
HP OpenView Select Identity
For the Red Hat Enterprise Linux and
Microsoft Windows 2003 Operating Systems

Software Version: 4.0
Connector Developer Guide
March 2006

Legal Notices

Warranty

Hewlett-Packard makes no warranty of any kind with regard to this document, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be held liable for errors contained herein or direct, indirect, special,
incidental or consequential damages in connection with the furnishing, performance, or use of
this material.

A copy of the specific warranty terms applicable to your Hewlett-Packard product can be
obtained from your local Sales and Service Office.

Restricted Rights Legend

Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause in
DFARS 252.227-7013.

Hewlett-Packard Company
United States of America

Rights for non-DOD U.S. Government Departments and Agencies are as set forth in FAR
52.227-19(c)(1,2).

Copyright Notices

© Copyright 2006 Hewlett-Packard Development Company, L.P.

No part of this document may be copied, reproduced, or translated into another language
without the prior written consent of Hewlett-Packard Company. The information contained in
this material is subject to change without notice.

This product includes software developed by the Apache Software Foundation (http://
www.apache.org/). Portions Copyright (c) 1999-2003 The Apache Software Foundation. All
rights reserved.

HP OpenView Select Identity (OVSI) uses software from the Apache Jakarta Project
including:

• Commons-beanutils.

• Commons-collections.

• Commons-logging.

• Commons-digester.
2

• Commons-httpclient.

• Element Construction Set (ecs).

• Jakarta-poi.

• Jakarta-regexp.

• Logging Services (log4j).

Additional third party software used by OVSI includes:

• JasperReports developed by SourceForge.

• iText (for JasperReports) developed by SourceForge.

• BeanShell.

• Xalan from the Apache XML Project.

• Xerces from the Apache XML Project.

• Java API for XML Processing from the Apache XML Project.

• SOAP developed by the Apache Software Foundation.

• JavaMail from SUN Reference Implementation.

• Java Secure Socket Extension (JSSE) from SUN Reference Implementation.

• Java Cryptography Extension (JCE) from SUN Reference Implementation.

• JavaBeans Activation Framework (JAF) from SUN Reference Implementation.

• OpenSPML Toolkit from OpenSPML.org.

• JGraph developed by JGraph.

• Hibernate from Hibernate.org.

• BouncyCastle engine for keystore management, bouncycastle.org.

This product includes software developed by Teodor Danciu http://
jasperreports.sourceforge.net). Portions Copyright (C) 2001-2004 Teodor Danciu
(teodord@users.sourceforge.net). All rights reserved.

Portions Copyright 1994-2004 Sun Microsystems, Inc. All Rights Reserved.

This product includes software developed by the Waveset Technologies, Inc.
(www.waveset.com). Portions Copyright © 2003 Waveset Technologies, Inc. 6034 West
Courtyard Drive, Suite 210, Austin, Texas 78730. All rights reserved.

Portions Copyright (c) 2001-2004, Gaudenz Alder. All rights reserved.
3

Trademark Notices

AMD and the AMD logo are trademarks of Advanced Micro Devices, Inc.

Intel® and Pentium® are registered trademarks of Intel Corporation in the United States and
other countries.

JAVA™ is a US trademark of Sun Microsystems, Inc.

Oracle® is a registered US trademark of Oracle Corporation, Redwood City, California

UNIX® is a registered trademark of The Open Group.
4

Support

Please visit the HP OpenView support web site at:

http://www.hp.com/managementsoftware/support

This web site provides contact information and details about the products, services, and
support that HP OpenView offers.

HP OpenView online software support provides customer self-solve capabilities. It provides a
fast and efficient way to access interactive technical support tools needed to manage your
business. As a valuable support customer, you can benefit by using the support site to:

• Search for knowledge documents of interest

• Submit enhancement requests online

• Download software patches

• Submit and track progress on support cases

• Manage a support contract

• Look up HP support contacts

• Review information about available services

• Enter discussions with other software customers

• Research and register for software training

Most of the support areas require that you register as an HP Passport user and log in. Many
also require a support contract.

To find more information about access levels, go to:

http://www.hp.com/managementsoftware/access_level

To register for an HP Passport ID, go to:

http://www.managementsoftware.hp.com/passport-registration.html
5

http://www.hp.com/managementsoftware/support
http://www.hp.com/managementsoftware/access_level
http://www.managementsoftware.hp.com/passport-registration.html

Preface

Welcome to the HP OpenView Select Identity Connector Developer Guide. This guide provides
detailed information about how to develop a connector, which is a “plug-in” that enables OVSI
to provision users and entitlements in third-party systems.

OVSI automates the process of provisioning and managing user accounts and access
privileges across platforms, applications, and corporate boundaries. Key features of the OVSI
system include the following:

Centralized Management – Provides a single point of control for the management of users and
entitlements

Provisioning – Automates the creation, update, and deletion of accounts and entitlements on
information systems across the enterprise

Administrative Delegation – Enables administrative rights to be distributed to multiple tiers
of functional departments, customers, and partners

User Self-service – Enables end users to initiate access to Services, change passwords, set
password hints, and update general identity information through a simple web-based client

Approval Workflow – Automates approval processes required to grant access privileges to
users

Password and Profile Management – Manages and distributes password and user profile
information across and between enterprise information systems

Audit and Reporting – Provides standardized reporting on actions and account activity

About This Guide

The HP OpenView Select Identity Connector Developer Guide is designed to help you
understand the architecture of connectors, including the J2EE Connector Architecture (JCA)
and the OVSI architecture. It also details how to build a connector, from generating the
skeleton code base to building the source files and installing the connector. The following
chapters and appendices are included:

Chapter 1, Select Identity Connectors — Provides an introduction to the types of connectors
supported by OVSI, the JCA, and the phases of connector development.

Chapter 2, Functional Requirements and Development Phases — Provides a high-level
outline of the requirements to implement a connector.

Chapter 3, Connector SDK — Describes how to use the SDK (Software Development Kit) to
quickly develop connectors for OVSI.
6

Chapter 4, Implementing a Select Identity Connector — Describes how to build a connector,
including the connector interface methods to be implemented, and the requirements of the
agent.

Chapter 5, Connector Tester Tool — Describes how to use the connector Tester Tool to certify
the connector before it is deployed in OVSI.

Chapter 6, Installation and Deployment — Describes how to install and deploy a connector
that has been built.

Chapter 7, HP Openview Select Identity Web Service — Describes the OVSI Web Service,
which enables you to programmatically provision users in OVSI.

Chapter 8, Connector Migration — Provides detailed information on migrating OVSI 3.3.x
connectors to OVSI 4.0.

Appendix A, Connector Template — Provides an overview of the dummy connector files, which
are provided as examples for building your own connector.

Audience

This document is intended for Java programmers. It is strongly suggested that the developer
be familiar with the target resource for which the connector is being built. Familiarity with
the Java environment (development tools, build tools, and so on) is a must for understanding
this guide and successfully building a connector.

Typographical Conventions

This guide uses the following typographical conventions:

Product Documentation

The OVSI product documentation includes the following:

Convension Description

Bold Used for fuser interface elements (menus, buttons, and so on),
new terms, and URLs.

Italics Used for variables, book titles, and emphasis.

Monospace Used for code examples, directory and file names, commands,
and user input.
7

• Release notes are provided in the top-level directory of the HP OpenView Select Identity
CD. This document provides important information about new features included in this
release, known defects and limitations, and special usage information that you should be
familiar with before using the product.

• For installation and configuration information, refer to the HP OpenView Select Identity
Installation Guide. All installation prerequisites, system requirements, and procedures
are explained in detail in this guide. Specific product configuration and logging settings
are included. This guide also includes uninstall and troubleshooting information.

• Detailed procedures for deployment and system management are documented in the HP
OpenView Select Identity Administrator Guide and OVSI online help system. This guide
provides detailed concepts and procedures for deploying and configuring the OVSI system.
In the online help system, tasks are grouped by the administrative functions that govern
them.

• The HP OpenView Select Identity My Identity User Guide provides detailed information
for end-users about the My Identity function, which allows users to manage their identity
information.

• The HP OpenView Select Identity Workflow Studio Guide provides detailed information
about using Workflow Studio to create workflow templates. It also describes how to create
reports that enable managers and approvers to check the status of account activities.

• An HP OpenView Connector Installation and Configuration Guide is provided for each
resource connector. These are located on the Select Identity Connector CD.

• The HP OpenView Select Identity Attribute Mapping Utility User Guide describes how to
access the Attribute Mapping Utility, provides an overview to the utility’s user interface,
and describes how to define user and entitlements mappings. This guide is provided on
the Select Identity Connector CD and is for use with the SQL and SQL Admin connectors
only.

• The HP OpenView Select Identity External Call Developer Guide provides detailed
information about creating calls to third-party applications. These calls can then be
deployed in OVSI to constrain attribute values or facilitate workflow processes. In
addition, JavaDoc is provided for this API. To view this help, extract the javadoc.jar
file in the docs/api_help/external_calls/Javadoc directory on the HP OpenView
Select Identity CD.

• If you need to develop connectors, which enable you to connect to external systems for
provisioning, refer to the HP OpenView Select Identity Connector Developer Guide. This
document provides an overview of the Connector API and the steps required to build a
connector. This guide also describes the Web Service, which enables you to
8

programmatically provision users in OVSI, providing an overview of the operations you
can perform through use of the Web Service, including SPML examples for each operation.
The audience of this guide is developers familiar with Java.

JavaDoc is also provided for the Connector API. To view this help, extract the
javadoc.jar file in the docs/api_help/connectors/Javadoc directory on the HP
OpenView Select Identity CD. Also, an independent, web-based help system is available
for the Web Service API. To view this help, double-click the index.htm file in the docs/
api_help/web_service/help directory on the HP OpenView Select Identity CD.
9

10

Contents
1 Select Identity Connectors . 17

Connector Types. 17
OVSI API Architecture . 19
OVSI Connector Architecture . 19
OVSI Connector API Interfaces and Classes . 21
New Features in the 4.0 Connector Interface. 26

2 Functional Requirements and Development Phases . 27

Platform Support . 27
Agent Communication, Security, and Logging . 28
Identity Objects and Schema Mapping. 28

Supporting and Mapping Identity Objects . 29
Provisioning, Detecting Changes, and Post-provisioning . 30

User/Entitlements Discovery . 30
User Provisioning . 31
Entitlement Provisioning . 32
Change Detection . 33
Post Provisioning . 34

Internationalization Compliance . 34
Performance and Scalability . 34
Development Phases . 35

Requirements Phase . 35
Design Phase. 38
Implementation. 39
Integration . 40
Packaging . 40
Documentation . 40
11

3 Connector SDK . 43

Simplified Connector Interface . 46
XML Schema Handling . 47
Generic JCA Interface and Connector Implementation . 48
Connector Tester Tool . 48
Connector Template . 50

4 Implementing a Select Identity Connector . 51

Development Requirements . 51
Steps to Implement a Connector for Select Identity . 52

Step 1: Start with the Connector Template. 52
Step 2: Gather Connector Details . 52

Resource Details . 53
Resource Schema Details . 53
Connector Code-Related Details . 54

Step 3: Working with the Connector Template . 54
1. Prepare the Connector Template Files . 54
2. Check the Library JAR Files. 59
3. Implement the Connector . 59

Sample SPML Requests for Reconciliation . 60
Authoritative Reconciliation SPML Requests . 60
Non-Authoritative Reconciliation SPML Requests . 64

Building a Connector for Forward Provisioning. 67
Agentless Forward Provisioning . 67
Agent-based Forward Provisioning . 77

Building a Connector for Reverse Provisioning . 78
Agentless Reverse Provisioning . 78

Implementing getChangeLog(ChangeLogCursor) . 78
Agent-based Reverse Provisioning. 81

Mapping OVSI Attributes to the Resource Schema. 84
General Attribute Information. 84
Creating a Mapping File. 90

Some Coding Guidelines . 93
Key Value Return . 93
Key Value Computation . 94
12

User Modification . 96
Loading Existing User From Resource. 96
Computing Changes to Be Made . 97

Matching Managed Connections . 102
Schema Reloading. 103

5 Connector Tester Tool . 105

Installing the Tester Tool. 106
Testing the Connector . 109

Step 1: Get the connection parameters of your connector. 109
Step 2: Prepare the properties file with names and values of these connection
parameters. . 111
Step 3: Test the connection to the resource. 111
Step 4: Run the Tester Tool client using one of the scripts. 112

Tester Tool Scripts . 113
Initial Connectivity-Related Scripts . 113
Provisioning-Related Scripts . 113
Bulk Provisioning Scripts. 115

6 Installation and Deployment . 117

Installing a Connector . 117
Installing a Connector On WebLogic . 117

On WebLogic . 117
On WebSphere. 118

Configuring a Connector in OVSI . 120

7 HP Openview Select Identity Web Service . 121

Web Service Operations. 122
Issuing Requests . 123
SPML Requests Implemented by OVSI Web Service . 124
SPML Examples. 125

Forward Provisioning Examples . 125
Adding a User . 125
Modifying a User . 127
Deleting a User . 128
Retrieving a User Profile. 129
13

Enabling a User . 132
Disabling a User . 133
Resetting a User’s Password . 134
Terminating a User . 135

Reconciliation SPML Request Examples. 136
Recon Auth Add User . 136
Recon Auth Modify User . 137
Recon Auth Delete User . 139
Recon Non-Auth Add User . 140
Recon Non-Auth Modify User . 141
Recon Non-Auth Delete User . 142

External Authentication of Requests . 143

8 Connector Migration . 145

Reasons to Migrate . 145
Interface Changes . 146

Connector API Changes . 147
Classes and Interfaces. 147
Connector Interface . 149

Attribute Operations . 153
Schema Changes . 153

Entity Definition . 154
Relationship Definition . 154
XML Mapping File Changes . 154

Steps to Migrate Connectors . 155
Step 1: Change the Connector Implementation . 156

Implement the SIConnector . 156
ConnectorFactory Implementation . 166

Step 2: Change the XML Mapping File . 167
ObjectClass Definition. 167
Attribute Mapping Definitions . 168
Relationship Definition . 169

Step 3: Remove Deprecated Methods. 170
Step 4: Use Commons Logging. 170
Step 5: Package the Connector. 171
Step 6: Use the Connector Tester Tool. 171
14

A Connector Template . 173

Template Files . 173
Connector Template Code . 174

Index . 179
15

16

1 Select Identity Connectors
HP OpenView Select Identity (Select Identity) lets you connect to enterprise
applications and resources to configure and manage users, groups, and
entitlements. Access to resources from Select Identity occurs via connectors.
Connectors are plug-in modules that are implemented as resource adapters,
and are based on the J2EE Connector Architecture (JCA) framework.

Connectors synchronize the provisioning information between Select Identity
and the resources that store identity information. That is, connectors replicate
the changes performed in Select Identity to the resources and from the
resources to Select Identity.

This chapter provides the high-level knowledge required to develop and
implement connectors. Topics in this chapter include conceptual information
about the framework, diagrams outlining the API and connector
architectures, and descriptions of API classes and interfaces.

• Connector Types on page 17

• OVSI API Architecture on page 19

• OVSI Connector Architecture on page 19

• OVSI Connector API Interfaces and Classes on page 21

• New Features in the 4.0 Connector Interface on page 26

Connector Types

Select Identity connectors can be unidirectional or bi-directional (duplex).

• Unidirectional connectors support only forward provisioning operations
from Select Identity to the resource.

• Bidirectional connectors support reconciliation or reverse synchronization
from the resource to the Select Identity server.
 17

The connectors can also be classified as agent-less or agent-based connectors.

• Agent-less connectors interact with the resources directly through APIs or
the remote protocols supported by the resource.

• Agent-based connectors make use of agents to communicate with the
resource. Agents may be required based on various factors. For example,
the resource does not provide remote APIs or resource-specific logic to be
developed to reconcile the changes in the resource to OVSI.

The following diagram illustrates the flow of data between an OVSI
agent-based connector and an agent:

Figure 1 Data Flow Between Agent-Based Connector and Agent
18 Chapter 1

OVSI API Architecture

The following diagram illustrates the OVSI API architecture, showing the
relationship of the Connector API to OVSI and the other APIs.

Figure 2 OVSI API Architecture

OVSI Connector Architecture

The following diagram illustrates a high-level architecture of an OVSI
connector:
Select Identity Connectors 19

Figure 3 High-Level Architecture of an OVSI Connector

The OVSI connector is J2EE Connector Architecture (JCA) compliant and is
to be deployed as a RAR (Resource Archive) module on the OVSI server. The
connector runs as a plug-in RAR module on the same application server as
OVSI.

All developed connectors must implement the SIConnector interface and
other JCA related interfaces. To simplify the development of the connector
from the intricacies of JCA details, a Generic Connector implementation is
provided which implements the required SIConnector and JCA interfaces.
This generic connector implementation only requires the connector developers
to provide the implementation of the SIConnectorInterface. For more details,
see OVSI Connector API Interfaces and Classes on page 21.
20 Chapter 1

In other words, there are two ways to develop a connector:

• Option 1: Implement the SIConnector interface and all JCA-related
interfaces.

• Option 2: Use the Generic Connector implementation (which also provides
a generic implementation for the SIConnector interface and JCA interface
specification) and implement only the SIConnectorInterface interface.

As the picture shows above, it is also possible to use existing 3.3.x connectors
with OVSI 4.0.

For a general overview of JCA, refer to the following web page:

http://java.sun.com/j2ee/white/connector.html

OVSI Connector API Interfaces and Classes

The following interfaces and classes are provided by the Connector API.
Online help (Javadoc) is provided for this API on the HP OpenView Select
Identity CD, in the docs/api_help/connectors/Javadoc directory:

• SIConnector

Provides the top-level interface that maps identity information to a
resource type. This interface is an extension of the JCA CCI Connection
interface. This is the main interface to implement to build an OVSI
connector to any resource.

• SIConnectorFactory

Factory to create instances of connection handles for resources. The
connection handle is an implementation of SIConnector.

• SIUserModel

The interface that contains user information that is being provisioned into
a resource.

OVSI implements only the Connector Management portion of the JCA
specification.
Select Identity Connectors 21

http://java.sun.com/j2ee/white/connector.html

• SIJCAUserModel

Implementation of the SIUserModel interface. All user attribute
information passed from OVSI to connectors is passed in an instance of
this class.

• EntitlementModel

Interface that contains the identity of an entitlement in the resource.
Represents all types of entitlements on a resource including groups, roles,
privileges, access control lists (ACLs), responsibilities, and any generic
entitlement.

• JCAEntitlementModel

Implementation of the EntitlementModel. Entitlement information
passed from OVSI to connectors is passed in an instance of this class.

• SIChangeLogModel

Class representing the changes that occurred in the resource. This
contains ChangeLogEntry instances representing each specific change
(add, modify, delete) made for each user.

— ChangeLogEntry

Represents a change in resource for each user (example add/modify/
delete). There can be multiple instances of this class in the
SIChangeLogModel.

— ChangeLogAttribute

Models changes to user attributes. This class represents one attribute
in the change log along with the operation performed.

Following is a diagram illustrating the structure of SIChangeLogModel:
22 Chapter 1

Figure 4 SIChangeLogModel Structure

• ChangeLogAttrSubValue

Models changes to user attributes. This class represents each of the
sub-values of an attribute along with the operation performed.

• ChangeLogCursor

Models a cursor used with change detection. This class represents a cursor
that models a check point to a previous call to getChangeLog() invoked on
the connector.

• TAConnectorRequestIntf

Provides a generic interface that sends a request to the connector. Use this
interface if there is a requirement that cannot be supported by the
existing provisioning API methods.

— TAConnectorRequest

Implements the TAConnectorRequestIntf interface. This is to be used
as an extension to the existing API methods.
Select Identity Connectors 23

— TAConnectorResponseIntf

Provides a generic interface that stores responses from the connector.
Use this interface if there is a requirement that cannot be supported
by the existing provisioning API methods.

— TAConnectorResponse

Implements the TAConnectorResponseIntf interface. This is to be
used as an extension to the existing API methods.

— TAAttrValueBean

Main class containing the attribute value passed in SIJCAUserModel.
This contains details on the attribute name. The attribute value could
be single or multi-valued. This also contains attribute-level
operations, which are useful in the case of a user modify operation.

— TAAttrMemberValueBean

Represents each of the multiple values of the attribute given in
TAAttrValueBean.

Following is a diagram illustrating the contents of SIJCAUserModel:

Figure 5 SIJCAUserModel Contents
24 Chapter 1

— TAConnectorParamBean

Describes a configuration parameter needed by the connector.
Examples of such parameters include URLs or configuration
parameters like wait time. OVSI retrieves a list of these beans to
create a user interface to obtain values from the user.

— TAConnectorParameterFactory

Obtains connection-specific beans that contain connection parameter
values.

— TAConnectorParamValueBean

An abstract class that represents the connection parameter values
needed to establish a connection to a resource. It also contains all
parameters needed to access the resource for user provisioning.

— TAStatus

Represents the status of an operation. This class contains the
operation called as well as the actual operation performed by the
connector on the resource, including any details. This is used as a
return value of most of the methods on SIConnector.

• EntitySupport

Defines the actions that can be performed on an entity, which is an object
that is managed by OVSI, such as a user, group, role, or stage.

— RelationSupport

Specifies an association between identity object types, such as
between a user and entitlement and vice versa.

— UserEntitySupport

Shows the level of support for user objects in the repository. In
addition to supporting create, read, update, and delete tasks,
UserEntitySupport specifies whether the password can be reset or
changed in the resource.

• SIConnectorInterface

Simplified version of the SIConnector interface that is used by the
connector developer using the Generic Connector implementation.
Select Identity Connectors 25

SIConnectorInterface helps you focus on the efforts involved in
provisioning to the resource while avoiding the details of JCA and the
OVSI user model.

New Features in the 4.0 Connector Interface

The Connector API has been enhanced in OVSI version 4.0 to include support
for the following additional features:

• Multi-valued attributes

• Large attribute values

• Addition/deletion/emptying of attributes

• Association/dissociation of entitlements in bulk

• Query criteria with multiple filters for entitlements retrieval

• Consolidated model for supporting different types of entitlements, such as
groups, roles, privileges, ACLs and so on

• Connector SDK

Software Development Kit, which can be used to easily develop OVSI
connectors (see Connector SDK on page 43 for details). The SDK also
contains the Connector Template, which provides a real example of
connector implementation (see Connector Template on page 173 for
details).

If you are implementing the simplified connector interface
SIConnectorInterface, you will not be working with most of the
above classes/interfaces. The main classes and interfaces you will
be working with are: SIConnectorInterface, TAAttrValueBean, and
TAAttrMemberValueBean.
26 Chapter 1

2 Functional Requirements and
Development Phases
Before implementing a connector, ensure that you meet the high-level
requirements outlined in this chapter. Then, review the development phases
to ensure that the connector is robust and all questions are answered before
implementation.

This chapter contains the following sections:

• Platform Support

• Agent Communication, Security, and Logging

• Identity Objects and Schema Mapping

• Internationalization Compliance

• Performance and Scalability

• Development Phases

Platform Support

The connector must be implemented and deployed as a plug-in module (J2EE
Connector Architecture 1.0 resource adapter) on a J2EE-based application
server hosting the OVSI server. Specifically, the connector is required to run in
the following environment:

• OVSI version: 4.x or higher

• Application server: BEA WebLogic 8.1.4

• Operating system: Red Hat Linux 11

• Database: Oracle 10G
 27

• Resource platform: Depends on the resource, though in general, the
most recent version is required to be supported on the most commonly
supported operating systems

Agent Communication, Security, and Logging

If an agent is implemented for the connector, the agent must be implemented
as a continuously-running daemon or process that is deployed on the resource.
It must handle requests sent from the connector and send responses to the
connector synchronously. The connector must issue a request according to the
resource’s specifications. When the agent issues a request to OVSI’s Web
Service, it must use the SOAP protocol to send an SPML (version 1.0) payload
over HTTP or HTTPS.

The connector is required to communicate with the resource (or the agent on
the resource) over a secure channel, to ensure the security of the user data
that is exchanged. The following encryption standards or protocols are
required to be supported:

• 128 bit AES

• SSL

The connector must support logging at all levels to a configurable file that
may be different from the one used by the OVSI server.

Identity Objects and Schema Mapping

This section describes the identity objects (attributes) and operations that
must be supported by the connector. It also describes the Attribute Mapping
Utility, which can be used to retrieve and map resource attributes to OVSI
attributes.

Not all combinations of these platforms and systems are supported by OVSI.
The connector is required to run on a valid combination as published in the
HP OpenView Select Identity Release Notes.
28 Chapter 2

Supporting and Mapping Identity Objects

The following identity objects must be supported by the connector:

• Users — This is the primary identity object that must be supported. The
OVSI User object is mapped to the resource user, and the connector must
support all attributes of the user that are supported by the resource,
including single-valued and multi-valued attributes.

• Entitlements — Entitlements include organizational units, groups,
entitlements, privileges, and access control lists on the resource. A user
profile can be assigned to and de-assigned from an entitlement. OVSI
entitlements are mapped to resource entitlements

An Attribute Mapping Utility is provided by OVSI to retrieve user and
entitlement schema data from a resource and to map OVSI attributes to
resource attributes. The utility can retrieve the complete schema from the
resource, including user and group profiles and their relationships. The
Attribute Mapping Utility is integrated and invoked from OVSI, so a common
interface is provided. You can implement the connector to use the Attribute
Mapping Utility. If so, user interface pages are required for displaying the
resource schema and allowing resource attributes to be mapped to OVSI
attributes.

The following is a list of user attributes that can be retrieved:

• Name

• Type (text or binary)

• Size

• Permissions (create, read, update, or delete)

• Operation support (user creation, user update, reset password, ignore all
operations)

• Format/Pattern

• Description (rules to consider while providing values)

• Encryption Required

• Is Password

• Is Sensitive
Functional Requirements and Development Phases 29

• Is Multi-valued

• Entitlement relationships

The following is a list of entitlement attributes that can be retrieved:

• Name

• Type (Group, Role, Entitlement, Access Level, Privilege, or Resource
profile)

• Size

• Format/Pattern

• Description (rules to consider while providing values)

• User relationships (whether the entitlement can be associated or
dissociated with or from a user)

Provisioning, Detecting Changes, and Post-provisioning

The following provisioning operations must be supported by the connector:

• User/Entitlements Discovery

• User Provisioning

• Entitlement Provisioning

• Change Detection

• Post Provisioning

User/Entitlements Discovery

The following operations must be supported by the connector for User
discovery:

• Retrieval of user IDs from the resource with filtering

• Retreival of details of a given user from the resource

• Retrieval of all entitlement IDs from the resource with filtering
30 Chapter 2

User Provisioning

The following provisioning operations must be supported by the connector:

• Add users — Add a new user object to the resource.

• Check for users’ existence — Verify that the user exists on the resource.

• Modify users — Modify user attributes on the resource, including
changing the value or number (single-valued or multi-valued) of the
attribute, removing an attribute, or adding an attribute. If multi-valued
attributes are supported by the resource, the connector must support the
following modifications to that type of attribute:

— Add one or more attributes

— Remove one or more attributes

— Replace an attribute value with a new value

— Modify the attribute value

— Add one or more sub-values

— Remove one or more sub-values

• Modify entitlements of users — Add one or more entitlements to the user
or remove one or more entitlements from the user. The association can be
one-way or two-way:

user —> entitlement, entitlement —> user

This operation can associate a user with an entitlement on the resource or
associate an entitlement with a user, or both.

• Get user details — Retrieve the details of a user from the resource.

• Reset password — Change the password of the user to a new password.

• Expire password — Set the password as expired on the resource or set the
password of a user as un-expired on the resource.

• Delete user — Delete an existing user from the resource.

• Retrieve all entitlements associated with a user — Retrieve the IDs and
types of all entitlements to which a user is assigned. The connector must
also support filtering on entitlements to be retrieved.

• Retrieve all users associated with an entitlement — Retrieve the IDs of all
users that are assigned to a given entitlement.
Functional Requirements and Development Phases 31

• Filter users to be retrieved — Filter the retrieved users based on criteria.

• Disable user — Disable the user on the resource. Following are examples
of the result of this operation on the resource:

— Disable

— De-activate

— Revoke account

— Revoke login access

— Delete all entitlements

• Enable user — Enable the user on the resource. Following are examples of
the result of this operation on the resource:

— Enable

— Re-activate

— Restore account

— Grant login access

— Add previously held entitlements back to user

Entitlement Provisioning

The following provisioning operations must be supported by the connector:

• Add entitlement — Add a new entitlement object to the resource.

• Modify entitlement — Modify the entitlement attributes on the resource.

• Check for entitlement existence — Verify the existence of the entitlement
on the resource.

• Get entitlement details — Retrieve the details of an entitlement from the
resource.

• Delete entitlement — Delete an existing user from the resource.

• Add a child entitlement — Add an entitlement as a child of another
entitlement with a link to the parent.

• Delete a child entitlement — Remove a parent-child relationship.

• Get children of an entitlement — Get IDs of all child entitlements of the
given entitlement.
32 Chapter 2

• Get parent entitlement — Get the ID of the parent entitlement of the
given entitlement.

• Enable entitlement — Enable an entitlement on the resource.

• Disable entitlement — Disable an entitlement on the resource.

Change Detection

Synchronizing OVSI with identity changes on the resource. This can be
implemented in the following ways:

• Detection methods — The connector can support a pull model where the
connector implements the SIChangeLogModel class. Either OVSI or a
standalone program calls the connector to get the changes from the last
call. The connector can also support a push model where the connector or
the agent detects changes on the resource and prepares and sends an
SPML Web Service request to OVSI over HTTP or HTTPS.

• Add user — Add a user to the resource.

• Modify user — Detect attribute value, single-value type, or multi-value
type changes on the resource, remove an attribute, or add an attribute. If
an attribute value change is detected, the connector must capture the new
value. Depending on resource support, the connector is required to
support multi-valued attribute modifications. If multi-values are
supported, the following operations must be supported:

— Replace the complete multi-value

— Add one or more sub-values

— Remove one or more sub-values

• Password changes — Capture the new password of the user.

• Modify entitlements of user — Change the assigned entitlements
including adding or removing one or more entitlements.

• Delete user — Delete a user in the resource.

• Disable user — Disable a user in the resource.

• Enable user — Enable a user in the resource.

• Move user — Move a user from one container to another. This is usually
not detected as an attribute change. A container could be an
organizational unit.
Functional Requirements and Development Phases 33

Post Provisioning

This is the support of an interface that is called by the connector after a
provisioning operation. The implementation of this interface is independent of
the connector.

Internationalization Compliance

All modules of the connector are required to support internationalization
(I18N), which enables the complete connector to be localized to any foreign
language without code changes. The following must be I18N-compliant:

• If the connector is implemented to use the Attribute Mapping Utility for
schema mapping, all strings displayed on the Attribute Mapping Utility
console, including attribute names and values

• All messages generated within the connector that are directly propagated
to OVSI or combined with resource messages

• All values for user and entitlement attributes

• All user and entitlement attribute names

• If an agent is implemented, all text displayed on the agent console

Performance and Scalability

The connector must support at least 100 provisioning transactions per
minute. One transaction could mean one user addition or modification or
deletion, and so on. Likewise, the connector must support at least 100
change-detection transactions per minute.

Regarding scalability, the connector must support one million users and one
million entitlements, and is required to scale to support 10,000 resources.
34 Chapter 2

Development Phases

This section outlines the steps that are typically involved in the development
of a connector. It is strongly recommended that you take the time to address
each phase and plan for the connector’s development carefully.

Requirements Phase

Ensure that the resource supports a mechanism for user provisioning by
external clients, in a secure and reliable manner. You must have an
understanding of the underlying resource, including knowledge of the
resource’s tools and administration API. You may also need to obtain an
administrative account that has privileges to provision.

Collect requirements for development, as follows:

1 Determine the requirements based on the resource system.

— What identity information will be provisioned (users or other objects)?

— What are the entitlements supported by the resource? Typically,
resources support groups (groups or users), roles, access control levels
(ACLs), privileges, and so on.

— What are the supported attributes of the identity object based on the
schema in the resource?

— How is the schema retrieved from the resource?

— How is the identity object addressed on the resource? This could be a
DN (for LDAP-type of resources), an SSN, a user ID, hierarchical
naming, and so on. This will be used as the primary key to address the
identity object. The unique identifier can also be a combination of two
or more attributes. In such a case, the identity object will be a
combination of these attributes. The connector will build/parse this
unique key within to address the identity.

— How does the resource application support connectivity for external
systems to provision identity information? This might mean accessing
the system through API calls, RMI, JMS, a Web Service, a CLI such as
telnet, ssh, and so on.

— If the resource already supports a connector interface, how can you
develop the OVSI connector leveraging the existing connector?
Functional Requirements and Development Phases 35

— Does the resource support an SDK or a development toolkit for
administration, which might include JAR files or libraries for making
calls to access and provision information?

— Are there security requirements to consider? Is SSL or any
proprietary encryption/decryption information required between the
connector and the resource?

— What are the performance requirements? How many objects can the
resource support? How may entitlements? How many users can the
connector create, read, update, or delete in a second, minute, or hour?

— What are the scalability requirements? How many connections does it
support? Can the same connector support similar resources through
configuration support for transactions?

— Does the resource support synchronous or asynchronous connectivity?
It is possible that the resource cannot finish provisioning immediately
and might finish the job at a later time. How does the connector know
when the resource operation is done and how does it handle the
response from the resource?

— Is the connector required to maintain state? If so, what is the required
schema?

2 Determine access requirements for the resource.

— What are the addressing parameters such as TCP/IP address, port
number, URL, and secure IDs?

— Is there authentication information (user ID and password)?

— Are there secure channel parameters?

— Does the connection pass through a proxy server or a firewall? If so,
what are the parameters involved?

3 Determine the requirements for error reporting.

— What errors are supported by the resource?

— What kind of exceptions are reported to OVSI?

— What kind of errors in the resource are reported to OVSI?

— What are the recoverable and non-recoverable exceptions?
36 Chapter 2

4 Determine the requirements for reverse synchronization.

— What changes to identity objects on the resource must be
synchronized with OVSI. For example, if a user's password or address
changes on the resource, is there a requirement that OVSI should be
notified about this?

— How often do changes occur? Are they done in real time or as a batch
job at the end of the day?

— How is information obtained from the resource? The resource might
support an audit log of all changes on the resource, or it might support
a log of all events that are triggered by someone like an administrator.
How is this information retrieved from the resource? Should the
connector support a pull model or a push model?

5 Determine the requirements for child transactions.

— Is an operation invoked on the resource that might trigger child
operations within the resource?

— How should the connector notify OVSI of the status of child
operations?

— What status information about child operations should be reported to
OVSI?

— Is the operation “atomic” or a “best-effort?”

— How does the connector determine when the operation is done?

— Does the resource automatically rollback all previous successful child
operations if one child operation fails?

6 Determine requirements for the policies supported by the resource.

— What are the policies for the identity objects? For example, the
primary key of the identity object must be obtained from another
external system.

— What are the attribute policies? For example, password policy might
restrict in the size, content (maximum length, minimum length,
maximum number of alphabetic characters, minimum number of
numeric characters, and so on), encryption (one-way or two-way), and
so on. What are the limitations on attribute size, masking, and other
parameters?
Functional Requirements and Development Phases 37

Design Phase

Design the connector you will implement following these guidelines:

1 Provide a high-level design of the approach taken for the provisioning
process. Provide the following:

— Mapping of functionality to be supported by the connector to the
functionality supported by the resource.

— Mapping of the OVSI schema to the schema (attribute information)
supported by the resource. This is also referred to as the forward
mapping.

— The Connector API methods that are supported by the connector
implementation.

— Reverse mapping of the attribute information at the time of reverse
synchronization.

— How the implementation solves the cyclic update problem. For
example, a change in object's information triggers an update on the
resource, which might in turn trigger a reverse synchronization with
OVSI for the same object, and vice-versa.

— Use of the JCA framework in the design. Define how the connector
makes use of the framework to address some of the requirements.

— Resource product version. Provide any functionality changes between
versions of the resource application.

2 Provide information about how to address the various requirements:
synchronous versus asynchronous processing, scalability, performance,
security, and so on.

— Can the connector handle a large number of identity objects, such as
users?

— Can it handle large number of entitlements? Is caching, paging, batch
loading, or file loading is used by the connector?

— Can it handle large number of resources?

3 Define whether the connector is agent-based or agent-less.

— Agent-based requires that an agent is installed on the resource with
which the connector implementation interacts. The agent in turn
interacts with the resource or the operating system. Reverse
38 Chapter 2

synchronization is generally possible with an agent-based solution. On
the other hand, an agent-based implementation requires an
installation effort and administration on the resource system.

— An agent-less connector requires complete out-of-box support for all
provisioning operations by the resource or through an SDK.

— Address the advantages and disadvantages for both solutions.

Implementation

Specific information about how to implement the JCA and Connector API
methods is provided in Implementing a Select Identity Connector on page 51.
This procedure provides a general overview.

1 Start with a sample application that can provision identity objects and
perform entitlement assignment s on the identity objects in the resource.

2 Implement all of the required OVSI connector methods to create, read,
update, and identity objects, leveraging the connector template. The main
interface to implement is SIConnectorInterface.

3 Implement all entitlement association and dissociation methods.

4 Pick up all the Log and error strings from a Resource Bundle so that they
can be localized.

5 If necessary, implement an agent to run on the resource machine.

6 Implement a secure way of communication between the connector and
resource, and vice versa. If necessary, use certificates.

7 Implement modules to send SOAP messages containing SPML to the
OVSI Web Service for reverse synchronization (password synchronization
and identity object reverse synchronization).

8 If necessary, deploy the connector Tester Tool for testing the connector.

9 Use IDEs for the development and Apache ANT for build tools.

10 Use the JDK, J2EE, and third-party libraries for further development.
Functional Requirements and Development Phases 39

Integration

Verify the connector’s integration with OVSI as follows:

1 Verify that OVSI is able to look up and use the connector as a resource
adapter to communicate with the new resource.

2 Create a Service that uses this resource.

3 Provision users in the Service, verifying that they are successfully created
in the resource.

4 Associate and disassociate entitlements with users.

5 Verify integration with the OVSI Web Service for user provisioning
through SPML payloads.

Packaging

Package the connector as follows:

1 Include all libraries required by the connector in a RAR file.

2 If you are packaging the JAKARTA project JAR files (commons-*.jar),
they should be of the same version as being used with OVSI.

3 Test the client for unit testing.

4 Determine any schema information (ddl, dml) needed by the connector.

5 Obtain all third-party software licenses and their installation procedures.

Documentation

For future maintenance and distribution, compile the following information
about the connector:

• Detailed documentation on the requirements and design

• User guides

• Configuration guides

You need not package some of the generic JAR files that are
available with OVSI.
40 Chapter 2

• Functionality mapping document

• Schema (or attribute) mapping document

• Installation guides, for agent-less and agent-based solutions

• Javadoc

• Documentation of encryption/decryption used, port numbers of agent, size
of agent foot print, and so on

• Requirements on the system administrator to install the agent on the
resource

• Administration documents
Functional Requirements and Development Phases 41

42 Chapter 2

3 Connector SDK
With OVSI 4.0, a connector SDK (Software Development Kit) is included that
can be used to easily develop OVSI connectors. The SDK includes the
following modules:

• Simplified Connector Interface

• XML Schema Handling

• Generic JCA Interface and Connector Implementation

• Connector Tester Tool

• Connector Template

The SDK provides a generic framework to quickly develop connectors for
OVSI. You do not need to know details of JCA and RAR packaging to use this
SDK. Most of the details of the Connector mapping file parsing and
interpreting is transparent. You just need to focus on the actual connectivity
to the resource and how to provision user/entitlement information into it.

The SDK includes a connector template to start the development and shows
how this template can be customized to build your own connector.

The Connector SDK includes the following folders/files:
 43

Figure 1 Connector SDK Folder/File Structure

Following is a brief description of the contents of the SDK:

Folder File Description

Lib Contains the library Jar files used
to develop your connectors.

Connector.jar Main Connector interface Jar that
includes SIConnector interface,
SIUserModel interface and related
interfaces.

connectorimpl.jar Implementation classes for
SIUserModel, XML schema loader
and so on.
44 Chapter 3

Lib genConnectorImpl.jar Generic Implementation of the
SIConnector interface along with
JCA interface implementation. This
provides the simplified connector
interface SIConnectorInterface.

utils-log.jar Some utility classes include common
log implementation.

ConnectorUtils.jar SPML utility classes.

Template Contains the connector template. A
fully compilable and deployable
dummy connector implementation
that can be customized to write your
own connectors easily. This uses the
generic connector implementation
and implements the simplified
connector interface.

TesterTool Contains a WAR file that includes a
tester servlet that can be deployed
and used to test any OVSI
connector. Also included is a tar.gz
file (for UNIX) that contains the
tester tool client and scripts to
invoke the tester. Several sample
scripts are included that can be
used to send all kinds of
provisioning operations to the
connector.

WebService This includes sample SPML
requests for webservice-based
provisioning into OVSI. It has two
folders for ForwardProvisioning
samples and Reconciliation
samples.

Folder File Description
Connector SDK 45

Simplified Connector Interface

In addition to the existing SIConnector interface, a simplified interface is
introduced in the connector framework with OVSI 4.0. This can be used to
quickly develop connectors for OVSI.

The following diagram illustrates the new architecture.

Figure 2 Simplified Connector Interface Architecture

Figure 4 is annotated as follows:

1 OVSI

2 Generic Connector Implementation Library

3 SIConnectorInterface

4 Resource-specific part of the connector that communicates directly with
the resource or with the agent

5 Agent implementation (for agent-based connectors)

6 OVSI Web Service

Highlights of the Simplified Connector interface are described in the following
sections.
46 Chapter 3

XML Schema Handling

The XML schema mapping file is pre-processed and resource attributes are
provided in the simplified interface. Therefore, you do not need to understand
the structure of the XML file and how to parse it.

Advanced users can still access the schema mapping. A java image of the XML
file data is passed to the connector implementation and can be used to get
details of the mapping.

Generic JCA Interface and Connector Implementation

All the required JCA class/interface implementations are provided. You only
need to focus on the resource interface. This eliminates the need to spend time
trying to understand JCA architecture and data flow.

A single jar file genConnectorImpl.jar is provided with all the required
Generic Connector implementation files. The genConnectorImpl.jar file
needs to be packaged with the connector along with your resource-specific part
of the connector.

You also need to implement the simplified interface SIConnectorInterface,
which contains all provisioning operations.

Connector Tester Tool

The SDK includes a Tester Tool that can be used to test and certify your
connector before you deploy it in OVSI.

After you build the connector, you can use the connector tester tool to test
provisioning operations. The tool consists of the following:

• A standalone servlet WAR module, which invokes the connector directly.

• Sample scripts with SPML requests for all provisioning operations.

• A simple HTTP client to send requests to the tester servlet.
Connector SDK 47

You use the client to run the SPML scripts, which send SPML requests to the
servlet. These SPML requests include instructions for forward-provisioning
operations. The servlet converts SPML requests to Connector API requests
and invokes the connector. The connector then sends the results or errors back
to the servlet. All components of the tester tool are deployed or installed on
the application server where the OVSI server and target connector reside.

To use the tester tool, you must deploy a WAR file on the application server (in
addition to your connector implementation). Then, you can issue SPML
requests to the servlet using the client. The servlet sends the requests to the
connector, to verify that it can receive requests and issue responses.

See Connector Tester Tool on page 105 for details.

The following diagram shows how the Tester Tool is used.

Figure 3 Connector Tester Tool

Some highlights of the Tester Tool are:

• Standalone connector development

The servlet can be deployed in the application server along with the
connector and testing can proceed without OVSI. The tester servlet
directly talks to the connector and this gives the advantage of
pre-certifying the connector before it is staged to OVSI.
48 Chapter 3

• Test Scripts

The Tester Tool provides many scripts with SPML requests for all
operations that can be done through OVSI.

• Performance and Scalability tests

The Tester client can be used to perform bulk/iterative operations to
regression test the connector. Multiple clients can also be used to drive one
connector.

Connector Template

The SDK comes with a connector template named Dummy connector. This is a
fully implemented connector and serves as a real example of connector
implementation. The only missing part is the resource interaction which is
different for different resources.

The Dummy connector implements the simplified interface and can be used as
a reference for developing connectors. See Connector Template on page 173 for
details.
Connector SDK 49

4 Implementing a Select Identity
Connector
This chapter describes how to build a connector, including the connector
interface methods to be implemented and requirements of the agent.

This chapter contains the following sections:

• Development Requirements

• Steps to Implement a Connector for Select Identity

• Building a Connector for Forward Provisioning

• Building a Connector for Reverse Provisioning

• Mapping OVSI Attributes to the Resource Schema

• Some Coding Guidelines

Development Requirements

You must have an understanding of the Java Developer Kit (JDK), version 1.4,
and be familiar with the JCA, version 1.0. In addition, OVSI provides a
Connector SDK that you can use to write your own connectors (see Connector
SDK on page 43 for details). You can download the JCA specification from the
following page:

http://java.sun.com/j2ee/connector/download.html

Also, refer to http://e-docs.bea.com/wls/docs81/jconnector/index.html if
you are creating a WebLogic connector.

For information about the J2EE APIs, including those for connectors, refer to
http://java.sun.com/j2ee/1.4/docs/api/index.html.

For an overview of the OVSI Connector APIs, see OVSI Connector API
Interfaces and Classes on page 21.
 51

http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/j2ee/1.4/docs/api/index.html
http://e-docs.bea.com/wls/docs81/jconnector/index.html

When implementing a connector using the J2EE Connector APIs and the
Select Identity Connector APIs, it is expected that the operations on the
connector instances are called within transactions and from multiple threads.
Also, the connectors must implement adequate synchronization to prevent
data corruption.

For the development environment, the following tools are necessary:

• Java Integrated Development Environment (IDE) — Any Java IDE
supporting JDK 1.4.1 or later, such as Eclipse 3.0, is required.

• Build tool — It is recommended that you use Apache ANT 1.6 or later.

• Connector SDK

Steps to Implement a Connector for Select Identity

The following steps describe how to implement a connector for Select Identity:

• Step 1: Start with the Connector Template

• Step 2: Gather Connector Details

• Step 3: Working with the Connector Template

Step 1: Start with the Connector Template

The connector template and details of files included are explained in
Connector Template on page 173. This is a starting point to build your own
connector for forward provisioning and also for communicating with an agent,
in the case of an agent-based connector.

The template includes build files, a property file, library Jar files, an XML
mapping file, and a dummy implementation of the SIConnectorInterface. You
need to gather your connector-specific information to be able to work with the
template.

Step 2: Gather Connector Details

Before starting to write your own connector, you must collect the following
information:
52 Chapter 4

Resource Details

• Connection parameters

Details needed to access the resource and perform the provisioning
operations, such as IP address, port, admin account, password etc.

Along with the names of these parameters, it is required to have further
details about these connection parameters such as displayName, default
Value, min-length, max length, required or not, encryption needed or not.
This information is needed to populate the GUI page that is integrated
with SI where you provide values for these connection parameters at the
time of deploying the resource.

• Max number of supported connections

• Resource EIS details

Such as Name, Provider, Version. This is needed as part of the RAR
definition.

Resource Schema Details

• Name and details of resource user attributes:

Attribute names such as UserName, Email, Password, CN, SN,
GivenName and so on.

The resource may support and store attributes in one of many ways.
Following are some examples:

— Physical attributes — The resource may support physical attributes
that can be set with values. Resources that support physical attributes
include LDAP servers and SQL databases. In this case, the connector
can directly assign the Select Identity attribute value to the resource
attribute value.

— An abstraction of attributes — Some resources do not support physical
attributes, such as UNIX and Windows systems. For these resources,
the connector can define an intermediate attribute that is used to
store the values defined by OVSI.

— API — The resource may support an API to perform provisioning
operations. Such resources include IBM Tivoli Access Manager and
Netegrity SiteMinder. In this case, the connector must call the
appropriate API method and pass the attribute value to the method.
Implementing a Select Identity Connector 53

Also needed are further details about each attribute such as: default
value, display name, min-length, max-length, required or not.

• Entitlements supported

Connector Code-Related Details

• Connector Name

• Connector Short Name — Used as a prefix for re-naming the template
files

• Java Package name

Step 3: Working with the Connector Template

Once you have the details on developing the connector, as listed in the above
section, you can use the Connector Template to customize and build your
connector.

Following are some of the main steps involved. See each step for details:

1. Prepare the Connector Template Files

2. Check the Library JAR Files

3. Implement the Connector

1. Prepare the Connector Template Files

Complete the following steps to prepare the Connector Template files:

a Create folders for the connector template files.

We will assume the following sample values for the connector
parameters:

Parameter Name Parameter Value Description

Connector src Folder MainDir This is the main folder with all the
connector-related files.

Connector Name My Sample
Connector

A descriptive name for the
connector.
54 Chapter 4

— Create a folder by the name MyConnector and copy the connector
template files under the name dummy into this new folder.

— Create folders MainDir/src/com/my/sample and move the files
under src/com/hp/ovsi/connector/dummy to this folder.

— Go to MainDir/src/com/my/sample and rename the files
DummyConnector.java to MyConnector.java and
DummyParamResources.properties to
MyConnectorParamResources.properties.

b Edit the Connection Properties file.

— Edit MyConnectorParamResources.properties so that the
connection parameters are defined according to your resource
requirements.

Each connection parameter has some properties associated with it
as shown below for the "hostName" connection parameter:

hostName-displayName=Host Name

hostName-defaultValue=MyHost

Connector Short Name com.my.sample

Connection Parameters hostName
port
userName
password

Max # of connections 10

Resource User Attributes userId
password
directory
firstName
lastName
middleName
fullName
department

userId is the primary Key in the
resource.

Resource Entitlement ID groupId groupId is the primary Key in the
resource.

Parameter Name Parameter Value Description
Implementing a Select Identity Connector 55

hostName-helpString=Host name of the server

hostName-minLength=1

hostName-maxLength=80

hostName-pattern=[.]+

hostName-required=false

hostName-tipString=

hostName-type=java.lang.String

hostName-encryptValue=false

— Provide the details for all connection parameters in this file.

— Finally, set the order of the connection parameters to appear in
the property paramOrder at the end of this file.

Each connection parameter is separated by commas. This is the
order in which OVSI shows the connection parameters when the
resource is being deployed/modified/viewed.

c Edit the Connector Implementation file.

The connector main code is to be started from MyConnector.java
which is explained in step 3. Implement the Connector on page 59.
Edit this file to change all occurrences of the word DummyConnector
in this file to MyConnector.

Change the package name to com.my.sample.

d Edit the XML Mapping file.

Go to MainDir/schema, and rename DummyConnectorMapping.xml
to MyConnectorMapping.xml.

This file contains the mappings of user and entitlement attributes
from the Select Identity model to the resource schema. For example, if
you called an attribute userid in the resource, you may have called it
User Name in Select Identity. This mapping must be given even if the
names are the same.

As explained in Resource Schema Details on page 53, there may not
be any physical attribute on the resource that you can map to, but just
have an API. In such cases, you still need to come up with a set of
56 Chapter 4

logical attributes for the user and use this mapping file to map onto
these logical attributes. In your connector code, you take these logical
attribute names and provision the user with their values.

Each user attribute mapping is specified in the objectClassDefinition
with name "SIUser", using an attributeDefinitionReference shown as
follows:

<attributeDefinitionReference name="User Name" required="true"
concero:init="true" concero:tafield="User Name"
concero:resfield="userName" concero:isKey="true" />

The above line in the XML mapping file has the following meaning:

You can have a combination of OVSI attributes mapped onto the same
resource attribute. In this case, the tafield will have a combination.
Following is another example:

<attributeDefinitionReference name="Full Name" required="false"
concero:tafield="[First Name] [Middle Name] [Last Name]"
concero:resfield="fullName"/>

In this example, you enclose the OVSI attribute names in square
brackets to prepare the combination.

e Edit the ra.xml file.

name Name of this particular mapping.

required Specifies whether this attribute is
required or an optional attribute. The
values it can take are "true", "false".

concero:init Specifies whether this attribute is
needed during the creation of the user.
"true" means this is needed, "false"
means not needed.

concero:tafield Name of OVSI attribute.

concero:resfield Name of the resource attribute or the
logical attribute.

concero:isKey Specifies whether this is the identifying
attribute of the user in the resource. This
can be "true" only on one mapping.
Implementing a Select Identity Connector 57

Go to the MainDir/META-INF folder and edit the file ra.xml, to
change the Resource adapter-specific parameters. Change the
following:

f Edit the weblogic-ra.xml file.

If you are going to use BEA WebLogic to deploy this connector, go to
MainDir/META-INFO, edit the file weblogic-ra.xml, and edit this
file:

g Edit the build.properties file.

Change To

display-name value My Sample Connector

vendor-name value Name of your company

eis-type value Type of the Resource EIS. Example
UNIX box, My Application, and so on

Version value Resource EIS version

eis/DummyConnector-
ParamFactory

"eis/MyConnector-Param
Factory"

com.hp.ovsi.connector.d
ummy.DummyConnector

"com.my.sample.MyConnector"

com/hp/ovsi/connector/
dummy/DummyParam
Resources.properties

"com/my/sample/MyConnector
ParamResources.properties"

eis/DummyConnector "eis/MyConnector"

initial-capacity value 0

This is the number of connections to
be open when the connector is
deployed. Typically this is 0 and will
increase upon demand.
58 Chapter 4

Edit the build.properties file to enter all the packaging-related
information:

2. Check the Library JAR Files

Make sure you have the latest versions of the jar files under the following
folders:

• connector_lib

• external_lib

3. Implement the Connector

• You start with writing code in MyConnector.java.

The files as they are prepared in the previous section should be ready to
compile. First, make sure you can compile the source using the Apache
ANT tool for the build.xml file in the MainDir directory and see if
you can output the following files:

— MyConnector.rar

— MyConnectorSchama.jar

• Verify that MyConnector.rar contains MyConnector.class, ra.xml,
weblogic-ra.xml.

connector.build.dir /tmp

This is the folder where you would
like the build files to be placed.

connector.pkg com/my/sample

connector.rar.file MyConnector.rar

schema.jar.file MyConnectorSchema.jar

connection.params.props.
file

MyConnectorParamResources.
properties

connector.name My Sample Connector

connector.version 1.0.1
Implementing a Select Identity Connector 59

• Verify that MyConnectorSchema.jar contains
MyConnectorMapping.xml.

Sample SPML Requests for Reconciliation

There are two types of SPML requests based on the type of resource. The
resource could be an authoritative resource or non-authoritative.

Authoritative Reconciliation SPML Requests

This section shows sample authoritative reconciliation SPML requests for the
following actions:

• Add user

• Delete user

• Modify user

Add User

Following is a sample SPML request for an auth-add reconciliation request:

Note the following:

• keyFields must be <resourceName>_KEY

• all attribute names are OVSI resource attribute names or the names
given in the concero:tafield in the XML mapping file

 <addRequest requestID="12345"
execution="urn:oasis:names:tc:SPML:1:0#asynchronous">
 <operationalAttributes>
 <attr
name="urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName">
 <value>sisa</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#password">
 <value>abc123</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#resourceId">
 <value>LDAP71</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#keyFields">
 <value>LDAP71_KEY</value>
60 Chapter 4

 </attr>
 <attr name="urn:trulogica:concero:2.0#reverseSync">
 <value>true</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#taUserName">
 <value>WSu7301</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#taResourceKey">
 <value>WSu7301</value>
 </attr>
 </operationalAttributes>

 <attributes>
 <attr name="UserName">
 <value>WSu7301</value>
 </attr>
 <attr name="Email">
 <value>user.email@hp.com</value>
 </attr>
 <attr name="State">
 <value>TX</value>
 </attr>
 <attr name="FirstName">
 <value>Abigail</value>
 </attr>
 <attr name="LastName">
 <value>Anderson</value>
 </attr>
 <attr name="Employee ID">
 <value>HP</value>
 </attr>
 <attr name="Zip">
 <value>75000</value>
 </attr>
 </attributes>
 </addRequest>

Delete User

Following is a sample SPML request for auth-delete recon request:

Note the following:

• keyFields must be <resourceName>_KEY

• resource key value of the user is given in the identifier section of the
SPML request
Implementing a Select Identity Connector 61

 <deleteRequest requestID="12345"
execution="urn:oasis:names:tc:SPML:1:0#asynchronous">
 <operationalAttributes>
 <attr
name="urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName">
 <value>sisa</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#password">
 <value>abc123</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#resourceId">
 <value>LDAP71</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#keyFields">
 <value>LDAP71_KEY</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#reverseSync">
 <value>true</value>
 </attr>
 </operationalAttributes>

 <identifier xmlns=""
type="urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName">
 <id>WSu7224</id>
 </identifier>
 </deleteRequest>

Modify User

Following is a sample SPML request for auth-delete recon request:

Note the following:

• keyFields must be <resourceName>_KEY

• resource key value of the user is given in the identifier section of the
SPML request

• all attribute names are SI resource attribute names or the names given in
the concero:tafield in the XML mapping file

• only the mapped attributes must be passed in the request

 <modifyRequest requestID="12345"
execution="urn:oasis:names:tc:SPML:1:0#asynchronous">
 <operationalAttributes>
62 Chapter 4

 <attr
name="urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName">
 <value>sisa</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#password">
 <value>abc123</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#resourceId">
 <value>LDAP71</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#keyFields">
 <value>LDAP71_KEY</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#reverseSync">
 <value>true</value>
 </attr>
 </operationalAttributes>

 <identifier xmlns=""
type="urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName">
 <id>WSu7212</id>
 </identifier>

 <modifications>
 <modification name="FirstName" operation="replace">
 <value>ANNA</value>
 </modification>
 <modification name="LastName" operation="replace">
 <value>ALENDALE</value>
 </modification>
 <modification name="Address 1" operation="replace">
 <value>1525 EAST GATE DRIVE, WITCHITA</value>
 </modification>
 <modification name="Zip" operation="replace">
 <value>62005</value>
 </modification>
 <modification name="State" operation="replace">
 <value>KS</value>
 </modification>
 </modifications>
 </modifyRequest>
Implementing a Select Identity Connector 63

Non-Authoritative Reconciliation SPML Requests

Following are sample requests from a non-authoritative resource. A
non-authoritative resource can only send changes to user entitlements in
OVSI or delete service membership.

This section shows sample non-authoritative reconciliation SPML requests for
the following actions:

• Add user entitlements

• Delete service membership

• Change user entitlements

Add User Entitlements

Following is a request to add entitlements:

Note the following:

• keyFields must be <resourceName>_KEY

• resource key value of the user is given in the identifier section of the
SPML request

 <addRequest requestID="12345"
execution="urn:oasis:names:tc:SPML:1:0#asynchronous">
 <operationalAttributes>
 <attr
name="urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName">
 <value>sisa</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#password">
 <value>abc123</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#resourceId">
 <value>LDAP70</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#keyFields">
 <value>LDAP70_KEY</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#reverseSync">
 <value>true</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#taResourceKey">
64 Chapter 4

 <value>WSu7221</value>
 </attr>
 </operationalAttributes>

 <identifier xmlns=""
type="urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName">
 <id>WSu7221</id>
 </identifier>

 <attributes>
 <attr name="urn:trulogica:concero:2.0#groups">
 <value>HR Managers</value>
 <value>PD Managers</value>
 </attr>
 </attributes>
 </addRequest>

Delete Service Membership

Note the following:

• keyFields must be <resourceName>_KEY

• resource key value of the user is given in the identifier section of the
SPML request

 <deleteRequest requestID="12345"
execution="urn:oasis:names:tc:SPML:1:0#asynchronous">
 <operationalAttributes>
 <attr
name="urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName">
 <value>sisa</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#password">
 <value>abc123</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#resourceId">
 <value>LDAP70</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#keyFields">
 <value>LDAP70_KEY</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#reverseSync">
 <value>true</value>
 </attr>
Implementing a Select Identity Connector 65

 </operationalAttributes>

 <identifier xmlns=""
type="urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName">
 <id>WSu7235</id>
 </identifier>

 </deleteRequest>

Change User Entitlements

Note the following:

• keyFields must be <resourceName>_KEY

• resource key value of the user is given in the identifier section of the
SPML request

 <modifyRequest requestID="12345"
execution="urn:oasis:names:tc:SPML:1:0#asynchronous">
 <operationalAttributes>
 <attr
name="urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName">
 <value>sisa</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#password">
 <value>abc123</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#resourceId">
 <value>LDAP70</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#keyFields">
 <value>LDAP70_KEY</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#reverseSync">
 <value>true</value>
 </attr>
 </operationalAttributes>

 <identifier xmlns=""
type="urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName">
 <id>WSu7233</id>
 </identifier>

 <modifications>
66 Chapter 4

 <modification name='urn:trulogica:concero:2.0#groups'
operation='delete'>
 <value>HR Managers</value>
 </modification>

 <modification name='urn:trulogica:concero:2.0#groups'
operation='add'>
 <value>$UNIX2</value>
 </modification>
 </modifications>

 </modifyRequest>

Building a Connector for Forward Provisioning

To build a connector that performs forward provisioning, which is the process
of provisioning users and their entitlements on the resource, you can
implement an agent-less or agent-based connector, as described in the
following sections.

Agentless Forward Provisioning

This section provides details on all the required methods of implementing
SIConnectorInterface. This part is common for both agent-based and
agent-less implementations. The only difference is that for agent-based
implementation, you implement the methods so that you communicate with
your agent, where as in agent-less implemenation you need to directly
provision into the resource.

To build an agent-less connector, follow these guidelines:

1 Implement a connector for OVSI as described in Steps to Implement a
Connector for Select Identity on page 52.

2 Implement the SIConnectorInterface interface.

The generated template includes a skeleton implementation of
SIConnectorInterface. You must expand each of the methods in the
generated template to communicate with the resource and perform the
provisioning process.
Implementing a Select Identity Connector 67

You must implement the following methods:

• doTest()

Purpose: Performs a connectivity test.

Usage: This is called when a new resource is deployed or an existing
resource is modified in Select Identity and the Test and Submit button
is clicked.

Implementation: The connection parameters bean instance called
mConInfoBean contains values for all parameters. Using this
connection information, try to establish a connection to the resource
and validate the connection information.

• isUserExists(String keyField, String keyValue, boolean keyExistsFlg)

Purpose: Checks for the existence of a user.

Usage: This method is used to check if a user is present in the
resource. The keyField argument identifies the attribute that is
marked as key in the attribute mapping and keyValue contains the
value of this key field.

In most cases, the key field of a user in Select Identity is the same as
the key field of the user in the resource. However, in certain cases,
they might be different and sometimes indeterminate until the user is
actually created in the resource.

The createUser() method should get the user's key field value after the
user is created in the resource and return it the value to the caller
(and eventually OVSI). In this case, the keyExistsFlg argument will
be true, which means that the user was created earlier, after an initial
successful user creation. You can use this to determine if this method
is being called for the first time or to verify if the user exists in the
resource.

Implementation: Using the key value to check if the user exists in the
resource and return the result.

• createUser(String keyField, String keyValue, String passwd, Map
attrMap)

Purpose: Creates a user.

Usage: This method is called to add a user to the resource.
68 Chapter 4

Implementation: Create the user account in the resource using the
given key value, password, and attribute name-value pairs. All of the
attribute name-value pairs are passed in the attrMap argument. The
name of the attribute is the resource attribute name as specified in the
mapping file. The value is in the form of Object[] representing
multiple sub-values of the attribute, if any. For single-valued
attributes, only the first element of the array is populated.

The following sample code can be used to read attribute values:

 String lAttrId = null;

 Object[] lAttrValue = null;

 Iterator lIter = attrMap.keySet().iterator();

 while (lIter.hasNext())

 {

 lAttrId = (String) lIter.next();

 lAttrValue = (Object[]) attrMap.get(lAttrId);

 // …

 }

Use the lAttrValue to set the value of the attribute for creation. If the
resource supports multi-valued attributes, use the Object[] to set all
of the multiple values. If not, you may either set the first one in the
array or combine them into a single value.

After a user is successfully created, the effective key value of the user
should be returned. This may be the same as the one passed in by
Select Identity. Select Identity will save it and pass it back to the
connector for subsequent operations on the same user.

• updateUser(String keyField, String keyValue, Map attrMap)

Purpose: Updates a user.

Usage: This method is called when user's attributes are modified.

The keyValue argument that is passed will be the new key value
that is returned if the user is successfully created.
Implementing a Select Identity Connector 69

Implementation: The attributes of the user to be modified are given in
attrMap with values as instances of TAAttrValueBean. The Operation
field in the TAAttrValueBean defines what must done on each of the
attributes passed in the attrMap: replace, add, delete, or modify,
where modify could mean the addition or deletion of sub-values.

Details of TAAttrValueBean for a user modify operation:

The following examples highlight the user modify operation and detail
of the contents of TAAttrValueBean passed in the above method

The following abbreviations are used in the examples provided in the
tables:

TAAttrValueBean=av

TAAttrMemberValueBean=amv

Example 1: User Modify

Example 2: User Modify

User Modify Operation
Details Contents of TAAttrValueBean

Attribute a1 changed its
value to a new value

a1 - av=[OP_REPLACE, List=[{--. a1sv2}]]
(a1sv2 is the new value.)

Attribute a2 has a new
subvalue

a2 - av=[OP_MODIFY,
List=[amv={OP_ADD, a2mv3}]]
(This adds subvalue a2mv3 to the two
subvalues.)

Attribute a3 has not changed a3 - av=[OP_NOCHANGE,
List=[amv={---,a3sv1}]]
(only given for required fields)

Attribtue a4 has a new
attribute added

a4 - av=[OP_ADD, List=[amv={---,a4sv1}]]
(This adds a new attribute.)

Attribute a5 is deleted a5 - av=[OP_DELETE, List=null]
(An attribute in Select Identity is deleted.)

User Modify Operation
Details Contents of TAAttrValueBean

Attribute a1 is deleted a1 - av=[OP_DELETE, List=null]
70 Chapter 4

Please note that all the attributes marked in the Service are required
and are sent no matter if their value has changed. If the value has not
changed, the contents of TAAttrValueBean for those attributes will
have an operation type of TAAttrValueBean.OP_NOCHANGE.

Exception: Throw ObjectNotFoundException if the user does not exist
in the resource. For all other error conditions, throw
TAConnectorException with the appropriate resource-specific error
message.

• deleteUser(String keyField, String keyValue)

Purpose: Deletes a user.

Usage: This is called when a user is terminated.

Implementation: Perform the delete operation on the resource.

Exception: Throw ObjectNotFoundException if the user does not exist
in the resource. For all other error conditions, throw
TAConnectorException with the appropriate resource-specific error
message.

• setUserStatus(String keyField, String keyValue, int status)

Purpose: Enables or disables a user.

Attribute a2 has changed its
value to a new value

a2 - av=[OP_REPLACE, List=[amv={---,
a2sv4}]
(The value changed to a single subvalue.)

Attribute a3 is nullified a3 - av=[OP_REPLACE, List=[amv=null]]
(only given for required fields)

Attribtue a4 is emptied a4 - av=[OP_REPLACE,
List=[amv={---,””}]]
(Use ““ as a way to empty the value.)

User Modify Operation
Details Contents of TAAttrValueBean

The keyValue argument that is passed will be the new key value
that is returned if the user is successfully created.

The keyValue argument that is passed will be the new key value
that is returned if the user is successfully created.
Implementing a Select Identity Connector 71

Usage: This is called when a Disable All Services or Enable All
Services operation is performed using the OVSI console, with the
value of status given as TAConnector.DISABLED or
TAConnector.ENABLED respectively.

Implementation: Depending on the resource support, the user account
is required to be disabled or enabled, which also might mean
performing lock or unlock operations or revoke or restore operations.

Exception: Throw ObjectNotFoundException if the user does not exist
in the resource. For all other error conditions, throw
TAConnectorException with the appropriate resource-specific error
message.

• findUser(String keyField, String keyValue, Map attrMap, boolean
keyExistsFlg)

Purpose: Gets user details.

Usage: This is an optional method and Select Identity does not call on
this directly. However, it is required using user discovery phase where
all users are retrieved from the resource to synchronize with the OVSI
database. In this case, this method is used to get all attributes of the
user from the resource.

Implementation: Get all attribute values from the resource for the
user, if the user exists. The value of the attribute should be an
instance of TAAttrValueBean.

Exception: Throw ObjectNotFoundException if the user does not exist
in the resource. For all other error conditions, throw
TAConnectorException with the appropriate resource-specific error
message.

• resetPassword(String keyField, String keyValue, String passwd)

Purpose: Resets a user’s password.

Usage: This method is called when the user's password is to be
changed to a new password.

The keyValue argument that is passed will be the new key value
that is returned if the user is successfully created.

The keyValue argument that is passed will be the new key value
that is returned if the user is successfully created.
72 Chapter 4

Implementation: Use the new password passed in by the passwd
argument to change the user's password in the resource.

Exception: Throw ObjectNotFoundException if the user does not exist
in the resource. For all other error conditions, throw
TAConnectorException with the appropriate resource-specific error
message.

• expirePassword(String keyField, String keyValue, boolean flg)

Purpose: Expires or unexpires a user’s password.

Usage: This is called when a user's password is required to be expired
or unexpired.

Implementation: If the value of flg is true, expire password of the user.
After this operation is successful, the user should not be able to use
the existing password to log in to the resource. If the value of flg is
false, unexpire the password.

This method is different from resetPassword() in that the old
password is still valid on the resource but the user will not be able to
use it.

Exception: Throw ObjectNotFoundException if the user does not exist
in the resource. For all other error conditions, throw
TAConnectorException with the appropriate resource-specific error
message.

• getAllUsers(String keyField, TAQuery query)

Purpose: Gets all users in a resource.

Usage: This method is not called by OVSI but is useful when the
connector is used to get all users in the resource for user discovery.

Implementation: Get the key values (IDs) of all users in the resource
that match the given search criteria in the query argument.

• getUsers(String userKeyField, String entKeyField, String entType,
String entKeyValue)

Purpose: Gets all users with a specified entitlement.

The keyValue argument that is passed will be the new key value
that is returned if the user is successfully created.
Implementing a Select Identity Connector 73

Usage: This method is not called by OVSI for general provisioning but
is used for reporting purposes when all entitlements of a user are
required to be reported.

Implementation: Using the entKeyField, entType, and entKey values,
locate the entitlement in the resource and return IDs of all users that
are assigned to this entitlement.

• getEntitlementTypes()

Purpose: Gets all additional entitlement types.

Usage: This method is called during the initial deployment of the
resource in OVSI and is useful only when the connector and resource
support multiple types of entitlements, such as groups, roles,
entitlements, privileges, ACLs, and responsibilities. If the connector
and resource support only one kind of entitlement, this method is
optional and the default entitlement type is used.

Implementation: Return all additional types in the form of String
instances.

• getAllEntitlements(String keyField, TAQuery query)

Purpose: Gets all entitlements in the resource.

Usage: The following uses are supported:

– Retrieve all entitlements in the resource
This is the normal usage of this method, where VSI calls on the
connector to retrieve all entitlements before provisioning a user.
These entitlements are assigned to the user after a successful
create operation.

The value and operation fields of the TAFilter elements in
TAQuery are used to enforce a search criteria. The name field
specifies the entitlement type to indicate retrieval of all
entitlements of the given type.

– Validation of a given entitlement
This is used when OVSI tries to verify that a given entitlement is
present in the resource. The value field of TAFilter element in
TAQuery identifies the entitlement and operation field is
EQUALITY.

– Retrieval of all possible values of a given attribute
This is useful if you want to provide a list of possible values to any
attribute during user provisioning. Generally, the value is entered
74 Chapter 4

but giving a choice restricts invalid values. This is done by
configuring the attribute in OVSI with a Search Connector
function. The name field in the TAFilter contains the name of the
attribute.

Implementation: If the resource does not support entitlements, this is
an optional method and should return an empty collection.

Use the TAQuery parameter to identify the usage of this method and
retrieve all values from the resource. In some cases, the resource
supports a primary or default entitlement on a user, which is set
automatically when the user is created in the resource. The connector
should filter and not return such entitlements to OVSI. Such
entitlements can be managed through separate attributes on the user
rather than having them as entitlements.

• getEntitlements(String userKeyField, String userKeyValue, String
entKeyField)

Purpose: Gets all entitlements of a user.

Usage: This method is not called by OVSI for general provisioning but
is used when all entitlements of a given user are required to be
reported.

Implementation: Return a Collection of EntitlementModel instances.

Exception: Throw ObjectNotFoundException if the user does not exist
in the resource. For all other error conditions, throw
TAConnectorException with the appropriate resource-specific error
message.

• link(String userKeyField, String userKeyValue, String entKeyField,
String entType, List entIds)

Purpose: Assigns entitlements to a user.

Usage: This method is called when trying to assign entitlements to a
user that already exists in the resource. It is required if entitlements
are supported by the connector and resource.

Implementation: Assigning an entitlement to a user might mean
adding the user to the entitlement or adding the entitlement to the
user (or both). These can be different depending on the resource. Once
the user is assigned to the given entitlement, the user gets the
underlying privilege or authority when he or she accesses the
resource.
Implementing a Select Identity Connector 75

The connector should ignore the error condition arising from the
situation where the entitlement is already assigned to the user. It can
simply log the error and not throw an exception to OVSI.

Exception: Throw ObjectNotFoundException if the user does not exist
in the resource. For all other error conditions, throw
TAConnectorException with the appropriate resource-specific error
message.

• unlink(String userKeyField, String userKeyValue, String
entKeyField, String entType, List entIds)

Purpose: Unassigns entitlements from the user.

Usage: This method is called when trying to unassign entitlements
from a user that exists in the resource and is required if entitlements
are supported by the connector and resource.

The connector should ignore the error condition arising from the
situation where the entitlement is already unassigned from the user.
It can simply log the error and not throw an exception to OVSI.

Implementation: This is the reverse operation of assigning
entitlements to user.

3 Package the connector.

You can use the Apache ANT build scripts and deployment descriptors
that are provided with the generated templates. Run Apache ANT using
the build.xml script. The following are the files that are generated by
this script:

— RAR (resource adaptor archive) file, which is a deployable module that
contains all of the classes and library JAR files for the connector.

— Schema (JAR) file, which contains the XML attribute mapping file
and any XSL file, for reverse mapping, to be used with the connector.
The contents of this file must be extracted into a folder that is in the
class path of the application server.
76 Chapter 4

Agent-based Forward Provisioning

Developing a connector that uses an agent for forward provisioning involves
developing an agent that resides on the resource platform. The agent
communicates with the resource application for all forward provisioning
operations.

The following are some of the general requirements for an agent to perform
provisioning:

• Implementing a connector for OVSI. See Steps to Implement a Connector
for Select Identity on page 52 for details.

• Provisioning users and entitlements — The agent is required to support
provisioning of users and their entitlements on the resource.

• Availability — The agent must be a constantly running daemon or process
so that it can accept and process provisioning requests from the client-side
of the connector.

• Scalability — The agent must support a large number of requests.

• Install and Uninstall — The agent must be cleanly installable and
uninstallable. This is particularly important if the agent is deployed on a
large number of resource platforms.

• Security and Reliability — Communication between the client-side of the
connector and agent must be over a secure channel.

The client side of the connector is the JCA side that implements
SIConnectorInterface. The implementation should prepare and send requests
for all forward provisioning operations to the agent residing on the resource
platform and handle responses.

The agent should handle all requests by performing provisioning operations
on the resource application and return the results or error cases.
Implementing a Select Identity Connector 77

Building a Connector for Reverse Provisioning

Reverse provisioning is the process of synchronizing changes that occurred in
the resource with OVSI. Changes can include user additions, modifications,
deletions, password resets, entitlement changes, and so on. The connector can
implement this as described in the following sections.

Agentless Reverse Provisioning

When an agent is not implemented to detect changes on the resource, the
connector should be able to poll the resource for changes. You must implement
the SIConnectorInterface interface and the getChangeLog(ChangeLogCursor
cursor) method. The purpose of this method is to receive a change that
occurred in the resource. OVSI can be configured to poll any connector to
detect changes in the resource. When configured this way, OVSI calls this
method with the appropriate value of the cursor.

To implement getChangeLog, the connector must detect changes that
occurred in the resource and prepare a data structure (SIChangeLogModel)
with the change log entries. This instance can hold all changes that occurred
in one particular polling interval in the ChangeLogEntry instances. As a
checkpoint of the last change detected, a cursor is maintained on the resource
so that the connector’s next call only retrieves changes made since the last
call. This checkpoint could be a timestamp or some sequence number (for
example highest USN). OVSI will store this value and give it back to the
connector when it calls for the next time.

Implementing getChangeLog(ChangeLogCursor)

This method should check the resource for all changes that occurred after the
previous call to this method and must prepare an instance of
SIChangeLogModel with the details of these changes.

SIChangeLogModel represents the changes that occurred in the resource, in a
normalized format. Any resource-specific API return values or format
returned must be parsed and converted into an instance of this class. This
class contains the following main methods:

• setCursor(ChangeLogCursor)
78 Chapter 4

The new value of the cursor must be set in SIChangeLogModel. A cursor
identifies a checkpoint in the resource change log so that a next call to
getChangeLog() will read the changes past this checkpoint.

The cursor class contains an int member to represent the changelog
number. The changelog number is determined by the resource and/or how
you detect changes occurred in the resource. The resource might already
be using a number like this, for example the USN number in case of Active
Directory. This change log number could also be a derivation of timestamp
on the change that occurred in the resource. For example, it could be a
number of seconds since Jan 1 1970 and an int is good till the end of the
year 2036.

Use this integer value on the ChangeLogCurser. setNumber(int) method.

• addCLEntry(ChangeLogEntry)

One instance of SIChangeLogModel can contain multiple instances of
ChangeLogEntry instances, which represents each change. A change
could be that a user is added, modified, deleted.

Internally, SIChangeLogModel uses an ArrayList as a Collection of
ChangeLogEntry instances, and so the order of the entries is maintained
when the Changes are sent to SI for reconciliation.

ChangeLogEntry has the following methods:

— setUserId(String)

This is used to set the id of the user in the resource.

— setChangeType(int)

This is to set the type of change that occurred in the resource.
Following are the possible types:

ChangeLogEntry.USER_ADDED

ChangeLogEntry.USER_MODIFIED

ChangeLogEntry.USER_DELETED

ChangeLogEntry.USER_ENABLED

ChangeLogEntry.USER_DISABLED

ChangeLogEntry.USER_RESET_PASSWD

addAttrEntry(ChangeLogAttribute)
Implementing a Select Identity Connector 79

setChangeType(int) is used to add the attribute value in the change.
This contains the id and value of the attribute. The id should
represent the OVSI id of the attribute and not the physical resource
attribute. If these two are different, re-mapping of the name must be
done.

As an illustration, let us say you have the forward mapping of
attribute as follows:

The name on the left side (Select Identity resource attribute) is the
attribute that Select Identity gives to the connector in SIUserModel
during forward provisioning. The name on the right is the name of the
attribute in the resource that you must set on the resource with the
given value.

Now, when you report the attributes in ChangeLogAttribute, the
change detection on the resource will give you the physical resource
attribute name, such as mail or givenName, and this must be
converted back to Email or FirstName.

If you are using XML mapping file for forward provisioning, the
connector framework provides you access to the Java representation of
this mapping in the form of an instance of TASchema class, by calling
the setSchema(TASchema) method on SIConnectorInterface. The
default implementation of this method is to store this instance in a
member variable of the SIConnectorInterface implementation, and
this can be used for reverse mapping of the attribute names. Here is
an example of how to use this.

Assume we have the following definition:

Private TASchema mTaSchema;

Then, in getChangeLog() implementation you could access the
following:

TASchemaParamBean[] lBeans = mTaSchema.getUserSchema();

Select Identity Resource
Attribute Physical Resource Attribute

UserName uid

Email mail

FirstName givenName

LastName Sn
80 Chapter 4

for (int ii=0; ii<lBeans.length; ii++)

{

 TASchemaParamBean lBean = lBeans[ii];

 lBean.getMappingField() ... // gives the SIResourceAttribute
(or tafield in XML file)

 lBean.getResField() ... // gives the Physical resource
attribute (or resfield)

Standard name for entitlement idnetifiers (IDs):

When you are reporting ChangeLogAttribute for entitlements, you use
the following keyword to represent an entitlement:

urn:trulogica:concero:2.0#groups

Agent-based Reverse Provisioning

The agent is notified of changes that occurred in the resource and notifies
OVSI with all detected changes. The agent notifies OVSI using SPML
requests sent over HTTP or HTTPS to the OVSI Web Service URL. OVSI
consumes these changes by processing them for reconciliation.

In addition to the requirements mentioned in Agent-based Forward
Provisioning on page 77, the following are also required:

• Configuration — The agent’s operational parameters for the SPML
requests, the OVSI Web Service URL, resource identification, and
response handling must be configurable.

• Response handling — The agent should be able to handle the response to
the SPML request sent to OVSI. If the response indicates a success,
proceed with the next event. If not, check if a retry policy should be
applied.

• Retry Policy — The agent should support a policy that defines what must
be done if a request does not reach OVSI or if OVSI cannot process the
request for any reason. Some of the points to consider are as follows:

— Retry count

— Retry interval

— Event drop

— Request delay
Implementing a Select Identity Connector 81

The agent’s change detection capabilities can include adding, modifying, or
deleting a user, or resetting a user’s password. The agent must prepare and
send an SPML request to the OVSI Web Service URL to notify OVSI of this
change. The following events are captured on the resource and a
corresponding SPML request must be sent to OVSI:

• Adding a user
A new user is added on the resource. To propagate this change back to
OVSI, an SPML <addRequest> request must be sent that includes all of
the user’s attributes.

• Changing user attributes
User attributes are modified on the resource. An SPML <modifyRequest>
request must be sent to the OVSI server to synchronize these changes.

• Adding entitlement to a user or removing entitlements from a user
Entitlements are associated or disassociated with an existing user on the
resource. An SPML <modifyRequest> request must be sent with the new
entitlements added or removed.

• Changing a user’s password
A user’s password is changed or reset on the resource. An SPML
<extendedRequest> request must be sent containing the new password.

• Deleting a user
A user is deleted from the resource. An SPML <deleteRequest> request
must be sent for the deleted user.

• Enabling or disabling a user
A user is enabled or disabled on the resource. A SPML <modifyRequest>
request containing all of the user attributes must be sent to propagate the
change(s) to OVSI.

How the changes are captured and how the SPML request is generated are
resource specific. Each generated SPML request is parsed by OVSI using an
XSL file that corresponds to the XML mapping file that enables OVSI to push
data to the resource. (See Mapping OVSI Attributes to the Resource Schema
on page 84 for more information about creating this mapping file.)

The SPML request that is generated for reverse synchronization includes the
following information:

• Operational attributes — Relate to the properties of the OVSI instance to
which the reverse synchronization request is being sent.

• Resource attributes — Define user attributes on the resource.
82 Chapter 4

The following is an example of the operational attributes section of an SPML
request:

<operationalAttributes>
<attr name='urn:trulogica:concero:2.0#reverseSync'>
<value>true</value>

</attr>
<attr name='urn:trulogica:concero:2.0#resourceId'>
<value>AD</value>

</attr>
<attr name='urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName'>
<value>sisa</value>

</attr>
<attr name='urn:trulogica:concero:2.0#resourceType'>
<value>activedirectory</value>

</attr>
<attr name='urn:trulogica:concero:2.0#password'>
<value>abc123</value>

</attr>
</operationalAttributes>

The <attr> elements in this block are as follows:

• urn:trulogica:concero:2.0#reverseSync

Specifies whether this request is a reverse synchronization request. The
value is a boolean set to true if the request is a reverse synchronization
request.

• urn:trulogica:concero:2.0#resourceId

The name of the resource (in OVSI) to which this request is sent.

• urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName

The username of an administrative user in OVSI.

• urn:trulogica:concero:2.0#password

The password of the administrative user.

• urn:trulogica:concero:2.0#resourceType

The name of the XSL file (without the .xsl extension) that is associated
with the resource and that parses the reverse synchronization request.

See SPML Examples on page 125 for examples that are generated for each
type of user change on the resource.
Implementing a Select Identity Connector 83

Mapping OVSI Attributes to the Resource Schema

You must create a file that maps the OVSI fields defined for a user to the
fields used by the resource. The connector will reference this mapping file to
understand the target fields on the resource for each user value. This section
provides an overview of the mapping file.

The LDAP connector provides three mapping files: one for an Active Directory
server (ActiveDir.xml), one for an iPlanet server (iPlanet.xml), and one
for ETrust (CAEtrust.xml). The files are created in XML, according to SPML
standards, and are bundled in a JAR file called schema.jar. In general, all
connectors that provide XML mapping files must provide the following
content.

General Attribute Information

The following operations can be performed in the mapping file:

• Add a new attribute mapping

• Delete an existing attribute mapping

• Modify attribute mappings

Following is an explanation of the elements in the XML mapping files
provided by the LDAP connectors:

• <Schema>, <providerID>, and <schemaID>

Provides standard elements for header information.

• <objectClassDefinition>

Defines the actions that can be performed on the specified object as
defined by that name attribute (in the <properties> element block) and
the OVSI-to-resource field mappings for the object (in the
<memberAttributes> block). In general, the XML mapping file supports
two types of entities: users and groups. These entities are defined in the
mapping file by an <objectClassDefinition> block.

This mapping file is always stored in the com/trulogica/truaccess/
connector/schema/spml directory and the parent folder is packaged in the
schema JAR file.
84 Chapter 4

• <properties>
Defines the operations that are supported on the object. This can be
used to control the operations that are performed through OVSI. The
following operations can be controlled:

— Create (CREATE)

— Read (READ)

— Update (UPDATE)

— Delete (DELETE)

— Enable (ENABLE)

— Disable (DISABLE)

— Reset password (RESET_PASSWORD)

— Change password (CHANGE_PASSWORD)

— Assign entitlements (LINK)

— Unassign entitlements (UNLINK)

— Retrieve entitlements (GETALL)

The operation is assigned as the name of the <attr> element and
access to the operation is assigned to a corresponding <value>
element. You can set the values as follows:

— true — the operation is supported by the connector

— false — the operation is not supported by the connector and will
throw a permission exception

— bypass — the operation is not supported by the connector but will
not throw an exception; the operation is simply bypassed

Following is an example:

<objectClassDefinition name="SIUser" description="Oracle ERP
User">
 <properties>
<attr name="GETCHILDREN">
<value>true</value>

</attr>
<attr name="DELETE">
<value>true</value>

</attr>
<attr name="EXPIREPASSWORD">
Implementing a Select Identity Connector 85

<value>false</value>
</attr>
<attr name="GETALL">
<value>true</value>

</attr>
...

• <memberAttributes>
Defines the attribute mappings. This element contains
<attributeDefinitionReference> elements that describe the mapping
for each attribute. Each <attributeDefinitionReference> can be
followed by an <attributeDefinition> element that specifies details
such as minimum length, maximum length, and so on.

Each <attributeDefinitionReference> element contains the following
attributes:

— name — The name of the attribute definition reference. Make sure
this is followed by an <attributeDefinition> block whose name
attribute matches this name.

— required— Whether this attribute is required in the provisioning
process (set to true or false).

— concero:tafield — The name of the attribute in OVSI. In general,
the attribute assigned to tafield should be the same as the
physical resource attribute, or at least the connector attribute. For
example, it is recommended to have the following:

<attributeDefinitionReference name="FirstName"
required="false" concero:tafield="[givenname]"
concero:resfield="givenname" concero:init="true"
concero:isMulti="true"/>

instead of this:

<attributeDefinitionReference name="FirstName"
required="false" concero:tafield="[FirstName]"
concero:resfield="givenname" concero:init="true"
concero:isMulti="true"/>

— concero:resfield — The name of the attribute from the resource
schema. If the resource does not support physical attributes, this
can be a tag field that indicates a resource attribute mapping.

Also, the attribute name may be case-sensitive; for example, if the
attribute is defined in all uppercase letters on the resource, be
sure to specify it in all uppercase letters here.
86 Chapter 4

— concero:isKey — An optional attribute that, when set to true,
specifies that this is the key field to identify the object on the
resource. Only one <attributeDefinitionReference> can be
specified where isKey="true". This key field does not need to be
the same as the key field of the identity object in OVSI.

Note that for a key field mapping where isKey=”true” and tafield
is not assigned the UserName attribute, UserName should not be
used in any other mapping. That is, UserName can be assigned to
tafield only in cases where it is mapped to the key field in the
resource. Example:

<attributeDefinitionReference name="UserName" required="true"
concero:tafield="[UserName]" concero:resfield="uid"
concero:isKey="true" concero:init="true"/>

— concero:init — Set this to true if this attribute needs to be passed
as part of the creation of the user. You can use this parameter to
control which attributes must be specified during creation and
which must be specified when a user is modified.

— concero:isPassword — Set this to true if the attribute is a
password.

— concero:isMulti — Set this to true if the resource attribute is
multi-valued.

— concero:isSensitive — Set this to true if the attribute is
case-sensitive.

Here is an example:

<memberAttributes>
<attributeDefinitionReference name="ATTR_UserName"
required="true" concero:tafield="UserName"
concero:resfield="[x_user_name][USER_NAME][][VARCHAR]"
concero:isKey="true" concero:init="true"/>

...

The interpretation of the mapping between the connector field (as
specified by the Concero:tafield attribute) and the resource field (as
specified by the Concero:resfield attribute) is determined by the
connector.
Implementing a Select Identity Connector 87

• <attributeDefinition>

Defines the properties of each object’s attribute. For example, the
attribute definition for the Directory attribute defines that it must be
between one and 50 characters in length and can contain the following
letters, numbers, and characters: a-z, A-Z, 0-9, @, +, and a space.

Here is an example:

<attributeDefinition name="ATTR_ResponsibilityKey"
description="Responsibility Key" type="xsd:string" >
<properties>
<attr name="minLength">
<value>1</value>

</attr>
<attr name="maxLength">
<value>128</value>

</attr>
<attr name="pattern">
<value><![CDATA[[a-zA-Z0-9@]+]]> </value>

</attr>

</properties>
</attributeDefinition>

• <concero:entitlementMappingDefinition>

Defines how entitlements are mapped to users. Defining this element for
each entitlement enables you to control the entitlements from the XML
mapping file, instead of the requiring that the connector retrieve a list of
entitlements from the resource. Using this element may not be
appropriate in all cases, but this is one way to do it:

<concero:entitlementMappingDefinition>
<concero:entitlementMap name="Administrators" />

</concero:entitlementMappingDefinition>
<concero:entitlementMappingDefinition>
<concero:entitlementMap name="Backup Operators" />

</concero:entitlementMappingDefinition>
<concero:entitlementMappingDefinition>
<concero:entitlementMap name="Guests" />

</concero:entitlementMappingDefinition>
<concero:entitlementMappingDefinition>
<concero:entitlementMap name="Network Config Operators" />

</concero:entitlementMappingDefinition>
<concero:entitlementMappingDefinition>
<concero:entitlementMap name="Power Users" />
88 Chapter 4

</concero:entitlementMappingDefinition>
<concero:entitlementMappingDefinition>
<concero:entitlementMap name="Remote Desktop Users" />

</concero:entitlementMappingDefinition>
<concero:entitlementMappingDefinition>
<concero:entitlementMap name="Replicator" />

</concero:entitlementMappingDefinition>
<concero:entitlementMappingDefinition>
<concero:entitlementMap name="Users" />

</concero:entitlementMappingDefinition>

<concero:entitlementMappingDefinition>
<concero:entitlementMap name="Debugger Users" />

</concero:entitlementMappingDefinition>
<concero:entitlementMappingDefinition>
<concero:entitlementMap name="HelpServicesGroup" />

</concero:entitlementMappingDefinition>

• <concero:objectStatus>

Defines how to assign status to a user.

• <concero:relationshipDefinition>

Defines how to create relationships between users and groups
(entitlements). Here is an example:

<concero:relationshipDefinition>
<properties>
<attr name="CREATE">
<value>true</value>

</attr>
<attr name="NAVIGATE">
<value>true</value>

</attr>
<attr name="DELETE">
<value>true</value>

</attr>
</properties>
<concero:party concero:entity="SIUser"
 concero:cardinality="ZERO_OR_MORE" concero:start="false" />
<concero:party concero:entity="Group"
 concero:cardinality="ZERO_OR_MORE" concero:start="false" />

</concero:relationshipDefinition>

This example defines the following:

• user-to-group link can be created
Implementing a Select Identity Connector 89

• connector and resource support this operation

• user-to-group link may be deleted

• user can be unassigned from an entitlement

Creating a Mapping File

Create a mapping file that maps each attribute on the physical resource to an
attribute on the connector. (To complete this mapping, attributes must be
created using the OVSI client to map a name on the server to this name on the
connector.) For example, the connector may store the user ID in a field called
userID and the resource may store the ID in a field called user_id. The
connector will reference the mapping file to understand the target field on the
resource for each user value.
90 Chapter 4

The following illustrates the relationship between the fields in OVSI, the
connector, and the resource.

Figure 4 Relationship Between Fields in OVSI, Connector and
Resource

Instances of SIUserModel and EntitlementModel are populated and provided
by OVSI when it calls the SIConnector methods. Obtain user and group
attributes from here and map them to the resource using map file.

You determine the format of the mapping file. The connector may require only
a simple mapping stored in a text file. Here is a simple text file example where
the OVSI field is specified first and a pipe (|) separates the fields:

User Name|UserId
Password|Password
User Name|cn
First Name|givenName
Last Name|sn
Implementing a Select Identity Connector 91

[First Name] [Last Name]|displayName
Title|Title
Directory|homeDirectory
Email|Mail
Address 1|streetAddress

Or, the connector may require a format that supports robust mapping, such as
an XML file. XML mapping files are used by all connectors built and provided
by HP. Here is an excerpt from the iPlanet.xml file, which is provided with
the LDAP connector. Refer to Mapping OVSI Attributes to the Resource
Schema on page 84 for a full description of the file.

<objectClassDefinition name="User" description="LDAP User">
<properties>
<attr name="CREATE">
<value>true</value>

</attr>
<attr name="READ">
<value>true</value>

</attr>
<attr name="UPDATE">
<value>true</value>

</attr>
<attr name="DELETE">
<value>true</value>

</attr>
<attr name="ENABLE">
<value>true</value>

</attr>
<attr name="DISABLE">
<value>true</value>

</attr>
<attr name="RESET_PASSWORD">
<value>true</value>

</attr>
<attr name="EXPIRE_PASSWORD">
<value>false</value>

</attr>
<attr name="CHANGE_PASSWORD">
<value>true</value>

</attr>
</properties>
<memberAttributes>
<!-- For iPlanet -->
92 Chapter 4

<attributeDefinitionReference name="UserName" required="true"
 concero:tafield="[UserName]" concero:resfield="uid"
 concero:isKey="true" concero:init="true"/>
<attributeDefinitionReference name="Password" required="false"
 concero:tafield="[Password]" concero:resfield="userpassword"
 concero:init="true" />

Some Coding Guidelines

Following are code examples for some of the commonly used functions. This
assumes that you are implementing SIConnector to implement the connector.

The code examples are in the following sections:

• Key Value Return

• Key Value Computation

• User Modification

Key Value Return

After a successful creation of the user in the resource, the connector is
supposed to know the key value of the user in the resource. This needs to be
propagated back to OVSI for later referral.

Following is a code snippet to do the above. Basically, you need to call
theSIUserModel.setResUserId() method.

 public TAStatus add(SIUserModel userModel) throws
TAConnectorException {
 String lFuncName = "add(SIUserModel)";
 if (msLogger.isDebugEnabled()) {
 msLogger.debug("ENTER:\r\n"+userModel);
 }
 TAStatus lStatus = new TAStatus(TAStatus.OP_CREATE);

If you are directly implementing the simplified connector interface
SIConnectorInterface, you can still make use of the logic in these snippets,
but the exact methods will not be the same.
Implementing a Select Identity Connector 93

// compute key value
keyValue = …;

…
// add the user in resource
…

 userModel.setResUserId(keyValue);
 catch (TAConnectorException tae) {
 throw tae;
 }
 catch (Exception e) {
 if (msLogger.isWarnEnabled()) {
 msLogger.warn("Unable to create user:" + keyValue, e);
 }
 TAConnectorException tac = new TAConnectorException("Unable to
create user:" + userModel.getResUserId());
 tac.setLinkedException(e);
 throw tac;
 }
 finally {
 if (msLogger.isDebugEnabled()) {
 msLogger.debug("EXIT");
 }
 }

Key Value Computation

At several occurrences during the writing of the connector, the user in the
resource needs to be identified with a key value, and this key value needs to
be used with the underlying resource API or other methods.

It is quite possible that the key value of the user in OVSI might be different
from the key value of the same user in the resource.

To properly address this user, you may want use the following code snippet:

 private String getKeyValue(SIUserModel um, TASchemaParamBean[]
schema)
 throws TAConnectorException
 {
 String keyValue = null;

 // first use the resource key value
 if (um.getResUserId() != null)
94 Chapter 4

 {
 keyValue = um.getResUserId();
 }

 // Check if the key attribute value is set
 if ((null == keyValue) || (keyValue.trim().length() == 0)) {
 for (int i = 0; i < schema.length; i++) {
 if (schema[i].isKey()) {
 keyValue = getSingleValue(um, schema[i].getMappingField()
);
 break;
 }
 }
 }

 // finally use the OVSI user id
 if ((null == keyValue) || (keyValue.trim().length() == 0)) {
 keyValue = um.getUserId();
 }

 if ((null == keyValue) || (keyValue.trim().length() == 0)) {
 String lError = "No primary key specified";
 if (msLogger.isWarnEnabled()) {
 msLogger.warn(lError);
 }
 throw new InvalidParameterException(lError);
 }
 keyValue = keyValue.trim();

 if (msLogger.isInfoEnabled()) msLogger.info("Resource Key
Value="+keyValue);
 um.setResUserId(keyValue);
 return keyValue;
 }

The above code makes sure that you compute the key in this order:

• resource user id field of SIUserModel if available, or

• value of the key attribute as defined in the mapping

• value of the OVSI User id field of SIUserModel

If all of the above fail to produce a valid key field value, then you should throw
an exception to the caller.
Implementing a Select Identity Connector 95

User Modification

User modification might mean any of the following:

• Add a new attribute (with some value)

• Delete an existing attribute

• Add a new value to an existing multi-valued attribute

• Delete an existing value from a multi-valued attribute

• Clearing out all values of an attribute

• Replacing an attribute with a new value

Loading Existing User From Resource

To perform most of the above operations, it might be necessary to load the
existing value of the user from the resource. In such cases, you may want to
load only those attributes that are being modified.

In OVSI 4.0, it is now possible to find out what attributes of the user are being
modified by looking at the contents of SIUserModel. Following is a code
snippet to do this:

 // List of attr Ids to be loaded from resource, for update

TASchemaParamBean[] schemaBeans = getUserSchema();
String resKeyField = getKeyField(schemaBeans, "User");
String keyValue = getKeyValue(userModel, schemaBeans);

List lRetAttrIds = new ArrayList();
for (int index = 0; (index < schemaBeans.length); index++) {
 bean = schemaBeans[index];
 lTaField = schemaBeans[index].getMappingField();

 // pick up only those attrs that can be updated
 if ((!bean.isUpdate()) || // not updateable
 (!userModel.isAttrPresent(lTaField)) || // not being modified
 bean.getResField().equalsIgnoreCase(resKeyField) || // key
field
 hasCompositeMapping(schemaBeans[index])) // has
composite mapping
 {
96 Chapter 4

 continue;
 }

 lRetAttrIds.add(bean.getResField());
 }

 String ctx = getContext(schemaBeans, userModel, "User", false);
 Attributes lResAttrs = loadResourceAttrs(ctx, resKeyField, keyValue,
lRetAttrIds);

Computing Changes to Be Made

Once the user attributes are loaded, a thorough check is needed on each
attribute to see what value is being changed and the difference to be executed
on the resource.

Following is a code snippet from an LDAP connector to compute this change
and prepare a modification:

 /**
 * Build ModificationItems based on functions on th attribute value
and attr member values
 *
 * @param mods ModificatoionItem List to be updated
 * @param userModel passed in by OVSI
 * @param bean the attribute being modified
 * @param attrValueBean value of the attribute given by OVSI
 * @param resAttr Value of the attribute in resource
 */
 public static void buildAndAddModifications(
 List mods,
 SIUserModel userModel,
 TASchemaParamBean bean,
 TAAttrValueBean attrValBean,
 Attribute resAttr)

 throws Exception
 {
 String lFuncName = "buildAndAddModifications()";
 if (msLogger.isDebugEnabled()) {
 msLogger.debug("ENTER");
 }

 Object[] value = null;
 ModificationItem modItem = null;
Implementing a Select Identity Connector 97

 Attribute siAttr = null;
 Attribute lMergedAttr = resAttr;

 switch (attrValBean.getOperation()) {
 case TAAttrValueBean.OP_REPLACE:
 {
 value = attrValBean.getValues();
 siAttr = buildLdapAttribute(bean.getResField(), value);
 mods.add(new ModificationItem(DirContext.REPLACE_ATTRIBUTE,
siAttr));
 }
 break;

 case TAAttrValueBean.OP_ADD:
 {
 value = attrValBean.getValues();
 siAttr = buildLdapAttribute(bean.getResField(), value);
 lMergedAttr = mergeAttributes(resAttr,
DirContext.ADD_ATTRIBUTE, siAttr);
 if (lMergedAttr != null)
 {
 mods.add(new ModificationItem(
DirContext.REPLACE_ATTRIBUTE, lMergedAttr));
 }
 }
 break;

 case TAAttrValueBean.OP_DELETE:
 {
 if ((resAttr != null) && (resAttr.size() > 0))
 {
 mods.add(new ModificationItem(DirContext.REMOVE_ATTRIBUTE,
 new BasicAttribute(bean.getResField(), null)));
 }
 }
 break;

 case TAAttrValueBean.OP_MODIFY:
 {
 ArrayList lAddValues = new ArrayList();
 ArrayList lDelValues = new ArrayList();
 attrValBean.categorizeValues(lAddValues, lDelValues);

 if (lAddValues.size() > 0) {
 siAttr = buildLdapAttribute(
98 Chapter 4

 bean.getResField(), lAddValues.toArray(new String[0]
));
 lMergedAttr = mergeAttributes(lMergedAttr,
DirContext.ADD_ATTRIBUTE, siAttr);
 if (lMergedAttr == null)
 {
 lMergedAttr = resAttr;
 }
 }
 if (lDelValues.size() > 0) {
 siAttr = buildLdapAttribute(
 bean.getResField(), lDelValues.toArray(new String[0]
));
 lMergedAttr = mergeAttributes(lMergedAttr,
DirContext.REMOVE_ATTRIBUTE, siAttr);
 }
 if (lMergedAttr != null)
 {
 mods.add(new ModificationItem(DirContext.REPLACE_ATTRIBUTE,
lMergedAttr));
 }
 }
 break;

 default:
 }
 }

 /**
 * Merge the resource and si attrs based on operation:
 * return (resAttr - siAttr) or
 * return (resAttr + siAttr) or
 * return siAttr if (resAttr != siAttr)
 *
 * @param siAttr
 * @param op
 * @param resAttr
 * @return
 * @throws Exception
 */
 public static Attribute mergeAttributes(Attribute resAttr, int op,
Attribute siAttr)
 throws Exception
 {
 Attribute lAttr = null;
 Object lAttrVal = null;
Implementing a Select Identity Connector 99

 boolean lNoChangeFlg = true;

 switch (op)
 {
 case DirContext.ADD_ATTRIBUTE:
 {
 if (resAttr == null)
 {
 lAttr = siAttr;
 lNoChangeFlg = false;
 }
 else
 {
 lAttr = (Attribute) resAttr.clone();
 NamingEnumeration ne = siAttr.getAll();
 while (ne.hasMoreElements())
 {
 lAttrVal = ne.nextElement();
 if (!lAttr.contains(lAttrVal))
 {
 lAttr.add(lAttrVal);
 lNoChangeFlg = false;
 }
 }
 }
 }
 break;

 case DirContext.REMOVE_ATTRIBUTE:
 {
 if (resAttr != null)
 {
 lAttr = (Attribute) resAttr.clone();
 NamingEnumeration ne = siAttr.getAll();
 while (ne.hasMoreElements())
 {
 lAttrVal = ne.nextElement();
 if (lAttr.contains(lAttrVal))
 {
 lAttr.remove(lAttrVal);
 lNoChangeFlg = false;
 }
 }
 }
 }
 break;
100 Chapter 4

 default:
 case DirContext.REPLACE_ATTRIBUTE:
 {
 if (resAttr == null)
 {
 lAttr = siAttr;
 lNoChangeFlg = false;
 }
 else
 {
 NamingEnumeration resAttrEnum = resAttr.getAll();
 while (resAttrEnum.hasMoreElements())
 {
 lAttrVal = resAttrEnum.nextElement();
 if (!siAttr.contains(lAttrVal))
 {
 lNoChangeFlg = false;
 }
 }

 if (lNoChangeFlg)
 {
 NamingEnumeration siAttrEnum = siAttr.getAll();
 while (siAttrEnum.hasMoreElements())
 {
 lAttrVal = siAttrEnum.nextElement();
 if (!resAttr.contains(lAttrVal))
 {
 lNoChangeFlg = false;
 }
 }
 }

 lAttr = siAttr; // in case, we have to replace
 }
 }
 }

 return (lNoChangeFlg) ? null : lAttr;
 }
Implementing a Select Identity Connector 101

Matching Managed Connections

Connections (or instances of SIConnector) are created by the application
server on a demand basis, when an operation is called on the connector. This
connection is returned back to the application server connection pool upon
completion of the operation. However, the physical connection to the resource
need not be destroyed until the application server explicitly makes the
request.

The application server calls on the ManagedConnectionFactory
implementation to match connections in the pool before creating a new
connection. The criteria for matching the connection must depend on all the
connection parameters that are passed in the TAConnectorParamValueBean
implementation.

Following is a code snippet to show the matching:

public ManagedConnection matchManagedConnections(
Set arg0,
Subject arg1,
ConnectionRequestInfo arg2)
throws ResourceException {

if (!(arg2 instanceof TAConnectorParamValueBean)) {
throw new ResourceException(

"Invalid parameter:Expected "
+

LDAPParamValueBean.class.getName());

}

// Make a local copy of the bean
 LDAPParamValueBean lBean = new

LDAPParamValueBean((TAConnectorParamValueBean) arg2);

for (Iterator it = arg0.iterator(); it.hasNext();) {
Object conn = it.next();
if (conn instanceof LDAPManagedConnection) {

LDAPManagedConnection ldapc = (LDAPManagedConnection)
conn;

LDAPParamValueBean o = ldapc.getBean();
if (o.equals(lBean)) {

if (msLogger.isInfoEnabled()) msLogger.info("Found
matched Connection:"+ldapc);

return ldapc;
102 Chapter 4

}
}

}
if (msLogger.isDebugEnabled()) msLogger.warn("Unable to find

matched connection");
return null;

}

The equals() method of LDAPParamValueBean looks like this:

public boolean equals(LDAPParamValueBean other) {
 return hashCode() == other.hashCode();
 }

 public int hashCode()
 {
 return this.toString().hashCode();
 }

 public String toString() {
 StringBuffer sb = new StringBuffer("LDAPParamValueBean[");

 String lKey = null;
 java.util.Iterator lIter = mValuesMap.keySet().iterator();
 while (lIter.hasNext())
 {
 lKey = (String) lIter.next();
 sb.append(lKey).append("=").append(get(lKey)).append(",");
 }
 sb.append("]");
 return sb.toString();
 }

And so it depends on all the connection parameters kept in mValuesMap.

Schema Reloading

The attribute mapping file (or the file that has this mapping) must be
reloaded only when test() method is called. This method is called when the
OVSI resource using this connector implementation is either newly deployed
or updated. Following are the steps involved:

• Clear out the old mapping information

• Reload the file and mapping again
Implementing a Select Identity Connector 103

104 Chapter 4

5 Connector Tester Tool
After you build the connector, you can use the connector tester tool to test
provisioning operations. The tool certifies the connector before it is deployed
in OVSI. It consists of the following:

• A standalone servlet WAR module, which is deployed on the application
server where the OVSI server is deployed and where the target connector
is installed

• SPML scripts that perform all forward-provisioning operations supported
by OVSI

• A client that sends requests to the servlet (by running the SPML scripts)

The following diagram illustrates how the tester tool communicates with the
connector.

Figure 5 Connector Tester Tool Communication with the Connector
 105

Using the client, you run the scripts, which send SPML requests to the
servlet. The servlet converts SPML requests to Connector API requests and
invokes the connector. The connector then sends the requests to the resource
application. The connector then sends results or errors back to the servlet.

The client can be used to perform bulk or iterative operations, for regression
testing of the connector. You can use multiple clients for this purpose.

This chapter contains the following sections:

• Installing the Tester Tool

• Testing the Connector

• Tester Tool Scripts

Installing the Tester Tool

The Connector Tester Tool is part of the Connector SDK as shown in the
following figure:
106 Chapter 5

Figure 6 Connector SDK Structure With the Tester Tool

The following files are provided:

• ConnectorTester.war -— The web application module that contains the
servlet.

• CTClient.tar.gz — The client library and sample scripts if you intend
to install the client on a UNIX application server

Complete the following steps to deploy and install the servlet WAR module,
SPML scripts, client, and connector:

1 Copy the ConnectorTester.war file (for UNIX) from the
/ConnectorSDK/ directory on the OVSI Connector CD to the local
system.

2 Deploy the WAR file in the application server. Here is an example of how
to deploy the file on WebLogic:

a Log on to the WebLogic Server Console. (To load the console, load its
URL in a browser. The URL is typically http://localhost:7001/
console.)

b Navigate to My_domain → Deployments.
Connector Tester Tool 107

c Click Web Application Modules.

d In the right side of the page, click Deploy a new Web Application
Module... .

e Locate and select the ConnectorTester.war file, then click the
Target Module button.

f Click the Deploy button.

WebLogic loads and deploys the WAR file. It should report "Success" in the
Status of Last Action column on the next page.

For further verification, enter the URL of the tester servlet in an Internet
Explorer browser: http://localhost:port/ConnectorTester (where
localhost and port are those of the application server). If the servlet is
deployed correctly, the following is displayed:

SI TestConnector servlet is up !!!

3 To install the client and scripts, extract the contents of the
CTClient.tar.gz file to a directory on the server. The following
directories and files are created in the target directory:

4 Install and deploy your implementation of the connector on the
application server. Refer to Installing a Connector On WebLogic on
page 117 and Configuring a Connector in OVSI on page 120 for
instructions.

To verify that the connector is deployed properly, make sure that the JNDI
names for the connector's connection factory and parameter factory are
listed in the application server's JNDI tree view.

Subdirectory Contents

bin/ The run.ksh file (for UNIX), which run the client

lib/ The library JAR files needed by the client to invoke
an HTTP request that is sent to the servlet

samplescripts/ The sample scripts that perform
forward-provisioning operations through the
connector
108 Chapter 5

http://localhost:port/ConnectorTester

Testing the Connector

Complete the following steps to test the connector using the tester tool. See
each step for details:

• Step 1: Get the connection parameters of your connector.

• Step 2: Prepare the properties file with names and values of these
connection parameters.

• Step 3: Test the connection to the resource.

• Step 4: Run the Tester Tool client using one of the scripts.

Step 1: Get the connection parameters of your connector.

a Be sure the JAVA_HOME environment variable is set.

b Change directories to the install_dir/bin directory and run run.ksh (on
UNIX) to invoke the tester client.

c Be sure you have the following information to work with the tester
tool scripts:

— JNDI name of the connection factory

— All parameters (and values) defined by the
TAConnectorParameterFactory implementation and contained in
the extension of TAConnectorParamValueBean

You can use the script getConnectionParams.xml to get the connection
parameters of the connector you are testing. Following is an example:

Edit the ctOpAttributes.properties file to set the correct
Connection factory JNDI Name of your connector. For example eis/
LDAPv3 and run it against the Tester Tool as follows:

run ../samplescripts/getConnectionParams.xml
http://localhost:7001/ConnectorTester

You will see a response like this:

<spml:extendedResponse xmlns:spml='urn:oasis:names:tc:SPML:1:0'
xmlns:dsml='urn:oasis:names:tc:DSML:2:0:core' requestID='1769'
result='urn:oasis:names:tc:SPML:1:0#success'>
 <spml:operationalAttributes>
 <dsml:attr name='urn:trulogica:concero:2.0#resourceId'>
Connector Tester Tool 109

 <dsml:value>eis/LDAPv3</dsml:value>
 </dsml:attr>
 <dsml:attr name='urn:trulogica:concero:2.0#elapsedTime'>
 <dsml:value>511</dsml:value>
 </dsml:attr>
 <dsml:attr
name='urn:trulogica:concero:2.0#connectionParams'>
 <dsml:value>accessURL</dsml:value>
 <dsml:value>suffix</dsml:value>
 <dsml:value>rootDN</dsml:value>
 <dsml:value>rootPassword</dsml:value>
 <dsml:value>userPrefix</dsml:value>
 <dsml:value>userSuffix</dsml:value>
 <dsml:value>userObjectClass</dsml:value>
 <dsml:value>groupSuffix</dsml:value>
 <dsml:value>groupObjectClass</dsml:value>
 <dsml:value>groupIdAsDn</dsml:value>
 <dsml:value>cleanUpGrpsOnDel</dsml:value>
 <dsml:value>mappingFile</dsml:value>
 </dsml:attr>
 </spml:operationalAttributes>
</spml:extendedResponse>

Step 2: Prepare the properties file with names and values of these
connection parameters.

You can use the response from the above operation to put all the
connection parameters for your connector. Then provide values for each of
these parameters in this file.

Following is an example of the properties file for an LDAP resource:

urn\:trulogica\:concero\:2.0#resourceId=eis/LDAPv3
accessURL=ldap://127.0.0.1:62394
suffix=dc=americas,dc=hpqcorp,dc=net
rootDN=cn=Directory Manager
rootPassword=abcd1234
userPrefix=
userSuffix=ou=People
userObjectClass=top,person,organizationalPerson,inetorgperson
groupSuffix=ou=Groups
cleanUpGrpsOnDel=true
groupObjectClass=top,groupofuniquenames
mappingFile=iPlanet.xml
110 Chapter 5

Step 3: Test the connection to the resource.

Run the doTest.xml script to test the connectivity between the connector
and the resource (or agent).

You need to do this next after running the getConnectionParams.xml
script and setting up your ctOpAttributes.properties file.

Following is a sample result of doTest:

Failure Case (Invalid resource password used):

<spml:extendedResponse xmlns:spml='urn:oasis:names:tc:SPML:1:0'
xmlns:dsml='urn:oasis:names:tc:DSML:2:0:core' requestID='1769'
result='urn:oasis:names:tc:SPML:1:0#failure'
error='urn:oasis:names:tc:SPML:1:0#customError'>
 <spml:operationalAttributes>
 <dsml:attr name='urn:trulogica:concero:2.0#resourceId'>
 <dsml:value>eis/LDAPv3</dsml:value>
 </dsml:attr>
 <dsml:attr name='errorMessages'>
 <dsml:value>Code=urn:trulogica:concero:2.0#generalError,
Message=[LDAP: error code 49 - Invalid Credentials]</dsml:value>
 </dsml:attr>
 </spml:operationalAttributes>
 <spml:errorMessage>Failure in Handling request</spml:errorMessage>
</spml:extendedResponse>

Success Case:

<spml:extendedResponse xmlns:spml='urn:oasis:names:tc:SPML:1:0'
xmlns:dsml='urn:oasis:names:tc:DSML:2:0:core' requestID='1769'
result='urn:oasis:names:tc:SPML:1:0#success'>
 <spml:operationalAttributes>
 <dsml:attr name='urn:trulogica:concero:2.0#resourceId'>
 <dsml:value>eis/LDAPv3</dsml:value>
 </dsml:attr>
 <dsml:attr name='urn:trulogica:concero:2.0#elapsedTime'>
 <dsml:value>3826</dsml:value>
 </dsml:attr>
 </spml:operationalAttributes>
</spml:extendedResponse>
Connector Tester Tool 111

Step 4: Run the Tester Tool client using one of the scripts.

Following is an example of sending an Add User Request to the connector:

run ../samplescripts/addUser.xml http://localhost:7001/
ConnectorTester

This sends the contents of the addUser.xml script to the servlet deployed
in the local application server instance. See Tester Tool Scripts on
page 113 for a list and description of each SPML script available for use
with the tester client.

Tester Tool Scripts

The servlet is driven by SPML requests. The sample scripts provide a basis for
creating (or generating) your own scripts to test the connector
implementation. The following sections describe the sample scripts and the
operations they perform.

Initial Connectivity-Related Scripts

• getConnectionParams.xml
Retrieves the connection parameters for the resource. The properties file
(created in step Step 2: Prepare the properties file with names and values
of these connection parameters. on page 111) must specify the
urn\:trulogica\:concero\:2.0#resourceId value set to the JNDI
name. All others are retrieved from the connector. This is useful in the
initial stage if you do not have the connection parameter information.

• getUserAttrDefinitions.xml
Retrieves all user attributes as configured in the schema mapping.

• getEntAttrDefinitions.xml
Retrieves all entitlement attributes.

• doTest.xml
Performs a connectivity test between the connector and the resource,
where all the connection parameters are validated. Typically, if this fails,
one or more connection parameters is not given or is assigned an invalid
value.
112 Chapter 5

Provisioning-Related Scripts

• getAllEntitlements.xml
Retrieves all entitlements in the resource. Optionally, you can set the
value of the identifier element with the user ID to get all entitlements of
the given user.

• getFilteredEntitlements.xml
Performs a filtered search for entitlements.

• isUserExists.xml
Verifies that a user exists in the resource.

• addUser.xml
Adds a new user.

• addUser-ents.xml
Adds a user with a set of entitlements.

• addUser-mva.xml
Adds a user with one multi-valued attribute.

• modifyUser.xml
Modifies an attribute value of the user.

• modifyUser-attr-del.xml
Modifies a user by deleting an attribute from the user.

• modifyUser-ents-add.xml
Modifies a user by adding an entitlement.

• modifyUser-ents-del.xml
Modifies a user by deleting an entitlement.

• modifyUser-mva-add.xml
Modifies a user by adding a sub-value to a multi-valued attribute.

• modifyUser-mva-del.xml
Modifies a user by deleting a sub-value from a multi-valued attribute.

• modifyUser-mva-replace.xml
Modifies a user by replacing all sub-values of a multi-valued attribute.

• resetPassword.xml
Resets a user’s password.

• expirePassword.xml
Expires or unexpires a user's password.
Connector Tester Tool 113

• disable.xml
Disables a user.

• disableSvcMembership.xml
Removes all entitlements from a user.

• enable.xml
Enables a user.

• enableSvcMembership.xml
Adds a list of entitlements to a user.

• getUser.xml
Retrieves the current attribute values for a user in the resource.

• getUserEntitlements.xml
Retrieves all user entitlements.

• deleteUser.xml
Deletes a user.

Bulk Provisioning Scripts

• batchAdd.xml
Adds a list of users.

• batchModify.xml
Modifies one attribute on a list of users.
114 Chapter 5

Connector Tester Tool 115

116 Chapter 5

6 Installation and Deployment
This chapter describes how to install and deploy your connector once you have
built it.

This chapter contains the following sections:

• Installing a Connector On WebLogic

• Configuring a Connector in OVSI

Installing a Connector On WebLogic

To deploy the connector on the OVSI server, you must copy the connector files
to the target locations and configure the application server. The following
procedures provide general guidelines for installing a connector on the
supported application servers; the details will depend on how the connector
was implemented and the type of application server.

Complete the following steps to install the connector on the WebLogic Server:

1 Create a subdirectory in the OVSI home directory where the connector’s
RAR file will reside.

2 Copy the RAR file to the connector subdirectory.

3 Create a schema subdirectory in the OVSI home directory where the
connector’s mapping file(s) will reside.

4 Extract the contents of the JAR file to the schema subdirectory.

5 Ensure that the CLASSPATH environment variable in the WebLogic
server startup script references the schema subdirectory.
 117

6 Modify the mapping file to reflect the attribute names in OVSI and on the
resource, if necessary.

7 Start the application server if it is not currently running.

8 Log on to the WebLogic Server Console.

9 Navigate to My_domain → Deployments → Connector Modules.

10 Click Deploy a New Connector Module.

11 Locate and select the RAR file from the list. It is stored in the connector
subdirectory.

12 Click Target Module.

13 Select the My Server (your server instance) check box.

14 Click Continue. Review your settings.

15 Keep all default settings and click Deploy. The Status of Last Action
column should display Success.

If the connector is a two-way connector and uses an agent, install and
configure the agent on the resource with which the connector communicates to
provision users. The agent may also be used to synchronize changes to the
identity objects, pushing the changes from the resource to OVSI.

Configuring a Connector in OVSI

After you create a connector, you can configure it for use by OVSI using the
OVSI client (interface). The following provides an overview of the procedures
you must complete in order to deploy your connector:

1 After you build and install the connector, you must register it with OVSI.
Do so on the home page of the Connectors tab by clicking the Deploy New
Connector button. Complete this procedure, referencing your connector
files, as described in the “Connectors” chapter of the HP OpenView Select
Identity Administrator Guide.

2 You must deploy the resource that uses the newly created connector. On
the home page of the Resources tab, click the Deploy New Resource button.
Complete the steps in this procedure, referencing the new connector
created in step 1, as described in the “Resources” chapter of the HP
OpenView Select Identity Administrator Guide.
118 Chapter 6

3 Create attributes that link OVSI to the connector. For each mapping in the
connector’s mapping file, create an attribute using the Attributes
capability on the OVSI client. Refer to the “Attributes” chapter in the HP
OpenView Select Identity Administrator Guide for more information.

4 Create a Service that will use the newly created resource. To do so, click
the Deploy New Service button on the home page of the Services tab.
Complete this procedure as described in “Services” of the HP OpenView
Select Identity Administrator Guide. You will reference your new resource
created in step 2 while creating this Service.
Installation and Deployment 119

7 HP Openview Select Identity Web
Service
HP OpenView Select Identity (OVSI) provides the ability to provision users in
repositories. Using the Web Service, you can programmatically provision users
in OVSI. Consider the following example:

Company X's Human Resources department relies on an enterprise
resource planning (ERP) application to manage employees. When a new
employee is hired, the HR department adds the employee to the system.
However, the new hire will need email and network accounts and access to
the systems on which he will fulfill his job responsibilities. The OVSI Web
Service enables you to automate the ERP application to send a request to
provision the user. Then, OVSI can create the necessary accounts and
access privileges on Company X's systems according to the services
defined for the user.

This chapter contains the following sections:

• Web Service Operations

• Issuing Requests

• SPML Requests Implemented by OVSI Web Service

• SPML Examples

• External Authentication of Requests
 121

Web Service Operations

The Web Service enables you to perform the following operations:

• User provisioning

Most of the user operations provided by the Users home page of the OVSI
client can be performed using the OVSI Web Service. These operations are
initiated from an external source and the changes are made in OVSI. Here
is a list of supported operations:

— Add a user

— Enable a user

— Modify user attributes (except passwords) and entitlements

— Delete a user

— Retrieve a user profile

— Enable or disable service membership

— Reset or change a user's password

— Terminate a user

• Password synchronization

Using the Web Service, you can change a user's password on a resource
then synchronize with OVSI to change the password stored in the OVSI
repository. This is called reverse synchronization. This enables a resource
to push user information to OVSI. The agent (provided by a two-way
connector) on the resource tracks changes made on the resource and
synchronizes with OVSI.

Rules identify the Services that are affected when a reverse
synchronization operation is issued based on the resource ID sent by the
resource. Rules also specify the location of the reverse mapping that
should to be performed for add and modify operations, such as NT Domain
Resource -> ntuser.properties. Thus, reverse synchronization can be
performed only for those services with specified rules a mapping for the
incoming resource ID. If rules or the mapping does not exist, the request is
logged and ignored.
122 Chapter 7

• Reconciliation

The Web Service also enables an external resource to issue a reconciliation
request. Thus, the resource can issue a reconciliation request, sending the
data to add or update in OVSI. Through reconciliation, the following
operations can be performed using the Web Service:

— Add a user, if the resource is authoritative

— Add attributes to an existing user, if the resource is non-authoritative

— Modify a user

— Delete a user

These operations can be performed singularly or in a batch. For in-depth
information about reconciliation and authoritative versus
non-authoritative resources, refer to the HP OpenView Select Identity
Administrator Guide.

In addition, the resource-specific attribute names contained in the SPML
request must be converted to the attribute names defined by the resource
(XML) mapping file. To do this, the SPML request is parsed using an XSL file,
which must be provided with the connector.

Issuing Requests

External systems can send Simple Object Access Protocol (SOAP) messages to
OVSI for user provisioning, to which the Web Service will send a response.
Then, OVSI can push the users to the appropriate resources as defined by the
services assigned to the users. The Web Service was implemented according to
the OASIS Service Provisioning Markup Language (SPML) specification,
which defines concepts, operations, and the XML schema for an XML-based
provisioning request and response protocol. Refer to the specification for
details about all standard elements and attributes.

To issue requests to OVSI in order to provision users and synchronize data,
the external system must send a SOAP message containing a SPML request.
The request must be sent to the following URL:

http://select_identity_host:port/lmz/webservice/
HP Openview Select Identity Web Service 123

http://select_identity_host:port/lmz/webservice/

Refer to the online help on the OVSI CD (in the docs/api_help/
web_service/help directory) for a client example that issues a request and
handles responses.

SPML Requests Implemented by OVSI Web Service

The following SPML requests are supported by OVSI Web Service:

• <addRequest>

• <deleteRequest>

• <extendedRequest>

• <modifyRequest>

• <searchRequest>

• <batchRequest>

Refer to the online help provided on the OVSI CD (in the docs/api_help/
web_service/help directory) for information about each of these elements.
Also, sample XML files are provided to illustrate how to use these elements;
refer to the SampleXML/Web Service and SampleXML/Reconciliation/
Web Service directories on the CD.

The Web Service SPML requests can be sent for either of the two following
reasons:

• Forward Provisioning

This is the case when external systems want to provision users into OVSI
services.

• Reconciliation

This is the case when agents want to reconcile a change event that
occurred in the resource and want to sync up with OVSI. This reconcile
event is handled by the OVSI reconciliation engine and is carried over to
other resources that are related by the service which was affected by this
change.
124 Chapter 7

SPML Examples

This section provides examples of SPML you must send when issuing
requests. All sample SMPL requests are provided in the ConnectorSDK folder
under the WebService subfolder.

Forward Provisioning Examples

Adding a User

Following is an example of the <addRequest> element. The
<operationalAttributes> element provides login credentials for the admin
administrator, and the service for which the user is added is the Firewall
Service. The <attributes> element specifies information about the user.
These attributes are service-specific.

File: WS-addUser.xml

<!--
 SPML Request to Add a new User

-->
<soap:Envelope xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/'>
 <soap:Body>
 <addRequest requestID='12345'
execution='urn:oasis:names:tc:SPML:1:0#asynchronous'>
 <operationalAttributes>
 <attr
name='urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName'>
 <value>sisa</value>
 </attr>
 <attr name='urn:trulogica:concero:2.0#password'>
 <value>abc123</value>
 </attr>
 <attr name='urn:trulogica:concero:2.0#serviceName'>
 <value>Default</value>
 <value>Global</value>
 <value>USA</value>
 <value>Texas</value>
 </attr>
 </operationalAttributes>
HP Openview Select Identity Web Service 125

 <attributes>
 <attr name='UserName'>
 <value>wsuser</value>
 </attr>
 <attr name='Password'>
 <value>abcd1234</value>
 </attr>
 <attr name='FirstName'>
 <value>Anna</value>
 </attr>
 <attr name='LastName'>
 <value>Allen</value>
 </attr>
 <attr name='Email'>
 <value>chollocker@trulogica.com</value>
 </attr>
 <attr name='urn:trulogica:concero:2.0#groups:LDAP'>
 <!-- From Training manual -->
 <value>Camera</value>
 <value>Video</value>
 </attr>
 <attr name='Company'>
 <value>HP</value>
 </attr>
 <attr name="Department">
 <value>SI</value>
 </attr>
 <attr name='City'>
 <value>Dallas</value>
 </attr>
 <attr name='State'>
 <value>Texas</value>
 </attr>
 <attr name='Country'>
 <value>USA</value>
 </attr>
<!--
 <attr name='ExpirationDate'>
 <value>08/09/2006</value>
 </attr>
-->
 <attr name='BirthDate'>
 <value>08/09/1980</value>
 </attr>
 <attr name="Zip"/>
 </attributes>
126 Chapter 7

 </addRequest>
 </soap:Body>
</soap:Envelope>

Modifying a User

Following is an example of the <modifyRequest> element. The
<operationalAttributes> element provides login credentials for the admin
administrator, for the Firewall Service. The <identifier> element provides
the user ID of the user to modify. The <attributes> element specifies
information to be modified for the user.

File: WS-modifyUser.xml

<!--
 SPML Request to Modify user's attributes
 **
-->
<soap:Envelope xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/'>
 <soap:Body>
 <modifyRequest requestID='12345'
execution='urn:oasis:names:tc:SPML:1:0#asynchronous'>
 <operationalAttributes>
 <attr
name='urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName'>
 <value>sisa</value>
 </attr>
 <attr name='urn:trulogica:concero:2.0#password'>
 <value>abc123</value>
 </attr>
 <attr name='urn:trulogica:concero:2.0#serviceName'>
 <value>USA</value>
 </attr>
 </operationalAttributes>

 <identifier
type='urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName'>
 <id>wsuser</id>
 </identifier>

When modifying a user, ensure that the user’s current entitlements are
specified as part of the request. If you do not specify the existing entitlements,
they are removed from the user. Also, you cannot modify a user’s password
using the <modifyRequest> element; use the <extendedRequest> element
for this purpose.
HP Openview Select Identity Web Service 127

 <modifications>
 <modification name='LastName' operation='replace'>
 <value>Allen-Anderson</value>
 </modification>
 <modification
name='urn:trulogica:concero:2.0#groups:LDAP' operation='add'>
 <value>QA Managers</value>
 </modification>
 <modification
name='urn:trulogica:concero:2.0#groups:LDAP' operation='delete'>
 <value>Camera</value>
 </modification>
 <modification name='Email' operation='replace'>
 <value>wsuser@hp.com</value>
 </modification>
 <modification name='City' operation='deleteAttr'/>
 <modification name='Country' operation='deleteAttr'/>
 <attr name='Password'>
 <value>trulogica1</value>
 </attr>
 </modifications>
 </modifyRequest>
 </soap:Body>
</soap:Envelope>

Deleting a User

Following is an example of the <deleteRequest> element. The
<operationalAttributes> element provides login credentials for the admin
administrator, for the Firewall Service. The <identifier> element provides
the user ID of the user to delete.

File: WS-deleteUser.xml

<!--
 SPML Request to Delete a User

-->

<soap:Envelope xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/'>
 <soap:Body>

 <deleteRequest requestID='12345'
execution='urn:oasis:names:tc:SPML:1:0#asynchronous'>
 <operationalAttributes>
128 Chapter 7

 <attr
name='urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName'>
 <value>sisa</value>
 </attr>
 <attr name='urn:trulogica:concero:2.0#password'>
 <value>abc123</value>
 </attr>
 <attr name='urn:trulogica:concero:2.0#serviceName'>
 <value>Global</value>
 </attr>
 </operationalAttributes>

 <identifier
type='urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName'>
 <id>wsup</id>
 </identifier>
 </deleteRequest>

 </soap:Body>
</soap:Envelope>

Retrieving a User Profile

Following is an example of the <searchRequest> element.

File: WS-getUser.xml

<!--
 SPML Request to Get the info User wsuser. If a primary user,
 retrieves the listing of the SubAccounts, etc. as well.

-->
<soap:Envelope xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/'>
 <soap:Body>
 <searchRequest requestID='12345'
execution='urn:oasis:names:tc:SPML:1:0#synchronous'>
 <operationalAttributes>
 <attr
name='urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName'>
 <value>sisa</value>
 </attr>
 <attr name='urn:trulogica:concero:2.0#password'>
 <value>abc123</value>
 </attr>
 </operationalAttributes>
HP Openview Select Identity Web Service 129

 <searchBase
type='urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName'>
 <id>wsuser</id>
 </searchBase>
 </searchRequest>

 </soap:Body>
</soap:Envelope>

Retrieving a User by Resource

File: WS-getUserForResource.xml

<!--
 SPML Request to Get the details of a User

-->
<soap:Envelope xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/'>
 <soap:Body>
 <searchRequest requestID='12345'
execution='urn:oasis:names:tc:SPML:1:0#synchronous'>
 <operationalAttributes>
 <attr
name='urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName'>
 <value>sisa</value>
 </attr>
 <attr name='urn:trulogica:concero:2.0#password'>
 <value>abc123</value>
 </attr>
 </operationalAttributes>

 <filter>
 <equalityMatch
name='urn:trulogica:concero:2.0#resourceId'>
 <value>LDAP</value>
 </equalityMatch>
 </filter>

<!-- For a specific subset of Attributes, uncomment the following
section.
 <attributes>
 <attr name='ConceroUserId'/>
 <attr name='ConceroEmail'/>
 <attr name='FirstName'/>
 <attr name='LastName'/>
 </attributes>
130 Chapter 7

-->
 </searchRequest>

 </soap:Body>
</soap:Envelope>

Retrieving a User for Service

File: WS-getUserForService.xml

<!--
 SPML Request to Get the details of all Users of specified
Service(s)

-->
<soap:Envelope xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/'>
 <soap:Body>
 <searchRequest requestID='12345'
execution='urn:oasis:names:tc:SPML:1:0#synchronous'>
 <operationalAttributes>
 <attr
name='urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName'>
 <value>sisa</value>
 </attr>
 <attr name='urn:trulogica:concero:2.0#password'>
 <value>abc123</value>
 </attr>
 </operationalAttributes>

 <filter>
 <equalityMatch
name='urn:trulogica:concero:2.0#serviceName'>
 <value>Default</value>
 <value>Global</value>
 </equalityMatch>
 </filter>

<!-- For a specific subset of Attributes, uncomment the following
section.
 <attributes>
 <attr name='ConceroUserId'/>
 <attr name='ConceroEmail'/>
 <attr name='FirstName'/>
 <attr name='LastName'/>
 </attributes>
HP Openview Select Identity Web Service 131

-->
 </searchRequest>
 </soap:Body>
</soap:Envelope>

Enabling a User

Following is an example of the <extendedRequest> attribute, to enable a
user’s account.

File: WS-enableUser.xml

<!--
 SPML Request to enable user

-->
<soap:Envelope xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/'>
 <soap:Body>
 <extendedRequest requestID='1769'
execution='urn:oasis:names:tc:SPML:1:0#asynchronous'>
 <operationalAttributes>
 <attr
name='urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName'>
 <value>sisa</value>
 </attr>
 <attr name='urn:trulogica:concero:2.0#password'>
 <value>abc123</value>
 </attr>
 </operationalAttributes>

 <identifier
type='urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName'>
 <id>wsuser1</id>
 </identifier>
 <providerIdentifier
providerIDType='urn:oasis:names:tc:SPML:1:0#URN'>
 <providerID>urn:trulogica:concero:2.0</providerID>
 </providerIdentifier>
 <operationIdentifier
operationIDType='urn:oasis:names:tc:SPML:1:0#URN'>
 <operationID>urn:trulogica:concero:2.0#enable</
operationID>
 </operationIdentifier>
 <attributes/>
 </extendedRequest>
 </soap:Body>
132 Chapter 7

</soap:Envelope>

Disabling a User

File: WS-disableUser.xml

<!--
 SPML Request to disable user across all resources

-->
<soap:Envelope xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/'>
 <soap:Body>
 <extendedRequest requestID='1769'
execution='urn:oasis:names:tc:SPML:1:0#asynchronous'>
 <operationalAttributes>
 <attr
name='urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName'>
 <value>sisa</value>
 </attr>
 <attr name='urn:trulogica:concero:2.0#password'>
 <value>abc123</value>
 </attr>
 </operationalAttributes>

 <identifier
type='urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName'>
 <id>wsuser2</id>
 </identifier>
 <providerIdentifier
providerIDType='urn:oasis:names:tc:SPML:1:0#URN'>
 <providerID>urn:trulogica:concero:2.0</providerID>
 </providerIdentifier>
 <operationIdentifier
operationIDType='urn:oasis:names:tc:SPML:1:0#URN'>
 <operationID>urn:trulogica:concero:2.0#disable</
operationID>
 </operationIdentifier>
 <attributes/>
 </extendedRequest>
 </soap:Body>
</soap:Envelope>
HP Openview Select Identity Web Service 133

Resetting a User’s Password

The following is an example of the <extendedRequest> attribute, to reset a
user’s password.

File: WS-ResetPass.xml

<!--
 SPML Request to Change a user's password
 **
-->
<soap:Envelope xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/'>
 <soap:Body>
 <extendedRequest requestID='1769'
execution='urn:oasis:names:tc:SPML:1:0#asynchronous'>
 <operationalAttributes>
 <attr
name='urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName'>
 <value>sisa</value>
 </attr>
 <attr name='urn:trulogica:concero:2.0#password'>
 <value>abc123</value>
 </attr>
 </operationalAttributes>

 <identifier
type='urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName'>
 <id>wsuser</id>
 </identifier>

 <providerIdentifier
providerIDType='urn:oasis:names:tc:SPML:1:0#URN'>
 <providerID>urn:trulogica:concero:2.0</providerID>
 </providerIdentifier>

 <operationIdentifier
operationIDType='urn:oasis:names:tc:SPML:1:0#URN'>
 <operationID>urn:trulogica:concero:2.0#resetPassword</
operationID>
 </operationIdentifier>

 <attributes>
 <!--
 Default Password for all unspecified resources
 -->
 <attr name='urn:trulogica:concero:2.0#rcPassword'>
134 Chapter 7

 <value>new:abc123</value>
 </attr>
 </attributes>

 </extendedRequest>
 </soap:Body>
</soap:Envelope>

Terminating a User

Following is an example of the <extendedRequest> attribute, to terminate a
user.

File: WS-terminateUser.xml

<!--
 SPML Request to terminate a user's account
 **
-->
<soap:Envelope xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/'>
 <soap:Body>
 <extendedRequest requestID='1769'
execution='urn:oasis:names:tc:SPML:1:0#asynchronous'>
 <operationalAttributes>
 <attr
name='urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName'>
 <value>sisa</value>
 </attr>
 <attr name='urn:trulogica:concero:2.0#password'>
 <value>abc123</value>
 </attr>
 <attr name='urn:trulogica:concero:2.0#serviceName'>
 <value>Global</value>
 </attr>
 </operationalAttributes>

 <identifier
type='urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName'>
 <id>wsuser1</id>
 </identifier>
 <providerIdentifier
providerIDType='urn:oasis:names:tc:SPML:1:0#URN'>
 <providerID>urn:trulogica:concero:2.0</providerID>
 </providerIdentifier>
 <operationIdentifier
operationIDType='urn:oasis:names:tc:SPML:1:0#URN'>
HP Openview Select Identity Web Service 135

 <operationID>urn:trulogica:concero:2.0#terminate</
operationID>
 </operationIdentifier>
 </extendedRequest>
 </soap:Body>
</soap:Envelope>

Reconciliation SPML Request Examples

Recon Auth Add User

File: WSReconAuthAdd.xml

<!--
 SPML Request to Add a new User from a recon auth resource

 -->
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <addRequest requestID="12345"
execution="urn:oasis:names:tc:SPML:1:0#asynchronous">
 <operationalAttributes>
 <attr
name="urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName">
 <value>sisa</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#password">
 <value>abc123</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#resourceId">
 <value>LDAP71</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#keyFields">
 <value>UserName</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#reverseSync">
 <value>true</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#taUserName">
 <value>WSu7301</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#taResourceKey">
 <value>WSu7301</value>
 </attr>
136 Chapter 7

 </operationalAttributes>

 <attributes>
 <attr name="UserName">
 <value>WSu7301</value>
 </attr>
 <attr name="Email">
 <value>user.email@hp.com</value>
 </attr>
 <attr name="State">
 <value>TX</value>
 </attr>
 <attr name="FirstName">
 <value>Abigail</value>
 </attr>
 <attr name="LastName">
 <value>Anderson</value>
 </attr>
 <attr name="Employee ID">
 <value>HP</value>
 </attr>
 <attr name="Zip">
 <value>75000</value>
 </attr>
 </attributes>
 </addRequest>
 </soap:Body>
</soap:Envelope>

Recon Auth Modify User

File: WSReconAuthMod.xml

 <!--
 SPML Request to modify a new User from a recon auth resource

 -->
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <modifyRequest requestID="12345"
execution="urn:oasis:names:tc:SPML:1:0#asynchronous">
 <operationalAttributes>
 <attr
name="urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName">
 <value>sisa</value>
HP Openview Select Identity Web Service 137

 </attr>
 <attr name="urn:trulogica:concero:2.0#password">
 <value>abc123</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#resourceId">
 <value>LDAP71</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#keyFields">
 <value>UserName</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#reverseSync">
 <value>true</value>
 </attr>
 </operationalAttributes>

 <identifier xmlns=""
type="urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName">
 <id>WSu7212</id>
 </identifier>

 <modifications>
 <modification name="FirstName" operation="replace">
 <value>ANNA</value>
 </modification>
 <modification name="LastName" operation="replace">
 <value>ALENDALE</value>
 </modification>
 <modification name="Address 1" operation="replace">
 <value>1525 EAST GATE DRIVE, WITCHITA</value>
 </modification>
 <modification name="Zip" operation="replace">
 <value>62005</value>
 </modification>
 <modification name="State" operation="replace">
 <value>KS</value>
 </modification>
 </modifications>
 </modifyRequest>
 </soap:Body>
</soap:Envelope>
138 Chapter 7

Recon Auth Delete User

File: WSReconAuthDel.xml

 <!--
 SPML Request to delete a User from a recon auth resource

 -->
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <deleteRequest requestID="12345"
execution="urn:oasis:names:tc:SPML:1:0#asynchronous">
 <operationalAttributes>
 <attr
name="urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName">
 <value>sisa</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#password">
 <value>abc123</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#resourceId">
 <value>LDAP71</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#keyFields">
 <value>UserName</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#reverseSync">
 <value>true</value>
 </attr>
 </operationalAttributes>

 <identifier xmlns=""
type="urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName">
 <id>WSu7224</id>
 </identifier>
 </deleteRequest>

 </soap:Body>
</soap:Envelope>
HP Openview Select Identity Web Service 139

Recon Non-Auth Add User

File: WSReconNonAuthAdd.xml

<!--
 SPML Request to Add a new User from a non-authorative user

 -->
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <addRequest requestID="12345"
execution="urn:oasis:names:tc:SPML:1:0#asynchronous">
 <operationalAttributes>
 <attr
name="urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName">
 <value>sisa</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#password">
 <value>abc123</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#resourceId">
 <value>LDAP70</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#keyFields">
 <value>UserName</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#reverseSync">
 <value>true</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#taResourceKey">
 <value>WSu7221</value>
 </attr>
 </operationalAttributes>

 <identifier xmlns=""
type="urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName">
 <id>WSu7221</id>
 </identifier>

 <attributes>
 <attr name="urn:trulogica:concero:2.0#groups">
 <value>HR Managers</value>
 <value>PD Managers</value>
 </attr>
 </attributes>
 </addRequest>
140 Chapter 7

 </soap:Body>
</soap:Envelope>

Recon Non-Auth Modify User

File: WSReconNonAuthMod.xml

 <!--
 SPML Request to modify a User from a non authorative resource

 -->
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <modifyRequest requestID="12345"
execution="urn:oasis:names:tc:SPML:1:0#asynchronous">
 <operationalAttributes>
 <attr
name="urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName">
 <value>sisa</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#password">
 <value>abc123</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#resourceId">
 <value>LDAP70</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#keyFields">
 <value>UserName</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#reverseSync">
 <value>true</value>
 </attr>
 </operationalAttributes>

 <identifier xmlns=""
type="urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName">
 <id>WSu7233</id>
 </identifier>

 <modifications>
 <modification name='urn:trulogica:concero:2.0#groups'
operation='delete'>
 <value>HR Managers</value>
 </modification>
HP Openview Select Identity Web Service 141

 <modification name='urn:trulogica:concero:2.0#groups'
operation='add'>
 <value>$UNIX2</value>
 </modification>
 </modifications>

 </modifyRequest>
 </soap:Body>
</soap:Envelope>

Recon Non-Auth Delete User

File: WSReconNonAuthDel.xml

 <!--
 SPML Request to delete a User from non-auth resource

 -->
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <deleteRequest requestID="12345"
execution="urn:oasis:names:tc:SPML:1:0#asynchronous">
 <operationalAttributes>
 <attr
name="urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName">
 <value>sisa</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#password">
 <value>abc123</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#resourceId">
 <value>LDAP70</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#keyFields">
 <value>UserName</value>
 </attr>
 <attr name="urn:trulogica:concero:2.0#reverseSync">
 <value>true</value>
 </attr>
 </operationalAttributes>

 <identifier xmlns=""
type="urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName">
 <id>WSu7235</id>
 </identifier>
142 Chapter 7

 </deleteRequest>
 </soap:Body>
</soap:Envelope>

External Authentication of Requests

In addition to authentication by the OVSI server, SPML requests sent to the
OVSI Web Service can be authenticated by a Windows Active Directory LDAP
server. If you wish to authenticate requests this way, complete the steps in the
following procedure:

1 Create a user on the LDAP server that has the same credentials (user
name and password) as those of the OVSI user that is authenticated (such
as the sisa account).

2 Modify the TruAccess.properties file on the OVSI server to
uncomment (remove the leading # characters) from the following lines:

#com.hp.si.webservice.auth.resource=ldap
#com.hp.si.webservice.auth.ldap.accessurl=ldap://localhost:389
#com.hp.si.webservice.auth.ldap.uidattr=uid
#com.hp.si.webservice.auth.ldap.suffix=ou=People,
dc=trulogica,dc=com
#com.hp.si.webservice.auth.ldap.needssl=false

3 Change these properties as follows:

Property Value

com.hp.si.webservice.auth.
ldap.accessurl

The URL of the Active Directory
LDAP server.
HP Openview Select Identity Web Service 143

Following is an example:

com.hp.si.webservice.auth.resource=ldap
com.hp.si.webservice.auth.ldap.accessurl=
ldap://ad-server-ip:389

com.hp.si.webservice.auth.ldap.uidattr=cn
com.hp.si.webservice.auth.ldap.suffix=ou=users,dc=amegy,dc=com
com.hp.si.webservice.auth.ldap.needssl=false

4 Save and close the TruAccess.properties file.

com.hp.si.webservice.auth.
ldap.uidattr

The name of the key attribute for
users.

com.hp.si.webservice.auth.
ldap.suffix

The suffix of the DN for the
administrative account created for
OVSI. This account must be the same
as the one used for OVSI
authentication.

For example, if you create a user with
this DN:

Cn=sisa,ou=Users,dc=amegy,
dc=com

The suffix is ou=Users,dc=amegy,
dc=com..

Property Value
144 Chapter 7

8 Connector Migration
This chapter provides detailed information on migrating OVSI 3.3.x
connectors to OVSI 4.0.

This chapter contains the following:

• Reasons to Migrate

• Interface Changes

• Steps to Migrate Connectors

Reasons to Migrate

The Connector API has been enhanced with OVSI 4.0 with the additional
support of the following features. You need to update your OVSI 3.3.x-based
connector to take advantage of one or more of the new features.

However, the OVSI 3.3.x connector should be able to run without any changes
with OVSI 4.0, using the new connector.jar file in the CLASSPATH.

• Multi-valued attributes

Each attribute can have multiple values in OVSI 4.0. The value passed to
the Connector by OVSI is in an instance of TAAttrValueBean which holds
the complete value of the attribute. Refer to the Javadoc of this class to
explain the details on how to get the value of the attribute, specifically for
add and modify operations.

• Multiple types of entitlements

Depending on resource support, connectors can now support multiple
types of entitlements such as groups, roles, ACLs and so on.

There is a type field in EntitlementModel which contains the entitlement
type.
 145

• Addition/deletion/modification/emptying of attributes

Modify user might mean not only replacing the attribute value, but also
the addition of a new attribute, deletion of an existing attribute, cleaning
up all the values of the attribute, or modifying the attribute. This might
further mean adding/deleting sub-values. All this can be done with OVSI
4.0 connectors.

• Enhanced User Modify

The user modify operation called by OVSI now contains only the changed
attributes, as compared to earlier versions where all attributes are passed
and the connector does not know which ones are changed.

This allows the connector to update only the changed attributes on the
resource.

• Bulk association/dissociation of entitlements

The OVSI 3.3.x interface supports assignment/de-assignment of
entitlements one at a time. For example, if you are adding a user with 10
entitlements in OVSI 3.3.x, there will be one call to add the user on the
connector, followed by 10 calls to assign each entitlement to the user.

With the OVSI 4.0 interface, all the entitlements are given in one List
instance and it is up to the connector to carry out the bulk assignment or
call multiple times on the resource.

• Enhanced Search criteria for entitlements retrieval

Multiple Search criteria can be given to retrieve entitlements from the
resource.

Interface Changes

This section lists all the changes in the OVSI 4.0 connector API. Follow this
section closely to understand what needs to be done to migrate your OVSI
3.3.x connector.

This section contains the following subsections:

• Connector API Changes

• Attribute Operations

• Schema Changes
146 Chapter 8

Connector API Changes

The tables in the following sections show the changes on the OVSI Connector
API:

• Classes and Interfaces

• Connector Interface

Classes and Interfaces

OVSI 3.3 framework OVSI 4.0 framework Comments

TAConnector SIConnector This is the main
connector interface.
That is the interface
that OVSI uses to
talk to every
connector. The name
of this interface has
changed along with
cleanup of some of the
unused methods.

AbstractTAConnector AbstractSIConnector Connector
implementation can
alternatively extend
this abstract class,
which provides some
dummy
implementation for
the rarely used
methods. Removed
some un-used
methods.

TAConnectorFactory SIConnectorFactory This is the factory for
the new connector
implementation.
Connector Migration 147

UserModel SIUserModel Main Java interface
that holds the user
attribute data. This is
what is passed from
OVSI to the
connector. There are
many changes in this
Java interface to
support more
granular support for
attribute level
operations.

JCAUserModel SIJCAUserModel Implementation class
for SIUserModel Java
interface.

GroupModel EntitlementModel Java interface that
holds the user
entitlement data.
This has been
enhanced to hold
different types of
entitlements such as
groups, roles,
privileges, ACLs,
responsibilities, or
any generic
entitlement type.

JCAGroupModel JCAEntitlementModel Implementation class
for EntitlementModel
Java interface.

RoleModel Removed Not used any longer.

EntitlementModel Removed Not used any longer.

OVSI 3.3 framework OVSI 4.0 framework Comments
148 Chapter 8

Connector Interface

This section details the connector interface. The following table shows the
main changes to the SIConnector interface:

ChangeLogModel SIChangeLogModel This is the Java class
to report changes that
occurred in the
resource when OVSI
polls the connector.
This class has been
enhanced to use a
cursor class. This
cursor replaces the
interface used earlier,
which is not sufficient
in most cases.

Absent TAConnectorRequest
Intf,
TAConnectorResponse
Intf,
TAConnectorRequest,
TAConnectorResponse

Introducing a generic
interface to address
all future API
changes.

OVSI 3.3 framework OVSI 4.0 framework Comments

OVSI 3.3 framework OVSI 4.0 framework Comments

All provisioning methods
that have UserModel
argument

Changed to use
SIUserModel
Connector Migration 149

OVSI 3.3 framework OVSI 4.0 framework Comments

Methods that have
GroupModel argument

Changed to have
EntitlementModel

All methods that get
entitlements from the
resource, link and
unlink methods to
associate and
dissociate
entitlements to/from
users must now use
the
EntitlementModel
interface — actually
the implementation
class
JCAEntitlementMode
l) instead of
GroupModel (or
JCAGroupModel
class).

link(UserModel,
GroupModel)unlink(User
Model, GroupModel)

link(SIUserModel,
List)unlink(SIUserModel,
List)

All single link/unlink
operations must now
change to link/unlink
multiple entitlements
that are passed in the
Java List instance.
This helps limit the
number of times
OVSI calls the
entitlements. It is up
to the connector and
resource to support
bulk link/unlink
operations.
150 Chapter 8

getGroups() and
getGroups(TAFilter)

getEntitlements(TAQu
ery)

Earlier use of
TAFilter had the
limitation of just one
filter. TAQuery is a
combination of a
many TAFilter
instances. This API
supports multiple
search criteria
provided by OVSI.

getUsers() getUsers(TAQuery) This method is
mainly used for User
Import. This now
supports filtered
retrieval of users.

getUserAttributes() getUserAttributes() Name of API has no
change, but the
implementation now
must return all
different entitlement
types that are
supported by the
connector and
resource.
Example: GROUP,
ROLE, ACL, and so
on.
Default is
ENTITLEMENTS (if
no entitlement types
are returned).

OVSI 3.3 framework OVSI 4.0 framework Comments
Connector Migration 151

String attribute value TAAttrValueBean and
TAAttrMemberValue
Bean

Enhanced way of
more granular control
over attribute values
and operations on
these values.
Example: add/delete/
modify attributes
sent as part of a
modify user.
Modify attribute
value might further
be add/delete
sub-values.

void API return TAStatus Return status of API
methods.

getChangeLog(int) getChangeLog(ChangeL
ogCursor)

Cursor for iterative
retrieval of records.
Earlier it was just a
single integer which
might not be
sufficient in all cases.

Absent loadResourceSchema() New method
introduced for
connectors to load
schema from the
resource. Can be used
by attribute mapper.

Absent process(TAConnectorR
equestIntf)

Added a new method
to support any/all
future API change
requirements.
Generic enough to
hold any data agreed
upon by the caller and
the connector
implementation.

OVSI 3.3 framework OVSI 4.0 framework Comments
152 Chapter 8

Attribute Operations

Starting with OVSI 4.0 the following operations are supported with an update
user operation. This information is carried in the TAAttrValueBean instance.

• Replace attribute value

This was the only operation supported in earlier operations, to replace the
attribute value with a new value.

• Add attribute

Add a new attribute to the user in resource, with a possible value.

• Modify attribute value

For multi-valued attributes a Modify operation is supported which might
mean:

— Add one or more sub-values

— Remove one or more sub-values

• Delete attribute

Remove the attribute from user in the resource.

• No change

This means that OVSI has not changed this attribute, but is being given to
the connector since it is marked as a required attribute in the mapping.
Do not modify the user attribute in the resource. However, you may use
the value given — for example, to address the user in the resource.

Schema Changes

The XML schema mapping file has added more properties for each mapping.
The tables in the following sections explain the changes to the XML schema
mapping file:

• Entity Definition

• Relationship Definition

• XML Mapping File Changes
Connector Migration 153

Entity Definition

This defines how entities (users and entitlements) are mapped onto the
resource. The following table shows the change in the objectClassDefinition of
the XML mapping file.

Relationship Definition

This defines the entity relationships. The following table shows the change in
the relationshipDefinition of the XML mapping file..

XML Mapping File Changes

This defines each attribute mapping from the Select Identity attribute onto
the resource/connector attribute. The following table shows the changes in the
attributeDefinitionReference in the new interface.

s

OVSI 3.3 framework OVSI 4.0 framework Comments

name="User" "Name="SIUser" To identify the user
model co-relating to
SIUserModel.

OVSI 3.3 framework OVSI 4.0 framework Comments

concero:entity="User" "concero:entity=
"SIUser"

To identify the user
model co-relating to
SIUserModel.

The old mapping file will still work without any changes with the new
interface. Change the mapping file only to take advantage of the new features
as shown in the following table.

OVSI 3.3 framework OVSI 4.0 framework Comments

name name no change

required required no change

concero:tafield concero:tafield no change
154 Chapter 8

Steps to Migrate Connectors

Following are the main steps to migrate existing connectors to the new
interface. See details in each step:

• Step 1: Change the Connector Implementation

• Step 2: Change the XML Mapping File

• Step 3: Remove Deprecated Methods

• Step 4: Use Commons Logging

• Step 5: Package the Connector

• Step 6: Use the Connector Tester Tool

concero:resfield concero:resfield no change

concero:init concero:init no change

absent concero:isPassword Added this to identify
the password
attribute mapping.

absent concero:isMulti To specify if the
resource attribute can
take a multi-valued
value.

absent concero:isSensitive To identify mappings
of sensitive
attributes. May be
used to avoid logging
these values.

OVSI 3.3 framework OVSI 4.0 framework Comments
Connector Migration 155

Step 1: Change the Connector Implementation

Change the Connector implementation so that it now implements the
SIConnector interface and all the required methods in it.

Change all occurrences of UserModel to SIUserModel and all occurrences of
GroupModel to EntitlementModel.

Implement the SIConnector

Change your current implementation of TAConnector to SIConnector
interface. Follow the details in the Java doc of the SIConnector to implement
all the required interface methods. It might be better to extend the abstract
class AbstractSIConnector, which has default implementations for most of the
rarely used methods so that you could focus only on the mainly required
methods.

Following is a detailed explanation of the changes to be done in each of the
most commonly implemented connector methods:

• getUserAttributes()

This method should return all the attributes supported by the connector/
resource. In addition to what the earlier version of this method does, you
need to return all the types of entitlements supported as follows:

 ArrayList attrList = new ArrayList();

// Add all attribute TAConnectorParamBean instances first
...
...

// add all entitlement types here
 TAConnectorParamBean entitlementBean = new TAConnectorParamBean(
"ENTITLEMENTS",

TAConnectorParamBean.ATTR_TYPE_ENTITLEMENT);
 entitlementBean.setMaxLength(255);
 entitlementBean.setMultiValued(true);
 entitlementBean.setRequired(true);
 attrList.add(entitlementBean);

 ret = (TAConnectorParamBean[]) attrList.toArray(new
TAConnectorParamBean[0]);
 return ret;
156 Chapter 8

The above example shows the return of only the default entitlement type.
This could very well return all types of entitlements supported by the
connector and the resource. Following is another example returning 3
types:

 ArrayList attrList = new ArrayList();

// Add all attribute TAConnectorParamBean instances first
...
...

// add all entitlement types here
 TAConnectorParamBean entitlementBean = new TAConnectorParamBean(
"GROUPS",

TAConnectorParamBean.ATTR_TYPE_ENTITLEMENT);
 entitlementBean.setMaxLength(255);
 entitlementBean.setMultiValued(true);
 entitlementBean.setRequired(true);
 attrList.add(entitlementBean);

entitlementBean = new TAConnectorParamBean("ROLES",

TAConnectorParamBean.ATTR_TYPE_ENTITLEMENT);
 entitlementBean.setMaxLength(255);
 entitlementBean.setMultiValued(true);
 entitlementBean.setRequired(true);
 attrList.add(entitlementBean);

entitlementBean = new TAConnectorParamBean("ACLs",

TAConnectorParamBean.ATTR_TYPE_ENTITLEMENT);
 entitlementBean.setMaxLength(255);
 entitlementBean.setMultiValued(true);
 entitlementBean.setRequired(true);
 attrList.add(entitlementBean);

 ret = (TAConnectorParamBean[]) attrList.toArray(new
TAConnectorParamBean[0]);
 return ret;
Connector Migration 157

Note that the same type is returned to the connector in the
getEntitlements(), link() and unlink() methods in the TAFilter instance in
TAQuery. These methods are explained below.

• getEntitlementAttributes()

Earlier method: This was getGroupAttributes().

This must now be changed to getEntitlementAttributes()

• add(SIUserModel)

New signature of this method is:

public TAStatus add(SIUserModel userModel) throws
TAConnectorException

userModel has been changed to SIUserModel. The value of each attribute
obtained is no longer a Java String as in the earlier userModel. It is now
an instance of a bean class TAAttrValueBean. Change your code to now
work with this bean instance.

Following are some of the important methods in SIUserModel:

— getUserId()

This returns the OVSI user id value. That means this is the key
identifying value of the user in OVSI

— getResUserId()

This returns the user id value in the resource. After an initial add()
operation is successful, the connector returns the key value of the user
in the resource by calling the method setResUserId(). This key value
can be brought back for use in other methods, by calling
getResUserId(). This is useful in cases where the key value of the user
is different in OVSI and the resource. Even if the key value is the
same in OVSI and the resource, you must call setResUserId() with the
key value at the end of a successful add() operation.

— get(String)

The signature of this method shows the return value as Object, but
the method actually now returns an instance of the TAAttrValueBean
class. This bean represents the value of the attribute passed to the
connector by OVSI. See the Javadoc of this class for details on how to
extract the attribute value.
158 Chapter 8

— getStrValue()

For connectors that support only single valued attributes, there is a
new method in SIUserModel to return the string value of the attribute
passed in by OVSI. This is a convenience method and if the connector
implementation knows that the value is single valued, it can directly
use this method instead of SIUserModel.get(), which returns
TAAttrValueBean and extracts the single string value out of it.

— getAttrNames()

This returns the names of attributes present in userModel. In OVSI
3.3.x, it was not possible to get this list, and the connector had to
iterate through all the mappings in the XML mapping file. It is
possible that OVSI is currently interested in only a few of the
attributes that are mapped in the mapping file.

Following is a brief explanation of the value contained in
TAAttrValuBean for the passed in SIUserModel add() operation:

abbreviation:
 TAAttrValueBean=av
 TAAttrMemberValueBean=amv

 default operation=replace

Let's say we are adding a user with the following attributes:

a1 - a single value attribute
a2 - a multi-valued attribute
a3 - another single-valued attribute

SIUserModel looks like this:
SIUserModel {
a1 - av=[---, List=[amv={---, a1sv1}]], // single-valued
a2 - av=[---, List=[amv={---, a2mv1}, amv={---, a2mv2}]],

// two values
a3 - av=[---, List=[amv={---, a3sv1}]], // also

single-valued
 ...
 }

Use the above methods to change your add() implementation. The
above explained methods are useful in other connector methods as
well.
Connector Migration 159

You must set the key value of the user in the resource upon a
successful add operation by calling the
userModel.setResUserId(String) method.

Finally return the result of the add() operation in the TAStatus
instance.

• update(SIUserModel)

Use the SIUserModel.getResUserId() to get the key value of the user so
that it can be addressed in the resource.

The major change in this method is a more granular support for user
modifications. A user modify may generally mean replacing an existing
user's attributes with a new set of values. With the OVSI 4.0 interface, it
is now possible to go a step deeper where you could add attributes, delete
attributes, replace attribute values, clear attribute values, and add/delete
sub-values in a multi-valued attribute.

All this is possible now, but it depends on resource support. For example,
it is possible to think of such a level of granularity with LDAP or DB
provisioning. In some cases, it is simply not possible to do this and the
resource or resource API only supports replace attribute value.

The value of the attribute value contained in TAAttrValueBean has
details on the attribute level operations. Following is a brief description
with an example:

abbreviation:
 TAAttrValueBean=av
 TAAttrMemberValueBean=amv
 --- = not to be considered

user modify (example 1):
 Let's say a1 changed its value to a new value
 a2 has a new sub-value
 a3 has not changed
 a4 a new attribute added
 a5 got deleted
SIUserModel looks like this:

 SIUserModel {
 a1 - av=[replace, List=[{---, a1sv2}]], // a1svc2 is
the new value

You must have called SIUserModel.setResUserId() in the
add(SIUserModel) method.
160 Chapter 8

 a2 - av=[modify, List=[amv={add, a2mv3}]], // add
sub-value a2mv3 to the two sub-values

 a3 - av=[nochange, List=[amv={---, a3sv1}]], // only
given for required fields
 // non-required fields are not given with
nochange operation

 a4 - av=[add, List=[amv={---, a4sv1}]] // new attribute
added
 a5 - av=[delete, List=null] // attribute deleted in
OVSI
 }

user modify (example 2):
 Let's say a1 attribute is deleted
 a2 value completely changed
 a3 is nullified
 a4 is emptied
 SIUserModel looks like this:

 SIUserModel {
 a1 - av=[delete, List=null],
 a2 - av=[replace, List=[amv={---, a2sv4}], // value
changed to a single sub-value
 a3 - av=[replace, List=[amv=null]]
 a4 - av=[replace, List=[amv={replace, ""}]] // use ""
as a function to empty the value
 }

Use the above examples to convert your update() method to do the
required user level as well as attribute level operations.

• Only the changed attributes are now passed to the connector.
The earlier interface used to pass all attribute values and the
connector had to replace all given values.

• All attributes marked as required attributes when returning
the attribute list (in getUserAttributes()) method, are passed in
with all operations. The operation in TAAttrValueBean
instance for these attributes is marked with NOCHANGE, so
that you know this need not be updated on the resource.
Connector Migration 161

• isUserExists(SIUserModel)

This is a new method introduced in OVSI 4.0 and is called by OVSI to
check if a user exists in the resource. Earlier implementation of
get(UserModel) must be changed to this method, with a small change as
shown in the following note.

• get(SIUserModel)

This method is not used by OVSI to check for user existence any longer.
This changed to isUserExists(SIUserModel) as explained above.

get(SIUserModel) is used in User Import to get the details of a user in a
resource. It must throw ObjectNotFoundException if the user does not
exist.

• remove(SIUserModel)

Use SIUserModel.getResUserId() to perform the delete user operation in
resource. If the user is not present, this method must throw
ObjectNotFoundException.

• getEntitlements(TAQuery)

This method was called getGroups(). This method should return all
entitlements in the resource. Note that there is a new argument TAQuery,
which might include a TAFilter, which gives the type of entitlement that
OVSI is looking for.

As noted earlier all the required attributes are passed in
SIUserModel. If you need to compute the key you may use these
attributes.

This method returns a Boolean and should not throw
ObjectNotFoundException if the user does not exist in the resource.
Instead, it should return false.

All attributes marked as required when returning the attribute list
(in the getUserAttributes()) method, are passed in with all
operations.
162 Chapter 8

If TAQuery and its TAFilter list is not empty, you must return only those
types of entitlements.

TAQuery is a grouping of TAFilter instances. Following are some of the
main methods in this class:

— getTaFilterList()

This returns a Java List of TAFilter instances.

— getMaxResults()

This contains the maximum number of values to be returned.

— isFilterListAnded()

This is a boolean indicating whether the TAFilter instances need to be
ANDed or ORed. If true, this means that all TAFilter instances must
match, and if false this means that any of the TAFilter instances can
match.

TAFilter is a filter criteria to match the results of an operation. Following
are some of the main methods in this class:

— getName()

This returns the name of the TAFilter. In the context of entitlements
this means the type of entitlement. If the connector implements only
one type of entitlement, then this name can be ignored. If it
implements multiple types, then this contains one of the types
returned in the getUserAttributes() method.

— getOperation()

This returns the operation or criteria for the filter. The value returned
is one of the following:

TAFilter.EQUALITY

TAFilter.BEGINS_WITH

TAFilter.ENDS_WITH

TAFilter.CONTAINS

This method may also be used to verify entitlements that were
returned earlier. In this case, the TAFilter instances in TAQuery
contain values and operations to match the specific entitlement.
This is a required part of the implementation of this method, to
return only the entitlements asked for in TAQuery.
Connector Migration 163

TAFilter.GTE

TAFilter.LTE

TAFilter.NOT_EQUAL

TAFilter.NOT_CONTAINS

• link(SIUserModel, List)

This method was called link(UserModel, GroupModel). This new method
now allows bulk link operation from OVSI. It is up to the connector to do it
one-by-one or in a group.

Use SIUserModel.getResUserId() to get the resource key value of the user.

The List contains instances of JCAEntitlementModel class. Following are
some of the useful methods in this class:

— getId()

This method was called GroupModel.getGroupId(), and returns the id
of the entitlement. Now change all places where you called
getGroupId() to getId().

— getType()

This method is useful in cases where the connector/resource supports
multiple entitlement types. This type returns the type of entitlement
being linked to the user.

• unlink(SIUserModel, List)

This method was called unlink(UserModel, GroupModel). This new
method now allows the bulk unlink operation from OVSI. It is up to the
connector to do it one-by-one or in a group.

Use SIUserModel.getResUserId() to get the resource key value of the user.

The List contains instances of the JCAEntitlementModel class. Following
are some of the useful methods in this class:

— getId()

This method was called GroupModel.getGroupId(), and returns the id
of the entitlement. Now, change all places where you called
getGroupId() to getId().

This is one of the types that you returned in the
getUserAttributes() method.
164 Chapter 8

— getType()

This method is useful in cases where the connector/resource supports
multiple entitlement types. This type returns the type of entitlement
being linked to the user.

• setStatus(SIUserModel, int)

Earlier method: setStatus(UserModel, int)

Use SIUserModel.getResUserId() to get the resource key value of the user.

• resetPassword(SIUserModel)

Earlier method: resetPassword(UserModel)

Use the method SIUserModel.getPassword() to get the new value of the
password to replace with on the resource.

• expirePassword(SIUserModel, boolean)

Earlier method: expirePassword(UserModel, boolean)

Use SIUserModel.getResUserId() to get the resource key value of the user.

• getChangeLog(ChangeLogCursor)

Earlier method: getChangeLog(int)

This method should check the resource for all changes that occurred after
the previous call to this method and must prepare an instance of
SIChangeLogModel with the details of these changes.

The SIChangeLogModel method represents the changes that occurred in
the resource, in a normalized format. Any resource-specific API return
values or format returned, must be parsed and converted into an instance
of this class. This class contains the following main methods:

— setCursor(ChangeLogCursor)

The new value of the cursor must be set in SIChangeLogModel. A
cursor identifies a checkpoint in the resource change log, so that a
next call to getChangeLog() will read the changes past this checkpoint.

This is one of the types that you returned in getUserAttributes()
method.
Connector Migration 165

With OVSI 3.3.x, an integer number was used as the checkpoint,
which may not be sufficient. With OVSI 4.0, you can use this cursor
which has an integer along with a Java Serializable object, which can
hold more information about this checkpoint.

— addCLEntry(ChangeLogEntry)

One instance of SIChangeLogModel can contain multiple instances of
ChangeLogEntry instances which represents each change. For
example, user added, user modified, user deleted are all different
changes that can be reported.

ChangeLogEntry contains the following useful methods:

– setUserId(String)

This is used to set the id of the user in the resource.

– setChangeType(int)

This is to set the type of change that occurred in a resource.
Following are the possible types:

ChangeLogEntry.USER_ADDED

ChangeLogEntry.USER_MODIFIED

ChangeLogEntry.USER_DELETED

ChangeLogEntry.USER_ENABLED

ChangeLogEntry.USER_DISABLED

ChangeLogEntry.USER_RESET_PASSWD

– addAttrEntry(ChangeLogAttribute)

This is used to add the attribute value in the change. This
contains the id and value of the attribute. The id should represent
the OVSI id of the attribute and not the physical resource
attribute. If these two are different, re-mapping of the name must
be done.

ConnectorFactory Implementation

This is a factory of SIConnector instances which are returned by calling the
method: getConnection(TAConnectorParamValueBean).
166 Chapter 8

The factory must implement SIConnectorFactory. Earlier implementation
used to implement ConnectorFactory. This must be changed.

Step 2: Change the XML Mapping File

If you are using XML Mapping file to map OVSI attributes onto resource
attributes, you must change the following (see each section for details):

• ObjectClass Definition

• Attribute Mapping Definitions

• Relationship Definition

ObjectClass Definition

Change the name of the user object class to SIUser. Earlier this was "User".
Following is an example:

<objectClassDefinition name="SIUser" description="LDAP User">
<properties>

<!--
 "value" can be one of: true/false/bypass

true: the operation is supported
false: operation is not supported and results in an

exception being thrown
bypass: not supported, but exception is suppressed
 (currently on CREATE, UPDATE,

DELETE)
-->
<attr name="CREATE">

<value>true</value>
</attr>
<attr name="READ">

<value>true</value>
</attr>
<attr name="UPDATE">

<value>true</value>
</attr>
<attr name="DELETE">

<value>true</value>
Connector Migration 167

</attr>
<attr name="ENABLE">

<value>true</value>
</attr>
<attr name="DISABLE">

<value>true</value>
</attr>
<attr name="RESET_PASSWORD">

<value>true</value>
</attr>
<attr name="EXPIRE_PASSWORD">

<value>false</value>
</attr>
<attr name="CHANGE_PASSWORD">

<value>true</value>
</attr>

</properties>
...
...

Attribute Mapping Definitions

You can now mark an attribute as multi-valued, password, sensitive and so
on. This is optional, in the sense that the same mapping file that was used
with the OVSI 3.3.x connector can be used with the OVSI 4.0 interface.

Following is an example taken from iPlanet.xml:

<memberAttributes>
<!-- For iPlanet -->
<attributeDefinitionReference name="UserName" required="true"

concero:tafield="[UserName]" concero:resfield="uid"
concero:isKey="true" concero:init="true"/>

<attributeDefinitionReference name="Password" required="false"
concero:tafield="[Password]" concero:resfield="userpassword"
concero:init="true" concero:isPassword="true"/>

<attributeDefinitionReference name="Email" required="false"
concero:tafield="[Email]" concero:resfield="mail" concero:init="true"
concero:isMulti="true"/>
168 Chapter 8

<attributeDefinitionReference name="FirstName" required="false"
concero:tafield="[FirstName]" concero:resfield="givenname"
concero:init="true" concero:isMulti="true"/>

<attributeDefinitionReference name="LastName" required="false"
concero:tafield="[LastName]" concero:resfield="sn" concero:init="true"
concero:isMulti="true"/>

<attributeDefinitionReference name="Common Name"
required="true" concero:tafield="[FirstName] [LastName]"
concero:resfield="cn" concero:init="true" concero:isMulti="true"/>

<attributeDefinitionReference name="employeenumber"
required="false" concero:tafield="[Employee ID]"
concero:resfield="employeenumber" concero:init="true"/>

<attributeDefinitionReference name="telephoneNumber"
required="false" concero:tafield="[Business Phone]"
concero:resfield="telephoneNumber" concero:init="true"
concero:isMulti="true"/>

...

...

</memberAttributes>

Relationship Definition

Change the user entity name in the relationship definition to use "SIUser".
Following is an example:

<concero:relationshipDefinition>
<properties>
<attr name="CREATE">
<value>true</value>
</attr>
<attr name="NAVIGATE">
<value>true</value>
</attr>
<attr name="DELETE">
<value>true</value>
</attr>
</properties>
<concero:party concero:entity="SIUser"

concero:cardinality="ZERO_OR_MORE" concero:start="false" />
Connector Migration 169

<concero:party entity="Group"
concero:cardinality="ZERO_OR_MORE" concero:start="true"
concero:linkfield="uniqueMember"/>

</concero:relationshipDefinition>

Step 3: Remove Deprecated Methods

Many of the unused methods in the OVSI 3.3.x interface are now deprecated
or removed. Compile your code with the Java compile option
depreciation="true", so that all usages of deprecated methods are displayed.
Fix all these in your code, as they are no longer supported by OVSI 4.0.

Step 4: Use Commons Logging

Earlier connectors used the OVSI-provided utils logging. This is
comparatively slower and it is highly recommended to use the commons
logging API. Following is sample code to show the usage:

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

…

public class LDAPConnector extends AbstractSIConnector {
 private static final String msClsName =
LDAPConnector.class.getName();
 private static final Log msLogger = LogFactory.getLog(msClsName);

…

 public TAStatus add(SIUserModel userModel) throws
TAConnectorException {
 if (msLogger.isDebugEnabled()) {
 msLogger.debug("ENTER:\r\n"+userModel);
 }

…
…

170 Chapter 8

 if (msLogger.isInfoEnabled()) msLogger.info("Resource Key
Value="+keyValue);
 um.setResUserId(keyValue);

Step 5: Package the Connector

Make sure you package the connector as one single RAR and it includes all the
required library Jar files that are used within the connector.

All schema files (XML mapping file or any others) are to be packaged in a
single JAR file.

Step 6: Use the Connector Tester Tool

With OVSI 4.0, a connector tester tool is packaged along with sample scripts.
Use this tool to perform complete functionality testing of the connector. This
saves time, and once this is done, the connector can be quickly integrated with
OVSI.

This is not any different from the previous version, but just a recommended
style.
Connector Migration 171

172 Chapter 8

A Connector Template
This appendix contains the following sections:

• Template Files

• Connector Template Code

Template Files

The connector template comes with the following files. Following is a brief
explanation of the main files included in this template:

File Name Description

ra.xml Deployment descriptor for the
Resource Adapter (RA)
representing the connector.

weblogic-ra.xml Weblogic specific additional
deployment descriptor for the RA.

DummyConnectorMapping.xml XML Schema mapping file that
maps OVSI attribute names onto
Resource attribute names.

DummyConnector.java Main connector implementation.

DummyParamResources.properties Connection parameters definitions.
 173

Connector Template Code

An example connector called the Dummy Connector is provided in the
Connector SDK/Template directory on the HP OpenView Select Identity
product CD.

This section provides snapshots of the source code that implements the
Dummy Connector, the build files used to build the connector, and the schema
JAR and RAR files. Use this example to help you build your own connector.

The following snapshot shows the hierarchy of the Dummy Connector source:

Build.xml Main build file for Apache ANT
tool.

build_rar.xml RAR build file for Apache ANT tool.

build.properties Properties file for building the
connector, which includes the
details of the name and package
name of the connector being built.

File Name Description
174 Chapter A

Figure 7 Hierarchy of the Dummy Connector Source

Following is an explanation of the folders:

• The connector-related JAR files are in the connector_lib folder and the
external JAR files are in external_lib folder.

• ra.xml and weblogic-ra.xml are in the META-INF folder.

• Source code and the connection parameters properties file are in the src/
com/hp/ovsi/connector/dummy folder.

• The schema mapping file called DummyConnectorMapping.xml is in
src/com/trulogica/truaccess/connector/schema/spml (the file
must reside in this location when it is installed).
175

• All build files are in the main folder:

— build.properties contains all properties needed to build the
connector including the connector-specific properties such as the
name, package name, RAR name, and so on.

— build.xml is the overall build file that invokes build_rar.xml.

— build_rar.xml compiles and builds the connector RAR and the
schema JAR containing the mapping XML.

Following are the contents of the RAR file that is built from the Dummy
Connector source:

Figure 8 RAR File Contents Built From the Dummy Connector
Source
176 Chapter A

Following are the contents of the schema JAR file, which contains only one
mapping file called DummyConnectorMapping.xml:

Figure 9 Schema JAR File Contents
177

178 Chapter A

Index
A
agent-based

forward provisioning, 77
reverse provisioning, 81

Agent communication, security, and logging,
28

agent-less
forward provisioning, 67
reverse provisioning, 78

API
architecture, 19
interfaces and classes, 21

architecture
OVSI API, 19
OVSI connector, 19

authentication of SPML requests, 143

B
building a connector

for forward provisioning, 67
for reverse provisioning, 78

C
coding guidelines, 93

computing changes to be made example,
97

key value computation, 94
key value return, 93
loading existing user from resource

example, 96
matching managed connections code

example, 102
schema reloading, 103
user modification, 96

connectors
API interfaces and classes, 21
architecture of OVSI connector, 19
deploying, 120
installing, 117
introduction, 17
mapping file, 90
types, 17

connector SDK, 43
connector template, 50
connector tester tool, 48
simplified connector interface, 46
XML schema handling, 47

connector template
code, 174
files, 173

D
deploying a connector, 120
179

F
forward provisioning

agent-based, 77
agent-less, 67
building a connector, 67

I
identity objects, schema mapping, and

provisioning, 28

implementing
getChangeLog(ChangeLogCursor), 78
OVSI connector, 51

installing
connector on WebLogic, 117
Tester Tool, 106

K
key value computation code example, 94

key value return code example, 93

L
LDAP connector

mapping files, 84

M
mapping

creating a mapping file, 90
OVSI attributes to resource schema, 84

mapping file
LDAP connector, 84
overview, 90
simple example, 91

migration, 145
attribute operations, 153
connector API changes, 147
interface changes, 146
reasons, 145
schema changes, 153
schema changes,entity definition, 154
schema changes,relationship definition,

154
schema changes,XML mapping changes,

154
steps to migrate connectors, 155

N
new features in 4.0, 26

generic JCA interface implementation,
48

O
OVSI API

architecture, 19
interfaces and classes, 21

OVSI connector
architecture, 19

P
platform support, 27

R
reverse provisioning

agent-based, 81
agent-less, 78
building a connector, 78

S
schema reloading code example, 103
180

SPML forward provisioning examples, 125
adding a user, 125
deleting a user, 128
disabling a user, 133
enabling a user, 132
modifying a user, 127
resetting a user’s password, 134
retrieving a user by resource, 130
retrieving a user for service, 131
retrieving a user profile, 129
terminating a user, 135

SPML reconciliation request examples, 136
recon auth add user, 136
recon auth delete user, 139
recon auth modify user, 137
recon non-auth add user, 140
recon non-auth delete user, 142
recon non-auth modify user, 141

SPML requests, 124

T
Tester Tool

files, 107
installing, 106
overview, 105
testing the connector, 109

Tester Tool scripts, 113
bulk provisioning, 115
initial connectivity-related, 113
provisioning-related, 113

types of connectors, 17

U
user modification code examples, 96

W
WebLogic

installing a connector, 117

Web Service
implemented SPML requests, 124
issuing requests, 123
operations, 122

X
XML schema handling, 47
181

	Connector Developer Guide
	1 Select Identity Connectors
	Connector Types
	OVSI API Architecture
	OVSI Connector Architecture
	OVSI Connector API Interfaces and Classes
	New Features in the 4.0 Connector Interface

	2 Functional Requirements and Development Phases
	Platform Support
	Agent Communication, Security, and Logging
	Identity Objects and Schema Mapping
	Supporting and Mapping Identity Objects

	Provisioning, Detecting Changes, and Post-provisioning
	User/Entitlements Discovery
	User Provisioning
	Entitlement Provisioning
	Change Detection
	Post Provisioning

	Internationalization Compliance
	Performance and Scalability
	Development Phases
	Requirements Phase
	Design Phase
	Implementation
	Integration
	Packaging
	Documentation

	3 Connector SDK
	Simplified Connector Interface
	XML Schema Handling
	Generic JCA Interface and Connector Implementation
	Connector Tester Tool
	Connector Template

	4 Implementing a Select Identity Connector
	Development Requirements
	Steps to Implement a Connector for Select Identity
	Step 1: Start with the Connector Template
	Step 2: Gather Connector Details
	Resource Details
	Resource Schema Details
	Connector Code-Related Details

	Step 3: Working with the Connector Template
	1. Prepare the Connector Template Files
	2. Check the Library JAR Files
	3. Implement the Connector

	Sample SPML Requests for Reconciliation
	Authoritative Reconciliation SPML Requests
	Non-Authoritative Reconciliation SPML Requests

	Building a Connector for Forward Provisioning
	Agentless Forward Provisioning
	Agent-based Forward Provisioning

	Building a Connector for Reverse Provisioning
	Agentless Reverse Provisioning
	Implementing getChangeLog(ChangeLogCursor)

	Agent-based Reverse Provisioning

	Mapping OVSI Attributes to the Resource Schema
	General Attribute Information
	Creating a Mapping File

	Some Coding Guidelines
	Key Value Return
	Key Value Computation
	User Modification
	Loading Existing User From Resource
	Computing Changes to Be Made

	Matching Managed Connections
	Schema Reloading

	5 Connector Tester Tool
	Installing the Tester Tool
	Testing the Connector
	Step 1: Get the connection parameters of your connector.
	Step 2: Prepare the properties file with names and values of these connection parameters.
	Step 3: Test the connection to the resource.
	Step 4: Run the Tester Tool client using one of the scripts.

	Tester Tool Scripts
	Initial Connectivity-Related Scripts
	Provisioning-Related Scripts
	Bulk Provisioning Scripts

	6 Installation and Deployment
	Installing a Connector On WebLogic
	Configuring a Connector in OVSI

	7 HP Openview Select Identity Web Service
	Web Service Operations
	Issuing Requests
	SPML Requests Implemented by OVSI Web Service
	SPML Examples
	Forward Provisioning Examples
	Adding a User
	Modifying a User
	Deleting a User
	Retrieving a User Profile
	Enabling a User
	Disabling a User
	Resetting a User’s Password
	Terminating a User

	Reconciliation SPML Request Examples
	Recon Auth Add User
	Recon Auth Modify User
	Recon Auth Delete User
	Recon Non-Auth Add User
	Recon Non-Auth Modify User
	Recon Non-Auth Delete User

	External Authentication of Requests

	8 Connector Migration
	Reasons to Migrate
	Interface Changes
	Connector API Changes
	Classes and Interfaces
	Connector Interface

	Attribute Operations
	Schema Changes
	Entity Definition
	Relationship Definition
	XML Mapping File Changes

	Steps to Migrate Connectors
	Step 1: Change the Connector Implementation
	Implement the SIConnector
	ConnectorFactory Implementation

	Step 2: Change the XML Mapping File
	ObjectClass Definition
	Attribute Mapping Definitions
	Relationship Definition

	Step 3: Remove Deprecated Methods
	Step 4: Use Commons Logging
	Step 5: Package the Connector
	Step 6: Use the Connector Tester Tool

	A Connector Template
	Template Files
	Connector Template Code

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue true
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /Futura-Bold
 /Futura-Book
 /Futura-BookItalic
 /Futura-Heavy
 /Futura-Light
 /Futura-Medium
 /Futura-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /Symbol
 /SymbolMT
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /Times-Roman
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfDingbats
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

