
HP OpenView Messaging Server Using
Radia
for the AIX, HP-UX, Linux, Solaris and Windows operating systems*

Software Version: 3.2

Installation and Configuration Guide

*Information in this guide can be used for all supported platforms
except where indicated for a specific platform only.

Document Release Date: February 2006

Legal Notices

Warranty

Hewlett-Packard makes no warranty of any kind with regard to this document, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be held liable for errors contained herein or direct, indirect, special,
incidental or consequential damages in connection with the furnishing, performance, or use of
this material.

A copy of the specific warranty terms applicable to your Hewlett-Packard product can be
obtained from your local Sales and Service Office.

Restricted Rights Legend

Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth
in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause in
DFARS 252.227-7013.

Hewlett-Packard Company
United States of America

Rights for non-DOD U.S. Government Departments and Agencies are as set forth in FAR
52.227-19(c)(1,2).

Copyright Notices

© Copyright 1998-2006 Hewlett-Packard Development Company, L.P.

No part of this document may be copied, reproduced, or translated into another language
without the prior written consent of Hewlett-Packard Company. The information contained
in this material is subject to change without notice.

Trademark Notices

Linux is a registered trademark of Linus Torvalds.

Microsoft®, Windows®, and Windows® XP are U.S. registered trademarks of Microsoft
Corporation.

OpenLDAP is a registered trademark of the OpenLDAP Foundation.

PREBOOT EXECUTION ENVIRONMENT (PXE) SERVER
Copyright © 1996-1999 Intel Corporation.

TFTP SERVER
Copyright © 1983, 1993
The Regents of the University of California.

2

OpenLDAP

Copyright 1999-2001 The OpenLDAP Foundation, Redwood City, California, USA.

Portions Copyright © 1992-1996 Regents of the University of Michigan.

OpenSSL License

Copyright © 1998-2001 The OpenSSLProject.

Original SSLeay License

Copyright © 1995-1998 Eric Young (eay@cryptsoft.com)

DHTML Calendar

Copyright Mihai Bazon, 2002, 2003

3

Documentation Updates

This manual’s title page contains the following identifying information:

• Version number, which indicates the software version

• Document release date, which changes each time the document is updated

• Software release date, which indicates the release date of this version of the software

To check for recent updates or to verify that you are using the most recent edition, visit the
following URL:

http://ovweb.external.hp.com/lpe/doc_serv/

You will also receive updated or new editions if you subscribe to the appropriate product
support service. Contact your HP sales representative for details.

Table 1 indicates changes made to this document since the last released edition.

Table 1 Document Changes

Chapter Version Changes

Chapter 1 3.0 Page 16, Features and Capabilities added the ability to
"Maintain multiple data queues on Store and Forward
Messaging Servers."

Chapter 1 3.1 Page 16, Benefits over Previous Implementations: Version 3.1
adds new benefits, including:

• Configurable control over when SQL tables are created
and commands are generated—either upon first message
delivery (HP recommended and default) or at Messaging
Server startup.

• A new queue to control and throttle the posting of only
Management Portal data from the Core Data Delivery
Agent.

• Support for customized routing of messages to multiple
DSNs using ODBC.

Chapter 1 3.0 Page 16, Benefits over Previous Implementations, new topic
highlights the new benefits of using multiple queues, Data
Delivery Agents, and the new routing options of ODBC and
HTTPS.

4

http://ovweb.external.hp.com/lpe/doc_serv/

Chapter Version Changes

Chapter 1 3.0 Page 19, About the Data Delivery Agents, new topic explains the
role of the new Data Delivery Agents in routing the objects from
the Core, Wbem, and Patch data queues to the appropriate
locations.

Chapter 1 3.0 Page 20, About Routing Inventory Data, new topic discusses the
choices available for routing inventory objects—either directly to
an Inventory database using ODBC, or indirectly to a RIM
server using HTTP.

Chapter 1 3.1 Page 21, About the SQL Database Tables and Scripts, new topic
explains the new file locations for HP-delivered files, where to
maintain your custom files and scripts, and how to efficiently
control when SQL tasks are performed.

Chapter 1 3.0 Page 22, About Using Store and Forward, new topic and Figure
summarizes typical ways to use a Store and Forward Messaging
Server to locate the data objects close to an ODBC database
before posting it.

Chapter 2 3.0 Page 27, Tips: new topic.

Chapter 2 3.0 Page 28, Installation Procedures for Windows and UNIX: the
installation has been completely rewritten to accommodate the
installation of Data Delivery Agents. Use the Overview of
Installation Tasks on page 28 to guide you through the install.

Chapter 2 3.1 Page 32, Table 4, new table summarizes which DDAs to install
by product.

Chapter 2 3.0 Page 61, Post-Installation Procedures: new topics. Use these
procedures to verify the correction configurations for Patch, as
well as enable HTTP routing using SSL.

Chapter 2 3.1 Page 64, Reconfiguring the Messaging Server for RMS 2.x
Processing, new topic identifies tasks and topics needed to
support the Messaging Server use of a single \data\default
queue and non-ODBC processing, as was done for Messaging
Server version 2.x.

5

Chapter Version Changes

Chapter 2 3.1 Page 67, Verify Installation: expanded topic discusses how to use
the rms.log to verify the Messaging Server and Data Delivery
Agents are running, and the nvdkit processes are available for
each queue worker.

Chapter 3 3.0 Page 75, About the Patch Method for Collection75, new topic to
explain the method used to call QMSG for Patch data.

Chapter 3 3.0 Page 75, About the ZTASKEND REXX method: modified topic to
reflect the ZTASKEND v1.9 changes, and the routing of objects
to separate data queues on the Configuration Server.

Chapter 3 3.0 Page 84, Configuring the Messaging Server: contents are
changed substantially due to the loading of data delivery agent
modules. Very few items are configured directly in the rms.cfg
file as of version 3.0.

Chapter 3 3.0 Page 85, Table 8 gives a glossary of all configurable section
TYPES and their parameters.

Chapter 3 3.1 Page 88, Table 8, new STARTUPLOAD configurable parameter
added to the following section types: COREODBC and
WBEMODBC. STARTUPLOAD controls whether SQL tasks are
performed upon the first message delivery (default) or upon
Messaging Server startup.

Page 88, Table 8, a new AUTOCREATE configurable parameter
was added for the WBEMODBC section type.

Chapter 3 3.0 Page 93, About the Sections in the CORE.DDA.CFG File: new
topic explains how to configure the Data Delivery Agent to route
core objects to an Inventory Database or Server, as well as the
Management Portal.

Chapter 3 3.1 Page 91, Additional Sections in the RMS.CFG File, entries for
log.configure -limit and log.configure -lines were added to
this topic.

6

Chapter Version Changes

Chapter 3 3.1 Page 94, About the Sections in the CORE.DDA.CFG File,
Version 3.1 modifies how Management Portal data is routed
from the mgs::register corerouter section into a new queue,
named rmpq.

Chapter 3 3.1 Page 96, ODBC Settings for CORE, INVENTORY and WBEM
Objects, new STARTUPLOAD and AUTOCREATE configuration
parameters were added to this topic.

Chapter 3 3.0 Page 98, About the Sections in the INVENTORY.DDA.CFG File:
new topic explains how to configure the Data Delivery Agent to
route filepost objects to an Inventory Database or Server.

Chapter 3 3.0 Page 100, About the Sections in the WBEM.DDA.CFG File: new
topic explains how to configure the Data Delivery Agent to route
wbem objects to an Inventory Database or Server.

Chapter 3 3.0 Page 103, About the Sections in the PATCH.DDA.CFG File: new
topic explains how to configure the Data Delivery Agent to route
patch objects to a Patch database.

Chapter 3 3.0 Page 106, Additional Tuning Topics: most tuning topics were
modified to address tuning the parameters in the appropriate
data delivery agent configuration file, as well as the rms.cfg
file.

Chapter 3 3.1 Page 110, About the Management Portal Data Queue (rmpq) in
CORE.DDA.CFG, new topic shows the new sections in
CORE.DDA.CFG used to re-queue only Management Portal
messages before they are posted using HTTP.

Appendix A 3.0 Page on page 120, Example 1: Configuring the Messaging Server
for Store and Forward: this revised topic explains how to modify
both the Messaging Server and Data Delivery Agent
configuration files for store and forward configurations.

7

Chapter Version Changes

Appendix A 3.0 Page 120, Example 2: Configuring the Messaging Server to
Route Objects from a Single \Data\Default Queue, new topic
explains how to use sections in the rms.cfg file to route data
objects placed in a single data\default queue, when Data
Directory Agents are not used.

Note: This topic was previously discussed in Configuring the
Messaging Server. It was relocated due to the use of multiple
data queues as of Messaging Server v 3.0.

Appendix A 3.0 The earlier configuration example: Configuring the Messaging
Server for Custom Named Queues has been deleted. The
adoption of multiple Data Delivery Agents with individual queue
names has eliminated the need for this customization.

Appendix A 3.0 Page 136, Example 4: Configuring Data Delivery Agents to
Route to Multiple DSNs using ODBC, new example illustrates
how to customize a core.dda.cfg file to create two queues to
route messages to two separate DSNs. This example duplicates
message delivery of CORE.ODBC messages to two different target
databases.

The chapter Migrating Inventory Processing to Use QMSG and the
Messaging Server has been deleted from this guide. For migration
information, refer to the Upgrade Procedures Guide for the HP
OpenView Messaging Server 3.0 using Radia. This guide is located
in the migrate folder of where the Messaging Server is located on
the Radia Infrastructure CD.

8

Support

Please visit the HP OpenView support web site at:

http://www.hp.com/managementsoftware/support

This web site provides contact information and details about the products, services, and
support that HP OpenView offers.

HP OpenView online software support provides customer self-solve capabilities. It provides a
fast and efficient way to access interactive technical support tools needed to manage your
business. As a valuable support customer, you can benefit by using the support site to:

• Search for knowledge documents of interest

• Submit enhancement requests online

• Download software patches

• Submit and track progress on support cases

• Manage a support contract

• Look up HP support contacts

• Review information about available services

• Enter discussions with other software customers

• Research and register for software training

Most of the support areas require that you register as an HP Passport user and log in. Many

also require a support contract.

To find more information about access levels, go to:

http://www.hp.com/managementsoftware/access_level

To register for an HP Passport ID, go to:

http://www.managementsoftware.hp.com/passport-registration.html

9

http://www.hp.com/managementsoftware/support
http://www.hp.com/managementsoftware/access_level
http://www.managementsoftware.hp.com/passport-registration.html

10

Contents

1 Introduction .. 15

About the Messaging Server ..16

Features and Capabilities ...16

Benefits over Previous Implementations..16

Messaging Server Processing on the Configuration Server ..17

About the Data Delivery Agents ...19

About Routing Inventory Data ...20

About the SQL Database Tables and Scripts...21

About Using Store and Forward ...22

Summary...24

2 Installing the Messaging Server ... 25

Messaging Server Installation...26

Platform Coverage ...26

Tips..27

Tips for Installing Data Delivery Agents...28

Installation Procedures for Windows and UNIX ...28

Overview of Installation Tasks...28

Verify the Patch Method Connection and Queue Name..61

Enabling HTTPS Routing using SSL ...62

Reconfiguring the Messaging Server for RMS 2.x Processing64

Starting and Stopping the Messaging Server...65

Windows Procedures ..65

UNIX Procedures ...65

Verify Installation ..67

Summary...69

3 Configuring and Tuning the Messaging Server 71

Understanding the Configuration Server Modules that Support the Messaging Server ..72

11

Getting Client information to the Messaging Server (RMS)72

About the Patch Method for Collection...75

About the ZTASKEND REXX method..75

ZTASKEND calls to QMSG ..76

Processing Phase-Dependent Objects ..76

Processing Always Objects..79

Processing under RMS Version 2.x and RMS Version 3.x......................................80

QMSG Method Syntax...80

How Priority Establishes Messaging Server Processing Order82

Configuring the Messaging Server..84

Editing the Configuration Files for the Messaging Server and Data Delivery Agents84

ODBC Settings for CORE, INVENTORY and WBEM Objects96

ODBC Settings for PATCH Objects ...104

Additional Tuning Topics...106

Configuring the Poll Interval and Post Quantity ..106

Configuring for Retry Attempts ..106

Configuring for Failover ..106

Configuring the Log Level, Log Size and Number...107

Changing the Logging Level ...108

Changing the Size and Number of Log Files ...108

Configuring the Messaging Server to Discard or Drain Messages.............................109

Configuring the Messaging Server to Route RMP Messages......................................110

About the Management Portal Data Queue (rmpq) in CORE.DDA.CFG............110

Restoring Routing for Management Portal Messages...111

Disabling Processing of Messages in a Queue ...112

Modifying the Priority in which Messages are Processed ...113

4 Troubleshooting ...115

Troubleshooting the Messaging Server...116

Problem: Log indicates no route defined or failed delivery...116

Solution:..116

Problem: Error 404 or 500 ...116

Solution:..117

Summary...118

12 Contents

A Optional Messaging Server Configurations............................. 119

Example 1: Configuring the Messaging Server for Store and Forward............................120

Installing and Configuring a "Receiving" Messaging Server121

About the RMS Receiver..122

Configuring the Receivers for the .dda Modules ...122

Running the Installation for a Receiving Server and DDAs.................................124

Configuring a Messaging Server to Forward Messages to another Messaging Server125

About Forwarding Messages to a Receiving Messaging Server or DDA..............125

Example 2: Configuring the Messaging Server to Route Objects from a Single

\Data\Default Queue..129

Configuring the Register Default Section ..131

Example 3: Configuring Messaging Server to Route to Multiple Queues133

Example 4: Configuring Data Delivery Agents to Route to Multiple DSNs using ODBC136

Index ... 141

Contents 13

14 Contents

1 Introduction

At the end of this chapter, you will:

•	 Know the benefits of the HP OpenView Messaging Server Using Radia
(Messaging Server).

•	 Understand Messaging Server processing using message queues and data
directory objects.

•	 Become familiar with the Messaging Server Data Delivery Agent modules

15

About the Messaging Server

The Messaging Server is a robust messaging service that provides a means to
forward data from one piece of the Radia Infrastructure to another. It can be
used as a point to aggregate different types of data as well as to segregate
data accumulated from various Radia servers by type. Its job is to continually
monitor predefined data queues and dynamically route data objects to one or
more external destinations. The Messaging Server provides retry, rerouting,
and failover capabilities to ensure all data is transferred efficiently and
reliably.

On an HP OpenView Configuration Server using Radia (Configuration
Server), the Messaging Server operates hand-in-hand with the executable,
QMSG, to handle the transfer of data reported from Radia clients to the
appropriate ODBC reporting database or external Radia Server.

Features and Capabilities

The Messaging Server provides an efficient and flexible messaging system
that can be used by Radia Infrastructure modules. For example, it can:

•	 Route a single message to multiple destinations.

•	 Automatically retry a message delivery.

•	 Re-route messages to a new host after an unsuccessful delivery attempt
(failover capability).

•	 Route data from one Messaging Server to another one (store and forward
capability).

•	 Maintain multiple data queues on Store and Forward Messaging Servers.

Benefits over Previous Implementations

•	 Multiple, specialized queues allow separate workers to operate on each
queue and allows for parallel processing of object messages.

•	 Independent data delivery agents allow for modular upgrades.

•	 Using the Messaging Server to post object data directly to a SQL
database via ODBC can eliminate the need for the Inventory Manager
Server.

16	 Chapter 1

•	 Eliminates bottlenecks on the Configuration Server caused by the back
up of processing of reporting data on the Inventory Server.

•	 Reliability of processing Inventory and Patch data is maintained, due to:

—	 Built-in retry capability.

—	 Ability to reroute messages remaining in a queue to a failover
location.

—	 Retry, holding, and re-routing features eliminate potential loss of
data caused by network failures.

•	 Improved efficiency and control over when SQL tables are created and
commands are loaded. A STARTUPLOAD parameter can have these
tasks performed upon first message delivery (HP recommended option
and the default) or upon Messaging Server startup.

•	 Improved queue control and throttling capability for posting Management
Portal data.

•	 New support for customized message routing to multiple DSNs using
ODBC.

Messaging Server Processing on the Configuration Server

The Messaging Server acts as a delivery service between the Configuration
Server and external ODBC databases or Radia services. It is a separate
component from the Configuration Server.

When a customer has multiple Configuration Servers, each one will have a
co-located Messaging Server and the ability to route object data to the
appropriate target location.

Figure 1 on page 18 provides an overview of Messaging Server Processing.

The Radia client connects to the Configuration Server to resolve its desired
state. At the end of each client connection, the client passes objects back to
the Configuration Server. Different client objects are passed according to
each specific phase of the client connect process.

The Messaging Server refers to CORE objects as the standard Radia client
objects exchanged. Examples of the CORE objects are ZMASTER, PREFACE
and SESSION. Other types of objects that can be exchanged are multi-heap
WBEM reporting objects, client FILEPOST objects created by a client
inventory audit process (called INVENTORY objects) and the ZOBJSTAT and
CLISTAT client objects collected for Patch Manager processing.

Introduction 17

Figure 1 Messaging Server Processing

Legend

a	 On the Configuration Server, the ZTASKEND rexx method is called at
the end of the client connect process. ZTASKEND creates the
commands to invoke the QMSG executable. The commands to QMSG
contain parameters that define the appropriate objects to send as well
as the designated queues in which to place the objects. ZTASKEND is
responsible for naming all objects forwarded to QMSG—with the
exception of objects needed for Patch reporting. For Patch objects, the
PATCH_STATUS method in the PRIMARY.SYSTEM.ZMETHOD class
of the Radia Database calls QMSG for the PATCH objects.

18	 Chapter 1

b	 QMSG assembles object data into XML files and creates header files
with the appropriate meta data “address” needed to deliver the
message by the Messaging Server. When the two message files (XML
and meta data files) are created, QMSG places these files in one or
more predefined data queues on the Configuration Server.

Prior to Messaging Server version 3.0, QMSG placed all files in a
single queue location (that is, the ..\data\default folder).

For processing efficiencies, QMSG now places objects in separate
queues, based on the parameters specified in ZTASKEND and in
the PATCH_STATUS method. The Messaging Server is
configured to use individual Data Delivery Agents (DDAs) to
process messages from these queues. Table 1 below lists the Data
Delivery Agents that operate on each data queue location.

c	 The Messaging Server polls the queues and automatically picks up and
transfers data files to the appropriate external locations using the
routing type and locations de fined in the specific data delivery agent's
configuration file.

Table 1 Data Queues and Data Delivery Agents

Data Queue

..\data\core

..\data\inventory

..\data\wbem

..\data\patch

..\data\default (prior to RMS v3.0)

Data Delivery Agent

core.dda

inventory.dda

wbem.dda

patch.dda

none – processed by base RMS

The Messaging Server runs on all Windows and UNIX platforms supported
by the Configuration Server.

About the Data Delivery Agents

The Data Delivery Agents are function-specific modules created to transfer
certain types of message data. There are Data Deliver Agents available for
CORE, INVENTORY, WBEM and PATCH message data.

•	 The CORE message data refer to client objects typically exchanged
during a standard client connect process. Examples of CORE type
message objects include ZMASTER, SESSION, and ZCONFIG.

Introduction 19

•	 The INVENTORY message data is comprised of FILEPOST objects
created during a client audit process.

•	 The WBEM message data is comprised of wbem reporting object data.

•	 The PATCH message data is comprised of ZOBJSTAT and CLISTAT
client object data.

These Data Delivery Agents (DDAs) have the ability to post messages using
ODBC into a SQL database that can be used for reporting. Using the DDAs to
post messages directly into the SQL database avoids the bottlenecks created
when posting multiple message types into an Inventory Server because each
DDA works independently on its own queue.

The Messaging Server loads these independent data delivery agents, whose
configurations define how and where the messages for CORE, INVENTORY,
WBEM and PATCH data objects will be delivered.

The CORE data delivery agent is configured to post CORE object
data to an Inventory Manager database, as well as CORE object data
to a Management Portal directory.

The data delivery agent modules are located in the
\MessagingServer\modules folder. The modules are loaded using
“dda.module load” statements in the Messaging Server configuration file
(rms.cfg).

Each data delivery agent is configured from its own configuration file
(*.dda.cfg). These configuration files are located in the
\MessagingServer\etc folder.

About Routing Inventory Data

This Messaging Server supports the following alternative routing of
information to a back-end database for the Inventory Manager:

•	 Direct posting via ODBC to a SQL Inventory Database – The
CORE.DDA, INVENTORY.DDA and the WBEM.DDA have the ability to
route CORE, INVENTORY and WBEM data messages to a back-end SQL
database using ODBC. (This is the HP recommended routing option for
best performance.)

OR

•	 Indirect posting of the CORE, INVENTORY, and WBEM data messages
to an Integration Server using HTTP. This routing option requires the
Inventory Manager Server to post the data to the back-end database.

20	 Chapter 1

This earlier configuration remains supported, but requires
modifications to several modules after installation. For details,
see Reconfiguring the Messaging Server for RMS 2.x
Processing on page 64.

The Inventory Manager Server is discussed in the Installation and
Configuration Guide for the Inventory Manager Using Radia (Inventory
Manager Guide).

About the SQL Database Tables and Scripts

The Data Delivery Agents for CORE, WBEM and INVENTORY post their
message data into the same SQL tables created by the Inventory Manager
Server. These Data Delivery Agents use the exact same table definitions used
by the Inventory Manager Server to create tables, update data and delete
data. If the SQL tables have not been already created by an instance of the
Inventory Server, when the Data Delivery Agent that uses the SQL table is
started, the table will be created. The default definitions for these tables and
associated SQL queries are found in the /etc/<module name>/sql/hp
directories of the Messaging Server. Customized scripts can be placed in the
/etc/<module name>/sql directory; this location forces the customized
scripts to be loaded and used instead of the ones in the /etc/<module
name>/sql/hp directories.

The script necessary to map the CORE object data to the related SQL table
column is taskend.tcl. This script is identical to the version of
taskend.tcl on the Inventory Server. The script necessary to map the
INVENTORY object data (FILEPOST object) is called filepost.tcl. Both of
these scripts are found in the /etc/<module name>/lib directory of the
Messaging Server. Using the identical scripts found on the Inventory Server
allows previous users of this Infrastructure service to migrate any customized
scripts directly into the /sql directory for the associated Data Delivery Agent
module.

Version 3.1 of the Messaging Server introduces a configuration parameter to
control when the SQL tables are created and the commands are loaded into
memory. The default and HP-recommended behavior is to perform these SQL
tasks upon the first message delivery. HP recommends using this setting
whenever possible because it allows only the necessary commands to be
loaded and is a more efficient use of resources. Alternatively, the
STARTUPLOAD configuration parameter can be used when posting data
using ODBC to have SQL tasks performed upon Messaging Server startup.
For more information, see the STARTUPLOAD configuration parameter
definition on page 97.

Introduction 21

About Using Store and Forward

The Messaging Server includes store and forward capabilities that allow you
to forward messages to another Messaging Server using HTTP or HTTPS.
For example, a good practice before posting messages using ODBC is to
forward messages to another Messaging Server located as close to the SQL
database as possible.

This version of the Messaging Server supports forwarding and receiving
messaging using multiple queues.

Figure 2 below illustrates a typical configuration that forwards messages to
another Messaging Server, prior to posting data to the Inventory database
using ODBC.

Figure 2 Store and Forward Messaging Server

1 The Messaging Server on the Configuration Server is configured to have
the core, inventory, and wbem data delivery agents forward the data to
another Messaging Server using HTTP or HTTPS. This configuration
makes use of the coreforward, inventoryforward, and wbemforward
sections that are provided in the data delivery agent configuration files.

2 The Store and Forward Messaging Server is located close to the Inventory
Manager SQL database. It receives the core, inventory, and wbem objects
(still in separate queues).

3 The attending core, inventory, and wbem data delivery agents on the
receiving Messaging Server post the data objects to the Inventory
database using ODBC.

22 Chapter 1

For more information on this topic, see Example 1: Configuring the
Messaging Server for Store and Forward on page 120.

About this Guide

In addition to this chapter, this book contains the following information:

• Installing the Messaging Server
This chapter describes how to install the Messaging Server co-resident
with the Configuration Server, and how to start and stop the Messaging
Server service.

• Configuring and Tuning the Messaging Server
This chapter describes how the Configuration Server ZTASKEND rexx
and the QMSG executable work hand-in-hand with the Messaging
Server. It also discusses how to configure the Messaging Server
configuration file, which loads the Data Delivery Agents. In addition this
chapter also describes how to configure the DDA modules to route CORE,
INVENTORY, WBEM and PATCH message data to the Inventory,
Management Portal, and Patch databases or directories. Additional
tuning options are included.

• Troubleshooting
This chapter reviews how to resolve common error messages in the
rms.log files and identifies solutions for typical posting problems.

• Additional Messaging Server Configuring Options
This appendix describes alternate configurations, including how to install
and configure for Store and Forward, and other customized
configurations.

Introduction 23

Summary

•	 The Messaging Server routes the object data collected from clients and
placed into queues into the appropriate Radia server or SQL database.
Messages can also be forwarded to another Messaging Server.

•	 Messages processed include client objects collected for core, inventory,
wbem and patch data.

•	 Configuration settings in the rms.cfg file allow you to load the Data
Delivery Agents needed to process the queues on that server. There are
separate Data Delivery Agents for core, inventory (filepost), wbem and
patch data objects.

•	 Configuration settings in the *.dda.cfg files for the specific data delivery
agents specify how and where to route the data processed by that data
delivery agent.

•	 Additional tuning options address load balancing when processing high-
volumes of data as well as large-sized objects.

24	 Chapter 1

2 Installing the Messaging Server
At the end of this chapter, you will:

•	 Know how to install the HP OpenView Messaging Server Using Radia
(Messaging Server).

•	 Be able to verify the installation of the Messaging Server.

25

Messaging Server Installation

Before you install the Messaging Server, identify the server where the
Messaging Server will reside. Among the available choices are the same
physical server that is running the Directory Services (or SQL database), or
the HP OpenView Configuration Server Using Radia (Configuration Server)
as well as other remote server locations.

Understanding your network topology as well as the goals of your present
network configuration will help you arrive at the best Messaging Server
solution. When making the choice of servers for installation of the Messaging
Server, please bear in mind the recommended best practice of locating the
Messaging Server as close to the SQL database that is receiving the data via
ODBC as possible. This solution can be achieved by using multiple Messaging
Servers in a Store and Forward configuration. Configuring the Messaging
Server for Store and Forward is discussed in Appendix A, Optional
Messaging Server Configurations. The Store and Forward capability requires
that the Messaging Server is installed and then the configuration file is
hand-edited to customize the installation.

Review the reference documentation on the HP Technical Support Web site to
help you determine which machine is best suited in your environment for
running the Messaging Server. Install the Messaging Server from the
Extended Infrastructure directory on the Radia Infrastructure CD-ROM.

Previous releases of the Messaging Server supported the configuration of
multiple worker processes operating on the same queue. This is no longer a
recommended practice and will not improve the throughput of the RMS. With
the introduction of the data delivery modules, multiple worker processes are
no longer needed because of the parallel processing of each dda module.

Platform Coverage

The Messaging Server runs on the Windows and UNIX platforms listed in
Table 2 below. These include all platforms on which the Configuration Server
runs.

Table 2 Supported Operating Systems and Minimum Levels

Platform

Windows

Operating System and Minimum Level

NT 4.0 Server, Service Pack 6

2000 Service Pack 3

26 Chapter 2

Platform

UNIX

Operating System and Minimum Level

Server 2003, Service Pack 1

XP Professional Service Pack 2

HP-UX (PA-RISC 1.1 and 2.0), Version 10.20

Red Hat Enterprise Linux Version 2.1.

Red Hat Enterprise SuSE Enterprise Server, Versions 8
and 9.

 Solaris, Version 2.7

AIX, Version 4.2

Tips

•	 Click Cancel in any of the windows to exit the installation. If you click
Cancel accidentally, prompts enable you to return to the installation
program.

•	 Click Back at any time to return to previous windows. All the information
that you entered thus far will remain unchanged.

•	 Most windows have associated error messages. If your specifications are
invalid, an error message will appear. Click OK and enter the correct
information.

•	 This installation program will display recommended default values.
Deviation from these default settings must be coordinated with changes
in the ZTASKEND rexx. We recommend accepting all defaults for folder
names and locations; however, they can be overridden by specifying the
parameters necessary to suit your environment.

•	 The set of prompts to configure either the Messaging Server or each of
the four Data Delivery Agents may look similar. Note the configuration
file names listed near the top of each window to identify which file is
being customized.

RMS.CFG

CORE.DDA.CFG

INVENTORY.DDA.CFG

WBEM.DDA.CFG

PATCH.DDA.CFG

Installing the Messaging Server 27

Tips for Installing Data Delivery Agents

•	 For each Data Delivery Agent you choose to install, additional windows
will prompt for the Directory to Scan and routing configuration
parameters.

•	 You can add one or more Data Delivery Agents to an existing RMS install
using the same installation program. Once a DDA is installed and its
data-specific directory exists, the ZTASKEND method on the
Configuration Server automatically redirects the messages to the new
directory location.

Installation Procedures for Windows and UNIX

If you have previously installed the Messaging Server, rename the
rms.cfg file so that a new rms.cfg can be created during the
install procedure.
To revise the configuration of an existing Data Delivery Agent,
rename its existing *.dda.cfg file so that a new configuration file
can be created during the install procedure. For example, to revise
the CORE Data Delivery Agent configuration, rename the existing
core.dda.cfg file.

Overview of Installation Tasks

Because the Messaging Server installation supports prior and current
configuration options, there can be many prompts for information during the
install that follows. Use Table 3 on page 29 as a roadmap to the sequence and
contents of the prompts.

28	 Chapter 2

Table 3 Messaging Server Installation -- Task Overview

Task Page Notes and Tips

1 Launch install, accept license
and select the Messaging
Server directory

30 Rename an existing rms.cfg file before
you begin.

2 Select Data Delivery Agents to
Install

31 Each DDA selected here adds the
following windows:

• Scan directory window in Step 3.

• Configuration windows for Tasks 5,
6, 7 and 8.

Using Data Delivery Agents is a best
practice that improves performance and
allows for flexible configurations and easy
upgrades.

3 Identify Message Directories to
Scan (Message Folder
Locations)

33 You are always prompted for the
Messaging Server directory to scan,
followed by directories to scan for each
Data Delivery Agent selected in Task 2.
The Patch Directory to Scan must match
the –queue value in PRIMARY.SYSTEM.
ZMETHOD.PATCH_STATUS.ZMTHPRMS. See
page 61 for details.

4 RMS Configuration -- For Non-
DDA Message Routing Only

38 If routing objects from Data Delivery
Agents, simply click through these
windows.
Use these windows to maintain an RMS
v2.x configuration and route objects from
the \data\default directory.

5 Configure the Core Data
Delivery Agent (core.dda.cfg)

45 Displays if the CORE DDA was selected
in Step 2.
Also routes RMP objects, if desired.

6 Configure the Inventory Data
Delivery Agent
(inventory.dda.cfg)

50 Displays if INVENTORY DDA was
selected in Step 2. Routes the FILEPOST
objects to an Inventory database.

7 Configure the Wbem Data
Delivery Agent
(wbem.dda.cfg)

53 Displays if WBEM DDA was selected in
Step 2.

Installing the Messaging Server 29

Task Page Notes and Tips

8 Configure the Patch Data
Delivery Agent
(patch.dda.cfg)

56 Displays if PATCH DDA was selected in
Step 2.

9 Review Installation Summary
and Finish

60 Allows review before proceeding with the
install.

Task 1 Launch install, accept license and select the Messaging Server directory

1 From the Radia Infrastructure CD-ROM, navigate to the
Extended_Infrastructure\MessagingServer directory. Open the
folder for your operating system.

2 On a Windows platform, double-click setup.exe

OR

On a UNIX platform, enter the following command:

./install

and press Enter.

The Welcome window for the Messaging Server Setup program opens.

3 Click Next.

The End User License Agreement window opens.

4 Read the license agreement and click Accept.

The Select the installation folder window opens.

30 Chapter 2

5	 Use this window to select the folder where you want to install the
Messaging Server.

—	 Click Next to accept the default installation folder.

—	 OR

—	 Click Browse to select a different folder.

6	 Click Next.

Task 2 Select Data Delivery Agents to Install

The Select each Data Delivery Agent to install window opens.

Installing the Messaging Server 31

7	 Use this window to select the check box next to each Data Delivery Agent
(DDA) that you want to install on this Messaging Server. See Table 4
below for a list of which DDA(s) to install in order to support a given HP
OpenView using Radia product.

HP recommends installing Data Delivery Agents for all data
objects being collected and reported in your environment.

The Messaging Server for this version requires the use of the
DDAs from this version. If you are upgrading your Messaging
Server, also upgrade each DDA previously installed.

Table 4 DDAs to Install by HP OpenView using Radia Product

Product

Application Management Profiles
for Server Management

Inventory Manager

Management Portal

Patch Manager

Data Delivery Agents to Install

core.dda

core.dda, inventory.dda and
wbem.dda

core.dda

patch.dda

32	 Chapter 2

Task 3 Identify Message Directories to Scan (Message Folder Locations)

The Default Message Directory to Scan window opens.

8	 Accept the default or click Browse to select the directories where the
Messaging Server should scan for any messages that are not being routed
by a Data Delivery Agent. Even if all Data Delivery Agents are installed,
this Default Message Directory must exist.

Normally, this is the \data\default folders located where the
Configuration Server is installed.

This directory is created upon start-up of the RMS if the directory doesn’t
exist.

If necessary, adjust the directory path to your Configuration
Server, but keep the \data\default folder names.

9 Click Next.

For each Data Delivery Agent that was selected to be loaded, a
corresponding Directory to Scan window opens.

If the Core Data Delivery Agent was selected, the Core Data Delivery
Agent Configuration window opens.

Installing the Messaging Server 33

10	 Accept the default location, or click Browse to select the directory where
the Core Data Delivery Agent should scan for any core messages.

Normally, this is the \data\core folders located where the
Configuration Server is installed. This directory will be created if it
doesn’t already exist when the Messaging Server starts. Changes to this
directory name have to be coordinated with changes to ZTASKEND
REXX for a Messaging Server co-resident with the Configuration Server.

If necessary, adjust the directory path to your Configuration

Server, but keep the \data\core folder name.

11 Click Next.

If the Inventory Data Delivery Agent was selected, the Inventory
Delivery Agent Configuration window opens.

34	 Chapter 2

12	 Accept the default location, or click Browse to select the directory where
the Inventory Data Delivery Agent should scan for any filepost messages.

Normally, this is the \data\inventory folder located where the
Configuration Server is installed. This directory will be created if it
doesn’t already exist when the Messaging Server starts. Changes to this
directory name must be coordinated with changes to ZTASKEND REXX
for a Messaging Server co-resident with the Configuration Server.

If necessary, adjust the directory path to your Configuration
Server, but keep the \data\inventory folder name.

13 Click Next.

If the Wbem Data Delivery Agent was selected, the Wbem Delivery Agent
Configuration window opens.

Installing the Messaging Server 35

14	 Accept the default location, or click Browse to select the directory where
the Wbem Data Delivery Agent should scan for any wbem messages.

Normally, this is the \data\inventory folder located where the
Configuration Server is installed. This directory will be created if it
doesn’t already exist when the Messaging Server starts. Changes to this
directory name must be coordinated with changes to ZTASKEND REXX
for a Messaging Server co-resident with the Configuration Server.

If necessary, adjust the directory path to your Configuration

Server, but keep the \data\wbem folder name.

15 Click Next.

If the Patch Data Delivery Agent was selected, the Patch Delivery Agent
Configuration window opens.

36	 Chapter 2

16	 Accept the default location, or click Browse to select the directory where
the Patch Data Delivery Agent should scan for any Patch messages.

Normally, this is the \data\patch folder located where the Configuration
Server is installed. This directory will be created if it doesn’t already exist
when the RMS starts up.

If necessary, adjust the directory path to your Configuration
Server. HP recommends keeping the \data\patch folder
name.

For a Messaging Server co-resident with the Configuration
Server, if you enter a directory name other than patch, you
must modify the ZMTHPRMS –queue value in the PATCH_STATUS
method instance to match. For details, see Verify the Patch
Method Connection and Queue Name on page 61.

The first RMS Configuration window opens.

Installing the Messaging Server 37

Task 4 RMS Configuration -- For Non-DDA Message Routing Only

If you elected not to install a Data Delivery Agent to route
messages of a given type, use the following set of seven
installation windows to have the Messaging Server route those
messages. Messaging Server routing is established by entries
in the rms.cfg file.

Tip! If you selected Data Delivery Agents to be loaded for all
objects in your environment, simply click Next to quickly skip
through all seven RMS Configuration windows (rms.cfg).

17	 If you are not installing Data Delivery Agents to route all inventory
objects, type the IP address or DNS host name of the Inventory Manager
Server.

The Radia Messaging Service will route any inventory objects from the
\data\default directory to this server using HTTP.

38	 Chapter 2

Following installation, you can modify rms.cfg file to add
failover processing for an alternate Inventory Manager
server. See Configuring for Failover on page 106 for more
information.

18	 Click Next.

The port for the Inventory Manager Server window opens.

19 Type the port number of the Radia Inventory Server entered on the
previous window. Normally, this is 3466.

20 Click Next.

The Settings for the Management Portal window opens.

Installing the Messaging Server 39

21	 Type the IP address or DNS host name of the Management Portal server
to route all RMP data found in the default scan directory location to that
server.

or

To automatically discard any Management Portal data found in the
default scan directory location, leave the RMP IP Address field blank.

22	 Click Next.

The Management Portal Port window opens.

40	 Chapter 2

23	 If you entered an RMP IP Address on the previous window, type the port
number of the Management Portal. Normally, this is 3466.

or

Leave the RMP Portt field blank if you also left the RMP IP Address field
blank.

24	 Click Next.

The Store & Forward Port Setting window opens.

Installing the Messaging Server 41

The Messaging Server includes the ability to receive and process
messages that have been forwarded from other Messaging Servers in
your enterprise. The port used to receive these messages is called the
Store & Forward port.

For more information on using store & forward, see Example 1:
Configuring the Messaging Server for Store and Forward on page 120.

25	 Accept the default store & forward port, 3461, or type another port
number to use to receive any messages from other Messaging Servers.

26	 Click Next.

The RMS Configuration window for the Data Source Name for ODBC
routing of Patch Data opens. If the Messaging Server is to route Patch
messages directly from the default scan directory, specify the ODBC
settings to connect to the SQL database on the next three windows.

Leave these three ODBC Data Set windows blank if you are
installing the Patch Data Delivery Agent, or if the routing of
Patch data is not needed in your environment or you can
duplicate the ODBC DSN settings used to scan the default
directory and then used for the patch data delivery agent
module.

42	 Chapter 2

27	 If you did not install the Patch Data Delivery Agent, type the Data
Source Name of the ODBC SQL database for Patch Manager.

Leave blank if using the Patch Data Delivery Agent or if the delivery of
Patch data is not required.

28	 Click Next.

The RMS Configuration for the DSN User Name for routing Patch data
window opens.

Installing the Messaging Server 43

29	 Type the Data Source User Name to use to connect to an ODBC SQL
database for Patch data.

Leave blank if using the Patch Data Delivery Agent or if the delivery of
Patch data is not required.

30	 Click Next.

The RMS Configuration for the DSN Password for routing Patch data
window opens.

44	 Chapter 2

31	 Type the password required for the DSN user entered on the previous
dialog.

Leave blank if using the Patch Data Delivery Agent or if the delivery of
Patch data is not required.

The password will be encrypted.

32	 Click Next.

The next window that opens depends upon which DDAs you elected to
install.

Task 5 Configure the Core Data Delivery Agent (core.dda.cfg)

If you elected to load the Core Data Delivery Agent, the five
Configuration windows for the Core DDA allow you to specify:

•	 The ODBC settings (Data Source Name, User Name and
Password) to connect to the SQL database for Core
message data.

•	 Optionally, the server and port to post Core data to a
Management Portal.

If you did not load the Core DDA, these windows do not
display.

Installing the Messaging Server 45

Specify the ODBC settings to connect to the SQL database for posting
Core data in the next three windows.

The Core Data Delivery Agent Configuration (core.dda.cfg) window
opens for the Data Source Name for posting Core objects.

33	 Type the Data Source Name of the ODBC SQL database for routing Core
message data.

34	 Click Next.

The Core Data Delivery Agent Configuration (core.dda.cfg) window
opens for the DSN User Name for routing Core data.

46	 Chapter 2

35	 Type the DSN User Name to use to connect to an ODBC SQL database
for Core data.

36	 Click Next.

The Core Data Delivery Agent Configuration (core.dda.cfg) window
opens for the Data Source Password for routing Core data.

Installing the Messaging Server 47

37	 Type the password required for the DSN user entered on the previous
window.

The password will be encrypted.

38	 Click Next.

The Core Data Delivery Agent Configuration Settings for the
Management Portal window opens.

48	 Chapter 2

39	 Type the IP address or DNS host name of the Management Portal server
to route all RMP data found in the Core DDA scan directory location to
that server.

or

To automatically discard any Management Portal data found in the Core
DDA scan directory location, leave the RMP IP Address field blank.

The Management Portal Version 2.1 (and above) no longer
requires the routing of CORE.RMP data for Wake-On-Lan
Notify support. This previous requirement has been removed.

40	 Click Next.

The Core Data Delivery Agent Configuration window opens to specify the
port of the Management Portal.

Installing the Messaging Server 49

41	 If you entered an RMP IP Address on the previous window, type the port
number of the Management Portal. Normally, this is 3466.

or

Leave the RMP Port field blank if you also left the RMP IP Address field
blank.

42	 Click Next.

Task 6 Configure the Inventory Data Delivery Agent (inventory.dda.cfg)

If you elected to load the Inventory Data Delivery Agent, the
three Configuration windows for the Inventory DDA allow you
to specify the ODBC settings to connect to the SQL Inventory
database for posting Filepost objects.
If you did not load the Inventory DDA, these windows do not
display.

Specify the ODBC settings to connect to the SQL database for posting
Filepost objects in the next three windows.

The Inventory Data Delivery Agent Configuration (wbem.dda.cfg)
window opens for the Data Source Name for routing Inventory data.

50	 Chapter 2

43	 Type the Data Source Name of the ODBC SQL database for routing
INVENTORY message data comprised of Filepost objects for Inventory.

44	 Click Next.

The Inventory Data Delivery Agent Configuration (inventory.dda.cfg)
window opens for the DSN User Name for routing INVENTORY message
data.

Installing the Messaging Server 51

45	 Type the DSN User Name to use to connect to an ODBC SQL database
for routing INVENTORY message data.

46	 Click Next.

The Inventory Data Delivery Agent Configuration (inventory.dda.cfg)
window opens for the Data Source Password for routing INVENTORY
message data.

52	 Chapter 2

47	 Type the password required for the DSN user entered on the previous
window.

The password will be encrypted.

48	 Click Next.

Task 7 Configure the Wbem Data Delivery Agent (wbem.dda.cfg)

If you elected to load the Wbem Data Delivery Agent, the three
Configuration windows for the Wbem DDA allow you to specify
the ODBC settings to connect to the SQL database for posting
Wbem data. Many times this is the same SQL database used to
post Core and Inventory data objects.
If you did not load the Wbem DDA, these windows do not
display.

Specify the ODBC settings to connect to the SQL database for posting
Wbem data in the next three windows.

The Wbem Data Delivery Agent Configuration (wbem.dda.cfg) window
opens for the Data Source Name for routing Wbem data.

Installing the Messaging Server 53

49 Type the Data Source Name of the ODBC SQL database for Wbem data.

50 Click Next.

The Wbem Data Delivery Agent Configuration (wbem.dda.cfg) window
opens for the DSN User Name for routing Wbem data.

54 Chapter 2

51	 Type the DSN User Name to use to connect to an ODBC SQL database
for Wbem data.

52	 Click Next.

The Wbem Data Delivery Agent Configuration (wbem.dda.cfg) window
opens for the Data Source Password for routing Wbem data.

Installing the Messaging Server 55

53	 Type the password required for the DSN user entered on the previous
window.

The password will be encrypted.

54	 Click Next.

Task 8 Configure the Patch Data Delivery Agent (patch.dda.cfg)

If you elected to load the Patch Data Delivery Agent, the three
Configuration windows for the Patch DDA allow you to specify
the ODBC settings to connect to the SQL Patch database (Data
Source Name, User Name and Password).
If you did not load the Patch DDA, these windows do not
display.

The Patch Configuration window for the Data Source Name for ODBC
routing of Patch Data opens. Specify the ODBC settings to connect to the
SQL database for Patch on the next three windows.

The Patch Data Delivery Agent Configuration (patch.dda.cfg) window
opens for the Data Source Name for routing Patch data.

56	 Chapter 2

55	 Type the Data Source Name of the ODBC SQL database for Patch
Manager.

56	 Click Next.

The Patch Data Delivery Agent Configuration (patch.dda.cfg) window
opens for the Data Source User Name for routing Patch data.

Installing the Messaging Server 57

57	 Type the Data Source User Name to use to connect to an ODBC SQL
database for Patch data.

58	 Click Next.

The Patch Data Delivery Agent Configuration (patch.dda.cfg) window
opens for the Data Source Password for routing Patch data.

58	 Chapter 2

59 Type the password required for the DSN user entered on the previous
window.

The password will be encrypted.

60 Click Next.

Installing the Messaging Server 59

Task 9 Review Installation Summary and Finish

After all Data Delivery Agent configurations are completed, the summary
of the installation information opens.

61 Click Install to begin the installation.

Read and answer any warning dialogs that appear. Which dialog boxes
appear will depend on your configuration.

62 Click Finish when the installation is finished.

The Messaging Service has been installed and configured for routing data for
Inventory, Management Portal, and Patch Manager, according to your
specifications.

Once started, the Messaging Server and any installed Data Delivery Agents
scan the various data/<queue> directories on the Configuration Server for
message files, and the appropriate data delivery agents deliver the messages
to the specified destinations.

The log files for the Messaging Server are placed in the Logs directory of the
MessagingServer directory. For example:

C:\Novadigm\MessagingServer\Logs (on a Windows platform),

or

60 Chapter 2

/opt/Novadigm/MessagingServer/Logs (on a UNIX platform).

See Additional Tuning Topics on page 106. Tuning options include
changing the polling frequency or retry value, and specifying
failover servers for inventory data.

Post-Installation Procedures

Use these procedures to verify the correction configurations for Patch, enable
HTTPS routing using SSL, or revert to an RMS 2.x configuration.

Verify the Patch Method Connection and Queue Name

•	 Patch Manager requires a method connection in the Radia Database. For
details, refer to the Patch Manager Guide.

•	 If you installed the patch.dda and changed the name of the Patch
Message Directory to Scan value during the Messaging Server
installation (the expected value is patch), you must change the –queue
patch value in the ZMTHPRMS attribute of the PATCH_STATUS
instance to match the Patch Directory to Scan value.

To modify the queue name in the PATCH_STATUS method

1	 Use System Explorer to edit the ZMTHPRMS attribute of the
PRIMARY.SYSTEM. ZMETHOD.PATCH_STATUS instance, as shown in
Figure 3 on page 62.

2	 Adjust the –queue patch value to reflect the directory named as the
"Patch Message Directory to Scan".

Installing the Messaging Server 61

Figure 3 Specify the Patch queue name in ZMTHPRMS.

For example: if you entered
"..\ConfigurationServer\data\mypatch" as the Patch Directory to
Scan for the patch.dda, change the value of ZMTHPRMS in the
PATCH_STATUS instance from:

-to PATCH –queue patch PREFACE ZOBJSTAT

to

-to PATCH –queue mypatch PREFACE ZOBJSTAT

3 Save your changes.

Enabling HTTPS Routing using SSL

The HP-OpenView Adapter for SSL Using Radia (Adapter for SSL) updates
the RMS SSL Configuration Parameters in a Messaging Server RMS.CFG file.
Once these configuration parameters are available, you can modify the
sections in the RMS.CFG and the various DDA.CFG files that route data using
HTTP to route data using HTTPS.

To enable secure HTTPS routing using SSL

1 First update your Messaging Server to version 3.x.

62 Chapter 2

2	 Use the Adapter for SSL to install SSL support for the Messaging Server.
Refer to the Installation and Configuration Guide for the Adapter for SSL
Using Radia (Adapter for SSL Guide) for more information.

The Adapter for SSL will update the following section of the RMS.CFG file
with the appropriate certificate and HTTPS port information:

#--

RMS SSL Configuration Parameters

#---

Overrides Config {

 SSL_CERTFILE " "

 SSL_KEYFILE " "

 HTTPS_PORT " "

}

The HTTPS_PORT is the secure port that the Messaging Server uses to
receive messages.

3	 Edit the sections of the RMS or DDA configuration files currently defined to
route data with a TYPE of HTTP. Change the TYPE from HTTP to
HTTPS, and modify the URL address to include https: as well as the
SSL_port_number for the server receiving the message.

For example, the following entry in the core.dda.cfg file routes data to
the RMP using HTTP:

msg::register rmp {

TYPE HTTP

 ADDRESS

 PRI

 {

10

}

}

 URL http://RMP_host:3466/proc/xml/obj

4	 After enabling SSL, make the following modifications to the same section.
These modifications allow for HTTPS routing of RMP objects to an RMP
server using a secure port of 443.

Installing the Messaging Server 63

msg::register rmp {

TYPE HTTPS

 ADDRESS {

 PRI 10

 URL https://RMP_host:443/proc/xml/obj

}

}

5	 Apply the same modifications to any other HTTP sections of the RMS or
DDA configuration files that you want to route using HTTPS.

6	 Save the changes, and restart the Messaging Server service.

Reconfiguring the Messaging Server for RMS 2.x Processing

By default, this version of the Messaging Server is configured to include
commands to load the Data Delivery Agent (DDA) modules. When these DDA
modules are loaded, the associated queue directories are created. The
existence of these queue directories is the signal that the data is to be routed
directly to an SQL database using ODBC.

To return to the Messaging Server 2.x solution where messages are placed in
a single data queue named default, and sent to the Inventory Manager
Server using HTTP (which then posts them to the SQL database), two post-
installation changes are required:

•	 The Messaging Server configuration file, rms.cfg, must be edited to
remove the “dda.module load” statements for the CORE, INVENTORY
and WBEM modules.

•	 The queue directories created by the DDAs must be removed from the
Messaging Server directory.

For more information, see Processing under RMS Version 2.x and RMS
Version 3.x on page 80, and Example 2: Configuring the Messaging Server to
Route Objects from a Single \Data\Default Queue on page 129.

64	 Chapter 2

https://RMP_host:443/proc/xml/obj

Starting and Stopping the Messaging Server

Use the procedures that apply to your type of operating system:

•	 See the Windows procedures below.

•	 See the UNIX procedures below.

Windows Procedures

The Messaging Server is automatically installed as a Windows service. The
service name is Radia Messaging Server (rms).

•	 Use the Services window of your operating system to start or stop the
Messaging Server.

•	 Alternatively, to start or stop the installed service from a command
prompt, open a DOS window and type the following commands from the
\MessagingServer directory:

nvdkit rms.tkd start

nvdkit rms.tkd stop

•	 Once the Windows service for the installed Messaging Server is stopped,
you can run it from a command prompt. Open a DOS window and type
the following command from the \MessagingServer directory on your
Configuration Server machine:

nvdkit rms.tkd

•	 To stop a Messaging Service running in a DOS window, make the window
active and press Ctrl+C.

UNIX Procedures

•	 To start the Radia Messaging Service, go to the /MessagingServer
directory on your Configuration Server machine and type the following
command to run it in the background:

./nvdkit rms.tkd &

To run the Radia Messaging Service in the foreground, omit the '&' in the
previous command.

Installing the Messaging Server 65

•	 To stop the Radia Messaging Service, go to the /MessagingServer
directory on your Configuration Server machine. First obtain its Process
ID (PID) and then kill the process.

The following are general guidelines and the commands are
examples that may vary slightly depending on the UNIX type
you are using.

•	 To obtain the PID for the Radia Messaging Service, check the rms.log in
the \logs directory. The PID is listed with the entry: Radia Messaging
Service started (PID: XXX).

Alternatively, type the following command to list all the UNIX processes
for nvdkit:

ps -f | grep nvdkit

Run the following command to kill the PID listed for the Messaging
Server.

kill –9 <PID>

66	 Chapter 2

Verify Installation

Confirm that the Messaging Server is running by performing the following
verifications.

•	 Check the rms.log in the \logs directory.

—	 Look for the entry:

Radia Messaging Service started (PID: XXXX)

This signals that the Messaging Server has started up properly. A
sample log entry showing proper startup of the Messaging Service is
shown below:

Info: --
Info: Radia Messaging Service (Version 3.0.1 - Build 60)
Info: Radia Messaging Service - main worker - started (PID: 1180)
Info: Platform: Windows_NT
Info: --

—	 Also scan the rms.log to note which Data Delivery Agent modules
have been loaded. The following sample log entry indicates the DDA
module for CORE was loaded:

Info: --
Info: Data Delivery Agent - core.dda - Version 3.0.1 - Build 10.
Info: --

—	 For each Data Delivery Agent loaded, also scan the rms.log to verify
the start-up of a worker to process the DDA message queues. For
each DDA loaded, look for a worker and its assigned PID. The log
entries below show the worker for the CORE Data Delivery Agent is
started:

Info: --
Info: Radia Messaging Service - coreq worker - started (PID: 2528)
Info: Platform: Windows_NT
Info: --

•	 If the Messaging Server has been started as a Windows service, check
that the service has been started in the Services Administrative task
section of the Control Panel.

•	 If the Messaging Server is installed on a Windows platform, check in the
Task Manager for the nvdkit.exe process. If installed on a UNIX
platform, check for the nvdkit processes running on UNIX.

The Messaging Server will start a single main nvdkit process and a
separate nvdkit process for each worker process. Each DDA module
installed will be a separate worker process and the Messaging Server

Installing the Messaging Server 67

base module also has its own worker process. Therefore, if you have
installed all possible DDA modules (core, wbem, inventory and patch),
there should be six nvdkit processes started for the Messaging Server.

68 Chapter 2

Summary

•	 Understand your network topology and have the targets for the
Messaging Server routes laid out before installing the Messaging Server.

•	 To create a Messaging Server environment on your Configuration Server,
the Configuration Server must include a version of ZTASKEND REXX
method that calls the QMSG executable for Inventory and Management
Portal data objects. To route Patch objects, the Configuration Server
must have a method connection to
SYSTEM.ZMETHOD.PATCH_STATUS.

•	 The Messaging Server is installed as a Windows service or a UNIX
process.

•	 Following installation of the Messaging Server, if you opt to route data
directly to an Inventory SQL database, you may be able to remove the
Inventory Manager server from your environment. The Messaging Server
uses the same SQL tables and queries as the Inventory Server to create,
update, and maintain the Inventory SQL database. Customized SQL
scripts can be ported from the Inventory Server directories to the
Messaging Server directories.

•	 Verify installation by checking that the Messaging Service is running, it
is loading the selected Data Delivery Agent modules, and there is a
worker process started for both the Messaging Server and each DDA that
was loaded.

Installing the Messaging Server 69

70 Chapter 2

3	 Configuring and Tuning the
Messaging Server

At the end of this chapter, you will:

•	 Be able to understand the Configuration Server methods that support the
Messaging Server.

•	 Be able to configure the parameters in rms.cfg.

•	 Be able to configure the parameters in the core, inventory, wbem and
patch data delivery agent files (core.dda.cfg, inventory.dda.cfg,
wbem.dda.cfg and patch.dda.cfg, respectively).

•	 Be able to configure the Messaging Server for failover.

• The first part of this chapter discusses the Configuration
Server modules that support the Messaging Server.

•	 The topics on configuring and tuning the Messaging
Server and Data Delivery Agents begin on page 84.

•	 To configure a Messaging Server for Store and Forward,
see Example 1: Configuring the Messaging Server for
Store and Forward on page 120.

•	 To configure a Messaging Server Data Delivery Agent to
post messages to multiple DSNs, see Example 4:
Configuring Data Delivery Agents to Route to Multiple
DSNs using ODBC on page 136.

71

Understanding the Configuration Server Modules
that Support the Messaging Server

This topic explains how the methods on the Configuration Server (RCS) work
hand-in-hand with the Messaging Server to collect, queue, and then deliver
data to the appropriate external location.

Getting Client information to the Messaging Server (RMS)

Client objects exchanged with or created on the RCS during a client connect
session are formatted into messages for the Messaging Server via the RCS
binary executable QMSG. The QMSG executable is part of the standard RCS
release. This executable is invoked during client taskend processing by the
rexx method ZTASKEND or a connection to the method PATCH_STATUS.
The calls to QMSG can include parameters specifying what queue to place
the messages in, the priority in which the message is to be processed, the
objects that are to be included in the messages and the “destination address”
or routing identifier for the file.

The QMSG executable formats the object data into an XML file. Each XML
file can be made up of multiple objects, such as when processing the CORE
objects (for example, ZMASTER, SESSION and ZCONFIG) or it can be a
single multi-heap object such as a wbem or filepost object. Each call to QMSG
will produce two files, the XML file created from the object data and a file
which contains the meta data. Meta data are attributes describing the XML
file, how big it is, when it was created and the routing identifier. The actual
file names are created with a timestamp format. This enables the Messaging
Server to process the oldest messages first. The Messaging Server always
processes in a “First In First Out” mode when the messages have the same
processing priority.

When queue designations are specified when invoking QMSG, messages are
placed in a directory with the specified queue name. When no queue
identifier is used, messages are placed in a directory named default. Each
data delivery agent uses its own unique queue for its particular messages.
This segregation of messages according to type allows for the simultaneous
processing of all queues and leads to more efficient operation.

72 Chapter 3

In Summary:

•	 For client information needed by the Patch Manager, QMSG is executed as
a result of the SYSTEM.ZMETHOD.PATCH_STATUS method instance
referenced through a method connection in the
SYSTEM.PROCESS.ZOBJSTAT instance.

Refer to the Installation and Configuration Guide for the HP-OpenView
Patch Manager (Patch Manager Guide) for more information on creating
the method connection needed for Patch message processing. The format
of the QMSG call is included on page 65.

•	 For information needed by the Inventory Manager and Management
Portal, the RCS Rexx method, ZTASKEND, is used to trigger the call to
QMSG. The format of the QMSG call is included in the discussion of
ZTASKEND which follows.

Configuring and Tuning the Messaging Server 73

Figure 4 Getting client information to the Messaging Server

74 Chapter 3

About the Patch Method for Collection

The PATCH_STATUS method calls the QMSG executable with the
parameters in the ZMTHPRMS attribute of the method. The default value of
this attribute looks like this:

ZMTHPRMS -to PATCH –queue patch PREFACE ZOBJSTAT

The –to PATCH parameter specifies that the messages will be placed in a
queue called ../data/patch relative to the location of where QMSG is
executed. This is the default location specified in the install of the
patch.dda.

The parameters PREFACE ZOBJSTAT specify the objects that will be
included in the message files created by QMSG.

About the ZTASKEND REXX method

The ZTASKEND REXX method on the Configuration Server is called at the
end of each client connect, while objects associated with the present session
are still available in storage on the RCS. ZTASKEND invokes QMGS when
client data needs to be collected for another service, such as RIM for Radia
Inventory Report data, or RMP for Management Portal data. QMSG collects
the data and places the messages in specified queues for pickup and
processing by the Messaging Server and its data delivery agents.

As of ZTASKEND v 1.9, different object types (core, inventory and
wbem objects) are placed in separate queues whenever the Data
Delivery Agents have been installed for those data objects. Previous
versions of ZTASKEND placed all data objects in a single queue
(named /data/default).

An important job of ZTASKEND is to ensure unique client data is collected at
the appropriate client connect phase. For efficiency, ZTASKEND also groups
identical messages, having the exact same object content, to minimize the
number of calls made to QMSG.

This topic explains:

•	 How ZTASKEND determines when to call QMSG for the various client
connect phases and which objects are collected.

•	 The basic syntax of calls to QMSG.

Configuring and Tuning the Messaging Server 75

•	 How the QMSG -to parameter establishes one or more destinations for
message processing.

•	 How the QMSG -priority parameter establishes Messaging Server
processing order.

ZTASKEND calls to QMSG

This topic reflects the ZTASKEND v1.9 (or above) method delivered
with the Radia 4.x releases and Messaging Server versions 3.x.

Processing Phase-Dependent Objects

Each time a Radia client connects to the RCS, the client declares its
connection intent or phase. An important role of the ZTASKEND rexx code is
to minimize the collection of duplicate information. With that goal in mind,
the ZTASKEND method invokes QMSG depending on the client connection
phase and the objects present. ZTASKEND restricts message posting to five
specific connection phases. The phases of interest are:

•	 BOOTSTRAP (Client Operations Profiles or COP)

•	 CLIENT SELF MAINTENANCE

•	 CATALOG RESOLUTION

•	 SERVICE RESOLUTION

•	 CLIENT REPORTING

Processing CORE Objects by Phase

There are "critical objects" collected for each of the core targets for Inventory
Manager (RIM) and Management Portal (RMP). The potential critical objects
are:

For RIM: APPEVENT MSIEVENT SYNOPSIS RNPEVENT

For RMP: SYNOPSIS

In addition to the critical objects, each phase contains additional objects
collected for that phase.

Table 5 Critical Objects collected by phase

Phase Critical Objects

BOOTSTRAP (COP) SESSION PREFACE ZSTATUS SMINFO

76	 Chapter 3

Phase

CLIENT
SELFMAINTENANCE

CATALOG RESOLUTION

SERVICE RESOLUTION

CLIENT_REPORTING

Critical Objects

SESSION PREFACE ZSTATUS SMINFO

SESSION PREFACE ZSTATUS ZCONFIG ZMASTER
SMINFO

SESSION PREFACE ZSTATUS SMINFO

SESSION PREFACE ZSTATUS SAPSTATS ZRSTATE
SMINFO

With this in mind, ZTASKEND uses the following logic:

1	 Whenever a critical object is presented, the critical object and the
additional objects are processed by QMSG and deposited into queues for
processing by RMS.

2	 If a critical object is not present, then the code invokes QMSG when a
client connects during the phases CATALOG_RESO and
CLIENT_REPORTING.

1	 If a critical object is not found, then code does not invoke QMSG for the
following client phases: BOOTSTRAP (COP), SERVICE RESOLUTION
and CLIENT_SELF MAINTAINANCE.

2	 Finally, ZTASKEND does not invoke QMSG to obtain error message
objects (ZERRORM & ZERROR).

Table 6 on page 78 summarizes the Client Connect phases and the objects
collected during the ZTASKEND calls to QMSG, for CORE data going to RIM
or RMP.

Configuring and Tuning the Messaging Server 77

Table 6 ZTASKEND calls to QMSG for CORE Data for RIM and RMP

Client Connect Phase QMSG call if not
critical object?

QMSG call if critical object

Bootstrap - COP
Resolution
for Client Operations
Profile.

No Collects these objects for CORE.RIM and
CORE.RMP destinations:
APPEVENT | MSIEVENT |
SYNOPSIS | RNPEVENT
SESSION
PREFACE
ZSTATUS
SMINFO

Client Maintenance
Phase

No Collects these objects for CORE.RIM and
CORE.RMP destinations:
APPEVENT | MSIEVENT |
SYNOPSIS | RNPEVENT
SESSION
PREFACE
ZSTATUS
SMINFO

Catalog Resolution:
Client connects to the
Configuration Server to
obtain service resolution
list.

Always. Collects
these objects for
CORE.RIM and
CORE.RMP
destinations:
SESSION

 PREFACE
ZCONFIG

 ZMASTER
ZSTATUS
SMINFO

See previous column, but also collects
APPEVENT| MSIEVENT |
SYNOPSIS | RNPEVENT.

Single Service
Resolution: For each
service to be resolved,
client makes another
connection to the
Configuration Server.

No Collects the following objects for
CORE.RIM and CORE.RMP destinations:
APPEVENT | MSIEVENT |
SYNOPSIS | RNPEVENT
SESSION
PREFACE
ZSTATUS
SMINFO

78 Chapter 3

Client Connect Phase QMSG call if not QMSG call if critical object
critical object?

Client Reporting Always. Collects See previous column, but also collects
Phase: At the end of these objects for APPEVENT | MSIEVENT |
service resolution. CORE.RIM SYNOPSIS | RNPEVENT
Client data is reported destination:
back to the SESSION
Configuration Server. PREFACE

ZSTATUS
SAPSTATS

 ZRSTATE
SMINFO

Adding Items to a Critical Object List

The ZTASKEND rexx code can be configured to add object names to the
critical and additional object lists. The rexx variables CriticalRIMObjects
and CriticalRMPObjects contain the object names for each of these targets.
The rexx function call to BuildObjectList is used to build the object list for
each phase.

 Call BuildObjectList

:

:

:

:

 CriticalRIMObjects = "APPEVENT MSIEVENT SYNOPSIS RNPEVENT"

 CriticalRMPObjects = "SYNOPSIS"

The ZTASKEND rexx code contains additional information on how to alter
these items.

Processing Always Objects

There is a section of the ZTASKEND rexx code to define objects that will
always be processed, independent of the phase being processed. The larger
inventory objects, FILEPOST, WBEMAUDT and CLISTATS are processed
this way. If these objects exist, then they are sent to the specified target. In

Configuring and Tuning the Messaging Server 79

addition to the larger inventory objects, the job objects: JOBSTAT,
JOBPARM, and JOBTASK are also processed this way.

Adding Custom Objects to the BuildAlways Object List

This part of the rexx code can also be configured to add "custom" objects that
are always delivered to the specified target. The rexx function BuildAlways is
used to configure the target, queue and objects to process. The rexx code
contains additional information on how to alter these items.

 Call BuildAlways "inventory", InventoryQueue, "FILEPOST"

Processing under RMS Version 2.x and RMS Version 3.x

The ZTASKEND rexx code is aware of and supports RMS versions 2.x and
version 3.x. It does this by checking to see if (data) queues other than
"default" exists. With RMS version 2.x, all posting was done to just one
queue, named "default". RMS version 3.x introduces additional queues for
each data delivery agent, including "core", "inventory" and "wbem".

Since RMS version 2.x posts all objects to one queue, RMS 2.x uses the
-priority switch of the QMSG call syntax to defer processing of larger inventory
objects. With RMS version 3.x, multiple "queues" are used to control message
processing and the –priority switch of the QMSG call is not necessary.

QMSG Method Syntax

The QMSG command/method is used to post RCS objects to RMS for RIM and
RMP. QMSG reads the specified object and converts it to XML and then
writes it to the specified queue.

The syntax of the QMSG method is given below:

qmsg -to <destination(s)> -queue <queue> -priority <priority> object1 object2 ... objectn

-to <destination(s)>
must be explicitly coded with one or more destinations, or targets. Messages
going to multiple destinations have comma-separated entries. For example:

 -to CORE.RIM,CORE.RMP

The RMS version 2.x destination values used by the delivered QMSG include:

 -to CORE.RIM

 -to CORE.RIM,CORE.RMP (these messages are delivered to both
destinations)

80 Chapter 3

 -to INVENTORY

 -to INVENTORY.WBEM

The RMS version 3.x destination values used by the delivered QMSG include:

 -to CORE.ODBC

 -to CORE.RMP

 -to INVENTORY.ODBC

 -to WBEM.ODBC

For RMS version 3.x processing, each message destination requires an
equivalent ROUTE defined for it in the msg::register router section of the
appropriate Data Delivery Agent's *.dda.cfg file. Table 7 below gives the
destination values of QMSG and the configuration file and section used to
define its ROUTE.

Table 7 QMSG Destinations and DDA Configuration Locations in RMS v3.x

QMSG –to destination Configuration File in
MessagingServer\etc
folder

Required ROUTE section

-to CORE.ODBC core.dda.cfg msg::register corerouter

-to CORE.RMP core.dda.cfg msg::register corerouter

-to INVENTORY.ODBC inventory.dda.cfg msg::register inventoryrouter

-to WBEM.ODBC wbem.dda.cfg msg::register wbemrouter

The version 2.x destination values used by the delivered QMSG include:

 -to CORE.RIM

 -to CORE.RIM,CORE.RMP (these messages are delivered to both
destinations)

 -to INVENTORY

 -to INVENTORY.WBEM

For RMS 2.x processing, each message destination requires an equivalent
ROUTE defined for it in the msg::register router section of the rms.cfg file,
as discussed in Example 2: Configuring the Messaging Server to Route
Objects from a Single \Data\Default Queue on page 129.

-queue <queue>
The queue is a directory relative to where QMSG.EXE exists. QMSG is located in

Configuring and Tuning the Messaging Server 81

the \bin directory of the RCS. For example, on a Windows platform, if QMSG
resides at
 C:\Radia\ConfigurationServer\bin\qmsg.exe

Then the queues would reside at:

 C:\Radia\ConfigurationServer\data\blue

 C:\Radia\ConfigurationServer\data\default

 C:\Radia\ConfigurationServer\data\green

 C:\Radia\ConfigurationServer\data\red

The parent directory of all queues is "data". For illustrative purposes, this
example shows the existence of the (fictitious) blue, green and red queues.
Note that the queue named "default" is the default queue.

Queue locations are defined near the top of ZTASKEND v. 1.9.

For Patch routing, the queue location is named in the parameters

passed to QMSG from the SYSTEM.ZMETHOD.PATCH_STATUS method

instance. For example:

Method = qmsg

Parameter = -to PATCH –queue patch PREFACE ZOBJSTAT

To modify the parameters to pass, edit the value of the ZMTHPRMS
attribute in the PATCH_STATUS instance.

-priority
is available to establish Messaging Server processing priority. If omitted, a
default priority of 10 is given to the message. Valid values are 00 (highest
priority) to 99 (lowest priority). For more information on Messaging Server
processing priority, see the topic How Priority Establishes Messaging Server
Processing Order below.

object1 [objectn]
The rest of the command line includes the names of the objects to queue,
object1 object2... objectn. The objects are processed in the order specified;
thus, depending on the destination, there might be a dependent order.

How Priority Establishes Messaging Server Processing Order

When ZTASKEND calls QMSG, the optional –priority parameter in the call
assigns a processing priority to the message. Priority values can range from
00 to 99, with 00 reserved for critical processing and 99 being the lowest
priority.

For messages waiting to be processed in the same queue, the Messaging
Server processes all messages assigned to a higher priority (such as 10) before

82 Chapter 3

processing any messages assigned to a lower priority (such as 20). Within a
given priority, messages are processed using first in, first out (FIFO) order.

The message priority remains the same for the life of the message.
For example, if a message is forwarded from one Messaging Server
to another, the message priority remains the same.

•	 Priority 10 is the default if a priority is not specified.

•	 Previously, ZTASKEND called QMSG with parameters to assign a lower
priority of 20 to the larger objects collected for Inventory Reports: these
include file audits, wbem reporting data, and client statistics
(CLISTATS).

•	 This is no longer necessary because of the segregation of queues by object
type.

If the Messaging Server is not able to process the messages as fast as they
are delivered from QMSG, the lower priority messages will accumulate at the
bottom of a queue location, even though newer messages with higher
priorities are still being processed.

Configuring and Tuning the Messaging Server 83

Configuring the Messaging Server

Use these topics to reconfigure or tune the Messaging Server after
installation, or reconfigure or tune the data delivery agents for core,
inventory, wbem or patch data.

Editing the Configuration Files for the Messaging Server and
Data Delivery Agents

The Messaging Server and Data Delivery Agents standard installation allows
configuration of several of the configuration parameters contained in the
respective configuration files. You will need to edit the configuration file with
a text editor to achieve a more customized environment.

All of the configuration files for the Messaging Server and Data Delivery
Agents are found in the\etc directory of where the Messaging Server was
installed.

All the configuration files for the Messaging Server and the associated Data
Delivery Agents have similar configuration sections. Understanding these
sections and the syntax used to configure them will aid in customizing your
environment

The structure for the RMS configuration file sections is given below:

msg::register <unique identifier> {
TYPE <RMS registered TYPE>
<Configurable Variable for the registered TYPE> <Value for that Variable>
<Configurable Variable for the registered TYPE> <Value for that Variable> …

}

Each configuration section starts with the command msg::register. This
signals the start of a configuration parameter for the Messaging Server and
its modules.

A unique identifier follows the msg::register command. Within an instance of
the RMS, which includes the configuration files for the RMS and all of the
DDA modules, this unique identifier label can only be used once. The unique
identifier is followed by a curly brace "{". The configuration section for this
TYPE must be ended by a closing curly brace for the entire configuration to
work.

All configuration file sections have a TYPE identifier, which indicate the kind
of work to be done by this section. These are the current acceptable TYPE
designations:

84 Chapter 3

•	 QUEUE

•	 ROUTER

•	 HTTP

•	 HTTPS

•	 HTTPD

•	 FILTER

•	 ODBC

•	 COREODBC (only configurable in core.dda.cfg and
inventory.dda.cfg)

•	 WBEMODBC (only configurable in wbem.dda.cfg)

•	 PATCHODBC (only configurable in patch.dda.cfg)

•	 PATCHFILTER (only configurable in patch.dda.cfg)

The following table gives a description of the different TYPES and their
configurable parameters. The sections are listed in the general order in which
they appear in the configuration files.

Table 8 Glossary of Section TYPEs and Configurable Parameters

Section TYPE

QUEUE
Defines the directory where
messages are placed for
processing.

Configurable Parameters

DIR
The directory name of the queue.

USE
Specify the name of the unique identifier that will
signify how to dispatch the message. Usually this is a
ROUTER type.

POLL
By default, the Messaging Server is configured to poll
the queue location every 10 seconds and post up to 100
objects at a time. To change the poll interval, modify
the POLL parameter.

COUNT
Maximum number of objects to post at a time (during
the polling interval defined by POLL). Default is 100
objects.

ATTEMPTS
Maximum number of attempts to retry a failed
message delivery before discarding the message.

Configuring and Tuning the Messaging Server 85

Section TYPE

ROUTER
Defines where the messages are
going to sent.

HTTP
This is a way to post the
message to another server
location using http protocol. The
target server can be another
Messaging Server where the
message can be re-queued or it
can be another part of the
Infrastructure such as an
Inventory Server or the
Management Portal.

Configurable Parameters

Default is 200 attempts. (By default, the Messaging
Server and Data Delivery Agents are configured to
retry any failed posts every hour, and make up to 200
attempts.)

DELAY
Number of seconds to wait between attempts to retry a
failed message delivery. Default is 3600 seconds, or one
hour.
Note: To calculate the maximum time that a message
could stay in the queue before being discarded, take the
DELAY time and multiply it by the ATTEMPTS value.
Using the default settings, this is a DELAY of 3600
seconds x 200 ATTEMPTS, or approximately eight
days.

ROUTE
Delimit each Route by curly braces

TO
This is the address of the message. It is contained in
the meta data file of each message when the message is
created.

USE
Specify the unique name of a Messaging Server TYPE
that will be used to dispatch the message, such as
HTTP, HTTPS or ODBC. (In a DDA file, the USE
entries may also be COREODBC, WBEMODBC and
PATCHODBC).

ADDRESS
Delimit each address using curly braces. Multiple URL
destinations can be specified within each HTTP TYPE
as long as each has its own ADDRESS label and a
different priority.

PRI
Denotes the priority in which to sent messages to the
companion URL. The default priority is 10. The
priority setting only matters if multiple ADDRESS
entries are configured. If multiple ADDRESS entries
are configured the lowest priority is tried first and if
that fails the next priority URL is tried. This allows
failover capability if there are network problems.

86 Chapter 3

Section TYPE

HTTPS
This is a way to post the
message using a secure socket.
The HTTPS parameters are
configured the same as the
HTTP parameters--with the
exception of the URL
specification. The URL uses the
https:// convention.
Note: First run the HP-
OpenView Adapter for SSL
Using Radia to fill in the
required SSL parameters in the
rms.cfg file.

HTTPD
Defines the parameters the
Messaging Server will use to
receive incoming messages.

ODBC DSN
Used to post PATCH messages Data Source Name
into a SQL database. USER

Configurable Parameters

URL
Specifies the URL to use to send the message.

ADDRESS
Same as TYPE of HTTP.

PRI
Same as TYPE of HTTP.

URL
Specifies the URL using the https:// convention.

PORT
Defines the Port used to “listen” for messages. Only one
port specification can be used for a given Messaging
Server.

URLHANDLER
Delimit with curly braces. If the incoming messages
are to be deposited into different queues, depending
upon the URL, the URLHANDLER must be used to
delimit the USE and URL parameters.

USE
Specify the name of the QUEUE type that will receive
the incoming messages.

URL
Specify the URL prefix that that will be accepted by
the Messaging Server. When messages are received
with the designated URL they are deposited in the
associated queue. The QUEUE type must be defined
when messages are received. All URL’s specified must
start with /proc/.

Configuring and Tuning the Messaging Server 87

Section TYPE

FILTER
A means to route PATCH data
into multiple SQL tables.

COREODBC
Used to post CORE messages
into a SQL database.
Only configurable in
core.dda.cfg and
inventory.dda.cfg.

Configurable Parameters

User ID for the DSN

PASS
Password for the DSN

USE
Specify the name of the unique identifier that will
signify how to dispatch the message.

TO
This is the address of the message. It is contained in
the meta data file of each message when the message is
created.

FILTER
Used for PATCH object processing into multiple tables

DSN
Data Source Name

USER
User ID for the DSN

PASS
Password for the DSN

DSN_ATTEMPTS
Number of attempts to connect to the DSN. Default is
1.

DSN_DELAY
Delay in seconds between attempts to connect to the
DSN. Default is 5 seconds.

DSN_PING
Delay in seconds between pinging the database
connection to verify the DSN is available. Default is
300 seconds.

STARTUPLOAD
Determines when SQL tables are created and SQL
scripts are loaded into memory. Default is 0, which
performs these SQL tasks when the first message is
posted. HP recommends using this setting whenever
possible because it allows only the necessary
commands to be loaded and is a more efficient use of
resources.
Set STARTUPLOAD to 1 to have the SQL tasks
performed upon Messaging Server and Data Delivery

88 Chapter 3

Section TYPE

WBEMODBC
Used to post WBEM data
messages into a SQL database.
Only configurable in
wbem.dda.cfg.

PATCHODBC
Used to post PATCH data
messages into an SQL database.
Only configurable in
patch.dda.cfg

PATCHFILTER
A means to route PATCH data
into multiple SQL tables. Only
configurable in patch.dda.cfg.

Configurable Parameters

Agent startup; use this setting when it is necessary to
create the SQL tables upon startup due to limitations
set by a Database Administrator.

See COREODBC for common parameters.

AUTOCREATE

A switch to enable the creation of a new SQL file and

table in the Inventory ODBC database when a new

object class is received. Default is 0.

0 – Does not create a SQL file or table entry for a new

object class.

1 – Creates a new SQL file and table entry for a new

object class.

DSN
Data Source Name

USER
User ID for the DSN

PASS
Password for the DSN

USE
Specify the name of the unique identifier that will
signify how to dispatch the message.

TO
This is the address of the message. It is contained in
the meta data file of each message when the message is
created.

FILTER
Used for PATCH object processing into multiple tables

You can adjust default values and routing options by editing the *.cfg files,
located in the \etc directory of where the Messaging Server was installed.

Configuring and Tuning the Messaging Server 89

The base Messaging Server configuration file (rms.cfg) loads the individual
Data Directory Agent (DDA) modules for posting the following object types:
core, inventory, wbem, and patch. Each DDA has it own configuration file
(*.dda.cfg) that defines where and how the objects are routed.

See the following topics for more information on how to configure or modify
each configuration file.

•	 About the Sections in the RMS.CFG File below

•	 About the Sections in the CORE.DDA.CFG File on page 93

•	 About the Sections in the CORE.DDA.CFG File on page 93

•	 About the Sections in the WBEM.DDA.CFG File on page 100

•	 About the Sections in the PATCH.DDA.CFG File on page 103

•	 Additional Tuning Topics on page 106

To edit a Messaging Server or Data Delivery Agent *.cfg file

1	 Stop the Messaging Server before editing the rms.cfg file. For details,
see Starting and Stopping the Messaging Server on page 65.

2	 Edit the appropriate *.cfg file using any text editor. By default, the *.cfg
files are located at: SystemDrive:Novadigm\MessagingServer\etc
for Windows, or /opt/Novadigm/MessagingServer/etc for UNIX.

3	 Modify the sections using the information given in the following topics.

All path entries in the configuration files must be specified
using forward slashes. This applies to both Windows and UNIX
environments.

4 Save your changes and restart the Messaging Server.

About the Sections in the RMS.CFG File

The Messaging Server Configuration file, rms.cfg, has the following main
sections after the header. As of this release, it loads separate modules for
data delivery agents (DDAs), whose job is to post the objects to the configured
locations.

90	 Chapter 3

There are separate data delivery agents for core data (Inventory Manager
and Management Portal objects), wbem data (wbem audit data for Inventory
Manager) and patch data (for Patch Manager)

Optional entries in the rms.cfg file can include SSL support, a
“msg:register httpd” section if this Messaging Server is receiving
forwarded messages from another Messaging Server, and a “msg:register
default” section if this Messaging Server is posting messages from a single
queue location of \data\default (as done in versions prior to v3.0).

Additional Sections in the RMS.CFG File

• Required packages
Do not remove the following lines at the top of the rms.cfg file

package require nvd.msg

package require nvd.httpd

• SSL Certificates
If the Messaging Server is SSL enabled the following sections exist in the
rms.cfg. An Overrides Config { } section defines the necessary
certificates and parameters for SSL support as well as the command
module load tls which loads the code necessary to support SSL. For more
information, refer to the Installation and Configuration Guide for the HP
OpenView Adapter for SSL Using Radia.

• log::init
Sets the Logging Level for entries written to the log files. The default is 3.
Normally, this is not changed. For details on changing the logging level,
see Configuring the Log Level, Log Size and Number on page 107. The log
files are located in the Logs directory of where the Messaging Server was
installed.

• log.configure –stderr 0
Required by the Messaging Server log. Do not modify.

• log.configure -lines 50000
The default number of lines contained in a log before the log is rolled
over.

• log.configure -limit 7
The default number of rolled logs to keep.

• Load Data Delivery Agents for posting objects
Include the following lines at the end of rms.cfg to load the data delivery
agents needed to post each type of object.

Configuring and Tuning the Messaging Server 91

—	 dda.module load core
Posts CORE message data to a SQL database and, optionally, CORE
message data to the Management Portal directory. See About the
Sections in the CORE.DDA.CFG File on page 93 for more information
on how to configure the posting of core objects.

—	 dda.module load inventory
Posts file audit INVENTORY message data to a SQL database. See
About the Sections in the INVENTORY.DDA.CFG File on page 98 for
more information on how to configure the posting of core objects.

—	 dda.module load wbem
Posts wbem objects to a SQL database. See About the Sections in the
WBEM.DDA.CFG File on page 100 for more information on how to
configure the posting of wbem objects.

—	 dda.module load patch
Post PATCH message data to a SQL database. See About the Sections
in the PATCH.DDA.CFG File on page 103 for information on how to
configure the posting of patch objects.

•	 (Optional) msg::register default, msg::register router, and
msg::register <rim|rmp|other>

These sections, if they exist, define how the Messaging Server handles
the messages placed by QMSG in an existing /data/default location (or
/data/default queue). For more information, see Example 2:
Configuring the Messaging Server to Route Objects from a Single
\Data\Default Queue on page 129.

These sections are not normally used as of Messaging Server
v 3.0. The sections route messages placed into the
\data\default queue by an earlier version of QMSG. It is
still available for customers who are not migrating to the use
of multiple queue locations.

•	 (Optional) Configure the maximum log size and number of logs. Note that
these options apply for each Worker assigned to process the
\data\default queue. See Configuring the Log Size and Number for
more information. See for Configuring the Log Level, Log Size and
Number on page 107 details.

92	 Chapter 3

About the Sections in the CORE.DDA.CFG File

The core.dda.cfg file defines where and how to route objects placed in
queue locations for core objects. As mentioned previously, the core objects are
objects created on the Client, available during the client connect process and
used in reports. Examples of core objects are ZMASTER, ZCONFIG, and
SESSION.

•	 To activate the core.dda module, the command “dda.module load core”
must be included at the end of the rms.cfg file.

•	 For a Messaging Server co-located with a Configuration Server, the queue
locations are folders where the QMSG executable places messages:

Queue folder for core messages: < RCS folder> \data\core

•	 For a Messaging Server receiving messages forwarded from another
MessagingServer core.dda module, URLs define the locations on which to
listen for messages:

URL for core messages: http://localhost:3461/proc/core

Several configurations are possible.

•	 Core data can be forward to another messaging server. This option is
used to place the objects as close to the SQL database as possible before
ODBC posting to avoid slow network response.

•	 Core object data can be routed using ODBC directly to the back-end SQL
database. This option is best used when the database is close to the
current location.

•	 Core object data can be routed using HTTP to an Inventory Server. From
there, the Inventory Server can post the messages to the back-end
database. This option was the previous implementation method in RMS
2.x but has been replaced with the direct posting via the data delivery
agents into the SQL database.

•	 Core messages for RMP can be routed using HTTP to a Portal Zone, or
discarded using the built-in /dev/null location.

The core.dda.cfg file has the following main sections after the header and
required line:

DO NOT REMOVE FOLLOWING LINE

package require nvd.msg.coreodbc

•	 msg::register httpd
This is the HTTPD type for the core.dda configuration. If this

Configuring and Tuning the Messaging Server 93

http://localhost:3461/proc/core

Messaging Server is receiving messages forwarded from another
Messaging Server, defines the URLHANDLER location on which to look
for messages

•	 msg::register coreq
This is the QUEUE type for the core.dda configuration. Defines queue
used by the how the Messaging Server handles the messages placed by
QMSG in the /data/core folders.

The parameters are summarized below:

—	 TYPE of QUEUE defines Messaging Server location and polling
values for picking up messages places in the /data/<queue> named
by DIR.

—	 DIR defines the full path of the /data/core location. This is set at
installation time.

—	 USE defines where the routing information for each TO label is
located.

—	 POLL and COUNT establish the polling interval and post quantity
for the Messaging Server, which determines how often and how many
messages are posted at a time. To adjust this, see the topic
Configuring the Poll Interval and Post Quantity on page 106.

—	 Retry Attempts (DELAY and ATTEMPTS), after maximum retry
attempts, a message is automatically discarded

•	 msg::register corerouter
This is the ROUTER type for the core.dda configuration. Configures at
least one routing assignment for each –To type, including:

a	 -To CORE.ODBC

b	 -To CORE.RIM

c	 -To CORE.RMP

The corerouter section enables you to route messages to more than one
destination, to another queue type, or to a set disposal disposal location of
/dev/null.

Default processing of Management Portal data has changed
with Messaging Server Version 3.1 and CORE.DDA.CFG
Version 3.1 to being re-routed into its own queue (rmpq) This
is discussed below and on page 110.

As of Messaging Server version 3.1, the corerouter section is configured to
re-queue Management Portal messages into their own queue (rmpq). This

94	 Chapter 3

permits separate throttling of the CORE messages being posted to the
Management Portal directory from the CORE messages being posted to
an ODBC database. For more information, see About the Management
Portal Data Queue (rmpq) in CORE.DDA.CFG on page 110.

The INVENTORY and WBEM objects are placed in separate
queues, and routed according to the msg::register
inventoryrouter entries in the inventory.dda.cfg file and
msg::register wbemrouter entries in the wbem.dda.cfg file,
respectively.
The Patch objects are also placed in a separate queue, and
delivered according to the msg::register patchrouter
entries defined in the patch.dda.cfg file.

• msg::register coreodbc
This is the COREODBC type. Defines a DSN, User, and Password to post
core data directly to an ODBC database. For details on the entries, see
the topic ODBC Settings for CORE, INVENTORY and WBEM Objects on
page 96.

This section may be configured during the install.

• msg::register <USE types of HTTP>
The sections labeled msg::register rim, msg::register rmpqhttp, as well as
msg::register coreforward are all examples of HTTP types for the
core.dda module.

This section defines an external ADDRESS and URL for delivering or
forwarding messages using HTTP protocol.

The URL value specifies another Messaging Server when using store and
forward, or the URL for a Management Portal or Inventory Manager
server.

HP recommends using msg::register COREODBC <USE type
of COREODBC> to post core data directly to the back-end
inventory database. This delivery option has substantial
performance benefits over posting the same data to the
Inventory Manager server using HTTP, which then posts the
data to the back-end database.

The HTTP section is configurable for failover by adding multiple
ADDRESS entries, each with a different PRI value. See Configuring for
Failover on page 106 for more information.

Configuring and Tuning the Messaging Server 95

• (Optional) Configure the maximum log size and number of logs.
Note that these options apply for each Worker assigned to process the
specific queue. See Configuring the Log Size and Number for more
information. See for Configuring the Log Level, Log Size and Number on
page 107 details.

ODBC Settings for CORE, INVENTORY and WBEM Objects

The following settings are configured in the msg::register coreodbc section
of core.dda.cfg, the msg::register inventoryodbc section of
inventory.dda.cfg and the msg::register wbemodbc section of
wbem.dda.cfg:

DSN 	 Specify the Data Source Name (DSN) for the
Inventory ODBC database. Enclose the entry in
quotes.

USER	 Specify the user name for the Inventory database
identified in the DSN parameter. Default value is

PASS 	 Specify the password for the user of the Inventory
ODBC database. When modifying a password entry,
obtain an encrypted entry using the procedure To
encrypt a password entry for a database DSN in a
configuration file on page 104.

DSN_ATTEMPTS 	Number of attempts to connect to the Inventory
Manager database DSN. Default is 1.

DSN_DELAY 	 Delay in seconds between attempts to connect to the
Inventory Manager database DSN. Default is 5
seconds.

DSN_PING	 Delay in seconds between pinging the database
connection to verify the DSN is available. Default is
300 seconds.

AUTOCREATE In the WBEMODBC section, a switch to enable the

(wbem.dda.cfg creation of a new SQL file and table in the Inventory

only) ODBC database when a new object class is received.
Default is 0.
0 – Does not create a SQL file or table entry for a
new object class.
1 – Creates a new SQL file and table entry for a new
object class.

96	 Chapter 3

STARTUPLOAD Determines when SQL tables are created and SQL
scripts are loaded into memory.
Default is 0, which performs these SQL tasks when
the first message is posted. HP recommends using
this setting whenever possible because it allows only
the necessary commands to be loaded and is a more
efficient use of resources.
Set STARTUPLOAD to 1 to have the SQL tasks
performed upon Messaging Server and Data
Delivery Agent startup; use this setting when it is
necessary to create the SQL tables upon startup due
to table-creation limitations set by a Database
Administrator.

To encrypt a password entry for a database DSN in a configuration file

The PASS value in the in all the .cfg files where specification of DSN
parameters is necessary has to be encrypted. When the value is entered
during the install process, the installation program takes care of encryption
If you need to modify the password, you can use the nvdkit utility to create
an encrypted password, and specify this encrypted value within the
appropriate section of the configuration file. Enclose the encrypted value in
quotation marks.

1	 Open a command prompt and go to the directory where the Messaging
Server is installed.

2	 Enter the following command: nvdkit

3	 At the % prompt, type the following command:

password encrypt <password_value>

The utility will return an encrypted password value.

4	 Cut and paste this encrypted password value into the configuration file
as the PASS value. Enclose the value in quotation marks.

Configuring and Tuning the Messaging Server 97

About the Sections in the INVENTORY.DDA.CFG
File

The inventory.dda.cfg file defines where and how to route objects placed
in queue locations for filepost (file audit inventory) objects.

•	 To activate the inventory.dda module, the command “dda.module load
inventory” must be included in the rms.cfg

•	 For a Messaging Server co-located with a Configuration Server, the queue
location is a folder where the QMSG executable places messages:

Queue folder for inventory messages: <RCS folder>\data\inventory

•	 For a Messaging Server receiving messages forwarded from another
MessagingServer inventory.dda module, URLs define the locations on
which to listen for messages:

URL for inventory messages: http://localhost:3461/proc/inventory

Several configurations are possible.

•	 Inventory data can be forward to another messaging server. This option
is used to place the objects as close to the SQL database as possible before
ODBC posting to avoid slow network response.

•	 Inventory data can be routed using ODBC directly to the back-end
Inventory database. This option is best used when the database is close to
the current location.

•	 Inventory data can be routed using HTTP to an Inventory Server. From
there, the Inventory Server can post the messages to the back-end
database. This option was the previous implementation method but has
been replaced with the direct posting via the data delivery agents into the
SQL database.

The inventory.dda.cfg file has the following main sections after the
header and required line:

DO NOT REMOVE FOLLOWING LINE

package require nvd.msg.inventoryodbc

•	 msg::register httpd
This is the HTTPD type for the inventory.dda configuration. If this
Messaging Server is receiving messages forwarded from another
Messaging Server, defines the URLHANDLER location on which to look
for messages (separate locations are specified for core and inventory
messages.

98	 Chapter 3

http://localhost:3461/proc/inventory

•	 msg::register inventoryq
This is the QUEUE type for the inventory.dda configuration. Defines
how the Messaging Server handles the messages placed by QMSG in the
/data/inventory folders.

The parameters are summarized below:

—	 TYPE of QUEUE defines Messaging Server location and polling
values for picking up messages places in the \data\<queue> named
by DIR.

—	 DIR defines the full path of the /data/inventory location. This is
set at installation time.

—	 USE defines where the routing information for each TO label is
located.

—	 POLL and COUNT establish the polling interval and post quantity
for the Messaging Server, which determines how often and how many
messages are posted at a time. To adjust this, see the topic
Configuring the Poll Interval and Post Quantity on page 106.

—	 Retry Attempts (DELAY and ATTEMPTS), after maximum retry
attempts, a message is automatically discarded

•	 msg::register inventoryrouter
This is the ROUTER type for the inventory.dda configuration.
Configures routing assignments for each –To type. This section enables
you to route messages to more than one destination. It also allows you to
route messages to a set disposal location of /dev/null. At least one route
is specified for each –To type:

-To INVENTORY.ODBC

•	 msg::register inventoryodbc
This is the COREODBC type for the inventory.dda configuration.
Defines an DSN, User, and Password to post inventory data directly to an
ODBC database. For details on the entries, see the topic ODBC Settings
for CORE, INVENTORY and WBEM Objects on page 96.

This section may be configured during the install.

•	 msg::register <USE types of HTTP>
The section labeled msg::register inventoryforward is an example of an
HTTP section in the inventory.dda module.

This section defines an external ADDRESS and URL for delivering or
forwarding messages using HTTP protocol.

Configuring and Tuning the Messaging Server 99

The URL value specifies another Messaging Server when using store and
forward, or the URL for an Inventory Manager server.

HP recommends using msg::register inventoryodbc <USE type
of inventoryodbc> to post inventory objects directly to the back-
end inventory database. This delivery option has substantial
performance benefits over posting the same data to the
Inventory Manager server using HTTP, which then posts the
data to the back-end database.

The section is configurable for failover by adding multiple ADDRESS
entries, each with a different PRI value. See Configuring for Failover on
page 106 for more information.

•	 (Optional) Configure the maximum log size and number of logs. Note that
these options apply for each Worker assigned to process the specific
queue. See Configuring the Log Size and Number for more information.
See for Configuring the Log Level, Log Size and Number on page 107
details.

About the Sections in the WBEM.DDA.CFG File

The wbem.dda.cfg file defines where and how to route the objects placed in
the \data\wbem queue location.

The wbem.dda.cfg file sections are very similar to the
core.dda.cfg and inventory.dda.cfg file sections.

•	 To activate the wbem.dda module, the command “dda.module load wbem”
must be included in rms.cfg.

•	 For a Messaging Server co-located with a Configuration Server, the queue
location is a folder where the QMSG executable places messages:

Queue folder for wbem messages: <RCS folder>\data\wbem

•	 For a Messaging Server receiving messages forwarded from another
Messaging Server wbem.dda module, URLs define the locations on which
to listen for messages:

URL for inventory messages: http://localhost:3461/proc/wbbem

Several configurations are possible.

100	 Chapter 3

http://localhost:3461/proc/wbbem

•	 Wbem data can be forward to another messaging server. This option is
used to place the objects as close to the SQL database as possible before
ODBC posting to avoid slow network response.

•	 Wbem object data can be routed using ODBC directly to the back-end
SQL database. This option is best used when the database is close to the
current location.

•	 Wbem data can be routed using HTTP to an Inventory Server. From
there, the Inventory Server can post the messages to the back-end
database. This option was the previous implementation method but has
been replaced with the direct posting via the data delivery agents into the
SQL database.

The wbem.dda.cfg file has the following main sections after the header and
required line:

DO NOT REMOVE FOLLOWING LINE

package require nvd.msg.wbemodbc

•	 msg::register wbemhttpd
This is the HTTPD type for the wbem.dda configuration. If this
Messaging Server is receiving messages forwarded from another
Messaging Server, defines the URLHANDLER location on which to look
for messages (separate locations are specified for core and inventory
messages.

•	 msg::register wbemq
This is the QUEUE type for the wbem.dda configuration. Defines how the
Messaging Server handles the messages placed by QMSG in the
/data/wbem location (or /data/wbem queue).

The parameters are summarized below:

—	 TYPE of QUEUE defines Messaging Server location and polling
values for picking up messages.

—	 DIR defines the full path of the /data/wbem location. This is set at
installation time.

—	 USE defines where the routing information for each TO label is
located.

—	 POLL and COUNT establish the polling interval and post quantity
for the Messaging Server, which determines how often and how many
messages are posted at a time. To adjust this, see the topic
Configuring the Poll Interval and Post Quantity on page 106.

—	 Retry Attempts (DELAY and ATTEMPTS), after maximum retry
attempts, a message is automatically discarded.

Configuring and Tuning the Messaging Server 101

• msg::register wbemrouter
This is the ROUTER type for the wbem.dda configuration. Configures
routing assignments for messages with the –To type of wbem.odbc. This
section enables you to route messages to more than one destination. It
also allows you to route messages to a set disposal location of /dev/null.

• msg::register wbemodbc
This is the WBEMODBC type for the wbem.dda.cfg. Defines a DSN,

User, and Password to post wbem inventory data directly to an ODBC

database.

The DSN, User and Password may be configured during the

install.

Also defines switches, such as STARTUPLOAD and AUTOCREATE, that
control when new SQL files and tables are created. For details on the
entries, see the topic ODBC Settings for CORE, INVENTORY and
WBEM Objects on page 96.

• msg::register <USE types of HTTP>
The section labeled msg::register wbemforward is an example of an HTTP
section in wbem.dda.cfg.

This section defines an external ADDRESS and URL for delivering or
forwarding wbem inventory messages using HTTP protocol.

The URL value specifies another Messaging Server when using store and
forward, or an Inventory Manager server's URL.

HP recommends using msg::register WBEMODBC <TYPE of
WBEMODBC> to post wbem and other inventory data directly
to the back-end inventory database. This delivery option has
substantial performance benefits over posting the same data to
the Inventory Manager server, which then posts the data to the
back-end database.

This section is configurable for failover by adding multiple ADDRESS
entries each with a different PRI value. See Configuring for Failover on
page 106 for more information.

• (Optional) Configure the maximum log size and number of logs.
Note that these options apply for each Worker assigned to process the
specific queue. See Configuring the Log Level, Log Size and Number on
page 107 for more information.

102 Chapter 3

About the Sections in the PATCH.DDA.CFG File

The patch.dda.cfg file defines where and how to route the objects placed in
the \data\patch queue location. Most of the configuration is done
automatically during the installation of the Messaging Server.

The patch.dda.cfg file has the following main sections after the header
and required lines:

DO NOT REMOVE FOLLOWING LINE

package require nvd.msg.patchodbc

package require nvd.msg

•	 log::init
Sets the Logging Level for entries written to the log files. The default is 3.
Normally, this is not changed. For details on changing the logging level,
see Configuring the Log Level, Log Size and Number on page 107. The log
files are located in the Logs directory of the root MessagingServer
installation directory.

•	 msg::register patchq
This is the QUEUE type for the patch.dda.cfg. Defines how the
Messaging Server handles the messages placed by QMSG in the
/data/patch location (or /data/patch queue).

The parameters are summarized below:

—	 TYPE of QUEUE defines a Messaging Server location and polling
values for picking up messages.

—	 DIR defines the full path of the /data/patch message location. This is
set at installation time.

—	 USE defines where the routing information for the TO PATCH
objects are located.

—	 POLL and COUNT establish the polling interval and post quantity
for the Messaging Server, which determines how often and how many
messages are posted at a time. To adjust this, see the topic
Configuring the Poll Interval and Post Quantity on page 106.

—	 Retry Attempts (DELAY and ATTEMPTS), after maximum retry
attempts, a message is automatically discarded

•	 msg::register patchrouter
This is the ROUTER type for the patch.dda.cfg. Configures routing
assignments for each –To patch type of message. At least one route is
specified for each –To type:

Configuring and Tuning the Messaging Server 103

-To PATCH (unqualified patch objects)

-To PATCH.PREFACE

-To PATCH.ZOBJSTAT

•	 msg::register patchfilter
Appends a filter value to unqualified patch objects before they are
rerouted through the msg::register patchrouter section before patchodbc
processing.

FILTER defines a value for filtering unqualified patch objects. The
default FILTER value is ZOBJCLAS.

•	 msg::register patchodbc
Defines an DSN, User, and Password to post patch data directly to an
ODBC database. For details on the entries, see ODBC Settings for
PATCH Objects below.

This section may be pre-configured during the install.

•	 (Optional) Configure the maximum log size and number of logs.
Note that these options apply for each Worker assigned to process the
specific queue. See Configuring the Log Level, Log Size and Number on
page 107 for more information.

ODBC Settings for PATCH Objects

The following settings are configured in the msg::register patchodbc
section of patch.dda.cfg:

DSN 	 Specify the Data Source Name (DSN) for the Patch ODBC
database. Enclose the entry in quotes.

USER	 Specify the user name for the Inventory database identified in
the DSN parameter. Enclose the entry in quotes. Default value
is {sa}.

PASS 	 Specify the password for the user of the Patch ODBC database.
Enclose the entry in quotes.

To encrypt a password entry for a database DSN in a configuration file

The PASS value in the in all the .cfg files where specification of DSN
parameters is necessary has to be encrypted. When the value is entered
during the install process, the installation program takes care of encryption.
If you need to modify the password, you can use the nvdkit utility to create

104	 Chapter 3

an encrypted password, and specify this encrypted value within the
appropriate section of the configuration file. Enclose the encrypted value in
quotation marks.

1	 Open a command prompt and go to the directory where the Messaging
Server is installed.

2	 Enter the following command: nvdkit

3	 At the % prompt, type the following command:

password encrypt <password_value>

The utility will return an encrypted password value.

4	 Cut and paste this encrypted password value into the configuration file
as the PASS value. Enclose the value in quotation marks.

Configuring and Tuning the Messaging Server 105

Additional Tuning Topics

Configuring the Poll Interval and Post Quantity

By default, the Messaging Server is configured to poll the queue location
every 10 seconds, and post up to 100 objects at a time. To change the poll
interval, modify the POLL parameter in the appropriate configuration file
and msg::register section with a TYPE of QUEUE.

To change the maximum number of objects to be posted at a time, modify the
COUNT parameter in the same section.

If the objects being posted are very large, we suggest increasing the POLL
interval to give sufficient time to complete the posting.

Configuring for Retry Attempts

The Messaging Server and the Data Delivery Agents are configured to retry
any message that fails to post. By default, the Messaging Server will retry
posting the message every hour, and make up to 200 attempts. These values
are defined by the DELAY and ATTEMPTS entries in the sections of the
configuration files that have a TYPE of QUEUE. See Table 9 on page 112 for
a list of msg::register sections used to modify QUEUE processing.

After the last attempt, the message is automatically discarded from
the queue without being posted.

To calculate the maximum time that a message could stay in the
/data/default queue, take the DELAY time and multiply it by the
ATTEMPTS value. Using the default settings, this is a DELAY of 3600
seconds x 200 ATTEMPTS, or approximately eight days.

You can adjust the DELAY and ATTEMPTS values in configuration files to
establish a different maximum time that a message could stay in the
/data/default queue. Specify the DELAY in seconds.

Configuring for Failover

You can configure the Messaging Server to have a one or more servers
defined for failover support when defining HTTP types. When defining
failover servers, each one is assigned a PRI value. If the Messaging Server

106 Chapter 3

fails to connect with the first server (that is, the server with the lowest PRI
value) it will try the next server on the list (or, the next higher PRI value).

This PRI value is separate from the –priority value assigned by
QMSG for processing priority. The PRI value and the QMSG
-priority value are not related.

To set failover in a *.dda.cfg file

Failover support is added by inserting additional ADDRESS entries to the
appropriate section of an HTTP type in a DDA cfg file.

The URL entries will be tried in order of PRI (priority) starting with the
lowest PRI value.

The code sample below shows sample modifications to the msg:register rim
section of core.dda.cfg for failover. The code in bold was added to define a
failover server for Inventory Manager processing.

msg::register rim {

TYPE HTTP

 ADDRESS {

 PRI 10

 URL http://rim1:3466/proc/rim/default

}

ADDRESS {

PRI 20

URL http://rim2:3466/proc/rim/default

}

}

Configuring the Log Level, Log Size and Number

The log files for the Messaging Server (rms.log) resides in the Logs folder of
the MessagingServer directory. For example:
C:\Novadigm\MessagingServer\Logs.

Configuring and Tuning the Messaging Server 107

http://rim1:3466/proc/rim/default
http://rim2:3466/proc/rim/default

Changing the Logging Level

The log::init section at the beginning of the configuration file establishes the
logging level. The default logging level is 3. Valid levels are 0 (no logging) to
10 (maximum logging level). Normally, the log level is not changed unless
requested by a customer support person for troubleshooting purposes. The
following lines show the log level increased to 4:

log::init {

 -loglevel 4

}

Changing the Size and Number of Log Files

The Messaging Server writes entries to a set of log files for each WORKER.
There is generally one WORKER attending each queue location. Queue
locations include:

\data\core

\data\inventory

\data\patch

\data\wbem

or

\data\default

By default, the Messaging Server creates and retains seven log files per
worker, each file having a maximum of 5000 lines. The log files are located in
the Messaging Server \logs directory.

The following line in the rms.cfg file establishes the default logging:

Log.configure –stderr 0

To control the size and number of logs created for each worker, add or modify
the following entries below the log::init section of the rms.cfg file:

log.configure –lines maximum_lines

log.configure –size maximum number of logs

where maximum_lines is the maximum number of lines for a given log file.
After the maximum is reached, another log file is created, until the maximum
number of logs specified in the log.configure –size entry is reached. After
the maximum number of logs is reached, the oldest log files are deleted.

The next code sample illustrates a core.dda.cfg file containing entries to
limit each log file to 1000 lines, and allow up to 10 log files to be retained.

108 Chapter 3

log::init {

 -loglevel 3

}

log.configure -lines 1000

log.configure -limit 10

ATTEMPTS * DELAY = Maximum time in seconds an item will remain
in the queue

200 * 3600 = ~8 days

Configuring the Messaging Server to Discard or Drain Messages

The location of /dev/null is built into the messaging server for discarding
messages. When the USE parameter is set to /dev/null in any of the
ROUTER type sections of the Messaging Server or Data Delivery Agent
configuration files, the messages being processed will be successfully
discarded without an error.

Example: Discarding messages for the Management Portal

For example, to discard all RMP messages placed in the \data\core queue
(these messages have a TO label of CORE.RMP), specify the following
ROUTE in the msg::register corerouter section of core.dda.cfg:

msg::register corerouter {

TYPE ROUTER

. . .

ROUTE {

TO CORE.RMP

}

USE /dev/null

Example: Draining a Message Queue

As another example, to quickly drain an entire queue, temporarily replace
USE router in the msg::register section for the queue with USE
/dev/null. See Table 9 on page 112 for a list of the configuration files and

Configuring and Tuning the Messaging Server 109

sections that control each queue type. After draining the queue, reset it back
to USE router.

Configuring the Messaging Server to Route RMP Messages

About the Management Portal Data Queue (rmpq) in CORE.DDA.CFG

As of Messaging Server V 3.1, the default core.dda.cfg configuration will
re-queue CORE messages that are to be posted to the Management Portal
directory into its own queue, named rmpq. This was done to allow for
separate throttling of the CORE messages being posted via HTTP to the
Management Portal directory, as opposed to the CORE messages being
posted using ODBC to another database.

The following code shows the sections from core.dda.cfg used for this
purpose.

 # Requeue and process just RMP data to throttle the data flow

 msg::register rmpq {

TYPE QUEUE

DIR ../ConfigurationServer/data/rmp
USE rmpqrouter

POLL 10

COUNT 30

 DELAY 3600

ATTEMPTS 200

}

msg::register rmpqrouter {

TYPE ROUTER

ROUTE {

TO CORE.RMP

USE rmpqhttp

}

}

msg::register rmpqhttp {

TYPE HTTP

ADDRESS {
PRI 10
URL http://localhost:3466/proc/xml/obj

}

}

110 Chapter 3

http://localhost:3466/proc/xml/obj

Restoring Routing for Management Portal Messages

If you initially installed the Messaging Server to discard Management Portal
messages, use the steps below to begin routing Management Portal data to a
Management Portal Server and Port.

To modify core.dda.cfg for posting RMP data

1	 Use a text editor to edit the core.dda.cfg file, located in the etc
folder of the Messaging Server directory.

2	 Look for the section starting with msg:register corerouter, and then
find the entry for the ROUTE defining CORE.RMP messages. RMP data that
is being discarded will show the following entry with a USE value set to
/dev/null:

ROUTE {

TO CORE.RMP

 USE /dev/null

3 Change the USE value from /dev/null to rmpq, as shown below:

TO CORE.RMP

 USE rmpq

4 Next, locate the msg::register rmpqhttp section near the end of the
core.dda.cfg file, and find the default URL entry, shown below:

msg::register rmpqhttp {

TYPE HTTP

 ADDRESS {

 PRI 10

 URL http://localhost:3466/proc/xml/obj

5	 Edit the URL value of localhost:3466 to indicate the host and port of
your Management Portal server. For example, a Management Portal with
a hostname of RMPSVR on port 3466 is defined with the following URL
entry:

URL http://RMPSVR:3466/proc/xml/obj

Host names can be specified using an IP address or a DNS name.

6	 Save your changes and restart the Messaging Server. For details, see
Starting and Stopping the Messaging Server on page 65.

Configuring and Tuning the Messaging Server 111

http://localhost:3466/proc/xml/obj
http://RMPSVR:3466/proc/xml/obj

Disabling Processing of Messages in a Queue

The objects in a disabled queue are not polled or posted. You may want to
disable processing during peak client connect periods if resources are in
contention, or if you know a target server is down.

You can re-enable the processing at night or during slower periods to allow
the Messaging Server to transfer the messages.

To disable queue processing using WORKERS -1 (minus 1) value

To disable a queue from being polled and its contents posted, set a
WORKERS value of -1 (minus one) at the end of the appropriate
msg::register section for that queue.

Table 9 Configuration File and Section Used to Modify Queue Processing

Queue Configuration File in
MessagingServer\etc
folder

msg::register section

\data\core core.dda.cfg msg::register coreq

\data\inventory core.dda.cfg msg::register inventoryq

\data\patch patch.dda.cfg msg::register patchq

\data\wbem wbem.dda.cfg msg::register wbemq

\data\default (older RMS) rms.cfg msg::register default

To add a WORKERS value to create multiple processes (WORKERS)

1	 Use a text editor to open the appropriate *.cfg file for the Messaging
Server or Data Delivery Agent processing the queue to be disabled. Table
9 above identifies the configuration file to use for each queue type.

2	 Locate the 'msg::register' section named in Table 9; it will be defined with
{ TYPE QUEUE }.

3	 Add or modify a line for WORKERS with a value of -1 (minus 1) to the
end of the section. A sample entry for disabling a wbem queue is shown
below with a WORKERS value of -1.

 msg::register wbemq {

112	 Chapter 3

 TYPE QUEUE

 DIR
 USE

 C:/Novadigm/ConfigurationServer/data/wbemq
 router

 POLL 10
 COUNT 100
 DELAY 3600
 ATTEMPTS 200
 WORKERS -1

}

4 Save your changes and exit the editor.

To enable a disabled queue

To enable a previously disabled queue, change the WORKERS value in the
msg::register section of appropriate configuration file from –1 to 1. The
number of WORKERS indicates the number of independent and lightweight
processes to be started for this queue. The default configuration uses 1, which
is the HP-recommended value for a Messaging Server that is processing
multiple queues with Data Delivery Agents.

Modifying the Priority in which Messages are Processed

With the adoption of specific queues for each object type, the
priority feature is no longer applicable. However, the code for
processing messages in increasing priority order has not been
disabled.

To modify the priority in which messages are processed, see the earlier topic
How Priority Establishes Messaging Server Processing Order on page on
page 82.

Configuring and Tuning the Messaging Server 113

114 Chapter 3

4 Troubleshooting
At the end of this chapter, you will:

•	 Understand how to resolve common error messages in the rms.log files.
This log file is located in the Logs directory of the root MessagingServer
installation directory.

•	 Understand how to resolve failed posts.

115

Troubleshooting the Messaging Server

The Messaging Server log file is located in the Logs directory of the root
MessagingServer installation directory.

Problem: Log indicates no route defined or failed delivery

Your Messaging Server log includes WARNING and ERROR messages
indicating 'no route defined for default' and 'failed to deliver to default', as
shown below.

Warning: router1: To: default, From: <rcs>@<rcs_hostname>, subject: - no route defined for
default

Error: MSG/QUEUE: q2: To: default, From: <rcs>@<rcs_hostname>, subject: - failed to deliver to
default

Solution:

These messages indicate that one or more QMSG calls in ZTASKEND are
missing a -to parameter and or value. When this happens, the word 'default'
becomes the -to value for that message. Since the Messaging Server does not
have a route defined for messages labeled with a -to value of default, it
cannot route the message and writes these warning and error messages to
the log.

The solution is to review the QMSG calls in ZTASKEND and add any missing
-to parameters or missing values. As delivered, QMSG -to values include: -to
core.rim, -to core.rmp, -to inventory, and -to inventory.wbem,
although there may be others. For details, see the QMSG Method Syntax on
page 80.

Problem: Error 404 or 500

You receive Error 404 (page not found) or error 500 (server internal error) for
all attempted posts to a RIM Server.

116 Chapter 4

Solution:

Review the *.sql files located in the /etc/sql folder of your Radia
Integration Server (RIS). Check the bottom of your sql files to see if there is a
commented out section that looks like:

#sql::url . . .

The solution for Error 404 or Error 500 is to remove the # (pound sign) to un
comment this line.

•	 If you do not have any customizations, you can move all of the *.sql files
out of the /etc/sql directory (place them in an outside location), and
then stop and start RIS. This unpacks the new .sql files, which should
fix the error.

•	 If you have more than one customization, use the following steps to
correct the problem and still keep your customizations:

a	 Locate any *.sql files that you have customized in the /etc/sql
folder.

The HP-delivered default .sql files will be located in
the /etc/sql/hp directory. The data delivery agents will
load the customized files from the /etc/sql directory first,
if a file is not found in the /etc/sql directory, it loads it
from the /etc/sql/hp directory. Therefore the customized
files will always take precedence over the default files.

b	 Delete the remaining *.sql files from the /etc/sql/hp folder.

c	 Restart RIS to unpack a new set of *.sql files into the default
location of /etc/sql/hp.

d	 Go to where you placed the customized *.sql files, and un-comment
the sql::url line at the bottom of each file.

e	 Restart the RIS service.

If you have any questions regarding this document or this code, please refer
to the HP OpenView support web site.

Troubleshooting 	 117

Summary

•	 Review the common error messages and solutions given in this topic to
troubleshoot Messaging Server problems.

•	 Failed posts can be the result of the line "sql::init" being commented out
in one or more files in the /etc/sql folder of your RMI server's
installation directory.

118	 Chapter 4

A	 Optional Messaging Server
Configurations

The Messaging Server can be adapted to meet various messaging needs.
While this appendix is not comprehensive, it presents a few simple models for
using the Messaging Server in alternative configurations. These
configurations include:

•	 Example 1: Configuring the Messaging Server for Store and Forward on
page 120.

•	 Example 2: Configuring the Messaging Server to Route Objects from a
Single \data\default Queue.

•	 Example 3: Configuring Messaging Server to Route to Multiple Queues
on page 133.

Example 3 is for illustrative purposes only. We advise you to contact
HP OpenView Technical Support to discuss your individual needs
before making substantial changes to your Messaging Server
configuration. In addition, remember to fully test any new
configurations in a non-production environment, including the use
of stress-tests that duplicate production volumes.

119

Example 1: Configuring the Messaging Server for
Store and Forward

The Messaging Server includes store and forward capabilities that allow you
to create a multiple-Messaging Server environment. When a Messaging
Server is used for store-and-forward processing, messages are forwarded from
one Messaging Server to another, before being sent to their final destination.
This is illustrated in Figure 5 below.

Figure 5 Store and Forward "Hop"

The concept of Store and Forward is moving the messages through the
network to a location closer to where the work will be done on them. The
messages in essence "hop" from RMS to RMS. The forwarding messaging
servers route data using HTTP or HTTPS.

The first data queue drains very quickly, since there is no data "processing"
taking place on the sending or receiving end. For example, you can configure
the Messaging Server on the Configuration Server to forward all inventory
messages to another, remote, Messaging Server. This configuration drains
the inventory messages from the Configuration Server location quickly,
freeing up Configuration Server resources for client-resolution tasks.

The following topics explain how to create a store and forward messaging
environment:

•	 Installing and Configuring a "Receiving" Messaging Server begins on
page 121.

120	 Appendix A

• Configuring a Messaging Server to Forward Messages to another
Messaging Server begins on page 125.

Installing and Configuring a "Receiving" Messaging Server

The concept of Store and Forward is moving the messages through the
network to a location closer to where the work will be done on them. The
messages in essence "hop" from RMS to RMS. The downstream RMS can
actually reside on the same server as the SQL server avoiding any problems
using ODBC across the network.

Using the Store and Forward, messages will be forwarded to a "Receiving"
Messaging Server from a "Sending" Messaging Server using HTTP or
HTTPS. To accomplish this, rms.cfg and the various *.dda.cfg files need to
be configured for either sending or receiving messages after installation.

When using DDAs, the sender and receiver modifications need to be made to
each of the dda.cfg modules that are processing messages.

Tip! Diagram your network topology noting the IP address and port
configurations of the initial receiver (this will be the server where
the RCS is hosted), of any intermediate RMS servers, and of the
final destination RMS being used to post data. For the final
destination RMS, also note how you are posting the data: via ODBC
to a SQL-compliant server or via HTTP to a RMP or RIM.

Optional Messaging Server Configurations 121

About the RMS Receiver

The RMS is configured for receiving messages in its { TYPE HTTPD }
section. The default rms.cfg file includes the following settings in that
section:

msg::register httpd {

TYPE HTTPD

PORT 3461

USE default

 URL /proc/rim/default

 URL /proc/xml/obj

}

In these rms.cfg settings:

•	 PORT 3461 is the default listening port for receiving incoming messages.

•	 USE specifies the name of the QUEUE type to deposit messages into
when messages are received.

•	 URL specifies which URL strings will be accepted.

Using the default settings above and assuming the server name and port this
listener resides on is TESTSERVER and 3461, a message sent with the
following URL will be received and placed in the queue defined by default:

http://TESTSERVER:3461/proc/rim/default

Configuring the Receivers for the .dda Modules

There is only one listening port specified for an RMS instance. The Port
specification is made in rms.cfg. Each of the .dda modules can specify
separate USE and URL parameters for each of the types of messages they
deal with. This is an example of the listener for the CORE object messages.

122	 Appendix A

http://TESTSERVER:3461/proc/rim/default

This default configuration is in the core.dda.cfg:

msg::register corehttpd {

TYPE HTTPD

 URLHANDLER {

 USE coreq

 URL /proc/core

}

}

To specify more than one pair of queue and URL entries, you can code an
additional URLHANDLER.

If we assume the RMS server name is TESTSERVER and the listening Port
is 3461, then the previous configuration allows messages sent with the
following URL to be placed in the queue identified as coreq.

http://TESTSERVER:3461/proc/core

By default the coreq is defined as:

msg::register coreq {

TYPE QUEUE

DIR {../ConfigurationServer/data/core}

USE corerouter

POLL 10

COUNT 100

DELAY 3600

 ATTEMPTS 200

}

so the messages received on the url:

http://TESTSERVER:3461/proc/core

would be queued in the directory ../ConfigurationServer/data/core,
which is the directory specified by coreq.

Optional Messaging Server Configurations 123

http://TESTSERVER:3461/proc/core
http://TESTSERVER:3461/proc/core

Running the Installation for a Receiving Server and DDAs

•	 Run the install, and load any Data Delivery Agents that will be handling
messages on the receiving server. For example, if this server is only being
used to receive and post Patch objects to the Patch database, (and is not
processing any Inventory objects), you can just select the Patch DDA
during the install.

•	 When prompted for the Message Directory to Scan, choose a location on
the existing server that includes the same \data\<queue_name>
directory convention as the sending Messaging Server. If the directory
you specify does not exist, it will be created.

For example, when prompted for the RMS Message Directories to Scan,
you could type:

C:\MessagingServer\data\default

And for the Core Message Directory to Scan, you could type:

C:\MessagingServer\data\core

The scan directory entries define the DIR value in the { TYPE QUEUE }
section of the rms.cfg and dda.cfg files.

All directory entries in *.cfg files must use forward slashes (/).

msg::register coreq {

TYPE QUEUE

DIR {C:/MessagingServer/data/core}

USE corerouter

•	 Once started, the receiving Messaging Server queues messages sent to it
in the newly created "Message Directory to Scan" location. The Messaging
Server and DDAs will scan and process these messages as specified by
the appropriate data delivery agent configuration file.

•	 Review the Data Delivery Agent configuration file(s) for the appropriate
routing of the messages being received. See the topics in the chapter
Configuring and Tuning the Messaging Server on page 71.

124	 Appendix A

Configuring a Messaging Server to Forward Messages to
another Messaging Server

About Forwarding Messages to a Receiving Messaging Server or DDA

To Forward messages, you generally want to configure the RMS or DDAs to
empty their queues using HTTP, and send the messages to a receiver RMS.

Let's assume the RMS was installed with DDAs for each of the Inventory
objects (CORE, INVENTORY, and WBEM DDAs), and we want to forward
those messages to another RMS installed with those DDAs listening
downstream. We want the DDAs on the downstream RMS to post the data to
a SQL-compliant database using ODBC.

By default, the dda.cfg files are configured to route the messages identified
with the "TO" destination label of CORE.ODBC to the section defined with
TYPE COREODBC.

The new ZTASKEND release specifies the -to parameter as
CORE.ODBC, check the ZTASKEND specification to make sure of
this.

To have the DDAs configured to forward messages to a DDA on another
RMS, we want to tell the DDA to route them using HTTP to another DDA on
a downstream server. The needed changes are given in the following
procedures.

To configure a Messaging Server to forward messages to another Messaging
Server

Use this procedure to modify the configuration files on an existing Messaging
Server so messages are forwarded to another Messaging Server—instead of to
their final destination.

•	 If you are using data delivery agents, make these changes to the
configuration file for each agent currently processing the messages that
are to be forwarded.

•	 If you are not using data delivery agents, make these changes to the
rms.cfg file.

1	 Stop the RMS service.

2	 Edit the appropriate cfg file for the Server or Agent that is currently
processing those messages that are to be forwarded. For example, to
forward the core.odbc messages, edit the core.dda.cfg file. For more

Optional Messaging Server Configurations 125

information on each type of *.cfg file, see Editing the Configuration File
on page 84.

3	 Locate the TYPE ROUTER section in the *.cfg file. For example:
'msg::register corerouter' is the TYPE ROUTER section in the
core.dda.cfg file. For a data type that is being routed to a section with
TYPE *ODBC, switch the USE parameter to the label for a
{ TYPE HTTP } section.

Table 10 on page 127 shows the USE parameter being switched from
coreodbc to coreforward. This reroutes the CORE.ODBC data from a { TYPE
COREODBC } section to a {TYPE HTTP } section.

The core, inventory and wbem *.dda.cfg files include TYPE
HTTP sections named coreforward, inventoryforward, and
wbemforward, respectively.

The coreforward section is defined to route the CORE.ODBC data, using
HTTP, to the Messaging Server and Port named in the URL. The next
step is to replace the default values in the URL to specify the downstream
Messaging Server (see the next step).

4	 In the coreforward section, specify the IP address or host name in the
URL entry to identify the receiving Messaging Server and port number.
The default Store and Forward port number for the Messaging Server is
3461.

Table 10 on page 127 shows the modifications made to the coreforward
and corerouter sections to foreword the CORE.ODBC data to a downstream
server named DOWNSTREAM.

a	 In the ROUTER section labeled corerouter, the route for

CORE.ODBC data was changed from 'USE coreodbc' to 'USE

coreforward'.

b	 In the HTTP section labeled coreforward, the URL specifying the
ADDRESS was modified to include the host name of our Messaging
Server:

URL http://DOWNSTREAM:3461/proc/core

126	 Appendix A

http://DOWNSTREAM:3461/proc/core

Table 10 Sample forwarding modifications to the CORE.DDA.CFG file

Original CORE.DDA.CFG Entries

..

msg::register corerouter {

 TYPE ROUTER

ROUTE {

 TO CORE.ODBC

USE coreodbc

 }

ROUTE {

 TO CORE.RIM

 USE corerim

}

ROUTE {

TO CORE.RMP

 USE /dev/null

}

}

msg::register coreodbc {

TYPE COREODBC

DSN ""

USER "
"

PASS "{DES}:0"

DSN_ATTEMPTS 1

 DSN_DELAY 5

 DSN_PING 300

}

Edits to Forward CORE.ODBC Data

..

msg::register corerouter {

 TYPE ROUTER

ROUTE {

 TO CORE.ODBC

USE coreforward

 }

ROUTE {

 TO CORE.RIM

 USE corerim

}

ROUTE {

TO CORE.RMP

 USE /dev/null

}

}

. . .

msg::register coreforward {

TYPE HTTP

ADDRESS {

PRI 10

URL http://DOWNSTREAM:3461/proc/core

}

}

Optional Messaging Server Configurations 127

http://DOWNSTREAM:3461/proc/core

5	 To forward message types that are currently being routed to a TYPE
HTTP section, such as 'msg::register rim' and 'msg::register
rmp', all you need to do is modify the URL specified in those sections.
Change the host and port in the URL entry to specify the host and port of
the receiving RMS server. Keep the rest of the URL entry the same.

The format for various URL entries is given below:

For msg::register rim and msg::register corerim:

 URL http://<RMS_hostname:port>/proc/rim/default

For msg::register rmp and msg::register corermp:

 URL http://<RMS_hostname:port>/proc/xml/obj

Where:

RMS_hostname can be specified using an IP address or a DNS name, and

Port is the store and forward port for the RMS, normally 3461.

6	 Save the changes to the configuration files that were edited. On the
downstream server hosting the RMS, the RMS listener on port 3461
requires an HTTPD section in its configuration file to accept the URLs
and place the accepted message in the specified queue. For more
information on the HTTPD section, see About the RMS Receiver on page
122.

7	 Restart the RMS Service. For details, see Starting and Stopping the
Messaging Server on page 65.

128	 Appendix A

http://<RMS_hostname:port>/proc/rim/default
http://<RMS_hostname:port>/proc/xml/obj

Example 2: Configuring the Messaging Server to

Route Objects from a Single \Data\Default Queue

Messaging Server versions prior to 3.0 routed objects placed by QMSG into a
single queue location of \data\default. The topics that follow discuss the
sections in the rms.cfg file that are needed to post messages from the
\data\default queue to the appropriate locations.

The msg::register default section is not normally used as of
Messaging Server v3.0. It is still supported for customers who are
not migrating to the use of multiple queue locations and data
directory objects.

•	 msg::register default (optional)
Defines how the Messaging Server handles the messages placed by
QMSG in the /data/default folder (or, the /data/default queue).

•	 The parameters are defined in About the Sections in the
CORE.DDA.CFG File, and summarized below:

—	 DIR defines the full path of the /data/default location. This is set
at installation time.

—	 USE defines where the routing information for each TO label is
located.

—	 POLL and COUNT establish the polling interval and post quantity
for the Messaging Server, which determines how often and how many
messages are posted at a time. To adjust this, see the topic
Configuring the Poll Interval and Post Quantity on page 106.

—	 Retry Attempts (DELAY and ATTEMPTS), after maximum retry
attempts, a message is automatically discarded

—	 WORKERS parameter (optional). If not specified, a default of one
WORKER is used. You can add the following line to increase the
number of WORKERS:

WORKERS 2

Set to 2, or up to 4. You can disable processing by setting WORKERS
to –1.

•	 msg::register router
Configures routing assignments for each –To type. This section enables
you to route messages to more than one destination. It also allows you to

Optional Messaging Server Configurations 129

route messages to a set disposal location of /dev/null. At least one route
is specified for each –To type:

-To inventory

-To inventory.wbem

-To rim.core

-To rmp.core

-To patch

Match the routing for each –to type of object being posted by
the QMSG executable. These can be verified by browsing the
ZTASKEND rexx file for calls to QMGS.

•	 msg::register <USE type> (for example: msg::register rim, msg::register
rmp, etc.) These are the initial definition of HTTP locations established
during installation.

—	 Configure the section for Failover. See Configuring for Failover on
page 106.

—	 Configure the section to Discard Messages. See Configuring the
Messaging Server to Discard or Drain Messages on page 109.

•	 (Optional) Configure the maximum log size and number of logs.
Note that these options apply for each Worker assigned to process the
/data/default queue. See Configuring the Log Level, Log Size and
Number on page 107 for details.

130	 Appendix A

Configuring the Register Default Section

Use the following table to modify the parameters in the msg::register default
section of rms.cfg.

Table 11 RMS.CFG Parameters used to Define the /Data/Default Queue

Parameter Default Definition

TYPE QUEUE Registration type. Do not change this value.

DIR ../ConfigurationSer
ver/data/default

Directory where your Configuration Server
(through QMSG.exe) will queue XML objects to
post. Edit the DIR value to reflect the full path
of your data/default directory using forward
slashes for both Windows and UNIX platforms.

USE router Internal setting telling the program what
process to use. Do not change this setting.

POLL 10 Delay in seconds for polling the local store of
objects to be posted. Increase this value to
support the posting of large objects, such as
those for Operational reports.

COUNT 100 How many XML objects will be posted at each
POLL interval.

DELAY 3600 Amount of time in seconds to retry a failure.

ATTEMPTS 200 How many times the Messaging Server will try
to post a message before discarding it.
Note: DELAY * ATTEMPTS gives the maximum
time a message will stay in the queue before
automatic discard. Using the default values of
DELAY and ATTEMPTS, a message is discarded
after approximately 8 days of failed posting
attempts.

Optional Messaging Server Configurations 131

Parameter Default Definition

WORKERS 1 Optional entry. Number of asynchronous,
lightweight processes to create for this queue.
To drain a queue more quickly, we recommend
using WORKERS set to 2. A second worker
doubles the processing power of a single
Messaging Server configuration, with each
worker performing a separate POLL and
COUNT.

Using more than 4 WORKERS is NOT
recommended.
Note: Set to –1 (minus 1) to temporarily disable
a queue from being processed.

132 Appendix A

Example 3: Configuring Messaging Server to Route
to Multiple Queues

This example configures the Messaging Server to route messages from a
single queue to multiple queues based on their destination. A message's
destination is defined by the -to parameter value passed from QMSG and
stored in the meta-data in the message file.

In the RMS configuration shown in Figure 6 on page 134, all messages will be
placed in the standard location (the directory C:/Novadigm
/ConfigurationServer/data/default) when they are created by QMSG.
We want to have the Messaging Server route these messages into separate
message queues before they are processed. In the code sample that follows,
we define the routes for CORE.RIM and CORE.RMP messages to use queue1 and
queue2 definitions. The new queue1 and queue2 definitions direct the
CORE.RIM messages to the C:/rim directory and the CORE.RMP messages to
the C:/rmp directory.

Additional sections must be coded in rms.cfg to complete the routing of the
messages. However, this example illustrates the basic concept of routing
messages from a single queue to multiple queues, before routing them to
processing destinations.

Additional sections must be coded in rms.cfg to complete the routing of the
messages. However, this example shows the basics of how you can route
messages from a single queue to multiple queues, before routing to processing
destinations.

The following is a sample RMS configuration sorting messages into multiple
queues.

Optional Messaging Server Configurations 133

Figure 6 Sample RMS configuration sorting messages into multiple queues

msg::register default {

TYPE QUEUE

DIR ../ConfigurationServer/data/default

USE router1

POLL 10

COUNT 100

DELAY 3600

ATTEMPTS 200

}

msg::register router1 {

TYPE ROUTER

ROUTE {

TO CORE.RIM

USE queue1

}

ROUTE {

TO CORE.RMP

USE queue2

}

}

msg::register queue1 {

TYPE QUEUE

DIR C:/rim

 }

134 Appendix A

 msg::register queue2 {

TYPE QUEUE

DIR C:/rmp

}

Optional Messaging Server Configurations 135

Example 4: Configuring Data Delivery Agents to
Route to Multiple DSNs using ODBC

This example configures the CORE Data Delivery Agent to post CORE
messages to two different DNSs using ODBC. This is done by creating two
separate queues and posting the data from each queue to a separate DSN.

In the example that follows, following modifications are made:

1	 The corerouter section is modified to route each CORE.ODBC message
to two DSN's via two separate queues. The first ROUTE is defined to use
coreodbcq1 and the second ROUTE is defined to use coreodbcq2.

2	 Processing of the first queue continues as follows:

a	 A QUEUE for coreodbcq1 is defined and routes its messages to
coreodbcq1router.

b	 A ROUTER for coreodbcq1router is defined. It routes the messages to
a COREODBC section named coreodbc1.

c	 A COREODBC section is defined named coreodbc1. This is where
the messages are posted to the first DSN using ODBC.

To encrypt the DSN password entry, see To encrypt a password
entry for a database DSN in a configuration file on page 97.

3 Processing of the second queue basically duplicates the first:

a	 A QUEUE for coreodbq2 is defined and routes its messages to
coreodbcq2router.

b	 A ROUTER named coreodbc2router is defined. It routes messages
to a COREODBC section named coreodbc2.

c	 A COREODBC section is defined with the name coreodbc2. Here is
where the second DSN is defined and the messages are posted using
ODBC.

See Figure 7 which follows for a sample core.dda.cfg file configured with
these sections.

136	 Appendix A

Figure 7 Sample CORE.DDA.CFG configured to post data to multiple DSNs

#select core.dda.cfg sections modified to route each message to 2 DSN's via 2 separate queues

msg::register corerouter {

 TYPE ROUTER

ROUTE {

 TO CORE.ODBC

USE coreodbcq1

 }

ROUTE {

 TO CORE.ODBC

USE coreodbcq2

 }

ROUTE {

TO CORE.RMP

 USE rmpq

}

}

#first queue - coreodbcq1 - routes to first DSN

msg::register coreodbcq1 {

 TYPE QUEUE

DIR {../ConfigurationServer/data/coreodbcq1}

USE coreodbcq1router

Optional Messaging Server Configurations 137

 POLL 10

COUNT 100

 DELAY 3600

ATTEMPTS 200

}

msg::register coreodbcq1router {

TYPE ROUTER

ROUTE {

 TO CORE.ODBC

USE coreodbc1

}

}

msg::register coreodbc1 {

TYPE COREODBC

DSN "RIMSQL"

USER "sa"

PASS "{DES}:0"

DSN_ATTEMPTS 1

 DSN_DELAY 5

 DSN_PING 300

}

#second queue - coreodbcq2 - routes to second DSN

msg::register coreodbcq2 {

138 Appendix A

 TYPE QUEUE

DIR {../ConfigurationServer/data/coreodbcq2}

USE coreodbcq2router

POLL 10

COUNT 100

 DELAY 3600

ATTEMPTS 200

}

msg::register coreodbcq2router {

TYPE ROUTER

ROUTE {

 TO CORE.ODBC

USE coreodbc2

}

}

added additional COREODBC type for second DSN

refer to RMS Guide for instructions on encrypting password

msg::register coreodbc2 {

TYPE COREODBC

DSN "RIMSQL2"

USER "sa"

PASS "{DES}:0"

DSN_ATTEMPTS 1

 DSN_DELAY 5

 DSN_PING 300

}

Optional Messaging Server Configurations 139

This is the end of the topics for alternative configurations.

140 Appendix A

Index

A
Adapter for SSL, enabling for Messaging Server, 62

Application Management Profiles, 32

ATTEMPTS value, 85, 106

AUTOCREATE

in WBEMODBC section, 96

B
BOOTSTRAP phase, 76

BuildAlways, 80

C
calls to QMSG, 76

CATALOG RESOLUTION phase, 77

CATALOG_RESO, 77

client object processing, 72

CLIENT SELFMAINTENANCE phase, 77

CLIENT_REPORTIN, 77

CLIENT_REPORTING phase, 77

CLISTAT, 20

CLISTATS object, 79

configuration files, location, 84

Core Data Delivery Agent

configuration window, 33

configuring, 93

configuring during install, 46

CORE data routing options, 93

ODBC Settings, 96

routing RMP data, 111

routing RMP messages, 111

CORE message data, 19

CORE object data, 21

CORE.DDA.CFG. See Core Data Delivery Agent

CORE.ODBC message, 136

coreforward, 22

coreforward section, 126

COREODBC section type, 88

corerouter section, 126, 136

critical objects, 76

D
Data Delivery Agents, 19

configuring, 84

during install, 27

on a receiving server, 122

to forward messages, 125

defined, 19

installing, 28

installing with Messaging Server, 31

data queue, 110

Default Message Directory, 33

DELAY time, 85, 106

disabled queue, enabling, 113

disabling message processing, 112

discarding messages, 109

DNS host name, 40

draining messages, 109

draining the message queue, 110

E
Error 404 or 500, 116

ERROR message, failed to deliver to default, 116

F
failover, 39, 106

configuring with HTTP routing, 106

FILEPOST object, 21, 79

filepost.tcl, 21

FILTER section type, 88

forwarding messages, 125

141

H
HTTP section type, 86

HTTPD section type, 87

HTTPS

configuring for, 62

HTTPS_PORT in URL, 63

HTTPS section type, 87

I

installation

message directories to scan, 33

platform coverage, 26

select Data Delivery Agents, 31

Store & Forward Port, 41

task overview, 28

UNIX platforms, 26

verifying, 67

Windows platforms, 26

with Store and Forward, 124

Inventory Data Delivery Agent

configuring, 98

configuring during install, 50

ODBC Settings, 96

routing options, 98

Inventory Manager

critical core objects, 76

Inventory Manager Server, 20

INVENTORY message data, 20

INVENTORY.DDA.CFG. See Inventory Data

Delivery Agent

inventoryforward, 22

InventoryQueue, 80

J
JOBPARM object, 80

JOBSTAT object, 80

JOBTASK object, 80

L
log files

log level, changing, 108

142

size and number, changing, 108

M
Management Portal

critical core objects, 76

discarding messages for, 109

routing messages to, 111

Messaging Server

configuring, 84

Data Delivery Agents, introduction, 19

installing, 26

introduction, 16

Inventory data, routing options, 20

overview, 18

processing on the Configuration Server, 17

store and forward configurations, 120

store and forward, introduction, 22

system requirements, 26

troubleshooting, 115

tuning topics, 106

meta data files, 19

msg::register, 131

multiple DSNs, sample configuration, 136

N
nvdkit, encrypt password, 97, 105

O
ODBC section type, 87

ODBC Settings

configuring for ODBC routing, 96

for Patch objects, 104

P
password encryption, 97, 104

Patch Data Delivery Agent

configuring, 103

configuring during install, 58

Patch Manager, post-installation procedures, 61

PATCH message data, 20

PATCH.DDA.CFG. See Patch Data Delivery Agent

PATCH_STATUS, 19

Appendix A

modifying, 61

PATCHFILTER section type, 89

PATCHODBC section type, 89

PID, obtaining from rms.log, 66

platform coverage, 26

Poll interval and post quantity, 106

post-installation procedures, 61

PRI value, 106

Q
QMSG, 18, 116

called

from PATCH_STATUS, 75

from ZTASKEND, 75

destinations and Data Delivery Agent locations, 81

how it formats messages, 72

message syntax, 80

priority parameter, 82

QMSG call syntax, 76

queue

disabling, 112

draining, 110

names on Configuration Server, 19

QUEUE section type, 85

R
Radia Messaging Service

as a Windows service, 19

starting and stopping, 65

retry attempts, configuring, 106

RMP IP address, 40

RMP Por, 41

rmpq, 110

rmpqhttp, 110

rmprouter, 110

RMS.CFG, 28

configuring, 90

dda module load statements, 91

log configuration, 91

log initialization, 91

modifying, 89

required packages, 91

Index

routing sections, 92

SSL certificate section, 91

rms.log, 107

PID for Radia Messaging Service, 66

ROUTER section type, 86

S
section types, 84

SERVICE RESOLUTION phase, 77

SQL database, 20

SSL

enabling for Messaging Server, 62

HTTPS_PORT, 63

SSL_CERTFILE, 63

SSL_KEYFILE, 63

STARTUPLOAD, 21, 97

in COREODBC section, 88

Store and Forward, 22, 120

about the receiving server, 121

about the sending server, 125

configuring a forwarding server and DDAs, 125

installing a receiving server and DDAs, 124

port number, 41

sample CORE.DDA.CFG to forward messages, 127

T
taskend.tcl, 21

troubleshooting, 115

tuning, 106

U
URLHANDLER, 94, 98, 101, 123

USE parameter, 109, 126

V

verify installation, 67

W
WARNING, no route defined for default, 116

Wbem Data Delivery Agent, 53

configuring, 100

143

configuring during install, 53

ODBC Settings, 96

routing options, 100

WBEM message data, 20

WBEM.DDA.CFG. See Wbem Data Delivery Agent

WBEMAUDT object, 79

wbemforward, 22

WBEMODBC section type, 89

Windows service, 19

WORKERS, how to disable, 112

X

XML files, 19

144

Z
ZERROR, 77

ZERRORM, 77

ZMTHPRMS

queue value, 37

ZMTHPRMS, modifying queue name for patch, 61

ZOBJSTAT, 20

ZTASKEND, 18, 116

about, 75

critical core object processing, 76

modifying always objects, 79

modifying for critical objects, 79

RMS 2.x and 3.x processing, 80

Appendix A

	1 Introduction
	About the Messaging Server
	Features and Capabilities
	Benefits over Previous Implementations
	Messaging Server Processing on the Configuration Server
	About the Data Delivery Agents
	About Routing Inventory Data

	About the SQL Database Tables and Scripts
	About Using Store and Forward

	About this Guide
	Summary

	2 Installing the Messaging Server
	Messaging Server Installation
	Platform Coverage
	Tips
	Tips for Installing Data Delivery Agents

	Installation Procedures for Windows and UNIX
	Overview of Installation Tasks

	Post-Installation Procedures
	Verify the Patch Method Connection and Queue Name
	Enabling HTTPS Routing using SSL
	Reconfiguring the Messaging Server for RMS 2.x Processing

	Starting and Stopping the Messaging Server
	Windows Procedures
	UNIX Procedures

	Verify Installation
	Summary

	3 Configuring and Tuning the Messaging Server
	Understanding the Configuration Server Modules that Support
	Getting Client information to the Messaging Server (RMS)
	About the Patch Method for Collection
	About the ZTASKEND REXX method
	ZTASKEND calls to QMSG
	Processing Phase-Dependent Objects
	Processing Always Objects
	Processing under RMS Version 2.x and RMS Version 3.x

	QMSG Method Syntax
	How Priority Establishes Messaging Server Processing Order

	Configuring the Messaging Server
	Editing the Configuration Files for the Messaging Server and

	About the Sections in the RMS.CFG File
	About the Sections in the CORE.DDA.CFG File
	ODBC Settings for CORE, INVENTORY and WBEM Objects

	About the Sections in the INVENTORY.DDA.CFG File
	About the Sections in the WBEM.DDA.CFG File
	About the Sections in the PATCH.DDA.CFG File
	ODBC Settings for PATCH Objects

	Additional Tuning Topics
	Configuring the Poll Interval and Post Quantity
	Configuring for Retry Attempts
	Configuring for Failover
	Configuring the Log Level, Log Size and Number
	Changing the Logging Level
	Changing the Size and Number of Log Files

	Configuring the Messaging Server to Discard or Drain Message
	Configuring the Messaging Server to Route RMP Messages
	About the Management Portal Data Queue (rmpq) in CORE.DDA.CF
	Restoring Routing for Management Portal Messages

	Disabling Processing of Messages in a Queue
	Modifying the Priority in which Messages are Processed

	4 Troubleshooting
	Troubleshooting the Messaging Server
	Problem: Log indicates no route defined or failed delivery
	Solution:
	Problem: Error 404 or 500
	Solution:

	Summary

	Optional Messaging Server Configurations
	Example 1: Configuring the Messaging Server for Store and Fo
	Installing and Configuring a "Receiving" Messaging Server
	About the RMS Receiver
	Configuring the Receivers for the .dda Modules
	Running the Installation for a Receiving Server and DDAs

	Configuring a Messaging Server to Forward Messages to anothe
	About Forwarding Messages to a Receiving Messaging Server or

	Example 2: Configuring the Messaging Server to Route Objects from a Single \Data\Default Queue
	Configuring the Register Default Section

	Example 3: Configuring Messaging Server to Route to Multiple
	Example 4: Configuring Data Delivery Agents to Route to Mult

	Index

