to Null, the function returns
the Null value.

Data arrays

An array enables you to store and reference a set of variables under a single
name and use a number (an index) to uniquely identify them. All array items
must have the same data type. You cannot create an array containing both String
and Double values. The Variant type can be used to work around this limitation.

AssetCenter 4.4 - Programmer's reference | 23

Declaring an array

An array is a set of variables.

By convention, the following notions are presented as follows:
= Lower limit of the array: Index of the first item.

/ Note:

By default, the lower limit of an array is 0.

= Upper limit of the array: Index of the last item.

/ Note:

The upper limit of an array may not exceed the size of a Long (2 147 483 646
items).

Declaring an array is similar to declaring a variable:

Dim <Name of the arrays(<Upper limit of the arrays) [As <Data type of the
[variables contained in the array>]

Examples:

Dim MyFirstArray(30) As String ' 31 elements
Dim MySecondArray(9) As Double ' 10 elements

You can also specify the lower limit of the array by using the following declaration:

Dim <Name of the arrays(<Lower limit of the array> To <Upper limit of the
array>) [As <Data type of the variables contained in the array>]

Examples:

Dim MyFirstArray(l To 30) As String ' 30 elements
Dim MySecondArray (5 To 9) As Double ' 5 elements

Limitations

The following limitations apply to arrays in AssetCenter Basic:
= Variable size arrays are not supported. In particular, itis not possible to resize
an array on the fly.

= Multi-dimensional arrays are not supported.

24 | AssetCenter 4.4 - Programmer's reference

Control structures

As their name suggests, control structures make it possible to control the
execution of a program. There are two sorts of control structures:

= Decision structures: redirect and guide a program as a result of certain
conditions,

= Loop structures: make it possible to repeat program sections depending on
certain conditions.

Decision structures

A decision structure conditionally executes instructions depending on the results
of a test. The following decision structures are available:

= If..Then

= If..Then...Else...End If

= Select Case

If...Then

Use this structure to conditionally execute one or more instructions. The syntax
of this structure allows for single line and multiple line statements. Single line
statements may only execute one single instruction:

|If <Condition> Then <Instructions>

If <Condition> Then
<Instructions>
End If

The condition is generally a comparison, but any expression giving a numerical
result can be used. This value will then be interpreted as True or False by Basic.
False corresponds to the numerical value 0, all other values are considered as
True.

If the condition is evaluated as True, the instruction or instructions following the
keyword Then will be executed.

If...Then...Else...End If

Use this structure to define multiple conditional instruction blocks. Only the first
of these blocks evaluated as True will be executed.

AssetCenter 4.4 - Programmer's reference | 25

If <Conditionl> Then
<Instructionsls>

ElseIf <Condition2> Then
<Instructions2s>

Else
<InstructionsN>
End If

The first condition is tested, if the result is evaluated as False, the second

condition is tested and so on until one of them is evaluated as True. The
instruction set after the keyword Then is executed.

The keyword Else is optional. It makes it possible to define an instruction set to
be executed if all the conditions are evaluated as False.

/ Note:

You can nest as many Elself instructions as you like in the decision structure.
However, if you systematically compare the same expression with a different
value, the syntax of the decision structure can become unnecessarily complex
and difficult to read. In this case, we advise you to use a Select...Case type decision
structure.

Select...Case

This structure serves the same purpose as the previous decision structures, but
in general, the resulting code is more readable. A Select...Case function performs
a single test at the start of the structure and compares the test result with the
values given by each Case in the structure. If there is a match, the instruction set
associated with the Case is executed.

Select Case <Test>

[Case <List of values 1>
<Instructionsls>]

[Case <List of values 2>
<Instructions2s>]

[Case Else
<Instructionsns>]
End Select

Each list of values contains a list of values separated by commas. If several Case
keywords have values matching the test results, only the instruction set associated
with the first matching Case will be executed.

Theinstruction set associated with the Case Else keyword is executed if no match
is found for the Case keywords.

26 | AssetCenter 4.4 - Programmer's reference

Loop structures

A loop structure enables you to repeat the execution of a series of instructions.
The following loop structures are available:
= Do...Loop

= For...Next

Do...Loop

Use this structure to execute a series of instructions an undefined number of
times. The loop is exited when a condition is met or is not met. This condition is
a value or an expression that is evaluated as False (0) or True (not 0).

/ Note:

It is possible to exit the loop by force by using the Exit Do keyword in the
executed instructions.

There are several variations on this structure, but the most common one is the
following:

Do While <Conditions>
<Instructions>
Loop

In this case, the condition is evaluated first. If it is True, the instructions are
executed and the program returns to the Do While keyword, test the condition
again and so on. The loop is exited when the condition is evaluated as False.

Thefollowing example tests the value of a counter, incremented at each iteration
of the loop. The loop is executed when the counter reaches 20.

Dim iCounter As Integer
iCounter = 0

Do While iCounter < 20
iCounter = iCounter +1
Loop

The following example is based on the previous one but exits the loop by force
using the Exit Do keyword if the counter contains the value 10.

Dim iCounter As Integer
iCounter = 0

Do While iCounter < 20
iCounter = iCounter +1

If iCounter = 10 Then Exit Do
Loop

AssetCenter 4.4 - Programmer's reference | 27

In this type of Do...Loop structure, the condition is evaluated before executing
theinstructions. If you wish to execute the instruction and then test the condition,
use the following Do...Loop structure:

Do
<Instructions>
Loop While <Conditions>

/ Note:

This type of structure guarantees that at least one of the instructions will be
executed.

The two previous Do...Loop structures iterate for as long as the condition is True.
If you wish to iterate while the condition is False, use one of the following
structures:

Do Until <Conditions
<Instructionss>
Loop

Do
<Instructionss>
Loop Until <Conditions>

Using this structure type, the previous example can be written:

Dim iCounter As Integer
iCounter = 0

Do Until iCounter = 20
iCounter = iCounter +1
Loop

For...Next

Use this structure to execute a series of instructions an undefined number of
times. Unlike Do...Loop, a For...Next loop uses a variable called a counter whose
value is incremented or decremented at each iteration.

/ Note:

It is possible to exit the loop by force by using the Exit For keyword in the
executed instructions.

For <Counter> = <Initial value> To <Final value> [Step <Increments]
<Instructions>
INext [<Counters>]

28 | AssetCenter 4.4 - Programmer's reference

E!f

The arguments Counter, Initial value, Final value and Increment are all
represented by numerical values.

/ Note:

Increment may be a positive or negative value. If it is positive, the Initial value
must be less than or equal to the Final value in order for the instructions to be
executed. If it is negative, the Initial value must be greater than or equal to the
Final value in order for the instructions to be executed. If the Increment is not
specified, by default it is setto 1.

When a For...Next loop is executed, the following operations are performed:
1 The counter initializes and stores the initial value,

2 The Basic codes tests whether the value of the counter is greater than the
final value. If this is the case, the program exits the loop.

/ Note:

If the increment is negative, the Basic test whether the value of the counter
is less than the final value.

3 Theinstructions are executed,

4 The counter incremented by 1 or the specified value,

5 Operations 2 through 4 are repeated.

The following operation sums all even number up to 1000:

Dim iCounter As Integer, 1Sum As Long
For iCounter = 0 To 1000 Step 2

1Sum = 1Sum + iCounter

Next

The following example is based on the previous one but exits the loop by force
using the Exit For keyword if the counter contains the value 500.

Dim iCounter As Integer, 1Sum As Long
For iCounter = 0 To 1000 Step 2

1Sum = 1lSum + iCounter

If iCounter = 500 Then Exit For

Next

AssetCenter 4.4 - Programmer's reference | 29

o ——
Operators

Operators are symbols than enable you to perform simple operations (addition,
multiplication, etc.) on variables or compare them. There are several different
types of counters:

= Assignment operators,

= Arithmetic operators,

= Relational operators (also called assignment operators),
= Logical operators.

Assigment operators

This type of operator enables you to assign a value to a variable. AssetCenter
Basic uses one single assigment operator, the "=" sign. The assigment syntax is
as follows:

|<Variable> = <Value>

Arithmetic operators

Arithmetic operators enable you to modify the value of a variable arithmetically,
or to perform simple arithmetic operations between two expressions.

The + operator

This operator enables you to sum two values. The syntax is as follows:

|<Result> = <Expression 1> + <Expression 2>

/ Note:

This operator is used both to sum two numbers and to concatenate strings. To
avoid any ambiguity, we recommend you use this operator just for sum
operations and to use the & operator to concatenate strings.

30 | AssetCenter 4.4 - Programmer's reference

I

The - operator

This operator enables you to differentiate between two values or to negatively
sign (monadic operator) a value. The operator has two syntaxes:

[<Result> = <Expression 1> - <Expression 2>
or
[- <Expression> |
The * operator
This operator enables you to multiply two values. The syntax is the following:
|<Result> = <Expression 1> * <Expression 2>
The / operator
This operator enables you to perform a division between two values. The syntax
is as follows:
|<Result> = <Expression 1> / <Expression 2>

The A operator

This operator enables you to raise a value to the power of an exponent. The
syntax is as follows:

|<Result> = <Expression 1> * <Expression 2>

/ Note:

In this syntax, expression 1 cannot be negative if expression 2 (the exponent) is
an integer. When an expression performs several exponential operations in a
series, they are interpreted logically from left to right.

The Mod operator

This operator calculates the remainder of the euclidien division of two values.
The syntax is as follows:

|<Result> = <Expression 1> Mod <Expression 2>

AssetCenter 4.4 - Programmer's reference | 31

f Note:

Floating-point numbers are automatically rounded to integers.

The following example returns 4 (6.8 is rounded to the nearest integer, 7):

Dim ivValue As Integer
ivalue = 25 Mod 6.8

Relational operators

Relational operators enable you to compare two values. The following table
summarizes the relational operators:

= Equality operator Compares two values <Expression 1> = <E
and verifies their xpression 2>
equality

< Less-than operator Tests whether avalue <Expression 1> < <E
is strictly less than an- *Pression 2>
other

<= Less-than orequal to Test whetheravalue <Expression 1> <= <

operator is less than orequal to ExPression 2>

another

> Greater-than operator Tests whether avalue <Expression 1> > <E
is strictly greater than *Pression 2>
another

>= Greater-than or equal Tests whether a value <Expres§ion 1> >= <

to operator is greater than or Expression 2>

equal to another

<> Inequality operator Tests whether avalue <Expression 1> <> <
is different from anoth- Expression 2>
er

.
Logical operators

Logical operators enable you to evaluate several conditions.

32 | AssetCenter 4.4 - Programmer's reference

The And operator

This operator performs a logical AND (both conditions must be true) on two
expressions. The syntax is as follows:

[<Result> = <Expression 1> And <Expression 2>

If each expression (operand) is evaluated as True, the result is True. If either of
the expressions is evaluated as False, the result is False.

The Or operator

This operator performs a logical OR (either of the conditions must be true) on
two expressions. The syntax is as follows:

|<Result> = <Expression 1> Or <Expression 2>

If either expression is evaluated as True, the result is True.

The Xor operator

This operator performs an eXclusive OR (only one of the two conditions must
be true) on two expressions. The syntax is as follows:

|<Result> = <Expression 1> Xor <Expression 2>

If only one of the expressions is evaluated as True, result is True.

The Not operator

This operator is used to perform the logical negation on an expression. The
syntax is as follows:

|<Result> = Not <Expression 1>

If the expression is evaluated as True, the result is False. If the expression is
evaluated as False, the result is True.

Priority of operators

When more than one operators are combined, the following order of priority is
used when evaluating expressions. The operators are listed in decreasing order
of priority:

1 ()

2 A

3 -+

AssetCenter 4.4 - Programmer's reference | 33

/l *
Mod
=,>,<, <=, >=
Not
And
Or
0 Xor

= O 00 N O Un

File management

AssetCenter Basic enables simplified file management. The most common
operations (read, write, etc.) are available as standard.

Reminder concerning files

A file is way in which a program sees and external object. It is a collection of
logical records, that may or may not be structured, on which the program can
execute a set of elementary operations (read, write, etc.). A logical record
represents the minimum set of data that can be manipulated by a single
elementary operation.

AssetCenter can only handle so-called sequential files. In a sequential file,
operations mainly concern reading the next record or appending a new record
to the end of the file. It is not possible to simultaneously read and write records.

When read, cursor is placed on the first logical record of the sequential file. Each
read operation transfers a record to an internal zone (generally a variable) of the
program and places the cursor on the next record of the file. An operation enables
you to determine whether there are any remaining records to be read (EOF
clause: End Of File).

When written to, the sequential file is either empty or the cursor is placed after
the last record in the file. Each write operation transfers data stored in an internal
zone (generally a variable) of the program, to a record in the file and then moves
the cursor after this record.

34 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

f Note:

One of the main features of a sequential file is that the records are read in the
order they are written.

Opening and closing files

The Open clause

This is the main clause used to manipulate files. It enables you to read, create
and write to a files. The syntax is as follows:

Open <Path of the file> For <Mode> [Access <Access type>] As [#]<File numb
er>

The parameters of this clause are detailed in the following table:

<Path of the file> Character string specifying the file concerned
by the operation. This string can contain the
full path of the file.
<Mode> Specifies the processing mode of the file. This
parameter may contain one of the following
values:
= Input: Thefile is open in read mode.
= Output: The file is open in write mode. If
thefile already exists and has existing con-
tent, this is overwritten.
= Append: The file is open in write mode. If
the file already exists and has existing con-
tent, the new content is appended to the
end of the file.

= Binary: The file is opened in binary read
mode.

AssetCenter 4.4 - Programmer's reference | 35

_

<Access type> Specifies the operations than can be performed
on an open file. If the file is opened by another
process and the specified access is not author-
ized, the file open command fails. This paramet-
er can be set to any of the following values:
= Read: The file is open for read-only access
= Write: Thefile is open for write-only access
= Read Write: The file is open in read-write
mode. This access type is only available for
the Binary and Append access modes.

<File number> Identifies the file using a unique number
between 1 and 511. The FreeFile() function
enables you to determine the next available
file number.

-)" Note:

Bear the following points in mind:

= Files must be opened using the Open clause before any read or write
operations on the file.

= In Append, Binary or Output mode, if the referenced file does not exist, it is
created.

= InBinary or Input mode, you can open afile using a different number without
having to close the file first. In Append or Output mode, you must first close
a file before opening it again with a different number.

The Close clause

This clause enables you to close a file that was opened using a the Open(). The
syntax is as follows:

|Close [<List of files>] |

The optional <List of files> argument can contain one or more file numbers.
This syntax of this optional argument is as follows:

|[[#]1<File numbers>] [, [#]<File numbers>]... |

-)" Note:

If you omit this parameter from the clause, all active files opened by the Open()
clause are closed.

36 | AssetCenter 4.4 - Programmer's reference

Reading data from file

Two clauses are available for reading data from a file. Using one or the other

clause will depend on the specified access mode for the file. The two clauses are
the following:

= Input
= LineInput

In Input clause

This clause is used to read a given number of characters from a file open in Binary
or Input mode. The syntax of this clause is as follows:

|Input (<Number characters to read>, [#]<File numbers>)

The Line Input clause

This clause is used to read a line of data from a sequential file, and to store it in
a String or Variant type variable. The syntax of this file is as follows:

|Line Input #<File numbers>, <Name of the variables>

G,.-/

The clause reads the characters one by one until a carriage return or carriage
return - new line is reached.

Writing data to a file

One single clause, Print, enables you to write data to a file. The syntax of this
clause is as follows:

|Print #<File numbers>, [<Data>] |

AssetCenter 4.4 - Programmer's reference | 37

AssetCenter

38 | AssetCenter 4.4 - Programmer's reference

Classification of functions

CHAPTER

Functions are classified according to three different levels. A given function can
be classified by:

= Families of functions [page 39]

= Scope of application of functions [page 40]

= Application modules [page 40]

Families of functions

Functions in the AssetCenter environment can be organized into several main

families:

= Functionsrecognized by AssetCenter These are essentially functions that can
be used in the scriptable parts (in Basic) of the software.

= Functions recognized by the AssetCenter API: These functions can be called
by external tools or be a program written in a high-level language.

These main families of functions are not mutually exclusive. For example, certain
AssetCenter API functions can be used in the Basic scripts in the software. Such
a function, originating from the AssetCenter APl is said to be "exposed" in
AssetCenter's internal Basic scripts. The syntax of such a function may change
but its behavior remains the same.

AssetCenter 4.4 - Programmer's reference | 39

Scope of application of functions

The functions described in this document can be used in at least one of the

following contexts:

= AssetCenter API libraries. In particular, the functions are available for
development of Get-It applications.

= Field or link configuration script (Configure the object popup menu item or
AssetCenter Database Administrator) and by extension Calculation script
(SQL name: memScript) of a calculated field:
= Default value,
= Mandatory nature,
= Historization,
= Read-only nature,

= Script type action:
o Script defined in the Script of the action (SQL name: Script) of a Script
action.
= AssetCenter wizards:
= "FINISH.DO" script of a wizard.
= Value definition scripts for the properties of nodes.

Application modules

Each function is associated with one or more application modules. An application

module describes the nature of operations carried out by the function. The

different application modules are listed below:

= Built-in: Classic Basic functions, conversion and string handling functions,
etc.

= Technical: Connection to a database, handling of table, field, link, index, record
and query objects.

= Functional: Generic, line of business functions.

= Cable.

= Procurement.

40 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

= Chargeback.

= Wizards.
= Actions.
= Graphics.

AssetCenter 4.4 - Programmer's reference | 41

AssetCenter

42 | AssetCenter 4.4 - Programmer's reference

Conventions

CHAPTER

This chapter describes:

= Notation [page 43]

= Format of Date+Time constants in scripts [page 44]

= Format of Duration type constants in scripts [page 45]

Notation

The following notation is used in the examples in this manual:

[Square brackets denote an optional parameter. Do not type these
brackets in your command.

Exception: In Basic scripts, when the square brackets denote the path
to datain the database, they must appear in the script as shown below:

[Link.Link.Field]

<> Angle brackets denote a parameter in plain language. Do not type these
brackets. Substitute the text with the appropriate information.
{ Curly brackets surround the definition of a node or a script block

spanning several lines for a property.

AssetCenter 4.4 - Programmer's reference | 43

A pipe is used to separate a series of possible parameters contained
within curly brackets.

The following text styles have specific meanings:

Fixed width DOS command, function parameter are data formatting.
characters

Example Example of code or command.

Code or command omitted.

Object name The names of fields, tabs, menus and files are shown in bold.

Format of Date+Time constants in scripts

Dates referenced in scripts are expressed in international format, independently
of the display options specified by the user:

yyyy/mm/dd hh:mm:ss

Example:
RetVval="1998/07/12 13:05:00"

/ Note:

The hyphen ("-") can also be used as a date separator.

About dates

Dates are expressed differently in internal Basic and from external tools:

= InBasic, adate can be expressed in international format, or as a floating point
number ("Double" type). In this case, the integer part of the number represents
the number of days elapsed since 1899-12-30 at midnight, the decimal part
represents the fraction of the current date (The number of seconds elapsed
since the start of the day divided by 86400).

= Externally, dates are expressed as along integer ("Long" type) that represents
the number of seconds elapsed since 01/01/1970 at midnight, independent
of time zones (UTC time).

44 | AssetCenter 4.4 - Programmer's reference

Format of Duration type constants in scripts

In scripts, durations are stored and expressed in seconds. E.g. to set the default
value for a "Duration” type field to 3 days, use the following script:
RetVal=259200

Likewise, functions that calculate durations, such as the
"AmWorkTimeSpanBetween()" function, return a number of seconds.

/ Note:

In financial calculations, AssetCenter takes into account the most common
simplifications used. In this case alone, a year is considered as being 12 months
and 1 month as 30 days (thus: 1 year = 360 days).

AssetCenter 4.4 - Programmer's reference | 45

AssetCenter

46 | AssetCenter 4.4 - Programmer's reference

Definitions

CHAPTER

This chapter groups together the definitions of several essential terms.
You will find the following definitions:

Definition of a function [page 47]

Definition of the CurrentUser virtual link [page 48]
Definition of a handle [page 49]

Definition of an error code [page 49]

Definition of a function

Afunction is a program that performs operations and returns a value to the user.
This value is called the "return value" or "return code".

Here is an example of the syntax used to call an internal AssetCenter function:

AmConvertCurrency(strSrcName As String, strDstName As String, dVal As
Double) As Double

Here is the syntax of the same function via the AssetCenter API:

double AmConvertCurrency(long hApiCnxBase,long Itm, const char
*pszSrcName, const char *pszDstName,double dVal)

AssetCenter 4.4 - Programmer's reference | 47

Definition of the CurrentUser virtual link

Definition

CurrentUser can be considered as a link starting in all tables and pointing to the

record in the table of departments and employees corresponding to the current

user.

= Inthe CurrentUserformat, it points to the record corresponding to the current
user, and returns the description string from the Employees and Departments

table.

= Inthe CurrentUser.Field format, it returns the value of the field for the current
user.

/ Note:

This virtual link is not displayed in the list of fields and links; therefore it is not
directly accessible in AssetCenter's internal script builder. You must enter this
expression manually.

Equivalencies

The AmLoginName() and AmLoginld() functions, which return the current user's
Name (SQL name: Name) and ID (SQL name: IPersld), respectively, may be
considered as functions derived from CurrentUser. In effect, the following are
equivalent:

= AmLoginName()=[CurrentUser.UserLogin]
= AmLoginld()=[CurrentUser.[EmplDeptid]

Restrictions

CurrentUser will only work if a context is defined (the context being a table).
If there is no context, you must use another function.
Example:

You want to create a non-contextual action that executes a file whose path
depends on the user connected to the AssetCenter database.

48 | AssetCenter 4.4 - Programmer's reference

If the action were contextual, you would be able to create an Executable type
action with the Folder field set to, for example: c:\scripts\[CurrentUser.Name]\.

However, when an Executable type action does not have a context,
[CurrentUser.Name] is considered to be fixed text.

You must therefore find another solution such as creating a Script type
non-contextual action using the script:

|RetVal = amActionExec ("program.exe","c:\scripts\" + amLoginName ())

Definition of a handle

A handle represents a unique identifier for an object. In the context of
AssetCenter, this object can be a field, link, index, query, record, table or a
connection. Handles are 32-bit integers ("Long" type).

/ Note:

The NULL value is not a valid handle.
From external tools, you can also access (database) connection handles.

Definition of an error code

When a function fails, it returns an error code.

From external tools

This error code and associated message can be recovered by external tools via
the "AmLastError()" and "AmLastErrorMsg()" functions respectively. It can be
cleared using the "AmClearLastError()" function.

/ Note:

Any new function call clears the error code and previous message.

AssetCenter 4.4 - Programmer's reference | 49

“
|_

Internally

Internally (in Basic scripts, for example), the last error code and its description
can be recovered using the Err.Number and Err.Description functions.

-)" Note:

Internally, you don't need to program your own error handling. A script with
problems will stop and a database rollback will be performed if necessary.

You can raise an error on purpose using the Err.Raise function. Its syntax is as
follows:

|Err.Raise (<Error code>, <Error messages) |

-)" Note:

When the creation or modification of a record is invalidated by the value of the
"Validity" field for the table in question, itis a good idea to raise an error message
using the Err.Raise function in order to warn the user (code 12006 or 12007). If
you do not do this, the user will not necessarily understand why the record
cannot be modified or created.

The following table lists the most frequent error codes:

12001

Undefined error

12002

Bad parameter for a function

12003

Invalid handle or object deleted

12004

No more data available. This error typically oc-
curs when executing queries. When the query
does not return data, this error is raised.

12005

Internal database server error

12006

Invalid value (incorrect type for a parameter,
etc.)

12007

Non valid record (a mandatory field is not
populated, for example)

12008

Problems with database access rights

12009

Obsolete or non implemented function

12010

Maximum number of database connections
exceeded

50 | AssetCenter 4.4 - Programmer's reference

Function typing and parameters

CHAPTER

This chapter contains information on the following:
= List of types [page 51]

= Type of a function [page 52]

= Type of a parameter [page 52]

List of types

The following table summarizes the various types available for a function or a
parameter:

Integer Integer from -32,768 to +32,767.

Long Integer from-2,147,483,647 to +2,147,483,646.

Single 4-bype floating-point number (single preci-
sion).

Double 8-byte floating-point number (double preci-
sion).

String Text in which all characters are allowed.

Date Date or Date+Time.

AssetCenter 4.4 - Programmer's reference | 51

Variant Generic type that can represent any type.

-,-’ Note:

Not all of these types are available from external tools. Only Long, Double and
String types are available. Variant is not used and Integer and Date objects are
represented by a Long.

Type of a function

The type of a function corresponds to the type of the value returned by the
function. We recommend paying close attention to this piece of information
since it can be the cause of compilation and runtime errors in your programs.

For example, you cannot use a function returning a certain typed value in the
definition of the default value of a differently typed field. Try, for example,
assigning this default value script to any "Date" or "Date and time" type field:
RetVal=AmLoginName ()

The "AmLoginName()" function returns the name of the connected user in the
form of a character string ("String" type). The type of this return value is therefore
incompatible with "Date" type fields and AssetCenter displays an error message.

Type of a parameter

The parameters that can be used in functions also have a type that must be
respected in order for the proper execution of the function. In the syntax of
functions, parameters are prefixed according to their type. To avoid any possible
confusion, the prefixes used in this reference differ according to the syntax (API
or Basic) of the function. The following table resumes the equivalencies between
the prefixes used in the APl syntax and the Basic syntax:

52| AssetCenter 4.4 - Programmer's reference

Programmer's reference

Long "h" for a handle or "I" for a "
number

Double "d" "d"

String "char*psz" "str"

Date "ltm" "dt"

Variant " "

AssetCenter 4.4 - Programmer's reference | 53

AssetCenter

54 | AssetCenter 4.4 - Programmer's reference

" Using the AP

PART

AssetCenter 4.4 - Programmer's reference | 55

AssetCenter

56 | AssetCenter 4.4 - Programmer's reference

CHAPTER

Introduction

The AssetCenter APl is provided as a 32-bit DLL, useable in Windows 95/98, 2000,
XP and Server 2003.

The following environments are supported:

= Visual Basic 4.0, 5.0, and 6.0,

= Visual C++ 4.0, 5.0, and 6.0,

= Visual Basic .NET 2002 and 2003,

= Visual Studio .NET 2002 and 2003,

= Visual C# NET 2002 and 2003,

= All Microsoft products using VBA (Visual Basic for Applications).

! Warning:

The entry points in the library (.dll) are not provided for .NET environments. If
you wish to use these development environments, you must define these entry
points yourself.

f Note:

The API should be compatible with all tools authorizing the use of third-party
DLLs.

AssetCenter 4.4 - Programmer's reference | 57

Warning

Before using the AssetCenter API, the user should be familiar with the terminology
used in the AssetCenter conceptual model. In particular, a minimal knowledge
of the database structure is required.

Information on the structure of the database can be found in the manual entitled
"Reference guide: Administration and advanced use", chapter "Structure of the
database" and in the "Database.txt" and "Tables.txt" files, which can be found in
the "doc\infos" sub-folder of the AssetCenter installation folder.

Installation

Before using the AssetCenter API, it is highly recommended to install a fully
functional version of AssetCenter. In this way, you can quickly test whether
databases can be correctly accessed from a given computer and create or
configure database connections. The APl uses the same database layers and the
same configuration information as AssetCenter to access data sources, so
problems can often be investigated from within AssetCenter.

The typical steps for setting up a development environment with AssetCenter
are as follows:

= Install a 32-bit version of AssetCenter with the AssetCenter APl package.

= Use AssetCenter to configure the data source, and try to open a database.

= Use your development environment to call AssetCenter APl functions.

To familiarize yourself with the AssetCenter API, we recommend using a
demonstration database or any non critical source of data for which manipulation
errors are not critical.

. 1n1 configuration file associated with the DLL

» AssetCenter - Installation guide, .ini and .cfg files chapter.

Refer to the following sections in particular:
= Available .ini and .cfg files

58 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

= Controlling the modification of the .ini files

AssetCenter 4.4 - Programmer's reference | 59

AssetCenter

60 | AssetCenter 4.4 - Programmer's reference

Methodology

CHAPTER

A typical sequence of operations using the AssetCenter APl would be:

Step 1 Create a query using an AQL statement:
SELECT AssetTag, User.Name, Supervisor.Name FROM
amPortfolio

/ Note:

You can also use AssetCenter Export to generate an AQL query.

Step 2 Browse the query result set and retrieve any useful handles on specific
items.

Step 3 Use the retrieved handles to update the information in the
corresponding objects.

Step4 Commit (accept) or rollback (cancel) the whole transaction.

AssetCenter 4.4 - Programmer's reference | 61

AssetCenter

62 | AssetCenter 4.4 - Programmer's reference

CHAPTER

Concepts and examples

This section contains information on the following:
= Concepts [page 63]

= Handling dates [page 64]

= First example [page 64]

= Second example [page 65]

Concepts

AssetCenter is built around an object oriented design and the APl maintains this
structural view. To accommodate the limitation of Windows DLLs which imposes
the use of a flat "C like API", the AssetCenter APl work around this problem by
using handles (32-bit integers) to identify every user-created object. This approach
has the advantage of allowing non-object oriented languages to access the
AssetCenter object model.

Before doing anything else, your program must call "AmStartUp()" in order to
initialize the AssetCenter libraries. Your program must also terminate by calling
the "AmCleanUp()" function.

Before accessing a database object, a connection should be established between
the user and the database. This connection is identified by a "handle" on a

AssetCenter 4.4 - Programmer's reference | 63

"connection" object (this handle is then used in all the APl functions that interact
with the database. It corresponds to the parameter "hApiCnxBase". This object
can then be used to create queries and gain access to records.

/ Note:

All database objects are linked to a connection so information about user
privileges can be checked.

The first step is to open a connection using a valid data source name and a valid
login/password combination.

!

When you connect to the AssetCenter database via the AssetCenter API, a
connection slot is used.

Handling dates

When reading dates, you have the choice of the following two functions for

"Date" and "Date and time" type fields:

= "AmGetFieldLongValue()" which returns the date as a Unix "Long" (UTC). We
recommend using this function for calculations involving dates.

= "AmGetFieldStrValue()" which returns the date as a string in the same format
as the Windows Control Panel. This date takes time zones into account. We
recommend using this function when you need to display a date.

First example

The following example, written in C, declares a connection to the demonstration
database:

long 1Cnx ;
1Cnx = AmOpenConnection (ACDemo351ENG, Admin ,) ;

"ICnx" is a connection handle that can be used to identify the newly created
connection.

64 | AssetCenter 4.4 - Programmer's reference

T
I

This connection can now be used to create queries and access the database. The
following example, written in C, defines a query on the table of assets and
browses the results set:

#include apiproto.h

#tdefine SZ MODEL_LEN 200

long 1Cnx ;

long 1lQuery ;

long 1lStatus ; /* to store error code */
char szModel [SZ_MODEL_LEN]
/* dll initialization */
AmStartup () ;

/* Open a connection */
1Cnx = AmOpenConnection ("ACDemo300Eng", "Admin" ,"")
if(1Cnx != 0)

{
/* Creation of a query object */
1lQuery = AmQueryCreate (1lCnx)
if (1Query != 0)

7

/* Construction of the result set : all assets from Compag*/
1Status = AmQueryExec (1Query, "select AssetTag where brand = 'Compag'")

/* Navigates through the result set */
while(!1Status)

{
/* Read the first field (AssetTag) of the current item in the query */
1Status = AmGetFieldStrValue (lQuery, 0, szModel,SZ MODEL_ LEN-1) ;

if (1Status ==)

{
printf (' Compag AssetTag=%s\n', szModel) ;
1Status = AmQueryNext (1Query) ;

}
}
/* clean things up */
IAmReleaseHandle (1Query) ;

}

IAmCloseConnection (1Cnx) ;

}

IAmCleanup () ;

Second example

Queries are used to locate objects in the database. When you want to update a
record, a handle on a "record" object must be obtained using a query. The record
can then be processed using other AssetCenter API functions.

The next example shows how to modify a field in a specific record:

AssetCenter 4.4 - Programmer's reference | 65

/* Handles for objects */

long 1Cnx ;

long 1lQuery ;

long 1lStatus ;

long lRecord ;

lAmStartup () ;

1Cnx = AmOpenConnection ("ACDemo300Eng", "Admin" ,"")

/* Creation of a query object attached to 1Cnx */
1Query = AmQueryCreate (1Cnx) ;

/* Mark the starting point of the current transaction */
IAmStartTransaction (1Cnx) ;

/* Use a query that matches a single object */

1Status = AmQueryGet (1Query, "select model, AssetId where brand = 'Compaq'
and barcode='34234"'")

/* Get a record handle to the matching object */
1Record = AmGetRecordHandle (1Query) ;

/* Change the field Fieldl with new value spam */
1Status = AmSetFieldStrValue (1lRecord, "Fieldl", "Spam") ;
/* Update the change for the current session */

1Status = AmUpdateRecord(lrecord) ;

/* Commit all modifications to the database */

1Status = AmCommit (1Cnx) ;

/* you can release here query and record objects */

/* but closing connection will do it */

/* Close the connection to the database */
IAmCloseConnection (1Cnx) ;

IAmCleanup () ;

This example shows how to get a unique record handle using the query
mechanism. In this sample code, the query is used to locate a single item, but it
is also possible to use "AmQueryExec()" to get a set of records and then get a
record handle for one or more records.

-)" Note:

For reasons of simplicity, this example does not deal with all possible error codes.

66 | AssetCenter 4.4 - Programmer's reference

| | | Alphabetical reference

PART

AssetCenter 4.4 - Programmer's reference | 67

AssetCenter

68 | AssetCenter 4.4 - Programmer's reference

9 Alphabetical reference

CHAPTER

Abs()

Returns the absolute value of a number.

Internal Basic syntax
Function Abs(dValue As Double) As Double

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

AssetCenter 4.4 - Programmer's reference | 69

_

FINISH.DO script of a wizard 9

Input parameters

o dValue: Number for which you want to know the absolute value.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

Dim iSeed as Integer
iSeed = Int((10*Rnd)-5)
RetVal = Abs(iSeed)

AmActionDde()

This function sends a DDE request to a DDE server application. Using this function,
AssetCenter can control another application using a DDE link. This function is
equivalent to a DDE type action

API syntax

long AmActionDde(long hApiCnxBase, char *strService, char *strTopic, char
*strCommand, char *strFileName, char *strDirectory, char *strParameters,
char *strTable, long IRecordid);

70 | AssetCenter 4.4 - Programmer's reference

Programme

Internal Basic syntax

Function AmActionDde(strService As String, strTopic As String, strCommand
As String, strFileName As String, strDirectory As String, strParameters As
String, strTable As String, IRecordld As Long) As Long

Field of application

Version: 3.00

AssetCenter API D

Configuration script of a field or link

"Script" type action D

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard D
Input parameters

= strService: This parameter contains the name of the DDE service provided
by the executable you want to call. Refer to the documentation of the
executable to obtain the list of DDE services it provides.

= strTopic: This parameter contains the topic (i.e. the context) in which a DDE
action must be executed.

= strCommand: This parameter contains the commands the external application
must execute. You must follow the syntax defined by the external application.

= strFileName: If the service is not resident in memory, you must load it by
specifying in this parameter the name of the executable (or the name of any
file associated with an executable using the Windows File Manager) which
activates the service.

= strDirectory: This parameter contains the path for the file defined in
strFileName.

= strParameters: This parameter contains the various parameters to pass to
the executable which activates the service when it is launched.

= strTable: Optional parameter used when the action is contextual. It indicates
the SQL name of the table containing the record to which the action applies.

AssetCenter 4.4 - Programmer's reference | 71

_

= IRecordld: Optional parameter used when the action is contextual. It indicates
the identifier of the record to which the action applies.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

AmActionExec()

This function launches an ".exe", ".com", ".bat", ".pif" application. You can also
refer to any type of document, as long as the document extension is associated
with an executable via the Windows File Manager. This function is equivalent to
an action of "Executable” type.

API syntax

long AmActionExec(long hApiCnxBase, char *strFileName, char *strDirectory,
char *strParameters, char *strTable, long IRecordld);

Internal Basic syntax

Function AmActionExec(strFileName As String, strDirectory As String,
strParameters As String, strTable As String, IRecordid As Long) As Long

Field of application

Version: 3.00

AssetCenter API D
Configuration script of a field or link
"Script" type action D

Deployment workflow

72 | AssetCenter 4.4 - Programmer's reference

s ref

Wizard script D
FINISH.DO script of a wizard D
Input parameters

= strFileName: This parameter contains the name of the executable, or of any
document (associated with an executable via the File Manager).

= strDirectory: This parameter contains the path for the file specified in the
strFileName parameter.

= strParameters: This optional parameter contains the various parameters to
be provided to the executable when it is launched.

= strTable: Optional parameter used when the action is contextual. It indicates
the SQL name of the table containing the record to which the action applies.

= |Recordld: Optional parameter used when the action is contextual. It indicates
the identifier of the record to which the action applies.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

Example

This example executes the Windows NT explorer (situated in the "WinNT" folder
of the "C" drive):

|RetVa1=AmActionExec ("explorer.exe", "c:\winnt\") |

AmActionMail()

This function sends a message via one of the messaging systems managed by
AssetCenter:

= Internal messaging system.

= External messaging system based on the VIM standard (Lotus Notes, etc.)

AssetCenter 4.4 - Programmer's reference | 73

= External messaging system based on the MAPI standard (Microsoft Exchange,
Microsoft Outlook, etc.)

= External messaging system based on the SMTP standard (Internet standard)

API syntax

long AmActionMail(long hApiCnxBase, char *strTo, char *strCc, char *strCcc,
char *strSubject, char *strMessage, long iPriority, long bAcknowledge, char
*strRefObject, char *strTable, long IRecordid);

Internal Basic syntax

Function AmActionMail(strTo As String, strCc As String, strCcc As String,
strSubject As String, strMessage As String, iPriority As Long, bAcknowledge
As Long, strRefObject As String, strTable As String, IRecordld As Long) As Long

Field of application

Version: 3.00

AssetCenter API /]

Configuration script of a field or link

"Script" type action b

Deployment workflow

Wizard script D

FINISH.DO script of a wizard v/
Input parameters

= strTo: This parameter contains the list of addresses for the message recipients
in the form messaging_system:address. The semi-colon is used as a separator.

= strCc: This parameter contains the list of addresses for people who are copied
in the message. The semi-colon is used as a separator.

74 | AssetCenter 4.4 - Programmer's reference

= strCcc: This parameter contains the list of addresses for people who receive
a blind copy of the message (they do not appear in the list of recipients). The
semi-colon is used as a separator.

= strSubject: This parameter contains the message subject.
= strMessage: This parameter contains the message body.
= iPriority: This parameter defines the priority for sending the message:
= 0:Low priority
= 1:Normal priority.
= 2:High priority.
= bAcknowledge: This parameter indicates whether the message sender will
receive an acknowledgement:
= 0:the sender does not receive an acknowledgement.
= 1:the sender does receive an acknowledgement.
= strRefObject: This parameter is only used for messages sent via the
AssetCenter internal messaging system. It contains the SQL name of the link

to follow from the record corresponding to the context of execution to reach
the referenced object. The CurrentUser virtual link can be used.

= strTable: Optional parameter used when the action is contextual. It indicates
the SQL name of the table containing the record to which the action applies.

= IRecordld: Optional parameter used when the action is contextual. It indicates
the identifier of the record to which the action applies.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

AmActionPrint()

This function prints a report on a given record in the database.

Internal Basic syntax
Function AmActionPrint(IReportld As Long, IRecordld As Long) As Long

AssetCenter 4.4 - Programmer's reference | 75

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link

"Script" type action 9
Deployment workflow

Wizard script 9
FINISH.DO script of a wizard D

Input parameters

= IReportld: This parameter contains the identifier of the report to be printed.

= IRecordld: This parameter contains the identifier of the record concerned by
the report. By default, this parameter is set to "0". The table concerned is
implicitly defined by the report.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

AmActionPrintPreview()

This function triggers a print preview of a report concerning a given database
record.

Internal Basic syntax

Function AmActionPrintPreview(IReportld As Long, IRecordld As Long) As
Long

76 | AssetCenter 4.4 - Programmer's reference

Programmer's referer

Field of application

Version: 3.60

AssetCenter API

Configuration script of a field or link

"Script" type action)
Deployment workflow

Wizard script D
FINISH.DO script of a wizard A

Input parameters

= IReportld: This parameter contains the identifier of the report concerned.

= IRecordld: This parameter contains the identifier of the record concerned by
the report. By default, this parameter is "0".

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

AmActionPrintTo()

This function prints a report on a given database record and on a given printer.

Internal Basic syntax

Function AmActionPrintTo(strPrinterName As String, IReportld As Long,
IRecordld As Long) As Long

AssetCenter 4.4 - Programmer's reference | 77

iy
i_

Field of application

Version: 3.5

AssetCenter API

Configuration script of a field or link

"Script" type action 9
Deployment workflow

Wizard script D
FINISH.DO script of a wizard D

Input parameters

= strPrinterName: This parameter contains the name of the printer to use.
= IReportld: This parameter contains the identifier of the report to print.

= IRecordld: This parameter contains the identifier of the record concerned by
the report. By default, this parameter is set to "0".

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

AmAddAIIPOLinesTolnv()

This function adds a purchase order in full to an existing supplier invoice.

API syntax

long AmMAddAIIPOLinesTolnv(long hApiCnxBase, long IPOrdid, long linvid);

78 | AssetCenter 4.4 - Programmer's reference

Programmer's refere

Internal Basic syntax
Function AmAddAIIPOLinesTolnv(IPOrdld As Long, linvid As Long) As Long

Field of application

Version: 3.00

AssetCenter API D
Configuration script of a field or link

"Script" type action D
Deployment workflow

Wizard script

FINISH.DO script of a wizard D

Input parameters

= |POrdld: This parameter contains the identifier of the order to be added to
the supplier invoice.

= lInvld: This parameter contains the identifier of the supplier invoice to which
the purchase order is added.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

AmAddCatRefAndCompositionToPOrder()

This function enables you to add the full contents of a catalog reference to a
given purchase order.

AssetCenter 4.4 - Programmer's reference | 79

© I S———
API syntax

long AmAddCatRefAndCompositionToPOrder(long hApiCnxBase, long
IPOrderld, long ICatRefld, double dCatRefQty, long IRequestid, double
dUnitPrice, char *strCur);

Internal Basic syntax

Function AmAddCatRefAndCompositionToPOrder(IPOrderld As Long, ICatRefld
As Long, dCatRefQty As Double, IRequestld As Long, dUnitPrice As Double,
strCur As String) As Long

Field of application

Version: 4.00

AssetCenter API ¥/
Configuration script of a field or link
"Script" type action 9

Deployment workflow
Wizard script

FINISH.DO script of a wizard D
Input parameters
= IPOrderld: This parameter contains the identifier of the purchase order to
complete.

= |ICatRefld: This parameter contains the identifier of the catalog reference.

= dCatRefQty: This parameter contains the quantity (in the unit associated with
the product) to add.

= IRequestld: This parameter contains the identifier of the request that this
purchase order will satisfy.

= dUnitPrice: This parameter contains the unit price of the product of the
catalog reference.

= strCur: This parameter contains the code of the currency in which the unit
price is expressed

80 | AssetCenter 4.4 - Programmer's reference

Programmer's refere

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

Notes

/ Note:

In particular, this function can enable you to use the composition of the products
of a catalog reference to fill out a purchase order.

AmAddCatRefToPOrder()

This function enables you to add a catalog reference to an existing purchase
order.

API syntax

long AmAddCatRefToPOrder(long hApiCnxBase, long IRequestLineld, long
ICatRefld, long IPOrderld, double dQty, long bCanMerge);

Internal Basic syntax

Function AmAddCatRefToPOrder(IRequestLineld As Long, ICatRefld As Long,
IPOrderld As Long, dQty As Double, bCanMerge As Long) As Long

Field of application

Version: 4.00

AssetCenter API b

AssetCenter 4.4 - Programmer's reference | 81

“
|_

Configuration script of a field or link

"Script" type action b
Deployment workflow

Wizard script

FINISH.DO script of a wizard v/

Input parameters

= IRequestLineld: This parameter contains the identifier of the request line
associated with the purchase order.

= ICatRefld: This parameter contains the identifier of the catalog reference to
be added.

= IPOrderld: This parameter contains the identifier of the purchase order
concerned by the operation.

= dQty: This parameter contains the quantity (in the unit associated with the
product) to add.

= bCanMerge: This parameter enables you to specify whether the added line
can be merged with an existing line in the purchase line.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmAddEstimLinesToP0()

This function adds all estimate lines of an estimates to an existing order.

82 | AssetCenter 4.4 - Programmer's reference

I
API syntax

long AmAddEstimLinesToPO(long hApiCnxBase, long IEstimid, long IPOrdid,
long bMergeLines);

Internal Basic syntax

Function AmAddEstimLinesToPO(IEstimid As Long, IPOrdid As Long,
bMergelines As Long) As Long

Field of application

Version: 3.00

AssetCenter API D
Configuration script of a field or link
"Script" type action)

Deployment workflow
Wizard script
FINISH.DO script of a wizard A

Input parameters

= |Estimld: This parameter contains the identifier of the estimate to be added
to the purchase order.

= |POrdid: This parameter contains the identifier of the purchase order to which
the all the estimate lines of the estimate are added.

= bMergelines: This parameter enables you to specify if identical request lines
are to be combined (bMergeLines=1) to give one single line. The quantities
given for the lines to be combined are added together and a single line is
created.

Output parameters

= 0:Normal execution.

AssetCenter 4.4 - Programmer's reference | 83

_

= Other than zero: Error code.

AmAddEstimLineToP0()

This function adds an estimate line to an existing purchase order.

API syntax

long AmAddEstimLineToPO(long hApiCnxBase, long IEstimLineld, long
IPOrdid, long bMergeLines);

Internal Basic syntax

Function AmAddEstimLineToPO(IEstimLineld As Long, IPOrdid As Long,
bMergeLines As Long) As Long

Field of application

Version: 3.00

AssetCenter API /]
Configuration script of a field or link

"Script" type action b
Deployment workflow

Wizard script

FINISH.DO script of a wizard v/

Input parameters

= |EstimLineld: This parameter contains the identifier of the estimate line to
be added to the purchase order.

= IPOrdid: This parameter contains the identifier of the purchase order to which
the estimate line is added.

84 | AssetCenter 4.4 - Programmer's reference

= bMergelines: This parameter enables you to specify if identical request lines
are to be combined (bMergeLines=1) to given one single line. The quantities
given for the lines to be combined are added together and a single line is
created.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

AmAddLicContentToRequest()

This function adds to a purchase request all software installations covered by a
license.

API syntax

long AmAddLicContentToRequest(long hApiCnxBase, long IRequestid, long
ILicModelld, long IParent, long bExternalParent);

Internal Basic syntax

Function AmAddLicContentToRequest(IRequestld As Long, ILicModelld As
Long, IParent As Long, bExternalParent As Long) As Long

Field of application

Version:?

AssetCenter API ¥
Configuration script of a field or link
"Script" type action)

Deployment workflow

AssetCenter 4.4 - Programmer's reference | 85

L ——

Wizard script
FINISH.DO script of a wizard ¥/

Input parameters

= IRequestld: This parameter contains the identifier of the purchase request
concerned by the operation.

= ILicModelld: This parameter contains the identifier of the license model.

= IParent: This parameter contains the identifier of the portfolio item or request
line that will be the parent of the request lines created.

= bExternalParent: If this parameteris setto"1", the parent of the lines created
is an existing portfolio item in the request line.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

Notes

-,-’ Note:

This function is only included for reasons of compatibility. We recommend against
using it.

AmAddPOLineTolnv()

This function adds a given quantity of item(s) on an order line to a supplier
invoice.

86 | AssetCenter 4.4 - Programmer's reference

API syntax

long AmAddPOLineTolnv(long hApiCnxBase, long IPOrdLineld, long linvid,
double dQty);

Internal Basic syntax

Function AmAddPOLineTolnv(IPOrdLineld As Long, linvid As Long, dQty As
Double) As Long

Field of application

Version: 3.00

AssetCenter API D
Configuration script of a field or link
"Script" type action)

Deployment workflow
Wizard script
FINISH.DO script of a wizard A

Input parameters

= IPOrdLineld: This parameter contains the identifier of the order line to be
added to the supplier invoice.

= lInvld: This parameter contains the identifier of the supplier invoice to which
the items of the order line are added.

= dQty: This parameter contains the quantity of items on the order line to be
added to the supplier invoice.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

AssetCenter 4.4 - Programmer's reference | 87

= [f calling from an external program, you must call the AmLastError() [page 359]

function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmAddPOrderLineToReceipt()

This function enables you to add an order line to a receipt. In this way you can
receive an order line within the existing receipt.

API syntax

long AmAddPOrderLineToReceipt(long hApiCnxBase, long IPOrderLineld,
long IRecptld, double dQty, long bCanMerge);

Internal Basic syntax

Function AmAddPOrderLineToReceipt(IPOrderLineld As Long, IRecptid As
Long, dQty As Double, bCanMerge As Long) As Long

Field of application

Version: 4.00

AssetCenter API /]
Configuration script of a field or link
"Script" type action b

Deployment workflow
Wizard script
FINISH.DO script of a wizard v/

Input parameters

= IPOrderLineld: This parameter contains the identifier of the order line.

88 | AssetCenter 4.4 - Programmer's reference

= IRecptld: This parameter contains the identifier of the impacted receipt.

= dQty: This parameter contains the quantity to receive. In this way, you can
limit the quantity received in relation to the la quantity ordered (in the unit
of the product).

= bCanMerge: This parameter enables you to specify whether the line can be
merged with an existing line in the receipt.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= Ifcalling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmAddReceiptLineTolnvoice()

This function enables you to add a receipt line to an invoice. By doing so, you
can invoice a receipt line within an existing invoice.

API syntax

long AmAddReceiptLineTolnvoice(long hApiCnxBase, long IRecptLineld, long
linvoiceld, double dQty, long bCanMerge);

Internal Basic syntax

Function AmAddReceiptLineTolnvoice(IRecptLineld As Long, linvoiceld As
Long, dQty As Double, bCanMerge As Long) As Long

Field of application

Version: 4.00

AssetCenter 4.4 - Programmer's reference | 89

_

AssetCenter API b
Configuration script of a field or link
"Script" type action b

Deployment workflow
Wizard script
FINISH.DO script of a wizard D

Input parameters

= IRecptLineld: This parameter contains the identifier of the receipt line.

= linvoiceld: This parameter contains the identifier of the impacted invoice.

= dQty: This parameter contains the quantity to invoice. In this way, you can
limit the quantity invoiced in relation to the la quantity received (in the unit
of the product).

= bCanMerge: This parameter enables you to specify whether the line can be
merged with an existing line in the invoice.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmAddReqLinesToEstim()

This function adds all request lines of a request to an existing estimate.

API syntax

long AmAddReqLinesToEstim(long hApiCnxBase, long IReqld, long IEstimid,
long bMergelLines);

90 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

Internal Basic syntax

Function AmAddReqLinesToEstim(IReqld As Long, IEstimid As Long,
bMergeLines As Long) As Long

Field of application

Version: 3.00

AssetCenter API D
Configuration script of a field or link
"Script" type action D

Deployment workflow
Wizard script
FINISH.DO script of a wizard D

Input parameters

= |Reqld: This parameter contains the identifier of the request to be added to
the estimate.

= |Estimld: This parameter contains the identifier of the estimate to which all
the request lines of the request are added.

= bMergelines: This parameter enables you to specify if identical request lines
are to be combined (bMergeLines=1) to given one single line. The quantities
given for the lines to be combined are added together and a single line is
created.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

AssetCenter 4.4 - Programmer's reference | 91

“
|_

AmAddReqLinesToPO()

This function adds all the request lines of a request to an existing purchase order.
The supplier specified in the request must be identical to that in the purchase
order concerned.

API syntax

long AmAddReqLinesToPO(long hApiCnxBase, long IReqld, long IPOrdid,
long bMergeLines);

Internal Basic syntax

Function AmAddReqLinesToPO(IReqld As Long, IPOrdid As Long, bMergeLines
As Long) As Long

Field of application

Version: 3.00

AssetCenter API /]
Configuration script of a field or link
"Script" type action b

Deployment workflow
Wizard script
FINISH.DO script of a wizard v/

Input parameters

= IReqld: This parameter contains the identifier of the request to be added to
the purchase order.

= IPOrdid: This parameter contains the identifier of the purchase order to which
the request lines are to be added.

92 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

= bMergelines: This parameter enables you to specify if identical request lines
are to be combined (bMergeLines=1) to given one single line. The quantities
given for the lines to be combined are added together and a single line is
created.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

AmAddReqLineToEstim()

This function adds a request line to an existing estimate.

API syntax

long AmAddReqLineToEstim(long hApiCnxBase, long IReqLineld, long IEstimld,
long bMergeLines);

Internal Basic syntax

Function AmAddReqLineToEstim(IReqgLineld As Long, IEstimid As Long,
bMergeLines As Long) As Long

Field of application

Version: 3.00

AssetCenter API ¥
Configuration script of a field or link

"Script" type action)
Deployment workflow

Wizard script

AssetCenter 4.4 - Programmer's reference | 93

“
|_

FINISH.DO script of a wizard 9

Input parameters

= IReqLineld: This parameter contains the identifier of the request line to be
added to the estimate.

= [Estimld: This parameter contains the identifier of the estimate to which the
request line is added.

= bMergelines: This parameter enables you to specify if identical request lines
are to be combined (bMergeLines=1) to given one single line. The quantities
given for the lines to be combined are added together and a single line is
created.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

AmAddReqLineToPO()

This function adds a request line to an existing purchase order.

API syntax

long AmAddReqLineToPO(long hApiCnxBase, long IReqgLineld, long IPOrdid,
long bMergeLines);

Internal Basic syntax

Function AmAddReqLineToPO(IReqLineld As Long, IPOrdid As Long,
bMergeLines As Long) As Long

94 | AssetCenter 4.4 - Programmer's reference

Field of application

Version: 3.00

AssetCenter API D
Configuration script of a field or link
"Script" type action)

Deployment workflow
Wizard script
FINISH.DO script of a wizard A

Input parameters

= IReqLineld: This parameter contains the identifier of the request line to be
added to the purchase order.

= |POrdid: This parameter contains the identifier of the purchase order to which
the request line is to be added.

= bMaergelines: This parameter enables you to specify if identical request lines
are to be combined (bMergeLines=1) to given one single line. The quantities
given for the lines to be combined are added together and a single line is
created.

Output parameters

= 0:Normal execution.
= Other than zero: Error code.

AmAddRequestLineToPOrder()

This function enables you to add a request line to a purchase order.

AssetCenter 4.4 - Programmer's reference | 95

API syntax

long AmAddRequestLineToPOrder(long hApiCnxBase, long IRequestLineld,
long IPOrderld, double dQty, long bCanMerge);

Internal Basic syntax

Function AmAddRequestLineToPOrder(IRequestLineld As Long, IPOrderld As
Long, dQty As Double, bCanMerge As Long) As Long

Field of application

Version: 4.00

AssetCenter API ¥/
Configuration script of a field or link
"Script" type action 9

Deployment workflow
Wizard script
FINISH.DO script of a wizard D

Input parameters

= IRequestLineld: This parameter contains the identifier of the request line.

= IPOrderld: This parameter contains the identifier of the impacted purchase
order.

= dQty: This parameter contains the quantity to order. In this way, you can limit
the quantity orderd in relation to the la quantity requested (in the unit of the
product).

= bCanMerge: This parameter enables you to specify whether the line can be
merged with an existing line in the purchase order.

Output parameters

In case of error, there are two possibilities:

96 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmAddTemplateToPOrder()

This function enables you to add the full contents of a standard purchase order
to a given purchase order.

API syntax

long AmAddTemplateToPOrder(long hApiCnxBase, long IRequestid, long
IPOrderld, long ITemplateld, long IQty, long bCanMerge);

Internal Basic syntax

Function AmAddTemplateToPOrder(IRequestld As Long, IPOrderld As Long,
ITemplateld As Long, IQty As Long, bCanMerge As Long) As Long

Field of application

Version: 4.00

AssetCenter API D
Configuration script of a field or link
"Script" type action D

Deployment workflow
Wizard script

AssetCenter 4.4 - Programmer's reference | 97

_

FINISH.DO script of a wizard 9

Input parameters

= IRequestld: This parameter contains the identifier of the request line to satisfy
for the order lines that will be added.

= IPOrderld: This parameter contains the identifier of the impacted purchase
order.

= ITemplateld: This parameter contains the identifier of the standard purchase
order to add.

= 1Qty: This parameter contains the quantity (in the unit of the product) to add.

= bCanMerge: This parameter enables you to specify whether the line can be
merged with an existing line in the purchase order.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

AmAddTemplateToRequest()

This function enables you to add the full contents of a standard request to a
given request.

API syntax

long AmAddTemplateToRequest(long hApiCnxBase, long IReqld, long
ITemplateld, long 1Qty, long bCanMerge);

Internal Basic syntax

Function AmAddTemplateToRequest(IReqld As Long, ITemplateld As Long,
IQty As Long, bCanMerge As Long) As Long

98 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

Field of application

Version: 4.00

AssetCenter API D
Configuration script of a field or link

"Script" type action)
Deployment workflow

Wizard script

FINISH.DO script of a wizard A

Input parameters

= IReqld: This parameter contains the identifier of the affected request line.

= |Templateld: This parameter contains the identifier of the standard request
to add.

= 1Qty: This parameter contains the quantity (in the unit of the product) to add.

= bCanMerge: This parameter enables you to specify whether the line can be
merged with an existing line in the request.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

AmArchiveRecord()

This function archives a records in the database. The record is deleted from its
original table and moved to the corresponding archival table.

API syntax

long AmArchiveRecord(long hApiRecord);

AssetCenter 4.4 - Programmer's reference | 99

iy
i_

Internal Basic syntax
Function AmArchiveRecord(hApiRecord As Long) As Long

Field of application

Version: 4.3.0

AssetCenter API D
Configuration script of a field or link
"Script" type action D

Deployment workflow
Wizard script
FINISH.DO script of a wizard ¥/

Input parameters

s hApiRecord: This parameter contains the handle of the record concerned by
the operation.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

Notes

-,-/ Note:

The processing of linked records depends on the type of the link. For OWN type
links, linked records are processed identically. In the case of a DEFINE or NORMAL
link, foreign keys of linked records are reset to 0 and the archival fields are
populated with the identifier and description string of the archived record.

100 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

<
& Important:

This function is available for a record from a standard table.

AmAttribCmdAvailability()

This function enables you to determine the availability of the Assign or Unassign
button for a helpdesk ticket.

Internal Basic syntax

Function AmAttribCmdAvailability(bAttrib As Long, IGroupID As Long,
linChargelD As Long, binChargelsReadOnly As Long) As Long

Field of application

Version: 4.3.0

AssetCenter API

Configuration script of a field or link D
"Script" type action)
Deployment workflow

Wizard script D
FINISH.DO script of a wizard A

Input parameters

= bAttrib: To test for the availability of the Assign button, set this parameter
to "1". To test for the availability of the Unassign button, set this parameter
to"0".

= IGrouplD: This parameter contains the identifier of the helpdesk group
associated with the helpdesk group concerned.

= lInChargelD: This parameter contains the identifier of the ticket assignee.

AssetCenter 4.4 - Programmer's reference | 101

_

= bInChargelsReadOnly: This parameter is set to "1" if the assignee can only
consult the ticket, "0" if they have modification rights.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmBackupRecord()

This function makes a backup copy of a record. The record is copied to the
corresponding archival table without being deleted from its original table.

API syntax

long AmBackupRecord(long hApiRecord);

Internal Basic syntax
Function AmBackupRecord(hApiRecord As Long) As Long

Field of application

Version: 4.3.0

AssetCenter API /]
Configuration script of a field or link
"Script" type action b

Deployment workflow

102 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

Wizard script
FINISH.DO script of a wizard D

Input parameters

o hApiRecord: This parameter contains the handle of the record concerned by
the operation.

Output parameters

= 0:Normal execution.
= Other than zero: Error code.

Notes

/ Note:

The processing of linked records depends on the type of the link. For OWN type
links, linked records are processed identically. In the case of a DEFINE or NORMAL
link, foreign keys of linked records are reset to 0 and the archival fields are
populated with the identifier and description string of the archived record.

<
& Important:

This function is available for a record from a standard table.

AmBuildNumber()

This function returns the application's build number.

Internal Basic syntax
Function AmBuildNumber() As Long

AssetCenter 4.4 - Programmer's reference | 103

I
Field of application

Version: 4.3.0

AssetCenter API
Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard D
Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmBusinessSecondsinDay()

Calculates the number of business seconds in a day according to a calendar.

API syntax

long AmBusinessSecondsinDay(long hApiCnxBase, char *strCalendarSglName,
long tmDate);

Internal Basic syntax

Function AmBusinessSecondsinDay(strCalendarSqlName As String, tmDate
As Date) As Date

104 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

Field of application

Version: 3.00

AssetCenter API D
Configuration script of a field or link D
"Script" type action)
Deployment workflow

Wizard script D
FINISH.DO script of a wizard A

Input parameters

= strCalendarSqglName: SOL name of the calendar used for the calculation.
= tmDate: Date for which the calculation is performed.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmC(alcConsolidatedFeature()

Calculates the value of consolidated feature on a table identified by its SQL name.

API syntax

long AmCalcConsolidatedFeature(long hApiCnxBase, long ICalcFeatld, char
*strSQLTableName);

AssetCenter 4.4 - Programmer's reference | 105

iy
i_

Internal Basic syntax

Function AmCalcConsolidatedFeature(lCalcFeatld As Long, strSQLTableName
As String) As Long

Field of application

Version: 3.00

AssetCenter API D
Configuration script of a field or link
"Script" type action D

Deployment workflow
Wizard script
FINISH.DO script of a wizard ¥/

Input parameters

= |CalcFeatld: Identifier of the consolidated feature.

= strSQLTableName: SQL name of the table for which the consolidated feature
is calculated. The feature must be defined for this table.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

AmC(alcDepr()

This function enables you calculate the depreciation amount for an asset on a
given date. It returns the depreciation value on this date.

106 | AssetCenter 4.4 - Programmer's reference

I
API syntax

double AmCalcDepr(long hApiCnxBase, long iType, long IDuration, double
dCoeff, double dPrice, long tmStart, long tmDate);

Internal Basic syntax

Function AmCalcDepr(iType As Long, IDuration As Long, dCoeff As Double,
dPrice As Double, tmStart As Date, tmDate As Date) As Double

Field of application

Version: 3.00

AssetCenter API D
Configuration script of a field or link D
"Script" type action)
Deployment workflow

Wizard script D
FINISH.DO script of a wizard A

Input parameters

= iType: This parameter identifies the nature of the depreciation. The following
values are possible:
= 0:No depreciation
= 1:Straight line
= 2:Declining balance

= |Duration: This parameter contains the period over which the asset is
depreciated. This period is expressed in seconds.

= dCoeff: This parameter contains the coefficient applied in the declining
balance method. It is not interpreted in the case of the straight line
depreciation method but must have a value.

= dPrice: This parameter contains the initial value of the asset concerned by
the depreciation calculation.

= tmStart: This parameter contains the date from which the asset is depreciated.

AssetCenter 4.4 - Programmer's reference | 107

= tmDate: This parameter contains the date on which the depreciation and
residual value of the asset are calculated.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Am(alculateCatRefQty()

This function enables you to calculate the quantity of a catalog reference to be
ordered to fulfil a purchase request.

API syntax

double AmCalculateCatRefQty(long hApiCnxBase, long ISetQty, long
IUseUnitld, long IPurchUnitld, char *strModelDesc, char *strCatRefDesc, char
*strPurchUnit, char *strUseUnit, double dPkgQty, double dUnitConv, double
dReqLineQty);

Internal Basic syntax

Function AmCalculateCatRefQty(ISetQty As Long, lUseUnitld As Long,
IPurchUnitld As Long, strModelDesc As String, strCatRefDesc As String,
strPurchUnit As String, strUseUnit As String, dPkgQty As Double, dUnitConv
As Double, dReqLineQty As Double) As Double

Field of application

Version: ?

108 | AssetCenter 4.4 - Programmer's reference

Programmer's

AssetCenter API b

Configuration script of a field or link /]

"Script" type action)

Deployment workflow

Wizard script)

FINISH.DO script of a wizard D
Input parameters

= [SetQty: This parameter contains the corresponding quantity of each item
in the product (for example 1, in the case of a product containing 6 one-liter
bottles of water).

= |UseUnitld: This parameter contains the identifier of the unit used for the
model.

= IPurchUnitld: This parameter contains the identifier of the unit used for the
product.

= strModelDesc: This parameter contains the description of the model.

= strCatRefDesc: This parameter contains the description of the catalog
reference.

= strPurchUnit: This parameter contains the description of the unit used for
the product.

= strUseUnit: This parameter contains the description of the unit used for the
model.

= dPkgQty: This parameter contains the corresponding quantity of each item
in the product (for example 1, in the case of a product containing 6 one-liter
bottles of water).

= dUnitConv: This parameter contains the conversion ratio for units for the
product.

= dReqLineQty: This parameter contains the quantity of the model stiplulated
in the purchase request.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

AssetCenter 4.4 - Programmer's reference | 109

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Am(alculateReqLineQty()

This function enables you to calculate the quantity of model required to create
a purchase request.

API syntax

double AmCalculateReqLineQty(long hApiCnxBase, long ISetQty, long
IUseUnitld, long IPurchUnitld, char *strModelDesc, char *strCatRefDesc, char
*strPurchUnit, char *strUseUnit, double dPkgQty, double dUnitConv, double
dCatRefQty);

Internal Basic syntax

Function AmCalculateReqLineQty(ISetQty As Long, lUseUnitld As Long,
IPurchUnitld As Long, strModelDesc As String, strCatRefDesc As String,
strPurchUnit As String, strUseUnit As String, dPkgQty As Double, dUnitConv
As Double, dCatRefQty As Double) As Double

Field of application

Version: ?

AssetCenter API /]
Configuration script of a field or link 9
"Script" type action b
Deployment workflow

Wizard script 9

110 | AssetCenter 4.4 - Programmer's reference

Programmer's re

FINISH.DO script of a wizard P

Input parameters

= [SetQty: This parameter contains the corresponding quantity of each item
in the product (for example 1, in the case of a product containing 6 one-liter
bottles of water).

= [UseUnitld: This parameter contains the identifier of the unit used for the
model.

= |PurchUnitld: This parameter contains the identifier of the unit used for the
product.

= strModelDesc: This parameter contains the description of the model.

= strCatRefDesc: This parameter contains the description of the catalog
reference.

= strPurchUnit: This parameter contains the description of the unit used for
the product.

= strUseUnit: This parameter contains the description of the unit used for the
model.

= dPkgQty: This parameter contains the corresponding quantity of each item
in the product (for example 1, in the case of a product containing 6 one-liter
bottles of water).

= dUnitConv: This parameter contains the conversion ratio for units for the
product.

= dCatRefQty: This parameter contains the quantity of the model stiplulated
in the ordered catalog reference.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= |Ifcalling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AssetCenter 4.4 - Programmer's reference | 111

iy
i_

AmCbkReplayEvent()

This function enables you to replay the chargeback rule at the origin of an event,
after correcting the record at the origin of the event.

API syntax

long AmCbkReplayEvent(long hApiCnxBase, long ICbkEventid);

Internal Basic syntax
Function AmCbkReplayEvent(ICbkEventlid As Long) As Long

Field of application

Version: 4.00

AssetCenter API /]
Configuration script of a field or link
"Script" type action b

Deployment workflow
Wizard script

FINISH.DO script of a wizard 9
Input parameters
s ICbkEventld: This parameter contains the identifier of the chargeback event
concerned.
Output parameters

= 0: Normal execution.
= Other than zero: Error code.

112 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

AmCheckTraceDone()

The AmCheckTraceDone API determines if a port (IPortld) or bundle (IBundleld)
is connected to an existing trace. The trace direction (iTraceDir) identifies if the
trace should be checked in the direction of user-to-host (iTraceDir = 1) or
host-to-user (iTraceDir = 0).

API syntax

long AmCheckTraceDone(long hApiCnxBase, long IPortld, long IBundleld,
long iTraceDir);

Internal Basic syntax

Function AmCheckTraceDone(IPortld As Long, IBundleld As Long, iTraceDir
As Long) As Long

Field of application

Version: 4.00

AssetCenter API D

Configuration script of a field or link ¥

"Script" type action)

Deployment workflow

Wizard script)

FINISH.DO script of a wizard D
Input parameters

= |Portld: This parameter is the port ID to check.
= IBundleld: This parameter is the bundle ID to check.

= iTraceDir: This parameter defines the direction to check.
= 1:Check in the host direction

AssetCenter 4.4 - Programmer's reference | 113

~ AssetCenter

= 0:Checkin the host direction

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmCleanup()

This function must be called at the end of scripts using the database modification
functions. It frees all used resources.

API syntax

void AmCleanup();

Field of application

Version: 2.52

AssetCenter API D
Configuration script of a field or link

"Script" type action

Deployment workflow

Wizard script

114 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

FINISH.DO script of a wizard

AmC(learLastError()

This function clears the information concerning the last error message occurred
during the last function call.

API syntax

long AmClearLastError(long hApiCnxBase);

Internal Basic syntax

Function AmClearLastError() As Long

Field of application

Version: 2.52

AssetCenter API D

Configuration script of a field or link /]

"Script" type action)

Deployment workflow

Wizard script D

FINISH.DO script of a wizard A
Output parameters

= 0:Normal execution.
= Other than zero: Error code.

AssetCenter 4.4 - Programmer's reference | 115

AssetCenter

AmCloseAllChildren()

This function destroys all the objects created during the current connection.

API syntax

long AmCloseAllChildren(long hApiCnxBase);

Internal Basic syntax
Function AmCloseAllChildren() As Long

Field of application

Version: 3.00

AssetCenter API /]

Configuration script of a field or link D

"Script" type action b

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard b
Output parameters

= 0: Normal execution.
= Other than zero: Error code.

116 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

AmCloseConnection()

Ends the AssetCenter session for a given connection. All objects (queries, records,
tables, fields, etc.) created within this connection are automatically destroyed.
Their handles become invalid. The connection handle no longer exists.

API syntax

long AmCloseConnection(long hApiCnxBase);

Field of application

Version: 2.52

AssetCenter API D

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

AmCommit()

This function commits all the modifications made to the database associated
with the connection.

AssetCenter 4.4 - Programmer's reference | 117

API syntax

long AmCommit(long hApiCnxBase);

Internal Basic syntax

Function AmCommit() As Long

Field of application

Version: 2.52

AssetCenter API ¥/
Configuration script of a field or link

"Script" type action 9
Deployment workflow

Wizard script

FINISH.DO script of a wizard D

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

AmComputeAliLicAndInstaliCounts()

This function performs the count of software licenses and installations for all
records.

API syntax

long AmComputeAllLicAndInstallCounts(long hApiCnxBase);

118 | AssetCenter 4.4 - Programmer's reference

Programmer's refere

Internal Basic syntax
Function AmComputeAllLicAndInstallCounts() As Long

Field of application

Version: 3.00

. Availabe
AssetCenter API D

Configuration script of a field or link

"Script" type action D

Deployment workflow

Wizard script

FINISH.DO script of a wizard D

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

AmComputeLicAndInstallCounts()

This function performs the count of software licenses and installations for a
record.

API syntax

long AmComputeLicAndinstallCounts(long hApiCnxBase, long ISLCountld);

Internal Basic syntax
Function AmComputeLicAndinstallCounts(ISLCountld As Long) As Long

AssetCenter 4.4 - Programmer's reference | 119

Field of application

Version: 3.00

AssetCenter API ¥/
Configuration script of a field or link

"Script" type action 9
Deployment workflow

Wizard script

FINISH.DO script of a wizard D

Input parameters

o ISLCountld: This parameter contains the identifier of the software license
counter.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

AmConnectionName()

This function returns the current database connection name.

API syntax

long AmConnectionName(long hApiCnxBase, char *return, long Ireturn);

Internal Basic syntax

Function AmConnectionName() As String

120 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

Field of application

Version: 4.3.0

AssetCenter API D
Configuration script of a field or link D
"Script" type action)
Deployment workflow

Wizard script D
FINISH.DO script of a wizard A

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

|Re tVal=amConnectionName ()

AmConnectTrace()

The AmConnectTrace APl is for connecting a source device/cable to a destination
device/cable and creating a trace history and a trace operation.

API syntax

long AmConnectTrace(long hApiCnxBase, long iSrcLinkType, long
ISrcPortBunld, long ISrcLabelRuleld, long iDestLinkType, long IDestPortBunid,

AssetCenter 4.4 - Programmer's reference | 121

_

long IDestLabelRuleld, long iTraceDir, long IDutyld, char *strComment, long
ICabTraceOutld);

Internal Basic syntax

Function AmConnectTrace(iSrcLinkType As Long, ISrcPortBunld As Long,
ISrcLabelRuleld As Long, iDestLinkType As Long, IDestPortBunid As Long,
IDestLabelRuleld As Long, iTraceDir As Long, IDutyld As Long, strComment
As String, ICabTraceOutld As Long) As Long

Field of application

Version: 4.00

AssetCenter API b
Configuration script of a field or link
"Script" type action D

Deployment workflow
Wizard script
FINISH.DO script of a wizard ¥/

Input parameters

= iSrcLinkType: This parameter determines the trace type for the source
device/cable.

= 8:Cable
= 9:Device

= ISrcPortBunld: This parameter is the port or bundle to be connected on the
source side.

= ISrcLabelRuleld: This parameter is the label rule used for the source link.

= iDestLinkType: This parameter determines the trace type for the destination
device/cable.
= 8:Cable

= 9 Device

122 | AssetCenter 4.4 - Programmer's reference

= IDestPortBunld: This parameter is the port or bundle to be connected on the
destination side.

= IDestLabelRuleld: This parameter is the label rule used for the destination
link.

= iTraceDir: This parameter defines the direction of the connection.
= T:userto host
= 0:host to user

= [Dutyld: This parameter is the duty for a cable type link.
= strComment: This parameter is the label for the trace operation.
= |CabTraceOutld: This parameter is the Cable Trace Output ID.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmConvertCurrency()

This function performs a conversion between two currencies at a given date.

API syntax

double AmConvertCurrency(long hApiCnxBase, long tmDate, char
*strSrcName, char *strDstName, double dVal);

Internal Basic syntax

Function AmConvertCurrency(tmDate As Date, strSrcName As String,
strDstName As String, dVal As Double) As Double

AssetCenter 4.4 - Programmer's reference | 123

I
Field of application

Version: 3.00

AssetCenter API ¥/

Configuration script of a field or link ¥/

"Script" type action 9

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard b
Input parameters

= tmDate: This parameter contains the conversion date. It enables you to know
the conversion rate in effect on this date.

= strSrcName: This parameter contains the source currency for the conversion,
i.e. the currency you want to convert.

= strDstName: This parameter contains the target currency for the conversion,
i.e. the currency in which you want to express the source currency.

= dVal: This parameter contains the amount (expressed in the monetary unit
of the source currency) to be converted.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

124 | AssetCenter 4.4 - Programmer's reference

Notes

/ Note:

The currency parameters (strSrcName and strDstName) for this function must
be defined in AssetCenter. Furthermore, a valid exchange rate must exist for the
date when you want to perform the conversion (tmDate parameter).

Example

The following example converts 5,000 FRF into dollars, on the date of November
02, 1998.

|AmConvertCurrency("1998/11/02 00:00:00", "FRF", "$", 5000) |

AmConvertDateBasicToUnix()

This function converts a Basic format date ("Date" type) to a Unix format date
("Long" type). This function does not work from external tools because the two
types are equivalent.

API syntax

long AmConvertDateBasicToUnix(long hApiCnxBase, long tmTime);

Internal Basic syntax

Function AmConvertDateBasicToUnix(tmTime As Date) As Long

Field of application

Version: 3.00

AssetCenter 4.4 - Programmer's reference | 125

_

AssetCenter API b

Configuration script of a field or link 7

"Script" type action b

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard D
Input parameters

+ tmTime: This parameter contains the date to be converted.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmConvertDatelntIToUnix()

This function converts an international format date ("Date" type) to a Unix format
date ("Long" type).

API syntax

long AmConvertDatelntIToUnix(long hApiCnxBase, char *strDate);

Internal Basic syntax
Function AmConvertDatelntIToUnix(strDate As String) As Long

126 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

Field of application

Version: 3.00

AssetCenter API D
Configuration script of a field or link D
"Script" type action)
Deployment workflow

Wizard script D
FINISH.DO script of a wizard A

Input parameters

o strDate: This parameter contains the date to be converted in the international
format (yyyy-mm-dd hh:mm:ss).

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmConvertDateStringToUnix()

Converts a date to a string (as displayed in the Windows Control Panel) to a Unix
llLongll.

API syntax

long AmConvertDateStringToUnix(long hApiCnxBase, char *strDate);

AssetCenter 4.4 - Programmer's reference | 127

_

Internal Basic syntax
Function AmConvertDateStringToUnix(strDate As String) As Long

Field of application

Version: 3.00

AssetCenter API D

Configuration script of a field or link 9

"Script" type action D

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard ¥/
Input parameters

o strDate: Date as string to convert.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmConvertDateUnixToBasic()

This function converts a Unix format date ("Long" type) to a Basic format date
("Date" type). This function does not work from external tools because the two
types are equivalent.

128 | AssetCenter 4.4 - Programmer's reference

API syntax

long AmConvertDateUnixToBasic(long hApiCnxBase, long ITime);

Internal Basic syntax

Function AmConvertDateUnixToBasic(ITime As Long) As Date

Field of application

Version: 3.00

AssetCenter API D

Configuration script of a field or link D

"Script" type action)

Deployment workflow

Wizard script D

FINISH.DO script of a wizard A
Input parameters

+ ITime: This parameter contains the date to be converted.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AssetCenter 4.4 - Programmer's reference | 129

iy
i_

AmConvertDateUnixTolntl()

This function converts a Unix format date ("Long" type) to an international format
date (yyyy-mm-dd hh:mm:ss).

API syntax

long AmConvertDateUnixTolntl(long hApiCnxBase, long IUnixDate, char
*pstrDate, long IDate);

Internal Basic syntax
Function AmConvertDateUnixTolntl(lUnixDate As Long) As String

Field of application

Version: 3.00

AssetCenter API /]

Configuration script of a field or link D

"Script" type action b

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard 9
Input parameters

« lUnixDate: This parameter contains the date to be converted.

Output parameters

In case of error, there are two possibilities:

130 | AssetCenter 4.4 - Programmer's reference

Programmer's referer

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmConvertDateUnixToString()

Converts a "Long" Unix format date to a string format date (as displayed in the
Windows Control Panel).

API syntax

long AmConvertDateUnixToString(long hApiCnxBase, long IUnixDate, char
*pstrDate, long IDate);

Internal Basic syntax
Function AmConvertDateUnixToString(IlUnixDate As Long) As String

Field of application

Version: 3.00

AssetCenter API D
Configuration script of a field or link D
"Script" type action D
Deployment workflow

Wizard script D

AssetCenter 4.4 - Programmer's reference | 131

_

FINISH.DO script of a wizard 9

Input parameters

+ lUnixDate: "Long" Unix format date to convert.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmConvertDoubleToString()

This function converts a double precision number to a string. The string is
formatted according to the regional options (number) defined in the Windows
Control Panel.

API syntax

long AmConvertDoubleToString(double dSrc, char *pstrDst, long IDst);

Internal Basic syntax
Function AmConvertDoubleToString(dSrc As Double) As String

Field of application

Version: 3.00

132 | AssetCenter 4.4 - Programmer's reference

AssetCenter API b

Configuration script of a field or link /]

"Script" type action)

Deployment workflow

Wizard script)

FINISH.DO script of a wizard D
Input parameters

o dSrc: This parameter contains the double-precision number to be converted.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [fcalling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmConvertMonetaryToString()

This function converts a monetary value to a character string. The string is
formatted according to the regional options (currency) defined in the Windows
Control Panel.

API syntax

long AmConvertMonetaryToString(double dSrc, char *pstrDst, long IDst);

Internal Basic syntax
Function AmConvertMonetaryToString(dSrc As Double) As String

AssetCenter 4.4 - Programmer's reference | 133

Field of application

Version: 3.00

AssetCenter API ¥/

Configuration script of a field or link ¥/

"Script" type action 9

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard b
Input parameters

o dSrc: This parameter contains the monetary value you want to convert.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmConvertStringToDouble()

This function converts a character string (in a format corresponding to the one
defined in the Windows Control Panel) to a double precision number.

API syntax

double AmConvertStringToDouble(char *strSrc);

134 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

Internal Basic syntax
Function AmConvertStringToDouble(strSrc As String) As Double

Field of application

Version: 3.00

AssetCenter API D

Configuration script of a field or link D

"Script" type action D

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard D
Input parameters

o strSrc: This parameter contains the character string to be converted.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmConvertStringToMonetary()

This function converts a character string (in a format corresponding to the one
defined in the Windows Control Panel) to a monetary value.

AssetCenter 4.4 - Programmer's reference | 135

API syntax

double AmConvertStringToMonetary(char *strSrc);

Internal Basic syntax
Function AmConvertStringToMonetary(strSrc As String) As Double

Field of application

Version: 3.00

AssetCenter API ¥/

Configuration script of a field or link ¥/

"Script" type action 9

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard D
Input parameters

o strSrc: This parameter contains the character string to be converted.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

136 | AssetCenter 4.4 - Programmer's reference

AmCounter()

This function returns the value of the strCounterName counter, incremented
by 1. Zeros are added as padding at the beginning if iWidth is greater than the
number of digits of the counter. If the counter has more digits than the value
stored in iWidth, the result will not be truncated.

Internal Basic syntax

Function AmCounter(strCounterName As String, iWidth As Long) As String

Field of application

Version: 2.52

AssetCenter API

Configuration script of a field or link D
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

Input parameters

= strCounterName: Name of the counter as it is defined in AssetCenter (access
via the Administration/ Counters menu item).

= iWidth: The value of this parameter forces the output format of the function
to be expressed over n digits. This parameter is only useful if the size of the
counter is less than the value of this parameter.

Output parameters

In case of error, there are two possibilities:

AssetCenter 4.4 - Programmer's reference | 137

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.
= If calling from an external program, you must call the AmLastError() [page 359]

function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Notes
/ Note:
If this function is used in a Script type action, you must specify a context for the
action. Otherwise, an error is generated.

Example
The following example returns the value of the "Delivery" counter expressed in
5 digits:

Dim strCounterName As String
strCounter = AmCounter ("Delivery", 5)

For example, if the "Delivery" counter equals "18", the function returns:

[ooo1s

AmCreateAssetPort()

The AmCreateAssetPort APl creates a new port on a device (IAssetld). The new
port contains the given number of pins (iPinCount) of the given cable connector
type (ICabCnxTypeld). The status of the pins must be "Available". The pins that
will be added to the port are sorted by sequence number. Depending on the
port direction (iPinPortDir), the available pins are sorted in ascending (iPinPortDir
= 0) or descending (iPinPortDir = 1) order. This function assigns the given duty
(IDutyld) to the new port.

138 | AssetCenter 4.4 - Programmer's reference

I
API syntax

long AmCreateAssetPort(long hApiCnxBase, long IAssetld, long
ICabCnxTypeld, long IDutyld, long iPinCount, long bPinPortDir, long
iConnStatus, long bConsecutivePins, long iPrevPinSeq, long bLogError);

Internal Basic syntax

Function AmCreateAssetPort(lAssetld As Long, ICabCnxTypeld As Long,
IDutyld As Long, iPinCount As Long, bPinPortDir As Long, iConnStatus As
Long, bConsecutivePins As Long, iPrevPinSeq As Long, bLogError As Long)
As Long

Field of application

Version: 4.00

AssetCenter API D
Configuration script of a field or link
"Script" type action)

Deployment workflow
Wizard script
FINISH.DO script of a wizard A

Input parameters

= |Assetld: This parameter is the device ID.

= ICabCnxTypeld: This parameter is the cable connection type ID.

= IDutyld: This parameter is the duty type ID of the port.

= iPinCount: This parameter is the pin count that will be used in the new port.
= bPinPortDir: This parameter specifies the direction of the port.

= iConnStatus

= bConsecutivePins

= iPrevPinSeq

= bLogError

AssetCenter 4.4 - Programmer's reference | 139

_

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Am(reateAssetsAwaitingDelivery()

This function enables you to create the assets that are awaiting receipt

API syntax

long AmCreateAssetsAwaitingDelivery(long hApiCnxBase, long IPOrdid);

Internal Basic syntax
Function AmCreateAssetsAwaitingDelivery(IPOrdid As Long) As Long

Field of application

Version: 3.61

AssetCenter API /]
Configuration script of a field or link
"Script" type action b

Deployment workflow
Wizard script

140 | AssetCenter 4.4 - Programmer's reference

Programmer's

FINISH.DO script of a wizard P
Input parameters
o [POrdld: This parameter contains the identifier of the purchase order
concerned
Output parameters

= 0:Normal execution.
= Other than zero: Error code.

AmCreateCable()

The AmCreateCable APl creates a new cable. The cableis created using the given
model type (IModelld), the role of the cable (strCableRole), its label rule
(ILabelRuleld), its user location (IlUserLoc), and its host location (IHostLoc). If the
project (IProjectld) and work order (IWorkOrderld) have values, the new cable is
added to the project and work order with the given comment (strComment).
This comment describes the action that will be performed on the cable (i.e.
“Install new cable").

API syntax

long AmCreateCable(long hApiCnxBase, long IModelld, long IUserld, long
IHostld, char *strCableRole, long IProjectld, long IWorkOrderld, char
*strComment, long ILabelRuleld, char *strLabel);

Internal Basic syntax

Function AmCreateCable(IModelld As Long, IlUserld As Long, IHostld As Long,
strCableRole As String, IProjectld As Long, IWorkOrderld As Long, strComment
As String, ILabelRuleld As Long, strLabel As String) As Long

AssetCenter 4.4 - Programmer's reference | 141

Field of application

Version: 4.00

AssetCenter API ¥/
Configuration script of a field or link
"Script" type action 9

Deployment workflow

Wizard script

FINISH.DO script of a wizard D

Input parameters

IModelld: This parameter is the cable model ID.

IUserld: This parameter is the user side location ID.
IHostld: This parameter is the host side location ID.
strCableRole: This parameter defines the role of the cable.

IProjectld: This parameter defines the project associated with the placement
of the cable.

IWorkOrderld: This parameter defines the work order associated with the
placement of the cable.

strComment: This parameter is the comment used on the work order (defined
by IWorkOrderld).

ILabelRuleld: This parameter defines the label rule that will be applied to
create the label for the cable.

strLabel: This parameter specifies the label affixed to the cable.

Output parameters

In case of error, there are two possibilities:

In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

142 | AssetCenter 4.4 - Programmer's reference

Programmer's

AmCreateCableBundle()

The AmCreateCableBundle API creates a new bundle on a cable (ICableld). The
new bundle contains the given number of cable pairs (iPairCount) of the given
cable pair type (IPairType). The status of the pairs must be "Available". This
function assigns the given duty (IDutyld) to the new bundle.

API syntax

long AmCreateCableBundle(long hApiCnxBase, long ICableld, long IPairTypeld,
long IDutyld, long iPairCount, long iStartPairSeq, long bLogError);

Internal Basic syntax

Function AmCreateCableBundle(ICableld As Long, IPairTypeld As Long, IDutyld
As Long, iPairCount As Long, iStartPairSeq As Long, bLogError As Long) As
Long

Field of application

Version: 4.00

AssetCenter API D
Configuration script of a field or link
"Script" type action)

Deployment workflow
Wizard script
FINISH.DO script of a wizard D

Input parameters

= |Cableld: This parameter is the cable ID (it must exist in the cable table).
= [PairTypeld: This parameter is the cable pair type ID.
= IDutyld: This parameter is the duty of the cable bundle ID.

AssetCenter 4.4 - Programmer's reference | 143

= iPairCountThis parameter defines the pair count of the bundle.

= iStartPairSeq
= bLogError

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmC(reateCableLink()

The AmCreateCableLink API creates a new cable type cable link for a given cable
(ICableld) and bundle (INextBundle). The duty of the cable link is set using the
given duty (IDutyld). The label rule of the cable link is set using the given label
rule (ILabelRule).

/ Note:

The labelis not updated using the given label rule, a separate call must be made
to AmRefreshLabel().

If a previous link (IPrevLinkld) is specified, a parent link is made between the two
records where the previous link is the child.

API syntax

long AmCreateCableLink(long hApiCnxBase, long ICableld, long IDutyld, long
IBundleld, long IPrevLinkld, long iTraceDir, long ILabelRuleld);

144 | AssetCenter 4.4 - Programmer's reference

Internal Basic syntax

Function AmCreateCableLink(ICableld As Long, IDutyld As Long, IBundleld
As Long, IPrevLinkld As Long, iTraceDir As Long, ILabelRuleld As Long) As
Long

Field of application

Version: 4.00

AssetCenter API D
Configuration script of a field or link
"Script" type action D

Deployment workflow
Wizard script
FINISH.DO script of a wizard D

Input parameters

= |Cableld: This parameter is the cable ID for the connection.
= |Dutyld: This parameter is the connection duty.
= IBundleld: This parameter is the ID of the cable bundle to connect.

= |PrevLinkld: This parameter defines the cable link ID used to connect. This is
optional by using a value of 0.

= iTraceDir: This parameter defines the connection direction.
= O=host to user
= T=userto host

= |LabelRuleld: This parameter is the label rule ID used.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

AssetCenter 4.4 - Programmer's reference | 145

iy
i_

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmCreateDelivFromP0()

This function receives a purchase order and returns the identifier of the receiving
slip created.

API syntax

long AmCreateDelivFromPO(long hApiCnxBase, long IPOrdid);

Internal Basic syntax
Function AmCreateDelivFromPO(IPOrdid As Long) As Long

Field of application

Version: 3.00

AssetCenter API /]
Configuration script of a field or link
"Script" type action b

Deployment workflow
Wizard script

FINISH.DO script of a wizard 9
Input parameters
s IPOrdld: This parameter contains the identifier of the purchase order to be
received.

146 | AssetCenter 4.4 - Programmer's reference

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [fcalling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmCreateDevice()

The AmCreateDevice API creates a new device. The device is created using the
given model type (IProductld) and location (ILocld). The label rule of the asset
is set to the given rule (ILabelRuleld).

/ Note:

The label is not updated using the given label rule, a separate call must be made
to AmRefreshLabel.

If the project (IProjectld) and work order (IWorkOrderld) have values, the new
asset is added to the project and work order with the comment contained in
strComment. This comment describes the action that will be performed on the
asset (i.e. "Install new asset").

API syntax

long AmCreateDevice(long hApiCnxBase, long IModelld, long ILocationld,
long IProjectld, long IWorkOrderld, long ILabelRuleld, char *strComment);

Internal Basic syntax

Function AmCreateDevice(IModelld As Long, ILocationld As Long, IProjectid
As Long, IWorkOrderld As Long, ILabelRuleld As Long, strComment As String)
As Long

AssetCenter 4.4 - Programmer's reference | 147

Field of application

Version: 4.00

AssetCenter API ¥/
Configuration script of a field or link
"Script" type action 9

Deployment workflow
Wizard script
FINISH.DO script of a wizard D

Input parameters

= IModelld: This parameter is the model ID for the new device.

= ILocationld: This parameter is the location ID for the new device.

= IProjectld: The parameter is the project ID. It can be 0.

= |WorkOrderld: This parameter is the work order ID. It can be 0.

= ILabelRuleld: This parameter defines the label rule ID that will be used for
the asset.

= strComment: This parameter is the comment that will be used on the work
order.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

148 | AssetCenter 4.4 - Programmer's reference

AmCreateDeviceLink()

The AmCreateDeviceLink API creates a new device type cable link for a given
device (IAssetld) and port (IPortld). The label rule of the cable link is set using
the given label rule (ILabelRule).

/ Note:

The label is not updated using the given label rule, a separate call must be made
to AmRefreshLabel.

If a previous link (IPrevLinkld) is specified, a parent link is made between the two
records. If the trace direction is user-to-host (iTraceDir = 1), then the previous
link is the child. If the trace direction is host-to-user (iTraceDir = 0) then the
previous link is the parent.

API syntax

long AmCreateDeviceLink(long hApiCnxBase, long |Assetld, long IPortld, long
IPrevLinkld, long iTraceDir, long ILabelRuleld);

Internal Basic syntax

Function AmCreateDeviceLink(lAssetld As Long, IPortld As Long, IPrevLinkid
As Long, iTraceDir As Long, ILabelRuleld As Long) As Long

Field of application

Version: 4.00

AssetCenter API D
Configuration script of a field or link
"Script" type action D

Deployment workflow
Wizard script

AssetCenter 4.4 - Programmer's reference | 149

“
|_

FINISH.DO script of a wizard 9
Input parameters
= |Assetld: This parameter contains the identifier of the asset that will be
connected.
= |Portld: This parameter contains the identifier of the port that will be
connected.

= IPrevLinkld: This parameter contains the identifier of the device link enabling
the connection.

= iTraceDir: This parameter specifies the direction of the connection.
= O=host to user
= T=user to host

= ILabelRuleld: This parameter contains the identifier of the label rule used for
the new connection.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Am(CreateEstimFromReq()

This function creates an estimate from a purchase request and returns the
identifier of the estimate created.

API syntax

long AmCreateEstimFromReq(long hApiCnxBase, long IReqld, long ISuppld);

150 | AssetCenter 4.4 - Programmer's reference

Programmer's refere

Internal Basic syntax
Function AmCreateEstimFromReq(IReqld As Long, ISuppld As Long) As Long

Field of application

Version: 3.00

AssetCenter API D
Configuration script of a field or link
"Script" type action D

Deployment workflow
Wizard script
FINISH.DO script of a wizard D

Input parameters

= |Reqld: This parameter contains the identifier of the purchase request used
to create the estimate.

= ISuppld: This parameter contains the identifier of the supplier of the estimate
that will be created by the function.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AssetCenter 4.4 - Programmer's reference | 151

_

AmCreateEstimsFromAllReqLines()

This function creates an estimate from a request and returns the identifier of the
estimate created.

API syntax

long AmCreateEstimsFromAllReqLines(long hApiCnxBase, long IReqld, long
bMergelines, long IDefSuppld);

Internal Basic syntax

Function AmCreateEstimsFromAllReqLines(IReqld As Long, bMergeLines As
Long, IDefSuppld As Long) As Long

Field of application

Version: 3.00

AssetCenter API /]
Configuration script of a field or link
"Script" type action b

Deployment workflow
Wizard script
FINISH.DO script of a wizard v/

Input parameters

= IReqld: This parameter contains the identifier of the request at the origin of
the estimate.

= bMergelines: This parameter enables you to specify if identical request lines
are to be combined (bMergeLines=1) to given one single line. The quantities
given for the lines to be combined are added together and a single line is
created.

152 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

= |DefSuppld: This parameter contains the identifier of the default supplier for
the estimate.

Output parameters

= 0:Normal execution.
= Other than zero: Error code.

AmCreatelnvFromP0()

This function creates a supplier invoice from a purchase order and returns the
identifier of the supplier invoice created.

API syntax

long AmCreatelnvFromPO(long hApiCnxBase, long IPOrdid);

Internal Basic syntax
Function AmCreatelnvFromPO(IPOrdid As Long) As Long

Field of application

Version: 3.00

AssetCenter API]
Configuration script of a field or link
"Script" type action 9

Deployment workflow
Wizard script

AssetCenter 4.4 - Programmer's reference | 153

_

FINISH.DO script of a wizard 9

Input parameters

o IPOrdld: This parameter contains the identifier of the purchase order at the
origin of the invoice.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmCreateLink()

This function modifies a link of a record and makes it point to a new record
(hApiRecDest) in the target table. It therefore creates a link between two records.

API syntax

long AmCreateLink(long hApiRecord, char *strLinkName, long hApiRecDest);

Internal Basic syntax

Function AmCreateLink(hApiRecord As Long, strLinkName As String,
hApiRecDest As Long) As Long

154 | AssetCenter 4.4 - Programmer's reference

Field of application

Version: 3.00

AssetCenter API D
Configuration script of a field or link
"Script" type action)

Deployment workflow
Wizard script
FINISH.DO script of a wizard A

Input parameters

= hApiRecord: This parameter contains the handle of the record containing
the link to be modified.

= strLinkName: This parameter contains the SQL name of the link to be
modified.

= hApiRecDest: This parameter contains a handle of the target record of the
link.

Output parameters

= 0:Normal execution.
= Other than zero: Error code.

AmCreateOrUpdatelnvoiceFromReceipt()

This function enables you to create or update an invoice from a receiving slip.

API syntax

long AmCreateOrUpdatelnvoiceFromReceipt(long hApiCnxBase, long
IRecptid);

AssetCenter 4.4 - Programmer's reference | 155

~ AssetCenter

Internal Basic syntax
Function AmCreateOrUpdatelnvoiceFromReceipt(IRecptid As Long) As Long

Field of application

Version:?

AssetCenter API D

Configuration script of a field or link 9

"Script" type action D

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard ¥/
Input parameters

s IRecptld: This parameter contains the identifier of the invoice concerned by
the operation.

Output parameters

The function returns the identifier of the generated invoice.

Notes

f Note:

Update is not possible by calling this function from an external tool.

156 | AssetCenter 4.4 - Programmer's reference

Programmer's referer

AmCreatePOFromEstim()

This function creates a purchase order from an estimate and returns the identifier
of the purchase order created.

API syntax

long AmCreatePOFromEstim(long hApiCnxBase, long IEstimlid);

Internal Basic syntax
Function AmCreatePOFromEstim(lEstimld As Long) As Long

Field of application

Version: 3.00

AssetCenter API D
Configuration script of a field or link
"Script" type action)

Deployment workflow
Wizard script

FINISH.DO script of a wizard]
Input parameters
o |Estimld: This parameter contains the identifier of the estimate used to create
the order.
Output parameters

In case of error, there are two possibilities:

AssetCenter 4.4 - Programmer's reference | 157

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmCreatePOFromReq()

This function creates a purchase order from a purchase request and returns the
identifier of the PO created.

API syntax

long AmCreatePOFromReq(long hApiCnxBase, long IReqld, long ISuppld);

Internal Basic syntax
Function AmCreatePOFromReq(IReqld As Long, ISuppld As Long) As Long

Field of application

Version: 3.00

AssetCenter API D
Configuration script of a field or link
"Script" type action D

Deployment workflow
Wizard script

158 | AssetCenter 4.4 - Programmer's reference

FINISH.DO script of a wizard P

Input parameters

= IReqld: This parameter contains the identifier of the purchase request used
to create the purchase order.

= [Suppld: This parameter contains the identifier of the supplier of the purchase
order that will be created by the function.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [fcalling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmCreatePOrderFromRequest()

This function enables you to create a purchase order from a request.

API syntax

long AmCreatePOrderFromRequest(long hApiCnxBase, long IRequestid, long
ISupplierid);

Internal Basic syntax

Function AmCreatePOrderFromRequest(IRequestld As Long, ISupplierld As
Long) As Long

AssetCenter 4.4 - Programmer's reference | 159

I
Field of application

Version: 4.00

AssetCenter API ¥/
Configuration script of a field or link
"Script" type action 9

Deployment workflow
Wizard script
FINISH.DO script of a wizard D

Input parameters

= IRequestld: This parameter contains the identifier of the request concerned.

= |ISupplierld: This parameter contains the identifier of the supplier for the
purchase order.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmC(reatePOrdersFromRequest()

This function enables you to create all the purchase orders necessary to satisfy
a given request.

API syntax

long AmCreatePOrdersFromRequest(long hApiCnxBase, long IRequestid);

160 | AssetCenter 4.4 - Programmer's reference

Programmer's refere

Internal Basic syntax

Function AmCreatePOrdersFromRequest(IRequestid As Long) As Long

Field of application

Version: 4.00

. Availabe
AssetCenter API D

Configuration script of a field or link

"Script" type action D

Deployment workflow

Wizard script

FINISH.DO script of a wizard D

Input parameters

o IRequestld: This parameter contains the identifier of the request concerned

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

AmCreatePOsFromAllReqLines()

This function creates all the purchase orders from the request lines of a request.

API syntax

long AmCreatePOsFromAllIReqLines(long hApiCnxBase, long IReqld, long
bMergelines, long IDefSuppld);

AssetCenter 4.4 - Programmer's reference | 161

“
|_

Internal Basic syntax

Function AmCreatePOsFromAllReqLines(IReqld As Long, bMergeLines As
Long, IDefSuppld As Long) As Long

Field of application

Version: 3.00

AssetCenter API b
Configuration script of a field or link
"Script" type action D

Deployment workflow
Wizard script
FINISH.DO script of a wizard ¥/

Input parameters

= IReqld: This parameter contains the identifier of the request from which the
purchase orders are to be created.

= bMergelines: This parameter enables you to specify if identical request lines
are to be combined (bMergeLines=1) to given one single line. The quantities
given for the lines to be combined are added together and a single line is
created.

= IDefSuppld: This parameter contains the identifier of the default supplier for
the requested items. This parameter is optional and is set to "0" by default.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

162 | AssetCenter 4.4 - Programmer's reference

Programmer's re

AmCreateProjectCable()

The AmCreateProjectCable APl adds a cable (ICableld) to a project (IProjectld)
and work order (IWorkOrderld). A comment (strComment) explains the action
being performed (i.e. "Install new cable").

API syntax

long AmCreateProjectCable(long hApiCnxBase, long IProjectlid, long
IWorkOrderld, long ICableld, char *strComment);

Internal Basic syntax

Function AmCreateProjectCable(IProjectld As Long, IWorkOrderld As Long,
ICableld As Long, strComment As String) As Long

Field of application

Version: 4.00

AssetCenter API D
Configuration script of a field or link

"Script" type action)
Deployment workflow

Wizard script

FINISH.DO script of a wizard D

Input parameters

= |Projectld: This parameter is the ID of the project that gets the cable.
= IWorkOrderld: This parameter is the ID of the work order for the cable.
= |Cableld: This parameter is the cable ID.

= strComment: This parameter is the comment that will be used on the work
order.

AssetCenter 4.4 - Programmer's reference | 163

_

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmCreateProjectDevice()

The AmCreateProjectDevice APl adds a device (IAssetld) to a project (IProjectld)
and work order (IWorkOrderld). A comment (strComment) explains the action
being performed (i.e. "Install new device").

API syntax

long AmCreateProjectDevice(long hApiCnxBase, long IProjectld, long
IWorkOrderld, long |Assetld, char *strComment);

Internal Basic syntax

Function AmCreateProjectDevice(IProjectld As Long, IWorkOrderld As Long,
IAssetld As Long, strComment As String) As Long

Field of application

Version: 4.00

AssetCenter API /]
Configuration script of a field or link
"Script" type action b

Deployment workflow
Wizard script

164 | AssetCenter 4.4 - Programmer's reference

FINISH.DO script of a wizard P

Input parameters

= IProjectld: This parameter defines the ID of the project to get the new device.

= |WorkOrderld: This parameter defines the ID of the work order to get the
new device.

= |Assetld: This parameter is the new device asset ID.

= strComment: This parameter is the comment that will be used on the work
order.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [fcalling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmCreateProjectTrace()

The AmCreateProjectTrace APl adds a trace (strTrace) to a project (IProjectld)
and work order (IWorkOrderld). The service of the trace is set using the given
duty (IDutyld). The trace type (ITraceType) indicates if the trace is a connection
(iTraceType = 1) or a disconnection (ITraceType = 2). The label of the user link
being modified (strModLinkLabel) identifies what part of the trace is being
modified. A comment (strComment) explains the action being performed (i.e.
"Connect these devices").

AssetCenter 4.4 - Programmer's reference | 165

© I S———
API syntax

long AmCreateProjectTrace(long hApiCnxBase, long IProjectld, long
IWorkOrderld, long iTraceType, long IDutyld, char *strModLinkLabel, char
*strTrace, char *strComment);

Internal Basic syntax

Function AmCreateProjectTrace(IProjectld As Long, IWorkOrderld As Long,
iTraceType As Long, IDutyld As Long, strModLinkLabel As String, strTrace As
String, strComment As String) As Long

Field of application

Version: 4.00

AssetCenter API ¥/
Configuration script of a field or link
"Script" type action 9

Deployment workflow
Wizard script
FINISH.DO script of a wizard D

Input parameters

= IProjectld: This parameter defines the project ID to get the trace information.

= IWorkOrderld: This parameter defines the work order ID to get the trace
information.

= iTraceType: This parameter defines the trace type.
= 1=connection
= 2=disconnection

= IDutyld: This parameter defines the duty. This appears in the work order.

= strModLinkLabel: This parameter defines a comment that will be used on
the work order.

= strTrace: This parameter defines the trace output string that will be used on
the work order.

166 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

= strComment: This parameter is the comment that will be used on the work
order.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmCreateReceiptFromPOrder()

This function enables you to create a receipt from a purchase order.

API syntax

long AmCreateReceiptFromPOrder(long hApiCnxBase, long IPOrderld);

Internal Basic syntax
Function AmCreateReceiptFromPOrder(IPOrderld As Long) As Long

Field of application

Version: 4.00

AssetCenter API D
Configuration script of a field or link
"Script" type action)

Deployment workflow
Wizard script

AssetCenter 4.4 - Programmer's reference | 167

_

FINISH.DO script of a wizard 9
Input parameters
o IPOrderld: This parameter contains the identifier of the purchase order
concerned.
Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmCreateRecord()

This function creates an empty record in a table taking the default values into
account. This new record does not exist in the database until it has been inserted.

API syntax

long AmCreateRecord(long hApiCnxBase, char *strTable);

Internal Basic syntax
Function AmCreateRecord(strTable As String) As Long

Field of application

Version: 2.52

168 | AssetCenter 4.4 - Programmer's reference

Programmer's referer

AssetCenter API D
Configuration script of a field or link

"Script" type action)
Deployment workflow

Wizard script

FINISH.DO script of a wizard D

Input parameters

s strTable: This parameter contains the SQL name of the table in which you
want to create the record.

Example

The following example creates an employee in the database:

Dim 1Err As Long
Dim hRecord As Long
hRecord = amCreateRecord ("amEmplDept")

1Err = amSetFieldStrValue (hRecord, "Name", "Doe")
1Err = amSetFieldStrValue (hRecord, "FirstName", "John")
1Err = amInsertRecord (hRecord)

AmCreateRequestTolnvoice()

This function enables you to create all objects in the procurement cycle: Request,
Purchase order, Receipt, Invoice.

API syntax

long AmCreateRequestTolnvoice(long hApiCnxBase, double dQty, long
ICatRefld, double dUnitPrice, char *strCur, long IRequesterld, long ICostld,
long IUserld, long IStockid);

AssetCenter 4.4 - Programmer's reference | 169

Internal Basic syntax

Function AmCreateRequestTolnvoice(dQty As Double, ICatRefld As Long,
dUnitPrice As Double, strCur As String, IRequesterld As Long, ICostld As Long,
IUserld As Long, IStockid As Long) As Long

Field of application

Version: 4.00

AssetCenter API b
Configuration script of a field or link
"Script" type action D

Deployment workflow
Wizard script
FINISH.DO script of a wizard ¥/

Input parameters

= dQty: This parameter contains the quantity (in packaged units) to be ordered,
then received, then invoiced.

= ICatRefld: This parameter contains the identifier of the catalog reference.
= dUnitPrice: This parameter contains the unit price of the catalog reference.

= strCur: This parameter contains the currency code for the catalog reference
price.

= IRequesterld: This parameter contains the identifier of the requester.
= ICostld: This parameter contains the identifier of the impacted cost center.
= |Userld: This parameter contains the identifier of the user of the ordered item.

= IStockld: This parameter contains the identifier of the delivery stock of the
item.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

170 | AssetCenter 4.4 - Programmer's reference

Programmer's re

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Notes

Equivalent to the sequence of calls: amCreateRequestToReceipt,
amCreateOrUpdatelnvoiceFromReceipt.

AmCreateRequestToPOrder()

This function enables you to create the objects in the procurement cycle: Request,
Purchase order.

API syntax

long AmCreateRequestToPOrder(long hApiCnxBase, double dQty, long
ICatRefld, double dUnitPrice, char *strCur, long IRequesterld, long ICostld,
long IUserld, long IStockld);

Internal Basic syntax

Function AmCreateRequestToPOrder(dQty As Double, ICatRefld As Long,
dUnitPrice As Double, strCur As String, IRequesterld As Long, ICostld As Long,
IUserld As Long, IStockld As Long) As Long

Field of application

Version: 4.00

AssetCenter API D
Configuration script of a field or link
"Script" type action D

AssetCenter 4.4 - Programmer's reference | 171

_

Deployment workflow

Wizard script

FINISH.DO script of a wizard ¥/

Input parameters

dQty: This parameter contains the quantity (in packaged units) to be ordered.
ICatRefld: This parameter contains the identifier of the catalog reference.
dUnitPrice: This parameter contains the unit price of the catalog reference.
strCur: This parameter contains the currency code for the catalog reference
price.

IRequesterld: This parameter contains the identifier of the requester.
ICostld: This parameter contains the identifier of the impacted cost center.
IUserld: This parameter contains the identifier of the user of the ordered item.

IStockld: This parameter contains the identifier of the delivery stock of the
item.

Output parameters

In case of error, there are two possibilities:

In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmCreateRequestToReceipt()

This function enables you to create the objects in the procurement cycle: Request,
Purchase order, Receipt.

172 | AssetCenter 4.4 - Programmer's reference

I
API syntax

long AmCreateRequestToReceipt(long hApiCnxBase, double dQty, long
ICatRefld, double dUnitPrice, char *strCur, long IRequesterld, long ICostld,
long IUserld, long IStockid);

Internal Basic syntax

Function AmCreateRequestToReceipt(dQty As Double, ICatRefld As Long,
dUnitPrice As Double, strCur As String, IRequesterld As Long, ICostld As Long,
IUserld As Long, IStockld As Long) As Long

Field of application

Version: 4.00

AssetCenter API D
Configuration script of a field or link
"Script" type action)

Deployment workflow
Wizard script
FINISH.DO script of a wizard A

Input parameters

= dQty: This parameter contains the quantity (in packaged units) to be ordered,
then received.

= |CatRefld: This parameter contains the identifier of the catalog reference.
= dUnitPrice: This parameter contains the unit price of the catalog reference.

= strCur: This parameter contains the currency code for the catalog reference
price.

= |Requesterld: This parameter contains the identifier of the requester.
= ICostld: This parameter contains the identifier of the impacted cost center.
= |Userld: This parameter contains the identifier of the user of the ordered item.

= IStockld: This parameter contains the identifier of the delivery stock of the
item.

AssetCenter 4.4 - Programmer's reference | 173

“
|_

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Notes

Equivalent to the sequence of calls: amCreateRequestToPOrder,
amCreateReceiptFromPOrder.

AmCreateReturnFromReceipt()

This function enables you to create a return slip from a receiving slip.

API syntax

long AmCreateReturnFromReceipt(long hApiCnxBase, long IRecptid);

Internal Basic syntax

Function AmCreateReturnFromReceipt(IRecptid As Long) As Long

Field of application

Version: 4.00
AssetCenter API v/
Configuration script of a field or link
"Script" type action D

174 | AssetCenter 4.4 - Programmer's reference

Deployment workflow
Wizard script
FINISH.DO script of a wizard D

Input parameters

o IRecptld: This parameter contains the identifier of the receipt line.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmC(reateTraceHist()

The AmCreateTraceHist APl is for creating trace history and trace operation based
on an existing connection from a source device/cable to a destination
device/cable.

API syntax

long AmCreateTraceHist(long hApiCnxBase, long ISrcLinkld, long IDestLinklid,
long iTraceDir, long ICabTraceOutld, char *strComment);

Internal Basic syntax

Function AmCreateTraceHist(ISrcLinkld As Long, IDestLinkld As Long, iTraceDir
As Long, ICabTraceOutld As Long, strComment As String) As Long

AssetCenter 4.4 - Programmer's reference | 175

Field of application

Version: 4.00

AssetCenter API ¥/
Configuration script of a field or link
"Script" type action 9

Deployment workflow
Wizard script
FINISH.DO script of a wizard D

Input parameters

= ISrcLinkld: This parameter is the device/cable used for the source link.
= IDestLinkld: This parameter is the device/cable used for the destination link.
= iTraceDir: This parameter specifies the direction of the connection.

= 0O=host to user

= T=user to host

= ICabTraceOutld: This parameter is the cable trace output ID.

= strComment: This parameter is the comment to be associated with the trace
operation.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

AmCreateTraceLink()

This function enables you to create a link between cable devices.

176 | AssetCenter 4.4 - Programmer's reference

Programmer's

Internal Basic syntax

Function AmCreateTraceLink(iLinkType As Long, IAstCabld As Long, IPrtBunid
AsLong, IPrevLinkld As Long, iTraceDir As Long, IDutyld As Long, ILabelRuleld
As Long) As Long

Field of application

Version: 4.3.0

AssetCenter API

Configuration script of a field or link

"Script" type action D
Deployment workflow

Wizard script

FINISH.DO script of a wizard D

Input parameters

= iLinkType: This parameter enables you to identify the type of element taken
into account ("1" for a cable device, "0" for a cable).

= |AstCabld: This parameter contains the identifier of the asset associated with
the cable device.

= [PrtBunld: This parameter contains the identifier of the record concerned by
the operation. This identifier is taken in the amCableBundle table for a cable
or in the amPort table for a cable device.

= |PrevLinkld: This parameter contains the identifier of the element used as
starting point for the link.

= iTraceDir: This parameter enables you to specify the direction of the link.
Either "HOST_TO_USER" or "USER_TO_HOST".

= [Dutyld: This parameter contains the identifier of the link duty.

= |LabelRuleld: This parameter contains the identifier of the label rule of the
link (by default, this value is null).

AssetCenter 4.4 - Programmer's reference | 177

_

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmCryptPassword()

This function encrypts the password of a user, identified by a login and password.

API syntax

long AmCryptPassword(long hApiCnxBase, char *strUser, char *strPasswd,
char *pStrCrypted, long IpStrCrypted);

Internal Basic syntax
Function AmCryptPassword(strUser As String, strPasswd As String) As String

Field of application

Version: 3.5

AssetCenter API /]
Configuration script of a field or link 9
"Script" type action b
Deployment workflow

Wizard script 9

178 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

FINISH.DO script of a wizard D

Input parameters

= strUser: This parameter contains the login of the user whose password you
want to encrypt.

= strPasswd: This parameter contains, in plaintext, the password to be
encrypted.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmCurrentDate()

This function returns the current date on the client workstation.

API syntax

long AmCurrentDate();

Internal Basic syntax

Function AmCurrentDate() As Date

AssetCenter 4.4 - Programmer's reference | 179

I
Field of application

Version: 2.52

AssetCenter API ¥/

Configuration script of a field or link ¥/

"Script" type action 9

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard b
Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Notes

If the database is configured to use time zones, the behavior of this function
differs depending on whether it is called directly from AssetCenter or from an
external program. In AssetCenter, this function behaves in the same way as the
Now() function in Basic. From external programs, the value returned by this
functionis expressed as GMT+0 and does not take daylight savings into account.

AmCurrentlsolLang()

This function returns the ISO language code of the language used in AssetCenter
("en" for English, "fr" for French, etc.).

180 | AssetCenter 4.4 - Programmer's reference

API syntax

long AmCurrentlsoLang(char *pstrLanguage, long ILanguage);

Internal Basic syntax

Function AmCurrentlsoLang() As String

Field of application

Version: 4.00

AssetCenter API D

Configuration script of a field or link D

"Script" type action)

Deployment workflow

Wizard script D

FINISH.DO script of a wizard A
Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmCurrentLanguage()

This function returns the language version of AssetCenter ("US" for English, "FR"
for French, etc.).

AssetCenter 4.4 - Programmer's reference | 181

API syntax

long AmCurrentLanguage(char *pstrLanguage, long ILanguage);

Internal Basic syntax

Function AmCurrentLanguage() As String

Field of application

Version: 3.00

AssetCenter API ¥/

Configuration script of a field or link 7

"Script" type action 9

Deployment workflow

Wizard script D

FINISH.DO script of a wizard D
Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmCurrentServerDate()

This function returns the current date on the server.

182 | AssetCenter 4.4 - Programmer's reference

API syntax

long AmCurrentServerDate(long hApiCnxBase);

Internal Basic syntax

Function AmCurrentServerDate() As Date

Field of application

Version: 3.5

AssetCenter API D

Configuration script of a field or link D

"Script" type action)

Deployment workflow

Wizard script D

FINISH.DO script of a wizard A
Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmDaDepAddComputers()

This function enables you to add deployment targets to an existing deployment
instance.

AssetCenter 4.4 - Programmer's reference | 183

L ——
API syntax

long AmDaDepAddComputers(long hApiCnxBase, long linstanceld, char
*strSelection);

Internal Basic syntax

Function AmDaDepAddComputers(linstanceld As Long, strSelection As String)
As Long

Field of application

Version: 4.2.0

AssetCenter API ¥/
Configuration script of a field or link
"Script" type action 9

Deployment workflow
Wizard script
FINISH.DO script of a wizard D

Input parameters

= linstanceld: This parameter contains the identifier of the deployment instance
concerned by the operation.

= strSelection: This parameter contains the list of identifiers (separated by
commas) of the computers or computer groups to be added to the
deployment instance.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

184 | AssetCenter 4.4 - Programmer's reference

Programmer's

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

' This sample will create a deployment instance on all computers beloging
to a given department

Dim hgComp As Long

Dim hr As Long

Dim 1Err As Long

Dim 1CompId As Long

Dim 1DepInstanceId As Long

' Create the Deployment Instance with no associated computers, and in susp
ended mode

1DepInstancelId = AmDaDepCreatelInstance("Description",

lServerId, _

1WfSchemeId,

|I|I,

{pgWorkflow.cbtStart.vValue}, _

FALSE)

' Create a query on all computers belonging to employees for the strDepart
FullName department

hgComp = AmQueryCreate ()

1Err = AmQueryExec (hgComp, "SELECT lComputerId FROM amComputer WHERE Port
folio.User.FullName LIKE " AmSglTextConst("/Company/Departmentl/%"))

While 1Err = 0

1CompId = AmGetFieldLongValue (hgComp, 0)

' Add the computer id to the instance

1Err = AmDaDepAddComputers(lDepInstanceId, CStr (lCompId))
' And loop until done

1Err = AmQueryNext (hgComp)

Wend

' And now that all target computers have been added, start the instance
hr = AmGetRecordFromMainId ("amDaDepInstance", 1lDepInstanceId)

1Err = AmSetFieldLongValue (hr, "seRequest", 1)

1Err = AmUpdateRecord (hr)

AmDaDepCopylnstance()

This function enables you to copy a deployment instance.

AssetCenter 4.4 - Programmer's reference | 185

API syntax

long AmDaDepCopylnstance(long hApiCnxBase, long linstanceld, char
*strStatusValues, long bStart);

Internal Basic syntax

Function AmDaDepCopylnstance(linstanceld As Long, strStatusValues As
String, bStart As Long) As Long

Field of application

Version: 4.2.0

AssetCenter API ¥/
Configuration script of a field or link
"Script" type action 9

Deployment workflow
Wizard script

FINISH.DO script of a wizard D
Input parameters
= linstanceld: This parameter contains the identifier of the deployment instance
to be copied.

= strStatusValues: This parameter contains the list of deployment statuses
taken into account in the copy of the instance. You can thus copy only the
targets for which the deployment status is "Failure" or "Pending" for the
deployment instance to copy. The deployment statuses are identified by their
associated value in the system itemized list (0: Pending; 1: In progress; 2:
Success; 3: Failure).

= bStart: When this parameter is set to 1, the copied deployment instance is
started straight away.

186 | AssetCenter 4.4 - Programmer's reference

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [fcalling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

The following example starts a deployment instance on the pending or failed
targets, by making a copy of the original deployment instance:

dim hr as Long

hr = 0

If [lDaDepInstanceId]

AmDaDepCreatelnstance()

This function enable you to create a deployment instance.

API syntax

long AmDaDepCreatelnstance(long hApiCnxBase, char *strDesc, long IServerid,
long IWfSchemeld, char *strSelection, long tmStart, long bStart);

Internal Basic syntax

Function AmDaDepCreatelnstance(strDesc As String, IServerld As Long,

IWfSchemeld As Long, strSelection As String, tmStart As Date, bStart As Long)
As Long

AssetCenter 4.4 - Programmer's reference | 187

Field of application

Version: 4.2.0

AssetCenter API ¥/
Configuration script of a field or link
"Script" type action 9

Deployment workflow

Wizard script

FINISH.DO script of a wizard D

Input parameters

strDesc: This parameter contains a description for the deployment instance.
IServerld: This parameter contains the identifier of the deployment server
to use. If you leave this parameter empty, the function used, if it exists, the
server for which the "Default server" option is selected.

IWfSchemeld: This parameter contains the identifier of the deployment
workflow used to create the instance.

strSelection: This parameter contains the list of identifiers (separated by
commas) of the computers or computer groups targeted by the deployment.
tmStart: This parameter contains the start date of the instance on the
deployment server.

bStart: When this parameter is set to 1, the deployment instance is started
straight away.

Output parameters

In case of error, there are two possibilities:

In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

188 | AssetCenter 4.4 - Programmer's reference

Programmer's

Example

' This sample will create a deployment instance on all computers beloging
to a given department

Dim hgComp As Long

Dim hr As Long

Dim 1Err As Long

Dim 1CompId As Long

Dim 1DepInstanceId As Long

' Create the Deployment Instance with no associated computers, and in susp
ended mode

1DepInstanceId = AmDaDepCreatelInstance("Description",

lServerId, _

1WfSchemeId,

nn

{pgWorkflow.cbtStart.vValue}, _

FALSE)

' Create a query on all computers belonging to employees for the strDepart
FullName department

hgComp = AmQueryCreate ()

1Err = AmQueryExec (hgComp, "SELECT lComputerId FROM amComputer WHERE Port
folio.User.FullName LIKE " AmSglTextConst("/Company/Departmentl/%"))

While 1Err = 0

1CompId = AmGetFieldLongValue (hgComp, 0)

' Add the computer id to the instance

1Err = AmDaDepAddComputers(lDepInstanceId, CStr (lCompId))
' And loop until done

1Err = AmQueryNext (hgComp)

Wend

' And now that all target computers have been added, start the instance
hr = AmGetRecordFromMainId ("amDaDepInstance", 1lDepInstanceId)

1Err = AmSetFieldLongValue (hr, "seRequest", 1)

1Err = AmUpdateRecord (hr)

AmDateAdd()

This function calculates a new date according to a start date to which a real
duration is added.

API syntax

long AmDateAdd(long tmStart, long tsDuration);

AssetCenter 4.4 - Programmer's reference | 189

_

Internal Basic syntax
Function AmDateAdd(tmStart As Date, tsDuration As Long) As Date

Field of application

Version: 3.00

AssetCenter API D

Configuration script of a field or link 9

"Script" type action D

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard ¥/
Input parameters

= tmStart: This parameter contains the date to which the duration is added.

= tsDuration: This parameter contains the duration, expressed in seconds, to
be added to the date tmStart.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

The following example illustrates the difference between the amDateAdd() and
amDateAddLogical() functions. A duration of 30 days will be added to the date
1/1/1999 (January 1, 1999) using each of these functions.

190 | AssetCenter 4.4 - Programmer's reference

AmDateAdd adds a real duration, 30 days in this case:

[Retval=Ampatendd("1999/01/01", 2592000) |

The function returns the value:

[r999/01/31 |

AmDateAddLogical adds a logical duration, in this case 30 days (=1 month):

|RetVa1:AmDateAddLogical ("1999/01/01", 2592000) |

The function returns the value:

[r999/02/01 |

AmDateAddLogical()

This function calculates a new date according to a start date to which a logical
duration is added (1 month contains 30 days).

API syntax

long AmDateAddLogical(long tmStart, long tsDuration);

Internal Basic syntax

Function AmDateAddLogical(tmStart As Date, tsDuration As Long) As Date

Field of application

Version: 3.00

AssetCenter API ¥
Configuration script of a field or link /]
"Script" type action)
Deployment workflow

Wizard script D

AssetCenter 4.4 - Programmer's reference | 191

_

FINISH.DO script of a wizard 9

Input parameters

= tmStart: This parameter contains the date to which the duration is added.

= tsDuration: This parameter contains the duration, expressed in seconds, to
be added to the date tmStart.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

The following example illustrates the difference between the amDateAdd() and
amDateAddLogical() functions. A duration of 30 days will be added to the date
1/1/1999 (January 1, 1999) using each of these functions.

AmDateAdd adds a real duration, 30 days in this case:

[RetVal=AmDateAdd ("1999/01/01", 2592000) |

The function returns the value:

[1999/01/31 |

AmbDateAddLogical adds a logical duration, in this case 30 days (=1 month):

[Retval=AmDateAddLogical ("1999/01/01", 2592000) |

The function returns the value:

[1999/02/01 |

192 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

AmDateDiff()

This function calculates in the seconds the duration (or timespan) between two
dates.

API syntax

long AmDateDiff(long tmEnd, long tmStart);

Internal Basic syntax
Function AmDateDiff(tmEnd As Date, tmStart As Date) As Date

Field of application

Version: 3.00

AssetCenter API D

Configuration script of a field or link D

"Script" type action)

Deployment workflow

Wizard script)

FINISH.DO script of a wizard]
Input parameters

= tmEnd: This parameter contains the end date of the period for which the
calculation is carried out.

= tmStart: This parameter contains the start date of the period for which the
calculation is carried out.

AssetCenter 4.4 - Programmer's reference | 193

iy
i_

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example
The following example calculates the time elapsed between 01/01/98 and
01/01/99.
|AmDateDiff("l998/Ol/Ol 00:00:00", "1999/01/01 00:00:00") |

AmDbExecAql()

This function enables you to execute an AQL query on the database.

API syntax

long AmDbExecAql(long hApiCnxBase, char *strAqglStatement);

Internal Basic syntax
Function AmDbExecAql(strAglStatement As String) As Long

Field of application

Version: 4.1.0
AssetCenter API]

194 | AssetCenter 4.4 - Programmer's reference

Programmer's referer

Configuration script of a field or link

"Script" type action)

Deployment workflow

Wizard script

FINISH.DO script of a wizard D
Input parameters

+ strAqlStatement: This parameter contains the AQL query to execute.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

AmDbGetDate()

This function returns the result, in date format, of the AQL query. If the query
does not return a result, the value 0 is returned without triggering an error.

API syntax

long AmDbGetDate(long hApiCnxBase, char *strQuery);

Internal Basic syntax
Function AmDbGetDate(strQuery As String) As Date

Field of application

Version: 3.5

AssetCenter 4.4 - Programmer's reference | 195

“
|_

AssetCenter API 9
Configuration script of a field or link 7
"Script" type action b
Deployment workflow
Wizard script 9
FINISH.DO script of a wizard D
Input parameters
+ strQuery: This parameter contains the full AQL query whose result you want
to recover.
Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmDbGetDouble()

This function returns the result (as a double-precision number), of the AQL query.
If the query does not return a result, the value 0 is returned without triggering
an error.

API syntax

double AmDbGetDouble(long hApiCnxBase, char *strQuery);

Internal Basic syntax
Function AmDbGetDouble(strQuery As String) As Double

196 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

Field of application

Version: 3.5

AssetCenter API)
Configuration script of a field or link D
"Script" type action)
Deployment workflow
Wizard script D
FINISH.DO script of a wizard A
Input parameters
o strQuery: This parameter contains the full AQL query whose result you want
to recover.
Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmDbGetList()

This function returns, as a list, the result of an AQL query. The number of elements
selected by the AQL query is limited to 99.

API syntax

long AmDbGetList(long hApiCnxBase, char *strQuery, char *pstrResult, long
IResult, char *strColSep, char *strLineSep, char *strldSep);

AssetCenter 4.4 - Programmer's reference | 197

_

Internal Basic syntax

Function AmDbGetList(strQuery As String, strColSep As String, strLineSep As
String, strldSep As String) As String

Field of application

Version: 3.00

AssetCenter API D

Configuration script of a field or link 9

"Script" type action D

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard ¥/
Input parameters

= strQuery: This parameter contains the AQL query you want to execute.

= strColSep: This parameter contains the character used as column separator
in the result given by the function.

= strLineSep: This parameter contains the character used as line separator in
the result given by the function.

= strldSep: This parameter contains the character used as identifier separator
in the result given by the function.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

198 | AssetCenter 4.4 - Programmer's reference

AmDbGetListEx()

This function returns, as a list, the result of an AQL query. Unlike the AmDbGetList
function, this function is not limited in the number of elements selected by the
AQL query.

API syntax

long AmDbGetListEx(long hApiCnxBase, char *strQuery, char *pstrResult,
long IResult, char *strColSep, char *strLineSep, char *strldSep);

Internal Basic syntax

Function AmDbGetListEx(strQuery As String, strColSep As String, strLineSep
As String, strldSep As String) As String

Field of application

Version: 3.5

AssetCenter API D

Configuration script of a field or link ¥

"Script" type action)

Deployment workflow

Wizard script)

FINISH.DO script of a wizard D
Input parameters

= strQuery: This parameter contains the AQL query you want to execute.

= strColSep: This parameter contains the character used as column separator
in the result given by the function.

= strLineSep: This parameter contains the character used as line separator in
the result given by the function.

AssetCenter 4.4 - Programmer's reference | 199

_

= strldSep: This parameter contains the character used as identifier separator
in the result given by the function.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmDbGetLong()

This function returns the result of an AQL query. If the query does not return a
result, the value 0 is returned without triggering an error.

API syntax

long AmDbGetLong(long hApiCnxBase, char *strQuery);

Internal Basic syntax
Function AmDbGetLong(strQuery As String) As Long

Field of application

Version: 3.00

AssetCenter API /]
Configuration script of a field or link 9
"Script" type action b

Deployment workflow

200 | AssetCenter 4.4 - Programmer's reference

Programmer's refere

Wizard script D
FINISH.DO script of a wizard D
Input parameters
o strQuery: This parameter contains the full AQL query whose result you want
to recover.
Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= Ifcalling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

The following example returns the identifier of a product supplier:

IAmDbGetLong ("SELECT 1SuppId FROM amProdSupp WHERE 1ProdId="+Str ([ProdId])+
n)

AmDbGetPk()

This function returns the primary key of a table according to the WHERE clause
in an AQL query. If the query does not return a result, the value 0 is returned
without triggering an error.

API syntax

long AmDbGetPk(long hApiCnxBase, char *strTableName, char *strWhere);

AssetCenter 4.4 - Programmer's reference | 201

“
|_

Internal Basic syntax
Function AmDbGetPk(strTableName As String, strWhere As String) As Long

Field of application

Version: 3.00

AssetCenter API D

Configuration script of a field or link 9

"Script" type action D

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard ¥/
Input parameters

= strTableName: SQL name of the table whose primary key you want to recover.
= strWhere: WHERE clause in an AQL query.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmDbGetString()

This function returns the result of an AQL query as a formatted string. The number
of elements selected by the AQL query is limited to 99.

202 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

! Warning:

Do not use this function to recover the value of a single string type field. This
function is similar to the AmDbGetList and AmDbGetListEx functions.

API syntax

long AmDDbGetString(long hApiCnxBase, char *strQuery, char *pstrResult,
long IResult, char *strColSep, char *strLineSep);

Internal Basic syntax

Function AmDbGetString(strQuery As String, strColSep As String, strLineSep
As String) As String

Field of application

Version: 3.00

AssetCenter API D

Configuration script of a field or link ¥

"Script" type action)

Deployment workflow

Wizard script)

FINISH.DO script of a wizard D
Input parameters

= strQuery: This parameter contains the AQL query you want to execute.

= strColSep: This parameter contains the character used as column separator
in the final string.

= strLineSep: This parameter contains the character used as line separator in
the final string.

AssetCenter 4.4 - Programmer's reference | 203

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Notes

In the API syntax, the IResult parameter must contain the expected size of the
resulting value.

Example

Dim strList As String
strList = amDbGetList ("Select Name, FullName from amEmplDept Where Name Li
ke 'C%'", "|"I "I"I ll=ll)

returns the string:

Carpenter|/Taltek/I.S. Department/Carpenter\, Jerome\, DEMO-M016/=23459,Ch
avez|/Taltek/I.S. Department/Chavez\, Philip\, DEMO-M014/=23460,Chouraqui |
/Taltek/Sales/Los Angeles Agency/Chouraqui\, Thomas\, DEMO-M017/=23491,Cip
riani|/Taltek/Sales/Los Angeles Agency/Cipriani\, Fred\, DEMO-M018/=23492,
Clech|/Taltek/Sales/Burbank Agency/Clech\, Richard\, DEMO-M021/=23482,Colo
mbo | /Taltek/Finance/Colombo\, Gerald\, DEMO-M022/=23441

The escape character \ is used before commas.

The same query with amDbGetString() does not add escape characters, which
makes it inappropriate to fill a list. For example:

amDbGetString ("Select FullName from amEmplDept Where Name Like 'C%'"™, "|",
chr (10), "")

displays:

/Taltek/I.S. Department/Carpenter, Jerome, DEMO-M016/
/Taltek/I.S. Department/Chavez, Philip, DEMO-M014/
/Taltek/Sales/Los Angeles Agency/Chouraqui, Thomas, DEMO-M017/
/Taltek/Sales/Los Angeles Agency/Cipriani, Fred, DEMO-M018/
/Taltek/Sales/Burbank Agency/Clech, Richard, DEMO-M021/
/Taltek/Finance/Colombo, Gerald, DEMO-M022/

204 | AssetCenter 4.4 - Programmer's reference

Programmer's refere

AmDbGetStringEx()

This function returns, as a character string, the result of an AQL query. The
difference with the AmDbGetString function is that this function is not limited
in the number of elements selected by the AQL query.

! Warning:

Do not use this function to recover the value of a single string type field. This
function is similar to the AmDbGetList and AmDbGetListEx functions.

API syntax

long AmDbGetStringEx(long hApiCnxBase, char *strQuery, char *pstrResult,
long IResult, char *strColSep, char *strLineSep);

Internal Basic syntax

Function AmDbGetStringEx(strQuery As String, strColSep As String, strLineSep
As String) As String

Field of application

Version: 3.5

AssetCenter API D
Configuration script of a field or link D
"Script" type action)
Deployment workflow

Wizard script D

AssetCenter 4.4 - Programmer's reference | 205

“
|_

FINISH.DO script of a wizard 9

Input parameters

= strQuery: This parameter contains the AQL query you want to execute.

= strColSep: This parameter contains the character used as column separator
in the final string.

= strLineSep: This parameter contains the character used as line separator in
the final string.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmDeadLine()

This function calculates a deadline according to a calendar, a start date and a
number of working seconds elapsed.

API syntax

long AmDeadLine(long hApiCnxBase, char *strCalendarSqiName, long tmStart,
long tsDuration);

Internal Basic syntax

Function AmDeadLine(strCalendarSglName As String, tmStart As Date,
tsDuration As Long) As Date

206 | AssetCenter 4.4 - Programmer's reference

I
Field of application

Version: 3.00

AssetCenter API D

Configuration script of a field or link D

"Script" type action)

Deployment workflow

Wizard script D

FINISH.DO script of a wizard b
Input parameters

= strCalendarSqglName: This parameter contains the SQL name of the calendar
of working periods used as a basis for calculating the deadline.

= tmStart: This parameter contains the start date of the period.

= tsDuration: This parameter contains the number of working seconds since
the start date of the period.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [fcalling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

The following example calculates the deadline according to the calendar whose
SQL name is "Calendar_Paris", from a period start date set to 01/09/1998 at 8
a.m. and for a number of seconds equal to 450,000.

|AmDeadLine("Calendar_Paris", "1998/09/01 08:00:00", 450000)

This example returns the deadline, i.e. 22/09/1998 at 6 p.m.

AssetCenter 4.4 - Programmer's reference | 207

AmDecrementLogLevel()

This function enables you to go up one level in the hierarchy of a log window in
the final page of a wizard.

Internal Basic syntax

Function AmDecrementLogLevel() As Long

Field of application

Version: 3.5

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard e/

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

208 | AssetCenter 4.4 - Programmer's reference

Programmer's refere

AmDefAssignee()

This function searches for the ID number of the default ticket supervisor for a
given employee group.

API syntax

long AmDefAssignee(long hApiCnxBase, long IGroupld);

Internal Basic syntax
Function AmDefAssignee(IGroupld As Long) As Long

Field of application

Version: 3.00

AssetCenter API D

Configuration script of a field or link ¥

"Script" type action)

Deployment workflow

Wizard script)

FINISH.DO script of a wizard D
Input parameters

+ IGroupld: This parameter contains the ID number of an employee group.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

AssetCenter 4.4 - Programmer's reference | 209

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

The following generic example returns the identifier of the default supervisor
for an employee group:

[rmDefAssignee ([1GroupId]) |

You can directly enter the numeric value of the identifier, as in the following
example:

[rmDefAssignee (24) |

AmDefaultCurrency()

Returns the default currency used in AssetCenter.

API syntax

long AmDefaultCurrency(long hApiCnxBase, char *return, long Ireturn);

Internal Basic syntax

Function AmDefaultCurrency() As String

Field of application

Version: 3.5

AssetCenter API /]
Configuration script of a field or link D
"Script" type action b

210 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

Deployment workflow

Wizard script 9
FINISH.DO script of a wizard D
Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmDefEscalationScheme()

This function searches for the default escalation scheme according to the location
and severity of the helpdesk ticket.

API syntax

long AmDefEscalationScheme(long hApiCnxBase, char *strLocFullName, long
ISeverityLvl);

Internal Basic syntax

Function AmDefEscalationScheme(strLocFullName As String, ISeverityLvl As
Long) As Long

Field of application

Version: 3.00

AssetCenter 4.4 - Programmer's reference | 211

“
|_

AssetCenter API b

Configuration script of a field or link 7

"Script" type action b

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard D
Input parameters

= strLocFullName: This parameter contains the full name of the location.
= ISeverityLvl: This parameter contains the value of the severity.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

The following generic example returns the identifier of the default escalation
scheme according to the location and the severity:

PmDefEscalationScheme([Asset.Location.FullName], [Severity.lSeverityLvl]) |

You can directly enter the value of the parameters, as in the following example:

PmDefEscalationScheme ("/Location/", 24)

AmDefGroup()

This function returns the ID number of the default helpdesk group according to
the type of problem, the location, and the maintenance contract.

212 | AssetCenter 4.4 - Programmer's reference

API syntax

long AmDefGroup(long hApiCnxBase, long IProblemClassld, char
*strLocFullName, long IAssetMainCntld);

Internal Basic syntax

Function AmDefGroup(IProblemClassld As Long, strLocFullName As String,
IAssetMainCntld As Long) As Long

Field of application

Version: 3.00

AssetCenter API D
Configuration script of a field or link D
"Script" type action)
Deployment workflow

Wizard script D
FINISH.DO script of a wizard A

Input parameters

= IProblemClassld: This parameter contains the ID number for a problem type.
= strLocFullName: This parameter contains the full name of a location.

= |AssetMainCntld: This parameter contains the ID number of a maintenance
contract.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

AssetCenter 4.4 - Programmer's reference | 213

= [f calling from an external program, you must call the AmLastError() [page 359]

function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Notes

The method used to define the default helpdesk group is the following:

1 The function searches the helpdesk groups associated with the problem type
of the ticket.

2 From these groups, the function searches the helpdesk groups associated
with the "nearest” location to the asset: direct location, else parent location,
and so on until the root location.

3 Ifnogroupisfound, and if the DBMS supports double outer joins, the function
searches groups that aren't associated with a location.

For the list of DBMSs that support double external joints, refer to the Helpdesk
guide, chapter References (Helpdesk), section DBMSs supporting double
outer-joins.

4 If the DBMS supports double outer joins, the function selects, from the groups
found previously, the helpdesk group linked to maintenance contracts
covering the asset.

5 Ifnogroupisfound, the function repeats steps 1, 2, 3 and 4 starting from the
problem type a level up in the hierarchy of problems until it reaches the root
of the problem-type tree.

Example

The following generic example calculates the ID number of the default helpdesk
group according to three parameters: the type of problem, the location, and the
maintenance contract.

|IAmDefGroup ([ProblemClass.1lPbClassId], [Asset.Location.FullName], [Asset.1lMai
ntCntrid])

You can directly enter the numeric value of the parameters using the ID numbers,
as shown in the following example:

meefGroup(O, [Asset.Location.FullName], O0)

214 | AssetCenter 4.4 - Programmer's reference

Programmer's refere

AmDeleteLink()

This function deletes a links of a record.

API syntax

long AmDeleteLink(long hApiRecord, char *strLinkName, long hApiRecDest);

Internal Basic syntax

Function AmDeleteLink(hApiRecord As Long, strLinkName As String,
hApiRecDest As Long) As Long

Field of application

Version: 3.00

AssetCenter API D
Configuration script of a field or link

"Script" type action)
Deployment workflow

Wizard script

FINISH.DO script of a wizard D

Input parameters

= hApiRecord: This parameter contains the handle of the record containing
the link to be deleted.

= strLinkName: This parameter contains the SQL name of the link to be deleted.

= hApiRecDest: This parameter contains a handle of the target record of the
link to be deleted.

AssetCenter 4.4 - Programmer's reference | 215

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

AmDeleteRecord()

This function deletes a record in the database.

API syntax

long AmDeleteRecord(long hApiRecord);

Internal Basic syntax
Function AmDeleteRecord(hApiRecord As Long) As Long

Field of application

Version: 2.52

AssetCenter API D
Configuration script of a field or link
"Script" type action D

Deployment workflow
Wizard script

FINISH.DO script of a wizard D
Input parameters
+ hApiRecord: This parameter contains a handle of the record you want to
delete.

216 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

AmDisconnectTrace()

The AmDisconnectTrace APl disconnects the trace between a user node (IEndid)
and host node (IStartld) in the cable link table. If either node is at the end of a
trace, it will be deleted from the cable link table. It also creates trace history and
trace operations entries based on the disconnect.

API syntax

long AmDisconnectTrace(long hApiCnxBase, long IStartid, long IEndld, char
*strComment, long ICabTraceOutld);

Internal Basic syntax

Function AmDisconnectTrace(IStartld As Long, IEndid As Long, strComment
As String, ICabTraceOutld As Long) As Long

Field of application

Version: 4.00

AssetCenter API ¥
Configuration script of a field or link

"Script" type action)
Deployment workflow

Wizard script

AssetCenter 4.4 - Programmer's reference | 217

iy
i_

FINISH.DO script of a wizard e/

Input parameters

= IStartld: This parameter defines the host connection ID that will be
disconnected.

= IEndld: This parameter defines the user connection ID that will be
disconnected.

= strComment: This parameter is the string operation to show new connects
and disconnects.

= ICabTraceOutld: This parameter is the cable trace output ID.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

AmDuplicateRecord()

This function enables you to duplicate a record.

API syntax

long AmDuplicateRecord(long hApiRecord, long binsert);

Internal Basic syntax
Function AmDuplicateRecord(hApiRecord As Long, binsert As Long) As Long

Field of application

Version: 4.00

218 | AssetCenter 4.4 - Programmer's reference

AssetCenter API b
Configuration script of a field or link
"Script" type action)

Deployment workflow
Wizard script
FINISH.DO script of a wizard D

Input parameters

= hApiRecord: This parameter contains the handle of the record to duplicate.

= blnsert: This parameter enables you to specify whether you want to insert
the duplicated record immediately (=1) or not (=0).

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

AmEndOfNthBusinessDay()

Gives the last business hour of the nth day (identified by the integer IDayCount)
from a given date according to a calendar.

API syntax

long AmEndOfNthBusinessDay(long hApiCnxBase, char *strCalendarSqlName,
long tmStart, long IDayCount);

Internal Basic syntax

Function AmEndOfNthBusinessDay(strCalendarSqlName As String, tmStart
As Date, IDayCount As Long) As Date

AssetCenter 4.4 - Programmer's reference | 219

I
Field of application

Version: 3.00

AssetCenter API ¥/

Configuration script of a field or link ¥/

"Script" type action 9

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard b
Input parameters

= strCalendarSqglName: Name of the calendar used for the calculation.
= tmStart: Start date for the calculation.
= |DayCount: Number of full business days to add to dStart for the calculation.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmEnumVallList()

This function returns a string containing all the values of a custom itemized list.
The different values are sorted alphabetically and are delimited by the separator
indicated in the strLineSep parameter.

If an itemized list value contains the character used as the separator ora "\", the
"\" prefix is used.

220 | AssetCenter 4.4 - Programmer's reference

I
API syntax

long AmEnumValList(long hApiCnxBase, char *strEnumName, char *pstrValList,
long IValList, long bNoCase, char *strLineSep);

Internal Basic syntax

Function AmEnumValList(strEnumName As String, bNoCase As Long,
strLineSep As String) As String

Field of application

Version: 4.00

AssetCenter API D
Configuration script of a field or link D
"Script" type action)
Deployment workflow

Wizard script D
FINISH.DO script of a wizard A

Input parameters

= strEnumName: This parameter contains the SQL name of the itemized list
for which you want to recover the values.

= bNoCase: This parameter enables you to specify whether the sort is case
sensitive (=1) or not (=0).

= strLineSep: This parameter contains the character used to delimit the
itemized-list values.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

AssetCenter 4.4 - Programmer's reference | 221

“
|_

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmEvalScript()

This function enables you to evaluate a script by its name from the current
context. This function has two uses:

= Evaluate a system script (Default value, Mandatory, etc,)
= Call a function from a script library.

Internal Basic syntax

Function AmEvalScript(strScriptName As String, strObject As String, strPath
As String, ...) As Variant

Field of application

Version: 4.00

AssetCenter API
Configuration script of a field or link 9
"Script" type action b

Deployment workflow
Wizard script
FINISH.DO script of a wizard

Input parameters

= strScriptName: This parameter contains the name of the script to evaluate.
In the first case, it is the name of the system script (DefVal, etc.). In the second
case, it is the name of a script library.

= strObject: This parameter contains the object concerned by the script. It can
be the SQL name of a field or the name of a function from the library.

222 | AssetCenter 4.4 - Programmer's reference

= strPath: This optional parameter enables you to specify a path (link.link.link...)
to shift the context of evaluation of a script. This parameter does not work in
the second case.

= ... When calling afunction from a script library, enables you to pass parameters
to the function called.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Notes

The following is a list of usable system script names:

= For a table: IsValid, IsRelevant

= For afield: DefVal, Mandatory, Historized, ReadOnly, Irrelevant
= For a link: Historized, Filter, Irrelevant

= For a feature: DefVal, Mandatory, Available, Historized

AmExecTransition()

This function triggers a valid transition from the current page.

Internal Basic syntax

Function AmExecTransition(strTransName As String) As Long

Field of application

Version: 3.00

AssetCenter 4.4 - Programmer's reference | 223

_

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard D

Input parameters

s strTransName: This parameter contains the name of the transition as defined
in the wizard script. An error is returned if the transition is not found. The
function does not work (and does not return an error) if the transition is not
valid.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

AmExecuteActionByld()

This function executes an action as identified by its identifier.

API syntax

long AmExecuteActionByld(long hApiCnxBase, long IActionld, char
*strTableName, long IRecordid);

Internal Basic syntax

Function AmExecuteActionByld(lActionld As Long, strTableName As String,
IRecordld As Long) As Long

224 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

Field of application

Version: 3.00

AssetCenter API D
Configuration script of a field or link
"Script" type action)

Deployment workflow
Wizard script
FINISH.DO script of a wizard A

Input parameters

= |Actionld: This parameter contains the identifier of the action to be executed.

= strTableName: In the case of a contextual action, this parameter contains
the SQL name of the table on which the action is executed. If this parameter
is omitted, in the case of a contextual action, the function will fail. For
non-contextual actions, this parameter is not interpreted and therefore
optional.

= IRecordld: This parameter contains the identifier of a possible record
concerned by the action. For non-contextual actions, this parameter is not
interpreted and therefore optional.

Output parameters

= 0:Normal execution.
= Other than zero: Error code.

AmExecuteActionByName()

This function executes an action as identified by its SQL name.

AssetCenter 4.4 - Programmer's reference | 225

API syntax

long AmExecuteActionByName(long hApiCnxBase, char *strSqlName, char
*strTableName, long IRecordid);

Internal Basic syntax

Function AmExecuteActionByName(strSqlName As String, strTableName As
String, IRecordld As Long) As Long

Field of application

Version: 3.00

AssetCenter API ¥/
Configuration script of a field or link
"Script" type action 9

Deployment workflow
Wizard script

FINISH.DO script of a wizard D
Input parameters
= strSqlName: This parameter contains the SQL name of the action to be
executed.

= strTableName: In the case of a contextual action, this parameter contains
the SQL name of the table on which the action is executed. If this parameter
is omitted, in the case of a contextual action, the function will fail. For
non-contextual actions, this parameter is not interpreted and therefore
optional.

= IRecordld: This parameter contains the identifier of a possible record

concerned by the action. For non-contextual actions, this parameter is not
interpreted and therefore optional.

226 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

AmExportDocument)

This function enables you to export a document attached to a record.

API syntax

long AmExportDocument(long hApiCnxBase, long IDocld, char *strFileName);

Internal Basic syntax

Function AmExportDocument(IDocld As Long, strFileName As String) As Long

Field of application

Version: 4.00

AssetCenter API ¥

Configuration script of a field or link /]

"Script" type action)

Deployment workflow

Wizard script D

FINISH.DO script of a wizard D
Input parameters

= IDocld: This parameter contains the identifier of the document to export.

= strFileName: This parameter contains the name of the document to export,
as itis stored in the FileName field of the Documents table.

AssetCenter 4.4 - Programmer's reference | 227

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

AmExportReport()

This function enables you to export a Crystal Report from the database.

Internal Basic syntax
Function AmExportReport(IReportld As Long, strFileName As String) As Long

Field of application

Version: 4.3.0

AssetCenter API

Configuration script of a field or link

"Script" type action D
Deployment workflow

Wizard script 9
FINISH.DO script of a wizard ¥/

Input parameters

= IReportld: This parameter contains the identifier of the Crystal Reports record
to be exported.

= strFileName: This parameter contains the full path of the file to which the
export is made.

228 | AssetCenter 4.4 - Programmer's reference

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

AmFindCable()

The AmFindCable API finds the next available cable that runs between a given
user location (IUserld) and host location (IHostld). The cable must be of the
specified cable type (strCabType) and cable role (strCableRole). The cable must
also have a status of "Available". The cables are sorted in ascending order by

cable ID and only cables greater than the previous cable ID (IPrevCabld) are
selected.

API syntax

long AmFindCable(long hApiCnxBase, long IPrevCableld, char *strCabType,
long IUserld, long IHostld, char *strCableRole);

Internal Basic syntax

Function AmFindCable(IPrevCableld As Long, strCabType As String, lUserld
As Long, IHostld As Long, strCableRole As String) As Long

Field of application

Version: 4.00

AssetCenter API ¥
Configuration script of a field or link /]
"Script" type action)
Deployment workflow

Wizard script D

AssetCenter 4.4 - Programmer's reference | 229

“
|_

FINISH.DO script of a wizard 9

Input parameters

= IPrevCableld: This parameter is the ID of the previous cable.

= strCabType: This parameter defines the cable type for searching.
= |Userld: This parameter defines the user location ID.

= IHostld: This parameter defines the host location ID.

= strCableRole: This parameter is the cable role to locate.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmFindDevice()

The AmFindDevice API finds a device of a given type (strDevType) in a given
location (ILocld). The devices are sorted in ascending order by device ID and only
devices greater than the previous device ID (IPrevDeviceld) are selected.

API syntax

long AmFindDevice(long hApiCnxBase, long IPrevDeviceld, char
*strDeviceType, long ILocationld);

230 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

Internal Basic syntax

Function AmFindDevice(IPrevDeviceld As Long, strDeviceType As String,
ILocationld As Long) As Long

Field of application

Version: 4.00

AssetCenter API D

Configuration script of a field or link D

"Script" type action D

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard D
Input parameters

= |PrevDeviceld: This parameter defines the previous device ID searched. The
value of 0 is used to start a search.

= strDeviceType: This parameter defines the device type to locate.
= |Locationld: This parameter is the location ID to search.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [fcalling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AssetCenter 4.4 - Programmer's reference | 231

AmFindRootLink()

This function enables you to recover the root link of a trace.

API syntax

long AmFindRootLink(long hApiCnxBase, long ILinkid);

Internal Basic syntax
Function AmFindRootLink(ILinkld As Long) As Long

Field of application

Version: 4.00

AssetCenter API 9
Configuration script of a field or link D
"Script" type action b
Deployment workflow
Wizard script 9
FINISH.DO script of a wizard 9
Input parameters
s ILinkld: This parameter contains the identifier of the link concerned by the
operation.
Output parameters

The function returns the identifier of the root link.

232 | AssetCenter 4.4 - Programmer's reference

Programmer's

AmFindTermDevice()

The AmFindTermDevice APIfinds the next available device in a given termination
field (ITermField) for a given cable role (strCableRole). The devices are sorted in
ascending order by sequence number and only assets greater than the previous
sequence number (strPrevTermSeq) are selected. Also, for pin-based devices
(bPinBased = 1), we check the total number of pins needed (iPinPortCount)
against the total number of pins remaining on the device. For port-based devices
(bPinBased = 0) we check to make sure there is at least one port remaining on
the device and that the remaining port has the host or user side available by the
checking the flag (bCheckAvail = 0 - user device, bCheckAvail = 1 - host device).

API syntax

long AmFindTermDevice(long hApiCnxBase, long iPrevTermSeq, long
ITermFieldld, char *strCableRole, long bPinBased, long iPinPortCount, long
bCheckAvail);

Internal Basic syntax

Function AmFindTermDevice(iPrevTermSeq As Long, ITermFieldld As Long,
strCableRole As String, bPinBased As Long, iPinPortCount As Long,
bCheckAvail As Long) As Long

Field of application

Version: 4.00

AssetCenter API]
Configuration script of a field or link /]
"Script" type action)
Deployment workflow

Wizard script)

AssetCenter 4.4 - Programmer's reference | 233

FINISH.DO script of a wizard 9

Input parameters

iPrevTermSeq: This parameter is the previous termination field's sequence
searched. The value of 0 is used to start a search.

ITermFieldld: This parameter is the termination field ID.

strCableRole: This parameter is the cable role to locate.

bPinBased: This parameter determines whether the device is pin-based or
port-based.

iPinPortCount: For pin-based devices, this parameter is the total number of
pins needed to create a virtual port. For port-based devices, this parameter
is 1 since this APl is called per port needed.

bCheckAvail: This parameter is used to determine what side of the port needs
to be available.

= O=user device, check host available

= 1=host device, check user available

Output parameters

In case of error, there are two possibilities:

In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmFindTermField()

The AmFindTermField API finds a termination field that provides the given duty
(IDutyld) from the given location (ILocld). It will continue to find additional
termination fields in a given location for a given duty if ITermFieldld is greater
than 0.

234 | AssetCenter 4.4 - Programmer's reference

API syntax

long AmFindTermField(long hApiCnxBase, long IDutyld, long ILocationld,
long IPrevTermFieldld);

Internal Basic syntax

Function AmFindTermField(IDutyld As Long, ILocationld As Long,
IPrevTermFieldld As Long) As Long

Field of application

Version: 4.00

AssetCenter API D
Configuration script of a field or link D
"Script" type action)
Deployment workflow

Wizard script D
FINISH.DO script of a wizard A

Input parameters

= [Dutyld: This parameter defines the duty to locate.
= lLocationld: This parameter is the location ID to search.
= IPrevTermFieldld: This parameter is the termination field ID.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [fcalling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AssetCenter 4.4 - Programmer's reference | 235

AssetCenter

AmFlushTransaction()

This function purges the task lists of the agents (like after a database Commit
operation).

API syntax

long AmFlushTransaction(long hApiCnxBase);

Internal Basic syntax

Function AmFlushTransaction() As Long

Field of application

Version: 4.3.0

AssetCenter API /]
Configuration script of a field or link
"Script" type action b

Deployment workflow
Wizard script
FINISH.DO script of a wizard 9

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

236 | AssetCenter 4.4 - Programmer's reference

Programmer's referer

AmFormatCurrency()

This function displays a monetary value in a given currency. The standard symbol
of the currency is also displayed.

API syntax

long AmFormatCurrency(double dAmount, char *strCurrency, char
*pstrDisplay, long IDisplay);

Internal Basic syntax

Function AmFormatCurrency(dAmount As Double, strCurrency As String) As
String

Field of application

Version: 4.3.0

AssetCenter API D

Configuration script of a field or link D

"Script" type action)

Deployment workflow

Wizard script)

FINISH.DO script of a wizard]
Input parameters

= dAmount: This parameter contains the monetary value to be displayed.
= strCurrency: This parameter contains the currency used for the operation.

AssetCenter 4.4 - Programmer's reference | 237

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

|RetVal=amFormatCurrency (500, "USD") |

This example displays:

[us$500.00 |

AmFormatLong()

This function remplaces a token in a character string with the value contained
in a Long type variable.

API syntax

long AmFormatLong(long hApiCnxBase, long INumber, char *strFormat, char
*pstrResult, long IResult);

Internal Basic syntax

Function AmFormatLong(INumber As Long, strFormat As String) As String

Field of application

Version: 4.3.0

238 | AssetCenter 4.4 - Programmer's reference

AssetCenter API b

Configuration script of a field or link /]

"Script" type action)

Deployment workflow

Wizard script)

FINISH.DO script of a wizard D
Input parameters

= INumber: This parameter contains the Long to be inserted in the character
string contained in the strFormat parameter.

= strFormat: This parameter contains the character string to process. All "%d"
type tokens are remplaced with the value contained in the INumber
parameter.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmGeneratePlanningData()

This function enables you to generate a graphical planner viewer.

Internal Basic syntax

Function AmGeneratePlanningData(strTableSqlName As String, strProperties
As String, strlds As String) As String

AssetCenter 4.4 - Programmer's reference | 239

I
Field of application

Version: 4.3.0

AssetCenter API

Configuration script of a field or link ¥/

"Script" type action 9

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard b
Input parameters

= strTableSqlName: This parameter contains the SQL name of the table
containing the data from which the schedule is generated.

= strProperties: This parameter contains the properties of the created schedule.

/ Note:

For more information on the syntax of these properties, refer to the
Administration guide, References: parameter syntax of the planner viewer

pages.

= strlds: This parameter contains the list of identifiers (separated by commas)
of the records whose data is used to create the schedule.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

240 | AssetCenter 4.4 - Programmer's reference

Programmer's refere

AmGenSqIName()

This function generates a valid SQL name from a classic string. Spaces are replaced
by underscores ("_"). This function is especially useful for defining the default
value of a SQL name for a feature based on its name.

API syntax

long AmGenSqlName(char *return, long Ireturn, char *strText);

Internal Basic syntax
Function AmGenSqlName(strText As String) As String

Field of application

Version: 3.00

AssetCenter API D

Configuration script of a field or link ¥

"Script" type action)

Deployment workflow

Wizard script)

FINISH.DO script of a wizard D
Input parameters

o strText: Character string used to generate the SQL name.

Output parameters

In case of error, there are two possibilities:

AssetCenter 4.4 - Programmer's reference | 241

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

The following example defines the default value of the SQL name of an object
called "Label" in the AssetCenter database:

|RetVal=AmGenSQLName([Label]) |

AmGetCatRef()

This function searches for a valid non-catalog reference for a given model

(respecting the validity dates). The following rules are respected:
m [CatProduct.lModelId=1ModelId |

m [CatProduct.lParentId=0 |

The function returns a reference not created on the fly as its priority. If no
references are found and the parameter bCreate is setto "1", a new non-catalog
reference and a product are created (pointing to the model).

API syntax

long AmGetCatRef(long hApiCnxBase, long IModelld, long bCreate);

Internal Basic syntax
Function AmGetCatRef(IModelld As Long, bCreate As Long) As Long

Field of application

Version: 4.1.0

242 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

AssetCenter API b
Configuration script of a field or link
"Script" type action)

Deployment workflow
Wizard script

FINISH.DO script of a wizard D
Input parameters
= [Modelld: This parameter contains the ID of the model concerned by the
operation.

= bCreate: This parameter enables you to specify if a non-catalog reference
should be created in the case where the search returns no results.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Notes

/ Note:

The function does not require you to specify a supplier. This is because the search
is performed on non-catalog references regardless of the supplier.

AmGetCatRefFromCatProduct()

This function is identical to the function amGetCatRef, except that the search is
performed for a given product.

AssetCenter 4.4 - Programmer's reference | 243

L ——
API syntax

long AmGetCatRefFromCatProduct(long hApiCnxBase, long ICatProductid,
long bCreate);

Internal Basic syntax

Function AmGetCatRefFromCatProduct(lCatProductld As Long, bCreate As
Long) As Long

Field of application

Version: 4.1.0

AssetCenter API ¥/
Configuration script of a field or link
"Script" type action 9

Deployment workflow
Wizard script
FINISH.DO script of a wizard D

Input parameters

= ICatProductld: This parameter contains the ID of the product concerned by
the operation.

= bCreate: This parameter enables you to specify if a non-catalog reference
should be created in the case where the search returns no results.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

244 | AssetCenter 4.4 - Programmer's reference

Programmer's referer

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmGetComputeString()

This function returns the description string of a given record according to a
template.

API syntax

long AmGetComputeString(long hApiCnxBase, char *strTableName, long
IRecordld, char *strTemplate, char *pstrComputeString, long IComputeString);

Internal Basic syntax

Function AmGetComputeString(strTableName As String, IRecordid As Long,
strTemplate As String) As String

Field of application

Version: 3.00

AssetCenter API D
Configuration script of a field or link D
"Script" type action)
Deployment workflow

Wizard script)

AssetCenter 4.4 - Programmer's reference | 245

“
|_

FINISH.DO script of a wizard 9

Input parameters

= strTableName: This parameter contains the SQL name of the table of the
record for which you want to recover the description string.

= |Recordld: This parameter contains the identifier of the record within the
table.

= strTemplate: This parameter contains, in the form of a character string, the
template used for the description string.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

RetVal = amGetComputeString ("amEmplDept", [1lEmplDeptId], " [Name], [FirstNa
me] n)

AmGetCurrentNTDomain()

This function returns the name of the NT domain of the current login.

API syntax

long AmGetCurrentNTDomain(char *pstrDomain, long IDomain);

246 | AssetCenter 4.4 - Programmer's reference

Programmer's referer

Internal Basic syntax
Function AmGetCurrentNTDomain() As String

Field of application

Version: 4.00

AssetCenter API D

Configuration script of a field or link D

"Script" type action D

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard D
Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

|RetVa1 = amGetCurrentNTDomain ()

AmGetCurrentNTUser()

This function enables you to get the login of the user connected to Windows
(NT or 2000).

AssetCenter 4.4 - Programmer's reference | 247

API syntax

long AmGetCurrentNTUser(char *pstrUser, long IUser);

Internal Basic syntax

Function AmGetCurrentNTUser() As String

Field of application

Version: 4.00

AssetCenter API ¥/

Configuration script of a field or link 7

"Script" type action 9

Deployment workflow

Wizard script D

FINISH.DO script of a wizard D
Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmGetFeat()

This function creates a feature object from a handle to a table name and returns
the handle of the created feature object.

248 | AssetCenter 4.4 - Programmer's reference

API syntax

long AmGetFeat(long hApiTable, long IPos);

Internal Basic syntax
Function AmGetFeat(hApiTable As Long, IPos As Long) As Long

Field of application

Version: 3.5

AssetCenter API D

Configuration script of a field or link /]

"Script" type action)

Deployment workflow

Wizard script D

FINISH.DO script of a wizard A
Input parameters

= hApiTable: This parameter contains a handle of a table.
= IPos: This parameter contains the position of the feature in the table.

AmGetFeatCount()

This function returns the number of features of the table specified in the
hApiTable parameter.

API syntax

long AmGetFeatCount(long hApiTable);

AssetCenter 4.4 - Programmer's reference | 249

iy
i_

Internal Basic syntax
Function AmGetFeatCount(hApiTable As Long) As Long

Field of application

Version: 3.5

AssetCenter API D

Configuration script of a field or link 9

"Script" type action D

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard ¥/
Input parameters

o hApiTable: This parameter contains a handle of a table.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmGetField()

This function creates a field object from the handle of a query, arecord oratable
and returns the handle of the field object created.

250 | AssetCenter 4.4 - Programmer's reference

API syntax

long AmGetField(long hApiObject, long IPos);

Internal Basic syntax
Function AmGetField(hApiObject As Long, IPos As Long) As Long

Field of application

Version: 2.52

AssetCenter API D

Configuration script of a field or link D

"Script" type action)

Deployment workflow

Wizard script D

FINISH.DO script of a wizard A
Input parameters

= hApiObject: This parameter contains a handle of a query, record, or table.

= |Pos: This parameter contains the position of the field (its index) within the
object.

AmGetFieldCount()

This function returns the number of fields contained in the current object.

API syntax

long AmGetFieldCount(long hApiObject);

AssetCenter 4.4 - Programmer's reference | 251

_

Internal Basic syntax
Function AmGetFieldCount(hApiObject As Long) As Long

Field of application

Version: 2.52

AssetCenter API D
Configuration script of a field or link 9
"Script" type action D
Deployment workflow
Wizard script 9
FINISH.DO script of a wizard ¥/
Input parameters
s hApiObject: This parameter contains a handle of a valid record, query or
table.
Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmGetFieldDateOnlyValue()

This function returns the value of a field contained in the current object. This
value is returned in the "Date" format (from an external tool, it is a Long). Unlike

252 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

the AmGetFieldDateValue function, only the Date part is returned, the Time
part is omitted.

API syntax

long AmGetFieldDateOnlyValue(long hApiObject, long IFieldPos);

Internal Basic syntax

Function AmGetFieldDateOnlyValue(hApiObject As Long, IFieldPos As Long)
As Date

Field of application

Version: 4.3.0

AssetCenter API D

Configuration script of a field or link D

"Script" type action)

Deployment workflow

Wizard script D

FINISH.DO script of a wizard A
Input parameters

= hApiObject: This parameter contains a handle of a query or record.

= |FieldPos: This parameter contains the number of the field within the current
object.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

AssetCenter 4.4 - Programmer's reference | 253

_

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmGetFieldDateValue()

This function returns the value of a field contained in the current object. This
value is returned in "Date" format (from external tools, it is a Long).

API syntax

long AmGetFieldDateValue(long hApiObject, long IFieldPos);

Internal Basic syntax

Function AmGetFieldDateValue(hApiObject As Long, IFieldPos As Long) As
Date

Field of application

Version: 3.00

AssetCenter API /]

Configuration script of a field or link 9

"Script" type action b

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard v/
Input parameters

= hApiObject: This parameter contains a handle of a query or record.

254 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

= |FieldPos: This parameter contains the number of the field inside the current
object.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmGetFieldDescription()

This function returns, as a character string ("String" format), the long description
of a field identified by a handle.

API syntax

long AmGetFieldDescription(long hApiField, char *pstrBuffer, long IBuffer);

Internal Basic syntax
Function AmGetFieldDescription(hApiField As Long) As String

Field of application

Version: 3.00

AssetCenter API D
Configuration script of a field or link ¥
"Script" type action)

Deployment workflow

AssetCenter 4.4 - Programmer's reference | 255

_

Wizard script D
FINISH.DO script of a wizard ¥/
Input parameters

o hApiField: This parameter contains a valid handle of the field whose long
description you want to know.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmGetFieldDoubleValue()

This function returns the value of a field contained in the current object. This
value is returned in "Double" format.

API syntax

double AmGetFieldDoubleValue(long hApiObject, long IFieldPos);

Internal Basic syntax

Function AmGetFieldDoubleValue(hApiObject As Long, IFieldPos As Long)
As Double

256 | AssetCenter 4.4 - Programmer's reference

Field of application

Version: 3.00

AssetCenter API D

Configuration script of a field or link D

"Script" type action)

Deployment workflow

Wizard script D

FINISH.DO script of a wizard b
Input parameters

= hApiObject: This parameter contains a handle of a query or record.

= |FieldPos: This parameter contains the number of the field inside the current
object.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmGetFieldFormat()

This function is useful when the value of the "UserType" of the field concerned
(cf. "database.txt" file) is:

= System itemized list

= Itemized list

= Time span

= Table or field name

AssetCenter 4.4 - Programmer's reference | 257

AssetCenter

The function returns the format of the "UserType", i.e.:

System itemized list List of system-itemized list entries.

Itemized list Name of the itemized list associated to the field.

Time span Display format.

Table or field name SQL name of the field that stores the SQL name
of the table.

API syntax

long AmGetFieldFormat(long hApiField, char *pstrBuffer, long IBuffer);

Internal Basic syntax
Function AmGetFieldFormat(hApiField As Long) As String

Field of application

Version: 3.00

AssetCenter API D

Configuration script of a field or link 9

"Script" type action D

Deployment workflow

Wizard script D

FINISH.DO script of a wizard ¥/
Input parameters

o hApiField: This parameter contains a valid handle of the field whose
"UserType" you want to know.

258 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmGetFieldFormatFromName()

This function returns the "UserType" format of a field, from its name.

API syntax

long AmGetFieldFormatFromName(long hApiCnxBase, char *strTableName,
char *strFieldName, char *pFieldFormat, long IpFieldFormat);

Internal Basic syntax

Function AmGetFieldFormatFromName(strTableName As String, strFieldName
As String) As String

Field of application

Version: 3.5

AssetCenter API D
Configuration script of a field or link ¥
"Script" type action)
Deployment workflow

Wizard script)

AssetCenter 4.4 - Programmer's reference | 259

_

FINISH.DO script of a wizard 9

Input parameters

= strTableName: This parameter contains the SQL name of the table containing
the field concerned by the operation.

= strFieldName: This parameter contains the SQL name of the field.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmGetFieldFromName()

This function creates a field object based on its name and returns the handle of
the field object created.

API syntax

long AmGetFieldFromName(long hApiObject, char *strName);

Internal Basic syntax

Function AmGetFieldFromName(hApiObject As Long, strName As String) As
Long

260 | AssetCenter 4.4 - Programmer's reference

Field of application

Version: 2.52

AssetCenter API D

Configuration script of a field or link D

"Script" type action)

Deployment workflow

Wizard script D

FINISH.DO script of a wizard b
Input parameters

= hApiObject: This parameter contains a handle of a query, record, or table.
= strName: This parameter contains the field name.

AmGetFieldLabel()

This function returns, as a character string ("String" format), the label of a field
identified by a handle.

API syntax

long AmGetFieldLabel(long hApiField, char *pstrBuffer, long IBuffer);

Internal Basic syntax
Function AmGetFieldLabel(hApiField As Long) As String

Field of application

Version: 3.00

AssetCenter 4.4 - Programmer's reference | 261

_

AssetCenter API b

Configuration script of a field or link 7

"Script" type action b

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard D
Input parameters

s hApiField: This parameter contains a valid handle of the field whose label
you want to know.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmGetFieldLabelFromName()

This function returns the label of a field from its SQL name.

API syntax

long AmGetFieldLabelFromName(long hApiCnxBase, char *strTableName,
char *strFieldName, char *pFieldLabel, long IpFieldLabel);

Internal Basic syntax

Function AmGetFieldLabelFromName(strTableName As String, strFieldName
As String) As String

262 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

Field of application

Version: 3.5

AssetCenter API D
Configuration script of a field or link D
"Script" type action)
Deployment workflow

Wizard script D
FINISH.DO script of a wizard A

Input parameters

= strTableName: This parameter contains the SQL name of the table containing
the field concerned by the operation.

= strFieldName: This parameter contains the SQL name of the field.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmGetFieldLongValue()

This function returns the value of a field contained in the current object.

API syntax

long AmGetFieldLongValue(long hApiObject, long IFieldPos);

AssetCenter 4.4 - Programmer's reference | 263

iy
i_

Internal Basic syntax

Function AmGetFieldLongValue(hApiObject As Long, IFieldPos As Long) As
Long

Field of application

Version: 2.52

AssetCenter API D

Configuration script of a field or link 9

"Script" type action D

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard ¥/
Input parameters

= hApiObject: This parameter contains a handle of a query or record.

= IFieldPos: This parameter contains the number of the field inside the current
object.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

264 | AssetCenter 4.4 - Programmer's reference

Programmer's referer

Notes

/ Note:

If you use this function to recover the value of a field of date, time or date+time
type, thelong integer returned by the function represents the number of seconds
since 01/01/1970 at 00:00:00.

AmGetFieldName()

This function returns the name of a field contained in the current object.

API syntax

long AmGetFieldName(long hApiObject, long IFieldPos, char *pstrBuffer, long
IBuffer);

Internal Basic syntax
Function AmGetFieldName(hApiObject As Long, IFieldPos As Long) As String

Field of application

Version: 2.52

AssetCenter API D
Configuration script of a field or link /]
"Script" type action)
Deployment workflow

Wizard script D

AssetCenter 4.4 - Programmer's reference | 265

“
|_

FINISH.DO script of a wizard 9

Input parameters

= hApiObject: This parameter contains a handle of a query, record, or table.

= |FieldPos: This parameter contains the number of the field within the current
object. E.g., the value "0" indicates the first field.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmGetFieldRights()

This function returns the user rights for a field in the current object. These rights
are returned as a character string containing three characters, which specify the
read/insert/update rights:

non,

= "r":indicates the right to read data.
"i"mindicates the right to insert data.
= "u"indicates the right to update data.
For example, for a read-only field, the function returns the value "r ".

API syntax

long AmGetFieldRights(long hApiObject, long IFieldPos, char *pstrBuffer,
long IBuffer);

266 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

Internal Basic syntax
Function AmGetFieldRights(hApiObject As Long, IFieldPos As Long) As String

Field of application

Version: 2.52

AssetCenter API D

Configuration script of a field or link D

"Script" type action D

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard D
Input parameters

= hApiObject: This parameter contains a handle of a query, record, or table.

= IFieldPos: This parameter contains the number of the field within the current
object.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmGetFieldSize()

This function returns the size of a field.

AssetCenter 4.4 - Programmer's reference | 267

API syntax

long AmGetFieldSize(long hApiField);

Internal Basic syntax
Function AmGetFieldSize(hApiField As Long) As Long

Field of application

Version: 2.52

AssetCenter API ¥/
Configuration script of a field or link 7
"Script" type action 9
Deployment workflow
Wizard script D
FINISH.DO script of a wizard D
Input parameters
o hApiField: This parameter contains a handle of the field whose size you want
to know.
Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

268 | AssetCenter 4.4 - Programmer's reference

Programmer's refere

AmGetFieldSqIName()

This function returns, as a character string ("String" format), the SQL name of a
field identified by a handle.

API syntax

long AmGetFieldSqlName(long hApiField, char *pstrBuffer, long IBuffer);

Internal Basic syntax
Function AmGetFieldSqlName(hApiField As Long) As String

Field of application

Version: 3.00

AssetCenter API D

Configuration script of a field or link ¥

"Script" type action)

Deployment workflow

Wizard script)

FINISH.DO script of a wizard D
Input parameters

+ hApiField: This parameter contains a valid handle of the field whose SQL
name you want to know.

Output parameters

In case of error, there are two possibilities:

AssetCenter 4.4 - Programmer's reference | 269

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmGetFieldStrValue()

This function returns the value of a field contained in the current object. This
value is returned in string format.

Warning: When this function is used via the AssetCenter APlIs, it expects two
extra parameters pszBuffer and IBuffer, which define a string used as a buffer
to store the recovered string and the size of this buffer respectively. The pszBuffer
string must be formatted (filled with characters) and be of the size defined by
IBuffer. The following portion of code is incorrect, the string used as a buffer is
not sized:

Dim strBuffer as String

Dim 1lRec as Long

Dim 1Buffer as Long

1Buffer=20

1Rec=AmGetFieldStrValue(l, 0, strBuffer, 1lBuffer)

Here is the corrected portion of code:

Dim strBuffer as String

Dim 1Rec as Long

Dim 1Buffer as Long

strBuffer=String (21, " ") ' The buffer is set to 21 characters (" ")
1Buffer=20

1Rec=AmGetFieldStrValue (1, 0, strBuffer, 1Buffer)

When you format a buffer string using the "String" function, do not use "0" as a
padding character. Size the buffer before calling the AmGetFieldStrValue
function, particularly if this function is in a loop and always uses the same string
as a buffer.

API syntax

long AmGetFieldStrValue(long hApiObject, long IFieldPos, char *pstrBuffer,
long IBuffer);

270 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

Internal Basic syntax

Function AmGetFieldStrValue(hApiObject As Long, IFieldPos As Long) As
String

Field of application

Version: 2.52

AssetCenter API D

Configuration script of a field or link D

"Script" type action D

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard D
Input parameters

= hApiObject: This parameter contains a handle of a query or record.

= IFieldPos: This parameter contains the number of the field inside the current
object.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmGetFieldType()

This function returns the type of a field.

AssetCenter 4.4 - Programmer's reference | 271

API syntax

long AmGetFieldType(long hApiField);

Internal Basic syntax
Function AmGetFieldType(hApiField As Long) As Long

Field of application

Version: 2.52

AssetCenter API b
Configuration script of a field or link 7
"Script" type action 9
Deployment workflow
Wizard script D
FINISH.DO script of a wizard D
Input parameters
+ hApiField: This parameter contains a handle of the field whose type you want
to know.
Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

272 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

Notes

.-y Note:

The following table lists the values returned by the AmGetFieldType function
for each type of field:

Non défini
Byte

Short
Long
Float
Double
String
Time stamp
Bin

Blob

10 Date

11 Time

12 Memo

0N OV hA|WIN|—=|O

e}

AmGetFieldUserType()

This function returns the "UserType" of a field (cf. database. txt file) identified
by a handle, in the form of a long integer. For a field, the valid return values are
summarized below:

Default

Number

Yes/ No

Money

Date

Date+Time

System itemized list
Custom itemized list

0NN hA~|WIN|=|O

AssetCenter 4.4 - Programmer's reference | 273

AssetCenter

10 Percentage
11 Time span
12 Table or field SQL name

For a link, the valid return values are summarized below:

0 Normal

1 Comment

2 Image

3 History

4 Feature value

Up until version 4.0.0, the function always returned 0 for a link. From AssetCenter
version 4.1.0 onwards, the function returns one of the following values for a link:
= 0:Normal

= 1:Comments

= 2:lmage

= 3:History

= 5:Script

API syntax

long AmGetFieldUserType(long hApiField);

Internal Basic syntax
Function AmGetFieldUserType(hApiField As Long) As Long

Field of application

Version: 3.00

AssetCenter API 7
Configuration script of a field or link 7

274 | AssetCenter 4.4 - Programmer's reference

Programmer's refere

"Script" type action ¥

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard D
Input parameters

o hApiField: This parameter contains a valid handle of the field whose
"UserType" you want to know.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmGetForeignKey()

Recovers the handle of the foreign key of a link, itself identified by its handle.

API syntax

long AmGetForeignKey(long hApiField);

Internal Basic syntax
Function AmGetForeignKey(hApiField As Long) As Long

AssetCenter 4.4 - Programmer's reference | 275

Field of application

Version: 3.00

AssetCenter API ¥/

Configuration script of a field or link 7

"Script" type action 9

Deployment workflow

Wizard script D

FINISH.DO script of a wizard D
Input parameters

o hApiField: Handle of the link concerned by the operation.

AmGetindex()

This function creates an index object from a handle of a query, record, or a table
and returns the handle of the index object created.

API syntax

long AmGetindex(long hApiTable, long IPos);

Internal Basic syntax
Function AmGetindex(hApiTable As Long, IPos As Long) As Long

Field of application

Version: 3.5

276 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

AssetCenter API D

Configuration script of a field or link /]

"Script" type action)

Deployment workflow

Wizard script)

FINISH.DO script of a wizard D
Input parameters

= hApiTable: This parameter contains a handle of a table.
= IPos: This parameter contains the position of the index in the table.

AmGetindexCount()

This function returns the number of indexes contained in the table specified in
the hApiTable parameter.

API syntax

long AmGetindexCount(long hApiTable);

Internal Basic syntax
Function AmGetindexCount(hApiTable As Long) As Long

Field of application

Version: 3.5

AssetCenter API D
Configuration script of a field or link D
"Script" type action)

AssetCenter 4.4 - Programmer's reference | 277

_

Deployment workflow

Wizard script 9
FINISH.DO script of a wizard ¥/
Input parameters

o hApiTable: This parameter contains a handle of a table.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmGetindexField()

This function returns a handle on a field identified by its position in the index
(the Ipos th field of the index).

API syntax

long AmGetindexField(long hApilndex, long IPos);

Internal Basic syntax
Function AmGetindexField(hApilndex As Long, IPos As Long) As Long

Field of application

Version: 3.5

278 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

AssetCenter API D
Configuration script of a field or link /]
"Script" type action)
Deployment workflow
Wizard script)
FINISH.DO script of a wizard D
Input parameters
= hApilndex: This parameter contains a valid handle on the index concerned
by the operation.

= IPos: This parameter contains the position of the field in the index.

AmGetindexFieldCount()

This function returns the number of fields making up an index.

API syntax

long AmGetindexFieldCount(long hApilndex);

Internal Basic syntax
Function AmGetindexFieldCount(hApilndex As Long) As Long

Field of application

Version: 3.5

AssetCenter API D
Configuration script of a field or link D
"Script" type action)

AssetCenter 4.4 - Programmer's reference | 279

iy
i_

Deployment workflow

Wizard script 9
FINISH.DO script of a wizard ¥/
Input parameters

s hApilndex: This parameter contains a valid handle on the index concerned
by the operation.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmGetindexFlags()

This function returns the parameters of an index.

API syntax

long AmGetindexFlags(long hApilndex);

Internal Basic syntax
Function AmGetindexFlags(hApilndex As Long) As Long

Field of application

Version: 3.5

280 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

AssetCenter API b
Configuration script of a field or link /]
"Script" type action)
Deployment workflow
Wizard script)
FINISH.DO script of a wizard D
Input parameters
+ hApilndex: This parameter contains a valid handle on the index concerned
by the operation.
Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [fcalling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Notes

The value returned by the function results from a logical combination (OR) of
the following values:

= 1:The index authorized non unique records,

= 2:The index authorizes the null value,

= 4:The index is not case sensitive.

Thus, if the function returns 3, you can deduce that the index accepts non unique
records and the null value (1 OR 2 = 3).

AmGetindexName()

This function returns the name of an index.

AssetCenter 4.4 - Programmer's reference | 281

API syntax

long AmGetindexName(long hApilndex, char *pstrBuffer, long IBuffer);

Internal Basic syntax
Function AmGetindexName(hApilndex As Long) As String

Field of application

Version: 3.5

AssetCenter API ¥/

Configuration script of a field or link ¥/

"Script" type action 9

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard D
Input parameters

+ hApilndex: This parameter contains a valid handle on the index whose name
you want to know.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

282 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

AmGetLink()

This function creates a link object from the handle of a table and returns the
handle of the link object created.

API syntax

long AmGetLink(long hApiTable, long IPos);

Internal Basic syntax
Function AmGetLink(hApiTable As Long, IPos As Long) As Long

Field of application

Version: 3.02

AssetCenter API D

Configuration script of a field or link D

"Script" type action)

Deployment workflow

Wizard script)

FINISH.DO script of a wizard]
Input parameters

= hApiTable: This parameter contains a handle of a table.

= IPos: This parameter contains the position of the link (its index) inside the
object.

AssetCenter 4.4 - Programmer's reference | 283

AmGetLinkCardinality()

This function returns the cardinality of a link.

API syntax

long AmGetLinkCardinality(long hApiField);

Internal Basic syntax
Function AmGetLinkCardinality(hApiField As Long) As Long

Field of application

Version: 3.5

AssetCenter API /]

Configuration script of a field or link D

"Script" type action b

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard 9
Input parameters

+ hApiField: This parameter contains a handle of the link whose cardinality
you want to know.

Output parameters

= 1:The cardinality of the link is 1-1.
= 2:The cardinality of the link is 1-n.

284 | AssetCenter 4.4 - Programmer's reference

Programmer's referer

AmGetLinkCount()

This function returns the number of links contained in the current table.

API syntax

long AmGetLinkCount(long hApiTable);

Internal Basic syntax
Function AmGetLinkCount(hApiTable As Long) As Long

Field of application

Version: 3.02

AssetCenter API D

Configuration script of a field or link D

"Script" type action)

Deployment workflow

Wizard script)

FINISH.DO script of a wizard]
Input parameters

+ hApiTable: This parameter contains a handle of a valid table.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

AssetCenter 4.4 - Programmer's reference | 285

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmGetLinkDstField()

This function returns the field (foreign key) to which the link defined by the
hApiField parameter points.

API syntax

long AmGetLinkDstField(long hApiField);

Internal Basic syntax
Function AmGetLinkDstField(hApiField As Long) As Long

Field of application

Version: 3.5

AssetCenter API /]
Configuration script of a field or link D
"Script" type action b
Deployment workflow
Wizard script 9
FINISH.DO script of a wizard 9
Input parameters
+ hApiField: This parameter contains a handle of the link concerned by the
operation.

286 | AssetCenter 4.4 - Programmer's reference

Programmer's refere

AmGetLinkFeatureValue()

Returns the value of a "Link" type feature.

API syntax

long AmGetLinkFeatureValue(long hApiObject, long IFieldPos, long IRecordid);

Internal Basic syntax

Function AmGetLinkFeatureValue(hApiObject As Long, IFieldPos As Long,
IRecordld As Long) As Long

Field of application

Version: 3.00

AssetCenter API D

Configuration script of a field or link ¥

"Script" type action)

Deployment workflow

Wizard script)

FINISH.DO script of a wizard D
Input parameters

= hApiObject: This parameter contains a handle of a query or record.

= IFieldPos: This parameter contains the position of the field inside the current
object.

= IRecordld: This parameter contains the identifier of the record whose feature
value you want to recover.

AssetCenter 4.4 - Programmer's reference | 287

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

Dim g as String

g = "Select fv_link, 1EmplDeptId From amEmplDept Where 1EmplDeptId = " & [
1EmplDeptId]

Dim hg as Long

hg = amQueryCreate ()

Dim 1Err as Long

1Err = amQueryGet (hqg, q)

Dim 1Id as Long

1Id = amGetFieldLongValue (hg, 1)

amMsgBox ("str: " & amGetFieldStrValue (hg, 0))
amMsgBox ("int: " &

amGetFieldLongValue (hg, 0))

amMsgBox ("1lnk: " & amGetLinkFeatureValue (hg,0,1Id))

AmGetLinkFromName()

This function creates a link object from a name and returns the handle of the
object created.

API syntax

long AmGetLinkFromName(long hApiTable, char *strName);

Internal Basic syntax

Function AmGetLinkFromName(hApiTable As Long, strName As String) As
Long

288 | AssetCenter 4.4 - Programmer's reference

I
Field of application

Version: 3.02

AssetCenter API D

Configuration script of a field or link /]

"Script" type action)

Deployment workflow

Wizard script D

FINISH.DO script of a wizard A
Input parameters

= hApiTable: This parameter contains a handle of a table.
= strName: This parameter contains the SQL name of the link.

AmGetLinkType()

This function returns the type of a link.

API syntax

long AmGetLinkType(long hApiField);

Internal Basic syntax
Function AmGetLinkType(hApiField As Long) As Long

Field of application

Version: 3.02

AssetCenter 4.4 - Programmer's reference | 289

_

AssetCenter API b
Configuration script of a field or link 7
"Script" type action b
Deployment workflow
Wizard script 9
FINISH.DO script of a wizard D
Input parameters
s hApiField: This parameter contains a handle of the link whose type you want
to know.
Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmGetMainField()

This function creates a field object corresponding to the main field in a given
table. It returns a handle of the field thus created.

API syntax

long AmGetMainField(long hApiTable);

Internal Basic syntax
Function AmGetMainField(hApiTable As Long) As Long

290 | AssetCenter 4.4 - Programmer's reference

Field of application

Version: 2.52

AssetCenter API D

Configuration script of a field or link /]

"Script" type action)

Deployment workflow

Wizard script D

FINISH.DO script of a wizard A
Input parameters

¢ hApiTable: This parameter contains a handle of the table whose main field
you want to know.

AmGetMemoField()

This function creates a field object that correspondes to a Memo-type field of a
given table. It returns a handle on the field thus created.

API syntax

long AmGetMemoField(long hApiTable);

Internal Basic syntax
Function AmGetMemoField(hApiTable As Long) As Long

Field of application

Version: 4.1.0

AssetCenter 4.4 - Programmer's reference | 291

“
|_

AssetCenter API b
Configuration script of a field or link 7
"Script" type action b
Deployment workflow
Wizard script 9
FINISH.DO script of a wizard D
Input parameters
s hApiTable: This parameter contains a handle on the table whose Memo field
is wanted.

AmGetNextAssetPin()

The AmGetNextAssetPin API finds the next available pin on a device (IAssetld).
Its sequence number sorts the pins. Depending on the port direction (iPinPortDir),
the available pins are sorted in ascending (iPinPortDir = 0) or descending
(iPinPortDir = 1) order.

API syntax

long AmGetNextAssetPin(long hApiCnxBase, long lIAssetld, long bPinPortDir,
long iPrevPinSeq);

Internal Basic syntax

Function AmGetNextAssetPin(lAssetld As Long, bPinPortDir As Long,
iPrevPinSeq As Long) As Long

Field of application

Version: 4.00

292 | AssetCenter 4.4 - Programmer's reference

Programmer's re

AssetCenter API b

Configuration script of a field or link /]

"Script" type action)

Deployment workflow

Wizard script)

FINISH.DO script of a wizard D
Input parameters

= |Assetld: This parameter is the device ID.

= bPinPortDir: This parameter is the direction to search.
= O=ascending
= T=descending

= iPrevPinSeq

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= Ifcalling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmGetNextAssetPort()

The AmGetNextAssetPort API finds the next available port on a device (IAssetld)
providing a given service (IDutyld) or no service at all. The status of the port must
be "Available". Boolean flags are used to signify if the user side (bCheckUser)
and/or the host side (bCheckHost) of the port should be checked. The function
compares the user value (bUserAvail) and /or the hosts value (bHostAvail) if the
corresponding Boolean flag is true. The ports are sorted by their sequence
number. Depending on the port direction (bPinPortDir), the available ports are
sorted in ascending (bPinPortDir = 0) or descending (bPinPortDir = 1) order.

AssetCenter 4.4 - Programmer's reference | 293

T —
API syntax

long AmGetNextAssetPort(long hApiCnxBase, long IAssetld, long
ICabCnxTypeld, long IDutyld, long bCheckUser, long bCheckHost, long
bUserAvail, long bHostAvail, long bPinPortDir, long iPrevPortSeq);

Internal Basic syntax

Function AmGetNextAssetPort(lAssetld As Long, ICabCnxTypeld As Long,
IDutyld As Long, bCheckUser As Long, bCheckHost As Long, bUserAvail As
Long, bHostAvail As Long, bPinPortDir As Long, iPrevPortSeq As Long) As
Long

Field of application

Version: 4.00

AssetCenter API ¥/

Configuration script of a field or link ¥/

"Script" type action 9

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard D
Input parameters

= |Assetld: This parameter defines the device ID to search.

= ICabCnxTypeld: This parameter defines the cable connection type for the
port.

= IDutyld: This parameter is the duty of the port.
= bCheckUser: This parameter is a flag to check the user side.
= bCheckHost: This parameter is a flag to check the host side.
= bUserAvail: This parameter defines the user side availability state to check.
= bHostAvail: This parameter defines the host side availability state to check.
= bPinPortDir: This parameter defines the pin direction to check.

= 0O=ascending

294 | AssetCenter 4.4 - Programmer's reference

= T=descending

= iPrevPortSeq

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmGetNextCableBundle()

The AmGetNextCableBundle API finds the next available bundle on a cable
(ICableld) providing a given service (IDutyld) or no service at all. The status of
the bundle must be "Available". Boolean flags are used to signify if the user side
(bCheckUser) and/or the host side (bCheckHost) of the bundle should be checked.
The function compares the user value (bUserAvail) and/ or the host value
(bHostAvail) if the corresponding Boolean flag is true.

API syntax

long AmGetNextCableBundle(long hApiCnxBase, long ICableld, long IDutyld,
long bCheckUser, long bCheckHost, long bUserAvail, long bHostAvail);

Internal Basic syntax

Function AmGetNextCableBundle(ICableld As Long, IDutyld As Long,
bCheckUser As Long, bCheckHost As Long, bUserAvail As Long, bHostAvail
As Long) As Long

AssetCenter 4.4 - Programmer's reference | 295

Field of application

Version: 4.00
AssetCenter API ¥/
Configuration script of a field or link ¥/
"Script" type action 9

Deployment workflow
Wizard script 9
FINISH.DO script of a wizard D

Input parameters

= ICableld: This parameter is the ID of the cable to check.
= IDutyld: This parameter defines the duty to locate.

= bCheckUser: This parameter states to check the user side connection of the
bundle.

= bCheckHost: This parameter states to check the host side connection of the
bundle.

= bUserAvail: This parameter defines the user side connection state to locate.
= bHostAvail: This parameter defines the host side connection state to locate.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

296 | AssetCenter 4.4 - Programmer's reference

Programmer's refere

AmGetNextCablePair()

The AmGetNextCablePair API finds the next available cable pair in a cable
(ICableld) of a given type (IPairType). The pairs are sorted by cable's pair ID.

API syntax

long AmGetNextCablePair(long hApiCnxBase, long ICableld, long IPairTypeld,
long iStartPairSeq);

Internal Basic syntax

Function AmGetNextCablePair(ICableld As Long, IPairTypeld As Long,
iStartPairSeq As Long) As Long

Field of application

Version: 4.00

AssetCenter API D
Configuration script of a field or link ¥
"Script" type action)
Deployment workflow

Wizard script)
FINISH.DO script of a wizard D

Input parameters

= |Cableld: This parameter is the ID of the cable to search.
= IPairTypeld: This parameter defines the cable pair type to locate.
= iStartPairSeq

AssetCenter 4.4 - Programmer's reference | 297

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmGetNTDomains()

This function enables you to get the domain of the user connected to the
database.

API syntax

long AmGetNTDomains(char *pstrDomains, long IDomains);

Internal Basic syntax
Function AmGetNTDomains() As String

Field of application

Version: 4.00

AssetCenter API /]
Configuration script of a field or link D
"Script" type action b
Deployment workflow

Wizard script 9

298 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

FINISH.DO script of a wizard D

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [fcalling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmGetNTMachinesinDomain()

This function enables you to get the list of computers in a domain as a column
(computer names separated by commas). If the domain is empty, the function
returns ERR_CANCEL(2), but the execution is not interrupted.

API syntax

long AmGetNTMachinesinDomain(char *strDomain, char *pstrMachines, long
IMachines, long bUseDC);

Internal Basic syntax

Function AmGetNTMachinesinDomain(strDomain As String, bUseDC As Long)
As String

Field of application

Version: 4.00
AssetCenter API b

AssetCenter 4.4 - Programmer's reference | 299

“
|_

Configuration script of a field or link 9

"Script" type action b

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard v/
Input parameters

= strDomain: This parameter contains the name of the domain to explore.

= bUseDC: If this parameter is set to 1, the function queries the domain
controller for a list of computers. If this parameter is set to 0 (the default value)
the function uses the system function libraries to find the list of computers.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmGetNTUsersinDomain()

This function enables you to get the list of users of a domain. The list is returned
as two columns (login,fullname).'|'is used as column separator, ', as line separator.

API syntax

long AmGetNTUsersinDomain(char *strDomain, char *pstrUsers, long IUsers);

300 | AssetCenter 4.4 - Programmer's reference

Programmer's refere

Internal Basic syntax

Function AmGetNTUsersinDomain(strDomain As String) As String

Field of application

Version: 4.00

AssetCenter API D

Configuration script of a field or link D

"Script" type action D

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard D
Input parameters

o strDomain: This parameter contains the name of the domain to explore.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmGetPOLinePrice()

This function enables you to calculate the price of an order line.

AssetCenter 4.4 - Programmer's reference | 301

API syntax

double AmGetPOLinePrice(long hApiCnxBase, long IPOrdLineld);

Internal Basic syntax
Function AmGetPOLinePrice(IPOrdLineld As Long) As Double

Field of application

Version: 4.00

AssetCenter API ¥/
Configuration script of a field or link
"Script" type action 9

Deployment workflow
Wizard script
FINISH.DO script of a wizard D

Input parameters

o IPOrdLineld: This parameter contains the identifier of the order line.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

302 | AssetCenter 4.4 - Programmer's reference

Programmer's refere

AmGetPOLinePriceCur()

This function enables you to find the currency code for the order line

API syntax

long AmGetPOLinePriceCur(long hApiCnxBase, long IPOrdLineld, char
*pstrPrice, long IPrice);

Internal Basic syntax
Function AmGetPOLinePriceCur(IPOrdLineld As Long) As String

Field of application

Version: 4.00

AssetCenter API D
Configuration script of a field or link
"Script" type action)

Deployment workflow
Wizard script
FINISH.DO script of a wizard D

Input parameters

+ IPOrdLineld: This parameter contains the identifier of the order line.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

AssetCenter 4.4 - Programmer's reference | 303

_

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmGetPOLineReference()

This function enables you to get the catalog reference description corresponding
to the purchase order line.

API syntax

long AmGetPOLineReference(long hApiCnxBase, long IPOrdLineld, char
*pstrRef, long IRef);

Internal Basic syntax
Function AmGetPOLineReference(IPOrdLineld As Long) As String

Field of application

Version: 4.00

AssetCenter API /]
Configuration script of a field or link
"Script" type action b

Deployment workflow
Wizard script
FINISH.DO script of a wizard v/

Input parameters

o IPOrdLineld: This parameter contains the identifier of the order line.

304 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmGetRecordFromMainld()

This function returns the ID number of a record identified by a value of the
primary key of the table containing this record.

API syntax

long AmGetRecordFromMainld(long hApiCnxBase, char *strTable, long lid);

Internal Basic syntax
Function AmGetRecordFromMainld(strTable As String, lld As Long) As Long

Field of application

Version: 2.52

AssetCenter API D
Configuration script of a field or link
"Script" type action)

Deployment workflow
Wizard script

AssetCenter 4.4 - Programmer's reference | 305

“
|_

FINISH.DO script of a wizard 9

Input parameters

= strTable: This parameter contains the SQL name of the table containing the
record concerned by the operation.

= lld: This parameter contains the value of the primary key of the table for this
records.

Notes

This function systematically returns a record handle, except when the table is
not found. If no record is found in the specified table, an error is raised at each
execution of a function using the handle returned by this function.

AmGetRecordHandle()

This function returns the handle of a record that is the current result of a query
identified by its handle. This record can be used to write in the database. This
function only works if the query contains the primary key of the record.

API syntax

long AmGetRecordHandle(long hApiQuery);

Internal Basic syntax
Function AmGetRecordHandle(hApiQuery As Long) As Long

Field of application

Version: 2.52

306 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

AssetCenter API D
Configuration script of a field or link

"Script" type action)
Deployment workflow

Wizard script

FINISH.DO script of a wizard D

Input parameters

+ hApiQuery: This parameter contains a valid handle of a query object.

AmGetRecordld()

This function returns the ID number of a record identified by its handle. In the
case of a record being inserted, this value is 0.

API syntax

long AmGetRecordld(long hApiRecord);

Internal Basic syntax
Function AmGetRecordid(hApiRecord As Long) As Long

Field of application

Version: 2.52

AssetCenter API D
Configuration script of a field or link

"Script" type action)
Deployment workflow

Wizard script

AssetCenter 4.4 - Programmer's reference | 307

iy
i_

FINISH.DO script of a wizard e/

Input parameters

+ hApiRecord: This parameter contains a valid handle of the record whose ID
number you want to know.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmGetRelDstField()

This function returns a handle on the target field of a link.

API syntax

long AmGetRelDstField(long hApiField);

Internal Basic syntax
Function AmGetRelDstField(hApiField As Long) As Long

Field of application

Version: 3.5

308 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

AssetCenter API D

Configuration script of a field or link /]

"Script" type action)

Deployment workflow

Wizard script)

FINISH.DO script of a wizard D
Input parameters

+ hApiField: This parameter contains a valid handle on the link concerned by
the operation.

AmGetRelSrcField()

This function returns a handle on the source field of a link.

API syntax

long AmGetRelSrcField(long hApiField);

Internal Basic syntax
Function AmGetRelSrcField(hApiField As Long) As Long

Field of application

Version: 3.5

AssetCenter API D
Configuration script of a field or link D
"Script" type action)
Deployment workflow

Wizard script D

AssetCenter 4.4 - Programmer's reference | 309

AssetCenter

FINISH.DO script of a wizard e/

Input parameters

o hApiField: This parameter contains a valid handle on the link concerned by
the operation.

AmGetRelTable()

This function returns a handle on the relation table of an N-N link.

API syntax

long AmGetRelTable(long hApiField);

Internal Basic syntax
Function AmGetRelTable(hApiField As Long) As Long

Field of application

Version: 3.5

AssetCenter API D
Configuration script of a field or link 9
"Script" type action D
Deployment workflow

Wizard script D

310 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

FINISH.DO script of a wizard D

Input parameters

o hApiField: This parameter contains a valid handle on the link concerned by
the operation.

Output parameters

In case of error, this function returns a non-valid handle (zero).

AmGetReverseLink()

This function returns the handle of the reverse link specified by the handle
contained in the hApiField parameter.

API syntax

long AmGetReverseLink(long hApiField);

Internal Basic syntax
Function AmGetReverseLink(hApiField As Long) As Long

Field of application

Version: 3.02

AssetCenter API D
Configuration script of a field or link /]
"Script" type action)

AssetCenter 4.4 - Programmer's reference | 311

AssetCenter

Deployment workflow

Wizard script 9
FINISH.DO script of a wizard ¥/
Input parameters

o hApiField: This parameter contains a handle of the link whose reverse link
you want to know.

AmGetScriptValue()

API syntax

long AmGetScriptValue(long hApiObject, char *strScriptName, char *strObject,
char *strPath);

Internal Basic syntax

Function AmGetScriptValue(hApiObject As Long, strScriptName As String,
strObject As String, strPath As String) As Variant

Field of application

Version: ?

AssetCenter API /]
Configuration script of a field or link D
"Script" type action b
Deployment workflow

Wizard script 9

312 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

FINISH.DO script of a wizard D

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [fcalling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmGetSelfFromMainld()

Returns the description string for a record in a given table.

API syntax

long AmGetSelfFromMainld(long hApiCnxBase, char *strTableName, long lid,
char *pstrRecordDesc, long IRecordDesc);

Internal Basic syntax

Function AmGetSelfFromMainld(strTableName As String, lild As Long) As
String

Field of application

Version: 3.5

AssetCenter API D
Configuration script of a field or link /]
"Script" type action)

AssetCenter 4.4 - Programmer's reference | 313

_

Deployment workflow

Wizard script 9
FINISH.DO script of a wizard ¥/
Input parameters

= strTableName: This parameter contains the SQL name of the table containing
record concerned by the operation.

= lid: This parameter contains the ID number concerned by the operation.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmGetSourceTable()

Returns the handle of the source table of the link indicated in the hApiField
parameter.

API syntax

long AmGetSourceTable(long hApiField);

Internal Basic syntax
Function AmGetSourceTable(hApiField As Long) As Long

314 | AssetCenter 4.4 - Programmer's reference

Field of application

Version: 3.02

AssetCenter API D

Configuration script of a field or link /]

"Script" type action)

Deployment workflow

Wizard script D

FINISH.DO script of a wizard A
Input parameters

o hApiField: This parameter contains a valid handle of the link whose source
table you want to know.

Output parameters

In case of error, this function returns a non-valid handle (zero).

AmGetTable()

This function returns the handle of a table identified by its position (number) in
the current connection.

API syntax

long AmGetTable(long hApiCnxBase, long IPos);

Internal Basic syntax
Function AmGetTable(IPos As Long) As Long

AssetCenter 4.4 - Programmer's reference | 315

Field of application

Version: 2.52

AssetCenter API ¥/

Configuration script of a field or link 7

"Script" type action 9

Deployment workflow

Wizard script D

FINISH.DO script of a wizard D
Input parameters

o IPos: This parameter contains the position of the table in the current
connection. Its values are comprised between "0" and AmGetTableCount.

Output parameters

In case of error, this function returns a non-valid handle (zero).

AmGetTableCount()

This function returns the number of tables in the database concerned by the
currency connection.

API syntax

long AmGetTableCount(long hApiCnxBase);

Internal Basic syntax
Function AmGetTableCount() As Long

316 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

Field of application

Version: 2.52

AssetCenter API D
Configuration script of a field or link D
"Script" type action)
Deployment workflow

Wizard script D
FINISH.DO script of a wizard A

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmGetTableDescription()

This function returns, as a character string ("String" format), the long description
of a table identified by a handle.

API syntax

long AmGetTableDescription(long hApiTable, char *pstrDesc, long IDesc);

Internal Basic syntax
Function AmGetTableDescription(hApiTable As Long) As String

AssetCenter 4.4 - Programmer's reference | 317

Field of application

Version: 3.00

AssetCenter API ¥/

Configuration script of a field or link ¥/

"Script" type action 9

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard b
Input parameters

s hApiTable: This parameter contains a valid handle of the table whose long
description you want to know.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmGetTableFromName()

This function returns the handle of a table identified by its SQL name in the
current connection.

API syntax

long AmGetTableFromName(long hApiCnxBase, char *strName);

318 | AssetCenter 4.4 - Programmer's reference

Programmer's refere

Internal Basic syntax

Function AmGetTableFromName(strName As String) As Long

Field of application

Version: 2.52

AssetCenter API D

Configuration script of a field or link D

"Script" type action D

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard D
Input parameters

o strName: This parameter contains the SQL name of the table whose handle
you want to recover.

Output parameters

In case of error, this function returns a non-valid handle (zero).

AmGetTableLabel()

This function returns, as a character string ("String" format), the label of a table
identified by a handle.

API syntax

long AmGetTableLabel(long hApiTable, char *pstrLabel, long ILabel);

AssetCenter 4.4 - Programmer's reference | 319

iy
i_

Internal Basic syntax
Function AmGetTableLabel(hApiTable As Long) As String

Field of application

Version: 3.00

AssetCenter API D

Configuration script of a field or link 9

"Script" type action D

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard ¥/
Input parameters

o hApiTable: This parameter contains a valid handle of the table whose label
you want to know.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmGetTableName()

Returns the SQL name of a table as a character string.

320 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

API syntax

long AmGetTableName(long hApiTable, char *pstrBuffer, long IBuffer);

Internal Basic syntax
Function AmGetTableName(hApiTable As Long) As String

Field of application

Version: 2.52

AssetCenter API D

Configuration script of a field or link D

"Script" type action)

Deployment workflow

Wizard script D

FINISH.DO script of a wizard A
Input parameters

+ hApiTable: Valid handle of the table whose name you want to recover.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AssetCenter 4.4 - Programmer's reference | 321

iy
i_

AmGetTableRights()

This function returns, as a character string ("String" format), the users rights for
a table given by a handle. The returned string consists of a maximum of two
characters that indicate the status of creation and deletion rights:

= "c"indicates that the user has creation rights for the table.

= "d"indicates that the user has deletion rights on the table.

Thus, for example:

n n

= " " means that the user has creation rights for the table only.
= "cd" means that the user has both creation and deletion rights for the table.

API syntax

long AmGetTableRights(long hApiTable, char *pstrBuffer, long IBuffer);

Internal Basic syntax
Function AmGetTableRights(hApiTable As Long) As String

Field of application

Version: 2.52

AssetCenter API v/
Configuration script of a field or link D
"Script" type action D
Deployment workflow

Wizard script 9

322 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

FINISH.DO script of a wizard P

Input parameters

o hApiTable: This parameter contains a valid handle of the table for which you
want to know the user rights.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= |Ifcalling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmGetTableSqIName()

This function returns, as a character string ("String" format), the SQL name of a
table identified by a handle.

API syntax

long AmGetTableSqlName(long hApiTable, char *pstrBuffer, long IBuffer);

Internal Basic syntax
Function AmGetTableSqlName(hApiTable As Long) As String

Field of application

Version: 3.00

AssetCenter 4.4 - Programmer's reference | 323

_

AssetCenter API b

Configuration script of a field or link 7

"Script" type action b

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard D
Input parameters

s hApiTable: This parameter contains a valid handle of the table whose SQL
name you want to know.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmGetTargetTable()

Returns the SQL name of the target table of a link.

API syntax

long AmGetTargetTable(long hApiField);

Internal Basic syntax
Function AmGetTargetTable(hApiField As Long) As Long

324 | AssetCenter 4.4 - Programmer's reference

Field of application

Version: 3.00

AssetCenter API D
Configuration script of a field or link D
"Script" type action)
Deployment workflow

Wizard script D
FINISH.DO script of a wizard A

Input parameters

¢ hApiField: Handle of the link concerned by the operation.

Output parameters

In case of error, this function returns a non-valid handle (zero).

AmGetTrace()

The AmGetTrace API gets the trace between two nodes (IUserld, IHostld) in the
cable link table. The trace direction (ITraceDir) identifies if the trace should be
user-to-host (ITraceDir = 1) or host-to-user (ITraceDir = 0). The trace type
(ITraceType) indicates if the trace is a connection (ITraceType =1) ora
disconnection (ITraceType = 2). The full trace indicator (bFullTrace) identifies if
the trace include only modified nodes (bFullTrace = 0) or the entire trace
(bFullTrace = 1).

API syntax

long AmGetTrace(long hApiCnxBase, long IUserld, long IHostld, long iTraceDir,
long iTraceType, long bFullTrace, char *pstrTrace, long ITrace);

AssetCenter 4.4 - Programmer's reference | 325

“
|_

Internal Basic syntax

Function AmGetTrace(lUserld As Long, IHostld As Long, iTraceDir As Long,
iTraceType As Long, bFullTrace As Long) As String

Field of application

Version: 4.00

AssetCenter API D

Configuration script of a field or link 9

"Script" type action D

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard ¥/
Input parameters

= |Userld: This parameter defines the starting connection link ID.
= IHostld: This parameter defines the ending connection link ID.

= iTraceDir: This parameter specifies the direction of the connection.
= O=host to user

= T=user to host

= iTraceType: This parameter defines the connection type.
= 1=connection
= 2=disconnection

= bFullTrace: This parameter specifies to ignore the partial trace and return
the whole trace string.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

326 | AssetCenter 4.4 - Programmer's reference

Programmer's refere

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmGetTraceFromHist()

The AmGetTraceFromHist API is for calculating a string from Trace History using
Trace Operations to show new connectivity versus existing connectivity.

API syntax

long AmGetTraceFromHist(long hApiCnxBase, long IProjTraceOutld, long

iTraceDir, char *strDelimiter, char *pstrTraceint, long ITraceint, long
bUpdateFlag);

Internal Basic syntax

Function AmGetTraceFromHist(IProjTraceOutld As Long, iTraceDir As Long,
strDelimiter As String, bUpdateFlag As Long) As String

Field of application

Version: 4.00

AssetCenter API D
Configuration script of a field or link

"Script" type action)
Deployment workflow

Wizard script

AssetCenter 4.4 - Programmer's reference | 327

_

FINISH.DO script of a wizard 9

Input parameters

= IProjTraceOutld: This parameter defines the project trace ID.

= iTraceDir: This parameter specifies the direction of the connection.
= O=host to user
= T=user to host

= strDelimiter: This parameter is the string delimiter to show existing connects
and disconnects.

= bUpdateFlag: This parameter is an optional parameter to AmGetTraceHist
API to update the amCabTraceOut.TraceString.
= O=false
= I=true

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmGetTypedLinkField()

Returns a handle of the field whose value is the SQL name of the target table of
the typed link indicated in the hApiField parameter.

API syntax

long AmGetTypedLinkField(long hApiField);

328 | AssetCenter 4.4 - Programmer's reference

Programmer's refere

Internal Basic syntax
Function AmGetTypedLinkField(hApiField As Long) As Long

Field of application

Version: 3.02

AssetCenter API D

Configuration script of a field or link D

"Script" type action D

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard D
Input parameters

s hApiField: This parameter contains a valid handle of the typed link at the
origin of the operation.

AmGetUserEnvSessionltem()

API syntax

long AmGetUserEnvSessionltem(long hApiCnxBase, char *return, long Ireturn,
char *strSection, char *strEntry);

Internal Basic syntax

Function AmGetUserEnvSessionltem(strSection As String, strEntry As String)
As String

AssetCenter 4.4 - Programmer's reference | 329

Field of application

Version: 4.4.0

AssetCenter API ¥/

Configuration script of a field or link 7

"Script" type action 9

Deployment workflow

Wizard script D

FINISH.DO script of a wizard D
Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmGetVersion()

This function returns the build number of AssetCenter in the form of a character
string.

API syntax

long AmGetVersion(char *pstrBuf, long IBuf);

Internal Basic syntax

Function AmGetVersion() As String

330 | AssetCenter 4.4 - Programmer's reference

Field of application

Version: 2.52

AssetCenter API D

Configuration script of a field or link D

"Script" type action)

Deployment workflow

Wizard script D

FINISH.DO script of a wizard b
Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmHasAdminPrivilege()

This function returns "TRUE" (value other that 0) if the connected user has
administration rights.

API syntax

long AmHasAdminPrivilege(long hApiCnxBase);

Internal Basic syntax

Function AmHasAdminPrivilege() As Long

AssetCenter 4.4 - Programmer's reference | 331

Field of application

Version: 3.00

AssetCenter API ¥/

Configuration script of a field or link 7

"Script" type action 9

Deployment workflow

Wizard script D

FINISH.DO script of a wizard D
Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmHasRelTable()

This function enables you to test whether a link has a relation table or not.

API syntax

long AmHasRelTable(long hApiField);

Internal Basic syntax
Function AmHasRelTable(hApiField As Long) As Long

332 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

Field of application

Version: 3.5

AssetCenter API D
Configuration script of a field or link D
"Script" type action)
Deployment workflow

Wizard script D
FINISH.DO script of a wizard A

Input parameters

+ hApiField: This parameter contains a valid handle on the link concerned by
the operation.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmHasRightsForCreation()

This function enables you to determine whether the connected user has creation
rights for a given table.

Internal Basic syntax
Function AmHasRightsForCreation(strTable As String) As Long

AssetCenter 4.4 - Programmer's reference | 333

Field of application

Version: 4.3.0

AssetCenter API

Configuration script of a field or link 7

"Script" type action 9

Deployment workflow

Wizard script D

FINISH.DO script of a wizard D
Input parameters

o strTable: This parameter contains the SQL name of the table concerned by
the operation.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

|RetVal=amHasRightsForCreation("amEmplDept")

AmHasRightsForDeletion()

This function enables you to determine whether the connected user has deletion
rights for a given table.

334 | AssetCenter 4.4 - Programmer's reference

Programmer's refere

Internal Basic syntax
Function AmHasRightsForDeletion(strTable As String) As Long

Field of application

Version: 4.3.0

AssetCenter API

Configuration script of a field or link D

"Script" type action D

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard D
Input parameters

o strTable: This parameter contains the SQL name of the table concerned by
the operation.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

|RetVa1=amHasRightsForDe1etion ("amEmplDept")

AssetCenter 4.4 - Programmer's reference | 335

_

AmHasRightsForFieldUpdate()

This function enables you to determine whether the connected user has update
rights for a given field.

Internal Basic syntax

Function AmHasRightsForFieldUpdate(strTable As String, strField As String)
As Long

Field of application

Version: 4.3.0

AssetCenter API

Configuration script of a field or link D

"Script" type action D

Deployment workflow

Wizard script D

FINISH.DO script of a wizard e/
Input parameters

= strTable: This parameter contains the SQL name of the table concerned by
the operation.

= strField: This parameter contains the SQL name of the field (the table is
specified in the strTable parameter) concerned by the operation.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

336 | AssetCenter 4.4 - Programmer's reference

Programmer's refere

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

|RetVa1=amHasRightsForFieldUpdate("amEmplDept", "Location")

AmHelpdeskCanCloseFile()

This function enables you to determine whether the connected user can close
a helpdesk ticket or not.

Internal Basic syntax
Function AmHelpdeskCanCloseFile() As Long

Field of application

Version: 4.3.0

AssetCenter API

Configuration script of a field or link D

"Script" type action ¥

Deployment workflow

Wizard script D

FINISH.DO script of a wizard D
Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

AssetCenter 4.4 - Programmer's reference | 337

AssetCenter

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Notes

-,-’ Note:

If the connected user can close a helpdesk ticket, the function returns the value
II—I |l.

AmHelpdeskCanProceed()

This function enables you to determine whether the connected user can proceed
with a helpdesk ticket or not.

Internal Basic syntax
Function AmHelpdeskCanProceed() As Long

Field of application

Version: 4.3.0

AssetCenter API

Configuration script of a field or link 9
"Script" type action D
Deployment workflow

Wizard script D

338 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

FINISH.DO script of a wizard D

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [fcalling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Notes

/ Note:

If the connected user can proceed with a helpdesk ticket, the function returns
the value "1".

AmHelpdeskCanSave(all()

This function enables you to determine whether the connected user can save a
helpdesk ticket or not.

Internal Basic syntax
Function AmHelpdeskCanSavecCall() As Long

Field of application
Version: 4.3.0

AssetCenter 4.4 - Programmer's reference | 339

AssetCenter API

Configuration script of a field or link 7

"Script" type action b

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard D
Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Notes

-,-’ Note:

If the connected user can save a helpdesk ticket, the function returns the value
II—I ll.

AmimportDocument()

This function creates and imports a document from a file.

API syntax

long AmimportDocument(long hApiCnxBase, long IDocObijld, char
*strTableName, char *strFileName, char *strCategory, char *strDesignation);

340 | AssetCenter 4.4 - Programmer's reference

Programmer's

Internal Basic syntax

Function AmimportDocument(IDocObjld As Long, strTableName As String,
strFileName As String, strCategory As String, strDesignation As String) As
Long

Field of application

Version: 4.00

AssetCenter API D
Configuration script of a field or link
"Script" type action D

Deployment workflow
Wizard script
FINISH.DO script of a wizard D

Input parameters

= IDocObjld: This parameter contains the value that will be stored in the
IDocObjld field of the amDocument table.

= strTableName: This parameter contains the value that will be stored in the
DocObjTable field of the amDocument table. In practice, it is the SQL name
of the table containing the record to which the document is attached.

= strFileName: This parameter contains the name of the file to import.

= strCategory: This parameter contains the category of the document, as is
appears in AssetCenter.

= strDesignation: This parameter contains the name of the document, as it
appears in AssetCenter.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

AssetCenter 4.4 - Programmer's reference | 341

iy
i_

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmimportReport()

This function enables you to import a Crystal Report from a file. It is imported
into an existing record in the amReport table.

Internal Basic syntax
Function AmimportReport(IReportld As Long, strFileName As String) As Long

Field of application

Version: 4.3.0

AssetCenter API

Configuration script of a field or link

"Script" type action D
Deployment workflow

Wizard script

FINISH.DO script of a wizard e/

Input parameters

= IReportld: This parameter contains the identifier of the record in the table
amReport in which the imported report will be stored.

= strFileName: This parameter contains the full path of the file containing the
report to be imported.

342 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

Output parameters

= 0: Normal execution.

= Other than zero: Error code.

AmIncrementLogLevel()

This function displays the strMsg message in a history window and creates a
node in the final page of a wizard.

All the following messages appear in this node.

Internal Basic syntax

Function AmincrementLoglLevel(strMsg As String, iType As Long) As Long

Field of application

Version: 3.5

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard D

Input parameters

= strMsg: This parameter contains the text of the message to be displayed.

= iType: This parameter defines the icon associated with the message. The
possible values are "1" for an error, "2" for a warning, and "4" for information.

AssetCenter 4.4 - Programmer's reference | 343

_

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AminsertRecord()

This function inserts a record previously created in the database. Only those
records created using the AmCreateRecord function can be inserted in the
database. Records accessed using a query cannot be inserted.

API syntax

long AminsertRecord(long hApiRecord);

Internal Basic syntax
Function AmInsertRecord(hApiRecord As Long) As Long

Field of application

Version: 2.52

AssetCenter API /]
Configuration script of a field or link

"Script" type action b
Deployment workflow

Wizard script

344 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

FINISH.DO script of a wizard D

Input parameters

o hApiRecord: This parameter contains a handle of the record you want to
insert in the database.

Output parameters

= 0:Normal execution.
= Other than zero: Error code.

AminstantiateReqLine()

This function enables you to directly instantiate a given request line.

API syntax

long AmInstantiateReqLine(long hApiCnxBase, long IRequestLineld, long
bFinal, long IPOrderLineld, double dQty);

Internal Basic syntax

Function AmInstantiateReqLine(IRequestLineld As Long, bFinal As Long,
IPOrderLineld As Long, dQty As Double) As Long

Field of application

Version: 4.00

AssetCenter API D

AssetCenter 4.4 - Programmer's reference | 345

Configuration script of a field or link

"Script" type action b

Deployment workflow

Wizard script

FINISH.DO script of a wizard 9

Input parameters

IRequestLineld: This parameter contains the identifier of the request line.

bFinalThis parameter enables you to specify whether you want to finalize
the assignment.

IPOrderLineld: This parameter contains the identifier of the order line.
dQty: This parameter contains quantity to instantiate.

Output parameters

Notes

0: Normal execution.
Other than zero: Error code.

The function enables you to create requested elements without going through
the procurement cycle. If bFinal = FALSE, then the asset will be created with the
status Awaiting receipt.

AminstantiateRequest()

This function enables you to directly instantiate the full contents of a given
request.

346 | AssetCenter 4.4 - Programmer's reference

API syntax

long AmIinstantiateRequest(long hApiCnxBase, long IRequestid, long
IMulFactor);

Internal Basic syntax

Function AmlinstantiateRequest(IRequestild As Long, IMulFactor As Long) As
Long

Field of application

Version: 4.00

AssetCenter API D
Configuration script of a field or link
"Script" type action)

Deployment workflow
Wizard script
FINISH.DO script of a wizard A

Input parameters

= IRequestld: This parameter contains the identifier of the request.

= [MulFactor: This parameter enables you to specify the number of
instantiations to perform.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

AssetCenter 4.4 - Programmer's reference | 347

AmlisConnected()

This function tests whether the current connection is valid.

API syntax

long AmisConnected(long hApiCnxBase);

Field of application

Version: 3.00

AssetCenter API v/
Configuration script of a field or link

"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmisFieldForeignKey()

This function enables you to determine whether a field is an foreign key in the
database.

348 | AssetCenter 4.4 - Programmer's reference

API syntax

long AmlisFieldForeignKey(long hApiField);

Internal Basic syntax
Function AmlsFieldForeignKey(hApiField As Long) As Long

Field of application

Version: 2.52

AssetCenter API D

Configuration script of a field or link /]

"Script" type action)

Deployment workflow

Wizard script D

FINISH.DO script of a wizard A
Input parameters

+ hApiField: This parameter contains a handle of the field to be identified.

Output parameters

= 1:Thefield is a foreign key.
= 0: The field is not a foreign key.

AmilsFieldIndexed()

This function enables you to determine whether a field is indexed or not.

AssetCenter 4.4 - Programmer's reference | 349

API syntax

long AmisFieldindexed(long hApiField);

Internal Basic syntax
Function AmlsFieldindexed(hApiField As Long) As Long

Field of application

Version: 3.5

AssetCenter API ¥/

Configuration script of a field or link 7

"Script" type action 9

Deployment workflow

Wizard script D

FINISH.DO script of a wizard D
Input parameters

o hApiField: This parameter contains a handle of the field to be identified.

Output parameters

= 1:Thefield is indexed.
= 0:Thefield is not indexed.

AmlsFieldPrimaryKey()

This function enables you to determine whether a field is an primary key in the
database.

350 | AssetCenter 4.4 - Programmer's reference

API syntax

long AmlisFieldPrimaryKey(long hApiField);

Internal Basic syntax
Function AmlsFieldPrimaryKey(hApiField As Long) As Long

Field of application

Version: 3.00

AssetCenter API D

Configuration script of a field or link /]

"Script" type action)

Deployment workflow

Wizard script D

FINISH.DO script of a wizard A
Input parameters

+ hApiField: This parameter contains a handle of the field to be identified.

Output parameters

= 1:Thefield is a primary key.
= 0:The field is not a primary key.

AmlisHelpdeskAdmin()

This function enables you to determine whether the connected user is the
helpdesk administrator.

AssetCenter 4.4 - Programmer's reference | 351

L ——

Internal Basic syntax
Function AmisHelpdeskAdmin() As Long

Field of application

Version: 4.3.0

AssetCenter API

Configuration script of a field or link 9

"Script" type action D

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard ¥/
Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Notes

f Note:

If the connected user is the helpdesk administrator, the function returns the
value "1",

352 | AssetCenter 4.4 - Programmer's reference

I
AmlisHelpdeskMember()

This function enables you to determine whether the connected user belongs to
a helpdesk group or not.

Internal Basic syntax
Function AmisHelpdeskMember() As Long

Field of application

Version: 4.3.0

AssetCenter API
Configuration script of a field or link D
"Script" type action D

Deployment workflow
Wizard script
FINISH.DO script of a wizard D

&

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [fcalling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AssetCenter 4.4 - Programmer's reference | 353

L ——

Notes

-,-’ Note:

If the connected user belongs to a helpdesk group, the function returns the value
II—I ll.

AmlisHelpdeskSuper()

This function enables you to determine whether the connected user is a helpdesk
group supervisor or not.

Internal Basic syntax
Function AmisHelpdeskSuper() As Long

Field of application

Version: 4.3.0

AssetCenter API

Configuration script of a field or link 9

"Script" type action D

Deployment workflow

Wizard script D

FINISH.DO script of a wizard ¥/
Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

354 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Notes

/ Note:

If the connected user is a helpdesk supervisor, the function returns the value "1".

AmlsLink()

Determines whether the object identified by its handle is a link or a field.

API syntax

long AmlisLink(long hApiField);

Internal Basic syntax
Function AmisLink(hApiField As Long) As Long

Field of application

Version: 3.00

AssetCenter API D
Configuration script of a field or link /]
"Script" type action)
Deployment workflow

Wizard script D

AssetCenter 4.4 - Programmer's reference | 355

AssetCenter

FINISH.DO script of a wizard e/

Input parameters

o hApiField: Handle of the object concerned by the operation.

Output parameters

= 1:The objectis a link.
= 0:The object is a field.

AmisModuleAuthorized()

This function enables you to determine whether the connected user has access
to a given module of the application or not.

Internal Basic syntax

Function AmisModuleAuthorized(strModuleName As String) As Long

Field of application

Version: 4.3.0

AssetCenter API

Configuration script of a field or link v/
"Script" type action D
Deployment workflow

Wizard script 9

356 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

FINISH.DO script of a wizard P

Input parameters

o strModuleName: This parameter contains the name of the module concerned
by the operation. The following is the list of possible modules:
= [TAM: Portfolio management module
= Reconc: Reconciliation module
= Contract: Contract management module
= Leasing: Leasing managment module
= Procurement: Procurement management module
= Finance: Financials module
= Helpdesk: Helpdesk management module
= Cable: Cable and Circuit module
= Barcode: Barcode module
= Admin: Administration module
= Visio: Visiro integration module
= API: APl library
= Wizard: Wizard management module
= Workflow: Workflow management module
= AutoCAD: AutoCAD integration module
= Knowlix: Knowlix integration module
= DA_Automation: Automation module
= DA_RemoteControl: Remote Control module

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AssetCenter 4.4 - Programmer's reference | 357

AssetCenter

Notes

-,-’ Note:

Not all modules are available or can be enabled from the application. The
availability depends on the license you have acquired from Peregrine Systems,
Inc.

AmlsTypedLink()

Determines if the object identified by its handle is a typed link or not.

API syntax

long AmlisTypedLink(long hApiField);

Internal Basic syntax
Function AmIsTypedLink(hApiField As Long) As Long

Field of application

Version: 3.02

AssetCenter API ¥/
Configuration script of a field or link 7
"Script" type action 9
Deployment workflow

Wizard script D

358 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

FINISH.DO script of a wizard D

Input parameters

+ hApiField: Handle of the object concerned by the operation.

Output parameters

= 1:The object is a typed link.
= 0: The object is not a typed link.

AmLastError()

This function returns the last error code generated by the last function executed
in the context of the corresponding connection.

API syntax

long AmLastError(long hApiCnxBase);

Internal Basic syntax

Function AmLastError() As Long

Field of application

Version: 2.52

AssetCenter API D
Configuration script of a field or link D
"Script" type action D

AssetCenter 4.4 - Programmer's reference | 359

AssetCenter

Deployment workflow

Wizard script 9
FINISH.DO script of a wizard ¥/
Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmLastErrorMsg()

This function returns the last error message occurred in the current connection.

API syntax

long AmLastErrorMsg(long hApiCnxBase, char *pstrBuffer, long IBuffer);

Internal Basic syntax

Function AmLastErrorMsg() As String

Field of application

Version: 2.52

AssetCenter API v/
Configuration script of a field or link 9
"Script" type action D

360 | AssetCenter 4.4 - Programmer's reference

Deployment workflow

Wizard script 9
FINISH.DO script of a wizard D
Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmListToString()

This function converts the result of a character string obtained via the
AmDDbGetList function to a character string that can be displayed in the same
way as the AmDbGetString function.

API syntax

long AmListToString(char *return, long Ireturn, char *strSource, char
*strColSep, char *strLineSep, char *strldSep);

Internal Basic syntax

Function AmListToString(strSource As String, strColSep As String, strLineSep
As String, strldSep As String) As String

Field of application

Version: 3.00

AssetCenter 4.4 - Programmer's reference | 361

“
|_

AssetCenter API b

Configuration script of a field or link 7

"Script" type action b

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard D
Input parameters

= strSource: This parameter contains the character string to be converted.

= strColSep: This parameter contains the character used as column separator
in the string to be converted.

= strLineSep: This parameter contains the character used as line separator in
the string to be converted.

= strldSep: This parameter contains the character used as identifier separator
in the string to be converted.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmLog()

This function displays the strMessage message in a history window.

Internal Basic syntax
Function AmLog(strMessage As String, iLogType As Long) As Long

362 | AssetCenter 4.4 - Programmer's reference

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard A

Input parameters

= strMessage: This parameter contains the text of the message to be displayed.

= iLogType: This parameter defines the icon associated with the message. The
possible values are "1" for an error, "2" for a warning, and "4" for information.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

Example

|AmLog("This is a message")

AmLoginld()

This function returns the identifier of the connected user.

API syntax

long AmLoginld(long hApiCnxBase);

AssetCenter 4.4 - Programmer's reference | 363

iy
i_

Internal Basic syntax
Function AmLoginid() As Long

Field of application

Version: 2.52

AssetCenter API D

Configuration script of a field or link 9

"Script" type action D

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard ¥/
Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

The following example defines the identifier of the connected user as the default
value for a database field:

|RetVal=AmLoginId () |

AmLoginName()

This function returns the login name of the connected user.

364 | AssetCenter 4.4 - Programmer's reference

API syntax

long AmLoginName(long hApiCnxBase, char *return, long Ireturn);

Internal Basic syntax

Function AmLoginName() As String

Field of application

Version: 2.52

AssetCenter API D

Configuration script of a field or link D

"Script" type action)

Deployment workflow

Wizard script D

FINISH.DO script of a wizard A
Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

The following example defines the login name of the connected user as the
default value for a database field:

|RetVa1 =AmLoginName () |

AssetCenter 4.4 - Programmer's reference | 365

_

AmMapSubReqLineAgent()

This function enables you to establish the possible links between the sub-lines
of a request line and those of an order line.

API syntax

long AmMapSubReqLineAgent(long hApiCnxBase, long IRequestLineld, long
IPorderLineld);

Internal Basic syntax

Function AmMapSubRegqLineAgent(IRequestLineld As Long, IPorderLineld
As Long) As Long

Field of application

Version: 4.00

AssetCenter API /]
Configuration script of a field or link

"Script" type action b
Deployment workflow

Wizard script

FINISH.DO script of a wizard v/

Input parameters

= IRequestLineld: This parameter contains the identifier of the request line.
= IPorderLineld: This parameter contains the identifier of the request line.

366 | AssetCenter 4.4 - Programmer's reference

Programmer's re

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

AmMove(Cable()

The AmMoveCable APl moves a cable (ICableld) from its current location to a
given destination location (IToLoc). If the project (IProjectld) and work order
(IWorkOrderld) have values, the cable is added to the project and work order
with the comment contained in the given comment (strComment). This comment

describes the action that will be performed on the cable (i.e. "Move cable from
here to there").

API syntax

long AmMoveCable(long hApiCnxBase, long ICableld, long IToLocld, long
IProjectld, long IWorkOrderld, char *strComment);

Internal Basic syntax

Function AmMoveCable(lCableld As Long, IToLocld As Long, IProjectld As
Long, IWorkOrderld As Long, strComment As String) As Long

Field of application

Version: 4.00

AssetCenter API ¥
Configuration script of a field or link

"Script" type action)
Deployment workflow

Wizard script

AssetCenter 4.4 - Programmer's reference | 367

FINISH.DO script of a wizard 9

Input parameters

= ICableld: This parameter is the ID of the cable to move.

= |ToLocld: This parameter defines the cable ID to move.

= IProjectld: This parameter is the project ID.

= IWorkOrderld: This parameter defines the work order ID.

= strComment: This parameter is the comment that will be used on the work
order.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

AmMoveDevice()

The AmMoveDevice APl moves a device (IAssetld) from its current location to a
given destination location (IToLoc). If the project (IProjectld) and work order
(IWorkOrderld) have values, the device is added to the project and work order
with the given comment (strComment). This comment describes the action that
will be performed on the device (i.e. "Move device from here to there").

API syntax

long AmMoveDevice(long hApiCnxBase, long IDeviceld, long IToLocationld,
long IProjectld, long IWorkOrderld, char *strComment);

Internal Basic syntax

Function AmMoveDevice(IDeviceld As Long, IToLocationld As Long, IProjectid
As Long, IWorkOrderld As Long, strComment As String) As Long

368 | AssetCenter 4.4 - Programmer's reference

Field of application

Version: 4.00

AssetCenter API D
Configuration script of a field or link
"Script" type action)

Deployment workflow
Wizard script
FINISH.DO script of a wizard A

Input parameters

= IDeviceld: This parameter defines the device ID that will be moved.
= |ToLocationld: This parameter defines the device's new location.

= IProjectld: This parameter is the project ID.

= IWorkOrderld: This parameter defines the work order ID.

= strComment: This parameter is the comment that will be used on the work
order.

Output parameters

= 0:Normal execution.
= Other than zero: Error code.

AmMsgBox()

This function displays a dialog box containing a message.

Internal Basic syntax
Function AmMsgBox(strMessage As String, IMode As Long) As Long

AssetCenter 4.4 - Programmer's reference | 369

Field of application

Version: 3.00

AssetCenter API
Configuration script of a field or link 7
"Script" type action 9
Deployment workflow
Wizard script D
FINISH.DO script of a wizard D
Input parameters
= strMessage: This parameter contains the message displayed in the dialog
box.

= IMode: This parameter contains the displayed dialog box type (O for a simple
dialog box with an OK button, 1 for a dialog box with OK and Cancel, 2 for a
dialog box with just Cancel).

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

Example

|AmMsgBox ("Move carried out")

AmOpenConnection()

Creates a session from an AC database name. strDataSource should be a valid
AssetCenter data source name (these AC database connections are listed in the
login box of AssetCenter).

370 | AssetCenter 4.4 - Programmer's reference

Programmer's refere

You can open several connections, in the same database or on different
databases.

API syntax

long AmOpenConnection(char *strDataSource, char *strUser, char *strPwd);

Field of application

Version: 2.52

. Availabe
AssetCenter API D

Configuration script of a field or link

"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

Input parameters

= strDataSource: Name of the data source.
= strUser: User name for the connection.
= strPwd: Password of the specified user.

AmOpenScreen()

This function enables you to open a screen or a view in AssetCenter.

Internal Basic syntax

Function AmOpenScreen(strScreenld As String, strContext As String, strFilter

As String, iMode As Long, strBindField As String, bStayReadOnly As Long) As
Long

AssetCenter 4.4 - Programmer's reference | 371

Field of application

Version: 4.00

AssetCenter API

Configuration script of a field or link

"Script" type action 9
Deployment workflow

Wizard script 9
FINISH.DO script of a wizard D

Input parameters

= strScreenld: This parameter contains the SQL name of the view of the system
or user screen you want to open (in this order of priority).

= strContext: This optional parameter contains the list of identifiers of the
records selected in the list on opening the screen.

= strFilter: This parameter contains an AQL filter applied on the list on opening
the screen.

= iMode: This parameter contains the mode in which the screen is opened:
consultation, edit, etc. The possible values are: 0 (No action in progress), 1
(No action in progress), 2 (Modification in progress), 3 (Creation in progress),
4 (Duplication in progress), 5 (Addition in progress), 6 (Selection in progress).

= strBindField: This parameter enables you to open a screen with a filter and
amode for opening a linked window. It uses the SQL name of the source field
or the value CurrentSrcChoice to use the current context.

= bStayReadOnly: This parameter enables you to open a screen in read-only
mode. No modifications are allowed, regardless of the user rights.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

372 | AssetCenter 4.4 - Programmer's reference

Programmer's refere

AmOverflowTables()

This function returns the SQL names of the overflow tables of a given table.

API syntax

long AmOverflowTables(long hApiCnxBase, char *strBasisTable, char
*strOverflowTables, long IOverflowTables);

Internal Basic syntax
Function AmOverflowTables(strBasisTable As String) As String

Field of application

Version: 4.3.0

AssetCenter API D
Configuration script of a field or link ¥
"Script" type action)
Deployment workflow
Wizard script)
FINISH.DO script of a wizard D
Input parameters
o strBasisTable: This parameter contains the SQL name of the table concerned
by the operation.
Output parameters

In case of error, there are two possibilities:

AssetCenter 4.4 - Programmer's reference | 373

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Notes
/ Note:
The comma is used as the separator in the list returned by the function. If no
overflow table exists for a given table, the function returns an empty string.
Example

The following example returns the overflow tables of the Portfolio Items table
(amPortfolio):

|RetVal = AmOverflowTables ("amPortfolio")

The result of this example is:

|amComputer,amSoftInstall,amPhone

AmPagePath()

This function returns a string containing the execution path of the wizard, i.e.
the list of pages browsed. Backward jumps are ignored.

Internal Basic syntax
Function AmPagePath() As String

374 | AssetCenter 4.4 - Programmer's reference

Programmer's refere

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script D
FINISH.DO script of a wizard A
Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmProgress()

This function displays, in the final page of a wizard, a progress indicator
representing a percentage.

Internal Basic syntax

Function AmProgress(iProgress As Long) As Long

Field of application

Version: 3.00

AssetCenter 4.4 - Programmer's reference | 375

AssetCenter

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard D

Input parameters

s iProgress: This parameter contains the percentage of completion (between
0 and 100) used to define size of the progress indicator.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

Example

[AmProgress (85) |

This function displays a progress indicator representing 85% completion.

AmPurgeRecord()

This function destroys a record.

API syntax

long AmPurgeRecord(long hApiRecord);

376 | AssetCenter 4.4 - Programmer's reference

Programmer's referer

Internal Basic syntax
Function AmPurgeRecord(hApiRecord As Long) As Long

Field of application

Version: 4.3.0

AssetCenter API D
Configuration script of a field or link
"Script" type action D

Deployment workflow
Wizard script
FINISH.DO script of a wizard D

Input parameters

s hApiRecord: This parameter contains the handle of the record concerned by
the operation.

Output parameters

= 0:Normal execution.
= Other than zero: Error code.

Notes

/ Note:

The processing of linked records depends on the type of the link. For OWN type
links, linked records are processed identically. In the case of a DEFINE or NORMAL
link, foreign keys of linked records are reset to 0 and the archival fields are
populated with the identifier and description string of the archived record.

AssetCenter 4.4 - Programmer's reference | 377

AssetCenter

o
& Important:

This function is available for a record from an archival table or a standard table.

AmQueryCreate()

This function creates a query object in the current connection. This object can
then be used to send AQL statements to the database server.

API syntax

long AmQueryCreate(long hApiCnxBase);

Internal Basic syntax

Function AmQueryCreate() As Long

Field of application

Version: 2.52

AssetCenter API D
Configuration script of a field or link 9
"Script" type action D
Deployment workflow

Wizard script D

378 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

FINISH.DO script of a wizard D

AmQueryExec()

This function executes an AQL query. It returns the first result of the query. The
next result can be obtained via the AmQueryNext function.

When the query sent by this function returns a "Memo" type field the result is
limited to 255 characters.

API syntax

long AmQueryExec(long hApiQuery, char *strQueryCommand);

Internal Basic syntax

Function AmQueryExec(hApiQuery As Long, strQueryCommand As String)
As Long

Field of application

Version: 2.52

AssetCenter API D
Configuration script of a field or link D
"Script" type action D
Deployment workflow

Wizard script D

AssetCenter 4.4 - Programmer's reference | 379

FINISH.DO script of a wizard e/

Input parameters

= hApiQuery: This parameter contains a valid handle of the query object to
which the AQL statements are sent.

= strQueryCommand: This parameter contains the body of the AQL query as
a string.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

AmQueryGet()

This function executes an AQL query without a cursor (one single result). It only
returns one single line of results.

API syntax

long AmQueryGet(long hApiQuery, char *strQueryCommand);

Internal Basic syntax

Function AmQueryGet(hApiQuery As Long, strQueryCommand As String) As
Long

Field of application

Version: 2.52

380 | AssetCenter 4.4 - Programmer's reference

Programmer's referer

AssetCenter API D

Configuration script of a field or link /]

"Script" type action)

Deployment workflow

Wizard script)

FINISH.DO script of a wizard D
Input parameters

= hApiQuery: This parameter contains a valid handle of the query object to
which the AQL statements are sent.

= strQueryCommand: This parameter contains the body of the AQL query as
a string.

Output parameters

= 0:Normal execution.
= Other than zero: Error code.

AmQueryNext()

This function returns the result of a query executed beforehand using the
AmQueryExec function.

API syntax

long AmQueryNext(long hApiQuery);

Internal Basic syntax
Function AmQueryNext(hApiQuery As Long) As Long

AssetCenter 4.4 - Programmer's reference | 381

Field of application

Version: 2.52

AssetCenter API ¥/

Configuration script of a field or link 7

"Script" type action 9

Deployment workflow

Wizard script D

FINISH.DO script of a wizard D
Input parameters

o hApiQuery: This parameter contains a valid handle of the query object to
which the AQL statements are sent.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

AmQuerySetAddMainField()

This function enables you to send a query in a mode where the main field of the
table is automatically added to the list of fields to be returned. This type of query
never returns a null identifier record.

API syntax

long AmQuerySetAddMainField(long hApiQuery, long bAddMainField);

382 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

Internal Basic syntax

Function AmQuerySetAddMainField(hApiQuery As Long, bAddMainField As
Long) As Long

Field of application

Version: 3.5

AssetCenter API D

Configuration script of a field or link D

"Script" type action D

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard D
Input parameters

= hApiQuery: This parameter contains a valid handle on a query object.
= bAddMainField: This parameter can have one of two values:

= True: The main field of the table is added,

= False: The main field of the table is not added.

Output parameters

= 0:Normal execution.
= Other than zero: Error code.

AmQuerySetFullMemo()

By default, when executing the AmQueryExec function, the query truncates
Memo type fields to 254 characters. This function sends the query in a mode
where Memo fields are recovered in full.

AssetCenter 4.4 - Programmer's reference | 383

API syntax

long AmQuerySetFullMemo(long hApiQuery, long bFullMemo);

Internal Basic syntax

Function AmQuerySetFullMemo(hApiQuery As Long, bFullMemo As Long)
As Long

Field of application

Version: 3.5

AssetCenter API ¥/

Configuration script of a field or link 7

"Script" type action 9

Deployment workflow

Wizard script D

FINISH.DO script of a wizard D
Input parameters

= hApiQuery: This parameter contains a valid handle on a query object.
= bFullMemo: This parameter can have one of two values:

= True: The query returns the Memo field in full,

= False: The query truncates Memo fields to 254 characters.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

384 | AssetCenter 4.4 - Programmer's reference

Programmer's referer

AmQueryStartTable()

This function returns a handle of the table concerned by a query identified by
its handle.

API syntax

long AmQueryStartTable(long hApiQuery);

Internal Basic syntax
Function AmQueryStartTable(hApiQuery As Long) As Long

Field of application

Version: 2.52

AssetCenter API D

Configuration script of a field or link D

"Script" type action)

Deployment workflow

Wizard script)

FINISH.DO script of a wizard]
Input parameters

+ hApiQuery: This parameter contains a valid handle of a query object.

Output parameters

In case of error, this function returns a non-valid handle (zero).

AssetCenter 4.4 - Programmer's reference | 385

AmQueryStop()

This function interrupts the execution of a query identified by its handle. This
query must have been launched beforehand using the AmQueryExec function.

API syntax

long AmQueryStop(long hApiQuery);

Internal Basic syntax
Function AmQueryStop(hApiQuery As Long) As Long

Field of application

Version: 2.52

AssetCenter API /]

Configuration script of a field or link D

"Script" type action b

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard 9
Input parameters

+ hApiQuery: This parameter contains a valid handle of a query object.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

386 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

AmReceiveAllPOLines()

This function receives all the items on an order line (takes delivery in full).

/ Note:

Warning: Delivery lines are created by an agent when the transaction is
committed. You cannot access them beforehand.

API syntax

long AmReceiveAllPOLines(long hApiCnxBase, long IPOrdld, long IDelivid);

Internal Basic syntax
Function AmReceiveAllPOLines(IPOrdld As Long, IDelivid As Long) As Long

Field of application

Version: 3.00

AssetCenter API D
Configuration script of a field or link
"Script" type action)

Deployment workflow
Wizard script
FINISH.DO script of a wizard A

Input parameters

= IPOrdld: This parameter contains the identifier of the order line containing
the items to be received.

= |Delivld: This parameter contains the identifier of the receiving slip used to
receive all the items present on the order line.

AssetCenter 4.4 - Programmer's reference | 387

iy
i_

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

AmReceivePOLine()

This function takes delivery of a certain quantity of items on an order line (takes
delivery in part) and returns the identifier of the delivery line.

-,-/ Note:

Warning: The delivery lines are created by an agent as soon as the transaction
is committed. You cannot access them until this is performed.

API syntax

long AmReceivePOLine(long hApiCnxBase, long IPOrdLineld, long IDelivid,
double dQty);

Internal Basic syntax

Function AmReceivePOLine(IPOrdLineld As Long, IDelivid As Long, dQty As
Double) As Long

Field of application

Version: 3.00

AssetCenter API ¥/
Configuration script of a field or link
"Script" type action D

Deployment workflow
Wizard script

388 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

FINISH.DO script of a wizard P

Input parameters

= IPOrdLineld: This parameter contains the identifier of the purchase order
line containing the items to be received.

= IDelivld: This parameter contains the identifier of the receiving slip used to
receive a certain quantity of items present on the order line.

= dQty: This parameter contains the quantity of items on the order line to be
received in the receiving slip.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmRefreshAllCaches()

This function refreshes the caches used in AssetCenter.

API syntax

long AmRefreshAllCaches(long hApiCnxBase);

Field of application

Version: 3.00

AssetCenter 4.4 - Programmer's reference | 389

AssetCenter

AssetCenter API P
Configuration script of a field or link

"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

AmRefreshLabel()

The AmRefreshLabel API refreshes the label string of a given record (IMainld) in
a given table (strTableName).

API syntax

long AmRefreshLabel(long hApiCnxBase, long IMainld, char *strTableName,
char *pstrLabel, long ILabel);

Internal Basic syntax
Function AmRefreshLabel(IMainld As Long, strTableName As String) As String

Field of application

Version: 4.00

AssetCenter API /]
Configuration script of a field or link

390 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

"Script" type action ¥
Deployment workflow

Wizard script

FINISH.DO script of a wizard D

Input parameters

= IMainld: This parameter defines the ID that will be refreshed.
= strTableName: This parameter defines the table name for the IMainld.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [fcalling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmRefreshProperty()

Reevaluates the value of a property identified by the strVarName parameter. If
this property uses a script, the script is executed again.

Otherwise the tree of dependencies is updated.

Internal Basic syntax
Function AmRefreshProperty(strVarName As String) As Long

Field of application

Version: 3.00

AssetCenter 4.4 - Programmer's reference | 391

_

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script 9
FINISH.DO script of a wizard D
Input parameters

+ strVarName: Name of the property (of the wizard) that you want to reevaluate.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

AmRefreshTraceHist()

The AmRefreshTraceHist APl refreshes a complete project trace entry and also
has an optional parameter to allow refreshing of "individual" trace history entries.
If this parameter is not provided, the complete trace history will be refreshed.

API syntax

long AmRefreshTraceHist(long hApiCnxBase, long ICabTraceOutld, long
ITraceHistld);

Internal Basic syntax

Function AmRefreshTraceHist(ICabTraceOutld As Long, ITraceHistld As Long)
As Long

392 | AssetCenter 4.4 - Programmer's reference

Programmer's refere

Field of application

Version: 4.00

AssetCenter API D
Configuration script of a field or link
"Script" type action)

Deployment workflow
Wizard script
FINISH.DO script of a wizard A

Input parameters

= |CabTraceOutld: This parameter is the cable trace output ID.

= ITraceHistld: This parameter is an optional parameter to allow refreshing of
"individual" trace history entries.

Output parameters

= 0:Normal execution.
= Other than zero: Error code.

AmReleaseHandle()

This function frees the handle and sub-handles of an object.

API syntax

long AmReleaseHandle(long hApiObject);

Internal Basic syntax
Function AmReleaseHandle(hApiObject As Long) As Long

AssetCenter 4.4 - Programmer's reference | 393

I
Field of application

Version: 2.52

AssetCenter API ¥/

Configuration script of a field or link ¥/

"Script" type action 9

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard b
Input parameters

s hApiObject: This parameter contains a handle of the object concerned.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

AmRemoveCable()

The AmRemoveCable APl removes a cable (ICableld) from its current location.
The status of the cable is updated to "Unavailable". If the project (IProjectld) and
work order (IWorkOrderld) have values, the cable is added to the project and
work order with comment contained in the given comment (strComment). This
comment describes the action that will be performed on the cable (i.e. "Remove
cable from its current location").

API syntax

long AmRemoveCable(long hApiCnxBase, long ICableld, long IProjectid, long
IWorkOrderld, char *strComment);

394 | AssetCenter 4.4 - Programmer's reference

Internal Basic syntax

Function AmRemoveCable(ICableld As Long, IProjectld As Long, IWorkOrderld
As Long, strComment As String) As Long

Field of application

Version: 4.00

AssetCenter API D
Configuration script of a field or link
"Script" type action D

Deployment workflow
Wizard script
FINISH.DO script of a wizard D

Input parameters

= |Cableld: This parameter is the ID of the cable to remove.
= |Projectld: This parameter is the project ID.
= IWorkOrderld: This parameter defines the work order ID.

= strComment: This parameter is the comment that will be used on the work
order.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

AmRemoveDevice()

The AmRemoveDevice APl removes a device (IAssetld) from its current location.
The status of the device is updated to "Unavailable". If the project (IProjectld)
and work order (IWorkOrderld) have values, the device is added to the project

AssetCenter 4.4 - Programmer's reference | 395

“
|_

and work order with the given comment (strComment). This comment describes
the action that will be performed on the device (i.e. "Remove device from its
current location").

API syntax

long AmRemoveDevice(long hApiCnxBase, long IDeviceld, long IProjectid,
long IWorkOrderld, char *strComment);

Internal Basic syntax

Function AmRemoveDevice(IDeviceld As Long, IProjectld As Long,
IWorkOrderld As Long, strComment As String) As Long

Field of application

Version: 4.00

AssetCenter API ¥/
Configuration script of a field or link
"Script" type action 9

Deployment workflow
Wizard script
FINISH.DO script of a wizard D

Input parameters

= IDeviceld: This parameter defines the device ID to remove.
= IProjectld: This parameter is the project ID.
= IWorkOrderld: This parameter defines the work order ID.

= strComment: This parameter is the comment that will be used on the work
order.

396 | AssetCenter 4.4 - Programmer's reference

Programmer's referer

Output parameters

= 0:Normal execution.
= Other than zero: Error code.

AmResetPassword()

API syntax

long AmResetPassword(long hApiCnxBase, char *strOldPassword, char
*strNewPassword);

Internal Basic syntax

Function AmResetPassword(strOldPassword As String, strNewPassword As
String) As Long

Field of application

Version: 4.4.0

AssetCenter API]

Configuration script of a field or link /]

"Script" type action)

Deployment workflow

Wizard script D

FINISH.DO script of a wizard D
Output parameters

= 0:Normal execution.
= Other than zero: Error code.

AssetCenter 4.4 - Programmer's reference | 397

AssetCenter

AmResetUserEnvSession()

API syntax

long AmResetUserEnvSession(long hApiCnxBase, char *strSection);

Internal Basic syntax

Function AmResetUserEnvSession(strSection As String) As Long

Field of application

Version: 4.4.0

AssetCenter API /]

Configuration script of a field or link D

"Script" type action b

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard 9
Output parameters

= 0: Normal execution.
= Other than zero: Error code.

398 | AssetCenter 4.4 - Programmer's reference

Programmer's refere

AmResetUserPassword()

API syntax

long AmResetUserPassword(long hApiCnxBase, char *strUser, char *strPasswd,
char *strNewPasswd);

Internal Basic syntax

Function AmResetUserPassword(strUser As String, strPasswd As String,
strNewPasswd As String) As Long

Field of application

Version: 4.4.0

AssetCenter API D

Configuration script of a field or link ¥

"Script" type action)

Deployment workflow

Wizard script)

FINISH.DO script of a wizard D
Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= |Ifcalling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AssetCenter 4.4 - Programmer's reference | 399

L ——

AmRestoreRecord()

This function restores an archived record.

API syntax

long AmRestoreRecord(long hApiRecord);

Internal Basic syntax
Function AmRestoreRecord(hApiRecord As Long) As Long

Field of application

Version: 4.3.0

AssetCenter API /]
Configuration script of a field or link
"Script" type action b

Deployment workflow
Wizard script
FINISH.DO script of a wizard 9

Input parameters

+ hApiRecord: This parameter contains the handle of the record concerned by
the operation.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

400 | AssetCenter 4.4 - Programmer's reference

Programmer's referer

Notes

/ Note:

The processing of linked records depends on the type of the link. For OWN type
links, linked records are processed identically. In the case of a DEFINE or NORMAL
link, foreign keys of linked records are reset to 0 and the archival fields are
populated with the identifier and description string of the archived record.

<
& Important:

This function is available for a record from an archival table.

AmReturnAsset()

This function enables you to return an asset.

API syntax

long AmReturnAsset(long hApiCnxBase, long |Astld, long IReturnld, long
bCanMerge);

Internal Basic syntax

Function AmReturnAsset(lAstld As Long, IReturnid As Long, bCanMerge As
Long) As Long

Field of application

Version: 4.00

AssetCenter API D
Configuration script of a field or link

AssetCenter 4.4 - Programmer's reference | 401

iy
i_

"Script" type action b
Deployment workflow

Wizard script

FINISH.DO script of a wizard v/

Input parameters

= |Astld: This parameter contains the identifier of the asset to return.
= IReturnld: This parameter contains the identifier of the return slip.

= bCanMerge: This parameter enables you to specify whether the return can
be merged with an existing line in the return slip.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmReturnContract()

This function enables you to return a contract.

API syntax

long AmReturnContract(long hApiCnxBase, long ICntrld, long IReturnlid, long
bCanMerge);

402 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

Internal Basic syntax

Function AmReturnContract(ICntrld As Long, IReturnid As Long, bCanMerge
As Long) As Long

Field of application

Version: 4.00

AssetCenter API D
Configuration script of a field or link
"Script" type action D

Deployment workflow
Wizard script
FINISH.DO script of a wizard D

Input parameters

= ICntrld: This parameter contains the identifier of the contract to return.
= IReturnld: This parameter contains the identifier of the return slip.

= bCanMerge: This parameter enables you to specify whether the return can
be merged with an existing line in the return slip.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [fcalling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AssetCenter 4.4 - Programmer's reference | 403

AmReturnPortfolioltem()

This function enables you to return a portfolio item.

API syntax

long AmReturnPortfolioltem(long hApiCnxBase, long IPfld, double dQty, long
IFromRecptLineld, long IReturnld, long bCanMerge);

Internal Basic syntax

Function AmReturnPortfolioltem(IPfld As Long, dQty As Double,
IFromRecptLineld As Long, IReturnld As Long, bCanMerge As Long) As Long

Field of application

Version: 4.00

AssetCenter API /]
Configuration script of a field or link
"Script" type action b

Deployment workflow

Wizard script

FINISH.DO script of a wizard v/

Input parameters

IPfld: This parameter contains the identifier of the portfolio item to return.
dQty: This parameter contains the quantity (in the unit of the model) to return.

IFromRecptLineld: This parameter contains the identifier of the source receipt
line.

IReturnld: This parameter contains the identifier of the return slip.

bCanMerge: This parameter enables you to specify whether the return can
be merged with an existing line in the return slip.

404 | AssetCenter 4.4 - Programmer's reference

Programmer's refere

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmReturnTraining()

This function enables you to return a training.

API syntax

long AmReturnTraining(long hApiCnxBase, long ITrainingld, long IReturnid,
long bCanMerge);

Internal Basic syntax

Function AmReturnTraining(ITrainingld As Long, IReturnid As Long,
bCanMerge As Long) As Long

Field of application

Version: 4.00

AssetCenter API D
Configuration script of a field or link
"Script" type action)

Deployment workflow
Wizard script

AssetCenter 4.4 - Programmer's reference | 405

“
|_

FINISH.DO script of a wizard 9

Input parameters

= [Trainingld: This parameter contains the identifier of the training to return.
= |Returnld: This parameter contains the identifier of the return slip.

= bCanMerge: This parameter enables you to specify whether the return can
be merged with an existing line in the return slip.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmReturnWorkOrder()

This function enables you to return a work order.

API syntax

long AmReturnWorkOrder(long hApiCnxBase, long IWOId, long IReturnid,
long bCanMerge);

Internal Basic syntax

Function AmReturnWorkOrder(IWOId As Long, IReturnld As Long, bCanMerge
As Long) As Long

406 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

Field of application

Version: 4.00

AssetCenter API D
Configuration script of a field or link
"Script" type action)

Deployment workflow
Wizard script
FINISH.DO script of a wizard A

Input parameters

= IWOId: This parameter contains the identifier of the work order to return.
= |Returnld: This parameter contains the identifier of the return slip.

= bCanMerge: This parameter enables you to specify whether the return can
be merged with an existing line in the return slip.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= Ifcalling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmRevCryptPassword()

This function encrypts a reversible password. The function that allows decryption
of a password encrypted with this function is not available.

AssetCenter 4.4 - Programmer's reference | 407

API syntax

long AmRevCryptPassword(long hApiCnxBase, char *return, long Ireturn, char
*strPassword);

Internal Basic syntax
Function AmRevCryptPassword(strPassword As String) As String

Field of application

Version: 3.5

AssetCenter API ¥/

Configuration script of a field or link ¥/

"Script" type action 9

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard D
Input parameters

o strPassword: This parameter contains the password to encrypt.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

408 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

AmRgbColor()

This function gives the RGB value of the color corresponding to the strText
parameter.

API syntax

long AmRgbColor(char *strText);

Internal Basic syntax
Function AmRgbColor(strText As String) As Long

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action)
Deployment workflow

Wizard script)
FINISH.DO script of a wizard]

&

&

Input parameters

o strText: This parameter contains the name of the color:
= White
= [tGray
= Gray
= Dkgray
= Black
= Red

AssetCenter 4.4 - Programmer's reference | 409

= Green

= Blue

= Yellow

= Cyan

= Magenta

= Dkyellow

= Dkgreen

= Dkcyan

= Dkblue

= Dkmagenta

= Dkred
Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmRollback()

This function cancels all modifications made before the declaration of the start
of the transaction (performed via the AmStartTransaction function).

API syntax

long AmRollback(long hApiCnxBase);

Internal Basic syntax
Function AmRollback() As Long

410 | AssetCenter 4.4 - Programmer's reference

Programmer's refere

Field of application

Version: 2.52

AssetCenter API D
Configuration script of a field or link
"Script" type action)

Deployment workflow
Wizard script
FINISH.DO script of a wizard A

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

AmSetFieldDateOnlyValue()

This function modifies a field in a record. This function does not update the
database. The modification will be made when the record is updated orinserted,
or when the transaction is committed.

API syntax

long AmSetFieldDateOnlyValue(long hApiRecord, char *strFieldName, long
dtptmValue);

Internal Basic syntax

Function AmSetFieldDateOnlyValue(hApiRecord As Long, strFieldName As
String, dtptmValue As Date) As Long

AssetCenter 4.4 - Programmer's reference | 411

Field of application

Version: 4.3.0

AssetCenter API b
Configuration script of a field or link ¥/
"Script" type action 9
Deployment workflow
Wizard script 9
FINISH.DO script of a wizard D
Input parameters
= hApiRecord: This parameter contains the handle of the record containing
the field to be modified.
= strFieldName: This parameter contains the SQL name of the field to be
modified.

= dtptmValue: This parameter contains the new value of the field in "Date"
format only. Unlike the AmSetFieldDateValue function, only the Date part
is processed, the Time part is omitted.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

AmSetFieldDateValue()

This function modifies a field in a record. This function does not update the
database. The modification will be made when therecord is updated or inserted,
or when the transaction is committed.

412 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

API syntax

long AmSetFieldDateValue(long hApiRecord, char *strFieldName, long
tmValue);

Internal Basic syntax

Function AmSetFieldDateValue(hApiRecord As Long, strFieldName As String,
tmValue As Date) As Long

Field of application

Version: 3.00

AssetCenter API D
Configuration script of a field or link
"Script" type action)

Deployment workflow
Wizard script

FINISH.DO script of a wizard A
Input parameters
= hApiRecord: This parameter contains the handle of the record containing
the field to be modified.
= strFieldName: This parameter contains the SQL name of the field to be
modified.

= tmValue: This parameter contains the new value of thefield in "Date" format.

Output parameters

= 0:Normal execution.
= Other than zero: Error code.

AssetCenter 4.4 - Programmer's reference | 413

“
|_

AmSetFieldDoubleValue()

This function modifies a field in a record. This function does not update the
database.

API syntax

long AmSetFieldDoubleValue(long hApiRecord, char *strFieldName, double
dValue);

Internal Basic syntax

Function AmSetFieldDoubleValue(hApiRecord As Long, strFieldName As
String, dValue As Double) As Long

Field of application

Version: 3.00

AssetCenter API /]
Configuration script of a field or link
"Script" type action b

Deployment workflow
Wizard script

FINISH.DO script of a wizard v/
Input parameters
= hApiRecord: This parameter contains the handle of the record containing
the field to be modified.
= strFieldName: This parameter contains the SQL name of the field to be
modified.

= dValue: This parameter contains the new value of the field in "Double" format.

414 | AssetCenter 4.4 - Programmer's reference

Programmer's refere

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

AmSetFieldLongValue()

This function modifies a field in a record. This function does not update the
database. To modify the value of a date, time or date+time date you must express
the new value in terms of seconds elapsed since 01/01/1970 at 00:00:00.

API syntax

long AmSetFieldLongValue(long hApiRecord, char *strFieldName, long IValue);

Internal Basic syntax

Function AmSetFieldLongValue(hApiRecord As Long, strFieldName As String,
IValue As Long) As Long

Field of application

Version: 2.52

AssetCenter API ¥
Configuration script of a field or link

"Script" type action)
Deployment workflow

Wizard script

AssetCenter 4.4 - Programmer's reference | 415

_

FINISH.DO script of a wizard 9
Input parameters
= hApiRecord: This parameter contains the handle of the record containing
the field to be modified.
= strFieldName: This parameter contains the SQL name of the field to be
modified.

= |Value: This parameter contains the new value of the field.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

AmSetFieldStrValue()

This function modifies a field in a record. This function does not update the
database.

API syntax

long AmSetFieldStrValue(long hApiRecord, char *strFieldName, char *strValue);

Internal Basic syntax

Function AmSetFieldStrValue(hApiRecord As Long, strFieldName As String,
strValue As String) As Long

Field of application

Version: 2.52

416 | AssetCenter 4.4 - Programmer's reference

AssetCenter API b
Configuration script of a field or link
"Script" type action)

Deployment workflow
Wizard script

FINISH.DO script of a wizard D
Input parameters
= hApiRecord: This parameter contains the handle of the record containing
the field to be modified.
= strFieldName: This parameter contains the SQL name of the field to be
modified.

= strValue: This parameter contains the new value of the field in "String" format.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

AmSetLinkFeatureValue()

This function sets the value of a link type feature for a given record.

API syntax

long AmSetLinkFeatureValue(long hApiRecord, char *strFeatSqlName, char
*strDstSelfValue, long IDstld);

Internal Basic syntax

Function AmSetLinkFeatureValue(hApiRecord As Long, strFeatSqlName As
String, strDstSelfValue As String, IDstld As Long) As Long

AssetCenter 4.4 - Programmer's reference | 417

I
Field of application

Version: 3.00

AssetCenter API ¥/
Configuration script of a field or link
"Script" type action 9

Deployment workflow
Wizard script
FINISH.DO script of a wizard D

Input parameters

= hApiRecord: This parameter contains the identifier of the record to which
the link type feature is associated.

= strFeatSqglName: This parameter contains the SQL name of the link type
feature whose value you want to set. This SQL name is always preceded by
"fv_".

= strDstSelfValue: This parameter contains the value of the feature as it will be
displayed for the record. It is the "Self" value of the record with identifier
IDstld. If you pass an invalid or non-existent value, you take the risk of
corrupting the integrity of the database.

= IDstld: This parameter contains the identifier of the record to which the link
type feature points.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

AmSetProperty()

This function sets the value of a property identified by its name. It also updates
the tree of dependencies of this property.

418 | AssetCenter 4.4 - Programmer's reference

Programmer's refere

Internal Basic syntax
Function AmSetProperty(strVarName As String, vValue As Variant) As Long

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script 9
FINISH.DO script of a wizard D
Input parameters

= strVarName: This parameter contains the name of the property whose value
you want to set.

= vValue: This parameter contains the new value for the property.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

AmSetUserEnvSessionltem()

API syntax

long AmSetUserEnvSessionltem(long hApiCnxBase, char *strSection, char
*strEntry, char *strValue);

AssetCenter 4.4 - Programmer's reference | 419

iy
i_

Internal Basic syntax

Function AmSetUserEnvSessionltem(strSection As String, strEntry As String,
strValue As String) As Long

Field of application

Version: 4.4.0

AssetCenter API D

Configuration script of a field or link 9

"Script" type action D

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard ¥/
Output parameters

= 0: Normal execution.
= Other than zero: Error code.

AmShowC(ableCrossConnect()

This function displays the cross-connections screen.

Internal Basic syntax
Function AmShowCableCrossConnect(ICableld As Long) As Long

Field of application

Version: 4.00

420 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

AssetCenter API

Configuration script of a field or link

"Script" type action)
Deployment workflow

Wizard script)
FINISH.DO script of a wizard D

Input parameters

s ICableld: This parameter contains the identifier of the cable concerned by
the operation.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

AmShowDeviceCrossConnect()

This function displays the cross-connections screen for a cable device.

Internal Basic syntax

Function AmShowDeviceCrossConnect(IDeviceld As Long) As Long

Field of application

Version: 4.00

AssetCenter API
Configuration script of a field or link
"Script" type action)

AssetCenter 4.4 - Programmer's reference | 421

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard ¥/
Input parameters

s IDeviceld: This parameter contains the identifier of the cable device concerned
by the operation.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

AmSqlTextConst()

This function transforms a string to be used in a query. The following operations
are performed on the string:

= Allsingle quotes (') are doubled,
= Single quotes are added at the start and end of the string.

API syntax

long AmSqlTextConst(char *return, long Ireturn, char *str);

Internal Basic syntax
Function AmSqlTextConst(str As String) As String

Field of application

Version: 4.00

422 | AssetCenter 4.4 - Programmer's reference

Programmer's referer

AssetCenter API D

Configuration script of a field or link /]

"Script" type action)

Deployment workflow

Wizard script)

FINISH.DO script of a wizard D
Input parameters

o str: This parameter contains the character string to process.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [fcalling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

Dim strReqg as String
strReg="SELECT lEmplDeptId FROM amEmplDept WHERE Name=" & amSglTextConst (s
trName)

This query is valid, even if the strName variable contains single quotes.

AmStandin()

This function returns the identifier of the employee standing in for the employee
with the identifier IEmployeeld on the date tmDate.

AssetCenter 4.4 - Programmer's reference | 423

L ——
API syntax

long AmStandin(long hApiCnxBase, long IEmployeeld, long tmDate);

Internal Basic syntax
Function AmStandin(IEmployeeld As Long, tmDate As Date) As Long

Field of application

Version: 4.3.0

AssetCenter API ¥/

Configuration script of a field or link ¥/

"Script" type action 9

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard D
Input parameters

= I[Employeeld: This parameter contains the identifier of the employee whose
stand-in you want to know.

= tmDate: This parameter contains the date on which the function performs
the search.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

424 | AssetCenter 4.4 - Programmer's reference

. 4 Note:

If on the specified date, tmDate, the employee with identifier Employeeld is
present, the function returns their identifier.

If the employee is absent and no stand-in is designated, the function returns 0.
If [User.Parent.Supervisor] = 0 Then

RetVal = amStandIn([User], amDate())

if RetVal = 0 Then RetVal = [User]

Else

RetVal = amStandIn([User.Parent.Supervisor], amDate())

if RetVal = 0 Then RetVal = [User.Parent.Supervisor]

End If

AmStandInGroup()

This function returns the identifier of the employee group standing in for the
employee with the identifier IEmployeeld on the date tmDate.

API syntax

long AmStandinGroup(long hApiCnxBase, long IEmployeeld, long tmDate);

Internal Basic syntax
Function AmStandinGroup(IEmployeeld As Long, tmDate As Date) As Long

Field of application

Version: 4.3.0

AssetCenter 4.4 - Programmer's reference | 425

AssetCenter API P

Configuration script of a field or link 7

"Script" type action b

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard D
Input parameters

= |Employeeld: This parameter contains the identifier of the employee whose
stand-in group you want to know.

= tmDate: This parameter contains the date on which the function performs
the search.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Notes

-,-’ Note:

If on the specified date, tmDate, the employee with identifier Employeeld is
present, the function returns 0.

If the employee is absent and no stand-in group is designated, the function also
returns O.

426 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

AmStartTransaction()

This function starts a new transaction with the database associated with the
connection. The next "Commit" or "Rollback" statement will validate or cancel
all the modifications made to the database.

API syntax

long AmStartTransaction(long hApiCnxBase);

Internal Basic syntax

Function AmStartTransaction() As Long

Field of application

Version: 2.52

AssetCenter API D
Configuration script of a field or link

"Script" type action)
Deployment workflow

Wizard script

FINISH.DO script of a wizard]

Output parameters

= 0:Normal execution.
= Other than zero: Error code.

AssetCenter 4.4 - Programmer's reference | 427

AssetCenter

AmStartup()

This function must be applied before all other functions. It initializes calls to the
AssetCenter library.

API syntax

void AmStartup();

Field of application

Version: 2.52

AssetCenter API b

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

AmTableDesc()

This function generates a character string with the format "<Description of the
table> (<SQL name of the table>)" from the SQL name of the table.

API syntax

long AmTableDesc(long hApiCnxBase, char *return, long Ireturn, char
*strSqlName);

428 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

Internal Basic syntax
Function AmTableDesc(strSqIName As String) As String

Field of application

Version: 3.00

AssetCenter API D

Configuration script of a field or link D

"Script" type action D

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard D
Input parameters

o strSglName: SQL name of the table for which a description string is required.
If this parameter contains an invalid SQL name, the function returns a question
mark ("?").

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

The following example generates a description string for the table of assets
(SQL name: amAsset):

[nmTableDesc ("amAsset") |

AssetCenter 4.4 - Programmer's reference | 429

_

The result is as follows:

|Assets (amAsset)

AmTaxRate()

This function calculates a tax rate according to a tax type, tax jurisdiction and a
date.

API syntax

double AmTaxRate(long hApiCnxBase, char *strTaxRateName, long ITaxLocld,
long tmDate, double dValue);

Internal Basic syntax

Function AmTaxRate(strTaxRateName As String, ITaxLocld As Long, tmDate
As Date, dValue As Double) As Double

Field of application

Version: 3.00

AssetCenter API v/

Configuration script of a field or link v/

"Script" type action D

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard &
Input parameters

= strTaxRateName: This parameter contains the SQL name of the tax type used
to calculate the tax rate.

430 | AssetCenter 4.4 - Programmer's reference

= ITaxLocld: This parameter contains the ID number of the tax jurisdiction
concerned by the tax type.

= tmDate: This parameter contains the date for which you want to know the
tax rate.

= dValue: Obsolete parameter, kept for compatibility reasons. Set this parameter
to the value of your choice.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [fcalling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AmUpdateDetail()

This function is used in the data-entry wizards. The context (table for which a
record is updated or populated or updated using the wizard) is therefore clearly
defined. The function updates or populates fields or links of the context according
to a value. This function not allowed in non-modal wizards.

Internal Basic syntax

Function AmUpdateDetail(strFieldName As String, varValue As Variant) As
Long

Field of application

Version: 3.00

AssetCenter API

AssetCenter 4.4 - Programmer's reference | 431

AssetCenter

Configuration script of a field or link

"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard 9

Input parameters

= strFieldName: This parameter contains the SQL name of the feature to be
updated.

= varValue: This parameter contains the new value of the field.

Output parameters

= 0:Normal execution.
= Other than zero: Error code.

AmUpdateLossLines()

This function enables you to update all loss values for contracts using the
loss-value rule referenced by the ILossValld identifier.

Internal Basic syntax
Function AmUpdateLossLines(ILossValld As Long) As Long

Field of application

Version: 4.3.0

AssetCenter API

Configuration script of a field or link D

432 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

"Script" type action D

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard D
Input parameters

o lLossValld: This parameter contains the identifier of the loss-value rule.

Output parameters

= 0:Normal execution.
= Other than zero: Error code.

AmUpdateRecord()

This function enables you to update a record.

API syntax

long AmUpdateRecord(long hApiRecord);

Internal Basic syntax
Function AmUpdateRecord(hApiRecord As Long) As Long

Field of application

Version: 2.52

AssetCenter API b

AssetCenter 4.4 - Programmer's reference | 433

_

Configuration script of a field or link

"Script" type action b
Deployment workflow

Wizard script

FINISH.DO script of a wizard v/
Input parameters
+» hApiRecord: This parameter contains a handle of the record containing the
field to be updated.
Output parameters

= 0: Normal execution.
= Other than zero: Error code.

AmUpdateUser()

This information updates the information (domain, NT user name, description)
concerning an employee in the database.

API syntax

long AmUpdateUser(long hApiCnxBase, long lid, char *strNTUserName, char
*strNTDomain, char *strNTUserDesc);

Internal Basic syntax

Function AmUpdateUser(lld As Long, strNTUserName As String, strNTDomain
As String, strNTUserDesc As String) As Long

434 | AssetCenter 4.4 - Programmer's reference

Field of application

Version: 4.3.0

AssetCenter API D
Configuration script of a field or link D
"Script" type action)
Deployment workflow
Wizard script D
FINISH.DO script of a wizard A
Input parameters
= lId: This parameter contains the identifier of the concerned user in the
database.

= strNTUserName: This parameter contains the NT user name of the employee.
= strNTDomain: This parameter contains the NT domain name of the employee.

= strNTUserDesc: This parameter contains the description associated with the
NT user.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

AmValueOf()

Used in a wizard, this function returns the value of the property identified by the
strVarName parameter.

Internal Basic syntax

Function AmValueOf(strVarName As String) As Variant

AssetCenter 4.4 - Programmer's reference | 435

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script D
FINISH.DO script of a wizard D
Input parameters

+ strVarName: This parameter contains the name of the property whose value
we want to know.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

The following example returns the value of the "Page1.Label" property:

|AmValueOf ("Pagel.Label") |

Use this function with care because it breaks the dependency string of the
property being processed.

436 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

AmWizChain()

This function executes a wizard B, inside a wizard A. When wizard B has finished
executing, wizard A takes over again.

Internal Basic syntax
Function AmWizChain(strWizSqlName As String) As Long

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard D

&

Input parameters

s strWizSqlName: SQL name of the wizard to be executed.

Output parameters

= 0:Normal execution.
= Other than zero: Error code.

AssetCenter 4.4 - Programmer's reference | 437

_

AmWorkTimeSpanBetween()

This function returns the duration of working periods between two dates. This
duration is expressed in seconds; it respects the information in a calendar of
working periods.

API syntax

long AmWorkTimeSpanBetween(long hApiCnxBase, char
*strCalendarSglName, long tmEnd, long tmStart);

Internal Basic syntax

Function AmWorkTimeSpanBetween(strCalendarSglName As String, tmEnd
As Date, tmStart As Date) As Date

Field of application

Version: 3.00

AssetCenter API /]

Configuration script of a field or link 9

"Script" type action b

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard v/
Input parameters

= strCalendarSqglName: This parameter contains the SQL name of the calendar
of working periods used to calculate the duration of the working period
between the two dates. If this parameter is omitted, the calculated duration
does not take working periods into account.

438 | AssetCenter 4.4 - Programmer's reference

= tmEnd: This parameter contains the end date for the period used in calculating
the working period.

= tmStart: This parameter contains the start date for the period used in
calculating the working period.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

The following example calculates the working period between 01/09/1998 at 8
a.m. and 24/09/1998 at 7 p.m. The calendar used, whose SQL name is
"Calendar_Paris", defines the following working periods:

= From Monday to Thursday from 8 a.m. to 12 noon, then from 2 p.m. to 6 p.m.

= Fridays from 8 a.m. to 12 noon, then from 2 p.m.to 5 p.m.

AmWorkTimeSpanBetween ("Calendar Paris", "1998/09/24 19:00:00", "1998/09/01
08:00:00")

This example returns the value 507,600 which represents the number of working
seconds between the two dates.

AppendOperand()

Concatenates a string according to the parameters passed to the function. The
results are given as follows:

|strExpr strOperator strOperand |

AssetCenter 4.4 - Programmer's reference | 439

iy
i_

Internal Basic syntax

Function AppendOperand(strExpr As String, strOperator As String, strOperand
As String) As String

Field of application

Version: 3.5

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

AR R

Input parameters

= strExpr: Expression to be concatenated.
= strOperator: Operator to concatenate.
= strOperand: Operand to concatenate.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

440 | AssetCenter 4.4 - Programmer's reference

Programmer's referer

Notes

/ Note:

If one of the strExpr or strOperand parameters is omitted, strOperator is not
used in the concatenation.

ApplyNewVals()

Assigns identical values to identical cells in a "ListBox" control.

Internal Basic syntax

Function ApplyNewVals(strValues As String, strNewVals As String, strRows
As String, strRowFormat As String) As String

Field of application

Version: 3.5

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

LSRR

Input parameters

= strValues: Source string containing the values of a "ListBox" control to be
processed.

= strNewVals: New value to assign to the cells concerned.

AssetCenter 4.4 - Programmer's reference | 441

_

= strRows: Identifiers of lines to be processed. The identifiers are separated by
commas.

= strRowFormat: Formatting instructions for the sublist. Instructions are
separated by the "|" character. Each instruction represents the number of the
column containing the strNewVals parameter.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Asc()

Returns a numeric value that is the ASCII code for the first character in a string.

Internal Basic syntax

Function Asc(strAsc As String) As Long

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link 7
"Script" type action D
Deployment workflow 9
Wizard script D

442 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

FINISH.DO script of a wizard D

Input parameters

s strAsc: Character sting on which the function operates.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [fcalling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

Dim iCount as Integer

Dim strString as String

For iCount=Asc("A") To Asc("z")
strString = strString & Str(iCount)
INext iCount

RetVal=strString

Atn()

Returns the arc tangent of a number, expressed in radians.

Internal Basic syntax
Function Atn(dValue As Double) As Double

AssetCenter 4.4 - Programmer's reference | 443

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

& & & &6

Input parameters

o dValue: Number for which you want to know the arc tangent.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

Dim dPi as Double

Dim strString as String
dPi=4*Atn (1)

strString = Str(dPi)
RetVal=strString

444 | AssetCenter 4.4 - Programmer's reference

Programmer's refere

BasicToLocalDate()

This function converts a Basic format date to a string format date (as displayed
in Windows Control Panel).

Internal Basic syntax

Function BasicToLocalDate(strDateBasic As String) As String

Field of application

Version: 3.5

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

AR R

Input parameters

o strDateBasic: Date in Basic format to convert.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= Ifcalling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AssetCenter 4.4 - Programmer's reference | 445

iy
i_

BasicToLocalTime()

This function converts a Basic format time to a string format time (as displayed
in Windows Control Panel).

Internal Basic syntax

Function BasicToLocalTime(strTimeBasic As String) As String

Field of application

Version: 3.5

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

& & e &S

Input parameters

¢ strTimeBasic: Time in Basic format to convert.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

446 | AssetCenter 4.4 - Programmer's reference

Programmer's refere

BasicToLocalTimeStamp()

This function converts a Date+Time in Basic format to a Date+Time in string
format (as displayed in Windows Control Panel).

Internal Basic syntax

Function BasicToLocalTimeStamp(strTSBasic As String) As String

Field of application

Version: 3.5

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

AR R

Input parameters

o strTSBasic: Date+Time in Basic format to convert.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= Ifcalling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AssetCenter 4.4 - Programmer's reference | 447

AssetCenter

Beep()

Plays a beep on the machine.

Internal Basic syntax

Function Beep()

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

& & e &S

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

CDbl()

Converts an expression to a "Double”.

448 | AssetCenter 4.4 - Programmer's reference

Programmer's referer

Internal Basic syntax
Function CDbl(dValue As Double) As Double

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

LSRR

Input parameters

o dValue: Expression to convert.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

Dim dNumber As Double
Dim iInteger as Integer
iInteger = 25
dNumber=CDbl (iInteger)
RetVal=dNumber

AssetCenter 4.4 - Programmer's reference | 449

L ——

ChDir()

Changes the current directory.

Internal Basic syntax
Function ChDir(strDirectory As String)

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

& & e &S

Input parameters

+ strDirectory: New current directory.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

450 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

ChDrive()

Changes the current drive.

Internal Basic syntax

Function ChDrive(strDrive As String)

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

AR R

Input parameters

o strDrive: New drivename.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [fcalling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AssetCenter 4.4 - Programmer's reference | 451

Chr()

Returns a string corresponding to the ASCII passed by the iChr parameter.

Internal Basic syntax
Function Chr(IChr As Long) As String

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

& & e &S

Input parameters
o IChr: ASCII code of the character.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

452 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

Example

Dim iCount as Integer

Dim iIteration as Integer

Dim strMessage as String

Dim strLF as String

strLF=Chr (10)

For iIteration=1 To 2

For iCount=Asc("A") To Asc("z")
strMessage=strMessage+Chr (iCount)
Next iCount
strMessage=strMessage+strLF
Next iIteration
RetVal=strMessage

Cint()

Converts any valid expression to an Integer.

Internal Basic syntax
Function CInt(iValue As Long) As Long

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

LIRS R

Input parameters

o iValue: Expression to convert.

AssetCenter 4.4 - Programmer's reference | 453

L ——

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

Dim iNumber As Integer
Dim dDouble as Double
dDouble = 25.24589
1iNumber=CInt (dDouble)
RetVal=iNumber

CLng()

Converts any valid expression to a Long.

Internal Basic syntax
Function CLng(IValue As Long) As Long

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

454 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

FINISH.DO script of a wizard D

Input parameters

o IValue: Expression to convert.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [fcalling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

Dim 1Number As Long
Dim iInteger as Integer
iInteger = 25
1Number=CLng (iInteger)
RetVal=1Number

Cos()

Returns the cosine of a number, expressed in radians.

Internal Basic syntax
Function Cos(dValue As Double) As Double

AssetCenter 4.4 - Programmer's reference | 455

I
Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

& & & &6

Input parameters

o dValue: Number whose cosine you want to know.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Notes

f Note:

The conversion formula for degrees to radians is the following:

|angle in radians = (angle en degrees) * Pi / 180

456 | AssetCenter 4.4 - Programmer's reference

Programmer's refere

Example

Dim dCalc as Double
dCalc=Cos (2.79)
RetVal=dCalc

CountOccurences()

Counts the number of occurrences of a string inside another string.

Internal Basic syntax

Function CountOccurences(strSearched As String, strPattern As String,
strEscChar As String) As Long

Field of application

Version: 3.5

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

LIRS R

Input parameters

= strSearched: Character string in which to perform to the search.
= strPattern: Character string to find inside the strSearched parameter.

= strEscChar: Escape character. If the function encounters this character inside
the strSearched string, the search stops.

AssetCenter 4.4 - Programmer's reference | 457

_

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Dim MyStr
MyStr=CountOccurences ("you|me|you,me|you", "you", ",") :'Returns "2"
MyStr=CountOccurences ("you|me|you,me|you", "you", "|") :'Returns "1"

CountValues()

Counts the number of elements in a string, taking into account a separator and
an escape character.

Internal Basic syntax

Function CountValues(strSearched As String, strSeparator As String, strEscChar
As String) As Long

Field of application

Version: 3.5

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

458 | AssetCenter 4.4 - Programmer's reference

Programmer's referer

FINISH.DO script of a wizard D

Input parameters

= strSearched: Character string to process.
= strSeparator: Separator used to delimit the elements.

= strEscChar: Escape character. If this character prefixes a separator, it will be
ignored.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Dim MyStr
MyStr=CountValues ("you|me|you\ |me|you", "|", "\") :'Returns 4
MyStr=CountValues ("you|me|you\ |me|you", "|", "") :'Returns 5

(Sng()

Converts any valid expression to a floating point number ("Float").

Internal Basic syntax
Function CSng(fValue As Single) As Single

AssetCenter 4.4 - Programmer's reference | 459

I
Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

& & & &6

Input parameters

o fValue: Expression to convert.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

Dim dNumber As Double
Dim iInteger as Integer
iInteger = 25
dNumber=CSng (iInteger)
RetVal=dNumber

460 | AssetCenter 4.4 - Programmer's reference

Programmer's referer

Internal Basic syntax
Function CStr(strValue As String) As String

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

LSRR

Input parameters

o strValue: Expression to convert.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

Dim dNumber As Double
Dim strMessage as String
dNumber = 2,452873
strMessage=CStr (dNumber)
RetVal=strMessage

AssetCenter 4.4 - Programmer's reference | 461

~ AssetCenter

CurDir()

Returns the current path.

Internal Basic syntax
Function CurDir() As String

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

& & e &S

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

(Var()

Converts any valid expression to a Variant.

462 | AssetCenter 4.4 - Programmer's reference

Programmer's referer

Internal Basic syntax

Function CVar(vValue As Variant) As Variant

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

LSRR

Input parameters

o vValue: Expression to convert.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

DaContext()

This function returns the value of a context identified by its name.

AssetCenter 4.4 - Programmer's reference | 463

Internal Basic syntax
Function DaContext(strField As String) As Variant

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow 9
Wizard script

FINISH.DO script of a wizard

Input parameters

o strField: This parameter contains the name of the context for which you want
to find the value. The following is the list of available contexts:
= Instance.ld
= Workflow.ld
= Status.ld
= Computer.ld
= Computer.Name
= Computer.OperatingSystem
= Computer.OSServicelevel
= Computer.OSBuildNumber
= Computer.TcplpHostName
= Computer.TcplpAddress
= Computer.lpxSpxAddress
= Computer.PhysicalAddress
= Computer.Workgroup
= Computer.ComputerType
= Agent.ld.0
= Agent.Name.0

464 | AssetCenter 4.4 - Programmer's reference

Programme

= Agent.seVersion.0

= Agent.seType.0

= Agent.sPortNumber.0

= Agent.TcplpHostName.0
= Agent.NetBIOSId.0

= Agent.IpxNode.0

= Agent.lpxSocket.0

= Agent.IpxNetwork.0

= Agent.Password.0

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

This example verifies that the environment variables can be recovered.

' Check that environment variables can be retrieved - this also retrieve a
11

' variables in one shot, improving performances

1Rc = DaFirstEnv ()

' Get useful environment variables and store them in context
if 1Rc <> 0 then
' Get environment variables

strProcArch = DaGetEnv ("PROCESSOR_ARCHITECTURE")
strProcId = DaGetEnv ("PROCESSOR_IDENTIFIER")
strProcLevel = DaGetEnv ("PROCESSOR_LEVEL")
strProcRevision = DaGetEnv ("PROCESSOR_REVISION")
strProcCount = DaGetEnv ("NUMBER_OF PROCESSORS")
strOs = DaGetEnv("OS")

strComputer = DaGetEnv ("COMPUTERNAME")

' Check that computer name is the right one

if strComputer <> DaContext ("Computer.Name") then
print "Warning: computer name does not look like the right one !"
end if

AssetCenter 4.4 - Programmer's reference | 465

' Store them in context
DaSetContext "EnvInfo.ProcArch", strProcArch
DaSetContext "EnvInfo.ProcId", strProcId

DaSetContext "EnvInfo.ProcLevel", strProcLevel
DaSetContext "EnvInfo.ProcRevision", strProcRevision
DaSetContext "EnvInfo.ProcCount", strProcCount

DaSetContext "EnvInfo.Os", strOs
DaSetContext "EnvInfo.Computer", strComputer

' Dump
lporint DaDumpContext ()
end if

DaCopy()

This function copies a file, a set of files or a folder, locally. This function works in

one of two ways:

= Itcopiesafile locally to the deployment server: The source and the destination
of the copy are both on the deployment server.

= It copies afile locally to the deployment target: The source and the destination
of the copy are both on the deployment target.

The way in which it works is determined by the value of thefile.on_server option,

set using the DaSetOption() function:

= If this option is set to 1, the copy concerns the deployment server.

= If this option is set to 0, the copy concerns the deployment target.

/ Note:

For further information, refer to the description of the DaSetOption() function.

/ Note:

This function carries out the same operations as the Copy files activity.

Internal Basic syntax

Function DaCopy(strSource As String, strDest As String, strNameFilter As
String) As Long

466 | AssetCenter 4.4 - Programmer's reference

I
Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow D
Wizard script

FINISH.DO script of a wizard

Input parameters

= strSource: This parameter contains the destination path of the elements to
copy. Depending on how the function operates, it is either a path relative to
the file depot (in the case of a local copy to the deployment server) or an
absolute path (in the case of a local copy to the deployment target).

= strDest: Destination path of the elements to copy. Depending on how the
function operates, it is either a path relative to the file depot (in the case of
a local copy to the deployment server) or an absolute path (in the case of a
local copy to the deployment target).

= strNameFilter: This parameter contains wildcard characters, as used by DOS
(* and ?), used to filter the file names.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [fcalling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AssetCenter 4.4 - Programmer's reference | 467

iy
i_

Example

' copy user spreadsheet documents to a backup folder
dim 1 as long

1 DaSetOption("file.recursive", 1)

1 DaCopy ("c:\%$USERPROFILE%", "c:\backup", "*.xls")

DaDbDeletelList()

This function deletes one or more records from the AssetCenter database.

Internal Basic syntax

Function DaDbDeleteList(strTable As String, strList As String, strLineSep As
String, strldSep As String) As Long

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow 9
Wizard script

FINISH.DO script of a wizard

Input parameters

= strTable: This parameter contains the SQL name of the table in which the
records are inserted or updated.

= strList: This parameter contains the character string describing the record to
be updated or inserted.

468 | AssetCenter 4.4 - Programmer's reference

/ Note:

This parameter can be populated by the list obtained by the DbGetList
function, or if the strldStep parameter is empty, by a list of record identifiers.

= strLineSep: This parameter contains the character used as line separator in
the character string contained in the strList parameter.

= strldSep: This parameter contains the identifier of the record to be updated
or inserted. If this parameter is null, the function considers that it is an
insertion. If the value is not null, the function considers that it is an update
of the record having this value as the identifier.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [fcalling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

DaDhGetList()

This function returns, as a list, the result of an AQL query.

/ Note:

For further information on the AQL query language, refer to the chapter AQL in
the manual entitled Advanced use.

Internal Basic syntax

Function DaDbGetList(strQuery As String, strColSep As String, strLineSep As
String, strldSep As String) As String

AssetCenter 4.4 - Programmer's reference | 469

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow D
Wizard script

FINISH.DO script of a wizard

Input parameters

= strQuery: This parameter contains the AQL query you want to execute.

= strColSep :This parameter contains the character use as column separatorin
the result given by the function.

A column is equivalent to a field in a record returned by the query.

= strLineSep: This parameter contains the character used as line separator in
the result returned by the function.

Aline is equivalent to a record returned by the query.

= strldSep: This parameter contains the character used to separate record
identifiers in the results given by the function.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

Dim strList As String
Dim lWorkgroup, lErr As Long

470 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

' Get list of computer ids in workgroup 'ToChange'
strList = DaDbGetList ("SELECT Workgroup FROM amComputer WHERE Workgroup='

ToChange'", "|", "/", "@")

' Replace all 'ToChange' workgroups by 'Changed'. InStr will return 0 if n
ot found
1Workgroup = InStr(0, strList, "ToChange")

Do While lWorkgroup > 0
strList = Left$(strList, 1lWorkgroup - 1) + "Changed" + Mids$(strList, 1W

orkgroup + Len ("ToChange"), Len(strList))

1Workgroup = InStr(0, strList, "ToChange")

Loop
' Update computers
lErr = DaDbSetList ("amComputer", "Workgroup", strList, "\", n/w, ongn)

DaDbSetList()

This function updates or creates records in a table of the AssetCenter database.

f Note:

This function is the opposite of the DaDbGetList function.

Internal Basic syntax

Function DaDbSetList(strTable As String, strFields As String, strList As String,
strColSep As String, strLineSep As String, strldSep As String) As Long

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow D

AssetCenter 4.4 - Programmer's reference | 471

Wizard script
FINISH.DO script of a wizard

Input parameters

= strTable: SQL name of the table concerned by the operation.

= strFields: This parameter contains the SQL name of the fields to be modified
(in the case of the modification of an existing record) or populated (in the
case of the creation of a new record). The character defined in the strColSep
parameter is used as a separator for the SQL names of the fields.

= strList: list of the records concerned by the operation. Each record is separated
by the strLineSep parameter. In the case of a modification (update of a record)
the identifier of the record to modify is specified by appending the character
contained in the strldSep parameter, followed by the record identifier.

= strColSep: This parameter contains the character used as column separator
(a column represents a field).

= strLineSep: This parameter contains the character used as a record separator
(line separator).

= strldSep: This parameter contains the character used to specify the identifier
of the record to modify.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

' Update name and workgroup of the computer '42' and insert a new computer
named 'NewComputer' in computers table
' We could also use 'NewName|NewWorkgroup@O' to insert the new computer.

472 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

1Err = DaDbSetList("amComputer", "Name|Workgroup", "UpdatedName |UpdatedWo
rkgroup@42/NewName | NewWorkgroup", " |", "/", "e")

DaDelete()

This function copies afile, a set of files or a folder, locally. This function works in
one of two ways:

= Delete from the deployment server (from the file depot).

= Delete from the deployment target.

The way in which it works is determined by the value of the file.on_server option,
set using the DaSetOption() function:

= [f this option is set to 1, the deletion concerns the deployment server.

= [f this option is set to 0, the deletion concerns the deployment target.

/ Note:

For further information, refer to the description of the DaSetOption() function.

/ Note:

This function carries out the same operations as the Delete files activity.

Internal Basic syntax

Function DaDelete(strToDelete As String, strNameFilter As String) As Long

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow]
Wizard script

AssetCenter 4.4 - Programmer's reference | 473

_

FINISH.DO script of a wizard

Input parameters

= strToDelete: This parameter contains the path of the files to delete. If you
want to delete the elements from the deployment server, it is a relative path
of the absolute path of the file depot. If you want to delete the elements from
the deployment target, it is an absolute path.

= strNameFilter: This parameter contains wildcard characters, as used by DOS
(*and ?), used to filter the file names.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

'Remove temporary files from server depot
dim 1 as long

1 DaSetOption("file.recursive",
1 DaSetOption("file.on_ server",
1 DaDelete("", "*_ tmp")

)

1
1)

DaDownload()

This function copies a file, folder or set of files to the deployment server depot.
The source files must be located on the deployment target.

You can also configure the behavior of this function by setting certain options
using the DaSetOption() option. A full list of this option is included in the
description of the DaSetOption() function.

474 | AssetCenter 4.4 - Programmer's reference

s ref

/ Note:

This function carries out the same operations as the Download files activity.

Internal Basic syntax

Function DaDownload(strSrcPath As String, strDstPath As String,
strSrcNameFilter As String) As Long

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow D
Wizard script

FINISH.DO script of a wizard

Input parameters

= strSrcPath: This parameter contains the path of the files to copy to the depot
of the deployment server. It is an absolute path on the deployment target.
For example:

[c:\program files\antivirus\update\file.exe |
= strDstPath: This parameter contains the path of the file copied on the

deployment server. This path is relative to the absolute path of the

deployment server. For example, if the absolute path of the file depot is:

[c:\files\depot |
and you want to copy a file to this location:

|c:\files\depot\software\antivirus\update\file.exe |

then this parameter will have the following value:

[software\antivirus\update |

AssetCenter 4.4 - Programmer's reference | 475

= strSrcNameFilter: This parameter contains wildcard characters, as used by
DOS (* and ?), used to filter the file names.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

'get target specific path within file depot
dim path as string
lpath = "logs/" & DaContext ("Computer.Name")

' retrieve a log file from target
dim 1 as long
1 = DaDownload("c:\program files\application\setup", path, "setup.log")

DaDumpContext()

This function returns a string containing all the defined contexts and is mainly
used in debug mode.

Internal Basic syntax
Function DaDumpContext() As String

Field of application

Version: 1.0

476 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow]
Wizard script

FINISH.DO script of a wizard

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= Ifcalling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

' Check that environment variables can be retrieved - this also retrieve a
11

' variables in one shot, improving performances

1Rc = DaFirstEnv ()

' Get usefull environment variables and store them in context
if 1Rc <> 0 then
' Get environment variables

strProcArch = DaGetEnv ("PROCESSOR_ARCHITECTURE")
strProcId = DaGetEnv ("PROCESSOR_IDENTIFIER")
strProcLevel = DaGetEnv("PROCESSOR_LEVEL")
strProcRevision = DaGetEnv("PROCESSOR REVISION")
strProcCount = DaGetEnv ("NUMBER_OF_PROCESSORS")
strOs = DaGetEnv("OS")

strComputer = DaGetEnv ("COMPUTERNAME")

' Check that computer name is the right one

if strComputer <> DaContext ("Computer.Name") then
print "Warning: computer name does not look like the right one !"
end if

' Store them in context

DaSetContext "EnvInfo.ProcArch", strProcArch
DaSetContext "EnvInfo.ProcId", strProcId
DaSetContext "EnvInfo.ProcLevel", strProcLevel
DaSetContext "EnvInfo.ProcRevision", strProcRevision
DaSetContext "EnvInfo.ProcCount", strProcCount

AssetCenter 4.4 - Programmer's reference | 477

AssetCenter

DaSetContext "EnvInfo.Os", strOs
DaSetContext "EnvInfo.Computer", strComputer

' Dump
rint DaDumpContext ()
end if

DaExec()

This function execute a program stored on the deployment target.

You can also configure the behavior of this function by setting certain options
using the DaSetOption() option. A full list of this option is included in the
description of the DaSetOption() function.

-,-’ Note:

This function performs the same operations as the Execute activity.

Internal Basic syntax
Function DaExec(strCmd As String, strPath As String) As Long

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow 9
Wizard script

478 | AssetCenter 4.4 - Programmer's reference

Programmer's referer

FINISH.DO script of a wizard

Input parameters
= strCmd: This parameter contains the name of the program to be executed.
For example:

[potepad.exe |

= strPath: This parameter contains the full path of the executable. In the case
of the previous example:

|c:\windows\system32

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [fcalling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

' Log ipconfig information
1Err DaSetOption("exec.log_output", 1)
1Err DaExec("ipconfig /all", "")

DaExecAction()

This function executes an action, identified by its name, on a table in the
AssetCenter database.

AssetCenter 4.4 - Programmer's reference | 479

_

-)" Note:

This function supports a limited number of tables (workflows, agents, computers,
etc.).

Internal Basic syntax

Function DaExecAction(strAction As String, strTable As String) As Long

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow D
Wizard script

FINISH.DO script of a wizard

Input parameters
= strAction: This parameter contains the SQL name of the action as defined in
AssetCenter.

= strTable: This parameter contains the SQL name of the table on which the
action is executed.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

480 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

Example

Dim 1Err as Long
1Err = DaExecAction("MyAction", "amComputer")

DaExecuteActionByName()

This function executes an action, identified by its name, on a table and a record
in the AssetCenter database.

Internal Basic syntax

Function DaExecuteActionByName(strAction As String, strTable As String,
IRecord As Long) As Long

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow]
Wizard script

FINISH.DO script of a wizard

Input parameters

= strAction: This parameter contains the SQL name of the action as defined in
AssetCenter.

= strTable: This parameter contains the SQL name of the table on which the
action is executed.

= IRecord: This parameter contains the identifier of the record in the table on
which the action is executed.

AssetCenter 4.4 - Programmer's reference | 481

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Notes

rd Note:

If no identifier is specified, the record number linked to the table is used.
Example

Dim 1Err as Long
1Err = DaExecuteActionByName ("MyAction", "amComputer", 3)

DaFileATime()

This function returns the date and time at which the file or folder were accessed.

Internal Basic syntax
Function DaFileATime(strPath As String) As Date

Field of application

Version: 1.0

482 | AssetCenter 4.4 - Programmer's reference

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow]
Wizard script

FINISH.DO script of a wizard

Input parameters

s strPath: This parameter contains the path of the file or folder concerned by
the operation. If the operation is carried out on the deployment server, it is
a path relative to the absolute path of the file depot. If the operation is carried
out on the deployment target, it is an absolute path.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [fcalling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

DaFileCRC()

This function returns the CRC of a file (Cyclic Redundancy Check).

Internal Basic syntax
Function DaFileCRC(strPath As String) As Long

Field of application

Version: 1.0

AssetCenter 4.4 - Programmer's reference | 483

“
|_

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow 9
Wizard script

FINISH.DO script of a wizard

Input parameters

+ strPath: This parameter contains the path of the file or folder concerned by
the operation. If the operation is carried out on the deployment server, it is
a path relative to the absolute path of the file depot. If the operation is carried
out on the deployment target, it is an absolute path.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

DaFileCTime()

This function returns the date and time of creation of the file or folder.

Internal Basic syntax
Function DaFileCTime(strPath As String) As Date

Field of application

Version: 1.0

484 | AssetCenter 4.4 - Programmer's reference

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow]
Wizard script

FINISH.DO script of a wizard

Input parameters

s strPath: This parameter contains the path of the file or folder concerned by
the operation. If the operation is carried out on the deployment server, it is
a path relative to the absolute path of the file depot. If the operation is carried
out on the deployment target, it is an absolute path.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [fcalling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

DaFileLanguage()

This function returns the language of the file (if available).

Internal Basic syntax
Function DaFileLanguage(strPath As String) As String

Field of application

Version: 1.0

AssetCenter 4.4 - Programmer's reference | 485

“
|_

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow 9
Wizard script

FINISH.DO script of a wizard

Input parameters

+ strPath: This parameter contains the path of the file or folder concerned by
the operation. If the operation is carried out on the deployment server, it is
a path relative to the absolute path of the file depot. If the operation is carried
out on the deployment target, it is an absolute path.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

DaFileMTime()

This function returns the date and time at which the file or folder were modified.

Internal Basic syntax
Function DaFileMTime(strPath As String) As Date

Field of application

Version: 1.0

486 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow]
Wizard script

FINISH.DO script of a wizard

Input parameters

s strPath: This parameter contains the path of the file or folder concerned by
the operation. If the operation is carried out on the deployment server, it is
a path relative to the absolute path of the file depot. If the operation is carried
out on the deployment target, it is an absolute path.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [fcalling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

DaFileSize()

This function returns the size of a file in bits. If the size of the file is too large (i.e
it exceeds a long), the returned value is -1.

Internal Basic syntax
Function DaFileSize(strPath As String) As Long

AssetCenter 4.4 - Programmer's reference | 487

I
Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow D
Wizard script

FINISH.DO script of a wizard

Input parameters

o strPath: This parameter contains the path of the file or folder concerned by
the operation. If the operation is carried out on the deployment server, it is
a path relative to the absolute path of the file depot. If the operation is carried
out on the deployment target, it is an absolute path.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

DaFileType()

This function returns the file type concerned by the operation.

Internal Basic syntax
Function DaFileType(strPath As String) As String

488 | AssetCenter 4.4 - Programmer's reference

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow D
Wizard script

FINISH.DO script of a wizard

Input parameters

o strPath: This parameter contains the path of the file or folder concerned by
the operation. If the operation is carried out on the deployment server, it is
a path relative to the absolute path of the file depot. If the operation is carried
out on the deployment target, it is an absolute path.

Output parameters

The function returns one of the following values:
= "r"forafile,

= "d"for adirectory,

= "D"for a physical drive.

DaFileVersion()

This function returns the version of a file (if available).

Internal Basic syntax
Function DaFileVersion(strPath As String) As String

AssetCenter 4.4 - Programmer's reference | 489

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow D
Wizard script

FINISH.DO script of a wizard

Input parameters

o strPath: This parameter contains the path of the file or folder concerned by
the operation. If the operation is carried out on the deployment server, it is
a path relative to the absolute path of the file depot. If the operation is carried
out on the deployment target, it is an absolute path.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

DaFind()

This function performs a recursive search of the files and folders and creates a
list of the files it finds. The list is then scanned using the DaFindNext() function.

490 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

Internal Basic syntax

Function DaFind(strPath As String, strNameFilter As String, IDepth As Long)
As Long

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow D
Wizard script

FINISH.DO script of a wizard

Input parameters

= strPath: This parameter contains the path of the search folder.

= strNameFilter: This parameter contains wildcard characters, as used by DOS
(*and ?), used to filter the search.

= IDepth: This parameter contains the depth of the recursive research, in
number of sub-folders under the strPath folder.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [fcalling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AssetCenter 4.4 - Programmer's reference | 491

Example

' Builds a list of all bmp files
Dim 1Err as Long
1Err = DaFind("install", "*.bmp", 3)

DaFindNext()

This function retrieves the name of the next file or folder in the list created by
the DaFind() function. When the end of the list is reached, the function returns
an empty character string.

Internal Basic syntax
Function DaFindNext() As String

Field of application

Version: 1.0

. Availabe
AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow 9

Wizard script

FINISH.DO script of a wizard

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

492 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

Dim strFileName as String
strFileName = DaFindNext ()

If strFileName <> 0 Then

Print strFileName

Else

Print "Reached end of file list"
End If

DaFirstEnv()

This function builds the list of environment variables available on the deployment
target. This list can be browsed using the DaNextEnv() and DaGetEnv() functions.

Internal Basic syntax
Function DaFirstEnv() As Long

Field of application

Version: 1.0

. Availabe
AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow]

Wizard script

AssetCenter 4.4 - Programmer's reference | 493

AssetCenter

FINISH.DO script of a wizard

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

' Check that environment variables can be retrieved - this also retrieve a
11

' variables in one shot, improving performances

1Rc = DaFirstEnv ()

' Get usefull environment variables and store them in context
if 1Rc = 0 then
' Get environment variables

strProcArch = DaGetEnv("PROCESSOR_ARCHITECTURE")
strProcId = DaGetEnv("PROCESSOR_IDENTIFIER")
strProcLevel = DaGetEnv("PROCESSOR_LEVEL")
strProcRevision = DaGetEnv("PROCESSOR_REVISION")
strProcCount = DaGetEnv("NUMBER_OF_PROCESSORS")
strOs = DaGetEnv("OS")

strComputer = DaGetEnv("COMPUTERNAME")

' Check that computer name is the right one

1if strComputer <> DaContext ("Computer.Name") then
lorint "Warning: computer name does not look like the right one !"
end if

' Store them in context
DaSetContext "EnvInfo.ProcArch", strProcArch
DaSetContext "EnvInfo.ProcId", strProcId

DaSetContext "EnvInfo.ProcLevel", strProcLevel
DaSetContext "EnvInfo.ProcRevision", strProcRevision
DaSetContext "EnvInfo.ProcCount", strProcCount

DaSetContext "EnvInfo.Os", strOs
DaSetContext "EnvInfo.Computer", strComputer

' Dump
lorint DaDumpContext ()
end if

494 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

DaGetEnv()

This function returns the value of an environment variable - contained in the list
buit using the DaFirstEnv() function - identified by its name.

Internal Basic syntax

Function DaGetEnv(strEnv As String) As String

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow D
Wizard script

FINISH.DO script of a wizard

Input parameters

o strEnv: This parameter contains the name of the environment variable as it
is displayed by the operating system.

@ Tip:

To display the list of environment variables declared on your computer:
1 Right-click your computer icon,

2 Select the Advanced tab,

3 Click Environment variables

AssetCenter 4.4 - Programmer's reference | 495

nE
© I ————
|

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error

message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

11
' variables in one shot, improving performances
1Rc = DaFirstEnv ()

if 1Rc <> 0 then
' Get environment variables

strProcArch = DaGetEnv("PROCESSOR_ARCHITECTURE"
strProcId = DaGetEnv("PROCESSOR_IDENTIFIER"
strProcLevel = DaGetEnv("PROCESSOR_LEVEL")
strProcRevision = DaGetEnv("PROCESSOR_REVISION")
strProcCount = DaGetEnv("NUMBER_OF_ PROCESSORS"
strOs = DaGetEnv("OS")

strComputer = DaGetEnv("COMPUTERNAME")

' Check that computer name is the right one
1if strComputer <> DaContext ("Computer.Name") then

end 1if
' Store them in context

DaSetContext "EnvInfo.ProcArch", strProcArch
DaSetContext "EnvInfo.ProcId", strProcId

DaSetContext "EnvInfo.ProcLevel", strProcLevel
DaSetContext "EnvInfo.ProcRevision", strProcRevision
DaSetContext "EnvInfo.ProcCount", strProcCount

DaSetContext "EnvInfo.Os", strOs
DaSetContext "EnvInfo.Computer", strComputer

' Dump
lorint DaDumpContext ()
end if

' Check that environment variables can be retrieved - this also retrieve a

' Get useful environment variables and store them in context

lporint "Warning: computer name does not look like the right one

496 | AssetCenter 4.4 - Programmer's reference

Programmer's referer

DaGetFilelnfo()

This function returns the properties of a file or folder. The properties in question
can be recovered directly using the DaFile* functions. If works in one of two
ways:

= Operation on the deployment server (in the file depot)

= Operation on the deployment target

The way in which it works is determined by the value of the file.on_server option,
set using the DaSetOption() function:

= [f this option is set to 1, the operation is on the deployment server

= [f this option is set to 0, the operation is on the deployment target.

f Note:

For further information, refer to the description of the DaSetOption() function.

Internal Basic syntax
Function DaGetFilelnfo(strPath As String) As Long

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow)
Wizard script

AssetCenter 4.4 - Programmer's reference | 497

_

FINISH.DO script of a wizard

Input parameters

o strPath: This parameter contains the path of the file or folder concerned by
the operation. If the operation is carried out on the deployment server, it is
a path relative to the absolute path of the file depot. If the operation is carried
out on the deployment target, it is an absolute path.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Dalmpersonate()

This function enables you to impersonate a user on the deployment target by
simulating that user. This function can be particularly useful to simulate an
administrator connection in order to install certain software on the target, for
example.

Internal Basic syntax

Function Dalmpersonate(strUser As String, strPassword As String, strDomain
As String) As Long

Field of application

Version: 1.0

498 | AssetCenter 4.4 - Programmer's reference

Programmer's refere

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow]
Wizard script

FINISH.DO script of a wizard

Input parameters

= strUser: This parameter contains the name of the user for which you want to
simulate a connection to the target.

= strPassword: This parameter contains the password of the user for which
you want to simulate a connection to the target.

= strDomain: This parameter contains the domain of the user for which you
want to simulate a connection to the target.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

' Upload whole 'install' directory

lErr = DaUpload("install", "c:/tmp/install", "")

' Impersonate

if 1Err = 0 then lErr = DalImpersonate("user", "password", "domain ")

' Execute setup as user, synchronous, and log errors

if 1Err = 0 then

1DummyErr = DaSetOption("exec.synchronous", 1)

1DummyErr = DaSetOption("exec.log output", 1)

1DummyErr = DaSetOption("exec.log error", 1)

end if

if lErr = 0 then 1lErr = DaExec("c:/tmp/install/setup -i", "c:/tmp/install

AssetCenter 4.4 - Programmer's reference | 499

L ——

LS}

' On error, raise 'error' event
if 1lErr <> 0 then DaSetReturnValue "ErrorEvent"

DaMkDir()

This function creates a folder. It works in one of two ways:

= Creation on the deployment server (in the file depot)

= creation on the deployment target

The way in which it works is determined by the value of the file.on_server option,
set using the DaSetOption() function:

= If this option is set to 1, the creation is on the deployment server

= If this option is set to 0, the creation is on the deployment target.

-,-’ Note:

For further information, refer to the description of the DaSetOption() function.

Internal Basic syntax
Function DaMkDir(strDirectory As String) As Long

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow 9
Wizard script

500 | AssetCenter 4.4 - Programmer's reference

s ref

FINISH.DO script of a wizard

Input parameters

s strDirectory: This parameter contains the path of the folder to create. If the
creation is carried out on the deployment server, it is the path relative to the
absolute path of the file depot. If the creation is on the deployment target,
it is an absolute path.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [fcalling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

DaMove()

This function moves a file, a set of files or a folder. This function works in one of

two ways:

= [tmovesafilelocally to the deployment server: The source and the destination
of the move are both in the deployment server.

= Itmovesafilelocally to the deployment target: The source and the destination
of the move are both on the deployment target.

The way in which it works is determined by the value of the file.on_server option,

set using the DaSetOption() function:

= [f this option is set to 1, the move is on the deployment server.

= If this option is set to 0, the move is on the deployment target.

/ Note:

For further information, refer to the description of the DaSetOption() function.

AssetCenter 4.4 - Programmer's reference | 501

_

-)" Note:

This function carries out the same operations as the Move files activity.

Internal Basic syntax

Function DaMove(strSource As String, strDest As String, strNameFilter As
String) As Long

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow D
Wizard script

FINISH.DO script of a wizard

Input parameters

= strSource: This parameter contains the source path of the elements to move.
Depending on how the function operates, it is either a path relative to the
file depot (in the case of a local move to the deployment server) or an absolute
path (in the case of a local move to the deployment target).

= strDest: This parameter contains the destination path of the elements to
move. Depending on how the function operates, it is either a path relative
to the file depot (in the case of a local move to the deployment server) or an
absolute path (in the case of a local move to the deployment target).

= strNameFilter: This parameter contains wildcard characters, as used by DOS
(* and ?), used to filter the file names.

502 | AssetCenter 4.4 - Programmer's reference

Programmer's refere

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

' move old report files before getting new ones
Dim 1 as Long

1 DaSetOption("file.on server", 1);

1 DaMove ("reports/current", "reports/old", "")

DaNetlpFromName()

This function resolves the name of the target using the DNS method and returns
the IP address of the target.

Internal Basic syntax
Function DaNetlpFromName(strHost As String, pstrIP As String) As Long

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow]
Wizard script

AssetCenter 4.4 - Programmer's reference | 503

“
|_

FINISH.DO script of a wizard

Input parameters

= strHost: This parameter contains the name of the host (deployement target).
= pstrIP: IP address of the target

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

DaNetNBTName()

This function queries the deployment target for related network information.
This function is equivalent to the DOS command:

|nbstat -A <IP address of the target> |

Internal Basic syntax

Function DaNetNBTName(strHost As String, ITimeout As Long,
pstrComputerName As String, pstrGroup As String, pstrMAC As String) As
Long

Field of application

Version: 1.0

504 | AssetCenter 4.4 - Programmer's reference

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow]
Wizard script

FINISH.DO script of a wizard

Input parameters

= strHost: This parameter contains the name of the host (deployement target).

= |Timeout: This parameter contains the duration after which the operation is
considered to have failed, if the target has not responded. This duration is
expressed in milliseconds.

= pstrComputerName: Name of the target
= pstrGroup: Network group of the target
= pstrMAC: MAC address of the target

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

DaNetPing()

This function pings the deployment target. This enables you to test whether a
computer is responding on the network.

Internal Basic syntax
Function DaNetPing(ITimeout As Long) As Long

AssetCenter 4.4 - Programmer's reference | 505

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow D
Wizard script

FINISH.DO script of a wizard

Input parameters

o ITimeout: This parameter contains the duration after which the operation is
considered to have failed, if the target has not responded. This duration is
expressed in milliseconds.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

Dim 1Live As Long

' Ping with 1000ms timeout
1Live = DaNetPing(1000)
If 1lLive = 0 Then
DaSetReturnValue "NOK"

End If

506 | AssetCenter 4.4 - Programmer's reference

Programmer's referer

DaNetWakeOnLan()

This function sends a wake on LAN signal to a deployment target.

/ Note:

This function performs the same operations as the Wake on LAN activity.

Internal Basic syntax
Function DaNetWakeOnLan(strMAC As String) As Long

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow ¥
Wizard script

FINISH.DO script of a wizard

Input parameters

o strMAC: This parameter contains the MAC address of the deployment target,
in hexadecimal format. The MACaddress is made up of six hexadecimal pairs,
which may or may not be separated (with the "-" or ":" characters).

Output parameters

= 0:Normal execution.
= Other than zero: Error code.

AssetCenter 4.4 - Programmer's reference | 507

_

DaNetWinAddressByName()

This function resolves the name of the target using the specified method. The
function returns the IP address of the target.

Internal Basic syntax

Function DaNetWinAddressByName(strHost As String, iNameSpace As Long,
pstrIP As String) As Long

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow D
Wizard script

FINISH.DO script of a wizard

Input parameters

= strHost: This parameter contains the name of the host (deployement target).

= iNameSpace: This parameter specifies the resolution method to use. The
possible values are the following:

= 0: Uses the default resolution mode of the operating system
= 1:Uses DNS resolution
= 2:Uses WINS resolution

= pstrIP: This parameter contains the name of the host (deployement target).

508 | AssetCenter 4.4 - Programmer's reference

Programmer's refere

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]

function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

DaNextEnv()

This function returns the name of the next environment variable in the list built
using the DaFirstEnv() function. If the end of the list is reached, the function
returns an empty character string.

Internal Basic syntax

Function DaNextEnv() As String

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow D
Wizard script

FINISH.DO script of a wizard

Output parameters

In case of error, there are two possibilities:

AssetCenter 4.4 - Programmer's reference | 509

nE
© I ————
|

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

1

' retrieve and print all environment variables from target

1

dim 1Rc as long
dim VarName, VarValue as String

If DaFirstEnv() <> 0 Then

Do

' get next variable

VarName = DaNextEnv ()

If VarName <> "" Then
VarValue = DaGetEnv(VarName)
Print VarName & "=" & VarValue
Else

Exit Do

End If

Loop

End If

DaNTFileCopyTo()

This function copies a file from a source folder to a destination folder, both on
the deployment target.

Internal Basic syntax

Function DaNTFileCopyTo(strSrcPath As String, strSrc As String, strDst As
String) As Long

510 | AssetCenter 4.4 - Programmer's reference

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow D
Wizard script

FINISH.DO script of a wizard

Input parameters

= strSrcPath: This parameter contains the full path of the folder containing the
file to copy.

= strSrc: This parameter contains the name of the file to copy.

= strDst: This parameter contains the full path of the destination folder of the
file to copy.

Output parameters

= 0:Normal execution.
= Other than zero: Error code.

DaNTFileCreateDir()

This function recursively creates a folder on the deployment target.

Internal Basic syntax
Function DaNTFileCreateDir(strPath As String) As Long

AssetCenter 4.4 - Programmer's reference | 511

L ——

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow D
Wizard script

FINISH.DO script of a wizard

Input parameters

o strPath: This parameter contains the full path of the folder on the remote
computer.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

DaNTFileDelete()

This function delete files on a deployment target.

Internal Basic syntax
Function DaNTFileDelete(strFile As String) As Long

Field of application

Version: 1.0

512 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow]
Wizard script

FINISH.DO script of a wizard

Input parameters
o strFile: Path of the file to be deleted.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

DaNTFileDeleteDir()

This function deletes a folder and its contents on the deployment target.

Internal Basic syntax
Function DaNTFileDeleteDir(strPathConst As String) As Long

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link
"Script" type action
Deployment workflow]

AssetCenter 4.4 - Programmer's reference | 513

AssetCenter

Wizard script

FINISH.DO script of a wizard

Input parameters

o strPathConst: Path of the folder to be deleted.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

DaNTFileDirCopyTo()

This function copies a folder and its contents to a deployment target.

Internal Basic syntax

Function DaNTFileDirCopyTo(strSrcPath As String, strDst As String) As Long

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow D
Wizard script

514 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

FINISH.DO script of a wizard

Input parameters

= strSrcPath: This parameter contains the path of the folder on the server.

= strDst: This parameter contains the path of the destination folder on the
deployment target.

Output parameters

= 0:Normal execution.
= Other than zero: Error code.

DaNTFileDirDownload()

This function copies a folder and its contents from a deployment target to the
deployment server.

Internal Basic syntax
Function DaNTFileDirDownload(strSrcPath As String, strDst As String) As Long

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow]
Wizard script

AssetCenter 4.4 - Programmer's reference | 515

AssetCenter

FINISH.DO script of a wizard

Input parameters

= strSrcPath: This parameter contains the path of the folder on the deployment
server.

= strDst: This parameter contains the path of the destination folder on the
server. This path is relative to the file depot path.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

DaNTFileDirUpload()

This function copies a folder and its contents to a deployment target.

Internal Basic syntax
Function DaNTFileDirUpload(strSrcPath As String, strDst As String) As Long

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow 9
Wizard script

516 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

FINISH.DO script of a wizard

Input parameters

= strSrcPath: This parameter contains the path of the folder on the deployment
server. This path is relative to the path of the file depot.

= strDst: This parameter contains the path of the destination folder on the
deployment target.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

DaNTFileDownload()

This function downloads a file from the deployment target.

Internal Basic syntax

Function DaNTFileDownload(strSrcPath As String, strSrc As String, strDst As
String) As Long

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow]
Wizard script

AssetCenter 4.4 - Programmer's reference | 517

AssetCenter

FINISH.DO script of a wizard

Input parameters

= strSrcPath: This parameter contains the full path of the folder (on the target)
containing the file to be downloaded.

= strSrc: This parameter contains the name of the file to download.

= strDst: This parameter contains the full path of the folder (on the server) to
which the file is downloaded.

Output parameters

= 0:Normal execution.
= Other than zero: Error code.

DaNTFileUpload()

This function uploads a file to the deployment target.

Internal Basic syntax

Function DaNTFileUpload(strSrcPath As String, strSrc As String, strDst As
String) As Long

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link
"Script" type action
Deployment workflow 9

518 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

Wizard script

FINISH.DO script of a wizard

Input parameters

= strSrcPath: This parameter contains the full path of the folder (on the server)
containing the file to be uploaded.

= strSrc: This parameter contains the name of the file to copy.

= strDst: This parameter contains the full path of the folder (on the target) to
which the file is uploaded.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

DaNTRegistryLMAddStringValue()

This function adds a REG_SZ or REG_EXPAND type entry for a key.

Internal Basic syntax

Function DaNTRegistryLMAddStringValue(strKey As String, strString As String,
strValue As String, bExpand As Long) As Long

Field of application

Version: 1.0

AssetCenter API
Configuration script of a field or link
"Script" type action

AssetCenter 4.4 - Programmer's reference | 519

AssetCenter

Deployment workflow 9
Wizard script
FINISH.DO script of a wizard

Input parameters

= strKey: This parameter contains the full name of the key containing the entry
to create.

= strString: This parameter contains the name of the entry to be created.
= strValue: This parameter contains the value of the entry to be created.

= bExpand: If this parameter has a value of 1, the function only processes
REG_EXPAND-type entries.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

DaNTRegistryLMCreateKey()

This function creates recursively a key in the HKEY_LOCAL_MACHINE hive of
the registry.

Internal Basic syntax
Function DaNTRegistryLMCreateKey(strKey As String) As Long

Field of application

Version: 1.0

AssetCenter API

520 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

Configuration script of a field or link

"Script" type action

Deployment workflow]
Wizard script

FINISH.DO script of a wizard

Input parameters

s strKey: This parameter contains the full path of the key in the
HKEY_LOCAL_MACHINE hive of the registry.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

DaNTRegistryLMDeleteKey()

This function deletes a key fro the Registry of the deployment target. All the
entries of the key are deleted.

Internal Basic syntax
Function DaNTRegistryLMDeleteKey(strKey As String) As Long

Field of application

Version: 1.0

AssetCenter API
Configuration script of a field or link
"Script" type action

AssetCenter 4.4 - Programmer's reference | 521

AssetCenter

Deployment workflow 9
Wizard script
FINISH.DO script of a wizard

Input parameters

o strKey: This parameter contains the full name of the key to be deleted.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

DaNTRegistryLMDeleteValue()

This function deletes a key entry fro the Registry of the deployment target.

Internal Basic syntax

Function DaNTRegistryLMDeleteValue(strKey As String, strString As String)
As Long

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow D
Wizard script

522 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

FINISH.DO script of a wizard

Input parameters

= strKey: This parameter contains the full name of the key containing the entry
to delete.

= strString: This parameter contains the name of the entry to be deleted.

Output parameters

= 0:Normal execution.
= Other than zero: Error code.

DaNTRegistryLMGetLongValue()

This function returns the value of a REG_DWORD type entry of a registry key on
the deployment target.

Internal Basic syntax

Function DaNTRegistryLMGetLongValue(strKey As String, strString As String)
As Long

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow]
Wizard script

AssetCenter 4.4 - Programmer's reference | 523

“
|_

FINISH.DO script of a wizard

Input parameters

= strKey: This parameter contains the full name of the key containing the entry
for which you want to recover the value.

= strString: This parameter contains the name of the entry for which you want
to recover the value.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

DaNTRegistryLMGetStringValue()

This function returns the value of a REG_DWORD or REG_EXPAND type entry
of a key from the Registry of the deployment target.

Internal Basic syntax

Function DaNTRegistryLMGetStringValue(strKey As String, strString As String)
As String

Field of application

Version: 1.0

524 | AssetCenter 4.4 - Programmer's reference

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow]
Wizard script

FINISH.DO script of a wizard

Input parameters

= strKey: This parameter contains the full name of the key containing the entry
for which you want to recover the value.

= strString: This parameter contains the name of the entry for which you want
to recover the value.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

DaNTRegistryLMSetLongValue()

This function sets the value of a REG_DWORD type entry for a key. The entry
must exist in the key.

Internal Basic syntax

Function DaNTRegistryLMSetLongValue(strKey As String, strString As String,
IValue As Long) As Long

AssetCenter 4.4 - Programmer's reference | 525

I
Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow D
Wizard script

FINISH.DO script of a wizard

Input parameters

= strKey: This parameter contains the full name of the key containing the entry
for which you want to set the value.

= strString: This parameter contains the name of the entry for which you want
to set the value.

= [Value: This parameter contains the value of the entry for which you want to
set the value.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

DaNTRegistryLMSetStringValue()

This function sets the value of a REG_SZ or REG_EXPAND type entry for a key.
The entry must exist in the key.

Internal Basic syntax

Function DaNTRegistryLMSetStringValue(strKey As String, strString As String,
strValue As String, bExpand As Long) As Long

526 | AssetCenter 4.4 - Programmer's reference

Programmer's referer

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow D
Wizard script

FINISH.DO script of a wizard

Input parameters

= strKey: This parameter contains the full name of the key containing the entry
for which you want to set the value.

= strString: This parameter contains the name of the entry for which you want
to set the value.

= strValue: This parameter contains the value of the entry for which you want
to set the value.

= bExpand: If this parameter has a value of 1, the function only processes
REG_EXPAND-type entries.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

DaNTServicelnstall()

This function installs an NT service on the deployment target.

AssetCenter 4.4 - Programmer's reference | 527

Internal Basic syntax

Function DaNTServicelnstall(strServiceName As String, strDisplayName As
String, strBinaryFullName As String, bAutoStart As Long, binteractWithDesktop
As Long) As Long

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow 9

Wizard script

FINISH.DO script of a wizard

Input parameters

strServiceName: This parameter contains the internal name of the service,
as it will be displayed in the properties of the service (accessible via the
Properties shortcut menu).

strDisplayName: This parameter contains the name of the service as it is
displayed in the main list of services.

strBinaryFullName: This parameter contains the full path of the service
executable on the deployment target.

bAutoStart: When this parameter has a value of 1, the service is started
automatically.

binteractWithDesktop: When this parameter has a value of 1, the service can

interact with the operating system's desktop (message sending and user
dialog boxes).

Output parameters

0: Normal execution.
Other than zero: Error code.

528 | AssetCenter 4.4 - Programmer's reference

Programmer's refere

DaNTServiceStart()

This function starts a named NT service on a deployment target.

Internal Basic syntax

Function DaNTServiceStart(strServiceName As String) As Long

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow D
Wizard script

FINISH.DO script of a wizard

Input parameters

o strServiceName: This parameter contains the name of a service to start. The
name used is the internal name of the service and not the name displayed
in the operating system's services console. To locate the internal name:

1 Right-click on the name of the service.
2 Select the Properties menu.

3 The Service name (internal name) is displayed in the General tab.

Output parameters

= 0:Normal execution.
= Other than zero: Error code.

AssetCenter 4.4 - Programmer's reference | 529

iy
i_

DaNTServiceStatus()

This function returns the status of an NT service on the deployment target.

Internal Basic syntax

Function DaNTServiceStatus(strServiceName As String) As String

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow D
Wizard script

FINISH.DO script of a wizard

Input parameters

o strServiceName: This parameter contains the internal name of the service,
asitis displayedin the properties of the service (accessible via the Properties
shortcut menu).

Output parameters

The function returns one of the following values, each one corresponding to a
status for the service:

= NOT FOUND

= STOPPED

= START_PENDING
= STOP_PENDING

530 | AssetCenter 4.4 - Programmer's reference

Programmer's refere

= RUNNING

= CONTINUE_PENDING
= PAUSE_PENDING

= PAUSED

DaNTServiceStop()

This function stops the execution of an NT service named on the deployment
target.

Internal Basic syntax

Function DaNTServiceStop(strServiceName As String) As Long

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow D
Wizard script

FINISH.DO script of a wizard

Input parameters

o strServiceName: This parameter contains the name of the service to stop.
The name used is the internal name of the service and not the name displayed
in the operating system's services console. To locate the internal name:

1 Right-click on the name of the service.
2 Select the Properties menu.

3 The Service name (internal name) is displayed in the General tab.

AssetCenter 4.4 - Programmer's reference | 531

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

DaNTServiceUninstall()

This function uninstalls an NT service on the deployment target.

Internal Basic syntax

Function DaNTServiceUninstall(strServiceName As String) As Long

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow D
Wizard script

FINISH.DO script of a wizard

Input parameters

o strServiceName: This parameter contains the internal name of the service,

asitis displayedin the properties of the service (accessible via the Properties
shortcut menu).

Output parameters

= 0: Normal execution.

532 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

= Other than zero: Error code.

DaNTWMIExecMethod)

This function enables you to use a WMI method on an object or a class.

Internal Basic syntax

Function DaNTWMIExecMethod(strObjectPath As String, strMethod As String,
strinParams As String, pstrOutParam As String) As Long

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow D
Wizard script

FINISH.DO script of a wizard

Input parameters

= strObjectPath: Name of the object or the class.

= strMethodName of the method (CIMV2 namespace).

= strinParamsList of (input) parameters of the method

= pstrOutParam: Description of the parameters (output) of the method.

For example, the result of the Create method applied to the WIN32_Process
process will look like:

instance of __ PARAMETERS

{

ProcessId = 400;

AssetCenter 4.4 - Programmer's reference | 533

ReturnValue = 0;

}i
/ Note:

The character string that is returned contains line breaks.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example
lCount = DaNTWMIGetInstanceCount ("Win32 Process")
For 1 = 1lCount - 1 to 0 Step -1
strName = DaNTWMIGetPropertyValue("Win32 Process.Name", 1)
If strName = "NOTEPAD.EXE" Then
strPID = DaNTWMIGetPropertyValue("Win32 Process.Handle", 1)
1lErr = DaNTWMIExecMethod("Win32 Process.Handle='" & strPID & "'", "Termin
ate", strDummy)
End If
Next 1

This script stops all NOTEPAD.EXE processes by using the Terminate method.

DaNTWMIExecQuery()

This function enables you to enumerate the WMI by using a WMI query in WQL
language.

Internal Basic syntax
Function DaNTWMIExecQuery(strQuery As String) As Long

534 | AssetCenter 4.4 - Programmer's reference

I
Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow D
Wizard script

FINISH.DO script of a wizard

Input parameters
o strQuery: WQL query

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

Example

lErr = DaNTWMIExecQuery("select * from Win32 NTLogEvent WHERE Logfile='Se
curity'")

While DaNTWMINextItem /()

print DaNTWMIGetCurrentPropertyValue("Message", 1)

Wend

1Err = DaNTWMIResetEnumeration ()

This script enumerates all events from the NT security event log and searches
the specified event.

DaNTWMIGetCurrentArrayValue()

This function is used with the DANTWMIExecQuery function. It recovers the
values of properties (table type) of the enumerated object.

AssetCenter 4.4 - Programmer's reference | 535

“
|_

The function returns the list of properties of the value, separated by a character
defined in the strSeparator.

Internal Basic syntax

Function DaNTWMIGetCurrentArrayValue(strProperty As String, strSeparator
As String) As String

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow 9
Wizard script

FINISH.DO script of a wizard

Input parameters

= strProperty: This parameter contains the name of property (of the WMl object)
for which you want to recover the value.

= strSeparator: This parameter contains the character used as separator for
the values of the property.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

536 | AssetCenter 4.4 - Programmer's reference

Programmer's referer

Example

Dim l1Err As Long

1lErr = DaNTWMIExecQuery("SELECT * FROM Win32 NetworkAdapterConfiguration
WHERE IPEnabled=TRUE")

While DaNTWMINextItem()

print DaNTWMIGetCurrentArrayValue("IPAddress", ";")

Wend

DaNTWMIGetCurrentPropertyValue()

This functionis used in relation to the DANTWMIExecQuery function. It recovers
the property values of the enumerated object.

/ Note:

Use the DaNTWMIGetCurrentArrayValue() function if you want to retrieve the
values of an array property.

Internal Basic syntax
Function DaNTWMIGetCurrentPropertyValue(strProperty As String) As Variant

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow]
Wizard script

AssetCenter 4.4 - Programmer's reference | 537

AssetCenter

FINISH.DO script of a wizard

Input parameters

+ strProperty: This parameter contains the name of property (of the WMl object)
for which you want to recover the value.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

DaNTWMIGetinstanceCount()

This function returns the number of objects of a given class (for example, the
number of hard drives, CPUs, etc. of a computer).

Internal Basic syntax
Function DaNTWMIGetInstanceCount(strShortName As String) As Long

Field of application

Version: 1.0

AssetCenter API
Configuration script of a field or link
"Script" type action

538 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

Deployment workflow ¥
Wizard script
FINISH.DO script of a wizard

Input parameters

s strShortName: This parameter contains the name of the object for which
you want to count the number of instances. The available objects are listed
in the table below:

Win32_Processor

Win32_Processor
Win32_PhysicalMemory
Win32_OperatingSystem
Win32_DiskDrive

Win32_LogicalDisk
Win32_Operatingsystem
Win32_Operatingsystem.BuildNumber
Win32_NetworkAdapter
Win32_NetworkAdapterConfiguration

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

Example

The following example returns the number of hard drives on the computer:

Dim iHDCount as Integer
iHDCount = DaNTWMIGetInstanceCount ("Win32_ LogicalDisk")
print "Number of hard drives = " & iHDCount

AssetCenter 4.4 - Programmer's reference | 539

AssetCenter

DaNTWMIGetPropertyValue()

This function recovers the value of a property from a WMI object.

Internal Basic syntax

Function DaNTWMIGetPropertyValue(strShortName As String, idx As Long)
As Variant

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow D
Wizard script

FINISH.DO script of a wizard

Input parameters

= strShortName: This parameter contains the name of the property for which
you want to recover the value. The syntax used is the following:

[cobject>.<property> |
You can also use the aliases listed in the table below:

CPUType Win32_Processor.Family

CPUlnternal Win32_Processor.Caption

CPUSpeed Win32_Processor.CurrentClockSpeed
MemorySize Win32_PhysicalMemory.Capacity

OSMemorySize Win32_OperatingSystem.TotalVisibleMemorySize
TotalDiskSize Wind32_DiskDrive.Size

540 | AssetCenter 4.4 - Programmer's reference

s ref

DiskSize Win32_LogicalDisk.Size

DiskFreeSpace Win32_LogicalDisk.FreeSpace
OperatingSystem Win32_Operatingsystem.Caption

OSServicelevel Win32_Operatingsystem.ServicePackMajorVersion
OSBuildNumber Win32_Operatingsystem.BuildNumber

PhysAddress Win32_NetworkAdapter.MACAddress

DNSHostName Win32_NetworkAdapterConfiguration.DNSHostName
DNSDomain Win32_NetworkAdapterConfiguration.DNSDomain

= idx: This parameter contains the index of the object concerned by the
operation. If, for example, you have several hard drives, each of them will
have an index number.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

The following example recovers the clock speed of the computer's CPU:

Dim vSpeed as Variant
vSpeed = DaNTWMIGetPropertyValue ("CPUSPeed", 0)
print "Speed = " & vSpeed

DaNTWMIGetTotalPropertiesValue()

This function returns the sum of the values of a property for all objects with this
property. In this way you can recover the disk space available for all the logical
drives of the computer.

AssetCenter 4.4 - Programmer's reference | 541

- AssetCenter

Internal Basic syntax

Function DaNTWMIGetTotalPropertiesValue(strShortName As String) As
Variant

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow 9
Wizard script

FINISH.DO script of a wizard

Input parameters

+ strShortName: This parameter contains the name of the property for which
you want to recover the value. The syntax used is the following:

|<object>.<property> |

You can also use the aliases listed in the table below:

CPUType Win32_Processor.Family

CPUlnternal Win32_Processor.Caption

CPUSpeed Win32_Processor.CurrentClockSpeed
MemorySize Win32_PhysicalMemory.Capacity

OSMemorySize Win32_OperatingSystem.TotalVisibleMemorySize
TotalDiskSize Wind32_DiskDrive.Size

DiskSize Win32_LogicalDisk.Size

DiskFreeSpace Win32_LogicalDisk.FreeSpace
OperatingSystem Win32_Operatingsystem.Caption

OSServicelevel Win32_Operatingsystem.ServicePackMajorVersion
OSBuildNumber ~ Win32_Operatingsystem.BuildNumber
PhysAddress Win32_NetworkAdapter. MACAddress

DNSHostName Win32_NetworkAdapterConfiguration.DNSHostName

542 | AssetCenter 4.4 - Programmer's reference

Programmer's refere

DNSDomain Win32_NetworkAdapterConfiguration.DNSDomain

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

The following example returns the total capacity of all the logical drives of the
computer:

Dim vCapacity as Variant
vCapacity = DaNTWMIGetTotalPropertiesValue ("WIN32 PhysicalMemory.Capacity"
)

print "Physical memory = " & vCapacity

DaNTWMINextltem()

This function is used in relation to the DANTWMIExecQuery function. It
enumerates the set of elements returned by a WQL query.

Internal Basic syntax
Function DaNTWMINextltem() As Long

Field of application

Version: 1.0

AssetCenter 4.4 - Programmer's reference | 543

AssetCenter

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow 9
Wizard script

FINISH.DO script of a wizard

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

DaNTWMIResetEnumeration()

This function is used in relation to the DANTWMIExecQuery function. It reinitiates
the enumeration being opened and frees up the corresponding memory.

Internal Basic syntax

Function DaNTWMIResetEnumeration() As Long

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow D
Wizard script

544 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

FINISH.DO script of a wizard

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

DaReg(reateKey()

This function creates a key in the Registry of the deployment target.

Internal Basic syntax
Function DaRegCreateKey(strKey As String) As Long

Field of application

Version: 1.0

. Availabe
AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow]

Wizard script

FINISH.DO script of a wizard

Input parameters

+ strKey: This parameter contains the full name of the key to be created.
Example:

HKEY LOCAL_ MACHINE\SOFTWARE\Peregrine Systems\Automated Desktop Adminis
tration\6.0.0

AssetCenter 4.4 - Programmer's reference | 545

_

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

DaRegDeleteKey()

This function deletes a key from the Registry of the deployment target.

Internal Basic syntax
Function DaRegDeleteKey(strKey As String) As Long

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow D
Wizard script

FINISH.DO script of a wizard

Input parameters

o strKey: This parameter contains the full name of the key to be deleted.

HKEY LOCAL_ MACHINE\SOFTWARE\Peregrine Systems\Automated Desktop Adminis
tration\6.0.0

546 | AssetCenter 4.4 - Programmer's reference

Programmer's referer

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

DaRegExec()

This function executes several operations (defined in one script) on the Registry
of the target. The script uses the same syntax as the . reg files of the operating
system.

/ Note:

This function corresponds to the Registry type activity.

Internal Basic syntax
Function DaRegExec(strScript As String) As Long

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow ¥
Wizard script

AssetCenter 4.4 - Programmer's reference | 547

AssetCenter

FINISH.DO script of a wizard

Input parameters

o strScript: This parameters contains the script to execute on the Registry.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

DaRegGetValue()

This function returns the value of a registry key from the deployment target.

Internal Basic syntax
Function DaRegGetValue(strKey As String, strValue As String) As Variant

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow 9
Wizard script

548 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

FINISH.DO script of a wizard

Input parameters

= strKey: This parameter contains the full name of the key concerned by the
operation.

= strValue: This parameter contains the name of the entry of the key for which
you want to recover the value.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

DaRegOutputValue()

This function recovers the value of the contents of DaRegOutput.

Internal Basic syntax
Function DaRegOutputValue(strKey As String, strValue As String) As Variant

Field of application

Version: 1.0

AssetCenter API
Configuration script of a field or link

AssetCenter 4.4 - Programmer's reference | 549

_

"Script" type action

Deployment workflow 9
Wizard script

FINISH.DO script of a wizard

Input parameters

= strKey: This parameter contains the full name of the key concerned by the
operation. If this parameter is empty, any key will be used.

= strValue: This parameter contains the string to convert. If the parameter is
empty, the default value will be used.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

DaRegSetValue()

This function defines the value for a key entry in the Registry of the deployment
target.

Internal Basic syntax

Function DaRegSetValue(strKey As String, strValue As String, vValue As Variant)
As Long

550 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow D
Wizard script

FINISH.DO script of a wizard

Input parameters

= strKey: This parameter contains the full name of the key for which you want
to set the value.

= strValue: This parameter contains the name of the entry to be defined.

= vValue: This parameter contains the value to assign to the entry. If you do
not specify a value for this parameter, the current value for the entry is deleted.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [fcalling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

DaRegStrValue()

This function converts a value expressed as a variant to an expression compatible
with the registry (as a string).

AssetCenter 4.4 - Programmer's reference | 551

Internal Basic syntax
Function DaRegStrValue(vValue As Variant) As String

Field of application

Version: 1.0

. MAvailabe
AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow 9

Wizard script

FINISH.DO script of a wizard

Input parameters

o vValue: This parameter contains the value to convert

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

DaRegVarValue()

This function converts a string type value to a variant.

552 | AssetCenter 4.4 - Programmer's reference

Programmer's refere

Internal Basic syntax
Function DaRegVarValue(strValue As String) As Variant

Field of application

Version: 1.0

. Availabe
AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow D

Wizard script

FINISH.DO script of a wizard

Input parameters

o strValue: This parameter contains the string to convert.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

DaRename()

This function renames a file or a folder. It works in one of two ways:
= renaming on the deployment server (in the file depot)
= renaming of the deployment target

AssetCenter 4.4 - Programmer's reference | 553

_

The way in which it works is determined by the value of the file.on_server option,
set using the DaSetOption() function:

= If this option is set to 1, the renaming is on the deployment server.
= If this option is set to 0, the renaming is on the deployment target.

-)" Note:

For further information, refer to the description of the DaSetOption() function.

Internal Basic syntax

Function DaRename(strSource As String, strDest As String) As Long

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow D
Wizard script

FINISH.DO script of a wizard

Input parameters

= strSource: This parameter contains the path of the source file or folder to
rename. If the operation is carried out on the deployment server, it is a path
relative to the absolute path of the file depot. If the operation is carried out
on the deployment target, it is an absolute path.

= strDest: This parameter contains the new name of the file or folder if the form
of a full path. If the operation is carried out on the deployment server, it is
path relative to absolute path in the file depot. If the operation is carried out
on the deployment target, it is an absolute path.

554 | AssetCenter 4.4 - Programmer's reference

Programmer's refere

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]

function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

DaReturnValue()

This function returns the name of the output event of the current activity of the
deployment workflow.

Internal Basic syntax

Function DaReturnValue() As String

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow D
Wizard script

FINISH.DO script of a wizard

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

AssetCenter 4.4 - Programmer's reference | 555

iy
i_

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example
' Set a return value if not already set
If DaReturnValue = "" Then
SetDaReturnValue ("MyEvent")
End If

DaRmDir()

This function deletes a folder and its contents. It works in one of two ways:
= Deletion on the deployment server (in the file depot)
= deletion on the deployment target

This way in which it works is determined by the value of the file.on_server option,
set set using the DaSetOption() function:
= if this option is set to 1, the deletion is on the deployment server

= If this option is set to 0, the deletion is on the deployment target

f Note:

For further information, refer to the description of the DaSetOption() function.

Internal Basic syntax
Function DaRmDir(strDirectory As String) As Long

Field of application

Version: 1.0

AssetCenter API

556 | AssetCenter 4.4 - Programmer's reference

s ref

Configuration script of a field or link

"Script" type action

Deployment workflow]
Wizard script

FINISH.DO script of a wizard

Input parameters

+ strDirectory: This parameter contains the path of the folder to delete. If the
deletion is carried out on the deployment server, it is the path relative to the
absolute path of the file depot. If the deletion is on the deployment target,
it is an absolute path.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

DaSendMail()

This function sends an e-mail. Since the operation is performed by the
deployment server, all the configuration parameters associated with sending
an e-mail must be configured on the server.

The following protocols are supported:

= SMTP: The addresses are as follows:

|SMTP : [name@address.domain] |

= MAPI: The addresses are as following:

|MAPI: [name of the mail box] |

= VIM: The addresses are as follows:

AssetCenter 4.4 - Programmer's reference | 557

IVIM: [name/domain] |

= AM:internal messaging system (corresponding to the employees referenced
in the database). The addresses are as follows:

|AM: [login of the recipient] |

-)’ Note:

In the case of multiple recipients, each address is separated by a comma (",").

Internal Basic syntax

Function DaSendMail(strTo As String, strCc As String, strBcc As String,
strSubject As String, strMessage As String) As Long

Field of application

Version: 1.0

. Availabe
AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow 9

Wizard script

FINISH.DO script of a wizard

Input parameters

= strTo: This parameter contains the list of addresses of recipients of a message.

= strCc: This parameter contains the list of addresses of recipients to receive
copies of a message.

= strBcc: This parameter contains the list of addresses of recipients to receive
blind carbon copies (they do not appear in the list of recipients) of a message.

= strSubject: This parameter contains the title of the message.
= strMessage: This parameter contains the body of the message.

558 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]

function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

DaSetContext()

This function defines a new context in the list of contexts available for a
deployment workflow.

Internal Basic syntax

Function DaSetContext(strField As String, vValue As Variant)

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow D
Wizard script

FINISH.DO script of a wizard

Input parameters

= strField: This parameter contains the name of the context you define.
= vValue: This parameter contains the value of the context that you define.

AssetCenter 4.4 - Programmer's reference | 559

nE
© I ————
|

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error

message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

11
' variables in one shot, improving performances
1Rc = DaFirstEnv ()

if 1Rc <> 0 then
' Get environment variables

strProcArch = DaGetEnv("PROCESSOR_ARCHITECTURE"
strProcId = DaGetEnv("PROCESSOR_IDENTIFIER"
strProcLevel = DaGetEnv("PROCESSOR_LEVEL")
strProcRevision = DaGetEnv("PROCESSOR_REVISION")
strProcCount = DaGetEnv("NUMBER_OF_ PROCESSORS"
strOs = DaGetEnv("OS")

strComputer = DaGetEnv("COMPUTERNAME")

' Check that computer name is the right one
1if strComputer <> DaContext ("Computer.Name") then

end 1if
' Store them in context

DaSetContext "EnvInfo.ProcArch", strProcArch
DaSetContext "EnvInfo.ProcId", strProcId

DaSetContext "EnvInfo.ProcLevel", strProcLevel
DaSetContext "EnvInfo.ProcRevision", strProcRevision
DaSetContext "EnvInfo.ProcCount", strProcCount

DaSetContext "EnvInfo.Os", strOs
DaSetContext "EnvInfo.Computer", strComputer

' Dump
lorint DaDumpContext ()
end if

' Check that environment variables can be retrieved - this also retrieve a

' Get usefull environment variables and store them in context

lporint "Warning: computer name does not look like the right one

560 | AssetCenter 4.4 - Programmer's reference

DaSetOption()

This function enables you to define options for certain other functions. The
functions concerned are:

= All File management functions

= All Remote execution functions

Internal Basic syntax
Function DaSetOption(strOption As String, IValue As Long) As Long

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow]
Wizard script

FINISH.DO script of a wizard

Input parameters

= strOption: This parameter contains the name of the option (between double

guotes) on which you want to intervene. The list of available options is as

follows:

= find.showdir: When you select this option, the DaFind() function includes
the folders in the returned list.

= file.resume: When you select this option, the functions that transfer files
- DaUpload() and DaDownload() - attempt to continue the transfer from
where it was when the transfer was interrupted.

= file.mkdir: When you select this option, the File management functions
authorize you to create folders.

AssetCenter 4.4 - Programmer's reference | 561

= file.overwrite: When you select this option, the File management
functions authorize you to overwrite files with the same name in the target.

= file.recursive: When you select this option, the File management functions
become recursive.

= file.on_server: When you select this option, the DaMove(), DaCopy() and
DaDelete() functions operate on the file depot of the deployment server
and not on the deployment target.

= file.force: When this option is selected, the file is forced. For example,
when associated to the DaDelete function, this option enables you to
delete a file in read-only.

= exec.synchronous: When you select this option, the execution of a
program on the deployment target is synchronous. All later executions
wait until the earlier executions have finished.

= exec.log_output: When you select this option, the messages sent by the
program during its execution on the target are recorded in a log file.

= exec.log_error:When you select this option, the messages resulting from
a program-execution error on the target are recorded in a log file.

= exec.force_visibility: When you execute a program with a graphical
interface, the operating system decides whether or not to display this
graphical interface. If this option is selected, the display is determined by
the value of the exec.visibility option.

= exec.visibility: When you select this option, the execution of a program
on the target causes the program's graphical interface to be displayed on
the target. This option is used in conjunction with the exec.force_visibility
option.

= [Value: This parameter can take one of two values:
= 0:the option is not selected
= 1:The option is selected

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

562 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

Example

' Further invocations of DaUpload, DaDownload, ..

. will not be recursive
lErr = DaSetOption("file.recursive", 0)

DaSetReturnValue()

This function enables you to change the event triggered at the end of the
execution of a Basic Script type activity. The deployment workflow continues

by using the transition associated with the event defined by the strValue
parameter.

/ Note:

The activity's output event is referred to by its name and not by its title.

Internal Basic syntax

Function DaSetReturnValue(strValue As String)

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow]
Wizard script

AssetCenter 4.4 - Programmer's reference | 563

AssetCenter

FINISH.DO script of a wizard

Input parameters

o strValue: This parameter contains the name of the event triggered at the end
of execution of the Basic script.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

dim errCode as long

' call a function that may return error code
errCode = DaFind("c:\images", "*.gif")

If errCode <> 0 Then
DaSetReturnvalue ("Error")
End If

Date()

Returns the current system date.

Internal Basic syntax

Function Date() As Date

564 | AssetCenter 4.4 - Programmer's reference

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

RIS

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

DateAdd()

This function calculates a new date according to a start date to which a real
duration is added.

Internal Basic syntax

Function DateAdd(tmStart As Date, tsDuration As Long) As Date

Field of application

Version: 2.51

AssetCenter 4.4 - Programmer's reference | 565

_

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

& e & & e

Input parameters

= tmStart: This parameter contains the date to which the duration is added.

= tsDuration: This parameter contains the duration (expressed in seconds) to
be added to the date tmStart.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

DateAddLogical()

This function calculates a new date according to a start date to which a logical
duration is added (1 month contains 30 days).

Internal Basic syntax

Function DateAddLogical(tmStart As Date, tsDuration As Long) As Date

566 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

Field of application

Version: 2.51

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

RIS

Input parameters

= tmStart: This parameter contains the date to which the duration is added.

= tsDuration: This parameter contains the duration, expressed in seconds, to
be added to the date tmStart.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

DateDiff()

This function calculates in the seconds the duration (or timespan) between two
dates.

Internal Basic syntax
Function DateDiff(tmEnd As Date, tmStart As Date) As Date

AssetCenter 4.4 - Programmer's reference | 567

Field of application

Version: 2.51

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

& & & e &

Input parameters

= tmEnd: This parameter contains the end date of the period for which the
calculation is carried out.

= tmStart: This parameter contains the start date of the period for which the
calculation is carried out.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example
The following example calculates the time elapsed between 01/01/98 and
01/01/99.
|DateDiff("l998/Ol/Ol 00:00:00", "1999/01/01 00:00:00") |

568 | AssetCenter 4.4 - Programmer's reference

Programmer's refere

DateSerial()

This function returns a date formatted according to the iYear, iMonth and iDay
parameters.

Internal Basic syntax
Function DateSerial(iYear As Long, iMonth As Long, iDay As Long) As Date

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

AR R

Input parameters

= iYear: Year. If the value is between 0 and 99, this parameter describes the
years from 1900 to 1999. For all other years, you must specify the four digits
(e.g. 1800).

= iMonth: Month.
= iDay: Day.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

AssetCenter 4.4 - Programmer's reference | 569

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

Each of these parameters can be set to a numeric expression representing a
number of days, months or years. For example:

[pateserial (1999-10, 3-2, 15-8) |

Returns the value:

[1989/1/7 |

When the value of a parameter is out of the expected range (i.e. 1-31 for days,
1-12 for months, etc.), the function returns an empty date.

DateValue()

This function returns the date portions of a "Date+Time" value.

Internal Basic syntax
Function DateValue(tmDate As Date) As Date

Field of application

Version: 3.00

. Availabe 0000000000000
AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

570 | AssetCenter 4.4 - Programmer's reference

Programmer's refere

FINISH.DO script of a wizard P

Input parameters

¢ tmbDate: "Date+Time" format date.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [fcalling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

The following example:

[patevalue ("1999/09/24 15:00:00")

Returns the value:

[1999/09/24

DaTrackingDelete()

This function deletes a record in the tracking table.

Internal Basic syntax

Function DaTrackingDelete(strDomain As String, strCategory As String,
strSection As String, strName As String) As Long

AssetCenter 4.4 - Programmer's reference | 571

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow D
Wizard script

FINISH.DO script of a wizard

Input parameters

= strDomain: This parameter contains the domain of the record in the tracking
table.

= strCategory: This parameter contains the category of the record in the tracking
table.

= strSection: This parameter contains the section of the record in the tracking
table.

= strName: This parameter contains the name of the record in the tracking
table.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

DaTrackingGet()

This function recovers the value of a field from the tracking table.

572 | AssetCenter 4.4 - Programmer's reference

Programmer's re

Internal Basic syntax

Function DaTrackingGet(strDomain As String, strCategory As String, strSection
As String, strName As String, strField As String) As String

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow D
Wizard script

FINISH.DO script of a wizard

Input parameters

= strDomain: This parameter contains the domain of the record in the tracking
table.

= strCategory: This parameter contains the category of the record in the tracking
table.

= strSection: This parameter contains the section of the record in the tracking
table.

= strName: This parameter contains the name of the record in the tracking
table.

= strField: This parameter contains the name of the field in the tracking table.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AssetCenter 4.4 - Programmer's reference | 573

o ———
DaTrackingSet()

This function populates a field in the tracking table. If the record does not exist,
it is created.

Internal Basic syntax

Function DaTrackingSet(strDomain As String, strCategory As String, strSection
As String, strName As String, strField As String, strValue As String) As Long

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow D
Wizard script

FINISH.DO script of a wizard

Input parameters

= strDomain: This parameter contains the domain of the record in the tracking
table.

= strCategory: This parameter contains the category of the record in the tracking
table.

= strSection: This parameter contains the section of the record in the tracking
table.

= strName: This parameter contains the name of the record in the tracking
table.

= strField: This parameter contains the name of the field in the tracking table.
= strValue: This parameter contains the value of the field in the tracking table.

574 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

DaTrackingTest()

This function returns TRUE if there is a record with these properties in the tracking
table (amDaTracking).

Internal Basic syntax

Function DaTrackingTest(strDomain As String, strCategory As String, strSection
As String, strName As String) As Long

Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow D
Wizard script

FINISH.DO script of a wizard

Input parameters

= strDomain: This parameter contains the domain of the record in the tracking
table.

AssetCenter 4.4 - Programmer's reference | 575

= strCategory: This parameter contains the category of the record in the tracking
table.

= strSection: This parameter contains the section of the record in the tracking
table.

= strName: This parameter contains the name of the record in the tracking
table.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

DaUpload()

This function copies a file, folder or set of files to the deployment target. The
source files must be stored in the file depot of the deployment server.

You can also configure the behavior of this function by setting certain options
using the DaSetOption() option. A full list of this option is included in the
description of the DaSetOption() function.

/ Note:

This function carries out the same operations as the Upload files activity.

Internal Basic syntax

Function DaUpload(strSrcPath As String, strDstPath As String, strSrcNameFilter
As String) As Long

576 | AssetCenter 4.4 - Programmer's reference

I
Field of application

Version: 1.0

AssetCenter API

Configuration script of a field or link

"Script" type action

Deployment workflow D
Wizard script

FINISH.DO script of a wizard

Input parameters

= strSrcPath: This parameter contains the path of the files to copy on the
deployment target. It is a relative path depending on the path of the file
depot on the deployment server. For example, if the absolute path of the
depotis:

|c:\fi1es\depot

and you want to copy a file with the following absolute path:

|c:\files\depot\software\antivirus\update\file.exe

then this parameter will have the following value:

|software\antivirus\update |

= strDstPath: This parameter contains the absolute path of the files copied on
the deployment target. In the previous example this is:

|c:\program files\antivirus\update |
= strSrcNameFilter: This parameter contains wildcard characters, as used by
DOS (* and ?), used to filter the file names.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

AssetCenter 4.4 - Programmer's reference | 577

AssetCenter

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

' Upload whole 'install' directory

lErr = DaUpload("install", "c:/tmp/install"™, "")

' Impersonate

if 1Err = 0 then 1lErr = Dalmpersonate("user", "password", "domain ")

' Execute setup as user, synchronous, and log errors

if 1Err = 0 then

1DummyErr = DaSetOption("exec.synchronous", 1)

1DummyErr = DaSetOption("exec.log output", 1)

1DummyErr = DaSetOption("exec.log error", 1)

end if

if 1Err = 0 then 1lErr = DaExec("c:/tmp/install/setup -i", "c:/tmp/install
n)

' On error, raise 'error' event
if 1Err <> 0 then DaSetReturnValue "ErrorEvent"

DaWait()

This function pause a deployment workflow for a period of time expressed in
seconds.

Internal Basic syntax
Function DaWait(flSecDelay As Double)

Field of application

Version: 1.0

AssetCenter API

578 | AssetCenter 4.4 - Programmer's reference

Programmer's referer

Configuration script of a field or link

"Script" type action

Deployment workflow]
Wizard script

FINISH.DO script of a wizard

Input parameters

s flSecDelay: This parameter defines the length of the pause in seconds.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [fcalling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

' Waits half a second, prints a message and waits 10 seconds
DaWait (0.5)

print "Waiting again..."

DaWait (10)

Day()

Returns the day contained in the tmDate parameter.

Internal Basic syntax
Function Day(tmDate As Date) As Long

AssetCenter 4.4 - Programmer's reference | 579

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

& & & &6

Input parameters

o tmbDate: Parameter in Date+Time format to be processed.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

Dim strDay as String
strDay=Day (Date ())
RetVal=strDay

580 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

EnumToComboBox()

This function reorganizes the items of a free itemized list so that they are in a
format compatible with the wizard list-control. This enables you to display the
values of free itemized lists in drop-down lists in wizards.

Internal Basic syntax

Function EnumToComboBox(strFormat As String) As String

Field of application

Version: 4.3.0

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script D
FINISH.DO script of a wizard D
Input parameters

o strFormat: This parameter contains the list of entries of the system itemized
list. It is better if this parameter contains the result of execution of the
AmDbGetList() function.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

AssetCenter 4.4 - Programmer's reference | 581

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

The following example takes the values of the amWOPriority free itemized list
and reorganizes them in a format that is compatible with the wizard list-control:

Dim strValues As String

strValues = AmDbGetList ("SELECT Value FROM amItemListVal WHERE ItemizedLis
t.Identifier = 'amWOPriority'", ™", m,m, nm)

RetVal = EnumToComboBox (strValues)

EscapeSeparators()

Prefixes one or more separator characters with an escape character.

Internal Basic syntax

Function EscapeSeparators(strSource As String, strSeparators As String,
strEscChar As String) As String

Field of application

Version: 3.5

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

& & & @

582 | AssetCenter 4.4 - Programmer's reference

Programmer's refere

FINISH.DO script of a wizard P

Input parameters

= strSource: Character string to process.

= strSeparators: List of separators to be prefixed. If you want to declare several
separators, you must separate them with the escape character (indicated in
the strEscChar parameter.

= strEscChar: Escape character. It will be used to prefix all separators in
strSeparators.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

Dim MyStr
MyStr=EscapeSeparators ("you|me|you,me|you", "|\,", "\") :'Returns "you\|me
\ | you\, me\ |you"

ExeDir()

This function returns the full path of the executable.

Internal Basic syntax
Function ExeDir() As String

AssetCenter 4.4 - Programmer's reference | 583

Field of application

Version: 3.60

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

& & & &6

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

Dim strPath as string
strPath=ExeDir ()

Exp()

Returns the exponent of a number.

Internal Basic syntax
Function Exp(dValue As Double) As Double

584 | AssetCenter 4.4 - Programmer's reference

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

RIS

Input parameters

+ dValue: Number whose exponent you want to know.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

Dim iSeed as Integer
iSeed = Int((10*Rnd)-5)
RetVal = Exp(iSeed)

ExtractValue()

Extracts from a string the values delimited by a separator. The recovered value
is deleted from the source string. This operation takes into account a possible

AssetCenter 4.4 - Programmer's reference | 585

“
|_

escape character. If the separator is not found in the source string, the whole
string is returned and the source string is deleted in full.

Internal Basic syntax

Function ExtractValue(pstrData As String, strSeparator As String, strEscChar
As String) As String

Field of application

Version: 3.5

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

AR R

Input parameters

= pstrData: Source string to be processed.
= strSeparator: Character used as separator in the source string.

= strEscChar: Escape character. If this character prefixes the separator, it will
be ignored.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

586 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

Example

Dim MyStr

MyStr=ExtractValue ("you,me", ",", "\") :'Returns "you" and leaves "me" in

the source string

MyStr=ExtractValue(",you,me", ",", "\") :'Returns "" and leaves "you,me" i
n the source string

MyStr=ExtractValue ("you", ",", "\") :'Returns "you" and leaves "" in the s
ource string

MyStr=ExtractValue ("you\,me", ",", "\") :'Returns "you\,me" and leaves ""

in the source string

MyStr=ExtractValue ("you\,me", ",", "") :'Returns "you\" and leaves "me" in
the source string

Retval=""

FileCopy()

Copies a file or a folder.

Internal Basic syntax
Function FileCopy(strSource As String, strDest As String) As Long

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

LIRS R

Input parameters

= strSource: Full path of the file or directory to copy.

AssetCenter 4.4 - Programmer's reference | 587

AssetCenter

= strDest: Full path of the target file or directory.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

FileDateTime()

Returns the time and date of a file as a Long.

Internal Basic syntax

Function FileDateTime(strFileName As String) As Date

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

& & E| e

Input parameters

+ strFileName: Full path name of the file concerned by the operation.

588 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

FileExists()

This function tests for the existence of a file. The function returns the following
values:

= 0:File not found.
= 1:File found.

Internal Basic syntax

Function FileExists(strFileName As String) As Long

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

IR AR

AssetCenter 4.4 - Programmer's reference | 589

AssetCenter

FINISH.DO script of a wizard e/
Input parameters
o strFileName: This parameter contains the full path of the file you want to test
for.
Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

If FileExists("c:\tmp\myfile.log") Then

strFileName = "c:\archive\" + FormatDate(Date, "dddd d mmm yyyy") + ".lo
g"

FileCopy ("c:\tmp\myfile.log", strFileName)

End if

FileLen()

Returns the size of afile.

Internal Basic syntax

Function FileLen(strFileName As String) As Long

590 | AssetCenter 4.4 - Programmer's reference

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

RIS

Input parameters

o strFileName: Full path name of the file concerned by the operation.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Fix()

Returns the integer portion of a number (first greatest integer in the case of a
negative number).

Internal Basic syntax
Function Fix(dValue As Double) As Long

AssetCenter 4.4 - Programmer's reference | 591

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

& & & &6

Input parameters

o dValue: Number whose integer portion you want to know.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

Dim dSeed as Double
dSeed = (10*Rnd) -5
RetVal = Fix(dSeed)

FormatDate()

Formats a date according to the expression contained in the strFormat parameter.

592 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

Internal Basic syntax

Function FormatDate(tmFormat As Date, strFormat As String) As String

Field of application

Version: 3.00

. Availabe
AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

LR R

Input parameters

= tmFormat: Date to be formatted.
= strFormat: Expression containing the formatting instructions.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

The following example of code shows how to format a date:

Dim MyDate

MyDate="2000/03/14"

RetVal=FormatDate (MyDate, "dddd d mmmm yyyy") :'Returns "Tuesday 14 March
2000"

AssetCenter 4.4 - Programmer's reference | 593

“
|_

FormatResString()

This function processes a source string, replacing the variable $1, $2, $3, $4, and
$5 with the strings passed in the strParamOne, strParamTwo, strParamThree,
strParamFour, and strParamFive parameters.

Internal Basic syntax

Function FormatResString(strResString As String, strParamOne As String,
strParamTwo As String, strParamThree As String, strParamFour As String,
strParamFive As String) As String

Field of application

Version: 3.5

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

& & e &S

Input parameters

= strResString: Source string to be processed.

= strParamOne: Replacement string of variable $1.

= strParamTwo: Replacement string of variable $2.
= strParamThree: Replacement string of variable $3.
= strParamFour: Replacement string of variable $4.
= strParamFive: Replacement string of variable $5.

594 | AssetCenter 4.4 - Programmer's reference

Programmer's refere

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

The following example:

|FormatResString("I$1he$2you$3", "you", "we", "they")

returns "lyouheweyouthey".

FV()

This function returns the future amount of an annuity based on constant and
periodic payments, with a set interest rate.

Internal Basic syntax

Function FV(dblRate As Double, iNper As Long, dbIPmt As Double, dbIPV As
Double, iType As Long) As Double

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link D
"Script" type action ¥
Deployment workflow]

AssetCenter 4.4 - Programmer's reference | 595

_

Wizard script D
FINISH.DO script of a wizard ¥/
Input parameters

+ dblRate: This parameter indicates the interest rate per date of payment. For
example, the rate per date of payment for a loan with a 6% annual interest
rate, paid back by monthly dates of payment, would be:

[0.06/12=0.005 or 0.5% |

= iNper: This parameter contains the total number of dates of payment for the
financial operation.

= dbIPmt: This parameter indicates the amount of the payment to be made at
each date of payment. The payment generally includes both principal and
interest.

= dbIPV: This parameter contains the actual value (or overall sum) for a series
of payments to be made in the future.

= iType: This parameter indicates the payment deadline. It can have one of the
following values:
= 0if the payments are due in arrears (i.e. at the end of the period)

= 1if the payments are due in advance (i.e. at the start of the period)

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

596 | AssetCenter 4.4 - Programmer's reference

Programmer's referer

Notes

/ Note:

= The Rate and Nper parameters must be calculated using payments expressed
in the same units.

= Amounts paid (expressed in particular by the Pmt parameter) are represented
by negative numbers. Sums received are represented by positive numbers.

GetEnvVar()

This function returns the value of an environment variable. An empty value is
returned if the environment variable does not exist.

Internal Basic syntax
Function GetEnvVar(strVar As String, bExpand As Long) As String

Field of application

Version: 3.2.0

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

RIS

Input parameters

= strVar: This parameter contains the name of the environment variable.

AssetCenter 4.4 - Programmer's reference | 597

“
|_

= bExpand: This Boolean parameter is useful when the environment variable
references one or more environment variable. In this case, when this
parameter is set to 1 (default value), each referenced variable is replaced by
its value. Otherwise, it is left alone.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

|RetVal = getEnvVar ("PROMPT")

GetListltem()

Returns the INbth portion of a string delimited by separators.

Internal Basic syntax

Function GetListltem(strFrom As String, strSep As String, INb As Long,
strEscChar As String) As String

Field of application

Version: 3.5

AssetCenter API
Configuration script of a field or link D

598 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

"Script" type action
Deployment workflow
Wizard script

FINISH.DO script of a wizard

IR AR

Input parameters

= strFrom: Source string to be processed.
= strSep: Character used as separator in the source string.
= INb: Position of the string to recover.

= strEscChar: Escape character. If this character prefixes a separator, it will be
ignored.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example
The following example:
[cetListItem("this_is_a_test", " ", 2, "%") |
returns "is".
[cgetListItem("this%_is_a_test", "_", 2, "%") |
returns "a".

Returns the hexadecimal value of a decimal parameter.

AssetCenter 4.4 - Programmer's reference | 599

Internal Basic syntax
Function Hex(dValue As Double) As String

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

AR R

Input parameters

+ dValue: Decimal number whose hexadecimal value you want to know.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Hour()

Returns the hour value contained in the tmTime parameter.

600 | AssetCenter 4.4 - Programmer's reference

Programmer's referer

Internal Basic syntax

Function Hour(tmTime As Date) As Long

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

LSRR

Input parameters

o tmTime: Parameter in Date+Time format to be processed.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

Dim strHour as String
strHour=Hour (Date ())
RetVal=strHour

AssetCenter 4.4 - Programmer's reference | 601

_

InStr()

Returns the character position of the first occurrence of a string within a string.

Internal Basic syntax

Function InStr(IPosition As Long, strSource As String, strPattern As String,
bCaseSensitive As Long) As Long

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

& & e &S

Input parameters

= [Position: Starting point of the search. This parameter is not optional and
must be a valid positive integer no greater than 65,535.

= strSource: String in which the search is performed.
= strPattern: String to search.

= bCaseSensitive: Depending on this parameter, the search is case sensitive
(=1) or not (=0).

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

602 | AssetCenter 4.4 - Programmer's reference

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Notes

/ Note:

The position of the first occurence is always 1. The function returns 0 if the
character string searched is not found.

Example

Dim strSource as String

Dim strToSearch as String

Dim iPosition

strSource = "Good Bye"

strToSearch = "Bye"

iPosition = Instr (2, strSource, strToSearch)
RetVal=iPosition

Int()

Returns the integer portion of a number (first lesser than integer in the case of
a negative number).

Internal Basic syntax
Function Int(dValue As Double) As Long

Field of application

Version: 3.00

AssetCenter 4.4 - Programmer's reference | 603

L ——

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

& e & &6

Input parameters

« dValue: Number whose integer portion you want to know.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

Dim iSeed as Integer
iSeed = Int((10*Rnd)-5)
RetVal = Abs (iSeed)

IPMT()

This function returns the amount of interest for an given date of payment of an
annuity.

604 | AssetCenter 4.4 - Programmer's reference

T
I

Internal Basic syntax

Function IPMT(dblRate As Double, iPer As Long, iNper As Long, dbIPV As
Double, dblFV As Double, iType As Long) As Double

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

LSRR

Input parameters

+ dblRate: This parameter indicates the interest rate per date of payment. For
example, the rate per date of payment for a loan with a 6% annual interest
rate, paid back by monthly dates of payment, would be:

[0.06/12=0.005 or 0.5% |

= iPer: This parameter indicates the period for the calculation, between 1 and
the value of the Nper parameter.

= iNper: This parameter contains the total number of dates of payment for the
financial operation.

= dblIPV: This parameter contains the actual value (or overall sum) for a series
of payments to be made in the future.

= dblIFV:This parameter contains the future value or the balance that you want
to obtain after having paid the final date of payment. In general, and
particularly when reimbursing a loan, this parameter is set to "0". In effect,
once you have made all the dates of payment, the value of the loan is nil.

= iType: This parameter indicates the payment deadline. It can have one of the
following values:
= 0if the payments are due in arrears (i.e. at the end of the period)
= 1if the payments are due in advance (i.e. at the start of the period)

AssetCenter 4.4 - Programmer's reference | 605

iy
i_

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Notes

-,-/ Note:

= TheRate and Nper parameters must be calculated using payments expressed
in the same units.

= Amounts paid (expressed in particular by the Pmt parameter) are represented
by negative numbers. Sums received are represented by positive numbers.

IsNumeric()

This function enables you to determine whether a character string contains a
numeric value.

Internal Basic syntax

Function IsNumeric(strString As String) As Long

Field of application

Version: 3.5

AssetCenter API
Configuration script of a field or link v/

606 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

"Script" type action
Deployment workflow
Wizard script

FINISH.DO script of a wizard

IR AR

Input parameters

o strString: This parameter contains the character string to analyze.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Kill()

Deletes a file.

Internal Basic syntax
Function Kill(strKilledFile As String) As Long

Field of application

Version: 3.00
AssetCenter API
Configuration script of a field or link D

AssetCenter 4.4 - Programmer's reference | 607

AssetCenter

"Script" type action
Deployment workflow
Wizard script

FINISH.DO script of a wizard

& e & &

Input parameters

+ strKilledFile: Full path of the file concerned by the operation.

Output parameters

= 0:Normal execution.
= Other than zero: Error code.

LCase()

Returns a string in which all letters of the string parameter have been converted
to lower case.

Internal Basic syntax
Function LCase(strString As String) As String

Field of application

Version: 3.00

@ Availbe 00000000000
AssetCenter APl
Configuration script of a field or link 9
"Script" type action D

O

O

Deployment workflow
Wizard script

608 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

FINISH.DO script of a wizard D

Input parameters

s strString: Character string to convert to lowercase.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [fcalling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

' This example uses the LTrim and RTrim functions to strip leading ' and t
railing spaces, respectively, from a string variable.

' It uses the Trim function alone to strip both types of spaces.

' LCase and UCase are also shown in this example as well as the use

' of nested function calls

Dim strString as String
Dim strTrimString as String

strString = " <-Trim-> " :' Initialize string.

strTrimString = LTrim(strString) :' strTrimString = "<-Trim-> ".
strTrimString = LCase (RTrim(strString)) :' strTrimString = " <-trim->".
strTrimString = LTrim(RTrim(strString)) :' strTrimString = "<-Trim->".

' Using the Trim function alone achieves the same result.

strTrimString = UCase (Trim(strString)) :' strTrimString = "<-TRIM->".
RetVal= "|" & strTrimString & "|"

Left()

Returns the left most iNumber characters of a string parameter.

AssetCenter 4.4 - Programmer's reference | 609

iy
i_

Internal Basic syntax
Function Left(strString As String, INumber As Long) As String

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

AR R

Input parameters

= strString: Character string to process.
= INumber: Number of characters to return.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example
Dim 1Word, strMsg, rWord, iPos :' Declare variables.
strMsg = "Left () Test."
iPos = InStr(l, strMsg, " ") :' Find space.
1Word = Left (strMsg, iPos - 1) :' Get left word.
rWord = Right (strMsg, Len(strMsg) - iPos) :' Get right word.

610 | AssetCenter 4.4 - Programmer's reference

Programmer's refere

strMsg=rWord+1lWord :' And swap them
RetVal=strMsg

LeftPart()

Extracts the portion of a string to the left of the separator specified in the strSep
parameter.

The search for the separator is performed from left to right.
The search can be made case sensitive using the bCaseSensitive parameter.

Internal Basic syntax

Function LeftPart(strFrom As String, strSep As String, bCaseSensitive As Long)
As String

Field of application

Version: 3.5

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

LRI R

Input parameters

= strFrom: Source string to be processed.
= strSep: Character used as separator in the source string.

= bCaseSensitive: Depending on this parameter, the search is case sensitive
(=1) or not (=0).

AssetCenter 4.4 - Programmer's reference | 611

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

These examples illustrate use of the LeftPart, LeftPartFromRight, RightPart,
and RightPartFromLeft functions on the same string: "This_is_a_test":

[LeftPart ("This_is_a_test","_",0)

Returns "This".

|LeftPartFromRight("This_is_a_test","_",0)

Returns "This_is_a".

|RightPart("This_is_a_test","_",O)

Returns "test".

|RightPartFromLeft("This_is_a_test","_",0)

Returns "is_a_test".

LeftPartFromRight()

Extracts the portion of a string to the left of the separator specified in the strSep
parameter.

The search for the separator is performed from right to left.
The search can be made case sensitive using the bCaseSensitive parameter.

Internal Basic syntax

Function LeftPartFromRight(strFrom As String, strSep As String, bCaseSensitive
As Long) As String

612 | AssetCenter 4.4 - Programmer's reference

s ref

Field of application

Version: 3.5

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

RIS

Input parameters

= strFrom: Source string to be processed.
= strSep: Character used as separator in the source string.

= bCaseSensitive: Depending on this parameter, the search is case sensitive
(=1) or not (=0).

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= Ifcalling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

These examples illustrate use of the LeftPart, LeftPartFromRight, RightPart,
and RightPartFromLeft functions on the same string: "This_is_a_test":

|LeftPart ("This _is_a test","_",0) |

Returns "This".

|LeftPartFromRight ("This is_a test","_",0) |

Returns "This_is_a".

AssetCenter 4.4 - Programmer's reference | 613

AssetCenter

RightPart ("This_is_a_test"," ",0) |

Returns "test".

|RightPartFromLeft ("This_is_a test","_",0) |

Returns "is_a_test".

Len()

Returns the number of characters in a string or a variant.

Internal Basic syntax

Function Len(vValue As Variant) As Long

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

& & E| e

Input parameters

+ VvValue: Variant concerned by the operation.

Output parameters

In case of error, there are two possibilities:

614 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

Dim strTest as String

Dim iLength as Integer

strTest = "Peregrine Systems"

iLength = Len(strTest) :'The value of iLength is 17
RetVal=iLength

LocalToBasicDate()

This function converts a string format date (as displayed in Windows Control
Panel) to a Basic format date .

Internal Basic syntax

Function LocalToBasicDate(strDateLocal As String) As String

Field of application

Version: 3.5

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

AR R

AssetCenter 4.4 - Programmer's reference | 615

AssetCenter

FINISH.DO script of a wizard e/

Input parameters

o strDatelocal: Date as string to convert.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

LocalToBasicTime()

This function converts a string format time (as displayed in Windows Control
Panel) to a Basic format time.

Internal Basic syntax

Function LocalToBasicTime(strTimeLocal As String) As String

Field of application

Version: 3.5

AssetCenter API

Configuration script of a field or link 7
"Script" type action 9
Deployment workflow 9

616 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

Wizard script D
FINISH.DO script of a wizard D
Input parameters

s strTimeLocal: Time in string format to convert.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [fcalling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

LocalToBasicTimeStamp()

This function converts a Date+Time in string format (as displayed in Windows
Control Panel) to a Date+Time in Basic format.

Internal Basic syntax

Function LocalToBasicTimeStamp(strTSLocal As String) As String

Field of application

Version: 3.5

AssetCenter API
Configuration script of a field or link D
"Script" type action)

AssetCenter 4.4 - Programmer's reference | 617

AssetCenter

Deployment workflow 9

Wizard script 9

FINISH.DO script of a wizard ¥/
Input parameters

s strTSLocal: Date+Time in string format to convert.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

LocalToUTCDate()

This function converts a date in "Date+Time" format to a UTC format date
(time-zone independent).

Internal Basic syntax

Function LocalToUTCDate(tmLocal As Date) As Date

Field of application

Version: 3.5
AssetCenter API
Configuration script of a field or link 9

618 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

"Script" type action
Deployment workflow
Wizard script

FINISH.DO script of a wizard

IR AR

Input parameters

¢ tmlLocal: "Date+Time" format date.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Log()

Returns the natural log of a number.

Internal Basic syntax
Function Log(dValue As Double) As Double

Field of application

Version: 3.00
AssetCenter API
Configuration script of a field or link D

AssetCenter 4.4 - Programmer's reference | 619

"Script" type action
Deployment workflow
Wizard script

FINISH.DO script of a wizard

& e & &

Input parameters

o dValue: Number whose logarithm you want to know.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

Dim dSeed as Double
dSeed = Int((10*Rnd)-5)
RetVal = Log(dSeed)

LTrim()

Removes all leading spaces in a string.

Internal Basic syntax
Function LTrim(strString As String) As String

620 | AssetCenter 4.4 - Programmer's reference

I
Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

RIS

Input parameters

o strString: Character string to process.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

' This example uses the LTrim and RTrim functions to strip leading ' and t
railing spaces, respectively, from a string variable.

' It uses the Trim function alone to strip both types of spaces.

' LCase and UCase are also shown in this example as well as the use

' of nested function calls

Dim strString as String
Dim strTrimString as String

strString = " <-Trim-> " :' Initialize string.

strTrimString = LTrim(strString) :' strTrimString = "<-Trim-> ".
strTrimString = LCase (RTrim(strString)) :' strTrimString = " <-trim->".
strTrimString = LTrim(RTrim(strString)) :' strTrimString = "<-Trim->".

' Using the Trim function alone achieves the same result.

AssetCenter 4.4 - Programmer's reference | 621

strTrimString = UCase (Trim(strString)) :' strTrimString = "<-TRIM->".

RetVal= "|" & strTrimString & "|"

MakelnvertBool()

This function returns an inverse Boolean; (0 becomes 1, all other numbers become
0).

Internal Basic syntax

Function MakelnvertBool(IValue As Long) As Long

Field of application

Version: 3.5

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

& & e e s

Input parameters

o IValue: Number concerned by the operation.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

622 | AssetCenter 4.4 - Programmer's reference

Programmer's referer

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Dim MyValue
MyValue=MakeInvertBool (0) :'Returns 1
MyValue=MakeInvertBool (1) :'Returns 0

MyValue=MakeInvertBool (254) :'Returns 0

Mid()

Returns a substring within a string.

Internal Basic syntax
Function Mid(strString As String, IStart As Long, ILen As Long) As String

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

LIRS R

Input parameters

= strString: String concerned by the operation.
= [Start: Start position of the string to extract from within strString.

AssetCenter 4.4 - Programmer's reference | 623

= ILen: Length of the string to extract.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Dim strTest as String
strTest="One Two Three" :' Defines the test string
strTest=Mid (strTest,5,3) :' strTest="Two"

RetVal=strTest

Minute()

Returns the number of minutes contained in the time expressed in the tmTime
parameter.

Internal Basic syntax

Function Minute(tmTime As Date) As Long

Field of application

Version: 3.00

AssetCenter API
Configuration script of a field or link D

624 | AssetCenter 4.4 - Programmer's reference

Programmer's referer

"Script" type action
Deployment workflow
Wizard script

FINISH.DO script of a wizard

IR AR

Input parameters

o tmTime: Parameter in Date+Time format to be processed.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

Dim strMinute

strMinute=Minute (Date ())

RetVal=strMinute :'Returns the number of minutes elapsed in the current ho
ur, for example "45" if the time is 15:45:30

MkDir()

Creates a new directory.

Internal Basic syntax
Function MkDir(strMkDirectory As String) As Long

AssetCenter 4.4 - Programmer's reference | 625

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

& & & &6

Input parameters

o strMkDirectory: Full path of the directory to create.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

Example

Dim 1Err as Long
' Create the c:\tmp directory
1Err = MkDir ("c:\tmp")

Month()

Returns the month contained in the date expressed in the tmDate parameter.

Internal Basic syntax
Function Month(tmDate As Date) As Long

626 | AssetCenter 4.4 - Programmer's reference

I
Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

RIS

Input parameters

o tmbDate: Parameter in Date+Time format to be processed.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

Dim 1lMonth as Long
1Month=Month (Date ())
RetVal=1Month :'Returns the current month

Changes the name of file.

AssetCenter 4.4 - Programmer's reference | 627

Internal Basic syntax

Function Name(strSource As String, strDest As String)

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

AR R

Input parameters

= strSource: Full path of the file to rename.
= strDest: New file name.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

Dim 1Err as Long
' Rename "C:\tmp\src.txt" as "D:\tmp\dst.txt"
1Err = Name ("C:\tmp\src.txt", "D:\tmp\dst.txt")

628 | AssetCenter 4.4 - Programmer's reference

S
Now()

Returns the current date and time.

Internal Basic syntax

Function Now() As Date

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

AR R

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [fcalling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

This function returns the number of payments of an annuity based on constant
and periodic payments, and at a constant interest rate.

AssetCenter 4.4 - Programmer's reference | 629

Internal Basic syntax

Function NPER(dblRate As Double, dbIPmt As Double, dbIPV As Double, dbIFV
As Double, iType As Long) As Double

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

AR R

Input parameters

+ dblRate: This parameter indicates the interest rate per date of payment. For
example, the rate per date of payment for a loan with a 6% annual interest
rate, paid back by monthly dates of payment, would be:

0.06/12=0.005 or 0.5% |

= dbIPmt: This parameter indicates the amount of the payment to be made at
each date of payment. The payment generally includes both principal and
interest.

= dbIPV: This parameter contains the actual value (or overall sum) for a series
of payments to be made in the future.

= dblFV:This parameter contains the future value or the balance that you want
to obtain after having paid the final date of payment. In general, and
particularly when reimbursing a loan, this parameter is set to "0". In effect,
once you have made all the dates of payment, the value of the loan is nil.

= iType: This parameter indicates the payment deadline. It can have one of the

following values:

= 0if the payments are due in arrears (i.e. at the end of the period)

= 1if the payments are due in advance (i.e. at the start of the period)

630 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Notes

/ Note:

Amounts paid (expressed in particular by the Pmt parameter) are represented
by negative numbers. Sums received are represented by positive numbers.

Oct()

Returns the octal value of the decimal parameter.

Internal Basic syntax
Function Oct(dValue As Double) As String

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

AssetCenter 4.4 - Programmer's reference | 631

L ——

FINISH.DO script of a wizard e/

Input parameters

o dValue: Number whose octal value you want to know.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

Dim dSeed as Double
dSeed = Int((10*Rnd)-5)
RetVal = Oct (dSeed)

ParseDate()

This function converts a date expressed as a character string to a Basic date
object.

Internal Basic syntax

Function ParseDate(strDate As String, strFormat As String, strStep As String)
As Date

632 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

Field of application

Version: 3.60

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

RIS

Input parameters

= strDate: Date in string format.

= strFormat: This parameter contains the format of the date contained in the
character string. The possible values are the following:

= DD/MM/YY
= DD/MM/YYYY
= MM/DD/YY

= MM/DD/YYYY

= YYYY/MM/DD

= Date: date expressed according to the settings of the client computer.
= Datelnter: date expressed in the international format

= strStep: This optional parameter contains the date separator used in the
character string. The authorized separators are "\" and "-".

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [fcalling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AssetCenter 4.4 - Programmer's reference | 633

Example

Dim dDate as date
dDate=ParseDate ("2001/05/01", "YYYY/MM/DD")

ParseDMYDate()

This function returns a Date object (as understood in Basic) from a date formatted
as follows:

[ad/mm/yyyy |

Internal Basic syntax
Function ParseDMYDate(strDate As String) As Date

Field of application

Version: 3.5

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

& & & &6

Input parameters

« strDate: Date stored as a string.

Output parameters

In case of error, there are two possibilities:

634 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

Dim dDate as Date
dDate = ParseDMYDate ("31/02/2003")

ParseMDYDate()

This function returns a Date object (as understood in Basic) from a date formatted
as follows:

[rm/ad/yyyy |

Internal Basic syntax
Function ParseMDYDate(strDate As String) As Date

Field of application

Version: 3.5

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

IR AR

AssetCenter 4.4 - Programmer's reference | 635

FINISH.DO script of a wizard e/

Input parameters

o strDate: Date stored as a string.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

Dim dDate as Date
dDate = ParseMDYDate ("02/31/2003")

ParseYMDDate()

This function returns a Date object (as understood in Basic) in yyyy/mm/dd
format.

Internal Basic syntax
Function ParseYMDDate(strDate As String) As Date

Field of application

Version: 3.5

636 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

LRI

Input parameters

o strDate: Date stored as a string.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [fcalling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

Dim dDate as Date
dDate = ParseYMDDate ("2003/02/31")

PMT()

This function returns the amount of an annuity based on constant and periodic
payments, and at a constant interest rate.

Internal Basic syntax

Function PMT(dbIRate As Double, iNper As Long, dbIPV As Double, dbIFV As
Double, iType As Long) As Double

AssetCenter 4.4 - Programmer's reference | 637

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

& & & e &

Input parameters

+ dblRate: This parameter indicates the interest rate per date of payment. For
example, the rate per date of payment for a loan with a 6% annual interest
rate, paid back by monthly dates of payment, would be:

[0.06/12=0.005 or 0.5% |

= iNper: This parameter contains the total number of dates of payment for the
financial operation.

= dbIPV: This parameter contains the actual value (or overall sum) for a series
of payments to be made in the future.

= dbIFV:This parameter contains the future value or the balance that you want
to obtain after having paid the final date of payment. In general, and
particularly when reimbursing a loan, this parameter is set to "0". In effect,
once you have made all the dates of payment, the value of the loan is nil.

= iType: This parameter indicates the payment deadline. It can have one of the
following values:
= 0if the payments are due in arrears (i.e. at the end of the period)
= 1if the payments are due in advance (i.e. at the start of the period)

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

638 | AssetCenter 4.4 - Programmer's reference

Programmer's refere

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Notes

/ Note:

= TheRate and Nper parameters must be calculated using payments expressed
in the same units.

= Amounts paid (expressed in particular by the Pmt parameter) are represented
by negative numbers. Sums received are represented by positive numbers.

PPMT()

This function returns the amount of capital reimbursed for a given date of
payment in an annuity based on constant and periodic payments and at a
constant interest rate.

Internal Basic syntax

Function PPMT(dblRate As Double, iPer As Long, iNper As Long, dbIPV As
Double, dblFV As Double, iType As Long) As Double

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link D
"Script" type action D
Deployment workflow D
Wizard script D

AssetCenter 4.4 - Programmer's reference | 639

FINISH.DO script of a wizard 9

Input parameters

+ dblRate: This parameter indicates the interest rate per date of payment. For
example, the rate per date of payment for a loan with a 6% annual interest
rate, paid back by monthly dates of payment, would be:

[0.06/12=0.005 or 0.5% |

= iPer: This parameter indicates the period for the calculation, between 1 and
the value of the Nper parameter.

= iNper: This parameter contains the total number of dates of payment for the
financial operation.

= dbIPV: This parameter contains the actual value (or overall sum) for a series
of payments to be made in the future.

= dbIFV:This parameter contains the future value or the balance that you want
to obtain after having paid the final date of payment. In general, and
particularly when reimbursing a loan, this parameter is set to "0". In effect,
once you have made all the dates of payment, the value of the loan is nil.

= iType: This parameter indicates the payment deadline. It can have one of the
following values:
= 0if the payments are due in arrears (i.e. at the end of the period)
= 1if the payments are due in advance (i.e. at the start of the period)

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

640 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

Notes

/ Note:

= The Rate and Nper parameters must be calculated using payments expressed
in the same units.

= Amounts paid (expressed in particular by the Pmt parameter) are represented
by negative numbers. Sums received are represented by positive numbers.

PV()

This function returns the actual amount of an annuity based on constant and
periodic future deadlines, and on a fixed interest rate.

Internal Basic syntax

Function PV(dblRate As Double, iNper As Long, dblPmt As Double, dbIFV As
Double, iType As Long) As Double

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

LRI

AssetCenter 4.4 - Programmer's reference | 641

FINISH.DO script of a wizard 9

Input parameters

+ dblRate: This parameter indicates the interest rate per date of payment. For
example, the rate per date of payment for a loan with a 6% annual interest
rate, paid back by monthly dates of payment, would be:

[0.06/12=0.005 or 0.5% |

= iNper: This parameter contains the total number of dates of payment for the
financial operation.

= dbIPmt: This parameter indicates the amount of the payment made at each
date of payment. The payment generally includes both principal and interest.

= dblFV:This parameter contains the future value or the balance that you want
to obtain after having paid the final date of payment. In general, and
particularly when reimbursing a loan, this parameter is set to "0". In effect,
once you have made all the dates of payment, the value of the loan is nil.

= iType: This parameter indicates the payment deadline. It can have one of the
following values:
= 0if the payments are due in arrears (i.e. at the end of the period)
= 1if the payments are due in advance (i.e. at the start of the period)

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

642 | AssetCenter 4.4 - Programmer's reference

Programmer's referer

Notes

/ Note:

= The Rate and Nper parameters must be calculated using payments expressed
in the same units.

= Amounts paid (expressed in particular by the Pmt parameter) are represented
by negative numbers. Sums received are represented by positive numbers.

Randomize()

Initializes the random number generator.

Internal Basic syntax

Function Randomize(lValue As Long)

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

RIS

Input parameters

o [Value: Optional parameter used to initialize the random-number generator
of the Rnd function by specifying a new initial value. If this parameter is
omitted , the value returned by the system clock is used as the initial value.

AssetCenter 4.4 - Programmer's reference | 643

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Notes

See also:
o Rnd() [page 656]

Example

Dim MyNumber

Randomize

MyNumber= Int((10*Rnd)+1) :'Returns a random value between 1 and 10.
RetVal=MyNumber

RATE()

This function returns the interest rate per date of payment for an annuity.

Internal Basic syntax

Function RATE(iNper As Long, dbIPmt As Double, dbIFV As Double, dbIPV As
Double, iType As Long, dblGuess As Double) As Double

Field of application

Version: 3.00

644 | AssetCenter 4.4 - Programmer's reference

Programmer's

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

LIRS R

Input parameters

= iNper: This parameter contains the total number of dates of payment for the
financial operation.

= dbIPmt: This parameter indicates the amount of the payment to be made at
each date of payment. The payment generally includes both principal and
interest.

= dblIFV:This parameter contains the future value or the balance that you want
to obtain after having paid the final date of payment. In general, and
particularly when reimbursing a loan, this parameter is set to "0". In effect,
once you have made all the dates of payment, the value of the loan is nil.

= dblPV: This parameter contains the actual value (or overall sum) for a series
of payments to be made in the future.

= iType: This parameter indicates the payment deadline. It can have one of the
following values:
= 0if the payments are due in arrears (i.e. at the end of the period)
= 1if the payments are due in advance (i.e. at the start of the period)

= dblGuess: This parameter contains the estimated value of the interest rate
per date of payment.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= Ifcalling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AssetCenter 4.4 - Programmer's reference | 645

_

Notes

-)" Note:

= Amounts paid (expressed in particular by the Pmt parameter) are represented
by negative numbers. Sums received are represented by positive numbers.
= This function performs its calculation using iterations, starting with the value

assigned in the Guess parameter. If no result is found after 20 iterations, the
function fails.

RemoveRows()

Performs a deletion in a list of lines identified by the strRowNames parameter.

This function is useful when processing "ListBox" control type values. Values
from this type of control are represented as arrays as described below:
= The"|" character is used as the column separator.

= The"," character is used as the line separator.
= Each line ends with a unique identifier at the right of the "=" sign.

Internal Basic syntax

Function RemoveRows(strList As String, strRowNames As String) As String

Field of application

Version: 3.5

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

646 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

FINISH.DO script of a wizard D

Input parameters

= strList: Source string containing the values of a "ListBox" control to be
processed.

= strRowNames: Identifiers of lines to be deleted. The identifiers are separated
by commas.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Notes
See also:
= Sublist() [page 674]
= SetSubList() [page 663]
= ApplyNewVals() [page 441]
Example
Dim MyStr
MyStr=RemoveRows ("al|a2=a0,bl|b2=b0", "a0,c0") :'Returns "bl|b2=bo"

RetVal=MyStr

AssetCenter 4.4 - Programmer's reference | 647

“
|_

Replace()

Replaces all occurrences of the strOldPattern parameter with the strNewPattern
parameter inside the character string contained in the strData parameter. The
search for the strOldPattern parameter can be made case-sensitive using the
value of the bCaseSensitive parameter.

Internal Basic syntax

Function Replace(strData As String, strOldPattern As String, strNewPattern
As String, bCaseSensitive As Long) As String

Field of application

Version: 3.5

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

& & e &S

Input parameters

= strData: Character string containing the occurrences to be replaced.

= strOldPattern: Occurrence to find in the string contained in the strData
parameter.

= strNewPattern: Text replacing each occurrence found.

= bCaseSensitive: Depending on this parameter, the search is case sensitive
(=1) or not (=0). By default, this parameter is set to 1.

648 | AssetCenter 4.4 - Programmer's reference

Programmer's referer

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example
Dim MyStr
MyStr=Replace ("youmeyoumeyou", "you", "me",0) :'Returns "mememememe"
MyStr=Replace ("youmeyoumeyou", "You", "me",1l) :'Returns "youmeyoumeyou"
MyStr=Replace ("youmeYoumeyou", "You", "me",1l) :'Returns "youmememeyou"

Right()

Returns the rights most iNumber characters of the string parameter.

Internal Basic syntax
Function Right(strString As String, INumber As Long) As String

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

AssetCenter 4.4 - Programmer's reference | 649

L ——

FINISH.DO script of a wizard e/

Input parameters

= strString: Character string to process.
= INumber: Number of characters to return.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example
Dim 1lWord, strMsg, rWord, iPos :' Declare variables.
strMsg = "Left() Test."
iPos = InStr(l, strMsg, " ") :' Find space.
1Word = Left (strMsg, iPos - 1) :' Get left word.
rWord = Right (strMsg, Len(strMsg) - iPos) :' Get right word.
strMsg=rWord+1Word :' And swap them
RetVal=strMsg

RightPart()

Extracts the portion of a string to the right of the separator specified in the strSep
parameter.

The search for the separator is performed from right to left.
The search can be made case sensitive using the bCaseSensitive parameter.

650 | AssetCenter 4.4 - Programmer's reference

Programmer's refere

Internal Basic syntax

Function RightPart(strFrom As String, strSep As String, bCaseSensitive As
Long) As String

Field of application

Version: 3.5

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

LSRR

Input parameters

= strFrom: Source string to be processed.
= strSep: Character used as separator in the source string.

= bCaseSensitive: Depending on this parameter, the search is case sensitive
(=1) or not (=0).

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [fcalling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AssetCenter 4.4 - Programmer's reference | 651

_

Example

These examples illustrate use of the LeftPart, LeftPartFromRight, RightPart,
and RightPartFromLeft functions on the same string: "This_is_a_test":

[LeftPart ("This_is_a_test","_",0)

Returns "This".

|LeftPartFromRight("This_is_a_test","_",O)

Returns "This_is_a".

|RightPart("This_is_a_test","_",O)

Returns "test".

|RightPartFromLeft("This_is_a_test","_",O)

Returns "is_a_test".

RightPartFromLeft()

Extracts the portion of a string to the right of the separator specified in the strSep
parameter.

The search for the separator is performed from left to right.
The search can be made case sensitive using the bCaseSensitive parameter.

Internal Basic syntax

Function RightPartFromLeft(strFrom As String, strSep As String, bCaseSensitive
As Long) As String

Field of application

Version: 3.5

AssetCenter API
Configuration script of a field or link D
"Script" type action D

652 | AssetCenter 4.4 - Programmer's reference

Programmer's refe

Deployment workflow D

Wizard script 9

FINISH.DO script of a wizard D
Input parameters

= strFrom: Source string to be processed.
= strSep: Character used as separator in the source string.

= bCaseSensitive: Depending on this parameter, the search is case sensitive
(=1) or not (=0). By default, this parameter is set to 1.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [fcalling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

These examples illustrate use of the LeftPart, LeftPartFromRight, RightPart,
and RightPartFromLeft functions on the same string: "This_is_a_test":

[LeftPart ("This_is_a test","_",0)

Returns "This".

[LeftPartFromright ("This_is_a test","_",0)

Returns "This_is_a".

[RightPart ("This_is_a_test","_",0)

Returns "test".

[RightPartFromLeft ("This_is_a_test","_",0)

Returns "is_a_test".

AssetCenter 4.4 - Programmer's reference | 653

_

RmAIlInDir()

This function deletes all items (files and folders) from a folder. The folder itself is
not deleted.

Internal Basic syntax
Function RmAllInDir(strRmDirectory As String, bStoplfError As Long) As Long

Field of application

Version: 3.4.0

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

& & e &S

Input parameters

= strRmDirectory: This parameter contains the full path of the folder concerned
by the operation.

= bStoplfError: If this parameter is set to 1, the delete operation is suspended
if the a file or folder cannot be deleted. If this parameter is set to 0, the
operation continues and moves on to the following file or folder.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

654 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

Example

|RetVa1 = RmAllInDir ("c:\files\test", 1)

RmDir()

Removes an existing directory.

Internal Basic syntax
Function RmDir(strRmDirectory As String) As Long

Field of application

Version: 3.00

. Availabe
AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

LIRS R

Input parameters

+ strRmDirectory: Full path of the directory to be removed.

Output parameters

= 0: Normal execution.
= Other than zero: Error code.

AssetCenter 4.4 - Programmer's reference | 655

AssetCenter

Notes
S Note:
The directory to be deleted must be empty. Otherwise, the function will not
work.

Example

|RetVal = RmDir("c: mp")

Rnd()

Returns a value containing a random number.

Internal Basic syntax
Function Rnd(dValue As Double) As Double

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

& e &6

656 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

FINISH.DO script of a wizard D

Input parameters

o dValue: Optional parameter whose value defines the mode of execution of
the function:
= Less than zero: The same number is generated each time.
= Greater than zero: Next random number in the series.
= Equal to zero: Last random number generated.
= Omitted: Next random number in the series.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [fcalling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Notes

f Note:

Before calling this function, you must use the Randomize function, without
parameters, to initialize the random number generator.

Voir aussi :
o Randomize() [page 643]
See also:

+ Randomize() [page 643]
<listitem></listitem>

AssetCenter 4.4 - Programmer's reference | 657

“
|_

RoundValue()

This function calculates the rounding value of a number to the number of digits
after the decimal point as specified by the iDigits parameter.

Internal Basic syntax
Function RoundValue(dValue As Double, iDigits As Long) As Double

Field of application

Version: 3.4.0

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

& & e &S

Input parameters

= dValue: This parameter contains the number to be rounded.

= iDigits: This parameter contains the number of decimal places to keep for
the rounding operation.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

658 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

Example

The following example:

[Retval = Roundvalue(1.2568, 2) |

returns the value:

[1.26 [

The following example:

[Retval = Roundvalue(1.2568, 0) |

returns the value:

L |

RTrim()

Removes all trailing spaces in a string.

Internal Basic syntax
Function RTrim(strString As String) As String

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

LR

AssetCenter 4.4 - Programmer's reference | 659

AssetCenter

FINISH.DO script of a wizard e/

Input parameters

o strString: String to process.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

' This example uses the LTrim and RTrim functions to strip leading ' and t
railing spaces, respectively, from a string variable.

' It uses the Trim function alone to strip both types of spaces.

' LCase and UCase are also shown in this example as well as the use

' of nested function calls

Dim strString as String
Dim strTrimString as String

strString = " <-Trim-> " :' Initialize string.

strTrimString = LTrim(strString) :' strTrimString = "<-Trim-> .
strTrimString = LCase (RTrim(strString)) :' strTrimString = " <-trim->".
strTrimString = LTrim(RTrim(strString)) :' strTrimString = "<-Trim->".

' Using the Trim function alone achieves the same result.

strTrimString = UCase (Trim(strString)) :' strTrimString = "<-TRIM->".
RetVal= "|" & strTrimString & "|"

Second()

Returns the number of seconds contained in the time expressed by the tmTime
parameter.

660 | AssetCenter 4.4 - Programmer's reference

Programmer's refere

Internal Basic syntax

Function Second(tmTime As Date) As Long

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

LSRR

Input parameters

o tmTime: Parameter in Date+Time format to be processed.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

Dim strSecond

strSecond=Second (Date ())

RetVal=strSecond :'Returns the number of seconds elapsed in the current ho
ur, for example "30" if the time is 15:45:30

AssetCenter 4.4 - Programmer's reference | 661

SetMaxInst()

This function enables you to set the maximum number of instructions that a
Basic script can execute. By default, the number of instructions is limited to
10000.

API syntax

long SetMaxInst(long IMaxInst);

Internal Basic syntax
Function SetMaxInst(IMaxInst As Long) As Long

Field of application

Version: 4.3.0

AssetCenter API /]

Configuration script of a field or link D

"Script" type action b

Deployment workflow

Wizard script 9

FINISH.DO script of a wizard 9
Input parameters

s IMaxInst: This parameter contains the maximum number of instructions that
can be executed by a script.

Output parameters

= 0: Normal execution.

662 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

= Other than zero: Error code.

Notes

/ Note:

If you set the IMaxInst parameter to "0", the number of instructions that a script
can execute is unlimited.

SetSubList()

Defines the values of a sublist for a "ListBox" control.

Internal Basic syntax

Function SetSublList(strValues As String, strRows As String, strRowFormat As
String) As String

Field of application

Version: 3.5

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

LSRR

Input parameters

= strValues: Source string containing the values of a "ListBox" control to be
processed.

AssetCenter 4.4 - Programmer's reference | 663

= strRows: List of values to add to or replace the characters contained in the
string in the strValues parameter. The values are separated by the "|" character.
The lines that are processed are identified by their identifier, situated to the
right of the "=" sign. Unknown lines are not processed.

= strRowFormat: Formatting instructions for the sublist. Instructions are
separated by the "|" character. This parameter has the following characteristics:
= "1"representsthe information contained in the first column of the sublist.
= "i-j" can be used to define a group of columns.
= "-"takes all columns into account.
= An unknown column does not return a value.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example
Dim MyStr
MyStr=SetSubList ("al|a2|a3=a0,bl|b2|b3=b0,cl|c2|c3=c0", "A2|Al=a0, B2|Bl=b
0", "2|1") :'Returns "Al|A2|a3=a0,B1l|B2|b3=b0,cl|c2|c3=c0"
MyStr=SetSubList ("al|a2|a3=a0,bl|b2|b3=b0,cl|c2|c3=c0", "Z2=*,B2=b0", "2")
:'Returns "al|Zz2|a3=a0,bl|B2|b3=b0,cl|Z2|c3=cO"
MyStr=SetSubList ("al|a2|a3=a0,bl|b2|b3=b0,cl|c2|c3=c0", "B5|B6|B7=b0,C5|C6
,C7=c0", "5-7") :'Returns "al|a2|a3=a0,bl|b2|b3||B5|B6|B7=b0,cl|c2|c3|]|C5]|
C6|c7=con
MyStr=SetSubList ("al|a2|a3=a0,bl|b2|b3=b0,cl|c2|c3=c0", "Bl|B2|B3|B4=bo",
"-m) :'Returns "al|a2|a3=a0,Bl|B2|B3|B4=b0,cl|c2|c3=c0"
MyStr=SetSubList ("A|B|C,D|E|F", "X=*", "2") :'Returns "A|X|C,D|X|F"
RetVal=""

664 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

Internal Basic syntax
Function Sgn(dValue As Double) As Double

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

LSRR

Input parameters

s dValue: Number whose sign you want know.

Output parameters

The function can return one of the following values:
= 1:The number is greater than zero.

= 0:The number is equal to zero

= -1:The number is less than zero.

Example

Dim dNumber as Double
dNumber=-256
RetVal=Sgn (dNumber)

AssetCenter 4.4 - Programmer's reference | 665

“
|_

Shell()

Launches an executable program.

Internal Basic syntax

Function Shell(strExec As String, bShowWindow As Long, bBackground As
Long) As Long

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

& & e &S

Input parameters

= strExec: Full path of the executable to be launched.

= bShowWindow: If this parameter is set to 1 (default value), the command
box is displayed when the program is launched. If this parameter is set to 0,
the command box is not displayed.

= bBackground: If this parameter is set to 1 (default value), the function waits
for the end of execution of the program before giving you back control
(synchronous execution). If this parameter is set to 0, the program is executed
asynchronously.

Output parameters

In case of error, there are two possibilities:

666 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

Dim MyId
MyId=Shell ("C:\WinNT\explorer.exe")
RetVal=""

Sin()

Returns the sine of an number that is expressed in radians.

Internal Basic syntax
Function Sin(dValue As Double) As Double

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

AR R

AssetCenter 4.4 - Programmer's reference | 667

AssetCenter

FINISH.DO script of a wizard e/

Input parameters

o dValue: Number whose sine you want to know.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Notes
-,-’ Note:
The conversion formula for degrees to radians is the following:
|angle in radians = (angle en degrees) * Pi / 180
Example

Dim dCalc as Double
dCalc=Sin(2.79)
RetVal=dCalc

Creates a string including the number of spaces indicated by the iSpace
parameter.

668 | AssetCenter 4.4 - Programmer's reference

Programmer's referer

Internal Basic syntax
Function Space(iCount As Long) As String

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

LSRR

Input parameters

s iCount: Number of spaces to be inserted into the string.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Notes

/ Note:

This function can be used to format strings or to delete date in fixed length
strings.

AssetCenter 4.4 - Programmer's reference | 669

AssetCenter

Example

Dim MyString

' Returns a string of 10 spaces.

MyString = Space(10)

' Inserts 10 spaces between two strings.
MyString = "Space" & Space(10) & "inserted"
RetVal=MyString

Sqr()

Returns the square root of a number.

Internal Basic syntax
Function Sqr(dValue As Double) As Double

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

& e & & e

Input parameters

+ dValue: Number whose square root you want to know.

670 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

Dim dCalc as Double
dCalc=Sqr(81)
RetVal=dCalc

Str()

Converts a number to a string.

Internal Basic syntax
Function Str(strValue As String) As String

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

& o e e

AssetCenter 4.4 - Programmer's reference | 671

FINISH.DO script of a wizard e/

Input parameters

o strValue: Number to convert to a string.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

Dim dNumber as Double
dNumber=Cos (2.79)
RetVal=Str (dCalc)

StrComp()

Compares two strings.

Internal Basic syntax

Function StrComp(strString1 As String, strString2 As String, iOptionCompare
As Long) As Long

Field of application

Version: 3.00

672 | AssetCenter 4.4 - Programmer's reference

Programmer's referer

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

LIRS R

Input parameters

= strString1: First string.
= strString2: Second string.

= iOptionCompare: Comparison type. This parameter can be set to "0" for a
binary comparison, or "1" for a text comparison.

Output parameters

= -1:strString1 is greater than strString2.
= 0:strString1 is equal to strString2.
= 1:strString1 is less than strString2.

String()

String returns a string consisting of the strString character repeated over and
over iCount times.

Internal Basic syntax
Function String(iCount As Long, strString As String) As String

Field of application

Version: 3.00

AssetCenter 4.4 - Programmer's reference | 673

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

& e & &6

Input parameters

= iCount: Number of occurrences of the character strString.
= strString: Character used to compose the string.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

Dim iCount as Integer

Dim strTest as String
strTest="T"

iCount=5

RetVal=String (iCount, strTest)

SubList()

Returns a sublist of a list of values contained in a string representing the values
of a "ListBox" control.

674 | AssetCenter 4.4 - Programmer's reference

s ref

Internal Basic syntax

Function SublList(strValues As String, strRows As String, strRowFormat As
String) As String

Field of application

Version: 3.5

. Availabe
AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

LSRR

Input parameters

= strValues: Source string containing the values of a "ListBox" control to be
processed.

= strRows: Identifiers of lines to be included in the sublist. The identifiers are
separated by commas. Certain wildcard characters can be used:
= "*"includes all identifiers in the sublist.
= An unknown identifier returns an empty value for the sublist.
= strRowFormat: Formatting instructions for the sublist. Instructions are
separated by the "|" character. This parameter has the following characteristics:
= "1"represents the information contained in the first column of the list
from which we are extracting a sublist.
= "0"represents the identifier of the line in the list from which we are
extracting a sublist.
= "*"represents the information contained in all the columns (except the
line identifier).
= An unknown column does not return a value.

AssetCenter 4.4 - Programmer's reference | 675

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [f calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example
Dim MyStr
MyStr=SubList ("al|a2|a3=a0,bl|b2|b3=b0,cl|c2|c3=c0", "a0d,b0,a0", "3|2|3")
:'Returns "a3|a2|a3,b3|b2|b3,a3|a2|a3"
MyStr=SubList ("al|a2|a3=a0,bl|b2|b3=b0,cl|c2|c3=cO", "*", "x|0") :'Returns
"alla2|a3|a0,bl|b2|b3|b0,cl|c2|c3]|co"
MyStr=SubList ("al|a2|a3=a0,bl|b2|b3=b0,cl|c2|c3=cO", "*", "x=0") :'Returns
"al|a2|a3=a0,bl|b2|b3=b0,cl|c2|c3=cO"
MyStr=SubList ("al|a2|a3=a0,bl|b2|b3=b0,cl|c2|c3=c0", "*", "999=0") :'Retur
ns "=a0,=b0,=c0"
MyStr=SubList ("al|a2|a3=a0,bl|b2|b3=b0,cl|c2|c3=c0", "z0", "*=0") :'Return
S nn
MyStr=SubList ("al|a2|a3=a0,bl|b2|b3=b0,cl|c2|c3=cO", "*", "=1") :'Returns
"=al,=bl,=cl"
MyStr=SubList ("A|B|C,D|E|F", "%", "2=0") :'Returns "B,E"
RetvVal=""

SysEnumToComboBox()

This function reorganizes the items of a system itemized list so that they are in
aformat compatible with the wizard list-control. This enables you to display the
values of system itemized lists in drop-down lists in wizards.

Internal Basic syntax

Function SysEnumToComboBox(strFormat As String) As String

676 | AssetCenter 4.4 - Programmer's reference

s ref

Field of application

Version: 4.3.0

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard A

&

Input parameters

o strFormat: This parameter contains the list of entries of the system itemized
list. It is better if this parameter contains the result of execution of the
AmGetFieldFormat() function.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

The following example takes the values of the seStatus system itemized list in
the amWorkOrder table and reorganizes them in a format that is compatible
with the wizard list-control:

Dim strFormat As String

strFormat = AmGetFieldFormat (AmGetFieldFromName (AmGetTableFromName ("amWork
Order"), "seStatus"))

RetVal = SysEnumToComboBox (strFormat)

AssetCenter 4.4 - Programmer's reference | 677

Tan()

Returns the tangent of a number expressed in radians.

Internal Basic syntax
Function Tan(dValue As Double) As Double

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

& & e &S

Input parameters

o dValue: Number whose tangent you want to know.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

678 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

Notes
. 4 Note:
The conversion formula for degrees to radians is the following:
|angle in radians = (angle en degrees) * Pi / 180
Example

Dim dCalc as Double
dCalc=Tan (2.79)
RetVal=dCalc

Time()

Returns the current time.

Internal Basic syntax

Function Time() As Date

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

& & E®

AssetCenter 4.4 - Programmer's reference | 679

AssetCenter

FINISH.DO script of a wizard e/

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

|RetVal = Time ()

Timer()

Returns the number of seconds elapsed since 12:00 AM.

Internal Basic syntax

Function Timer() As Double

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link 7
"Script" type action D
Deployment workflow 9
Wizard script D

680 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

FINISH.DO script of a wizard D

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [fcalling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

|RetVa1 = Timer ()

TimeSerial()

This function returns a time formatted according to the iHour, iMinute and
iSecond parameters.

Internal Basic syntax

Function TimeSerial(iHour As Long, iMinute As Long, iSecond As Long) As
Date

Field of application

Version: 3.00

AssetCenter API
Configuration script of a field or link /]
"Script" type action D

AssetCenter 4.4 - Programmer's reference | 681

_

Deployment workflow 9

Wizard script 9

FINISH.DO script of a wizard ¥/
Input parameters

= iHour: Hour.
= iMinute: Minutes.
= iSecond: Seconds.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

Each of these parameters can be set to a numeric expression representing a
number of hours, minutes or seconds. Thus in the following example:

|TimeSerial(12—8, -10, 0) |

Returns the value:

[3:50:00 |
When the value of a parameter is out of the expected range (i.e. 0-59 for minutes
and seconds and 0-23 for hours), it is converted to the parameter the next up.
Thus, if you enter "75" for the iMinute parameter, it will be interpreted as 1 hour
and 15 minutes.

The following example:

|TimeSerial (16, 50, 45) |

Returns the value:

[16:50:45 |

682 | AssetCenter 4.4 - Programmer's reference

Programmer's referer

TimeValue()

This function returns the time portion of a "Date+Time" value.

Internal Basic syntax

Function TimeValue(tmTime As Date) As Date

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

AR R

Input parameters

s tmTime: "Date+Time" format date.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= [fcalling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

AssetCenter 4.4 - Programmer's reference | 683

AssetCenter

Example

The following example:

[Timevalue ("1999/09/24 15:00:00") |

Returns the value:

[15:00:00 |

ToSmart()

This function reformats a source string by capitalizing the first letter of each
word.

Internal Basic syntax

Function ToSmart(strString As String) As String

Field of application

Version: 3.5

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

& & & G S

Input parameters

s strString: Source string to reformat.

684 | AssetCenter 4.4 - Programmer's reference

Programmer's referer

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

The following example:

[Retval = TosSmart ("hello world") |

returns the value:

[Hello world [

Trim()

Returns a copy a string with the leading and trailing spaces removed.

Internal Basic syntax

Function Trim(strString As String) As String

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link D
"Script" type action)
Deployment workflow)
Wizard script D

AssetCenter 4.4 - Programmer's reference | 685

AssetCenter

FINISH.DO script of a wizard e/

Input parameters

o strString: String to process.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

' This example uses the LTrim and RTrim functions to strip leading ' and t
railing spaces, respectively, from a string variable.

' It uses the Trim function alone to strip both types of spaces.

' LCase and UCase are also shown in this example as well as the use

' of nested function calls

Dim strString as String
Dim strTrimString as String

strString = " <-Trim-> " :' Initialize string.

strTrimString = LTrim(strString) :' strTrimString = "<-Trim-> .
strTrimString = LCase (RTrim(strString)) :' strTrimString = " <-trim->".
strTrimString = LTrim(RTrim(strString)) :' strTrimString = "<-Trim->".

' Using the Trim function alone achieves the same result.

strTrimString = UCase (Trim(strString)) :' strTrimString = "<-TRIM->".
RetVal= "|" & strTrimString & "|"

UCase()

Returns a copy of a sting in which all lowercase characters are converted to
uppercase.

686 | AssetCenter 4.4 - Programmer's reference

Programmer's refere

Internal Basic syntax
Function UCase(strString As String) As String

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

LSRR

Input parameters

o strString: Character string to convert to uppercase.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

' This example uses the LTrim and RTrim functions to strip leading ' and t
railing spaces, respectively, from a string variable.

' It uses the Trim function alone to strip both types of spaces.

' LCase and UCase are also shown in this example as well as the use

' of nested function calls

im strString as String

AssetCenter 4.4 - Programmer's reference | 687

L ——

Dim strTrimString as String

strString = " <-Trim-> " :' Initialize string.

strTrimString = LTrim(strString) :' strTrimString = "<-Trim-> ".
strTrimString = LCase (RTrim(strString)) :' strTrimString = " <-trim->".
strTrimString = LTrim(RTrim(strString)) :' strTrimString = "<-Trim->".

' Using the Trim function alone achieves the same result.

strTrimString = UCase (Trim(strString)) :' strTrimString = "<-TRIM->".
RetVal= "|" & strTrimString & "|"

UnEscapeSeparators()

Deletes all the escape characters from a string.

Internal Basic syntax

Function UnEscapeSeparators(strSource As String, strEscChar As String) As
String

Field of application

Version: 3.5

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

& & e e s

Input parameters

= strSource: Character string to process.
= strEscChar: Escape character to be deleted.

688 | AssetCenter 4.4 - Programmer's reference

Programmer's refere

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

Dim MyStr
MyStr=UnEscapeSeparators ("you\ |me\ |you\|", "\") :'Returns "you|me|you|"
Retval=""

Union()

Merges two strings delimited by separators. Duplicates are deleted.

Internal Basic syntax

Function Union(strListOne As String, strListTwo As String, strSeparator As
String, strEscChar As String) As String

Field of application

Version: 3.5

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

AssetCenter 4.4 - Programmer's reference | 689

L ——

FINISH.DO script of a wizard e/

Input parameters

= strListOne: First string.
= strListTwo: Second string.
= strSeparator: Separator used to delimit the elements contained in the strings.

= strEscChar: Escape character. If this character prefixes the separator, it will
be ignored.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

Dim MyStr

MyStr=Union("al|a2,bl|b2", "all|a3,bl|b2", ",", "\") :'Returns "al|a2,bl|b2
,alla3"

MyStr=Union("al|a2,bl|b2", "al|a3\,bl|b2", ",", "\") :'Returns "al|a2,bl|b
2,al|a3\,bl|b2"

Retval=""

UTCToLocalDate()

This function converts a date in UTC format (time-zone independent) to a
"Date+Time" format date.

690 | AssetCenter 4.4 - Programmer's reference

Programmer's referer

Internal Basic syntax
Function UTCToLocalDate(tmUTC As Date) As Date

Field of application

Version: 3.5

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

LSRR

Input parameters
o tmUTC: Date in UTC format.

Output parameters

In case of error, there are two possibilities:
= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

|RetVa1 = UTCToLocaldate ([DateTime])

AssetCenter 4.4 - Programmer's reference | 691

Val()

Converts a string representing a number to a double.

Internal Basic syntax
Function Val(strString As String) As Double

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

& & e &S

Input parameters

o strString: Character string to convert.

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

692 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

Example

Dim strYear

Dim dYear as Double

strYear=Year (Date())

dYear=Val (strYear)

RetVal=dYear :'Returns the current year

WeekDay()

Returns the day of the week contained in the date expressed by the tmDate
parameter.

Internal Basic syntax
Function WeekDay(tmDate As Date) As Long

Field of application

Version: 3.00

. Availabe
AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

LIRS R

Input parameters

+ tmDate: Parameter in Date+Time format to be processed.

AssetCenter 4.4 - Programmer's reference | 693

I ————
Output parameters

The number returned corresponds to a day of the week where "1" represents
Sunday, "2" Tuesday, ..., "7" Saturday.

Example

Dim strWeekDay
strWeekDay=WeekDay (Date ())
RetVal=strWeekDay :'Returns the day of the week

Year()

Returns the year contained in the value expressed by the tmDate parameter.

Internal Basic syntax

Function Year(tmDate As Date) As Long

Field of application

Version: 3.00

AssetCenter API

Configuration script of a field or link
"Script" type action

Deployment workflow

Wizard script

FINISH.DO script of a wizard

& & & &6

Input parameters

o tmDate: Parameter in Date+Time format to be processed.

694 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

Output parameters

In case of error, there are two possibilities:

= In AssetCenter, the script containing the function is suspended and an error
message issued to the user.

= If calling from an external program, you must call the AmLastError() [page 359]
function (and optionally the AmLastErrorMsg() [page 360] function) to find
out if an error occurred (and obtain its associated message).

Example

Dim strYear
strYear=Year (Date())
RetVal=strYear :'Returns the current year

= Abs

= AmActionDde

= AmActionExec

= AmActionMail

= AmActionPrint

= AmActionPrintPreview

= AmActionPrintTo

= AmAddAIIPOLinesTolnv

= AmAddCatRefAndCompositionToPOrder
= AmAddCatRefToPOrder

= AmAddEstimLinesToPO

= AmAddEstimLineToPO

= AmAddLicContentToRequest
= AmAddPOLineTolnv

= AmAddPOrderLineToReceipt
= AmAddReceiptLineTolnvoice
= AmAddReqLinesToEstim

= AmAddReqLinesToPO

= AmAddReqLineToEstim

= AmAddReqlLineToPO

= AmAddRequestLineToPOrder
= AmAddTemplateToPOrder

AssetCenter 4.4 - Programmer's reference | 695

AssetCenter

= AmAddTemplateToRequest

= AmArchiveRecord

= AmAttribCmdAvailability

= AmBackupRecord

= AmBuildNumber

= AmBusinessSecondsinDay

= AmCalcConsolidatedFeature
= AmCalcDepr

= AmCalculateCatRefQty

= AmCalculateReqLineQty

= AmCbkReplayEvent

= AmCheckTraceDone

= AmCleanup

= AmClearLastError

= AmCloseAliChildren

= AmCloseConnection

= AmCommit

= AmComputeAllLicAndInstallCounts
= AmComputeLicAndInstallCounts
= AmConnectionName

= AmConnectTrace

= AmConvertCurrency

= AmConvertDateBasicToUnix

= AmConvertDatelntIToUnix

= AmConvertDateStringToUnix
= AmConvertDateUnixToBasic

= AmConvertDateUnixTolntl

= AmConvertDateUnixToString
= AmConvertDoubleToString

= AmConvertMonetaryToString
= AmConvertStringToDouble

= AmConvertStringToMonetary
= AmCounter

= AmCreateAssetPort

= AmCreateAssetsAwaitingDelivery

696 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

= AmCreateCable

= AmCreateCableBundle

= AmCreateCableLink

= AmCreateDelivFromPO

= AmCreateDevice

= AmCreateDeviceLink

= AmCreateEstimFromReq

= AmCreateEstimsFromAllReqLines
= AmCreatelnvFromPO

= AmCreateLink

= AmCreateOrUpdatelnvoiceFromReceipt
= AmCreatePOFromEstim

= AmCreatePOFromReq

= AmCreatePOrderFromRequest
= AmCreatePOrdersFromRequest
= AmCreatePOsFromAllReqLines
= AmCreateProjectCable

= AmCreateProjectDevice

= AmCreateProjectTrace

= AmCreateReceiptFromPOrder
= AmCreateRecord

= AmCreateRequestTolnvoice

= AmCreateRequestToPOrder

= AmCreateRequestToReceipt

= AmCreateReturnFromReceipt
= AmCreateTraceHist

= AmCreateTraceLink

= AmCryptPassword

= AmCurrentDate

= AmCurrentlsoLang

= AmCurrentLanguage

= AmCurrentServerDate

= AmDaDepAddComputers

= AmDaDepCopylnstance

= AmbDaDepCreatelnstance

AssetCenter 4.4 - Programmer's reference | 697

AssetCenter

= AmDateAdd

= AmDateAddLogical

= AmDateDiff

= AmDbExecAq|

= AmDbGetDate

= AmDbGetDouble

= AmDbGetList

= AmDbGetListEx

= AmDbGetLong

= AmDbGetPk

= AmDbGetString

= AmDbGetStringEx

= AmDeadLine

= AmDecrementLoglLevel
= AmDefAssignee

= AmDefaultCurrency

= AmDefEscalationScheme
= AmDefGroup

= AmbDeleteLink

= AmDeleteRecord

= AmDisconnectTrace

= AmDuplicateRecord

= AmEndOfNthBusinessDay
= AmEnumVallList

= AmEvalScript

= AmExecTransition

= AmExecuteActionByld
= AmExecuteActionByName
= AmExportDocument

= AmExportReport

= AmFindCable

= AmFindDevice

= AmFindRootLink

= AmFindTermDevice

= AmFindTermField

698 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

s AmFlushTransaction

= AmFormatCurrency

= AmFormatLong

= AmGeneratePlanningData
= AmGenSglName

= AmGetCatRef

= AmGetCatRefFromCatProduct
= AmGetComputeString

= AmGetCurrentNTDomain

= AmGetCurrentNTUser

= AmGetFeat

= AmGetFeatCount

= AmGetField

= AmGetFieldCount

= AmGetFieldDateOnlyValue
= AmGetFieldDateValue

= AmGetFieldDescription

= AmGetFieldDoubleValue

= AmGetFieldFormat

= AmGetFieldFormatFromName
= AmGetFieldFromName

= AmGetFieldLabel

= AmGetFieldLabelFromName
= AmGetFieldLongValue

= AmGetFieldName

= AmGetFieldRights

= AmGetFieldSize

= AmGetFieldSqlName

= AmGetFieldStrValue

= AmGetFieldType

= AmGetFieldUserType

= AmGetForeignKey

= AmGetindex

= AmGetindexCount

= AmGetindexField

AssetCenter 4.4 - Programmer's reference | 699

AssetCenter

= AmGetindexFieldCount
= AmGetindexFlags

= AmGetindexName

= AmGetLink

= AmGetLinkCardinality

= AmGetLinkCount

= AmGetLinkDstField

= AmGetLinkFeatureValue
= AmGetLinkFromName

= AmGetLinkType

= AmGetMainField

= AmGetMemoField

= AmGetNextAssetPin

= AmGetNextAssetPort

= AmGetNextCableBundle
= AmGetNextCablePair

= AmGetNTDomains

= AmGetNTMachinesinDomain
= AmGetNTUsersInDomain
= AmGetPOLinePrice

= AmGetPOLinePriceCur

= AmGetPOLineReference
= AmGetRecordFromMainld
= AmGetRecordHandle

= AmGetRecordld

= AmGetRelDstField

= AmGetRelSrcField

= AmGetRelTable

= AmGetReverseLink

= AmGetScriptValue

= AmGetSelfFromMainld

= AmGetSourceTable

= AmGetTable

= AmGetTableCount

= AmGetTableDescription

700 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

= AmGetTableFromName
= AmGetTableLabel

= AmGetTableName

= AmGetTableRights

= AmGetTableSqglName

= AmGetTargetTable

= AmGetTrace

= AmGetTraceFromHist

= AmGetTypedLinkField

= AmGetUserEnvSessionltem
= AmGetVersion

= AmHasAdminPrivilege

= AmHasRelTable

= AmHasRightsForCreation
= AmHasRightsForDeletion
= AmHasRightsForFieldUpdate
= AmHelpdeskCanCloseFile
= AmHelpdeskCanProceed
= AmHelpdeskCanSaveCall
= AmimportDocument

= AmimportReport

= AmlincrementLoglevel

= AmlinsertRecord

= AmlinstantiateReqlLine

= AmlinstantiateRequest

= AmlsConnected

= AmilsFieldForeignKey

= AmilsFieldIndexed

= AmlsFieldPrimaryKey

= AmlsHelpdeskAdmin

= AmlsHelpdeskMember

= AmlsHelpdeskSuper

= AmisLink

= AmlisModuleAuthorized

= AmisTypedLink

AssetCenter 4.4 - Programmer's reference | 701

AssetCenter

= AmlLastError

= AmlastErrorMsg

= AmListToString

= AmLog

= AmLoginld

= AmLoginName

= AmMapSubRegLineAgent
= AmMoveCable

= AmMoveDevice

= AmMsgBox

= AmOpenConnection

= AmOpenScreen

= AmOverflowTables

= AmPagePath

= AmProgress

= AmPurgeRecord

= AmQueryCreate

= AmQueryExec

= AmQueryGet

= AmQueryNext

= AmQuerySetAddMainField
= AmQuerySetFullMemo
= AmQueryStartTable

= AmQueryStop

= AmReceiveAllPOLines
= AmReceivePOLine

= AmRefreshAllCaches

= AmRefreshLabel

= AmRefreshProperty

= AmRefreshTraceHist

= AmReleaseHandle

= AmRemoveCable

= AmRemoveDevice

= AmResetPassword

= AmResetUserEnvSession

702 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

= AmResetUserPassword

= AmRestoreRecord

= AmReturnAsset

= AmReturnContract

= AmReturnPortfolioltem

= AmReturnTraining

= AmReturnWorkOrder

= AmRevCryptPassword

= AmRgbColor

= AmRollback

= AmSetFieldDateOnlyValue
= AmSetFieldDateValue

= AmSetFieldDoubleValue

= AmSetFieldLongValue

= AmSetFieldStrValue

= AmSetLinkFeatureValue

= AmSetProperty

= AmSetUserEnvSessionltem
= AmShowCableCrossConnect
= AmShowDeviceCrossConnect
= AmSqlTextConst

= AmStandin

= AmStandinGroup

= AmStartTransaction

= AmStartup

= AmTableDesc

= AmTaxRate

= AmUpdateDetail

= AmUpdateLossLines

= AmUpdateRecord

= AmUpdateUser

= AmValueOf

» AmWizChain

= AmWorkTimeSpanBetween
= AppendOperand

AssetCenter 4.4 - Programmer's reference | 703

AssetCenter

= ApplyNewVals

m Asc

= Atn

= BasicToLocalDate
= BasicToLocalTime
= BasicToLocalTimeStamp
= Beep

= CDbl

= ChDir

s ChDrive

s Chr

s Cint

= Clng

= Cos

s CountOccurences
= CountValues

= CSng

s CStr

s CurDir

= CVar

= DaContext

= DaCopy

= DaDbDeleteList

= DaDbGetList

s DaDbSetList

= DaDelete

= DaDownload

= DaDumpContext
= DaExec

= DaExecAction

= DaExecuteActionByName
= DaFileATime

= DaFileCRC

= DaFileCTime

= DaFileLanguage

704 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

= DaFileMTime

= DaFileSize

= DaFileType

= DaFileVersion

= DaFind

= DaFindNext

= DaFirstEnv

= DaGetEnv

= DaGetFilelnfo

= Dalmpersonate

= DaMkDir

= DaMove

= DaNetlpFromName

= DaNetNBTName

= DaNetPing

= DaNetWakeOnLan

= DaNetWinAddressByName

= DaNextEnv

= DaNTFileCopyTo

= DaNTFileCreateDir

= DaNTFileDelete

= DaNTFileDeleteDir

= DaNTFileDirCopyTo

= DaNTFileDirDownload

= DaNTFileDirUpload

= DaNTFileDownload

= DaNTFileUpload

= DaNTRegistryLMAddStringValue
= DaNTRegistryLMCreateKey

= DaNTRegistryLMDeleteKey

= DaNTRegistryLMDeleteValue

= DaNTRegistryLMGetLongValue
= DaNTRegistryLMGetStringValue
= DaNTRegistryLMSetLongValue
= DaNTRegistryLMSetStringValue

AssetCenter 4.4 - Programmer's reference | 705

AssetCenter

= DaNTServicelnstall

= DaNTServiceStart

= DaNTServiceStatus

= DaNTServiceStop

= DaNTServiceUninstall

= DaNTWMIExecMethod

= DaNTWMIExecQuery

= DaNTWMIGetCurrentArrayValue
= DaNTWMIGetCurrentPropertyValue
= DaNTWMIGetinstanceCount

= DaNTWMIGetPropertyValue

= DaNTWMIGetTotalPropertiesValue
= DaNTWMINextltem

= DaNTWMIResetEnumeration

= DaRegCreateKey

= DaRegDeleteKey

= DaRegExec

= DaRegGetValue

= DaRegOutputValue

= DaRegSetValue

= DaRegStrValue

= DaRegVarValue

= DaRename

= DaReturnValue

= DaRmbDir

= DaSendMail

= DaSetContext

= DaSetOption

= DaSetReturnValue

= Date

= DateAdd

= DateAddLogical
= DateDiff

= DateSerial
= DateValue

706 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

= DaTrackingDelete
= DaTrackingGet

= DaTrackingSet

= DaTrackingTest

= DaUpload
= DaWait
= Day

= EnumToComboBox
= EscapeSeparators

= ExeDir

= Exp

= ExtractValue
= FileCopy

= FileDateTime

= FileExists

= FileLen

= Fix

= FormatDate

= FormatResString
= FV

= GetEnvVar

= GetListltem

s Hex

= Hour

= InStr

= Int

= IPMT

= IsNumeric
= Kill

= LCase

n Left

= LeftPart

= LeftPartFromRight
» Len

= LocalToBasicDate

AssetCenter 4.4 - Programmer's reference | 707

AssetCenter

= LocalToBasicTime
= LocalToBasicTimeStamp
s LocalToUTCDate

= Log

s LTrim

= MakelnvertBool
[] Mid

= Minute
= MkDir
= Month
= Name
= Now

= NPER

= Oct

= ParseDate

= ParseDMYDate
= ParseMDYDate
s ParseYMDDate

= PMT

= PPMT

= PV

= Randomize

= RATE

= RemoveRows
= Replace

= Right

= RightPart
= RightPartFromLeft

= RmAllInDir

= RmDir

= Rnd

= RoundValue
= RTrim

= Second

= SetMaxinst

708 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

= SetSublList

= Sgn

= Shell

= Sin

= Space

= Sqr

s Str

= StrComp

= String

= SublList

= SysEnumToComboBox

= Tan

x Time

= Timer

= TimeSerial

= TimeValue

= ToSmart

» Trim

= UCase

= UnEscapeSeparators

= Union

s UTCToLocalDate

= Val

= WeekDay

= Year

= AmBusinessSecondsinDay

= AmCalcConsolidatedFeature
= AmConvertDateBasicToUnix
= AmConvertDatelntIToUnix

= AmConvertDateStringToUnix
= AmConvertDateUnixToBasic
= AmConvertDateUnixTolntl

= AmConvertDateUnixToString
= AmConvertDoubleToString
= AmConvertMonetaryToString

AssetCenter 4.4 - Programmer's reference | 709

AssetCenter

= AmConvertStringToDouble
= AmConvertStringToMonetary
= AmCounter

= AmCryptPassword

= AmDateAdd

= AmDateAddLogical

= AmDateDiff

= AmDbGetDate

= AmDbGetDouble

= AmDbGetList

= AmDbGetListEx

= AmDbGetLong

= AmDbGetPk

= AmDbGetString

= AmDbGetStringEx

= AmDeadLine

= AmEndOfNthBusinessDay
= AmEnumVallList

= AmFormatLong

= AmGenSqlName

= AmGetComputeString

= AmlListToString

= AmRevCryptPassword

= AmSqlTextConst

= AmTableDesc

= AmWorkTimeSpanBetween
= EnumToComboBox

= SysEnumToComboBox

= AmBuildNumber

= AmConnectionName

= AmCurrentDate

= AmCurrentlsoLang

= AmCurrentLanguage

= AmCurrentServerDate

= AmGetCurrentNTDomain

710 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

= AmGetCurrentNTUser

= AmGetFeat

= AmGetFeatCount

= AmGetField

= AmGetFieldCount

= AmGetFieldDateOnlyValue
= AmGetFieldDateValue

= AmGetFieldDescription

= AmGetFieldDoubleValue
= AmGetFieldFormat

= AmGetFieldFormatFromName
= AmGetFieldFromName
= AmGetFieldLabel

= AmGetFieldLabelFromName
= AmGetFieldLongValue

= AmGetFieldName

= AmGetFieldRights

= AmGetFieldSize

= AmGetFieldSqlName

= AmGetFieldStrValue

= AmGetFieldType

= AmGetFieldUserType

= AmGetForeignKey

= AmGetindex

= AmGetindexCount

= AmGetindexField

= AmGetindexFieldCount
= AmGetindexFlags

= AmGetindexName

= AmGetLink

= AmGetLinkCardinality

= AmGetLinkCount

= AmGetLinkDstField

= AmGetLinkFeatureValue
= AmGetLinkFromName

AssetCenter 4.4 - Programmer's reference | 711

AssetCenter

= AmGetLinkType

= AmGetMainField

= AmGetMemoField

= AmGetNTDomains

= AmGetNTMachinesinDomain
= AmGetNTUsersInDomain
= AmGetRecordFromMainld
= AmGetRecordHandle

= AmGetRecordld

= AmGetRelDstField

= AmGetRelSrcField

= AmGetRelTable

= AmGetReverselLink

= AmGetSelfFromMainid

= AmGetSourceTable

= AmGetTable

= AmGetTableCount

= AmGetTableDescription
= AmGetTableFromName
= AmGetTableLabel

= AmGetTableName

= AmGetTableRights

= AmGetTableSglName

= AmGetTargetTable

= AmGetTypedLinkField

= AmGetVersion

= AmHasAdminPrivilege

= AmHasRelTable

= AmHasRightsForCreation
= AmHasRightsForDeletion
= AmHasRightsForFieldUpdate
= AmlsConnected

= AmlsFieldForeignKey

= AmlsFieldindexed

= AmlsFieldPrimaryKey

712 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

= AmlsLink

= AmisModuleAuthorized
= AmlsTypedLink

= AmLastError

= AmlastErrorMsg

= AmlLoginid

= AmlLoginName

= AmOverflowTables

= AmPagePath

= AmProgress

= AmQueryNext

= AmQueryStartTable

= AmRgbColor

= AmValueOf

= AmCleanup

= AmClearLastError

= AmCloseAllChildren

= AmCloseConnection

= AmDbExecAql

= AmDecrementLoglLevel
= AmEvalScript

= AmExecTransition

= AmExecuteActionByld

= AmExecuteActionByName
= AmExportDocument

= AmExportReport

= AmGeneratePlanningData
= AmincrementLogLevel
= AmlLog

= AmMsgBox

= AmOpenConnection

= AmOpenScreen

= AmQueryExec

= AmQueryGet

= AmQuerySetAddMainField

AssetCenter 4.4 - Programmer's reference | 713

AssetCenter

= AmQuerySetFullMemo
= AmQueryStop

= AmRefreshAllCaches

= AmRefreshProperty

= AmReleaseHandle

= AmStartup

= AmUpdateDetail

= AmWizChain

= AmCalcDepr

= AmCbkReplayEvent

= AmConvertCurrency

= AmDefaultCurrency

= AmFormatCurrency

= AmTaxRate

= AmArchiveRecord

= AmBackupRecord

= AmCommit

= AmCreateLink

= AmCreateRecord

= AmbDeleteLink

= AmbDeleteRecord

= AmDuplicateRecord

= AmFlushTransaction

= AmimportDocument

= AmimportReport

= AmlnsertRecord

= AmPurgeRecord

= AmRestoreRecord

= AmRollback

= AmSetFieldDateOnlyValue
= AmSetFieldDateValue
= AmSetFieldDoubleValue
= AmSetFieldLongValue
= AmSetFieldStrValue

= AmSetLinkFeatureValue

714 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

= AmSetProperty

= AmStartTransaction

= AmUpdateRecord

= AmUpdateUser

= AmAddAIIPOLinesTolnv

= AmAddCatRefAndCompositionToPOrder
= AmAddCatRefToPOrder

= AmAddEstimLinesToPO

= AmAddEstimLineToPO

= AmAddLicContentToRequest

= AmAddPOLineTolnv

= AmAddPOrderLineToReceipt

= AmAddReceiptLineTolnvoice

= AmAddReqLinesToEstim

= AmAddReqLinesToPO

= AmAddReqLineToEstim

= AmAddReqlLineToPO

= AmAddRequestLineToPOrder

= AmAddTemplateToPOrder

= AmAddTemplateToRequest

= AmCalculateCatRefQty

= AmCalculateReqLineQty

= AmCreateAssetsAwaitingDelivery
= AmCreateDelivFromPO

= AmCreateEstimFromReq

= AmCreateEstimsFromAllReqLines
= AmCreatelnvFromPO

= AmCreateOrUpdatelnvoiceFromReceipt
= AmCreatePOFromEstim

= AmCreatePOFromReq

= AmCreatePOrderFromRequest

= AmCreatePOrdersFromRequest

= AmCreatePOsFromAllReqLines

= AmCreateReceiptFromPOrder

= AmCreateRequestTolnvoice

AssetCenter 4.4 - Programmer's reference | 715

AssetCenter

= AmCreateRequestToPOrder
= AmCreateRequestToReceipt
= AmCreateReturnFromReceipt
= AmGetCatRef

= AmGetCatRefFromCatProduct
= AmGetPOLinePrice

= AmGetPOLinePriceCur

= AmGetPOLineReference

= AmlinstantiateReqLine

= AmlinstantiateRequest

= AmMapSubReqLineAgent

= AmReceiveAllPOLines

= AmReceivePOLine

= AmReturnAsset

= AmReturnContract

= AmReturnPortfolioltem

= AmReturnTraining

= AmReturnWorkOrder

s AmUpdateLossLines

= AmCheckTraceDone

= AmConnectTrace

= AmCreateAssetPort

= AmCreateCable

= AmCreateCableBundle

= AmCreateCableLink

= AmCreateDevice

= AmCreateDeviceLink

= AmCreateProjectCable

= AmCreateProjectDevice

= AmCreateProjectTrace

= AmCreateTraceHist

= AmCreateTracelink

= AmDisconnectTrace

= AmFindCable

= AmFindDevice

716 | AssetCenter 4.4 - Programmer's reference

Programmer's reference

= AmFindRootLink

= AmFindTermDevice

= AmFindTermField

= AmGetNextAssetPin

= AmGetNextAssetPort

= AmGetNextCableBundle
= AmGetNextCablePair

= AmGetTrace

= AmGetTraceFromHist

= AmMoveCable

= AmMoveDevice

= AmRefreshLabel

= AmRefreshTraceHist

= AmRemoveCable

= AmRemoveDevice

= AmShowCableCrossConnect
= AmShowDeviceCrossConnect
= AmDaDepAddComputers
= AmDaDepCopylnstance

= AmbDaDepCreatelnstance
= AmStandin

= AmStandinGroup

= AmActionDde

= AmActionExec

= AmActionMail

= AmActionPrint

= AmActionPrintPreview

= AmActionPrintTo

AssetCenter 4.4 - Programmer's reference | 717

s Peregrine

	I.Introduction
	1.Programming fundamentals
	Introduction to variables
	Declaring a variable
	Single declaration
	Combined declaration

	Data types
	Numerical types
	The String type
	The Variant type
	The empty value
	The Null value

	Data arrays
	Declaring an array
	Limitations

	Control structures
	Decision structures
	If...Then
	If...Then...Else...End If
	Select...Case

	Loop structures
	Do...Loop
	For...Next

	Operators
	Assigment operators
	Arithmetic operators
	The + operator
	The - operator
	The * operator
	The / operator
	The ^ operator
	The Mod operator

	Relational operators
	Logical operators
	The And operator
	The Or operator
	The Xor operator
	The Not operator

	Priority of operators

	File management
	Reminder concerning files
	Opening and closing files
	The Open clause
	The Close clause

	Reading data from file
	In Input clause
	The Line Input clause

	Writing data to a file

	2.Classification of functions
	Families of functions
	Scope of application of functions
	Application modules

	3.Conventions
	Notation
	Format of Date+Time constants in scripts
	About dates

	Format of Duration type constants in scripts

	4.Definitions
	Definition of a function
	Definition of the CurrentUser virtual link
	Definition
	Equivalencies
	Restrictions

	Definition of a handle
	Definition of an error code
	From external tools
	Internally

	5.Function typing and parameters
	List of types
	Type of a function
	Type of a parameter

	II.Using the API
	6.Introduction
	Warning
	Installation
	.ini configuration file associated with the DLL

	7.Methodology
	8.Concepts and examples
	Concepts
	Handling dates
	First example
	Second example

	III.Alphabetical reference
	9.Alphabetical reference
	Abs()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	AmActionDde()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmActionExec()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	AmActionMail()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmActionPrint()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmActionPrintPreview()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmActionPrintTo()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmAddAllPOLinesToInv()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmAddCatRefAndCompositionToPOrder()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Notes

	AmAddCatRefToPOrder()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmAddEstimLinesToPO()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmAddEstimLineToPO()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmAddLicContentToRequest()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Notes

	AmAddPOLineToInv()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmAddPOrderLineToReceipt()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmAddReceiptLineToInvoice()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmAddReqLinesToEstim()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmAddReqLinesToPO()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmAddReqLineToEstim()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmAddReqLineToPO()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmAddRequestLineToPOrder()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmAddTemplateToPOrder()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmAddTemplateToRequest()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmArchiveRecord()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Notes

	AmAttribCmdAvailability()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmBackupRecord()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Notes

	AmBuildNumber()
	Internal Basic syntax
	Field of application
	Output parameters

	AmBusinessSecondsInDay()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmCalcConsolidatedFeature()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmCalcDepr()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmCalculateCatRefQty()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmCalculateReqLineQty()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmCbkReplayEvent()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmCheckTraceDone()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmCleanup()
	API syntax
	Field of application

	AmClearLastError()
	API syntax
	Internal Basic syntax
	Field of application
	Output parameters

	AmCloseAllChildren()
	API syntax
	Internal Basic syntax
	Field of application
	Output parameters

	AmCloseConnection()
	API syntax
	Field of application
	Output parameters

	AmCommit()
	API syntax
	Internal Basic syntax
	Field of application
	Output parameters

	AmComputeAllLicAndInstallCounts()
	API syntax
	Internal Basic syntax
	Field of application
	Output parameters

	AmComputeLicAndInstallCounts()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmConnectionName()
	API syntax
	Internal Basic syntax
	Field of application
	Output parameters
	Example

	AmConnectTrace()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmConvertCurrency()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Notes
	Example

	AmConvertDateBasicToUnix()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmConvertDateIntlToUnix()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmConvertDateStringToUnix()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmConvertDateUnixToBasic()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmConvertDateUnixToIntl()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmConvertDateUnixToString()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmConvertDoubleToString()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmConvertMonetaryToString()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmConvertStringToDouble()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmConvertStringToMonetary()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmCounter()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Notes
	Example

	AmCreateAssetPort()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmCreateAssetsAwaitingDelivery()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmCreateCable()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmCreateCableBundle()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmCreateCableLink()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmCreateDelivFromPO()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmCreateDevice()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmCreateDeviceLink()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmCreateEstimFromReq()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmCreateEstimsFromAllReqLines()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmCreateInvFromPO()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmCreateLink()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmCreateOrUpdateInvoiceFromReceipt()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Notes

	AmCreatePOFromEstim()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmCreatePOFromReq()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmCreatePOrderFromRequest()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmCreatePOrdersFromRequest()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmCreatePOsFromAllReqLines()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmCreateProjectCable()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmCreateProjectDevice()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmCreateProjectTrace()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmCreateReceiptFromPOrder()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmCreateRecord()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Example

	AmCreateRequestToInvoice()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Notes

	AmCreateRequestToPOrder()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmCreateRequestToReceipt()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Notes

	AmCreateReturnFromReceipt()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmCreateTraceHist()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmCreateTraceLink()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmCryptPassword()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmCurrentDate()
	API syntax
	Internal Basic syntax
	Field of application
	Output parameters
	Notes

	AmCurrentIsoLang()
	API syntax
	Internal Basic syntax
	Field of application
	Output parameters

	AmCurrentLanguage()
	API syntax
	Internal Basic syntax
	Field of application
	Output parameters

	AmCurrentServerDate()
	API syntax
	Internal Basic syntax
	Field of application
	Output parameters

	AmDaDepAddComputers()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	AmDaDepCopyInstance()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	AmDaDepCreateInstance()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	AmDateAdd()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	AmDateAddLogical()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	AmDateDiff()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	AmDbExecAql()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmDbGetDate()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmDbGetDouble()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmDbGetList()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmDbGetListEx()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmDbGetLong()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	AmDbGetPk()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmDbGetString()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Notes
	Example

	AmDbGetStringEx()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmDeadLine()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	AmDecrementLogLevel()
	Internal Basic syntax
	Field of application
	Output parameters

	AmDefAssignee()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	AmDefaultCurrency()
	API syntax
	Internal Basic syntax
	Field of application
	Output parameters

	AmDefEscalationScheme()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	AmDefGroup()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Notes
	Example

	AmDeleteLink()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmDeleteRecord()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmDisconnectTrace()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmDuplicateRecord()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmEndOfNthBusinessDay()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmEnumValList()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmEvalScript()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Notes

	AmExecTransition()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmExecuteActionById()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmExecuteActionByName()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmExportDocument()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmExportReport()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmFindCable()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmFindDevice()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmFindRootLink()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmFindTermDevice()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmFindTermField()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmFlushTransaction()
	API syntax
	Internal Basic syntax
	Field of application
	Output parameters

	AmFormatCurrency()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	AmFormatLong()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmGeneratePlanningData()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmGenSqlName()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	AmGetCatRef()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Notes

	AmGetCatRefFromCatProduct()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmGetComputeString()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	AmGetCurrentNTDomain()
	API syntax
	Internal Basic syntax
	Field of application
	Output parameters
	Example

	AmGetCurrentNTUser()
	API syntax
	Internal Basic syntax
	Field of application
	Output parameters

	AmGetFeat()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters

	AmGetFeatCount()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmGetField()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters

	AmGetFieldCount()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmGetFieldDateOnlyValue()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmGetFieldDateValue()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmGetFieldDescription()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmGetFieldDoubleValue()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmGetFieldFormat()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmGetFieldFormatFromName()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmGetFieldFromName()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters

	AmGetFieldLabel()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmGetFieldLabelFromName()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmGetFieldLongValue()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Notes

	AmGetFieldName()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmGetFieldRights()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmGetFieldSize()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmGetFieldSqlName()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmGetFieldStrValue()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmGetFieldType()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Notes

	AmGetFieldUserType()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmGetForeignKey()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters

	AmGetIndex()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters

	AmGetIndexCount()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmGetIndexField()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters

	AmGetIndexFieldCount()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmGetIndexFlags()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Notes

	AmGetIndexName()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmGetLink()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters

	AmGetLinkCardinality()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmGetLinkCount()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmGetLinkDstField()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters

	AmGetLinkFeatureValue()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	AmGetLinkFromName()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters

	AmGetLinkType()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmGetMainField()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters

	AmGetMemoField()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters

	AmGetNextAssetPin()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmGetNextAssetPort()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmGetNextCableBundle()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmGetNextCablePair()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmGetNTDomains()
	API syntax
	Internal Basic syntax
	Field of application
	Output parameters

	AmGetNTMachinesInDomain()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmGetNTUsersInDomain()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmGetPOLinePrice()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmGetPOLinePriceCur()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmGetPOLineReference()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmGetRecordFromMainId()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Notes

	AmGetRecordHandle()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters

	AmGetRecordId()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmGetRelDstField()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters

	AmGetRelSrcField()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters

	AmGetRelTable()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmGetReverseLink()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters

	AmGetScriptValue()
	API syntax
	Internal Basic syntax
	Field of application
	Output parameters

	AmGetSelfFromMainId()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmGetSourceTable()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmGetTable()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmGetTableCount()
	API syntax
	Internal Basic syntax
	Field of application
	Output parameters

	AmGetTableDescription()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmGetTableFromName()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmGetTableLabel()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmGetTableName()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmGetTableRights()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmGetTableSqlName()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmGetTargetTable()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmGetTrace()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmGetTraceFromHist()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmGetTypedLinkField()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters

	AmGetUserEnvSessionItem()
	API syntax
	Internal Basic syntax
	Field of application
	Output parameters

	AmGetVersion()
	API syntax
	Internal Basic syntax
	Field of application
	Output parameters

	AmHasAdminPrivilege()
	API syntax
	Internal Basic syntax
	Field of application
	Output parameters

	AmHasRelTable()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmHasRightsForCreation()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	AmHasRightsForDeletion()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	AmHasRightsForFieldUpdate()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	AmHelpdeskCanCloseFile()
	Internal Basic syntax
	Field of application
	Output parameters
	Notes

	AmHelpdeskCanProceed()
	Internal Basic syntax
	Field of application
	Output parameters
	Notes

	AmHelpdeskCanSaveCall()
	Internal Basic syntax
	Field of application
	Output parameters
	Notes

	AmImportDocument()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmImportReport()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmIncrementLogLevel()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmInsertRecord()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmInstantiateReqLine()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Notes

	AmInstantiateRequest()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmIsConnected()
	API syntax
	Field of application
	Output parameters

	AmIsFieldForeignKey()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmIsFieldIndexed()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmIsFieldPrimaryKey()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmIsHelpdeskAdmin()
	Internal Basic syntax
	Field of application
	Output parameters
	Notes

	AmIsHelpdeskMember()
	Internal Basic syntax
	Field of application
	Output parameters
	Notes

	AmIsHelpdeskSuper()
	Internal Basic syntax
	Field of application
	Output parameters
	Notes

	AmIsLink()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmIsModuleAuthorized()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Notes

	AmIsTypedLink()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmLastError()
	API syntax
	Internal Basic syntax
	Field of application
	Output parameters

	AmLastErrorMsg()
	API syntax
	Internal Basic syntax
	Field of application
	Output parameters

	AmListToString()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmLog()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	AmLoginId()
	API syntax
	Internal Basic syntax
	Field of application
	Output parameters
	Example

	AmLoginName()
	API syntax
	Internal Basic syntax
	Field of application
	Output parameters
	Example

	AmMapSubReqLineAgent()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmMoveCable()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmMoveDevice()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmMsgBox()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	AmOpenConnection()
	API syntax
	Field of application
	Input parameters

	AmOpenScreen()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmOverflowTables()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Notes
	Example

	AmPagePath()
	Internal Basic syntax
	Field of application
	Output parameters

	AmProgress()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	AmPurgeRecord()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Notes

	AmQueryCreate()
	API syntax
	Internal Basic syntax
	Field of application

	AmQueryExec()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmQueryGet()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmQueryNext()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmQuerySetAddMainField()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmQuerySetFullMemo()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmQueryStartTable()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmQueryStop()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmReceiveAllPOLines()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmReceivePOLine()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmRefreshAllCaches()
	API syntax
	Field of application
	Output parameters

	AmRefreshLabel()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmRefreshProperty()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmRefreshTraceHist()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmReleaseHandle()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmRemoveCable()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmRemoveDevice()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmResetPassword()
	API syntax
	Internal Basic syntax
	Field of application
	Output parameters

	AmResetUserEnvSession()
	API syntax
	Internal Basic syntax
	Field of application
	Output parameters

	AmResetUserPassword()
	API syntax
	Internal Basic syntax
	Field of application
	Output parameters

	AmRestoreRecord()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Notes

	AmReturnAsset()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmReturnContract()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmReturnPortfolioItem()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmReturnTraining()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmReturnWorkOrder()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmRevCryptPassword()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmRgbColor()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmRollback()
	API syntax
	Internal Basic syntax
	Field of application
	Output parameters

	AmSetFieldDateOnlyValue()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmSetFieldDateValue()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmSetFieldDoubleValue()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmSetFieldLongValue()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmSetFieldStrValue()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmSetLinkFeatureValue()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmSetProperty()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmSetUserEnvSessionItem()
	API syntax
	Internal Basic syntax
	Field of application
	Output parameters

	AmShowCableCrossConnect()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmShowDeviceCrossConnect()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmSqlTextConst()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	AmStandIn()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Notes
	Example

	AmStandInGroup()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Notes

	AmStartTransaction()
	API syntax
	Internal Basic syntax
	Field of application
	Output parameters

	AmStartup()
	API syntax
	Field of application

	AmTableDesc()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	AmTaxRate()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmUpdateDetail()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmUpdateLossLines()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmUpdateRecord()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmUpdateUser()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmValueOf()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	AmWizChain()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	AmWorkTimeSpanBetween()
	API syntax
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	AppendOperand()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Notes

	ApplyNewVals()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	Asc()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	Atn()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	BasicToLocalDate()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	BasicToLocalTime()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	BasicToLocalTimeStamp()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	Beep()
	Internal Basic syntax
	Field of application
	Output parameters

	CDbl()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	ChDir()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	ChDrive()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	Chr()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	CInt()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	CLng()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	Cos()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Notes
	Example

	CountOccurences()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	CountValues()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	CSng()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	CStr()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	CurDir()
	Internal Basic syntax
	Field of application
	Output parameters

	CVar()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaContext()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	DaCopy()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	DaDbDeleteList()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaDbGetList()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	DaDbSetList()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	DaDelete()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	DaDownload()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	DaDumpContext()
	Internal Basic syntax
	Field of application
	Output parameters
	Example

	DaExec()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	DaExecAction()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	DaExecuteActionByName()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Notes
	Example

	DaFileATime()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaFileCRC()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaFileCTime()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaFileLanguage()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaFileMTime()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaFileSize()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaFileType()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaFileVersion()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaFind()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	DaFindNext()
	Internal Basic syntax
	Field of application
	Output parameters
	Example

	DaFirstEnv()
	Internal Basic syntax
	Field of application
	Output parameters
	Example

	DaGetEnv()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	DaGetFileInfo()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaImpersonate()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	DaMkDir()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaMove()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	DaNetIpFromName()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaNetNBTName()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaNetPing()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	DaNetWakeOnLan()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaNetWinAddressByName()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaNextEnv()
	Internal Basic syntax
	Field of application
	Output parameters
	Example

	DaNTFileCopyTo()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaNTFileCreateDir()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaNTFileDelete()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaNTFileDeleteDir()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaNTFileDirCopyTo()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaNTFileDirDownload()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaNTFileDirUpload()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaNTFileDownload()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaNTFileUpload()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaNTRegistryLMAddStringValue()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaNTRegistryLMCreateKey()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaNTRegistryLMDeleteKey()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaNTRegistryLMDeleteValue()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaNTRegistryLMGetLongValue()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaNTRegistryLMGetStringValue()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaNTRegistryLMSetLongValue()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaNTRegistryLMSetStringValue()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaNTServiceInstall()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaNTServiceStart()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaNTServiceStatus()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaNTServiceStop()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaNTServiceUninstall()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaNTWMIExecMethod()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	DaNTWMIExecQuery()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	DaNTWMIGetCurrentArrayValue()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	DaNTWMIGetCurrentPropertyValue()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaNTWMIGetInstanceCount()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	DaNTWMIGetPropertyValue()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	DaNTWMIGetTotalPropertiesValue()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	DaNTWMINextItem()
	Internal Basic syntax
	Field of application
	Output parameters

	DaNTWMIResetEnumeration()
	Internal Basic syntax
	Field of application
	Output parameters

	DaRegCreateKey()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaRegDeleteKey()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaRegExec()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaRegGetValue()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaRegOutputValue()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaRegSetValue()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaRegStrValue()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaRegVarValue()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaRename()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaReturnValue()
	Internal Basic syntax
	Field of application
	Output parameters
	Example

	DaRmDir()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaSendMail()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaSetContext()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	DaSetOption()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	DaSetReturnValue()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	Date()
	Internal Basic syntax
	Field of application
	Output parameters

	DateAdd()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DateAddLogical()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DateDiff()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	DateSerial()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	DateValue()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	DaTrackingDelete()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaTrackingGet()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaTrackingSet()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaTrackingTest()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	DaUpload()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	DaWait()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	Day()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	EnumToComboBox()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	EscapeSeparators()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	ExeDir()
	Internal Basic syntax
	Field of application
	Output parameters
	Example

	Exp()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	ExtractValue()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	FileCopy()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	FileDateTime()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	FileExists()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	FileLen()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	Fix()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	FormatDate()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	FormatResString()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	FV()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Notes

	GetEnvVar()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	GetListItem()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	Hex()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	Hour()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	InStr()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Notes
	Example

	Int()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	IPMT()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Notes

	IsNumeric()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	Kill()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	LCase()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	Left()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	LeftPart()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	LeftPartFromRight()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	Len()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	LocalToBasicDate()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	LocalToBasicTime()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	LocalToBasicTimeStamp()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	LocalToUTCDate()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters

	Log()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	LTrim()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	MakeInvertBool()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	Mid()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	Minute()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	MkDir()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	Month()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	Name()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	Now()
	Internal Basic syntax
	Field of application
	Output parameters

	NPER()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Notes

	Oct()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	ParseDate()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	ParseDMYDate()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	ParseMDYDate()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	ParseYMDDate()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	PMT()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Notes

	PPMT()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Notes

	PV()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Notes

	Randomize()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Notes
	Example

	RATE()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Notes

	RemoveRows()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Notes
	Example

	Replace()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	Right()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	RightPart()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	RightPartFromLeft()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	RmAllInDir()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Example

	RmDir()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Notes
	Example

	Rnd()
	Internal Basic syntax
	Field of application
	Input parameters
	Output parameters
	Notes

