hp OpenView
Service Quality Manager

(D |

invent

Service Designer User Interface

User’s Guide

Edition: 1.3

for the Microsoft Windows Operating System

May 2006

© Copyright 2006 Hewlett-Packard Company, L.P.

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed as constituting an
additional warranty. HP shall not be liable for technical or editorial errors or omissions contained
herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor's standard commercial license.

Copyright Notices

© Copyright 2004-2005, 2006 Hewlett-Packard Development Company, L.P.

Trademark Notices
Adobe®, Acrobat®, and PostScript® are trademarks of Adobe Systems Incorporated.

HP-UX Release 10.20 and later and HP-UX Release 11.00 and later (in both 32 and 64-bit
configurations) on all HP 9000 computers are Open Group UNIX 95 branded products.

Java™ is a US trademark of Sun Microsystems, Inc.

Microsoft®, Windows®, Windows NT® and Windows® XP are U.S. registered trademarks of
Microsoft Corporation.

Oracle® is a registered US trademark of Oracle Corporation, Redwood City, California.

UNIX® is a registered trademark of The Open Group.

Contents

L 1= 7= o7 PP PEEPR 6
CRAPTET L oo 9
TN 0o 1U o3 {10 ISR 9

1.1 Whatis the HP OpenView Service Quality Manager?...........cccoccvvveveeeeeesiennnnn 9

1.2 WAhALIS @ SEIVICE? ..oiiiiiiie ettt ettt ettt e st e e st e e s st e e e nees 9

1.3 The Service Designer Graphical User Interfacecccccceeiiiiiiiiieeieeeneniies 9

1.4 THhe SLA LIFECYCIE ..eeiiiiiiee e 10
CRAPTIET 2 e 12
The Service MOUE! ... e e eeaaans 12

2.1 The Object Model for Designing SEervViCeSccccvvveeeiiiiiiiieeeeee e srieeereaee s 12

2.1.1 DESIGNING @ SEIVICE ..ueviiiei i ittt e ettt e e e e e e e e e s e rrrre e e e e e e e e aaans 12

2.1.2 S T=T Y (o PP TR TUUPUPPPRTR 13

2.13 Service COMPONENESouviiiiiiiiiiee ittt e e e e sbreeeean 14

214 Data FEEAERIS ...oooiiiiiie e 14

215 PAramMELEISeieiiiiiiiiie 14

2.1.6 PrOPEITIES. ..ttt e e e e bbb e e e e e e e 14

217 NaMING RUIES ...t 15

2.1.8 Modeling and Defining Services with the Service Designer Graphical User

INErfAce (GUI) . 15

2.2 Rational Rose Standard FEALUreScccveiiiiiiieiiiiii e 16
(O =01 (=T A 17
Getting Started with Service DeSIigNer........ccccccouuuiiiiiiiiiiiiiiiiiiiiiiieees 17

3.1 Starting ServiCe DESIGNETuuiiiiieeiiiiiiiti ittt e e e e e e eneeeeees 17

3.1.1 THE LOG WINGOW ...ceiiiiiiiiiiiiiee ettt 18

3.1.2 Making Service Designer Availablecccccccooviiiiiiii e 18

3.1.3 Making the Framework Wizard Availableccccocceiiiiiiiiie s 20

3.1.4 Placing Icons on the Vertical TOOIbAr ..o 20

3.2 Creating @ NeW MOElooiiiiiiiiiiii e 22

3.3 HOW 0 GEEHEIP .. e e 23
(O o= 01 (=T 25
DESIGNING @ SEIVICE ..ciiiiiiiii ittt e et e e e e e e eeeaaa s 25

4.1 Defining Services, Service Components, Data Feeders and Expressions......25

41.1 The 1CON MEtNOM 26

4.1.2 The Menu Method............ouiiiiiiii e 26

4.2 Deleting Classes From a MOdel............ccuuviviieeiiiiiiiiiiceee e 28

4.2.1 The Tree WINdow Methodc.eeviiiiiiiiiii e 28

4.2.2 The Class Diagram Window Methodcccccceoiiiiiiiii e, 29

4.3 Copying/Pasting an ODJECTcoiiii i 29
4.4 Defining and Displaying Specifications............cccoceiiiiiiiniiiie e 30
4.5 Service SPeCIfiCatiONS.........cccviiiiiie e 30
45.1 The General Tab......ocuuiiiiiiiee e 31
45.2 The Parameters Tab ... 31
45.3 The DetailsS Tab. ..o s 32
4.6 DefiniNg Parametersccoviiiviiiiiie et e e e e e e e e s e e e e e s 33
4.6.1 Creating ParameEterS.t e e e e e e s et e e e e e e e aaaes 33
4.6.2 Defining Parameter SpecifiCations.............ccceiriiiiiiiiiieeiieeee e 34
4.6.3 Parameter Specification General Tab..........cccceiiiiiiiiiiiee e 35
4.6.4 Parameter Specification Details Tabccccceeviiiiiiiii e 36
4.6.5 Parameter Specification Calculation Tabcccccvveiieiee i 40
4.7 Defining SErviCe PrOPEITIESuiiiiiiiiiiiiiiiiiee et 46
4.8 Service Component SPeCIfiCatioNcoviuiiiiiiiiie e 47
4.9 Data Feeder SPeCIfiCatioN...........cuvieeiiiiiiiiiiiiie e e 49
4.10 Defining the Associations or Aggregations of a Service.........cccccceveeeveiicvvnnnnn. 52
4.10.1 The Menu MethOd..........oouuiiiiiiiiei e 52
0t O T I o U= (oo o Y/ =1 1 T To [PRSP 53
4.10.3 Service to Service COMPONENTc.euuiiiiiieeeieiiiierrr e e e e s s s e e e e e e e sneneeees 54
4.10.4 Setting the Multiplicity for Associations of a Servicecccccceeeeeviiccvvnnenn. 55
4.10.5 Data Feeder to Service or Service COMPONENt..........cooovuuririeeieeeeeiniiiiieen 57
O BT o o 1= 71 =T g o= PRSP 58
4.11 Calculation EXPrESSIONS.uuuuiiiieeeeiiiirieeireeeeesesstteeeeeee e s s e snstraeeeeeeesesnnneneeees 58
I I e o] (=SS (o] PR O = 1 SRR 58
4.11.2 Creating a Custom Calculation EXpressioncciiieeieeeee i, 60
4.12 Binding Service, Service Component and Data Feeder Parameters 64
ot N = 1 4= U Y/ =1 T 11T TR U 64
4.12.2 Secondary BiNAiNG.........ccccuuiiiiieeiiiiiiiiieeeee e 64
4.12.3 SequUENCE DIAQIamScccuuieiiieiae ettt e et e e e e e e e sbbe b e e e e e e e e nneeeees 64
G T = 010 1= =1 1 o] o PP ERR 71
4.14 Validating a Service Definitioncoocciviiiiie i 72
4.14.1 Real Time Model ChecCKiNg........ccoiiiiiiiiiiiie e 72
4.14.2 Service Model Checking on Demandooocuviiiiiiiiiininiiiieeeee e 73
4.15 Generating an XML Definition.........coccuuiieiiiiiiiiieiee e 74
4.15.1 How to Generate an XML Definitionccccoveiiiineiiiiie e 76
4.16 Importing Definitions into OpenView Service Quality Manager....................... 78
(O =01 (=T = T 80
REVEISE ENQGINEEIING .ooiiiiiiiiiiiiiiiiiiiiiieiee ettt e e e e e eeeeeeees 80
5.1 Importing @ Definitionooiiiiiii e 80
CRAPTEE B e 82
AdVanCed FEALUIEScooiiiiiii e 82
6.1 Customizing the Initial Framework...........cccccoiiiiiiiiiiie e 82
6.1.1 Editing the Provided FrameworK...........cccvveeiiiee i 82
6.1.2 Creating a New Initial Framework............ccccveeiiiiiiiii e 82
6.2 Creating an EXPresSion ClasS........oocuuiiiiiiiaiaiiiiiiie e ee e 85
6.3 Managing Component LiDraries. ... 86
6.3.1 Creating Libraries of COMPONENtS.........cccvveeiieeii e 86

6.3.2 Using Library Components in @ SEIVICEcccovviciiiieeieeeeeiiiciiieeeeeeeeeeeinans 88
6.3.3 Uncontrolling a Controlled UNit............ccuuuiiiiiiiiniieee e 89
0 - Yo T =T 1Yo To = SO 89
CAPLET 7 e 91
TroUBIESNOOTING ...uuii e e e e e eaaaans 91
7.1 Activating the Framework Wizard Add-Inccceeeveeeiiiiicee e, 91
7.2 Service Designer Dialog Boxes are not Displayed..........ccccccceeeeiiiiiiivinnneeennn, 92
7.3 Error and Information DiSPIaYcccuuueiiiiiiiiiiiieieee e 92
7.3.1 POP-UP BOXES ...ttt e 92
7.3.2 1 L= 1 o 92
7.3.3 COrreCting MISTAKESuvvieiieeiicciiieiee e e e e e e s srrrrr e e e e e e e e aans 93
7.3.4 Creating and Defining Enumerations and EXpressions...........ccccceeeeeeineees 93
7.35 Importing Expression XML Definitions into OpenView Service Quality
MEBINAGT ... 93
7.3.6 Actions you are Advised NOt to Perform..........ccoocovieiiiiiiinine e, 93
(€1 FS3 = 1 95

Preface

HP OpenView Service Quality Manager Service Designer has been developed as an
Add-In to Rational Rose. This document describes the Graphical User Interface of
OpenView Service Quality Manager Service Designer. In addition to the facilities
provided by the standard version of Rational Rose, OpenView Service Quality
Manager Service Designer allows you to graphically design a Service in the Unified
Modeling Language (UML) and enables the generation of XML Service definitions,
which are then used to import the model definition into Service Center. These
generated XML files also allow Reverse Engineering, described in Chapter 5.

Important

This guide is not a guide to Rational Rose, it describes how to design and define a
Service using the Service Designer Add-In. Rational Rose is a very rich tool,
therefore we describe only the single recommended way to design a Service.

Prerequisites
Rational Rose XDE, any edition, must be installed.

The HP OpenView Service Quality Manager Service Designer Add-In to Rational
Rose XDE must be installed.

Note

Rational Rose XDE Modeler requires the patch
Rose_2003r3_HotFix_1_09.18.2004.exe. This patch fixes a crash of the Modeler
Edition.

Intended Audience

This document is intended for personnel who will use HP OpenView Service Quality
Manager Service Designer. It is recommended that such personnel have knowledge of
the Unified Modeling Language (UML) and of Rational Rose.

Software Versions

The software versions referred to in this document are:

Service Service Windows Rational Rose XDE
Quality Designer
Manager

1.3 1.3 XP Any edition

Typographical Conventions

Courier Font:

e Source code and examples of file contents.

e Commands that you enter on the screen.

e Path names

o Keyboard key names

Italic Text:

e Filenames, programs and parameters.

e The names of other documents referenced in this manual.
Bold Text:

e To introduce new terms and to emphasize important words.

Associated Documents

OpenView Service Quality Manager

e OpenView Service Quality Manager Overview

e OpenView Service Quality Manager SLA Monitoring Ul User’s Guide.
e OpenView Service Quality Manager SL Administration Ul User’s Guide

e OpenView Service Quality Manager Service Designer Ul User’s Guide (this
manual).

e OpenView Service Quality Manager Planning Guide
e OpenView Service Quality Manager Installation Guide

e OpenView Service Quality Manager Administration Guide

Rational Rose

This guide documents how to use the OpenView Service Quality Manager Service
Designer Add-In to Rational Rose. For information about the Rational Rose standard
product, please refer to the Rational Rose documentation and the Rational Rose
Standard on-line Help.

Support
You can visit the HP OpenView support web site at:

http://www.hp.com/managementsoftware/support

This Web site provides contact information and details about the products, services,
and support that HP OpenView offers.

HP OpenView online software support provides customer self-solve capabilities. It
provides a fast and efficient way to access interactive technical support tools needed
to manage your business. As a valued support customer, you can benefit by using the
support site to:

Search for knowledge documents of interest

Submit enhancement requests online

Download software patches

Submit and track progress on support cases

http://www.hp.com/managementsoftware/support

Manage a support contract

Look up HP support contacts

Review information about available services
Enter discussions with other software customers

Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in.
Many also require a support contract.

To find more information about access levels, go to:

http://www.hp.com/managementsoftware/access_level

To register for an HP Passport ID, go to:

http://www.managementsoftware.hp.com/passport-registration.html.

http://www.hp.com/managementsoftware/access_level
http://www.managementsoftware.hp.com/passport-registration.html

Chapter 1

Introduction

This chapter describes the principles of designing and defining a Service using the HP
OpenView Service Quality Manager Service Designer.

1.1 What is the HP OpenView Service Quality
Manager?

The HP OpenView Service Quality Manager is a service level management product
that automates the definition, real-time monitoring, and reporting of operational and
customer Service Level Agreements (SLAS) and Service Levels.

The Service Designer is the part of the OpenView Service Quality Manager that
allows you to design a Service, and all its constituent parts.

1.2 What is a Service?

A service is a set of independent functions. A service can include anything from a
single leased-line service, to a complex application, such as video conferencing. You
can model three types of services with OpenView Service Quality Manager:

e Single-customer services: these services are associated with a single known
customer. For example, connection services (such as SDH, asynchronous transfer
mode (ATM), FR, and asymmetric digital subscriber line (ADSL)) are usually
single-customer services.

e Multi-customer services: these services are shared by various customers, meaning
that OpenView Service Quality Manager must deduce the customer name using
information extracted from the external data source.

e No-customer services: these are services that are shared by various customers, but
OpenView Service Quality Manager does not know the customer name. For
example, the customer identity is ‘lost” when an ADSL customer uses an IP
service with an IP address assigned by a dynamic host configuration protocol
(DHCP) server during the connection phase.

1.3 The Service Designer Graphical User
Interface

The Service Designer Graphical User Interface (GUI) allows the user to design and
model services in the Unified Modeling Language (UML). The Service Designer GUI
is based on the Rational Rose product, widely used software that offers support of the
UML standard.

OpenView Service Quality Manager provides predefined meta-definitions for
services. You can use the Service Designer GUI to customize the predefined
definitions included with OpenView Service Quality Manager, thereby reducing the
effort needed to design a new service.

In the Service Designer GUI, you can fully design a service and check its model
without any interaction with the service level management components. Once you
have designed and validated a service, OpenView Service Quality Manager allows
you to generate an XML document representing the service and import it into the
OpenView Service Quality Manager data repository. You can enrich the model
during the SLA lifecycle by creating new service definitions or by updating existing
service definitions.

1.4 The SLA Lifecycle

The SLA lifecycle has five phases defining the sequence of the processes that
comprise an SLA. These phases are:

e Service design
Customer needs are identified and the service is modeled.

e Service level instantiation
Individual customer instances are created and the service is enabled.

e SLA creation
SLAs are negotiated and created for individual customers.

e Service monitoring
Services and service level agreements are monitored and real-time violations are
handled.

e Service reporting
Reports on the performance of the Service are generated.

This sequence of events and the parts of OpenView Service Quality Manager used for
each phase are illustrated in Figure 1.

10

Figure 1 The SLA Lifecycle

hp OpenView

Bervice Quality hana ger
Service Designer
User Interface

hp OpenView
Service Quality Manager

SLA I
hp OpenView

A dmi ation
Usea Interface
Berv ioe Quality Manager
SLA

Mo ring
User Interface

<
—

ServiceCenter
Repository

Service
Monitoring

hp OpenView
Berv ioe Quality Manager
Service Reparting
User rface
(From Business Objects)

11

Chapter 2

The Service Model

During the first phase of the SLA lifecycle (see Section 1.4), a new service is
designed; this includes modeling and defining the new service. Service models and
definitions are built with the OpenView Service Quality Manager object model. The
service definition can be created with the OpenView Service Quality Manager
Service Designer provided with OpenView. Service Designer has a Graphical User
Interface (GUI) that allows the model to be viewed.

The following sections describe the OpenView Service Quality Manager object
model and the Service Designer GUI.

2.1 The Object Model for Designing Services

OpenView Service Quality Manager uses a technology-neutral object model for
modeling and defining services and the entities that collect data about these services.
You can map the object model to any service. The following sections describe the
object model used during the design phase to design the service itself and to design
data acquisition.

2.1.1 Designing a Service

In the OpenView Service Quality Manager object model, a service is a collection of
service components. A service component corresponds to hardware and software
elements, as well as the underlying communications medium used by the service.

A service can include anything from a single Leased Line service, to a complex
application, for example: vision conferencing.

A Service and Service components must have parameters. These are values that are
periodically updated and that help determine the quality of service, either from a
customer or a network operator perspective.

Service components can themselves be composed of service components.

12

Figure 2 A Neutral Meta-model of a Service.

Service
1
0.*
1“*
0“*
Service Component 0.*
+type : int
Service Parameter
1.x1 —
-Statistics
. -State
1. -Characteristics

This neutral meta-model can be used to model any service, such as a video service.
For example, a video service can be composed of a video server and several web
servers (load balancing) hosted by an Internet Service Provider (ISP). This is a
specific application of the meta-object model. Such a specific application is called a
concrete service model.

Figure 3 Example of a Concrete Service Model
1“*
o vise |
1
1.x
1 1.% 1
| IP Access | | Web Server | | Web Cam |
1 0.* 0.*
1. 1.1 |11

Dns Platform

During service design, the service, service components, and service parameters are
defined for the service (in this example the Video service) using the Service Designer
GUL.

2.1.2 Service

A Service is a set of independent functions (service components) that consist of
hardware and software elements and an underlying communications medium.

13

2.1.3 Service Components

Service Components are hardware and software elements of a Service, as well as the
underlying communications medium used by the Service. A particular component
may or may not be visible by a given Service Customer. This visibility is defined as
an attribute of a Service Component. Service Components have both Parameters and
Properties. Parameters have values that are calculated according to the performance
of the system, whereas Properties have values that do not change.

2.1.4 Data Feeders

Data Feeders are just what their name suggests; they are the source of data used by
OpenView Service Quality Manager. They “feed” data, either directly to a Service or
to a Service Component, which then “feeds” the data to the Service in turn. What data
they feed is defined by means of Parameters and Properties.

The Parameters and Properties of a Data Feeder are set with Service Designer, but the
Data Feeder itself can be created by an external application.

2.1.5 Parameters

Services, Service Components and Data Feeders must have Parameters and
Properties.

A Parameter is an indicator of the end-to-end Quality of Service (QoS) either from a
customer perspective or from a network operator perspective.

The OpenView Service Quality Manager object model supports four kinds of service
parameter:

e Quality of service metrics, such as performance, errors, and availability.
o State

o Usage

o Characteristics

All parameters must specify whether their value is specific to a single subscriber
(such as the number of transmitted videos) or whether they apply to all customers
(such as a host’s CPU load).

Service parameters can be one of the following data types:
o Display string: a printable string.

o Integer: a signed, 64-byte integer.

e Enumeration: open enumeration definition.

o Real: a signed float.

o Relative time: number of milliseconds.

e Absolute time: time, given using GMT notation
(YYYY-MM-DDThh:mm:ss, for example 2002-05-31T13:20:00).

OpenView Service Quality Manager Service Designer allows you to define special
static parameters, called properties that are given a value only when an instance of
an OpenView Service Quality Manager object is created. For example, a service
component can have a property called “location”.

2.1.6 Properties

OpenView Service Quality Manager allows the definition of static parameters (that
is: Properties), which are only valued when an Instance is created. A good example of

14

such a parameter is the Location. The value for a given instance of the property does
not change.

2.1.7 Naming Rules
All the Object Identifiers must respect the following naming rules:
o The first character is one of a-z or A-Z.
e The other characters can be any of a-z, or A-Z, or [0-9] or “-*, or *_’, or “;".
e The maximum number of characters for a Parameter is 12.

e The maximum number of characters for all the other objects is 16.

2.1.8 Modeling and Defining Services with the Service
Designer Graphical User Interface (GUI)

The Service Designer graphical user interface allows you to model a service.
You can:

o Design services, service components, define relationships with data feeders, and
their relationships with one another.

o Design expressions for parameter evaluations.
e Check model consistency.
e Generate XML files used to load the model in SLA Manager.

The GUI uses the Rational Rose product to represent the OpenView Service Quality
Manager Object model in Unified Modeling Language (UML). UML is an
application modeling language for class and object modeling, component modeling,
and distribution and deployment modeling.

OpenView Service Quality Manager provides a generic service information model
that can be mapped to any service.

The GUI represents services, service components, and data feeders as Classes with
relationships. OpenView Service Quality Manager gives these service elements the
following Class types (or “stereotypes”) in UML:

e Services have the stereotype Service.

e Service components have the stereotype Service Component.
o Data feeders have the stereotype Data Feeder.

e Expressions have the stereotype Expression.

e Enumerations have the stereotype Enum.

o Parameters of services, service components, and data feeders are represented in
UML by class attributes with the stereotype Param.

o Properties of services, service components, and data feeders are represented in
UML by class attributes with the stereotype Prop.

Once you have designed a new service, it must be instantiated.

During instantiation, the definitions created during the service design step of the
Service Level Agreement (SLA) lifecycle are mapped to real-world services, service
components, and data feeder objects. Although we are not concerned with the
complete SLA process in this manual, it is useful to place Service Designer in its
context in this process.

15

2.2 Rational Rose Standard Features

You can take advantage of Rational Rose features to create your own Data Feeder or
Service Component template libraries. Rational Rose can keep a model in one or
more files. These files are Petal files or Controlled Unit files. Controlled Unit or Petal
files are files into which Rational Rose stores all or part of a model. It is possible in
this case to define a set of Service Components and keep them in Petal files or
Controlled Unit files and import them and use them whenever it is necessary. This
feature is not specific to the Service Designer Add-In, it is a pure Rose feature.

16

Chapter 3

Getting Started with Service
Designer

3.1 Starting Service Designer

Click on the Rational Rose icon ks

When you have done this, the window illustrated in Figure 4 will be displayed:

Figure 4 First Rational Rose Window

Rational Ros

Hew |Existing| F!ec:entl

oK

BN

Make New $#
Framework

Cancel

il

Mo Details

Mo documentation available.

[~ Don't shaw this dialog in the future Help |

Riational D eveloper Metwork

To be able to use all the facilities of the OpenView Service Quality Manager
Service Designer Add-In, you must ensure that the Service Designer Add-In is
activated. You only need to do this when you are using OpenView Service Quality
Manager Service Designer for the first time, just after you have installed it, or if it
has been de-activated at any time.

How to activate the Service Designer Add-In is described in Section 3.1.2.

How to activate the Framework Wizard Add-In is described in Section 7.1. You
only need to do this if you want to be able to use the OpenView Service Designer
Initial Framework feature.

17

3.1.1 The Log Window

It is advisable to be able to view the Rose log. The log is not specific to Service
Designer. It is a standard Rose facility.

To display the log, select Log from the View menu.

The Log window will display below the principle Rational Rose window. It displays
information which is useful to know.

Figure 5 Example of a Log Window
. -’:I 10:56:21| [Customizable Menus] |
11:35:02| Info: The SCServiceDesigner add-in has been deactivated.
- 11:35:49|
4 11:35:49| [Update Model Properties]
11:35:49| Info: The SCServiceDesigner add-in has been activated. J
A l _'l_I
] 4[4 »] Log /
5, For Help, press F1 |Default Language: SCServiceD esigner I /_’I

The Timestamp is not displayed in this window if you do not also select Timestamp
from the View window.

3.1.2 Making Service Designer Available

Before you can use Service Designer, you must make it available (you usually only
have to do this the first time you use Service Designer, just after installation, but if it
is de-activated at any time, then you will need to re-activate it.)

To make Service Designer available:

1. Click on Add-Ins on the menu bar.

2. Select Add-In Manager.

3. The Add-In Manager dialog box will be displayed.

Figure 6 Add-in Manager box, Service Designer
Add-In Manager x|
M ame | “Yarzion il
[]CleaCase 1.4

[] Examples erver

[Framewoark wizard 1
[JPRose C++ 24
[JFRoze Model Integratar 2.2
Foze Web Publisher 1.4

[l 55 erviceDesigner 1.0
[Jwc++ 7h
[JwCContesttdenu 1.0
V_IV Yerzion Control .'-".IE
1

il P R

Qk I Cancel | Apply

4. Check the box to the left of SCServiceDesigner and click Apply.

18

The message:
Info: The SCService Designer add-in has been activated

will be displayed in the log window.

5. You must now ensure that the language you are using is SCServiceDesigner. (The
current default language is displayed on the bar at the bottom of the Rational Rose
window.) If it is not SCServiceDesigner:

6. Choose Options from the Tools menu to display the Options dialog box.

7. Choose the Notation tab to display the Notation choices.

Figure 7 Options Dialog Box, Notation Tab

: Options llil

Generall Diaglaml Browser Motation |TO0Ibars| SCSewiceDesignerl COkr |

Default notation Default Language

" Baoach Analysiz - I
C OMT Analysiz

& Unified

v Visibility az lcons

I Detect language mismatches

ak I Cancel | Apply | Help |

8. If the default language already displayed in the Default Language box, is not
SCServiceDesigner, Choose SCServiceDesigner from the drop-down menu of the
Default Language box.

9. Choose Unified as the Default Notation. (This ensures that the graphical
representation of definitions will be displayed in the format illustrated in this
document.)

10. Click on Apply, and then on OK.

Reminder

If, at any time, you de-activate SCServiceDesigner by unchecking it in the Add-In
Manager window, a pop-up information box is displayed. This is illustrated in Figure
8.

Figure 8 Pop-up Information Box

1F vou wish bo restore the defaulk language, wou need ko reactivake the add-in, then go to the Tools ; Cptions

& You have just deactivated vour defaulk language add-in. The defaulk language has been changed to Analysis,
Motation kab and select the language from the Default Language dropdown box and click, Ok,

19

3.1.3 Making the Framework Wizard Available

The OpenView Service Quality Manager Service Designer Initial Framework is a
feature that allows you to create a new model by using as a basis, a set of UML
elements and Expression Classes that have been previously defined. This enables you
to create a new model more quickly.

When the Framework Wizard Add-In is activated, from the Create New Model
window, where it will now be displayed, you can choose the pre-defined Initial
Framework provided with Service Designer.

If you do not see the Initial Framework icon, you need to activate this facility. See
Section 7.1.

3.1.4 Placing Icons on the Vertical Toolbar

Customizing the vertical toolbar between the Tree window and the Class diagram
window enables you to include icons specific to Service Designer, facilitating the
tasks you need to perform to create your model. You only have to do this once after
Installation.

Icons are provided for creating the classes:
Service &,
Service Component O,

Data Feeder Q:ea

and Expressions E-";

1. From the Options menu, click on the Toolbars tab.
2. In the Customize toolbars section of the dialog box, select UML.

3. This displays a Customize Toolbar dialog box.

Figure 9 The Customize Toolbar Dialog Box

Customize Toolbar
Auvailable toolbar buttons: Current toolbar buttans:

. INE Entity EJB A B Creates a class o

| |RE Message EJB —C Creates an interface

------- Add > | [Creates a unidirectional assac Help
Separator

Bl 1% Creates a Service Class
E&: Creates a Data Feeder Class J [P | 7 Creates an association class

Cloze

Reset

O Creates a Service Componenl
{e& Creates a Server Page] Creates a package
Creates a Client Page " Creates a dependency or ain

Creates a Farm - _ % Creates a generalization - Move Down
4 ' ' _)l_l 4 I ' | ' v

tiove U

[l

4. Choose the & Creates a Service Class icon from the
Available toolbar buttons: list box.

5. Click on the Add-> button.

6. The icon and its description will move to the right-hand Current toolbar buttons:
list box.

Do this for each of the icons that you want to add to the toolbar
- Creates a Service Component Class,
- Y% Creates a Data Feeder Class,

X .
== Creates an Expression.

20

We recommend that you also add the Unidirectional Association and
Unidirectional Aggregation icons to this vertical toolbar. They are:

. Creates an Unidirectional Association
. = Creates an Unidirectional Aggregation
7. When you have added all the icons that you want to the right-hand list box and

placed them in the position you want, click on the Close button on the dialog box.

8. Click on the OK button on the Options dialog box.

The icon or icons will have been added to the toolbar, which will now look similar to

the illustration in Figure 10.

21

Figure 10 Customized Vertical Toolbar

IF BB
=

_O

‘_H]I!

x%{

L. [

L

R
o

3.2 Creating a New Model

To create a new model:

1. Click on New in the File menu, or

2. On the page icon

File

3

3. If the Framework Wizard is activated, the Create New Model window will be

displayed. This is illustrated in Figure 11.

Figure 11 Create New Model Window

Create New Model

Make Hew H1
Framework

Cancel

Mo Details

il

Mo documentation available.

[~ Don't show this dialog in the future

Rational D eveloper Hebwork

Help |

22

When you use the Initial Framework, the Service Designer window looks like the one
illustrated in Figure 12.

Important

It is recommended that you begin to create your model with the Initial Framework
provided with Service Designer. If you do begin with an Initial Framework, the Class
Diagram Logical View Window will already have the items in it, which you can
modify to match your new Service.

Figure 12 First Service Designer Window

% Rational Rose - (untitled) M [=1ES
Fie Edi View Fomat Browse Hepot Quey Iools Addlns Window Help

DSE /2 ROPEREB(F« 4] 0E

[Lniled) &
(3 Use Case View I
? EQE:ID:::DM =W | Ei Class Diagram: Logical View / My Service Overview
My Service Dverview -
Package Overview = To create a new Service Definition, create the
My Service Parameter Calculation Senice, Service Components, Datafeeders that
2 Associations < you want to uge in thig diagram.
C3 Component View r
Deplopment iew —
8 Model Properties &
=]
_+
&
& Flal | » [
€]
= | =
=HIE
A10:18:31] [Update Model Properties] B
T[10:18:31] [[Update Model Properties]] =
4 | ;l_l
AT Log £
For Help, press F1 |Default Language: SCEeiviceDesignet [[[| 4

This window displays four “views” from which it is possible to work:

e Use Case View

Logical View

Component View

Deployment View
You can also access Model Properties from this window.

Important

You must only use the Logical View to design, define and manage Services. The full
menu is not displayed until you have chosen this view and clicked on the Main icon.

3.3 How to Get Help

When you have made the full menu bar available, the Help drop-down menu
becomes available.

When you perform some actions, help in the form of Information, Warning or other
messages are displayed in Pop-up boxes.

The Context Sensitive Help button on the Icon bar below the Menu bar provides
context-sensitive help for the Standard Rational Rose functions, but there is no
context sensitive help available for this version of OpenView Service Quality
Manager Service Designer.

To get help on Service Designer, go to the Start button and choose Programs.
Choose HP OpenView\SQM\Service Designer\Documentation and then Service

23

Designer User Guide. This will display an HTML version of the user manual. You
can search for information in this manual using the Find facility and by clicking the
item you want in the table of contents. Cross-references are also live links to the
items referred to.

24

Chapter 4

Designing a Service

This chapter describes how to define Services.

For an overview of the design process refer to 0.

The Service design process use a very small subset of the UML design.
For a simple Service design, you will only have to use:

e Asingle class diagram to define the Service, Service Components, DFD and their
relationships

e Some sequence diagrams to define the calculation of the parameters
For more complex Services, you can take advantage of some other Rose Features:
o Create other class diagrams to represent other parts of the Service,

e Store part of the model in a “‘package’ in order to be able to reuse it in other
models.

The Creation of new class diagrams and new sequence diagrams must only be done
in the “Logical View” tree.

The rest of this chapter does not describe standard Rose features, but only features
specific to Service Designer.

After starting Service Designer as described in 0, choose the Logical View type by
double-clicking the icon with the left mouse button.

4.1 Defining Services, Service Components,
Data Feeders and Expressions

When the Logical View window is displayed you can make Main and Associations
available by expanding the tree structure (click on the plus sign (+) to the left of the
Folder icon). Double click with the left mouse button on the Main icon. The menu
bar will now display all the available items. From the left these are:

File, Edit, View, Format, Browse, Report, Query, Tools, Add-Ins, Window, Help

Important

You must double click on Main for the full complement of items to be displayed on
the menu bar.

It is ONLY from the Tools menu that Service Designer is available. However, if you
have configured the Vertical Tool bar, many actions can be performed using the icons
available on this toolbar.

25

Now click on Tools, the menu displayed in Figure 13 will be displayed. You will see
that Service Designer is displayed.

Figure 13 The Tools Menu

4> Rational Rose - [untitled)
File Edit “iew Format Browse Repot Query | Tools &ddins ‘Window Help

o Creat 3
DEE|sBealvOE = «|ze O
—— Check Maodel
{35 (untitled) |—[todel Properties »
#-CJ Use Case Yiew & -
ED Logical Yiew J Options... ogica e e e Dvervie - (O] X
23 Expressions e -
| My Service Overview A S To create a new Serice Definition, create the
Package Overview F—— Service, Service Components, Datafeeders that
) My Service Parameter Calculation Muodel [ntegrator you want to use in this diagram.
3 Associations |
-3 Component Yiew [/b Publisher
Deployment View . Service Designer »
-{@3 Model Properties -
F Class Wizard..
K
4
»
= 4 »
o]
[€]
| e
= Iy
ﬂ 10:18:31] [Update Model Properties] =
10:18:31] [[Update Model Properties]] =
-
« | »
A2 Log
|Default Language: SCServiceD esigner [] 7
Note

Do not be tempted to choose the Create option from this menu, this does not give
you access to Service Designer. You cannot create Services, Service Components or
Data Feeders from this option.

You can create Services, Service Components, Data Feeders and Expressions in
two ways:

e The lIcon method, and
e The Menu method.

4.1.1 The lcon Method

o If you have placed the icons on the vertical tool bar to the right of the tree display,
you can use the Icon method. How to place icons on the vertical toolbar is
described in Section 3.1.4.

e Theicons are:
& service
@ Service Components
[v*;a Data Feeders
2X Expressions

The process is the same for each of the four Classes. Left-click on the icon for the
Class you want to create and move the cursor to the window to the right and left click
again where the + cursor stops.

4.1.2 The Menu Method

As with the icon method, the process is the same for each of the Classes:

26

1. From the Tools menu, choose Service Designer, another menu will be displayed,
which gives you the option Entity Definition.

2. Select Entity Definition, another menu is displayed giving you the options:
- Define a Service
- Define a Service Component
- Define a Data Feeder
- Define an Expression

The three menus are displayed in Figure 14.

Figure 14 The Definition Menus

|T|:||:||5 Add-Ins Window Help

Create 4
Check Maodel

Model Properties k

Opkions. ..

Open Scripk. ..
Mew Scripk

Madel Inteqgrakar

Web Publisher. ..

Project Specification, ..

i Check Model
Wersion Conkral k

.
Class \Wizard. ..

Generate k

Service Designer #

Service. ..
Setvice Component. ..
Data Feeder. ..

Rewverse Engineering L4 Expressian. ..

3. Choose the Entity Class you want to create. The graphical representation for the
Class will be placed in the Class Diagram: Logical View\Main window. You can
move it to the position you want, either straight away or later.

When you have created the Service, Service Components and Data Feeder Classes in
the Class Diagram View window, the window will look similar to the one illustrated
in Figure 15.

27

Figure 15 Service, Service Component and Data Feeder Classes

[Ei Class Diagram: Logical View / My Service Overview
-
To create a new Service Definition, create
the Service, Service Compaonents,
Datafeeders that you want to use in this
diagrarm.
Service 1
ServiceComponent] ServiceComponent2
© @
serviceCamponentd ServiceComponentd
DataFeeder] DataFeeder2
-
[| » [

When you have created the Classes, you can move them anywhere you like in this
window by selecting a Class with the left mouse button, keeping the button pressed
down and moving the object to the position you want. You can do this as many times
as you like. There is no restriction to the number of Classes you can create. The
number is limited to the needs of your Service.

As the graphical representations, which represent the Classes in the Class Diagram
Main window, are created, the model is created and the icons for the new Classes in
the model are displayed in the tree window on the left of the screen.

If you have made a mistake and want to delete any item, refer to Section 4.2 for
instructions how to do this.

4.2 Deleting Classes From a Model

Although you can remove a Class representation from the Class diagram window by
clicking on the Class and pressing Delete, this does not delete the Class from the
model, it only removes the graphical representation of the Class from the display.

You can delete a Class from the model in two ways: the Tree window method and the
Icon method.

42.1 The Tree Window Method

Select the icon for the Class in the tree window and right click, which will display a
menu giving the choice to delete. This is illustrated in Figure 16.

28

Figure 16 Deleting Classes From a Model

4%* Rational Rose - {untitled)
File Edit Yiew Format Browse FRepork GQuery Tools Add-Ins Window Help

DzH s mEaPOBRBEER Fe |/ aaOmD
[(untitled] IT

[:l Uze Caze View

[Ei Class Diagram: Logical Yiew / My Service Overview

L—‘_I[:l Logical Wiew
= E“P'BSS'P”S] E To create a new Service Definition, create the
My Service D"’e_"”'ew Serice, Senice Components, Datafeeders that
Fackage Overview = you want to use in this diagrarn.
My Service Parameter Caleul
& Servicel -
E _—>_), Aggociations |—’
- O
@[3 Componenty Open Specification...
..... Deplopment > Open Standard Specification. .. @
(28 Model Proper Servicel
Mew » —
Sort »

Delete

Rename
[

Mew Parameter

New Property ServiceComponent]

Generate XML definition

)
i 4 | b [

iv

4.2.2 The Class Diagram Window Method

Select the Class in the Class diagram window and press Ctrl/D.

4.3 Copying/Pasting an Object

Rationale Rose does not provide a very intuitive way to duplicate existing object.

If you select an object in class diagram and perform a copy/paste, the selected icon
will be duplicated, but in the Rose model, only one object exists.

You can check this in the Logical view tree. Only one object is displayed.

In fact only the representation of the selected object has been duplicated in the Class
Diagram.

To duplicate the object you must follow the following steps:
1. Select the object to copy in the class diagram

2. Type ctrl/c to copy it in the clipboard (or Edit then Copy).
3. Change its name (add a character at the end)

4. Type ctrl/v to paste the object (or Edit then Paste).

5. At this stage, you have 2 different objects in the Rose Model. You have to set, now,
a name to the newly created object, and restore selected object name.

29

4.4 Defining and Displaying Specifications

When the Classes are created, they have a default definition. Whichever method you
used to create them, you should now define them to your needs.

The procedure is the same for each of the Classes. There are two ways to do this.

You can either click on the Class with the right mouse button and choose Open
Specification from the menu illustrated in Figure 17, or, simply double click on the
Class with the left mouse button. The dialog boxes illustrated in sections 4.5, 4.8, and
4.9 will be displayed.

The dialog boxes for Service and Service Component have three tabs: General,
Attributes and Details. The Data Feeder dialog box has an additional tab: Naming
Schema.

Figure 17 Definition Options

Open Specification. ..
Open Standard Specification, ..
Sub Diagrams »

e Attribute
Mew Operation

Select In Browser

Relocate
Options g
Farrnak L

Mew Parameker
Mew Property

Generate BML definition

Data Modeler »
Edit 3

If you choose Open Specification, this will display a dialog box with the existing
specifications for the Class that you had selected.

4.5 Service Specifications

Specifying a Service allows you to create a Service, this is the top level of the Service
hierarchy.

There are three dialog boxes available to specify a Service. To specify a Service, you
must fill in all the boxes presented.

Here are examples of the three dialog boxes for Service Specification.

With each of these three dialog boxes, Click on OK when you have finished and are
satisfied with what you have entered or on Cancel if you want to cancel your entries.

30

Figure 18 Service Specification Dialog Box, General Tab

Service Specification x|

General | Palametersl Detailsl

M arme: I Servicel

Wersionh: I\"'I_D

Descrption:

| -

-
ak. I Cancel | Apply |

45.1 The General Tab

In the General Tab, the Version number is displayed. For a Service or Service
Component, the Version number has a purely informative role, and is not used in
SQM V1.0. For Datafeeders the version can be changed.

You must type a name for the Service.

In the Documentation box, you can enter free text.

45.2 The Parameters Tab

Service Parameters and properties are displayed in this tab with their Name, Type and
Stereotype (i.e. Parameter or Property). How to define them is described in Sections
4.6.1and 4.7.

Services, Service Components and Data Feeders must have Parameters and
Properties.

Parameters and Properties are types of Attributes of a Service, Service Component
or Data Feeder. All Parameters, with the exception of Data Feeder Parameters must
have a Calculation Expression associated to them. A Property does not have an
expression linked to it, as it is a fixed value.

The parameters and properties for a Service Component and for a Data Feeder are
defined in the same way.

Whereas Inheritance is supported in Service Designer, conflicts are detected, but not
resolved. When defining parameters for inherited entities, care should be taken that
the parameter name does not conflict with that of the entity from which they were
inherited.

31

Figure 19 The Service Specification Dialog Box, Parameters Tab

Service Specification

General Parameters | Datails |

Mame | Data Type | Stereatype =
Location String Property
Download Durati.. RelativeTime Parameter
IPAczessOF OpeState Pararmeter —
MNbDwhdkovies Int Pararmeter

Mb Ermors Int Parameter
OperationalState OpeState Parameter
wiebCam0OP OpeState Parameter

verl P OpeState Parameter

aily cumulated .. RelativeTime Parameter

Daily curmulated .. RelativeTime Parameter
D aily curmulated ... FelativeTime Parameter =

4| | B

ak. I Cancel I Lol |

45.3 The Details Tab

In the Details Tab of the dialog box, the Customer Dependant option box is disabled.
This feature, which allows you to specify whether the service is available to selected
customers, is not available in V1.0.

A default Identifier is supplied by Service Designer, but it is recommended that you
enter an Identifier, which are significant to you.

Once a Service Definition has been generated and loaded into SQM Repository it is
highly undesirable to change the identifiers of all the objects. The Identifiers must
remain the same from one generation to another.

Note

The Identifiers must not exceed 16 characters and must not contain non-printable
characters: tabs, spaces or the characters stop (.), asterisk (*), comma (,) or right
arrow (>).

Figure 20 The Service Specification Dialog Box, Details Tab

Service Specification

Generall Parameters Details I

Measure Type: IGIobaI j

|dentifier:

QK. I Cancel Apply

32

4.6 Defining Parameters

4.6.1 Creating Parameters

Important

There are two methods of defining (or modifying) Parameters.

Whichever method is chosen, Parameters must always be changed using the Service
Designer dialog boxes. If changing a Parameter without using these dialog boxes, the
associated Operation will not be updated and the use of the Parameter will be
altered. Care should be taken to never delete or change a Parameter Name in the
Logical View Tree.

To define parameters:

Method One

The Contextual menus provide access to the Parameter creation Dialog Boxes.

Method Two

1. In the Class Diagram window, select the Class for which you want to define
Parameters.

@

Service?

2. Click the Class with the right mouse button and choose New Parameter from the
menu that is displayed.
ODEIIW Specification. ..

Cpen Standard Specification...
Sub Diagrams 3

Mew Attribute
MNew Operation

Select In Browser
Relocate

Options 3
Format 3
Mew Parameter

Mew Praoperty

Generate ¥ML definition

Daka Modeler 3
Edit 3

3. This will add a new parameter item to the center section of the Service Class:

Figure 21 New Parameter Item Added to Service

ey
Servicel

B<<param>> Pararneter]

33

Note

By default, the operations associated to the parameters are displayed in the Class
representation. These operations are for internal use only, and it’s advised to hide
them. To do that, right click on the class representation and select Options/Suppress
Operations

Figure 22 Operations suppressed from class representation

Same parameter with and without operationﬁ

displayed.
Servicel Q
g param=> Parameter] : Float Servicel
@ wparam>>= Parameter] : Float

*Parameter] 0

4.6.2 Defining Parameter Specifications

1. Open the Service Specification Dialog box.

2. Click on the Parameters Tab of the Service Specification Dialog box.

3. Double click on the Parameter entry.

This will display the Parameter Specification dialog box, which like the Service
Specification dialog box has two tabs: the General Tab and Details Tab.

Figure 23 Parameter Specification Dialog Box, General Tab

Parameter Specification

General l Details | Calculation |

Mame: |IP Access Op

Diata Type: |OpState ﬂ
Identifier: |IP.-'-‘u:cessOp

Visible: v

Description:

The Cperational State of the Web Server

OK | Cancel

34

4.6.3 Parameter Specification General Tab

4.6.3.1 Name and Identifier
Text fields allow setting a Name and an Identifier to the Parameter.

Service Designer supplies a default Name and Identifier, but it is recommended to
update them with meaningful values.

Note

The Identifier must not exceed 12 characters for Parameters and 16 characters for
Properties. It must not contain spaces, tabs or non-printable characters and must not
contain the characters: stop (.), comma (,), asterisk (*), or right arrow (>).

There is no restriction for the Label, but we recommend that it should not be too long,
as this label name will be displayed in all the OpenView Service Quality Manager
User interfaces.

4.6.3.2 Description

The Description field allows entering free text for further describing the parameter.

4.6.3.3 Parameter Type

The parameter Type is set using the drop-down list in the Type field. The allowed
Types are:

- AbsoluteTime: The time, given in GMT notation
(YYYY-MM-DDThh:mm:ss for example: 2002-05-16T15:20:12).

- (Real) Float: a signed float.

- Int: asigned, 64-byte integer.

- RelativeTime: number of milliseconds.
- String: a printable string.

- Any Enumeration defined in the model. (Refer to Section 4.13 for details
about defining Enumerations.)

4.6.3.4 Parameter Visibility
Parameters can have one of two visibility levels:

e Visible (Public): ¥ «
The Parameter is visible. It will be displayed in the other GUIs and it is possible
to define an objective for this parameter. (This is the default setting and it is
always displayed checked until you choose another option.

o Not Visible (Private): %, (Protected): &
The Parameter is not visible. It is a parameter used internally to compute other
parameters. It will not be displayed in other GUIs and it is not possible to define
objectives for this parameter.

Parameter visibility is set by using the Visible checkbox in the Specification window
or by clicking on the # icon to the left of the Parameter in the Class diagram. This
displays a menu with four icons. The default value is “Visible’ ¥ . Only the
options Visible and Private/Protected are used in Service Designer.

35

Figure 24 Visibility Icons

&
Service]

<«<param=> Parameter]

%
L

|<>'15’%3

4.6.4 Parameter Specification Details Tab

The information you can define depends on the Entity to which the Parameter
belongs. Some fields are read-only.

Figure 25 Parameter Specification Dialog Box, Details Tab

Parameter Specification

General Details lCaIcuIation]

Category: ~|
Parttion: |Gos |
Unitts: |

Binding Type: |

Hlection Policy: | J
Measure Type: Glabal |
Reporting Policy: | Aiways Reported -]

=
With Compliance [

ok | Cancal |

The behaviors of the Parameter inside OV SQM are defined in this tab.

46.4.1 Category

The Category is the type of measure. It determines how the measured parameter is
presented graphically in the user interfaces. The choices are:

- Counter:

Measures in figures between pre-defined levels.
- Gauge:

Shows the measurement as a gauge.

- Other:
Any measurement type that is not specified in the options offered.

36

- Percent:
Measurement shown as a percentage

- Rate:
A quantity (such as speed) measured with respect to another measured
quantity (such as time).

The Category also determines how the parameter values are aggregated in the
DataMart. Parameters of type counter are aggregated using the sum function: for
each period, the sum of all received values is computed. For all other category,
the DataMart computes the min, max and average values.

46.4.2 Partition

Parameter Partition is the fundamental type of the measure represented by the
parameter:

- QoS:
Quality of Service

- Char:
The Parameter describes the characteristics of the Service or Service
Component, (for example: the location or the address).

- Other:
Any category not covered by the options offered.

- State:
The Parameter describes a state of the Service or Service Component.

- Usage:
The Parameter describes how the Service or Service Component is used,
(for example: the number of hits).

4.6.4.3 Binding Type

The Binding Type cannot be modified. Service Designer automatically computes it as
it is deduced from other model elements. The Binding type is displayed for
information in a read-only mode. It can take one of the following values:

Collected:
The Parameter is associated with values from Data Feeder parameters.

Computed:
The Parameter value is computed from other Service Parameter values.

Unknown:
This type is only displayed when the parameter has not yet been bound and
Service Designer has not yet computed the Binding Type.

The Binding type partly determines whether or not the Election Policy field is
available.

See Sections 4.12.1 and 4.12.2 for further details about binding types.

46.4.4 Units

This is a free text field for specifying the Parameter Units (e.g.: Packets/s, °F, etc.).
This data is used when displaying the parameter value in the various Uls.

4.6.45 Measure Type

The Measure Type field specifies whether the Parameter value is Customer
Dependant. Two choices are allowed:

37

o Customer Related: the Parameter value is relative to a given Customer. The
Parameter value is different for each Customer.

e Global: the Parameter value is not tied Customers but shared between them.

4.6.4.6 Auto Propagate

The Auto Propagate function can only be applied to primary parameters. If it is set,
the parameter value is immediately and automatically sent to Service Level
Monitoring (SLM).

Parameter objectives are calculated on periodic basis (by default every 5 minutes).
For some parameters, it can be useful for their values to be updated in real-time.

The Auto Propagate flag allows you to monitor the parameter values in real-time.
To activate Auto Propagation for a Parameter, check the Auto Propagate checkbox.

Note

As the Auto Propagate function can only be applied to primary parameters, the flag
is available only if you have associated this parameter to a DFD parameter in a
sequence diagram.

4.6.4.7 With Compliance

This checkbox allows you to activate the computation of the compliance value for the
parameter. Compliance can only be computed, and objectives associated to it if With
Compliance is checked.

Note

The With Compliance flag must sometime be set when you want to update a Service
Definition in the SQM Repository. This is because SQM can also generate
automatically the Compliance parameters and these generated parameters must be
present in updated the Service Definition.

4.6.4.8 Election Policy

This feature is typically used when the values of measured parameters are collected
more frequently than the calculation period specified in OpenView Service Quality
Manager. When this is the case, several values are available at calculation time, but
only one must be used as input for expression calculations. The Election Policy
allows you to specify how to elect a value from the several values collected.

The last value collected, and the average of the values collected are the two most
common algorithms chosen for the election policy.

To be able to set the Election Policy the Election Policy drop-down list must be
enabled.

For the Election Policy drop-down list to be enabled, the parameter must fill certain
criteria:

e |t must be defined in a Sequence Diagram
e |ts Binding Type must be Primary.

If these conditions are met, the list will contain all the PL/SQL aggregation
Expressions that match the type of the considered parameter and you can choose the
aggregation Expression you want from the drop-down list. This is illustrated in Figure
26.

38

Note

If you leave this field blank, OpenView Service Quality Manager will use a default
Election Policy for this Parameter, usually Last.

Figure 26 Parameter Specification Dialog Box, Details Tab, Showing
Binding Type: Primary, Election Policy Enabled

Parameter Specification 5'
General Details I
Categary: IH ate j
Partition: IQ oS j
Uit I
Binding Type: IEoIIected
Election Palicy: [j
Measure Type: Last
.) max_agd_mk
Reparting Policy:
sum_agg_Int

Auto Propagate v
‘with Compliance [

QK. I Cancel | Apply |

If these criteria are not met, the Election Policy field is not enabled.

4.6.4.9 Reporting Policy

The Reporting Policy is only relevant for Service Component Parameters. This
Parameter characteristic defines the behavior of the reporting tools against this
parameter.

Three different levels can be assigned:

o Always Reported (Default): this parameter is staged/summarized by reporting
tools in all cases.

o Never Reported: reporting tools ignore the parameter. This is useful for
intermediary type parameters or parameters for which only the instantaneous
value is meaningful.

o Disabled When Late: this identifies components for which measures are only
meaningful when published in short delays. Those kinds of components/measures
are outdated quickly and are bad candidate for a real reporting. The monitoring
should be the preferred tool. The parameter is taken into account by the reporting
but dropped when machine load is heavy.

39

4.6.5 Parameter Specification Calculation Tab

Figure 27 Parameter Specification Dialog Box, Calculation Tab, Showing
Calculation description and Time Aggregation properties

Parameter Specification

Geneml] Details Calculation

Calcutation:

assign_Int{irt)
[Cwis IP DFD]."IP Access Op"
1

Diagram Mame:

|Web Service Primary Binding

r

OK | Cancel

The Calculation field displays a textual description of how the parameter is
computed. See section 4.12.3 for further details about defining parameter calculation.

The Diagram Name field displays the name of the sequence diagram where the
parameter calculation is defined. When the user clicks on the Open button, the related
sequence diagram (if any) is opened.

The Calculation and Diagram Name fields are read-only.

The Time Aggregation section allows setting the Time Aggregation properties for
the parameter. This section is available only if it is possible to define a time
aggregation for the parameter, that is: if an aggregation expression is used to
compute the parameter AND the input parameters come from the same Service
Component as the output parameter. In all other cases, the section is disabled.

40

Figure 28 Enable Time Aggregation for a parameter

Aggregation Same Service Component
Expression.

v — =

[.- -
3 - -

- Web Senice || - Web Senice

l AggregPL-SQL

1: min_a'gg_lntilnt}

2 IP Access Op()

3: Min IP Access()

In the example above, SQM will compute the parameter Min IP Access as the
minimum of IP access Op over a specified period of time defined in the window.

SQM manages two kinds of time window:

e Sliding Window Time Aggregation: the window has a constant duration and
slides for each calculation.

e Fixed Window Time Aggregation: the window starts at a precise moment
(start of a day for example) and the duration increase for each calculation
until the window is reset.

41

Figure 29 Selected input for sliding and fixed window time aggregation

Fixed
Window

Sliding
Window

i N

Calculation
engine
executions

Start of |
a Reference !
Period |

»

» Time axis

The figure shows for several engine executions which input data is selected to
compute the time aggregation.
4.6.5.1 Defining a Sliding Window Time Aggregation

By clicking on the Sliding radio button the user can specify the Duration of the fixed
time window (in minutes). The duration of the sliding window must not be greater
than the SPDM retention delay (7 days by default).

The Relative to last received measure check box determines if the sliding time
window ends at the timestamp of the last received measure or not.

When the Relative to last received measure box is not ticked, then the calculation
engine will consider the values received within the last duration period.

Figure 30 Sliding window time aggregation.

— Time Aggregation
" Fixed Window

Hef
oy | =l
Tiime Zore; I j

i Sliding Window

Druratian
[ririLites];

|12III

‘Felative o last received measzurei [V

42

Figure 31 Relative to last received measure check box

Last received measure
“— at engine execution

E timestamp
10 5 4. ' Input
v v v . ~Values
. I "
J | Calculation
< engine

execution
Sliding window wit Sliding window
“Relative to...” without “Relative
checked. t0...” checked.
Window duration < > Time axis

Window duration

4.6.5.2 Defining a Fixed Window Time Aggregation

To define a Fixed Time Aggregation, the user has to click on the Fixed Window
radio button. The Reference period can be set with the list box.

Possible values are: 1 hour, 2 hours, 3 hours, 4 hours, 6 hours, 8 hours, 12 hours, or 1

day.
The Time Zone must also be defined to determine the beginning of the reference
period.
Note
In the current version, the possible reference periods are limited to the values listed
above.
Figure 32 Fixed Window Time Aggregation
— Time Agaregation
& Fixed Window
Reference
Feriod: I2 Hours j
Time Zane: IEurn:npe.n"F'aris j
i~ Sliding Window
[ruration
[rmirites]; I-I 20
Fielative tolast received measure; @

In this example the day is divided in 12 periods of 2 hours. Europe/Paris Time zone
is used to determine the beginning of a day.

4.6.5.3 Custom expression for Time Aggregation

Any PL/SQL aggregation expression can be used for Time Aggregation parameters,
but these expressions are not specially designed to aggregate over time. For example,

43

the avg_agg_Float will perform an average of all received values without taking in
account the timestamps of the measure and this could lead to inaccurate results.

To handle time aggregation more accurately, a new data type “measure” can be used
inside PL/SQL code. Also the usage of a “context” object in PL/SQL code provides
some helper to write the suitable expression.

Note

The new type and context object are not visible in the Service Designer. You still
have to use standard SQM Type (Float, Int, String...) in your model. Only the
PL/SQL code is impacted.

We will explain these new objects based on a simple example: the time_avg_Float
function.

We want that the calculated average takes the timestamp of the measure into account.
If no values are collected, the average is equal to the last received value.

Here is the code of such a function.

44

CREATE OR REPLACE FUNCTION Time Avg Float (input v
measure coll’) RETURN NUMBER IS
-- helper context always named <function name> ctx

ctxt time avg Float ctx’;
summ NUMBER :=0 ;
duration v NUMBER ;
total duration NUMBER := 0;
next value m measure’;
-- must be compatible with input parameter
value v NUMBER;
prev _value m measure’;
i INTEGER;
BEGIN

-- Do this call to initialize helper context
3

Context.get context (ctxt) °;

ctxt.last input v(prev value m) ’;

IF input v IS NOT NULL AND input v.COUNT > 0 THEN
FOR i IN input v.FIRST..input v.LAST '
LOOP

-- get next values

next value m := input v(i) *;

prev_value m.value (value v) *;

duration v:= Tools.reltime to millis(next value m.tstamp
- prev _value m.tstamp) *;

summ:= summ + value v * duration_ v;
total duration:= total duration +duration v;
prev value m := input v(i);
END LOOP;
END IF;

IF total duration > 0 THEN
RETURN summ/ total duration ;
ELSE
prev_value m.value(value v);
RETURN value v;
END IF;
END ;
/

Apart from the algorithm use to compute the time average, the important point to
notice, specific to time aggregation are:

1. The new datatype is “measure_coll”. It represents a collection of “measure”
object (see 2).
When the SPDM calls your custom function, the input collections are filled with
the values belonging to the current time aggregation window. These values are
ordered by ascending timestamp.
You can access individual measures as any other oracle collection (FOR i IN
input_v.FIRST..input_v.LAST ... next_value_m :=input_v(i);)

45

2. A “measure” object is the association of a value and a timestamp. By convention,
the “NoValue” are represented by the NULL oracle value. You can access the
measure value by calling the “value” method (prev_value_m.value(value_v)).
When you do this, you must ensure that the parameter passed to the “value”
method is compatible with SQM datatype of the related input.

You can also access the timestamp of the measure through the “tstamp” attribute
(next_value_m.tstamp). The timestamp are represented in the GMT timezone.

3. In some cases, you need additional information to perform your aggregation. In
our example, we have to know the parameter value (and timestamp) before the
first value of the collection. These information that are not linked to the input
collections are stored in a “context” object.

For each custom expression, SQM creates a specific datatype named
“<function_name>_ctx”. Before calling the custom expression, a context is
initialized by SQM and you can access several useful information.

For each input parameter of the function, the context gives access to the last
measure before the collection through a methode named
“last_<input_parameter_name>" (eg: ctxt.last_input_v(prev_value_m)).

You can also access the last value of the output with the method
“current_output_measure”. This method is not used in our example but you can
use the following statement if needed: current_output_measure
(last_output_m).

Some other attibutes related to the aggregation windows are also available:
offset the time-zone offset in case of fixed time aggregation (NUMBER):,
start_ref_period and end_ref_period: the window bound (GMT TIMESTAMP)

4. Custom expressions are validated by the SRM and the SPDM, thus you must be
careful if you use external functions in your code. In SQM V1.3, you can only
access external functions provided in standard oracle package and by the SPDM
tool package (eg: TOOLS.reltime_to_millis).

Note

Like any other expression, you can have several input parameters and you can mix
measure_coll and other “_coll” type.

4.7 Defining Service Properties

Service Properties are fixed properties of the Service.
To define them:

1. Double click on the Property in the Parameters Tab of the Service Specification
dialog box.

2. This will display the Property Specification dialog box.

46

Figure 33 Property Specification Dialog box

Property Specification B3
— General

Mame: ILocation

Data Type: IString =]

Identifier: ILDCation

Dezcription:

Location of the 'eb Server =]

QK. I Cancel |

From this box you can define:

The Property Type, which can be:

AbsoluteTime: The time, given in GMT notation
(YYYY-MM-DDThh:mm:ss for example: 2002-05-16T15:20:12).

(Real) Float: a signed float.

Int: a signed, 64-byte integer.
RelativeTime: number of milliseconds.
String: a printable string.

Any Enumeration defined in the model. (Refer to Section 4.13 for details
about defining Enumerations.)

The Property Name

The Property Identifier

And

you can enter free text to describe the property.

From the illustration you can see a small part of the log displayed, indicating that
model properties were updated.

4.8 Service Component Specification

The Service Component Specification dialog box has three tabs, General, Attributes
and Details.

In the General dialog box, a Name for the Service Component is already
displayed and you can change this to the name you want.

You can enter free text in the Documentation box.

47

Figure 34 The Service Component Specification Dialog Box, General Tab

Service Component 5 pecification

General | Parametersl Detailsl

Marme: IWeb Cam

Description:
"web Server Service Component, ;I

[-
ak. I Cancel | Apply |

On the Parameters dialog box the Stereotype (Property or Parameter), the Type
(datatype) and the Name will be displayed if they have already been defined.

Figure 35 Service Component Specification Dialog Box, Parameters Tab

Service Component 5pecification

General Parameters | Detailsl

Mame | Data Type | Stereotype
End Time AbsTime Parameter
Maovie Duration RelativeTime Parameter
Operational State Oper_State Parameter
Start Time AbsTime Parameter
| [

QK I Cancel | Aol |

Service Component Parameters and Properties are defined in the same way as the
Parameters and Properties of a Service.

Figure 36 The Service Component Specification Dialog Box, Details Tab

Service Component 5pecification x|

General | Parameters Details |

— Sharing

" Global Instance
I” | Be-uzatle Defintion

Identifier: IWebEam

k. I Cancel Al

48

In the Details dialog box, you have the opportunity to make the Service Component
visible or not, and to define the Sharing parameters. The Shared Definition flag is
automatically set to True when the Service Component is imported from a Rose
Controlled Unit, or when the Shared Global Instance flag is set to True, otherwise it
is set to False.

The Identifier is displayed in the bottom field. It is recommended to change this
name but it must remain the same from one generation of an XML definition to
another. If it is changed, it can lead to inconsistencies in the model.

4.9 Data Feeder Specification

Data Feeders must be defined to establish how primary parameters are fed.

The Service Designer add in allows to define manually a new Data feeder, but usually,
Data Feeders are generated by the Service Adapters tools, and imported into the Rose
Model to be used in a Service. This can be done by using the Reverse Engineering
feature or by importing control unit.

A Data Feeder Definition (DFD) corresponds to the logical description of parameters
that are exposed by a given Data Feeder. It is characterized by:

e A \Version,
o A set of DFD Properties,

o A set of DFD Parameters (that is, the parameters used to build primary Service
Parameters)

o The Measurement Reference Point (MRP) naming scheme. This is the formal
description of how the measurement point name is built, that is, by concatenating
the values of Data Feeder properties and fixed strings.

The Data Feeder Specification dialog box has four tabs, General, Attributes, Details
and Naming Schema.

With each of these four dialog boxes, Click on OK when you have finished and are
satisfied with what you have entered or on Cancel if you want to cancel your entries.

In the General dialog box, A Version number is displayed, but this can be changed if
needed. The role of the Version in a Data Feeder Definition is different from its role
for a Service or Service Component definition. For a Data Feeder Definition it is part
of the Data Feeder Definition Identifier. There can be more than one Data Feeder
Definition with the same Name, but a different VVersion number in the same model.
(For a Service or Service Component, the Version is not used; it has a purely
informative role). The Data Feeder default name is displayed and you can edit this to
the name that you need. In the Documentation box, you can enter free text.

49

Figure 37 The Data Feeder Specification Dialog Box, General Tab

Data Feeder Specification

General |Parameters| Detailsl Measure F'ointl

Mame: IDVSD Incidents D ata Feeder for Wide

Yersion; [¥1_0

Dregcription:

Thiz Data Feeder expozes value of number of incidents ;I

[~
ak I Cancel | Apply |

In the Parameters dialog box, the Stereotype and the Name are displayed, as well as
the Type if it has been specified.

Figure 38 The Data Feeder Specification Dialog Box, Parameters Tab
Data Feeder Specification x|
General Parameters | Detailsl Measure F'ointl
Mame | Data Type | Stereotype
Aeeerage actual dura... Int Parameter
Avwerage duration ov... Int Parameter
Awerage open durati... Int Parameter
Cormector String Froperty
b & duration o... Int Parameter
Mumber of clozed ite... Int Parameter
Murnber of opet iterns Int Pararmster
Murnber of overdue i... [[gls Parameter
SO0 Server Name Skring Froperty
5D Service D String Froperty
SD Service Mame String Froperty
1] |
(u] I Cancel | Sl |

The Details Tab dialog box gives you the possibility of defining the Name of the
Service Adapter (SA) that will be in charge of this Data Feeder. The version Number
is displayed, but you can change this.

The Identifier is displayed in the bottom field. It is recommended to change this
name but it must remain the same from one generation of an XML definition to
another. If it is changed, it can lead to inconsistencies in the model.

50

Figure 39 The Data Feeder Specification Dialog Box, Details Tab

Data Feeder Specification

Generall Parameters Details | Measure F'ointl

— Service Adapter

‘Yersion: I"’-I_IJ

Identifier IDVSD_DFDIncident

ak I Cancel | Apply |

The Naming Schema Tab dialog box gives you the possibility of setting the
Measurement Reference Point (MRP) naming schema that will be used for the Data
Feeder instantiation.

MRP Naming Schema describes (or define) a set of common rules for the naming of
Data Feeder instances. The MRP naming schema is the formal description of how the
measurement point name is built, that is, by concatenating the values of Data Feeder
properties and fixed strings. An example is shown in

The MRP indicates from where the measurement is performed and indicates more
precisely what is measured.

Example of an MRP Naming Schema

Location <Location Property value> Instance <Instance Property Values>

Here are some examples of a Data feeder instance name based on this MRP Schema:
- Location_Paris_Instance_1
- Location_Paris_Instance_2
- Location_Lyon_Instance_1

You would create the example above in this way:

1. Type your fixed string in the fixed string box and use the right double arrow >>
button to move it to the empty, unlabeled box on the right. In the example above this
is: location.

2. Then choose the Property you want from the drop-down list of the property field
and use the right double arrow >> button to move it to the box on the right. In the
example it is: property "Location"

3. Type the fixed string: instance, and move it to the right-hand window as before.

4. Then choose the Property you want from the drop-down list of the property field
and move it to the right-hand box as before.
(in the example it is: property.name = "PatrolInstance")

5. Type the fixed string: end and move it to the right-hand window as before.
6. Click on OK.

If you make a mistake, or if you want to change the order, select each item separately
in the right-hand box, and use the left double arrow << button to remove them. You
cannot move the items up or down in the right-hand box. For example, if you select a

51

property from the property list before you have typed your fixed string, you cannot
add your ‘start’ fixed string above the property. Each item is added below the
previously added item.

Figure 40 Data Feeder Specification Dialog Box, Naming Schema Tab

Data Feeder Specification

Generall Parametersl Detail: Measure Point I

— Maming Schema

Fixed String

Ow5d-
il incident-
SDServer
Propert ﬁl .
IConnector 'I il ServicelD

ak I Cancel | Apply |

The right-hand fields of the Naming Schema Tab are automatically updated when you
delete a Property on the Attributes Tab or modify its name.

Data Feeder Parameters and Properties are defined in the same way as the Parameters
and Properties of a Service are defined.

4.10 Defining the Associations or Aggregations
of a Service

When you have specified all your Class definitions, you must define the associations
or aggregations between them.

An Association represents the ability of one instance to be able to send messages to
another instance. An Aggregation is the same as an Association except that instances
cannot have cyclic aggregation relationships (a part cannot contain its whole).
Therefore, in Service Designer, the association between a Service and a Service
Component, or the association between a Service Component and another Service
Component, is an Aggregation.

Both Associations and Aggregations can be created using the Menu Method as well
as the Icon Method.

Warning or Information messages are displayed in the log window reminding you of
the correct definition of the associations and aggregations if you create the wrong
one.

4.10.1 The Menu Method

1. Select Create from the Tools menu.

This will display the Create menu, illustrated in Figure 41.

52

Figure 41 The Create Menu

Tk

Moks

Moke Anchar

Class

Paramaterized Class
Interface

ACbor

Use Case

Assaciatian

Uridrectional Assocation
BSpgregaton
Uridrectional Aggregation
Assaciatian Class
Generakzakion
Dependency ar Inskaritiates
Realze

Packaga

Instantiated Class

Class Utiity
Parameterized Class Liakty
Instantiated Class Utilioy

2. Select Association/Aggregation or Unidirectional Association/Unidirectional
Aggregation as appropriate and draw the associations/aggregations directly in the
Class Diagram window. The rules that control the type of association or aggregation
are detailed in 4.10.3 and 4.10.5.

4.10.2 The Icon Method

The vertical toolbar to the right of the tree window provides icons that you can use to
create Unidirectional Associations and Aggregations. You can configure this toolbar
to include icons as described in Section 3.1.4.

These Icons are:
. r Unidirectional Association
. B Unidirectional Aggregation

When the icons are placed on the vertical toolbar, select the icon for the association
or aggregation that you want to create, and draw the relationship directly in the Class
diagram window. You are not prevented from making the wrong type of Association
or Aggregation, either of type or direction, but if you do, warning or information
messages are displayed in the log window or in a pop-up box. The error message
does not indicate that the Aggregation will be automatically destroyed; you must
correct the error yourself.

The pop-up error message below is the result of drawing an association from a
Service Component to a Data Feeder, instead of the other direction.

Eror x|

0 Wrong Association, the Data Feeder must be the sender:

Here is an example of the creation of an incorrect association. A Unidirectional
Aggregation was drawn from a Service Component to a Data Feeder.

53

&)

SericeComponent]

a

DataFeeder

Important: Correcting Association or Aggregation Errors

Whichever method you use to create the associations or aggregations, if you make an
error, you must destroy the line indicating the association or aggregation, and
re-create it correctly.

You can destroy it as described in the same way as removing Classes from the model
described in Section 4.2.

4.10.3 Service to Service Component

This association represents the fact that a Service Component is part of a Service. The
association from Service to Service Component and the association from one
Service Components to another must always be an Unidirectional Aggregation.
This is illustrated in Figure 42

Figure 42 Part of a Model showing Unidirectional Aggregation
D
den
1.7 1 i
0.1
1.
[0
‘lieb Server Mfeb Cam
{0 S e Compoe iy oM S i Compose i

\ | [

Plat form
o S MlCompois i

If you make an incorrect association, a Warning is displayed in the log when you
create the association indicating which type of association or aggregation you must
make. You are not prevented from making the wrong type of association, and the
application does not make the correction for you. If you make an incorrect
association, you must delete it and re-create it correctly.

54

4.10.4 Setting the Multiplicity for Associations of a Service

Associations for Components and Data Feeders of a Service must be set, but you do
not set Multiplicity for the association of a Data Feeder to a Service Component.

You must set the Multiplicity for both Parent and Child components of the

Association. Figure 43 illustrates the function of the Multiplicity setting in both
Parent and Child components.

Figure 43 Parent and Child Multiplicity

Specifying
Parent Multiplicity
determines how
instances of Child Components
can be re-used during
Service Deployment

0.1 O
Parent ebCan

Specifying
Child Multiplicity
d etermines

| how many Instances
3 of the Child Component
e 3 can be created during
= =l Service Deployment

Although the Multiplicity (sometimes called Cardinality) for each Association must
be set, you cannot set this as part of the creation action.

After you have created the objects, you can set the Multiplicity in two ways:

1. By right-clicking while the Aggregation line is selected and selecting the option
Multiplicity from the menu which is displayed. A further menu is displayed with the
Multiplicity options, and with the Unspecified Multiplicity item checked. This item
is always checked when an association or aggregation has been created as the
Multiplicity has not yet been set. This is illustrated in Figure 44.

2. And by using the Standard Specification Dialog.

55

Figure 44 Menus Showing the Options for Setting Multiplicity with the
Service Designer Add-In to Rational Rose

. |
~ Open Specification. ..
Open Standard Specification.. .
Rale name

————— Raole Specifier
l%<<para| v Stereotype Label
&<<prop:

Senice

Mulkiplicity 1]
Containment of ServiceComponentZPlonPlon # 1
Zero or More

¥ Public

E—— one or More
SeniceCo FOLBCLE Zero or One
55— FPrivate
¥<<param>) n
Implementation . A
%<<prup>> v Unspecified multiplicicy
v Mavigable -
Aogregate r ﬂ
=————— Stalic
ggregation friend =
idirectional

qqregation Mew Key/Qualifier
ggregation Edit * nPlon =

To use the Standard Specification Dialog:
(illustrated in Figure 45).

1. Double-click on the Association/Aggregation in the Class Diagram.
2. This will display the Rose Standard Set of Specification Dialog Boxes.

3. To set the Multiplicity of Role A, you must click on the Role A Detail Tab, and to
set the Multiplicity of Role B, you must click on the Role B Detail Tab.

4. On the Detail Tab, choose the Multiplicity you want from the drop-down list
named Multiplicity.

5. Click on OK to validate.
The Standard Set of Specification Dialog Boxes is illustrated in Figure 45.

Figure 45 Rose Standard Set of Dialog Boxes for Setting Multiplicity
Association Specification for Unl d |
General Detail | Role & General
Role B General Role A Detail | Role B Detail

Role: I Element: Video
Constraints
g
Multplicity: =l ¥ Mavigable
[Aggre g; = ™ Friend
—Containm h
il
© By Va e & Unspecified
F.eps/Oualifiers
Name | Type |

ok I Cancel Apply | EIDWSBV| Help |

56

The same type of Association is possible between one Service Component and
another Service Component. Aggregate relationships between Service Components
are used to model Associations between Service Components.

Figure 46 Part of a Model Showing a Unidirectional Aggregation Between
Two Service Components

0.1 m

P laom

4.10.5 Data Feeder to Service or Service Component

This association represents the fact that a Data Feeder will be used to calculate the
Service or Service Component Parameters.

You create the associations from a Data Feeder to a Service or a Service Component
in the same way.

The Association is a Unidirectional Association, not an Aggregation.

Figure 47 Part of a Model Showing an Unidirectional Association From a
Data Feeder to a Service Component

¥ 1

#)

e 14

N\
T e

57

Figure 48 Part of a Model Showing a Unidirectional Association From a
Data Feeder to a Service and a Service Component

W.

e nese ics

=
1.0
L
@
1 ik Eee e 1
m a
— IPpoesr :

Multiplicity does not have to be set for this type of Association. The Association
between Data Feeder and a Service or Service Component allows additional checking
on the Service Model. No information related to these associations is generated in the
Service and Data Feeder XML definitions.

4.10.6 Inheritance

Generalization of relationships, Inheritance, is allowed for Service, Service
Component and Data Feeder Classes, with the restriction that Inheritance is allowed
only between Classes having the same stereotype.

An object can inherit the characteristics of an object of the same type.

Inheritance allows a subclass to share Properties and Parameters with one or more
super Classes. Other information specified in the Classes Service, Service component
and Data Feeder is not inherited.

Whereas Inheritance is supported in Service Designer, conflicts are detected, but are
not resolved. When defining parameters for inherited entities, you must be careful
that the parameter name does not conflict with that of the entity from which they were
inherited.

4.11 Calculation Expressions

Calculation Expressions allow the service operator to thoroughly tune the service
model population process. With expressions, the service operator can control exactly
how OpenView Service Quality Manager handles collected values and how they are
propagated in the service model.

In other words, expressions describe how parameters will be calculated to populate
the service model with service parameter values.

Therefore in the Service Designer User Interface, expressions are used to describe:
e The election Policy algorithm
e How to perform the data feeder bindings

e How to perform the component bindings.

4.11.1 Expressions Class

The UML Class Utility Expression is used to collect the UML operations necessary
for the representation of the calculation expressions in Service Designer.

58

The Expression classes are used to:
o Define the binding in a Sequence Diagram (see section 4.12)
e Add a new custom calculation expression (see section 4.11.2)

o Generate the XML files for the calculation expression in order to load them in the
SQM repository (see section 4.15.1.3)

Calculation Expressions can be represented in either of the two languages supported
by OpenView Service Quality Manager: Java or PL/SQL.

A Calculation Expression is characterized by:
e The Operation name of the Expression

e The Operation input arguments, which are Service Component or Data Feeder
Parameters.

e The Service or Service Component Parameter affected by the value returned by
the Operation.

e The Expression Type (aggregation or simple).
e The Expression Language: (Java or PL/SQL).

To make Service Designer easier to use, the initial framework provides a pre-defined
set of Expression classes.

Figure 49 illustrates the pre-defined Expression Classes provided with the Service
Designer Add-In.

Figure 49 Expression Classes

[Ei Class Diagram: Expressions / Package Overview

Use Green Classes in 3equense Diagrams
Update Yellow Classes to provide custom
expressi.

g (2
o= CustSimplePL-5GL

CustAggregFL-3GL o Custart

worst_Op_Agarl ap_webGam_videad

. Map_Agar FlCamd Siarst_Video_Opl
PredAggregPL-saL _ [i ’% £
Q\ PredsimplePL-5GL
& il
AggregPL-5alL SimplePL-5QL
L& 5
Asgreglava Simplelava
| R £
FradAggreglaia PredSimplejAnia
{from Prdufinad)
M ¥

CustAggreglava CustSimplejava

omCusment tfram Customt

¥ap_Platform_DFD)

& £
= CustElecPalicy

FredElectPolicy
{omCustort

[y 3

It will not often be necessary to create a new Expression Class, you will only need to
add or modify a Calculation Expression contained in one of the Custom Expression
Classes provided in the Initial Framework. How to create a new Expression Class is
described in Section 6.2.

59

4.11.2 Creating a Custom Calculation Expression

If you need a specific calculation to compute a parameter, Service Designer provides
the means of adding a Custom Calculation Expression.

You do this by adding a new Operation in the Custom Expression Class whose
language (Java or PL/SQL) and type (Simple or Aggregation) match your need.

The process to define and use a custom calculation expression is the following:

e Add the calculation operation in the related expression class, in order to be able to
use it in sequence diagrams

o Develop the associated Java or PL/SQL code
e Associate the calculation expression and it’s code
o Generate the XML file

o Load this new calculation expression in the SQM Repository

4.11.2.1 Add a Calculation Expression in the Expression class

There is no specific Dialog Box to create a Custom Calculation Expression. You must
use the standard Rose Dialog Boxes.

To do this:

1. In the Expression/Custom package, select the Expression Class that you want to
contain the new Operation.

2. Right click on the Expression and select New Operation. This creates a new
Expression under the Expression symbol.

3. Double click on this new Operation and use the Expression Specification Dialog
Box to define the details.

4. On the General Tab you can define:
- The Expression Name
- The Description
- The Return Type.
5. On the Details Tab you can define:
- The Operation Parameters, Name and Type.

When you have done this you will be able to use the newly created Expression in the
same way as the other pre-defined Expressions in Service Designer.

Important

To be able to generate an XML file for this calculation to load it into the
ServiceCenter Repository, you must ensure that the body of the expression is
attached. This is described in Section 4.11.2.2.

4.11.2.2 Creating the Custom Expression custom code

The Body of an Expression is the code that will be executed by OpenView Service
Quality Manager when a Parameter is calculated using this Expression.

The ‘body’ is contained in a file that can be either a Java Class or a PL/SQL code file.

The creation of the code for custom expressions is a development task and no specific
tools are provided with service designer. Java and PL/SQL knowledge is a
prerequisite to write custom expression. As it is a development task, it is very
important to test the produced custom code.

60

This chapter describes the specificity of the code to produce for Java and PL/SQL
expression.

Java Expression

Java expressions are used only for collected (primary) parameters and only simple
expression is supported.

The body file for a Java expression is a binary class file. To create this body file, you
have to:

Write the Java code in a text file (<Expression Name>.java)

Compile this file using JDK 1.4 to produce the associated class file (<Expression
Name>.class).
javac <Expression Name>.java

The Java code for custom expressions must respect the following rules:

Package must be: com.compag.temip.servicecenter.expressions

Class is public and class name must the name of the expression. Example: public
class MapPlatformDFD for MapPlatformDFD custom expression.

It must have an empty public constructor:
Example: public MapPlatformDFD () {}

It must have one static method that defines the custom calculation. This function
must have the following characteristic:

The function must be public and static

It must have the same name as the class itself, but the function name must start
with a lower case.

It must have the same return type as your custom expression

It must have the same parameters signature (order and type), plus an additional
parameter: String dfdVersion

Example: public static long mapPlatformDFD (long int1, String dfdVersion)

The following java type must be used for input and return parameters:

Double for Float
Long for Int, Enum and Relative Time
Date for Absolute Time

String for String

This is a sample Java class for the long MapPlatformDFD(long a, String dfdVersion)
expression:

package com.compad.temip.servicecenter.expressions;

/**

* Makes the mapping from an Operational State to another

2/

public class MapPlatformDFD {

public final static long DISABLE = 1;
public final static long IDLE = 2;
public final static long ENABLE = 3;

/**
* An empty constructor for this class
*/

public MapPlatformDFD () {}

61

/**
* The calculation expression
* @param a the operational state
* @param dfdvVersion the version of the DFD
7/
public static long mapPlatformDFD(long a,
String dfdversion) ({

long state;
if (a == 0) {
state = DISABLE;
} else if (a == 1) {
state = IDLE;
} else {

state = ENABLE;

}

return state;

}
PL/SQL Expression

PL/SQL expressions are used only for computed (secondary) parameters and both
aggregation and simple expressions are supported.

The body file for a PL/SQM expression is a text file that contains the PL/SQL code.
The PL/SQL code for a custom expression must respect the following rules:

e It must create or replace a function with the same signature as the custom
expression (return type, name, paramters)

e For return type and simple expression input parameter and, allowed PL/SQL types
are:

- NUMBER for Int, Float and Enum,

- TIMESTAMP for Absolute Time

- INTERVAL DAY TO SECOND for Relative Time
- VARCHAR? for String

e For aggregation expression input parameters are column on which the aggregation
will be done. Specific SQM types must be used:

- float_coll for Float

- int_coll for Int

- absTime_coll for AbsoluteTime.
- relTime_coll for RelativeTime

- string_coll for String

This is a sample code for a simple PL/SQL expression:

62

CREATE OR REPLACE FUNCTION Map WebCam Video(a NUMBER)

NUMBER IS
res NUMBER;
BEGIN

-- 1 corresponds to the ON value
IF a = 1 THEN
-- 1 corresponds to ENABLE value

res := 1;
ELSE
-- 3 corresponds to DISABLE value
res := 3;
END IF;

RETURN res;
END;

This is a sample code for an aggregation PL/SQL expression:

RETURN

CREATE OR REPLACE FUNCTION Worst Op Aggr(a enum coll) RETURN

NUMBER IS
-- returns the worst of the list
-- 1 => Enable
res NUMBER := 1;

BEGIN

FOR i IN a.FIRST..a.LAST

LOOP
IF a(i) > res THEN
res := a(1);
END IF;
END LOOP;

RETURN res;
END;

4.11.2.3 Assigning a Body File to an Expression

1. Double click on the Expression class that contains the Operation.

2. Click the Calculation Expressions Tab. (Figure 50)

Figure 50 Expression Specification Dialog Box, Calculation Expressions
Tab
Expressions Group Specification

General Caloulation Expressions |

Mame | Feturn Type | Content File
wharst_Op_Agar Erm wharst_Op_agg...
F rurn Map_Aagar_Pf_._.

Browse body filename

4 I

QK. I Cancel | Appl |

3. Select the Calculation Expression Name for which you want to Assign the Body

file, and right click to display the Browse body filename pop-up menu.

63

4. Click on this pop-up.

5. From the list of body filenames displayed, select the one that corresponds to the
Calculation Expression you have chosen.

6. The filename will be displayed in the Content file field.

Important

It is extremely important that this should be done for all Calculation Expressions,
otherwise, when an XML Definition for an Expression is created, if these files have
not been chosen, and you have not verified that they contain the correct information,
the XML definition will only generate a skeleton of the XML Definition document.

4.12 Binding Service, Service Component and
Data Feeder Parameters

Binding is a way of assigning a value to a parameter. There are two types of binding:
Primary and Secondary.

The Binding of Parameters is represented by UML Sequence Diagrams.

4.12.1 Primary Binding

A primary binding gets information directly from a data feeder. Therefore,
a Service Definition receiving information from a Data Feeder Definition,
OR

a Service Component Definition receiving information from a Data Feeder
Definition,

constitutes a Primary binding.

When you define a Primary binding, you must only use Simple Java Calculation
Expressions in the Sequence Diagram.

4.12.2 Secondary Binding

A secondary binding gets its information from a Service Component Definition,
which in turn gets its information from a Data Feeder. Therefore,

a Service Definition receiving information from a Service Component
Definition,

OR

a Service Component Definition receiving information from another Service
Component Definition,

constitutes a Secondary binding.

When you define a Secondary binding, you must only use PL/SQL Calculation
Expressions (Aggregation or Simple) in the Sequence diagram.

4.12.3 Sequence Diagrams

A sequence diagram is a graphical view of a scenario showing object interaction in a
time-based sequence, in other words what happens first and what happens next.
Sequence diagrams establish the roles of objects and help in providing essential
information for determining Class responsibilities and interfaces. This type of

64

diagram is best used during the early analysis phase of the design, as they are simple
and easy to understand.

UML Sequence Diagrams are generally used to model sequences of operations
between Objects.

The principle illustrated here

Objl: Classl obj2: Class2
| |
|
|
|
|
|

callMethod () |

means that the object obj1 (whichis Classl) invokes the method
cal IMethod() of the object obj2, and returns a value.

Each Service and Service Component has at least one associated Sequence Diagram
representing the Expressions used for Parameter evaluation.

Sequence Diagrams are used in Service Designer to define how Parameters are
calculated.

Creating Sequence Diagrams is a Standard Rose feature. How to create the example
shown in Figure 51 is described in Section 4.12.3.1.

Figure 51 Sequence Diagram for a Mail Service
(Component of Video2)

& Rational Fiose o2l

B Bt ew Browse feport Took Addirs Window Hep
DEE ' &F & RO RBRABDE e caQ®

| e

03 Use Case View
=0 Logical View

= 0 DateFasdar:
= O DaaTypes
=) Exprossicns
= 23 Mail Serdce

xin L B0 EF|

 MailSarica : "E-}M[I’Ssmar] | Plattorm |

SentMaile)

5 @ Plakosm

& P VideaSanica
- G WienCam
G WenSenes
R Assacisions
2 Mevcions : o CPULoad!}
0 Commonent View
B Daployment Vaw
{8 Model Fropartes.

1179659] [[Update Model Properties]] =]
T[] [[update Model Properties]]
113659 [[Update Model Properties]]
|
=
e 1Y,
FeaHaip, prass Fl Dotk Language: ScSendeaDamgnar || | I |

65

4.12.3.1 Creating a New Sequence Diagram
To create a new Sequence Diagram:
1. Choose: Logical View,
2. New,

3. Sequence Diagram.

Figure 52 Sequence Diagram Menus

#%* Rational Rose - {untitled)

File Edit WYiew Format Browse Report Query Tools Add-Ins Windov
DEH :BE @ RO BRBRE|F

@ [untitled)
-3 Use Case Yiew

Cpen Specification... |

Mew 3 Class
ol Class Wtility
EEE Use Case
Rename
Inketface
Units 3 Package

Class Diagram
Add To Yersion Control

CheckIn

Check Out R ——
o Moderrropere Sequence Diagram
Statechart Diagram

Bckivicy Diagram

Use Case Diagrarm
Collaboration Diagram

File
LRL

4. This will display a new empty Sequence diagram window.

Figure 53 New Empty Sequence Diagram Window
G lass Diagrane Logical Fiew / Main
1
Wi S Mol Berwice

I Sequence Diagranc Logical View | MenDisgram =1a]=l

i ﬂa

66

5. You must now insert the elements needed to perform the calculation into the
sequence diagram: that is the computed parameter, the operation used for the
computation and the input parameter. The order in which you do this is important,
they must be inserted into the Sequence Diagram in the order in which they will
be used. For the example illustrated you would follow this procedure:

- Insert the Mail Service Class into the Sequence diagram by dragging and
dropping the Mail Service class from the Logical View tree window into the
Sequence diagram. (The Mail Service Class contains the calculated
parameter.)

The Tree window illustrated in Figure 54 is shown unexpanded. To see all the
objects, click on the plus (+) sign to expand the Objects.

Figure 54 Logical View Tree Window

M VideaSenvice
® [Uze Case View
=7 LogealView
=L DataFeeders
= 7 DaraTypa:
[J Expressionz
= L7 MailSerice
= 3 SenicaComponank
7 Video Senvice
B Main
= Assooiations
0 MNewDiagiam
=7 Comperent View
8 Ceplpmarnt View
[Model Progerties

- Insert the Expression Class into the Sequence diagram in the same way.

- Insert the SMTP Server in the Sequence diagram in the same way. (The SMTP
Server class contains the input parameters.)

Figure 55 New Sequence Diagram with Classes Inserted

T Baquence Diagrans Logical View | Mealisgram . .-Jn.i!l
Ml PL-BO, Bapiation SRATFfotrwnl |
Mal PLEDL _ SR B
Expoazzion)

. g
=
4] 2

You must now create the sequence of events involved in the computation of the
parameter in the diagram. The order in which you do this is important.

1. Create a message from the Source Class to the Expression Class (draw an arrow
with a solid line).

67

2. Select the Calculation Expression (right click on the arrow).

If you don’t know at this time the operation you want to use, you can perform next

steps and select the operation to use latter.

3. For each Input Parameter, create a message (solid line arrow) from the Expression

Class to the Class that contains the Parameter.

4. By right clicking on the arrow, select the Parameter Name for each message.

Figure 56 Messages Created and Parameter Name Selected

T Sequence Diesgram; Logicsl Wew | KewDisgram
Mai

=0 x|

SMTERare

E

T

|Lay o

5. Create a Return Message (an arrow with a dotted line) from the Expression Class

to the Class that will calculate the Parameter. Then select this parameter by right
clicking on the arrow.

Figure 57 Return Message Created

T Sequence Diegram; Logicsl Wew | KewDisgram
Hal

|00

SRITE et

3. SelMaly])

|t F'.-S"Z. ﬁeml

e +H

This will complete the Sequence diagram.

68

4.12.3.2 Actions you should Not Perform in Sequence Diagrams

This section describes some typical mistakes that you should not do in Sequence
Diagrams. Most of these actions will raise an error during Model Checking. Refer to
Section O for further details.

e The Input Parameter comes from Several SCDs.
(Mlustrated in Figure 58).

Figure 58 Case 1, Example of an Incorrect Sequence Diagram
Target Component : Expression Class . o source Component 1 ¢
Semicel AdaregPL-Sal ServiceComponentl ServiceComponent?

V1 sum_ago_FloatiFloat)

..g__-:__

2: Parameter1 ()

I

3 Parameter2()

J

4: Parameter1 ()
------------------ -

]
efe

|DbiECtEHprESSiDn Clazs : AggregF‘L-SE!L|

I

e A PL/SQL expression is used to compute a Primary Parameter. (Illustrated in

Figure 59).
Figure 59 Case 2, Example of an Incorrect Sequence Diagram
. Servicel . DataFeedert

AggragPL-S0L

511 avg_agg_FInat[FlDatji 2. Parameter1()

3. Parameter1()
.,;:: ___________________

U

e A Java expression is used with input parameters coming from a Service

component. (Illustrated in Figure 60).

69

Figure 60 Case 3, Example of an Incorrect Sequence Diagram

- Servicel : SimpleJava

SewiceCEnpnnenﬂ

2 Parameter1()

3 Parameter1(] |"'|
ERRERELELEE i

1:5 assign_FInat(FInaitj

e A simple expression is used on an aggregated component and an aggregate
expression is used on a mono component. These two Sequence diagrams will not
be correct because of the child multiplicity of the Service Components.
(Mlustrated in Figure 61).

Figure 61 Case 4, Example of an Incorrect Sequence Diagram

- Servicel S AggregPL-50L - SimplePL-S0L

SewiceC?mpnnenﬂ SewiceC?mpnnentE

2 F'ararifneterh:j

3. Parameteri() ' |_| '
{ ______________ 1 1

1: avg_agg_Float(Float)

4 assién_lnt(lntj

: LN F'araémeterE[)

e L)

B: Parameter2()
e s ERGEECELEELELEELELE &

0 Sernvice1

Q]

: ; : SeniceComponentd SeniceComponent2

i i | . 7
-

DataFeedeard

Note

It’s possible to use an aggregate expression and to have input and output parameters
on the same Service Component. In this case, a Time Aggregation will be applied to
compute the output parameter. See section 4.6.5 for further details on Time
Aggregation.

4.13 Enumeration

An Enumeration (the stereotype is Enum) is represented as a Rose Class.
Enumeration is not yet included in the Add-In interface for this version of Service
Designer.

To create this Class, you must:
o Create a Rose Class.

e Set the Stereotype to Enum.

o Create the “necessary Attributes+default values” to represent the Enum values.

For example: if you have the following Enum:

enum OperationState {Idle=0, Enable=1, Disable=2};
1. Create a Rose Class called OperationState,

2. Set the stereotype to Enum and

3. Create 3 Attributes (Idle, Enable, Disable).

4. For each attribute you must also set the correct default value.

Table 1 Example of Settings for an Enum Class
Enumeration Mapped to Rose Class as:
Operational State Enum Stereotype
Idle = 0 Attribute = | Idle default [=0
Enable = 1 Attribute = | Enable default [=1
Disable = 2 Attribute = | Disable default [=2

By convention, it is mandatory to have one default value equals to 0 in the Rose class.

If your enumeration does not have this value, you must create and use a custom

expression to map enumeration values to Rose class values, to follow the convention.

For example: if you have the following Enum:

enum OperationState {Idle=2000, Enable=2001, Disable=2002};
1. Create a Rose Class called OperationState,

2. Set the stereotype to Enum and

3. Create 3 Attributes (ldle, Enable, Disable).

4. For each attribute you must also set the value following SQM convention.

Table 2 Example of Settings for an Enum Class
Enumeration Mapped to Rose Class as:
Operational State Enum Stereotype
Idle = 2000; | Attribute = | Idle default | =0
Enable = 2001; | Attribute = | Enable default | =1
Disable = 2002; | Attribute = | Disable default | =2

During the primary binding phase, use the custom expression to map values.

71

4.14 Validating a Service Definition

There are three types of validation provided with OpenView Service Quality
Manager Service Designer:

e Some validation is performed in real time in UML as you perform your actions.
Refer to Section 4.14.1 for details.

o Service model checking is performed on demand. Refer to Section 4.14.2. You
should always perform this action before generating XML definitions.

e Model checking is also performed during the generation of an XML definition.

Important

Errors are checked in order of severity, therefore if an error of a higher level is found,
Service Designer does not continue checking to find lower level errors. The message
displayed will indicate the error that was encountered. This does not, of course,
indicate that there are no other errors of a lower level.

4.14.1 Real Time Model Checking

As you create your Service Definition, actions and situations that are not allowed are
checked and you are informed, either by a message in the log or by a pop-up message
box. This is to help you during the model creation. The creation is not prevented, and
if something is incorrect, you must ‘undo’ the action manually. (You do this while the
item is still selected in the Class Diagram window, either by pressing Ctrl/D, or
Delete from Model on the Edit menu. If you have unselected it, reselect the item in
the Class diagram window and either press Ctrl/D, or select Delete from Model on
the Edit menu.)

Real time checking includes:

e Checking the consistency between the Parameter and Operations:

The operation is not created at the same time as the Parameter. It is only
created when the Parameter becomes ‘valid’. Check performed when the
Service Designer Parameter Dialog is used.

Consistency during the Parameter Life-time. Check performed when the
Service Designer Parameter Dialog is used to modify the Parameter. The
Operation must be consistent with its Parameter (type, name and so on).

Automatic deletion of Operation when corresponding Parameter is deleted.

When an Operation linked to an existing Parameter is deleted you are
informed of the deletion by a message in the Log. This check is performed
using the Service Designer feature where the operation Id is set in the
Parameter.

e Checking the Associations between Service Designer Entities:

- With the exception of Service Component Classes, the creation of an
association between two Service Designer Entities of the same type is not
allowed. That is, you cannot create an association between two Services, two
Data Feeders or two Expressions. Message in Pop-up box.

- The association between a Data Feeder and a Service or Service Component
must be an unidirectional association, with the Data Feeder as the sender.
Indicated by a message in a Pop-up box.

e Checking the Inheritance relationships between Service Designer Entities:

72

- An Inheritance relationship must be created between Classes of the same type
(SD, SCD, DFD and Expression). Message in a Pop-up box.

e Checking unsupported relationships between Service Designer Entities:

- Class Dependency is not allowed between SD Classes. Message in a Pop-up
box.

- RealizeRelation is not allowed between SD Classes. Message in a Pop-up box.

e The overriding of an expression when an expression defined in a Base Class is
redefined in a Child Class is not allowed. A warning is issued in the Log window.
This conflict is not resolved either by Service Designer, or by Rational Rose. You
must take care when re-using definitions to ensure that you have not defined the
expression in this way.
4.14.1.1 Checks NOT Performed by Real Time Model Checking

At creation time Rational Rose does not permit distinguishing between an
Association and an Aggregation (or a Composition). Multiplicity is never set at
Creation time. You must set the Multiplicity after the creation (see section 4.10.4).

o Avalid Association between a Service and a Service Component must be a
unidirectional Aggregation, the Service must be an Aggregate and the Multiplicity
(Cardinality) must be set. Real Time checking does not prevent you from creating
a Unidirectional Association between a Service and a Service Component.

o Avalid Association between a Service Component and another Service
Component must be a unidirectional Aggregation, and the Multiplicity
(Cardinality) must be set. Real Time checking does not prevent you from creating
a Unidirectional Association between two Service Components.

If you have made a mistake in creating either of these associations, you must correct
them yourself by deleting the associations and then re-creating them correctly.

4.14.2 Service Model Checking on Demand

You must always perform this check before generating XML definitions.

To initiate a check on the model:

1. From the Tools menu

2. Select Service Designer

3. Select Check Model.

This process checks:

o Classes and Associations. Refer to Section 4.14.2.1

e Expressions. Refer to Section 4.14.2.2.

e OpenView Service Quality Manager Rules. Refer to Section 4.14.2.3.
Warning

The Standard Rose Model Checking option, selected from Tools, Check Model will
discover basic UML errors, but will not discover errors related to Service Design.

To ensure that you check the Service Design model, you must be sure to choose
Tools, Service Designer, Check Model.

73

4.14.2.1 Classes and Associations

e Checks the use of relationships other than Association and Inheritance in Class
Diagrams.

e Checks for Loops in Class associations.

o Checks Service-to-Service Component and Service Component-to-Service
Component associations (must be unidirectional aggregations).

e Checks Service-to-Service Component and Service Component-to-Data Feeders
associations (must be unidirectional associations).

o Checks consistency between Parameter Class Attributes and operations.

o Checks that there is the same stereotype between child and base Class for Service,
Service Component, and Data Feeder Inheritance. (Issues a Warning only).

e Checks whether there are multiple definitions of Parameter or Property in two
super Classes.

o Checks whether there are multiple definitions of Parameter or Property in a Class
and its super Class (Overriding; issues a Warning only).

e Checks for presence of Classes with an unsupported stereotype (issues a Warning
only).

e Checks mandatory tagged values.

4.14.2.2 Expressions
o Checks validity of the Expressions Sequence diagrams

e When Operation signature is defined, checks the input and output operation
argument of Expression data type.

o All Service and Service Component Parameters must have an associated
Expression defined. Checks completeness of Parameter calculations.

e Only one Binding Expression is allowed for each parameter. Checks uniqueness
of Parameter calculations.

e A Warning is issued when there is a risk of an Expression definition being
overridden. That is when an Expression already defined in a base Class is
redefined in a child Class.

4.14.2.3 OpenView Service Quality Manager Rules
e Checks for Loops in Expressions

e Checks Expressions related to Parameters whose Class is not in direct association
with the Class of the target Parameter.

4.14.2.4 Error Logging

o All errors and warnings issued during model checking and generation of XML
documents are logged in the Rose Log Console.

4.15 Generating an XML Definition

You can generate an XML definition for an entire Service definition, a Data Feeder
definition or for an Expression definition.

The process is the same for whichever Class you want to generate an XML definition.

74

Reminder

Always carry out a Check Model action before you generate an XML Definition.
Refer to Section 4.14.2 for further information.

Before you generate an XML definition, you should choose the directory where you
want the output file to be saved. A default directory is displayed, but you can change
it if you want.

The DTD Prefix is set to DTD/ and should not be changed.

Figure 62 Project Specification Dialog Box, Directories Tab

Project Specification x|

General DirectorieslxmL I

~ DTD Prefis:

— Output directory:
ID:'\Program Filez\R atiohal\R oze\SC5erviceDesigne |

aK I Cancel | Apply |

If you do not want XML definitions to be generated when there is an error in your
definition, you can prevent XML generation by unchecking the check box Always
generate XML definition in the Project Specification dialog box, General tab.

Figure 63 Project Specification Dialog Box, General Tab

Project Specification ! x|

General | Direclaries | 3L |

[Alwsays penerate XML defiritions

Documentaton:

Belesse number | TT00F A
aF. I Cancel I a1 |

The third Tab of the Project Specification set of dialog boxes is the XML Tab. In
the field XML Header, this Tab displays the default XML header, or the header from
your previous definition. It is possible to edit this, but it should be done very
carefully.

75

Figure 64 Project Specification Dialog Box, XML Tab

Project Specification x|

General | Directories %ML |

ML Header

QK I Cancel | Appl |

4.15.1 How to Generate an XML Definition

You can do this either by selecting a Class (Service, Data Feeder or Expression) in
the Class Diagram window or by selecting the Class icon in the tree diagram.

When you have done this, you also have two ways of accessing the Generate XML
Definition options, the Menu method or the Right-click method.

The Menu Method

1. From the Tools menu, select Service Designer, and then Generate an XML
Definition.

2. This will display the XML generation options menu illustrated in Figure 65.
3. Choose the type of XML definition you want to generate.

76

Figure 65 XML Generation Menu

Tools Add-Ins ‘Window Help
Create "'|@%Q

Check Model

Model Propetties »

Opkions. ., . -

“lass Diagram: Logical Yiew / My Service Overview
Qpen Scripk. ..
e Script To create a new Service Definition, create the

Serice, Service Components, Datafeeders that

Mode! Ink: 1y . S
s S you want to use in this diagram.

‘Web Publisher. .

Project Specification...

Check Model
Wersion Contral @
- Define 4
Class Wizard, .. ass

faenerate Senvice Definition.. .
4+ A - i 5 Data Feeder Definition. ..
A (BiEEEE EMEITELATE Expression Definitian. . .
e MNewClags2 MewClass3
Q
.t
Note

If you haven’t selected a Class in the Class Diagram window or a Class icon in the
tree diagram, the Generate an XML Definition menu is grayed as shown in Figure
65.

If you choose the wrong type of XML Definition to create, such as, the Class selected
was a Service Component, and the XML Definition type chosen was a Service, then a
Pop-Up error message box is displayed.

eror x|

Q The selected class is not a Service,

If you choose the correct type of XML Definition to generate and there are no errors
in your definitions, a message indicating that it is being generated, and where it will
be stored, is displayed in the log.

The Right-click Method

1. While the cursor is over the Class Icon in the tree diagram, or over the Class in the
Class diagram window, right-click with the mouse. (If you right-click when the
cursor is in another part of the Class diagram window, or is not directly over the
icon in the Tree diagram, even though you have selected the Class or the icon,
another menu is displayed, not the pop-up menu offering the option to Generate
an XML Definition.).

2. The XML Definition for that Class is generated according to whether “Always
Generate XML” has been defined in the project specification. A message
indicating where it is being stored is displayed in the log window. If the model is
not correct, then a message is displayed in the log window indicating the source
of the problem.

77

4.15.1.1

4.15.1.2

4.15.1.3

Definition for Data Feeder Logical View::DataFeeder] in fil

ram FilesiAational\Rosel3CSenviceDesigneri<MLDataFeeder] xm

If there are errors in your definition, and if you have unchecked the Always Generate
XML definition check box, the XML definition will not be generated.

Generating a Service XML Definition

If the Service Model is not complete, or has inconsistency problems, an XML
Definition cannot be generated. When component libraries are imported into a model,
the component library objects that are not necessary for the generation of the Service
XML Definition are not generated.

Generating a Data Feeder XML Definition

When component libraries are imported into a model, the component library Data
Feeders that are not necessary for the generation of the Service XML Definition are
not generated.

Generating an Expression XML Definition

When you generate an XML Definition for an Expression, you must make sure that
the body of the Expression Operation is included (either the Java or the PL/SQL code.
See Section 4.11 for further information.

Note

Operations inherited from Superclasses are NOT generated. Only operations defined
locally are generated.

Warning

You must not generate the pre-defined Expressions, or change them in OpenView
Service Quality Manager.

4.16 Importing Definitions into OpenView
Service Quality Manager

To load the Definitions created with Service Designer into OpenView Service
Quality Manager, you must use the facility provided with OpenView Service
Quality Manager:

temip sc load definition
This is a convenience tool that calls the Command Line User Interface (CLUI) to
allow you to load the data into OpenView Service Quality Manager.

Here are some examples:

Command Explanation

temip_sc_load definition —e El.xml
P_sc_ - Loads the Calculation

Expression defined in the file
El.xml

into OpenView Service
Quality Manager.

temip_sc_load definition —d D1.xml
1P_sc_ - it X Loads the Data Feeder

Definition defined in the file
D1.xml

78

into OpenView Service
Quality Manager.

temip_sc_load_definition —s S1.xml

Loads the Service Definition
defined in the file S1.xml
into OpenView Service
Quality Manager.

79

Chapter 5

Reverse Engineering

This important feature of OpenView Service Quality Manager Service Designer
enables you to import definitions that you have previously created. You can import an
XML definition for a Service and a Data Feeder. This feature should not be confused
with the Reverse Engineering described in the Help of the Rational Rose standard
edition.

In Service Designer, you should only use the method described in Section 5.1.

5.1 Importing a Definition

1. Select Service Designer from the Tools menu.
2. Select Reverse Engineering from the second menu displayed.

Select the definition you want to import.

Figure 66 Reverse Engineering Selection

¢+ | Tools Add-Ins “Window Help
] Create "'|&%G§@

Check Model
Model Properties »
Options. ..

Open Scripk...
Mews Scripk

[Ei Class Diagram: Logical ¥iew / My Service Overview

Model Inkegrator
web Publisher... To create a new Service Definition, create the
R —— Service. Service Compaonents, Datafeeders that

Project Specification... & in this diagram.
Check Model

Wersion Control

Define 3

Class Wizard. ..

Generate

Engineeting Import & Service Definition. ..
Import Data Feeder Definitions. ..

A classical file selector (Figure 67) is displayed upon selection of one of the Import
Definition menu entries.

80

Figure 67 Import an XML Definition Dialog Box

open 21|
Laock it Ia zamples ﬂ - EF Y
| OldvidenService

| videaService

File hame: || Open I
Files of type: [ML Files (~.umi] = Cancel |

[Open as read-anly

4

When importing the XML definition for a Service, the Calculation Expressions are
not imported. Only the structure is imported. In other words, only the Service and its
associated Parameters and Properties are imported, not the associated Sequence
Diagram (defining the way the parameter values are computed).

Note

It is also possible to generate an XML Definition using the Command Line User
Interface (CLUI). The XML Definition files generated in this way have a “wrapping”
around the definition. If you import these files, either using the CLUI or the method
described in Section 5.1, then this “wrapping” is ignored.

81

Chapter 6

Advanced Features

This chapter describes some advanced features connected with OpenView Service
Quality Manager Service Designer.

6.1 Customizing the Initial Framework

Although a pre-defined Initial Framework is provided with OpenView Service
Quality Manager Service Designer, you might want to create a Custom Initial
Framework that contains the specific elements that you always use to create new
Services (Custom Expressions, a package with Data feeders or Service Components).

There are two ways to create a Customized Initial Framework:
e You can edit the model used in the Initial Framework provided,
or

e You can create a new model and use the Framework Wizard to create a new
Initial Framework based on this model.
(Recommended method)

6.1.1 Editing the Provided Framework

This is the simpler way to customize the initial framework, but if you do, you will no
longer be able to retreive the original Initial Framework provided.

To do this:
1. Open the model used by the provided Initial Framewor located in:

\Program

Files\Rational\Rose\framework\frameworks\SCServiceDesigner\SCSe
rviceDesigner.mdl

2. Add the elements required for each new Service in this model (New Custom
Expression, Data Feeder and Service Components Packages and so on.)

3. Save the model.

All these new elements will then be available in each new model.

6.1.2 Creating a New Initial Framework

This is more complicated than the previous method, but it has the following
advantages:

¢ You do not change the Initial Framework that is provided and can therefore still
use it when you wish.

¢ You can create several Initial Frameworks for different categories of service.

82

Note

You only need to do this if the Initial Framework provided with OpenView Service
Quality Manager does not correspond to your needs.

6.1.2.1 To create a New Initial Framework

To do this you must first create a new model which will be the basis of each new
Service.

To create a new model it is advisable to use the Initial Framework to create it, as you
will benefit from the Expression Classes it contains.

Add all the elements required for each new Service to this model. (New Custom
Expressions, Data Feeder and Service Component Packages and so on.).

Save the model in a temporary location, for example: ¢: \MyFramework .md1l

You now use the Framework Wizard to create an Initial Framework based on this
model.

To do this:
1. Ensure that the Framework Wizard is activated.
2. Click on New in the File menu, or

3. On the page icon.

File:

O

4. If the Framework Wizard is activated, the Create New Model window will be
displayed. This is illustrated in Figure 68.

Figure 68 Create New Model Window

Create New Moadel

Rational Ros

New | EH\Sting' Hecent'

a B b [
JZEE12 J2BE13 k116 Cancel|

a &/ X \@E
idk12 fie 11 Make New frackda.. De’a“”’l

Framework Select

@, < Make New
‘ fi % @ @ Framework
1ational unified WEE Standard WCEATL 20 WCEMFTED

process

[~ Don't show this dislog in the futune Help

5. Select the Make New Framework icon and click on OK.

6. The Framework Wizard screen will be displayed.

83

Figure 69 Framework Wizard Welcome Screen

Framework Wizard - Welcome

The Framework “Wizard guides you when creating a new framework.

Befare entering the Framewark “Wizard you have to create the following files,
—I which together constitute the new framework:

- & madel file [MOL] that defines the contents af the framework, that iz, the
template to be uged when creating new models from this framework. v'ou

1 create the framewark model in the same way az you create any other

bdl | mnodel in Rose.

- Anicon file [.1CO] that containg the icon to be ugzed as a symbol for the
new framewark, in the Create Mew Model dialog box.

- & documentation file [[RTF] that containg a description of the framewark.

The madel file iz randatary, but the icon and documentation files are
optional. So before continuing, make sure that the fles you need are
created and available in pour file gpstern.

Dizable this page by
clicking the Don't show
thiz page it the future

Help | Cancel |

[~ Don't show this page in the future

Eirgh

7. Follow the instructions given on screen. Click Next to continue.

8. The screen, Framework Wizard, Specification of Framework will be displayed.

Figure 70 Framework Wizard — Specification of Framework Window.

Framework Wizard - 5 pecification of Framework

Specify the name of the new framewark, the name of its model file [MDL).
documentation file [[RTF] and icon file [ICO]. You can alzo specify the name of
the diagram that iz to be initially opened for models created from this framework.

Framework Mame |M_l,I Mew Framework

I todel File |C:\MyFramework.de _I

s Start Diagram I j

Documentation File I

lcon

File |

. S
It iz sufficient to specify a Previ @_‘I
uhique Framewark Mame (=T

and a Model File!

Help | Cancel | < Back | IEnt > | Eirrsh |

You must provide at least the Name of the new Initial Framework (Free text) and the
model file location. (The path to the model created as described at the beginning of
Section 6.1.2.1.)

9. Click on Next.

A Create New Model window will be displayed containing the icon for your new
Framework.

Figure 71 Create New Model Window

Create New Model

"4 4
L —
New | Exlsllngl Hecentl
o d]9
N |
EA
Make Mew Cancel |
Framework
. Mo Details |
SCServiceD... =l
Mo documentation available
I~ Don't show this dialog in the future Help |
Fiational Developer Metwork

10. Click on the Icon for your New Framework to create a new Service, based on this
new Initial Framework.

6.2 Creating an Expression Class

As for Enum, you must follow certain rules to create a valid Expression class.

The new Expression should be created under an existing Expression Hierarchy
(provided by the Initial Framework).The goal of this hierarchy is to represent the
different types of technology supported in OpenView Service Quality Manager
(Java or PL/SQL). For each technology type there is a set of pre-defined Expressions
and a set of user-defined expressions for the different types of supported Expression
(Simple or Aggregate).

Each Expression class has several associated Operations. (Operations used in the
Sequence Diagrams).

To Create an Expression Class
1. From the Tools menu, choose Service Designer

2. The Menu illustrated in Figure 72 will be displayed.

Figure 72 Definition Menus

Tools Add-Ins ‘Window Help

Cresa +]
|7 [LE] |

fadal Properties b

I o S [E| Class Dagram: Logical ¥iew) Hain

ﬂﬂbﬂ 5-1'-11-':“. |'—| _l

Pew Seript Wideo Semice Kail Serdice
Eoribr
Chedk Madel l B
20 k Emiaszions |
Dwfine a Sarvica
tizard SR 2 Define & Saryics Component
2 crate ansMLDERN . * ™ hofine a Data Feeder
4 Reverse Engineaning b Define anExpression

85

3. Choose Define, then Define an Expression from the next sub-menu displayed.
4. The Expression Specification Dialog box (Figure 73) will be displayed.

This Dialog box has two tabs, General and Calculation Expressions.
Figure 73 Expression Specification Dialog Box, General Tab

Expressions Group Specification

General | Calculation E xpressions I

Class Mame: ICUSLAQQTBQPL'SQL

Type:
" Simple Expression
' Aggregation Expression

Language:

QK. I Cancel | Appl |

5. The General Tab allows you to choose

- The Language (PL/SQL or Java)

- The Name

And

- The Expression Type (Simple Expression or Aggregation Expression).
6. When you have made your choices here, click OK.

7. Now you can add the Calculation Expressions in this class. This is described in
section 4.11.

6.3 Managing Component Libraries

6.3.1

One of the standard features of Rational Rose enables you to create your own Service
Component or Data Feeder libraries. Rational Rose can keep a model in one or more
files. These files are called Petal files and Controlled Unit files (Controlled Unit files
are sometimes called Control Unit in Rational Rose.). Both Controlled Unit and Petal
files are files into which Rational Rose stores all or part of a model. In this way it is
possible to define a set of Service Components and keep them in Petal files or
Controlled Unit files and import them and use them whenever you need.

Rose provides a rich set of features to manage the libraries of components. The rest of
this section describes only the typical use of these Rational Rose features for the
needs of Service Design.

Creating Libraries of Components
To do this:

1. Create a new model.

2. In the Logical view, create a new package.

3. Rename this new package.

86

4. Create a new class diagram in the new package.
5. Open this new class diagram.

6. In this class diagram create the component that will be part of your library
(DFD/Service Component) Section 4.10.5 describes how to do this.

Depending on your needs, you can also create associations and sequence diagrams in
this package.

Once the components of your library are fully defined, you must save the library in a
Petal File or a Controlled Unit file.
6.3.1.1 Storing a Package in a Petal File

If you choose to store your package in a Petal file, the library that you have created
will not be shared among different services. It is possible to import this library into a
new service, but the changes performed in the package will not affect other services.
This type of creation should only be used for Service Components whose definition is
not shared (Shared Definition).

To do this:
1. Select the package in the Tree View.
2. From the File menu, select Export <Package Name>.
3. This displays a dialog box where you must enter the file name for your library. The
file must have the extension .ptl.
6.3.1.2 Storing a Package in a Controlled Unit

If you choose to store your package in a Controlled Unit, you will be able to use it in
a new service, and several services will be able to share these components. If you
modify this package while editing a service, all the other services will be impacted.
This type of creation should be done for Components that are “Shared Definition”
components, and for Data Feeders.

To do this:
1. Right click on the package in the Tree View.
2. Select Units/Control <package Name> from the pop-up menu that is displayed.

3. This displays a dialog box where you must enter the file name for your library. The
file must have the extension . cat.

The location where you store your library is important both for Petal files and for
Controlled Units. You must organize your directories in such a way that you will be
able to find your libraries easily.

The contents of two libraries are illustrated in Figure 74.

87

Figure 74 Contents of Two Libraries

%> Rational Rose - [untitled) O] x|
Fle Edit “iew Format Browse Hepot Query Tools Adddne Window Help

D2E /e s RO0BpRERGE || @]

5 (unitled] [Ei Class Diagram: DFD Pac o] B
I:l Lse Caze View =
23 Logical Wiew S A package of
3 Expressions ’T DFD
2 Assnriations A
f17 Component Package
My Component Package Overview =
7 () ServiceComponent] ﬂ@, ﬂ&,
B SewvicsComponent2 =] DataFeeder] DataFeeder?
() MewClazs
—>), Azsociations —O
§ ServiceComponent? Parameter Calculatio P =
~|E| My DFD Packags Overview t [Ei Class Diagram: Component Package / My Component Packag... B [=][E3
Lo DataFeeder! s
& DataFeeder2 =) 'g pa_ckage of
= . a envice
-2, Associations Companent
=3 Component Yisw & P
: Main N 2
Dieployment View o SeniceComponent]
todel Properties
e T]
@] ServiceComponent3
=Y .
N | O
SewiceComponent2
1=
K| I A [
_vl
=1[10:58:50| |
—|10:58:50] [Import] hd
4| | »
AR o
For Help, press F1 |Default Language: SCServiceDesigner [l_ MU i
—
Theicon —— representing the packages in the tree diagram indicates that the

packages are Controlled Units.

6.3.2 Using Library Components in a Service

You can use either Petal Files or Controlled Units in a new model. As explained in
section xxx, if you import a Petal File, the data stored in this Petal file will be local to
the Service. You will be able to modify details without impacting other Services. On
the other hand, Controlled Units are shared among all the services that use them;
therefore you must be careful if you modify their contents. To use Petal files or
Controlled Units you must import them.

Importing Petal Files and Controlled Unit Files
The Import process for both Petal Files and Controlled Units is the same.

You can:

1. Open the Package Overview class diagram provided by the Initial Framework.
Although this step is not essential, when you do it, a package icon will be placed in
this diagram.

Or
2. From the File menu, select Import.

3. A dialog box is displayed where you must select the type of file to import (.cat
or .ptl) and select the file you want to import. Click on Open.

4. This will import the selected library and you can now use its Components to define
a new Service.

88

6.3.3 Uncontrolling a Controlled Unit

There may be situations when you need to import a Controlled Unit to get the
components defined in it, and edit them without impacting other services that use this
Controlled Unit. To be able to do this you must Uncontrol the Controlled Units:

1. Import the Controlled Unit you need.
2. Right click on the package icon of this Controlled Unit in the Tree view.
3. Select the Unit/Uncontrol <Package Name> entry.

The Controlled Unit now becomes local to the Service into which you have imported
it (the icon of the package changes) and you can now edit it without impacting the
other Services. It remains a Controlled Unit in the other Services sharing its
definitions.

6.4 Saving a Model

You can create a Petal file for the complete model by choosing Export Model from
the Rose File menu. (The Export Model option is the option for saving the model.)

You will be prompted for the file name and for the directory where you want to store
your Petal file. The Save as type: drop-down menu allows you to choose the file type
(-ptl in Figure 75).

Figure 75 Export Model (Save Model) Dialog Box
x|
Save in: I@ Compag j @ £ E3-
Kl |]
File: name: |=‘_ ptl v I
Save a3 type: IF'etaI File:s [*.pt]) j Carcel |/
D o o) Filee (o) [

If you want to save only a part of the model in a separate file, select the Class for the
part you want to save in the Class diagram window, or the Class icon in the tree
diagram. The File menu will display Export and the name of the item you have
selected. (Export ServiceComponent in Figure 76.)

89

Figure 76 Exporting (Saving) Part of a Model

File Edit W“iew Format Browse Report Query Tools Add-Ins Window Help

Mew Ctrl+r
Cpen... Chrl+o
Save Chrl+5
Sawe As... [Ei Class Diagram: Logical ¥iew / Main

Save Log As 5 ﬁ
AukoSave Log... i
i Servicel SeniceComponent]

&<<param=»> Parameter] &< <params== Paramater]
Load Model Workspace. .. &<<prop=> Property1 &<<prop>> Property’
Sawve Model Workspace

Save Model Warkspace As... | —

Units : 5]

Impart... N Sericelomponent2 —m
Export ServiceComponentd n ib«param» Parameter] %‘:‘:F

BRBEB @« calm

Clear Log

You are prompted for the name of the file in the same way as when you save (export)
a Model. You must enter a file name and choose the directory where you want to
store your files.

When you have created and stored your Petal files you can decide whether or not to
designate them as Controlled Units by using the Version Control Add-In. Both
Controlled Units and Petal files can be imported using the File menu Import option.

For more detailed information about Petal files and Controlled Units, use the
Standard Rational Rose online Help. Select the topics: Controlled Units and Petal
File.

Chapter 7

Troubleshooting

This chapter gives some help about how to deal with problems and gives advice about
actions it is best to avoid when using Service Designer.

7.1 Activating the Framework Wizard Add-In

If you do not see the Initial Framework icon when you start Service Designer, you
need to activate it.

You do this in the same way as activating the Service Designer Add-In.
1. Click on Add-Ins on the menu bar.

2. Select Add-In Manager.

3. The Add-In Manager dialog box will be displayed.

4. Check the box to the left of Framework Wizard.

5. Click on Apply and then on OK.

Figure 77 Add-In Manager, Framework Wizard

Add-In Manager x|

Mame | Wersion -
[CJams Crs 1.1
[J &M5I Converter 1.1
Nadag3 25
ada9s 25 —
[apex 2.2
[CJcores 24
[JClearCaze 1.4
Data Modeler 20
Framewark “izard 71
V_IV Java 50 _ILI
4 | 3

0k I Cancel | Apply |

91

7.2 Service Designer Dialog Boxes are not

Displayed

If you cannot display the Service Designer Dialog boxes this may be because the
Service Designer Add-in has not been activated, or because there is a Standard Rose
Dialog box open.

Therefore first ensure that the Service Designer has been activated. If it has not,
follow the directions given in the previous section of this chapter, Section 7.1.

If you still cannot display a Service Designer Dialog box, check that you do not have
a Rational Rose Standard dialog box open. If you have, close this dialog box and try
to open the Service Designer dialog box again.

7.3 Error and Information Display

Errors and information are displayed in two ways, by Pop-up boxes and through the
Log display in the console window.

7.3.1 Pop-up Boxes

Rational Rose provides Information and Error pop-up boxes whenever your actions
require them.

7.3.2 The Log

This is a Rational Rose standard feature. The log records many of the actions
performed, providing much useful information. You can choose to display this
whenever you wish.

To display the log file, select Log from the View menu. The Log window will open
underneath the principle Rational Rose window. It records the actions it displays with
a timestamp. See Section 3.1.1

To close the log display, unselect Log from the View menu. The log window will
close.

Figure 78 Example of the Log Window.

10:56:21] [Customizable Menus] =]
11:35:02] Info: The SCServiceDesigner add-in has been deactivated.
11:35:41]

11:35:49] [Update Model Properties]

11:35:49] InfoZ The SCServiceDesigner add-in has been aciivated.

-1

i
4 [ET I I3 O ey
Fior Malp, press F1 Diefsul: Langusge: SCSapaoalisngre: o

You can clear the log when you wish and you can save it as a file.

92

Figure 79 Saving a Log Dialog Box

2
Save in: I@ Compag j - £ Eg-
4| [N
File narne: errorlog Cave I
ELILERL L | og Files [*.log) Cancel |
A

1. From the File menu, choose Save Log As, or AutoSave Log. Whichever you
choose, the dialog box illustrated in Figure 79 is displayed.

2. Choose Save.

If the saved log file already exists, you are asked if you want to replace it.

7.3.3 Correcting Mistakes
If you have made a mistake and created a Class that you do not want in your model,
you will want to delete it.

7.3.3.1 Deleting Classes From a Model

Although you can remove a Class representation from the Class diagram window
by clicking on the Class representation and pressing Delete, this does not delete the
Class from the model, it only removes the Class representation from the display.

How to delete Classes from a model is described in Section 4.2

7.3.4 Creating and Defining Enumerations and Expressions

You must use the Rational Rose Standard dialog boxes to create and define
Enumerations and Expressions.

7.3.5 Importing Expression XML Definitions into OpenView
Service Quality Manager

When you generate an XML Definition for an Expression to import into Service
Center, the document should contain the body of the Expression Operation. Refer to
Section 4.11 for details of how to do this. If these body files have not been selected,
only a ‘skeleton’ of the XML definition document will be generated.

7.3.6 Actions you are Advised Not to Perform
This section gives information about actions that are best avoided when using
OpenView Service Quality Manager Service Designer.

7.3.6.1 Closing Rational Rose

e Do not use Exit from the file menu to close Rational Rose as this action de-
activates Service Designer.

o |f you do de-activate Service Designer, by any means, you must re-activate it to
be able to use it. Choose the Add-Ins menu, choose Add-In Manager, and select

93

the box to the left of Service Designer in the displayed dialog box and click on
OK.

7.3.6.2 Do Not Change the Displayed XML Name

On several Definition screens, the internal XML name is displayed. Although it is
possible to change this name, you are advised not to do so, as changing the name can
lead to corrupt XML definitions. The XML name must remain the same from one
generation to another.

7.3.6.3 Pre-defined Expressions

You must not generate the pre-defined Expressions, or change them in OpenView
Service Quality Manager.

7.3.6.4 Do Not Use the Rational Rose Standard Dialogs to Modify

Rational Rose does not prevent you from using the standard dialogs to modify
elements which have been created using Service Designer.

However, you should never use Rational Rose Standard Dialogs to modify elements
which have been created using Service Designer as it causes consistency violation
in the model, and the problem is only detected during a consistency check or during
code generation.

You must, however, use the Rational Rose Standard dialog boxes to create and
define Enumerations, Expressions and Operations for Expressions.

7.3.6.5 Deleting an Operation
You must never delete an Operation linked to a Parameter without using the Service
Designer Dialog Boxes.
7.3.6.6 Do not Launch Rational Rose by Double-clicking on a Model
file (.mdl)

It is not advisable to launch Rational Rose by double-clicking on an .md1 (Model)
file from a Windows Explorer window, as this can launch Rational Rose without the
Service Designer icons in the Vertical toolbar.

94

Glossary

This glossary defines terminology commonly used in HP OpenView Service Quality
Manager.

Auto instantiate (SLA Administration)

This action automatically creates an Instance of the Object selected. When the
instance is created, the initial values of its instance variables are assigned.

BI
See business intelligence.
Business intelligence (BI)

A broad category of applications and technologies for gathering, storing, analyzing,
and providing access to data that helps users make better business decisions.

CNM
See customer network management
Customer

Companies or organizations that make use of the services offered by a service
provider, based on a contractual relationship.

Customer network management

Customer network management is enabled by means of tools that provide business
customers with access to management information originating from the service
provider.

Data collection interval

The interval of time over which performance parameters are retrieved from the
monitored service resources. This interval does not have to be the same as the
measurement interval because service adapters or service resources may buffer
statistics.

Data feeder

OpenView Service Quality Manager’s source of data. A data feeder models service
resources by defining one or more service parameters.

Data feeder definition

The static definition of a data feeder modeling service resources by defining one or
more service parameters.

Degraded service

The presence of anomalies or defects causing degradation of the quality of service,
but do not result in the total failure of the service.

Instantiate (SLA Administration)

Instantiate differs from Auto Instantiate in that items are instantiated individually.

95

Measurement interval

The interval of time over which each service parameter is measured. For example, a
parameter may be the number of discarded packets, measured over a 15-minute
measurement interval.

Measurement Reference Point (MRP) naming scheme

This is the formal description of how the measurement point name is built, that is, by
concatenating the values of Data Feeder properties and fixed strings.

Mobile virtual network operator

A mobile operator that does not own its own spectrum and usually does not have its
own network infrastructure. Instead, MVNOs have business arrangements with
traditional mobile operators to buy minutes of use for sale to their own customers.

MRP

See Measurement Reference Point.
MVNO

See mobile virtual network operator.
parameter

A value or set of values that are periodically updated and that help determine the
quality of service.

Parameter instance

Service instances and Service Component instances consist of a set of parameter
instances. The value of the parameter instance is provided either by a data feeder or
by the parameters of other service components.

Parameter objective
A set of objectives for the parameters belonging to a service.
Property

Special static parameters that are given a value only when an instance of an
OpenView Service Quality Manager Object is created. For example, a Service
Component can have a property called “location”.

QoS
See quality of service.
Quality of service (QoS)

The ITU-T has defined quality of service as "the collective effect of service
performances that determine the degree of satisfaction of a user of the service".

Service

A Service is a set of independent functions (Service Components) that consist of
hardware and software elements and an underlying communications medium. A
Service can include anything from a single leased-line service, to a complex
application, such as vision conferencing.

Service availability

A measurement made in the context of a service level agreement that is expressed as
a percentage. This percentage indicates the time during which the service is
operational at the respective service access points.

96

ServiceCenter Repository

The ServiceCenter Repository is the storage center for all Service Quality Manager
data. It receives data from the various Service Quality Manager interfaces and each
interface can request information from the Repository.

Service component

An independent function that is part of a service, such as a hardware or software
element, or the underlying communications medium.

Service component instance

The instance of a Service Component Definition that is active in the network, such as
an instance of the IPAccess Service Component definition called “pop”.

Service level (SL)

Defines Service Parameters and operational data enforced by the Service Level
Agreement (for example, Max Jitter < 10 ms).

Service Level Agreement (SLA)

There are two type of Service Level Agreement, the Customer Agreement: a contract
between a service provider and a customer, which specifies in measurable terms what
the service provider supplies to its customers, and the Operational Service Level
Agreement, which specifies in measurable terms the operational levels of the Service.
A service level agreement is composed of individual objectives.

Service Level Objective (SLO)

The set of objectives for the parameters belonging to a Service or Service
Component.

Service parameter
See parameter.
Service provider

A company or organization that provides services as a business. Service providers
may operate networks or may integrate the services of other providers.

Service instance (SI)

The instantiated service definition that is active in the network, such as an instance of
the video service definition called “Paris”.

Service instance group (SIG)

A group of service instances against which the service availability must be reported.
Each service instance belongs to one or more Service Instance Groups and each SIG
contains at least one Service Instance. The relationship between the SIG and the
Service Instances is defined in their service level agreement.

N]|

See Service Instance.

SIG

See Service Instance Group.
SL

See Service Level

SLA

See Service Level Agreement.
SLO

97

See Service Level Objective.

Subscriber

The entity responsible for the payment of charges incurred by one or more users.
User

An entity designated by a customer to use the services of a telecommunication
network, such as a person using a UMTS mobile station as a portable telephone.

98

	What is the HP OpenView Service Quality Manager?
	What is a Service?
	The Service Designer Graphical User Interface
	The SLA Lifecycle
	The Object Model for Designing Services
	Designing a Service
	Service
	Service Components
	Data Feeders
	Parameters
	Properties
	Naming Rules
	Modeling and Defining Services with the Service Designer Gra

	Rational Rose Standard Features
	Starting Service Designer
	The Log Window
	Making Service Designer Available
	Making the Framework Wizard Available
	Placing Icons on the Vertical Toolbar

	Creating a New Model
	How to Get Help
	Defining Services, Service Components, Data Feeders and Expr
	The Icon Method
	The Menu Method

	Deleting Classes From a Model
	The Tree Window Method
	The Class Diagram Window Method

	Copying/Pasting an Object
	Defining and Displaying Specifications
	Service Specifications
	The General Tab
	The Parameters Tab
	The Details Tab

	Defining Parameters
	Creating Parameters
	Defining Parameter Specifications
	Parameter Specification General Tab
	Name and Identifier
	Description
	Parameter Type
	Parameter Visibility

	Parameter Specification Details Tab
	Category
	Partition
	Binding Type
	Units
	Measure Type
	Auto Propagate
	With Compliance
	Election Policy
	Reporting Policy

	Parameter Specification Calculation Tab
	Defining a Sliding Window Time Aggregation
	Defining a Fixed Window Time Aggregation
	Custom expression for Time Aggregation

	Defining Service Properties
	Service Component Specification
	Data Feeder Specification
	Defining the Associations or Aggregations of a Service
	The Menu Method
	The Icon Method
	Service to Service Component
	Setting the Multiplicity for Associations of a Service
	Data Feeder to Service or Service Component
	Inheritance

	Calculation Expressions
	Expressions Class
	Creating a Custom Calculation Expression
	Add a Calculation Expression in the Expression class
	Creating the Custom Expression custom code
	Assigning a Body File to an Expression

	Binding Service, Service Component and Data Feeder Parameter
	Primary Binding
	Secondary Binding
	Sequence Diagrams
	Creating a New Sequence Diagram
	Actions you should Not Perform in Sequence Diagrams

	Enumeration
	Validating a Service Definition
	Real Time Model Checking
	Checks NOT Performed by Real Time Model Checking

	Service Model Checking on Demand
	Classes and Associations
	Expressions
	OpenView Service Quality Manager Rules
	Error Logging

	Generating an XML Definition
	How to Generate an XML Definition
	Generating a Service XML Definition
	Generating a Data Feeder XML Definition
	Generating an Expression XML Definition

	Importing Definitions into OpenView Service Quality Manager
	Importing a Definition
	Customizing the Initial Framework
	Editing the Provided Framework
	Creating a New Initial Framework
	To create a New Initial Framework

	Creating an Expression Class
	Managing Component Libraries
	Creating Libraries of Components
	Storing a Package in a Petal File
	Storing a Package in a Controlled Unit

	Using Library Components in a Service
	Uncontrolling a Controlled Unit

	Saving a Model
	Activating the Framework Wizard Add-In
	Service Designer Dialog Boxes are not Displayed
	Error and Information Display
	Pop-up Boxes
	The Log
	Correcting Mistakes
	Deleting Classes From a Model

	Creating and Defining Enumerations and Expressions
	Importing Expression XML Definitions into OpenView Service Q
	Actions you are Advised Not to Perform
	Closing Rational Rose
	Do Not Change the Displayed XML Name
	Pre-defined Expressions
	Do Not Use the Rational Rose Standard Dialogs to Modify
	Deleting an Operation
	Do not Launch Rational Rose by Double-clicking on a Model fi

