
HP OpenView Select Federation
For the HP-UX, Linux, Solaris and Windows Operating Systems

Software Version: 6.5
Web Services Developer’s Guide
Document Release Date: April 2006
Software Release Date: April 2006

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying. Consistent
with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and
Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard
commercial license.

Copyright Notices

© Copyright 2006 Hewlett-Packard Development Company, L.P.

HP OpenView Select Federation includes software developed by third parties. The software in Select
Federation includes:

• Software developed by Trustgenix, Inc. Copyright © Trustgenix, Inc. 2002-2005. All rights reserved.

• Apache Derby, Apache Xalan Library, Apache Xerces Library, and Apache XML Dsig Library.

• Software developed by the University Corporation for Advanced Internet Development <http://
www.ucaid.edu>Internet2 Project.

Trademark Notices

• Linux is a U.S. registered trademark of Linus Torvalds.

• Microsoft®, Windows®, and Windows NT® are U.S. registered trademarks of Microsoft Corporation.

• Oracle® is a registered trademark of Oracle Corporation. Various product and service names referenced
herein may be trademarks of Oracle Corporation.

• UNIX® is a registered trademark of The OpenGroup.
2

Documentation Updates

This manual’s title page contains the following identifying information:

• Software version number, which indicates the software version

• Document release date, which changes each time the document is updated

• Software release date, which indicates the release date of this version of the software

To check for recent updates, or to verify that you are using the most recent edition of a document, go to:

http://ovweb.external.hp.com/lpe/doc_serv/

You will also receive updated or new editions if you subscribe to the appropriate product support service.
Contact your HP sales representative for details.
3

Support

Please visit the HP OpenView support web site at:

http://www.hp.com/managementsoftware/support

This web site provides contact information and details about the products, services, and support that HP
OpenView offers.

HP OpenView online software support provides customer self-solve capabilities. It provides a fast and
efficient way to access interactive technical support tools needed to manage your business. As a valued
support customer, you can benefit by using the support site to:

• Search for knowledge documents of interest

• Submit enhancement requests online

• Download software patches

• Submit and track progress on support cases

• Manage a support contract

• Look up HP support contacts

• Review information about available services

• Enter discussions with other software customers

• Research and register for software training

Most of the support areas require that you register as an HP Passport user and log in. Many also require a
support contract.

To find more information about access levels, go to:

http://www.hp.com/managementsoftware/access_level

To register for an HP Passport ID, go to:

http://www.managementsoftware.hp.com/passport-registration.html
4

http://www.hp.com/managementsoftware/support
http://www.hp.com/managementsoftware/access_level
http://www.managementsoftware.hp.com/passport-registration.html

Contents
1 Introducing the HP OpenView Select Federation Web Services Developer’s Guide 7

Audience . 7
Prerequisites . 7
System Requirements . 8
Overview. 8
Chapters Summary . 9

2 Adding Web Service Consumer Functionality to an Application . 11

WSC Proxy Service . 11
SP WSC API . 12

Example 1: Instantiate and Use SPWSCAPI to Call a Sample Web Service . 12
Example 2: Use SPWSCAPI to Handle ID-WSF User Interaction Requests . 13

3 Developing an Identity-Based Web Service . 15

Step 1: Define the Functionality of the Service . 15
Step 2: Define the XML Interface of the Service . 16
Step 3: Develop and Deploy the Service . 16

Configure a New DST-Based Service. 16
Implement the ServicePlugin Interface. 17

Example of a Simple Service Plugin Implementation Using the SPWSPAPI 18
How to Install the tfs-wsp.war File in Select Federation Premium Edition 19

Step 4: Register the Service. 20
Registration as an IDP Service . 20
Registration as an SP Service . 20
Registration with the SPWSPAPI . 21

4 Support for LUAD-WSC Implementations . 23

5 Samples . 25

Samples List . 25
Building the Samples. 25

Required Software . 25
Build Process. 25

Samples Descriptions. 26
filter-spwsc-sample . 26

Sources . 26
Running the filter-spwsc-sample Sample . 26

spwsc-sample. 27
Sources . 27
Running the spwsc-sample Sample . 27
 5

spwsp-sample . 28
Sources . 28
Running the spwsp-sample Sample on an IDP . 28
Running the spwsp-sample Sample on an SP . 28

Index . 31
6

1 Introducing the HP OpenView Select Federation
Web Services Developer’s Guide
This HP OpenView Select Federation Web Services Developer’s Guide describes how to use the
Select Federation Software Developer’s Kit (SDK) to develop and deploy new web services.
This guide also includes samples that you can build and use as a basis for your own
development efforts.

The Select Federation SDK consists of the following:

• This OpenView Select Federation Web Services Developer’s Guide.

• HP OpenView Select Federation Web Application Developer’s Guide, which describes how
to add federation functionality to web applications, how to use the SDK to integrate an
Authority (IDP) installation of Select Federation with back-end data sources and various
authentication systems, and how to build the API samples and what the samples
demonstrate.

• API documentation in the <cd-base-directory>/docs/api/index.html file.

• Web Application API samples in the <cd-base-directory>/api/samples/ directory.

• Web Services samples in the <cd-base-directory>/web-services/filters/
samples/ and <cd-base-directory>/web-services/api/samples/ directories

Audience

This guide is intended for developers that want to extend applications that are integrated
with Select Federation with identity-based web service functionality.

Prerequisites

This guide assumes a working knowledge of:

• Identity Management

• Federated Identity

• HP OpenView Select Federation Web Application Developer’s Guide and the various APIs
that ship with Select Federation

This release provides a trial Software Developers Kit (SDK) for developing and deploying new
web services. Therefore, the APIs and parameters described in this guide are subject to
change.
 7

System Requirements

HP OpenView Select Federation is designed to work with a number of hardware and
operating systems configurations. The flexibility inherent in Select Federation extends to the
third-party applications that it supports, namely the application servers, database servers,
and LDAP servers. See “System Requirements” in Chapter 3 of the HP OpenView Select
Federation Configuration and Administration Guide for the specific hardware and software
system requirements.

Overview

This chapter briefly discussed the key concepts of Identity-based Web Services, and explains
the major steps in defining such services. This chapter is not a replacement for the large body
of material that is available in the form of specifications and books on the topic of Web
Services.

The HP OpenView Select Federation Web Application Developer’s Guide introduces the concept
of roles that a particular deployment can take on, which are Applications and Authorities. Web
Services functionality adds two more roles:

• Web Service Provider (WSP) — A party that offers some service through a well
defined HTTP/SOAP/XML interface.

• Web Service Consumer (WSC) — A party that uses such service, by sending messages
to it that are in accordance with the specification of the service.

The service is Identity-Based if within the scope of a single transaction the service is about a
single principal. Examples of identity-based services include the following:

• Service to obtain the geo-location of a user

• Calendar service that allows the WSC to add an entry to the calendar of a user

• Service that knows if a particular user is available for chat.

A WSC that wishes to invoke a specific WSP (such as a calendar) service of a particular user
needs various pieces of information, such as:

• Service available for the user

• Network address of the service

• Interface of the service

• Credentials for the service

• ID of the user at that service

It is important to realize that many of these pieces are not specific to the service. Similar
information is required to invoke a geo-location service, for example. The combination of
auxiliary services and various methods that the WSC can use to get these pieces of
information can be viewed as a Service Invocation Framework (SIF). The HP OpenView Select
Federation Web Service APIs essentially hide the complexity of Service Invocation
Frameworks from developers, who can concentrate on service-specific functionality.
8 Chapter 1

Currently there is only one SIF for interoperable Identity-Based Web Services, the Liberty
Alliance ID-WSF set of specifications. HP OpenView Select Federation and its SDK support
the ID-WSF 1.0 and 1.1 specifications. However it is foreseeable that other SIFs will emerge,
possibly with a slightly different focus. Future versions of the Select Federation Web Service
APIs should be able to accommodate such SIFs with minimal impact.

Chapters Summary

The following table provides an overview of this guide’s contents..

Table 1 Chapters Summary

Chapter Description

Chapter 1, Introducing the HP
OpenView Select Federation Web
Services Developer’s Guide

This chapter provides a brief overview of the
content of this Developer’s Guide.

Chapter 2, Adding Web Service
Consumer Functionality to an
Application

This chapter provides detailed information about
using the Select Federation SDK to add WSC
(Web Service Consumer) functionality to an
application.

Chapter 3, Developing an
Identity-Based Web Service

This chapter provides detailed information about
using the Select Federation SDK to develop and
deploy new ID-WSF compliant web services.

Chapter 4, Support for LUAD-WSC
Implementations

This chapter provides information about the
services that Select Federation offers to support
LUAD-WSC implementations.

Chapter 5, Samples This chapter provides descriptions of the web
services samples included on the Select
Federation CD to help you understand the
capabilities of Select Federation.
Introducing the HP OpenView Select Federation Web Services Developer’s Guide 9

10 Chapter 1

2 Adding Web Service Consumer Functionality to
an Application
The HP OpenView Select Federation SDK makes adding WSC functionality to an application
surprisingly simple. The main developer responsibility is to write code that deals with the
service-specific part of the service interface. For example, adding an entry to a user’s calendar
or retrieving the geo-location of a user.

However, the Liberty Alliance ID-WSF framework requires that a user must be authenticated
by an Identity Provider to the WSC (which at that moment acts as Service Provider) at some
point prior to invocation of the WSP. Therefore, it is good practice to enable an Application for
a federation first, and then add WSC functionality to it. See the HP OpenView Select
Federation Web Application Developer’s Guide on how to enable an application for a
federation.

If the application is going to act as a WSC it is useful to consider the following:

• The Select Federation SDK does not provide WSC functionality to applications that are
enabled only through integration with HP OpenView Select Access.

• WSC functionality can be added to a federated application irrespective of the type of
federation. One-time identifiers can work as well as persistent identifiers and
account-linking is not a prerequisite.

The technique to add the WSC functionality is dependent on the way the application is
enabled for a federation. Applications that make use of the SDK IIS or Apache filters can add
code that uses the HP OpenView Select Federation WSC Proxy service (described in the next
section). Applications that rely on the Java APIs of the SDK use the SPWSCAPI.

WSC Proxy Service

The HP OpenView Select Federation SDK contains a web application (a war file) that can be
added to an existing Select Federation 6.5 installation and adds support for the IIS and
Apache filters. See Chapter 4 “Using Filters to Protect Web Applications” in the HP OpenView
Select Federation Web Application Developer’s Guide for details on the IIS and Apaches filters.

This war web application also adds a WSC Proxy that can be used by applications that are
deployed on IIS or Apache filters. The WSC Proxy provides a simple XML interface towards
such applications, with a subset of the functionality offered by the Java SPWSCAPI.

To use the WSCProxy the application should construct the XML message that should be sent
in the soap:Body part of the message to the WSP. The application wraps this XML message
in another element that is a request to the WSCProxy. This wrapper element contains in
essence a description of the service. In one variation this description can be seen as a set of
criteria for lookup of the actual WSP. These criteria consist of a reference to the contract (also
known as service type) of the WSP and a reference to the federated user. The application gets
this user reference from the HTTP request (the filter will have added this to the request). The
second variation of the service description is a complete, but encoded, description that was
obtained earlier. In either case the application finally sends the XML in an HTTP POST to the
WSCProxy.
 11

When the WSCProxy receives this XML, the WSCProxy searches for the specified service for
the user, and upon success, sends the service-specific message as a properly enveloped
ID-WSF request to the found WSP. Once the WSCProxy receives a response from the WSP, it
responds to the application with the service-specific part of the message.

An application may also ask the WSCProxy for a storable service description. In this case,
when the WSCProxy searches for the service, it responds to the application with an XML
description of the found service. The application may store this description and use it for
future invocations of the service.

See filter-spwsc-sample on page 26 for a description of how to use the WSCProxy in
combination with the Select Federation Filters.

SP WSC API

The Select Federation SP WSC API is the interface that Java-based (Service Provider) web
applications use to invoke identity-based web services associated with federation sessions. To
use this API, the web application must be deployed in the same application server as Select
Federation and initialized with the tfsconfig.properties configuration file.

The following sections show two examples of using the SPWSCAPI (the code is from the
<cd-base-directory>/web-services/api/samples/spwsc-sample included on the CD):

• Example 1: Instantiate and Use SPWSCAPI to Call a Sample Web Service

• Example 2: Use SPWSCAPI to Handle ID-WSF User Interaction Requests

Example 1: Instantiate and Use SPWSCAPI to Call a Sample Web Service

This example shows how to instantiate and use the SPWSCAPI to call a sample web service:

 // Construct request body xml
 String req = "<SomeRequest xmlns=\"http://schemas.example.com/
sampleservice\" />";
 // Prepare to receive a successful result or an error
 String res = null;
 String err = null;
 try {
 // Instantiate the SPWSCAPI using the path to tfsconfig.properties,
 // the type of the service to call, and the federated session to use
 // in locating the service.
 // If the service can't be located, an exception will be thrown.
 SPWSCAPI spwscAPI = new SPWSCAPI(propfile, "http://
schemas.example.com/sampleservice", tfsSessionInfo);
 // Call the service and save the result
 res = spwscAPI.send(req);
 } catch (Exception e) {
 // Save the error description
 err = e.getMessage();
 }
12 Chapter 2

Example 2: Use SPWSCAPI to Handle ID-WSF User Interaction Requests

This is a more complex example, which shows how ID-WSF user interaction requests can be
handled:

 // Construct request body xml
 String req = "<SomeOtherRequest xmlns=\"http://schemas.example.com/
sampleservice\" />";
 // Prepare to receive a successful result or an error
 String res = null;
 String err = null;
 try {
 // Prepare to instantiate the SPWSCAPI
 SPWSCAPI spwscAPI;
 // First check to see if we have a saved reference in this session
 ServiceDescription serviceRef = (ServiceDescription)session.
getAttribute("serviceRef");
 if (serviceRef != null) {
 // Instantiate the SPWSCAPI using the path to tfsconfig.properties
 // and a saved reference
 spwscAPI = new SPWSCAPI(propfile, serviceRef);
 } else {
 // Instantiate the SPWSCAPI using the path to
 // tfsconfig.properties,
 // the type of the service to call, and the federated session to
 // use in locating the service.
 // If the service can't be located, an exception will be thrown.
 spwscAPI = new SPWSCAPI(propfile, "http://schemas.example.com/
sampleservice", tfsSessionInfo);
 // Save a reference for future use
 session.setAttribute("serviceRef", spwscAPI.getReference());
 }
 // Indicate that we are prepared to handle user agent redirects
 spwscAPI.setAllowUIRedirect(true);
 // Check to see if we have a previous call to retry (in which case
 // we are returning from handling a user agent redirect)
 String retryRefToMessageId =
(String)request.getParameter("RetryRefToMsgId");
 if (retryRefToMessageId != null)
 // Indicate that we are retrying a previous call
 spwscAPI.setRetry(retryRefToMessageId);
 // Call the service and save the result
 res = spwscAPI.send(req);
 } catch (TFSUIRedirectException e) {
 // Construct a return url that will trigger us to retry this call
 String returnToURL = request.getRequestURL().toString() +
"?RetryRefToMsgId=" + e.getRetryRefToMessageId();
 // Redirect to the requested URL, passing in our returnURL
 e.sendRedirect(response, returnToURL);
 return;
 } catch (Exception e) {
 // Save the error description
 err = e.getMessage();
 }
Adding Web Service Consumer Functionality to an Application 13

For more information, see the following:

• Chapter 4, “Select Federation API Overview” in the HP OpenView Select Federation Web
Application Developer’s Guide for an overview of the Select Federation SP APIs.

• <cd-base-directory>/docs/api/index.html file on the Select Federation SDK CD
for detailed API documentation.

• spwsc-sample on page 27, for a description of how to use the SPWSCAPI in combination
with the SPAPI or J2EE Access Filter.
14 Chapter 2

3 Developing an Identity-Based Web Service
This chapter describes how to develop new identity-based web services. When these services
are deployed, HP OpenView Select Federation exposes these services in accordance with the
Liberty Alliance ID-WSF specifications.

The development of a new service consists of the following steps, which are described in detail
in each step:

• Step 1: Define the Functionality of the Service

• Step 2: Define the XML Interface of the Service

• Step 3: Develop and Deploy the Service

• Step 4: Register the Service

Step 1: Define the Functionality of the Service

This step is not specific to HP OpenView Select Federation. Most importantly this step is to
ensure that the service offers some clearly defined functionality that can be used in a variety
of settings. A typical mistake is to develop the service around a single usage scenario. It is
good to work from one or more usage scenarios, but it is important to find a small common set
of general functions that can be used in all known, and in many unknown, scenarios. At the
same time avoid defining a service that tries to work for too many scenarios. For example, a
geolocation service should offer location information, not other personal information.

An important consideration for ID-WSF based services is the relationship of the service and
identity. Broadly, services can be divided into identity providing and identity consuming
services.

• Identity providing services are those that inform service consumers about some identity
(such as a person). In general, such services can be thought of as my... service such as
myCalendar, myWallet, and so on. An identity providing service can only be found
through a specific SIF. For example, prospective web service consumers find such services
through the ID-WSF Discovery Service (which is an identity providing service).

• Identity consuming services can be thought of as services that need to get an identity in
service requests. The service may need to be able to operate on behalf of the identity to do
accounting, and so on. Typically, the service consumer is pre-configured with the address
(and policy) of such a service. An instant messaging service is perhaps an example of such
an identity consuming service. The service expects some identity in requests but does not
really inform service consumers about end-users (whereas a Presence service would).
 15

Step 2: Define the XML Interface of the Service

It is recommended that you define the interface of the service at the XML level. In general we
advise against using WSDL/schema generators. Many developers may not have access to high
quality WSDL compilers, and/or need to work within constrained environments. Simple, well
structured XML eases the work of these developers.

It is best to start with example request and response messages. Be sure that these have the
correct information as well as an acceptable structure to generalize the examples into an XML
schema. Another consideration is to think about the likely data model on the service
consumer side. If it can be expected that the service consumer maintains some sort of
database it may be useful to define the interface of the service such that it returns messages
that can effectively be used to update that database.

It is important to define the XML interface in terms of the “abstract WSDL”, that is as the
content of soap:Body elements. This way the interface does not change if and when the
service is deployed using a framework other then ID-WSF. This is also important if the service
will be used by applications that use the Select Federation IIS or Apache filters.
Unfortunately ID-WSF ResourceIDs break this nice separation. However, note that the Select
Federation Web Service Java APIs hide this complexity, but that is based on a convention that
a ResourceID, if present, will be the first child element of the first element in the soap:Body.

It is worth considering the nature of the functionality that the service will offer. If the service
is mainly about obtaining user information it may be worthwhile to define the XML interface
according to the ID-WSF Data Service Template specification. The advantage of defining a
DST-based service is that the specification work can be minimal. A DST-based specification
essentially defines the schema of a virtual XML document that the service will “expose”. The
schema should have a namespace, for example:

http://wsp.company.com/geoloc/1.0

The DST-based specification should also define one or more Select statements that the
service will support against the virtual XML document. For example, a simple geolocation
service could support only one such statement, which gets the value of the Location element:

//geo:Location

Step 3: Develop and Deploy the Service

HP OpenView Select Federation 6.5 and its SDK offer two ways to develop and deploy new
services:

• Configure additional attributes for a DST-based attribute service

• Implement the ServicePlugin interface of the SPWSPAPI

The following sections describe these methods.

Configure a New DST-Based Service

HP OpenView Select Federation Premium Edition has a built-in module that can offer user
attributes through Liberty Alliance ID-WSF DST-based services. It is possible to add a new
DST-based service by simply editing the system configuration tfsconfig.properties file
and then allocating existing or new attributes to the new service. This method has the
16 Chapter 3

advantage of being very simple, but the restriction is that the new service is read-only. For
details on editing the tfsconfig.propertie file, see Appendix A, “Configuration
Parameters” in the HP OpenView Select Federation Configuration and Administration Guide.

To add a new DST service to an Authority, perform the following steps:

1 Declare a new service name and associate it with a namespace, which also serves as the
service type. For example:

geo.dstNS=http://wsp.company.com/geoloc/1.0

2 Configure the new attributes that provide the actual data.

See Chapter 10, “Configuring Attributes” in the HP OpenView Select Federation
Configuration and Administration Guide for details. For each new attribute, the service
name and Select statement must be declared. For example:

location.dstSvc=geo
location.dstSelect=/geo:Location

In addition, the Authority Select Federation installation must be able to find the actual
attribute values. Therefore, the attribute needs to be configured with the information
required by the Directory Plugin that will provide the attribute. See the
“IDP-SampleDirPlugin” sample description in the HP OpenView Select Federation Web
Application Developer’s Guide.

3 Set which attributes are allowed to be queried by the Applications in the admin console of
the Authority.

If the Application is a Select Federation installation, it is possible to add the same service
and attributes there, and then you can set which attributes are to be queried from the
Authority in the admin console. Alternatively, the application may make use of the
DSTAPI, the WSCAPI or the WSCProxy.

Implement the ServicePlugin Interface

If the previous method is too restrictive, you need to develop new code to deal with service
requests. The best way to do this is to implement the ServicePlugin interface in the
SPWSPAPI and deploy your service through the Select Federation tfs-wsp.war file. This is
an additional war file, which needs to be added to your Select Federation Premium Edition
installation. See How to Install the tfs-wsp.war File in Select Federation Premium Edition on
page 19 for instructions.

A ServicePlugin is an implementation of a web service that is largely independent of the
service invocation framework that is used to discover and invoke web services. A
ServicePlugin is plugged into a container (tfs-wsp.war) that takes care of security,
authentication, identity, and so on. The container processes incoming (SOAP) messages and
prepares a ServiceRequest that contains the service specific message, such as the content of
the soap:Body, as sent by the service consumer. In addition the ServiceRequest contains
information about that consumer as well as the target user on whose behalf the ServicePlugin
is expected to serve the request.

A ServicePlugin may require consent or other information from the end-user before being able
to serve a request. To this end the plugin can construct and throw an InteractionRequest. Any
user response to such a request arrives in a new ServiceRequest that contains UserInput.

The following section shows a simple ServicePlugin implementation.
Developing an Identity-Based Web Service 17

Example of a Simple Service Plugin Implementation Using the SPWSPAPI

This example shows how to use the SPWSPAPI to implement a service plugin (this code is
from the <cd-base-directory>/web-services/api/samples/spwsp-sample included on
the CD).

public class SampleService implements ServicePlugin {

 public SampleService(Config conf) {
 // Nothing to configure for this service
 }

 public Map initService(Map containerConfig) throws ServiceException {
 Map serviceConfig = new HashMap();
 // Indicate that this service requires a target user in order
 // to process a request. In ID-WSF, this corresponds to having
 // a ResourceID that maps to a valid local user
 serviceConfig.put("requiresUser", "1");

serviceConfig.put("userAttributes", "name_firstname");
 return serviceConfig;
 }

 public ServiceResponse getResponseFor(ServiceRequest request) throws
Servic\eException {
 // Get the target user for this request
 ServiceUser user = request.getUser();
 if (user == null)
 throw new ServiceException("no user");
 String userId = user.getLocalUserId();
 Map profile = user.getProfile();

 // Get the target user's first name (default to user id)
 String name = (String)profile.get("name_firstname");
 if (name == null)
 name = userId;

 // Dispatch based on the request element
 String req = request.getBodyElement().getLocalName();
 if ("SomeRequest".equals(req)) {

 // Return a simple response based on the identity of the
 // target user. In a real service, this would perform some
 // action associated with the user.
 return request.newResponse("<SomeResponse xmlns=\"http://
schemas.example.com/sampleservice\">this is " + name + "'s sample
service</SomeResponse>");
 } if ("SomeOtherRequest".equals(req)) {

 // Demonstrate the use of user interaction in handling a
 // request.

 // First, check to see if we have received the user input
 // that we asked for.
 UserInput userInput = request.getUserInput();
 if (userInput == null) {
 // If not, construct and throw an interaction request
18 Chapter 3

 InteractionRequest ir;
 try {
 // Construct a simple interaction request that asks
 // a simple yes/no question
 ir = InteractionRequest.confirm("answer", "What is your
answer?", false);
 } catch (TFSException e) {
 throw new ServiceException("error constructing interaction
request");
 }
 throw ir;
 }
 // Return a simple response based on the identity of the
 // target user and their response to the interaction request.
 // In a real service, this would perform some action associated
 // with the user.
 String answer = userInput.getParameter("answer");
 return request.newResponse("<SomeOtherResponse
xmlns=\"http://schemas.example.com/sampleservice\">" + name + " says the
answer is " + answer + "</SomeOtherResponse>");

 } else {
 throw new ServiceException("unknown request " + req);
 }
 }

How to Install the tfs-wsp.war File in Select Federation Premium Edition

Perform the following steps to install the <cd-base-directory>/filters/support/
tfs-ws.war file:

1 Copy the files in the <cd-base-directory>/web-services/hpsf-pe-additions/
stylesheets/ directory to the stylesheets sub-folder of the configuration folder for your
Select Federation instance, such as <SF-installation-dir>/conf/stylesheets.

The new tfs-fs.war file requires these additional stylesheets to support user
interaction during web service calls.

2 Deploy the <cd-base-directory>/web-services/hpsf-pe-additions/
tfs-fs.war file to your Application Server that hosts your Select Federation war files.

• If your Select Federation install uses the built-in application server, deploy the
tfs-fs.war file by placing it in the <SF-installation-dir>/webapps/
directory.

• If your Select Federation install uses WebLogic or WebSphere, deploy the
tfs-fs.war file through the administrative console. See the respective application
server documentation for details.

You are now ready to register new services (see Step 4: Register the Service on page 20 for
instructions).

For more information, see the following:

• Chapter 4, “Select Federation API Overview” in the HP OpenView Select Federation Web
Application Developer’s Guide for an overview of the Select Federation SP APIs.

• <cd-base-directory>/docs/api/index.html file on the Select Federation SDK CD
for detailed API documentation.
Developing an Identity-Based Web Service 19

• spwsp-sample on page 28, for a description of how to use the SPWSPAPI in combination
with the SPAPI or J2EE Access Filter.

Step 4: Register the Service

For each user, the service (if “identity providing”) should be registered with the Discovery
Service. In the case where the service is deployed on a Select Federation installation and acts
as the Authority for the user, you can register the service by adding the new service to the
system configuration. This will virtually register the service for each user.

If the installation is an Application that relies on other Authorities for authentication,
registration of the new service should be done through using the SPWSPAPI within a page
that the user will visit. For example, the user might visit the SP side of the provider that acts
as the WSP.

Registration as an IDP Service

Select Federation has a concept of IDP-hosted services, which are services that are advertised
for all of an IDP's users without having been explicitly registered with the built-in Discovery
Service. New services can be added as IDP services by adding the following type of structure
to the tfsconfig.properties file on an IDP:

#space separated shorthand for local services exposed by this IDP

idpServices=sample

sample.class=SampleService
sample.jar=/hpsf-sdk-cd/web-services/samples/spwsp-sample/dist/
sampleservice.jar
sample.roType=http://schemas.example.com/sampleservice
sample.roURL=https://youridp.com/tfs-wsp/SPWSP_IDWSF11/sample

This structure provides one step to both deploy and register the service for all users. When
deployed this way, no registration with the DS is needed. The service is available for all users
and all federated sites (WSCs).

Notice that the URL is constructed by appending the path of the deployed tfs-wsp.war file
with /SPWSP_IDWSF11/ and then the service alias is used in the configuration entries.

Registration as an SP Service

Registering an SP service requires the following two steps:

1 Deploy the SP service by adding the following entries to the tfsconfig.properties
file.

spwspServices=sample

sample.class=SampleService
sample.jar=/hpsf-sdk-cd/web-services/samples/spwsp-sample/dist/
sampleservice.jar
sample.roType=http://schemas.example.com/sampleservice
20 Chapter 3

2 Register the SP service one user at a time using the SPWSPAPI, described in the next
section Registration with the SPWSPAPI.

Registration with the SPWSPAPI

Following is a code snippet from the index.jsp page of sp-sample that was enhanced to
enable registration:

String spwsppropfile =
application.getInitParameter("com.trustgenix.tfs.propFile");

// Instantiate the SPWSPAPI
SPWSPAPI spwspAPI = new SPWSPAPI(tfspropfile, tfsSessionInfo);

String action = request.getParameter("action");
if (action != null && !action.equals("")) {

// an alternative is to register the service during activation
if (action.equals("reg")) {
spwspAPI.register("sample");

} else if (action.equals("dereg")) {
spwspAPI.deregister("sample");

}
response.sendRedirect("index.jsp");
return;

}

The application using SPWSPAPI must be deployed on the server as the Select Federation
hosting the service, and the API must be initialized with the server’s
tfsconfig.properties file.

The Authority needs an entry in its tfsconfig.properties file that lists those partners
that are allowed to register entries in its Discovery Service. For example:

#To allow updates to the DS from SPs
#idwsfDSAllowUpdatesFrom=providerid1 providerid2 ...
idwsfDSAllowUpdatesFrom=http://company.com:8080/tfs

Other, but not required configuration parameters for the Authority include the following:

enable DS
idwsfSupportDS=1
#DS generated tokens expire after 30 mins
idwsfDSTokenTimeout=30m

Note that registration may be triggered by an explicit user action or it might happen silently
and automatically during an activation procedure. Registration happens within the context of
a federation with respect to a particular Authority, which knows about a particular Discovery
Service.
Developing an Identity-Based Web Service 21

22 Chapter 3

4 Support for LUAD-WSC Implementations
A LUAD-WSC is a Liberty-enabled User-Agent or Device that acts as a WSC. As a
LUAD-WSC is not an Application that acts as a partner known to the Authority (or IDP) it
uses a slightly different service invocation flow. An HP Select Federation is never a LUAD, but
an Authority installation can serve LUAD-WSCs. This requires additional configuration that
is described in this chapter.

LUAD-WSC implementations must receive information about the DS from an Authentication
Service. HP OpenView Select Federation offers this service. By default the Authentication
Service is not exposed. But, you can enable the Authentication Service in the
tfsconfig.properties file, which exposes the Authentication Service on a URL. For
example:

http://company.com/tfs/IDPSSO_IDWSF10

The ID-WSF Authentication Service specification defines the use of SASL authentication
mechanisms to actually authenticate the LUAD. HP Select Federation offers an
IDPSASLAuthnPlugin interface and two built-in implementations of it. The
IDPSASLAuthnPlugin_Dir is simpler and does not require configuration beyond declaring
the plugin. The IDPSASLAuthnPlugin_File supports mechanism selection and password
transformation.

Following is a commented section of the tfsconfig.properties file that controls the
behavior:

enable and configure the AS
(this assumes that you have configured a dirPlugin)
idwsfSupportAS=1
idpSASLAuthnPlugin=com.trustgenix.tfsIDP.util.IDPSASLAuthnPlugin_Dir

AS tokens expire after 30 minutes
authTimeout=30m

The various settings below require that the IDPSASLAuthnPlugin_File is used
like this:
#idpSASLAuthnPlugin=com.trustgenix.tfsIDP.util.IDPSASLAuthnPlugin_File
#IDPSASLAuthnPlugin_File.acctFilePath=properties/users.properties

So everything from here on requires the _File plugin!
this line defines the SASL mechanisms that the server will choose.
the server chooses the first one out of this list that the client supports
if you only want CRAM-MD5 then simply make it the only entry in the list
here.
#IDPSASLAuthnPlugin_File.initialMechs=PLAIN CRAM-MD5

this line defines the password transforms that the service
will ask the client to perform
#IDPSASLAuthnPlugin_File.passwordTransforms=lc san uc t8
 23

the particular set defined here (and below) tests all transforms
if e.g. the password entered by the user on the device is 'AB34**cö90defG'
as after all transforms you should get: 'AB34C90D'

the following entries define the actual transforms
each transform is a single line of XML
#passwordTransform.t8=<sa:Transform xmlns:sa="urn:liberty:sa:2004-04"
name="urn:liberty:sa:pw:truncate"><sa:Parameter
name="length">8</sa:Parameter></sa:Transform>

#passwordTransform.lc=<sa:Transform xmlns:sa="urn:liberty:sa:2004-04"
name="urn:liberty:sa:pw:lowercase" />

#passwordTransform.uc=<sa:Transform xmlns:sa="urn:liberty:sa:2004-04"
name="urn:liberty:sa:pw:uppercase" />

#passwordTransform.san=<sa:Transform xmlns:sa="urn:liberty:sa:2004-04"
name="urn:liberty:sa:pw:select"><sa:Parameter
name="allowed">0123456789abcdefghijklmnopqrstyvwxyz</sa:Parameter></sa:
Transform>

When you use the IDPSASLAuthnPlugin_Dir plugin, the normal directory plugin
authenticates the LUAD.
24 Chapter 4

5 Samples
This chapter provides descriptions of the web services samples provided on the HP OpenView
Select Federation CD, to help you understand the capabilities of Select Federation.

Samples List

The web services samples included on the Select Federation CD are in the
<cd-base-directory>/web-services/filters/samples/ and the
<cd-base-directory>/web-services/api/samples/ directories.

The following web services samples are included on the CD:

• filter-spwsc-sample: Demonstrates how to use the WSCProxy in combination with the
Select Federation Filters.

• spwsc-sample: Demonstrates how to use the SPWSCAPI in combination with the SPAPI
or J2EE Access Filter.

• spwsp-sample: Demonstrates how to use the SPWSPAPI in combination with the SPAPI
or J2EE Access Filter.

Building the Samples

You can build the samples by copying them from the Select Federation CD to a location on
your hard disk.

Required Software

• Ant: Ant tool from the apache Jakarta project, version 1.5 is desirable, though earlier
versions may also work.

• JDK: JDK version 1.4.2 or later.

• J2EE Servlet Engine: Since all the samples involve servlets or JSPs, you need a J2EE
servlet engine (such as Tomcat, IBM WebSphere, BEA WebLogic, and so on). The sample
applications can reside on the same server as Select Federation.

Build Process

To build a sample, change your current working directory to the top-level directory of the
sample. For example:

cd samples/idp-authnplugin
 25

At the top level directory enter the following command:

ant clean package

The output of the compilation command appears in the dist directory.

Samples Descriptions

filter-spwsc-sample

This sample demonstrates the use of the WSCProxy from an application protected by a Select
Federation Filter, with examples for both the IIS and Apache filters.

Sources

spwsc-sample.php: This demonstrates a simple web service invocation.

Running the filter-spwsc-sample Sample

To run the filter-spwsc-sample sample, perform the following steps:

1 Ensure the following:

• Select Federation installation supports filters.

• There is a directory on the web server that is properly protected by one of the filters.
See “How to Configure the IIS Filter” and “How to Configure the Apache Filter” in the
HP OpenView Select Federation Web Application Developer’s Guide for information on
protecting directories.

• Deploy the sample Web Service Provider (WSP) on another system.

2 Deploy the spwsc-sample.php file in a directory, which is enabled for PHP scripts and is
protected by a Select Federation filter.

Ensure that the Web Service Consumer (WSC) and WSP Select Federation installations
are set up as partners for each other.

3 Point your web browser to the location where you deployed the spwsc-sample.php file.

4 Navigate to the spwsc-sample.php page.

This page displays a login prompt and links for logging in through the configured IDPs. If
you do not see any links to login through the IDPs, you have not configured Authority
sites in your circle of trust.

5 Click on the login through the IDP link to navigate to the IDP.

6 Login as user on this page.

You are redirected back to the SP. The index page opens with two samples called Example
1 and Example 2.

This sample assumes knowledge of writing PHP scripts.

To run the filter-spwsc-sample, you must deploy it on a partner installation.
26 Chapter 5

7 Click on Example 1 or Example 2.

For a better understanding, it is recommended to take a trace of the network traffic around
the Select Federation installation of the WSCProxy.

spwsc-sample

This sample demonstrates the use of the SPWSCAPI in a simple application scenario. It uses
the SPAPI to authenticate a user and then the SPWSCAPI to invoke a sample web service for
the authenticated user.

Sources

• web/index.jsp: This is the index page and the login page.

• web/example1.jsp: This demonstrates a simple web service invocation, not handling
user interaction.

• web/example2.jsp: This demonstrates a more complex web service invocation that
handles user interaction exceptions and retries the operation.

Running the spwsc-sample Sample

To run the spwc-sample sample, perform the following steps:

1 Deploy the file dist/spwsc-sample.war to your J2EE server.

2 Navigate to the index.jsp page.

This page displays a login prompt and links for logging in through the configured IDPs. If
you do not see any links to login through the IDPs, you have not configured Authority
sites in your circle of trust.

3 Click on the login through the IDP link to navigate to the IDP.

4 Login as user on this page.

You are redirected back to the SP. If the user logged in at the IDP, but is not federated
with the SP, you will be navigated to the activation page.

5 On the activation page, you can do one of the following:

• Associate the user with a local account.

• Assign a new user ID to the user at the SP site.

The index page opens with two samples called Example 1 and Example 2.

6 Invoke the sample web service using Example 1 or Example 2:

• Click on Example 1 to test a simple web service invocation. On the result page, click on
back to return to the index page.

• Click on Example 2 to test a more complex web service invocation involving user
interaction. Click yes or no when prompted for user interaction. On the result page,
click back to return to the index page.

To run the spwsc-sample, you must deploy it on a partner installation.
Samples 27

spwsp-sample

This sample demonstrates the use of the ServicePlugin interface and the SPWSPAPI in a
simple web service scenario. It uses the ServicePlugin interface to implement a web service
and then, optionally, the SPAPI to authenticate a user and the SPWSPAPI to register the
service for the authenticated user.

Sources

• src/SampleService.java: The ServicePlugin implementation for the sample service.

• web/index.jsp: This is the optional login and registration page.

Running the spwsp-sample Sample on an IDP

To run the spwsp-sample sample, perform the following steps:

1 Add the following lines to the tfsconfig.properties file of the Select Federation IDP
on which the sample service is to be deployed (adjusting the path to the
sampleservice.jar file and the URL to your Select Federation installation):

idpServices=sample

sample.class=SampleService

sample.jar=/hpsf-sdk-cd/web-services/samples/spwsp-sample/dist/
sampleservice.jar

sample.roType=http://schemas.example.com/sampleservice

sample.roURL=https://youridp.com/tfs-wsp/SPWSP_IDWSF11/sample

There is no need to deploy the spwsp-sample.war file in this case, as the service is
automatically registered for all users of your IDP.

2 Follow the instructions for Running the spwsc-sample Sample on page 27, or Running
the filter-spwsc-sample Sample on page 26 to invoke the service.

Running the spwsp-sample Sample on an SP

To run the spwsp-sample on an SP, perform the following steps:

1 Add the following lines to the tfsconfig.properties file of the Select Federation SP
on which the sample service is to be deployed (adjusting the path to the
sampleservice.jar):

spwspServices=sample

sample.class=SampleService

sample.jar=/hpsf-sdk-cd/web-services/samples/spwsp-sample/dist/
sampleservice.jar

sample.roType=http://schemas.example.com/sampleservice

If the sample is deployed on an IDP then the registration application is not needed (the
service can be implicitly registered for all users). If it is deployed on an SP then the
registration application is needed.
28 Chapter 5

2 Deploy the spwsp-sample.war file to load the index.jsp page in a web browser.

3 Deploy the file dist/spwsp-sample.war to your J2EE server.

4 Navigate to the index.jsp page.

This page displays a login prompt and links for logging in through the configured IDPs. If
you do not see any links to login through IDPs, it means you have not configured
Authority sites in your circle of trust.

5 Click on the login through the IDP link to navigate to the IDP.

6 Login as user on this page.

You will be redirected back to the SP. If the user logged in at the IDP, but is not federated
with the SP, you will be navigated to the activation page.

7 On the activation page, you can do one of the following:

• Associate the user with a local account

• Assign a new user ID to the user at the SP site.

You will then be navigated to the index page.

8 On the index page, you can register and de-register the sample web service.

9 Follow the instructions for running the spwsc-sample (or filter-spwsc-sample) to
invoke the service after registering the sample service.
Samples 29

30 Chapter 5

Index
B
building samples, 25

build process, 25
required software, 25

C
chapters

summary, 9

configure a new DST-based service, 16

D
develop identity-based web service, 15

configure a new DST-based service, 16
define service functionality, 15
define service XML interface, 16
develop and deploy the service, 16
implement the ServicePlugin interface, 17
install the tfs-wsp.war file, 19
register the service, 20

E
examples

instantiate and use SPWSCAPI to call a sample
we service, 12

use SPWSCAPI to handle ID-WSF user
interaction requests, 13

F
files

tfsconfig.properties, 12
tfs-wsp.war, 19

filter-spwsc-sample, 26
running, 26
sources, 26

L
LUAD-WSC, support for implementations, 23

O
overview

web services, 8

P
prerequisites, 7

R
register the service

as an IDP service, 20
as an SP service, 20
with the SPWSPAPI, 21

running samples
filter-spwsc-sample, 26
spwsc-sample, 27

S
samples

building, 25
filter-spwsc-sample, 26
list of, 25
spwsc-sample, 27
spwsp-sample, 28

ServicePlugin interface
example using SPWSPAPI, 18
implement, 17

SPWSCAPI, 12
example 1, 12
example 2, 13

spwsc-sample, 27
running, 27
sources, 27

SPWSPAPI
registration, 21

spwsp-sample, 28
running, 28
sources, 28

system requirements, 8

T
tfs-wsp.war file, 19
 31

W
web service

developing identity-based, 15
register as an IDP Service, 20
register as an SP Service, 20
registration with the SPWSPAPI, 21

WSC (Web Service Consumer)
adding functionality to an application, 11
overview, 8
Proxy Service, 11
WSCProxy, 11

WSP (Web Service Provider)
overview, 8
32 Index

	Web Services Developer’s Guide
	Contents
	1 Introducing the HP OpenView Select Federation Web Services Developer’s Guide
	Audience
	Prerequisites
	System Requirements
	Overview
	Chapters Summary

	2 Adding Web Service Consumer Functionality to an Application
	WSC Proxy Service
	SP WSC API
	Example 1: Instantiate and Use SPWSCAPI to Call a Sample Web Service
	Example 2: Use SPWSCAPI to Handle ID-WSF User Interaction Requests

	3 Developing an Identity-Based Web Service
	Step 1: Define the Functionality of the Service
	Step 2: Define the XML Interface of the Service
	Step 3: Develop and Deploy the Service
	Configure a New DST-Based Service
	Implement the ServicePlugin Interface
	Example of a Simple Service Plugin Implementation Using the SPWSPAPI
	How to Install the tfs-wsp.war File in Select Federation Premium Edition

	Step 4: Register the Service
	Registration as an IDP Service
	Registration as an SP Service
	Registration with the SPWSPAPI

	4 Support for LUAD-WSC Implementations
	5 Samples
	Samples List
	Building the Samples
	Required Software
	Build Process

	Samples Descriptions
	filter-spwsc-sample
	Sources
	Running the filter-spwsc-sample Sample

	spwsc-sample
	Sources
	Running the spwsc-sample Sample

	spwsp-sample
	Sources
	Running the spwsp-sample Sample on an IDP
	Running the spwsp-sample Sample on an SP

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue true
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /Futura-Bold
 /Futura-Book
 /Futura-BookItalic
 /Futura-Heavy
 /Futura-Light
 /Futura-Medium
 /Futura-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /Symbol
 /SymbolMT
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /Times-Roman
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfDingbats
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

