HP OpenView Select Identity

For the Red Hat Enterprise Linux and
Windows 2003 Operating Systems

Software Version: 4.0

N
External Call Developer Guide

March 2006

invent

Legal Notices

Warranty

Hewlett-Packard makes no warranty of any kind with regard to this document, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be held liable for errors contained herein or direct, indirect, special,
incidental or consequential damages in connection with the furnishing, performance, or use of
this material.

A copy of the specific warranty terms applicable to your Hewlett-Packard product can be
obtained from your local Sales and Service Office.

Restricted Rights Legend

Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause in
DFARS 252.227-7013.

Hewlett-Packard Company
United States of America

Rights for non-DOD U.S. Government Departments and Agencies are as set forth in FAR
52.227-19(c)(1,2).

Copyright Notices
© Copyright 2004-2006 Hewlett-Packard Development Company, L.P.

No part of this document may be copied, reproduced, or translated into another language
without the prior written consent of Hewlett-Packard Company. The information contained in
this material is subject to change without notice.

This product includes software developed by the Apache Software Foundation (http:/
www.apache.org/). Portions Copyright (c) 1999-2003 The Apache Software Foundation. All
rights reserved.

HP OpenView Select Identity (OVSI) uses software from the Apache Jakarta Project
including:

e Commons-beanutils.
e Commons-collections.
e Commons-logging.

e Commons-digester.

e Commons-httpclient.

¢ Element Construction Set (ecs).

e Jakarta-poi.

e Jakarta-regexp.

e Logging Services (log4j).

Additional third party software used by OVSI includes:

e JasperReports developed by SourceForge.

e iText (for JasperReports) developed by SourceForge.

¢ BeanShell.

e Xalan from the Apache XML Project.

e Xerces from the Apache XML Project.

e Java API for XML Processing from the Apache XML Project.

e SOAP developed by the Apache Software Foundation.

e JavaMail from SUN Reference Implementation.

e Java Secure Socket Extension (JSSE) from SUN Reference Implementation.
e Java Cryptography Extension (JCE) from SUN Reference Implementation.
e JavaBeans Activation Framework (JAF) from SUN Reference Implementation.
e OpenSPML Toolkit from OpenSPML.org.

e JGraph developed by JGraph.

e Hibernate from Hibernate.org.

¢ BouncyCastle engine for keystore management, bouncycastle.org.

This product includes software developed by Teodor Danciu http:/
jasperreports.sourceforge.net. Portions Copyright (C) 2001-2004 Teodor Danciu
(teodord@users.sourceforge.net). All rights reserved.

Portions Copyright 1994-2004 Sun Microsystems, Inc. All Rights Reserved.

This product includes software developed by the Waveset Technologies, Inc.
(www.waveset.com). Portions Copyright © 2003 Waveset Technologies, Inc. 6034 West
Courtyard Drive, Suite 210, Austin, Texas 78730. All rights reserved.

Portions Copyright (c) 2001-2004, Gaudenz Alder. All rights reserved.

This product includes software provided by the World Wide Web Consortium. This software
includes xml-apis. Copyright © 1994-2000 World Wide Web Consortium, (Massachusetts
Institute of Technology, Institute National de Recherche en Informatique et en Automatique,
Keio University). All Rights Reserved. http:/www.w3.org/Consortium/Legal/

Trademark Notices

AMD and the AMD logo are trademarks of Advanced Micro Devices, Inc.
BEA and WebLogic are registered trademarks of BEA Systems, Inc.

Intel and Pentium are trademarks or registered trademarks of Intel Corporation in the
United States, other countries, or both.

UNIX® is a registered trademark of The Open Group.

VeriSign is a registered trademark of VeriSign, Inc. Copyright © 2001 VeriSign, Inc. All rights
reserved.

Support

Please visit the HP OpenView support web site at:
http:/www.hp.com/managementsoftware/support

This web site provides contact information and details about the products, services, and
support that HP OpenView offers.

HP OpenView online software support provides customer self-solve capabilities. It provides a
fast and efficient way to access interactive technical support tools needed to manage your
business. As a valuable support customer, you can benefit by using the support site to:

e Search for knowledge documents of interest

¢ Submit enhancement requests online

e Download software patches

e Submit and track progress on support cases

e Manage a support contract

e Look up HP support contacts

¢ Review information about available services

¢ Enter discussions with other software customers
e Research and register for software training

Most of the support areas require that you register as an HP Passport user and log in. Many
also require a support contract.

To find more information about access levels, go to:
http:/www.hp.com/managementsoftware/access_level
To register for an HP Passport ID, go to:

http:/www.managementsoftware.hp.com/passport-registration.html

http://www.hp.com/managementsoftware/support
http://www.hp.com/managementsoftware/access_level
http://www.managementsoftware.hp.com/passport-registration.html

Preface

Welcome to the HP OpenView Select Identity Workflow Studio Guide. This guide provides
detailed information regarding the use of HP OpenView Select Identity’s (OVSI) Workflow
Studio, which enables you to create a workflow template that automates the actions that
approvers and systems management software must perform.

About This Guide

The HP OpenView Select Identity Workflow Studio Guide is designed to help you understand
the concepts of workflows and how to create workflow templates.

Audience

This document is intended for administrators who will use the HP OpenVew Select Identity
Workflow Studio to create and manage workflow templates.

Typographical Conventions

This guide uses the following typographical conventions:

Convention Description

Bold Used for user interface elements (menus, buttons, and so on),
new terms, and URLs.

Italics Used for variables, book titles, and emphasis.

Monospace Used for code examples, directory and file names, commands,
and user input.

Product Documentation

The HP OpenView Select Identity product documentation includes the following:

¢ Release notes are provided in the top-level directory of the HP OpenView Select Identity
CD. This document provides important information about new features included in this
release, known defects and limitations, and special usage information that you should be
familiar with before using the product.

e For installation and configuration information, refer to the HP OpenView Select Identity
Installation Guide. All installation prerequisites, system requirements, and procedures
are explained in detail in this guide. Specific product configuration and logging settings
are included. This guide also includes uninstall and troubleshooting information.

Detailed procedures for deployment and system management are documented in the HP
OpenView Select Identity Administrator Guide and OVSI online help system. This guide
provides detailed concepts and procedures for deploying and configuring the OVSI system.
In the online help system, tasks are grouped by the administrative functions that govern
them.

The HP OpenView Select Identity My Identity User Guide provides detailed information
for end-users about the My Identity function, which allows users to manage their identity
information.

The HP OpenView Select Identity Workflow Studio Guide provides detailed information
about using Workflow Studio to create workflow templates. It also describes how to create
reports that enable managers and approvers to check the status of account activities.

An HP OpenView Connector Installation and Configuration Guide is provided for each
resource connector. These are located on the Select Identity Connector CD.

The HP OpenView Select Identity Attribute Mapping Utility User Guide describes how to
access the Attribute Mapping Utility, provides an overview to the utility’s user interface,
and describes how to define user and entitlements mappings. This guide is provided on
the Select Identity Connector CD and is for use with the SQL and SQL Admin connectors
only.

The HP OpenView Select Identity External Call Developer Guide provides detailed
information about creating calls to third-party applications. These calls can then be
deployed in OVSI to constrain attribute values or facilitate workflow processes. In
addition, JavaDoc is provided for this API. To view this help, extract the javadoc.jar
file in the docs/api_help/external_calls/Javadoc directory on the HP OpenView
Select Identity CD.

If you need to develop connectors, which enable you to connect to external systems for
provisioning, refer to the HP OpenView Select Identity Connector Developer Guide. This
document provides an overview of the Connector API and the steps required to build a
connector. This guide also describes the Web Service, which enables you to
programmatically provision users in OVSI, providing an overview of the operations you
can perform through use of the Web Service, including SPML examples for each operation.
The audience of this guide is developers familiar with Java.

JavaDoc is also provided for the Connector API. To view this help, extract the

javadoc. jar file in the docs/api_help/connectors/Javadoc directory on the HP
OpenView Select Identity CD. Also, an independent, web-based help system is available
for the Web Service API. To view this help, double-click the index.htm file in the docs/
api_help/web_service/help directory on the HP OpenView Select Identity CD.

Contents

1 Introductionto External Calls. 1
2 Default External Calls 5
Attribute Value Generation External Call Type 5
Attribute Value Constraint External Call Type. 7
Attribute Value Validation External Call Type 8
Attribute Value Verification External Call Type............................ 9
Approver Selection External Call Type, 9
Workflow Action External Call Type 10
Certification Management Function External Call Type 13

3 CreatinganExternal Call............... 15
Coding Attribute Value External Calls. 15
Coding Approver Selection External Calls. 17
Coding Workflow Action External Calls........... 20

4 Examples. 25
Attribute Value Generation External Call 25
Attribute Value Constraint External Call 27
Implementing the TAValueConstraintIntf Interface 28
Implementing the SIConstraintIntf Interface 33
Attribute Value Validation External Call. 48
Approver Selection External Call i 50
Workflow Action External Call i, 51
Adding a Generated Valuetoa User.0, 52
Retrieving and Changing Attributes and Entitlements........................ 54
Retrieving Request Object Data to Set Workflow Variables. 61
ACTONYINS . . . 67

OIS . . e e 74

10

1 Introduction to External Calls

HP OpenView Select Identity (Select Identity) supports the ability to invoke
calls to external systems. External calls can be used to perform the following
types of tasks:

e Generate a user ID or password. See Attribute Value Generation External
Call Type on page 5.

e Provide a list of possible attribute values. See Attribute Value Constraint
External Call Type on page 7.

e Validate the value of an attribute. See Attribute Value Validation External
Call Type on page 8.

e Verify the value of an attribute. See Attribute Value Verification External
Call Type on page 9.

e Query an external system for a list of approvers. See Approver Selection
External Call Type on page 9.

e Perform a workflow task. See Workflow Action External Call Type on
page 10.

e Retrieve a certificate from an external system. Certification Management
Function External Call Type on page 13.

You must code the classes called by external calls using the External Call API
and Workflow API. These define Java-based interfaces for creating external
callouts. The Select Identity-facing portion of the interface must be written in
Java.

Creating an external call entails coding one or more Java classes. Thus, you
must have an understanding of the Java Developer Kit (JDK), version 1.4 or
later. For information about the J2EE APIs, refer to http://java.sun.com/j2se/
1.4.2/docs/api/index.html.

JavaDoc is provided for the External Call API and Workflow API in the /docs/
api_help/external_calls/Javadoc directory on the Select Identity media.
Refer to this web-based help for implementation and usage details.

The External Call API provides the following classes and interfaces, which are
available for creating value external calls.

e TAValueConstraintintf

Introduction to External Calls 1

This interface must be implemented by external call classes providing a
set of possible values for an attribute. For example, implement this
interface for an external call that provides a list of department codes to
present options to an end user or to validate data. Note that
SIConstraintIntf is an extension of this interface.

e TAValueConstraintintf. TAValueConstraintBeanIntf

External calls generating or providing a set of possible values for an
attribute must return the values in a Java bean that implements this
interface. For example, the department codes returned by the external call
must be passed in a Java bean implementing this interface.

e SliConstraintintf

This interface must be implemented by classes generating possible values
for an attribute.

® TAValueGenerationintf

This interface must be implemented by external call classes generating
attribute values. For example, the class implementing this interface can
generate a random password for a user.

e TAValueValidationintf

This interface must be implemented by external call classes validating
attribute values. For example, if a value is present in a form (entered by
an user), the implementing class can validate the value.

® TAPolicyVerificationintf

This interface must be implemented by external calls that validate the
value of an attribute for a particular user. For example, you use a class
implementing this interface to verify that a user’s password that is stored
externally (outside of Select Identity) is correct. Currently, only password
attributes are verified this way.

e TAAttributeDefinitionException and TAAttributeValueValidationException
Exceptions defined for use by external calls.

The Workflow API provides the following classes and interfaces to use in
approver selection and workflow external calls.

e |WfClient

Chapter 1

Invokes a workflow template, thereby creating a workflow instance. This
interface also enables you to resume an inactivated workflow instance and
terminate an instance.

e |WfQuery

Retrieves runtime and configuration information about a workflow at the
template, instance, block, or activity level.

e |WfDataUpdate
Updates workflow variables.
® StatelessServiceObjectFactory

Creates a component that implements the IWfClient, IWfQuery, and
IWfDataUpdate interfaces and forces the interfaces to behave like
stateless EJB while hiding EJB-specific code and deployment information.

e WfExternalCall

Provides the contract between Select Identity and an external stage in a
workflow. Select Identity can invoke classes implementing this interface to
perform actions in a workflow. External calls invoked by workflow
instances must implement this interface. This class returns a collection of
approvers.

e WifExternalCallException
Defines exceptions used by the Workflow API.
e WfExternalCallStatus

Returns the status of an approval stage to Select Identity. Along with the
status of the stage, it can also return changes to the user profile including
attributes and entitlements.

* WfSelectApproverintf

Provides the contract between Select Identity and an external entity to
select an approver. Objects implementing this interface can be registered
with Select Identity and used in approval stages to dynamically select an
approver.

Use the following classes to explore Select Identity requests and approval
frameworks:

e AttributeRecord

Represents an attribute.

Introduction to External Calls 3

ChangeRecord

Represents a change in a attribute. Objects of this class can be used to
communicate changes in a user profile from external calls.

Request

Defines methods to retrieve and set all information related to an incoming
request in the Select Identity system.

RequestJobltem

Defines the job that handles the request in the Select Identity system.
RequestTarget

Defines the target of a request.

RequestTargetParam

Defines the parameters of a request target.
RequestTargetParamValue

Lets you set and get parameter values.

TAFilter

A general class that stores filter criteria for a selection (search) procedure.
TARequestAction

Represents the action to take place on the target resource.
TARequestEvent

Represents the event for the request.

TARequestType

Represents the type of request.

Chapter 1

2 Default External Calls

Select Identity provides default external calls to let you interact with external
systems for workflow steps and approver lookups. Each external call is
defined within one of the following call types:

Attribute Value Generation — generates the name or ID of a user, the user’s
password, and any other attribute, such as the user’s company or
department. See Attribute Value Generation External Call Type on

page 5.

Attribute Value Constraint — provides a list of possible values for an
attribute. See Attribute Value Constraint External Call Type on page 7.

Attribute Value Validation — validates the value of an attribute. See
Attribute Value Validation External Call Type on page 8.

Attribute Value Verification — verifies the value of an attribute. See
Attribute Value Verification External Call Type on page 9.

Approver Selection — searches an external system for a list of users who
can approve provisioning requests during a workflow. See Approver
Selection External Call Type on page 9.

Workflow Action — performs a task as part of a workflow, letting you
integrate approval processes with external processes and systems. See
Workflow Action External Call Type on page 10.

Certification Management — enables you to retrieve a certificate from an
external system. See Certification Management Function External Call
Type on page 13.

Most external calls have predefined parameters that you can modify. The
following sections list and describe the functionality of the external calls and
their parameters, by call type.

Attribute Value Generation External Call Type

Attribute value generation external call types generate the name or ID of a
user, the user’s password, and any other attribute, such as the user’s company
or department. Attribute value generation external calls include the following:

Default External Calls

IDValueGeneration

® PasswordValueGeneration

® UserIDValueGeneration

IDValueGeneration External Call

TheIDvValueGeneration external call generates an attribute that is a unique
number.

Parameters:
Parameter Name Parameter Value Description
Suffix Use after the number.
Prefix Use before the number.

PasswordValueGeneration External Call

The PasswordvValueGeneration external call generates a password that may
contain letters and numbers. The password must contain at least one number,
and the letters must be lowercase. the password value is constrained by the

minimum and maximum parameters. Special characters ("/", "+", "-") are not
permitted.
Parameters:

Parameter Name Parameter Value Description

) The smallest allowable length of
minLength the password.

The largest allowable length of
maxLength the password.

UserlDValueGeneration External Call

The UserIDValueGeneration external call generates a user ID based on
another attribute.

Chapter 2

Parameters:

Parameter Name Parameter Value Description

Maximum number of tries to cre-
MaxRetryAttemptS ate a unlque ID

The number of characters (alpha-

numeric or special) in the gener-
Length ated ID.

Attribute name from which the

user ID is generated (such as from
AttributeName email).

Attribute Value Constraint External Call Type

Attribute value constraint external call types provide a list of possible values
for an attribute. Attribute value constraint external call types include the
following:

® Search Connector

® Search Table

Search Connector External Call

The Search Connector external call constrains attributes based on the Select
Identity resource name specified.

Parameters:

Parameter Name Parameter Value Description

resource_name Select Identity resource name.

Search Table External Call

The Search Table external call constrains attributes based on the specified
query and valuefield parameters. The query is executed using the specified
poolname parameter value.

Default External Calls 7

Parameters:

Parameter Name Parameter Value Description

Value from the query to use for
valuefield constraining the attribute.

Query invoked to dynamically
lookup valid values from the data-
query base.

JNDI name for the data source
and poolname for which the query
poolname is to be executed.

Attribute Value Validation External Call Type

Attribute value validation external call types validate values of attributes.
Attribute value validation external call types include the following:

® TsAlphaNumeric
® ManageExpireValidation
® PasswordValidation

® AttributeValueValidation

IsAlphaNumeric External Call

The IsAlphaNumeric external call validates if the attribute value is
alphanumeric. No parameters are editable with this external call.

ManageExpireValidation External Call

The ManageExpirevValidation external call validates the value of the
ExpirationDate attribute, which must be more than 30 days from the
current date. An error message appears if the value of the ExpirationDate
attribute is less than 30 days. No parameters are editable with this external
call.

PasswordValidation External Call

The Passwordvalidation external call validates that the password contains
the minimum number of each type of characters specified.

Chapter 2

Parameters:

Parameter Name

Parameter Value Description

Special Characters

Number of required non-alphanu-
meric or special characters.

List of Special
Characters

Comma delimited list of valid spe-
cial characters.

Lower Case Letters

Number of required lowercase let-
ters

Upper Case Letters

Number of required uppercase
letters.

Numerics

Number of required numeric val-
ues.

Letters

Number of required letters.

Attribute Value Verification External Call Type

The AttributeValueVerification external call verifies the value of an
attribute. No parameters are editable with this external call.

Approver Selection External Call Type

Approver selection external call types search an external system for a list of
users who can approve provisioning requests during a workflow. Approver
selection external call type includes WFGetApproverSampleExtCall.

WFGetApproverSampleExtCall External Call

The WFGetApproverSampleExtCall external call is a sample external call
that specifies a list of users to use for approvals.

Parameters

Parameter Name

Parameter Value Description

SampleApprovers

Comma delimited list of users to
use for approvals.

Default External Calls

10

Workflow Action External Call Type

Workflow external call types perform a task as part of a workflow, letting you
integrate approval processes with external processes and systems. Workflow
external calls include the following:

® ToadUserServices
® UserEnableDisableWFExtCall
e WorkflowCertificateRequest

® ExclusionRuleCall

LoadUserServices External Call

The LoadUserServices external call adds Services to a user based on context
change. For an example of how to use this external call, see Scenario: Adding
Services to a User within the Workflow Studio Guide.

Parameters:

Parameter Name Parameter Value Description

ServicesRule Specifies the rule name.

UserEnableDisableWFExtCall External Call

The UserEnableDisableWFExtCall external call enables or disables a user
based on the value stored in a specified attribute.

Chapter 2

Parameters:

WorkflowCertificateRequest External Call

Parameter Name

Parameter Value Description

AttributeName

Attribute name for which the
value is checked.

EnableValue

If the value of the attribute of the
user matches the Fnablevalue,
the external call enables the user
when the user is disabled.

DisableValue

If the value of the attribute of the
user matches the DisablevValue,

the external call disable the user

when the user is enabled.

UserName

Administrator with authority to
modify users who will use this
external call.

Password

Administrator's password.

url

Webservices URL.

The WorkflowCertificateRequest manages certificates. For information on
using this external call, see Chapter 2 in the HP OpenView Select Identity
Workflow Studio Guide.

Default External Calls

11

12

Parameters:

Parameter Name

Parameter Value Description

DN _FieldName

Attribute name storing the user’s
distinguished name (DN) from the
certificate.

CertificateFieldName

Challenge password assigned at
the time of user registration.

EmailTemplateName

Default email template from
Select Identity, to send email to
the user.

CertificateProviderN
ame

Certificate provider name. In the
case of Verisign, the name must
be “Verisign.” In all other cases,
the administrator can assign the
name.

ExternalCallName

Name of the CA-specific Java
class implementing validation
and generation functions for the
certificate.

ExclusionRuleCall External Call

The ExclusionRuleCall external call prevents users from receiving services
when the users have existing or pending conflicting services or entitlements.

Parameters:

Parameter Name

Parameter Value Description

RuleName
UniqueServicePrefix

Parameter specifying which rule
to run.

WFVariableName
$RuleExclusionMsg

Workflow variable specifying the
result message.

Chapter 2

Certification Management Function External Call Type

Certification management function external call types implement validation
and generation functions for the certificate. Certification management
function external call types include only VerisignCertImpl. For detailed
information about Verisign certificate management, see Appendix E in the HP
OpenView Select Identity Workflow Studio Guide.

VerisignCertlmpl External Call

The VerisignCertImpl external call is called by the
WorkFlowCertificateRequest external call, which validates certificate
requests. This external call has no editable paramenters. For more
information, see Chapter 2 in the HP OpenView Select Identity Workflow
Studio Guide.

Default External Calls 13

14

Chapter 2

3 Creating an External Call

The sections in this chapter describe how to implement an external call of
each type. Refer to the JavaDoc provided in the /docs/api_help/
external_calls/Javadoc directory on the HP OpenView Select Identity
media for details about specific APIs.

Coding Attribute Value External Calls

To create an external call, follow these guidelines:

Attribute Value Generation external calls must implement the
TAValueGenerationIntf interface. See Attribute Value Generation
External Call on page 25 for code examples.

Attribute Value Constraint external calls must implement the
TAValueConstraintIntf and SIConstraintIntf interfaces. See
Attribute Value Constraint External Call on page 27 for code examples.

Attribute Value Validation external calls must implement the
TAValueValidationIntf interface. See Attribute Value Validation
External Call on page 48 for code examples.

Attribute Value Verification external calls must implement the
TAPolicyVerificationIntf interface.

Certification management external calls must implement the
CertificateMgmt interface interface.

In addition, general information about how to obtain input parameters, Select
Identity attributes, and what needs to be returned is provided:

To retrieve an external call parameter defined on the External Calls
page of the Select Identity client, use the containsKey and get methods.
The containsKey method verifies the existence of the specified parameter,
and the get method retrieves the parameter. For example:

if (attrs.containsKey ("parametername"))
String parameter = (String)
attrs.get ("parametername")

Creating an External Call 15

16

To retrieve a Select Identity attribute, use one of the methods provided by
the RequestTarget class, such as getSingleRequestParamStr. This
example retrieves a single value attribute:

String attributeValue=(String)requestTarget.
getSingleRequestParamStr ("attributename") ;

To retrieve the values of a multivalue attribute, use the getRequestParam
method. For example:

Set attributeValues=(Set)requestTarget.

getRequestParam("attributename") .getRequestTArgetParamValue (
)

Throw TAAttributeDefinitionException if the external call is
unsuccessful.

If you write an external call function that must access data in the Select
Identity database, the function can acccess the database using the JNDI
name specified by the truaccess.dataSource property in the
truaccess.properties file. However, the function can access the Select
Identity database in other ways; it depends on how you construct the
function. For more information about properties set in this file, see the HP
OpenView Select Identity Installation and Configuration Guide.

Use any logging mechanism to log messages and errors. The examples
shown in this guide, however, use an internal logging mechanism not
available externally.

Chapter 3

Coding Approver Selection External Calls

For approver selection external calls, the APIs support synchronous
communication. The external system must complete its processing and
provide status information as part of the call. The call is required to return
status indicating how Select Identity will proceed with the workflow.

The following provides general information about how to implement an
approver selection external call, how to obtain to input parameters and Select
Identity attributes, and what needs to be returned.

Approver selection external calls must implement the
WfSelectApproverIntf interface.

The main method of the external call must be called getApprover. Here is
the call signature of the getApprover method:

public Collection getApprover (RequestTarget reqTarget,
HashMap attrs)
throws WfExternalCallException;

The Workflow external call must return a collection of Select Identity user
IDs. In addition, the external call must return data that is valid in Select
Identity.

To retrieve an external call parameter defined on the External Calls
page of the Select Identity client, use containsKey and get methods. The
containsKey method verifies the existence of the specified parameter, and
the get method retrieves the parameter. For example:

if (attrs.containsKey ("parametername"))
String parameter = (String)
attrs.get ("parametername")

Select Identity defines the following standard parameters in the map:

e WfExternalCall.WF_PARAM SERVICENAME — for the service name.
This is a String object.

e WfExternalCall.WF_PARAM ADMINUSERID — for the requestor’s user
name. This parameter is empty for a self-registration or
system-generated request. This is a String object.

e WfExternalCall.WF_PARAM REQUESTID — for the request identifier.
This is an Integer object.

Creating an External Call 17

e WfExternalCall.WF_PARAM WORKFLOWINSTID — for the workflow
instance ID. This is an Integer object.

To retrieve a Select Identity attribute, use one of the methods provided by
the RequestTarget class, such as getSingleRequestParamStr. For
example, you may need to populate the values for each user attribute
defined by a map in an external call called by a workflow template.

Here is an example that retrieves a single value attribute:

String attributeValue=(String)requestTarget.
getSingleRequestParamStr ("attributename") ;

To retrieve the values of a multi-value attribute, use the following
method:

Set attributeValues=(Set)requestTarget.

getRequestParam("attributename") .getRequestTargetParamValue (

)

For a more extensive example, see Retrieving Request Object Data to Set
Workflow Variables on page 61.

To retrieve workflow variables, use the IWfQuery interface as in the
following example:

IWfQuery query =(IWfQuery)StatelessServiceObjectFactory.
create (IWfQuery.class) ;

int instanceId = query.

getInstanceInfoByInstActivityId(instActivityId) .getInstId();
Map varMap = query.getCurrentVariableMap (instancelId) ;
String comment = (String) varMap.get ("$SApproverComments") ;

To set and update a workflow variable, use the methods provided by the
IWfDataUpdate interface, as follows:

IWfDataUpdate du
= (IWfDataUpdate) StatelessServiceObjectFactory.
create (IWfDataUpdate.class) ;
du.setWorkflowVar (instId, "workflowvariablename", "value");

Chapter 3

e A workflow variable can be any Java object. However, if it is a persistent
variable with its name preceded by $, you may either use HashMap to
contain object attributes or use the Java object marked as Serializable. If
the persistent variable is a Java object, you should also add following line
in the Java class:

static final long serialVersionUID = uid;

where uid can be 0 for the newly created class or found by running JDK's
server command.

¢ The following variables are available for use in your external call:

Variable Name Description

The activity ID string for current activity in
execution. This variable is maintained by the
engine and cannot be updated in template. A
_activityld string value is assigned to this variable.

An internal variable representing the instance
activity ID for the current activity in execution.
This variable is maintained by the engine and
cannot be updated in template. The variable is
_instActivityld assigned an integer value.

Passed into the workflow by an external
application invoked as an action in a workflow
template activity. This variable is not persistent.
Possible values include the following:

® exit — unconditionally exits the block.

® exitAll — unconditionally exits the current
block and all parent blocks.

* reset — resets the value of the joinCount
property set in the block.

For example, the application could pass this
variable to the workflow to instruct it to exit a
block unconditionally (even if, for instance, the
_joinCommand _joinCount value is not met).

Creating an External Call 19

20

Variable Name Description

Passed into the workflow by an external
application invoked as an action in a workflow
template activity. The object is then added to
workflow’s internal pushList block variable. The
pushed objects in the list can be displayed later
in a tabular format in a report.

You can specify any Java object as the value of
_pushVar this variable.

The block ID for the current block. You can
$_blockId assign any string value to this variable.

The workflow instance ID. This variable is
maintained by the engine and cannot be
updated. An integer value is assigned to this
$_instld variable.

* You can use any logging mechanism to log messages and errors. Note,
however, the examples shown in this guide use an internal logging
mechanism not available externally.

Coding Workflow Action External Calls

For workflow action external calls, the APIs support synchronous
communication. Select Identity requires the external system to complete its
processing and provide status information as part of the callout. The callout is
required to return status indicating how Select Identity proceeds with the
workflow.

General information about how to implement an workflow action external
call, how to obtain to input parameters and Select Identity attributes, and
what needs to be returned are provided:

e Workflow external calls must implement the WfExternalCall interface.

e The main method of the external call must be called process. This
method expects four input parameters. Here is the call signature of the
process method:

Chapter 3

WfExternalCallStatus process (String stageld,
RequestTarget requestTarget,
AttributeRecord [] availGrp,
AttributeRecord [] availRole,
AttributeRecord [] availEntilements,

Map map) throws WfExternalCallException

¢ The workflow action external call must return WfExternalCallStatus. In
addition, the external call must return data valid in Select Identity.

e To retrieve an external call parameter defined on the External Calls
page of the Select Identity client, use the containsKey and get methods.
The containsKey method verifies the existence of the specified parameter,
and the get method retrieves the parameter. Here is an example:

if (attrs.containsKey ("parametername"))
String parameter = (String)
attrs.get ("parametername")

e Select Identity defines the following standard parameters in the map:

e WfExternalCall.WF_PARAM SERVICENAME — for the service name.
This is a String object.

® [fExternalCall.WF_PARAM ADMINUSERID — for the requestor’s user
name. This is a String object.

e |fExternalCall.WF_PARAM REQUESTID — for the request identifier.
This is an Integer object.

e WfExternalCall.WF_PARAM WORKFLOWINSTID — for the workflow
instance ID. This is an Integer object.

e Toretrieve a Select Identity attribute, use one of the methods provided by
the RequestTarget class, such as getSingleRequestParamStr. This
example retrieves a single value attribute:

String attributeValue=(String)requestTarget.
getSingleRequestParamStr ("attributename") ;

To retrieve the values of a multivalue attribute, use the getRequestParam
method. For example:

Set attributeValues=(Set)requestTarget.

getRequestParam("attributename") .getRequestTargetParamValue ()

Creating an External Call 21

22

To retrieve workflow variables, use the IWfQuery interface as in the
following example:

IWfQuery query =(IWfQuery)StatelessServiceObjectFactory.
create (IWfQuery.class) ;

int instanceId = query.

getInstanceInfoByInstActivityId (instActivityId) .getInstId();
Map varMap = query.getCurrentVariableMap (instancelId) ;
String comment = (String) varMap.get ("$SApproverComments") ;

To set and update a workflow variable, use the methods provided by the
IWfDataUpdate interface, as follows:

IWfDataUpdate du
= (IWfDataUpdate) StatelessServiceObjectFactory.
create (IWfDataUpdate.class) ;
du.setWorkflowVar (instId, "workflowvariablename", "value");

Update a Select Identity attribute as follows:

WfExternalCallStatus ecs = new WfExternalCallStatus (stageId) ;
ChangeRecord changeRecord = new ChangeRecord() ;

// Update the attribute in the change record
changeRecord. setName ("attributename") ;
changeRecord.addvalue ("newattributevalue") ;

ecs.addAttributeChange (changeRecord) ;

You can also update workflow variables that need to be persisted using
setStatus () provided by the WfExternalCallStatus class. All variable
names starting with $ are assumed to be a workflow variable and
persisted when the call returns.

To set the return status of a workflow external call, use the
WfExternalCallStatus class and methods, as follows:

ecs = new WfExternalCallStatus (stageId);

If the call returns successfully, use the following:
ecs.setStatus (WfExternalCallStatus.STATUS_APPROVED) ;
If the call is unsuccessful, use the following:

ecs.setStatus (WfExternalCallStatus.STATUS_REJECT TERMINATE) ;

Chapter 3

¢ The following variables are available for use in your external call:

Variable Name

Description

_activityld

The activity ID string for current activity in
execution. This variable is maintained by the
engine and cannot be updated in template. A
string value is assigned to this variable.

_instActivityld

An internal variable representing the instance
activity ID for the current activity in execution.
This variable is maintained by the engine and
cannot be updated in template. It is assigned an
integer value.

_joinCommand

Passed into the workflow by an external
application invoked as an action in a workflow
template activity. This variable is not persistent.
Possible values include

® exit — unconditionally exits the block

e exitAll — unconditionally exits the current
block and all parent blocks

* reset — resets the value of the joinCount
property set in the block

For example, the application could pass this
variable to the workflow to instruct it to exit a
block unconditionally (even if, for instance, the
_joinCount value is not met).

Creating an External Call

23

24

Variable Name

Description

_pushVar

Passed into the workflow by an external
application invoked as an action in a workflow
template activity. The object is then added to
workflow’s internal pushList block variable. The
pushed objects in the list can be displayed later
in a tabular format in a report.

You can specify any Java object as the value of
this variable.

$ blockId

The block ID for the current block. You can
assign any string value to this variable.

$_instld

The workflow instance ID. This variable is
maintained by the engine and cannot be
updated. An integer value is assigned to this
variable.

e To log messages and errors, you can use any logging mechanism. The
examples shown in this guide, however, use an internal logging
mechanism that is not available externally.

Chapter 3

4 Examples

This chapter provides examples for each type of external call. Refer to the
Javadoc in the

/docs/api_help/external_ calls and workflow directories on the HP
OpenView Select Identity media for information about the APIs.

) All of the examples are included in the Select Identity EAR file deployed
during installation. If you wish to modify and register one of the example
calls, you must change the class name.

Attribute Value Generation External Call

This class generates the password from a Social Security Number or ID. The
configuration arguments to the function are the SSN_FIELD and
PERSONNUMBER_FIELD attributes. The supporting class,
UserNameValueBean. java, follows this one on page 27.

package com.trulogica.truaccess.externalcall.generatefunction;

import java.util.StringTokenizer;
import java.util.Random;
import java.util.Map;
import com.trulogica.truaccess.request.model .RequestTarget;
import com.trulogica.truaccess.attribute.TAValueGenerationIntf;
import com.trulogica.truaccess.attribute.exception.
TAAttributeDefinitionException;
import com.trulogica.truaccess.util.logging.misc.Logger;
import com.trulogica.truaccess.util.logging.misc.Level;
import com.trulogica.truaccess.externalcall.generatefunction.
UserNameValueBean;
/**
* Generates a String ID with the format Prefix + ID + Suffix
* Prefix and Suffix are specified as parameters to the call
*/

Examples 25

26

public class SimpleValueGenerator implements
TAValueGenerationIntf
{
public Object generateValue(String attribName,
RequestTarget reqgTarget, Map args)
throws TAAttributeDefinitionException

try {

if (mLogger.isLoggable (Level .FINEST))
mLogger.finest ("Generating the
value of :"+attribName) ;
if (mLogger.isLoggable (Level .FINEST))
mLogger . finest ("RequestTarget: "+regTarget.toString()) ;

String prefix = (String)args.get (PARAM PREFIX) ;
String suffix = (String)args.get (PARAM SUFFIX) ;

StringBuffer sb = new StringBuffer();
sb.append ((null==prefix)?"":prefix) .append ((new
Random()) .nextInt ()) .append((null==suffix)?"":suffix);

if (mLogger.isLoggable (Level .FINEST))
mLogger.finest ("Returning a value of : " +
sb.toString () +
" : for attribute" + attribName) ;
return new UserNameValueBean (sb.toString()) ;

} catch (Throwable t) {
if (mLogger.isLoggable (Level .WARNING))
mLogger.log (Level .WARNING, "Unable to generate attribute
value for
attribute: "+attribName, t) ;
TAAttributeDefinitionException exp = new
TAAttributeDefinitionException ("Unable to generate
attribute value
for attribute:"+attribName+t.getMessage()) ;
exp.setCausedBy (t) ;
throw exp;

Chapter 4

private static final Logger mLogger =
Logger .getLogger (SimpleValueGenerator.class.getName ()) ;
private static final String PARAM PREFIX="prefix";
private static final String PARAM SUFFIX="suffix";

}

The value generation function aboce calls the following class:

package com.trulogica.truaccess.externalcall.generatefunction;

import com.trulogica.truaccess.attribute.TAValueConstraintIntf.
TAValueConstraintBeanIntf;

public class UserNameValueBean implements
TAValueConstraintBeanIntf
{
String value = null;
public UserNameValueBean (String _value)
{
value = _value;
}
public String getName () {
return null;

}

public Object getvValue() {
return value;

}

Attribute Value Constraint External Call

The following examples implement a simple table-based lookup of possible
constraint values. The examples use external arguments —poolname and SQL
string— to query the database tables. The supporting class,
SearchResult.java, follows the main classes.

Examples 27

28

Implementing the TAValueConstraintIntf Interface

package com.trulogica.truaccess.externalcall.constraintfunction;

import java.util.*;
import com.trulogica.truaccess.util.logging.misc.Logger;
import com.trulogica.truaccess.util.logging.misc.Level;

import com.trulogica.truaccess.base.TAFilter;

import com.trulogica.truaccess.attribute.TAValueConstraintIntf;
import com.trulogica.truaccess.attribute.exception.
TAAttributeDefinitionException;

import com.trulogica.truaccess.externalcall.constraintfunction.
SearchResult;

import com.trulogica.truaccess.util.Tools;
import com.trulogica.truaccess.util.DBTool;
import javax.naming.InitialContext;

import javax.sdl.DataSource;

import java.sqgl.Connection;

import java.sql.PreparedStatement;

import java.sqgl.ResultSet;

import java.sqgl.ResultSetMetaData;

import java.sqgl.Types;

/**

* This class implements simple table-based lookups of possible
constraint

* values. It uses the external arguments poolname and sgl string
to query

* the database tables.

*/
public class SearchTable implements TAValueConstraintIntf {

private static final Logger mLogger =
Logger.getLogger (SearchTable.class.getName ()) ;

public static final String PARAM POOLNAME = "poolname";

public static final String PARAM SQLSTRING = "query";
public static final String PARAM VALUEFIELD = "valuefield";

Chapter 4

Examples

private String poolname = null;
private String query = null;
private String valuefield = null;

/**

* Returns a List of all possible values.

* Since this list can be very large it should be used
sparingly.

* @param attribName

* @param args

* @return

* @throws TAAttributeDefinitionException

* @see
com. trulogica.truaccess.attribute.TAValueConstraintIntf

*/

public List getValueConstraint (String attribName, Map args)
throws
TAAttributeDefinitionException
{
return getValueConstraint (attribName,null, args) ;

}

public List getValueConstraint (String attribName, TAFilter
filter, Map
args) throws TAAttributeDefinitionException
{
Connection connection = null;
PreparedStatement pStmt = null;
ResultSet rs = null;
Arraylist ar = new ArrayList();
try {
poolname = (String)args.get (PARAM_ POOLNAME) ;
query = (String)args.get (PARAM SQLSTRING) ;
valuefield = (String)args.get (PARAM_VALUEFIELD) ;

checkParam (poolname, PARAM POOLNAME) ;
checkParam (query, PARAM_SQLSTRING) ;
checkParam (valuefield, PARAM VALUEFIELD) ;

29

if (mLogger.isLoggable (Level .FINEST))
mLogger . finest ("Trying to
locate values for attribute:"+attribName) ;
String modFilter = "";
boolean hasParam = false;
if (null != filter) {

switch (filter.getOperation()) {

case TAFilter.EQUALITY:
modFilter = " ‘"+valuefield+" = ?";
break;

case TAFilter.BEGINS WITH:
modFilter = " "+valuefield+" LIKE ?";
filter.setValue(filter.getValue()+"%");
break;

case TAFilter.ENDS_WITH:
modFilter = " "+valuefield+" LIKE ?";
filter.setValue("%$"+filter.getValue());
break;

case TAFilter.CONTAINS:
modFilter = " "+valuefield+" LIKE ?";

filter.setValue("%"+filter.getValue()+"%");

break;

String query2Check = query;
query2Check = query2Check.toUpperCase() ;

if (modFilter.length() > 0) {
if (query2Check.indexOf (" WHERE ") > 0) {
query = query + " AND " + modFilter;

} else {

query = query + " WHERE " + modFilter;
}

hasParam = true;

}

connection = this.getConnection() ;

pStmt = connection.prepareStatement (query) ;

30

Chapter 4

if (mLogger.isLoggable (Level .FINEST))
mLogger.finest ("query: ("+query+") :modfilter: "+modFilter) ;
if (hasParam) {
pStmt.setString (1, filter.getValue()) ;
}

rs = pStmt.executeQuery () ;
ResultSetMetaData rsMetaData = rs.getMetaDatal() ;
int nameColumn=0;
//Select the first String field whose column name doesnot
match the
// value field
for (int 1 = 1; i <= rsMetaData.getColumnCount () ;i++)
{
if (((rsMetaData.getColumnType (i)==Types.VARCHAR) ||
(rsMetaData.getColumnType (i) ==Types .CHAR))
&&
(!'rsMetaData.getColumnName (i) .equalsIgnoreCase (valuefield))) {
nameColumn=i;
break;

}

while (rs.next())

{

SearchResult sr = new SearchResult() ;
sr.setValue (rs.getString (valuefield)) ;
if (nameColumn>0)

sr.setName (rs.getString (nameColumn)) ;
else

sr.setName ((String) sr.getValue());
ar.add(sr) ;

return ar;
} catch (Exception e) {

Examples 31

32

if (mLogger.isLoggable (Level .WARNING))
mLogger.log (Level .WARNING, "Unable to obtain the

values",e);

TAAttributeDefinitionException exp = new
TAAttributeDefinitionException() ;
exp.setCausedBy (e) ;
throw exp;
} finally {
DBTool.close(rs) ;
DBTool.close (pStmt) ;
DBTool.close (connection) ;

}

private Connection getConnection() throws Exception

{

InitialContext ctx = null;

try {
ctx = new InitialContext () ;
DataSource ds = (DataSource)ctx.lookup (poolname) ;
return ds.getConnection() ;

} finally {

Tools.close(ctx) ;

}

private void checkParam(String value, String name) throws
Exception

{
if ((null == value) || (value.trim().length() == 0))

throw new Exception("The value of "+name+" is needed");

}
The following is called by the class listed above:

package com.trulogica.truaccess.externalcall.constraintfunction;

import com.trulogica.truaccess.attribute.TAValueConstraintIntf;

Chapter 4

public class SearchResult implements
TAValueConstraintIntf.TAValueConstraintBeanIntf
{

private String name;

private Object value;

public SearchResult() {
}

public String getName() {
return name;

}

public void setName (String _name) {
name = _name;

public Object getValue() {
return value;

}

public void setValue (Object _value)
{

value = _value;

Implementing the SlConstraintintf Inferface

package com.trulogica.truaccess.externalcall.constraintfunction;

import java.sgl.Connection;

import java.sql.PreparedStatement;
import java.sqgl.ResultSet;

import java.sqgl.ResultSetMetaData;
import java.sql.SQLException;
import java.sqgl.Types;

import java.util.Arraylist;

import java.util.Collection;
import java.util.Iterator;

import java.util.List;

Examples 33

34

import

import
import
import

import
import

import
import
import
import
import
import

java.util.Map;

javax.naming.InitialContext;
javax.naming.NamingException;
javax.sql.DataSource;

org
org

com.
com.

com

com.
com.

com

.apache.commons . logging.Log;
.apache.commons . logging.LogFactory;

hp.ovsi.attribute.SIConstraintIntf;
hp.ovsi.attribute.api.GetConstraintsCommand;
.hp.ovsi.attribute.api.GetConstraintsResponse;
hp.ovsi.base.Command;

hp.ovsi.base.Response;
.trulogica.truaccess.attribute.exception.

TAAttributeDefinitionException;

import
import
import
import
import

public

{

com
com
com
com
com

.trulogica.truaccess.base.TAFilter;
.trulogica.truaccess.base.TAQuery;
.trulogica.truaccess.base.exception.CommandException;
.trulogica.truaccess.util.DBTool;
.trulogica.truaccess.util.Tools;

class SearchTable implements SIConstraintIntf //
TAValueConstraintIntf

private static final Log LOGGER =
LogFactory.getLog (SearchTable.class);

public static final String PARAM POOLNAME = "poolname";
public static final String PARAM SQLSTRING = "query";
public static final String PARAM VALUEFIELD = "valuefield";

private String poolname = null;
private String query = null;
private String valuefield = null;

/**

* Default NoArg Constructor

*/

public SearchTable() {
//end <init>

Chapter 4

Examples

public SearchTable(final Map args) throws
TAAttributeDefinitionException{
setParams (args) ;
//end <init>

/**
* Returns a List of all possible values. Because this list

can be
* potentially very large, it should be used sparingly.

@param attribName
@param args

@return

@throws TAAttributeDefinitionException
@see
com. trulogica.truaccess.attribute.TAValueConstraintIntf

*/

public List getValueConstraint(String attribName, Map args)

throws

TAAttributeDefinitionException ({
return getValueConstraint(attribName, null, args);

EE S T S R R

/**
* @see
com. trulogica.truaccess.attribute.TAValueConstraintIntf#
* getValueConstraint (java.lang.String,
com. trulogica.truaccess.base.
* TAFilter, java.util.Map)
*/
public List getValueConstraint(String attribName, TAFilter
filter,
Map args) throws TAAttributeDefinitionException ({
PreparedStatement pStmt = null;
ResultSet rs = null;
ArraylList ar = new ArrayList();

35

//FIXME: Why store the params, when replaced after every
call?
setParams (args) ;

if (LOGGER.isTraceEnabled()) {
LOGGER. trace("Trying to locate values for
attribute:" +
attribName) ;
}
String modFilter = "";
boolean hasParam = false;
if (null !'= filter) {

switch (filter.getOperation()) {

case TAFilter.EQUALITY:
modFilter = " " + this.valuefield + " = ?";
break;

case TAFilter.BEGINS_WITH:
modFilter = " " + this.valuefield + " LIKE ?";
filter.setValue(filter.getValue() + "%");
break;

case TAFilter.ENDS_WITH:
modFilter = " " + this.valuefield + " LIKE ?";
filter.setValue("%" + filter.getValue());
break;

case TAFilter.CONTAINS:
modFilter = " " + this.valuefield + " LIKE ?";
filter.setValue("%" + filter.getValue() + "%");
break;

}

String query2Check = this.query;
query2Check = query2Check.toUpperCase () ;
if (modFilter.length() > 0) {
if (query2Check.indexOf (" WHERE ") > 0) {
this.query = this.query + " AND " + modFilter;
} else {

this.query = this.query + " WHERE " +
modFilter;

Chapter 4

Examples

}
hasParam = true;
}//end if (modFilter.length() > 0
}//end if (null != filter
final Connection connection = getConnection() ;
try {

pStmt = connection.prepareStatement (this.query);

if (LOGGER.isTraceEnabled()) {
LOGGER. trace("query: (" + this.query +
") :modfilter:" +
modFilter);

if (hasParam) {
pStmt.setString(1, filter.getValue());

rs = pStmt.executeQuery() ;
ResultSetMetaData rsMetaData = rs.getMetaDatal() ;
int nameColumn = 0;

//Select the first String field whose column name does

not
// match the value field
for (int 1 = 1; i <= rsMetaData.getColumnCount (); i++
) A
if (((rsMetaData.getColumnType (i) ==
Types.VARCHAR) | |
(rsMetaData.getColumnType (i) == Types.CHAR))
&& (!rsMetaData.getColumnName (i) .
equalsIgnoreCase (this.valuefield))) {
nameColumn = i;
break;
}//end if
}//end for

while (rs.next()) {

SearchResult sr new SearchResult () ;

sr.setValue(rs.getString (this.valuefield));

37

if (nameColumn > 0) {

sr.setName (rs.getString (nameColumn)) ;
} else {

sr.setName ((String) sr.getValue());

ar.add(sr) ;
}
return ar;
} catch (SQLException e) {
LOGGER. fatal ("Unable to obtain the values", e);
TAAttributeDefinitionException exp =
new TAAttributeDefinitionException() ;
exp.initCause (e) ;

throw exp;
} finally {
DBTool.close(rs) ;
DBTool.close (pStmt) ;
DBTool.close (connection) ;
}//end finally
//end getValueConstraint

/**
* Gets the Connection to the Database.
* @return Connection to the database.
* @throws TAAttributeDefinitionException Thrown if an
Exception
* occurs looking up DataSource, or making Connection
* to the Database.
*/
private Connection getConnection() throws
TAAttributeDefinitionException {
InitialContext ctx = null;

try {
ctx = new InitialContext();
DataSource ds = (DataSource)

ctx.lookup (this.poolname) ;
return ds.getConnection/() ;
} catch (NamingException e) {

38 Chapter 4

Examples

final String msg = "Unable to retrieve Data
Connection: " +
e.getMessage () ;
LOGGER. fatal (msg, e);
throw new TAAttributeDefinitionException (msg) ;
} catch (SQLException e) {
final String msg = "Unable to make Connection to
Database: " +
e.getMessage () ;
LOGGER. fatal (msg, e);
throw new TAAttributeDefinitionException (msg) ;
} finally {
Tools.close(ctx) ;

}

//end getConnection

/**
* Convert the Filter (if supplied) into its SQL format, and
return
* the SQL Query.
@param query Base SQL Query to apply filter to.
@param valuefield
@param filter
@return
@deprecated
@see TAFilter#getPreparedStmtStr (String)
/
protected static String getFilteredQuery(final String query,
final String valuefield,
final TAFilter filter) {
if (null !'= filter) {
final StringBuffer modFilter = new StringBuffer(32);
modFilter.append (' ');
modFilter.append (valuefield) ;

EOE S R

switch (filter.getOperation()) {

case TAFilter.EQUALITY:
modFilter.append (" = ?");
break;

case TAFilter.BEGINS_WITH:
modFilter.append (" LIKE ?");
filter.setValue(filter.getValue() + "%");

39

break;
case TAFilter.ENDS_WITH:
modFilter.append (" LIKE ?");
filter.setValue("%" + filter.getValue());
break;
case TAFilter.CONTAINS:
modFilter.append (" LIKE ?");
filter.setValue("%" + filter.getValue() + "%");
break;

String query2Check = query;
query2Check = query2Check.toUpperCase () ;

if (modFilter.length() > 1) {
if (query2Check.indexOf (" WHERE ") > 0) {
return(query + " AND " + modFilter);
}Y// else
return(query + " WHERE " + modFilter) ;
}//end if (modFilter.length() > 0
}//end if (null != filter
//else
return (query) ;
//end getFilteredQuery

private void checkParam(String value, String name) throws
TAAttributeDefinitionException {

if ((null == value) || (value.trim().length() == 0)
) A
throw new TAAttributeDefinitionException("The value
of " +
name + " is needed");
}//end if
//end checkParam
}
/**

* @see
com.hp.ovsi.attribute.SIConstraintIntf#getConstraints (com.hp.
* ovsi.attribute.api.GetConstraintsCommand)

40 Chapter 4

Examples

*/
public GetConstraintsResponse
getConstraints (GetConstraintsCommand

command) throws TAAttributeDefinitionException{
//TODO: Normal getConstraintValue
final TAQuery query = command.getQuery () ;
final List filters = query.getTaFilterList();
//FIXME: This only sends the first filter!

final TAFilter filter = filters == null || filters.size()

< 1 ? null : (TAFilter)filters.get(0);
final List constraints =
getValueConstraint (command.getAttrName () ,
filter, command.getParams());
final GetConstraintsResponse response = new
GetConstraintsResponse (constraints) ;
return (response) ;
//end getConstraints

/**
* @see
com.hp.ovsi.attribute.SIConstraintIntf#getDisplayName (com.hp.
* ovsi.base.Command)
* INPUT = values
* QUTPUT = DiaplayValues (Name) /Values pairs
*/
public Response getDisplayName (Command command) throws
TAAttributeDefinitionException{
final TAQuery taQuery = command.getQuery () ;
final Collection filters = taQuery.getTaFilterList();
String sglQuery;
if (filters != null && filters.size() > 0) {
sglQuery = this.query + makeWhereClause (filters,
taQuery.isFilterListAnded()) ;
} else {
sglQuery = this.query;
}
LOGGER.debug (sglQuery) ;
final Connection connection = getConnection() ;
PreparedStatement ps = null;
ResultSet rs = null;

try {

41

ps = connection.prepareStatement (sglQuery) ;
if (filters != null && filters.size() > 0) {
int idx = 1;
for (Iterator it = filters.iterator();
it.hasNext () ;idx++) {
TAFilter filter = (TAFilter) it.next();
ps.setObject (idx, filter.getValueAsObject());
}//end for
}//end if
rs = ps.executeQuery () ;
final int valCol = rs.findColumn (this.valuefield) ;
// The Name column should be either the first or
second column
// retrieved.
final int nameCol = rs.getMetaData () .getColumnCount ()

(valCol ==1? 2 : 1) : 0;
final boolean namePresent = nameCol > 0;
final List resultList = new ArrayList(32);
while(rs.next ()) {
final SearchResult sr = new SearchResult();
final Object name = namePresent °?
rs.getObject (nameCol)

null;

sr.setName (name == null ? null : name.toString());
final String value = rs.getString(valCol);
sr.setValue(value == null ? null

value.toString()) ;
resultList.add(sr);
}//end while
return (new Response (resultList));
} catch (SQLException e) {
final String msg = "Exception retrieving SQL: " +
e.getMessage() ;
LOGGER. fatal (msg, e);
throw new TAAttributeDefinitionException (msg) ;
} finally {
DBTool.close(rs) ;
DBTool.close (ps) ;
DBTool.close (connection) ;
}
//end getDisplayName

42 Chapter 4

/**

* Create the SQL Where clause based on the Filters.

* @param filters The Filters to create the Where clause on.
* @param anded Whether the filters should be Anded or OR'd

together.
* @return SQL Where Clause.
*/
protected StringBuffer makeWhereClause (final Collection
filters,

final boolean anded) ({
final StringBuffer whereClause = new StringBuffer(1024);

final StringBuffer inSegment = new

StringBuffer (filters.size() * 3);
for (Iterator it = filters.iterator();

it.hasNext ();it.next()) {
inSegment.append ("?, ") ;
}//end for

final int length = inSegment.length();
if (length > 0){
inSegment .deleteCharAt (length - 1);
inSegment.append (') ') ;
if (this.query.toUpperCase () .indexOf ("WHERE") < 0) {
whereClause.append (" WHERE ") ;
} else {
whereClause.append (" AND ") ;
}
whereClause.append (this.valuefield) ;
whereClause.append (" IN (");
whereClause.append (inSegment) ;
}
return (whereClause) ;
//end makeWhereClause

/**
* @see
com.hp.ovsi.attribute.SIConstraintIntf#setParams (java.util.Map)
*/
public void setParams (final Map args) throws
TAAttributeDefinitionException{

Examples 43

44

this.poolname = (String) args.get(PARAM POOLNAME) ;
this.query = (String) args.get(PARAM_SQLSTRING) ;
this.valuefield = (String) args.get(PARAM VALUEFIELD

checkParam(this.poolname, PARAM POOLNAME) ;
checkParam(this.query, PARAM SQLSTRING) ;
checkParam(this.valuefield, PARAM VALUEFIELD);
//end setParams

* @see

com.hp.ovsi.attribute.SIConstraintIntf#size(java.lang.String)

public int size(final String attrName) throws
TAAttributeDefinitionException {

return(size (attrName, null));

* @see com.hp.ovsi.attribute.SIConstraintIntf#size(String,

TAFilter)

throws
TAAttributeDefinitionException ({

public int size(final String attrName, final TAFilter filter)

if (LOGGER.isTraceEnabled()) {
LOGGER.trace("Trying to count # of values for

attribute:" +

attrName) ;

final Connection connection = getConnection() ;
PreparedStatement ps = null;
ResultSet rs = null;
try {
ps =

connection.prepareStatement (getSizeQuery (filter)) ;

if (filter != null) {
ps.setString(1, filter.getValue());
}//end if

Chapter 4

rs = ps.executeQuery () ;

if (rs.next()) {
return(rs.getInt(l)); //Only one column, the

count, returned

} //else

throw new TAAttributeDefinitionException ("Count not

retrieved.");

} catch (SQLException e) {

final String msg = "Exception retrieving Row Count
from the

Database: " + e.getMessage() ;

LOGGER. fatal (msg, e);

throw new TAAttributeDefinitionException (msg) ;
} finally {

DBTool.close(rs) ;

DBTool.close (ps) ;

DBTool.close (connection) ;
} //end finally
//end size

/**
* Create the Query to compute the size of the retrieved
result set.
* @param filter Filter to use to filter the results.
* @return SQL Query based on the supplied filter.
*/
protected String getSizeQuery (TAFilter filter) {
if (this.query == null) {
throw new IllegalStateException("Query not set.");
}
String query = this.query.toUpperCase () ;
final int fromIdx = query.indexOf ("FROM") ;
int toIdx = query.indexOf ("ORDER") ;

if (fromIdx < 0) {
throw new IllegalStateException("Illegal Query
Statement Set:
" + this.query);
}
String substr = "";
if (toIdx > 0){

Examples

45

substr = this.query.substring (fromIdx, toIdx);

}

else {

substr = this.query.substring (fromIdx) ;

}

query = "SELECT COUNT (*) " + substr ;

return (getFilteredQuery (query, this.valuefield, filter));
//end getSizeQuery

/**
* @see
com.hp.ovsi.Commandable#execute (com.hp.ovsi.base.Command)
*/
public Response execute (Command command) throws
UnsupportedOperationException, CommandException {
final int commandCode = command.getCommand () ;
try {
if (commandCode ==
GetConstraintsCommand.COMMAND_VALUE) {
final GetConstraintsCommand gcc =
(GetConstraintsCommand) command;
setParams (gcc.getParams ()) ;

return (getConstraints ((GetConstraintsCommand) command)) ;
} else if (commandCode ==
SIConstraintIntf.DISPLAY COMMAND) {
try {
final GetConstraintsCommand gcc =
(GetConstraintsCommand) command;
setParams (gcc.getParams ()) ;
return (getDisplayName (command)) ;
} catch (TAAttributeDefinitionException e) {
throw new CommandException (e.getMessage(), e);
}
} else if (commandCode ==
SIConstraintIntf.SIZE_COMMAND) {
final GetConstraintsCommand gcc =
(GetConstraintsCommand) command;
setParams (gcc.getParams ()) ;
final TAQuery query = gcc.getQuery();

46 Chapter 4

Examples

final List filterList = query == null ? null
query.getTaFilterList () ;
final TAFilter filter = filterList == null ? null

filterList.size() > 0 ?
(TAFilter) filterList.get (0)
null;
final int size = size(gcc.getAttrName (), filter);
return (new Response (new Integer (size)));

}
} catch (TAAttributeDefinitionException e) {
throw new CommandException (e.getMessage(), e);

}

//else

throw new UnsupportedOperationException ("Command not
understood. ") ;

//end execute

}//end SearchTable
The following is called by the class listed above:
package com.trulogica.truaccess.externalcall.constraintfunction;
import com.trulogica.truaccess.attribute.TAValueConstraintIntf;
public class SearchResult implements
TAValueConstraintIntf.TAValueConstraintBeanIntf {

private String name;

private Object value;

public SearchResult() {
//Default Constructor }

public String getName() {
return this.name; }

public void setName(String name) {
this.name = name; }

public Object getValue() {
return this.value; }

47

public void setValue(Object value) {
this.value = value; }

Attribute Value Validation External Call

This class determines whether the value is an alphanumeric.

package com.trulogica.truaccess.externalcall.validation;
import com.trulogica.truaccess.util.logging.misc.Logger;
import com.trulogica.truaccess.util.logging.misc.Level;
import com.trulogica.truaccess.attribute.TAValueValidationIntf;
import com.trulogica.truaccess.attribute.exception.
TAAttributeValueValidationException;
import java.util.*;
public class IsAlphaNumeric implements TAValueValidationIntf
{
private static final Logger mLogger =
Logger.getLogger ("com. trulogica.truaccess.externalcall.
validation.IsAlphaNumeric") ;
public void validateValue (String attribName,Object value, Map

args)
throws TAAttributeValueValidationException
{
String password = (String) value;
if (mLogger.isLoggable (Level .FINE)) mLogger.fine("Entering
the

IsAlphaNumeric method ") ;
boolean containsDigit = false;
boolean containsLetter = false;
for (int i = 0, n = password.length(); i < n; i++)
{
// checkNum (word.charAt (i)) ;
if (Character.isDigit (password.charAt(i)))
{
containsDigit = true;
break;

3

Chapter 4

}

for (int i = 0, n = password.length(); i < n; 1i++)

{

if (Character.isLetter (password.charAt (i)))

{
containsLetter = true;
break;
}
}
if (mLogger.isLoggable (Level .FINE)) mLogger.fine("The return
of the
containsDigit is " + containsDigit);
if (mLogger.isLoggable (Level .FINE)) mLogger.fine("The return
of the
containsLetter is " + containsLetter);

if (containsLetter && containsDigit)

{
if (mLogger.isLoggable (Level .FINE)) mLogger.fine ("The

external call
vaidation is fine. For is digit and alphabets present. ");

}

else

{

if (mLogger.isLoggable (Level .FINE))

{
mLogger.fine ("The external call vaidation is NOT fine. For
is digit
and alphabets not present. ");
}

throw new TAAttributeValueValidationException (
"The field:" + attribName + " is not alpha numeric. It must

contain at
least one numeric and one non-numeric field", attribName) ;

Examples 49

Approver Selection External Call

The following example creates a class that collects information from an
existing request and concatenates the information to produce a new value for
an attribute. The getApprover () function is called by Select Identity to get
an approver.

package
com. trulogica.truaccess.wfenginesvcs.wfexternalcall. support;

import com.trulogica.truaccess.wfengine.wfexternalcall.
WfSelectApproverIntf;

import com.trulogica.truaccess.wfengine.wfexternalcall.
WfExternalCallException;

import com.trulogica.truaccess.request.model .RequestTarget;
import com.trulogica.truaccess.util.logging.misc.*;

import java.util.*;

public class WfSelectApproverSample implements
WfSelectApproverIntf
{

/**

* @param regtarget is the Request target associated with the

workflow

* @param attrs a list of parameters (standard and custom) for
the call

* The standard parameters are

* serviceid: Internal identifier of the service

* servicename: Name of the service

* roleid: The role name of the approver

*

The specific parameter is SampleApprovers, which contains
comma
* geparated user ids
*
* @return The collection of Concero userid of the approver
* @throws ApprovalStageException
*/

Chapter 4

public Collection getApprover (RequestTarget regTarget, HashMap
attrs)
throws WfExternalCallException

{
Arraylist ret = new ArrayList();

try

{
String value = (String) attrs.get ("SampleApprovers") ;
if (value != null)

{

StringTokenizer tokens = new StringTokenizer (value, ",");

while (tokens.hasMoreTokens())

{

String user = tokens.nextToken() ;
ret.add (user) ;
}
}
}

catch (Exception e)

{
}

return ret;

}

Workflow Action External Call

Two examples are provided in this section. The first example provides two
files. The first file generates an attribute value and adds it to a user, and the
second file extends the first by adding an ID. The second example changes a
user’s attributes and entitlements based on whether the user’s department

has changed.

Examples 51

Adding a Generated Value to a User

This class generates the new attribute value and adds the value to the user in
Select Identity.

package
com. trulogica.truaccess.wfenginesvcs.wfexternalcall. support;

import

com. trulogica.truaccess.wfengine.wfexternalcall .WfExternalCall;

import

com. trulogica.truaccess.wfengine.wfexternalcall.AttributeRecord;

import com.trulogica.truaccess.wfengine.wfexternalcall.
WfExternalCallStatus;

import com.trulogica.truaccess.wfengine.wfexternalcall.
WfExternalCallException;

import com.trulogica.truaccess.request.model .RequestTarget;

import com.trulogica.truaccess.request.model.RequestTargetParam;

import

com. trulogica.truaccess.request.model .RequestTargetParamValue;
import

com. trulogica.truaccess.wfengine.wfexternalcall.ChangeRecord;
import

com. trulogica.truaccess.base.constants.UserAttributeConstants;
import java.util.*;
//import com.trulogica.truaccess.workflow.external.util.*;

public abstract class WorkflowStepSample implements
WfExternalCall
{

String attribName = "";

protected WorkflowStepSample (String _attribName)
{
attribName = _attribName;

}

public WfExternalCallStatus process (String stageld,
RequestTarget requestTarget,
AttributeRecord [] availGrp,
AttributeRecord [] availRole,
AttributeRecord [] availEntilements,

Chapter 4

Map map) throws WfExternalCallException

{
tryf{

WfExternalCallStatus ecs = new
WfExternalCallStatus (stageld) ;
String propPrepName = "", propName =

nn o,
’

propName = attribName + ".attributes";

String attrs = System.getProperty (propName) ;
if (null == attrs) {

ecs.setStatus (WfExternalCallStatus.STATUS_REJECT_ TERMINATE) ;
return ecs;

}

StringBuffer sb = new StringBuffer();
ChangeRecord changeRecord = new ChangeRecord() ;
changeRecord. setName (attribName) ;

StringTokenizer st = new StringTokenizer(attrs,",");
while(st.hasMoreTokens()) {

String attrName = st.nextToken() ;

String value =

requestTarget .getParamValueString (attrName) ;
if (null == value) {
throw new Exception("Unable to generate the value for
attribute: "+attrName) ;

sb.append (value) ;

}

changeRecord.addvValue (sb.toString()) ;
ecs.addAttributeChange (changeRecord) ;

getSingleRequestParamStr (UserAttributeConstants.FIRST NAME) ;

ecs.setStatus (WfExternalCallStatus.STATUS_APPROVED) ;
return ecs;

Examples

53

54

catch(Exception e) {
throw new WfExternalCallException(e);

}

}

The following class extends the WorkflowStepSample class created above and
defines a class that obtains the name of the user.

package
com. trulogica.truaccess.wfenginesvcs.wfexternalcall. support;

import
com. trulogica.truaccess.wfenginesvcs.wfexternalcall. support.
WorkflowStepSample;

public class PersonNumberCallout extends WorkflowStepSample
{
public PersonNumberCallout () {
super ("personId") ;

3

Retrieving and Changing Attributes and Entitlements

The following code creates a class the determines whether a user’s
department (attribute) changed. If the user’s department has changed, the
class removes entitlements associated with the old department, changes the
cost center attribute, and adds new entitlements based on the new
department.

package
com. trulogica.truaccess.wfenginesvces.wfexternalcall. support;

import java.sqgl.*;
import java.util.*;
import javax.naming.*;
import javax.sdql.*;

import com.trulogica.truaccess.request.model. *;
import com.trulogica.truaccess.util.logging.misc.*;

Chapter 4

import com.trulogica.truaccess.wfengine.wfexternalcall.*;

public class WfEntitlementChange
implements WfExternalCall

private static final Logger mLogger =
Logger.getLogger (WEEntitlementChange.class.getName ()) ;

public static final String PARAM POOLNAME = "jdbc/TrulAccess";

//set the resource name here
private static final String resourceName = "LDAP_70";

private static final String USERNAMEATTRNAME = "UserName";

private static final String DEPARTMENTATTRNAME =
"Department";

private static final String COSTCENTERATTRNAME
"CostCenter";

private static final String ENTITLEMENTPOSTFIX
"_ENTITLEMENTS";

private static final String findOldDeptQuery = "select
A.stringValue
from TAAttribute A , "
+ "TAUser B where A.identObjId = B.userId AND

A.name = "
+ "? and B.conceroUserId = ?";
/*
* If the department has changed, assign the new cost center
and

* entitlements to the user. Use the following table to
assign values.
* Department Entitlements CostCenter

*

* Sales SA-505 101
* Finance FIN-505 205
* HR HR-101 308
* Corporate CORP-3 409
*/

private static final String[] deptNames =

{

Examples 55

"Sales", "Finance", "HR", "Corporate"};

private static final String[] costCenterNames =

{
nloln' 11102"’ "103"1 ||100n}’,

private static final String[] entNames =

{
"SA-103", "FIN-101", "HR-102", "Corp-103"};

public WfExternalCallStatus process(String stageld,
RequestTarget
reqTarget, AttributeRecord[] attrbRecl, AttributeRecordl]
attrbRec?2,
AttributeRecord[] attrbRec3, Map map) throws
WfExternalCallException
{
Connection connection = null;
PreparedStatement pStmt = null;
ResultSet rs = null;

try
{
//get service name from map
//String serviceName =
(String)map.get (WEExternalCall .WF_PARAM_SERVICENAME) ;

WfExternalCallStatus status = new
WfExternalCallStatus (stageld) ;

//Get the new department and user name from the
Request Target
String newDept =
reqTarget .getParamValueString (DEPARTMENTATTRNAME) ;
String userName =
reqTarget .getParamValueString (USERNAMEATTRNAME) ;

//Get the old department from SI database

String oldDept = null;
connection = this.getConnection() ;

56 Chapter 4

pStmt =

connection.prepareStatement (findOldDeptQuery) ;
pStmt.setString (1, DEPARTMENTATTRNAME) ;
pStmt.setString (2, userName) ;

rs = pStmt.executeQuery () ;
if (rs.next())
{
oldDept = rs.getString(l);

if (null == oldDept)
{
oldDept = "";

}

else

{
log("There is no old department") ;
oldDept = "";

//Find whether the department has been changed by the
//reconcilation process
boolean changed = false;
if (!oldDept.equalsIgnoreCase (newDept))
{
changed = true;
//Build the map tables
}
Map entMap = new HashMap () ;
Map costMap = new HashMap() ;

for (int 1 = 0; i < deptNames.length; i++)

{
entMap.put (deptNames[1i], entNames[i]);
costMap.put (deptNames[i], costCenterNames[i]);

//Form the resource attribute name from the resource
name.

//Entitlement attribute names always ends with
_ENTITLEMENTS.

Examples 57

String resourceAttrib = resourceName +
ENTITLEMENTPOSTFIX;

if (changed)
{
//Create a change record to add the costcenter
value
//or replace the value if present.
//CostCenter attribute is a single value
attribute.

ChangeRecord costCenterCR = new ChangeRecord() ;
costCenterCR. setName (COSTCENTERATTRNAME) ;
if (costMap.get (newDept) != null)
costCenterCR.addvValue((String)
costMap.get (newDept)) ;

status.addAttributeChange (costCenterCR) ;

//Add entitlements to the user
ChangeRecord entitlementsCR = new ChangeRecord() ;
entitlementsCR.setName (resourceAttrib) ;
if (entMap.get (newDept) != null)
entitlementsCR.addvValue((String)
entMap.get (newDept)) ;
/*
* If you need to add more entitlements, use:
* cr.addvalue("Some other entitlements");
* To delete attribute values, use:
* cr.setOperation (ChangeRecord.DELETE) ;
*/
//Entitlements are multi-value attributes. need
to set change

//operation ADD/MODIFY/... Default is ADD

entitlementsCR.setChangeOperation (ChangeRecord.ADD) ;
status.addAttributeChange (entitlementsCR) ;

//set a work flow variable
//workflow variable name starts with

58 Chapter 4

//ChangeRecord _wfVarl = new ChangeRecord() ;
//_wfVarl.setName ("__ WFVAR") ;
//_wfVarl.addvValue ("Var value");

}

status.setStatus (WfExternalCallStatus.STATUS_APPROVED) ;

return status;

}

catch (Throwable e)

{
log("Unable to complete the department change", e);
WfExternalCallException exp = new

WfExternalCallException ("Unable to complete the

department
change", e);
throw exp;
}
finally

{
//Close all database connections, statements and
result sets
try
{
if (null !'= rs)
{
rs.close();
}
rs = null;
}
catch (Throwable t)
{

log("Error in closing resultset", t);

try
{
if (null != pStmt)
{
pStmt.close() ;

Examples 59

pStmt = null;

}
catch (Throwable t)
{

log("Error in closing statement", t);
}
try
{

if (null != connection && !connection.isClosed())

{

connection.close() ;

}

connection = null;
}
catch (Throwable t)
{

log("Error in closing connection", t);
}

private Connection getConnection() throws Exception
{
InitialContext ctx = null;
try
{
ctx = new InitialContext();
DataSource ds = (DataSource)
ctx.lookup (PARAM POOLNAME) ;
return ds.getConnection/() ;

}
finally
{
try
{
if (null !'= ctx)

{

ctx.close();

}

ctx = null;

Chapter 4

Examples

private void log(String msg, Throwable t)

{

private void log(String msg)

{

catch

{

log ("Error closing context",

(Throwable t)

£);

System.out.println(msg + ":Caused By:");

t.printStackTrace() ;

System.out.println(msg) ;

Retrieving Request Object Data to Set Workflow Variables

The following example provides the WorkflowRequestCallout class, which
looks for a map called $AttributeResourceMap (defined in the MAP_NAME
variable). The map must have a name-value pair whose name is FieldName
(defined in the FIELD_ NAME variable) and whose value is the field to retrieve
from the request target (requestTarget class). This class also retrieves the
value from the request target and stores it in a workflow variable called
WorkflowRequest (defined in the WORKFLOW_REQUEST variable).

package com

import
import
import
import
import

import

java

java.
java.
java.
java.

.trulogica.truaccess.workflow.external;

.util.
util.
util.
util.
util.

Arraylist;
Map;
HashMap;
Set;
Tterator;

com. trulogica.truaccess.wfengine.wfexternalcall .WfExternalCall;

61

import

com. trulogica.truaccess.wfengine.wfexternalcall .AttributeRecord;

import

com. trulogica.truaccess.wfengine.wfexternalcall .ChangeRecord;

import com.trulogica.truaccess.wfengine.wfexternalcall.
WfExternalCallStatus;

import com.trulogica.truaccess.wfengine.wfexternalcall.
WfExternalCallException;

import com.trulogica.truaccess.request.model.RequestTarget;

import

com. trulogica.truaccess.base.constants.UserAttributeConstants;

import com.trulogica.truaccess.util.logging.misc.Logger;

import com.trulogica.truaccess.util.logging.misc.Level;

import com.trulogica.truaccess.wfengine.client.IWfQuery;

import com.trulogica.truaccess.wfengine.client.IWfDataUpdate;

import com.trulogica.truaccess.transport.protocol.ejb.client.
StatelessServiceObjectFactory;

public class WorkflowRequestCallout implements WfExternalCall
{

private static final Logger mLogger =
Logger .getLogger (WorkflowRequestCallout.class.getName()) ;
public static final String WORKFLOW_REQUEST =
"WorkflowRequest";
public static final String FIELD_NAME = "FieldName";
public static final String MAP_NAME =
"SAttributeResourceMap" ;

/*
* Default public constructor.
*/
public WorkflowRequestCallout ()
{
}

/*
* Processes the external call request from Select Identity for

the person number.
*

* @param stageld The stage to process

Chapter 4

Examples

* @param requestTarget Object containing fixed roles,
groups, and

* entitlements

* @param availGrp Groups that can be assigned to
the user

* @param availRole Roles that can be assigned to
the user

* @param availEntitlements Entitlements to be assigned to
the user

* @param attrs Additional attributes needed by
the call

*

* @return Object containing the person number
*
* @exception Throws WFExternalCallException if an error occurs.
*/
public WfExternalCallStatus process (String stageld,
RequestTarget requestTarget,
AttributeRecord [] availGrp,
AttributeRecord [] availRole,
AttributeRecord []
availEntitlements,
Map attrs) throws
WfExternalCallException
{
try
{
WfExternalCallStatus ecs = new
WfExternalCallStatus (stageld) ;

IWfQuery query = (IWfQuery)
StatelessServiceObjectFactory.create (
IWfQuery.class) ;
mLogger. finest ("WorkflowRequestCallout:
WEF_PARAM._WORKFLOWINSTID
is " + attrs.get (WF_PARAM WORKFLOWINSTID)) ;

Integer workFlowInstanceID = (Integer)
attrs.get (WF_PARAM WORKFLOWINSTID) ;
mLogger. finest ("WorkflowRequestCallout:
workFlowInstanceID is "
+ workFlowInstanceID) ;

63

int instanceId = workFlowInstanceID.intValue();
mLogger. finest ("WorkflowRequestCallout: instancelId is

n +
instancelId);
Map varMap = query.getCurrentVariableMap (instanceld) ;
mLogger. finest ("WorkflowRequestCallout: varMap is " +
varMap) ;

HashMap attributeRequestMap = (HashMap)
varMap.get (MAP_NAME) ;

if (attributeRequestMap != null)

{
String field = (String)
attributeRequestMap.get (FIELD NAME) ;

if (field != null)

{
IWfDataUpdate du =

(IWfDataUpdate) StatelessServiceObjectFactory.
create (IWfDataUpdate.class) ;

String value =
(String) requestTarget.getSingleRequestParamStr (field) ;

du.setWorkflowVar (instanceId, WORKFLOW_REQUEST,
field);

mLogger. finest ("WorkflowRequestCallout:
Setting status

to approved...");

// Set the status to approved

ecs.setStatus (WfExternalCallStatus.STATUS_APPROVED) ;
}

else

64 Chapter 4

Examples

mLogger . severe ("WorkflowRequestCallout: Setting
status to
rejected...");
// Set the status to rejected

ecs.setStatus (WfExternalCallStatus.STATUS_REJECT_ TERMINATE) ;
}

return ecs;
}
catch (Exception e)
{

mLogger . severe ("WorkflowRequestCallout: Exception

occurred: " +
e.getMessage()) ;
throw new WfExternalCallException(e);

65

66

Chapter 4

glossary

Acronyms
A

AC

access control

AD

Adaptive Connector

ACL

access control list

AD Connector

Active Directory Connector

ADK

application development kit

ADO
ActiveX Data Objects

ANSI

America National Standards Institute

APA

auto port aggregation

67

API

application program interface

ARPA
Advanced Research Projects Agency

ASCII

American Standard Code for Information Interchange
B

BSIM

Business Service Identity Management
D

DBA

database analyst

DLL

dynamic-link library

DNS

domain name system

DHCP

dynamic host configuration protocol

DHTML

dynamic hypertext markup language

DSN

data source name

DSN
digital switched network

DTD

document type definition

E

EJB

enterprise java bean

F

FQDN

fully qualified domain name

FTP

file transfer protocol

G

GIF

graphics interchange format

GUID
globally unique identifier

H

HSRP
Hot Standby Router Protocol

HTTP

hypertext transfer protocol

HTTPS

Hypertext Transfer Protocol Secure

69

70

IBM

International Business Machines

IP

internet protocol

ISO

International Organization for Standardization

J

J2C

Java 2 connector

J2SDK

Java 2 software developer kit

J2EE

Java 2 enterprise edition

JAR

Java application resource

JCA

Java connection architecture

JDBC

Java database connectivity

JMS

Java messaging services

JNDI

Java naming directory interface

JSP

Java server protocol

JVM

Java virtual machine

K

KB
kilobyte

L

LDAP

lightweight directory access protocol

LDIF
lightweight data interchange format

LLB

local location broker
M

MAPI

messaging application programming interface
MB

megabyte

MHz

megahertz

MSSQL
MicroSoft Structured Query Language

71

72

MTA

message transfer agent

OVSI
HP OpenView Select Identity

P

PDF

portable document format
R

RAR

resource adapter archive

RDF

reporting data feeder

RPC

remote procedure call

S

SDK

software developer kit

SHA

secure hash algorithm

SMTP

simple mail transfer protocol

SNMP

simple network management protocol

SOAP

simple object access protocol

SP

service pack

SSL

secure socket layer

SS0

single sign on

SPML

service provisioning markup language
SQL

structured query language

T

TCP /1P

transmission control protocol / internet protocol

U

URI

uniform resource identifier

URL

uniform resource locator

UTF-8

unicode transformation format (eight-bit character conversion)

73

74

\%

VM

virtual machine

VNC

virtual network computing

A\

WAS

web application server

WAR

web application repository
XY, Z

XML

extensible markup language

XSD
XML schema definition

XSL
Extensible Style Sheet Language

Terms
A

Access Control List (ACL)

An abstraction that organizes entitlements and controls authorization. An
ACL is list of entitlements and users that is associated with a secured object,
such as a file, an operation, or an application. In an ACL-based security
system, protected objects carry their protection settings in the form of an
ACL.

access management

The process of authentication and authorization.

action

When the context is a user action in the user interface, an operation that can
be carried out by an OpenView application. Actions are typically performed on
managed object. Select manually executed actions through a menu item or
tool bar buttons. Actions can also be configured to automatically occur in
response to an event, message, or a change in information in the management
database.

When the context is based on OVSI policy, an actions is an operation carried
out as a result of the activation of a reconciliation policy and the successful
evaluation of a rule or conditions within that policy.

See also: capability

activate

To make active or functional

activity

A logical step in a process; A task that may occur when a workflow template is
executed (in Workflow Studio). Activities are the core components of workflow
templates; they do the work necessary to provision users. An activity can set a
property to be used throughout the workflow, track approvals, start a
subworkflow, send email, call an external application, and so on.

adapter

Software that allows information interpretation between two or more software
products or components.

AD Connector

Active Directory Connector. A type of interface used to connect HP OpenView
Select Identity with the applications it serves on servers that communicate
using the Active Directory protocol.

admin role

A template that defines the administrative actions performed by a user.
Create an Administrative Service to provide access to roles so that users gain

75

76

access to the Service. Users with administrative roles may grant their set of
roles to another administrator within their Service context.

advanced customization

Less common types of customization which are more flexible in their
capabilities and complex in their implementation than typical customizations.
As with other customizations, advanced customizations are done to meet the
needs and preferences of a particular customer or user.

agent

A program or process running on a remote device or computer system that
responds to management requests, performs management operations, or
sends performance and event notification. An agent can provide access to
managed objects and MIB variables, interpret policy for resources and do
configuration of resources; The component of an agent-based connector that
resides in the same system as the resource. It listens for a changes in the user
data made in the resources, then reports that change to HP OpenView Select
Identity by communicating through a connector interface.

agent-based connectors

Two-way connector interface. There are two components: the connector that
resides in the same system as HP OpenView Select Identity, and the agent,
which resides in the same system as the resource. The agent listens for
changes made in the resource, and contacts the resource about changes made
in Select Identity.

agentless connectors

One way connectors. Connectors reside in the Select Identity server and does
the communication brokering with the resource.

application

Packaged software that provides functionality that is designed to accomplish
a set of related tasks. An application is generally more complex than a tool.

application deployment

The installation and activation of application components so that they work in
the business environment.

Application Program Interface (API)

A set of routines, protocols, and tools used to build a software application; An
interface that enables programmatic access to an application.

approval process

The process of approving the association, modification, or revocation of
entitlements for an identity. This process is automated of these through
workflow templates.

approver

A Select Identity administrator who has been given approval actions through
an Admin Role.

assigned policy

A policy that has been assigned to one or more resources in the computing
environment but which has not yet been deployed or installed on those
resources.

asynchronous subprocess

A process that proceeds at its own pace independent of other processes and
subprocesses.

attribute

An individual field that helps define an identity profile. For each identity, an
attribute has a corresponding value. For example, an attribute could be
“department” with possible values of “IT,” “sales,” or “support.”

attribute external call

Small programs that are written to generate values automatically for that
attribute (value generation), define constraint values for the attribute (value
constraint), or validate the value that is entered for that attribute (data
validation). Each attribute can have each of these types of external calls.

attribute name-value pair

An attribute name-value pair is combination of an attribute identifier and the
value of that attribute for a specific object. An example of an
attribute-name-value pair for a person would be Name: John Smith.

77

78

audit engine

logs and stores all audit-related activities, e.g., when changes are made and
who made them.

Audit Report

A report that provides regular account interaction information.

authentication

Verification of an identity’s credentials.

authoritative source

A resource that has been designated as the “authority” for identity
information. Select Identity accounts can be reconciled against accounts in an
authoritative source.

automatic action

A pre-configured program or script that is executed in response to an event,
message, or a change in information in the management database. without
operator intervention.

B

bandwidth

The transmission capacity of an electronic line such as a communications
network, computer bus, or computer channel. It is expressed in bits per second
(for example, 56 kbps), bytes per second or in Hertz (cycles per second). When
expressed in Hertz, the frequency may be a greater number than the actual
bits per second, because the bandwidth is the difference between the lowest
and highest frequencies transmitted. (TECH).

block

A special type of activity that serves two purposes: to define information to be
used by a subset of activities (block-level properties) and to provide block-level
reporting. For example, you might define a block that submits an approval
request, waits for the response, and returns the status of the request to the
workflow. In other words, think of a block as a process within a template.

block type

A property assigned to a block in a workflow template using the blockType
property in end block activity. The report template uses this property to
identify how block information is rendered in the resulting report.

Boolean operator

A logical operator that defines the context in which attribute values are
compared to satisfy a query or policy. For example:

AND - Both conditions have to be satisfied.
OR - At least one condition has to be satisfied.

NOT - No instance of this condition is allowed.

browser

A module within a work space that presents one or more views of objects and
provides functionality for interacting with the objects and the views.
business service

A product or facility offered by, or a core process used by, a business in support
of its day-to-day operations. Example business services could include an
online banking service, the customer support process, and IT infrastructure
services such as email, calendaring, and network access.

See also: service

Business Service Identity Management (BSIM)

An organizational model that introduces new abstractions that simplify and
provide scale to the business processes associated with identity management.
These abstractions are modeled after elements that exist in businesses today
and include Services and Service Roles.

C

capability
Actions that can be performed within the HP OpenView Select Identity client.

See also: action

79

80

challenge and response

A method of supplying alternate authentication credentials, typically used
when a password is forgotten. Select Identity challenges the end user with a
question and the user must provide a correct response. If the user answers the
question correctly, HP OpenView Select Identity resets the password to a
random value and sends email to the user. The challenge question can be
configured by the administrator. The valid response is stored for each user
with the user’s profile and can be updated by an authenticated user through
the Self Service pages.

client

When the context is network systems, a computer system on a network that
accesses a service from another computer (server).

When the context is software, a program or executable process that requests a
service from a server

client console

An instance of the user interface that appears on the client system while the
application runs on a server.

condition type

An abstraction or categorization of a condition that determines to the
particular kind of data that is valid for the parameter values in the condition
and how those values will be used.For example a condition type could be
Source IP Address which indicates that values must have 4 numbers
separated by decimals with the value for each number being in the range of 0
to 255. Since the condition type is "Source" IP Address, the IP addresses will
only be evaluated for sources not destinations.

configuration file

A file that contains specifications or information that can be used for
determining how a software program should look and operate.

configuration

In a hardware context, a particular set of inter-related components that make
up a computer system. For example the components of a computer system
may include a keyboard, pointing device, memory, disk drives, modem,
operating system, applications and printer. The configuration of the computer
system determines the way that it works and the way that it is used.

In a network context, the complete set of inter-related systems, devices and
programs that make up the network. For example the components of a
network may include computer systems, routers, switches, hubs, operating
systems and network software. The configuration of the network determines
the way that it works and the way that it is used.

In a software context, the combination of settings of software parameters and
attributes that determine the way the software works, the way it is used, and
how it appears.

configure

To define and modify specified software settings to fulfill the requirements of a
specified environment, application or usage.

Configuration Report

A report that provides current system information for user, administrator,
and Service management activities.

connection

A representation of a logical or physical relationship between objects.

connector

A J2EE connector interface that communicates with the system resource
applications that contain your identity profile information.

console

An instance of the user interface from which the user can control an
application or set of applications.

context

An HP OpenView Select Identity concept that defines a logical grouping of
users that can access a Service.

credential

A mechanism or device used to verify the authenticity of an identity. For
example, a user ID and password, biometrics, and digital certificates are
considered credentials.

81

82

customization

The process of designing, constructing or modifying software to meet the
needs and preferences of a particular customer or user.

customize

To design, construct or modify software to meet the needs and preferences of a
particular customer or user.

customize

To design, construct or modify software to meet the needs and preferences of a
particular customer or user.

D

database

A repository of data that is electronically stored. Typically databases are
organized so that data can be retrieved and updated.

data file

An SPML file that enables you to define user accounts to be added to Select
Identity through Auto Discovery or Reconciliation.

data type

A particular kind of data; for example

deactivate

To deliberately stop a component or object from working.

delegated administration

The ability to securely assign a subset of administrative roles to one or more
users for administrative management and distribution of workload. Select
Identity enables role delegation through the Self Service pages from one
administrator to another user within the same Service context.

delegated registration
Registration performed by an administrator on behalf of an end user.

See also: self-registration

deploy

To install and start software, hardware, capabilities, or services so that they
work in the business environment.

deployed application

An application and its components that have been installed and started to
work in the business environment.

deployed policy

A policy that is deployed on one or more resources in the computing
environment.

deployment

The process of installing and activating software, hardware, capabilities or
services so that they work in the business environment.

deployment package

A software package that can be deployed automatically and installed on a
managed node.

deprecate

To lower the status of a hardware or software object to indicate that it can be
taken out of use in the future

device

A generic term for a piece of hardware equipment that can be attached to a
computer or a network. Examples of a device are a printer, a router, a switch,
a load-balancer, a disk drive or a modem.

disable

To make unable to be used.

dismiss

Dismiss is an action that causes a message or other notification associated
with a problem or situation to be removed from the browser. Messages are
typically dismissed when the operator has resolved the situation that led to
the message.

83

84

disown

The act of relinquishing responsibility for resolving a problem or situation
associated with a message or other notification.

DNS domain

A set of computers and other network devices that are collectively addressable
by a portion of an IP address or by the highest subdivision of the domain name
that indicates the entity owning the address. For example all computers
whose host name share the suffix .hp.com are in the same DNS domain.
domain

A set of computers and other network devices that are treated or managed as
a unit.

double-click

To press and release a pointing device's button twice in rapid succession.
Double-clicking is a time-dependent action. Clicking twice in the same
location at slow speed (click-delay-click) is not a double-click.
downtime

The amount or percentage of time that a service, software, or hardware
resource remains non-functional.

dynamic parameters

Parameters whose values are determined during program execution.
E

enable

To make able to use.

end user

A role associated to every user in the Select Identity system that enables
access to the Self Service pages.

entitlement

An abstraction of the resource privileges granted to an identity. Entitlements
are resource-specific and can be resource account IDs, resource role

memberships, resource group memberships, and resource access rights and
privileges. Entitlements are also considered privileges, permissions, or access
rights.

event

An event is an unsolicited notification such as an SNMP trap or WMI
notification generated by an agent or process in a managed object or by a user
action. Events usually indicate a change in the state of a managed object or
cause an action to occur.

event attribute

A characteristic or property of an event.

event correlation

The evaluation of multiple events or notifications that are related to a single
incident or problem, to produce a single message. Event correlation is used to
reduce the number of messages that are presented to an operator in a message
browser.

event creation time

The time an event was created in Universal Coordinated Time (UTC)

event syntax

The rules governing the structure and content of an event.

event type

A classification of an event into a particular category that further defines the
nature of the event.

export

To format and move information from the current application to a location
outside the current application.

expression

A combination of workflow variables and constant values to be evaluated. An
expression can be assigned to a new variable or passed to an application as an
argument. If you are familiar with a programming language, an expression
used in a workflow template is like C or Java expression. Example of

85

86

expressions can be found in action input parameters, application return
values, and transition conditions.

extend

The act of increasing the capabilities, scope, or effectiveness of a program.

extensible

Capable of being extended.

external call

A programmatic call to a third-party application or system for the purpose of
validating accounts or constraining attribute values.

external system ID

An identifier that uniquely identifies a principal that is an external system.
F

filter

A software feature or program that functions to screen data so that only a
subset of the data is presented or passed. Filters allow matching-relevant
information to be extracted and acted on while non-matching-irrelevant
information is held back.

find

The act of seeking of specific data or objects within the management
application or set management applications based on specified criteria.

form

An electronic document used to capture information from end users. Forms
are used by Select Identity in many business processes for information
capture and system operation; A presentation mechanism that contains
information and controls for obtaining user input (for example, text fields,
radio buttons, lists).

foundation

A program that acts as the basic structure to support other software modules
or programs that provide additional functionality for the user.

function

A general term for a portion of a program that performs a specific task.
H

hierarchy

Elements organized in successive levels with each lower level being
subordinate to the one above.

HP OpenView

A family of network and system management products, and an architecture
for those products. HP OpenView includes development environments and a
wide variety of management applications.

icon

An on-screen image that represents objects that can be monitored or
manipulated by the user or actions that can be executed by the user.

icon class

The portion of an icon that identifies the type or classification of the object
being represented by the icon. For example, the network object class is
represented by a circle surrounding a more complex image.

ID

identifier

identifier

A name that within a given scope that uniquely identifies the object with
which it is associated.

identity

The set of authentication credentials, profile information, and entitlements for
a single user or system entity. Identity is often used as a synonym for “user,”
although an identity can represent a system and not necessarily a person.

87

88

identity management

The set of processes and technologies involved in creating, modifying,
deleting, organizing, and auditing identities.

import

To format and move information from a location outside the current
application into the current application.

install

To load a product or component of a product onto a computer system or other
network or system device. Installation typically involves running initial
configuration scripts that are part of the installation process.

instance

See: workflow instance

internationalization

The design of software so that a single binary can support the varied cultural
and linguistic conventions that exist in different countries or locales.
Internationalized software allows users to interact with the software in the
user's native language including the input and output of data in the native
language, as well as support for the conventions and rules applicable to the
user's locale. The ANSI locale model is used in internationalized software.

J

Java

Object oriented programming language.

JCA

Java Connection Architecture. Architecture used to build interfaces between
J2EE compliant products and other resources.

JVM

Java Virtual Machine. A platform independent execution environment that
conversant Java bytecore into machine language then executes it.

L

LDIF
File that modifies and deletes directory objects.

list

If the context is a GUI, a set of selectable items. If the context is data, a
variable-length ordered set of values all of the same data type.

locale

The locale collectively represents the location or country of the user, the
language of the user, and the code set in which the user's data is represented.
The locale is related to the language sensitive presentation of applications.

locale model

The software through which the user declares their desired language at
application start up. The local model determines the set of files, tables, or
collection of programs that are used to initialize an application so that it is
sensitive to the user's language.

localization

Localization refers to the set of tasks that need to be accomplished to enable a
product to work acceptably in a specific locale. The localization tasks include
translating documentation, translating text and graphics that are presented
to the user, and providing locale specific fonts and other functionality when
needed.

M

management

The ongoing maintenance of an object or set of objects, including creating,
modifying, deleting, organizing, auditing, and reporting.

89

90

message key

A message attribute that is a string used to identify messages that were
triggered from particular events.The string summarizes the important
characteristics of the event. Message keys can be used to allow messages to
acknowledge other messages, and allows for the identification of duplicate
messages.

N

node

When the context is network, a computer system or device (for example,
printer, router, bridge) in a network.

When the context is a graphical point to point layout, a graphical element in a
drawing that acts as a junction or connection point for other graphical
elements.

notifications

The capability that enables you to create and manage templates that define
the messages that are sent when a system event occurs.

P

package

A set of related programs or software files grouped together as a single object
for a common purpose.

password reset

The ability to set a password to a system-generated value. Select Identity uses
a challenge and response method to authenticate the user and then allow the
user to reset or change a password.

persistent variable

A variable that is persisted after an instance is passivated. To extend the
variable life cycle to the entire instance, you must create the variable to be
persistent. This enables the variable to be created before a wait activity, and it
will be accessible after the workflow instance resumes. To make a variable
persistent, precede the name with $. For example, the $retryCount variable is
persistent while retryCount is not.

See also: workflow variable

policy

A set of regulations set by an organization to assist in managing some aspect
of its business. For example, policy may determine the type of internal and
external information resources that employees can access.

policy management

The process of controlling policies (for example, creating, editing, tracking,
deploying, deleting) for the purposes of network, system or service
management.

port

If the context is hardware, a location for passing information into and out of a
network device.

process

A repeatable procedure used to perform a set of tasks or achieve some
objective. Whether manual or automated, all processes require input and
generate output. A process can be as simple as a single task or as complicated
a multi-step, conditional procedure.

See also: approval process

profile

Descriptive attributes associated with an identity, such as name, address,
title, company, or cost center.

property

See:workflow property

provisioning

The process of assigning authentication credentials to identities.

91

92

R

reconciliation

The process by which Select Identity accounts are synchronized with a system
resource. Accounts can be added to the Select Identity system through the use
of an SPML data file.

registration

The process of requesting access to one or more resources. Registration is
generally performed by an end user seeking resource access, or by an
administrator registering a user on a user’s behalf.

See also: delegated registration, self-registration

request

An event within the Select Identity system for the addition, modification, or
removal of a user account. Requests are monitored through the Request
Status capability.

resource

Any single application, database, or information repository. Resources
typically include applications, directories, and databases that store identity
information.

role

A simple abstraction that associates entitlements with identities. A role is an
aggregation of entitlements and users, typically organized by job function.

See also: admin role

rule

A programmatic control over system behavior. Rules in Select Identity are
typically used for programmatic assignment of Services. Rules can also be
used to detect changes in system resources.

S

self-registration

Registration performed by an end user seeking access to one or more
resources.

See also: deploy

self service

The ability to securely allow end users to manage aspects of a system on their
own behalf. Select Identity provides the following self-service capabilities:
registration, profile management, and password management (including
password change, reset, and synchronization).

service

A business-centric abstraction representing resources, entitlements, and other
identity-related entities. Services represent the products and services that you
offer to customers and partners.

service attribute

A set of attributes and values that are available for or required by a Service.
Attributes are created and managed through the Attributes pages.

See also: attribute

service role

A Select Identity abstraction that defines how a logical grouping of users will
access a Select Identity Service. The Select Identity Service is a superset of all
the identity management elements of a business service.

service view

A restricted view of a Service that is valid for a group of users. Views enable
you to define a subset of Service registration fields, change field names,
reorder fields, and mask field values for specific users.

single sign-On (SSO)

A session/authentication process that permits a user to enter one set of
credentials (name and password) in order to access multiple applications. A
Web SSO is a specialized SSO system for web applications.

SPML Data File
See: data file

93

94

submodule

A portion of a software module that provides a subset of the functionality
provided by the module. A sub-module performs a specific task or presents a
specific set of data.

suspend

To halt for a time a computer operation preserving the state of that operation.

synchronous subprocess

A process that must complete before the invoking process can proceed.

syntax

The rules governing the structure and content of a language or the description
of an object.

system administrator

The role of a person who does configuration and maintenance on a computer
system or the software on the system.

T

template

See: workflow template

trace log

An output file containing records of the execution of application software

transit delay

The difference between current time and the event's creation time.

transition

The definition of a relationship between activities. You can define that one
activity always follows another, or you can define a condition that must be met
before the workflow transitions from an activity to one or more others. For
example, you can define a transition that only allows the workflow to progress
if at least two administrators approve a request. If the request is not
approved, the workflow can transition to an activity that sends email
notification to an administrator.

U

URL

Acronym for Uniform Resource Locator or Universal Resource Locator, the
address of a computer or a document on the Internet.

user import

The process of adding user accounts to the Select Identity system for a
specified Service through the use of a data file.

users

The functionality that provides consistent account creation and management
across Services.

v

variable

See: workflow variable

variable expression

See: external call
W

Web Service Definition Language (WSDL)

File format that the Application Definition file uses to define a web service
application to be a workflow application. The workflow engine reads the web
service invocation parameters through WSDL. A web service can reference a
WSDL URL remotely or download it first as a local file and then read the file
locally at run-time.

workflow engine

A system component that executes workflows and advances them through
their flow steps.

95

96

workflow external call

A “subroutine” that is called during the workflow process. This could be an
external application invocation such as a small custom application that calls
external processes outside of the normal workflow process

workflow instance

An invocation of a workflow template. An instance starts when it is created
and ends when it completes (when the last activity is executed). An instance’s
status and other associated information can be viewed once an instance is
created.

workflow process

The tasks, procedural steps, organizations or people involved, and required
input and output information needed for each step in a business process. In
identity management, the most common workflows are for provisioning and
approval processes.

workflow property

A name-value pair, where the value is a text string. A property stores static
data that cannot be changed at runtime. It can be accessed by the workflow
API and report template. There are three levels of properties: global, block,
and activity.

workflow studio

The functionality that enables you to create and manage workflow templates.

workflow template

A model of the provisioning process that enables Select Identity to automate
the actions that approvers and systems management software must perform.

workflow variable

A name-value pair that can be created or changed at runtime in a workflow
instance through actions, a workflow API call, or returned by an application
invocation. It can be accessed by workflow API, workflow template, and report
template. There are levels of variables: global, block, and activity.

See also: persistent variable

Index

Symbols attributes
$ blockId variable, 20, 24 adding generated value to user, 52
- T changing, 54

$_instId variable, 20, 24 ExpirationDate, 8
_activityld variable, 19, 23 PERSQNNUMBER_FIELD, 25
_instActivityId variable, 19, 23 retrieving, 54

retrieving single value, 18, 21
_joinCommand variable, 19, 23 retrieving values of multivalue, 18, 21
_pushVar variable, 20, 24 SSN_FIELD, 25

updating in change record, 22
A updating workflow status, 22

accessing the database, 16 Attribute Value Constraint external call

type, 27
accessing user attributes, 16 about, 5
APIs creating, 15
connectors, 1 describing external calls of, 7
external calls, 1 Search Connector external call, 7
overview, 1 Search Table external call, 7
Workflow, 1, 2, 20 using TAValueConstraintIntf interface,
Approver Selection external call type 28
about, 5 Attribute Value Generation external call
coding, 17 type
describing external calls of, 9 about, 5
using containsKey method, 17 creating, 15
using getApprover method, 17 describing external calls of, 5
using get method, 17 examples, 25
using interfaces, 17 IDValueGeneration external call, 6
using methods, 17 PasswordValueGeneration external call,
WFGetApproverSampleExtCall external 6
call, 9 PERSONNUMBER_FIELD attribute, 25
WFSelectApproverIntf interface, 17 SSN_FIELD attribute, 25

AttributeRecord class, 3 UserIDValueGeneration external call, 6

97

attribute values
retrieveing single, 16
retrieving multivalue, 16

Attribute Value Validation external call type
about, 5
creating, 15
describing external calls of, 8
IsAlphaNumeric external call, 8
ManageExpireValidation external call, 8

Attribute Value Validaton external call type
PasswordValidation external call, 8

AttributeValueVerification external call, 9

Attribute Value Verification external call
type
about, 5
AttributeValueVerification external call,
9
creating, 15
describing external calls of, 9

C
CertificateMgmt Interface, 15

Certification Management external call type
about, 5
creating, 15
describing external calls of, 13
VerisignCertImpl external call, 13

ChangeRecord class, 4

98

classes

AttributeRecord, 3

ChangeRecord, 4

IWfDataUpdate, 3

Request, 4

Requestdobltem, 4

RequestTarget, 4, 16, 18, 21

requestTarget, 61

RequestTargetParam, 4

RequestTargetParamValue, 4

TAAttributeDefinitionException, 2, 16

TAAttributeValueValidationException, 2

TAFilter, 4

TARequestAction, 4

TARequestEvent, 4

TARequestType, 4

TAValueConstraintIntf. TAValueConstrai
ntBeanlIntf, 2

WfExternalCallException, 3

WiExternalCallStatus, 3, 22

WorkflowRequestCallout, 61

connectors
APIs, 1

containsKey method, 15, 17, 21

D

database
accessing data in, 16

E

entitlements
changing, 54
retrieving, 54

exceptions
TAAttributeDefinitionException, 2, 16
TAAttributeValueValidationException, 2
WfExternalCallException, 3

ExclusionRuleCall external call, 12
RuleName parameter, 12
WFVariableName parameter, 12

ExpirationDate attribute, 8
external call API, 1

external calls
accessing database, 16
accessing user attributes, 16
Attribute Value Generation, 25
AttributeValueVerification, 9
coding Approver Selection, 17
coding Attribute Value, 15
creating attribute value, 15
default, 5, 6
examples, 25
ExclusionRuleCall, 12
IDValueGeneration, 6
IsAlphaNumeric, 8
LoadUserServices, 10, 12
logging messages, 16
ManageExpireValidation, 8
PasswordValidation, 8
PasswordValueGeneration, 6
retrieving parameters, 21
Search Connector, 7
Search Table, 7
UserEnableDisableWFExtCall, 10
UserIDValueGeneration, 6
VerisignCertImpl, 13
WFGetApproverExtCall, 9
WFGetApproverSampleExtCall, 9
WorkflowCertificateRequest, 11, 13
workflow examples, 51

external call types
Approver Selection, 5, 9, 17
Attribute Value Constraint, 5, 7, 15, 27
Attribute Value Generation, 5, 15
Attribute Value Validation, 5, 8, 15
Attribute Value Verification, 5, 9, 15
Certification Management, 5, 13, 15
Workflow Action, 5, 10, 51

F
FIELD_NAME variable, 61, 62

files
truaccess.properties, 16

G

getApprover method, 17

getInstancelnfoByInstActivityld method, 22
methods
getInstancelnfoByInstActivityld, 18

get method, 15, 17, 21
getRequestParam method, 16, 18, 21

getSingleRequestParamStr method, 16, 18
methods
getSingleRequestParamStr, 21

IDValueGeneration external call, 6
Prefix parameter, 6
Suffix parameter, 6

99

interfaces
CertificateMgmt interface, 15
IWfClient, 2
IWfDataUpdate, 18, 22
IWfQuery, 3, 18, 22
SIConstraintIntf, 2, 15
TAPolicyVerificationIntf, 2, 15
TAValueConstraintIntf, 1, 15, 28
TAValueGenerationIntf, 2, 15
TAValueValidationIntf, 2, 15
WiExternalCall, 3, 20
WiSelectApproverlntf, 3, 17

IsAlphaNumeric external call, 8
IW{Client interface, 2
IWfDataUpdate class, 3
IWfDataUpdate interface, 18, 22
IW{fQuery interface, 3, 18, 22

J

Java classes, 1, 19
JavaDoc, 1, 15

L

LoadUserServices external call, 10, 12
ServicesRule parameter, 10

logging, 16, 20, 24

M

ManageExpireValidation external call, 8

MAP_NAME variable, 61, 62

100

methods

containsKey, 15, 17, 21

get, 15, 17, 21

getApprover, 17
getInstancelnfoByInstActivityld, 22
getRequestParam, 16, 18, 21
getSingleRequestParamStr, 16, 18
process, 20

Set attributeValues, 16

setStatus, 22

multivalue attributes

retrieving with approver selection
external call, 18

retrieving with workflow external call,
21

P WZFVariableName, 12

parameters PasswordValidation external call, 8
AttributeName, 7, 11 Letters parameter, 9
CertificateFieldName, 12 List of Special Characters parameter, 9
CertificateProviderName, 12 Lower Case Letters, 9
DisableValue, 11 Numerics parameter, 9
DN_FieldName, 12 Special Characters parameter, 9
EmailTemplateName, 12 Upper Case Letters parameter, 9
EnableValue, 11 PasswordValueGeneration external call, 6
ExternalCallName, 12 maxLength parameter, 6
Length, 7 minLength parameter, 6
Letters, 9 ersistent variable, 19
List of Special Characters, 9 p ’

Lower Case Letters, 9 PERSONNUMBER_FIELD attribute, 25
maxLength, 6 poolname parameter, 7

MaxRetryAttempts, 6, 7

minLength, 6 process method, 20

Numerics, 9 properties

Password, 11 truaccess.dataSource, 16
poolname, 7, 8 pushList block variable, 20, 24
Prefix, 6

query, 7, 8 Q

resource_name, 7

retrieving workflow external call, 21 query parameter, 7
RuleName, 12

SampleApprovers, 9 R

ServicesRule, 10

Special Characters, 9 references

Installation and Configuration Guide, 16

Suffix, 6 . .

Upper Case Letters, 9 Workflow Studio Guide, 11, 13
url, 11 Request class, 4

UserName, 11 RequestJobItem class, 4

valuefield, 7, 8

WfExternalCall WF_ PARAM ADMINU RedquestTarget class, 4,16, 18, 21

SERID, 17, 21 requestTarget class, 61
WfExternalCall WF_PARAM_REQUES RequestTargetParam class, 4
TID, 17, 21
WiExternalCall WF_PARAM_SERVICE leduestTargetParamValue class, 4
NAME, 17, 21 reserved variables, 19, 23

Wi{ExternalCall. WF_ PARAM_WORKFL
OWINSTID, 18, 21

101

S

Search Connector external call, 7
resource_name parameter, 7

Search Table external call, 7
poolname parameter, 8
query parameter, 8
valuefield parameter, 8

Set attributeValues method, 16
setStatus method, 22
SIConstraintIntf interface, 2, 15

single value attributes, 21
retrieving, 18

SSN_FIELD attribute, 25

standard parameters

WiExternalCall. WF_PARAM_ADMINU
SERID, 17

WiExternalCall. WF_PARAM_REQUES
TID, 17, 21

WiExternalCall. WF_PARAM_SERVICE
NAME, 17, 21

WiExternalCall. WF_PARAM_WORKFL
OWINSTID, 18, 21

StatelessServiceObjectFactory, 3

StatelessServiceObjectFactory class
classes, 3

status
returning workflow external call, 21

T
TAAttributeDefinitionException class, 2, 16

TAAttributeValueValidationException class,
2

TAFilter class, 4
TAPolicyVerificationIntf interface, 2, 15
TARequestAction class, 4
TARequestEvent class, 4

102

TARequestType class, 4

TAValueConstraintIntf. TAValueConstraintB
eanlntf class, 2

TAValueConstraintIntf interface, 1, 15
using, 28

TAValueGenerationIntf interface, 2, 15

TAValueValidationIntf interface, 2, 15

truaccess.dataSource property, 16

truaccess.properties file, 16

V)

user
adding generated workflow value, 52

UserEnableDisableWFExtCall external call,
10
AttributeName parameter, 11
DisableValue parameter, 11
EnableValue parameter, 11
Password parameter, 11
url parameter, 11
UserName parameter, 11

UserIDValueGeneration external call, 6
AttributeName parameter, 7
Length parameter, 7
MaxRetryAttempts parameter, 6, 7

\'}

valuefield parameter, 7

variables
$_blocklId, 20, 24
$_instId, 20, 24
_activityld, 19, 23
_instActivityld, 19, 23
_joinCommand, 19, 23
_pushVar, 20, 24
FIELD_NAME, 61, 62
MAP_NAME, 61, 62
persistent, 19
pushList, 20, 24
reserved, 19, 23
workflow, 19
WORKFLOW_REQUEST, 61

VerisignCertImpl external call, 13

w

WiExternalCall. WF_PARAM_ADMINUSER
ID, 21

Wi{ExternalCall. WF_PARAM_ADMINUSER
ID parameter, 17, 21

WfExternalCall. WF_PARAM_REQUESTID
parameter, 17, 21

WiExternalCall. WF_PARAM_SERVICENA
ME parameter, 17, 21

Wi{ExternalCall. WF_PARAM_WORKFLOWI
NSTID parameter, 18, 21

Wi{ExternalCallException class, 3
WiExternalCall interface, 3, 20
WifExternalCallStatus class, 3, 22

WFGetApproverSampleExtCall external
call, 9
SampleApprovers parameter, 9

Wi{SelectApproverIntf interface, 3, 17

workflow
external calls, 20

WORKFLOW_REQUEST variable, 61

Workflow Action external calls
coding, 20

Workflow Action external call type, 51

about, 5

describing external calls of, 10

IWfClient interface, 2

IWfDataUpdate interface, 22

IWfQuery interface, 3, 22

LoadUserServices external call, 10, 12

retrieving parameters, 21

returning status, 21

UserEnableDisableWFExtCall external
call, 10

using containsKey method, 21

using get method, 21

using getRequestParam method, 21

using getSingleRequestParamStr
method, 21

using process method, 20

WiExternalCall interface, 20

WiExternalCallStatus class, 22

WorkflowCertificateRequest external
call, 11

WorkflowRequestCallout class, 61

Workflow API, 1, 2, 20

WorkflowCertificateRequest external call,
11, 13
CertificateFieldName parameter, 12
CertificateProviderName parameter, 12
DN_FieldName parameter, 12
EmailTemplateName parameter, 12
ExternalCallName parameter, 12

Workflow External Calls
examples, 51

WorkflowRequestCallout class, 61

workflow templates
reserved variables, 19, 23

103

workflow variables
persistent, 19
retrieving, 18
retrieving request object data, 61
setting, 18
setting instance ID, 20
updating, 18
updating persistent, 22

104

	External Call Developer Guide
	Contents
	1 Introduction to External Calls
	2 Default External Calls
	Attribute Value Generation External Call Type
	Attribute Value Constraint External Call Type
	Attribute Value Validation External Call Type
	Attribute Value Verification External Call Type
	Approver Selection External Call Type
	Workflow Action External Call Type
	Certification Management Function External Call Type

	3 Creating an External Call
	Coding Attribute Value External Calls
	Coding Approver Selection External Calls
	Coding Workflow Action External Calls

	4 Examples
	Attribute Value Generation External Call
	Attribute Value Constraint External Call
	Implementing the TAValueConstraintIntf Interface
	Implementing the SIConstraintIntf Interface

	Attribute Value Validation External Call
	Approver Selection External Call
	Workflow Action External Call
	Adding a Generated Value to a User
	Retrieving and Changing Attributes and Entitlements
	Retrieving Request Object Data to Set Workflow Variables

	glossary
	Acronyms
	Terms

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue true
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /Futura-Bold
 /Futura-Book
 /Futura-BookItalic
 /Futura-Heavy
 /Futura-Light
 /Futura-Medium
 /Futura-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /Symbol
 /SymbolMT
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /Times-Roman
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfDingbats
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

