
HP OpenView ServiceCenter Automation for HP
OpenView Operations
For the UNIX Operating System

Software Version: 1.3
User Guide
Document Release Date: June 2006

Software Release Date: June 2006

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty
statements accompanying such products and services. Nothing herein should be construed as
constituting an additional warranty. HP shall not be liable for technical or editorial errors or
omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

Copyright Notices

© Copyright 1996-2006 Hewlett-Packard Development Company, L.P.

Trademark Notices

Microsoft® and Windows® are U.S. registered trademarks of Microsoft Corporation. UNIX® is
a registered trademark of The Open Group.

HP OpenView ServiceCenter, HP OpenView ServiceCenter Automation, and HP OpenView
Operations are registered trademarks of Hewlett-Packard Company.
2

Contents
Chapter 1 Introduction . 7

Overview . 7

Knowledge requirements. . 8

Determining current product version 8

SCAuto for OVO . 9

ServiceCenter . 10

Core applications . 10

Additional applications. 10

OVO . 11

Functional areas . 11

Network Node Manager . 11

About SCAuto for OVO . 12

Operational concepts . 15

Bi-directional Integration . 15

Planning your ServiceCenter and OVO integration. 17

Mode 1: uni-directional automatic notification from OVO 18
 | 3 | 3

SCAuto for OVO
Mode 2: Bi-directional exchange (default mode of operation) . . . 19

Mode 3: Automatic notification from OVO via Trouble Ticket Interface
(TTI) . 22

Mode 4: New ServiceCenter tickets generate OVO events 23

Mode 5: Application monitoring — OVO monitors ServiceCenter . 24

Mode 6: Combined user interface — launch ServiceCenter from OVO
Windows . 24

OVO business logic topics . 26

ServiceCenter business logic topics 27

SCAuto for OVO business logic topics. 29

Chapter 2 Installation . 31

System requirements . 31

Required kernel parameters . 32

Installation requirements . 32

Installing SCAuto for OVO . 33

Install procedure . 34

Chapter 3 Basic Operations . 37

Starting and stopping SCAuto for OVO processes 37

Starting SCAuto for OVO . 37

Stopping SCAuto for OVO . 40

Basic maintenance . 40

scito.ini parameters . 40

Basic configuration . 42

Troubleshooting . 42
4 |

SCAuto for OVO User Guide
Chapter 4 Product Architecture . 45

Application integration. 45

ServiceCenter menu options 46

Event Integration . 48

Integration components . 49

scevmon. 50

sctoito . 51

scfromitoTTI . 52

scfromitoMSI. 52

scfromitoMEI. 52

Chapter 5 Configuration . 53

SC Auto for OVO business logic configuration 53

Configuration overview . 54

OVO variables . 54

ServiceCenter TCL event object 58

OVO Message filtering the event.ini file 63

Sections . 63

Using TTI - trouble ticketing interface 67

Default behavior . 68

TCL Event Mapping from ServiceCenter to OVO 70

OVO programming APIs as TCL commands 72

Event configuration file. 76

Sections . 76
 | 5

SCAuto for OVO
Default behavior . 77

OVO business logic configuration 80

General process . 80

Implementation steps . 81

ServiceCenter business logic configuration 99

ServiceCenter Event Services 99

ServiceCenter Incident Management 103

Chapter 6 Scenarios . 105

Uni-directional automatic incident ticket creation (Mode 1) 105

Bi-directional incident ticket/OVO message creation/update/close (Mode 2)
106

Creating incident tickets with trouble ticket interface (Mode 3) 107

Node-based incident tickets . 109

Cause-based incident tickets per node 109

OVO message group into ServiceCenter category 110
6 |

CHAPTER

1 I
ntroduction
This chapter provides an introduction to HP OpenView ServiceCenter
Automation (SCAuto) for HP Openview Operations (OVO).

It covers the following topics:

Overview on page 7

ServiceCenter on page 10

About SCAuto for OVO on page 12

Operational concepts on page 15

Planning your ServiceCenter and OVO integration on page 17

OVO business logic topics on page 26

ServiceCenter business logic topics on page 27

SCAuto for OVO business logic topics on page 29

Overview
Welcome to the HP ServiceCenter Automation for HP OpenView Operations User
Guide. This guide provides instructions on how to implement the interface
between OVO and ServiceCenter.

SCAuto for OVO allows you to automate the process of creating, updating, and
closing trouble tickets in ServiceCenter, based on OVO Message Stream
Interface (MSI) and Message Event Interface (MEI) events. It has the capability of
annotating, owning, and acknowledging OVO messages from modifications
done on ServiceCenter incident tickets.
Introduction | 7

SCAuto for OVO
This product is part of the suite of SCAuto interface products that integrate
ServiceCenter with premier Network and Systems Management tools. The
interface is based on event messages sent over TCP connection to the
ServiceCenter server. Additional information about SCAuto can be found in the
ServiceCenter Automation Applications for Windows NT and UNIX Guide.

Note: HP Openview IT/Operations (IT/O) has been renamed to HP OpenView
Operations (OVO) for UNIX. Note that the name change is not yet fully
implemented across the OVO software and you may encounter the
former name (IT/O) in this guide. The names OVO and IT/O are
synonymous throughout this guide.

Knowledge requirements
This guide assumes the reader has:

Working knowledge of ServiceCenter applications, ServiceCenter
Client/Server, and the OVO graphical user interface, as well as a basic
understanding of ServiceCenter applications and Event Services. While
some procedures for these applications are explained, others are
referenced. Refer to the appropriate ServiceCenter documentation for a
more detailed explanation.

Familiarity with OVO and its components including the Network Node
Manager (NNM). Working knowledge of the operating system
environment in which you are working (such as a GUI or text-based
environment).

(As an Administrator) a thorough knowledge of the operating system
where ServiceCenter, SCAuto, and the SCAuto for OVO product will be
installed and implemented.

Determining current product version
Knowing the current version of your SCAuto for OVO product is valuable when
contacting HP Customer Support and deciding when to upgrade. From a
ServiceCenter client, refer to the About menu to determine the current version
of ServiceCenter.

Each of the executables scfromitoMEI, scfromitoMSI, scfromitoTTI and
sctoito can be given a command line argument of “-v” to display their current
versions and copyright information.
8 | Introduction

SCAuto for OVO User Guide
SCAuto for OVO
SCAuto for OVO offers integration between ServiceCenter applications and
OVO. The interface of these two applications allows systems management
functions of OVO to be extended and enhanced by the Incident Management
functions of ServiceCenter.

This integration benefits customers of ServiceCenter and OVO by providing
these features:

A more robust environment for production IT operations

Automated ticketing functions supported by the Incident Management
processes

The ability to structure and organize the real-time responses supported
by the enterprise systems management functions.

The sections that follow give a high-level view of the operational concepts in
this integration. These section are:

ServiceCenter

OVO

SCAuto for OVO

Operational concepts

Planning your ServiceCenter and OVO integration

OVO business logic topics

ServiceCenter business logic topics

SCAuto for OVO business logic topics
Overview | 9

SCAuto for OVO
ServiceCenter
Core applications

ServiceCenter contains four core applications:

Incident Management, which is a incident-tracking tool integrated with
knowledge tools to speed resolution.

Configuration Management, which maintains an operational database of
assets used in the enterprise.

Change Management, which allows you to manage the evolution of the
enterprise to meet changing needs and requirements as they arise.

Problem Management, which a problem-tracking tool integrated with
knowledge tools to speed resolution.

Configuration Management tracks what the enterprise was expected to be,
Incident Management works with the current state, Change Management offers
a way to manage towards the desired final product, and Problem Management
works with final resolution of issues and problems.

Additional applications
ServiceCenter provides additional applications that support and enhance the
core applications.

The additional ServiceCenter applications are described next:

Service Management provides a call-based front end applications.

Service Level Management (SLM) offers significant value with service desk
automation based on service level agreements (SLAs).

Request Management maintains catalogs of services and items and
organizes the delivery of these.

Schedule Maintenance enables you to set up and execute recurring tasks.
10 | Introduction

SCAuto for OVO User Guide
OVO
OVO is the foundation of HP OpenView’s operational control of IT resources. It is
a part of HP’s OpenView suite of management applications.

OVO features data, event, and process level integration with other OpenView
applications. It provides a central management console for enterprise systems
management actions. It is built around a robust framework architecture, with an
event console at the core.

Functional areas
OVO has several functional areas that are built from the event messages
handled by the event console. These functional areas are described next:

Message groups and message templates directly impact the events.

User groups collect OVO operators and allocate authorization roles.

Node groups perform a similar function for the managed resources.

Application groups structure the OVO monitored applications into
organized, manageable components.

Network Node Manager
OVO incorporates the OpenView Network Node Manager (NNM) product. It
performs SNMP-based network monitoring. It acts as a perfect companion for
the event console of OVO because it generates event messages from incidents
and faults on the network.
OVO | 11

SCAuto for OVO
About SCAuto for OVO
SCAuto for OVO is designed in a modular way. Specific modules perform specific
data processing functions. There are three separate modules that connect to
three specific APIs:

The Message Stream Interface (MSI) is a registration API that delivers notice
whenever new events arrive at the event console.

The Message Event Interface (MEI) is the interface that delivers messages
upon status changes to existing events.

The Trouble Ticket Interface (TTI) facilitates the help desk integration feature
of message templates. When event messages match the conditions of
templates, incident tickets may be opened automatically. The use of this API
minimizes the configuration of the SCAuto for OVO adapter and allows the
user to configure OVO. This creates an extension to make OVO interact with
ServiceCenter automatically.

The MSI and the TTI function in a similar way. By registering with OVO at these
APIs, new events received by OVO are output to SCAuto for OVO. This allows
ServiceCenter to open new tickets. Subsequent actions against the event
message (such as annotation or acknowledgment of the event) are output to
SCAuto for OVO through the MEI API.

Individual APIs are used for individual data message exchange, but the
combination of two separate APIs is used throughout the duration of the data
exchange. Of the combinations, the TTI & MEI integration is preferred, and the
MSI & MEI integration is also valid.
12 | Introduction

SCAuto for OVO User Guide
The following figure shows the architectural block diagram of the integration
and the adapter

HP OpenView
Operations

ServiceCenter

SC Event
Services

SC Automation
SCAutomation

for
OVO

data maps

Network
Node

Manager

events

assets

alerts

user
roles

message
templates

appl.
desktop

appl.
monitor

trouble
ticket,
notify

service
About SCAuto for OVO | 13

SCAuto for OVO
The following figure shows the modular components of SCAuto for OVO in a
functional block diagram.

In addition to the programmatic connections, other components within OVO
are configured by the installation of SCAuto for OVO. For example, a
ServiceCenter message group is configured to provide a preconfigured view of
the event messages delivered by ServiceCenter to OVO. Upon installation, the
function is available for selection and activation without any configuration or
customization required.

SCAuto for OVO also uses components that are a part of the standard
SCAutomation Software Development Kit (SDK). Key modules from the SDK are
the event monitor (scevmon), the bi-directional event queues (ToSC and
FromSC), and the event maps that formulate the conversion of incoming or
outgoing messages.

S
C

A
ut

om
at

io
n

B
as

e
S

er
ve

r

H
P

 O
pe

nV
ie

w
O

pe
ra

tio
ns

SCEVMON

ToSC Event
Queue

FromSC Event
Queue sctoito

scfromitoTTT

Maps / Scripts

scfromitoMSI

scfromitoMEI

trouble
ticket

new
event

updated
event

TCL
Maps / Scripts

TCL
14 | Introduction

SCAuto for OVO User Guide
Operational concepts
The background of the static components was discussed previously. This
section discusses the dynamic nature of the integration, which is a critical part
of understanding the overall integration.

OVO is essentially a real-time management tool, while ServiceCenter delivers a
process-oriented framework for operations. The synthesis of these domains is a
dynamic environment where events and state changes drive procedure and
process, and vice versa. This synthesis offers dramatic benefits for the customers
of ServiceCenter and OVO.

For more information about integration, refer to Chapter 3, Product
Architecture.

Bi-directional Integration
The default mode of SCAuto for OVO operation is the bi-directional integration
of ServiceCenter and OVO. In this mode, OVO events trigger ServiceCenter
processes. By default, selected events automatically open incident tickets.
Subsequent actions or event messages at OVO may update or close the tickets,
or a similar exchange may occur from ServiceCenter into OVO.

Because most ServiceCenter applications can accept and generate event
messages, this same operational flow can be applied to these ServiceCenter
applications as well. This default mode of operation can be configured to meet
specific end user requirements. The section Planning Your ServiceCenter and
OVO Integration on Planning your ServiceCenter and OVO integration on
page 17 describes the modes of operation that can be derived from the default.

All event messages that are exchanged between ServiceCenter and OVO must
be converted from their native format into a format compatible with the
destination. Event messages sent to ServiceCenter must be formatted in the
event message structure defined by the SCAuto SDK. SCAuto for OVO performs
most of this formatting, but it relies upon ASCII text map files to specify how to
convert specific OVO event message data fields into ServiceCenter event
message data fields. A similar process is used for converting outbound event
messages from ServiceCenter to OVO.
Operational concepts | 15

SCAuto for OVO
The adapter may create one-to-many relationships of OVO events to incoming
SC event messages. This functionality is facilitated by the input maps that use
the TCL scripting language. With this feature, for example, an SNMP Node Down
event message can do any of the following:

Open an incident ticket.

Update a Configuration Management record.

Start an SLA outage metric against a logical item, such as a database that
runs on the node and is reported as down. (This is only available for
installations with Service Level Management.)

The following figure shows a one OVO Event Message to Many ServiceCenter
(SC) Event Messages.

The adapter can also create one-to-many relationships of outgoing
ServiceCenter events to OVO event messages or other actions. This output
functionality is also supported by the use of TCL scripting language in the
output maps. Since the maps are really script programs built to massage data
fields, they can be edited easily to cause any desired actions.

The typical event message relationship will be one OVO event message to one
ServiceCenter event message. Furthermore, many ServiceCenter event
messages will be used to alter the state and the data of just one ServiceCenter
incident ticket. For example, a OVO event message will create a ServiceCenter
event message that will open an incident ticket. Then another OVO event
message creates an update request type of ServiceCenter event message that
adds new information to the original incident ticket. Then a final OVO event
message will create a close request that ends the active life of the ticket.

OVO event
message

SC 'pmo' event
message

SC 'icma' event
message

SC 'slaoutage' event
message

map
16 | Introduction

SCAuto for OVO User Guide
The following figure shows One-to-One Event Message Relationships, with
Many Event Messages Linked to Just One Incident Ticket.

Planning your ServiceCenter and OVO integration
The following sections describe some of the ways in which SCAuto for OVO can
be used. These scenarios help you plan and design your own implementation of
OVO integrated with ServiceCenter using SCAuto for OVO. Any mode,
combination of modes, or all modes can be used in a single deployment of
SCAuto for OVO. Furthermore, an end user can extend the product to
implement unique operational processes not described in any of the following
mode sections.

For more scenarios, refer to Chapter 6, Scenarios.

OVO event
message

1st related
OVO event

message

2nd related
OVO event
message

Final related
OVO event
message
(end of alert)

SC ' pmo' event
message

open request

SC ' pmu' event
message

update request

SC ' pmu' event
message

update request

SC ' pmc' event
message

close request

SC
Incident
Ticket

opened
updated
updated

...
closed
Planning your ServiceCenter and OVO integration | 17

SCAuto for OVO
Mode 1: uni-directional automatic notification from OVO
In this mode, OVO events drive ServiceCenter incident tickets. To understand
this mode, you should assume that:

Business logic is applied to the OVO event console to select which events
are to be forwarded to ServiceCenter (refer to OVO business logic topics on
page 26).

The only relationship between OVO and ServiceCenter consists of
automatic tickets from OVO events. Operationally, this implies that the
monitored systems and resources are proactively creating tickets when
conditions are met. However, it also means that all actions on resolving the
issue, fault or incident are coordinated and administered from
ServiceCenter.

The OVO event console becomes a “lights out” processing engine that feeds
the service desk with intelligent real-time data, and then both expects and
receives no further information or integration of service processes.

Process and Data Flow
This mode follows a process and data flow as shown in the following two
flowchart diagrams.

HP OpenView
Operations

HP OpenView
ServiceCenter

events

assets

tickets desktop
view

1 : To SC : enterprise event message

2 : To OVO: status & acknowledgement events

Request to open, update or close incident
ticket.

assets

SLAs Request to annotate, own or acknowledge
event message.
18 | Introduction

SCAuto for OVO User Guide
This mode is configured through the registered connection from OVO to
ServiceCenter via the MSI API. This mode will invoke the following components
of SCAuto for OVO:

scfromitoMSI and scevmon processes

ToSC Queue

Event Maps (event.ini, and maps referenced in event.ini)

Mode 2: Bi-directional exchange (default mode of operation)
In this mode, OVO events drive ServiceCenter tickets (records), and the
ServiceCenter tickets control OVO events. This creates a partnership of
managing the events, where each application has a significant contribution to
the event and incident management process.

This mode incorporates Mode 1, but it extends it by generating ServiceCenter
events that are sent to OVO. From this bi-directional interface, there are multiple
scenarios based upon state transitions and the path of service processing. For
example, there are three actions on OVO events that are able to be taken (via
specific event messages): annotate, acknowledge, or own. There are many more

manage
problem with

SC

open ticket
from event

write to
eventin
queue

read event
from ToSC

queue

write to ToSC
queue

map event
message

send
message to

scfromitoMSI

new OVO
event

message

meets
condition for
mapping?

Exit

to SC

Yes

No

OVO OVO SCAutomation for OVO

SCAutomation for
OVO

SCAutomation for
OVO

SCAutomation for
OVO

SCAutomation for
OVO

SCAutomation for
OVO

ServiceCenter ServiceCenter
Planning your ServiceCenter and OVO integration | 19

SCAuto for OVO
actions that can be taken on tickets, but the various instances always represent
a generalized open, update, or close action on the ticket.

This mode of application partnership is the typical operational mode. It offers
service desk functions to extend and enhance the real-time event management
of OVO. It moves the service desk into more proactive fault management,
allowing service desk analysts to respond to emerging issues, rather than
reacting to fully developed faults.

This mode allows a richer protocol of integration. In effect, OVO may request the
opening of tickets. In response, ServiceCenter acknowledges the open ticket
and annotates the OVO event. Subsequent exchanges may inform the
applications of changes in state and data values. This mode also supports a
complete cycle of interaction in which a close ticket closes (acknowledges) an
OVO event, and vice versa. Building this type of interaction involves business
logic in both ServiceCenter and OVO.

Process and data flow
This mode follows a process and data flow as shown in the following two
flowchart diagrams.

HP OpenView
Operations

HP OpenView
ServiceCenter

events

assets

tickets desktop
view

1 : To SC : enterprise event message

2 : To OVO: status & acknowledgement events

Request to open, update or close incident
ticket.

assets

SLAs Request to annotate, own or acknowledge
event message.
20 | Introduction

SCAuto for OVO User Guide
This mode is constructed through the registered connection from OVO to
ServiceCenter via the MSI API, as well as the MEI API. This mode will invoke the
following components of SCAuto for OVO:

scfromitoMSI, scfromitoMEI, sctoito and scevmon processes

ToSC and FromSC Queues

Event Maps (event.ini, and maps referenced in event.ini)
Planning your ServiceCenter and OVO integration | 21

SCAuto for OVO
Mode 3: Automatic notification from OVO via Trouble Ticket
Interface (TTI)

This mode is an alternative configuration of Mode 1 (uni-directional) or Mode 2
(bi-directional). It uses the OVO TTI API as opposed to the MSI API. This allows for
a more focused configuration of OVO Message Source Templates, freeing the

create “ticket
action”

acknowledge
event

open, update,
close ticket

write to
eventin
queue

read event
from ToSC

queue

write to ToSC
queue

map event
message

send msg to
scfromitoMSI

new OVO
event

message

meets
condition(s) for

mapping?
Exit

to SC

No

updated OVO
event

message

send msg to
scfromitoMEI

other Incident
Management

actions

create ticket
update or

close event

From SC
write to
FromSC
queue

read from
eventout
queue

write to
eventout
queue

send event to
sctoito

read from
FromSC
queue

meets
condition(s) for

mapping?
ExitNo

map event
message write to OVO

Event
Management

with OVO

OVO

Yes

OVO

SC Automation for OVO

SC Automation for OVO

ServiceCenter
22 | Introduction

SCAuto for OVO User Guide
MSI API to be used for other integration efforts, as well as avoiding the more
complicated template formatting required with MSI configuration. With this
mode, the MEI usage is identical to the previous modes.

This mode invokes the following components of SCAuto for OVO:

scfromitoTTI, scfromitoMEI, sctoito and scevmon processes

ToSC and FromSC Queues

Event Maps (event.ini, and maps referenced in event.ini)

This mode uses the identical flowcharts shown earlier for Modes 1 and 2. The
only difference is that references to scfromitoMSI are replaced with
scfromitoTTI.

Mode 4: New ServiceCenter tickets generate OVO events
This mode treats ServiceCenter as an event source or event generator. Through
the application of ServiceCenter business logic, new incident tickets activate
logic, which generates event messages that are sent to OVO. OVO Message
Source Templates can be configured to treat these events like any other systems
or network management events handled at the OVO console.

This mode begins like Mode 1, but reverses the direction of the first event
message. Subsequent interaction looks exactly like Mode 2. In operation, Mode
4 would allow an OVO-centric model of service desk and enterprise
management interaction. If desired, this would allow OVO to track certain
Planning your ServiceCenter and OVO integration | 23

SCAuto for OVO
ServiceCenter actions, as if they were SNMP traps, systems administration
events, or any other typical OVO managed messages.

Mode 5: Application monitoring — OVO monitors ServiceCenter
This mode of operation acknowledges that a primary use of OVO is to monitor
and manage computer applications. Upon installation of SCAuto for OVO,
additional monitoring configuration functions are installed into the OVO
Application Bank. These functions leverage the Application Response
Measurement (ARM) specifications to offer consistent, standardized treatment
of ServiceCenter. This mode also contains Message Source Templates, which
allow OVO to be configured to generate events about the health of SCAuto for
OVO and about the health of ServiceCenter itself. Further configuration of the
Message Source Templates allows these events to become automatically
generated incident tickets within ServiceCenter.

Mode 6: Combined user interface — launch ServiceCenter from
OVO Windows

To facilitate greater ease of use, SCAuto for OVO features several options for
accessing ServiceCenter (6.1 or later) through a web browser directly from OVO.
From the OVO root window, an icon launches a web browser using the url for

HP OpenView
Operations

HP OpenView
ServiceCenter

events

assets

tickets desktop
view

1: To OVO: ticket event message

2: To SC: status & acknowledgement events

Request to open an event message.
Subsequently, request to annotate, own or

acknowledge event message.

assets

SLAs
Request to update or close incident ticket.
24 | Introduction

SCAuto for OVO User Guide
the ServiceCenter web tier to open directly to the main menu. The function of
this icon is also available from a pull-down menu on the root window.

In addition to the root window, the OVO Node Bank window has a similar menu
and icon to launch a connection to ServiceCenter to display specific
ServiceCenter windows. In the node bank, it is possible to select a node and
Planning your ServiceCenter and OVO integration | 25

SCAuto for OVO
connect to the ServiceCenter web tier to view ServiceCenter data on the
selected node. For example, this menu item lists incidents on the node.

OVO business logic topics
OVO automates repetitive tasks; it also enhances and supports operational
processes through the tools of OVO. These benefits can be applied broadly
because OVO has the ability to adapt to specific needs. This adaptability comes
from OVO’ flexible approach to operations support. It results in an efficient way
of collecting the logic of operations and the logic of running a business and
using this business logic in repeatable, sustainable ways.

OVO captures business logic within its operational tools. For example, if an IT
department must scrutinize user login attempts for security reasons, OVO can
automate the process of such monitoring, and it can also automate the
response to unusual conditions. The business logic is stored in Message Source
Templates. These templates begin with expected enterprise events, and they
configure the OVO processing engines to consistently respond to the events.
26 | Introduction

SCAuto for OVO User Guide
Message Source Templates have a wide variety of configuration parameters.
Some configuration parameters condition and massage the data of the event
messages. Other parameters specify actions and tasks to perform in response to
received event messages. These are generic examples of programming business
logic into an OVO environment. SCAuto for OVO relies on specific configuration
of the templates to invoke application programming interfaces.

In a basic sense, OVO assumes that all events from all sources are potential
candidates for integration with a help desk. OVO creates an API called the
Trouble Ticket Interface (TTI) API for this purpose. Message Source Templates
offer an option button to select this integration function, which automatically
sends event messages to all applications that are registered and listening to the
TTI API.

An advanced configuration of Message Source Templates is also available.
Under these advanced options, you can specify that event messages from
specific sources extend themselves to the Message Stream Interface (MSI) API.
You can also select whether this is activated at the server or at the agent. When
this option is selected, all event messages from the message source are copied
to all applications that are registered and listening to the MSI API.

SCAuto for OVO leverages the above API configuration options to invoke its
programs. This amounts to a business logic decision of when events of this type
occur, invoke the service desk. This logic, in conjunction with the generic OVO
configuration options (which capture filtering, data massage, and event
message routing business logic), offers the OVO resident component capability
of synthesizing the service desk with the enterprise systems management
console.

ServiceCenter business logic topics
ServiceCenter facilitates and automates the process of supporting business
operations. Much like OVO, these benefits can be applied broadly because of
ServiceCenter's flexibility and adaptability to address specific needs. Like OVO,
this reflects ServiceCenter's ability to capture business logic within its
applications.

ServiceCenter provides a significant amount of generic business logic within the
service desk applications. The Incident Management application, for example,
ServiceCenter business logic topics | 27

SCAuto for OVO
follows a well-defined help desk model of incident identification, tracking, and
resolution. It can be used as is, or it can be customized to address specific
organizational requirements. Custom business logic is most often applied to the
escalation and notification aspects of the process model, although the process
workflow is also frequently altered.

Business logic in ServiceCenter can be associated with several levels of
ServiceCenter:

At the bottom level are the ServiceCenter databases, where trigger
mechanisms can dictate custom actions.

Above the database level is a utilities level, which is composed of Schedules,
Format Control, Macros, and Links. These tools offer the preferred location
for applying custom business logic. All of the tools were designed to
support this function. The ServiceCenter Event Services module essentially
connects with ServiceCenter at the utilities level. This module provides
equivalent functions related to processing incoming and outgoing event
messages.

The final level where business logic can be defined is at the ServiceCenter
applications. This level either lends itself to easy customization of the user
presentation of application data (via Forms Designer), or it involves more
significant alterations that require a programming solution (via
ServiceCenter's fourth generation language, RAD).

ServiceCenter Applications

Forms Workflow
(RAD Applications)

SC Event Services SC Utilities

Input
Queue

Output
Queue

Event
Registration

Event
Mapping

Event
Filtering

D
at

ab
as

e

Format Control

Macros

Links

Scheduler
28 | Introduction

SCAuto for OVO User Guide
SCAuto for OVO utilizes the ServiceCenter Event Services module for its business
logic integration with ServiceCenter. It leverages default configurations of event
messages to open, update, or close an incident ticket. These event message
requests are defined as event types of pmo, pmu, or pmc, respectively. The
processing logic of these requests can be altered if needed, but the default
configuration is satisfactory for integration with OVO.

Comparable to OVO’s business logic decision of when events of this type occur,
invoke the service desk, the SC Event Services response is when the service desk
is invoked, receive and process the data, and then launch the appropriate
service desk function. This logic is often combined with Format Control utility
logic, which injects programmed queries, tests, and automated actions into the
application layer (and therefore into process model of the service desk).

This configuration of utility level business logic offers the ServiceCenter resident
component of synthesizing the service desk with the enterprise systems
management console. When combined with the OVO portion, the result is an
extremely powerful integration that facilitates more effective and efficient IT
operations and the operations of the business as a whole.

SCAuto for OVO business logic topics
The previous two sections discussed capturing your business requirements in
the configuration of OVO or ServiceCenter. As you define how your
consolidated service desk functions, you will undoubtedly use the topics of the
last two sections. However, when deploying such an enterprise solution, you
may also need to put business logic into the middleware represented by SCAuto
for OVO.

Other sections of this document discuss the features of this product that allow
it to be customized and configured. Any of these features are sufficient for
beginning to program business logic into the product. Realistically, any custom
logic will be coded into the TCL scripts used for the data maps. Business logic
captured in the map scripts will be able to affect many aspects of the overall
integration: unique data items, selection of particular event messages, or
creating many events from one input event. Regardless, refer to the earlier
sections for more details on SCAuto for OVO’s abilities of capturing business
logic.
SCAuto for OVO business logic topics | 29

SCAuto for OVO
In today's business world, companies rely upon their IT resources. HP OpenView
and ServiceCenter deliver the IT support that companies count on. The SCAuto
for OVO product integrates these major applications, and creates a synthesis of
real-time management and process oriented service delivery. Because of the
natural dynamic nature of IT, there are constantly new challenges to be
addressed in IT management. This new product helps address those challenges
directly, and enables enterprise solutions built from the mature concepts of the
consolidated service desk.
30 | Introduction

CHAPTER

2 I
nstallation
This chapter gives the requirements for installing ServiceCenter Automation
(SCAuto) for OpenView Operations (OVO) and provides step by step installation
instructions.

System requirements
To use SCAuto for OVO, your installation must be on a UNIX platform and must
include the following:

ServiceCenter version 5.1 or later

Client launch only supported with ServiceCenter 6.1 or later

OVO 8.20 on HP-UX 11.23 Itanium

OVO 8.10 on HP-UX 11.0 or 11.11 on HP 9000

OVO 8.10 on Solaris 8 and 9

35 MB temporary unpack space

35 MB installed footprint

The ServiceCenter server can run on Windows, UNIX, or Linux. SCAuto for OVO
presently runs exclusively on the UNIX platform.

OVO should be implemented and operational to the extent that meaningful
events arrive at the Event Message browser, and at least one designated
individual is familiar with the OVO product as well as defining OVO Event
Message sources and OVO Message Actions.
Installation | 31

SCAuto for OVO
SCAuto for OVO supports ServiceCenter 5.1 or later. By default, SCAuto for OVO
is designed to work with the default ServiceCenter configurations. If
ServiceCenter is tailored, you may also have to tailor SCAuto for OVO.

Customers with heavily customized or older systems should give consideration
to use of Professional Services to implement SCAuto products.

Required kernel parameters
Your HP-UX or Solaris machine must have the following kernel parameter
settings:

The minimum value of any semaphore must be greater than or equal to 1
(SEMVMX).

The maximum number of semaphore sets systemwide must be increased by
3 (SEMMNI).

The maximum number of semaphores systemwide must be increased by 3
(SEMMNS).

The minimum number of semaphores per semaphore set must be greater
than or equal to 1 (SEMMSL).

The maximum number of undo structures systemwide must be increased by
3 (SEMMNU).

The minimum number of undo entries per undo structure must be greater
than or equal to 1 (SEMUME).

The minimum number of operations per semop must be greater than or
equal to 1 (SEMOPM).

Installation requirements
To install SCAuto for OVO, you must have administrator-level access both to the
OVO server and the ServiceCenter server. Installation takes only a few minutes if
you have determined the correct host name and port number values
beforehand.
32 | Installation

SCAuto for OVO User Guide
Before you begin installation, you need the following information about your
OVO and ServiceCenter installations:

Administrator authority at the OVO server

Administrator-level access to the ServiceCenter server

An authorization code for ServiceCenter

The host name or IP address of the ServiceCenter server and the TCP port
number for use by ServiceCenter and the SCAutomation Base Server.

Web tier host name and port number for the GUI.

Installing SCAuto for OVO
There are two major parts of the installation process:

The Event Integration binaries and support files. This includes HP Local
Registration Files (LRFs) that integrate with the OVsPMD.

The GUI Integration components, which can be broken down into:

ServiceCenter Message Group object and Application Group Objects

During installation, these parts will be configured with the customer's options
and settings.

The deliverable image is available as a download or on a CD-ROM (ISO9660
format). The installation begins by executing the install.sh script. Installation
includes these steps:

1 Mount the CD.

On HP-UX use the command mount -o cdcase or pfs_mount.

On Solaris the CD is mounted automatically.

2 Go to the appropriate directory. The directory name is:

hp_11_ia64 for HP-UX 11.23 Itanium
Installing SCAuto for OVO | 33

SCAuto for OVO
hp_11 for HP-UX 11.

solaris for Solaris 8 or 9.

3 Execute install.sh.

Install procedure
Important: The installation must be done as the root user.

The installation process consists of two scripts: install.sh and
config/install2.sh in scito.tar. Executing install.sh unpacks scito.tar
into a directory and then executes config/install2.sh. Interactive prompts
enable you to stop the installation at any time. During this process, files are
placed into a directory for potential manual installation. Please note that
stopping the installation is not recommended.

Provide the following information when prompted:

Root directory of OVO (for example, /opt/OV).

Target directory for product installation. (for example, /opt/OV/scauto).

The ServiceCenter server host name and port number.

The ServiceCenter web tier host name and port number.

Note: For ServiceCenter 6.1 or later, the ServiceCenter web tier information is
required only if you want ServiceCenter Client GUI integration.

The installation script then takes you through the following steps:

1 Prompt for root directory of OVO.

2 Prompt for the target directory for installation, and it copies Event Maps and
binaries over.

3 Create and configure /etc/scauto/SCITO.init file with the home
directory of product.

4 Configure product ini file scito.ini with ServiceCenter Server information.

5 Configure and install HP Local Registration Files with product start/stop
information.
34 | Installation

SCAuto for OVO User Guide
6 Configure and add Menu/Toolbar GUI customizations to user opc_adm and
opc_op. (Optional)

7 Create ServiceCenter Message Group Object in Message Group Bank and
Application Object in Application Bank. (Optional)

If you encounter a problem that you are unable to resolve, please contact
Customer Support.
Installing SCAuto for OVO | 35

SCAuto for OVO
36 | Installation

CHAPTER

3 B
asic Operations
Starting and stopping SCAuto for OVO processes
The ServiceCenter Automation (SCAuto) for OpenView Operations (OVO)
applications are installed into OVO from Local Registration Files (LRFs). This
means that you can start and stop the processes using the HP ovstart/ovstop
facilities. The SCAuto for OVO processes consists of the event monitor
(scevmon), ServiceCenter to OVO adapter (sctoito), and the OVO to
ServiceCenter adapters (scfromitoMEI, scfromitoMSI, and scfromitoTTI).

Starting SCAuto for OVO
There are three ways to start the SCAuto for OVO adapter processes:

If you chose the GUI integration during installation of SCAuto for OVO, you
can start all processes by selecting the following options, in order, from the
menu on the OVO Root Window or the OVO Node Bank Window:

ServiceCenter

Integration Tools

Start All Adapters

You can use the OVO command line ovstart to start individual processes.
For example, use ovstart scevmon to start the scevmon process and
Basic Operations | 37

SCAuto for OVO
ovstart scevmon scfromitoMSI to start the scevmon and scfromitoMSI
processes.

SCAuto for OVO can also be started from its icon (called ServiceCenter Tools)
in the OVO Application Bank window.

You can start or stop SCAuto for OVO by selecting the ServiceCenter Tools icon
in the OVO Application Bank window.
38 | Basic Operations

SCAuto for OVO User Guide
The ServiceCenter Tools screen opens.

This window contains a set of icons that controls SCAuto for OVO and offers
some control over ServiceCenter.

Open Incident - allows user to open an incident ticket on selected messages
in the Message Browser.

SCITO Adapters Status - shows the operational status of the adapter
processes.

ServiceCenter - opens a connection to the ServiceCenter web tier (for
ServiceCenter 6.1 or later only) if GUI integration chosen.

Start Adapters - starts the SCAuto for OVO adapter processes.

Stop Adapters - stops the SCAuto for OVO adapter processes.
Starting and stopping SCAuto for OVO processes | 39

SCAuto for OVO
Stopping SCAuto for OVO
There are three ways to stop the SCAuto for OVO adapter processes:

If you chose the GUI integration during installation of SCAuto for OVO, you
can stop all processes by selecting the options listed below, in order, from
the menu on the OVO Root Window or the OVO Node Bank Window.

You can use the OVO command line ovstop to stop individual processes. For
example, use ovstop scevmon to start the scevmon process and ovstop
scevmon scfromitoMSI to stop the scevmon and scfromitoMSI processes.

SCAuto for OVO can also be stopped from its icon (in the ServiceCenter
Tools) in the application group Application Bank window.

Basic maintenance
In the product installation directory, the SCAuto for OVO adapter contains a log
file called scito.log, as well as a parameter configuration file called scito.ini,
where all informational and error messages from the product are stored.

The product requires very little maintenance once installed and running. By
default the log file is archived to scito.log.archive once it reaches 5M bytes.
In addition, the event queues purge processed events to remove them once
they reach 5M bytes each, retaining the unprocessed events.

scito.ini parameters
This is a subset of the commonly used parameters that can be set in the
scito.ini file:

sessid - By default, this is set to OPCENTER. This is the license string for the
SCAuto for OVO product. Do not modify.

scauto - This is the hostname.port of the SCAuto server for SCAuto for OVO.
This parameter is configured by the installation script.

event_map_dir - This is the root directory name (starting from the
installation directory) of the event mapping scripts and files. By default, it is
configured as “EventMap”.

log - This is the file name for the log file. By default, it is configured as
scito.log.
40 | Basic Operations

SCAuto for OVO User Guide
debugMEI :1, 2 - Set =1 turns on tracing for the scfromitoMEI process. Set =2
turns on more verbose tracing for the scfromitoMEI process

debug MSI: 1, 2 - Set=1 turns on tracing for the scfromitoMSI process. Set =2
turns on more verbose tracing for the scfromitoMSI process.

debugTTI: 1, 2 - Set=1 turns on tracing for the scfromitoTTI process. Set=2
turns on more verbose tracing for the scfromitoTTI process.

debugTOITO: 1, 2 - Set=1 turns on tracing for the sctoito process. Set=2
turns on more verbose tracing for the sctoito process.

debugscautoevents: - This is the SCAuto event debugging flag to output
more debugging messages of the event type. Enable the parameter by
setting it to 1.

eventlogmaxlen - This parameter defines the maximum size, in bytes, that
the event queue files can reach before being purged of processed events.
The default is 5M. The minimum size is 1M.

logmaxlen - This parameter defines the maximum size in bytes that the log
file can reach before it will be wrapped down to logpreservelen. The
default is 5M. It is not recommended to set this value to less than 1M.

logpreservelen - This parameter defines the size of the log file to wrap down
to in the event it reaches logmaxlen. The default is 0 which causes the
scito.log file to be archived to scito.log.archive when the logmaxlen is
reached and empties the current scito.log file. The maximum is 128K.

usersepchar - Allows user to define a separator character other than “^” (^ is
the default value). To specify a different character, enter a decimal value of
an ASCII character between 1 and 255.

scevents - Specifies an optional list of event types which are to be retrieved
from ServiceCenter's EVENTOUT queue. The default is to retrieve all types,
however, this can be inefficient, because it can result in bringing over
certain types of events, such as outbound page messages or email
messages, which have no meaning to Operations. To restrict the types of
events that are retrieved, code them in a list separated by commas and
enclosed in parentheses. For example, scevents:(pmo,pmu,pmc). To
disable all retrieval of outbound events from ServiceCenter, use the
"noeventsfromsc:" option.

noeventsfromsc - Specifies whether or not scevmon should retrieve events
from ServiceCenter's EVENTOUT queue. The default is 0 (which means
events will be retrieved). To disable retrieval of all outbound events from
ServiceCenter, code "noeventsfromsc:1".
Basic maintenance | 41

SCAuto for OVO
scevusers - This parameter restricts the events which are to be retrieved
from ServiceCenter’s EVENTOUT queue based on the value in evuser field.
The default is to retrieve all events regardless of the value of the evuser field,
however, this can be inefficient, because it can result in bringing over
certain events which are not intended for OVO. To use this parameter, code
the values in a list separated by commas and enclosed in parentheses.

For example, scevusers:falcon only get events that have falcon as the
evuser. scevusers:(falcon, SCITO) only get events that have falcon or
SCITO as the evuser.

scevmon_sleep_interval - Specifies the amount of time in seconds that
scevmon should sleep. The default is 5 seconds. Fore example,
scevmon_sleep_interval:1 tells scevmon to sleep for one second.

Basic configuration
The SCAuto for OVO product is configured during installation. After the product
is installed, it will work out of the box with the current OVO configuration. To
further tailor the system to your business needs, refer to Chapter 5,
“Configuration.”

Troubleshooting
If incident tickets in ServiceCenter are not being created by OVO event
messages, follow these steps to troubleshoot the problem:

1 Verify that the event monitor process scevmon is running. If this process is
not running, execute ovstart scevmon to start it.

2 Verify that the SCAuto for OVO event monitor is communicating with the
SCAuto server. If the scito.log file contains the message

... scevmon : unable to connect ..., do the following:

Check the scito.ini file for the parameter scauto:. Verify that it exists
and points to the <hostname>.<port number> of the SCAuto server you
are trying to connect to.
42 | Basic Operations

SCAuto for OVO User Guide
Log in to the ServiceCenter server host and verify that the SCAuto server
is running.

Check the network by pinging the ServiceCenter Server host to see if it
is reachable.

3 Verify that the scfromitoMSI and scfromitoMEI processes are currently
running. If not, execute scfromitoMSI and scfromitoMEI to start them.

4 Verify that OVO event message sources are correctly set up to communicate
with SCAuto for OVO. (Refer to Chapter 5, “Configuration,” for more details
on configuring OVO message sources.)

If using TTI interface, verify that the event source has Trouble Ticketing
enabled. Also verify that the Trouble Ticketing interface is correctly
configured to use the TTI.sh script in the installed scauto directory.

If you are using the MSI interface, verify that the event source has Server
MSI or Agent MSI message copy/divert enabled.

Verify that the event.ini configuration file in the EventMap/ToSC
directory is properly configured.

5 Finally, check the scito.log file for any unusual error messages.

If ServiceCenter incident ticket modifications are not reaching the OVO message
browser, follow these steps to troubleshoot the problem:

1 Verify that a record is generated in the eventout table in ServiceCenter.
Configure format control to output equivalent records accordingly.

2 Check to see if the event monitor process scevmon is running at the OVO
host. Execute ovstart scevmon to start it.

3 Check to see if the SCAuto for OVO event monitor is communicating with
the server. If the scito.log file contains the message ... scevmon : unable to
connect ..., do the following:

Check the scito.ini file for the parameter scauto:. Verify that it exists
and points to the <hostname>.<port number> of the SCAuto server you
are trying to connect to.
Troubleshooting | 43

SCAuto for OVO
Log in to the ServiceCenter server host and verify that the SCAuto server
is running.

Check the network by pinging the ServiceCenter Server host to see if it
is reachable.

4 Verify that the sctoito process is running using ovstatus sctoito on the
OVO host. If it is not running, execute ovstart sctoito to start it.

5 Check the configuration file EventMap/FromSC/event.ini, and verify that
the user name and password are correct.

6 Finally, check the scito.log file for any unusual error messages.
44 | Basic Operations

CHAPTER

4 P
roduct Architecture
This chapter covers the architecture of HP OpenView ServiceCenter Automation
(SCAuto) for HP OpenView Operations (OVO), focusing on two primary topics:

Application Integration

Event Integration

Application integration
SCAuto for OVO provides an enhanced operator interface to ServiceCenter that
can run under OVO. From an OVO window, you can access a number of
ServiceCenter windows to gather information related to the current window or
selected object.

This capability is only available if the ServiceCenter GUI interface is enabled
during the SCAuto for OVO installation. If the GUI interface is not enabled, you
can start a ServiceCenter client from the UNIX command line instead.

Note: Refer to the appropriate ServiceCenter documentation for more
information on using ServiceCenter.

ServiceCenter clients are started through the ServiceCenter menu in a OVO
window. Depending upon the menu item selected, the client window will be
opened to different ServiceCenter applications and windows.
Product Architecture | 45

SCAuto for OVO
All menu options are available if an icon for an object is selected in a OVO
window. Specific requests requiring an object selection are grayed out if an icon
is not selected.

The following windows are a tutorial representation of SCAuto for OVO general
operations. Windows and functions may change from release to release, so
reference the help files on your specific platform for the latest operational
details.

ServiceCenter menu options
The ServiceCenter menu options take you directly to the ServiceCenter
applications from within OVO. The following sections provide a brief description
of the windows.

Note: While some of the ServiceCenter application options are mentioned in
this manual, you should refer to the ServiceCenter documentation for
complete instructions on using the ServiceCenter applications.

To use a ServiceCenter application under SCAuto for OVO:

1 Select the ServiceCenter menu in the OVO window and select the
appropriate menu option. Some ServiceCenter menu options are not
available unless an object is selected in the OVO window.

2 Use the mouse or keyboard to navigate through a window.
46 | Product Architecture

SCAuto for OVO User Guide
3 To leave the application, select the Back button or press F3. This takes you
to the previous window or to a logout window.

Incident List
The Incident List menu option provides a list of incidents that are currently
active in ServiceCenter for the selected object. When this option is selected, an
incident list opens. Use the Options menu to display a list of operations to
perform on the incidents. Double-click an item the incident ID to display the
Incident Detail window.
Application integration | 47

SCAuto for OVO
Event Integration
SCAuto for OVO Event Integration is a collection of tools or components that is
highly customizable for integrating event messages from OVO to create,
update, or close a ServiceCenter incidentticket.

Event Message integration provides these capabilities:

Ability to tap into the Message Stream Interface (MSI) for all new
eventmessages based on event registration conditions and to create new
ServiceCenter problem tickets.

Ability to tap into the Message Event Interface (MEI) for modifications done
to existing event messages based on event registration conditions, and to
update or close existing ServiceCenter problem tickets.

Provide a trouble ticketing interface from which configured OVO events
may create ServiceCenter problem tickets.

Ability to create new OVO event messages from ServiceCenter eventout
output events.
48 | Product Architecture

SCAuto for OVO User Guide
Ability to modify existing OVO event messages based on modification being
done to related problem tickets in ServiceCenter using the eventout output
events.

Ability to correlate ServiceCenter problem tickets to one or more OVO event
messages.

Ability to correlate OVO event messages to a ServiceCenter incident ticket.

Integration components
The following table shows the integration components for SCAuto.

File Name File Type File Description

scevmon executable for manipulating queue
files to and from ServiceCenter.

This is the core technology of the SCAuto
product that facilitates bi-directional
queueing of messages to and from
ServiceCenter.

sctoito executable for reading the from
queue file and forwarding to OVO

This executable functions to take an event
forwarded from ServiceCenter eventout
and generate/modify OVO event
messages using a series of customizable
TCL8.0 scripts. 80% of the OVO API library
has been converted into TCL callable
functions accessible by these scripts. This
executable runs in the background
waiting for events. The customer can do
more than is provided by the OVO APIs,
such as remote controlled processes.

scfromitoTTI executable to interface with OVO
Trouble Ticket Interface

Basically, OVO needs to customize
interested events to forward to Trouble
Ticketing first. Trouble Ticketing Interface
will then call a script and pass as
arguments static data describing the
event. We are only interested in the first
argument, which is the message ID. This
executable is called once via a shell script
indicated in the Trouble Ticketing custom
dialog for every intended event.

scfromitoTTI executable to interface with OVO
Trouble Ticket Interface

This executable will register events for the
Message Stream Interface and run in the
background waiting for event
notification. Upon notification, it will use
event maps and generate the appropriate
SC events to the to queue. The Message
Stream Interface will notify only new
events in OVO.
Event Integration | 49

SCAuto for OVO
scevmon
This is the core of the SCAuto SDK V3. It is best described as an event message
processor using to (ServiceCenter) and from (ServiceCenter) queue files to cache
events generated by the other components. The basis of this design is to
facilitate a fault recovery system that enables OVO event messages to be
queued up even while ServiceCenter is currently not available, as well as
queueing up ServiceCenter events while waiting for OVO to be available. The
contents of the queue files include the actual ServiceCenter events in “^”
delimited format preceded by a header. These files should not be modified by
hand.

The scevmon component typically runs in the background, makes a TCP
connection to the SCAuto server, and waits for events to appear in the queue
files. Once any of the other integration components writes an event string to the
to queue file, scevmon picks it up, marks it as processed and forwards it to
ServiceCenter's eventin table. On the other hand, if a problem ticket is modified
and an entry gets created in the eventout table in ServiceCenter, scevmon picks
it up, updates the sync file to point to the last entry in the eventout table, and
writes the event string into the from queue file. At this point, the sctoito

scfromitoMSI executable for writing the to queue
from OVO Message Stream
Interface

This executable will register events for the
Message Stream Interface and run in the
background waiting for event
notification. Upon notification, it will use
event maps and generate the appropriate
SC events to the to queue. The Message
Stream Interface will notify only new
events in OVO.

scfromitoMEI executable for writing the to queue
from OVO Message Event Interface

This executable will register events for the
Message Event Interface and run in the
background waiting for event
notification. Upon notification, it will use
event maps and generate the appropriate
SC events to the to queue. The Message
Event Interface will only notify about
changes done to existing events in OVO.

various map files/TCL
scripts

configuration text files TCL scripts that are customizable for
creating/modifying OVO events from
ServiceCenter events as well as from OVO
to ServiceCenter. Also, there are ini config
files that need to be set up to facilitate
scevmon and the locations of these files.

File Name File Type File Description
50 | Product Architecture

SCAuto for OVO User Guide
integration component picks it up, marks it as processed, and forwards it
through the TCL mapping scripts to OVO.

The config files used by scevmon are:

/etc/scauto/SCITO.init - a file that contains a variable pointing to the
installed directory of the product.

<installation directory>/scito.ini

The scevmon component reads these files:

$SCITOHOME/scevents.to.<host>.<port> - contains ServiceCenter
eventin events created by scfromito[MSI|MEI|TTI] programs. This file is
updated to show processed events.

$SCITOHOME/syncfile.<host>.<port> - synfile for the from queue with
ServiceCenter eventout table.

The scevmon component writes these files:

$SCITOHOME/scito.log - log file for informational and error messages.

$SCITOHOME/scevents.from.<host>.<port> - contains ServiceCenter
eventout events to be passed on to OVO. This file is read in by the sctoito
program.

$SCITOHOME/syncfile.<host>.<port> - synfile for the from queue with
ServiceCenter eventout table.

sctoito
This is the background process that waits on the from queue, and reads in any
new incoming events from ServiceCenter eventout table. It processes the event
by passing it to a configurable TCL script and marks the event as processed.

This program is customized by <installation
directory>/EventMap/FromSC/event.ini and will execute the TCL scripts
pointed to by the event type names in the [EVENT] section. The [CONFIG]
section is a place to specify the OVO username and passwords to connect with.
Please refer to Chapter 5, “Configuration,” for more information about
customizing the component.
Event Integration | 51

SCAuto for OVO
The following are the components in SCAuto for OVO that read OVO messages
using the Message Stream Interface or through direct OVO database APIs. They
are customized by event.ini for parameters to register with the Message Stream
Interface, as well as TCL scripts to execute for mapping the events to
ServiceCenter event strings.

scfromitoTTI
This is the Trouble Ticket Interface adapter that can be executed using a shell
script. It is the program defined for the OVO Trouble Ticketing Interface. The
event source templates are customized to forward events to this application
when it is running.

scfromitoMSI
This is the background process that writes to the from queue when registered
OVO events appear in the Message Stream Interface.

scfromitoMEI
This is the background process that writes to the from queue when registered
OVO events appear in the Message Event Interface.

These programs are customized by $SCITOHOM/EventMap/ToSC/event.ini.
52 | Product Architecture

CHAPTER

5 C
onfiguration
This chapter describes how to configure HP OpenView ServiceCenter
Automation (SCAuto) for HP OpenView Operations (OVO). It covers three main
topics:

SCAuto for OVO Business Logic Configuration

OVO Business Logic Configuration

ServiceCenter Business Logic Configuration

SC Auto for OVO business logic configuration
This section discusses TCL language event mapping from OVO to ServiceCenter.
This scripted approach to configuring the SCAuto for OVO product results in a
flexible method of configuring or customizing it to meet specific business goals
and requirements.

The mapping mechanism to map OVO message events into ServiceCenter
incident tickets is made up of an active facility, which is a TCL script, acting on
variables populated with OVO message elements to create a ServiceCenter TCL
event object, using a passive facility, a static map file positionally defining each
kind of interested ServiceCenter event. The send command of this
ServiceCenter TCL object is then invoked to queue the event to be sent to
ServiceCenter. In addition, the messages being handed to these facilities are
themselves configurable to be filtered using OPCREG parameters at the
interface program level using an event.ini configuration file.
Configuration | 53

SCAuto for OVO
Configuration overview
By default, the mapping files reside in the EventMap directory in the product
installation directory. The hierarchy and explanation of these files follows:

EventMap

EventMap/FromSC/ -- files to configure events from ServiceCenter to OVO.

EventMap/ToSC/ -- files to configure events from OVO to ServiceCenter

The following files are located in the EventMap/ToSC/ directory:

Basically, the event.ini file configures what the MSI and MEI interfaces will get
from OVO and which TCL scripts to invoke when there is an OVO message. Then,
the TCL scripts will use the static map files as a template to create ServiceCenter
TCL event objects, populate its members, and finally send it off to the queue file
to be sent to ServiceCenter eventin table.

OVO variables
The available variables are the same as the attribute names of the
OPCDTYPE_MESSAGE. This definition can be found in Chapter 4 of the HP

event.ini Configuration file to specify MSI and MEI registration
parameters to filter messages as well as which TCL
map script to invoke by which application
subcomponent. A detailed description will appear
under the heading OVO Message Filtering The
event.ini file.

eventmapMSI.tcl The event map script for the MSI interface
(scfromitoMSI).

eventmapMEI.tcl The event map script for the MEI interface
(scfromitoMEI).

eventmapTTI.tcl The event map script for the TTI interface
(scfromitoTTI).

pmo.map, pmu.map,
pmc.map

Static map file templates used in the scripts to
positionally define ServiceCenter event elements in
the ServiceCenter TCL event object.

util.tcl A utility script that contains commands to convert
OVO severity values to ServiceCenter priority codes.
54 | Configuration

SCAuto for OVO User Guide
OpenView Developer’s Toolkit Application Integration Guide. These variables are
made available as TCL_GLOBAL and will be accessible via the $VARIABLE syntax
globally from within the called TCL script.

Variable Name Short Definition

OPCDATA_MSGID The unique OVO message ID.

OPCDATA_NODENAME Name of the node producing the
message. The message is only handled by
the OVO manager if this system is part of
the OVO Node Bank.

OPCDATA_CREATION_TIME (Local) Time the message was created in
seconds.

OPCDATA_RECEIVE_TIME Time the message was received by the
management server in seconds.

OPCDATA_MSGTYPE Message type. This attribute is used to
group messages into subgroups, e.g., to
denote the occurrence of a specific
incident. This information may be used by
event correlation engines.

OPCDATA_GROUP Message group.

OPCDATA_OBJECT Object name to use for the OVO message.

OPCDATA_APPLICATION Application which produced the
message.

OPCDATA_SEVERITY Severity of the message. Possible values
are:
0 - OPC_SEV_UNCHANGED
4 - OPC_SEV_UNKNOWN
8 - OPC_SEV_NORMAL
16 - OPC_SEV_WARNING
32 - OPC_SEV_CRITICAL
64 - OPC_SEV_MINOR
128 - OPC_SEV_MAJOR

OPCDATA_AACTION_NODE Defines the node on which the automatic
action should run.

OPCDATA_AACTION_CALL Command to use as automatic action for
the OVO message.
SC Auto for OVO business logic configuration | 55

SCAuto for OVO
OPCDATA_AACTION_ANNOTATE Defines whether OVO creates start and
end annotations for the automatic action.
0 - do not create annotations
1 - create annotations

OPCDATA_AACTION_ACK Auto Acknowledge after successful
execution of the Automatic Action.
0 - do not auto-acknowledge
1 - auto-acknowledge

OPCDATA_OPACTION_NODE Defines the node on which the operator
initiated action should run.

OPCDATA_OPACTION_CALL Command to use as operator-initiated
action for the OVO message.

OPCDATA_OPACTION_ANNOTATE Define whether OVO creates start and
end annotations for the operator initiated
action.
0 - do not create annotations
1 - create annotations

OPCDATA_OPACTION_ACK Auto Acknowledge after successful
execution of the operator initiated action.
0 - do not auto-acknowledge
1 - auto-acknowledge

OPCDATA_MSG_LOG_ONLY Message is Server Log Only.

OPCDATA_UNMATCHED Defines whether or not the message
matches a condition.
0 - the message was sent to the server
because it matched a match condition
1 - the message did not match a match
condition of the assigned templates, but
was forwarded nevertheless

OPCDATA_TROUBLETICKET Forward message to Trouble Ticket
System.

OPCDATA_TROUBLETICKET_ACK Acknowledge message after forwarding it
to the Trouble Ticket System

OPCDATA_NOTIFICATION Notification

OPCDATA_INSTR_IF_TYPE Type of the instruction interface
0 - OPC_INSTR_NOT_SET
1 - OPC_FROM_OPC
2 - OPC_FROM_OTHER
3 - OPC_FROM_INTERNAL

Variable Name Short Definition
56 | Configuration

SCAuto for OVO User Guide
OPCDATA_INSTR_IF Name of the external instruction text
interface. The external instruction text
interface must be configured in OVO.

OPCDATA_INSTR_PAR Parameters for a call to the external
instruction text interface.

OPCDATA_MSGSRC Message Source. For example, the name
of the encapsulated log file if the message
originated from log file encapsulation or
the interface name if the message was
sent via an instance of the Message
Stream Interface.

OPCDATA_MSGTEXT Message Text.

OPCDATA_ORIGMSGTEXT Original Message Text. Allows you to set
additional source information for a
message. It is only useful if the message
text was reformatted but the OVO
operator needs to have access to the
original text as it appeared before
formatting.

OPCDATA_ANNOTATIONS This is not a OVO data element. It is
created by the adapter product to contain
a text string of all the annotations of the
message.

OPCDATA_LAST_ANNOTATION This is not a OVO data element. It is
created by the adapter product to contain
a text string of the last annotation of the
message.

Variable Name Short Definition
SC Auto for OVO business logic configuration | 57

SCAuto for OVO
There are also three non-OPC variables added for programmability.

To check for the OVO Group of OS only to create a new ticket in
eventmapsMSI.tcl, do the following:

....
if { $OPCDATA_GROUP != "OS" } { return }
....

This statement in the beginning of the script returns from the script without
creating and queueing a ServiceCenter event to be sent.

ServiceCenter TCL event object
Legend:

<> required parameter

Variable name Short definition

INSTALLDIR The home directory where the product
was installed.

SC_MSGTYPE A converted message type string
denoting which type of message it is.
Valid values are:

New message
Message Owned by a user
Message Disowned by a user
Message Acknowledged
Message has new annotation(s)
All annotations of Message deleted
Message was escalated
Message was escalated from another
server
Automatic action of message started
Automatic action of message finished
Operator initiated action of message
started
Operator initiated action of message
finished

SC_PROBLEM_NUMBER The ServiceCenter incident number
embedded in the OVO Message
annotation text when its a new message,
or the Object of message Group
ServiceCenter when its a ServiceCenter
created message.
58 | Configuration

SCAuto for OVO User Guide
[] optional parameter

Summary of ServiceCenter TCL commands
create_sc_event <object name>
<object name> set_evtype <event type> [use_template <template
name>]
<object name> set_evfield <0...80>|<field name> <field value>
<object name> print
<object name> send
tcl_logprint

create_sc_event
create_sc_event <ObjectName>

The resultant object from this command will have methods to populate its data
members and a send method to queue the event to ServiceCenter. The methods
are invoked by using the newly created object name itself and therefore will
have its own context. There is a limit of 10 objects that can be created in each
script.

create_sc_event eventObject

The object named eventObject is created and can be used to set values and
finally send it to ServiceCenter.

set_evtype
<ObjectName> set_evtype <evtype name> [use_template <template
name>]

This command sets the evtype field of the event to <evtype name> (e.g., pmo,
pmu pmc etc.). There are two optional parameters that can be specified for the
event to use a Static Map File for setting the event values:

use_template

<template name>

If these optional parameters are not specified, setting of object fields can still be
done using integer indexes., as shown in the following examples:

create_sc_event eventObject
create the event object
eventObject set_evtype pmo use_template "EventMap/ToSC/pmo.map"
SC Auto for OVO business logic configuration | 59

SCAuto for OVO
make it of type pmo, and use the template for
named indexes.

The event object eventObject is created. It is then set to type pmo, essentially,
the evtype field of the event is set to pmo. The static map file
EventMap/ToSC/pmo.map is used to define the named indexes that will be used
later to set the other fields.

create_sc_event eventObject
create the event object
eventObject set_evtype pmo
set the evtype to pmo. do not use templates for indexing

The event object eventObject is created. It is then set to pmo for evtype.
Because a template was not used here, subsequent setting of evfields will have
to use integer indexes.

set_evfield
<ObjectName> set_evfield <0 ... 80>|<evfield name> <value>

This command sets the event fields with values. If the use_template option was
used during the set_evtype command, then you may use field names defined in
the static map file templates to set the values, otherwise, you have to use
positional integer indexes to set the evfield values. See the following examples:

create_sc_event eObject
create the event object
eObject set_evtype pmo
set the evtype to "pmo". do not use templates for indexing
eObject set_evfield 1 $OPCDATA_NODENAME
set evfield position 1 to ITO nodename variable

The event object is created, set to evtype “pmo” without using a static map file
for template. The first field of the event object is set to the OVO variable for
nodename.

create_sc_event eObject
create the event object
eObject set_evtype pmo use_template "EventMap/ToSC/pmo.map"
set the evtype
use a templates for indexing
eObject set_evfield logical.name $OPCDATA_NODENAME
set logical.name evfield to ITO nodename variable
60 | Configuration

SCAuto for OVO User Guide
The event object is created, set to evtype “pmo” using a static map file for
template. The logical.name field of the event object is set to the OVO variable for
nodename.

set_evuser
<ObjectName> set_evuser <value>

This command sets the evuser field of the event to <value>. The maximum
length of <value> is 24 characters. The default value for the evuser field is SCITO.
For example:

create the event object
create_sc_event eventObject

set evuser to SCITO-WEST
eventObject set_evuser “SCITO-WEST”

print
<ObjectName> print

This command outputs to stderr all the contents of the object including the
template field names if used.

send
<objectName> send

This command queues the event object to be sent to ServiceCenter's eventin
table.

For more examples on how to use the commands, see the example script file.

tcl_logprint
tcl_logprint "Message"

This command is used to write messages from the tcl script to the SCAuto for
OVO log file (scito.log).

Example:

tcl_logprint "eventmapTTI.tcl: queueing new ticket to be opened.
($OPCDATA_MSGID)"
SC Auto for OVO business logic configuration | 61

SCAuto for OVO
Static map file
The static map file that is usable in a set_evtype command as the template is an
ascii text file. Each row denotes a positional field name of the intended
ServiceCenter event map starting at index 1, for example, row 1 = field 1 in event
map.

By default, three maps for event types pmo, pmu and pmc are delivered. These
maps match the ServiceCenter event maps.

Example pmo.map used in eventmapMSI.tcl.

-------------------------- begin file ----------------------------
logical.name
network.name
reference.no
cause.code
action
action2
action3
network.address
type
category
domain
objid
version
model
serial.no.
vendor
location
contact.name
contact.phone
resolution
assignee.name
priority.code
failing.component
system
ci.date.time
flow
server.id
system.state
units
value
port.index
severity.code
site.category
fix.type
62 | Configuration

SCAuto for OVO User Guide
resolution.code
subcategory
product.type
problem.type
adj.resolution.time
explanation1
class
--------------------------- end file-----------------------------

The map template file is not a required piece of the configuration; it is used to
make it convenient and manageable to name the event fields in the
ServiceCenter TCL event object. Without this file, however, you can still set the
values using integer indexes.

OVO Message filtering the event.ini file
The event.ini file in the <install dir>/EventMap/ToSC directory is a means
of configuring the scfromitoMSI, scfromitoMEI and scfromitoTTI components of
the interface.

In the event.ini file, you can specify:

How you want to filter MSI event messages

How you want to filter MEI event messages

Which TCL map files to execute when a message of type MSI, MEI and/or TTI
is available

There are two main structures in the ini file, and this file closely follows the
format of a Microsoft Windows ini file format.

Sections
Section header names are identified by enclosing them in square brackets

[....]. The brackets group sets of configurable parameters. There are three
required section header names:

MSI_CONFIG Section for configuring the MSI interface

MEI_CONFIG Section for configuring the MEI interface

TTI_CONFIG Section for configuring the TTI interface
SC Auto for OVO business logic configuration | 63

SCAuto for OVO
Each section header name contains its own set of required parameters.

Section name Required parameters

MSI_CONFIG OPC_USER - This is the OVO user the MSI interface will
connect as to retrieve message details.
OPC_PASSWORD - This is the password for the OPC_USER.
Optionally, you may specify the string literal
USE_ETC_PASSWD in this field. This parameter suppresses
the password check.
MSI_OPCREG_MSGTYPE - This is an MSI registration attribute
to filter on which OVO message type to notify. This is a String
value of maximum 36 characters, no spaces. Consult your
OVO Message Source Templates for available message
types. If you specify the keyword "ALL" in this field, all
messages copying/diverting to the Message Stream
Interface will be notified.
MSI_OPCREG_GROUP - This is an MSI registration attribute to
filter on which OVO message group to notify. This is a String
value of maximum 32 characters, no spaces. Consult your
OVO Message Source Templates for available message
groups.
MSI_OPCREG_NODENAME - This is an MSI registration
attribute to filter on which OVO node name to notify. This is
a String value of maximum 254 characters, no spaces.
MSI_OPCREG_OBJECT - This is an MSI registration attribute
to filter on which OVO message object to notify. This is a
String value of maximum 32 characters, no spaces. Consult
your OVO Message Source Templates for available message
objects.
64 | Configuration

SCAuto for OVO User Guide
MSI_OPCREG_SEVERITY - This is an MSI registration attribute
to filter on which OVO message severity to notify. This is a
String value of 1 or more characters to denote ORing of
values. Valid characters are:
"c" - critical
"w" - warning
"n" - normal
"u" - unknown
"j" - major
"m" - minor
"cwj" - critical or warning or major. This is the only attribute
you don't need the '|' to denote ORing.
MSI_OPCREG_APPLICATION - This is an MSI registration
attribute to filter on which OVO message application to
notify. This is a String value of maximum 32 characters, no
spaces. Consult your OVO Message Source Templates for
available message applications.
POLL_INTERVAL
0 means blocking read for opcif_read call.
means number of seconds to sleep before calling
non-blocking opcif_read.
MSI_EVENTMAPS - This parameter specifies which section
header to fall into, to look for the attribute "mapname" for
specifying which TCL script to execute for this interface.
Note: Values with more than one attribute implicitly

assume a logical ANDing of all non-null attributes.
Note: Within each individual attribute, use the '|' character

to logically OR more than one value.

Section name Required parameters
SC Auto for OVO business logic configuration | 65

SCAuto for OVO
Example event.ini file:

------------ begin file --
[MSI_CONFIG]
OPC_USER=opc_adm
OPC_PASSWORD=USE_ETC_PASSWD
MSI_OPCREG_MSGTYPE=ALL
MSI_OPCREG_GROUP=

MEI_CONFIG OPC_USER - This is the OVO user the MEI interface will
connect as to retrieve message details.
OPC_PASSWORD - This is the password for the OPC_USER.
Optionally, you may specify the string literal
USE_ETC_PASSWD in this field. This parameter suppresses
the password check.
MEI_OPCREG_MSG_EVENT_MASK - This is an OVO Message
Event Interface event mask to specify which type of
change-in-message should be notified. Valid values are:

OPC_MSG_EVENT_OWN - when a message is owned
OPC_MSG_EVENT_DISOWN - when a message is
disowned
OPC_MSG_EVENT_UNACK - when a message is
unacknowledged
OPC_MSG_EVENT_ACK - when a message is
acknowledged
OPC_MSG_EVENT_ANNO - when a message is annotated
OPC_MSG_EVENT_NO_ANNO - when there are no
annotations

POLL_INTERVAL:
0 means blocking read for opcif_read call
means seconds to sleep before calling non-blocking
opcif_read

MEI_EVENTMAPS - This parameter specifies which section
header to fall into, to look for the attribute "mapname" for
specifying which TCL script to execute for this interface.
Note: For MEI_OPCREG_MSG_EVENT_MASK, use the '|'

character to denote logical OR'ing of event types.

TTI_CONFIG OPC_USER - This is the OVO user the MEI interface will
connect as to retrieve message details.
OPC_PASSWORD - This is the password for the OPC_USER.
Optionally, you may specify the string literal
USE_ETC_PASSWD in this field. This parameter suppresses
the password check.
TTI_EVENTMAPS - This parameter specifies which section
header to fall into, to look for the attribute "mapname" for
specifying which TCL script to execute for this interface.

Section name Required parameters
66 | Configuration

SCAuto for OVO User Guide
MSI_OPCREG_NODENAME=
MSI_OPCREG_OBJECT=
MSI_OPCREG_SEVERITY=
MSI_OPCREG_APPLICATION=
MSI_EVENTMAPS=MSI_EVENTMAPS
POLL_INTERVAL=0

[MEI_CONFIG]
OPC_USER=opc_adm
OPC_PASSWORD=USE_ETC_PASSWD
MEI_OPCREG_MSG_EVENT_MASK=OPC_MSG_EVENT_OWN|OPC_MSG_EVENT_DISOWN|O
PC_MSG_EVENT_UNACK|OPC_MSG_EVENT_ACK|
OPC_MSG_EVENT_ANNO|OPC_MSG_EVENT_NO_ANNO
MEI_EVENTMAPS=MEI_EVENTMAPS
POLL_INTERVAL=0

[TTI_CONFIG]
OPC_USER=opc_adm
OPC_PASSWORD=USE_ETC_PASSWD
TTI_EVENTMAPS=TTI_EVENTMAPS

[MSI_EVENTMAPS]
mapname=EventMap/ToSC/eventmapMSI.tcl

[MEI_EVENTMAPS]
mapname=EventMap/ToSC/eventmapMEI.tcl

[TTI_EVENTMAPS]
mapname=EventMap/ToSC/eventmapTTI.tcl

---------------- end file --

Using TTI - trouble ticketing interface
To use the TTI:

1 Identify which message source you want to forward to the TTI in the
Message Source Template and enable it.

2 In the Node Bank submap OVO, select the following menu commands, in
order: Actions->Utilities->Trouble Ticket.

3 Enable the interface by clicking on the check box.

4 Enter in the Call of trouble ticket field <install dir>/TTI.sh. <install dir> is the
SCAuto product install directory.
SC Auto for OVO business logic configuration | 67

SCAuto for OVO
Default behavior
The scfromitoMSI process picks up all events that copy or divert to the Message
Stream Interface. If the host name of the occurring event is different,
ServiceCenter creates a new incident ticket. If the host name of the occurring
event is the same, the same ticket is updated by default, and a new
ServiceCenter OVO event is created with a ServiceCenter Group attribute. You
can use the ServiceCenter Message Group in the OVO Message Group Bank to
filter the messages.

The scfromitoMEI process only picks up events that were previously opened as
ServiceCenter incident tickets or ServiceCenter event group events if the
message for the incident or event has been modified by the OVO message
browser. This modification can consist of an operator owning, acknowledging,
or annotating a ServiceCenter event type or a OVO event that caused a incident
ticket. When this type of modification occurs, a pmu is generated to modify the
same incident ticket in ServiceCenter.

Example eventmapMSI.tcl Script
--------------------------- begin file ---------------------------
[comments removed]

create only if its a new message from OPC
if { $SC_MSGTYPE != "New message" } {
 tcl_logprint "eventmapMSI.tcl: skipping event - $SC_MSGTYPE"
 return
}

skip ServiceCenter events
if { $OPCDATA_GROUP == "ServiceCenter" } {
 tcl_logprint "eventmapMSI.tcl: skipping ServiceCenter event -
$SC_MSGTYPE"
 return
}

skip Normal severity events
if { $OPCDATA_SEVERITY == "8" } {
 tcl_logprint "eventmapMSI.tcl: skipping \"Normal\" severity
event - ($OPCDATA_MSGID)"
 return
}

OPCDATA_CREATION_TIME processing
save the incoming (seconds) value in new variable
format as previous release
68 | Configuration

SCAuto for OVO User Guide
create value that SC will like for a date/time field
set OPCDATA_CREATION_TIME_SECONDS $OPCDATA_CREATION_TIME
set OPCDATA_CREATION_TIME [clock format
$OPCDATA_CREATION_TIME_SECONDS -format "%a %b %d %T %Y"]
set OPCDATA_CREATION_TIME_SC [clock format
$OPCDATA_CREATION_TIME_SECONDS -format "%m/%d/%Y %T" -gmt true]

do the same for OPCDATA_RECEIVE_TIME
set OPCDATA_RECEIVE_TIME_SECONDS $OPCDATA_RECEIVE_TIME
set OPCDATA_RECEIVE_TIME [clock format
$OPCDATA_RECEIVE_TIME_SECONDS -format "%a %b %d %T %Y"]
set OPCDATA_RECEIVE_TIME_SC [clock format
$OPCDATA_RECEIVE_TIME_SECONDS -format "%m/%d/%Y %T" -gmt true]

create the event object
create_sc_event eventObject

#set evuser to this hostname
#eventObject set_evuser "SCITO-[lindex [split [info hostname] .]
0]"

set the event type using a template to define field names
* if you don't use a template, you can use integer
* indexes into the evfield array.
eventObject set_evtype pmo use_template "EventMap/ToSC/pmo.map"

start mapping field names to ITO values
eventObject set_evfield logical.name $OPCDATA_NODENAME
eventObject set_evfield network.name $OPCDATA_NODENAME
eventObject set_evfield reference.no $OPCDATA_MSGID
eventObject set_evfield cause.code $OPCDATA_MSGSRC
eventObject set_evfield action [format "%s on %s (Original
message: %s) %s\n<ITOMSGID:%s,%s>\n" $OPCDATA_MSGTEXT
$OPCDATA_CREATION_
TIME $OPCDATA_ORIGMSGTEXT $OPCDATA_LAST_ANNOTATION $OPCDATA_MSGID
$SC_MSGTYPE]
eventObject set_evfield network.address $OPCDATA_NODENAME
eventObject set_evfield type ITOEvent
eventObject set_evfield category example

convert ITO severity to ServiceCenter severity code
proc is defined in util.tcl
source "$INSTALLDIR./EventMap/ToSC/util.tcl"
set SC_SEVERITY [ConvertSeverity "$OPCDATA_SEVERITY"]
#tcl_logprint "eventmapMEI.tcl: Converted ITO severity
$OPCDATA_SEVERITY to SC severity.code $SC_SEVERITY"

eventObject set_evfield severity.code $SC_SEVERITY
eventObject set_evfield priority.code $SC_SEVERITY
SC Auto for OVO business logic configuration | 69

SCAuto for OVO
eventObject set_evfield failing.component [concat $OPCDATA_GROUP
"," $OPCDATA_OBJECT "," $OPCDATA_APPLICATION]
eventObject set_evfield system $OPCDATA_MSGSRC

print out a debug of event created
#eventObject print

send the event to queue
tcl_logprint "eventmapMSI.tcl: queueing new ticket to be opened.
($OPCDATA_MSGID)"
eventObject send
---------------------------- end file ----------------------------

TCL Event Mapping from ServiceCenter to OVO
The mapping mechanism to map ServiceCenter events into OVO messages is
done by invoking a TCL script. ServiceCenter event fields are made into
TCL_GLOBAL variables that can be accessed in the targeted script with the
$VARIABLE syntax. Various OVO programming APIs are also made into
TCL_Command commands callable from within the same script, thus effectively
bridging the two domains.

Configuration overview
By default, the mapping files reside in an EventMap directory within the product
installation directory. The hierarchy and function of the EventMap directory
structure follows:

EventMap

EventMap/FromSC/ - files to configure events from ServiceCenter to OVO.

EventMap/ToSC/ - files to configure events from OVO to ServiceCenter

The following files are located in the EventMap/FromSC/ directory:

event.ini The configuration file that specifies OVO user and
password, and TCL scripts to invoke based on event
types.

pmo.tcl The event map script to invoke when there is a pmo
(Incident Opened).

pmu.tcl The event map script to invoke when there is a pmu
(Incident Updated).
70 | Configuration

SCAuto for OVO User Guide
The event.ini file configures the OVO user name and password, along with the
TCL scripts that are invoked based on the evtype field of the incoming
ServiceCenter event.

ServiceCenter TCL variables
The available variables depend on the evtype type field and are in accordance
with the event maps from Events Services in ServiceCenter for that type. These
variables are made available as TCL_GLOBAL and will be accessible via the
$VARIABLE syntax globally from within the called TCL script. See the Event
Services User's Guide for more detail about event maps.

pmc.tcl The event map script to invoke when there is a pmc
(Incident Closed).

util.tcl Utility TCL script that contains command to convert
ServiceCenter priority codes to OVO Severity values.

default.tcl A default TCL script to invoke when an event type is
received and there is no equivalent TCL script.

showEvent.tcl A debug script that will display all event field values
from a ServiceCenter event.

Variable name Short description

INSTALLDIR The directory path where the product was installed. This
is not part of an event field and is added for convenience
in locating helper scripts.

SCEVTYPE ServiceCenter registration name for the event, for
example, pmo.

SCEVTIME Date and time event occurred.

SCEVSYSSEQ ServiceCenter eventout queue sequence number. Used
as checkpoint in sync file.

SCEVUSRSEQ A user-assigned sequence number used to trace an
event through ServiceCenter.

SCEVSYSOPT A code to identify system options.

SCSCEVUSER The event user name; if passed, it is used as the operator
name.

SCEVPSWD The event user's password.

SCEVSEPCHAR The character used to separate fields in the $SCEVFIELDS
variable. Default is "^".
SC Auto for OVO business logic configuration | 71

SCAuto for OVO
Note: The specific field definition depends on the evtype coming back and is
documented in the <evtype>.tcl scripts themselves. It is up to the user to
define types that do not have a corresponding TCL script.

OVO programming APIs as TCL commands
LEGEND:

< > required parameter
[] optional parameter

These are OVO Programming APIs that have been wrapped in TCL commands
and made available during the script invocation. Specifically, the available APIs
consists of opcif_* types for writing to the Message Stream Interface, and
opcmsg_* types for retrieving message details from the database.

Summary of OVO TCL commands
opcif_write <Message Text> <Application> <Message Group>
<Message Type> <Node Name> <Object> <Severity>
opcmsg_annotation_add <Message Id> <Annotation Text>
opcmsg_ack <Message Id>
opcmsg_unack <Message Id>
opcmsg_own <Message Id>
opcmsg_disown <Message Id>
opcmsg_escalate <Message Id>
opcmsg_op_action_start <Message Id>
tcl_logprint

opcif_write
opcif_write <Message Text> <Application> <Message Group> <Message
Type> <Node Name> <Object> <Severity>

SCEVFIELDS The data describing the event, with fields separated by
the $SCEVSEPCHAR character.

SCEVFIELDS_1..2..3 ...* The event fields from the $SCEVFIELDS string parsed out
as individual field values using the $SCEVSEPCHAR
separator value.

Variable name Short description
72 | Configuration

SCAuto for OVO User Guide
The opcif_write command creates a new OVO message. To pass a null value, use
““ for an empty string instead. There are seven required arguments to this
command:

Example:

Message Text The message text of the newly created
OVO message.

Application The application that this message
belongs to. Check your Message
Source Templates for valid application
names.

Message Group The group that this message belongs
to. Check your Message Source
Templates for valid application names.

Message Type The type that this message belongs to.
Check your Message Source Templates
for valid application names.

Node Name The OVO node name that this message
is created for.

Object The object that this message belongs
to. Check your Message Source
Templates for valid application names.

Severity The OVO severity value for this
message. Check the utility script
EventMap/FromSC/util.tcl for the
conversion utility to convert from
ServiceCenter priority codes. Valid
values are:

c - Critical

j - Major

m - Minor

w - Warning

n - Normal
SC Auto for OVO business logic configuration | 73

SCAuto for OVO
source in the util.tcl script to get the ConvertSeverity command
source "$INSTALLDIR./EventMap/FromSC/util.tcl"

construct a formatted message text to be passed to opcif_write
set OPC_Message_Text "Incident ticket $SCEVFIELDS_2 opened on
$SCEVFIELDS_4 by $SCEVFIELDS_5 for Message ID $SCEVFIELDS_14\n
Category: $SCEVFIELDS_3\n Assigned to: $SCEVFIELDS_9\n
Severity: $SCEVFIELDS_8\n CauseCode: $SCEVFIELDS_17\n
Hostname: $SCEVFIELDS_18\n Group: $SCEVFIELDS_19\n Location:
$SCEVFIELDS_21\n Action: $SCEVFIELDS_26\n Contact:
$SCEVFIELDS_32 $SCEVFIELDS_34\n NetworkName: $SCEVFIELDS_35\n
Resolution: $SCEVFIELDS_37\n UpdateAction: $SCEVFIELDS_38"

convert ServiceCenter severity code to ITO Severity indicator
set SCSEVERITY [ConvertSeverity "$SCEVFIELDS_8"]

create the new ITO message
opcif_write "$OPC_Message_Text" "ServiceCenter_pmo"
"ServiceCenter" "TroubleTicket" "$SCEVFIELDS_18" "pmo"
"$SCSEVERITY"

In this example, a new OVO message is created with a formatted message text
from ServiceCenter event fields of Application="ServiceCenter_pmo",
Group="ServiceCenter",Type="TroubleTicket", node name from ServiceCenter
event logical.name field, Object="pmo" and a converted Severity that is
equivalent to the ServiceCenter priority code.

opcmsg_annotation_add
opcmsg_annotation_add <Message Id> <Annotation Text>

This command adds an annotation to an existing OVO message. This command
requires two arguments, consisting of a OVO message ID and free-form
annotation text.

Example:

pre-format an annotation text to use from ServiceCenter field
values
set OPC_Annotate_Text "Incident ticket $SCEVFIELDS_2 opened on
$SCEVFIELDS_4 by $SCEVFIELDS_5\n Category: $SCEVFIELDS_3\n
Assigned to: $SCEVFIELDS_9\n Severity: $SCEVFIELDS_8"

annotate and existing ITO message
opcmsg_annotation_add "$SCEVFIELDS_14" "$OPC_Annotate_Text"
74 | Configuration

SCAuto for OVO User Guide
The previous example pre-formats annotation text to be used to annotate an
existing OVO message identified by the message ID stored in event field index
17 of the evfields string.

opcmsg_ack
opcmsg_ack <Message Id>

Given the message ID of an existing OVO message, this command will
acknowledge it as the user defined in the event.ini file.

opcmsg_unack
opcmsg_unack <Message Id>

Given the message ID of an existing OVO message, this command will
unacknowledge it as the user defined in the event.ini file.

opcmsg_own
opcmsg_own <Message Id>

Given the message ID of an existing OVO message, this command will own it as
the user defined in the event.ini file.

opcmsg_disown
opcmsg_disown <Message Id>

Given the message ID of an existing OVO message, this command will disown it
as the user defined in the event.ini file.

opcmsg_escalate
opcmsg_escalate <Message Id>

Given the message ID of an existing OVO message, this command will escalate
it as the user defined in the event.ini file.

opcmsg_op_action_start
opcmsg_op_action_start <Message Id>

Given the message ID of an existing OVO message, this command will start the
pre-defined operator action that the user defined in the event.ini file.
SC Auto for OVO business logic configuration | 75

SCAuto for OVO
tcl_logprint
tcl_logprint “Message”

This is used to write messages from the tcl script to the SCAuto for OVO log file
(scito.log).

Example:

tcl_logprint “pmo.tcl: ITO message created for pmo. $SCEVFIELDS_2"

Event configuration file
The event.ini file in the <install dir>/EventMap/FromSC directory is a means
of configuring the sctoito component of the interface. In here, you may specify:

The user name/password to connect to OVO to retrieve message details
from its database.

The TCL map script to invoke when a certain event type is read from
ServiceCenter.

Sections
Section header names are identified by square brackets "[....]". The brackets
group sets of configurable parameters. There are two required section header
names:

CONFIG Section for specifying OVO username/password
to connect as.

EVENT Section for configuring event types to the TCL
map script to execute.
76 | Configuration

SCAuto for OVO User Guide
Each section header name has its own set of required parameters.

Default event.ini file.

---------------------------- begin file --------------------------
[CONFIG]
OPC_USER=opc_adm
OPC_PASSWORD=USE_ETC_PASSWD

[EVENT]
pmo=EventMap/FromSC/pmo.tcl
pmu=EventMap/FromSC/pmu.tcl
pmc=EventMap/FromSC/pmc.tcl
---------------------------- end file ----------------------------

Default behavior
When there is a pmo in the eventout table (such as when a ticket is newly
created), sctoito treats it as an acknowledgment of the new incident ticket and
annotates the originating event. sctito also creates a new ServiceCenter opened
event with the IM number being the Object.

When there is a pmu in eventout (such as when its created by a pmu in eventin,
or when a ServiceCenter operator modifies the ticket), if the actor or user field is
not SCITO, sctoito annotates the originating event and creates a new
ServiceCenter update event with the IM number being the Object. This prevents
automatic annotations from OVO from going into an infinite loop, updating
ServiceCenter and vice-versa.

Section name Required parameters

CONFIG OPC_USER - The OVO user name.
OPC_PASSWORD - This is the password for the
OPC_USER. Optionally, you may specify the string
literal USE_ETC_PASSWD in this field. This parameter
suppresses the password check.

EVENT <event type>=<TCL map script to execute>
For example:
pmo=EventMap/FromSC/pmo.tcl
This will tell the interface to execute the script <install
dir>/EventMap/FromSC/pmo.tcl when a "pmo" event
is received from ServiceCenter.
SC Auto for OVO business logic configuration | 77

SCAuto for OVO
Similarly, when eventout has a pmc that is not from user SCITO, the originating
event will be annotated and a new ServiceCenter closed OVO event will be
generated.

Default pmo.tcl script
[comments deleted]
#***
BEGIN data block
Define data value mapping between ServiceCenter event variables
to OVO variables to be used by OPC commands in action block.
#***

set OPC_Annotate_Text "Incident ticket $SCEVFIELDS_2 opened on
$SCEVFIELDS_4 by $SCEVFIELDS_5\n Category: $SCEVFIELDS_3\n
Assign
ed to: $SCEVFIELDS_9\n Severity: $SCEVFIELDS_8"

set OPC_Message_Text "Incident ticket $SCEVFIELDS_2 opened on
$SCEVFIELDS_4 by $SCEVFIELDS_5 for Message ID $SCEVFIELDS_14\n
Categ
ory: $SCEVFIELDS_3\n Assigned to: $SCEVFIELDS_9\n Severity:
$SCEVFIELDS_8\n CauseCode: $SCEVFIELDS_17\n Hostname:
$SCEVFIELD
S_18\n Group: $SCEVFIELDS_19\n Location: $SCEVFIELDS_21\n
Action: $SCEVFIELDS_26\n Contact: $SCEVFIELDS_32
$SCEVFIELDS_34\n
 NetworkName: $SCEVFIELDS_35\n Resolution: $SCEVFIELDS_37\n
UpdateAction: $SCEVFIELDS_38"

set OPC_Application "ServiceCenter_pmo"

set OPC_Message_Group "ServiceCenter"

set OPC_Message_Type "TroubleTicket"

set OPC_Node_Name "$SCEVFIELDS_18"

set OPC_Object "$SCEVFIELDS_2"

convert ServiceCenter severity code to ITO severity
proc is defined in util.tcl
set rc [catch {set SCSEVERITY [ConvertSeverity "$SCEVFIELDS_8"
]}]

set OPC_Severity "$SCSEVERITY"

#***
78 | Configuration

SCAuto for OVO User Guide
BEGIN Action block
Define ITO message updating/creating logic using variables
mapped in data block.
See GUIDE.txt for available OPC Tcl commands and their
parameters.
**
#
first try to annotate original message, if message doesnt exist,
create a new one.
#
also put in special identifying text **** WARNING **** do not
modify set rc [catch [opcmsg_annotation_add "$SCEVFIELDS_14"
"$OPC_Annotate_Text \n\n<scito:$SCEVFIELDS_2,pmo>\n"]]

if {$rc == 0} {
tcl_logprint "pmo.tcl: ITO message annotated for pmo.
$SCEVFIELDS_2"
}

#
lets make a new ServiceCenter message.
#
set rc [catch [opcif_write "$OPC_Message_Text" "$OPC_Application"
"$OPC_Message_Group" "$OPC_Message_Type" "$OPC_Node_Name" "$OPC_Ob
ject" "$OPC_Severity"]]

if {$rc == 0} {
tcl_logprint "pmo.tcl: ITO message created for pmo. $SCEVFIELDS_2"
} else {
tcl_logprint "pmo.tcl: After running opcif_write pmo,
$SCEVFIELDS_2, ret = ($rc) $errorCode\n$errorInfo."
}

#
now lets try to own the message.
#
#set rc [catch [opcmsg_own "$SCEVFIELDS_14"]]
#
#if {$rc == 0} {
#tcl_logprint "pmo.tcl: ITO message owned. $SCEVFIELDS_2"
#} else {
#tcl_logprint "pmo.tcl: ITO message unable to own. $SCEVFIELDS_2"
#}
SC Auto for OVO business logic configuration | 79

SCAuto for OVO
OVO business logic configuration
This section contains a step-by-step process for configuring OVO to enable
automatic event message integration with ServiceCenter. This process is part of
the normal configuration process upon installation of SCAuto for OVO.

General process
Requirements analysis

To take full advantage of OVO and ServiceCenter integration, you need a
high-level plan for application integration. While the integration can
automatically create incident tickets from any events managed by OVO, a
defined set of application requirements enables you to focus this general
capability into specific measurable results.

For example, you can choose to have all kernel alarms open incident tickets
automatically, but this process will create hundreds of incident tickets. If the
design is reviewed from a requirements standpoint, where the service desk is
pursuing operations in accordance with a service level management (SLM)
agreement , perhaps it can be refined to open tickets only on critical events from
a small set of critical hosts. In this case, defining the requirements helps meet
the specific goals of the SLM agreement by notifying the service desk of
potentially huge impacts on meeting the contract.

The process of defining requirements precedes the configuration of any
software. It consists of analyzing your business and application and service desk
requirements, and organizing these requirements to suit your needs. It is the
first step in the Analyze, Design, and Implement process described in this
section.

Design phase
After you have defined the requirements of your consolidated service desk
environment, you can determine the specific monitored sources help needed to
meet these requirements. This is the Design step of the process. In OVO, this
amounts to identifying what Message Sources are relevant. This may be done
for individual Message Sources or for groups. Beyond noting which Message
Sources are relevant, the next step is to define the parameterization and
configuration of each relevant Message Source.
80 | Configuration

SCAuto for OVO User Guide
Implementation phase
With a coherent design that meets the requirements, it is then possible to
modify the OVO Message Source Templates to meet this design specification.
This is the Implement step of the process.

After the modified templates are saved, they need to be pushed to the managed
nodes to which they apply. This step, which is the final configuration action,
acknowledges that the modified templates are controlled centrally from OVO
but are distributed broadly to the nodes or groups that are specified as the
appropriate recipients of the policy.

Design considerations
When designing your system, consider these guidelines:

If you expect to receive many of the same types of messages that will cause
OVO to ServiceCenter interaction, use the Message Stream Interface (MSI).
SCAuto for OVO support of MSI involves a daemon process that is constantly
waiting for new messages in the message stream. This is not processor
intensive, and it is implemented to be a lightweight background process for
performing regular, repeated event message processing.

If you expect to receive fewer and less frequent, and consequently more
important messages, use the Trouble Ticket Interface (TTI). SCAuto for OVO
support of TTI involves a single thread of execution that is started upon
receipt of the event message. This amounts to a processing intensive
approach that offers a direct message delivery.

Implementation steps
The following steps describe how to modify a Message Source Template to
activate automated event messages from OVO to ServiceCenter. These steps are
modeled from a process that implemented a high-level goal, stated as:

Integrate Security alerts into Incident Tickets where any failed
switch user (su) command causes OVO alerts.

Step 1 Review templates assigned to a node.
OVO business logic configuration | 81

SCAuto for OVO
From the OVO Node Bank window, go to the Actions menu, click Agents, then
click Assign Templates.
82 | Configuration

SCAuto for OVO User Guide
The Define Configuration window opens.

In this window, identify which templates have been assigned to specific nodes
or groups. If the template that you want is already assigned, you need to push it
out again to its subscribers once you complete your modifications. Plan to do
this in addition to, or along with, the template that you push out in Step 7.

Step 2 Begin modifying templates (to assign to a node)
OVO business logic configuration | 83

SCAuto for OVO
In the OVO Node Bank window, go to the Window menu and click Message
Source Templates. The Message Source Templates window is displayed. This
window contains two panes:

The left pane contains the message source groups available for you to
select.

The right pane displays the unique Message Source Templates in a selected
group. Navigate the groups by clicking on items to show values in the right
pane or double-clicking to expand items in the left pane.
84 | Configuration

SCAuto for OVO User Guide
When you find the group you are interested in, select it in the left pane. The
HP-UX 11.x IA64 group is used in this example.
OVO business logic configuration | 85

SCAuto for OVO
The right pane contains the members of the selected group. For the HP-UX 11.x
IA64 group, there is a Logfile: Bad Logs item. When this item is selected, it
activates the Conditions button. Press this button to edit the configuration of
the Logfile Bad Logs template. This displays the Message & Suppress Conditions
window.

Step 3 Modify templates (to assign to a node)

From the Message & Suppress Conditions window, ensure that the conditions
are set as you require. For example, to suppress a condition, be sure that it has a
minus sign (-) in the window. To activate a condition, it needs a plus sign (+).
To change the setting, select the condition and press the Modify button. This
86 | Configuration

SCAuto for OVO User Guide
displays the Condition No. <N> window (where N is the number of the condition
in the list, according to the condition you select).

Step 4 Modify template conditions to forward to trouble ticket

To invoke the TTI interface, select the Forward to Trouble Ticket check box on
the Condition No. <N> window. This action completes the Message Source
Template configuration. Save your edits by clicking the OK button (closes the
Condition No. <N> window), and proceed to Step 7 - Install Templates to
Selected Nodes.
OVO business logic configuration | 87

SCAuto for OVO
Note: If you wish to use the MSI interface, proceed to the next step without
configuring the Trouble Ticket Interface.

This form is the same place where you would set up automatic actions, such as
executing a command on the node that generated this event message. Certain
attributes can also be set here. These attributes can then be used for processing
actions in SCAuto for OVO maps (scripts) and can later be used within
ServiceCenter. The attribute settings will apply regardless of the choice of MSI or
TTI setting.

For example, the Message Group attribute in the center of this form can be set
to variable values or literal values (constants). This attribute value is passed to
SCAuto for OVO in an environment variable named $OPCDATA_GROUP. For
example, the Message Group attribute can be given a value of TEST in the form.
88 | Configuration

SCAuto for OVO User Guide
Then, the SCAuto for OVO TCL script can use the $OPCDATA_GROUP as the
name of the category variable used in the ServiceCenter event message. This
implies that a new ticket will be created in the TEST incident ticket category, if it
exists.

Furthermore, if you create OVO Message Groups that match ServiceCenter
incident ticket categories, there will be both a high-level logical relationship
between your OVO implementation and your ServiceCenter implementation,
and you will also have a detailed connection through this use of message source
template attributes.
OVO business logic configuration | 89

SCAuto for OVO
Step 5 Modify template conditions to use message stream interface.

To use the MSI interface, click the Advanced Options button in the Condition No.
<N> window. The Message Conditions Advanced Options window opens.

In the Message Conditions Advanced Options window, there is a section labeled
Message Stream Interface. Within this section, there are two areas: Agent MSI
and Server MSI. Activate just the Server MSI interface by checking the box. Then,
select the Copy Message button once the Server MSI interface is activated.

Save your edits by clicking the OK button. This closes the Message Conditions
Advanced Options window. Continue to click the OK or Close buttons in the
remaining open windows until you return to the Message Source Templates
window.
90 | Configuration

SCAuto for OVO User Guide
Using this form, you can also set up various Message Stream parameters, such
as suppressing duplicate event messages.

Note: If you leave the Message Source Template window open, with the
selected (now modified) template, this streamlines step 6.

Step 6 Add modified template to configuration.

From the OVO Node Bank window, go to the Actions menu and click Agents.
Then, click Assign Templates to display the Define Configuration window. This
process repeats the commands and actions of step 1.
OVO business logic configuration | 91

SCAuto for OVO
In the Define Configurations window, click the Add button to launch an Add
Configurations window.

This window contains a Get Template Selections button. This is used, for
example, when you have an unusual workflow. In this case, you would open a
new window, select your modified template in the new window, and then
return to the first window and click the Get Template Selections button to
import your selection.
92 | Configuration

SCAuto for OVO User Guide
If your Message Source Template window is still open from the last step, and
contains a selected template, you can click the Get Template Selections button
to complete this step. Otherwise, continue with the instructions here.

To open the window where you can select a template, click the Open Template
Window button in the Add Configurations window. This displays the Message
Source Templates window.
OVO business logic configuration | 93

SCAuto for OVO
When you finish assigning your modified templates, click the OK button to save
your edits. This returns you to the Define Configuration window. Verify that your
newly assigned template is displayed in this window. Press the OK button until
you return to the OVO Node Bank window. This completes the steps to define
and add the desired templates.

The Message Source Templates window may still be open from step 5. You can
close it now as well.

Step 7 Install Templates to Selected Nodes

This step involves “pushing” the configuration to the endpoints. Once the
message source templates are installed at the endpoints, any activity that
triggers the template at the nodes will cause OVO event messages and
subsequent activation of SCAuto for OVO.

From the OVO Node Bank window, highlight one or more nodes to receive the
configuration. On the Actions menu, click Agents, then click Install / Upgrade
S/W Configuration. This displays the Install/Upgrade OVO Software and
Configuration window.
94 | Configuration

SCAuto for OVO User Guide
Verify that your node or group is in the list of target nodes. You must also verify
that the Templates checkbox is selected in the Components area in the left part
of the window. Your message source may also require Actions, Monitors, and
Commands.

When you click OK, the template configuration is sent to the node and it
replaces any existing configuration at the node. If you have an OVO message
browser open, you will see an opcdista type of event message that confirms that
the configuration has been received by the endpoint .
OVO business logic configuration | 95

SCAuto for OVO
Step 8 Final configuration for use of trouble ticket interface

If you chose to use the TTI interface, there is one additional configuration step.
You need to specify which program OVO should run whenever the TTI function
is invoked.

From the OVO Node Bank window, go to the Actions menu and click Utilities.
Then, click Trouble Ticket to display the Trouble Ticket dialog box.

In the Trouble Ticket dialog box, select the Use Trouble Ticket System checkbox.
In the Call of Trouble Ticket field, enter a full path name and script name to
invoke the SCAuto for TTI program. (The program's name is TTI.sh. The default
location for this is /opt/OV/scauto/TTI.sh; however, your installation may
have placed this program in a different location.)

When you click OK, OVO will look for and validate that the program is available
and executable.

Step 9 Final configuration for use of message stream interface.
96 | Configuration

SCAuto for OVO User Guide
From the OVO Node Bank window, select Actions > Server > Configure. In the
Configure Management Server window under Message Stream Interface, select
Enable Output.

There is one more parameter that must be verified before the configuration is
complete. To allow specific nodes to use the MSI or not, OVO has a parameter
related to enabling outputs from nodes to the MSI.

From the OVO Node Bank window, select one or more nodes. Right-click the
mouse, and click the Modify command. This opens the Modify Node window.
Click on the Advanced Options button, and the Node Advanced Options
OVO business logic configuration | 97

SCAuto for OVO
window appears. In the section of this window labeled Message Stream
Interface, click on the Enable Output checkbox. This is also the place to enable
automatic actions and operator initiated actions.

To save your edits, click OK until you get back to the OVO Node Bank window.
You are now fully configured for automated event integration between OVO
and ServiceCenter.

This completes the configuration of the OVO business logic inherent in the
Message Source Templates.
98 | Configuration

SCAuto for OVO User Guide
ServiceCenter business logic configuration
ServiceCenter Event Services

To access Event Services, click the Event Services button on the Main
ServiceCenter menu. Select the Administration tab to reach Event Registration,
Filters, and Maps.

Event registration
On the Administration tab, click the Registration button to display the Event
Registration form, which contains the definitions for events processed by the
ServiceCenter business logic configuration | 99

SCAuto for OVO
system. The Event Registration form contains three tabs: Expressions, Basics,
and Application.

The Expressions tab displays the processing logic associated with the event type
(for example, pmo).
100 | Configuration

SCAuto for OVO User Guide
The Applications tab displays the RAD application that is associated with the
event, as well as the parameters that are used when running the application
upon processing of the event.
ServiceCenter business logic configuration | 101

SCAuto for OVO
Event maps
Event Maps are the guides to recording and processing events, including data
type and the name of the file where event data is stored.

The Expressions tab contains additional instructions for event processing.
102 | Configuration

SCAuto for OVO User Guide
All Event Services features are addressed in greater detail in the Event Services
User’s Guide or ServiceCenter online help. See this guide if you plan to make
modifications discussed in this section.

ServiceCenter Incident Management
You may want to customize and configure the definition of incident ticket
formats and management in ServiceCenter. Based on your needs, you may need
to create additional incident categories to reflect the automatic incident ticket
processing supported by the SCAuto for OVO product. You can use the incident
category named example as a guide or template to build new automated ticket
categories and their associated forms and database dictionary definitions.

The following figure shows a portion of the database dictionary structure for the
incident table. This can be used as reference for custom categories based on the
probsummary table. For more detailed information, refer to the “Database
Dictionary” section in the Base Utilities Guide.

Event data is channeled and presented in ServiceCenter according to controls
defined in the Format Control records associated with specific incident category
formats (display forms). Refer to the Format Control Guide for complete
information on Format Control in ServiceCenter.

Additionally, the Forms Designer tool is used to create custom forms for added
incident categories and customizations to accommodate the automated
incident ticket generation from SCAuto for OVO events. Refer to the Forms
ServiceCenter business logic configuration | 103

SCAuto for OVO
Designer Guide or ServiceCenter online help for more details on form (format)
development and customization.
104 | Configuration

CHAPTER

6 S
cenarios
This chapter provides scenarios of different high-level configurations that can
be accomplished using ServiceCenter Automation (SCAuto) for OpenView
Operations (OVO). Depending on your business needs, the following examples
may be implemented individually or in combination to achieve your business
goals.

Uni-directional automatic incident ticket creation
(Mode 1)

This implementation is described in Chapter 1, “Introduction,” as Mode 1 of the
Operational Concepts.

In this mode, OVO events drive ServiceCenter tickets. This occurs through the
registered connection from OVO to ServiceCenter via the MSI API. This mode
requires the following components of SCAuto for OVO:

scfromitoMSI and scevmon processes

ToSC Queue file

Event Maps (event.ini, TCL scripts, and maps referenced in event.ini)

You may start the adapter processes using the HP OpenView “ovstart <process
name>” facility. Since by default, all the other SCAuto for OVO components are
installed and configured to execute, using the integrated GUI menu options in
the Root/Node Bank Windows will start all the adapters.
Scenarios | 105

SCAuto for OVO
You may be able to customize and remove the unwanted components from the
menu by doing the following:

Modify these files:

 $OV_CONF/OpC/mgmt_sv/ui/registration/C/opc_adm/scauto

$OV_CONF/OpC/mgmt_sv/ui/registration/C/opc_adm/scauto

Under the Action “startALL”, “stopAll”, and “statusAll” sections, remove the
components that you do not want to start/stop.

Since only the scfromitoMSI and scevmon processes are required in this
implementation, you can use the LRF files supplied in the <installed
directory>/lrf_files directory and execute ovdelobj scfromitoMEI.lrf,
and ovdelobj sctoito to remove the registration of these components.

In addition, you can modify the LRF for scfromitoMSI and scevmon and change
the first parameter to OVs_YES_START, and then execute ovaddobj
<filename>. This causes the HP OVO ovstart facility to start the process by
default.

For more information, refer to the HP OpenView Administrator's Guide, or the
man pages for “ovaddobj” and “ovdelobj” commands as well as the man pages
for "lrf".

Bi-directional incident ticket/OVO message
creation/update/close (Mode 2)

This implementation is described in Chapter 1, “Introduction,” as Mode 2 of the
Operational Concepts. This is the out-of-box default behavior.

In this mode, OVO events drive ServiceCenter tickets, and the ServiceCenter
tickets control OVO events. This amounts to a partnership of managing the
events, where each application provides a significant contribution to the event
and incident management process. This mode is constructed through the
106 | Scenarios

SCAuto for OVO User Guide
registered connection from OVO to ServiceCenter via the MSI API, as well as the
MEI API. This mode requires the following components of SCAuto for OVO:

scfromitoMSI, scfromitoMEI, sctoito, and scevmon processes

ToSC and FromSC Queues

Event Maps (event.ini, TCL scripts, and maps referenced in event.ini)

You can start or stop the adapter processes using the OVO ovstart <process
name> facility or the integrated GUI menu option from the Root or Node Bank
windows.

In addition, you can modify the LRF (in the <installed directory>/lrf_files
directory) for these components and change the first parameter to
OVs_YES_START, and execute ovaddobj <filename>. This causes the HP
OpenView ovstart facility to start the process by default.

Refer to the HP OpenView Administrator’s Guide or the man pages for ovaddobj
and ovdelobj commands as well as the man pages for “lrf”.

Creating incident tickets with trouble ticket interface
(Mode 3)

This implementation is described in Chapter 1, “Introduction”, as Mode 3 of the
Operational Concepts.

This mode is an alternative configuration of Mode 1 (Uni-directional) or Mode 2
(Bi-directional). It uses the OVO TTI API instead of the MSI API. This allows for a
more focused configuration of OVO Message Source Templates, freeing the MSI
API to be used for other integration efforts, if desired. MEI usage with this mode
is identical to the previous modes.

This mode requires the following components of SCAuto for OVO:

scfromitoTTI and SCEVMON processes

ToSC and FromSC Queues
Creating incident tickets with trouble ticket interface (Mode 3) | 107

SCAuto for OVO
Event Maps (event.ini, TCL scripts, and maps referenced in event.ini)

IT/O configurations for TTI to execute <installed directory>/TTI.sh, as well as
source templates to Forward message to Trouble Ticket Interface.

Because this implementation does not require the execution of any of the other
OVO interfaces, you can remove them from the GUI integration as well as the
SPMD (ovstart) profile, if desired.

You can start or stop the scevmon process using the OVO ovstart scevmon
facility. Since by default, all the other SCAuto for OVO components are installed
and configured to execute, using the integrated GUI menu options in the
Root/Node Bank Windows will start all the adapters.

You may be able to customize and remove the unwanted components from the
menu by doing the following:

Modifying these files:

$OV_CONF/OpC/mgmt_sv/ui/registration/C/opc_adm/scauto

$OV_CONF/OpC/mgmt_sv/ui/registration/C/opc_adm/scauto

Under the Action startALL, stopAll, and statusAll sections, remove the
components that you do not want to start or stop.

Because only the scevmon process is required in this implementation, you can
use the LRF files supplied in the <installed directory>/lrf_files directory
and execute ovdelobj <component file name> to remove the registration of
these components.

In addition, you can modify the LRF scevmon and change the first parameter to
OVs_YES_START, and then execute ovaddobj <scevmon LRF filename>. This
causes the OVO ovstart facility to start the process by default.

Refer to the HP OpenView Administrator’s Guide, or the man pages for ovaddobj
and ovdelobj commands as well as the man pages for lrf.
108 | Scenarios

SCAuto for OVO User Guide
Node-based incident tickets
By default, after installing the product, the To ServiceCenter TCL scripts are
configured to generate pmo events with the category of example. Also, the
default behavior for the example category in ServiceCenter is to match incident
tickets based on the logical.name field in the pmo event. If this is the desired
effect, you do not have to customize the product.

If you want the pmo to go into a specific ServiceCenter category, you must take
the following steps:

Make sure that the targeted category contains format control logic to
handle a pmo the same way as the example category.

Customize the TCL scripts to generate the desired category in the resulting
pmo event.

Refer to Chapter 5, “Configuration,” for more information about these steps.

Cause-based incident tickets per node
This implementation is primarily designed for a typical OVO configuration. It
essentially takes the node-based concept of OpenView NNM to another level, to
an Application-based or Cause-based event per node in the managed
environment.

For example, in a node-based system, every event that is configured to be
captured by OVO on the same node will funnel into the same incident ticket,
regardless of the nature or cause of the message. In contrast, a Cause-based or
Application-based system makes a distinction, for example, between a Security
event and an OS event by opening different incident tickets for these events. By
default, ServiceCenter and SCAuto for OVO are node-based.

To configure for a Cause-based or Application-based system, the default
ServiceCenter Event Registration expression must be modified in ServiceCenter
to match pmo events with existing incident tickets based on the logical.name,
category, and cause.code fields in the pmo event.
Node-based incident tickets | 109

SCAuto for OVO
OVO message group into ServiceCenter category
This implementation facilitates the management of large numbers of OVO
event messages by funneling them into different ServiceCenter categories
based on the OVO Message Group name. This enables the OVO Administrator to
control which OVO message opens a incident ticket in which category. This
grouping of incident tickets by OVO Message Groups is a logical approach to
eventually assigning incident tickets to the same group of technical support
staff based on their expertise.

To configure for incident tickets to be opened in categories specified by the
Message Group of the OVO Message:

In ServiceCenter, create categories matching the OVO Message Group
names. This will later enable the SCAuto for OVO adapter to assign events to
these specific categories based on the OVO Message Group of the
interested event. Also, make sure that the correct event registration and
format control logic are built into these new categories.

In SCAuto for OVO, modify the default “ToSC” TCL scripts to generate
specific category and cause.code in the resulting pmo. By default, the
category field is hard-wired to the literal example. If desired, you can use the
O message group value to populate this field by changing the line:

eventObject set_evfield category example

to

eventObject set_evfield category $OPCDATA_GROUP
110 | Scenarios

6/22/06

	User Guide
	Introduction
	Overview
	Knowledge requirements
	Determining current product version
	SCAuto for OVO

	ServiceCenter
	Core applications
	Additional applications

	OVO
	Functional areas
	Network Node Manager

	About SCAuto for OVO
	Operational concepts
	Bi-directional Integration

	Planning your ServiceCenter and OVO integration
	Mode 1: uni-directional automatic notification from OVO
	Process and Data Flow

	Mode 2: Bi-directional exchange (default mode of operation)
	Process and data flow

	Mode 3: Automatic notification from OVO via Trouble Ticket Interface (TTI)
	Mode 4: New ServiceCenter tickets generate OVO events
	Mode 5: Application monitoring - OVO monitors ServiceCenter
	Mode 6: Combined user interface - launch ServiceCenter from OVO Windows

	OVO business logic topics
	ServiceCenter business logic topics
	SCAuto for OVO business logic topics

	Installation
	System requirements
	Required kernel parameters
	Installation requirements
	Installing SCAuto for OVO
	Install procedure

	Basic Operations
	Starting and stopping SCAuto for OVO processes
	Starting SCAuto for OVO
	Stopping SCAuto for OVO

	Basic maintenance
	scito.ini parameters

	Basic configuration
	Troubleshooting

	Product Architecture
	Application integration
	ServiceCenter menu options
	Incident List

	Event Integration
	Integration components
	scevmon
	sctoito
	scfromitoTTI
	scfromitoMSI
	scfromitoMEI

	Configuration
	SC Auto for OVO business logic configuration
	Configuration overview
	OVO variables
	ServiceCenter TCL event object
	Summary of ServiceCenter TCL commands
	create_sc_event
	set_evtype
	set_evfield
	set_evuser
	print
	send
	tcl_logprint
	Static map file

	OVO Message filtering the event.ini file
	Sections
	Using TTI - trouble ticketing interface
	Default behavior
	Example eventmapMSI.tcl Script

	TCL Event Mapping from ServiceCenter to OVO
	Configuration overview
	ServiceCenter TCL variables

	OVO programming APIs as TCL commands
	Summary of OVO TCL commands
	opcif_write
	opcmsg_annotation_add
	opcmsg_ack
	opcmsg_unack
	opcmsg_own
	opcmsg_disown
	opcmsg_escalate
	opcmsg_op_action_start
	tcl_logprint

	Event configuration file
	Sections
	Default behavior
	Default pmo.tcl script

	OVO business logic configuration
	General process
	Requirements analysis
	Design phase
	Implementation phase
	Design considerations

	Implementation steps

	ServiceCenter business logic configuration
	ServiceCenter Event Services
	Event registration
	Event maps

	ServiceCenter Incident Management

	Scenarios
	Uni-directional automatic incident ticket creation (Mode 1)
	Bi-directional incident ticket/OVO message creation/update/close (Mode 2)
	Creating incident tickets with trouble ticket interface (Mode 3)
	Node-based incident tickets
	Cause-based incident tickets per node
	OVO message group into ServiceCenter category

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

