

Mercury QuickTest Professional
for Business Process Testing

User’s Guide
Version 9.0

Mercury QuickTest Professional for Business Process Testing User’s Guide, Version 9.0

This manual, and the accompanying software and other documentation, is protected by U.S. and
international copyright laws, and may be used only in accordance with the accompanying license
agreement. Features of the software, and of other products and services of Mercury Interactive
Corporation, may be covered by one or more of the following patents: United States: 5,511,185;
5,657,438; 5,701,139; 5,870,559; 5,958,008; 5,974,572; 6,137,782; 6,138,157; 6,144,962; 6,205,122;
6,237,006; 6,341,310; 6,360,332, 6,449,739; 6,470,383; 6,477,483; 6,549,944; 6,560,564; 6,564,342;
6,587,969; 6,631,408; 6,631,411; 6,633,912; 6,694,288; 6,738,813; 6,738,933; 6,754,701; 6,792,460
and 6,810,494. Australia: 763468 and 762554. Other patents pending. All rights reserved.

Mercury, Mercury Interactive, the Mercury logo, the Mercury Interactive logo, LoadRunner,
WinRunner, SiteScope and TestDirector are trademarks of Mercury Interactive Corporation and may
be registered in certain jurisdictions. The absence of a trademark from this list does not constitute a
waiver of Mercury's intellectual property rights concerning that trademark.

All other company, brand and product names may be trademarks or registered trademarks of their
respective holders. Mercury disclaims any responsibility for specifying which marks are owned by
which companies or which organizations.

Mercury Interactive Corporation
379 North Whisman Road
Mountain View, CA 94043
Tel: (650) 603-5200
Toll Free: (800) TEST-911
Customer Support: (877) TEST-HLP
Fax: (650) 603-5300

© 1992 - 2006 Mercury Interactive Corporation, All rights reserved

If you have any comments or suggestions regarding this document, please send them via e-mail to
documentation@mercury.com.

QTP4BPTUG9.0/01

iii

Table of Contents

Welcome...xi
Using This Guide ..xi
Product Documentation.. xiii
Additional Online Resources..xiv
Documentation Updates ..xvi
Typographical Conventions..xvii

PART I: INTRODUCING BUSINESS PROCESS TESTING

Chapter 1: Using QuickTest Professional for
Business Process Testing...3

About Using QuickTest Professional for Business Process Testing5
Understanding Business Process Testing...6
Understanding QuickTest Professional for Business Process

Testing Terminology...11
Setting Required Access Permissions...13
Using the Sample Site..14
Modifying License Information ..15
Updating the QuickTest Software ...16

Chapter 2: QuickTest at a Glance..17
Starting QuickTest ...18
Connecting to Your Quality Center Project20
The QuickTest Window...25
Keyword View ...29
Application Area..37
Function Library..39
Information Pane ..40
Missing Resources Pane ...40
Debug Viewer Pane..41
Customizing the QuickTest Window Layout......................................42
Working With Multiple Documents ...51

Table of Contents

iv

Using QuickTest Commands...53
Browsing the QuickTest Professional Program Folder64
Viewing Product Information ...68

PART II : WORKING WITH APPLICATION AREAS AND COMPONENTS

Chapter 3: Working with Application Areas.......................................73
About Working with Application Areas..74
Creating an Application Area..76
Opening an Application Area..79
Defining General Settings ...81
Managing Function Libraries ..87
Managing Shared Object Repositories ..92
Managing Keywords ..99
Defining Additional Settings...103
Saving an Application Area ...112
Deleting an Application Area ..114

Chapter 4: Working with Business Components..............................117
About Working with Business Components.....................................118
Creating a New Business Component...120
Saving a Business Component ..123
Opening a Business Component...126
Working with Manual Components...130
Changing the Application Area Associated with a Component.......135
Printing a Component ..137

Chapter 5: Working with Scripted Components139
About Working with Scripted Components140
Creating a Scripted Component ...142
Converting to Scripted Components ..146

Chapter 6: Working with the Business Component
Keyword View ...149

About Working with the Business Component Keyword View150
Adding a Step to Your Component...151
Selecting an Item for Your Step ..155
Selecting the Operation for Your Step ..162
Defining Values for Your Step Arguments ..164
Defining an Output Value for Your Step ..167
Working with Parameters..170
Working with Comments ...178
Managing Component Steps...180

Table of Contents

v

Chapter 7: Handling Missing Resources ...181
About Handling Missing Resources...182
Handling Missing Shared Object Repositories184
Handling Unmapped Shared Object Repository

Parameter Values...185

PART III : CONFIGURING SETTINGS

Chapter 8: Setting Global Testing Options189
About Setting Global Testing Options ..189
Using the Options Dialog Box ..190
Setting General Testing Options ...192
Setting Folder Testing Options..194
Setting Run Testing Options ...196
Setting Windows Application Testing Options198
Setting Web Testing Options ..210

Chapter 9: Working with Business Component Settings225
About Working with Business Component Settings226
Accessing the Business Component Settings Dialog Box227
Working with Component Properties...229
Defining a Snapshot for Your Component.......................................232
Viewing Application Settings ..234
Viewing Component Resources ..236
Defining Parameters for Your Component237
Viewing Web Settings..241
Viewing Recovery Scenario Settings..243

Chapter 10: Customizing a Function Library Window245
About Customizing Function Library Windows...............................246
Customizing Editor Behavior ..247
Customizing Element Appearance ..250
Personalizing Editing Commands...252

Chapter 11: Configuring Web Event Recording...............................255
About Configuring Web Event Recording ..256
Selecting a Standard Event Recording Configuration.......................257
Customizing the Event Recording Configuration259
Recording Right Mouse Button Clicks ..269
Saving and Loading Custom Event Configuration Files...................273
Resetting Event Recording Configuration Settings...........................275

Table of Contents

vi

PART IV: WORKING WITH TEST OBJECTS AND OBJECT REPOSITORIES

Chapter 12: Understanding the Test Object Model.........................279
About Understanding the Test Object Model...................................279
Applying the Test Object Model Concept ..283
Viewing Object Properties Using the Object Spy..............................288
Viewing Object Methods and Method Syntax Using the

Object Spy ...291

Chapter 13: Working with Test Objects ...295
About Working with Test Objects...296
Understanding Object Repository Types ..297
Understanding the Object Repository Window302
Viewing and Modifying Test Object Properties309
Mapping Repository Parameter Values ...331
Adding Objects to the Object Repository ...335
Copying, Pasting, and Moving Objects in the Object

Repository ...343
Deleting Objects from the Object Repository346
Locating Objects..347
Working with Test Objects During a Run Session354
Exporting Local Objects to an Object Repository.............................356

Chapter 14: Configuring Object Identification359
About Configuring Object Identification ...360
Understanding the Object Identification Dialog Box.......................361
Configuring Smart Identification..375
Mapping User-Defined Test Object Classes385

Chapter 15: Managing Object Repositories389
About Managing Object Repositories..390
Understanding the Object Repository Manager392
Working with Object Repositories ..398
Modifying Object Repositories..403
Working with Repository Parameters ...406
Modifying Test Object Details...413
Locating Objects..416
Performing Merge Operations...417
Performing Import and Export Operations.......................................418

Chapter 16: Merging Shared Object Repositories............................421
About Merging Shared Object Repositories422
Understanding the Object Repository Merge Tool423
Using Object Repository Merge Tool Commands.............................428
Defining Default Settings ..430

Table of Contents

vii

Merging Two Object Repositories ...434
Updating a Shared Object Repository from Local Object

Repositories ...437
Viewing Merge Statistics..442
Understanding Object Conflicts ...443
Resolving Object Conflicts ..446
Filtering the Target Repository Pane ...448
Synchronizing Object Repository Views ...449
Finding Specific Objects ..450
Saving the Target Object Repository ...451

PART V: RUNNING AND DEBUGGING COMPONENTS

Chapter 17: Debugging Components and Function Libraries457
About Debugging Components and Function Libraries...................458
Slowing a Debug Session ...460
Using the Single Step Commands...460
Using the Run to Step and Start from Step Commands463
Pausing a Run Session ...465
Using Breakpoints ...466
Using the Debug Viewer..470
Handling Run Errors..472
Practicing Debugging a Function..473

Chapter 18: Running Components ...477
About Running Components..477
Running Your Entire Component...478
Running Part of Your Component..483
Updating a Component ..484

Chapter 19: Analyzing Test Results...491
About Analyzing Test Results ..492
Understanding the Test Results Window..493
Viewing the Results of a Run Session..496
Viewing Parameterized Values in the Test Results Window.............507
Analyzing Smart Identification Information in the Test Results......509
Deleting Test Results ...513
Manually Submitting Defects Detected During a Run Session

to a Quality Center Project ...521
Customizing the Test Results Display ...522

Table of Contents

viii

PART VI: WORKING WITH ADVANCED FEATURES

Chapter 20: Defining and Using Recovery Scenarios527
About Defining and Using Recovery Scenarios528
Deciding When to Use Recovery Scenarios530
Defining Recovery Scenarios ...531
Understanding the Recovery Scenario Wizard534
Managing Recovery Scenarios ...562
Setting the Recovery Scenarios List for Your Application Areas.......566
Programmatically Controlling the Recovery Mechanism571

Chapter 21: Working with User-Defined Functions and
Function Libraries ...573

About Working with User-Defined Functions and Function
Libraries...574

Managing Function Libraries ..575
Working with Associated Function Libraries587
Using the Function Definition Generator ..589
Registering User-Defined Functions as Test Object Methods604
Additional Tips for Working with User-Defined Functions609

Chapter 22: Working with Function Library Windows.....................611
About Working with the Function Library Window........................612
Generating Statements in a Function Library...................................612
Navigating in Function Libraries ..617
Understanding Basic VBScript Syntax...625
Using Programmatic Descriptions...632
Running and Closing Applications Programmatically642
Using Comments, Control-Flow, and Other VBScript

Statements...643
Retrieving and Setting Test Object Property Values651
Accessing Run-Time Object Properties and Methods652
Running DOS Commands...654
Enhancing Your Tests and Function Libraries Using the

Windows API...655
Choosing Which Steps to Report During the Run Session...............658

Chapter 23: Automating QuickTest Operations661
About Automating QuickTest Operations ..662
Deciding When to Use QuickTest Automation Programs663
Choosing a Language and Development Environment for

Designing and Running Automation Programs665

Table of Contents

ix

Learning the Basic Elements of a QuickTest Automation
Program...667

Generating Automation Scripts...668
Using the QuickTest Automation Object Model Reference..............669

PART VII: APPENDIXES

Appendix A: Working with QuickTest Add-Ins673
About Working with QuickTest Add-Ins...673
Loading QuickTest Add-ins ...675
Tips for Working with QuickTest Add-ins ..680
Working with the Web Add-in ...682

Appendix B: Working with QuickTest—
Frequently Asked Questions ...689

Recording and Running Components ..690
 Working with Function Libraries ...691
Working with Dynamic Content ..691
Advanced Web Issues ..692
Component Maintenance ...694
Improving QuickTest Performance ...694

Index..695

Table of Contents

x

xi

Welcome

Welcome to the QuickTest Professional for Business Process Testing User’s Guide,
which explains how to use QuickTest Professional when working with
Business Process Testing.

Note: Mercury Business Process Testing is fully integrated with QuickTest
and Quality Center, and is enabled if your license includes Business Process
Testing support.

Using This Guide

This guide describes how to use QuickTest to create and manage the
application areas on which components are based, including how to define
the various resource files used by components. It also describes how to work
with keyword-driven business components and scripted components for
Business Process Testing in QuickTest Professional.

Note: Although you can also use QuickTest to create scripted components
for use in business process tests, this guide focuses on the functionality and
features associated primarily with business components. You can find
information about the differences between scripted components and
business components in QuickTest in Chapter 5, “Working with Scripted
Components.”

Welcome

xii

This guide contains the following parts:

 Part I Introducing Business Process Testing

Provides an overview of QuickTest and the main stages of the testing process
when working with Business Process Testing.

 Part II Working with Application Areas and Components

Describes how to create and manage application areas, which include all the
resources and settings used by components. This part also describes how to
create and work with business components, scripted components, and the
Business Component Keyword View, and how to handle missing resources.

 Part III Configuring Settings

Describes how to modify QuickTest settings to meet your business process
testing needs.

 Part IV Working with Test Objects and Object Repositories

Describes how QuickTest identifies objects in your application and how to
work with object repositories, including how to manage and merge them.

 Part V Running and Debugging Components

Describes how to run components and their associated function libraries,
analyze results, and control run sessions to identify and isolate bugs.

 Part VI Working with Advanced Features

Describes how to work with advanced QuickTest features, including working
with recovery scenarios, and creating and working with user-defined
functions and function libraries. This part also describes how to automate
QuickTest operations.

 Part VII Appendixes

Describes how to load and work with the QuickTest built-in add-ins and
provides information on frequently asked questions about QuickTest.

Welcome

xiii

Product Documentation

In addition to this Mercury QuickTest Professional for Business Process Testing
User’s Guide, QuickTest Professional comes with the following
documentation:

QuickTest Professional Installation Guide explains how to install QuickTest
Professional.

What’s New (available from Help > What’s New) describes the newest
features, enhancements, and supported environments in this latest version
of QuickTest Professional.

QuickTest Professional Basic Features User’s Guide provides step-by-step
instructions for using QuickTest Professional to test your application or Web
site.

QuickTest Professional Advanced Features User’s Guide provides
information on the more advanced QuickTest Professional features you can
use to test your application or Web site.

Note: the QuickTest Professional Basic Features User’s Guide and the QuickTest
Professional Advanced Features User’s Guide are provided online in a single
volume (QuickTest Professional User's Guide), while the PDF version consists
of two separate books.

QuickTest Professional Tutorial teaches you basic QuickTest skills and shows
you how to design tests for your applications.

Readme (available from the QuickTest Professional Start menu program
folder) provides the latest news and information about QuickTest
Professional.

Printer-Friendly Documentation (available from Help > Printer-Friendly
Documentation) displays the complete documentation set in Adobe
portable document format (PDF). Online books can be read and printed
using Adobe Reader, which can be downloaded from the Adobe Web site
(http://www.adobe.com).

http://www.adobe.com

Welcome

xiv

QuickTest Professional Context-Sensitive Help (available from specific dialog
boxes and windows) describes QuickTest dialog boxes and windows.

QuickTest Professional Object Model Reference (available from Help >
QuickTest Professional Help) describes QuickTest Professional test objects,
lists the methods and properties associated with each object, and provides
syntax information and examples for the methods.

QuickTest Professional Automation Object Model Reference (available from
the QuickTest Professional Start menu program folder and from Help >
QuickTest Automation Object Model Reference) provides syntax, descriptive
information, and examples for the automation objects, methods, and
properties. It also contains a detailed overview to help you get started
writing QuickTest automation scripts. The automation object model assists
you in automating test management, by providing objects, methods and
properties that enable you to control virtually every QuickTest feature and
capability.

VBScript Reference (available from Help > QuickTest Professional Help)
contains Microsoft VBScript documentation, including VBScript, Script
Runtime, and Windows Script Host.

Additional Online Resources

QuickTest Professional includes the following additional online resources:

Mercury Tours sample Web site (available from the QuickTest Professional
Start menu program folder and also available from the QuickTest
Professional Record and Run Settings dialog box) and the Mercury Tours
Windows sample flight application (available from the QuickTest
Professional Start menu program folder) are the basis for many examples in
this book. The URL for the Web site is http://newtours.mercury.com.

Knowledge Base (available from Help > Knowledge Base) uses your default
Web browser to open the Mercury Customer Support knowledge base, which
enables you to browse the Mercury and user-contributed knowledge base
articles, and add your own articles. The URL for this Web site is
http://support.mercury.com/cgi-bin/portal/CSO/kbBrowse.jsp.

http://newtours.mercuryinteractive.com
http://support.mercury.com/cgi-bin/portal/CSO/kbBrowse.jsp

Welcome

xv

Customer Support Web Site (available from Help > Customer Support Web
Site) uses your default Web browser to open the Mercury Customer Support
Web site. This site enables you to browse the knowledge base and add your
own articles, post to and search user discussion forums, submit support
requests, download patches and updated documentation, and more. The
URL for this Web site is http://support.mercury.com.

Send Feedback (available from Help > Send Feedback) enables you to send
online feedback about QuickTest Professional to the product team.

Mercury Home Page (available from Help > Mercury Home Page) uses your
default Web browser to open the Mercury home page. This site provides you
with the most up-to-date information on Mercury and its products. This
includes new software releases, seminars and trade shows, customer support,
educational services, and more. The URL for this Web site is
http://www.mercury.com.

Mercury Best Practices contain guidelines for planning, creating, deploying,
and managing a world-class IT environment. Mercury provides three types
of best practices: Process Best Practices, Product Best Practices, and People
Best Practices. Licensed customers of Mercury software can read and use the
Mercury Best Practices available from the Customer Support site,
http://support.mercury.com.

http://support.mercury.com
http://support.mercury.com
http://www.mercury.com

Welcome

xvi

Documentation Updates

Mercury is continually updating its product documentation with new
information. You can download the latest version of this document from
the Customer Support Web site (http://support.mercury.com).

To download updated documentation:

 1 In the Customer Support Web site, click the Documentation link.

 2 Under Please Select Product, select QuickTest Professional.

Note that if QuickTest Professional does not appear in the list, you must add
it to your customer profile. Click My Account to update your profile.

 3 Click Retrieve. The Documentation page opens and lists the documentation
available for the current release and for previous releases. If a document was
updated recently, Updated appears next to the document name.

 4 Click a document link to download the documentation.

http://support.mercury.com

Welcome

xvii

Typographical Conventions

This guide uses the following typographical conventions:

UI Elements This style indicates the names of interface elements on
which you perform actions, file names or paths, and
other items that require emphasis. For example, “Click
the Save button.”

Arguments This style indicates method, property, or function
arguments and book titles. For example, “Refer to the
Mercury User’s Guide.”

<Replace Value> Angle brackets enclose a part of a file path or URL
address that should be replaced with an actual value.
For example, <MyProduct installation folder>\bin.

Example This style is used for examples and text that is to be
typed literally. For example, “Type Hello in the edit
box.”

CTRL+C This style indicates keyboard keys. For example, “Press
ENTER.”

Function_Name This style indicates method or function names. For
example, “The wait_window statement has the
following parameters:”

[] Square brackets enclose optional arguments.

{ } Curly brackets indicate that one of the enclosed values
must be assigned to the current argument.

... In a line of syntax, an ellipsis indicates that more items
of the same format may be included. In a
programming example, an ellipsis is used to indicate
lines of a program that were intentionally omitted.

| A vertical bar indicates that one of the options
separated by the bar should be selected.

Welcome

xviii

Part I

Introducing Business Process Testing

2

3

1
Using QuickTest Professional for Business
Process Testing

Welcome to QuickTest Professional for Business Process Testing. Business
Process Testing enables non-technical Subject Matter Experts (working in
Quality Center) to collaborate effectively with Automation Engineers
(working in QuickTest Professional). Together, you can build, document,
and run business process tests, without requiring programming knowledge
on the part of the Subject Matter Expert.

Note: QuickTest Professional is Unicode compliant according to the
requirements of the Unicode standard, enabling you to add and update
VBScript statements for testing applications developed in many
international languages. Unicode represents the required characters using
8-bit or 16-bit code values. For more information on the Unicode standard,
refer to: http://www.unicode.org/standard/standard.html.

This guide describes the QuickTest Professional features and options that
enable you—the Automation Engineer—to create and modify the
automated resources required for Business Process Testing, as well as create
components, which are the building blocks of business process tests.

http://www.unicode.org/standard/standard.html

Part I • Introducing Business Process Testing

4

This chapter describes:

➤ About Using QuickTest Professional for Business Process Testing

➤ Understanding Business Process Testing

➤ Understanding QuickTest Professional for Business Process Testing
Terminology

➤ Setting Required Access Permissions

➤ Using the Sample Site

➤ Modifying License Information

➤ Updating the QuickTest Software

Chapter 1 • Using QuickTest Professional for Business Process Testing

5

About Using QuickTest Professional for Business Process
Testing

Business Process Testing is a role-based testing model. It enables Automation
Engineers and Subject Matter Experts to work together to test an
application’s business processes during the application’s development life
cycle.

Automation Engineers are experts in automated testing. They use QuickTest
to define the resources and settings needed to create components, which are
the building blocks of business process tests.

Subject Matter Experts understand the various parts of the application being
tested, as well as the business processes that need to be tested, however they
may not necessarily have the programming knowledge needed to create
automated tests. They use the Business Components and Test Plan modules
in Quality Center to create keyword-driven business process tests.

Integration between QuickTest and Quality Center enables the Automation
Engineer to effectively create and maintain the required resources and
settings, while enabling Subject Matter Experts to create and implement
business process tests in script-free environment, without the need for
programming knowledge.

Note: Each organization defines the roles of Automation Engineer and
Subject Matter Expert according to its needs. This guide assumes that you
are performing the role of the Automation Engineer as defined above, and
that the role of Subject Matter Expert is performed by other personnel in
your organization. However, these roles are flexible and depend on the
abilities and time resources of the personnel using Business Process Testing.
There are no product-specific rules or limitations controlling which roles
must be defined in a particular organization, or which types of users can do
which Business Process Testing tasks (provided that the users have the
correct permissions).

Part I • Introducing Business Process Testing

6

Understanding Business Process Testing

Business Process Testing enables structured testing of an application by
combining test automation and automatically generated,
easy-to-understand test documentation. Business Process Testing is not
dependent on the completion of detailed testing scripts. This enables
applications to be tested manually before automated tests are ready. This
also enables business process tests to be created and implemented more
quickly than other automated tests, enabling potential performance issues
to be detected earlier in the development process, before downtime can
occur.

Components are easily-maintained, reusable units that perform a specific
task. They are the building blocks of business process tests. Each component
is comprised of several application steps that are logically performed
together in a specific order. For example, in a Web application, a login
component might be comprised of four steps. Its first step could be to open
the application. Its second step could be to enter a user name. Its third step
could be to enter a password, and its last step could be to click the Submit
button on the Web page. By creating and calling functions stored in
function libraries, you can enhance the component with additional logic to
test important details of the login task.

By design, each component tests a specific part of an application. When
combined, components are incorporated into a business process test in a
serial flow representing the main tasks performed within a particular
business process. For example, a business process test for a flight reservation
application may include a login component, a flight finder component, a
flight reservation component, a purchasing component, and a logout
component. The flight finder, flight reservation, and purchasing
components might be reused several times within the same business process
test to test multiple reservation scenarios. The test might also include a
component that resets the application between flight reservations, enabling
the test to perform multiple iterations of flight reservations. The task of
creating and running components and business process tests is generally
performed by Subject Matter Experts working in Quality Center.

Chapter 1 • Using QuickTest Professional for Business Process Testing

7

Due to the modularity and reusability of components, they can be used in
multiple business process tests. For example, the same login and logout
components could be used in conjunction with an analysis (report)
component that tests the report and graph generation process in the
application, or with a frequent flyer component that tests the business
process of subscribing to a frequent flyer program.

QuickTest provides two types of components: business components and
scripted components. Business components (also known as keyword-driven
components) are fully integrated with both QuickTest and Quality Center,
enabling both you and Subject Matter Experts to create, modify, and run
them. Scripted components are more complex components containing
programming logic. Due to their complexity, scripted components can be
created and modified only in QuickTest. Subject Matter Experts can view
scripted components in Quality Center and incorporate them in business
process tests, but they cannot modify them.

Note: Although you can also use QuickTest to create scripted components
for use in business process tests, this guide focuses on the functionality and
features associated with business components. For information on the
differences between scripted components and business components, as well
as information on working with scripted components, see Chapter 5,
“Working with Scripted Components.”

Before automated testing resources are available, Subject Matter Experts can
define manual steps in the Design Steps tab of each component (using the
Quality Center Business Components module). They can add these manual
components to a business process test and run the steps manually using the
Quality Center Manual Runner. As they define components, Subject Matter
Experts can add comments in the Discussion Area of the Details tab (in the
Quality Center Business Components module). This enables them to enter
any additional information or remarks that they want to communicate to
you, the Automation Engineer, such as requests for new operations, future
changes planned for the component, or alternative tests in which the
component can be used.

Part I • Introducing Business Process Testing

8

During this design phase, you can work with the Subject Matter Experts to
define which resources and settings are needed for each component. You
can then create individual application areas for the various parts of your
application based on real testing needs. The application area specifies the
settings and resource files used by components when working with business
process tests. When a Subject Matter Expert creates a component, the
component is always associated with a particular application area, enabling
it to access these settings and resource files. After you create the application
area and define its settings and resource files, the Subject Matter Expert can
incorporate these automated testing resources in business component steps,
convert any existing manual components to automated components, and
create new automated components.

Understanding the Application Area

The application area is the foundation upon which components are built.
An application area provides a single point of maintenance for all elements
associated with the testing of a specific part of an application.

In the application area, you can define specific settings that are relevant for
testing a particular part of your application. For example, you can define
settings that instruct QuickTest to load specific add-ins at the start of a run
session, run a component only on specified applications, activate a recovery
scenario under particular conditions, and so forth. You can also specify the
keywords that are available to any component that is associated with that
particular application area.

An important aspect of application areas are the resource files that can be
used by a component. After you create these resource files you store them in
the same Quality Center project used by the Subject Matter Experts who
create and run the business process tests for the specific application. Typical
resource files include function libraries and shared object repositories.

You create function libraries that contain functions, or operations (also
known as keywords), that can be called by a component. These functions
contain programming logic that encapsulates the steps needed to perform a
particular task, and they enhance the functionality of the component that
calls them. You can use QuickTest’s built-in function library editor to create
these function libraries. You can also use the QuickTest Function Definition
Generator to insert basic function definitions, and then complete each
function by adding its code.

Chapter 1 • Using QuickTest Professional for Business Process Testing

9

After you associate function library files with an application area, you can
prioritize them according to relevance. By associating a function library
with an application area, any component based on that application area will
have access to all public functions defined within that function library. For
more information on working with function libraries, see Chapter 21,
“Working with User-Defined Functions and Function Libraries.”

You also create, populate, and maintain shared object repository files that
are used by QuickTest to identify the objects in your application. You define
and modify test object information in shared object repositories using the
QuickTest Object Repository Manager. After you associate shared object
repository files with the application area, you can prioritize them according
to relevance. By associating a shared object repository with an application
area, any component based on that application area will have access to all of
its test objects and other elements. For more information, see Chapter 13,
“Working with Test Objects,” and Chapter 15, “Managing Object
Repositories.”

You can create multiple application areas—each one focusing on a particular
part (area) of the application being tested. For example, for a flight
reservation application, one application area could be created for the login
module, another application area for the flight search module, another for
the flight reservation module, and still another for the billing module. For
more information on application areas, see Chapter 3, “Working with
Application Areas.”

In addition to creating and maintaining the resource files associated with
the application areas, you can also use QuickTest to debug components and
their associated function libraries. You can also create components in
QuickTest, although this is more often done by Subject Matter Experts using
Quality Center. For more information, see Chapter 4, “Working with
Business Components.”

Part I • Introducing Business Process Testing

10

Business Process Testing Workflow Using QuickTest
Professional

The following is an example of a common Business Process Testing
workflow using QuickTest. The actual workflow in an organization may
differ for different projects, or at different stages of the product development
life cycle.

Chapter 1 • Using QuickTest Professional for Business Process Testing

11

Understanding QuickTest Professional for Business Process
Testing Terminology

The following terminology, specific to QuickTest Professional for Business
Process Testing, is used in this guide:

Application Area—A collection of resources and settings that are used for the
creation and implementation of business components. These include
function libraries, shared object repositories, keywords, testing preferences,
and other testing resources, such as recovery scenarios. An application area,
provides a single point of maintenance for all elements associated with the
testing of a specific part of your application. You can define separate
application areas for each part of your application and then associate your
components with the appropriate application areas.

Business Component (or Component)—An easily-maintained, reusable unit
comprising one or more steps that perform a specific task. Business
components may require input values from an external source or from other
components, and they can return output values to other components.

Also known as Keyword-Driven Component.

Manual Component—A non-automated business component created in
Quality Center. In QuickTest, you can view and work with manual
components only after converting them to business components.

Scripted Component—An automated component that can contain
programming logic and can be edited in QuickTest using the Keyword View,
the Expert View, and other QuickTest tools and options.

Keyword View—A spreadsheet-like view that enables tests and components
to be created, viewed, and debugged using a keyword-driven, modular, table
format.

Function Library—A document containing VBScript functions, subroutines,
modules, and so forth. These functions can be used as operations (keywords)
in components. You can create and debug function library documents using
the QuickTest function library editor.

Part I • Introducing Business Process Testing

12

Business Process Test—A scenario comprising a serial flow of business
components, designed to test a specific business process of an application.

Component Input Parameters—Variable values that a business component
can receive and use as the values for specific, parameterized steps in the
component.

Component Output Parameters—Values that a business component can
return. These values can be viewed in the business process test results and
can also be used as input for a component that is used later in the test.

Local Input Parameters—Variable values defined within a component. These
values can be received and used by a later parameterized step in the same
component.

Local Output Parameters—Values that an operation or a component step
can return for use within the same component. These values can be viewed
in the business process test results and can also be used as input for a later
step in the component.

Roles—The various types of users who are involved in Business Process
Testing.

Automation Engineer—An expert in QuickTest Professional automated
testing. The Automation Engineer defines and manages the resources that
are needed to create and work with business components. The Automation
Engineer creates application areas that specify all of the resources and
settings needed to enable Subject Matter Experts to create business
components and business process tests in Quality Center. The Automation
Engineer can create and modify function libraries, and populate a shared
object repository with test objects that represent the different objects in the
application being tested. The Automation Engineer can also create and
debug business components in QuickTest.

Subject Matter Expert—A person who has specific knowledge of the
application logic, a high-level understanding of the entire system, and a
detailed understanding of the individual elements and tasks that are
fundamental to the application being tested. The Subject Matter Expert uses
Quality Center to create and run components and business process tests.

Chapter 1 • Using QuickTest Professional for Business Process Testing

13

Setting Required Access Permissions

You must make sure the following access permissions are set in order to run
QuickTest Professional.

Permissions Required to Run QuickTest Professional

You must have the following file system permissions:

➤ Full read and write permissions for all the files and folders under the folder
in which QuickTest is installed

➤ Full read and write permissions to the Temp folder

➤ Read permissions to the Windows folder and to the System folder

You must have the following registry key permissions:

➤ Full read and write permissions to all the keys under
HKEY_CURRENT_USER\Software\Mercury Interactive

➤ Read and Query Value permissions to all the HKEY_LOCAL_MACHINE and
HKEY_CLASSES_ROOT keys

Permissions Required For Working with Quality Center

You must have the following Quality Center permissions:

➤ Full read and write permissions to the Quality Center cache folder

➤ Full read and write permissions to the QuickTest Add-in for Quality Center
installation folder

Part I • Introducing Business Process Testing

14

Permissions Required When Working with Business Process Testing

The Quality Center Project Administrator can control access to a project by
defining which users can log in to it and by specifying the types of tasks
each user may perform. The Quality Center Project Administrator can assign
permissions for adding, modifying, and deleting folders, components, steps,
and parameters in the Business Components module of a Quality Center
project.

Note: To modify application areas, you must have the required permissions
for modifying components, and adding, modifying, and deleting steps. All
four permissions are required. If one of these permissions is not assigned,
you can open application areas only in read-only format.

You need to make sure you have the required Quality Center permissions
before working with business components and application areas. For more
information on setting user group permissions in the Business Components
module, refer to the Business Process Testing User’s Guide.

Using the Sample Site

Many examples in this guide use the Mercury Tours sample Web site. The
URL for this Web site is: http://newtours.mercury.com.

Note that you must register a user name and password to use this site.

You can also use the Mercury Tours sample Windows application available
from the QuickTest Professional Start menu program folder.

http://newtours.mercury.com

Chapter 1 • Using QuickTest Professional for Business Process Testing

15

Modifying License Information

Working with QuickTest requires a license. When you install QuickTest, you
select one of the following license types:

➤ a 14-day demo license

➤ a permanent seat license that is specific to the computer on which it is
installed

➤ a network-based concurrent license that can be used by multiple QuickTest
users

You can change your license type at any time (as long as you are logged in
with administrator permissions on your computer). For example, if you are
currently working with a demo license, you can install a seat license, or you
can choose to connect to a concurrent license server, if one is available on
your network.

If needed, you can request a new seat license on the Mercury Customer
Support Web site. The URL for the License Request Web site is
http://support.mercury.com/license.

If you purchase external add-ins, you need to install the relevant add-in
licenses. For more information, refer to your add-in documentation.

For information on modifying your license information, refer to the
QuickTest Professional Installation Guide.

http://support.mercury.com/license

Part I • Introducing Business Process Testing

16

Updating the QuickTest Software

By default, QuickTest automatically checks for online software updates each
time you start the application. You can also manually check for updates at
any time by choosing Help > Check for Updates from within QuickTest, or
by choosing Start > Programs > QuickTest Professional > Check for Updates.

If updates are available, you can choose which ones you want to download
and (optionally) install. Follow the on-screen instructions for more
information.

Tip: You can disable automatic checking for updates by clearing the Check
for software updates on startup check box in the General tab of the Options
dialog box. To open the Options dialog box, choose Tools > Options.

17

2
QuickTest at a Glance

This chapter explains how to start QuickTest and introduces the QuickTest
window.

This chapter describes:

➤ Starting QuickTest

➤ Connecting to Your Quality Center Project

➤ The QuickTest Window

➤ Keyword View

➤ Application Area

➤ Function Library

➤ Information Pane

➤ Missing Resources Pane

➤ Debug Viewer Pane

➤ Customizing the QuickTest Window Layout

➤ Working With Multiple Documents

➤ Using QuickTest Commands

➤ Browsing the QuickTest Professional Program Folder

➤ Viewing Product Information

Part I • Introducing Business Process Testing

18

Starting QuickTest

To start QuickTest, choose Programs > QuickTest Professional > QuickTest
Professional in the Start menu, or double-click the QuickTest Professional
shortcut on your desktop.

The first time you start QuickTest, the Add-in Manager dialog box opens.

Tip: If you do not want this dialog box to open the next time you start
QuickTest, clear the Show on startup check box.

For more information about loading add-ins, see “Loading QuickTest
Add-ins” on page 675.

Chapter 2 • QuickTest at a Glance

19

Click OK. The QuickTest Professional window opens. You can choose to
open the QuickTest tutorial, start recording a new test, open an existing test,
or open a blank new test.

Tips:

You can press the ESC key to close the window and open a blank test.

You can click Tip of the Day to browse through all the available tips.

If you do not want this window to be displayed the next time you start
QuickTest, clear the Show this screen on startup check box.

Part I • Introducing Business Process Testing

20

Connecting to Your Quality Center Project

To work with business process testing, you must connect QuickTest to the
Quality Center server on which your Quality Center project is stored. This
server handles the connections between QuickTest and your Quality Center
project.

Your Quality Center project stores component and run session information
for the application you are testing, including all of the resource files and
settings needed to create and run business process tests. The first time you
connect QuickTest to a Quality Center server and project, QuickTest sets up
default Business Process Testing folders and files in your project. This
enables you to prepare the resources and settings needed for business
components, as well as create, work with, and debug business components
using the intuitive, keyword-driven Keyword View.

Note: Quality Center projects are password protected, so you must provide a
user name and a password.

To connect QuickTest to your Quality Center project:

 1 Choose File > Quality Center Connection or click the Quality Center
Connection toolbar button . The Quality Center Connection - Server
Connection dialog box opens.

Chapter 2 • QuickTest at a Glance

21

 2 In the Server URL box, type the URL address of the Web server where
Quality Center is installed.

Note: You can choose a Web server accessible via a Local Area Network
(LAN) or a Wide Area Network (WAN).

 3 To automatically reconnect to the Quality Center server the next time you
open QuickTest, select the Reconnect to server on startup check box.

 4 Click Connect. the Quality Center Connection dialog box opens.

The Quality Center server’s name is displayed in read-only format in the
Server URL box.

 5 In the User name box, type your Quality Center user name.

 6 In the Password box, type your Quality Center password.

Part I • Introducing Business Process Testing

22

 7 Click Authenticate to authenticate your user information against the
Quality Center server.

Once your user information has been authenticated, the fields in the
Authenticate user information area are displayed in read-only format. The
Authenticate button changes to a Change User button.

Tip: You can log in to the same Quality Center server using a different user
name by clicking Change User, and then entering a new user name and
password and clicking Authenticate again.

 8 In the Domain box, select the domain that contains the Quality Center
project. Only those domains that you have permission to connect to are
displayed.

 9 In the Project box, select the project with which you want to work. Only
those projects that you have permissions to connect to are displayed.

 10 Click Login.

 11 To automatically reconnect to the Quality Center server the next time you
open QuickTest, select the Reconnect to server on startup check box.

 12 If the Reconnect to server on startup check box is selected, then the
Authenticate on startup check box is enabled. To automatically authenticate
your user information the next time you open QuickTest, select the
Authenticate on startup check box.

 13 If the Authenticate on startup check box is selected, the Login to project on
startup check box is enabled. To log in to the selected project on startup,
select the Login to project on startup check box.

Note: The first time you connect to a Quality Center server, QuickTest sets
up default Business Process Testing folders and files in your Quality Center
project.

Chapter 2 • QuickTest at a Glance

23

 14 Click Close to close the Quality Center Connection dialog box. The Quality
Center icon is displayed on the status bar to indicate that QuickTest is
currently connected to a Quality Center project.

Tip: To view the current Quality Center connection, point to the Quality
Center icon on the status bar. A tooltip displays the Quality Center server
name and project to which QuickTest is connected. To reopen the Quality
Center Connection dialog box, double-click the Quality Center icon on the
status bar.

Disconnecting QuickTest from Quality Center

You can disconnect QuickTest from a Quality Center project or from a
Quality Center Web server at any time. However, do not disconnect
QuickTest from Quality Center while a QuickTest component, application
area, or shared resource (such as a shared object repository) is opened from
Quality Center, or while QuickTest is using a shared resource from Quality
Center.

If you disconnect QuickTest from a Quality Center Web server without first
disconnecting from a project, QuickTest’s connection to that project is
automatically disconnected.

Part I • Introducing Business Process Testing

24

To disconnect QuickTest from Quality Center:

 1 Choose File > Quality Center Connection or click the Quality Center
Connection toolbar button. The Quality Center Connection dialog box
opens.

 2 To disconnect QuickTest from the selected project, in the Step 3: Login to
project area, click Logout.

 3 To disconnect QuickTest from the selected Web server, in the
Step 1: Connect to server area, click Disconnect.

Tip: You can log in to the same Quality Center server using a different user
name by clicking Change User and then entering a new user name and
password and clicking Authenticate again.

 4 Click Close to close the Quality Center Connection dialog box.

Chapter 2 • QuickTest at a Glance

25

The QuickTest Window

The QuickTest window displays your testing document(s) in the document
area.

You can work on one component or application area and one or more
function libraries simultaneously. (For your convenience, you can display
one active document in the document area, or you can cascade or tile your
open documents.) For more information, see “Working With Multiple
Documents” on page 51.

The document pane area of the QuickTest window can display the following
types of documents:

➤ Business Component—Enables you to create, view, and modify your
business component using keywords and operations. For more information,
see Chapter 6, “Working with the Business Component Keyword View.”

➤ Scripted Component—Enables you to create, view, and modify your scripted
component in Keyword View or Expert View (described below). For more
information on scripted components, see Chapter 5, “Working with
Scripted Components.” For more information on the Expert View, refer to
the QuickTest Professional User’s Guide.

➤ Application Area—Enables you to define resources and settings for your
components. For more information, see Chapter 3, “Working with
Application Areas.”

➤ Function Library—Enables you to create, view, and modify functions
(operations) for use with your component. For more information, see
Chapter 21, “Working with User-Defined Functions and Function Libraries.”

In addition to the document area, the QuickTest window contains the
following key elements:

➤ QuickTest title bar—Displays the name of the active document. If changes
have been made since it was last saved, an asterisk (*) is displayed in the title
bar.

➤ Menu bar—Displays menus of QuickTest commands.

➤ Standard toolbar—Contains buttons to assist you in managing your
document.

Part I • Introducing Business Process Testing

26

➤ Automation toolbar—Contains buttons to assist you in the testing process.

➤ Debug toolbar—Contains buttons to assist you in debugging your
document. (Not displayed by default)

➤ Edit toolbar—Contains buttons to assist you in editing your function
library.

➤ Insert toolbar—Contains buttons to assist you when working with
statements in your function library.

➤ Tools toolbar—Contains buttons with tools to assist you in the testing
process.

➤ View toolbar—Contains buttons to assist you in viewing your document.

➤ Document tabs and scroll arrows—Enables you to navigate open documents
in the document area by selecting the tab of the document you want to
activate (bring into focus). When there is not enough space in the
document area to display all of the tabs simultaneously, you can use the left
and right arrows to scroll between your open documents.

➤ Keyword View—Contains each step, in a modular, icon-based table. For
more information, see Chapter 6, “Working with the Business Component
Keyword View.”

➤ Information pane—Displays a list of syntax errors found in your function
library scripts.

➤ Missing Resources pane—Provides a list of the resources that are specified in
your component but cannot be found, such as unmapped shared object
repositories and parameters that are connected to shared object repositories.
(Not displayed by default)

➤ Debug Viewer pane—Assists you in debugging your document. The Debug
Viewer pane contains the Watch, Variables, and Command tabs. (Not
displayed by default)

➤ Status bar—Displays the status of the QuickTest application.

Chapter 2 • QuickTest at a Glance

27

You can customize the layout of the QuickTest window by moving, resizing,
displaying, or hiding most of the elements. QuickTest remembers your
preferred layout settings and opens subsequent sessions with your
customized layout. For more information, see “Customizing the QuickTest
Window Layout” on page 42.

Title bar
Menu bar

Toolbars

Information
Pane

Keyword
View

Component
tab

Part I • Introducing Business Process Testing

28

Changing the Appearance of the QuickTest Window

By default, the QuickTest window uses the Microsoft Office 2003 theme. You
can change the look and feel of the main QuickTest window, as required.

To change the appearance of the main QuickTest window:

In the QuickTest window, choose View > Window Theme, and then select
the way the window should appear from the list of available themes. For
example, you can apply a Microsoft Office 2000 or Microsoft Windows XP
theme.

Note: You can apply the Microsoft Windows XP theme to the QuickTest
window only if your computer is set to use a Windows XP theme.

Tip: You can also change the theme used for the Test Results window. For
more information, see “Changing the Appearance of the Test Results
Window” on page 496.

Chapter 2 • QuickTest at a Glance

29

Keyword View

The Keyword View enables you to create and view the steps of your
component in a keyword-driven, modular, table format. The Keyword View
is comprised of a table-like view, in which each step is a separate row in the
table, and each column represents different parts of the steps. You can
modify the columns displayed to suit your requirements.

You create and modify components by selecting items and operations in the
Keyword View and entering information as required. Each step is
automatically documented as you complete it, enabling you to view a
description of your test steps in understandable English.

You can add steps to the component manually or by recording the steps you
perform on your application. During a recording session, each step is
recorded as a row in the Keyword View. For example, the Keyword View
could contain the following rows:

Keyword View columns

Steps

Part I • Introducing Business Process Testing

30

These rows show the steps that are performed on the Welcome: Mercury
Tours page of the Mercury Tours sample web site:

➤ Mercury is entered in the userName edit box.

➤ The encrypted string 4129e9544fe92be22d38ebcb7cf5 is entered in the
password edit box.

➤ The Sign-In image is clicked.

The Documentation column translates each of the steps into
understandable sentences.

Tip: You can print the contents of the component to your Windows default
printer, or preview it on screen before printing. For more information, see
“Printing a Component” on page 137.

The Business Component Keyword View can contain any of the following
columns: Item, Operation, Value, Output, and Documentation. A brief
description of each column is provided below.

Note: If you do not see one or more of the columns described below in your
Keyword View, you can use the Keyword View Options dialog box to display
them. For more information, see “Setting Keyword View Display Options”
on page 33.

Item Column

The test object on which you want to perform the step or Operation, which
enables you to choose an operation from a user-defined function library.
You choose the item from a list, which displays the Operation item and all
child test objects for the previous step. If no child test objects are available,
the sibling test objects are displayed. For example, if the previous step
specifies the user name object, the password test object might be displayed
for the next step.

Chapter 2 • QuickTest at a Glance

31

You can choose additional test objects from the object repository tree or
directly from the application you want to test. For more information, see
“Selecting an Item for Your Step” on page 155. For information on
managing the test objects in the shared object repository, see “Managing
Shared Object Repositories” on page 92.

If you want to add a comment or manual step to your component, you can
choose Comment from the Item column. This adds a comment row to the
Keyword View. Comments are displayed in a free text cell that extends the
entire width of the row, and are no longer part of the Item column.

Operation Column

The operation to be performed on the item. This column contains a list of
commonly used operations (methods, functions, and sub-procedures) that
can be performed on the item selected in the Item column, for example,
Click and Select. The most commonly used operation for the item selected
in the Item column is displayed by default. For more information, see
“Selecting the Operation for Your Step” on page 162. You can define
additional operations for a test object using the RegisterUserFunc method.
For more information, see “Working with User-Defined Functions and
Function Libraries” on page 573.

Value Column

The argument values for the selected operation. The Value cell is partitioned
according to the number of arguments of the selected option in the
Operation column. The value can be a constant, a local parameter, or a
component parameter depending on the selected option.

Local parameter—A local parameter is specific to the business component
and can only be accessed by that component. It is intended for use in a
single step or between component steps, for example, as an output
parameter for one step and an input parameter for a later step. For more
information, see “Working with Parameters” on page 170.

Component parameter—A component parameter is a parameter that can be
accessed by any component in your Quality Center project. For more
information, see “Defining Parameters for Your Component” on page 237.

Part I • Introducing Business Process Testing

32

Output Column

The parameter in which output values for the step are stored. For example, if
you select an output parameter named cCols, the output value of the
current step would be stored in the cCols parameter. You can then use the
value stored in the output parameter later in the component as an input
parameter. As in the Value column, you can use two types of parameters
when specifying an output parameter—a local parameter or a component
parameter.

Documentation Column

Read-only auto-documentation of what the step does in an
easy-to-understand sentence. If you want to print or view only the steps,
you can choose to display only this column. For example, you may want to
print or view manual testing instructions.

Chapter 2 • QuickTest at a Glance

33

Setting Keyword View Display Options

You can specify which columns you want to display and the order in which
they are displayed. You can also apply various colors and fonts to the rows
and content of the Keyword View.

To specify the Keyword View columns to display:

 1 Choose Tools > View Options. The Keyword View Options dialog box opens.

The Available columns list shows columns not currently displayed in the
Keyword View. The Visible columns list shows columns currently displayed
in the Keyword View.

 2 Double-click column names or choose column names and click the arrow
buttons (> and <) to move them between the Available columns and Visible
columns lists.

Tip: Click the double arrow buttons (>> and <<) to move all the column
names from one list to the other. Select multiple column names (using the
SHIFT and/or CONTROL keys) and click the arrow buttons (> and <) to move
only the selected column names from one list to the other.

Part I • Introducing Business Process Testing

34

 3 In the Visible columns list, set the order in which columns appear in the
Keyword View by selecting one or more columns and then using the up and
down arrow buttons.

Note: The order of the columns in the Keyword View does not affect the
order in which the cells need to be completed for each step. For example, if
you choose to display the Operation column to the left of the Item column,
you still need to select the item first, and only then is the Operation column
list refreshed to match the selection you made in the Item column.

 4 Click OK to close the dialog box and apply the new column display.

Tips for Working with the Keyword View

You can display or hide specific columns by right-clicking the column
header row in the Keyword View and then selecting or deselecting the
required column name from the displayed menu.

You can quickly display only the Documentation column, for example, if
you want to print the steps for use as instructions for manual testing, by
selecting Documentation Only. The Documentation column and any
comments defined in the component are displayed.

You can also rearrange columns by dragging a column header to its new
location in the Keyword View. Red arrows are displayed when the column
header is dragged to an available location.

Chapter 2 • QuickTest at a Glance

35

Setting Keyword View Fonts and Colors

You can use the Fonts and Colors tab of the Keyword View Options dialog
box to specify different text and color display options for different elements
in the Keyword View.

The Fonts and Colors tab includes the following options:

Option Description

Element You can specify different font and color options for
each of these Keyword View elements. Select one of
the following elements to see the current
definitions and modify them:

• Alternate Rows—The background color of every
other row. The font and text color for the
alternate rows is the same as the font and text
color defined for the Default element.

• Comment—The row and text of comment lines.

• Default—All rows and text in the Keyword View
(except for the elements listed below).

• Selected Row—The row and text currently
selected (highlighted).

Part I • Introducing Business Process Testing

36

Font Name Enables you to modify the font used for text in the
selected element. You cannot change the font for
Alternate Rows or Selected Row elements.

Note: When testing in a Unicode environment,
you must select a Unicode-compatible font.
Otherwise, elements in your test or
component may not be correctly displayed
in the Keyword View. However, the test or
component will still run in the same way,
regardless of the font you choose.

Size Enables you to modify the font size used for text in
the selected element. You cannot change the font
size for Alternate Rows or Selected Row elements.

Style Enables you to modify the font style used for text
in the selected element. You can select Regular,
Bold, Italic, or Underline font styles. You cannot
change the font style for Alternate Rows or
Selected Row elements.

Foreground Enables you to modify the text color for the
selected element. You cannot change the
foreground color for Alternate Rows.

Background Enables you to modify the row color for the
selected element.

Foreground for read-only Enables you to modify the text color for rows that
are read-only. This option cannot be changed for
Alternate Rows.

Reset all Resets all Fonts and Colors tab options to the
default settings.

Option Description

Chapter 2 • QuickTest at a Glance

37

Application Area

Each business component is based on an application area that provides it
with settings and links to specific resource files, such as function library
files, shared object repositories (that contain the test objects used by the
application), associated add-ins, and recovery scenario files. You define
these assets in the application area window.

The application area window contains four panes that are accessed by the
buttons in the left sidebar:

General—Displays general information about the application area and
enables you to modify its general settings, such as specifying associated
add-ins, recovery scenarios, and other settings.

Function Libraries—Enables you to associate function libraries with this
application area and to prioritize them.

Object Repositories—Enables you to associate shared object repositories
with this application area and to prioritize them.

Keywords—Enables you to set the keywords that are available to this
application area and to view their individual properties.

Part I • Introducing Business Process Testing

38

For more information, see Chapter 3, “Working with Application Areas.”

Title bar
Menu bar
Toolbars

Information
pane

Sidebar

Application
Area tab

Application
Area pane
(General pane)

Chapter 2 • QuickTest at a Glance

39

Function Library

QuickTest provides a built-in editor that enables you to create and debug
function libraries using the same editing features that are available in the
Expert View. Each function library is a separate QuickTest document
containing VBscript functions, subroutines, classes, modules, and so forth.
Each function library opens in its own window, in addition to the
component that is already open. You can work on one or several function
libraries at the same time. After you finish editing a function library, you
can close it, leaving your QuickTest session open. You can also close all open
function libraries simultaneously. For more information, see Chapter 21,
“Working with User-Defined Functions and Function Libraries.”

Title bar
Menu bar

Toolbars

Debug Viewer
pane

Keyword
View

Function Library
tab

Information
Pane tab

Part I • Introducing Business Process Testing

40

Information Pane

The Information pane provides a list of syntax errors in your function
library scripts. To show or hide the Information pane, choose
View > Information or click the Information button.

You can double-click a syntax error to locate the error in the function
library, and then correct it. For more information, see “Handling VBScript
Syntax Errors” on page 630.

Missing Resources Pane

The Missing Resources pane provides a list of the resources that are specified
in your test but cannot be found, such as unmapped shared object
repositories, and parameters that are connected to shared object
repositories. To show or hide the Missing Resources pane, choose
View > Missing Resources or click the Missing Resource button.

Chapter 2 • QuickTest at a Glance

41

Each time you open your function library, QuickTest automatically checks
that all specified resources are accessible. If it finds any resources that are not
accessible, QuickTest lists them in the Missing Resources pane. If the Missing
Resources pane is not currently displayed, QuickTest automatically opens it
when a missing resource is detected.

You can double-click a missing resource to remap it or remove it. You can
also filter the pane to display a specific type of missing resource, such as
Missing Object Repository and hide the other types.

For more information, see “Handling Missing Resources” on page 181.

Debug Viewer Pane

The Debug Viewer pane contains three tabs to assist you in debugging your
function library—Watch, Variables, and Command. To view the Debug
Viewer pane, click the Debug Viewer button or choose View > Debug
Viewer.

Watch

The Watch tab enables you to view the current value of any variable or
VBScript expression that you added to the Watch tab.

Variables

During a run session, the Variables tab displays the current value of all
variables that have been recognized up to the last step performed in the run
session.

Command

The Command tab enables you to execute a line of script in order to set or
modify the current value of a variable or VBScript object in your test. When
you continue the run session, QuickTest uses the new value that was set in
the command.

For more information on using the Debug Viewer pane, see Chapter 17,
“Debugging Components and Function Libraries.”

Part I • Introducing Business Process Testing

42

Customizing the QuickTest Window Layout

You can customize the layout of the QuickTest window, and you can restore
the default layout. When customizing the window, you can move and resize
panes, select to show or auto-hide panes, create tabbed panes, select which
toolbars to display, and so forth.

Note: When customizing or restoring the QuickTest window layout, the
layout is customized or restored for all document types.

Moving Panes

You can move the QuickTest window panes to suit your own personal
preferences. You can rearrange the panes, and you can also change a pane to
a tabbed pane, and vice versa.

While dragging a pane, markers are displayed on the QuickTest window. If
you hold the cursor over one of these markers, the area represented by the
marker is shaded, enabling you to preview the window layout if the pane is
moved to the selected position.

Tip: To move a dockable pane without snapping it into place, press CTRL
while dragging it to the required location.

To move panes:

 1 In the QuickTest window, drag the title bar or tab of the pane you want to
move.

Tip: If the required pane is not displayed in the QuickTest window, you can
select it from the View menu.

Chapter 2 • QuickTest at a Glance

43

For example, you can move the Missing Resources pane located in the
middle of the window to be a new tabbed pane at the bottom of the
window. As you drag the pane, markers are displayed in the active pane and
on each edge of the QuickTest window.

Tips:

To move a single tabbed pane, drag the tab label. Once you start dragging
the tabbed pane, the tab is removed, and its title bar is displayed.

To move all the tabbed panes, drag the title bar of the active tabbed pane.

Drag an active
tabbed pane
title bar to
move all the
tabbed panes

Drag a tab
label to move
a tabbed pane

Drag a
document tab
right or left to
change its
location

Drag a pane
title bar or tab
label to move
the pane to
left side of the
QuickTest
window

Drag a pane
title bar or tab
label to move
the pane to
the the left
side of this
pane

Drag a pane
title bar to
move the pane

Window pane markerCurrent pane marker

Part I • Introducing Business Process Testing

44

The following markers are displayed:

Type Marker Description

Current pane
markers

Enables you to:

• position the pane as a new pane in the top,
bottom, left or right half, or middle of the
active pane, according to the arrow marker
selected when you release the mouse button.

• position the pane as a new tabbed pane in the
active window, by releasing the mouse button
while selecting the center marker.

Note: The center marker is displayed only if you
are dragging a pane onto an existing pane
(other than the document pane).

Window pane
markers

Enables you to position the pane across the top of
the QuickTest window.

Enables you to position the pane across the right
side of the QuickTest window.

Enables you to position the pane across the
bottom of the QuickTest window.

Enables you to position the pane across the left
side of the QuickTest window.

Chapter 2 • QuickTest at a Glance

45

 2 Drag the Missing Resources pane and hold the cursor over the active pane
right-arrow marker, as shown below. A shaded area is displayed, indicating
the new location of the pane, as shown below.

Part I • Introducing Business Process Testing

46

 3 Release the mouse button. The Missing Resources pane snaps into place and
is displayed as a new pane in the shaded area.

Tip: You can also leave the pane as a floating pane anywhere on the
QuickTest window, or on your screen. For more information on floating
panes, see “Showing and Hiding Panes” on page 47.

 4 Repeat this procedure for each pane you want to move.

Chapter 2 • QuickTest at a Glance

47

Showing and Hiding Panes

After you move the panes to their default positions, you can decide whether
these panes should be displayed at all times, or whether you want to
auto-hide them, and only display them as required.

Panes can have one of the following states—docked or floating:

➤ Docked panes: Docked panes are fixed in a set position relative to the rest of
the application. For example, when you move a pane to a position indicated
by a marker, the pane is docked in that position.

You can decide whether to continuously display the docked panes in the
QuickTest window, or to auto-hide them. Auto-hiding means that the pane
is displayed as a side-tab on the edge of the QuickTest window, and is
displayed only when you hold the cursor over the tab. After you select a
different pane or side-tab, the auto-hidden pane closes and is displayed as a
side-tab.

Note: If you auto-hide the Information pane, it is automatically displayed
when syntax errors are detected in a test script.

By default, auto-hidden panes open across the QuickTest window, according
to their position in the QuickTest window. For example, if the docked pane
was positioned on the right side of the QuickTest window, it is displayed as a
side tab on the right edge of the QuickTest window, and is displayed across
the right side of the QuickTest window when selected.

Tip: To auto-hide all the tabbed panes, select the title bar of the active
tabbed pane, right-click and choose Auto Hide. The tabbed panes are
displayed as a group of side-tabs on the edge of the QuickTest window, and
each pane is displayed only when you hold the cursor over that side-tab.

Part I • Introducing Business Process Testing

48

➤ Floating panes: Floating panes are displayed on top of all other windows.
They can be dragged to any position on your screen, even outside the
QuickTest window. Floating panes have their own title bars.

Note: You cannot auto-hide floating panes or individual tabbed panes.

To show or hide panes:

In the QuickTest window, select the pane you want to auto-hide, and display
as a side-tab on one of the edges of the QuickTest window. The following
buttons may be displayed on the title bar:

Button Description

The Menu button enables you to select any of the
following:

• Floating—Opens the pane on top of all the other
windows and panes, with its own title bar

• Docking—Docks the pane to the QuickTest window.

• Auto-hide—Displays the pane as a side-tab either at
the top or bottom of the QuickTest window, or on one
of the edges, according to its position in the QuickTest
window.

• Hide—Closes the pane.

The Auto Hide button hides the pane.

The pane is displayed as a side-tab either at the top or
bottom of the QuickTest window, or on one of the edges,
according to its position in the QuickTest window.

To display the pane, hold the cursor over the side-tab. The
button toggles to the Dock button, shown below.

Chapter 2 • QuickTest at a Glance

49

Tips:

To auto-hide all the tabbed panes, select the title bar of the active tabbed
pane, right-click and choose Auto Hide. The tabbed panes are displayed as a
group of side-tabs on the edge of the QuickTest window, and each pane is
displayed only when you hold the cursor over that side-tab.

You can float a pane by right-clicking the title bar, and choosing Floating
from the context menu. The pane opens on top of all the other windows
and panes, with its own title bar. To dock the pane, double-click the title bar,
or right-click the title bar and choose Docking. The pane returns to its
previous position in the QuickTest window.

The Dock button docks the pane to the QuickTest
window.

The pane returns the position it was in before it was
hidden, and the button toggles to the Auto Hide button,
shown above.

The Close button closes the pane.

The pane is removed from the QuickTest window. To
reopen the pane, select it from the View menu.

Tip: You can also close a pane by right-clicking and
choosing Hide from the context menu.

Button Description

Part I • Introducing Business Process Testing

50

Showing and Hiding Toolbars

You can show or hide toolbars using the View > Toolbars menu options.

You can float a toolbar by moving your cursor over the toolbar handle on
the left of the toolbar and then dragging the toolbar to the required
position. The toolbar is displayed with a title bar.

You can double-click the title bar of the menu to dock the menu and return
it to its previous position in the QuickTest window, or you can close it by
clicking the Close button.

Restoring the Default Layout of the QuickTest Window

You can restore the default QuickTest window layout for all document types
at any time.

To restore the default layout:

 1 Choose Tools > Options. The Options dialog box is displayed.

 2 In the General tab, click the Restore Layout button. The panes and toolbars
of all document types are restored to their default size and location.

Note: For more information on the Options dialog box, see Chapter 8,
“Setting Global Testing Options.”

Chapter 2 • QuickTest at a Glance

51

Working With Multiple Documents

QuickTest enables you to open and work on one component or application
area at a time. In addition, you can open and work on multiple function
libraries simultaneously. You can open any function library, regardless of
whether it is associated with the currently open component or application
area.

The Window menu options enable you to locate and activate (bring into
focus) an open document window, select how the open document windows
are arranged in the QuickTest window, or close all the open function library
windows.

You can also use the Windows dialog box to manage your open QuickTest
document windows.

To work with multiple documents using the Windows dialog box:

 1 Choose Window > Windows. The Windows dialog box opens.

The Windows dialog box displays a list of the open document windows,
including the open test, component, or application area, as well as all the
currently open function library windows.

Part I • Introducing Business Process Testing

52

 2 The Windows dialog box contains the following buttons, enabling you to
manage your open documents:

 3 Click OK to close the Windows dialog box.

Button Description

Activate Brings the selected document into focus in the QuickTest
window.

OK Closes the Windows dialog box.

Save Saves the selected document(s).

Close Window(s) Closes the selected function libraries.

Cascade Arranges the selected documents in a cascading order that
overlaps.

Tile Horizontally Arranges the selected documents side-by-side
horizontally, without overlapping.

Tile Vertically Arranges the selected documents side-by-side vertically,
without overlapping.

Minimize Minimizes the selected documents.

Help Displays the QuickTest Professional Help topic for this
dialog box.

Chapter 2 • QuickTest at a Glance

53

Using QuickTest Commands

You can select QuickTest commands from the menu bar or from a toolbar.
QuickTest displays a different set of commands and toolbar buttons for
components and application areas. Each set is customized for the type of
document you are creating or modifying. Some QuickTest commands can
also be executed by pressing shortcut keys or selecting commands from
context-sensitive (right-click) menus. The menus and toolbars are enabled
according to the active document type.

Most commands are available from the menu bar. You can execute
frequently used QuickTest commands by clicking buttons on the toolbars.

Choosing Commands from a Menu

Most QuickTest commands are available from the menu bar.

Clicking Commands on a Toolbar

You can execute some QuickTest commands by clicking buttons on the
toolbars. QuickTest has eight built-in toolbars—the Standard toolbar, the
Edit toolbar, the Automation toolbar, the View toolbar, the Insert toolbar,
the Tools toolbar, the Debug toolbar, and the Action toolbar.

Notes:

Not all toolbars are relevant for all document types. Only those toolbars that
are relevant for components, application areas, and function libraries are
described here.

You can display, hide, or move the toolbars, but you cannot customize
them.

Part I • Introducing Business Process Testing

54

Standard Toolbar

The Standard toolbar contains buttons for managing a component,
application area, or function library. For more information on working with
business components, see Chapter 4, “Working with Business
Components.” For more information on working with scripted
components, see Chapter 5, “Working with Scripted Components.” For
more information on working with application areas, see Chapter 3,
“Working with Application Areas.” For more information on working with
function libraries, see Chapter 21, “Working with User-Defined Functions
and Function Libraries.”

The following buttons are displayed on the Standard toolbar:

Note: The icons for the New and Open buttons change depending on the
type of active document, such as component, application area, or function
library.

Enable Editing

Paste

Save

Open
<document>

Save All

Print Copy

Cut

New
<document> Object Repository

Settings Quality Center
Connection

Chapter 2 • QuickTest at a Glance

55

Automation Toolbar

The Automation toolbar contains buttons for recording and running your
component. The following buttons are displayed on the Automation
toolbar:

Note: The Analog Recording and Low Level Recording buttons apply only
to tests.

Debug Toolbar

The Debug toolbar contains buttons for the commands used when
debugging the steps in your component and any associated function library.
The following buttons are displayed on the Debug toolbar:

Edit Toolbar

The Edit toolbar contains buttons for the commands used when editing
your function library. The following buttons are displayed on the Edit
toolbar:

Record Stop

Run Update Run
Mode

Analog
Recording Results

Low Level
Recording

Pause

Step Over

Step Into
Step Out

Insert/Remove
Breakpoint

Enable/Disable
All Breakpoints

Clear All
Breakpoints

Undo Go To

Replace

Comment Block

Redo
Uncomment Block

Indent
Find

Outdent

Part I • Introducing Business Process Testing

56

Insert Toolbar

The Insert toolbar contains buttons for the commands used when working
with function libraries. The following buttons are displayed on the Insert
toolbar:

Note: Only the Step Generator and Function Definition Generator buttons
are relevant for function libraries. None of these buttons are relevant for
components.

Tools Toolbar

The Tools toolbar contains buttons for the commands used to access tools
that assist you when working with your test. The following buttons are
displayed on the Tools toolbar:

Note: The Check Syntax button is relevant for only for function libraries
(and QuickTest tests), and not for components.

Step Generator

Function Definition Generator

Insert Call to New Action

Split Action
End Transaction

Start Transaction

Insert Checkpoint
or Output Value

Options

Check Syntax

Object Spy

Chapter 2 • QuickTest at a Glance

57

View Toolbar

The View toolbar contains buttons for viewing different elements of the
QuickTest window. The following buttons are displayed on the View toolbar.

Note: The Active Screen and Data Table apply only to tests.

Executing Commands Using Shortcut Keys

You can perform some QuickTest commands by pressing shortcut keys. The
shortcut keys listed below are displayed on the corresponding menu
commands.

You can perform the following File menu commands by pressing the
corresponding shortcut keys:

Command Shortcut Key Function

New > Test CTRL+N Creates a new test.

New > Business
Component

CTRL+SHIFT+N Creates a new business component.

New > Application Area CTRL+ALT+N Creates a new application area.

New > Function Library SHIFT+ALT+N Creates a new function library.

Open > Test CTRL+O Opens an existing test.

Open >
Business/Scripted
Component

CTRL+SHIFT+O Opens an existing business or
scripted component.

Open > Application
Area

CTRL+ALT+O Opens an existing application area.

Active
Screen

Debug
Viewer

Data
Table

Information
Pane

Missing
Resources

Part I • Introducing Business Process Testing

58

You can perform the following Edit menu commands by pressing the
corresponding shortcut keys:

Open > Function
Library

SHIFT+ALT+O Opens an existing function library.

Save CTRL+S Saves the active document.

Export Test to Zip File CTRL+ALT+S Creates a zip file of the active
document.

Import Test from Zip
File

CTRL+ALT+I Imports a document from a zip file.

Convert to Scripted
Component

CTRL+ALT+C Converts a business component to
a scripted component.

Print CTRL+P Prints the active document.

Command Shortcut Key Function

Undo CTRL+Z Reverses the last command or
deletes the last entry you typed.

Redo CTRL+Y Reverses the action of the Undo
command.

Cut CTRL+X Removes the selection from your
document.

Copy CTRL+C Copies the selection from your
document.

Paste CTRL+V Pastes the selection to your
document.

Delete DELETE Deletes the selection from your
document.

Action > Rename
Action

SHIFT+F2 Changes the name of an action.

Step Properties > Object
Properties

CTRL+ENTER;
ALT+ENTER

Displays the Object Properties
dialog box of a selected object.

Command Shortcut Key Function

Chapter 2 • QuickTest at a Glance

59

Find CTRL+F Searches for a specified string.

Replace CTRL+H Searches and replaces a specified
string.

Go To CTRL+G Moves the cursor to a particular line
in the component.

Bookmarks CTRL+B Creates bookmarks in your script
for easy navigation.

Advanced > Comment
Block

CTRL+M Comments out the current row, or
selected rows.

Advanced >
Uncomment Block

CTRL+SHIFT+M Removes the comment formatting
from the current or selected rows.

Advanced > Go to
Function Definition

ALT+G Navigates to the definition of the
selected function.

Advanced > Complete
Word

CTRL+SPACE Completes the word when you type
the beginning of a VBScript method
or object.

Advanced > Argument
Info

CTRL+SHIFT+
SPACE

Displays the syntax of a method.

Advanced > Apply
“With” to Script

CTRL+W Generates With statements for the
action displayed in the Expert View.

Advanced > Remove
“With” Statements

CTRL+SHIFT+W Converts any With statements in
the action displayed in the Expert
View to regular (single-line)
VBScript statements.

Command Shortcut Key Function

Part I • Introducing Business Process Testing

60

You can perform the following Insert menu commands by pressing the
corresponding shortcut keys:

You can execute the following Automation menu commands by pressing the
corresponding shortcut keys:

Command Shortcut Key Function

Checkpoint > Standard
Checkpoint

F12 Creates a standard checkpoint for
an object or a table.

Output Value >
Standard Output Value

CTRL+F12 Creates a standard output value for
an object or a table.

Step Generator F7 Opens the Step Generator.

New Step F8; INSERT Inserts a new step in the Keyword
View.

New Step After Block SHIFT+F8 Inserts a new step after a
conditional or loop block in the
Keyword View.

Command Shortcut Key Function

Record F3 Starts a recording session.

Run F5 Starts a run session from the
beginning or from the line at
which the session was paused.

Stop F4 Stops the recording or run
session.

Run from Step CTRL+F5 Starts a run session from the
selected step.

Analog Recording SHIFT+ALT+F3 Starts recording in analog
recording mode.

Low Level Recording CTRL+SHIFT+F3 Starts recording in low level
recording mode.

Chapter 2 • QuickTest at a Glance

61

You can perform the following Resources menu command by pressing the
corresponding shortcut key:

You can perform the following Debug menu commands by pressing the
corresponding shortcut keys:

Command Shortcut Key Function

Object Repository CTRL+R Opens the Object Repository
dialog box.

Command Shortcut Key Function

Step Into F11 Runs only the current line of the
script. If the current line calls a
method, the method is displayed in
the view but is not performed.

Step Over F10 Runs only the current line of the
script. When the current line calls a
method, the method is performed
in its entirety, but is not displayed
in the view.

Step Out SHIFT+F11 Runs to the end of the method then
pauses the run session. (Available
only after running a method using
Step Into.)

Run to Step CTRL+F10 Runs until the current step.

Add to Watch CTRL+T Adds the selected item to the Watch
tab.

Insert/Remove
Breakpoint

F9 Sets or clears a breakpoint in the
component.

Enable/Disable
Breakpoint

CTRL+F9 Enables or disables a breakpoint in
the component.

Clear All Breakpoints CTRL+SHIFT+
F9

Deletes all breakpoints in the
component.

Part I • Introducing Business Process Testing

62

You can perform the following Tools menu command by pressing the
corresponding shortcut key:

You can perform the following Data Table menu commands by pressing the
corresponding shortcut keys when one or more cells are selected in the Data
Table:

Command Shortcut Key Function

Check Syntax CTRL+7 Checks the syntax of the
active document.

Command Shortcut Key Function

Edit > Cut CTRL+X Cuts the table selection and puts it
on the Clipboard.

Edit > Copy CTRL+C Copies the table selection and puts
it on the Clipboard.

Edit > Paste CTRL+V Pastes the contents of the
Clipboard to the current table
selection.

Edit > Clear > Contents CTRL+DEL Clears the contents from the
current selection.

Edit > Insert CTRL+I Inserts empty cells at the location
of the current selection. Cells
adjacent to the insertion are shifted
to make room for the new cells.

Edit > Delete CTRL+K Deletes the current selection. Cells
adjacent to the deleted cells are
shifted to fill the space left by the
vacated cells.

Edit > Fill Right CTRL+R Copies data in the left-most cell of
the selected range to all cells to the
right of it, within the selected
range.

Chapter 2 • QuickTest at a Glance

63

You can perform the following special options using shortcut keys:

Edit > Fill Down CTRL+D Copies data in the top cell of the
selected range to all cells below it
within the selected range.

Edit > Find CTRL+F Finds a cell containing specified
text. You can search the table by
row or column and specify to
match case or find entire cells only.

Edit > Replace CTRL+H Finds a cell containing specified
text and replaces it with different
text. You can search the table by
row or column and specify to
match case and/or to find entire
cells only. You can also replace all.

Data > Recalc F9 Recalculates the selected data in the
Data Table.

Switch between Data
Table sheets

CTRL+PAGE
UP/PAGE
DOWN

Switches through the Data Table
sheets when the Data Table is in
focus.

Option Shortcut Key Function

Switch between
Keyword View and
Expert View

CTRL+PAGE UP/PAGE
DOWN

Toggles between the Keyword
View and Expert View.

Switch between open
documents

CTRL+TAB Changes the display to
another open document type.

Open context menu SHIFT+F10,

or press the
Application Key ()
[Microsoft Natural
Keyboard only]

Opens the context menu for
the selected step data cell in
the Data Table.

Command Shortcut Key Function

Part I • Introducing Business Process Testing

64

Browsing the QuickTest Professional Program Folder

After the QuickTest Professional setup process is complete, the following
items are added to your QuickTest Professional program folder (Start >
Programs > QuickTest Professional).

Note: If you performed an upgrade installation, or uninstalled a previous
version of QuickTest Professional before installing this version, you may
have additional (outdated) items in your QuickTest Professional program
folder. In addition, if you have QuickTest Professional external add-ins
installed, you may have items in your program folder that relate specifically
to these add-ins.

Expand all branches *
[on the numeric
keypad]

Expands all branches in the
Keyword View.

Expand branch +
[on the numeric
keypad]

Expands the selected item
branch and all branches
below it in the Keyword View.

Collapse branch -
[on the numeric
keypad]

Collapses the selected item
branch and all branches
below it in the Keyword View.

Open the Item or
Operation list

SHIFT+F4 or SPACE,
when the Item or
Operation column is
selected in the
Keyword View.

Opens the Item or Operation
list in the Keyword View,
when the Item or Operation
column is selected.

Option Shortcut Key Function

Chapter 2 • QuickTest at a Glance

65

➤ Documentation—Provides the following links to commonly used
documentation files:

➤ QuickTest Automation Reference—Opens the QuickTest Automation
Object Model Reference. The automation object model assists you in
automating test management, by providing objects, methods and
properties that enable you to control virtually every QuickTest feature
and capability. The QuickTest Automation Object Model Reference
provides syntax, descriptive information, and examples for the objects,
methods, and properties. It also contains a detailed overview to help you
get started writing QuickTest automation scripts.

➤ QuickTest Professional Help—Opens a comprehensive help file
containing the QuickTest User’s Guide, the QuickTest for Business Process
Testing User’s Guide, the corresponding user’s guide for each installed
add-in (if any), the Object Model Reference (including the relevant
sections for any installed add-ins), and the VBScript Reference.

➤ Printer-Friendly Documentation—Opens a page that provides links to
printer-friendly versions of all QuickTest documentation, in Adobe
Acrobat Reader (PDF) format.

➤ Tutorial—Opens the QuickTest Professional tutorial, which teaches you
basic QuickTest skills and shows you how to start testing your
applications.

➤ QuickTest Professional Code Samples Plus—Opens the QuickTest
Professional Code Samples Plus Help, which contains documentation for
the Register New Browser Control Utility and the License Validation
Utility, plus provides answers to frequently asked questions, tips and
tricks, sample function libraries, and code and SDK samples.

Part I • Introducing Business Process Testing

66

➤ Tools—Contains the following utilities and tools that assist you with the
testing process:

➤ Remote Agent—Activates the QuickTest Remote Agent, which
determines how QuickTest behaves when a test is run by a remote
application such as Quality Center. For more information,

➤ Password Encoder—Opens the Password Encoder dialog box, which
enables you to encode passwords. You can use the resulting strings as
method arguments or Data Table parameter values (tests only). For more
information, see “Inserting Encoded Passwords into Method Arguments”
on page 166.

➤ Test Batch Runner—(Relevant only for tests) Opens the Test Batch
Runner dialog box, which enables you to set up QuickTest to run several
tests in succession.

➤ Test Results Deletion Tool—Opens the Test Results Deletion Tool dialog
box, which enables you to delete unwanted or obsolete results from your
system according to specific criteria that you define. For more
information, see “Deleting Results Using the Test Results Deletion Tool”
on page 513.

➤ Action Conversion Tool—Enables you to convert test actions that were
created using QuickTest Professional to scripted components for use in
business process testing. For more information, click the Help button in
the Action Conversion Tool window.

➤ Silent Test Runner—(Relevant only for tests) Opens the Silent Test
Runner dialog box, which enables you to run a QuickTest test the way it
is run from LoadRunner and Business Availability Center. For more
information, refer to the QuickTest Professional Advanced Features User’s
Guide.

➤ License Validation Utility—Opens the License Validation utility, which
enables you to retrieve and validate license information. For more
information, refer to the QuickTest Professional Code Samples Plus Help.

➤ Register New Browser Control Utility—Opens the Register New Browser
Control utility, which enables you to register your browser control
application so that QuickTest Professional recognizes your Web object
when recording or running tests. For more information, refer to the
QuickTest Professional Code Samples Plus Help.

Chapter 2 • QuickTest at a Glance

67

➤ Sample Applications—Contains the following links to sample applications
that you can use to practice testing with QuickTest:

➤ Flight—Opens a sample flight reservation Windows application. To
access the application, enter any username and the password mercury.

➤ Mercury Tours Web Site—Opens a sample flight reservation Web
application. This Web application is used as a basis for the QuickTest
tutorial. Refer to the QuickTest Professional Tutorial for more information.

➤ QuickTest Professional—Opens the QuickTest Professional application.

➤ Test Results Viewer—Opens the Test Results window, which enables you to
select a component or business process test and view information about the
steps performed during the run session. For more information, see
“Understanding the Test Results Window” on page 493.

➤ Readme—Opens the QuickTest Professional Readme, which provides the
latest news and information about QuickTest Professional.

➤ Check for Updates—Checks online for any available updates to QuickTest
Professional. You can choose which updates you want to download and
(optionally) install. For more information, see to refer to the QuickTest
Professional User’s Guide.

➤ Uninstall QuickTest Professional—Uninstalls QuickTest Professional and all
of its components, including built-in and external add-ins. Refer to the
QuickTest Professional Installation Guide for more information.

Part I • Introducing Business Process Testing

68

Viewing Product Information

You can view information regarding the QuickTest add-ins and patches
installed on your computer, as well as about your operating system. This
information is useful for troubleshooting and when dealing with Mercury
Customer Support.

To view the product information:

 1 In QuickTest, choose Help > About QuickTest Professional. The About
QuickTest Professional 9.0 window opens.

Chapter 2 • QuickTest at a Glance

69

The About QuickTest Professional 9.0 window displays the following
information:

➤ The version of QuickTest that is installed on your computer, its build
number, and Product ID number.

➤ The list of QuickTest add-ins that are installed on your computer. A check
mark next to the add-in name indicates that the add-in is currently
loaded. For more information on QuickTest add-ins, see Appendix A,
“Working with QuickTest Add-Ins.”

Tip: To view details for, or modify, the QuickTest Professional licenses
installed on your computer, click the License button. For more information,
refer to the QuickTest Professional Installation Guide.

 2 To view more detailed information about the QuickTest Professional
products installed on your computer, click the Product Information button.
The Product Information window opens.

Part I • Introducing Business Process Testing

70

The Product Information window displays the following information:

➤ The QuickTest Professional version, product ID, and build numbers
installed on your computer.

➤ Operating system: The operating system version installed on your
computer.

➤ Internet Explorer version: The version of Microsoft Internet Explorer
installed on your computer.

➤ Quality Center connectivity: The version of the Quality Center
connectivity add-in installed on your computer.

➤ Add-ins Information: The QuickTest add-ins installed on your computer,
and their version and build numbers.

➤ Patch Information: The names of any QuickTest patches installed on your
computer, and links to their readme files.

Part II

Working with Application Areas and
Components

72

73

3
Working with Application Areas

Application areas provide all of the resources and settings needed to create a
business component. Application area settings and any changes you make
to these settings are automatically applied to any business component with
which the application area is associated.

Note: In earlier QuickTest Professional versions, the application area was
known as a business component template. At that time, all business
components used the same template. Now, QuickTest enables you to create
multiple application areas that can be customized to suit the requirements
of each area of your application.

This chapter describes:

➤ About Working with Application Areas

➤ Creating an Application Area

➤ Opening an Application Area

➤ Defining General Settings

➤ Managing Function Libraries

➤ Managing Shared Object Repositories

➤ Managing Keywords

➤ Defining Additional Settings

➤ Saving an Application Area

➤ Deleting an Application Area

Part II • Working with Application Areas and Components

74

About Working with Application Areas

When you create a set of components to test a particular area of your
application, you generally need to work with many of the same test objects,
keywords, testing preferences, and other testing resources, such as function
libraries and recovery scenarios. You define these files and settings in an
application area, which provides a single point of maintenance for all
elements associated with the testing of a specific part of your application.

An application area is a collection of settings and resources that are required
to create the content of a business component. Resources may include
shared object repositories containing the test objects in the application
tested by the component, function libraries containing user-defined
operations performed on that application by the component, and so forth.
Components are automatically linked to all of the resources and settings
defined in the associated application area.

You can create as many application areas as needed. For example, you may
decide to create an application area for each Web page, module, window, or
dialog box in your application. Alternatively, for a small application, one
application area may be all that is needed. Each component can have a only
one associated application area.

Note: To work with application areas, you must have the required
permissions for modifying components, and adding, modifying, and
deleting steps. All four permissions are required. If one of these permissions
is not assigned, you can open application areas only in read-only format. For
more information on setting permissions in the Business Components
module, refer to the Business Process Testing User’s Guide.

Before you create an application area, consider the requirements of Subject
Matter Experts that will use the application area to create business
components. For example:

➤ What test objects will they need?

➤ How will you rename the test objects and other items so that their meanings
are clear to a wide range of users?

Chapter 3 • Working with Application Areas

75

➤ What user-defined functions can you add to ensure that all required
operations are available?

To ensure availability, it is recommended that these function libraries be
saved in the Quality Center project before creating the application area,
although you can update an application area at any time. QuickTest also
provides you with a set of predefined resource files that you can associate
with the application area, for example, function libraries and a recovery
scenario file. Some of the sample function libraries are associated with all
new application areas by default. These sample files are located in the Test
Plan module of your Quality Center project under Subject/BPT Resources.

When you create an application area to be used by components, you must
perform the following tasks:

➤ Provide a full description of the application area

➤ Specify associations to any QuickTest Professional add-ins

➤ Associate any required function libraries

➤ Associate any required shared object repositories

➤ Specify which keywords will be visible and available for use by Subject
Matter Experts when creating component steps

➤ Specify the Windows-based applications on which components associated
with the application area can record and run

➤ Associate any required recovery scenarios and define their settings

➤ Save the application area

When you save the application area, make sure that you provide it with a
meaningful name and a clear description. When a Subject Matter Expert
creates a new business component, the name and description provide the
only indication of the intended use of the application area. For example, if
an application area is intended for components that test a login dialog box,
you might name it “LoginDialog”.

After you create an application area, you can notify the Subject Matter
Experts so that they can begin using it to create business components. (If
necessary, Subject Matter Experts can start to create a component before the
application area is ready, and only later associate the application area with
the component.)

Part II • Working with Application Areas and Components

76

If you modify resources or settings in an application area, these changes are
reflected automatically in all the business components associated with the
modified application area.

If resources are used in component steps, and you later modify these
resources, your component may not run correctly. For example, if a
component uses test objects from the MyRepository.tsr shared object
repository, and you remove this object repository from the application area,
the component will not be able to access the required test objects because
the object repository is no longer included in the application area.

For this reason, it is recommended to ensure that any changes you make to
an application area will not adversely affect the business components with
which the application area is associated.

Tip: You can associate a component with a different application area at any
time. For more information, see “Changing the Application Area Associated
with a Component” on page 135.

Creating an Application Area

When you create a new application area, you define all of the application
area settings and resources needed to create a new business component.

Note: To create an application area, you must first connect to the Quality
Center project in which you want to save the application area. This is the
Quality Center project that will be used by Subject Matter Experts to define
business components and create business process tests. For more
information, see “Connecting to Your Quality Center Project” on page 20.

Chapter 3 • Working with Application Areas

77

To create an application area:

 1 Perform one of the following:

➤ Choose File > New > Application Area

➤ Click the New button down arrow and choose Application Area

Tip: If an application area is already open, clicking the New button opens a
new application area.

The application area window contains several panes that enable you to
specify the settings and resource files that you want business components
associated with the application area to use. By associating a component with
an application area, the component is automatically linked to these settings
and resource files.

You can now specify the application area settings and define its resources.
See the table below for more information on the available options in each
pane.

After you have defined the settings and resources, you can save the
application area. For more information, see “Saving an Application Area” on
page 112.

Part II • Working with Application Areas and Components

78

The application area contains the following panes, which you access by
clicking the appropriate button in the sidebar:

Pane Contents

General Enables you to define the description and specify the
associated add-ins for your application area. You can
also specify the Windows-based applications on which
a component associated with the application area can
record and run, set the browser time-out period, and
define recovery scenarios that specify how a
component associated with the application area
recovers from unexpected events and errors during a
run session. For more information, see “Defining
General Settings” on page 81.

Function Libraries Enables you to associate function libraries with your
application area and to prioritize them. Also enables
you to create and modify associated function libraries.
For more information, see “Managing Function
Libraries” on page 87.

Object Repositories Enables you to associate shared object repositories
with your application area and to prioritize them. Also
enables you to create and modify associated object
repositories. For more information, see “Managing
Shared Object Repositories” on page 92.

Keywords Enables you to determine which built-in and
user-defined keywords (operations) are available to
Subject Matter Experts when creating components. For
more information, see “Managing Keywords” on
page 99.

Chapter 3 • Working with Application Areas

79

Opening an Application Area

After an application area is saved, you can open it for viewing or
modification. For example, you may want to update a recovery scenario or
add a function library with user-defined functions to the application area.

Notes:

To open an application area, you must first connect to the Quality Center
project in which the application area is saved. For more information, see
“Connecting to Your Quality Center Project” on page 20.

You cannot open an application area that was created with a later version of
QuickTest on a computer running an earlier version of QuickTest.
For example, you cannot open an application area created in QuickTest 9.0
on a computer running QuickTest 8.2.

To open an application area:

 1 View the application areas connected to the current Quality Center project.

➤ Choose File > Open > Application Area

➤ Click the Open button down arrow and choose Application Area

Tip: If another application area is already open, you can click the Open
button and then select the required application area.

Part II • Working with Application Areas and Components

80

The Open Application Area dialog box opens and displays a list of the
defined application areas. You can select an application area to view its
description.

 2 Select an application area and click OK. The selected application area opens.

You can now view and modify the settings for the application area. For more
information, see:

➤ “Defining General Settings” on page 81

➤ “Managing Function Libraries” on page 87

➤ “Managing Shared Object Repositories” on page 92

➤ “Managing Keywords” on page 99“Defining Additional Settings” on
page 103

Note: You can also delete an application area from this dialog box (as long
as it is not associated with any components). For more information, see
“Deleting an Application Area” on page 114.

Chapter 3 • Working with Application Areas

81

Defining General Settings

You can use the General pane to view and define general information about
your application area, including its description and any add-ins associated
with it. It is important to include a clear description of the application area
because the name and description are the only indications that a Subject
Matter Expert has when determining which application area to choose for a
specific business component.

The General pane includes the following items:

Item Description

Name Indicates the name of the application area. You assign a
name to the application area when you save it. For more
information, see “Saving an Application Area” on page 112.

Author Indicates the Windows user name of the person who
created the application area.

Part II • Working with Application Areas and Components

82

Location Indicates the Quality Center path and file name of the
application area. If the application area is not yet saved, the
location indicates Not saved, and the Application Area
dialog box title bar contains an asterisk.

Description Indicates the description specified for your application area.

It is important that this mandatory field includes a clear
description of the application area. This is because the
Subject Matter Expert decides which application area to
choose when creating a new component in Quality Center
based on the Name and Description of the application area.
For more information, refer to the Business Process Testing
User’s Guide.

You can update the description, as needed. For example, if
you created an application area but have not finished
defining it, you can note this in the Description area. Later,
after you finalize the application area, you can update the
Description.

Note: If you do not enter a description here in the General
pane, you are prompted to do so when saving the
application area. For more information, see “Saving
an Application Area” on page 112.

Associated add-ins Displays the add-ins associated with the application area.
The associated add-ins are those loaded by QuickTest when
business components are accessed.

Note: When a business process test runs, QuickTest loads
the add-ins associated with the first component in
the test. Therefore, it is important to ensure that all
required QuickTest add-ins are associated with the
application area for the first component in the
business process test.

For more information, see “Associating Add-ins with Your
Component” on page 84.

Item Description

Chapter 3 • Working with Application Areas

83

Note: If you do not see the entire General pane when opening an
application area, you can resize the panes. For example, if the Information
pane covers the area below the associated add-ins, you can resize the
Information pane.

Additional Settings
button

Opens the Application Area Settings dialog box
(described on page 103), which is divided into several tabs.

• Applications—Enables you to specify the
Windows-based applications on which a component
associated with the application area can record and run.
For more information, see “Defining Application
Settings for Your Application Area” on page 103.

• Web—Enables you to set the time-out period for browser
navigations. For more information, see “Defining Web
Settings for Your Application Area” on page 107.

• Recovery—Enables you to define how a component
associated with the application area recovers from
unexpected events and errors that occur in your testing
environment during a run session. For more
information, see “Defining Recovery Scenario Settings
for Your Application Area” on page 108.

The Application Area Settings dialog box may also contain
additional tabs corresponding to any external add-ins that
are loaded, for example, Java or SAP. For information on
tabs related to external add-ins, refer to the relevant
QuickTest add-in documentation.

Modify button Opens the Modify Associated Add-ins dialog box. This
dialog box enables you to associate add-ins with
components or remove associations. You may be required
to restart QuickTest for the changes to take effect. For more
information, see “Associating Add-ins with Your
Component” on page 84.

Item Description

Part II • Working with Application Areas and Components

84

Associating Add-ins with Your Component

When you open QuickTest, you can select the add-ins to load from the
Add-in Manager dialog box. You can record on any environment for which
the necessary add-in is loaded.

Choosing to associate an add-in with an application area instructs QuickTest
to check that the associated add-in is loaded each time you open a
component that is associated with that application area. When you create a
new component, its associated add-ins are those defined in the component’s
application area.

When you open a component, QuickTest notifies you if an associated add-in
is not currently loaded, or if you have loaded add-ins that are not currently
associated with your component (via its application area). This process
reminds you to add the required add-ins to the associated add-ins list if you
plan to use them with the currently open component, thereby helping you
to ensure that your run session will not fail due to unloaded add-ins.

When a Subject Matter Expert opens a business process test in Quality
Center, the QuickTest Professional add-ins that are associated with the first
component in the business process test are loaded automatically. Add-ins
associated with other components in the business process test are not
loaded. Therefore, it is important to ensure that all required QuickTest
add-ins are associated with the application area of the first component in
the business process test.

Chapter 3 • Working with Application Areas

85

Modifying Associated Add-Ins

Click the Modify button in the General pane to associate or disassociate
add-ins with your application area (and its associated components). The
Modify Associated Add-ins dialog box opens.

This dialog box lists all the add-ins currently associated with your
application area, as well as any other add-ins that are currently loaded in
QuickTest. Add-ins that are associated with your application area but not
currently loaded are shown dimmed.

You can select the check boxes for add-ins that you want to associate with
your application area, or clear the check boxes for add-ins that you do not
want to associate with your application area.

Part II • Working with Application Areas and Components

86

In the above example:

➤ Web is loaded and associated with the application area.

➤ ActiveX is loaded, but not associated with the application area.

➤ Visual Basic is associated with the application area, but is not loaded.

Note: If a specific add-in is not currently loaded, but you want to associate it
with an application area, reopen QuickTest and load the add-in from the
Add-in Manager. If the Add-in Manager dialog box is not displayed when
you open QuickTest, you can choose to display it the next time you open
QuickTest. To do so, select Display Add-in Manager on startup from the
General tab of the Options dialog box. For more information, see “Setting
General Testing Options” on page 192.

Chapter 3 • Working with Application Areas

87

Managing Function Libraries

In the Function Libraries pane, you can associate function library files, such
as QuickTest function libraries, VBScript function libraries, or text files, with
your application area. You associate function libraries with your application
areas to provide additional functionality in the form of user-defined
keywords that can be used when creating business components.

All associated function libraries must be saved in your Quality Center
project.

Part II • Working with Application Areas and Components

88

The Function Libraries pane displays the list of function libraries currently
associated with your application area and enables you to associate
additional function libraries, and to modify, delete, and prioritize these files.
You can add existing function libraries or create new ones, as long as the
function libraries are stored in your Quality Center project.

Note: QuickTest provides you with sample function libraries containing
predefined functions. By default, these files are associated with all new
application areas. The default function libraries are located in your Quality
Center project, under Subject\BPT Resources\Libraries. For information on
creating user-defined functions in function libraries, see Chapter 21,
“Working with User-Defined Functions and Function Libraries.”

You can add, modify, delete, and prioritize function libraries associated with
your component using the following buttons:

Button Description

Enables you to create a new function library, save it to your Quality
Center project, and add it to the list.

Opens the selected function library for viewing or editing in a
function library window. Function libraries that are currently in use by
another QuickTest or Quality Center user are locked and can be
opened only in read-only mode. For more information, see
Chapter 21, “Working with User-Defined Functions and Function
Libraries.”

Enables you to browse to the test plan tree of your Quality Center
project and select an existing function library to associate with the
application area. For more information, see “Associating Existing
Libraries with Your Application Area” on page 89.

Removes the selected function library from the application area.

Moves the selected function library up in the list, giving it a higher
priority during the component run session.

Moves the selected function library down in the list, giving it a lower
priority during the component run session.

Chapter 3 • Working with Application Areas

89

Note: You can right-click an associated function library and choose Open to
open it, or Remove to remove its association with the application area.

If an associated function library cannot be found, for example, if it was
removed from the Quality Center project, QuickTest indicates this by
displaying the Missing Function Library icon to the left of the function
library in the list. To handle the missing function library, right-click it and
choose Locate to browse to the required function library, or Remove to
remove the association to the missing function library.

Associating Existing Libraries with Your Application Area

You can add existing function libraries to your application area. This enables
all business components associated with application area to access the
functions defined in these function libraries as keywords.

To associate an existing function library with the application area:

 1 In QuickTest, open the application area (if it is not already open).

➤ Choose File > Open > Application Area

➤ Click the Open button down arrow and choose Application Area

Tip: If another application area is already open, you can click the Open
button and then select the required application area.

 2 Click Function Libraries in the sidebar. The list of function libraries currently
associated with the application area is displayed in the Function Libraries
pane.

 3 Click the Add Function Library button. A blank line is added to the list, as
well as a browse button.

 4 Click the browse button. The Add Function Library dialog box opens.

Part II • Working with Application Areas and Components

90

The Add Function Library dialog box displays the test plan tree of the
current Quality Center project.

 5 Select the relevant item in the tree to display its attached function libraries.
Then select the function library that you want to associate with your
application area. The name is displayed in the Attachment Name box.

 6 Click OK. The Add Function Library dialog box closes and the selected file is
displayed in the Function Libraries pane of the application area. If the
function library contains syntax errors, a message opens stating that your test will
fail because of these syntax errors.

Chapter 3 • Working with Application Areas

91

Creating New Function Libraries

You can create new function libraries directly from the Function Libraries
pane of the application area and associate them automatically to your
application area.

To create a new function library in your Quality Center project:

 1 In QuickTest, open the application area, (if it is not open).

➤ Choose File > Open > Application Area

➤ Click the Open button down arrow and choose Application Area

Tip: If another application area is already open, you can also click the Open
button and then select the application area you require.

 2 Click Function Libraries in the sidebar. The list of function libraries currently
associated with the application area is displayed in the Function Libraries
pane.

 3 In the Function Libraries pane, click the Create Function Library button. The
Add Function Library dialog box opens.

 4 In the test plan tree, navigate to the folder in which you want to store the
function library.

 5 In the Attachment Name box, enter a name for the function library and
click OK. A new empty function library is added to the selected location in
the test plan tree and listed in the Function Libraries pane.

Note: By default, function libraries are created in QuickTest as .qfl files if no
suffix is specified. You can also create .txt or .vbs files if needed.

Part II • Working with Application Areas and Components

92

 6 If you want to add content to the new function library or modify the file
directly from QuickTest, select the file in the Function Libraries pane and
click the Open Function Library button or double-click the function library
in the list. The file opens in a function library window and can be edited as
required. To save your changes, close the file and click Yes when prompted.

 7 If you want to rename the function library, you can click it twice, or select it
and press F2.

For more information on editing function libraries, see Chapter 21,
“Working with User-Defined Functions and Function Libraries.”

Managing Shared Object Repositories

A shared object repository stores all of the test objects that may be used
when creating steps for a business component. After you associate a shared
object repository with an application area, it can be accessed by any
component that is associated with that application area.

Chapter 3 • Working with Application Areas

93

The Object Repositories pane displays the list of shared object repositories
currently associated with your application area and enables you to associate
additional object repositories, and to modify, delete, and prioritize these
files. You can add existing object repositories or create new ones, as long as
the object repositories are stored in your Quality Center project.

You can add test objects to this shared object repository either by learning
objects in your application or by adding test objects manually using the
Object Repository Manager. For information on managing test objects in a
shared object repository, see Chapter 15, “Managing Object Repositories.”

Note: Although QuickTest provides you with a default shared object
repository (located in the Subject/BPT Resources/Object Repositories
folder), it is strongly recommended not to use it. If you associate this default
shared object repository with an application area or a specific component,
any components using this shared object repository may not run correctly.

You can use existing shared object repositories that already contain your test
objects, or you can create new ones. All business components associated
with an application area that refers to these shared object repositories will
then access these shared object repository files. For more information, see
“Creating New Shared Object Repositories” on page 95.

After you add test objects to the shared object repository, you and Subject
Matter Experts can then use the test objects to add steps to business
components. For more information, see “Selecting an Item for Your Step” on
page 155.

Subject Matter Experts need to be able to distinguish between the various
test objects when they define steps for a business component. Therefore, it is
important that all test object names be self-explanatory. You can change the
name that QuickTest assigns automatically to a stored test object. For
example, if a test object is named Edit by default, you may want to rename it
to UserName (if that is what the user needs to enter in the edit box, of
course).

Part II • Working with Application Areas and Components

94

For container objects, it is recommended to specify their context, for
example, if you have several confirmation message boxes, you may want to
name one Login > Confirm, another ChangePassword > Confirm, and still
another BillingInfo > Confirm.

When you modify the name of an object, the name is automatically
updated in the QuickTest Keyword View and the Steps tab of the Quality
Center Business Components module for all occurrences of the object (also
in steps that were created using the old test object names). When you open
another component that uses the same shared object repository and has one
or more occurrences of the modified object, the names within that
component are updated. This may take a few moments.

For more information on renaming test objects, see “Renaming Test
Objects” on page 319.

You can add, modify, delete, and prioritize object repositories associated
with an application area (and its associated components) using the
following buttons:

Button Description

Enables you to create a new object repository, save it to Quality
Center, and then add it to the list.

Opens the selected object repository for viewing or editing in the
Object Repository Manager. Object repositories that are currently
locked are opened in read-only format. For more information on the
Object Repository Manager, see Chapter 15, “Managing Object
Repositories.”

Enables you to browse to the test plan tree of your Quality Center
project and select an existing object repository to associate with the
application area. For more information, see “Adding Existing Shared
Object Repositories to Your Application Area” on page 97.

Removes the selected object repository from the application area.

Moves the selected object repository up in the list, giving it a higher
priority during the component run session.

Moves the selected object repository down in the list, giving it a lower
priority during the component run session.

Chapter 3 • Working with Application Areas

95

Note: You can right-click a shared object repository and choose Open to
open it in the Object Repository Manager, or Remove to remove its
association with the application area.

If a shared object repository cannot be found, QuickTest displays its name
and path in the Missing Resources pane when you open the application
area. To handle the missing shared object repository, right-click it in the list
of associated object repositories and choose Locate to browse to the required
shared object repository, or Remove to remove the association to the shared
object repository.

Creating New Shared Object Repositories

To enable a Subject Matter Expert to access the test objects from the
application when implementing component steps, the test objects must be
stored in a shared object repository located in your Quality Center project.
You can create new shared object repositories directly from the Object
Repositories pane of the Application Area and associate them automatically
to your application area.

To create a new shared object repository in your Quality Center project:

 1 In QuickTest, open the application area, (if it is not open).

➤ Choose File > Open > Application Area

➤ Click the Open button down arrow and choose Application Area

Tip: If another application area is already open, you can also click the Open
button and then select the application area you require.

Part II • Working with Application Areas and Components

96

 2 Click Object Repositories in the sidebar. The list of object repositories
currently associated with the application area is displayed in the Object
Repositories pane.

 3 In the Object Repositories pane, click the Create Object Repository button.
The Add Object Repository dialog box opens, showing the test plan tree of
the current project.

 4 In the test plan tree, navigate to the folder in which you want to store the
object repository.

 5 In the Attachment Name box, enter a name for the object repository and
click OK. A new object repository is added to the selected location in the test
plan tree and listed in the Object Repositories pane.

 6 If you want to add test objects to your shared object repository or modify
the file directly from QuickTest, select the file in the Object Repositories
pane and click Open Object Repository or double-click the object repository
in the list. The file opens in the Object Repository Manager and can be
edited as required.

 7 If you want to rename the object repository, you can click it twice, or select
it and press F2.

For more information on modifying object repositories in the Object
Repository Manager, see Chapter 15, “Managing Object Repositories.”

Chapter 3 • Working with Application Areas

97

Adding Existing Shared Object Repositories to Your Application
Area

You can add existing shared object repository files to your application area.
This enables all business components with which the application area is
associated to access the test objects that are stored in these files.

To add an existing shared object repository for the application area:

 1 In QuickTest, open the application area, (if it is not open).

➤ Choose File > Open > Application Area

➤ Click the Open button down arrow and choose Application Area

Tip: If another application area is already open, you can also click the Open
button and then select the application area you require.

 2 Click Object Repositories in the sidebar. The list of object repositories
currently associated with the application area is displayed in the Object
Repositories pane.

 3 Click the Add Object Repository button. A blank line is added to the list, as
well as a browse button.

Part II • Working with Application Areas and Components

98

 4 Click the browse button. The Add Object Repository dialog box opens. The
dialog box displays the test plan tree of the current Quality Center project.

 5 Select the relevant item in the tree to display its attached object repositories.
Then select the object repository that you want to associate with your
application area. The name is displayed in the Attachment Name box.

 6 Click OK. The Add Object Repository dialog box closes and the selected file
is displayed in the Object Repositories pane of the application area.

 7 If you want to add test objects to your shared object repository or modify
the file directly from QuickTest, select the file in the Object Repositories
pane and click Open Object Repository or double-click the object repository
in the list. The file opens in the Object Repository Manager and can be
edited as required.

 8 If you want to rename the object repository, you can click it twice, or select
it and press F2.

Chapter 3 • Working with Application Areas

99

Managing Keywords

When creating a step in a business component, Subject Matter Experts select
the required operation to perform on the application being tested. These
operations are also known as keywords, and are derived from built-in
methods and properties, as well as user-defined functions associated with
the application area.

All of the built-in methods and properties, plus all of the functions in
user-defined function libraries, are displayed as keywords in the Keywords
pane. The Keywords pane enables you to manage the keywords and select
which of them should be available to Subject Matter Experts when creating
components. Only selected built-in keywords are available by default.
However, all user-defined keywords are available to Subject Matter Experts.

To make keywords available to Subject Matter Experts from the lists of
operations in business component steps, click the relevant check boxes in
the Available column. To remove keywords from the lists of available
operations, clear the check boxes. Subject Matter Experts will not be able to
use keywords whose check boxes are cleared.

Part II • Working with Application Areas and Components

100

The Keywords pane displays information about the keywords in the
following columns:

Clicking a keyword in the list displays information about it in the Properties
area at the bottom of the pane. This includes a textual description of what
the keyword does, as well as the name and path of its function library (for
user-defined keywords). The location of a built-in keyword is defined as
Internal.

Column Description

Environment The name of the add-in for which the keyword is provided, for
example, Web or Visual Basic. The keywords available for all
currently loaded add-ins are displayed in the pane.

Notes: Keywords in user-defined functions that are registered to
a test object are displayed under the environment and
object class to which they are registered.

Keywords in user-defined functions that are not
registered to a test object, plus built-in VBScript
functions, are all displayed under the Global
environment.

Class The object class, for example, Image or Winbutton.

Keyword The displayed operation name, for example, Click or
VerifyProperty.

Type Whether the operation is Built-in (provided by QuickTest) or
User-Defined (contained in a function library).

Available Whether the keyword is available to Subject Matter Experts for
use in business component steps. You can select or clear each
check box as required.

Chapter 3 • Working with Application Areas

101

You can view, sort, and filter the data in the Keywords pane to make it easier
to locate the keywords that you want to make available to (or hide from) the
Subject Matter Experts.

Tips:

You can rearrange the order that columns are displayed in the Keywords
pane by dragging a column header to a new location. Red arrows are
displayed when the column is dragged to an available location.

If the data in a column is partially hidden because the column is too narrow,
you can resize the column using the mouse. Drag a column header divider
to adjust the width.

Filtering the Columns

You can filter the data in the Keywords pane to display only those keywords
with which you want to work. You can filter the data in a single column
only, or filter additional columns to further reduce the number of displayed
items.

For example, you may want to view only Web Add-in keywords that are
currently not available to Subject Matter Experts. You would filter the
Environment column to display only keywords from the Web Add-in, and
then filter the Available column to display only keywords whose check box
is cleared (select Unchecked from the Available column filter list).

The filter criteria and the number of keywords that match the current filter
are displayed below the columns.

Click the to the left of the filter criteria to clear the filter and show all
keywords.

Part II • Working with Application Areas and Components

102

To filter the data in a column:

Click the arrow in a column header. A list of the unique items contained
in the column opens.

You can perform the following to filter the data in the column:

➤ Click an item in the list. You can use the CTRL key to select multiple items
from a filter list. The Keywords pane refreshes to show the data for keywords
with that item name only.

You can then click the arrow in another column header and choose an item
in that list. The filtered data is filtered again to show only the keywords that
match all selected filter criteria.

➤ In the Filter For box at the bottom of the filter list, you can enter a filter
pattern that includes wildcards such as ?, *, and #. Press ENTER to filter the
data according to the pattern. You can use ? to represent any single
character, * to represent zero or more occurrences of any character, and # to
represent any digit. You can also use | to specify items that match only one
of the options in the pattern. For example, Verify*|Check* shows all
keywords that start with Verify or Check.

➤ You can apply a multiple filters simultaneously. For example, if you want to
view keywords for only the Standard Windows and ActiveX environments,
and you want to see only built-in keywords (as opposed to user-defined
keywords), you can apply three filters: one filter for StandardWindows;
another filter for ActiveX; and a third filter for the type, Built-in.

Chapter 3 • Working with Application Areas

103

Sorting Column Content

You can arrange the data in a column into ascending or descending
alphabetical order by clicking the column header. The Available column is
sorted according to selected and cleared check boxes.

The sort direction is indicated by an arrow in the column header. Click the
column header again to sort the data in the other direction.

Defining Additional Settings

Clicking the Additional Settings button in the General pane opens the
Application Area Settings dialog box, which comprises several tabs. These
tabs enable you to define specific settings for your application area, such as
the applications on which the components associated with the application
area can record and run, and how a component recovers from unexpected
events during a run session.

Defining Application Settings for Your Application Area

In the Applications tab, you can specify the Windows-based applications on
which the components associated with this application area can record and
run. You can record component steps only on the specified applications.

Tip: To record on an application, you can either open it manually, or you
can use the OpenApp keyword (function) provided with QuickTest in the
Common.txt function library. There are no settings available for
automatically opening applications for components.

Part II • Working with Application Areas and Components

104

The Other area displays the environments on which the application area’s
associated components can currently record (based on the currently loaded
add-ins).

You can use the Applications tab to set or modify your application
preferences in the following scenarios:

➤ You have already recorded one or more steps in an associated component
and you want to modify the settings before you continue recording.

➤ You want to record and run the component on a different application than
the one you previously used.

Chapter 3 • Working with Application Areas

105

Notes:

If you are recording a new component and have not yet set your application
settings in the Applications tab of the Application Area Settings dialog box,
the Applications dialog box opens when you start to record. The
Applications dialog box contains the same options as the Applications tab,
described in this section.

The Applications dialog box and Applications tab may also contain options
applicable to any QuickTest external add-ins installed on your computer. For
information regarding these options, refer to the documentation provided
with the specific add-in.

The following options are available in the Applications tab:

Option Description

Windows
applications

Lists the details of the applications on which to record and run
components associated with this application area. For more
information on the details displayed, see “Specifying an
Application” on page 106.

If you do not want to record or run on Windows applications,
leave the application list blank. (This is the default setting.)

Adds an application to the application list. You can add up to
ten applications. For more information, see “Specifying an
Application” on page 106.

Removes the selected application from the application list.

Record and run
on any
applications
opened by
QuickTest

Records and runs on any applications invoked by QuickTest (as
child processes of QuickTest). For example, applications opened
during a record or run session using an OpenApp function, or
another operation containing a function that opens an
application.

Other Lists the add-in environments that correspond to the currently
loaded add-ins.

Part II • Working with Application Areas and Components

106

Specifying an Application

When you click the Add button in the Applications tab, the Select
Application dialog box opens.

You can add up to ten applications to the application list displayed in the
Applications tab, and you can edit an existing application in the list. You
can also select whether to record and run on the application’s descendant
processes.

The details entered in the Select Application dialog box are displayed as a
single line for each application in the Windows applications area of the
Applications tab.

You can specify the following details for the application in the Select
Application dialog box:

Option Description

Executable file Instructs QuickTest to record and run on the specified
executable file.

Include
descendant
processes

Selecting this check box instructs QuickTest to record and run
on processes created by the specified application during the
record and run session. For example, a process that is used
only as a launcher may create another process that actually
provides the application functionality. This descendant
process must therefore be included when recording or running
tests on this application, otherwise the functionality will not
be recorded, or the run session will fail.

By default, this option is selected.

Chapter 3 • Working with Application Areas

107

Defining Web Settings for Your Application Area

The Web tab provides an option that defines how long to wait for a Web
page to load.

Note: The Web tab is available only if the Web Add-in is installed and
loaded.

Part II • Working with Application Areas and Components

108

The Web tab includes the following options:

Tip: In addition to the options in this tab, you can also configure the events
you want to record for each type of Web object. For example, if you want to
record events, such as a mouseover that opens a sub-menu, you may need to
modify your Web event configuration to recognize such events. For more
information, see Chapter 11, “Configuring Web Event Recording.”

Defining Recovery Scenario Settings for Your Application Area

Recovery scenario settings enable you to specify how a business component
recovers from unexpected events and errors during a run session.

The Recovery tab displays a list of all recovery scenarios associated with the
current application area. It also enables you to associate additional recovery
scenarios with the application area, remove scenarios from the application
area, change the order in which they are applied to the run session, and
view a read-only summary of each scenario.

Option Description

Browser navigation
timeout

Sets the maximum time (in seconds) that QuickTest
waits for a Web page to load before running a step in
the test or component.

User name This option is not relevant for components.

Password This option is not relevant for components.

Advanced This option is not relevant for components.

Chapter 3 • Working with Application Areas

109

You can enable or disable specific scenarios or the entire recovery
mechanism for the application area. You can add existing recovery scenarios
or create new ones, as long as the recovery scenarios are stored in your
Quality Center project.

Note: QuickTest provides you with a sample recovery file for Web-related
testing. The file is located in your Quality Center project, under Subject\BPT
Resources\Recovery Scenarios\DefaultWeb.qrs.

You define recovery scenarios for application areas in exactly the same way
as for tests. For more information about recovery scenarios, see Chapter 20,
“Defining and Using Recovery Scenarios.”

Part II • Working with Application Areas and Components

110

The Recovery tab includes the following options:

Specifying Associated Recovery Scenarios

You can select or clear the check box next to each scenario to enable or
disable it for the current application area.

You can also edit the recovery scenario file path by clicking the path once to
highlight it, and then clicking it again to enter edit mode. If you modify a
recovery scenario file path, ensure that the recovery scenario exists in the
new path location before running components that are associated with this
application area.

Option Description

Scenarios Displays the name and recovery file path for each recovery
scenario associated with your application area. You can add,
delete, and prioritize the scenarios in the list, and you can edit
the file path for a selected file. For more information, see
“Specifying Associated Recovery Scenarios” on page 110.

Scenario
description

Displays the textual description of the scenario selected in the
Scenarios box.

Activate
recovery
scenarios

Instructs QuickTest to check when to run the associated
scenarios as follows:

• On every step—The recovery mechanism is activated after
every step.

• On error—The recovery mechanism is activated only after
steps that return an error return value.

• Never—The recovery mechanism is disabled.

Note: Choosing On every step may result in slower
performance during the run session.

Chapter 3 • Working with Application Areas

111

Scenario types are indicated by the following icons:

You can add, delete, and prioritize the recovery scenario files associated with
your component using the following buttons:

Icon Description

Indicates that the recovery scenario is triggered by a specific pop-up
window in an open application during the run session.

Indicates that the recovery scenario is triggered when the property
values of an object in an application match specified values.

Indicates that the recovery scenario is triggered when a step in the
component does not run successfully.

Indicates that the recovery scenario is triggered when a specified
application fails during the run session.

Indicates that the recovery scenario is no longer available for the
application area. This may be because the recovery file has been
renamed or moved, or can no longer be accessed by QuickTest. When
an associated recovery file is not available during a run session, a
message is displayed in the results.

Button Description

Opens the Add Recovery Scenario dialog box, which enables you to
associate one or more recovery scenarios with the component. For
more information, see Chapter 20, “Defining and Using Recovery
Scenarios.”

Removes the selected recovery scenario from the component.

Moves the selected scenario up in the list, giving it a higher priority
during the component run session.

Moves the selected scenario down in the list, giving it a lower priority
during the component run session.

Displays summary properties for the selected recovery scenario in
read-only format. For more information, see Chapter 20, “Defining
and Using Recovery Scenarios.”

Part II • Working with Application Areas and Components

112

Saving an Application Area

You can save an application area before or after you define its settings and
resources.

When you save an application area, make sure that you provide a unique
name and description that clearly indicate its use. For example, if the
application area is intended to be used by components that test the Log In
module, you might name it “Log In” and add a description that specifies its
intended use, such as, “Intended for use with business components that test the
Log In module.”

To save an application area:

 1 In QuickTest, connect to a Quality Center server and project with Business
Process Testing support. For more information, see “Connecting to Your
Quality Center Project” on page 20.

 2 Create an application area and modify its settings as required. For more
information, see “Creating an Application Area” on page 76.

 3 Click Save or choose File > Save. The Save Application Area dialog box
opens.

Chapter 3 • Working with Application Areas

113

The Save Application Area dialog box includes the following:

 4 Click OK to save the application area.

Tip: If you are creating a new application area that is similar to an existing
one, you can use the Save As option. Then you can modify the application
area, as needed.

Option Description

Existing
application areas

Lists all defined application areas in the Quality Center
project. This enables you to see the names of the existing
application areas so that you can specify a unique name for
the application area that you want to save.

Name Indicates the name of the application area. Enter a
descriptive name that will enable Subject Matter Experts to
quickly identify the application area that is suitable for
their component.

Note: The name you enter cannot exceed 255 characters,
cannot contain begin or end with spaces, and cannot
contain the following characters:
\ / : " ? < > | * ! { } ‘ % ;

Description Displays the description you entered in the General pane of
the Application Area dialog box when you created the
application area. For more information, see “Creating an
Application Area” on page 76.
If you did not enter a description when you created the
application area, you must enter one now. You cannot save
an application area without a description.
You can also modify the existing description if you already
defined one in the General pane. The description you
provide enables Subject Matter Experts to easily
differentiate between the various application areas and
choose the one that is best suited for their component.

Part II • Working with Application Areas and Components

114

Deleting an Application Area

If an application area is no longer needed, you can delete it. Before you
delete an application area, you must make sure that it is not being used by
any business components. You cannot delete an application area that is used
by a business component.

To delete an application area:

 1 In QuickTest, connect to the Quality Center project that contains the
application area that you want to delete. For more information, see
“Connecting to Your Quality Center Project” on page 20.

 2 In QuickTest, open the application area, (if it is not open).

➤ Choose File > Open > Application Area

➤ Click the Open button down arrow and choose Application Area

Tip: If another application area is already open, you can also click the Open
button and then select the application area you require.

The Open Application Area dialog box opens.

Chapter 3 • Working with Application Areas

115

 3 Select the application area that you want to delete and click the Delete
Application Area button. A warning message displays.

Note: You cannot delete the currently open application area, an application
area that is currently being used by another Automation Engineer, or an
application area that is associated with a component.

 4 Click Yes to confirm. The selected application area is deleted.

 5 Click OK to close the Open Application Area dialog box.

Part II • Working with Application Areas and Components

116

117

4
Working with Business Components

You can use the Business Component Keyword View to create, view, modify,
and debug a business component in QuickTest.

This chapter describes:

➤ About Working with Business Components

➤ Creating a New Business Component

➤ Saving a Business Component

➤ Opening a Business Component

➤ Working with Manual Components

➤ Changing the Application Area Associated with a Component

➤ Printing a Component

Part II • Working with Application Areas and Components

118

About Working with Business Components

Generally, business components are created and modified in Quality Center
by Subject Matter Experts. For more information, refer to the Business Process
Testing User’s Guide. However, you can use the Business Component
Keyword View to create, view, modify, and debug a business component in
QuickTest, if required.

In the Keyword View, business components are divided into steps in a
modular, keyword-driven, table format. Each step is a row that comprises
individual parts that you can easily modify. You create and modify steps by
selecting items and operations and entering additional information, as
required.

Each step in a business component is automatically documented as you
complete it. This enables you to view a description of the step in
understandable sentences. In addition, if you added a function library to the
application area associated with the business component, when you define a
step by selecting a user-defined operation (function), the documentation
that you added in the function library will be displayed for the step. For
more information, see “Documenting the Function” on page 599.

Before you create or open a business component, you connect QuickTest to
a Quality Center project, which is where business components and
application area resources and settings are stored. Connecting to your
Quality Center project enables QuickTest to create or open the business
component. This also enables the business component to access all of the
resources defined in the application area on which the component is based.

Note: You need to make sure you have the required Quality Center
permissions before working with business components and application
areas. For more information on setting user group permissions in the
Business Components module, refer to the Business Process Testing User’s
Guide.

Chapter 4 • Working with Business Components

119

If the application area you select does not yet contain all of the required
resources and settings, you can still add steps using the ManualStep
function or the Comment option. This enables you to type in manual steps
as you would in Quality Center or in another application, such as Microsoft
Excel or Microsoft Word. You can also use comments to add information
about a step or to separate sections of your business component. Each
manual step and comment appears as a separate row in the Keyword View.
For more information, see “Adding and Modifying Manual Steps for
Components” on page 133 and “Working with Comments” on page 178.

Notes:

If you want to delete a component, you can do so only in Quality Center,
regardless of whether it was created in QuickTest or in Quality Center. For
more information, refer to the Business Process Testing User’s Guide.

If needed, you can convert a business component to a scripted component.
For more information, see Chapter 5, “Working with Scripted
Components.”

Part II • Working with Application Areas and Components

120

Creating a New Business Component

When QuickTest is connected to a Quality Center project, you can create a
new business component in that project.

Each business component is based on a specific application area, which is
stored in the Quality Center project in which you intend to save the
component. Each application area specifies the settings and resources for
the business component, including the location of shared object
repositories, function libraries, recovery scenarios, and other information.
There may be one or more application areas from which to choose. You
select the application area that is best suited for your business component.
For more information, see Chapter 3, “Working with Application Areas.”

Generally, business components are created in Quality Center by Subject
Matter Experts. For more information, refer to the Business Process Testing
User’s Guide. However, you can also create business components in
QuickTest, if needed. This section describes how to create a new component
in QuickTest.

Note: To create a new business component in QuickTest, you must have the
necessary permissions to create a business process test. For more
information, refer to the Quality Center Administrator's Guide.

To create a new business component:

 1 Connect to the Quality Center project in which you want to save the
business component. For more information, see “Connecting to Your
Quality Center Project” on page 20.

 2 Perform one of the following:

➤ Choose File > New > Business Component

➤ Click the New button down arrow and choose Business Component

Chapter 4 • Working with Business Components

121

The New Business Component dialog box opens, listing all available
application areas. You can click on an application area to view its
description. (These are the descriptions that Subject Matter Experts use to
determine which application area to choose when they create a new
business component.)

Note: If you have not yet defined an application area, a new, untitled
business component opens using the default settings that are supplied with
Business Process Testing. Later, after you define an application area, you can
base the business component on it. For more information, see Chapter 3,
“Working with Application Areas.”

 3 Select a suitable application area from the Application Area box. For
example, if you want to create a business component for a Log In module,
select the application area that is defined for it. Click OK.

Part II • Working with Application Areas and Components

122

A new, untitled business component opens in the Keyword View. Although
the business component does not yet contain content, it does contain all of
the required settings and resources that were defined in the application area
on which it is based. You can view these settings in read-only format by
choosing File > Settings. If you later need to change these settings, you can
do so in the associated application area.

 4 You can now:

➤ Add steps and comments to your business component. For more
information, see “Adding a Step to Your Component” on page 151 and
“Working with Comments” on page 178.

➤ Save your component. (You can add steps later.) For more information,
see “Saving a Business Component” on page 123.

Chapter 4 • Working with Business Components

123

Saving a Business Component

After you create or modify a component, you can save it to your Quality
Center project. When you save a component, you give it a descriptive name
and save it to the relevant folder in the component tree in the Quality
Center project (Business Components module).

You can also save a copy of an existing component to any folder in the same
Quality Center project. To enable all users to differentiate between the
various components, you may want to rename a copy of a component, even
if you save it to a different folder.

Tip: If changes are made to a component, an asterisk is displayed in the title
bar until the component is saved.

You save business components and scripted components in the same way.
For more information on scripted components, see “Working with Scripted
Components” on page 139.

You can also convert a business component to a scripted component. For
more information, see “Converting a Business Component to a Scripted
Component” on page 146.

Note: For scripted components only, the data sheet name in the Data Table
is identical to the scripted component name. If you save a scripted
component with a new name (File > Save As), the data sheet is automatically
renamed. If you have a step that references the data sheet by name, the step
will fail during the run session because it references the former data sheet
name. If you save a scripted component with a new name, you must find
any references to the former data sheet name in the Expert View and replace
them with the new data sheet name.

Part II • Working with Application Areas and Components

124

To save a component to your Quality Center project:

 1 Save the component in one of the following ways:

➤ For a new component that has never been saved, choose File > Save or
click Save.

➤ To save a copy of an existing component, choose File > Save As.

The Save Business Component dialog box opens and displays the
component tree.

In the component tree, the status of each component is indicated by its
icon. For more information, refer to the Business Process Testing User’s Guide.

 2 Select the folder in which you want to save the component. To expand the
tree and view a sublevel, double-click a closed folder. To collapse a sublevel,
double-click an open folder.

You can either save the component to an existing folder in your Quality
Center project or click the New Folder button to create a new folder in
which to save it. If you want to save a copy of an existing component with
same name, you must save it to a different folder.

Chapter 4 • Working with Business Components

125

 3 In the Component Name box, enter a name for the component. Use a
descriptive name that will help you and others identify the component
easily. The component name cannot exceed 255 characters, cannot contain
begin or end with spaces, and cannot contain the following characters:
\ / : " ? < > | * ! { } ‘ % ;

 4 Accept the default Component Type—QuickTest Component.

 5 Click OK to save the component and close the dialog box. As QuickTest
saves the component, the operations that it performs are displayed in the
status bar.

The component is saved to the Quality Center project. You can now view
and modify it using QuickTest.

Note: Subject Matter Experts can also access the component from the
Quality Center Business Components module. For more information, refer
to the Business Process Testing User’s Guide.

Tip: If the component was saved previously, you can save it by choosing File
> Save, or clicking Save.

Part II • Working with Application Areas and Components

126

Opening a Business Component

When QuickTest is connected to a Quality Center project, you can open a
component that is stored in the project to view, modify, debug, or run it.
You find components according to their location in the component tree.

Components that are currently open in Quality Center or another QuickTest
session are locked and can be opened only in read-only format. To work
with these components, they must be closed everywhere else.

When you open a component, if the component’s associated application
area cannot be found, you are prompted to associate a different application
area with it.

Notes for users of previous QuickTest versions:

➤ When you open a business component or scripted component that was
created using QuickTest 8.2, you are asked whether you want to convert
it or view it in read-only format. If you choose to view it in read-only
format, it appears as it did previously, using all of its original settings, but
you cannot modify it. If you choose to convert it, it is updated to the
current format. When the component is updated, it uses the associated
application area’s current settings. If the component had customized
settings (settings that were defined directly in the Business Component
Settings dialog box), these settings are removed and the associated
application area’s current settings are applied instead.

➤ After you save a converted component, it cannot be used with earlier
versions of QuickTest.

➤ You cannot open a component that was created with a later version of
QuickTest on a computer running an earlier version of QuickTest.
For example, you cannot open a component created in QuickTest 9.0 on
a computer running QuickTest 8.2.

You open business components and scripted components in the same way.
For more information on scripted components, see “Working with Scripted
Components” on page 139.

Chapter 4 • Working with Business Components

127

To open an existing component:

 1 In QuickTest, connect to the Quality Center project in which your
component is saved. For information on connecting to Quality Center, see
“Connecting to Your Quality Center Project” on page 20.

 2 Choose File > Open > Business/Scripted Component, or click the Open
arrow and choose Business/Scripted Component. The Open Business
Component dialog box opens showing the components stored in the
Quality Center project.

You can change the type of components displayed in the dialog box, as
described in step 3.

In the component tree, the status of each component is indicated by its
icon. For more information, refer to the Business Process Testing User’s Guide.

Tip: You can also open a recently used component by selecting it from the
Recent Files list in the File menu. If you select a component when you are
not connected to the Quality Center project, or if you select a component
that is stored in a different Quality Center project, QuickTest displays a
message asking you if you want to connect to that project. For more
information, see “Opening Components from the Recent Files List” on
page 129.

Part II • Working with Application Areas and Components

128

 3 If required, filter the list of components shown in the Business Component
dialog box by selecting the component type you want to open from the
Component Type list. You can select one of the following component types:

➤ QuickTest Component: Displays components that were automated using
QuickTest Professional or the Business Process Testing Keyword View.

➤ Manual Component: Displays components that were created in Quality
Center and have not yet been converted to automated components. For
more information, see “Working with Manual Components” on
page 130.

➤ All Components: Displays all QuickTest automated components and
manual components.

 4 Click the relevant folder in the component tree. To expand the tree and
view the business components, double-click closed folders. To collapse the
tree, double-click open folders.

 5 Select a component. The component name is displayed in the read-only
Component Name box.

 6 Click OK to open the component.

As QuickTest downloads and opens the component, the operations it
performs are displayed in the status bar.

When the component opens, the QuickTest title bar displays Components,
the full path and the component name. For example, the title bar for a
flight_login component may be:

[Components\Flight\flight_login]

Chapter 4 • Working with Business Components

129

Opening Components from the Recent Files List

You can open components from the recent files list in the File menu. If you
select a component located in a Quality Center project, but QuickTest is
currently not connected to Quality Center or to the correct project for the
component, the Connect to Quality Center Project dialog box opens and
displays the correct server, project, and the name of the user who most
recently opened the component on this computer.

Log in to the project, and click OK.

The Connect to Quality Center Project dialog box also opens if you choose
to open a component that was last edited on your computer using a
different Quality Center user name. You can either log in using the
displayed name or you can click Cancel to stay logged in with your current
user name.

Part II • Working with Application Areas and Components

130

Working with Manual Components

You can convert a manual component created in Quality Center to a
business component. You can then view, modify, debug, or run it in the
same way as any other business component.

After you convert a manual component to a business component, you can
still view its manual steps in Quality Center, and you can run it as a manual
component using the Quality Center Manual Runner. You can also modify
the manual steps and add additional manual steps, as needed.

Note: You can also convert a manual component to a business component
from within Quality Center. For more information, refer to the Business
Process Testing User’s Guide.

Opening and Converting Manual Components

In QuickTest, you can open a manual component stored in your Quality
Center project and convert it to a business (keyword-driven) component.
When you open a manual component, QuickTest asks whether you want to
convert it to a business component.

Note: Components that are currently open in Quality Center or another
QuickTest session are locked and can be opened only in read-only format. To
work with these components, they must be closed everywhere else.

Chapter 4 • Working with Business Components

131

To open and convert a manual component:

 1 In QuickTest, connect to the Quality Center project in which your
component is saved. For information on connecting to Quality Center, see
“Connecting to Your Quality Center Project” on page 20.

 2 Perform one of the following:

➤ Choose File > Open > Business/Scripted Component

➤ Click the Open arrow and choose Business/Scripted Component

The Open Business Component dialog box opens showing the components
stored in the Quality Center project.

You can change the type of components displayed in the dialog box, as
described in step 3.

In the component tree, the status of each component is indicated by its
icon. For more information, refer to the Business Process Testing User’s Guide.

Part II • Working with Application Areas and Components

132

 3 If required, filter the list of components shown in the Business Component
dialog box by selecting the component type you want to open from the
Component Type list. By default, only QuickTest components are displayed.
(QuickTest components are components that were automated using
QuickTest Professional or the Business Process Testing Keyword View.)

Select one of the following component types:

➤ Manual Component: Shows components that were created in Quality
Center and have not yet been converted to automated components. If
you choose to open a manual component, it is converted to a QuickTest
component and its manual steps are converted to Keyword View steps.
Note that this conversion process is irreversible. (Although you can still
view and run the manual steps in Quality Center, if needed.)

➤ All Components: Shows all QuickTest automated components and
manual components.

 4 Click the relevant folder in the component tree. To expand the tree and
view the business components, double-click closed folders. To collapse the
tree, double-click open folders.

 5 Select a manual component. Manual components are represented by a
component icon with an M in the left corner of the icon. The component
name is displayed in the read-only Component Name box.

 6 Click OK to open the component. QuickTest asks whether you want to
convert the manual component to a business component.

 7 Click Yes to continue with the conversion. Note that this process is
irreversible.

 8 The New Business Component dialog box opens, in which you choose an
application area for your business component. Select an application area
and click OK. For more information on application areas, see Chapter 3,
“Working with Application Areas”.

As QuickTest downloads, opens, and converts the component, the
operations it performs are displayed in the status bar.

Chapter 4 • Working with Business Components

133

Each manual step from the manual component is converted into a
ManualStep operation in the Keyword View.

The name, description, and expected result of each manual step are added as
argument values for each ManualStep operation. Any defined input and
output parameters are converted into local parameters.

You can now work with the component like any other component. You can
also add additional manual steps, and modifying existing manual steps, so
that you can run your business component as a manual component using
the Manual Runner in Quality Center. For more information, see “Adding
and Modifying Manual Steps for Components,” below.

Adding and Modifying Manual Steps for Components

When you convert a manual component to a business component, Each
manual step from the manual component is converted into a ManualStep
operation in the Keyword View.

You can modify step names, step descriptions, and expected results by
changing the corresponding argument values in the relevant ManualStep
row of the Keyword View.

You can add new steps to the converted component in QuickTest (regular
business component steps and also ManualStep operations). You can also
add ManualStep operations to the component in the Design Steps tab in
Quality Center, and keyword-driven steps in the Automation tab in Quality
Center. You can also delete steps as needed.

Part II • Working with Application Areas and Components

134

All modifications you make in QuickTest to the component’s ManualStep
operations and regular keyword-driven steps are reflected in the Design
Steps tab and Automation tab of the component in Quality Center and vice
versa (after you save the changes). This means that you can update
components in either Quality Center or QuickTest and still continue to run
them manually using the Quality Center Manual Runner when needed.

For general information on adding steps in the Keyword View, see “Working
with the Business Component Keyword View” on page 149. For more
information on the ManualStep operation, refer to the Utility section of the
QuickTest Professional Object Model Reference.

For more information on adding steps in Quality Center, and on running
manual components using the Manual Runner in Quality Center, refer to
the Business Process Testing User’s Guide.

Chapter 4 • Working with Business Components

135

Changing the Application Area Associated with a
Component

When you create a business component in QuickTest, you must select the
application area to which you want to associate the component. There may
be one or more application areas available from which to choose. You
should select the one that is best suited for the component.

If changes are made to your application or to the resource files and settings
associated with the application area, the application area may become
unsuitable, and you may need to change the application area associated
with a specific component. For example, the object repository could have
been modified or removed from the application area. Alternatively, as your
application develops, it may include additional or different objects that are
not contained in the currently associated object repository. This could cause
the component or business process test to run incorrectly or to fail. If
another application area contains the required resource files and settings,
you should change the application area associated with the component.

Note: Each time you open a component, QuickTest verifies that the
resources specified for the component are available. If a component or
application area has resources that cannot be found, such as a missing
shared object repository, QuickTest indicates this in the Missing Resources
pane. For more information, see Chapter 7, “Handling Missing Resources.”

Part II • Working with Application Areas and Components

136

To change the application area:

 1 Open the component as described in “Opening a Business Component” on
page 126.

 2 Choose File > Change Application Area. The Change Application Area dialog
box opens.

 3 Select the application area you want to associate with the component. A
description of the application area is displayed in the Description area.

 4 Click OK to change the application area associated with the component.

Chapter 4 • Working with Business Components

137

Printing a Component

You can print your component in table format.

To print a component:

 1 Click the Print button or choose File > Print. A standard Print dialog box
opens.

 2 Click OK to print the content of the Keyword View to your default Windows
printer.

Tip: You can choose File > Print Preview to display the Keyword View on
screen as it will look when printed.

Part II • Working with Application Areas and Components

138

139

5
Working with Scripted Components

Scripted components are maintainable, reusable scripts that perform a
specific task. Scripted components share functionality with both test actions
and business components. You can use the Keyword View, the Expert View,
and other QuickTest tools and options to create, view, modify, and debug
scripted components in QuickTest. You can also convert existing business
components or existing actions into scripted components. This chapter only
describes how to create scripted components.

This chapter describes:

➤ About Working with Scripted Components

➤ Creating a Scripted Component

➤ Converting to Scripted Components

Part II • Working with Application Areas and Components

140

About Working with Scripted Components

You can utilize the full power of both the Keyword View and the Expert
View, as well as other QuickTest tools and options, when working with
scripted components. For example, you can use the Step Generator to guide
you through the process of adding methods and functions to your scripted
component. Using the Expert View, you can enhance the scripted
component flow by manually entering standard VBScript statements and
other programming statements using QuickTest objects and methods. You
can also incorporate user-defined functions in your scripted component
steps, parameterize selected items, and add checkpoints and output values
to your scripted component.

You can create scripted components for Subject Matter Experts, for example,
if they need components that contain more complex functionality, such as
loops or conditional statements. Subject Matter Experts working in Quality
Center can then include these scripted components in business process tests
to check that the application behaves as expected.

After you create a scripted component, Subject Matter Experts can view the
auto-documentation generated by the component (read-only) in the
Business Components module of the Quality Center project. They can run
the scripted component and add it to their business process tests, but you
remain responsible for maintaining the scripted component in QuickTest, if
any changes are needed. Scripted components cannot be modified in
Quality Center.

You save and open scripted component in the same way as you save and
open business components. For more information, see “Saving a Business
Component” on page 123 and “Opening a Business Component” on
page 126.

Chapter 5 • Working with Scripted Components

141

Similarities Between Scripted Components and Other Testing
Documents

Scripted components contain much of the same functionality as QuickTest
actions and tests. For example, you can:

➤ Work with programmatic statements in the Expert View (see Chapter 22,
“Working with Function Library Windows.”)

➤ Create checkpoints and output values.

➤ View the hierarchical Keyword View display.

➤ Create and work with virtual objects.

➤ Use the Data Table to run multiple iterations.

➤ Use the Active Screen to view a snapshot of your application as it appeared
when you performed a certain step during a recording session, and to
parameterize object values and insert checkpoints, methods, and output
values for any object in the page, even if your application is not available or
you do not have a step in your test corresponding to the selected object.

➤ Use random and environment parameters.

➤ Set applications to open automatically at the start of a record or run session.

For general information about all of the functionality available for scripted
components, refer to the QuickTest Professional Basic Features User’s Guide and
the QuickTest Professional Advanced Features User’s Guide.

Scripted components are also similar to business components, in that
scripted components are:

➤ Associated with a specific application area (all of its resources must be stored
in the Quality Center project and not the file system).

➤ Standalone modular units that can be incorporated in a business process
test.

➤ Linear within a business process test (not hierarchical).

➤ Not nested, meaning they cannot call another component.

Part II • Working with Application Areas and Components

142

Creating a Scripted Component

When QuickTest is connected to a Quality Center project, you can create a
new scripted component in that project.

Each scripted component is based on a specific application area, which
contains the resources and settings used by the component, such as the
location of the shared object repository and function libraries. You select the
application area that is best suited for your scripted component. You can
choose from any application area that is located in the Quality Center
project in which you intend to save the component. For more information,
see “Working with Application Areas” on page 73.

Tip: You can also convert a business component to a scripted component.
For more information, see “Converting a Business Component to a Scripted
Component” on page 146.

Note: If you have not yet created an application area, the scripted
component will be based on the default application area settings provided
with Business Process Testing.

To create a scripted component:

 1 Connect to the Quality Center project in which you want to save the
scripted component. For more information, see “Connecting to Your
Quality Center Project” on page 20.

 2 Perform one or the following:

➤ Choose File > New > Scripted Component

➤ Click the New button down arrow and choose Scripted Component

Chapter 5 • Working with Scripted Components

143

The New Business Component dialog box opens, listing all available
application areas.

Note: If you have not yet created an application area, a new, untitled
scripted component opens using the default settings that are supplied with
Business Process Testing. You will not be able to change the application area
later.

Tip: If a scripted component is already open, you can also click the New
toolbar button to open a new scripted component.

 3 Select a suitable application area from the Application Area box. For
example, if you want to create a scripted component for a Flight Reservation
module, select the application area that is defined for it. Click OK.

Part II • Working with Application Areas and Components

144

A new, untitled scripted component opens. Although the scripted
component does not yet contain content, it does contain all of the required
settings and resources that were defined in the application area on which it
is based.

Chapter 5 • Working with Scripted Components

145

 4 You can now:

➤ Add content to your scripted component using the functionality and
options provided by QuickTest. For example, in the Expert View, you can
manually enter standard VBScript statements, as well as add statements
using QuickTest objects and methods. You can use the Step Generator to
add steps containing programming logic. You can also add checkpoints
and output values to your scripted component. For more information
about the functionality that can be used when creating a scripted
component, refer to the QuickTest Professional Basic Features User’s Guide
and the QuickTest Professional Advanced Features User’s Guide.

➤ Save your scripted component. (You can add content later.) You save a
scripted component in the same way as you save a business component.
For more information, see “Saving a Business Component” on page 123.

Note: In the Design Steps tab of the Quality Center Business Components
module, Subject Matter Experts can view and work with only the manual
steps defined for a scripted component (if any). They cannot view or modify
the automated steps unless they open the scripted component in QuickTest
by clicking the Launch button in the Automation tab (provided that
QuickTest is installed on the Quality Center client). For more information,
refer to the Business Process Testing User’s Guide.

Part II • Working with Application Areas and Components

146

Converting to Scripted Components

You can convert business components and actions to scripted components,
when required. When using Business Process Testing, it is generally
preferable to create new business components in Quality Center rather than
convert existing test actions or business components to scripted
components, as this enables Subject Matter Experts working in Quality
Center to maintain the components over time. In addition, because scripted
components can be modified only in QuickTest (and not in Quality Center),
Subject Matter Experts cannot view the automated steps in Quality Center,
although they can view and modify the manual steps, if any. The
conversion process is not reversible, meaning you cannot convert the
scripted component back to an action or business component.

Converting a Business Component to a Scripted Component

You can convert a single business component to a scripted component.

To convert a business component to a scripted component:

 1 Open the business component you want to convert to a scripted
component. For information on opening a business component, see
“Opening a Business Component” on page 126.

Note: A business component cannot be converted to a scripted component
if it is opened in read-only mode, or if it is locked.

 2 Choose File > Convert to Scripted Component.

 3 When prompted, click OK to proceed with the conversion.

Note: This operation replaces the existing business component with a
scripted component, and cannot be undone.

After the conversion is complete, QuickTest automatically opens the new
scripted component.

Chapter 5 • Working with Scripted Components

147

Converting an Action to a Scripted Component

You can use the Action Conversion Tool to convert QuickTest test actions to
scripted components for use in Business Process Testing.

To open the Action Conversion Tool, choose Start > Programs > QuickTest
Professional > Tools > Action Conversion Tool.

For information on working with the Action Conversion Tool, open the
Action Conversion Tool and click the Help button.

Part II • Working with Application Areas and Components

148

149

6
Working with the Business Component
Keyword View

The Business Component Keyword View provides an easy way to create,
view, modify, and debug business component steps in a graphical
easy-to-use format.

This chapter describes:

➤ About Working with the Business Component Keyword View

➤ Adding a Step to Your Component

➤ Selecting an Item for Your Step

➤ Selecting the Operation for Your Step

➤ Defining Values for Your Step Arguments

➤ Defining an Output Value for Your Step

➤ Working with Parameters

➤ Working with Comments

➤ Managing Component Steps

Part II • Working with Application Areas and Components

150

About Working with the Business Component Keyword
View

In general, the Subject Matter Expert uses the Automation tab in the Quality
Center Business Components module to add content to and modify
component steps. However, this can also be done in QuickTest, as described
in this chapter.

In QuickTest, you use the Business Component Keyword View to create,
view, modify, and debug business component steps.

The Business Component Keyword View differs from the QuickTest Test
Keyword View in that it provides component-specific options that are
specially designed to facilitate the creation of business components. This
makes it easy and intuitive for Subject Matter Experts to create business
components in Quality Center. (The Business Component Keyword View
that you see in QuickTest is the same as the Automation tab that the Subject
Matter Expert uses in Quality Center.)

The Business Component Keyword View can include comments, which
enable you to enter manual steps and informational separators in a business
component. All items (test objects and operations) in the Keyword View are
displayed at the same hierarchical level, even if they are child objects of the
previous step or operations to be performed. This makes it easier for Subject
Matter Experts to manage their business component steps.

To work with the Business Component Keyword View, QuickTest must be
connected to a Quality Center project with Business Process Testing support.

Chapter 6 • Working with the Business Component Keyword View

151

Adding a Step to Your Component

After you create a new business component, the Keyword View is empty, as
shown below.

When you add steps to it, each step is defined as a single row in the Keyword
View. You can add a step below the currently selected step, at the end of an
existing component, or at the beginning of a new component. You can also
enter a comment.

Steps—A step represents an operation to be performed. After you create a
step, you specify its contents. For example, you can choose the test object
on which the step is performed, specify the operation to be performed in the
step, and specify any relevant input or output values. When a business
process test is run in Quality Center, the steps defined in the associated
business components are performed. This section describes how to add a
step to your business component.

Comments—A comment is a free text entry that spans an entire row.
The icon indicates a comment. You use comments to define manual
steps or to provide information about adjacent steps in your business
component. Comments are not processed when a business process test is
run. For more information, see “Working with Comments” on page 178.

Part II • Working with Application Areas and Components

152

To add a step:

 1 Perform one of the following:

➤ Click anywhere in the Keyword View (below the existing steps, if any) to
add a step at the end of the component. If no steps are defined yet, this
adds the first step to the component.

➤ Choose Insert > New Step to add a new step after the existing steps (if
any). If the component does not contain any steps, this adds the first step
to the component.

➤ Select an existing step and choose Insert > New Step to add a new step
between existing steps, for example, if you want to add a comment to
separate two sets of steps in your component. (If you select the last step,
QuickTest adds a step at the end of the component.)

➤ Right-click an existing step and choose New Step from the
context-sensitive menu. (This also enables you to add a step between two
existing steps, for example, if you want to add a comment to separate
two sets of steps in your component.)

A new step is added to the Keyword View below the selected step.

Note: The Select an item list is generally expanded to display all applicable
test objects, as well as the Operation and Comment items.

Chapter 6 • Working with the Business Component Keyword View

153

 2 Define the step by clicking in the cell for the part of the step you want to
modify and specifying its contents, as described below. Each cell in the step
row represents a different part of the step. For each step, you can define the
following:

➤ Item—Either a test object on which you perform a step, or a user-defined
function (Operation). You must select an option from the Item column
before you can add additional content to a step. For more information,
see “Selecting an Item for Your Step” on page 155.

Alternatively, you can choose to add a Comment, which enables you to
add a manual step or other free text information between steps. For more
information, see “Working with Comments” on page 178.

➤ Operation—The operation to be performed on the item. For more
information, see “Selecting the Operation for Your Step” on page 162.

➤ Value (if relevant)—The argument values for the selected operation. For
more information, see “Defining Values for Your Step Arguments” on
page 164.

➤ Output (if relevant)—The parameter in which output values for the step
are stored. For more information, see “Defining an Output Value for Your
Step” on page 167.

Note: The Documentation cell is read-only. This cell displays an explanation
of what the step does in an easy-to-understand sentence, for example, Click
the “Sign-in” image. or Select “San Francisco” in the “toPort” list. In most cases,
QuickTest can generate the description displayed in this cell.

If you created a function library and added (associated) it to the associated
application area, QuickTest can display documentation for it only if you
defined the relevant text in the function library. For more information, see
“Documenting the Function” on page 599 and “Managing Function
Libraries” on page 87.

Part II • Working with Application Areas and Components

154

Tip: You can use the standard editing commands (Cut, Copy, Paste and
Delete) in the Edit menu or in the context-sensitive menu to make it easier
to define or modify your steps. You can also drag and drop steps to move
them to a different location within your component. For more information,
see “Managing Component Steps” on page 180.

 3 After you make your changes, save the component to your Quality Center
project. For more information, see “Saving a Business Component” on
page 123.

Chapter 6 • Working with the Business Component Keyword View

155

Selecting an Item for Your Step

An item can be a test object in the shared object repository or a user-defined
function—Operation. (The Operation item is available only if user-defined
functions were added to a function library that is associated with the
component’s application area. For more information, see “Managing
Function Libraries” on page 87 and “Working with User-Defined Functions
and Function Libraries” on page 573.)

This section describes:

➤ “Selecting a Test Object from the Item List” on page 156

➤ “Selecting a Test Object from the Shared Object Repository” on page 156

➤ “Selecting a Test Object from Your Application” on page 159

➤ “Selecting the Operation Item” on page 162

After you select an item, you specify an operation for it. For more
information, see “Selecting the Operation for Your Step” on page 162.

Note: In addition to selecting an item or Operation in the Item cell, you can
also select Comment. This instructs QuickTest to convert the selected step
into a free text cell that spans the entire row. After the step is converted into
a comment, it cannot be restored to a step. You use the Comment option to
enter manual steps or to provide information about adjacent steps. For more
information, see “Working with Comments”, on page 178.

Part II • Working with Application Areas and Components

156

Selecting a Test Object from the Item List

The test objects available in the Item list are the sibling and child test
objects of the previous step’s test object, as defined in the shared object
repository. The example below shows the objects available for the step
following a userName test object.

To select a test object from the displayed Item list:

 1 Click in the Item cell, then click the arrow button to display the Item list. If
you have just created a new step, the list is displayed automatically as soon
as you create the new step.

 2 In the Item list, select the test object on which you want to perform the
step. The item you select is displayed in the Item cell. You now need to
specify an operation for the step. For more information, see “Selecting the
Operation for Your Step” on page 162.

Selecting a Test Object from the Shared Object Repository

The shared object repository includes all of the test objects that are defined
in the application area on which your component is based (including those
displayed in the Item list, above).

You can select any object in the object repository tree for your new step. If
the object repository is very large, you can search for the object. For
example, you may want to add a password object that you know is an Edit
box. You can search all the Edit type objects for one called password, or
even one containing the letter p.

Chapter 6 • Working with the Business Component Keyword View

157

For more information on the object repository, see Chapter 13, “Working
with Test Objects.” For more information on Object statements, refer to
“Accessing Run-Time Object Properties and Methods” on page 652.

To select a test object from the shared object repository:

 1 Click in the Item cell, then click the arrow button to display the Item list. If
you have just created a new step, the list is displayed automatically as soon
as you create the new step.

 2 In the Item list, choose Select another object. The Select Object for Step
dialog box opens.

 3 Select an object from the object repository tree. If the object repository is
very large, you can search for the object, as described below. If a search is
not required, proceed to step 8.

Part II • Working with Application Areas and Components

158

 4 In the Name box, enter the name of the object, or any part of the name. For
example, you can enter p to search for all object names containing the
letter p.

Note: If the Name box is left empty, all objects of the selected object type are
considered matching criteria.

 5 In the Type box, select the type of object for which to search, or select <All>
to search for the object in all the object types.

Note: The object types in this list are a generic grouping of objects according
to the general object characteristics. For example, the List type contains list
and list view objects, as well as combo boxes; the Table type contains both
tables and grids; and the Miscellaneous type contains a variety of other
objects, such as WebElement and WinObject.

 6 Click the Find Next button. The search starts at the currently selected node,
and the number of objects that match your criteria is displayed. The first
object in the list that matches your criteria is highlighted.

 7 If required, click the Find Next button to navigate through all the objects
that match your search criteria. The search continues to the end of the tree,
then wraps to the beginning of the tree, and continues.

Tip: Press F3 to find the next object that matches your search criteria, or
SHIFT+F3 to find the previous match.

 8 Click OK. The object is displayed in the Item column of the Keyword View.
and is also added to the Item list. You can now specify the operation for the
selected object. For more information, see “Selecting the Operation Item”
on page 162.

Chapter 6 • Working with the Business Component Keyword View

159

Selecting a Test Object from Your Application

If the shared object repository does not include the test object that you need
for this step, you can select it directly from your application and add it to
the shared object repository so that you can use it in this and other steps.

To add a test object from your application:

 1 Click in the Item cell, then click the arrow button to display the Item list. If
you have just created a new step, the list is displayed automatically as soon
as you create the new step.

 2 In the Item list, choose Select another object. The Select Object for Step
dialog box opens.

 3 Click the pointing hand button. QuickTest is minimized.

Part II • Working with Application Areas and Components

160

 4 Use the pointing hand to click on the required object in your application.

Tip: You can hold the left CTRL key to change the window focus or perform
operations such as a right-click or mouseover to display a context menu. If
the window containing the object you want to click is partially hidden by
another window, you can also hold the pointing hand over the partially
hidden window for a few seconds until the window comes into the
foreground and you can point and click on the object you want.
Additionally, if the window containing the object you want to select is
minimized, you can display it by holding the left CTRL key, right-clicking
the application in the Windows task bar, and choosing Restore from the
context menu.

If the location you clicked is associated with more than one object, the
Object Selection dialog box opens.

 5 Select the object for the new step and click OK. The object is displayed in the
shared object repository tree in the Select Object for Step dialog box.

Chapter 6 • Working with the Business Component Keyword View

161

 6 Click OK. The object is displayed in the Item column in the Keyword View.
You can now specify the operation for the selected object. For more
information, see “Selecting the Operation for Your Step” on page 162.

Note: Subject Matter Experts working in Quality Center can select only
objects that are stored in the shared object repositories (in the component’s
application area).

Tip: If you select an object in your application that is not in the shared
object repository, a test object is added to the local object repository when
you insert the new step. After you add a new test object to the local object
repository, it is recommended to rename it, if its name does not clearly
indicate its use. For example, you may want to rename a test object named
Edit (that is used for entering a username) to UserName. This will enable
Subject Matter Experts to select the appropriate test object when adding
steps using test objects located in this shared object repository.

After you add the required objects to the local object repository, you can use
the Object Repository Merge Tool to update the shared object repository and
make the new objects available to other components. For more information,
see “Updating a Shared Object Repository from Local Object Repositories”
on page 437.

If you are adding a container test object, it is also recommended to specify
its context, for example, if you are adding a confirmation message box from
a Login page, you may want to name it Login > Confirm. For more
information, see “Renaming Test Objects” on page 319.

Part II • Working with Application Areas and Components

162

Selecting the Operation Item

If your business component is based on an application area that references
at least one function library, you can select the Operation item and select a
function for the step.

User-defined functions enable you to perform a variety of additional
operations, for example, open an application at the start of a business
component or check the value of a specific property.

Note: If the application area on which your component is based is not
associated with any function libraries, the Operation option does not appear
in the Item list.

To select an Operation item:

 1 Click in the Item cell, then click the arrow button to display the Item list. If
you have just entered a new step, the list is displayed automatically as soon
as you create the new step.

 2 In the Item list, choose Operation. The Operation item is displayed in the
Item cell. You now need to specify an operation for the step. For more
information, see “Selecting the Operation for Your Step” on page 162.

Selecting the Operation for Your Step

The Operation cell specifies the operation to be performed on the item listed
in the Item column. The available operations vary according to the item
selected in the Item column. When you select an item, all operations
(keywords) associated with that item (via the application area) are listed.

For example, if you selected a browser test object, such as a WebButton
object, the list contains all of the methods that were selected for the
WebButton object from the list of available keywords in the Keywords pane
of the component’s application area. If you selected Operation in the Item
column, the list contains the user-defined function(s) defined in the
function library or libraries associated with the business component (via its
application area).

Chapter 6 • Working with the Business Component Keyword View

163

You specify function libraries in the Function Libraries pane of the
Application Area. For more information, see “Managing Function Libraries”
on page 87.

To select an operation for the step:

Click in the Operation cell, then click the arrow button and select the
operation to be performed on the item. The operation can be either a
standard operation or a user-defined function. For more information on
user-defined functions, see “Working with User-Defined Functions and
Function Libraries” on page 573.

Note: When you position the cursor over an operation in the list, a tooltip
describes what this operation performs. For user-defined functions, the
tooltip is taken from the description that you provided in the associated
function library. For more information, see “Documenting the Function” on
page 599.

If you selected a test object in the Item column, all selected operations for
the test object item (as defined in the Keywords pane in the application
area) are automatically displayed in the Operation column. The Operation
list for that test object can include out-of-the-box operations and any
user-defined functions that were registered to that specific test object type.

If you selected Operation in the Item column, QuickTest displays the
functions that you defined in the function library, alphabetically. (You
manage the function libraries for components in the Function Libraries
pane of the Application Area. For more information, see “Managing
Function Libraries” on page 87.)

Part II • Working with Application Areas and Components

164

Defining Values for Your Step Arguments

The Value cell lists the value(s) for the operation argument(s). You can insert
a constant value or a parameter. If you insert a parameter, it can be either a
local parameter or a component parameter. For more information, see
“Working with Parameters” on page 170 and “Defining Parameters for Your
Component” on page 237. You can also encode password values. For more
information, see “Inserting Encoded Passwords into Method Arguments” on
page 166.

The Value cell is partitioned according to the number of possible arguments
of the selected operation. Each partition contains different options,
depending on the type of argument that can be entered in the partition, as
follows:

Argument
Partition

Argument Type Instructions

String Enables you to enter any alphanumeric string
enclosed by quotes. If you do not enter the
quotes, QuickTest adds them automatically. If
you modify a cell that contains a string enclosed
by quotes by removing the quotes, QuickTest
will not restore the quotes and the value will be
treated as a variable name.

Integer Enables you to enter any number, or use the up
and down arrows to select a number.

Boolean Enables you to select a True or False value from
the list.

Predefined
Constant

Enables you to select a predefined value from
the list.

Chapter 6 • Working with the Business Component Keyword View

165

You can also add multi-line argument values by pressing SHIFT+ENTER to add
line breaks to your argument value. After you enter a multi-line argument
value, QuickTest automatically converts it to a string, and displays only the
first line of the argument, followed by an ellipsis (...). This format for
multi-line argument values is also displayed in the Documentation column
of the Keyword View.

Tip: Select the cell to display the entire argument value to be used in the
step. Note that the argument value is used during the run session exactly as
it appears in the step. For example, if you enter quotation marks as part of
the argument value, they will be included in the argument value used
during the run session. QuickTest automatically interprets a multi-line value
as a string, so you do not need to add quotation marks for this purpose.

You can parameterize the value for an argument, using a local or component
parameter, by clicking the button in the required Value cell. For
information on parameterizing a local value, see “Working with Parameters”
on page 170. For information on parameterizing a component value, see
“Defining Parameters for Your Component” on page 237.

To define or modify a value:

Click in each partition of the Value cell and enter the argument values for
the selected operation. Note that when you click in the Value cell, a tooltip
displays information for each argument. In the tooltip, the argument for the
partition that is currently highlighted is displayed in bold, and any optional
arguments are enclosed in square brackets.

Part II • Working with Application Areas and Components

166

Inserting Encoded Passwords into Method Arguments

You can encode passwords to use the resulting strings as method arguments.
For example, your Web site may include a form in which the user must
supply a password. You may want to test how your site responds to different
passwords, but you also want to ensure the integrity of the passwords. The
Password Encoder enables you to encode your passwords.

To encode a password:

 1 From the Windows menu, choose Start > Programs > QuickTest Professional
> Tools > Password Encoder. The Password Encoder dialog box opens.

 2 Enter the password in the Password box.

 3 Click Generate. The Password Encoder encrypts the password and displays it
in the Encoded String box.

 4 Use the Copy button to copy and paste the encoded value into a Value cell.

 5 Repeat the process for each password you want to encode.

 6 Click Close to close the Password Encoder.

Chapter 6 • Working with the Business Component Keyword View

167

Defining an Output Value for Your Step

You define the output type and settings for the output value in the Output
cell. These determine where the output value is stored and how it is used
during the component run session. When the output value step is reached,
QuickTest retrieves each value selected for output and stores it in the
specified location for use later in the run session.

When you create a new output value step, QuickTest assigns a default
definition to each value selected for output. When you output a value for a
step in a business component:

➤ If at least one output component parameter is defined in the component,
the default output type is Component parameter and the default output
name is the first output parameter displayed in the Parameters tab of the
Business Component Settings dialog box.

➤ If no output component parameter is defined in the component, the default
output type is Local parameter and the default name is p_Local.

You modify the output parameter, as required. If you select a local
parameter, you can modify it directly in the Output Options dialog box. If
you select a component parameter, the details for the output parameter are
read-only. You can modify the parameter details in the Parameters tab of the
Business Component Settings dialog box. For more information, see
“Defining Parameters for Your Component” on page 237.

If, after you specify an output value, you choose not to save the output
value, you can cancel it. For more information, see “Canceling Output to a
Parameter” on page 169.

Part II • Working with Application Areas and Components

168

To configure output to a parameter:

 1 Click in the Output cell to create or edit an output to a parameter. Click the
Output button or press CTRL + F11. The Output Options dialog box
opens.

 2 In the Output Types box, select either Component parameter or Local
parameter. The Details area displays the options available for the selected
component type.

Note: The Component parameter type is available only if an output
component parameter is defined for the component. If you select a
component parameter, the information displayed is read-only. For more
information, see “Defining Parameters for Your Component” on page 237.

Chapter 6 • Working with the Business Component Keyword View

169

 3 Select the required parameter from the Name box. If no local parameter is
defined, then p_Local is the default parameter name displayed.

➤ You can create a new local parameter, if needed. For more information,
see “Working with Parameters” on page 170.

➤ If you select a local parameter, specify the details for it. For more
information, see “Working with Parameters” on page 170.

➤ If you select a component parameter, its details are read-only.

 4 Click OK. The Output cell displays the parameter to which the output value
will be saved.

Tip: If you click in the Output cell after you specify an output parameter for
it, an icon specifying the type of parameter is displayed in the cell:

 Indicates a component parameter.
 Indicates a local parameter.

Canceling Output to a Parameter

If you do not want to store the output value for a component step, you can
cancel it.

To cancel output to a parameter:

Click in the Output cell. Then click the Cancel button or press the DELETE
key to cancel output to the parameter.

Part II • Working with Application Areas and Components

170

Working with Parameters

You can define input parameters that pass values into your business
component and output parameters that pass values from your component
to external sources or from one step to another step. You can then use these
parameters to parameterize input and output values in steps.

You can define two types of parameters—local parameters and component
parameters.

Local parameter—Variable values defined within a component for use
within the same component.

Local input parameter values can be received and used by a later
parameterized step in the same component. Local output parameters can be
returned by an operation or component step for use within the same
component. Local parameter output values can be viewed in the business
process test results.

You define local parameters in the Business Component Keyword View
using the Configure Value Options dialog box for input parameters and the
Output Options dialog box for output parameters. You cannot delete local
parameters, but you can cancel the input or output to them.

Component parameter—Variable values defined within a component for
use in the same component or later components in the business process test.

Component input parameter values can be received and used as the values
for specific, parameterized steps in the component. Component output
parameter values can be returned as input parameters in components that
are used later in the test. These values can also be viewed in the business
process test results.

You define component parameters in the Parameters tab of the Business
Component Settings dialog box or in the Quality Center Business
Components module.

This section describes how to configure local parameters and parameterize
input and output values using local and component parameters. For
information on configuring component parameters, see “Defining
Parameters for Your Component” on page 237.

Chapter 6 • Working with the Business Component Keyword View

171

After you define a parameter you can use it to parameterize a value.
Alternatively, you can apply a constant value to the parameter by typing it
directly in the Value cell.

Parameterizing Input Values

In the Value cell, you can parameterize input values for a step using local or
component parameters.

To parameterize an input value using a local parameter:

 1 In the Value cell, click the parameterization button or press CTRL + F11.
The Value Configuration Options dialog box opens.

Note: If at least one input component parameter is defined in the
component, the default input type is Component parameter and the default
input name is the first output parameter displayed in the Parameters tab of
the Business Component Settings dialog box.

Part II • Working with Application Areas and Components

172

 2 In the Parameter box, select Local parameter. The details for the local
parameter type are displayed.

 3 Specify the property details for the local parameter:

➤ Name—Enter a meaningful name for the parameter or choose one from
the list.

➤ Value—Enter an input value for the parameter. If you do not specify a
value, QuickTest assigns a default value, as follows:

➤ Description—Enter a brief description for the parameter.

Type of Value QuickTest Default Value

String Empty string

Boolean True

Date The current date

Number 0

Password Empty string

Chapter 6 • Working with the Business Component Keyword View

173

 4 Click OK. The local parameter is displayed in the Value cell of your step.
When the component is run, it will use the value specified in the parameter
for the step.

Tips:

You can cancel the parameterization of a value by selecting the Constant
option in the Value Configuration Options dialog box and entering a
constant value.

If you click in the Value cell after you define a local parameter for it, the
icon is displayed in each part of the cell for which a local parameter is
defined.

To parameterize an input value using a component parameter:

 1 In the Value cell, click the parameterization button or press CTRL + F11.
The Value Configuration Options dialog box opens.

Part II • Working with Application Areas and Components

174

Note: If at least one input component parameter is defined in the
component, the default input type is Component parameter and the default
input name is the first input parameter displayed in the Parameters tab of
the Business Component Settings dialog box.
If no component parameter is defined, you must define one before you can
use it to parameterize an input value. For more information, see “Defining
Parameters for Your Component” on page 237.

 2 In the Parameter box, select the component parameter you want to use for
the parameterized value. The names and full descriptions of the available
component parameters are displayed as read-only. You can resize the
display, as needed, and, if the list of parameters is long, you can scroll
through the list.

 3 Click OK. The component parameter is displayed in the Value cell of your
step. When the component is run, it will use the value specified in the
parameter for the step.

Chapter 6 • Working with the Business Component Keyword View

175

Tips:

You can cancel the parameterization of a value by selecting the Constant
option in the Value Configuration Options dialog box and entering a
constant value.

If you click in the Value cell after you define a component parameter for it,
the icon is displayed in each part of the cell for which a component
parameter is defined.

Parameterizing Output Values

You can parameterize output values for a step using local or component
parameters, in the step Output cell. You can then use the output parameter
value as an input value in a later step in the component, or in a later
component in the business process test.

To parameterize an output value using a local parameter:

 1 In the Output cell, click the output value button or press CTRL + F11. The
Output Options dialog box opens.

Part II • Working with Application Areas and Components

176

Note: If at least one output component parameter is defined in the
component, the default output type is Component parameter and the
default output name is the first output parameter displayed in the
Parameters tab of the Business Component Settings dialog box.

 2 In the Output Types box, select Local parameter. The details for the local
parameter type are displayed.

 3 Specify the property details for the local parameter:

➤ Name—Enter a meaningful name for the parameter or choose one from
the list.

➤ Description—Enter a brief description for the parameter.

 4 Click OK. The local parameter is displayed in the Output cell of your step.
When the component is run, it will output the value to the output
parameter specified for the step.

Tip: If you click in the Output cell after you define a local parameter for it,
the icon is displayed in each part of the cell for which a local parameter
is defined.

Chapter 6 • Working with the Business Component Keyword View

177

To parameterize an output value using a component parameter:

 1 In the Output cell, click the output value button or press CTRL + F11. The
Output Options dialog box opens.

Note: If at least one output component parameter is defined in the
component, the default output type is Component parameter and the
default output name is the first output parameter displayed in the
Parameters tab of the Business Component Settings dialog box.
If no component parameter is defined, you must define one before you can
use it to parameterize an output value. For more information, see “Defining
Parameters for Your Component” on page 237.

Part II • Working with Application Areas and Components

178

 2 In the Parameter box, select the component parameter in which to store the
output value. The names and full descriptions of the available component
parameters are displayed as read-only. You can resize the display, as needed,
and, if the list of parameters is long, you can scroll through the list.

 3 Click OK. The component parameter is displayed in the Output cell of your
step. When the component is run, it will output the value to the output
parameter specified for the step.

Tip: If you click in the Value cell after you define a local parameter for it,
the icon is displayed in each part of the cell for which a local parameter
is defined.

Working with Comments

A Comment is a free text entry that can be entered in a business component.
The icon indicates a comment in the Keyword View. You can use
comments for several purposes. For example, you may want to plan steps to
be included in a business component before your application is ready to be
tested. Then, when your application is ready to be tested, you can use your
plan to verify that every item that needs to be tested is included in the
component steps.

You may want to add comments to a business component to improve
readability and make it easier to update. For example, you may want to add
a comment before each section of a component to specify what that section
includes.

Chapter 6 • Working with the Business Component Keyword View

179

After you add a comment, it is always visible in your component, as long as
one or more columns are displayed. For information on selecting columns
to display, see “Setting Keyword View Display Options” on page 33. In
addition, as you scroll from side to side across the grid, the comment can
always be seen. QuickTest does not process comments when it runs a
business component.

Note: After you insert a comment, you cannot change it to a step.

To add a comment to your component:

 1 Choose Insert > Comment, click in the Item cell and choose Comment from
the displayed list, or right-click on a component step and select Insert
Comment. A comment row is added below the selected step.

 2 Enter text in the Comment row. If you do not enter text, QuickTest deletes
the comment when the cursor focus is removed.

To modify an existing comment:

Double-click the comment. The text box becomes a free text field.
Alternatively, you can click the icon, which acts as a toggle, making the
comment either editable or read-only.

To delete a comment:

 1 Select the comment and choose Edit > Delete, press the DELETE key on your
keyboard, or right-click and select Delete from the context-sensitive menu.

 2 Click Delete Comment to confirm. The comment is permanently removed
from the business component.

Part II • Working with Application Areas and Components

180

Managing Component Steps

You can move a component step before or after any other step or comment
in your component. You can also delete it if it is no longer required.

Moving a Component Step

You can move a step to a different location within a component.

To move a step in the component:

➤ In the Item column, drag the step up or down and drop it at the required
location.

➤ Copy or cut the step to the Clipboard and then paste it in the required
location. You can use Edit > Copy or CTRL + C to copy the step, and
Edit > Cut or CTRL + X to cut the step, and Edit > Paste or CTRL + V to paste
the step.

Deleting a Component Step

You can delete a component step, if required. Before you delete a step, make
sure that removing it will not prevent the component from running
correctly.

Note: You cannot delete a step if one of its cells is in edit mode.

To delete a step:

 1 Select the step that you want to delete and choose Edit > Delete, press the
DELETE key, or right-click on the step and select Delete from the
context-sensitive menu. A warning message displays.

 2 Click Delete Step to confirm. The step is deleted from the component.

181

7
Handling Missing Resources

If a component’s application area has resources that cannot be found, such
as missing shared object repositories, or if it uses a repository parameter that
does not have a defined value, QuickTest indicates this in the Missing
Resources pane. You can map a missing resource, or you can remove it from
the component’s application area, as required.

Note: If one of the resources described in this chapter is unavailable during a
run session, the test may fail.

This chapter describes:

➤ About Handling Missing Resources

➤ Handling Missing Shared Object Repositories

➤ Handling Unmapped Shared Object Repository Parameter Values

Part II • Working with Application Areas and Components

182

About Handling Missing Resources

Each time you open a component or application area, QuickTest verifies that
the resources specified for the component or application area are available.
Specifically, QuickTest verifies that all associated shared object repositories
can be found and that all defined repository parameters contain values.

If one or more resources cannot be found, QuickTest opens the Missing
Resources pane, if the pane is not already open. The Missing Resources pane
provides a list of all resources that are currently unavailable, enabling you to
remap or remove them from your component or application area. After you
successfully handle a missing resource, QuickTest removes it from the pane.

The Missing Resources pane may list any of the following types of missing
resources:

Missing Object Repository—If a component or application area is associated
with a shared object repository that cannot be found, QuickTest specifies the
path it uses to search for the missing object repository. For more
information, see “Handling Missing Shared Object Repositories” on
page 184.

Repository Parameters—If a component or application area has at least one
test object with a property value that is parameterized using a repository
parameter that does not have a default value, QuickTest adds this generic
item to the Missing Resources pane. For more information, see “Handling
Unmapped Shared Object Repository Parameter Values” on page 185.

Chapter 7 • Handling Missing Resources

183

Filtering the Missing Resources Pane

You can choose to display all missing resources in the Missing Resources
pane, or only one type of missing resource.

To filter the list of displayed missing resources:

Right-click in the Missing Resources pane and choose one of the following:

➤ All—Displays a list of all missing resources in your component or
application area.

➤ Missing Object Repository—Displays a row for each shared object
repository that cannot be found, specifying the path QuickTest uses to
search for the shared object repository.

➤ Object Repository Parameter—Displays a generic row indicating that at
least one test object in the repository has at least one parameterized
property value that uses a repository parameter that does not have a
default value.

The Missing Resources pane is filtered according to the selected resource
type and an indication of the applied filter is shown at the bottom of the
pane:

Tip: You can cancel the filter and show all missing resources again by
clicking the icon on the left of the filter indication.

Part II • Working with Application Areas and Components

184

Handling Missing Shared Object Repositories

When you associate a shared object repository with an application area,
QuickTest verifies that the repository you specified is accessible. In addition,
QuickTest checks that all associated shared object repositories are accessible
each time you open a component or application area. If a shared object
repository cannot be found, QuickTest displays its name and path in the
Missing Resources pane when you open your component or application
area.

For example, if you modify the name of the shared object repository or the
folder in which it is stored, you will need to map the shared object
repository to the associated application area.

For a component, if you double-click the line displaying the missing object
repository, QuickTest displays a message explaining that the object
repository must be mapped to the associated application area. You or the
Automation Engineer needs to open the application area and correct the
association of the shared object repository in the Object Repositories pane.

For an application area, if you double-click the line displaying the missing
object repository, QuickTest opens the Object Repositories pane of the
application area, enabling you to correct the object repository association or
remove it, as needed. For more information, see “Managing Shared Object
Repositories” on page 92.

Chapter 7 • Handling Missing Resources

185

Handling Unmapped Shared Object Repository Parameter
Values

Every repository parameter used in your component must have a specified
value. This can be a either a default value that was specified when the
parameter was created, or it can be a value that you specify in your
component. (For more information on repository parameters, see “Working
with Repository Parameters” on page 406.)

When you open a component that uses an object repository that contains
an object property whose value is parameterized using a repository
parameter that does not have a value, QuickTest indicates this by displaying
Repository Parameters in the Missing Resources pane.

For example, suppose your application contains an edit box whose name
property changes depending on a selection made in a previous screen. If you
parameterized the value of the name property in the object repository using
a repository parameter, but a default value was not defined for the
repository parameter, you need to define a value for it. You can map it to or
a local or component parameter. You can also define a constant value for it,
and so forth.

If you double-click the line displaying Repository Parameters, the Map
Shared Object Repository Parameters dialog box opens, enabling you to
specify values for any unmapped object repository parameter. You can filter
the dialog box to display only unmapped parameters or all of the parameters
in the specified component (with mapped or unmapped values). For more
information, see “Mapping Repository Parameter Values” on page 331.

Part II • Working with Application Areas and Components

186

Part III

Configuring Settings

188

189

8
Setting Global Testing Options

You can control how QuickTest records and runs components by setting
global testing options.

This chapter describes:

➤ About Setting Global Testing Options

➤ Using the Options Dialog Box

➤ Setting General Testing Options

➤ Setting Folder Testing Options

➤ Setting Run Testing Options

➤ Setting Windows Application Testing Options

➤ Setting Web Testing Options

About Setting Global Testing Options

Global testing options affect how you record and run components, as well
as the general appearance of QuickTest. For example, you can choose not to
display the Welcome screen when QuickTest starts, or you can set the
timing-related settings used by QuickTest when running a component. The
values you set remain in effect for all components and for subsequent
testing sessions.

You can also set testing options that affect only the component currently
open in QuickTest. For more information, see Chapter 9, “Working with
Business Component Settings.”

Part III • Configuring Settings

190

Using the Options Dialog Box

You can use the Options dialog box to modify your global testing options.
The values you set remain in effect for all subsequent record and run
sessions.

To set global testing options:

 1 Choose Tools > Options or click the Options toolbar button. The Options
dialog box opens. It is divided by subject into several tabbed pages.

Note: The Web tab shown above is displayed only if the Web Add-in is
installed and loaded.

 2 Select the required tab and set the options as necessary. For information on
the available options in each tab, see the table below.

Chapter 8 • Setting Global Testing Options

191

 3 Click Apply to apply your changes and keep the dialog box open, or click OK
to save your changes and close the dialog box.

The Options dialog box can contain the following tabbed pages:

The Options dialog box may contain additional tabs for any external
add-ins that are currently installed and loaded.

Tab Heading Contains:

General Options for general component settings. For
more information, see “Setting General Testing
Options” on page 192.

Folders Options for entering the folders (search paths)
in which QuickTest searches for components or
files that are specified as relative paths in dialog
boxes and statements. For components, all
files must be stored in the Quality Center
subject path. For more information, see
“Setting Folder Testing Options” on page 194.

Run Options for running components. For more
information, see “Setting Run Testing Options”
on page 196.

Windows Applications Options for configuring how QuickTest records
and runs components for the following
Windows applications:

• Standard Windows applications

• .NET Windows Forms

• Visual Basic

• ActiveX

For more information, see “Setting Windows
Application Testing Options” on page 198.

Web

(displayed only if the Web
Add-in is installed and loaded)

Options for configuring recording and run
session behavior in the Web environment. For
more information, see “Setting Web Testing
Options” on page 210.

Part III • Configuring Settings

192

Setting General Testing Options

The General tab options affect the general appearance of QuickTest and
other general testing options.

The General tab includes the following options:

Option Description

Display Add-in Manager on
startup

Determines whether the Add-in Manager is
displayed when starting QuickTest. For information
on working with the Add-in Manager, see “Loading
QuickTest Add-ins” on page 675.

Display Welcome screen on
startup

Determines whether the Welcome screen is
displayed when starting QuickTest.

Chapter 8 • Setting Global Testing Options

193

Check for software updates
on startup

Instructs QuickTest to automatically check for
software updates each time it starts up. For more
information, refer to the QuickTest Professional
User’s Guide.

Disable recognition of
virtual objects while
recording

Determines whether the defined virtual objects
stored in the Virtual Object Manager are recognized
while recording. This option is only relevant for
tests.

Automatically update test
and component steps
when you rename test
objects

Determines whether to automatically update test
and component steps when you rename test
objects in the local or shared object repository. For
more information, see “Renaming Test Objects” on
page 319.

When pointing at a
window, activate it after __
tenths of a second

Specifies the time (in tenths of a second) that
QuickTest waits before it sets the focus on an
application window when using the pointing hand
to point to an object in the application (for Object
Spy, Recovery Scenario Wizard, and so forth).
Default = 5.

Restore Layout Restores the layout of the QuickTest window so
that it displays the panes and toolbars in their
default sizes and positions.

Generate Script Generates an automation script containing the
current global testing options. For more
information, see “Automating QuickTest
Operations” on page 661, or refer to the QuickTest
Automation Object Model Reference (Help > QuickTest
Automation Object Model Reference).

Option Description

Part III • Configuring Settings

194

Setting Folder Testing Options

The Folders tab enables you to enter the folders (search paths) in which
QuickTest searches for components or files. All files must be stored in the
Quality Center subject path.

Note: The current component is listed in the Search list by default. It cannot
be deleted.

The order in which the folders are displayed in the search list determines the
order in which QuickTest searches for the specified component or file.

Chapter 8 • Setting Global Testing Options

195

The Folders tab includes the following options:

Option Description

Search list Indicates the folders in which QuickTest searches for
components or files. If you define folders here, you do not
need to designate the full path of a component or file in
other dialog boxes. The order of the search paths in the
list determines the order in which QuickTest searches for a
specified file.

Adds a new folder to the search list.

Tip: To add a Quality Center path when connected to
Quality Center, click this button. QuickTest adds
[QualityCenter], and displays a browse button so that
you can locate the Quality Center path.

When not connected to Quality Center, hold the
SHIFT key and click this button. QuickTest adds
[QualityCenter], and you enter the path. You can also
type the entire Quality Center path manually. If you
do, you must add a space after [QualityCenter]. For
example: [QualityCenter] Subject\Tests.

Note that QuickTest searches Quality Center project
folders only when you are connected to the
corresponding Quality Center project.

Deletes the selected folder from the search list.

Moves the selected folder up in the list.

Moves the selected folder down in the list.

Part III • Configuring Settings

196

Setting Run Testing Options

The Run tab options affect how QuickTest runs components and displays
run session results in the Test Results window.

Chapter 8 • Setting Global Testing Options

197

The Run tab includes the following options:

Option Description

Run mode Instructs QuickTest how to run your
component:

• Normal (displays execution marker)—Runs
your component with the execution arrow to
the left of the Keyword View, marking each
step as it is performed.

Delay each step execution by—You can
specify the time in milliseconds that
QuickTest should wait before running each
consecutive step (up to a maximum of
10000 ms.)

The Normal run mode option requires more
system resources than the Fast option,
described below.

Note: You must have Microsoft Script
Debugger installed to enable this
mode. For more information, refer to
the QuickTest Professional Installation
Guide.

• Fast—Runs your component without the
execution arrow to the left of the Keyword
View. This option requires fewer system
resources.

Note: When running a test set from Quality
Center, tests are automatically run in
Fast mode, even if Normal mode is
selected.

Submit a defect to Quality
Center for each failed step

Relevant only for tests.

View results when run session
ends

Instructs QuickTest to display the results
automatically following the run session.

Part III • Configuring Settings

198

Setting Windows Application Testing Options

The Windows Applications tab options enable you to configure how
QuickTest records and runs components for Standard Windows, ActiveX,
.NET Windows Forms, and Visual Basic applications.

Allow other Mercury products
to run tests and components

Enables other Mercury products such as Quality
Center to run QuickTest components.

Note: This option is not required to enable
WinRunner to run QuickTest
components.

Save step screen capture to
test results

Relevant only for tests.

Option Description

Chapter 8 • Setting Global Testing Options

199

The Windows Applications tab includes the following options:

Option Description

Attached text Enables you to specify the search criteria that QuickTest
uses to retrieve an object’s attached text. An object’s
attached text is the closest static text within a specified
radius from a specified point. The retrieved attached text
is saved in the object’s corresponding text or attached text
test object property.

Note: Sometimes the static text that you believe to be
closest to an object is not actually the closest static
text. You may need to use trial and error to make
sure that the attached text is the static text object
of your choice.

Search radius—Indicates the maximum distance, in
pixels, that QuickTest searches for attached text.

Search area—Indicates the point on an object from which
QuickTest searches for the object’s attached text.

Choose an option from the Search area list:

• Top-Left—top-left corner

• Top—midpoint between the two top corners

• Top-Right—top-right corner

• Right—midpoint between the two right corners

• Bottom-Right—bottom-right corner

• Bottom—midpoint between the two bottom corners

• Bottom-Left—bottom-left corner

• Left—midpoint between the two left corners

Part III • Configuring Settings

200

Open menu to
retrieve item
properties

Instructs QuickTest to open menu objects before
retrieving menu item properties during a run session.

Note: Selecting this option may slow the run, but it can
be useful if menu item properties change upon
opening the menu.
This option, selected by default, sets the default
behavior for all menu objects. You can use the
ExpandMenu property in a function library to set
this behavior for a specified menu object. For more
information, refer to the QuickTest Professional
Object Model Reference.

Record non-unique
list items

Determines what QuickTest records when more than one
item (in a list or tree) has an identical name.

• by name—Records the item’s name.

When the component runs, QuickTest finds and
selects the first instance of the name, regardless of the
item chosen during recording. Select this option if the
all items with the same name have identical
properties.

• by index—Records the item’s index number.

Select this option if items with the same name do not
necessarily have identical properties.

Record owner-
drawn buttons as

Instructs QuickTest how to identify and record custom-
made buttons in the application.

Choose an option from the list:

• push buttons

• check boxes

• radio buttons

• objects

Note: Choosing objects records each owner-drawn
button as a WinObject.

Option Description

Chapter 8 • Setting Global Testing Options

201

Advanced Windows Applications Options

The Advanced Windows Applications Options dialog box enables you to
modify how QuickTest records and runs components on Windows-based
applications, such as ActiveX or Visual Basic. You can click the Reset button
at any time to reset all options to their default settings.

Advanced Opens the Advanced Windows Applications Options
dialog box, in which you can customize record and run
options for your Windows applications. For more
information, see “Advanced Windows Applications
Options” on page 201.

Option Description

Part III • Configuring Settings

202

Object Identification Options

You can specify the method QuickTest uses to identify objects when running
a component.

The Advanced Windows Applications Options dialog box includes the
following Object identification options:

Record Settings Options

You can specify how QuickTest treats certain objects when recording a
component.

Option Description

Always enumerate child
windows (may affect
performance)

Instructs QuickTest to enumerate all child windows
when recording and running a component. This
option is cleared by default and should be used only
when an object cannot otherwise be identified,
because it may significantly affect performance. For
more information, see “Advanced Information” on
page 208.

Chapter 8 • Setting Global Testing Options

203

The Advanced Windows Applications Options dialog box includes the
following Record settings options:

Category Option

Button Defines record settings for button objects:

• Record only the object’s basic operation—
Enables simplified recording on the button.
Using this mode may improve recognition of
user operations in non-standard cases. This
option is cleared by default and should be used
only when the default recording method does
not meet your needs. For more information, see
“Advanced Information” on page 208.

• Record Click—Specifies whether the Click
operation should be recorded when the mouse
button is pressed (On mouse button down) or
when the mouse button is released (On mouse
button up). This option is only enabled when
Record only the object’s basic operation is
selected. Default = On mouse button up.

List Defines record settings for Windows-based list
objects (for example, WinList, WinListView, and
VbList):

• Record only the object’s basic operation—
Enables simplified recording on the list. Using
this mode may improve recognition of user
operations in non-standard cases. This option is
cleared by default and should be used only when
the default recording method does not meet
your needs. For more information, see
“Advanced Information” on page 208.

• Record Select—Specifies whether the Select
operation should be recorded when the mouse
button is pressed (On mouse button down) or
when the mouse button is released (On mouse
button up). This option is only enabled when
Record only the object’s basic operation is
selected. Default = On mouse button up.

Part III • Configuring Settings

204

Menu Defines record settings for menu objects:

• Enable recording—Specifies whether QuickTest
records operations on menu controls. For
example, you may want QuickTest to ignore the
actual process of selecting a menu to open
another window. This option is selected by
default.

• Menu recording mode—Specifies whether
QuickTest verifies or ignores menu initialization
events before recording operations on menu
controls. This option is only enabled when
Enable recording is selected. Default = Verify
menu initialization event.

For more information, see “Advanced
Information” on page 208.

Object Defines record settings for objects recognized as
WinObject test objects:

• Record only the object’s basic operation—
Enables simplified recording on the WinObject
test object. Using this mode may improve
recognition of user operations in non-standard
cases. This option is cleared by default and
should be used only when the default recording
method does not meet your needs. For more
information, see “Advanced Information” on
page 208.

• Record Click—Specifies whether the Click
operation should be recorded when the mouse
button is pressed (On mouse button down) or
when the mouse button is released (On mouse
button up). This option is only enabled when
Record only the object’s basic operation is
selected. Default = On mouse button down.

Category Option

Chapter 8 • Setting Global Testing Options

205

Tab Defines record settings for tab objects:

• Record only the object’s basic operation—
Enables simplified recording on the tab. Using
this mode may improve recognition of user
operations in non-standard cases. This option is
cleared by default and should be used only when
the default recording method does not meet
your needs. For more information, see
“Advanced Information” on page 208.

• Record Select—Specifies whether the Select
operation should be recorded when the mouse
button is pressed (On mouse button down) or
when the mouse button is released (On mouse
button up). This option is only enabled when
Record only the object’s basic operation is
selected. Default = On mouse button up.

Toolbar Defines record settings for toolbar objects:

• Record only the object’s basic operation—
Enables simplified recording on the toolbar.
Using this mode may improve recognition of
user operations in non-standard cases. This
option is cleared by default and should be used
only when the default recording method does
not meet your needs. For more information, see
“Advanced Information” on page 208.

• Record Press—Specifies whether the Press
operation should be recorded when the mouse
button is pressed (On mouse button down) or
when the mouse button is released (On mouse
button up). This option is only enabled when
Record only the object’s basic operation is
selected. Default = On mouse button up.

Category Option

Part III • Configuring Settings

206

Tree view Defines record settings for tree view objects:

• Record only the object’s basic operation—
Enables simplified recording on the tree view.
Using this mode may improve recognition of
user operations in non-standard cases. This
option is cleared by default and should be used
only when the default recording method does
not meet your needs. For more information, see
“Advanced Information” on page 208.

• Record Select—Specifies whether the Select
operation should be recorded when the mouse
button is pressed (On mouse button down) or
when the mouse button is released (On mouse
button up). This option is only enabled when
Record only the object’s basic operation is
selected. Default = On mouse button up.

• Record tree items—Specifies whether tree items
are recorded By name or By virtual index.
Default = By name.

Window Defines record settings for window objects:

• Record only the object’s basic operation—
Enables simplified recording on the window.
Using this mode may improve recognition of
user operations in non-standard cases. This
option is cleared by default and should be used
only when the default recording method does
not meet your needs. For more information, see
“Advanced Information” on page 208.

• Record Click—Specifies whether the Click
operation should be recorded when the mouse
button is pressed (On mouse button down) or
when the mouse button is released (On mouse
button up). This option is only enabled when
Record only the object’s basic operation is
selected. Default = On mouse button up.

Category Option

Chapter 8 • Setting Global Testing Options

207

Run Settings Options

You can specify how QuickTest treats certain objects when running a
component.

The Advanced Windows Applications Options dialog box includes the
following Run settings options:

Keyboard Defines record settings for operations performed on
the keyboard:

• Keyboard state detection—Specifies which API
QuickTest should use to detect the keyboard
state. Default = Standard.

For more information, see “Advanced
Information” on page 208.

Utility object Defines record settings for utility objects:

• Record SystemUtil.Run commands—Specifies
whether QuickTest records SystemUtil.Run
commands when you open an application
during a recording session. This option is
selected by default. For more information on the
SystemUtil.Run method, refer to the QuickTest
Professional Object Model Reference.

Option Description

Edit Box Defines run settings for Edit objects:

• Click Edit box before inserting text—Specifies
whether QuickTest performs a Click operation
to set the focus in an edit box before inserting
text in it while running a component. This
option is cleared by default.

• Use keyboard events to perform Set
operations—When selected, instructs QuickTest
to simulate keyboard events when performing
Set operations on edit boxes during a run
session. When cleared, instructs QuickTest to use
API or Window messages for edit box Set
operations. This option is cleared by default.

Category Option

Part III • Configuring Settings

208

Advanced Information

The following information is intended for users with expertise in the Win32
API and the Windows messages model. It expands on the information
provided for some of the Advanced Windows Applications options in the
previous section.

Always enumerate child windows

If QuickTest does not correctly record an object in your application, you can
select this option to force QuickTest to enumerate all windows in the
system. This means that even when QuickTest looks for a window without
WS_CHILD style, it enumerates all windows in the system and not only the
top-level windows.

You should select this option if there is a window in your application that
does not have a WS_CHILD style but does have a parent (not an owner)
window.

Record only the object’s basic operation

In general, QuickTest records operations on Windows objects based on
Windows messages sent by the application. QuickTest recognizes the
sequence of Windows messages sent to a specific application window by the
system, and uses a smart algorithm to determine which operation to record.

In rare cases (where a non-standard message sequence is used), the smart
algorithm may record unwanted operations. Select this option if you want
to record only the object’s basic operation when the selected event occurs.
When you select this option, you can also select when to record the
operation. If you select On mouse button down, QuickTest records the
operation performed when a WM_LBUTTONDOWN message is detected; if
you select On mouse button up, QuickTest records the operation performed
when a WM_LBUTTONUP message is detected.

Chapter 8 • Setting Global Testing Options

209

Keyboard state detection

If QuickTest does not correctly record keyboard key combinations (for
example, CTRL+Y, or ALT+CTRL+HOME), you can try changing the default
setting for this option. Following is a brief explanation of each of the
options:

➤ Standard—Uses the GetKeyboardState API to detect the keyboard state. For
more information, refer to http://msdn.microsoft.com/library/en-us/winui/
winui/windowsuserinterface/userinput/keyboardinput/
keyboardinputreference/keyboardinputfunctions/getkeyboardstate.asp.

➤ Alternate synchronous—Uses the GetKeyState API to detect the keyboard
state. For more information, refer to http://msdn.microsoft.com/library/
en-us/winui/winui/windowsuserinterface/userinput/keyboardinput/
keyboardinputreference/keyboardinputfunctions/getkeystate.asp.

➤ Alternate asynchronous—Uses the GetAsyncKeyState API to detect the
keyboard state. For more information, refer to http://msdn.microsoft.com/
library/en-us/winui/winui/windowsuserinterface/userinput/keyboardinput/
keyboardinputreference/keyboardinputfunctions/getasynckeystate.asp.

Menu recording mode

In most applications, Windows sends a WM_CONTEXTMENU message,
WM_ENTERMENULOOP message, WM_INITMENU message,
WM_INITMENUPOPUP message, or other initialization message when a
user opens a menu. Windows then sends a WM_MENUSELECT message
when a user selects a menu item.

The Verify menu initialization event option instructs QuickTest to record
menu operations only after detecting a menu initialization message. If
QuickTest does not correctly record menu operations, or if your application
does not send initialization messages before sending WM_MENUSELECT
messages, try using the Ignore menu initialization event option. This
instructs QuickTest to always record menu operations.

http://msdn.microsoft.com/library/en-us/winui/
winui/windowsuserinterface/userinput/keyboardinput/
keyboardinputreference/keyboardinputfunctions/getkeyboardstate.asp
http://msdn.microsoft.com/library/en-us/winui/
winui/windowsuserinterface/userinput/keyboardinput/
keyboardinputreference/keyboardinputfunctions/getkeyboardstate.asp
http://msdn.microsoft.com/library/en-us/winui/
winui/windowsuserinterface/userinput/keyboardinput/
keyboardinputreference/keyboardinputfunctions/getkeyboardstate.asp
http://msdn.microsoft.com/
library/en-us/winui/winui/windowsuserinterface/userinput/keyboardinput/
keyboardinputreference/keyboardinputfunctions/getasynckeystate.asp
http://msdn.microsoft.com/
library/en-us/winui/winui/windowsuserinterface/userinput/keyboardinput/
keyboardinputreference/keyboardinputfunctions/getasynckeystate.asp
http://msdn.microsoft.com/
library/en-us/winui/winui/windowsuserinterface/userinput/keyboardinput/
keyboardinputreference/keyboardinputfunctions/getasynckeystate.asp
http://msdn.microsoft.com/library/
en-us/winui/winui/windowsuserinterface/userinput/keyboardinput/
keyboardinputreference/keyboardinputfunctions/getkeystate.asp
http://msdn.microsoft.com/library/
en-us/winui/winui/windowsuserinterface/userinput/keyboardinput/
keyboardinputreference/keyboardinputfunctions/getkeystate.asp
http://msdn.microsoft.com/library/
en-us/winui/winui/windowsuserinterface/userinput/keyboardinput/
keyboardinputreference/keyboardinputfunctions/getkeystate.asp

Part III • Configuring Settings

210

Setting Web Testing Options

The Web tab options determine how QuickTest behaves when recording and
running components on Web sites.

Chapter 8 • Setting Global Testing Options

211

The Web tab includes the following options:

Option Description

Ignore the following
browsers

Instructs QuickTest to ignore any specified browsers
that may be open while QuickTest is recording or
running a component. For more information, see
“Managing the List of Browsers to Ignore” on
page 212.

Ignore Quality Center Instructs QuickTest to ignore all instances of Quality
Center that are opened while recording or running
a component. By default, this option is selected.

Add __ seconds to page
load time

Instructs QuickTest to add a specified number of
seconds to the page load time property specified in
each Page checkpoint.

Note: This option is a safeguard that prevents page
checkpoints from failing in the event that
the amount of time it takes for a page to load
during the run is longer than the amount of
time it took during the record session.

Broken links - check only
links to current host

Instructs QuickTest to check only for broken links
that are targeted to your current host.

Page/Frame Options Opens the Page and Frame Options dialog box, in
which you can customize how QuickTest records
Page and Frame test objects. For more information,
see “Page and Frame Options” on page 216.

Advanced Opens the Advanced Web Options dialog box, in
which you can customize record and run options
for your Web sites. For more information, see
“Advanced Web Options” on page 219.

Part III • Configuring Settings

212

Managing the List of Browsers to Ignore

You can instruct QuickTest to ignore specific browsers that are open while
you are recording or running a component. This enables you to keep
browsers that are not related to your testing environment open, without
having them affect the record or run session. For example, you may want to
check your company’s share price or the news headlines during the record
and run session. If you instructed QuickTest to ignore these specific
browsers, they will not affect the session.

Notes: QuickTest ignores browsers that match the defined criteria at the
start of a record or run session. However, browsers that do not match the
defined criteria at the start of a record or run session, but do match them
during the session, are not ignored.

Changes made to these settings apply to new components and new steps in
existing components only, but not to any other existing steps.

You can also modify the properties that QuickTest uses to identify the
browsers to ignore, or delete them from the list of ignored browsers.

Tip: By default, QuickTest ignores all instances of Quality Center that were
opened during a record or run session, if the Ignore Quality Center check
box in the Web tab of the Options dialog box is selected. There is no need to
specify Quality Center in the list of browsers to ignore.

Chapter 8 • Setting Global Testing Options

213

Adding a Browser to the List

You can specify the browsers that you want QuickTest to ignore during a
record or run session.

To add a browser to the list:

 1 To add a browser to the list, click the Add Browser button. The Browser
Details dialog box opens.

 2 Enter a name for the browser definition in the Name field. By default, the
name of the browser is Browser<number of browser in list>. The name you
specify is used only to identify the browser in the list, and is not used by
QuickTest.

 3 Select one or both of the following properties to identify the browser to be
ignored, and then enter the following details:

➤ Title—The name of the Web page as it appears in the title bar of the
browser, for example, Yahoo! Finance.*

➤ URL—The URL of the Web page, for example,
http://www.finance.yahoo.com
Any descendants of this Web page are automatically included in the list
of browsers to ignore.

Part III • Configuring Settings

214

Tip: You can use regular expressions when specifying the values of these
properties. For example, you can use .*finance.yahoo.com to specify all
finance.yahoo.com domains and Web sites starting with www., http://, or
https://. Note that you do not have to use a regular expression to include
child pages of a site, as QuickTest automatically ignores the entire domain or
site.

Note: The Title and URL properties have an AND relationship, meaning that
a browser must match both property values (if defined) in order to be
ignored by QuickTest.

 4 Click OK. The browser is added to the list of ignored browsers.

 5 Repeat steps 1 to 4 for each browser to be added to the list.

Modifying a Browser in the List

You can modify the definitions of browsers that you want QuickTest to
ignore during a record or run session.

To modify a browser in the list:

 1 Highlight the browser you want to modify.

 2 Click Edit Browser Details button. The Browser Details dialog box opens.

 3 Make the required changes in the Browser Details dialog box and click OK.

Chapter 8 • Setting Global Testing Options

215

Removing a Browser from the List

You can remove a browser from the list if you no longer want QuickTest to
ignore it during a record or run session.

Tip: If a browser in the list is required for running a specific test, you can
temporarily remove it from the list by clearing the check mark next to its
name in the list of browsers.

To remove a browser from the list:

 1 Highlight the browser you want to remove from the list.

 2 Click the Remove Browser button.

Part III • Configuring Settings

216

Page and Frame Options

The Page and Frame Options dialog box enables you to modify how
QuickTest records Page and Frame objects.

Note: You can click the Reset button at any time to reset all options to their
default core settings. Some external add-ins modify the default settings to
optimize page and frame recording. If you are using an external add-in, it is
recommended that you keep the default add-in settings and do not use the
Reset button.

Chapter 8 • Setting Global Testing Options

217

Page Options

The Create a new Page test object for options instruct QuickTest when to
create a new Page object in the object repository while recording.

Note: These options only affect how Page test objects are created; Frame test
objects are created according to the Frame options you select. For more
information, see “Frame Options” on page 219.

The following Page options are available:

➤ Every navigation—Creates a new Page object every time a navigation is
performed in a Web page.

➤ Different test object descriptions—Creates a new Page object for pages with
different test object descriptions, according to the properties defined for the
Page test object.

Note: The default test object description for Page objects includes only the
test object class. If you select this option, it is highly recommended that you
define object identification properties that uniquely identify different Page
objects. You should also ensure that the properties you define remain
constant over time, otherwise future runs may fail.

➤ Different URLs or a change in data transfer—Creates a new Page object only
when the page URL changes, or if the URL stays the same and data that is
transferred to the server changes, according to the data types and transfer
methods you select (below).

Note: Clear this option to instruct QuickTest to create a new Page test object
for every navigation. (QuickTest version 5.6 and earlier worked this way
automatically.)

Part III • Configuring Settings

218

➤ Ignore non user-input data - Get—Instructs QuickTest to ignore non
user-input data if the Get method is used to transfer data to the server.

For example, suppose a user enters data on a Web page, and the data is
then inserted as a hidden field using the Get method. The user clicks
Submit (to send the data to the server). The new Web page is different,
according to the hidden field data. However, QuickTest does not create a
new Page test object.

➤ Ignore non user-input data - Post—Instructs QuickTest to ignore non
user-input data if the Post method is used to transfer data to the server.

For example, suppose a user enters data on a Web page, and the data is
then inserted as a hidden field using the Post method. The user clicks
Submit (to send the data to the server). The new Web page is different,
according to the hidden field data. However, QuickTest does not create a
new Page test object.

➤ Ignore user-input data - Get—Instructs QuickTest to ignore user-input
data if the Get method is used to transfer data to the server.

For example, suppose a user enters data in a form on a Web page and
clicks Submit (to send the data to the server) using the Get method. The
new Web page is different according to the data filled in by the user.
However, QuickTest does not create a new Page test object.

➤ Ignore user-input data - Post—Instructs QuickTest to ignore user-input
data if the Post method is used to transfer data to the server.

For example, suppose a user enters data in a form on a Web page and
clicks Submit (to send the data to the server) using the Post method. The
new Web page is different according to the data filled in by the user.
However, QuickTest does not create a new Page test object.

➤ Use additional Page information—Instructs QuickTest to use additional
properties of the test object to identify an existing Page test object.

Tip: Select this option to instruct QuickTest to recognize existing pages
when the Back and Forward navigation buttons are used.

Chapter 8 • Setting Global Testing Options

219

Frame Options

The Create a new Frame test object for options instruct QuickTest when to
create a new Frame object in the object repository while recording. The
Frame options are similar to the Page options (except that the Every
navigation option is not available). For more information, see “Page
Options” on page 217.

Advanced Web Options

The Advanced Web Options dialog box enables you to modify how
QuickTest records and runs components on Web sites. You can click the
Reset button at any time to reset all options to their default settings.

Part III • Configuring Settings

220

Note: The Accessibility checkpoint and Automatic Page checkpoint options
are not relevant for business components.

➤ Include the following checks in the checkpoint—Instructs QuickTest to
check the selected accessibility elements for all accessibility checkpoints.
Choose from the following:

➤ ActiveX Check—Checks whether the page or frame contains ActiveX
objects. If so, QuickTest sends a warning and displays a list of the objects
in the Test Results.

➤ Alt Property Check—Checks that the <alt> attribute exists for all relevant
objects (such as images). If one or more objects lack the required
attribute, the test fails and QuickTest displays a list of the objects with
the missing attribute in the Test Results. (Selected by default.)

➤ Applet Check—Checks whether the page or frame contains Java objects.
If so, QuickTest sends a warning and displays a list of the objects in the
Test Results.

➤ Frame Titles Check—Checks that the page and all frames in the page
have titles. If one or more frames (or the page) lack the required title, the
test fails and QuickTest displays a list of the frames that lack titles in the
Test Results.

➤ Multimedia Links Check—Checks whether the page or frame contains
links to multimedia objects. If so, QuickTest sends a warning and displays
a list of the links in the Test Results.

➤ Server-side Image Check—Checks whether the page or frame contains
Server-side images. If so, QuickTest sends a warning and displays a list of
the images in the Test Results.

➤ Tables Check—Checks whether the page or frame contains tables. If so,
QuickTest sends a warning and displays the table format and the tags
used in each cell in the Test Results.

Chapter 8 • Setting Global Testing Options

221

➤ Add an automatic accessibility checkpoint to each Web page while
recording—Instructs QuickTest to automatically add an accessibility
checkpoint to each Web page while recording, using the checks selected in
the option above.

➤ Create a checkpoint for each Web page while recording—Instructs
QuickTest to automatically add a Page checkpoint for each Web page
navigated during the recording process.

Note: If you are testing a Web page with dynamic content, using automatic
Page checkpoints may cause the test to fail as these checkpoints assume that
the page content is static between record and run sessions.

All automatic Page checkpoints include the checks that you select from
among the following options:

➤ Broken links—Displays the number of broken links contained in the page
during the run session.

Note: If the Broken links - check only links to current host option is
selected (see “Setting Web Testing Options” on page 210), this number
includes only those broken links that are targeted to the current host.

➤ HTML source—Checks that the expected source code is identical to the
source code during the run session.

➤ HTML tags—Checks that the expected HTML tags in the source code are
identical to those in the run session.

➤ Image source—Checks that the expected source paths of the images are
identical to the sources in the run session.

➤ Links URL—Checks that the expected URL addresses for the links are
identical to the URL addresses in the source code during the run session.

Part III • Configuring Settings

222

➤ Load time—Checks that the expected time it takes for the page to load
during the run session is less than or equal to the amount of time it took
during the record session PLUS the amount of time specified in the Add
seconds to page load time option (see “Setting Web Testing Options” on
page 210).

➤ Number of images—Checks that the expected number of images is
identical to the number displayed in the run session.

➤ Number of links—Checks that the expected number of links is identical
to the number displayed in the run session.

➤ Ignore automatic checkpoints while running tests—Instructs QuickTest to
ignore the automatically added Page checkpoints while running your test.

Record Settings

You can set preferences for recording Web objects. The Advanced Web
Options dialog box includes the following Record settings:

➤ Enable Web support for Microsoft Windows Explorer—When selected,
QuickTest treats relevant objects in Microsoft Windows Explorer as Web
objects. When cleared, QuickTest does not record events on Web pages
displayed in Microsoft Windows Explorer.

Note: After modifying this setting, for the change to take effect, you must
close all instances of Microsoft Windows Explorer (confirm that all
explorer.exe processes are closed in the Windows Task Manager or restart
the computer) and then restart QuickTest.

➤ Record coordinates—Records the actual coordinates relative to the object
for each operation.

➤ Record MouseDown and MouseUp as Click—Records a Click method for
MouseUp and MouseDown events.

➤ Record Navigate for all navigation operations—Records a Navigate
statement each time a Frame URL changes.

Chapter 8 • Setting Global Testing Options

223

➤ Use standard Windows mouse events—Instructs QuickTest to use standard
Windows mouse events instead of browser events for the following events:

➤ OnClick

➤ OnMouseDown

➤ OnMouseUp

Note: Use this option only if the events are not properly recorded using
browser events.

If QuickTest does not record Web events in a way that matches your needs,
you can also configure the events you want to record for each type of Web
object. For example, if you want to record events, such as a mouseover that
opens a sub-menu, you may need to modify your Web event configuration
to recognize such events. For more information, see Chapter 11,
“Configuring Web Event Recording.”

Run Settings

You can set preferences for working with Web objects during a run session.
The Advanced Web Options dialog box includes the following Run settings:

➤ Browser cleanup—Closes all open browsers when the current component
closes.

When this option is selected, all currently open browsers are closed when
the current component closes, regardless of whether the browsers were
opened before or after QuickTest.

➤ Run only click—Runs Click events using the MouseDown event, the
MouseUp event, and the Click event, or using only the Click event.

➤ Replay type—Configures how to run mouse operations according to the
selected option:

➤ Event—Runs mouse operations using browser events.

➤ Mouse—Runs mouse operations using the mouse.

Part III • Configuring Settings

224

➤ Run using source index—Uses the source index property for better
performance.

➤ Resize browser on run if resized during a recording session—If this option is
selected and you resize the browser during a recording session, QuickTest
resizes the browser to this size when a subsequent run session begins. At the
end of a run session, the browser returns to its default size.

Note: To use this option, select the Open the following browser option in
the Record and Run Settings dialog box before recording.

When this option is cleared, QuickTest does not change the browser size
when a run session begins.

225

9
Working with Business Component
Settings

Before you create or debug a business component, you can use the Business
Component Settings dialog box to view the settings already defined for the
component in its associated application area. You can also define some
additional settings for the component in the Business Component Settings
dialog box.

This chapter describes:

➤ About Working with Business Component Settings

➤ Accessing the Business Component Settings Dialog Box

➤ Working with Component Properties

➤ Defining a Snapshot for Your Component

➤ Viewing Application Settings

➤ Viewing Component Resources

➤ Defining Parameters for Your Component

➤ Viewing Web Settings

➤ Viewing Recovery Scenario Settings

Note: For more information about defining component settings in
application areas, see Chapter 3, “Working with Application Areas.”

Part III • Configuring Settings

226

About Working with Business Component Settings

When you create a new application area, you define the settings and
resources needed to create a new business component. The settings include
associated add-ins, the Windows-based applications on which the
components can record and run, and the location of any function libraries
and shared object repositories to use with the components.

When you (or a Subject Matter Expert) create a new component, the
component is automatically linked to the settings defined in its associated
application area. The Business Component Settings dialog box displays
these settings in read-only format.

You can define some additional settings, such as input and output
parameters, and the component status, in the Business Component Settings
dialog box.

Note: You can also set testing options that affect all components. For more
information, see Chapter 8, “Setting Global Testing Options.”

Chapter 9 • Working with Business Component Settings

227

Accessing the Business Component Settings Dialog Box

The Business Component Settings dialog box enables you to view settings
and define specific options for a component.

To open the Business Component Settings dialog box:

 1 Open the component whose settings you want to view or define.

 2 Choose File > Settings, or click the Settings toolbar button. The Business
Component Settings dialog box opens. It is divided by subject into tabbed
pages.

 3 Select the required tab to view or set the options as required. See the table
below for more information on the available settings and options in each
tab.

Part III • Configuring Settings

228

 4 Click Apply to apply your changes and keep the dialog box open, or click OK
to save your changes and close the dialog box.

The Business Component Settings dialog box contains the following tabs:

Tab Heading Tab Contents

Properties The properties of the business component, for
example, its description and associated add-ins. You
can also set the status of the component. For more
information, see “Working with Component
Properties” on page 229.

Snapshot Options for capturing or loading a snapshot image to
be saved with the component for display in Quality
Center. For more information, see “Defining a
Snapshot for Your Component” on page 232.

Applications The Windows-based applications on which the
component can record and run. For more information,
see “Viewing Application Settings” on page 234.

Resources The resources associated with the component,
including the location of any function libraries and
the shared object repository. For more information, see
“Viewing Component Resources” on page 236.

Parameters Options for specifying input and output parameters
for the component. For more information, see
“Defining Parameters for Your Component” on
page 237.

Web Option for specifying the browser navigation timeout
for the component. This tab is only displayed when
the Web Add-in is installed and loaded. For more
information, see “Viewing Web Settings” on page 241.

Recovery How the component recovers from unexpected events
and errors that occur in your testing environment
during a run session. For more information, see
“Viewing Recovery Scenario Settings” on page 243.

Chapter 9 • Working with Business Component Settings

229

In addition to these tabs, the Business Component Settings dialog box may
contain additional tabs for scripted components. For information about
these tabs, refer to the QuickTest Professional Basic Features User’s Guide. There
may also be other tabs corresponding to any external add-ins that are
loaded, for example, SAP or Web Services. For information on tabs related to
external add-ins, refer to the relevant QuickTest add-in documentation.

Working with Component Properties

You can use the Properties tab of the Business Component Settings dialog
box to view general information about your component, including its
description and any add-ins associated with it. You can also set or modify its
status.

Part III • Configuring Settings

230

The Properties tab includes the following items:

For information on defining general information for the application area on
which your component is based, see “Defining General Settings” on
page 81.

Setting Description

Name Indicates the name of the component. You assign a name to
the component when you save it.

Author Indicates the Windows user name of the person who
created the component.

Application Area Indicates the name of the application area which is
associated with the component. For more information, see
“Creating a New Business Component,” on page 120.

Note: If the component was created in Quality Center and
no application area was selected, this is indicated by
Not selected. Before business component steps can
be implemented, an application area must be
selected.

Created by Indicates the version of QuickTest used to create the test.

Last modified by Indicates the version of QuickTest last used to modify the
test.

Location Indicates the Quality Center path and filename of the
component.

Note: If the component is not yet saved, the location
indicates Not saved.

Description Displays the description specified for your component. This
field can be entered or modified only in Quality Center.

Associated add-ins Displays the add-ins associated with the component (via its
associated application area). The associated add-ins are
loaded by business components when they are accessed.

Business
Component Status

Specifies the status of the component. You can change the
status of the component by selecting a different option
from the list. For more information about status options,
see “Understanding Component Statuses” on page 231.

Chapter 9 • Working with Business Component Settings

231

Understanding Component Statuses

Business components can be assigned statuses either in QuickTest or in
Quality Center. A business component status can either be manually
specified, or in certain cases may be automatically assigned by Quality
Center. For example, you can use a Ready status to indicate that a business
component is ready to be run in a business process test, or an Error status
may be automatically assigned to a component that has errors that prevent
it being successfully run in a business process test.

Knowing the status of a business component is important because it affects
the status of any business process tests of which it is a part. In general, the
component with the most severe status determines the status of the entire
business process test. For example, a business component with an Error
status causes every business process test of which it is a part to have an Error
status.

A component can be assigned one of the following statuses:

➤ Error—The component contains errors that need to be fixed. For example,
this may occur due to a change in the application. When a business process
test contains a component with this status, the status of the entire business
process test is also Error.

➤ Maintenance—The component is currently being developed and tested and
is not yet ready to run, or it was previously implemented and is now being
modified to adapt it for changes that have been made in the application.

➤ Ready—The component is fully implemented and ready to be run. It
answers the requirements specified for it and has been tested according to
the criteria defined for your specific system.

➤ Under Development—The component is currently under development. This
status is automatically assigned to:

➤ New components created in the Business Components module of Quality
Center with Business Process Testing support.

➤ Component requests dragged into the component tree in Quality Center
with Business Process Testing support.

Part III • Configuring Settings

232

Defining a Snapshot for Your Component

The Snapshot tab of the Business Component Settings dialog box enables
you to capture or load an image and save it with the component. The image
provides a visual indication of the component’s main purpose. The Subject
Matter Expert can view the image in Quality Center, in the component and
in any business process test in which the component is included.

Note: The snapshot image can also be captured and saved with the
component from the Snapshot tab in Quality Center when installed with
Business Process Testing support. For information about capturing a
snapshot for a component in Quality Center, refer to the Business Process
Testing User’s Guide.

Chapter 9 • Working with Business Component Settings

233

The Snapshot tab contains the following options:

When you click Apply or OK, the image is saved with the component and is
displayed in the business process tests containing this component in
Quality Center.

Option Description

Capture snapshot from
application

Enables you to define the image to be captured by
clicking the Capture Snapshot button. You can then
drag the crosshairs pointer to select the area to be
captured. When you release the mouse button, the
captured area is displayed in the Snapshot pane.

Load from file Specifies the .png or .bmp file containing the
required image. You can enter the path and
filename or use the browse button to locate the file.

Part III • Configuring Settings

234

Viewing Application Settings

In the Applications tab of the Business Component Settings dialog box, you
can view the Windows-based applications on which the component (or
components based on the current application area) can record and run. You
can record steps only on the specified applications.

You can also view the environments on which the component can currently
record (based on the currently loaded add-ins).

Chapter 9 • Working with Business Component Settings

235

You specify the Windows-based applications on which the component can
record and run in the associated application area settings, For more
information, see “Defining Application Settings for Your Application Area”
on page 103.

Notes:

If you are recording a new component and have not yet set your application
settings in the Applications tab of the Application Area Settings dialog box,
the Applications dialog box opens when you start to record. The
Applications dialog box contains the same options as the Applications tab,
described in “Defining Application Settings for Your Application Area” on
page 103.

The Applications dialog box and Applications tab may also contain options
applicable to any QuickTest external add-ins installed on your computer. For
information regarding these options, refer to the documentation provided
with the specific add-in.

The Applications tab includes the following items:

Setting Description

Application Lists the details of the applications on which to record and run
the component.

The application list is left blank if you do not want to record or
run on Windows applications. (This is the default setting.)

Record and
run on any
applications
opened by
QuickTest

Records and runs on any applications invoked by QuickTest (as
child processes of QuickTest). For example, applications opened
during a record or run session using an OpenApp function, or
another operation containing a function that opens an
application.

Other Lists the add-in environments that correspond to the currently
loaded add-ins.

Part III • Configuring Settings

236

Viewing Component Resources

You can use the Resources tab of the Business Component Settings dialog
box to view the function libraries and object repositories associated with
your component (via its associated application area). All specified resources
files must be saved in your Quality Center project.

Chapter 9 • Working with Business Component Settings

237

The Resources tab includes the following items:

Defining Parameters for Your Component

In the Parameters tab of the Business Component Settings dialog box, you
can define input component parameters that pass values into your
component and output component parameters that pass values from your
component to external sources. You can also use the Parameters tab to
modify or delete existing component parameters.

Component parameters are parameters that can be used to parameterize
input and output values in component steps. For information on using
parameter values in component steps, see “Working with Parameters” on
page 170. For information on working with component parameters in steps,
see “Using Component Parameters in Steps” on page 241.

Setting Area Description

Associated
function
libraries

Displays the list of function libraries currently associated with
your component (via its associated application area). For more
information on associating function libraries, see “Managing
Function Libraries” on page 87, and “Working with Associated
Function Libraries” on page 587.

Object
Repositories

Displays the list of shared object repositories currently associated
with your component (via its associated application area).
Components use shared object repository files stored in Quality
Center. For more information on associating object repositories
with application areas, see “Managing Shared Object
Repositories” on page 92.

Part III • Configuring Settings

238

The Subject Matter Expert can also define component parameters in Quality
Center. For information, refer to the Business Process Testing User’s Guide.

The Parameters tab contains two parameter lists:

➤ Input parameters—Specifies the parameters that the component can receive
from the source that runs or calls it.

➤ Output parameters—Specifies the parameters that the component can pass
to the source that runs or calls it.

Chapter 9 • Working with Business Component Settings

239

You can edit an existing parameter by selecting it in the appropriate list and
modifying its details (except for its name which cannot be modified).

Note: The input and output parameter lists can also be modified in the
Quality Center Business Components module. For more information, refer
to the Business Process Testing User’s Guide.

You can add and remove input and output parameters for your business
component using the following buttons:

Option Description

Adds a parameter to the appropriate parameter list. Enter a name for
the new parameter and select the parameter type. Possible types are
String, Boolean, Date, Number, or Password. You can enter a
description for the parameter, for example, the purpose of the
parameter in the component.

If you are defining an input parameter, a default value for the specified
parameter type is automatically entered. You can enter or modify the
default value for the parameter in the Default Value column. For more
information, see “Defining Default Values for Input Component
Parameters”, below.

Removes the selected parameter from the component.

Part III • Configuring Settings

240

Defining Default Values for Input Component Parameters

When a business component runs, the actual values used for parameters are
generally those sent by the application calling the component (either
QuickTest or Quality Center) as described in the table below:

If, when a component runs, a value is not supplied by QuickTest or Quality
Center for one or more input parameters, QuickTest uses the default value
for the parameter.

When you define a new parameter in the Parameters tab of the Business
Components Settings dialog box, you can specify the default value for the
parameter or you can keep the default value that QuickTest assigns for the
specified parameter type as follows:

Business Component
Called From:

Parameter Values Specified In:

QuickTest Input Parameters tab of the Run dialog box. For
more information, see “Understanding the Input
Parameters Tab” on page 482.

Quality Center Component Iterations dialog box (Test Plan
module). For more information, refer to the
Business Process Testing User’s Guide.

Value Type QuickTest Default Value

String Empty string

Boolean True

Date The current date

Number 0

Password Empty string

Chapter 9 • Working with Business Component Settings

241

Using Component Parameters in Steps

After you define component parameters, you can use them to parameterize
values in the steps of your component by selecting input component
parameters in the Value Configuration Options dialog box, or by selecting
output component parameters in the Output Options dialog box. You can
also use local parameters in steps. For more information on using
component and local parameters in steps, see “Working with Parameters”
on page 170.

Viewing Web Settings

The Web tab of the Business Component Settings dialog box provides the
setting used when running components on an application.

Part III • Configuring Settings

242

You define the Web tab settings for a component in its associated
application area settings. For more information, see “Defining Web Settings
for Your Application Area” on page 107.

Note: The Web tab is available only if the Web Add-in is installed and
loaded.

The Web tab includes the following item:

Setting Description

Browser navigation
timeout

Displays the maximum time (in seconds) that
QuickTest waits for a Web page to load before running
a step in the component.

User name This option is not relevant for components.

Password This option is not relevant for components.

Advanced This option is not relevant for components.

Chapter 9 • Working with Business Component Settings

243

Viewing Recovery Scenario Settings

Recovery scenario settings enable you to specify how a business component
recovers from unexpected events and errors during a run session.

The Recovery tab of the Business Component Settings dialog box displays a
list of all the recovery scenarios associated with the current component’s
associated application area.

You define the recovery scenario settings for a component in its associated
application area. For more information, see “Defining Recovery Scenario
Settings for Your Application Area” on page 108.

Part III • Configuring Settings

244

The Recovery tab includes the following items:

Setting Area Description

Scenarios Displays the name and recovery file path for each recovery
scenario associated with your component (via its associated
application area). The scenario type is indicated by an icon. For
more information, see “Specifying Associated Recovery
Scenarios” on page 110.

Scenario
description

Displays the textual description of the scenario selected in the
Scenarios box.

Activate
recovery
scenarios

Displays the setting that instructs QuickTest to check whether
to run the associated scenarios as follows:

• On every step—The recovery mechanism is activated after
every step.

• On error—The recovery mechanism is activated only after
steps that return an error return value.

• Never—The recovery mechanism is disabled.

245

10
Customizing a Function Library Window

You can customize the way functions are displayed in the function library
windows. Any changes you make are applied globally to all function library
windows.

This chapter describes:

➤ About Customizing Function Library Windows

➤ Customizing Editor Behavior

➤ Customizing Element Appearance

➤ Personalizing Editing Commands

Part III • Configuring Settings

246

About Customizing Function Library Windows

QuickTest includes a powerful and customizable editor that enables you to
modify many aspects of function library windows.

The Editor Options dialog box enables you to change the way function
libraries are displayed in function library windows. You can also change the
font style and size of text in your function libraries, and change the color of
different elements, including comments, strings, QuickTest reserved words,
operators, and numbers. For example, you can display all text strings in red.

QuickTest includes a list of default keyboard shortcuts that enable you to
move the cursor, delete characters, and cut, copy, and paste information to
and from the Clipboard. You can replace these shortcuts with shortcuts you
prefer. For example, you could change the Line start command from the
default HOME to ALT + HOME.

You can also modify the way your function library is printed using options
in the Print dialog box. For more information, see “Printing a Function
Library” on page 585. For more information on working with function
libraries, see Chapter 21, “Working with User-Defined Functions and
Function Libraries.”

Chapter 10 • Customizing a Function Library Window

247

Customizing Editor Behavior

You can customize how function libraries are displayed in function library
windows. For example, you can show or hide character symbols, and choose
to display line numbers. For more information on working with function
libraries, see Chapter 21, “Working with User-Defined Functions and
Function Libraries.”

To customize editor behavior:

 1 When a function library window is active, choose Tools > View Options. The
Editor Options dialog box opens.

 2 Click the General tab.

Part III • Configuring Settings

248

 3 Choose from the following options:

Options Description

Show line numbers Displays a line number to the left of each line in the
function.

Auto-indent Causes lines following an indented line to
automatically begin at the same point as the
previous line. You can click the HOME key on your
keyboard to move the cursor back to the left
margin.

Indent selected text when
pressing Tab key

Pressing the TAB key indents the selected text.
When this option is not enabled, pressing the Tab
key replaces the selected text with a single Tab
character.

Statement completion When this option is selected, if you type:

• a dot after a test object—QuickTest displays a
list of available test objects and methods that
you can add after the object you typed.

• an open parenthesis after an object—QuickTest
displays a list of all test objects of this type in the
object repository. If there is only one object of
this type in the object repository, QuickTest
automatically enters its name in quotes after the
open parenthesis.

• a method—QuickTest displays the syntax for the
method, including its specific mandatory and
optional arguments.

• the Object property—if the object data is
currently available in the open application,
QuickTest displays native methods and
properties of any run-time object in your
application.

Draw box around current
line

Displays a box around the line of the test in which
the cursor is currently located.

Chapter 10 • Customizing a Function Library Window

249

 4 Click OK to save the changes and close the dialog box.

Show all characters Displays all Tab, New Line and Space character
symbols. You can also select to display only some of
these characters by selecting or clearing the relevant
check boxes.

Auto-expand VBScript
syntax

Automatically recognizes the first two characters of
keywords and adds the relevant VBScript syntax or
blocks to the script, when you type the relevant
keyword.

For example, if you enter the letters if and then
enter a space at the beginning of a line in the Expert
View, QuickTest automatically enters:

If Then
End If

Use tab character Inserts a TAB character when the TAB key on the
keyboard is used. When this option is not enabled,
the specified number of space characters is inserted
when you press the TAB key.

Options Description

Part III • Configuring Settings

250

Customizing Element Appearance

QuickTest function libraries contain many different elements, such as
comments, strings, QuickTest and VBScript reserved words, operators, and
numbers. Each element of a QuickTest script can be displayed in a different
color. You can also specify the font style and size to use for all elements in
the Expert View. You can create your own personalized color scheme for
each script element. For example, all comments in your scripts could be
displayed as blue letters on a yellow background.

To set font and color preferences for elements:

 1 When a function library window is active, choose Tools > View Options. The
Editor Options dialog box opens.

 2 Click the Fonts and Colors tab.

Chapter 10 • Customizing a Function Library Window

251

 3 In the Fonts area, select the Font name and Size that you want to use to
display all elements. By default, the editor uses the Microsoft Sans Serif font,
which is a Unicode font.

Note: When testing in a Unicode environment, you must select a
Unicode-compatible font. Otherwise, elements in your function library may
not be correctly displayed in the function library windows. However, the
function library will still run in the same way, regardless of the font you
choose. If you are working in an environment that is not
Unicode-compatible, you may prefer to choose a fixed-width font, such as
Courier, to ensure better character alignment.

 4 Select an element from the Element list.

 5 Choose a foreground color and a background color.

 6 Choose a font style for the element (Normal, Bold, Italic, or Underline).

An example of your change is displayed in the Preview pane at the bottom
of the dialog box.

 7 Repeat steps 4 to 6 for each element you want to modify.

 8 Click OK to apply the changes and close the dialog box.

Part III • Configuring Settings

252

Personalizing Editing Commands

You can personalize the default keyboard shortcuts you use for editing.
QuickTest includes keyboard shortcuts that let you move the cursor, delete
characters, and cut, copy, or paste information to and from the Clipboard.
You can replace these shortcuts with your preferred shortcuts. For example,
you could change the Line end command from the default END to ALT +
END.

Note: The default QuickTest menu shortcut keys override any key bindings
that you may define. For example, if you define the Paste command key
binding to be CTRL+P, it will be overridden by the default QuickTest shortcut
key for opening the Print dialog box (corresponding to the File > Print
option). For a complete list of QuickTest menu shortcut keys, see “Executing
Commands Using Shortcut Keys” on page 57.

Chapter 10 • Customizing a Function Library Window

253

To personalize editing commands:

 1 When a function library window is active, choose Tools > View Options. The
Editor Options dialog box opens.

 2 Click the Key Binding tab.

 3 Select a command from the Command list.

 4 Click in the Press new shortcut key box and then press the key(s) you want
to use for the selected command. For example, press and hold the CTRL key
while you press the number 4 key to enter CTRL+4.

Part III • Configuring Settings

254

 5 Click Add.

Note: If the key combination you specify is not supported, or is already
defined for another command, a message to this effect is displayed below
the shortcut key box.

 6 Repeat steps 3 - 5 for any additional commands.

 7 If you want to delete a key sequence from the list, select the command in
the Command list, then highlight the key(s) in the Uses keys list, and click
Delete.

 8 Click OK to apply the changes and close the dialog box.

255

11
Configuring Web Event Recording

If QuickTest does not record Web events in a way that matches your needs,
you can configure the events you want to record for each type of Web
object.

This chapter describes:

➤ About Configuring Web Event Recording

➤ Selecting a Standard Event Recording Configuration

➤ Customizing the Event Recording Configuration

➤ Recording Right Mouse Button Clicks

➤ Saving and Loading Custom Event Configuration Files

➤ Resetting Event Recording Configuration Settings

Part III • Configuring Settings

256

About Configuring Web Event Recording

QuickTest creates your component by recording the events you perform on
your Web-based application. An event is a notification that occurs in
response to an operation, such as a change in state, or as a result of the user
clicking the mouse or pressing a key while viewing the document. You may
find that you need to record more or fewer events than QuickTest
automatically records by default. You can modify the default event
recording settings by using the Web Event Recording Configuration dialog
box to select one of three standard configurations, or you can customize the
individual event recording configuration settings to meet your specific
needs.

For example, QuickTest does not generally record mouseover events on link
objects. If, however, you have mouseover behavior connected to a link, it
may be important for you to record the mouseover event. In this case, you
could customize the configuration to record mouseover events on link
objects whenever they are connected to a behavior.

Notes:

Event configuration is a global setting and therefore affects all components
that are recorded after you change the settings.

Changing the event configuration settings does not affect components that
have already been recorded. If you find that QuickTest recorded more or less
than you need, change the event recording configuration and then re-record
the part of your component that is affected by the change.

Changes to the custom Web event recording configuration settings do not
take effect on open browsers. To apply your changes for an existing
component, make the changes you need in the Web Event Recording
Configuration dialog box, refresh any open browsers, and then start a new
recording session.

Chapter 11 • Configuring Web Event Recording

257

Selecting a Standard Event Recording Configuration

The Web Event Recording Configuration dialog box offers three standard
event-configuration levels. By default, QuickTest uses the Basic
recording-configuration level. If QuickTest does not record all the events
you need, you may require a higher event-configuration level.

Level Description

Basic Default

• Always records click events on standard Web
objects such as images, buttons, and radio
buttons.

• Always records the submit event within forms.

• Records click events on other objects with a
handler or behavior connected.
For more information on handlers and
behaviors, see “Listening Criteria” on page 265.

• Records the mouseover event on images and
image maps only if the event following the
mouseover is performed on the same object.

Medium Records click events on the <DIV>, , and
<TD> HTML tag objects, in addition to the objects
recorded in the basic level.

High Records mouseover, mousedown, and double-click
events on objects with handlers or behaviors
attached, in addition to the objects recorded in the
basic level.

For more information on handlers and behaviors,
see “Listening Criteria” on page 265.

Part III • Configuring Settings

258

To set a standard event-recording configuration:

 1 Choose Tools > Web Event Recording Configuration. The Web Event
Recording Configuration dialog box opens.

 2 Use the slider to select your preferred standard event recording
configuration.

Tip: You can click the Custom Settings button to open the Custom Web
Event Recording dialog box where you can customize the event recording
configuration. For more information, see “Customizing the Event Recording
Configuration,” below.

You can click the Default Settings button to return the scale to the Basic
level.

 3 Click OK.

Chapter 11 • Configuring Web Event Recording

259

Customizing the Event Recording Configuration

If the standard event configuration levels do not exactly match your
recording needs, you can customize the event recording configuration using
the Custom Web Event Recording Configuration dialog box.

The Custom Web Event Recording Configuration dialog box enables you to
customize event recording in several ways. You can:

➤ Add or delete objects to which QuickTest should apply special listening or
recording settings.

➤ Add or delete events for which QuickTest should listen.

➤ Modify the listening or recording settings for an event.

To customize the event recording configuration:

 1 Choose Tools > Web Event Recording Configuration. The Web Event
Recording Configuration dialog box opens.

 2 Click the Custom Settings button. The Custom Web Event Recording
Configuration dialog box opens.

Part III • Configuring Settings

260

 3 Customize the event recording configuration using the following options:

Option Description

Objects pane Displays a list of Web test object classes and HTML tag
objects.

• To add an object, choose Object > Add.

• Only HTML Tag objects can be deleted. To delete an
HTML object from the list, choose Object > Delete.

For more information, see “Adding and Deleting Objects in
the Custom Configuration Object List” on page 261.

Events pane Displays a list of events associated with the object.

• To add an event to the Events pane, choose
Event > Add.

• To delete an event, choose Event > Delete.

For more information, see “Adding and Deleting Listening
Events for an Object” on page 263.

Event Name The name of the event.

Listen The criteria for when QuickTest listens to the event.

• Always—Always listens to the event.

• If Handler—Listens to the event if a handler is attached
to it. A handler is code in a Web page, typically a
function or routine written in a scripting language, that
receives control when the corresponding event occurs.

• If Behavior—Listens to the event if a DHTML behavior
is attached to it. A DHTML behavior encapsulates
specific functionality or behavior on a page. When
applied to a standard HTML element on a page, a
behavior enhances that element's default behavior.

• If Handler or Behavior—Listens to the event if a
handler or behavior is attached to it.

• Never—Never listens to the event.

For more information, see “Modifying the Listening and
Recording Settings for an Event” on page 265.

Chapter 11 • Configuring Web Event Recording

261

 4 Click OK. The Custom Web Event Recording Configuration dialog box
closes. The slider scale on the Web Event Recording Configuration dialog
box is hidden and the configuration description displays Custom.

 5 Click OK to close the Web Event Recording Configuration dialog box.

Adding and Deleting Objects in the Custom Configuration
Object List

The Custom Web Event Recording Configuration dialog box lists objects in
an object hierarchy. The top of the hierarchy is Any Web Object. The
settings for Any Web Object apply to any object on the Web page being
tested, for which there is no specific event recording configuration set.
Below this are the Web Objects and HTML Tag Objects categories, each of
which contains a list of objects.

Record Enables or disables recording of the event for the selected
object, or enables recording of the event only if the
subsequent event occurs on the same object.

Reset Enables you to reset your settings to a preconfigured level.

Option Description

Part III • Configuring Settings

262

When working with the objects in the Custom Web Event Recording
Configuration dialog box, keep the following principles in mind:

➤ If an object is listed in the Custom Web Event Recording Configuration
dialog box, then the settings for that object override the settings for Any
Web Object.

➤ You cannot delete or add to the list of objects in the Web Objects category,
but you can modify the settings for any of these objects.

➤ You can add any HTML Tag object in your Web page to the HTML Tag
Objects category.

To add objects to the event configuration object list:

 1 In the Custom Web Event Recording Configuration dialog box, choose
Object > Add. A New Object object is displayed in the HTML Tag Objects
list.

 2 Click New Object to rename it. Enter the exact HTML Tag name.

By default the new object is set to listen and record onclick events with
handlers attached.

Chapter 11 • Configuring Web Event Recording

263

For more information on adding or deleting events, see “Adding and
Deleting Listening Events for an Object,” below. For more information on
listening and recording settings, see “Modifying the Listening and
Recording Settings for an Event” on page 265.

To delete objects from the HTML Tag Objects list:

 1 From the Custom Web Event Recording Configuration dialog box, select the
object in the HTML Tag Objects category that you want to delete.

 2 Choose Object > Delete. The object is deleted from the list.

Note: You cannot delete objects from the Web Objects category.

Adding and Deleting Listening Events for an Object

You can add or delete events from the list of events that trigger QuickTest to
listen to an object.

To add listening events for an object:

 1 In the Custom Web Event Recording Configuration dialog box, select the
object to which you want to add an event, or select Any Web Object.

Part III • Configuring Settings

264

 2 Choose Event > Add. A list of available events opens.

 3 Select the event you want to add. The event is displayed in the Event Name
column in alphabetical order. By default, QuickTest listens to the event
when a handler is attached and always records the event (as long as it is
listened to at some level).

For more information on listening and recording settings, see “Modifying
the Listening and Recording Settings for an Event,” below.

To delete listening events for an object:

 1 In the Custom Web Event Recording Configuration dialog box, select the
object from which you want delete an event, or select Any Web Object.

 2 Select the event you want to delete from the Event Name column.

 3 Choose Event > Delete. The event is deleted from the Event Name column.

Chapter 11 • Configuring Web Event Recording

265

Modifying the Listening and Recording Settings for an Event

You can select the listening criteria and set the recording status for each
event listed for each object.

Note: The listen and record settings are mutually independent. This means
that you can choose to listen to an event for particular object, but not record
it, or you can choose not to listen to an event for an object, but still record
the event. For more information, see “Tips for Working with Event Listening
and Recording” on page 267.

Listening Criteria

For each event, you can instruct QuickTest to listen every time the event
occurs on the object if an event handler is attached to the event, if a DHTML
behavior is attached to the event, if an event handler or DHTML behavior
are attached to the event, or to never listen to the event.

An event handler is code in a Web page, typically a function or routine
written in a scripting language, that receives control when the
corresponding event occurs.

A DHTML behavior encapsulates specific functionality or behavior on a
page. When applied to a standard HTML element on a page, a behavior
enhances that element's default behavior.

To specify the listening criterion for an event:

 1 From the Custom Web Event Recording Configuration dialog box, select the
object for which you want to modify the listening criterion or select Any
Web Object.

Part III • Configuring Settings

266

 2 In the row of the event you want to modify, select the listening criterion
you want from the Listen column.

You can select Always, If Handler, If Behavior, If Handler or Behavior, or
Never.

Recording Status

For each event, you can enable recording, disable recording, or enable
recording only if the next event is dependent on the selected event.

➤ Enabled—Records the event each time it occurs on an object as long as
QuickTest listens to the event on the selected object, or on another object to
which the event bubbles.

Bubbling is the process whereby, when an event occurs on a child object,
the event can travel up the chain of hierarchy within the HTML code until it
encounters an event handler to process the event.

➤ Disabled—Does not record the specified event and ignores event bubbling
where applicable.

➤ Enabled on next event—Same as Enabled, except that it records the event
only if a subsequent event occurs on the same object. For example, suppose
a mouseover behavior modifies an image link. You may not want to record
the mouseover event each time you happen to move the mouse over this
image. It is essential, though, that the mouseover event be recorded before a
click event on the same object because only the image that is displayed after
the mouseover event enables the link event. This option applies only to the
Image and WebArea objects.

Chapter 11 • Configuring Web Event Recording

267

To set the recording status for an event:

 1 From the Custom Web Event Recording Configuration dialog box, select the
object for which you want to modify the recording status or select Any Web
Object.

 2 In the row of the event you want to modify, select a recording status from
the Record column.

Tips for Working with Event Listening and Recording

It can sometimes be difficult to find the ideal listen and recording settings.
When defining these settings, keep in mind the following guidelines:

➤ If settings for different objects in the Objects Pane conflict, QuickTest gives
first priority to settings for specific HTML Tag Objects and second priority to
Web Objects settings. QuickTest only applies the settings for Any Web
Object to Web objects that were not defined in the HTML Tag Object or Web
Objects areas.

➤ To record an event on an object, you must instruct QuickTest to listen for
the event, and to record the event when it occurs. You can listen for an
event on a child object, even if a parent object contains the handler or
behavior, or you can listen for an event on a parent object, even if the child
object contains the handler or behavior.

However, you must enable recording for the event on the source object (the
object on which the event actually occurs, regardless of which parent object
contains the handler or behavior).

Part III • Configuring Settings

268

For example, suppose a table cell with an onmouseover event handler
contains two images. When the mouse moves over either of the images, the
event also bubbles up to the cell, and the bubbling includes information on
the image that the mouse moved over. You can record this mouseover event
by:

➤ Setting Listen on the <TD> tag mouseover event to If Handler (so that
QuickTest “hears” the event when it occurs), while disabling recording
on it, and then setting Listen on the tag mouseover event to
Never, while setting Record on the tag to Enable (to record the
mouseover event on the image after it is listened to at the <TD> level).

➤ Setting Listen on the tag mouseover event to Always (to listen for
the mouseover event even though the image tag does not contain a
behavior or handler), and setting Record on the tag to Enabled
(to record the mouseover event on the image).

➤ Instructing QuickTest to listen for many events on many objects may lower
performance, so it is recommended to limit Listen settings to the required
objects.

➤ In rare situations, listening to the object on which the event occurs (the
source object) can interfere with the event.

If you find that your application works properly until you begin recording
on the application using QuickTest, your Listen settings may be interfering.

If this problem occurs with a mouse event, try selecting the appropriate Use
standard Windows mouse events option(s) in the Advanced Web Options
dialog box. For more information, see “Advanced Web Options” on
page 219.

If this problem occurs with a keyboard or internal event, or the Use
standard Windows mouse events option does not solve your problem, set
the Listen settings for the event to Never on the source object (but keep the
record setting enabled on the source object), and set the Listen settings to
Always for a parent object.

Chapter 11 • Configuring Web Event Recording

269

Recording Right Mouse Button Clicks

QuickTest enables you to record clicks made using left, center, and right
mouse buttons. By default, only left clicks are recorded, but you can modify
the configuration to record clicks from the right and center buttons, as well.

QuickTest records the Click statement when the OnClick event is triggered.
QuickTest differentiates between the mouse buttons by listening for events
configured for each of the mouse buttons. By default, it listens for the
OnMouseUp event, but you can also configure it to listen for the
OnMouseDown event using the Web Event Recording Configuration dialog
box.

Notes:

Recording of simultaneous clicking of more than one mouse button is not
supported.

QuickTest does not record the right click that opens the browser context
menu, or the selection of an item from the context menu. For more
information on modifying the script manually to enable these options, refer
to the following Knowledge Base articles:

➤ Problem ID 31270: How to replay right-clicking on an object to open a
pop-up menu

➤ Problem ID 27184: How to select an item from a right-click menu

Part III • Configuring Settings

270

Configuring QuickTest to Record Right Mouse Clicks

You instruct QuickTest to record right mouse clicks by modifying the
configuration file manually and then loading it.

To configure QuickTest to record right mouse clicks:

 1 Choose Tools > Web Event Recording Configuration. The Web Event
Recording Configuration dialog box opens.

Chapter 11 • Configuring Web Event Recording

271

 2 Click the Custom Settings button. The Custom Web Event Recording
Configuration dialog box opens.

 3 In the Custom Web Event Recording Configuration dialog box, choose File >
Save Configuration As. The Save As dialog box opens.

 4 Navigate to the folder in which you want to save the web event recording
configuration file, and enter a configuration file name. The extension for
configuration files is .xml.

 5 Click Save to save the file and close the dialog box.

 6 Open the saved configuration file for editing in any text editor. The
configuration file uses a defined structure. For more information on the
XML file structure, see “Understanding the Web Event Recording
Configuration XML Structure” on page 274.

The beginning of the file, which is relevant for Web objects, is shown below.

Part III • Configuring Settings

272

The Property Name argument controls the recording of the mouse buttons.
The value of the mouse buttons are defined as follows:

➤ 1—Left

➤ 2—Right

➤ 4—Middle

 7 Edit the file as follows:

➤ To record a left mouse click for the onmouseup event, add the following
line:

<Property Name=”button” Value=”1” Listen=”2” Record=”2”/>

➤ To record right and left mouse clicks for the onmousedown event, add
the following lines:

<Event Name=”onmousedown” Listen=”2” Record=”1”>

<Property Name=”button” Value=”2” Listen=”2” Record=”2”/>

<Property Name=”button” Value=”1” Listen=”2” Record=”2”/>

</Event>

Note: Only one event, either onmouseup or onmousedown, should be used
to handle mouse clicks. If both events are used, QuickTest will record two
clicks instead of one. By default, QuickTest listens for the onmouseup event.

 8 Save the file.

 9 In the Custom Web Event Recording Configuration dialog box, choose File >
Load Configuration. The Open dialog box opens.

 10 Navigate to the folder in which you saved the edited configuration file,
select the file, and click Open. The Custom Web Recording Configuration
dialog box reopens.

 11 Click OK. The new configuration is loaded, with all preferences
corresponding to those you defined in the XML configuration file. Any Web
objects you now record will be recorded according to these new settings.

Chapter 11 • Configuring Web Event Recording

273

Saving and Loading Custom Event Configuration Files

You can save the changes you make in the Custom Web Event Recording
Configuration dialog box, and load them at any time.

You can also modify the XML file before loading it. For more information on
the XML file structure, see “Understanding the Web Event Recording
Configuration XML Structure” on page 274.

To save a custom configuration:

 1 Customize the event recording configuration as desired. For more
information on how to customize the configuration, see “Customizing the
Event Recording Configuration” on page 259.

 2 In the Custom Web Event Recording Configuration dialog box, Choose
File > Save Configuration As. The Save As dialog box opens.

 3 Navigate to the folder in which you want to save your event configuration
file and enter a configuration file name. The extension for configuration
files is .xml.

 4 Click Save to save the file and close the dialog box.

To load a custom configuration:

 1 Choose Tools > Web Event Recording Configuration and then click Custom
Settings to open the Custom Web Event Recording Configuration dialog
box.

 2 Choose File > Load Configuration. The Open dialog box opens.

 3 Locate the event configuration file (.xml) that you want to load and click
Open. The dialog box closes and the selected configuration is loaded.

Part III • Configuring Settings

274

Understanding the Web Event Recording Configuration XML
Structure

The Web event recording configuration XML file is structured in a certain
format. If you are modifying the file, or creating your own file, you must
ensure that you adhere to this format, in order for your settings to take
effect.

Following is a sample XML file:

<XML>
<Object Name="Any Web Object">

<Event Name="onclick" Listen="2" Record="2"/>
<Event Name="onmouseup" Listen="2" Record="1">

<Property Name="button" Value="2" Listen="2" Record="2"/>
</Event>

</Object>
. . .
. . .
. . .

<Object Name="WebList">
<Event Name="onblur" Listen="1" Record="2"/>
<Event Name="onchange" Listen="1" Record="2"/>
<Event Name="onfocus" Listen="1" Record="2"/>

</Object>
</XML>

Chapter 11 • Configuring Web Event Recording

275

You define the listening criteria and recording status options in the XML
using the following possible values:

Resetting Event Recording Configuration Settings

You can restore standard settings after you set custom settings by resetting
the event recording configuration settings to the basic level from the Web
Event Recording Configuration dialog box. You can also restore the default
custom level settings from the Custom Web Event Recording Configuration
dialog box.

Note: When you choose to reset standard settings, your custom settings are
cleared completely. If you do not want to lose your changes, be sure to save
your settings in an event configuration file. For more information, see
“Saving and Loading Custom Event Configuration Files” on page 273.

Settings Possible Values

Listen 1—Always

2—If Handler

4—If Behavior

6—If Handler or Behavior

0—Never

Record 1—Disabled

2—Enabled

6—Enabled on Next Event

Part III • Configuring Settings

276

To reset basic level configuration settings from the Web Event Recording
Configuration dialog box:

 1 Choose Tools > Web Event Recording Configuration. The Web Event
Recording Configuration dialog box opens.

 2 Click Default. The standard configuration slider is displayed again and all
event settings are restored to the Basic event recording configuration level.

 3 If you want to select a different standard configuration level, see “Selecting a
Standard Event Recording Configuration” on page 257.

You can also restore the settings to a specific (base) custom configuration
from within the Custom Web Event Recording Configuration dialog box so
that you can begin customizing from that point.

To reset the settings to a custom level from the Custom Web Event
Recording Configuration dialog box:

 1 Choose Tools > Web Event Recording Configuration. The Web Event
Recording Configuration dialog box opens.

 2 Click the Custom Settings button. The Custom Web Event Recording
Configuration dialog box opens.

 3 In the Reset to box, select the standard event recording level you want.

 4 Click Reset. All event settings are restored to the defaults for the level you
selected.

Part IV

Working with Test Objects and
Object Repositories

278

279

12
Understanding the Test Object Model

This chapter describes how QuickTest learns and identifies objects in your
application, explains the concepts of test object and run-time object, and
explains how to view the available methods for an object and the
corresponding syntax, so that you can easily add statements to your script
in the Expert View or use test objects and methods in your functions, when
creating operations for components.

This chapter describes:

➤ About Understanding the Test Object Model

➤ Applying the Test Object Model Concept

➤ Viewing Object Properties Using the Object Spy

➤ Viewing Object Methods and Method Syntax Using the Object Spy

About Understanding the Test Object Model

QuickTest tests your dynamically changing application by learning and
identifying test objects and their expected properties and values. During
recording, QuickTest analyzes each object in your application much the
same way that a person would look at a photograph and remember its
details.

The following sections introduce the concepts related to the test object
model and describe how QuickTest uses the information it gathers to test
your application.

Part IV • Working with Test Objects and Object Repositories

280

Understanding How QuickTest Learns Objects While Recording

QuickTest learns objects just as you would. For example, suppose as part of
an experiment, Johnny is told that he will be shown a photograph of a
picnic scene for a few seconds during which someone will point out one
item in the picture. Johnny is told that he will be expected to identify that
item again in identical or similar pictures one week from today.

Before he is shown the photograph, Johnny begins preparing himself for the
test by thinking about which characteristics he wants to learn about the
item that the tester indicates. Obviously, he will automatically note whether
it is a person, inanimate object, animal, or plant. Then, if it is a person, he
will try to commit to memory the gender, skin color, and age. If it is an
animal, he will try to remember the type of animal, its color, and so forth.

The tester shows the scene to Johnny and points out one of three children
sitting on a picnic blanket. Johnny notes that it is a caucasian girl about 8
years old. In looking at the rest of the picture, however, he realizes that one
of the other children in the picture could also fit that description. In
addition to learning his planned list of characteristics, he also notes that the
girl he is supposed to identify has long, brown hair.

Now that only one person in the picture fits the characteristics he learned,
he is fairly sure that he will be able to identify the girl again, even if the
scene the tester shows him next week is slightly different.

Since he still has a few moments left to look at the picture, he attempts to
notice other, more subtle differences between the child he is supposed to
remember and the others in the picture—just in case.

If the two similar children in the picture appeared to be identical twins,
Johnny might also take note of some less permanent feature of the child,
such as the child’s position on the picnic blanket. That would enable him to
identify the child if he were shown another picture in which the children
were sitting on the blanket in the same order.

QuickTest uses a very similar method when it learns objects during the
recording process.

Chapter 12 • Understanding the Test Object Model

281

First, it “looks” at the object on which you are recording and stores it as a
test object, determining in which test object class it fits. Just as Johnny
immediately checked whether the item was a person, animal, plant, or
thing. QuickTest might classify the test object as a standard Windows dialog
box (Dialog), a Web button (WebButton), or a Visual Basic scroll bar object
(VbScrollBar), for example.

Then, for each test object class, QuickTest has a list of mandatory properties
that it always learns; similar to the list of characteristics that Johnny
planned to learn before seeing the picture. When you record on an object,
QuickTest always learns these default property values, and then “looks” at
the rest of the objects on the page, dialog box, or other parent object to
check whether this description is enough to uniquely identify the object. If it
is not, QuickTest adds assistive properties, one by one, to the description,
until it has compiled a unique description; like when Johnny added the hair
length and color characteristics to his list. If no assistive properties are
available, or if those available are not sufficient to create a unique
description, QuickTest adds a special ordinal identifier, such as the object’s
location on the page or in the source code, to create a unique description,
just as Johnny would have remembered the child’s position on the picnic
blanket if two of the children in the picture had been identical twins.

Understanding How QuickTest Identifies Objects During the
Run Session

QuickTest also uses a very human-like technique for identifying objects
during the run session.

Suppose as a continuation to the experiment, Johnny is now asked to
identify the same “item” he initially identified but in a new, yet similar
environment.

The first photograph he is shown is the original photograph. He searches for
the same caucasian girl, about eight years old, with long, brown hair that he
was asked to remember and immediately picks her out. In the second
photograph, the children are playing on the playground equipment, but
Johnny is still able to easily identify the girl using the same criteria.

Part IV • Working with Test Objects and Object Repositories

282

Similarly, during a run session, QuickTest searches for a run-time object that
exactly matches the description of the test object it learned while recording.
It expects to find a perfect match for both the mandatory and any assistive
properties it used to create a unique description while recording. As long as
the object in the application does not change significantly, the description
learned during recording is almost always sufficient for QuickTest to
uniquely identify the object. This is true for most objects, but your
application could include objects that are more difficult to identify during
subsequent run sessions.

Consider the final phase of Johnny’s experiment. In this phase, the tester
shows Johnny another photograph of the same family at the same location,
but the children are older and there are also more children playing on the
playground. Johnny first searches for a girl with the same characteristics he
used to identify the girl in the other pictures (the test object), but none of
the caucasian girls in the picture have long, brown hair. Luckily, Johnny was
smart enough to remember some additional information about the girl’s
appearance when he first saw the picture the previous week. He is able to
pick her out (the run-time object), even though her hair is now short and
dyed blond.

How is he able to do this? First, he considers which features he knows he
must find. Johnny knows that he is still looking for a caucasian female, and
if he were not able to find anyone that matched this description, he would
assume she is not in the photograph.

Once he has limited the possibilities to the four caucasian females in this
new photograph, he thinks about the other characteristics he has been using
to identify the girl—her age, hair color, and hair length. He knows that
some time has passed and some of the other characteristics he remembers
may have changed, even though she is still the same person.

Thus, since none of the caucasian girls have long, dark hair, he ignores these
characteristics and searches for someone with the eyes and nose he
remembers. He finds two girls with similar eyes, but only one of these has
the petite nose he remembers from the original picture. Even though these
are less prominent features, he is able to use them to identify the girl.

Chapter 12 • Understanding the Test Object Model

283

QuickTest uses a very similar process of elimination with its Smart
Identification mechanism to identify an object, even when the recorded
description is no longer accurate. Even if the values of your test object
properties change, QuickTest maintains your component’s reusability by
identifying the object using Smart Identification. For more information on
Smart Identification,

The remainder of this guide assumes familiarity with the concepts presented
here, including test objects, run-time objects, object properties, mandatory
and assistive properties, and Smart Identification. An understanding of
these concepts will enable you to create well-designed, functional
components for your application.

Applying the Test Object Model Concept

The test object model is a large set of object types or classes that QuickTest
uses to represent the objects in your application. Each test object class has a
list of properties that can uniquely identify objects of that class and a set of
relevant methods that QuickTest can record for it.

A test object is an object that QuickTest creates in the component to
represent the actual object in your application. QuickTest stores information
about the object that will help it identify and check the object during the
run session.

A run-time object is the actual object in your application on which methods
are performed during the run session.

Part IV • Working with Test Objects and Object Repositories

284

When you perform an operation on your application while recording,
QuickTest:

➤ identifies the QuickTest test object class that represents the object on which
you performed the operation and creates the appropriate test object

➤ reads the current value of the object’s properties in your application and
stores the list of properties and values with the test object

➤ chooses a unique name for the object, generally using the value of one of its
prominent properties

➤ records the operation that you performed on the object using the
appropriate QuickTest test object method

For example, suppose you click on a Search button with the following
HTML source code:

<INPUT TYPE="submit" NAME="Search" VALUE="Search">

QuickTest identifies the object that you clicked as a WebButton test object.
It creates a WebButton object with the name Search, and records the
following properties and values for the Search WebButton:

It also records that you performed a Click method on the WebButton.

Suppose that clicking the Search button is the first step in your component,
QuickTest displays your step as follows:

Chapter 12 • Understanding the Test Object Model

285

When you run a component, QuickTest identifies each object in your
application by its test object class and its description (the set of test object
properties and values used to uniquely identify the object). The list of test
objects and their properties and values are stored in the object repository. In
the above example, QuickTest would search in the object repository during
the run session for the WebButton object with the name Search to look up
its description. Based on the description it finds, QuickTest would then look
for a WebButton object in the application with the HTML tag INPUT, of type
submit, with the value Search. When it finds the object, it performs the
Click method on it.

Understanding Test Object Descriptions

For each object class, QuickTest learns a set of properties when it records and
it uses this description to identify the object when it runs the component.

For example, by default, QuickTest learns the image type (such as plain image
or image button), the HTML tag, and the Alt text of each Web image on
which you record an operation.

If these three mandatory property values are not sufficient to uniquely
identify the object within its parent object, QuickTest adds some assistive
properties and/or an ordinal identifier to create a unique description.

test object name
test object class

default
properties

test object
name

image icon

Part IV • Working with Test Objects and Object Repositories

286

When the component runs, QuickTest searches for the object that matches
the description it learned. If it cannot find any object that matches the
description, or if it finds more than one object that matches, QuickTest may
use the Smart Identification mechanism to identify the object.

You can configure the mandatory, assistive, and ordinal identifier properties
that QuickTest uses to record descriptions of the objects in your application,
and you can enable and configure the Smart Identification mechanism. For
more information,

Understanding Test Object and Run-Time Object Properties and
Methods

The test object property set for each test object is created and maintained by
QuickTest. The run-time object property set for each run-time object is
created and maintained by the object creator (for example, Microsoft for
Microsoft Internet Explorer objects, Netscape for Netscape objects, the
product developer for ActiveX objects, and so forth).

Similarly, test object methods are methods that QuickTest recognizes and
records when they are performed on an object while you are recording, and
that QuickTest performs when your component runs. Run-time object
methods are the methods of the object in your application as defined by the
object creator. You can access and perform run-time object methods using
the Object property.

For information on activating run-time methods using the Object property,
see “Retrieving and Setting Test Object Property Values” on page 651.

Each test object method you perform while recording is recorded as a
separate step in your component. When you run your component,
QuickTest performs the recorded test object method on the run-time object.

Test object properties are the properties whose values are captured from the
objects in your Web site or application when you record your component.
QuickTest uses the values of these properties to identify run-time objects in
your application during a run session.

Chapter 12 • Understanding the Test Object Model

287

Property values of objects in your application may change dynamically each
time your application opens, or based on certain conditions. To make the
test object property values match the property values of the run-time object,
you can modify test object properties manually while designing your
component, or use SetTOProperty statements during a run session (via an
operation defined in a function library). You can also use regular expressions
to identify property values based on conditions or patterns you define. For
more information on modifying object properties, see Chapter 13, “Working
with Test Objects.”

You can view or modify the test object property values that are stored with
your component in the Object Properties or Object Repository dialog box.
You can view the current test object property values of any object on your
desktop using the Properties tab of the Object Spy. For information about
the Object Properties and Object Repository dialog boxes, see “Modifying
Test Object Properties” on page 313. For information about viewing test
object property values using the Object Spy, see “Viewing Object Properties
Using the Object Spy” on page 288.

You can view the syntax of the test object methods as well as the run-time
methods of any object on your desktop using the Methods tab of the Object
Spy. For more information, see “Viewing Object Methods and Method
Syntax Using the Object Spy” on page 291.

Using operations defined in function libraries, you can retrieve or modify
property values of the test object during the run session by adding
GetTOProperty and SetTOProperty statements. You can retrieve property
values of the run-time object during the run session by adding
GetROProperty statements. For more information, see “Retrieving and
Setting Test Object Property Values” on page 651.

If the available test object methods or properties for an object do not
provide the functionality you need, you can access the internal methods
and properties of any run-time object using the Object property. You can
also use the attribute object property to identify Web objects in your
application according to user-defined properties. For information, see
“Accessing Run-Time Object Properties and Methods” on page 652.

For more information about test object methods and properties refer to the
QuickTest Professional Object Model Reference.

Part IV • Working with Test Objects and Object Repositories

288

Viewing Object Properties Using the Object Spy

Using the Object Spy, you can view the properties of any object in an open
application. You use the Object Spy pointer to point to an object. The Object
Spy displays the selected object’s hierarchy tree and its properties and values
in the Properties tab of the Object Spy dialog box.

To view object properties:

 1 Open your browser or application to the page containing the object on
which you want to spy.

 2 Choose Tools > Object Spy or click the Object Spy toolbar button to open
the Object Spy dialog box and display the Properties tab. Alternatively, click
the Object Spy button from the Object Repository dialog box. For more
information on the Object Repository dialog box, see “Understanding the
Object Repository Window” on page 302.

 3 In the Object Spy dialog box, click the pointing hand. Both QuickTest and
the Object Spy are minimized so that you can point to and click on any
object in the open application.

Note: If the window on which you want to spy is partially hidden by
another window, hold the pointing hand over the partially hidden window
for a few seconds. The window comes into the foreground. You can now
point and click on the object you want. You can configure the length of
time required to bring a window into the foreground in the General tab of
the Options dialog box. For more information, see Chapter 8, “Setting
Global Testing Options.” You can also hold the left CTRL key to change the
window focus. Additionally, if the window containing the object you want
to select is minimized, you can display it by holding the left CTRL key,
right-clicking the application in the Windows task bar, and choosing
Restore from the context menu.

Chapter 12 • Understanding the Test Object Model

289

 4 If the object on which you want to spy can be displayed only by performing
an event (such as a right-click or a mouse-over to display a context menu),
hold the left CTRL key. The pointing hand temporarily turns into a standard
arrow and you can perform the event. When the object on which you want
to spy is displayed, release the left CTRL key. The arrow becomes a pointing
hand again.

 5 Click the object for which you want to view properties. The Object Spy
returns to focus and displays the object hierarchy tree and the properties of
the object that is selected within the tree.

object hierarchy tree

object type filter

object properties

selected property/value box

Part IV • Working with Test Objects and Object Repositories

290

Tip: You can resize the Object Spy dialog box. This is useful if you have a
deep hierarchy, or long property names and values, enabling you view all
the information without scrolling.

 6 To view the properties of the test object, click the Test Object Properties
radio button. To view the properties of the run-time object, click the
Run-time Object Properties radio button.

Tips:

In a function, you can use the Object property to retrieve the values of the
run-time properties displayed in the Object Spy. For more information, see
“Retrieving Run-Time Object Properties” on page 653.

In a function, you can also use the GetTOProperty and SetTOProperty
methods to retrieve and set the value of test object properties for test
objects. You can use the GetROProperty to retrieve the current property
value of the objects in your application during the run session. For more
information, see “Retrieving and Setting Test Object Property Values” on
page 651.

 7 If you want to view properties for another object within the displayed tree,
click the object in the tree.

 8 If you want to copy an object property or value to the Clipboard, click the
property or value. The value is displayed in the selected property/value box.
Highlight the text in the selected property/value box and use CTRL + C to
copy the text to the Clipboard or right-click the highlighted text and choose
Copy from the menu.

Chapter 12 • Understanding the Test Object Model

291

Viewing Object Methods and Method Syntax Using the
Object Spy

In addition to viewing object properties, the Object Spy also enables you to
view both the run-time object methods and the test object methods
associated with an object and to view the syntax for a selected method. You
use the Object Spy pointer to point to an object. The Object Spy displays the
object hierarchy tree and the run-time object methods or test object
methods associated with the selected object in the Methods tab of the
Object Spy dialog box.

To view object methods:

 1 Open your browser or application to the page containing the object on
which you want to spy.

 2 Choose Tools > Object Spy or click the Object Spy toolbar button to open
the Object Spy dialog box. Alternatively, click the Object Spy button from
the Object Repository dialog box. For more information on the Object
Repository dialog box, see “Understanding the Object Repository Window”
on page 302.

 3 Click the Methods tab.

 4 Click the pointing hand. Both QuickTest and the Object Spy are minimized
so that you can point to any object on the open application.

Note: If the object you want is partially hidden by another window, hold
the pointing hand over the partially hidden window for a few seconds. The
window comes into the foreground. You can now point and click on the
object you want. You can configure this option in the Options dialog box.
For more information, see Chapter 8, “Setting Global Testing Options.” You
can also hold the left CTRL key to change the window focus. Additionally, if
the window containing the object you want to select is minimized, you can
display it by holding the left CTRL key, right-clicking the application in the
Windows task bar, and choosing Restore from the context menu.

Part IV • Working with Test Objects and Object Repositories

292

 5 If the object on which you want to spy can be displayed only by performing
an event (such as a right-click or a mouse-over to display a context menu),
hold the left CTRL key. The pointing hand temporarily turns into a standard
arrow and you can perform the event. When the object on which you want
to spy is displayed, release the left CTRL key. The arrow becomes a pointing
hand again.

 6 Click the object for which you want to view the associated methods. The
Object Spy returns to focus and displays the object hierarchy tree and the
run-time object or test object methods associated with the object that is
selected in the tree.

object hierarchy tree

object type filter

object methods

selected method syntax box

method description box

Chapter 12 • Understanding the Test Object Model

293

Tip: You can resize the Object Spy dialog box. This is useful if you have a
deep hierarchy, or long syntax, enabling you view all the information
without scrolling.

 7 To view the methods of the test object, click the Test Object Methods radio
button. To view the methods of the run-time object, click the Run-Time
Object Methods radio button.

Tip: You can use the Object property to activate the run-time object
methods displayed in the Object Spy. For more information, see “Activating
Run-Time Object Methods” on page 653.

 8 If you want to view methods for another object within the displayed tree,
click the object on the tree.

 9 If you want to copy the syntax of a method to the Clipboard, click the
method in the list. The syntax is displayed in the selected method syntax
box. Highlight the text in the selected method syntax box and use CTRL + C
to copy the text to the Clipboard, or right-click the highlighted text and
choose Copy from the menu.

Part IV • Working with Test Objects and Object Repositories

294

295

13
Working with Test Objects

This chapter explains how to manage and maintain the test objects in your
component. It describes how to modify test object properties and how to
modify the way QuickTest identifies an object, which is useful when
working with objects that change dynamically.

This chapter describes:

➤ About Working with Test Objects

➤ Understanding Object Repository Types

➤ Understanding the Object Repository Window

➤ Viewing and Modifying Test Object Properties

➤ Mapping Repository Parameter Values

➤ Adding Objects to the Object Repository

➤ Copying, Pasting, and Moving Objects in the Object Repository

➤ Deleting Objects from the Object Repository

➤ Locating Objects

➤ Working with Test Objects During a Run Session

➤ Exporting Local Objects to an Object Repository

Part IV • Working with Test Objects and Object Repositories

296

About Working with Test Objects

When QuickTest runs a component, it simulates a human user by moving
the mouse cursor over the application, clicking objects, and entering
keyboard input. Like a human user, QuickTest must learn the interface of an
application to be able to work with it. QuickTest does this by learning the
application’s objects and their corresponding property values and storing
these object descriptions in an object repository.

As QuickTest learns the test objects, it stores them in the component’s local
object repository. You can choose to keep the stored objects in the local
object repository, or you can choose to store the objects in a shared object
repository. Storing the objects in the local object repository makes them
available only to the specific component, but not to other components.
Storing the objects in one or more shared object repositories enables
multiple components (via their application areas) to use them. You can also
work with a combination of local and shared object repositories, as needed.
For more information about local and shared object repositories, see
“Understanding Object Repository Types” on page 297.

If one or more of the property values of an object in your application differ
from the property values QuickTest uses to identify the object, your
component may fail. Therefore, when the property values of objects in your
application change, you should modify the corresponding test object
property values in the corresponding object repository so that you can
continue to use your existing components.

You can modify objects stored in a local object repository using the Object
Repository window, as described in this chapter. You can modify objects in a
shared object repository using the Object Repository Manager. For
information on the Object Repository Manager, see Chapter 15, “Managing
Object Repositories.” You can also copy objects from a shared object
repository to a local object repository and then modify the local copy of the
object using the Object Repository window, as described in this chapter.

Chapter 13 • Working with Test Objects

297

Understanding Object Repository Types

Test objects can be stored in two types of object repositories—a shared
object repository and a local object repository. A shared object repository
stores test objects in a file that can be accessed by multiple components (via
their application areas) in read-only mode. A local object repository stores
objects in a file that is associated with one specific component, so that only
that component can access the stored objects.

When you plan and create components, you must consider how you want
to store the objects in your components. You can store the objects for each
component in its corresponding local object repository, or you can store the
objects in your components in one or more shared object repositories. By
storing objects in shared object repositories and associating these
repositories with your components’ application areas, you enable multiple
components to use the objects. For each component, you can use a
combination of objects from your local and shared object repositories,
according to your needs. You can also transfer local objects to a shared
object repository, if required. This reduces maintenance and enhances the
reusability of your components because it enables you to maintain the
objects in a single, shared location instead of multiple locations. For more
information, see “Deciding Whether to Use Local or Shared Object
Repositories” on page 298.

If you are new to using QuickTest, you may want to use local object
repositories. In this way, you can record and run components without
creating, choosing, or modifying shared object repositories because all
objects are automatically saved in a local object repository that can be
accessed by its corresponding component. If you modify an object in the
local object repository, your changes do not have any effect on any other
component.

If you are familiar with testing, it is probably most efficient to save objects
in a shared object repository. In this way, you can use the same shared object
repository for multiple components—if the components include the same
objects. Test object information that applies to many components is kept in
one central location. When the objects in your application change, you can
update them in one location for all the components that use this shared
object repository.

Part IV • Working with Test Objects and Object Repositories

298

If an object with the same name and description is located in both the local
object repository and in a shared object repository associated with the same
component, the component uses the local object definition. If an object
with the same name and description is located in more than one shared
object repository associated with the same component, the object definition
is used from the first occurrence of the object, according to the order in
which the shared object repositories are associated with the component. For
more information on associating shared object repositories, see “Managing
Shared Object Repositories” on page 92.

Local objects are saved locally with the component, and can be accessed
only from that component. When using a shared object repository, you can
use the same object repository for multiple components. You can also use
multiple object repositories for each component.

When you open and work with an existing component, it always uses the
object repositories that are specified in the application area with which the
component is associated. Shared object repositories are read-only when
accessed from components; you edit them using the Object Repository
Manager.

 Deciding Whether to Use Local or Shared Object Repositories

To choose where to save objects, you need to understand the differences
between local and shared object repositories.

In general, the local object repository is easiest to use when you are creating
simple record and run components, especially under the following
conditions:

➤ You have only one, or very few, components that correspond to a given
application, interface, or set of objects.

➤ You do not expect to frequently modify test object properties.

Chapter 13 • Working with Test Objects

299

Conversely, the shared object repository is generally the preferred option
when:

➤ You are creating components using keyword-driven methodologies (not
using record).

➤ You have several components that test elements of the same application,
interface, or set of objects.

➤ You expect the object properties in your application to change from time to
time and/or you regularly need to update or modify test object properties.

Understanding the Local Object Repository

When you use a local object repository, QuickTest uses a separate object
repository for each component. (You can also use one or more shared object
repositories if needed. For more information, see “Understanding the Shared
Object Repository” on page 300.) The local object repository is fully editable
from within its component.

When working with a local object repository:

➤ QuickTest creates a new (empty) object repository for each component.

➤ As you record operations on objects in your application, QuickTest
automatically stores the information about those objects in the
corresponding local object repository (if the objects do not already exist in
an associated shared object repository).

QuickTest adds all new objects to the local object repository even if one or
more shared object repositories are already associated with the component.
(This assumes that an object with the same name and description does not
already exist in one of the associated shared object repositories).

➤ If a child object is added to a local object repository, and its parents are in a
shared object repository, its parents are automatically moved to the local
object repository.

➤ Every time you create a new component, QuickTest creates a new,
corresponding local object repository and begins adding test objects to the
local object repository as you record or learn objects.

Part IV • Working with Test Objects and Object Repositories

300

➤ If you learn or record on the same object in your application in two different
components, the object is stored as a separate test object in each of the local
object repositories.

➤ When you save your component, the local object repository is automatically
saved with the it. The local object repository is not accessible as a separate
file (unlike the shared object repository).

Understanding the Shared Object Repository

When you use shared object repositories, QuickTest uses the shared object
repositories you specified for the selected component’s application area. You
can use one or more shared object repositories. (You can also save some
objects in a local object repository for each component if you need to access
them only from the specific component. For more information, see
“Understanding the Local Object Repository” on page 299.)

After you begin creating your component, you can specify additional shared
object repositories. You can also create new ones and associate them with
your component. Before running the component, you must ensure that the
object repositories being used by the component contain all the objects in
your component. Otherwise, the component may fail. For more
information, see “Adding Objects to the Object Repository” on page 335.

You modify a shared object repository using the Object Repository Manager.
For more information, see Chapter 15, “Managing Object Repositories.”

When working with a shared object repository:

➤ If you record operations on an object that already exists in either the shared
or local object repository, QuickTest uses the existing information and does
not add the object to the object repository.

➤ If a child object is added to a local object repository, and its parents are in a
shared object repository, its parents are automatically moved to the local
object repository.

Chapter 13 • Working with Test Objects

301

➤ QuickTest does not add an object to the shared object repository as you
record operations on it. Instead, it adds new objects to the local object
repository (not the shared object repository) as you learn objects or record
steps on them (unless those same objects already exist in an associated
shared object repository).

You can export the local objects to a shared object repository. For more
information, see “Exporting Local Objects to an Object Repository” on
page 356.

You can also merge the local objects directly to a shared object repository
that is associated with the same component. This can reduce maintenance
since you can maintain the objects in a single shared location, instead of
multiple locations. For more information, see “Updating a Shared Object
Repository from Local Object Repositories” on page 437.

Part IV • Working with Test Objects and Object Repositories

302

Understanding the Object Repository Window

You open the Object Repository window for a specific component by
choosing Resources > Object Repository or clicking the Object Repository
button.

The Object Repository window displays a tree of all objects in the current
component (including all local objects and all objects in any shared object
repositories associated with the selected component).

For each test object you select in the tree, the Object Repository window
displays information about the test object, its type, the repository in which
it is stored, and its test object details. Local objects are editable (black);
shared objects are in read-only format (gray).

Chapter 13 • Working with Test Objects

303

While the Object Repository window is open, you can continue using
QuickTest, and you can continue modifying test objects and object
repositories. You can also resize the Object Repository window if needed.
The Object Repository window reflects any changes you make to an
associated object repository in realtime. For example, if you add objects to
the local object repository, or if you associate an additional object repository
with the current component, the Object Repository window immediately
displays the updated content.

Note: You can choose whether to show only the object repository tree, or
the object repository tree together with the test object details area. For more
information, see “Showing and Hiding the Test Object Details Area” on
page 308.

You can use the Object Repository window to view the test object
description of any test object in the repository (in local and shared object
repositories), to modify local test objects and their properties, and to add
objects to your local object repository.

Note: All changes you make to a local object are automatically updated in
all steps that use the local object as soon as you make the change. You can
use the Edit > Undo and Edit > Redo options or Undo and Redo buttons to
cancel or repeat your changes. When you save the current component, you
cannot undo or redo operations that were performed before the save
operation.

Part IV • Working with Test Objects and Object Repositories

304

For more information on viewing and modifying test object properties, see
“Modifying Test Object Properties” on page 313.

Note: Even when steps containing a test object are deleted from your
component, the objects remain in the object repository. You can delete
objects from the local object repository using the Object Repository window.
You can delete objects from a shared object repository using the Object
Repository Manager. For more information, see “Managing Object
Repositories” on page 389.

The Object Repository window contains the following information:

Information Description

Business
Component

Indicates that the current testing document is a business
component.

Object repository
tree

Contains all objects in the current component (all local
objects and all objects in any shared object repositories
associated with the selected component).

Note: If there are test objects in different associated object
repositories with the same name, object class, and
parent hierarchy, the object repository tree shows
only the first one it finds based on the priority
order defined. For information about object
repository priorities, see “Managing Shared Object
Repositories” on page 92.

You can filter the objects shown in the object repository
tree. For more information, see “Filtering the Object
Repository Window” on page 308.

Name The name that QuickTest assigns to the test object. You
can change the name of a test object in the local object
repository. For more information, see “Renaming Test
Objects” on page 319.

Class The class of the object.

Chapter 13 • Working with Test Objects

305

Understanding the Test Object Details Area

The Test object details area of the Object Repository window enables you to
view and modify the properties and property values used to identify an
object during a run session.

Tip: You can choose whether to show or hide the test object details area. For
more information, see “Showing and Hiding the Test Object Details Area”
on page 308.

In the Object Repository window, objects in a shared object repository are
displayed in the Object Properties pane (including the Test object details
area) in read-only format. To modify objects in a shared object repository,
open the shared object repository using the Object Repository Manager. For
more information, see Chapter 15, “Managing Object Repositories.” You can
also modify an object in a shared object repository by copying to the local
object repository and then modifying the local copy. For more information,
see “Copying an Object to the Local Object Repository” on page 310.

Repository The location (file name and path) of the object repository
in which the object is located. If the object is located in
the local object repository, Local is displayed.

Test object details Enables you to view the properties and property values
used to identify an object during a run session. You can
also modify the test object details for a test object in the
local object repository. For more information, see
“Understanding the Test Object Details Area” on
page 305. You can choose whether to show or hide the
test object details area. For more information, see
“Showing and Hiding the Test Object Details Area” on
page 308.

Information Description

Part IV • Working with Test Objects and Object Repositories

306

Tips:

You can view object properties and property values using the Object
Properties dialog box. For more information, see “Viewing Object Properties
and Property Values” on page 311.

You can use the Object Spy at any time to view run-time or test object
properties and values of the objects in the application you are testing. You
open the Object Spy by choosing Tools > Object Spy or clicking the Object
Spy toolbar button. For more information, see “Viewing Object Properties
Using the Object Spy” on page 288.

You can modify test object details for objects saved in the local object
repository. You can also copy an object from a shared object repository to
the local object repository, and then modify it.

Note: All changes you make to a local object are automatically updated in
all steps that use the local object as soon as you make the change. You can
use the Edit > Undo and Edit > Redo options or Undo and Redo buttons to
cancel or repeat your changes. When you save the current component, you
cannot undo and redo operations that were performed before the save
operation.

Chapter 13 • Working with Test Objects

307

The Test object details area contains the following items:

Item Description

Description properties The properties and property values used to identify
the object during a run session.

You can add and remove properties to or from the
test object description. For more information, see
“Adding Properties to a Test Object Description” on
page 322.

You can specify a property value as a constant, or
you can parameterize the value. For more
information, see “Specifying or Modifying Property
Values” on page 315.

Ordinal identifier A numerical value that indicates the object’s order
or location relative to other objects with an
otherwise identical description (objects that have
the same values for all properties). For more
information, see “Specifying Ordinal Identifiers” on
page 329.

Additional details Contains the following options:

• Enable Smart Identification—Enables you to
select True or False to specify whether QuickTest
should use Smart Identification to identify the
test object during the run session if it is not able
to identify the object using the test object
description.

Note: This option is available only if Smart
Identification properties are defined for
the test object's class in the Object
Identification dialog box. For more
information on Smart Identification, see
“Configuring Smart Identification” on
page 375.

• Comment—Enables you to add textual
information about the test object.

Part IV • Working with Test Objects and Object Repositories

308

Showing and Hiding the Test Object Details Area

You can choose to work with the Object Repository window in Compact
View mode or Full View mode. Compact View mode displays only the object
repository tree, while Full View mode displays the object repository tree
together with the test object details area.

To change the Object Repository window view mode:

Perform one of the following, depending on the mode you want to show:

➤ Choose View > Compact View or click the Compact View button.

➤ Choose View > Full View or click the Full View button.

The Object Repository window switches to the selected view mode.

Filtering the Object Repository Window

You can use the Filter toolbar to filter the objects shown in the Object
Repository window.

You can choose to show objects that meet one of the following criteria:

➤ All objects in the current component

➤ Only the local objects in the current component

➤ Only the objects in a specific shared object repository associated with the
current component

To filter the Object Repository window:

In the Filter toolbar list, select one of the following options:

➤ All Objects

➤ Local Objects

➤ The name of a specific shared object repository associated with the
current component

Chapter 13 • Working with Test Objects

309

The object repository tree is filtered to display only the objects from the
location that you selected. The title bar of the Object Repository window
indicates the current filter.

Viewing and Modifying Test Object Properties

As Web sites and applications change, you may need to change the property
values of the steps in your component. Suppose an object in your
application changes. If that object is part of your component, you should
modify its values so that QuickTest can continue to identify it. For example,
if a company Web site contains a Contact Us hypertext link, and the text
string in this link is changed to Contact MyCompany, you need to update
the object’s details in the object repository so that QuickTest can continue to
identify the link properly.

You can view and modify test object properties in a number of ways. For an
object stored in a local object repository, you can modify its properties
directly from the Object Repository window. For an object stored in a shared
object repository, you can either open it in the Object Repository Manager
and modify its properties, or you can copy it to the local object repository
and then modify its properties.

For more information on different ways in which you can view and modify
test object properties, see:

➤ “Copying an Object to the Local Object Repository” on page 310

➤ “Viewing Object Properties and Property Values” on page 311

➤ “Modifying Test Object Properties” on page 313

➤ “Specifying or Modifying Property Values” on page 315

➤ “Updating Test Object Properties from an Object in Your Application” on
page 317

➤ “Restoring Default Properties for a Test Object” on page 319

➤ “Renaming Test Objects” on page 319

➤ “Adding Properties to a Test Object Description” on page 322

➤ “Defining New Test Object Properties” on page 326

Part IV • Working with Test Objects and Object Repositories

310

➤ “Removing Properties from a Test Object Description” on page 328

➤ “Specifying Ordinal Identifiers” on page 329

Copying an Object to the Local Object Repository

If you want to modify an object stored in a shared object repository, you can
modify it using the Object Repository Manager, or you can modify it locally
using the Object Repository window.

If you modify it using the Object Repository Manager, the changes you
make will be reflected in all components that use the shared object
repository. If you make a local copy of the object and modify it in the Object
Repository window, the changes you make will affect only the component
in which you make the change. If you later modify the same object in the
shared object repository, your changes will not affect the local copy of the
object in your component.

When copying an object to the local object repository, consider the
following:

➤ When you copy an object to the local object repository, its parent objects are
also copied to the local object repository.

➤ If an object or its parent objects use unmapped repository parameters, you
cannot copy the object to the local object repository. You must make sure
that all repository parameters are mapped before copying an object to the
local object repository.

➤ If an object or its parent objects are parameterized using one or more
repository parameters, the repository parameter values are converted when
you copy the object to the local object repository. For example, if the
repository parameter is mapped to a local parameter, the property is
parameterized using a local parameter. If the value is a constant value, the
property receives the same constant value.

➤ If you are copying multiple objects to the local object repository, during the
copy process you can choose to skip a specific object if it has unmapped
repository parameters, or if it has mapped repository parameters whose
values you do not want to convert. You can then continue copying the next
object from your original selection.

Chapter 13 • Working with Test Objects

311

To copy an object to the local object repository:

 1 In the Object Repository window, select an object from a shared object
repository that you want to copy to the local object repository. Objects in a
shared object repository are colored gray. You can select more than one
object to copy, as long as the selected objects have the same parent objects.

 2 Choose Object > Copy to Local or right-click the object(s) and choose Copy
to Local. The object(s) (and parent objects) are copied to the local object
repository and are made editable.

Viewing Object Properties and Property Values

You can view test object properties and property values for objects in your
component steps.

To view object properties and property values:

In your component, click the step of the object whose properties you want
to view and choose Edit > Step Properties > Object Properties. The Object
Properties dialog box opens.

Part IV • Working with Test Objects and Object Repositories

312

Note: There are slight differences in the Object Properties dialog box,
depending on whether the selected object is currently stored in the local
object repository, the shared object repository, or not stored in any object
repository associated with the current component. This section describes
options shown in the dialog box for options in the local object repository or
not in any associated object repository. For objects stored in a shared object
repository, this dialog box appears as for local objects (as shown above), but
is in read-only format.

The Object Properties dialog box shows the name and class of the selected
object and enables you to:

➤ View the object’s properties and property values—its description properties,
ordinal identifier, and other settings.

➤ Modify the properties and property values used to identify the object (for
objects that are stored in the local object repository). You modify the
properties and values in the Object Properties dialog box in the same way as
you modify the test object details in the Object Repository window. For
more information, see “Modifying Test Object Properties” on page 313.

➤ Click the View in Repository button (for objects that are stored in the object
repository) to open the Object Repository window and display the selected
object in the object hierarchy.

➤ Click the Add to Repository button (for objects that are not stored in the
object repository) to add the selected object to the local object repository.

Chapter 13 • Working with Test Objects

313

Modifying Test Object Properties

You can modify an object by modifying one or more of the object’s property
values or by changing the set of properties used to identify that object. You
can do this for objects in the local object repository using the Object
Repository window, and for objects in the shared object repository using the
Object Repository Manager.

You can also automatically update the description of one or more test
objects in your object repository based on the actual updated object
properties in your application. For more information, see “Updating Test
Object Properties from an Object in Your Application” on page 317.

Tip: You can use the Object Spy at any time to view run-time or test object
properties and values of the objects in the application you are testing. You
open the Object Spy by choosing Tools > Object Spy or clicking the Object
Spy toolbar button. For more information, see “Viewing Object Properties
Using the Object Spy” on page 288.

Part IV • Working with Test Objects and Object Repositories

314

To modify an object property:

 1 Right-click the step containing the object that changed, and choose Object
Properties or choose Edit > Step Properties > Object Properties from the
menu bar.

The Object Properties dialog box opens and displays the properties
QuickTest uses to identify the object.

Tips:

If you want to view all objects in the component, click the View in
Repository button. The Object Repository window opens and displays all
objects stored in the repository in a repository tree.

You can also open the object repository for the selected component by
choosing Resources > Object Repository or by clicking the Object
Repository toolbar button.

Chapter 13 • Working with Test Objects

315

 2 Modify the properties and values as required. You modify the properties and
values in the Object Properties dialog box in the same way as you modify
the test object details in the Object Repository window. For more
information, see “Understanding the Test Object Details Area” on page 305
and “Viewing and Modifying Test Object Properties” on page 309.

 3 Click OK to close the dialog box.

Specifying or Modifying Property Values

You can specify or modify values for properties in the test object description.
You can specify a value using a constant value (either a simple value or a
constant value that includes regular expressions) or you can parameterize it.
You can do this for objects in the local object repository using the Object
Repository window or Object Properties dialog box, and for objects in the
shared object repository using the Object Repository Manager.

You can also find and replace specific object property values. For more
information, see “Finding Objects in an Object Repository” on page 347.

Note: In some cases, the Smart Identification mechanism may enable
QuickTest to identify an object, even when some of its property values
change. However, if you know about property value changes for a specific
object, you should try to correct the object definition so that QuickTest can
identify the object from its basic object description. For more information
on the Smart Identification mechanism, see Chapter 14, “Configuring
Object Identification.”

Tip: You can use the Object Spy at any time to view run-time or test object
properties and values of the objects in the application you are testing. You
open the Object Spy by choosing Tools > Object Spy or clicking the Object
Spy toolbar button. For more information, see “Viewing Object Properties
Using the Object Spy” on page 288.

Part IV • Working with Test Objects and Object Repositories

316

To specify a property value:

 1 Select the test object whose property value you want to specify.

 2 In the Test object details area, click in the value cell for the required
property.

Tip: For an object in the local object repository, you can also select the
required test object and choose Edit > Step Properties > Object Properties,
and then make the following property value changes in the Object
Properties dialog box.

 3 Specify the property value in one of the following ways:

➤ If you want to specify a constant value, enter it in the value cell.

➤ If you want to parameterize the value or specify a constant value using a
regular expression, click the parameterization button in the value cell. If
you specify a constant value using a regular expression, the icon is
displayed next to the value. For information on parameterizing values,
see “Working with Parameters” on page 170.

 4 If you specified a constant value, it is shown in the Value column of the Test
object details area. If you parameterized the value, the parameter name is
shown with one of the following icons in the Value column.

Parameter Icon Description

Indicates that the value of the property is currently a
component parameter.

Indicates that the value of the property is currently a local
parameter.

Indicates that the value of the property is currently a
repository parameter (in a shared object repository).

Chapter 13 • Working with Test Objects

317

Updating Test Object Properties from an Object in Your
Application

You can update an object in your object repository by selecting the
corresponding object in your application and relearning its properties and
property values from the application. When you update a test object
description in this way, all currently defined properties and values is
overwritten, including description properties and values, and ordinal
identifier and Smart Identification information. Any object-specific
comments that you may have entered are not removed.

This is useful if an object’s properties have changed since you added it to the
object repository, since QuickTest may not be able to recognize the object
unless you update its description.

You can also use this option to update an object that you defined (using the
Object > Define New Test Object option) before the application was
completely developed, and as a result some of the object properties and
values are missing in the test object description, or are no longer sufficient
to identify the object. For more information on the Define New Test Object
option, see “Defining New Test Objects” on page 341.

You can do this for objects in the local object repository using the Object
Repository window, and for objects in the shared object repository using the
Object Repository Manager.

To update test object properties from an object in your application:

 1 In the object repository tree, select the test object whose description you
want to update.

 2 Choose Object > Update from Application or click the Update from
Application button. QuickTest is minimized and the cursor changes to a
pointing hand, so that you can point to and click on any object in the open
application.

Part IV • Working with Test Objects and Object Repositories

318

 3 Find the object in your application whose properties you want to update in
the object repository and click it. You must choose an object of the same
object class as the test object you selected in the object repository tree.

Notes:

If the object you want to select is in a window that is partially hidden by
another window, hold the pointing hand over the partially hidden window
for a few seconds. The window comes into the foreground. You can now
point and click on the object you want. You can configure the length of
time required to bring a window into the foreground in the General tab of
the Options dialog box. For more information, see Chapter 8, “Setting
Global Testing Options.” You can also hold the left CTRL key to change the
window focus. Additionally, if the window containing the object you want
to select is minimized, you can display it by holding the left CTRL key,
right-clicking the application in the Windows task bar, and choosing
Restore from the context menu.

If the object you want to select can only be displayed by performing an
event (such as a right-click or a mouse-over to display a context menu), hold
the left CTRL key. The pointing hand temporarily turns into a standard arrow
and you can perform the event. When the object on which you want to spy
is displayed, release the left CTRL key. The arrow becomes a pointing hand
again.

If the location you click is associated with more than one object, the Select
an Object dialog box opens. Select an object from the object tree and
click OK.

The properties and property values for the selected object are updated in the
object repository, according to the properties and values required to identify
the object that were learned by QuickTest when you clicked the object in
your application. Note that all properties and property values in the Test
object details area are updated, together with the ordinal identifier and
Smart Identification selections. Any object-specific comments that you may
have entered are not removed.

Chapter 13 • Working with Test Objects

319

Restoring Default Properties for a Test Object

You can restore the default properties for a selected test object. When you
restore the default properties, it restores the mandatory property set defined
for the selected object class in the Object Identification dialog box. Any
changes that you have made to the description property set for the test
object will be overwritten. However, if property values were defined for any
of the mandatory properties they are not modified. In addition, restoring
the default mandatory property set does not change the values for the
ordinal identifier or Smart Identification settings for the test object.

To restore the mandatory property set:

 1 In the object repository tree, select the test object whose description you
want to restore.

 2 In the Test object details area, click the Restore mandatory property set
button.

 3 Click Yes to confirm the operation. The test object’s description properties
are restored to the mandatory property set for the selected object class.

Renaming Test Objects

When an object changes in your application, or if you are not satisfied with
the current name of a test object for any reason, you can change the name
that QuickTest assigns to the stored object. You can also provide objects
with meaningful names to assist users in identifying them when using them
in component steps.

For example, suppose you have a graphics application in which all the tools
in the toolbar are saved as WinObjects in the object repository with the
names ToolChild1, ToolChild2, ToolChild3, and so forth. You may want to
rename all the buttons to their actual labels to make them easier to identify,
for example, Color_Picker, Erasor, Airbrush, and so forth.

You rename objects in the local object repository using the Object
Repository window. You rename objects in the shared object repository
using the Object Repository Manager.

If you are working with a shared object repository, your change applies to all
occurrences of the object in all components that use this shared object
repository.

Part IV • Working with Test Objects and Object Repositories

320

If you are working with a local object repository, your change applies to all
occurrences of the object in the selected component. If other components in
your business process test also include operations on the local object, you
should modify the object’s name in each relevant component.

When you modify the name of an object in the local object repository, the
name is automatically updated for all occurrences of the object. When you
modify the name of an object in a shared repository, the name is
automatically updated in all components open on the same computer that
use the object repository as soon as you make the change, even if you have
not yet saved the object repository with your changes. If you close the
object repository without saving your changes, the changes are rolled back
in any open components that were open at the time. Changes that are saved
are also automatically updated in components that use the object repository
as soon as you open them. To see saved changes in a component or object
repository that is currently open on a different computer, you must open
the object repository or lock it for editing on your computer in order to load
the changes.

Tip: If you do not want to automatically update test object names for all
occurrences of the test object, you can clear the Automatically update test
and component steps when you rename test objects check box in the
General tab of the Options dialog box (Tools > Options). If you clear this
option, you will need to manually change the test object names in all steps
in which they are used, otherwise your component run will fail.

Chapter 13 • Working with Test Objects

321

Note: If you rename objects in a shared object repository and save the
changes, when you open another component using the same shared object
repository, that component updates the object name in all of its relevant
steps. This process may take a few moments. If you save the changes to the
second component, the renamed steps are saved. However, if you close the
second component without saving, then the next time you open the same
component, it will again take a few moments to update the object names in
its steps.

To rename a test object:

In the object repository tree, select the test object that you want to rename
and perform one of the following:

➤ Choose Edit > Rename and enter the new name for the object in the
selected node in the tree. Then press ENTER or click anywhere else to
remove the focus from the object.

➤ Press F2 and enter the new name for the object.

➤ In the Name box in the Object Properties pane, enter the new name for
the object. Then click anywhere else to remove the focus from the object.

Note: The name you assign to the object must be unique within the object
repository. Object names are not case-sensitive.

Part IV • Working with Test Objects and Object Repositories

322

Adding Properties to a Test Object Description

You can add to the list of properties that QuickTest uses to identify an
object. For each object class, QuickTest has a default property set that it uses
for the object description for a particular object. You can use the Add
Properties dialog box to change the properties that are included in the
object description. You can do this for objects in the local object repository
using the Object Repository window or Object Properties dialog box, and for
objects in the shared object repository using the Object Repository Manager.

Note: You can also add any valid test object property to a test object
description, even if it does not appear in the Add Properties dialog box. For
more information, see “Defining New Test Object Properties” on page 326.

Adding to the list of properties is useful when you want to create and run
components on an object that changes dynamically. An object may change
dynamically if it is frequently updated, or if its property values are set using
dynamic content (for example, from a database).

You can also change the properties that identify an object if you want to
reference objects using properties that were not automatically learned while
recording. For example, suppose you are testing a Web site that contains an
archive of newsletters. The archive page includes a hypertext link to the
current newsletter and additional hypertext links to all past newsletters. The
text in the first hypertext link on the page changes as the current newsletter
changes, but it always links to a page called current.html. Suppose you want
to create a step in your component in which you always click the first
hypertext link in your archive page. Since the news is always changing, the
text in the hypertext link keeps changing. You need to modify how
QuickTest identifies this hypertext link so that it can continue to find it.

The default properties for a Link object (hypertext link) are text and HTML
tag. The text property is the text inside the link. The HTML tag property is
always A, which indicates a link.

Chapter 13 • Working with Test Objects

323

You can modify the default properties for a hypertext link for the object that
was recorded so that you can identify it by its destination page, rather than
by the text in the link. You can use the “href” property to check the
destination page instead of using the “text” property to check the link by
the text in the link.

Tip: You can use the Object Spy at any time to view run-time or test object
properties and values of the objects in the application you are testing. You
open the Object Spy by choosing Tools > Object Spy or clicking the Object
Spy toolbar button. For more information, see “Viewing Object Properties
Using the Object Spy” on page 288.

Note: You can also modify the set of properties that QuickTest learns when
it records objects from a particular object class using the Object
Identification dialog box. Such a change generally affects only objects that
you learn or record after you make the change. For more information, see
“Configuring Object Identification” on page 359. You can also apply the
changes you make in the Object Identification dialog box to the
descriptions of all objects in an existing component using the Update Run
Mode option. For more information, see “Updating a Component” on
page 484.

Part IV • Working with Test Objects and Object Repositories

324

To add properties to a test object description:

 1 In the object repository tree, select the test object whose description you
want to modify.

 2 In the Test object details area, click the Add description properties button.

Tip: For an object in the local object repository, you can also select the
required test object and choose Edit > Step Properties > Object Properties,
click the Add description properties button, and then perform the following
steps in the Add Properties dialog box.

The Add Properties dialog box opens listing the properties that can be used
to identify the object (properties that are not already part of the test object
description). The value for each property is displayed in the Value column.

Chapter 13 • Working with Test Objects

325

Notes: Values for all properties are displayed only if the application that
contains the object is currently open. If the application is closed, only
values for properties that were part of the object description when the object
was learned are shown.

You can resize the Add Properties dialog box to enable you to view long
property values.

You can click the Define new property button to add valid test object
properties to this properties list. For more information, see “Defining New
Test Object Properties” on page 326.

 3 Select one or more properties to add to the test object description and
click OK. You can also double-click a property to add it to the test object
description. You can type the first letters of a property to highlight the first
property in the list that matches the pattern.

Tip: After you add a new property to the object description, you can modify
its value. For more information on modifying object property values, see
“Specifying or Modifying Property Values” on page 315.

Part IV • Working with Test Objects and Object Repositories

326

Defining New Test Object Properties

You can add any valid test object property to a test object description, even
if it does not appear in the Add Properties dialog box. You can do this for
objects in the local object repository using the Object Repository window or
Add Properties dialog box, and for objects in the shared object repository
using the Object Repository Manager. For example, suppose you want
QuickTest to use a specific property to identify your object, but that
property is not listed in the Add Properties dialog box. You can open the
Add Properties dialog box and add that property to the list.

Tip: You can use the Properties tab of the Object Spy to view a complete list
of valid test object properties for a selected object. You open the Object Spy
by choosing Tools > Object Spy or clicking the Object Spy toolbar button.
For more information, see “Viewing Object Properties Using the Object Spy”
on page 288.

To define a new test object property:

 1 In the object repository tree, select the test object for which you want to
define a new property.

 2 In the Test object details area, click the Add description properties button.

Tip: For an object in the local object repository, you can also select the
required test object and choose Edit > Step Properties > Object Properties,
click the Add description properties button, and then perform the following
steps in the Add Properties dialog box.

Chapter 13 • Working with Test Objects

327

The Add Properties dialog box opens.

 3 Click the Define new property button. The New Property dialog box opens.

 4 Specify a valid test object property:

➤ Property name—Enter the property name.

➤ Property value—Enter the value for the property.

Note: You must enter a valid test object property. If you enter an invalid
property and then select it to be part of the object description, your run
session will fail.

Part IV • Working with Test Objects and Object Repositories

328

 5 Click OK to add the property to the list and close the New Property dialog
box. The new property is highlighted in the Add Properties dialog box.

 6 Click OK while the new property is highlighted to include it in the object
description and close the Add Properties dialog box.

Removing Properties from a Test Object Description

You can remove properties from the description of a test object if you no
longer want them to be part of the description. You can do this for objects in
the local object repository using the Object Repository window or Object
Properties dialog box, and for objects in the shared object repository using
the Object Repository Manager.

To remove a property from a test object description:

 1 In the object repository tree, select the test object whose description you
want to modify.

 2 In the Test object details area, select one or more properties that you want
to remove from the test object description.

Tip: For an object in the local object repository, you can also select the
required test object and choose Edit > Step Properties > Object Properties,
and then perform the following steps in the Object Properties dialog box.

 3 Click the Remove selected description properties button. The selected
properties are removed from the test object description.

Chapter 13 • Working with Test Objects

329

Specifying Ordinal Identifiers

An ordinal identifier assigns a numerical value to a test object that indicates
its order or location relative to other objects with an otherwise identical
description (objects that have the same values for all properties). This
ordered value provides a backup mechanism that enables QuickTest to
create a unique description to recognize an object when the defined
properties are not sufficient to do so. You can specify the ordinal identifier
for objects in the local object repository using the Object Repository
window or Object Properties dialog box, and for objects in the shared object
repository using the Object Repository Manager.

For more information about ordinal identifiers, see “Selecting an Ordinal
Identifier” on page 368.

To specify an ordinal identifier:

 1 Select the test object whose ordinal identifier you want to specify.

 2 In the Test object details area, click in the cell to the right of the Type, Value
cell under the Ordinal identifier row.

Tip: For an object in the local object repository, you can also select the
required test object and choose Edit > Step Properties > Object Properties,
click in the cell to the right of the Type, Value cell under the Ordinal
identifier row, and then perform the following steps in the Object Properties
dialog box.

 3 Click the browse button. The Ordinal Identifier dialog box opens:

Part IV • Working with Test Objects and Object Repositories

330

 4 In the Identifier type box, select one of the following options:

➤ Location—Indicates the order in which the object appears within the
parent window, frame, or dialog box relative to other objects with an
otherwise identical description.

➤ Index—Indicates the order in which the object appears in the application
code relative to other objects with an otherwise identical description.

➤ CreationTime (Browser objects only)—Indicates the order in which the
browser was opened relative to other open browsers with an otherwise
identical description. This identifier type is only available if more than
one Browser object was open when the test object was learned.

➤ None—Does not specify an ordinal identifier. This is the default value if
no ordinal identifier was recorded or learned.

 5 In the Identifier value box, enter the numeric value of the ordinal identifier.

 6 Click OK. The ordinal identifier appears in the relevant row of the Test
object details area for the selected object.

Chapter 13 • Working with Test Objects

331

Mapping Repository Parameter Values

You can map repository parameters that are used in shared object
repositories that are associated with your component. Mapping a repository
parameter to a value or parameter specifies the property values used to
identify the test object during a run session. You can specify that the
property value is taken from a constant value, or parameterize it using a
local or component parameter.

You can map each repository parameter as required in each component that
has an associated object repository containing repository parameters. For
example, in one component you may want to retrieve the username object’s
text property value from an environment variable parameter, and in another
component you may want the same object property value to use a constant
value or a local parameter.

Before you map repository parameters, if you have more than one repository
parameter with the same name in different shared object repositories that
are associated with the same component, the repository parameter from the
shared object repository with the highest priority (as defined in the shared
object repositories list) is used. After you map repository parameters,
QuickTest uses the mappings you defined. In addition, changing the priority
or default values has no effect after the parameters are mapped.

When you open a component that uses an object repository with an object
property value that is parameterized using a repository parameter with no
default value, an indication that there is a repository parameter that needs
mapping is displayed in the Missing Resources pane. You can then map the
repository parameter as needed in the component. You can also map
repository parameters that have default values, and change mappings for
repository parameters that are already mapped.

If you do not map a repository parameter, the default value that was defined
with the parameter, if any, is used during the component run. If the
parameter is unmapped, meaning no default value was specified for it, the
component run may fail if a test object cannot be identified because it has
an unmapped parameter value.

Part IV • Working with Test Objects and Object Repositories

332

To map repository parameter values:

 1 Choose Resources > Map Repository Parameters. The Map Repository
Parameters dialog box opens.

Tip: If you have unmapped repository parameters (repository parameters
without a default value) in your component, you can also open this dialog
box by double-clicking the Repository Parameters row in the Missing
Resources pane. For more information, see Chapter 7, “Handling Missing
Resources.”

Chapter 13 • Working with Test Objects

333

The Map Repository Parameters dialog box contains the following options:

Option name Description

Map parameters
for filter

Enables you to filter the list of parameters that is displayed.
You can choose to display:

• All unmapped parameters—displays all of the parameters
in your test with unmapped values

• <Component name> (for example, LogIn)—displays all of
the parameters in the specified component (with mapped
or unmapped values)

Name column The name of the repository parameter.

Value column The parameter’s current value, if any. This column shows
either the new value you defined, or the default value that was
defined when the parameter was created. If no default value
was defined, then the parameter is currently unmapped, and
the text {No Default Value} is shown.

You can perform one of the following:

• Enter a new constant value

• Parameterize the value by clicking in the Value cell of the
relevant parameter and then clicking the parameterization
button

• Reset a parameter to its default value by clicking in the
Value cell of the relevant parameter and then clicking the
Reset to Default Value button

Description
column

A textual description of the parameter, if any.

Find in
Repository
button

Opens the Object Repository window and highlights the first
test object in the object repository tree that uses the selected
repository parameter. You can click this button again to find
the next occurrence of the selected parameter, and so forth.

Part IV • Working with Test Objects and Object Repositories

334

Note: The repository parameter names, default values, and descriptions are
defined in the Manage Repository Parameters dialog box. In addition, the
names and descriptions can only be modified there. For more information,
see “Managing Repository Parameters” on page 407.

 2 Click the Map parameters for arrow to select the list of parameter groups for
which you want to define values. You can choose to display:

➤ All unmapped parameters—displays all of the parameters in your test
with unmapped values

➤ <Component name>—(for example, LogIn) displays all of the parameters
in the specified component (with mapped or unmapped values)

 3 Click in the Value cell of the parameter you want to map. You can choose to
map the value in one of the following ways:

➤ Enter a new constant value or modify an existing constant value by
typing directly in the Value cell. You can also enter a constant value in
the Value Configuration Options dialog box by clicking the
parameterization button. For information on using this dialog box, refer
to the QuickTest Professional Basic Features User’s Guide.

➤ Parameterize the value by clicking the parameterization button. The
Value Configuration Options dialog box opens. You can parameterize the
value using a local or component parameter. For information on using
this dialog box, refer to the QuickTest Professional Basic Features User’s
Guide.

➤ Restore the default value by clicking the Clear Default Value button. The
default value, if any, that was defined in the Add Repository Parameter
dialog box is displayed in the cell. For information on the Add Repository
Parameter dialog box, see “Adding Repository Parameters” on page 409.

 4 Repeat step 3 for any additional parameter values that you want to map.
Then click OK to close the Map Repository Parameter dialog box.

Chapter 13 • Working with Test Objects

335

Adding Objects to the Object Repository

When you record a component, QuickTest adds each object on which you
perform an operation to the local object repository (for objects that do not
already exist in an associated shared object repository). You can also add
objects to the local object repository while editing your component. You can
choose whether to add only a selected object, or to add all objects of a
certain type, such as all button objects, or to add all objects of a specific type
and class, such as all WebButton objects.

For example, you may find that users need to perform a step on an object
that is not in the object repository. You may also find that an additional
object was added to the application you are testing after you built the object
repository. You can add the object directly to a shared object repository
using the Object Repository Manager, so that it is available in all actions
that use this shared object repository. Alternatively, you can add it to the
local object repository of the component.

When you add an object to the object repository as described in this section,
the object is added to the local object repository and can only be used by the
current component. If you want to add the object to the shared object
repository, so that it can be used in multiple components, add it using the
Object Repository Manager.

Note: You can add an object to the local object repository only if that object
does not already exist in a shared object repository that is associated with
the component. If an object already exists in an associated shared object
repository, you can add it to the local object repository using the Copy to
Local option. For more information, see “Copying an Object to the Local
Object Repository” on page 310.

Part IV • Working with Test Objects and Object Repositories

336

If needed, you can merge test objects from the local object repository to a
shared object repository. For more information on merging objects to a
shared object repository, see Chapter 16, “Merging Shared Object
Repositories.”

Note: You cannot add WinMenu objects directly to an object repository
using the Add Objects to Local button in the Object Repository window or
the Add Objects button in the Object Repository Manager. If you want to
add a WinMenu object to the object repository, you can use the Add Objects
or Add Objects to Local button to add its parent object and then select to
add the parent object together with its descendants, or you can record a step
on a WinMenu object and then delete the recorded step.

Tip: You can also add an object to the local object repository by choosing it
from your application in the Select Object for Step dialog box (from a new
step in the Keyword View). For more information, see “Selecting an Item for
Your Step” on page 155.

You can also define test objects in your object repository that do not yet
exist in your application or Web site. For more information, see “Defining
New Test Objects” on page 341.

To add objects to the object repository using the Add Objects to Local or
Add Objects option:

 1 Perform one of the following:

➤ In the Object Repository window, choose Object > Add Objects to Local
or click the Add Objects to Local toolbar button.

➤ In the Object Repository Manager, choose Object > Add Objects or click
the Add Objects toolbar button.

Chapter 13 • Working with Test Objects

337

QuickTest and the Object Repository window or Object Repository Manager
are minimized and the cursor becomes a pointing hand.

Note: If the window containing the object you want to add is partially
hidden by another window, hold the pointing hand over the partially
hidden window for a few seconds. The window comes into the foreground.
You can now point to and click the object you want. You can configure the
length of time required to bring a window into the foreground in the
General tab of the Options dialog box. For more information, see Chapter 8,
“Setting Global Testing Options.” You can also hold the left CTRL key to
temporarily deactivate the pointing hand mechanism while you change the
window focus. Additionally, if the window containing the object you want
to select is minimized, you can display it by holding the left CTRL key,
right-clicking the application in the Windows task bar, and choosing
Restore from the context menu.

 2 Click the object you want to add to your object repository.

If the location you click is associated with more than one object, the Object
Selection dialog box opens. Select the object you want to add to the
repository and click OK.

Part IV • Working with Test Objects and Object Repositories

338

If the object you select in the Object Selection dialog box is a parent object,
such as a browser or page in a Web environment, or a dialog box in a
standard Windows application, the Add Object to Object Repository dialog
box opens.

You can choose from the following options:

➤ Only the selected object—Adds to the object repository the previously
selected object’s properties and values, without its child objects

➤ Selected object and its descendants of type—Adds to the object
repository the previously selected object’s properties and values, as well
as the properties and values of its descendants according to the check
boxes you select for the selected object types and classes.

Chapter 13 • Working with Test Objects

339

Note: The object types in this list are a generic grouping of objects
according to the general object characteristics. For example, the List type
contains list and list view objects, as well as combo boxes; the Table type
contains both tables and grids.

The list shows all objects supported by the installed add-ins and is not
specific to the object you selected. For some external add-ins, certain
child objects may be automatically filtered out and not added to the
object repository when you choose to add all descendants of a specific
object, even if those object types are selected in the list. If you want to
add an object that is automatically filtered out, you can add it by
selecting it in the Object Selection dialog box. To check whether your
external add-in automatically filters out certain objects, refer to your add-
in documentation.

Tip: Click Select All or Clear All to select or clear all the check boxes in the
Add Object to Object Repository dialog box.

Make your selections and click OK to close the Add Object to Object
Repository dialog box and add the specified objects to the object repository.

Part IV • Working with Test Objects and Object Repositories

340

 3 The Object Repository window is redisplayed, showing the new local objects
and their properties and values in the object repository. If you chose to add
the objects from the Object Repository Manager, the objects are added to the
active shared object repository.

QuickTest also adds the new object’s parent objects if they do not already
exist in the object repository. The new local objects are shown in black in
the object repository tree.

You can edit the new test object’s details in the Object Repository window
just as you would edit any other object in the local object repository. For
more information, see “Viewing and Modifying Test Object Properties” on
page 309.

Chapter 13 • Working with Test Objects

341

 Defining New Test Objects

You can define test objects in your object repository that do not yet exist in
your application or Web site. This enables you to prepare an object
repository and build components for your application before the
application is ready for testing.

For example, you may already know the names, types, and descriptive
properties of some of the objects in your application, and know only the
types of other objects in your application. Before your application is ready,
you can create WebEdit objects for UserName and Password fields in your
Login page (plus the relevant parent Page and Browser objects). If you know
the property values for these objects, you can also add them. If not, you can
add them when your application is ready for testing.

When you define a new object in the object repository as described in this
section, the object is added to the local object repository and can only be
used by the current component. If you want to add the object to the shared
object repository so that it can be used in multiple components, you must
add it using the Object Repository Manager. For more information, see
Chapter 15, “Managing Object Repositories.”

After you have defined the new test object, if the properties of the object in
your application do not match the test object description that you defined,
or if an object has been updated in your application, you can update the
object description at any time. For more information, see “Updating Test
Object Properties from an Object in Your Application” on page 317.

Part IV • Working with Test Objects and Object Repositories

342

To define a new test object:

 1 Select the object under which you want to define the new object, according
to the correct object hierarchy.

 2 Click the Define New Test Object button or choose Object > Define New
Test Object. The Define New Test Object dialog box opens.

 3 In the Environment box, select the appropriate environment. The test object
classes associated with the selected environment are displayed in the Class
box.

Note: The environments included in the Environment box correspond to
the loaded add-in environments. For more information on loading add-ins,
see “Working with QuickTest Add-Ins” on page 673.

 4 In the Class box, select the class of the test object you want to define.

 5 In the Name box, enter a name for the new test object. After you enter a
name, the Test object details area is enabled.

Chapter 13 • Working with Test Objects

343

 6 In the Test object details area, define the properties and values for your test
object. The Test object details area automatically contains the mandatory
properties defined for the object class in the Object Identification dialog
box. You can add or remove properties as required, and define values for the
properties. For more information, see “Viewing and Modifying Test Object
Properties” on page 309.

 7 Click Add. The new test object is added to the local object repository in the
selected location.

 8 Repeat steps 3 to 7 to define additional test objects, or click Close to close
the Define New Test Object dialog box.

Copying, Pasting, and Moving Objects in the Object
Repository

You can copy, paste, and move objects in the local object repository using
the Object Repository window, and copy, paste, and move objects both
within a shared object repository and between shared object repositories
using the Object Repository Manager. However, you cannot modify the root
node of an object repository. You can also copy objects from a shared object
repository to the local object repository to modify them locally. For more
information, see “Copying an Object to the Local Object Repository” on
page 310.

You can move an object to a different location within an object repository
by dragging it up or down the tree and dropping it at the required location.
You can copy an object to a different location within an object repository by
pressing the CTRL key while dragging the object and dropping it at the
required location in the tree.

When you drag an object, by default, any child objects are also moved or
copied with it. If you want to move or copy an object without its child
objects, you can drag it using the right mouse button. When you drop the
object at the required location, you can choose whether to drop it with or
without its children.

Part IV • Working with Test Objects and Object Repositories

344

You can cut, copy, and paste objects within an object repository using the
corresponding toolbar buttons or in the Edit menu. In the Object Repository
Manager, you can also cut, copy, and paste objects between shared object
repositories. When you cut, copy, and paste objects, the operation is
performed also on the child objects of the selected object, if any.

In the Object Repository window, when you copy, paste, and move objects
from a shared object repository associated with the component, the objects
are copied, pasted, or moved to the local object repository of the
component.

You cannot copy, paste, or move objects that have unmapped repository
parameters from a shared object repository to the local object repository. If
you copy, paste, or move an object from a shared object repository to the
local object repository and the object or one of its parent objects are
parameterized using one or more repository parameters, the repository
parameter values are converted when you copy, paste, or move the object.
For example, if the repository parameter is mapped to a local parameter, the
property is parameterized using a local parameter. If the value is a constant
value, the property receives the same constant value.

In the Object Repository Manager, you can copy an object from one shared
object repository to another by opening both shared object repositories and
dragging the object from one window and dropping it at the required
location in the other window. You can move an object from one shared
object repository to another by opening both shared object repositories
pressing the CTRL key while dragging the object from one window and
dropping it at the required location in the other window. Note that moving
an object removes it from one shared object repository and adds it to
another.

Note: You can use the Edit > Undo and Edit > Redo options or Undo and
Redo buttons to cancel or repeat your changes. When you save the object
repository, you cannot undo and redo operations that were performed
before the save operation.

Chapter 13 • Working with Test Objects

345

When copying, pasting, or moving objects, consider the following:

➤ If you change the object hierarchy, ensure that the new hierarchy is a valid
recorded hierarchy.

➤ If you paste or move an object to a different hierarchical level, you can
choose whether to copy all objects up to the shared parent object (in the
message displayed when you perform such an operation).

➤ If you move an object to its immediate parent, QuickTest creates a copy of
the object (renamed with an incremental suffix) and pastes it as a sibling of
the original object.

➤ If you cut or copy an object, and then paste it on its parent object, QuickTest
creates copy of the object (renamed with an incremental suffix) and inserts
it at the same level as the original object.

➤ You cannot move an object to any of its descendants.

➤ You cannot copy or move an object to be a child of a bottom-level object (an
object that cannot contain a child object) in the object hierarchy.

Note: WinMenu objects can be either parent or bottom-level objects.

Part IV • Working with Test Objects and Object Repositories

346

Deleting Objects from the Object Repository

When you remove a step from your component, its corresponding object
remains in the object repository.

If you are working with a local object repository and the object in the step
you removed does not occur in any other steps within that component, you
can delete the object from the object repository.

If you are working with a shared object repository, confirm that the object
does not appear in any other component using the same shared object
repository before you choose to delete the object from the object repository.

You delete objects in the local object repository using the Object Repository
window, and objects in the shared object repository using the Object
Repository Manager.

Note: If your component contains references to an object that you deleted
from the object repository, your component run will fail.

To delete an object from the object repository:

 1 In the repository tree, select the object you want to delete.

 2 Click the Delete button or choose Edit > Delete.

 3 Click Yes to confirm that you want to delete the object. The object is deleted
from the object repository.

Tip: The Delete button enables you to delete any selected value or item in
the object repository, not just test objects. For example, you can use it to
delete part of an object name or a property value.

Chapter 13 • Working with Test Objects

347

Locating Objects

You can search for a specific object in your object repository in several ways.
You can search for an object according to its type. For example, you can
search for a specific edit box, or you can point to an object in your
application to automatically highlight that same object in your repository.
You can select an object in your object repository and highlight it in your
application to check which object it is. For local objects (and shared objects
in an editable shared object repository when using the Object Repository
Manager), you can also replace specific property values with other property
values. For example, you can replace the property value userName with
user name.

Finding Objects in an Object Repository

You can use the Find and Replace dialog box to find an object, property, or
property value in an object repository. You can also find and replace
specified property values.

You replace property values for objects in the local object repository using
the Object Repository window. You replace property values for objects in
shared object repositories using the Object Repository Manager.

Note: You cannot use the Find and Replace dialog box to replace property or
object names. You cannot replace property values in a read-only
component.

Part IV • Working with Test Objects and Object Repositories

348

To find an object, property, or property value in the object repository:

 1 Make sure that the relevant object repository is open (in the Object
Repository window or Object Repository Manager).

 2 Click the Find & Replace button or choose Edit > Find & Replace. The Find &
Replace dialog box opens.

Chapter 13 • Working with Test Objects

349

 3 Specify one or more criteria by which you want to search for the object,
property, or property value:

➤ Object name—Enter the name or partial name of the object you want to
find.

➤ Object type—Select the type of object you want to find, for example,
Button.

Note: The object types in this list are a generic grouping of objects
according to the general object characteristics. For example, the List type
contains list and list view objects, as well as combo boxes; the Table type
contains both tables and grids.

➤ Object class—Select the class of object you want to find, for example,
WebButton. The classes available depend on the selection you made in
the Object type box.

➤ Property name—Specify the name or partial name of the property you
want to find.

➤ Property value—Specify the property value or partial property value you
want to find.

 4 If you specified a property value and want to replace it with a different
value, enter the new property value in the New property value box.

 5 Specify the search parameters, as follows:

➤ If you want the search to distinguish between upper and lower case
letters, select Match case.

➤ If you want the search to find only complete words that exactly match
the single word you entered, select Match whole word.

➤ Specify the direction in which you want to search: Up or Down.

Part IV • Working with Test Objects and Object Repositories

350

 6 Perform the find or replace operation in one of the following ways. The
search is performed on the entire object repository, starting with the
currently selected object and in the direction you specified. To find the next
instance, click Find Next again.

➤ To find the specified object, property, or property value, click Find Next.
The first instance of the searched word is displayed.

➤ To individually find and replace each instance of the property value for
which you are searching, click Find Next. When an instance is found,
click Replace. The property value is replaced, and the next instance of the
property value, if any, is highlighted.

➤ To replace all instances of the specified property value with the new
property value, click Replace All. Instances in shared object repositories
that are not editable are not changed.

Highlighting an Object in Your Application

You can select an object in your object repository and highlight it in the
application or Web site you are testing. When you choose to highlight an
object, QuickTest indicates the selected object's location in your application
by temporarily showing a blue frame around the object and causing it to
flash briefly. The application must be open to the correct context so that the
object is visible.

For example, to locate the User Name edit box in a Web page, you can open
the relevant page in the Web browser and then select the User Name test
object in the object repository. When you choose the Highlight in
Application option, the User Name edit box in your browser is framed in the
Web page and flashes several times.

Note: Both the frame and the flashing behavior are temporary.

Chapter 13 • Working with Test Objects

351

To highlight an object in your application:

 1 Make sure your application or Web site is open to the correct window or
page.

 2 Select the object you want to highlight in your object repository.

 3 Click the Highlight in Application button or choose View > Highlight in
Application. The selected object is highlighted with a blue border in the
application or Web site.

Note: If the application or Web site is not open to the correct context, the
object is not highlighted.

Locating an Object in the Object Repository

You can select an object in the application or Web site you are testing and
highlight the test object in the object repository.

For example, to locate a Find a Flight image in a Web page, you can select it
in your Web page using the pointing hand mechanism. After you select the
Find a Flight image object from the selection dialog box and click OK, the
parent hierarchy in the object repository tree expands and the Find a Flight
image test object is highlighted.

To locate an object in the object repository:

 1 Make sure your application or Web site is open to the correct window or
page.

 2 Click the Locate in Repository button or choose View > Locate in Repository.
QuickTest is minimized, and your cursor changes to a pointing hand.

Part IV • Working with Test Objects and Object Repositories

352

 3 Use the pointing hand to click on the required object in your application or
Web site.

Tip: You can hold the left CTRL key to change the window focus or perform
operations such as a right-click or mouseover to display a context menu. If
the window containing the object you want to click is partially hidden by
another window, you can also hold the pointing hand over the partially
hidden window for a few seconds until the window comes into the
foreground and you can point and click on the object you want.
Additionally, if the window containing the object you want to select is
minimized, you can display it by holding the left CTRL key, right-clicking
the application in the Windows task bar, and choosing Restore from the
context menu.

If the location you clicked is associated with more than one object, the
Select an Object dialog box opens.

Chapter 13 • Working with Test Objects

353

 4 Select the object you want to locate in the object repository and click OK.
The selected object is highlighted in the object repository.

Tip: If the relevant object repository is not open or the object cannot be
found, the object is not highlighted. In the Object Repository Manager, if
more than one shared object repository is open, and QuickTest cannot
locate the selected object in the active object repository, you can choose
whether to look for the object in all of the currently open object
repositories.

Part IV • Working with Test Objects and Object Repositories

354

Working with Test Objects During a Run Session

The first time QuickTest encounters an object during a run session, it creates
a temporary version of the test object for that run session. QuickTest uses
the object description to create this temporary version of the object. For the
remainder of the component, QuickTest refers to the temporary version of
the test object rather than to the test object in the object repository.

Note: The Object Repository window is read-only during record and run
sessions.

There are several ways to modify test object properties. Choose the way that
best suits your needs:

➤ You can manually change a test object property value to match a new static
property of an object in your application. For more information, see
“Specifying or Modifying Property Values” on page 315.

➤ You can create a function (operation) that uses the SetTOProperty method
to modify test object properties during a run session without changing the
property values in the object repository. For more information, see
“Modifying Test Object Properties During a Run Session” on page 355.

➤ You can modify the set of properties that QuickTest uses to identify the
object, so that it will be able to identify an object even when some of its
properties change. For more information, see “Modifying Test Object
Properties” on page 313.

➤ You can use regular expressions to identify an object based on conditions or
patterns you define.

Chapter 13 • Working with Test Objects

355

Creating Test Objects During a Run Session

Programmatic descriptions enable you to create temporary versions of test
objects to represent objects from your application. You can perform
operations on those objects without referring to the object repository. For
example, suppose an edit box was added to a form on your Web site. You
could use a programmatic description to add a statement in a user-defined
function that enters a value in the new edit box, so that QuickTest can
identify the object even though you never recorded on the object or added
it to the object repository. For more information on programmatic
descriptions, see “Using Programmatic Descriptions” on page 632.

Modifying Test Object Properties During a Run Session

You can modify the properties of the temporary version of the object during
the run session without affecting the permanent values in the object
repository by adding a SetTOProperty statement in a user-defined function.

Use the following syntax for the SetTOProperty method:

Object(description).SetTOProperty Property, Value

For information, refer to the QuickTest Professional Object Model Reference.

Part IV • Working with Test Objects and Object Repositories

356

Exporting Local Objects to an Object Repository

You can export all of the objects contained in a component’s local object
repository to a new shared object repository in the file system or to a Quality
Center project (if QuickTest is connected to Quality Center). This enables
you to make the local objects accessible to other components. You export
local objects to a new shared object repository using the Object Repository
window.

Note: If your local object repository contains objects with parameterized
property values, when you export these objects to a shared object repository
the parameterized values become repository parameters that are mapped to
their previous values. For example, if a local object was parameterized to use
a component parameter, when you export the local object to a shared object
repository it will be modified to a repository parameter that is mapped to a
component parameter with the same value. For more information on
repository parameters, see Chapter 15, “Managing Object Repositories.”

Tip: After you export the local objects, you can use the Object Repository
Merge Tool to merge the shared object repository containing the exported
objects with another shared object repository. For more information, see
Chapter 16, “Merging Shared Object Repositories.”

To export local objects to a new shared object repository:

 1 Open the component that has the local objects you want to export.

 2 Make sure that the Object Repository window is open.

Chapter 13 • Working with Test Objects

357

 3 Choose File > Export Local Objects. The Export Object Repository dialog box
opens.

Note: If you are connected to Quality Center, the dialog box that opens is
different from the standard file system dialog box. You can switch between
the two dialog box versions by clicking the File System and Quality Center
buttons in the Export Object Repository dialog box.

 4 Select the location in which to save the file, specify the file or attachment
name, and click Save or OK (depending on whether you are saving it to the
file system or a Quality Center project).

The object repository is exported to the specified shared object repository (a
file with a .tsr extension). You can now use the new shared object repository
like any other shared object repository.

Part IV • Working with Test Objects and Object Repositories

358

359

14
Configuring Object Identification

When you record an operation on an object or add an object to the object
repository, QuickTest learns a set of properties and values that uniquely
describe the object within the object hierarchy. In most cases, this
description is sufficient to enable QuickTest to identify the object during the
run session.

If you find that the description QuickTest uses for a certain object class is
not the most logical one for the objects in your application, or if you expect
that the values of the properties in the object description may change
frequently, you can configure the way that QuickTest learns and identifies
objects. You can also map user-defined objects to standard test object classes
and configure the way QuickTest learns objects from your user-defined
object classes.

This chapter describes:

➤ About Configuring Object Identification

➤ Understanding the Object Identification Dialog Box

➤ Configuring Smart Identification

➤ Mapping User-Defined Test Object Classes

Part IV • Working with Test Objects and Object Repositories

360

About Configuring Object Identification

QuickTest has a predefined set of properties that it learns for each test
object. If these mandatory property values are not sufficient to uniquely
identify an object you record or add, QuickTest can add some assistive
properties and/or an ordinal identifier to create a unique description.

Mandatory properties are properties that QuickTest always learns for a
particular test object class.

Assistive properties are properties that QuickTest learns only if the
mandatory properties that QuickTest learns for a particular object in your
application are not sufficient to create a unique description. If several
assistive properties are defined for an object class, then QuickTest learns one
assistive property at a time, and stops as soon as it creates a unique
description for the object. If QuickTest does learn assistive properties, those
properties are added to the test object description.

Note: If the combination of all defined mandatory and assistive properties is
not sufficient to create a unique test object description, QuickTest also
learns the value for the selected ordinal identifier. For more information, see
“Selecting an Ordinal Identifier” on page 368.

When you run a component, QuickTest searches for the object that matches
the description it learned (without the ordinal identifier). If it cannot find
any object that matches the description, or if it finds more than one object
that matches, QuickTest uses the Smart Identification mechanism (if
enabled) to identify the object. In many cases, a Smart Identification
definition can help QuickTest identify an object, if it is present, even when
the learned description fails due to changes in one or more property values.
The test object description is used together with the ordinal identifier only
in cases where the Smart Identification mechanism does not succeed in
narrowing down the object candidates to a single object.

Chapter 14 • Configuring Object Identification

361

You use the Object Identification dialog box (Tools > Object Identification)
to configure the mandatory, assistive, and ordinal identifier properties that
QuickTest uses to learn descriptions of the objects in your application, and
to enable and configure the Smart Identification mechanism.

The Object Identification dialog box also enables you to configure new
user-defined classes and map them to an existing test object class so that
QuickTest can recognize objects from your user-defined classes when you
run your component.

Understanding the Object Identification Dialog Box

You use the main screen of the Object Identification dialog box to set
mandatory and assistive properties, to select the ordinal identifier, and to
specify whether you want to enable the Smart Identification mechanism for
each test object.

From the Object Identification dialog box, you can also define user-defined
object classes and map them to Standard Windows object classes, and you
can configure the Smart Identification mechanism for any object displayed
in the Test Object classes list for a selected environment.

Notes:

Any changes you make in the Object Identification dialog box have no
effect on objects already added to the object repository.

The learned and Smart Identification properties of certain test objects
cannot be configured, for example, the WinMenu, VbLabel, VbObject, and
VbToolbar objects. These objects are therefore not included in the
Test Object classes list for the selected environment.

Part IV • Working with Test Objects and Object Repositories

362

For more information, see:

➤ “Configuring Mandatory and Assistive Recording Properties” on page 362

➤ “Selecting an Ordinal Identifier” on page 368

➤ “Enabling and Disabling Smart Identification” on page 373

➤ “Restoring Default Object Identification Settings for Test Objects” on
page 374

➤ “Generating Automation Scripts for Your Object Identification Settings” on
page 374

➤ “Configuring Smart Identification” on page 375

➤ “Mapping User-Defined Test Object Classes” on page 385

Configuring Mandatory and Assistive Recording Properties

If you find that the description QuickTest uses for a certain object class is
not the most logical one for the objects in your application, or if you expect
that the values of the properties currently used in the object description
may change, you can modify the mandatory and assistive properties that
QuickTest learns when you learn an object of a given class.

During the run session, QuickTest looks for objects that match all properties
in the test object description—it does not distinguish between properties
that were learned as mandatory properties and those that were learned as
assistive properties.

Chapter 14 • Configuring Object Identification

363

For example, the default mandatory properties for a Web Image object are
the alt, html tag, and image type properties. There are no default assistive
properties defined. Suppose your Web site contains several space holders for
different collections of rotating advertisements. You want to record a
component that clicks on the images in each one of these space holders.
However, since each advertisement image has a different alt value, one alt
value would be recorded when you create the component, and most likely
another alt value will be captured when you run the component, causing
the run to fail. In this case, you could remove the alt property from the Web
Image mandatory properties list. Instead, since each advertisement image
displayed in a certain space holder in your site has the same value for the
image name property, you could add the name property to the mandatory
properties to enable QuickTest to uniquely identify the object.

Also, suppose that whenever a Web image is displayed more than once on a
page (for example, a logo displayed on the top and bottom of a page), the
Web designer adds a special ID property to the Image tag. The mandatory
properties are sufficient to create a unique description for images that are
displayed only once on the page, but you also want QuickTest to learn the
ID property for images that are displayed more than once on a page. To do
this, you add the ID property as an assistive property, so that QuickTest
learns the ID property only when it is necessary for creating a unique test
object description.

Part IV • Working with Test Objects and Object Repositories

364

To configure mandatory and assistive properties for a test object class:

 1 Choose Tools > Object Identification. The Object Identification dialog box
opens.

 2 Select the appropriate environment in the Environment list. The test object
classes associated with the selected environment are displayed
alphabetically in the Test Object classes list. (In Standard Windows, the
user-defined objects appear at the bottom of the list.)

Note: The environments included in the Environment list correspond to the
loaded add-in environments. For more information on loading add-ins, see
“Working with QuickTest Add-Ins” on page 673.

 3 In the Test Object classes list, select the test object class you want to
configure.

Chapter 14 • Configuring Object Identification

365

 4 In the Mandatory Properties list, click Add/Remove. The Add/Remove
Properties dialog box for mandatory properties opens.

 5 Select the properties you want to include in the Mandatory Properties list
and/or clear the properties you want to remove from the list.

Note: You cannot include the same property in both the mandatory and
assistive property lists.

You can specify a new property by clicking New and specifying a valid
property name in the displayed dialog box.

Tip: You can also add property names to the set of available properties for
Web objects using the attribute/<PropertyName> notation. To do this, click
New. The New Property dialog box opens. Enter a valid property using the
format attribute/<PropertyName> and click OK. The new property is added to
the Mandatory Properties list. For example, to add a property called
MyColor, enter attribute/MyColor.

Part IV • Working with Test Objects and Object Repositories

366

 6 Click OK to close the Add/Remove Properties dialog box. The updated set of
mandatory properties is displayed in the Mandatory Properties list.

 7 In the Assistive Properties list, click Add/Remove. The Add/Remove
Properties dialog box for assistive properties opens.

 8 Select the properties you want to include in the assistive properties list
and/or clear the properties you want to remove from the list.

Note: You cannot include the same property in both the mandatory and
assistive property lists.

Chapter 14 • Configuring Object Identification

367

You can specify a new property by clicking New and specifying a valid
property name in the displayed dialog box.

Tip: You can also add property names to the set of available properties for
Web objects using the attribute/<PropertyName> notation. To do this, click
New. The New Property dialog box opens. Enter a valid property in the
format attribute/<PropertyName> and click OK. The new property is added to
the Assistive Properties list. For example, to add a property called MyColor,
enter attribute/MyColor.

 9 Click OK to close the Add/Remove Properties dialog box. The properties are
displayed in the Assistive Properties list.

 10 Use the up and down arrows to set your preferred order for the assistive
properties. When you learn an object, and assistive properties are necessary
to create a unique object description, QuickTest adds the assistive properties
to the description one at a time until it has enough information to create a
unique description, according to the order you set in the Assistive Properties
list.

Part IV • Working with Test Objects and Object Repositories

368

Selecting an Ordinal Identifier

In addition to learning the mandatory and assistive properties specified in
the Object Identification dialog box, QuickTest can also learn a backup
ordinal identifier for each test object. The ordinal identifier assigns the
object a numerical value that indicates its order relative to other objects
with an otherwise identical description (objects that have the same values
for all properties specified in the mandatory and assistive property lists).
This ordered value enables QuickTest to create a unique description when
the mandatory and assistive properties are not sufficient to do so.

Because the assigned ordinal property value is a relative value and is
accurate only in relation to the other objects displayed when QuickTest
learns an object, changes in the layout or composition of your application
page or screen could cause this value to change, even though the object
itself has not changed in any way. For this reason, QuickTest learns a value
for this backup ordinal identifier only when it cannot create a unique
description using all available mandatory and assistive properties.

In addition, even if QuickTest learns an ordinal identifier, it will use it
during the run session only if the learned description and the Smart
Identification mechanism are not sufficient to identify the object in your
application. If QuickTest can use other test object properties to identify the
object during a run session, the ordinal identifier is ignored.

QuickTest can use the following types of ordinal identifiers to identify an
object:

➤ Index—Indicates the order in which the object appears in the application
code relative to other objects with an otherwise identical description. For
more information, see “Identifying an Object Using the Index Property” on
page 369.

➤ Location—Indicates the order in which the object appears within the parent
window, frame, or dialog box relative to other objects with an otherwise
identical description. For more information, see “Identifying an Object
Using the Location Property” on page 370.

➤ CreationTime (Browser object only)—Indicates the order in which the
browser was opened relative to other open browsers with an otherwise
identical description. For more information, see “Identifying an Object
Using the CreationTime Property” on page 371.

Chapter 14 • Configuring Object Identification

369

By default, an ordinal identifier type exists for each test object class. To
modify the default ordinal identifier, you can select the desired type from
the Ordinal identifier box.

Tip: While recording, if QuickTest successfully creates a unique test object
description using the mandatory and assistive properties, it does not learn
an ordinal identifier value. You can add an ordinal identifier to an object’s
test object properties at a later time using the Add/Remove option from the
Object Properties or Object Repository dialog box. For more information, see
Chapter 13, “Working with Test Objects.”

Identifying an Object Using the Index Property

While learning an object, QuickTest can assign a value to the test object’s
Index property to uniquely identify the object. The value is based on the
order in which the object appears within the source code. The first
occurrence is 0.

Index property values are object-specific. Therefore, if you use Index:=3 to
describe a WebEdit test object, QuickTest searches for the fourth WebEdit
object in the page. However, if you use Index:=3 to describe a WebElement
object, QuickTest searches for the fourth Web object on the page—regardless
of the type—because the WebElement object applies to all Web objects.

For example, suppose a page contains the following objects:

➤ an image with the name Apple

➤ an image with the name UserName

➤ a WebEdit object with the name UserName

➤ an image with the name Password

➤ a WebEdit object with the name Password

Part IV • Working with Test Objects and Object Repositories

370

The following statement refers to the third item in the list, as this is the first
WebEdit object on the page with the name UserName:

WebEdit("Name:=UserName", "Index:=0")

In contrast, the following statement refers to the second item in the list, as
that is the first object of any type (WebElement) with the name UserName:

WebElement("Name:=UserName", "Index:=0")

Identifying an Object Using the Location Property

While learning an object, QuickTest can assign a value to the test object’s
Location property to uniquely identify the object. The value is based on the
order in which the object appears within the window, frame, or dialog box,
in relation to other objects with identical properties. The first occurrence of
the object is 0. Values are assigned in columns from top to bottom, and left
to right.

In the following example, the radio buttons in the dialog box are numbered
according to their location property.

Location property values are object-specific. Therefore, if you use Location:=3
to describe a WinButton test object, QuickTest searches from top to bottom,
and left to right for the fourth WinButton object in the page. However, if
you use Location:=3 to describe a WinObject object, QuickTest searches from
top to bottom, and left to right for the fourth standard object on the page—
regardless of the type—because the WinObject object applies to all standard
objects.

Chapter 14 • Configuring Object Identification

371

For example, suppose a dialog box contains the following objects:

➤ a button object with the name OK

➤ a button object with the name Add/Remove

➤ a check box object with the name Add/Remove

➤ a button object with the name Help

➤ a check box object with the name Check spelling

The following statement refers to the third item in the list, as this is the first
check box object on the page with the name Add/Remove.

WinCheckBox("Name:=Add/Remove", "Location:=0")

In contrast, the following statement, refers to the second item in the list, as
that is the first object of any type (WinObject) with the name Add/Remove.

WinObject("Name:=Add/Remove", "Location:=0")

Identifying an Object Using the CreationTime Property

While learning a browser object, if QuickTest is unable to uniquely identify
the object according to its test object description, it assigns a value to the
CreationTime test object property. This value indicates the order in which
the browser was opened relative to other open browsers with an otherwise
identical description. The first browser that opens receives the value
CreationTime = 0.

During the run session, if QuickTest is unable to identify a browser object
based solely on its test object description, it examines the order in which the
browsers were opened, and then uses the CreationTime property to identify
the correct one.

For example, if you record a component on three otherwise identical
browsers that are opened at 9:01 pm, 9:03 pm, and 9:05 pm, QuickTest
assigns the CreationTime values, as follows: CreationTime = 0 to the
9:01 am browser, CreationTime = 1 to the 9:03 am browser, and
CreationTime = 2 to the 9:06 am browser.

Part IV • Working with Test Objects and Object Repositories

372

At 10:30 pm, when you run your component, suppose the browsers are
opened at 10:31 pm, 10:33 pm, and 10:34 pm. QuickTest identifies the
browsers, as follows: the 10:31 pm browser is identified with the browser
test object with CreationTime = 0, 10:33 pm browser is identified with the
test object with CreationTime = 1, 10:34 pm browser is identified with the
test object with CreationTime = 2.

If there are several open browsers, the one with the lowest CreationTime is
the first one that was opened and the one with the highest CreationTime is
the last one that was opened. For example, if there are three or more
browsers open, the one with CreationTime = 2 is the third browser that was
opened. If seven browsers are opened during a recording session, the
browser with CreationTime = 6 is the last browser opened.

If a step was recorded on a browser with a specific CreationTime value, but
during a run session there is no open browser with that CreationTime value,
the step will run on the browser that has the highest CreationTime value.
For example, if a step was recorded on a browser with CreationTime = 6, but
during the run session there are only two open browsers, with
CreationTime = 0 and CreationTime = 1, then the step runs on the last
browser opened, which in this example is the browser with
CreationTime = 1.

Note: It is possible that at a particular time during a session, the available
CreationTime values may not be sequential. For example, if you open six
browsers during a record or run session, and then during that session, you
close the second and fourth browsers (CreationTime values 1 and 3), then at
the end of the session, the open browsers will be those with CreationTime
values 0, 2, 4, and 5).

Chapter 14 • Configuring Object Identification

373

Enabling and Disabling Smart Identification

Selecting the Enable Smart Identification check box for a particular test
object class instructs QuickTest to learn the property values of all properties
specified as the object’s base and/or optional filter properties in the Smart
Identification Properties dialog box.

By default, some test objects already have Smart Identification
configurations and others do not. Those with default configurations also
have the Enable Smart Identification check box selected by default.

You should enable the Smart Identification mechanism only for test object
classes that have defined Smart Identification configuration. However, even
if you define a Smart Identification configuration for a test object class, you
may not always want to learn the Smart Identification property values. If
you do not want to learn the Smart Identification properties, clear the
Enable Smart Identification check box.

Note: Even if you choose to learn Smart Identification properties for an
object, you can disable use of the Smart Identification mechanism for a
specific object in the Object Properties or Object Repository dialog box.
For more information, see Chapter 13, “Working with Test Objects.”

However, if you do not learn Smart Identification properties, you cannot
enable the Smart Identification mechanism for an object later.

For more information on the Smart Identification mechanism, see
“Configuring Smart Identification” on page 375.

Part IV • Working with Test Objects and Object Repositories

374

Restoring Default Object Identification Settings for Test
Objects

You can restore the default settings for object identification and Smart
Identification property settings for all loaded environments, for the current
environment only, or for a selected test object.

Only built-in object properties can be reset. User-defined objects will be
deleted when resetting the Standard Windows environment.

Note: Only currently loaded environments are listed in the Environments
box in the Object Identification dialog box.

By default, the Reset Test Object button is displayed, but you can click the
down arrow to select one of the following options:

➤ Reset Test Object—Resets the settings for the selected test object to the
system default.

➤ Reset Environment—Resets the settings for all the test objects in the current
environment to the system default.

➤ Reset All—Resets the settings for all currently loaded environments to the
system default.

Generating Automation Scripts for Your Object Identification
Settings

You can click the Generate Script button to generate an automation script
containing the current object identification settings. For more information,
see “Automating QuickTest Operations” on page 661, or refer to the
QuickTest Automation Object Model Reference (Help > QuickTest Automation
Object Model Reference).

Chapter 14 • Configuring Object Identification

375

Configuring Smart Identification

Configuring Smart Identification properties enables you to help QuickTest
identify objects in your application, even if some of the properties in the
object’s learned description have changed.

When QuickTest uses the learned description to identify an object, it
searches for an object that matches all of the property values in the
description. In most cases, this description is the simplest way to identify
the object, and, unless the main properties of the object change, this
method will work.

If QuickTest is unable to find any object that matches the learned object
description, or if it finds more than one object that fits the description, then
QuickTest ignores the learned description, and uses the Smart Identification
mechanism to try to identify the object.

While the Smart Identification mechanism is more complex, it is more
flexible. Therefore, if configured logically, a Smart Identification definition
can probably help QuickTest identify an object, if it is present, even when
the learned description fails.

The Smart Identification mechanism uses two types of properties:

➤ Base Filter Properties—The most fundamental properties of a particular test
object class; those whose values cannot be changed without changing the
essence of the original object. For example, if a Web link’s tag was changed
from <A> to any other value, you could no longer call it the same object.

➤ Optional Filter Properties—Other properties that can help identify objects
of a particular class. These properties are unlikely to change on a regular
basis, but can be ignored if they are no longer applicable.

Part IV • Working with Test Objects and Object Repositories

376

Understanding the Smart Identification Process

If QuickTest activates the Smart Identification mechanism during a run
session (because it was unable to identify an object based on its learned
description), it follows the following process to identify the object:

 1 QuickTest “forgets” the learned test object description and creates a new
object candidate list containing the objects (within the object’s parent
object) that match all of the properties defined in the Base Filter Properties
list.

 2 QuickTest filters out any object in the object candidate list that does not
match the first property listed in the Optional Filter Properties list. The
remaining objects become the new object candidate list.

 3 QuickTest evaluates the new object candidate list:

➤ If the new object candidate list still has more than one object, QuickTest
uses the new (smaller) object candidate list to repeat step 2 for the next
optional filter property in the list.

➤ If the new object candidate list is empty, QuickTest ignores this optional
filter property, returns to the previous object candidate list, and repeats
step 2 for the next optional filter property in the list.

➤ If the object candidate list contains exactly one object, then QuickTest
concludes that it has identified the object and performs the statement
containing the object.

 4 QuickTest continues the process described in steps 2 and 3 until it either
identifies one object, or runs out of optional filter properties to use.

If, after completing the Smart Identification elimination process, QuickTest
still cannot identify the object, then QuickTest uses the learned description
plus the ordinal identifier to identify the object.

If the combined learned description and ordinal identifier are not sufficient
to identify the object, then QuickTest stops the run session and displays a
Run Error message.

Chapter 14 • Configuring Object Identification

377

Reviewing Smart Identification Information in the Test Results

If the learned description does not enable QuickTest to identify a specified
object in a step, and a Smart Identification definition is defined (and
enabled) for the object, then QuickTest tries to identify the object using the
Smart Identification mechanism.

If QuickTest successfully uses Smart Identification to find an object after no
object matches the learned description, the Test Results receive a warning
status and indicate that the Smart Identification mechanism was used.

If the Smart Identification mechanism cannot successfully identify the
object, QuickTest uses the learned description plus the ordinal identifier to
identify the object. If the object is still not identified, the component fails
and a normal failed step is displayed in the results.

For more information, see “Analyzing Smart Identification Information in
the Test Results” on page 509.

Walking Through a Smart Identification Example

The following example walks you through the object identification process
for an object.

Suppose you have the following statement in your component:

Browser("Mercury Tours").Page("Mercury Tours").Image("Login").Click 22,17

When you created your component, QuickTest learned the following object
description for the Login image:

However, at some point after you created your component, a second login
button (for logging into the VIP section of the Web site) was added to the
page, so the Web designer changed the original Login button’s alt tag to:
basic login.

Part IV • Working with Test Objects and Object Repositories

378

The default description for Web Image objects (alt, html tag, image type)
works for most images in your site, but it no longer works for the Login
image, because that image’s alt property no longer matches the learned
description. Therefore, when you run your component, QuickTest is unable
to identify the Login button based on the learned description. However,
QuickTest succeeds in identifying the Login button using its Smart
Identification definition.

The explanation below describes the process that QuickTest uses to find the
Login object using Smart Identification:

 1 According to the Smart Identification definition for Web image objects,
QuickTest learned the values of the following properties when you recorded
the click on the Login image:

Chapter 14 • Configuring Object Identification

379

The learned values are as follows:

Base Filter Properties:

Optional Filter Properties:

 2 QuickTest begins the Smart Identification process by identifying the five
objects on the Mercury Tours page that match the base filter properties
definition (html tag = INPUT and image type = Image Button). QuickTest
considers these to be the object candidates and begins checking the object
candidates against the Optional Filter Properties list.

 3 QuickTest checks the alt property of each of the object candidates, but none
have the alt value: Login, so QuickTest ignores this property and moves on
to the next one.

 4 QuickTest checks the name property of each of the object candidates, and
finds that two of the objects (both the basic and VIP Login buttons) have
the name: login. QuickTest filters out the other three objects from the list,
and these two login buttons become the new object candidates.

 5 QuickTest checks the file name property of the two remaining object
candidates. Only one of them has the file name login.gif, so QuickTest
correctly concludes that it has found the Login button and clicks it.

Property Value

html tag INPUT

Property Value

alt Login

image type Image Button

name login

file name login.gif

class <null>

visible 1

Part IV • Working with Test Objects and Object Repositories

380

Step-by-Step Instructions for Configuring a Smart Identification
Definition

You use the Smart Identification Properties dialog box, accessible from the
Object Identification dialog box, to configure the Smart Identification
definition for a test object class.

To configure Smart Identification properties:

 1 Choose Tools > Object Identification. The Object Identification dialog box
opens.

Chapter 14 • Configuring Object Identification

381

 2 Select the appropriate environment in the Environment list. The test object
classes associated with the selected environment are displayed in the Test
object classes list.

Note: The environments included in the Environment list are those that
correspond to the loaded add-in environments. For more information on
loading add-ins, see “Working with QuickTest Add-Ins” on page 673.

 3 Select the test object class you want to configure.

 4 Click the Configure button next to the Enable Smart Identification check
box. The Configure button is enabled only when the Enable Smart
Identification option is selected. The Smart Identification Properties dialog
box opens:

Part IV • Working with Test Objects and Object Repositories

382

 5 In the Base Filter Properties list, click Add/Remove. The Add/Remove
Properties dialog box for base filter properties opens.

 6 Select the properties you want to include in the Base Filter Properties list
and/or clear the properties you want to remove from the list.

Note: You cannot include the same property in both the base and optional
property lists.

You can specify a new property by clicking New and specifying a valid
property name in the displayed dialog box.

Tip: You can also add property names to the set of available properties for
Web objects using the attribute/<PropertyName> notation. To do this, click
New. The New Property dialog box opens. Enter a valid property in the
format attribute/<PropertyName> and click OK. The new property is added to
the Base Filter Properties list. For example, to add a property called MyColor,
enter attribute/MyColor.

Chapter 14 • Configuring Object Identification

383

 7 Click OK to close the Add/Remove Properties dialog box. The updated set of
base filter properties is displayed in the Base Filter Properties list.

 8 In the Optional Filter Properties list, click Add/Remove. The Add/Remove
Properties dialog box for optional filter properties opens.

 9 Select the properties you want to include in the Optional Filter Properties
list and/or clear the properties you want to remove from the list.

Note: You cannot include the same property in both the base and optional
property lists.

Part IV • Working with Test Objects and Object Repositories

384

You can specify a new property by clicking New and specifying a valid
property name in the displayed dialog box.

Tip: You can also add property names to the set of available properties for
Web objects using the attribute/<PropertyName> notation. To do this, click
New. The New Property dialog box opens. Enter a valid property in the
format attribute/<PropertyName> and click OK. The new property is added to
the Optional Filter Properties list. For example, to add a property called
MyColor, enter attribute/MyColor.

 10 Click OK to close the Add/Remove Properties dialog box. The properties are
displayed in the Optional Filter Properties list.

 11 Use the up and down arrows to set your preferred order for the optional
filter properties. When QuickTest uses the Smart Identification mechanism,
it checks the remaining object candidates against the optional properties
one-by-one according to the order you set in the Optional Filter Properties
list until it filters the object candidates down to one object.

Chapter 14 • Configuring Object Identification

385

Mapping User-Defined Test Object Classes

The Object Mapping dialog box enables you to map an object of an
unidentified or custom class to a Standard Windows class. For example, if
your application has a button that cannot be identified, this button is
learned as a generic WinObject. You can teach QuickTest to identify your
object as if it belonged to a standard Windows button class. Then, when you
click the button while recording, QuickTest records the operation in the
same way as a click on a standard Windows button. When you map an
unidentified or custom object to a standard object, your object is added to
the list of Standard Windows test object classes as a user-defined test object.
You can configure the object identification settings for a user defined object
class just as you would any other object class.

You should map an object that cannot be identified only to a standard
Windows class with comparable behavior. For example, do not map an
object that behaves like a button to the edit class.

Note: You can define user-defined classes only when Standard Windows is
selected in the Environment box.

To map an unidentified or custom class to a standard Windows class:

 1 Choose Tools > Object Identification. The Object Identification dialog box
opens.

 2 Select Standard Windows in the Environment box. The User-Defined button
becomes enabled.

Part IV • Working with Test Objects and Object Repositories

386

 3 Click User-Defined. The Object Mapping dialog box opens.

 4 Click the pointing hand and then click the object whose class you want to
add as a user-defined class. The name of the user-defined object is displayed
in the Class Name box.

Tip: Hold the left CTRL key to change the window focus or perform
operations such as a right-click or mouseover to display a context menu. If
the window containing the object you want to select is minimized, you can
display it by holding the left CTRL key, right-clicking the application in the
Windows task bar, and choosing Restore from the context menu.

 5 In the Map to box, select the standard object class to which you want to
map your user-defined object class and click Add. The class name and
mapping is added to the object mapping list.

 6 If you want to map additional objects to standard classes, repeat steps 4-5
for each object.

Chapter 14 • Configuring Object Identification

387

 7 Click OK. The Object Mapping dialog box closes and your object is added to
the list of Standard Windows test object classes as a user-defined test object.
Note that your object has an icon with a red U in the lower-right corner,
identifying it as a user-defined class.

 8 Configure the object identification settings for your user defined object class
just as you would any other object class. For more information, see
“Configuring Mandatory and Assistive Recording Properties,” on page 362,
and “Configuring Smart Identification,” on page 375.

To modify an existing mapping:

 1 In the Object Mapping dialog box, select the class you want to modify from
the object mapping list. The class name and current mapping are displayed
in the Class name and Map to boxes.

 2 Select the standard object class to which you want to map the selected
user-defined class and click Update. The class name and mapping is updated
in the object mapping list.

 3 Click OK to close the Object Mapping dialog box.

To delete an existing mapping:

 1 In the Object Mapping dialog box, select the class you want to delete from
the object mapping list.

 2 Click Delete. The class name and mapping is deleted from the object
mapping list in the Object Mapping dialog box.

 3 Click OK. The Object Mapping dialog box closes and the class name is
deleted from the Standard Windows test object classes list in the Object
Identification dialog box.

Part IV • Working with Test Objects and Object Repositories

388

389

15
Managing Object Repositories

The Object Repository Manager enables you to manage all of the shared
object repositories used in your organization from a single, central location,
including adding and defining objects, modifying objects and their
descriptions, parameterizing repositories to make them more generic,
maintaining and organizing repositories, merging repositories, and
importing and exporting repositories in XML format.

This chapter describes:

➤ About Managing Object Repositories

➤ Understanding the Object Repository Manager

➤ Working with Object Repositories

➤ Modifying Object Repositories

➤ Working with Repository Parameters

➤ Modifying Test Object Details

➤ Locating Objects

➤ Performing Merge Operations

➤ Performing Import and Export Operations

Part IV • Working with Test Objects and Object Repositories

390

About Managing Object Repositories

The Object Repository Manager enables you to create and maintain shared
object repositories. You can work with object repositories saved both in the
file system and in a Quality Center project.

Each object repository contains the information that enables QuickTest to
identify the objects in your application. QuickTest enables you to maintain
the reusability of your components by storing all the information regarding
your test objects in a shared object repository. When objects in your
application change, the Object Repository Manager provides a single,
central location in which you can update test object information for
multiple components.

Note: Instead of, or in addition to, shared object repositories, you can
choose to store all or some of the objects in a local object repository for each
component. For more information on local object repositories, see
Chapter 13, “Working with Test Objects.”

If an object with the same name and description is located in both the local
object repository and in a shared object repository that is associated with
the same component, the component uses the local object definition. If an
object with the same name and description is located in more than one
shared object repository, and these shared object repositories are all
associated with the same component, QuickTest uses the object definition
from the first occurrence of the object, according to the order in which the
shared object repositories are associated with the component. For more
information on associating shared object repositories, see “Managing Shared
Object Repositories” on page 92.

You can use the same shared object repository with multiple components.
You can also use multiple object repositories with each component. In
addition, you can save objects directly with an component in a local object
repository. This enables them to be accessed only from that component.

Chapter 15 • Managing Object Repositories

391

If one or more of the property values of an object in your application differ
from the property values QuickTest uses to identify the object, your
component may fail. Therefore, when the property values of objects in your
application change, you should modify the corresponding test object
property values in the corresponding object repository so that you can
continue to use your existing components.

You can modify objects in a shared object repository using the Object
Repository Manager, as described in this chapter. You can modify objects
stored in a local object repository using the Object Repository window. For
information on the Object Repository window, see Chapter 13, “Working
with Test Objects.”

Part IV • Working with Test Objects and Object Repositories

392

Understanding the Object Repository Manager

You open the Object Repository Manager by choosing Resources > Object
Repository Manager. The Object Repository Manager enables you to open
multiple shared object repositories and modify them as needed. You can
open shared object repositories both from the file system and from a Quality
Center project.

Tip: While the Object Repository Manager is open, you can continue
working with other QuickTest windows.

Chapter 15 • Managing Object Repositories

393

You can open as many shared object repositories as you want. Each shared
object repository opens in a separate document window. You can then
resize, maximize, or minimize the windows to arrange them as you require
to copy, drag, and move objects between different shared object repositories,
as well as perform operations on a single object repository. For more
information on the information shown in the shared object repository
windows, see “Understanding the Shared Object Repository Windows” on
page 396.

You open shared object repositories from the Open Shared Object
Repository dialog box. In this dialog box, the Open in read-only mode check
box is selected, by default. If you clear this check box, the shared object
repository opens in editable mode. Otherwise, the shared object repository
opens in read-only mode and you must click the Enable Editing button to
modify it. For more information, see “Editing Object Repositories” on
page 405.

When you choose a menu item or click a toolbar button in the Object
Repository Manager, the operation you select is performed on the shared
object repository whose window is currently active (in focus). The name and
file path of the shared object repository is shown in the title bar of the
window. For more information on the Object Repository Manager toolbar
buttons, see “Using the Object Repository Manager Toolbar” on page 394.

Many of the shared object repository operations you can perform in the
Object Repository Manager are done in a similar way to how you modify
objects stored in a local object repository (using the Object Repository
window). For this reason, many of the procedures are actually described in
Chapter 13, “Working with Test Objects.” Most of the procedures apply
equally to the Object Repository Manager and the Object Repository
window, but the windows and options may differ slightly.

Part IV • Working with Test Objects and Object Repositories

394

Using the Object Repository Manager Toolbar

You can access frequently performed operations using the Object Repository
Manager toolbar. The Object Repository Manager toolbar contains the
following buttons:

Button Description

Enables you to create a new shared object repository. For more
information, see “Creating New Object Repositories” on page 398.

Enables you to open a shared object repository from the file system or
from Quality Center. For more information, see “Opening Object
Repositories” on page 399.

Enables you to save the active shared object repository to the file
system or to Quality Center. For more information, see “Saving Object
Repositories” on page 400.

Enables you to edit the active shared object repository, by making the
shared object repository editable. For more information, see “Editing
Object Repositories” on page 405.

Enables you to undo the previous operation performed in the active
shared object repository. You do this in the same way as in a local
object repository. For more information, see “Copying, Pasting, and
Moving Objects in the Object Repository” on page 343.

Enables you to redo the operation that was previously undone in the
active shared object repository. You do this in the same way as in a
local object repository. For more information, see “Copying, Pasting,
and Moving Objects in the Object Repository” on page 343.

Enables you to cut the selected item or object in the active shared
object repository. You do this in the same way as in a local object
repository. For more information, see “Copying, Pasting, and Moving
Objects in the Object Repository” on page 343.

Enables you to copy the selected item or object to the Clipboard in the
active shared object repository. You do this in the same way as in a
local object repository. For more information, see “Copying, Pasting,
and Moving Objects in the Object Repository” on page 343.

Chapter 15 • Managing Object Repositories

395

Enables you to paste the data from the Clipboard to the active shared
object repository. You do this in the same way as in a local object
repository. For more information, see “Copying, Pasting, and Moving
Objects in the Object Repository” on page 343.

Enables you to delete the selected item or object in the active shared
object repository. You do this in the same way as in a local object
repository. For more information, see “Deleting Objects from the
Object Repository” on page 346.

Enables you to find an object, property, or property value in the
active shared object repository. You can also find and replace
specified property values. You do this in the same way as in a local
object repository. For more information, see “Finding Objects in an
Object Repository” on page 347.

Enables you to add objects to the active shared object repository. You
do this in the same way as in a local object repository. For more
information, see “Adding Objects to the Object Repository” on
page 335.

Enables you to update test object properties in the active shared object
repository according to the actual properties of the object in your
application. You do this in the same way as in a local object
repository. For more information, see “Updating Test Object Properties
from an Object in Your Application” on page 317.

Enables you to select an object in the active shared object repository
and highlight it in your application. You do this in the same way as in
a local object repository. For more information, see “Highlighting an
Object in Your Application” on page 350.

Enables you to select an object in your application and highlight it in
the active shared object repository. You do this in the same way as in a
local object repository. For more information, see “Locating an Object
in the Object Repository” on page 351.

Enables you to define a test object that does not yet exist in your
application and add it to the active shared object repository. You do
this in the same way as in a local object repository. For more
information, see “Defining New Test Objects” on page 341.

Button Description

Part IV • Working with Test Objects and Object Repositories

396

Understanding the Shared Object Repository Windows

Each shared object repository that you open in the Object Repository
Manager is displayed in a standalone document window. Each shared object
repository window displays a tree of all objects in the object repository,
together with test object information for the selected object.

Enables you to connect to Quality Center to work with object
repository files stored in a Quality Center project. You can connect to
Quality Center from the main QuickTest window or from the Object
Repository Manager. For more information, see “Connecting to
Your Quality Center Project” on page 20.

Enables you to open the Object Spy to view run-time or test object
properties and values of objects in your application. For more
information, see “Viewing Object Properties Using the Object
Spy” on page 288.

Enables you to add, edit, and delete repository parameters in the
active shared object repository. For more information, see “Managing
Repository Parameters” on page 407.

Button Description

Chapter 15 • Managing Object Repositories

397

For each test object you select in the tree, the Object Repository window
displays information about the selected test object. You can view the test
object description of any test object in the shared object repository, modify
test objects and their properties, and add objects to the shared object
repository. For more information, see “Modifying Object Repositories” on
page 403 and “Modifying Test Object Details” on page 413.

Each object repository window contains the following information:

Note: Even when steps containing a test object are deleted from your
component, the objects remain in the object repository. You can delete
objects from a shared object repository using the Object Repository
Manager, in much the same was as you delete objects from a local object
repository. For more information, see “Deleting Objects from the Object
Repository” on page 346.

Information Description

Object Repository
tree

Contains all test objects in the shared object repository.

Name The name that QuickTest assigns to the selected test
object. You can change the test object name. For more
information, see “Renaming Test Objects” on page 319.

Class The class of the selected object.

Test object details Enables you to view and modify the properties and
property values used to identify the selected object during
a run session. For more information, see “Modifying Test
Object Details” on page 413.

Part IV • Working with Test Objects and Object Repositories

398

Working with Object Repositories

You can use the Object Repository Manager to create new object
repositories, open and modify existing object repositories, and save and
close them when you are finished.

Creating New Object Repositories

You can create a new object repository, add objects to it, and then save it.
You can then associate one or more components with the object repository
from within QuickTest. For more information on associating shared object
repositories, see “Managing Shared Object Repositories” on page 92.

To create a new object repository:

In the Object Repository Manager, choose File > New or click the New
button. A new object repository opens. You can now add objects to it,
modify it, and save it. For more information, see “Modifying Object
Repositories” on page 403 and “Saving Object Repositories” on page 400.

Chapter 15 • Managing Object Repositories

399

Opening Object Repositories

You can open existing object repositories to view or modify them. You can
open object repositories from the file system or from a Quality Center
project.

You connect to a Quality Center project either from QuickTest or from the
Object Repository Manager by choosing File > Quality Center Connection or
clicking the Quality Center Connection button. For more information on
connecting to Quality Center, see “Connecting to Your Quality Center
Project” on page 20.

Note for users of previous QuickTest versions:

When you open an object repository that was created using an earlier
version of QuickTest, QuickTest must convert it to the current format before
you can edit it.

If the object repository contains test objects from external add-ins, the
relevant add-in must be installed to convert the object repository to the
current format. Otherwise, you can open it only in read-only format.

If you do not want to convert the object repository, you can view it in
read-only format. After the file is converted and you save it, you cannot use
it with earlier versions of QuickTest.

To open an object repository:

 1 In the Object Repository Manager, choose File > Open or click the Open
button. The Open Shared Object Repository dialog box opens.

Note: If you are connected to Quality Center, the dialog box that opens is
different from the standard file system dialog box. You can switch between
the two dialog box versions by clicking the File System and Quality Center
buttons in the Open Shared Object Repository dialog box.

Part IV • Working with Test Objects and Object Repositories

400

 2 Select the object repository you want to open, and click Open or OK
(depending on whether you are opening it from the file system or a Quality
Center project). The object repository opens.

By default, the object repository opens in read-only mode. You can open it
in editable format by clearing the Open in read-only mode check box in the
Open Shared Object Repository dialog box. You can also enable editing for
an object repository as described in “Editing Object Repositories” on
page 405.

If the object repository is editable, you can add objects to it, modify it, and
save it. For more information, see “Modifying Object Repositories” on
page 403 and “Saving Object Repositories” on page 400.

Tip: You can also open an object repository from the Recent Files list in the
File menu.

Saving Object Repositories

After you finish creating or modifying an object repository, you should save
it. When you modify an object repository, an asterisk (*) is displayed in the
title bar until the object repository is saved.

Chapter 15 • Managing Object Repositories

401

You can save an object repository to the file system or to a Quality Center
project (if you are connected to a Quality Center project). If you want to
associate the shared object repository with an application area so that it can
be accessed by components, you must save it to your Quality Center project.
You connect to a Quality Center project either from QuickTest or from the
Object Repository Manager by choosing File > Quality Center Connection or
clicking the Quality Center Connection button. For more information on
connecting to Quality Center, see “Connecting to Your Quality Center
Project” on page 20.

Note: All changes you make to an object repository are automatically
updated in all components open on the same computer that use the object
repository as soon as you make the change—even if you have not yet saved
the object repository with your changes. If you close the object repository
without saving your changes, the changes are rolled back in any open
components that were open at the time. When you open a component on
the same computer on which you modified the object repository, the
component is automatically updated with all saved changes made in the
associated object repository. To see saved changes in a component or
repository open on a different computer, you must open the component or
object repository file or lock it for editing on your computer to load the
changes.

To save an object repository:

 1 Make sure that the object repository you want to save is the active window.

 2 Choose File > Save or click the Save button. If the file has already been
saved, the changes you made are saved. If the file has not yet been saved,
the Save Shared Object Repository dialog box opens.

Note: If you are connected to Quality Center, the dialog box that opens is
different from the standard file system dialog box. You can switch between
the two dialog box versions by clicking the File System and Quality Center
buttons in the Open Shared Object Repository dialog box.

Part IV • Working with Test Objects and Object Repositories

402

 3 Select the folder in which you want to save the object repository.

 4 Enter a name for the object repository in the File name or Attachment Name
box (depending on whether you are saving it to the file system or a Quality
Center project). Use a descriptive name that will help you easily identify the
file.

Note: You cannot use any of the following characters in the object
repository name:
\ / : * " ? < > |

 5 Click Save or OK (depending on whether you are saving it to the file system
or a Quality Center project). QuickTest saves the object repository with a .tsr
extension in the specified location and displays the object repository name
and path in the title bar of the repository window.

Closing Object Repositories

After you finish modifying or using an object repository, you should close it.
When you close the file it is automatically unlocked so that it can be used or
modified by others. You can also choose to close all open object repositories.

Note: If you close QuickTest, the Object Repository Manager also closes. If
you have made changes that are not yet saved, you are prompted to do so
before the Object Repository Manager closes.

To close an object repository:

 1 Make sure that the object repository you want to close is the active window.

 2 Choose File > Close or click the Close button in the object repository
window’s title bar. The object repository is closed and is automatically
unlocked. If you have made changes that are not yet saved, you are
prompted to do so before the file closes.

Chapter 15 • Managing Object Repositories

403

To close all open object repositories:

Choose File > Close All Windows, or Window > Close All Windows. All open
object repositories are closed and are automatically unlocked. If you have
made changes that are not yet saved, you are prompted to do so before the
files close.

Modifying Object Repositories

You can modify your object repositories in a variety of ways to either
prepare them for initial use or update them throughout the testing process.
You can add and modify objects and object properties in a shared object
repository, copy or move objects from one object repository to another, drag
objects to a different location in the hierarchy, delete objects, and rename
objects. When you modify an object repository, an asterisk (*) is displayed in
the title bar until the object repository is saved.

Tip: You can use the Edit > Undo and Edit > Redo options or Undo and Redo
buttons to cancel or repeat your changes as necessary. The Undo and Redo
options are related to the active document. When you save an object
repository, you cannot undo and redo operations that were performed on
that file before the save operation.

Part IV • Working with Test Objects and Object Repositories

404

If you opened the object repository in read-only mode, you must enable
editing for the object repository before you can modify it. This locks the
object repository and prevents it from being modified simultaneously by
multiple users.

Note: All changes you make to an object repository are automatically
updated in all components open on the same computer that use the object
repository as soon as you make the change—even if you have not yet saved
the object repository with your changes. If you close the object repository
without saving your changes, the changes are rolled back in any open
components that were open at the time. When you open a component on
the same computer on which you modified the object repository, the
component is automatically updated with all saved changes made in the
associated object repository. To see saved changes in a component or
repository open on a different computer, you must open the component or
object repository file or lock it for editing on your computer to load the
changes.

Tip: You can also modify a shared object repository by merging it with
another shared object repository. If you merge two shared object
repositories, a new shared object repository is created, containing the
content of both object repositories. If you merge a shared object repository
with a local object repository, the shared object repository is updated with
the content of the local object repository. For more information, see
Chapter 16, “Merging Shared Object Repositories.”

Chapter 15 • Managing Object Repositories

405

After making sure that your shared object repository is editable, and that it
is the active window, you modify it in the same way as you modify a local
object repository. For more information, see:

➤ “Editing Object Repositories,” below

➤ “Adding Objects to the Object Repository” on page 335

➤ “Copying, Pasting, and Moving Objects in the Object Repository” on
page 343

➤ “Deleting Objects from the Object Repository” on page 346

Editing Object Repositories

When you open an object repository, it is opened in read-only mode by
default. You can open it in editable format by clearing the Open in read-only
mode check box in the Open Shared Object Repository dialog box when you
open it.

If you opened the object repository in read-only mode, you must enable
editing for the object repository before you can modify it. You do not need
to enable editing for an object repository if you only want to view it or copy
objects from it to another object repository.

When you enable editing for an object repository, it locks the object
repository so that it cannot be modified by other users. To enable other users
to modify the object repository, you must first unlock it (by disabling edit
mode, or by closing it). If an object repository is already locked by another
user, it is saved in read-only format, or if you do not have the permissions
required to open it, you cannot enable editing for it.

Note for users of previous QuickTest versions: If you want to edit an
object repository that was created using an earlier version of QuickTest,
QuickTest must convert it to the current format before you can edit it. If you
do not want to convert it, you can view it in read-only format. After the file
is converted and saved, you cannot use it with earlier versions of QuickTest.

Part IV • Working with Test Objects and Object Repositories

406

To enable editing for an object repository:

 1 Make sure that the object repository you want to edit is the active window.

 2 Choose File > Enable Editing or click the Enable Editing button. The object
repository becomes editable.

Working with Repository Parameters

Repository parameters enable you to specify that certain property values
should be parameterized, but leave the actual parameterization to be defined
in each component that is associated with the object repository that
contains the parameterized test object property values.

Repository parameters are useful when you want to create and run
components on an object that changes dynamically. An object may change
dynamically if it is frequently updated in the application, or if its property
values are set using dynamic content, for example, from a database.

For example, you may have a button whose text property value changes in a
localized application depending on the language of the user interface. You
can parameterize the name property value using a repository parameter, and
then in each component that uses the object repository you can specify the
location from which the property value should be taken. For example, in
one component that uses this object repository you can specify that the
property value comes from a component parameter, in another component
it can come from a local parameter, and in a third component you can
specify it as a constant value.

You define all the repository parameters for a specific object repository using
the Manage Repository Parameters dialog box. You define each repository
parameter together with an optional default value and meaningful
description. For more information, see “Managing Repository Parameters”
on page 407.

Chapter 15 • Managing Object Repositories

407

When you open a component that uses an object repository with a
repository parameter that has no default value, an indication that there is a
repository parameter that needs mapping is displayed in the Missing
Resources pane. You can then map the repository parameter as needed in
the component. You can also map repository parameters that have default
values, and change mappings for repository parameters that are already
mapped. For more information on mapping repository parameters, see
“Handling Unmapped Shared Object Repository Parameter Values” on
page 185.

Managing Repository Parameters

The Manage Repository Parameters dialog box enables you to add, edit, and
delete repository parameters for a single shared object repository.

To manage repository parameters:

 1 Make sure that the object repository whose parameters you want to manage
is the active window.

 2 If the object repository is in read-only format, choose File > Enable Editing
or click the Enable Editing button. The object repository becomes editable.

Part IV • Working with Test Objects and Object Repositories

408

 3 Choose Tools > Manage Repository Parameters or click the Manage
Repository Parameters button. The Manage Repository Parameters dialog
box opens.

Chapter 15 • Managing Object Repositories

409

The Manage Repository Parameters dialog box contains the following
information and options:

Adding Repository Parameters

The Add Repository Parameter dialog box enables you to define a new
repository parameter. You can also specify a default value for the parameter,
and a meaningful description to help identify it when it is used in a
component step.

Option Description

Repository name Displays the name and path of the object
repository whose repository parameters you are
managing.

Enables you to add a new repository parameter. For
more information, see “Adding Repository
Parameters” on page 409.

Enables you to delete the currently selected
repository parameter(s). For more information, see
“Deleting Repository Parameters” on page 412.

Parameter list Displays the list of repository parameters currently
defined in this object repository. You can modify a
parameter’s default value and description directly
in the parameter list. For more information, see
“Modifying Repository Parameters” on page 411.

Find in Repository Searches for and highlights the first test object in
the object repository tree that uses the selected
repository parameter. You can click this button
again to find the next occurrence of the selected
parameter, and so forth.

Part IV • Working with Test Objects and Object Repositories

410

To add a repository parameter:

 1 In the Manage Repository Parameters dialog box, click the Add Repository
Parameter button. The Add Repository Parameter dialog box opens.

 2 In the Name box, specify a meaningful name for the parameter. Parameter
names must start with an English letter and can contain only alphanumeric
characters and underscores.

 3 In the Default value box, you can specify a default value to be used for the
repository parameter. This value is used if you do not map the repository
parameter to a value or parameter type in a component that uses this object
repository. If you do not specify a default value, the repository parameter
will appear as unmapped in any components that use this shared object
repository.

Tip: If you specify a default value, you can later remove it by clicking in the
Default Value cell of the relevant parameter in the Manage Repository
Parameters dialog box and then clicking the Clear Default Value button. The
text {No Default Value} is displayed in the cell.

 4 In the Description box, you can enter a description of the repository
parameter. The description will help you identify the parameter when
mapping repository parameters within a component.

 5 Click OK to add the parameter to the list of parameters in the Manage
Repository Parameters dialog box.

Chapter 15 • Managing Object Repositories

411

Modifying Repository Parameters

You can modify the default value of a repository parameter or modify a
repository parameter description directly in the Manage Repository
Parameters dialog box. However, you cannot modify a repository parameter
name.

To modify a repository parameter:

 1 In the Manage Repository Parameters dialog box, select the required
parameter.

 2 To modify the default value, click in the Default Value cell of the required
parameter. You can either modify the default value by entering a new value,
or you can remove the default value by clicking the Clear Default Value
button. If you remove the default value, the text {No Default Value} is
displayed in the cell. If you do not specify a default value, the repository
parameter will appear as unmapped in any components that use this shared
object repository.

Note: If you delete the text manually, it does not remove the default value.
It creates a default value of an empty string. You must click the Clear Default
Value button if you want to remove the default value.

 3 To modify the parameter description, click in the Description cell of the
required parameter and enter the required description.

Part IV • Working with Test Objects and Object Repositories

412

Deleting Repository Parameters

You can delete a repository parameter definition if it is no longer needed.
When you delete a repository parameter that is used in a test object
definition, the test object property value remains mapped to the parameter,
even though the parameter no longer exists. Therefore, before deleting a
repository parameter, you should make sure that it is not used in any test
object descriptions, otherwise components that have steps using these test
objects will fail when you run them.

Tip: You can use the Find in Repository button in the Manage Repository
Parameters dialog box to see where a repository parameter is being used.

To delete a repository parameter:

 1 In the Manage Repository Parameters dialog box, select the repository
parameter(s) that you want to delete by clicking in the selection area to the
left of the parameter name.

 2 Click the Delete Repository Parameter button. The selected repository
parameter is deleted.

Chapter 15 • Managing Object Repositories

413

Modifying Test Object Details

The Test object details area for shared object repositories open in the Object
Repository Manager enables you to view and modify the properties and
property values used to identify an object during a run session.

After making sure that your shared object repository is editable, and that it
is the active window, you modify test object details for objects in a shared
object repository in the same way as you modify them for local objects. For
more information, see:

➤ “Adding Properties to a Test Object Description” on page 322

➤ “Defining New Test Object Properties” on page 326

➤ “Updating Test Object Properties from an Object in Your Application” on
page 317

➤ “Restoring Default Properties for a Test Object” on page 319

➤ “Removing Properties from a Test Object Description” on page 328

➤ “Specifying Ordinal Identifiers” on page 329

➤ “Renaming Test Objects” on page 319

Note: You can use the Edit > Undo and Edit > Redo options or Undo and
Redo buttons to cancel or repeat your changes as necessary. The Undo and
Redo options are related to the active document. When you save a
repository, you cannot undo and redo operations that were performed on
that file before the save operation.

You use the Object Repository Manager to specify property values for test
object descriptions in a shared object repository. The options available when
specifying property values for objects in shared object repositories are
different from those available when specifying properties for objects in local
repositories. For more information on specifying property values for objects
in shared object repositories, see “Specifying a Property Value,” on page 414.

Part IV • Working with Test Objects and Object Repositories

414

Specifying a Property Value

You can specify or modify values for properties in the test object description.
You can specify a value using a constant value (either a simple value or a
constant value that includes regular expressions) or you can parameterize it
using a repository parameter. For more information on repository
parameters, see “Working with Repository Parameters” on page 406.

To specify a property value:

 1 Select the test object whose property value you want to specify.

 2 In the Test object details area, click in the value cell for the required
property.

 3 Specify the property value in one of the following ways:

➤ If you want to specify a simple constant value, enter it in the value cell.
The remaining steps in this procedure are not necessary if you specify a
constant value in the value cell. You can also specify a constant value
using a regular expression in the Repository Parameter dialog box, as
described below.

➤ If you want to parameterize the value using a repository parameter, click
the parameterization button in the value cell. The Repository Parameter
dialog box opens.

Chapter 15 • Managing Object Repositories

415

 4 Choose one of the following options to specify a value for the property:

➤ Select the Constant radio button and specify a constant value. You can
also enter a constant value directly in the value cell of the Test object
details area. If you used a regular expression in the constant value, select
the Regular expression check box.

➤ Select the Parameter radio button and select a repository parameter from
the list of defined parameters. If a default value is defined for the
parameter, it is also shown.

Note: You define repository parameters using the Manage Repository
Parameters dialog box. For more information, see “Managing Repository
Parameters” on page 407.

 5 Click OK to close the Repository Parameter dialog box. If you parameterized
the value, the parameter name is shown with an icon in the Value column
of the Test object details area, as shown below. Otherwise, the constant
value you specified is shown in the Value column.

Part IV • Working with Test Objects and Object Repositories

416

Locating Objects

You can search for a specific object in your object repository in several ways.
You can search for an object according to its type. For example, you can
search for a specific edit box, or you can point to an object in your
application to automatically highlight that same object in your repository.
You can replace specific property values with other property values. For
example, you can replace a property value userName with the value
user name. You can also select an object in your object repository and
highlight it in your application to check which object it is.

After making sure that your shared object repository is the active window,
you locate an object in a shared object repository in the same way as you
locate it in a local object repository. If you want to replace property values,
you must also make sure that the object repository is editable.

For more information, see:

➤ “Finding Objects in an Object Repository” on page 347

➤ “Highlighting an Object in Your Application” on page 350

➤ “Locating an Object in the Object Repository” on page 351

Chapter 15 • Managing Object Repositories

417

Performing Merge Operations

The Object Repository Merge Tool enables you to merge objects from the
local object repository of one or more components to a shared object
repository using the Update from Local Repository option in the Object
Repository Manager (Tools > Update from Local Repository). For example,
you may have learned objects locally in a specific component and want to
add them to the shared object repository so they are available to all
components that use that object repository. You can also use the Object
Repository Merge Tool to merge two shared object repositories into a single
shared object repository.

You open the Object Repository Merge Tool by choosing Tools > Object
Repository Merge Tool in the Object Repository Manager. For more
information on performing merge operations and updating object
repositories with local objects, see Chapter 16, “Merging Shared Object
Repositories.”

Note: While the Object Repository Merge Tool is open, you cannot work
with the Object Repository Manager.

Part IV • Working with Test Objects and Object Repositories

418

Performing Import and Export Operations

You can import and export object repositories from and to XML files. XML
provides a structured, accessible format that enables you to make changes to
object repositories using the XML editor of your choice and then import
them back into QuickTest. You can view the required format for the object
repository by exporting a saved object repository.

You can import and export files either from and to the file system or a
Quality Center project (if QuickTest is connected to Quality Center).

You connect to a Quality Center project either from QuickTest or from the
Object Repository Manager by choosing File > Quality Center Connection or
clicking the Quality Center Connection button. For more information on
connecting to Quality Center, see “Connecting to Your Quality Center
Project” on page 20.

Importing from XML

You can import an XML file (created using the required format) as an object
repository. The XML file can either be an object repository that you
exported to XML format using the Object Repository Manager, or an XML
file created using a tool such as QuickTest Siebel Test Express or a custom
built utility. You must adhere to the XML structure and format.

Tip: To view the required XML structure and format, you can export an
existing shared object repository to XML and then use the XML file as a
guide. For more information, see “Exporting to XML” on page 419.

Chapter 15 • Managing Object Repositories

419

To import from XML:

 1 Choose File > Import from XML. The Import from XML dialog box opens.

Note: If you are connected to Quality Center, the dialog box that opens is
different from the standard file system dialog box. You can switch between
the two dialog box versions by clicking the File System and Quality Center
buttons in the Import from XML dialog box.

 2 Select the XML file you want to import, and click Open or OK (depending
on whether you are opening it from the file system or a Quality Center
project).

 3 The XML file is imported and a summary message box opens showing
information regarding the number of objects, parameters, and metadata
that were successfully imported from the specified file.

 4 Click OK to close the message box. The imported XML file is opened as a
new object repository. You can now modify it as required and save it as an
object repository.

Exporting to XML

You can export the contents of an object repository to an XML file. This
enables you to easily edit it using any XML editor, and also enables you to
save it in an accessible, versatile format.

Part IV • Working with Test Objects and Object Repositories

420

To export to XML:

 1 Make sure that the object repository you want to export is the active
window.

 2 Choose File > Export to XML. The Export to XML dialog box opens.

Note: If you are connected to Quality Center, the dialog box that opens is
different from the standard file system dialog box. You can switch between
the two dialog box versions by clicking the File System and Quality Center
buttons in the Export to XML dialog box.

 3 Select the location in which to save the file, specify the file or attachment
name, and click Save or OK (depending on whether you are saving it to the
file system or a Quality Center project).

 4 The object repository is exported to the specified XML file and a summary
message box opens showing information regarding the number of objects,
parameters, and metadata that were successfully exported to the specified
file.

 5 Click OK to close the message box. You can now open the XML file and view
or modify it with any XML editor.

421

16
Merging Shared Object Repositories

QuickTest Professional enables you to merge two shared object repositories
into a single shared object repository using the Object Repository Merge
Tool. You can also use this tool to merge objects from the local object
repository of one or more actions into a shared object repository.

This chapter describes:

➤ About Merging Shared Object Repositories

➤ Understanding the Object Repository Merge Tool

➤ Using Object Repository Merge Tool Commands

➤ Defining Default Settings

➤ Merging Two Object Repositories

➤ Updating a Shared Object Repository from Local Object Repositories

➤ Viewing Merge Statistics

➤ Understanding Object Conflicts

➤ Resolving Object Conflicts

➤ Filtering the Target Repository Pane

➤ Synchronizing Object Repository Views

➤ Finding Specific Objects

➤ Saving the Target Object Repository

Part IV • Working with Test Objects and Object Repositories

422

About Merging Shared Object Repositories

QuickTest Professional provides the ability to merge existing assets from two
repositories into a single shared object repository using the Object
Repository Merge Tool. This tool enables you to merge two shared object
repositories (called the primary object repository and the secondary object
repository), into a new third object repository, called the target object
repository. Objects in the primary and secondary object repositories are
automatically compared and then added to the target object repository
according to preconfigurable rules that define how conflicts between objects
are resolved.

After the merge process, the Object Repository Merge Tool provides a
graphic presentation of the original objects in the primary and secondary
repositories, which remain unchanged, as well as the objects in the merged
target object repository. Objects that had conflicts are highlighted. The
conflict of each object that you select in the target object repository is
described in detail. The Object Repository Merge Tool provides specific
options that enable you to keep the suggested resolution for each conflict,
or modify each conflict resolution individually, according to your
requirements.

The Object Repository Merge Tool also enables you to merge objects from
the local object repository of one or more actions into a shared object
repository. For example, you may have learned objects locally in a specific
action in your test and want to add them to the shared object repository, so
that they are available to all actions in different tests that use that object
repository.

Note: When the Object Repository Merge Tool is open, you cannot work
with the Object Repository Manager. For more information on the Object
Repository Manager, see Chapter 15, “Managing Object Repositories.”

Chapter 16 • Merging Shared Object Repositories

423

Understanding the Object Repository Merge Tool

You open the Object Repository Merge Tool by choosing Tools > Object
Repository Merge Tool in the Object Repository Manager.

An example of the Object Repository - Merge Tool window is shown below:

The Object Repository - Merge Tool window contains the following key
elements:

➤ Menu bar—Displays menus of Object Repository Merge Tool commands.
These commands are described in various places throughout this chapter.
Shortcut keys for menu commands are described in “Performing Commands
Using Shortcut Keys” on page 429.

➤ Toolbar—Contains buttons of commonly used menu commands to assist
you in merging, managing, and saving object repositories. Toolbar buttons
are described in “Using Toolbar Commands” on page 428.

Menu Bar
Toolbar

Status Bar

Target
Repository
Pane

Primary
Repository
Pane

Secondary
Repository
Pane

Resolution
Options
Pane

Part IV • Working with Test Objects and Object Repositories

424

➤ Target Repository Pane—Displays the test objects that were merged from
the primary and secondary repositories. You can also choose to show or hide
the Target Repository Object Properties pane, which displays the properties
of any test object that is selected in the Target Repository pane. For more
information, see “Target Repository Pane” on page 425.

➤ Primary Repository Pane—Displays the test objects in the primary object
repository. For more information, see “Primary and Secondary Repository
Panes” on page 426.

➤ Secondary Repository Pane—Displays the test objects in the secondary
object repository. For more information, see “Primary and Secondary
Repository Panes” on page 426.

➤ Resolution Options Pane—Provides source, conflict, and resolution details
about the objects in the target repository pane, and enables you to modify
the resolution method that was applied to any conflict. For more
information, see “Resolution Options Pane” on page 426.

➤ Status Bar—Provides source, conflict, and resolution details about the object
selected in the target repository pane, and an icon legend. For more
information, see “Status Bar” on page 427.

Changing the View

You can change the view presented by the Object Repository Merge Tool
according to your working preferences.

➤ Drag the edges of the panes to resize them in the Object Repository Merge
Tool window.

➤ Choose Primary Repository, Secondary Repository, Target Repository Object
Properties, or Resolution Options from the View menu to hide or show
these panes in the Object Repository Merge Tool.

➤ Choose View > Set as Default Layout to set your current view as the default
view, which displays each time you open the Object Repository Merge Tool.
You can choose View > Restore Default Layout to restore the view to the
default settings after you have made any changes.

Chapter 16 • Merging Shared Object Repositories

425

Target Repository Pane

The target repository pane displays a hierarchy of the test objects, as well as
their respective properties and values, that were merged from the primary
and secondary repositories. In the column to the left of the object hierarchy,
the pane displays the source file of each object (1 is displayed for the
primary file and 2 for the secondary file), and an icon representing the type
of conflict, if any.

When you save the target object repository, the file path is displayed above
the object hierarchy.

Note: To make it easier to see the status of an object at a glance, the text
colors of the object names in the target object repository can be set
according to their source and whether they caused a conflict. For more
information, see “Specifying Color Settings” on page 430.

The target repository pane provides the following functionality:

➤ When you select an object in the target object repository, the corresponding
object in the primary and/or secondary source file hierarchy is located and
indicated by a check mark.

➤ When you select an object in the target object repository, its properties and
values are displayed in the Object Properties - Target File area at the bottom
of the target repository pane (View > Target Repository Object Properties).

➤ If the merge results in a conflict, an icon is displayed to the left of the
conflicting object in the target object repository. You can see a tooltip
description of the conflict type by positioning your pointer over the icon.

➤ When you right-click an object, a context-sensitive menu opens. You can
choose an option to expand or collapse the entire hierarchy in the target
object repository, or, when applicable, to change the conflict resolution
method and result.

➤ You can expand or collapse the hierarchy of the node by double-clicking a
node. You can also expand or collapse the entire hierarchy in the target
object repository by choosing Collapse All or Expand All from the View
menu.

Part IV • Working with Test Objects and Object Repositories

426

➤ You can jump directly to the next or previous conflict in the target object
repository hierarchy by choosing Next Conflict or Previous Conflict from the
Navigate menu, or by clicking the Next Conflict or Previous Conflict buttons
in the toolbar or Resolution Options pane.

➤ You can locate one or more objects in the target object repository by using
the Find dialog box. For more information, see “Finding Specific Objects”
on page 450.

➤ You can show or hide the target repository object properties by choosing
View > Target Repository Object Properties.

Primary and Secondary Repository Panes

The primary and secondary repository panes display the hierarchies of the
test objects, and their properties and values, in the original source
repositories that you chose to merge. The file path is shown above each
object hierarchy.

The panes provide the following functionality:

➤ You can expand or collapse the hierarchy of a selected item by
double-clicking the item.

➤ You can view the properties and values of an object in the Test object details
area by selecting it in the relevant pane.

➤ You can show or hide the panes by selecting or clearing Primary Repository
or Secondary Repository in the View menu.

Resolution Options Pane

The Resolution Options pane provides information about any conflict
encountered during the merge for the object selected in the target object
repository. The pane also provides options that enable you to keep or
change the conflict resolution method that was applied using the default
resolution options.

Chapter 16 • Merging Shared Object Repositories

427

The Resolution Options pane provides the following functionality:

➤ When you select a conflicting object in the target object repository, the pane
displays a textual description of the conflict and the resolution method used
by the Object Repository Merge Tool. A choice of alternative resolution
methods is offered.

➤ You can select a radio button to choose an alternative resolution method for
the conflict. Every time you make a change, the target object repository is
automatically updated and is redisplayed.

➤ You can jump directly to the next or previous conflict in the target
repository hierarchy by clicking the Previous Conflict or Next Conflict
buttons.

➤ You can show or hide the pane by selecting or clearing Resolution Options
in the View menu.

Status Bar

The status bar shows the conflict number (if any) of the object selected in
the target repository pane, and a legend of the icons used in the target
repository pane.

The following icons may be displayed in the status bar and (and in the
target repository pane):

➤ Similar Description Conflict

➤ Same Name Different Description Conflict

➤ Same Description Different Name Conflict

Position your pointer over the icon to see a tooltip description of the
conflict type.

Part IV • Working with Test Objects and Object Repositories

428

For more information on conflict types, see “Understanding Object
Conflicts” on page 443.

Tips:

Click any of the conflict icons in the Status bar to view the Statistics dialog
box. For more information, see “Viewing Merge Statistics” on page 442.

Click in the box to the left of the icons to view the Filter dialog box. This
area shows a Filter icon when a filter is currently in use. For more
information, see “Filtering the Target Repository Pane” on page 448.

Using Object Repository Merge Tool Commands

You can select Object Repository Merge Tool commands from the menu bar
or from the toolbar. Certain commands can be executed by pressing
shortcut keys, as described in “Performing Commands Using Shortcut Keys”
on page 429. You can also select an object in the target repository pane and
choose commands from the context-sensitive (right-click) menu.

Using Toolbar Commands

You can perform frequently used commands by clicking buttons in the
toolbar.

Save
Find
Next

Find
Previous

Filter

Settings
Previous
Conflict

Next
Conflict

Find

Synchronize
ViewsNew

Merge

Chapter 16 • Merging Shared Object Repositories

429

Performing Commands Using Shortcut Keys

You can perform some Object Repository Merge Tool commands by pressing
shortcut keys. The shortcut keys listed below are shown next to the
respective menu commands.

You can perform the following File menu commands by pressing the
corresponding shortcut keys:

You can perform the following Navigate menu commands by pressing the
corresponding shortcut keys:

Command Shortcut Key Function

New Merge CTRL+N Enables you to specify two object
repositories with which to perform
a new merge operation.

Save CTRL+S Saves the merged shared object
repository.

Command Shortcut Key Function

Next Conflict F4 Finds the next conflicting object in
the merged object repository.

Previous Conflict SHIFT+F4 Finds the previous conflicting
object in the merged object
repository.

Find CTRL+F Opens the Find dialog box.

Find Next F3 Finds the next object in the merged
object repository according to the
search specifications in the Find
dialog box.

Find Previous SHIFT+F3 Finds the previous object in the
merged object repository according
to the search specifications in the
Find dialog box.

Part IV • Working with Test Objects and Object Repositories

430

Defining Default Settings

The Object Repository Merge Tool is supplied with predefined settings that
are used when merging object repositories. These are the default settings:

➤ Specify the text color of the object names that are displayed in the target
object repository.

➤ Configure how the Object Repository Merge Tool deals with conflicting
objects in the primary and secondary repositories (or local and shared
repositories when updating a shared object repository from local object
repositories).

You can change these settings at any time to create new default settings.
After you change the settings, all new merges are performed according to
the new default settings.

Tip: If you want to change the settings before merging two repositories, you
must click Cancel to close the New Merge dialog box, change the settings as
described in the next sections, and then perform the merge.

Specifying Color Settings

You can specify the color in which object names are displayed in the target
object repository according to their source, and whether they caused a
conflict. This enables you to see more easily the status of each object.

Note: The options in the Colors tab of the Settings dialog box apply equally
to objects added from the local (primary) and shared (secondary) object
repositories, when performing an Update from Local Repository operation.

Chapter 16 • Merging Shared Object Repositories

431

To specify color settings:

 1 Choose Tools > Settings or click the Settings button. The Settings dialog box
opens.

 2 For each item in the Colors tab, click the down arrow next to the text
box and select an identifying color.

 3 Click OK. Object names in the target object repository are displayed in the
selected color according to your selections.

Specifying Default Resolution Settings

You can configure how the Object Repository Merge Tool automatically
deals with conflicting objects during the merge process.

Note: The options in the Resolution tab of the Settings dialog box also apply
to objects added from the local and shared object repositories, when
performing an Update from Local Repository operation.

Part IV • Working with Test Objects and Object Repositories

432

To specify default resolution settings:

 1 Choose Tools > Settings or click the Settings button. The Settings dialog box
opens.

 2 Click the Resolution tab.

 3 Select the appropriate radio buttons to specify the default resolution settings
that the Object Repository Merge Tool applies when dealing with conflicting
objects.

➤ Take object description that is—Specifies how to resolve conflicts in
which two test objects have the same name, but their descriptions differ.
You can specify that the target object repository takes the object
description that is more generic or less generic.

• More generic—Instructs the Object Repository Merge Tool to take the
object that has fewer identifying properties than the object with
which it conflicts, or uses regular expressions in its property values.
This is the default setting.

• Less generic—Instructs the Object Repository Merge Tool to take the
object that has all the identifying properties of the object with which
it conflicts, plus additional identifying properties.

Chapter 16 • Merging Shared Object Repositories

433

➤ Take object name from—Specifies how to resolve conflicts where two test
objects have the same or similar descriptions, but their names differ. You
can select the source from which the target object repository takes the
object name:

• Primary repository file—The target object repository takes the object
name from the object in the primary object repository. This is the
default setting.

• Secondary repository file—The target object repository takes the
object name from the object in the secondary object repository.

• Same file as the object description—The target object repository takes
the object name from the object in the same object repository from
which it took the object description.

 4 Click OK. The Object Repository Merge Tool will apply your selections when
resolving conflicts between objects in all future repository merges.

Note: If you make any change to the resolution settings while you have a
merged object repository open, you are asked whether you want to merge
the open files again with the new settings. Click Yes to merge the files again
with the new settings, or click No to keep the existing merge created with
the previous settings. If you click No, the new settings will apply only to
future merges.

Part IV • Working with Test Objects and Object Repositories

434

Merging Two Object Repositories

Using the Object Repository Merge Tool, you can merge two source object
repositories to create a new shared object repository. Objects in the
repositories are automatically compared and added to the new repository
according to configurable rules that define how conflicts between objects
are resolved. The original source files are not changed.

Note: An object repository that is currently open by another user is locked.
If you try to merge the locked file, a warning message displays, but you can
still perform the merge because the merge process does not modify the
source files. Note that changes made to the locked file by the other user may
not be included in the merged object repository.

To merge two object repositories:

 1 In the Object Repository Manager, choose Tools > Object Repository Merge
Tool. The New Merge dialog box opens on top of the Object Repository -
Merge Tool window.

Chapter 16 • Merging Shared Object Repositories

435

Tips:

If the Object Repository - Merge Tool window is already open, you can
choose File > New Merge or click the New Merge button to open the New
Merge dialog box.

If you want to change the configured settings before merging the
repositories, click Cancel to close the New Merge dialog box, change the
settings as described in “Defining Default Settings” on page 430, and then
perform the merge.

 2 In the Primary file and Secondary file boxes, enter or browse to and select
the .tsr object repositories that you want to merge into a single repository.
You can click the down arrow next to each box to view and select
recently used files.

Notes:

It is recommended that you select as your primary repository the object
repository in which you have invested the most effort, meaning the
repository with more objects, object properties, and values.

A warning icon is displayed next to the relevant text box if you enter the
name of a file without a .tsr suffix, a file with an incorrect path, or a file that
does not exist. You can position your pointer over the icon to see a tooltip
explanation of the error. Enter or select an existing .tsr file with the correct
path.

If you want to merge an object repository that was created using an earlier
version of QuickTest, you must first open and save it in the Object
Repository Manager to update it to the new format.

 3 Click OK. The Object Repository Merge Tool automatically merges the
selected object repositories into a new target object repository according to
the configured resolution settings, and displays the results in the Statistics
dialog box on top of the Object Repository - Merge Tool window.

Part IV • Working with Test Objects and Object Repositories

436

 4 Review the merge statistics, as described in “Viewing Merge Statistics” on
page 442, and click Close.

In the Object Repository - Merge Tool window, you can:

➤ Modify any conflict resolutions between objects from the source
repositories, if necessary, as described in “Resolving Object Conflicts” on
page 446.

➤ Filter the objects in the target object repository, as described in “Filtering
the Target Repository Pane” on page 448.

➤ Find specific objects in the target object repository, as described in
“Synchronizing Object Repository Views” on page 449.

➤ Save the target object repository to the file system or to a Quality Center
project, as described in “Saving the Target Object Repository” on
page 451.

Chapter 16 • Merging Shared Object Repositories

437

Updating a Shared Object Repository from Local Object
Repositories

You can update a shared object repository by merging local object
repositories associated with one or more components (via the application
area) into the shared object repository. The objects that are merged from the
local object repositories are then available to any components that use that
shared object repository.

In the merge process, the objects in the local object repository for the
selected component are moved to the target shared object repository. The
component then uses the objects from the updated shared object repository.

If you choose to add local object repositories for more than one component,
QuickTest performs multiple merges, merging each component’s local object
repository with the target object repository one at a time, for all the
components in the list. You can view and modify the results of each merge if
necessary.

Note: You can only merge local object repositories from components whose
application areas are associated with the shared object repository you are
updating.

To update a shared object repository from a local object repository:

 1 Choose Resources > Object Repository Manager. The Object Repository
Manager opens.

Note: For more information on the Object Repository Manager, see
Chapter 15, “Managing Object Repositories.”

Part IV • Working with Test Objects and Object Repositories

438

 2 In the Object Repository Manager, choose File > Open or click the Open
button. The Open Shared Object Repository dialog box opens.

If you are currently connected to a Quality Center project, the Open Shared
Object Repository dialog box displays the component tree for the project.
Select a component to view the shared object repositories attached to the
component.

 3 Browse to the .tsr file that contains the shared object repository you want to
update, clear the Open in read-only mode check box, and click Open, or
click OK in the case of Quality Center attached files. The file opens with the
objects and properties displayed in editable format.

Tip: If you opened the object repository in read-only mode, choose File >
Enable Editing or click the Enable Editing button in the Object Repository
Manager toolbar. The object repository file is made editable.

 4 Choose Tools > Update from Local Repository. The Update from Local
Repository dialog box opens.

Chapter 16 • Merging Shared Object Repositories

439

 5 Make sure you are connected to your Quality Center project. Click the down
arrow next to the Add Tests button, and choose Browse for Component.
The Open QuickTest Component from Quality Center Project dialog box
opens.

Browse to the component whose local object repository you want to merge
into the shared object repository.

Note: You can only add a component whose application area is associated
with the shared object repository you are updating and whose local object
repository contains objects.

 6 Repeat step 5 to add additional components if required.

Note: The local object repositories associated with all the components are
included in the merge. If you want to remove an component from the
merge, select it in the list and click Delete.

 7 Click Update All. QuickTest automatically merges the first component local
object repository into the shared object repository according to the
configured settings, and displays the results in the Statistics dialog box on
top of the Object Repository Merge Tool window.

Note: Before each merge, QuickTest checks whether the local object
repository is in use by another user. If so, the local object repository is
locked and the objects for the selected component cannot be moved to the
target shared object repository. A warning message is displayed. The merge
can be performed when the local object repository is no longer in use by the
other user.

 8 Review the merge statistics, as described in “Viewing Merge Statistics” on
page 442, and click Close.

Part IV • Working with Test Objects and Object Repositories

440

The Object Repository - Merge Tool window for a local object repository
merge displays the local object repository as the primary object repository,
and the shared object repository as the target object repository.

Chapter 16 • Merging Shared Object Repositories

441

At the left of each object in the target object hierarchy is an icon that
indicates the source of the objects:

 indicates that the node was added from the local object repository

 indicates that the node already existed in the shared object repository

Note: If you specified more than one component in the Update from Local
Repository dialog box, QuickTest performs multiple merges, merging each
component’s local object repository with the target object repository one at
a time. The Statistics dialog box and the Object Repository Merge Tool -
Multiple Merge window displayed after this step show the merge results of
the first merge (the local object repository of the first component being
merged into the shared object repository). QuickTest enables you to view,
and modify if necessary, the results of each merge in sequence. The number
of each merge set in a multiple merge is displayed in the title bar, for
example, [Set 2 of 3].

 9 For each object merged into the shared object repository, you can accept the
automatic merge or use the Resolution Options pane to:

➤ Add a specific object to the shared object repository and remove it from
the local object repository.

➤ Keep a specific object in the local object repository and not add it to the
shared object repository.

For more information, see “Resolving Object Conflicts” on page 446.

 10 If you are performing multiple merges, click the Save and Merge Next
button in the Object Repository Merge Tool toolbar to perform the next
merge (the local object repository of the next component being merged into
the shared object repository).

 11 Click Yes to save your changes between merges. If you click No, the current
merge (objects merged from the last component) will not be saved.

 12 Repeat steps 8 through 11 to complete the multiple merges.

 13 Choose File > Exit, then click Yes to save the updated object repository.

Part IV • Working with Test Objects and Object Repositories

442

Viewing Merge Statistics

After you merge two object repositories, the Object Repository Merge Tool
displays the Statistics dialog box, which describes how the files were merged,
and the number and type of any conflicts that were resolved during the
merge.

Note: The statistics shown after performing an Update from Local
Repository operation differ slightly from the options shown above.

Tip: You can view the merge statistics in the Statistics dialog box at any time
by choosing View > Statistics in the Object Repository - Merge Tool window
or by clicking a conflict icon in the status bar.

Chapter 16 • Merging Shared Object Repositories

443

The Statistics dialog box displays the following information:

➤ The number and type of any conflicts between the objects added to the
target object repository. Conflict types are described in “Resolving Object
Conflicts” on page 446.

➤ The number of items added to the target object repository that are
unique in each of the primary or secondary (or local) files, or are
identical in both files.

Tip: Select the Go to first conflict check box to jump to the first conflict in
the target object repository immediately after you close the Statistics dialog
box.

Understanding Object Conflicts

Merging two object repositories can result in conflicts arising from
similarities between the test objects they contain. The Object Repository
Merge Tool identifies three possible conflict types:

➤ Similar Description Conflict—Two test objects which have the same name
and the same object hierarchy, but which have slightly different
descriptions. In this conflict type, one of the objects always has a subset of
the properties set of the other object. These conflicts are described on
page 444.

By default, the conflict resolution settings for conflicts of this type are
configured so that the target object repository takes the object that has
fewer identifying properties than the object with which it conflicts. For
information on changing the default settings, see “Defining Default
Settings” on page 430.

➤ Same Name Different Description Conflict—Two test objects which have the
same name and the same object hierarchy, but differ somehow in their
description (for example, they have different properties, or the same
property with different values). These conflicts are described on page 445.

Part IV • Working with Test Objects and Object Repositories

444

By default, the conflict resolution settings for conflicts of this type are
configured so that the target object repository takes the object from both
files. The object that is added from the secondary file is renamed by adding
an incremental numeric suffix to the name, for example, Edit_1. For
information on changing the default settings, see “Defining Default
Settings” on page 430.

➤ Same Description Different Name Conflict—Two test objects which have
identical descriptions, have the same object hierarchy, but differ in their
object names. These conflicts are described on page 445.

By default, the conflict resolution settings for conflicts of this type are
configured so that the target object repository takes the object name from
the primary source file. For information on changing the default settings,
see “Defining Default Settings” on page 430.

Note: Objects that do not have a description, such as Page or Browser
objects, are compared by name only. If the same object is contained in both
the source repositories but with different names, they will be merged into
the target object repository as two separate objects.

Similar Description Conflict

An object in the primary object repository and an object in the secondary
object repository have the same name, and they have similar, but not
identical, description properties and values. One of the objects always has a
subset of the properties set of the other object. For example, an object
named Button_1 in the secondary object repository has the same description
properties and values as an object named Button_1 in the primary object
repository, but also has additional properties and values.

Chapter 16 • Merging Shared Object Repositories

445

You can resolve this conflict type by:

➤ Taking the object description from the object that is added from the primary
repository.

➤ Taking the object description from the object that is added from the
secondary repository.

➤ Taking both objects into the target object repository. In this case, the Object
Repository Merge Tool automatically renames the object that is added from
the secondary file by adding an incremental numeric suffix to the name, for
example, Edit_1.

Same Name Different Description Conflict

An object in the primary object repository and an object in the secondary
object repository have the same name, but completely different description
properties and values.

You can resolve this conflict type by:

➤ Keeping the object added from the primary repository only

➤ Keeping the object added from the secondary repository only

➤ Keeping the object from both repositories. In this case, the Object
Repository Merge Tool automatically renames the object that is added from
the secondary file by adding an incremental numeric suffix to the name, for
example, Edit_1.

Same Description Different Name Conflict

An object in the primary object repository and an object in the secondary
object repository have different names, but the same description properties
and values.

You can resolve this conflict type by:

➤ Taking the object name from the object in the primary repository

➤ Taking the object name from the object in the secondary repository

Part IV • Working with Test Objects and Object Repositories

446

Resolving Object Conflicts

Conflicts between objects in the primary and secondary object repositories
are resolved automatically by the Object Repository Merge Tool according to
the default resolution settings that you can configure before performing the
merge. For more information, see “Defining Default Settings” on page 430.

However, the Object Repository Merge Tool also allows you to change the
way the merge was performed for each individual object that causes a
conflict.

For example, an object in the primary repository could have the same name
as an object in the secondary repository, but have a different description.
You may have defined in the default settings that in this case, the object
with the more generic object description, meaning the object with fewer
properties, should be added to the target object repository. However, when
you review the conflicts after the automatic merge, you could decide to
handle the specific conflict differently, for example, by keeping both
objects.

Note: Changes that you make to the default conflict resolution can
themselves affect the target object repository by causing new conflicts. In
the above example, keeping both objects would cause a name conflict.
Therefore, the target object repository is updated after each conflict
resolution change and redisplayed.

You can identify objects that caused conflicts, and the conflict type, by the
icon displayed to the left of the object name in the target object repository
pane of the Object Repository Merge Tool and the text color. When you
select a conflicting object, a full description of the conflict, including how it
was automatically resolved by the Object Repository Merge Tool, is
displayed in the Resolutions Options pane.

Chapter 16 • Merging Shared Object Repositories

447

The Resolutions Options pane offers alternative resolution options. You can
choose to keep the default resolution if it suits your needs, or use the
alternative options to resolve the conflict in a different way.

Tip: You can also change the default resolution settings and merge the files
again. For more information, see “Defining Default Settings” on page 430.

To resolve object conflicts:

 1 In the target object repository, select an object that has a conflict, as
indicated by the icon to the left of the object name. The conflicting objects
are highlighted in the source repositories.

A description of the conflict and the resolution method used by the Object
Repository Merge Tool is described in the Resolution Options pane. A radio
button for each possible alternative resolution method is displayed. For
information on each of the conflict types, see “Understanding Object
Conflicts” on page 443.

 2 In the Resolution Options pane, select a radio button to choose an
alternative resolution method. The target object repository is updated
according to your selection and redisplayed.

 3 In the Resolution Options pane, click the Previous Conflict or Next Conflict
buttons to jump directly to the next or previous conflict in the target object
repository hierarchy.

 4 Repeat steps 1 through 3 to modify additional conflict resolutions, as
necessary.

 5 Save the target object repository, as described in “Saving the Target Object
Repository” on page 451.

Part IV • Working with Test Objects and Object Repositories

448

Filtering the Target Repository Pane

Merging two object repositories can result in a target object repository
containing a large number of objects. To make navigation and the location
of specific objects easier in the target repository pane, the Object Repository
Merge Tool enables you to filter the objects in the pane and show only the
objects that have conflicts that were resolved during the merge.

Note: The filter only affects which objects are displayed in the target
repository pane. It does not affect which objects are included in the target
object repository.

To filter the objects in the target repository pane:

 1 Choose Tools > Filter or click the Filter button. The Filter dialog box opens.

Tip: You can also click in the box to the left of the icons in the status bar to
view the Filter dialog box. A Filter icon is shown in this area when a filter is
currently in use.

Chapter 16 • Merging Shared Object Repositories

449

 2 Select a radio button according to the objects you want to view in the target
object repository.

➤ Show all objects—Shows all objects in the target object repository

➤ Show only objects with conflicting descriptions—Shows only objects in
the target object repository that had description conflicts

 3 Click OK. The objects in the pane are filtered and the target object
repository displays only the requested object types.

Synchronizing Object Repository Views

The Object Repository Merge Tool enables you to navigate the target,
primary, and secondary object repositories independently. You can also
resize the various panes to display only some of the objects contained in the
repositories. When using large object repositories, this can result in the
various panes displaying different areas of the repository hierarchies,
making it difficult to locate and track specific objects affected by the merge
process.

To synchronize the repositories to display the same object in both views,
select the object in the primary or secondary object repository in which it is
currently visible and click Synchronize Views.

Part IV • Working with Test Objects and Object Repositories

450

Finding Specific Objects

You can use the Find feature in the Object Repository Merge Tool to locate
one or more objects in the target object repository whose name contains a
specified string. The located object is also highlighted in the relevant
primary and/or secondary repositories.

To find an object:

 1 Choose Navigate > Find or click the Find button. The Find dialog box opens.

 2 In the Object name contains box, enter the full or partial name of the object
you want to find.

 3 In the Criteria box, refine your search by selecting which objects to search.
The following criteria are available:

➤ All objects

➤ Objects from one source

➤ Objects with conflicts

➤ Objects with conflicts or from one source

 4 Select one or both of the following options to help fine-tune your search:

➤ Match case—Distinguishes between upper-case and lower-case characters
in the search. When Match case is selected, QuickTest finds only those
occurrences in which the capitalization exactly matches the text you
entered in the Object name contains box.

➤ Match whole word—Searches for occurrences that are whole words only
and not part of larger words.

Chapter 16 • Merging Shared Object Repositories

451

 5 Specify the direction from the current cursor location in which you want to
search: Up or Down

Tip: Selecting Up or Down searches to the beginning or the end of the target
object repository from the current cursor location. To search the entire
repository, select the first (or last) object in the hierarchy and select Down
(or Up).

 6 Click Find Next to highlight the next object that matches the specified
criteria in the target object repository.

You can also close the Find dialog box and use the following commands:

➤ Click the Find Next button or choose Navigate > Find Next to highlight
the next object that matches the specified criteria.

➤ Click the Find Previous button or choose Navigate > Find Previous to
highlight the previous object that matches the specified criteria.

Saving the Target Object Repository

When you are sure that the object conflicts are resolved satisfactorily, you
can save the target object repository to the file system or to a Quality Center
project (if QuickTest is currently connected to the Quality Center project).

The file you can save depends on the type(s) of object repositories that were
merged. If you merged two shared object repositories, you can save the new
target object repository file that was created. If you merged one or more
local object repositories with a shared object repository, you can save the
existing shared object repository file that now contains the objects and data
from the local object repositories.

Part IV • Working with Test Objects and Object Repositories

452

Saving the Object Repository to the File System

You can save the new merged shared object repository to the file system at
any time.

To save an object repository to the file system:

 1 Choose File > Save or click the Save button. If the file was saved previously,
the current changes you made are saved. If the file has not yet been saved,
the Save Shared Object Repository dialog box opens.

Note: If you are connected to Quality Center, the Save Shared Object
Repository dialog box is different from the standard file selection dialog
box. You can switch to save the file to the file system by clicking the File
System button in that dialog box.

 2 Navigate to and select the folder in which you want to save the object
repository. Enter a name for the object repository in the File name box.

Use a descriptive name that will help you easily identify the file. You cannot
use the following characters in an object repository name:
\ / : " ? < > | *

 3 Click Save. QuickTest saves the object repository with a .tsr extension in the
specified location and displays the file name and path above the target
object repository in the Object Repository - Merge Tool window.

Saving the Object Repository to a Quality Center Project

If you are connected to Quality Center, you can save your merged shared
object repository as an attachment in the test plan tree of your project.
Later, you can associate the repository with the required application area(s)
so that the objects in the repository can be accessed by components. For
more information, see “Managing Shared Object Repositories” on page 92.

Note: You cannot overwrite an existing object repository in Quality Center.

Chapter 16 • Merging Shared Object Repositories

453

To save an object repository in a Quality Center project:

 1 Choose File > Save or click the Save button. If the file was saved to Quality
Center previously, the current changes you made are saved to the object
repository. If the file has not yet been saved, the Save Shared Object
Repository dialog box opens.

 2 In the test plan tree, select the folder in which you want to save the object
repository.

You can also click the New Folder button to create a new test folder in the
test plan tree in Quality Center.

Note: You can switch to save the file to the file system by clicking the File
System button in the Save Shared Object Repository dialog box. You can
switch back to the Save Shared Object Repository dialog box for Quality
Center by clicking the Quality Center button.

Part IV • Working with Test Objects and Object Repositories

454

 3 Enter a name for the object repository in the Attachment Name box.

Use a descriptive name that will help you easily identify the object
repository. You cannot use the following characters in an object repository
name:
\ / : " ? < > | *

Note: You cannot overwrite an existing object repository.

 4 Click OK. QuickTest saves the object repository to Quality Center and
displays the file name and path above the target object repository in the
Object Repository - Merge Tool window. In Quality Center, the file is shown
in the Attachments tab of the relevant folder.

Part V

Running and Debugging Components

456

457

17
Debugging Components and Function
Libraries

By controlling and debugging your run sessions, you can identify and
handle defects in your components, function libraries, and registered user
functions.

Note: Before you can debug components in QuickTest, you must enable
integration between QuickTest and your Quality Center project by selecting
the Allow other Mercury products to run tests and components check box
(from QuickTest, choose Tools > Options > Run).

This chapter describes:

➤ About Debugging Components and Function Libraries

➤ Slowing a Debug Session

➤ Using the Single Step Commands

➤ Using the Run to Step and Start from Step Commands

➤ Pausing a Run Session

➤ Using Breakpoints

➤ Using the Debug Viewer

➤ Handling Run Errors

➤ Practicing Debugging a Function

Part V • Running and Debugging Components

458

About Debugging Components and Function Libraries

After you create a component or function library (including registered user
functions), you should check that they run smoothly, without errors in
syntax or logic. To debug a function library, you must first associate it with a
component via its application area and then debug it from that component.

To detect and isolate defects in a component or function library, you can
control the run session using the Pause command as well as various step
commands that enable you to step into, over, and out of a specific step.

You can use the Start from Step command to begin your debug session at a
specific point in your component. You can also use the Run to Step
command to pause the run at a specific point in your component. You can
set breakpoints, and then enable and disable them as you debug different
parts of your component or function library.

When the component or function library run stops at a breakpoint, you can
use the Debug Viewer to check and modify the values of VBScript objects
and variables. Also, if QuickTest displays a run error message during a run
session, you can click the Debug button on the error message to suspend the
run and debug the component or function library.

Chapter 17 • Debugging Components and Function Libraries

459

You can also use the Run from Step command to run your component or
function library from a selected step to the end. This enables you to check a
specific section of your application or to confirm that a certain part of your
component or function library runs smoothly. For more information, refer
to “Running Part of Your Component” in the QuickTest Professional Basic
Features User’s Guide.

Notes:

➤ While the component and function libraries are running in debug mode,
they are read-only. You can modify the content after you stop the debug
session (not when you pause it). If needed, you can enable the function
library for editing (File > Enable Editing) after you stop the session. For
more information, see “Editing a Read-Only Function Library” on
page 584.) After you implement your changes, you can continue
debugging your component and function libraries.

➤ If you perform a file operation (for example, open a different component
or create a new component), the debug session is stopped.

➤ In QuickTest, when you open a component, QuickTest creates a local
copy of the external resources that are saved to your Quality Center
project. Therefore, any changes you apply to any external resource that is
saved in your Quality Center project, such as a function library, will not
be implemented in the component until the component is closed and
reopened. (An external resource is any resource that was not created
using QuickTest, such as, a function library created in an external editor.)

Part V • Running and Debugging Components

460

Slowing a Debug Session

During a run session, QuickTest normally runs steps quickly. While you are
debugging a component or function library, you may want QuickTest to run
the steps more slowly so you can pause the run when needed or perform
another task. You can specify the time (in milliseconds) QuickTest pauses
between each step by modifying the Delay each step execution by option in
the Run tab of the Options dialog box (Tools > Options). For more
information on the Run tab options, see “Setting Run Testing Options” on
page 196.

Using the Single Step Commands

You can run a single step of a component or function library using the Step
Into, Step Out, and Step Over commands.

Tip: To display the Debug toolbar, choose View > Toolbars > Debug.

Step Into

Choose Debug > Step Into, click the Step Into button, or press F11 to run
only the current line of the active component or function library. If the
current line of the active component or function library calls a function, the
called function is displayed in the QuickTest window, and the function
library pauses at the first line of the called function.

Step Out

Choose Debug > Step Out, click the Step Out button, or press SHIFT+F11
only after using Step Into to enter a user-defined function. Step Out runs to
the end of the user-defined function, then returns to the calling component
or function library and pauses the run session.

Chapter 17 • Debugging Components and Function Libraries

461

Step Over

Choose Debug > Step Over, click the Step Over button, or press F10 to run
only the current step in the active component or function library. When the
current step calls a user-defined function, the called function is executed in
its entirety, but the called function script is not displayed in the QuickTest
window.

Using the Single Step Commands - An Example

Follow the instructions below to create a sample function library and run it
using the Step Into, Step Out, and Step Over commands.

To create the sample function library:

 1 Choose File > New > Application Area. A new application area opens. (For
more information, see “Creating an Application Area” on page 76.)

 2 Create a new function library named SampleFL.qfl and save it to your
Quality Center project. (For more information, see “Managing Function
Libraries” on page 87.)

 3 Open SampleFL.qfl and enter the following lines exactly:

public Function myfunc()
msgbox "one"
msgbox "two"
msgbox "three"
End Function

 4 Associate the function library with the component’s application area by
choosing File > Associate Library '<Function Library Name>' with
'<Application Area Name>', or right-clicking and choosing Associate Library
'<Function Library Name>' with '<Application Area Name>'. QuickTest
associates the function library with your application area.

Part V • Running and Debugging Components

462

To run the component using the Step Into, Step Out, and Step Over
commands:

 1 Create a new component based on the application area you created in the
previous section.

 2 Insert three identical steps. For each step:

➤ In the Item cell, select Operation.

➤ In the Operation cell, select myfunc.

 3 Open the SampleFL.qfl function library, if it is not already open, or click the
tab for the SampleFL.qfl function library to bring it into focus.

 4 Add a breakpoint on the first line of the component (the first call to the
myfunc function) by pressing F9 (Insert/Remove Breakpoint). The
breakpoint symbol is displayed in the left margin. For more information, see
“Setting Breakpoints” on page 467.

 5 Run the component. The component pauses at the breakpoint.

 6 Press F11 (Step Into). The execution arrow points to the first line within the
function (msgbox "one").

 7 Press F11 (Step Into) again. A message box displays the text one.

 8 Click OK to close the message box. The execution arrow moves to the next
line in the function.

 9 Continue pressing F11 (Step Into) until the execution arrow leaves the
function and is pointing to the eighth line in the script (the second call to
the myfunc function).

 10 Press F11 (Step Into) to enter the function again. The execution arrow
points to the first msgbox line within the function.

 11 Press SHIFT+F11 (Step Out). Three message boxes open. The execution arrow
continues to point to the first line in the function until you close the last of
the three message boxes. After you close the third message box, the
execution arrow points to the last line in the test.

 12 Press F10 (Step Over). The three message boxes open again. The execution
arrow remains on the last line in the test.

Chapter 17 • Debugging Components and Function Libraries

463

Using the Run to Step and Start from Step Commands

In addition to stepping into, out of, and over a step while debugging, you
can use the Run to Step and Start from Step to instruct QuickTest to run a
component (including any associated function library) until it reaches a
particular step, or to begin debugging from a specific step.

Run to Step

You can instruct QuickTest to run from the beginning of the component—or
from the current location in the component—and to stop at a particular
step. This is similar to adding a temporary breakpoint to a step. For example,
if you are running a component and any associated function library in
debug mode, one step at a time, you may want to run four consecutive steps
and then stop at the fifth step.

You can use this option while editing or debugging your component.

To instruct QuickTest to run to a particular step:

➤ Insert your cursor in the step in which you want QuickTest to stop the
run and choose Debug > Run to Step or press CTRL+F10

➤ Right-click in the step in which you want QuickTest to stop the run and
choose Run to Step from the context menu

Note: If while editing your component, you use the Run to Step option, the
Run dialog box opens, enabling you to specify the results location and the
input parameter values for the debug run session. For more information, see
step 2 in the “Start from Step” section, below.

Start from Step

You can instruct QuickTest to begin your debug session from a particular
step instead of beginning the run at the start of the component. Before you
start debugging from a specific step, make sure that the application or Web
site is open to the location from which you want to begin debugging. You
can begin debugging from a specific step in your component when editing a
component.

Part V • Running and Debugging Components

464

To instruct QuickTest to run from a particular step:

 1 Select the step from which you want to begin debugging:

➤ Insert your cursor in the step where you want QuickTest to start the run
and choose Debug > Start from Step, or

➤ Right-click in the step where you want QuickTest to start the run and
choose Debug from Step from the context menu.

The Run dialog box opens.

 2 If applicable, specify the results location and the input parameter values for
the debug run session. By default, the Temporary run results folder option is
selected.

For more information on the tabs in the Run dialog box, see
“Understanding the Results Location Tab” on page 480, and
“Understanding the Input Parameters Tab” on page 482.

Chapter 17 • Debugging Components and Function Libraries

465

 3 Click OK. The Run dialog box closes and the debug run session starts. You
can use any of the QuickTest debugging options, such as Step Into, Step
Over, and Run to Step.

By default, when the run session ends, the Test Results window opens. For
more information on viewing the run results, see Chapter 19, “Analyzing
Test Results.”

Note: If you cleared the View results when run session ends check box in
the Run tab of the Options dialog box, the Test Results window does not
open at the end of the run session. For more information on the Options
dialog box, see Chapter 8, “Setting Global Testing Options.”

Pausing a Run Session

You can temporarily suspend a run session by choosing Debug > Pause or
clicking the Pause button. A paused component or function library stops
running when all previously interpreted steps have been run.

To resume running a paused run, click the Run button, choose Automation >
Run, or press F5. The run continues from the point it was suspended.

Tip: You can also stop a run session by clicking the Stop button or choosing
Automation > Stop. After the run session stops, the Test Results window
opens (unless you selected not to view results at the end of a run session
(Tools > Options > Run tab).

Part V • Running and Debugging Components

466

Using Breakpoints

You can use breakpoints to instruct QuickTest to pause a run session at a
predetermined place in a component or function library. QuickTest pauses
the run when it reaches the breakpoint, before executing the step. You can
then examine the effects of the run up to the breakpoint, make any
necessary changes, and continue running the component or function
library from the breakpoint.

You can use breakpoints to:

➤ suspend a run session and inspect the state of your site or application

➤ mark a point from which to begin stepping through a component or
function library using the step commands

You can set breakpoints, and you can temporarily enable and disable them.
After you finish using them, you can remove them from your component or
function library.

Note: Breakpoints are applicable only to the current QuickTest session and
are not saved with your component or function library.

Chapter 17 • Debugging Components and Function Libraries

467

Setting Breakpoints

By setting a breakpoint, you can pause a run session at a predetermined
place in a component or function library. A breakpoint is indicated by a
filled red circle icon in the left margin adjacent to the selected step.

To set a breakpoint:

Perform one of the following:

➤ Click in the left margin of a step in the component or function library
where you want the run to stop

➤ Click a step and then:

• Click the Insert/Remove Breakpoint button

• Choose Debug > Insert/Remove Breakpoint

The breakpoint symbol is displayed in the left margin of the component or
function library.

Tip: You can also use the Enable/Disable Breakpoint option to add a
breakpoint to a step. For more information, see “Enabling and Disabling
Breakpoints” on page 468.

Part V • Running and Debugging Components

468

Enabling and Disabling Breakpoints

You can instruct QuickTest to ignore an existing breakpoint during a debug
session by temporarily disabling the breakpoint. Then, when you run your
component or function library, QuickTest runs the step containing the
breakpoint, instead of stopping at it. When you enable the breakpoint
again, QuickTest pauses there during the next run. This is particularly useful
if your component or function library contains many steps, and you want to
debug a specific part of it.

You can enable or disable breakpoints individually or all at once. For
example, suppose you add breakpoints to various steps throughout your
component or function library, but for now you want to debug only a
specific part of your document. You could disable all breakpoints in your
component or function library, and then enable breakpoints only for
specific steps. After you finish debugging that section of your document,
you could disable the enabled breakpoints, and then enable the next set of
breakpoints (in the section you want to debug). Because the breakpoints are
disabled and not removed, you can find and enable any breakpoint, as
needed.

An enabled breakpoint is indicated by a filled red circle icon in the left
margin adjacent to the selected step.

A disabled breakpoint is indicated by an empty circle icon in the left
margin adjacent to the selected step.

To enable/disable a specific breakpoint:

 1 Click in the line containing the breakpoint you want to disable/enable.

 2 Choose Debug > Enable/Disable Breakpoint or press CTRL+F9. The
breakpoint is either disabled or enabled (depending on its previous state).

To enable/disable all breakpoints:

Choose Debug > Enable/Disable All Breakpoints or click the Enable/Disable
All Breakpoints button. If at least one breakpoint is enabled, QuickTest
disables all breakpoints in the component or function library. Alternatively,
if all breakpoints are disabled, QuickTest enables them.

Chapter 17 • Debugging Components and Function Libraries

469

Removing Breakpoints

You can remove a single breakpoint or all breakpoints defined for the
current component or function library.

To remove a single breakpoint:

Perform one of the following:

➤ Click the breakpoint.

➤ Click the line in your component or function library with the breakpoint
symbol and:

• Click the Insert/Remove Breakpoint button

• Choose Debug > Insert/Remove Breakpoint

The breakpoint symbol is removed from the left margin of the QuickTest
window.

To remove all breakpoints:

Click the Clear All Breakpoints button, or choose Debug > Clear All
Breakpoints. All breakpoint symbols are removed from the left margin of the
QuickTest window.

Part V • Running and Debugging Components

470

Using the Debug Viewer

You use the Debug Viewer pane to view, set, or modify the current value of
objects or variables in your function library, when it stops at a breakpoint, or
when a step fails and you select the Debug option. The Debug Viewer is
useful for debugging operations (functions) in a business component, but is
not intended for use with other types of component steps.

To open the Debug Viewer pane:

Choose View > Debug Viewer or click the Debug Viewer button. The Debug
Viewer pane opens.

Debug Viewer

Chapter 17 • Debugging Components and Function Libraries

471

The Debug Viewer tabs are used to display the values of variables and objects
in the main script of the selected subroutine.

Watch Tab

You can view the current value of any variable or VBScript object in your
function library by adding it to the Watch tab. As you continue stepping
into the subsequent steps in your function library, QuickTest automatically
updates the Watch tab with the current value for any object or variable
whose value changes. You can also change the value of the variable
manually when the function library pauses at a breakpoint.

To add an expression to the Watch tab:

Perform one of the following:

➤ Click the expression and choose Debug > Add to Watch

➤ Click the expression and press CTRL+T

➤ Right-click the expression and choose Add to Watch from the context
menu

➤ In the Watch tab, paste or type the name of the object or variable into
the Name column and press ENTER to view the current value in the Value
column

Note: You can add an expression to the Watch tab from a function library
(and not from a business component).

Part V • Running and Debugging Components

472

Variables Tab

QuickTest automatically displays the current value of all variables in the
current function in the Variables tab—up to the point where the function
library is stopped or paused. For example, if you are stepping through a
function, as you step into each step, QuickTest adds the current value for
any step variable to the Variables tab grid. As you continue stepping into the
subsequent steps, QuickTest automatically updates the value displayed in
the Variables tab for any variable whose value changes. You can also change
the value of the variable manually, during the breakpoint pause.

Command Tab

Use the Command tab to execute a line of script in order to set or modify
the current value of a variable or VBScript object in your function library.
When the run continues, QuickTest uses the value that you set.

Handling Run Errors

The Run Error message box displayed during a run session offers a number
of buttons for dealing with errors encountered:

➤ Stop—Stops the run session.
The run results are displayed if QuickTest is configured to show run results
after the run.

➤ Retry—QuickTest attempts to perform the step again.
If the step succeeds, the run continues.

➤ Skip—QuickTest skips the step that caused the error, and continues the run
from the next step.

Chapter 17 • Debugging Components and Function Libraries

473

➤ Debug—QuickTest suspends the run, enabling you to debug the component
and any associated function library that contains a function called by the
component.

You can perform any of the debugging operations described in this chapter.
After debugging, you can continue the run session from the step where the
component or function library stopped, or you can use the step commands
to control the remainder of the run session.

➤ Help—Opens the QuickTest troubleshooting Help for the displayed error
message. After you review the Help topic, you can select another button in
the error message box.

➤ Details—Expands the message box to display additional information about
the error.

Practicing Debugging a Function

Suppose you create a function that defines variables that will be used in
other parts of your function library. You can add breakpoints to the function
to see how the value of the variables changes as the function library runs. To
see how the function library handles the new value, you can also change the
value of one of the variables during a breakpoint.

Step 1: Create a New Function

Open a new function library and create a new function called SetVariables.
For more information on working with functions, see Chapter 21, “Working
with User-Defined Functions and Function Libraries.”

Enter the VBScript code, as follows:

Part V • Running and Debugging Components

474

Step 2: Associate the Function Library with an Application Area

 1 Make sure the function library is in focus. (If it is not in focus, activate it by
clicking the function library’s tab or choosing it from the Window menu.)

 2 Choose File > Associate Library '<Function Library Name>' with
'<Application Area Name>', or right-click and choose Associate Library
'<Function Library Name>' with '<Application Area Name>'. QuickTest
associates the function library with your application area.

Step 3: Add a Call to the Function in the Component

Add a call to the function by inserting a new operation and choosing
SetVariables from the Operation list.

Step 4: Add Breakpoints

Add breakpoints at the lines containing the text b=”me” and MsgBox a. For
more information about adding breakpoints, see “Setting Breakpoints” on
page 467.

Step 5: Begin Running the Component

Run the component. The component or function library stops at the first
breakpoint, before executing that step (line of script).

Step 6: Check the Value of the Variables in the Debug Viewer Pane

 1 Choose View > Debug Viewer to open the Debug Viewer pane, if it is not
already open. Then select the Watch tab on the Debug Viewer pane.

 2 In the document pane, select the variable a and choose Debug > Add to
Watch. QuickTest adds the variable a to the Watch tab. The Value column
indicates that the value of a is currently hello, because the breakpoint
stopped after the value of variable a was initiated.

 3 In the document pane, select the variable b and choose Debug > Add to
Watch. QuickTest adds the variable b to the Watch tab. The Value column
indicates Variable is undefined: 'b', because the component stopped before
variable b was declared.

 4 Select the Variables tab in the Debug Viewer pane. Both SetVariables (with
the value Empty) and variable a (with the value hello) are displayed.
Variable b is not displayed because the component stopped before variable b
was declared.

Chapter 17 • Debugging Components and Function Libraries

475

Step 7: Check the Value of the Variables at the Next Breakpoint

Click the Run button to continue running the component. The component
stops at the next breakpoint. Note that the values of variables a and b have
both been updated in the Watch and Variables tabs.

Step 8: Modify the Value of a Variable Using the Command Tab

Select the Command tab in the Debug Viewer pane.

Type: a="This is the new value of a" at the command prompt, and press ENTER
on the keyboard. Click the Run button to continue running the component.
The message box that appears displays the new value of a.

Part V • Running and Debugging Components

476

477

18
Running Components

After you create a component, you can run it to check the behavior of your
application.

This chapter describes:

➤ About Running Components

➤ Running Your Entire Component

➤ Running Part of Your Component

➤ Updating a Component

About Running Components

When you run a component, QuickTest performs the steps it contains. If
you have defined component parameters, QuickTest prompts you to enter
values for them. When the run session is complete, QuickTest displays a
report detailing the results. For more information on viewing the results, see
Chapter 19, “Analyzing Test Results.”

You can run the entire component from the beginning, or you can run part
of it. You can update your component to change the test object
descriptions.You can run components on objects with dynamic
descriptions. For more information, see Chapter 13, “Working with Test
Objects.”

Part V • Running and Debugging Components

478

Running Your Entire Component

QuickTest always runs a component from the first step, unless you specify
otherwise. To run a component from or to a selected step you can use the
Run from Step or Run to Step options. These features are useful if you want
to check a specific section of the component, without running the
component from the beginning or to the end. For more information, see
“Running Part of Your Component” on page 483.

When you start to run a component, the Run dialog box opens, to enable
you to specify the location for the results and to enter the values for any
component parameters you have defined.

To run a component:

 1 If your component is not already open, choose File > Open >
Business/Scripted Component or click the Open button to open it.

Tip: If you recently opened your component, you can also choose it from
the recent files list in the File menu.

 2 Click the Run button on the toolbar, or choose Automation > Run. The Run
dialog box opens.

Chapter 18 • Running Components

479

 3 Specify the results location and the input parameter values (if applicable) for
the run session. For more information, see “Understanding the Results
Location Tab” on page 480, and “Understanding the Input Parameters Tab”
on page 482.

 4 Click OK. The Run dialog box closes and the run session starts. By default,
when the run session ends, the Test Results window opens. For more
information on viewing the run session results, see Chapter 19, “Analyzing
Test Results.”

Note: If you cleared the View results when run session ends check box in
the Run tab of the Options dialog box, the Test Results window does not
open at the end of the run session. For more information on the Options
dialog box, see Chapter 8, “Setting Global Testing Options.”

Tip: If you want to interrupt a run session, do either of the following:

Click the Pause button in the Debug toolbar or choose Debug > Pause. The
run pauses. To resume running a paused run session, click the Run button or
choose Automation > Run.

Click the Stop button or choose Automation > Stop. The run session stops
and the Test Results window opens.

The run session is also interrupted if you perform a file operation (for
example, open a different component or create a new component).

Part V • Running and Debugging Components

480

Understanding the Results Location Tab

The Results Location tab enables you to specify the location in which you
want to save the run session results.

Chapter 18 • Running Components

481

Select one of the following options:

➤ New run results folder—This option displays the default path and folder
name in which the results are saved. By default, the results for components
are stored in a Quality Center cache folder on your computer.

Accept the default settings, or enter a new path by typing it in the text box
or clicking the browse button to locate a different folder. The folder must be
new, empty, or contain only QuickTest test or component files.

➤ Temporary run results folder—Saves the run results in a temporary folder.
This option overwrites any results previously saved in this folder.

Note: QuickTest stores temporary results for all components in <System
Drive>\Documents and Settings\<user name>\Local Settings\Temp\
TempResults. The path in the text box of the Temporary run results folder
option cannot be changed. Additionally, if you save results to an existing
results folder, the contents of the folder are deleted when the run session
starts.

Part V • Running and Debugging Components

482

Understanding the Input Parameters Tab

The Input Parameters tab enables you to specify the run-time values of input
parameters to be used during the run session.

The Input Parameters tab displays the input parameters that were defined
for the component (using the File > Settings > Parameters tab).

To set the value of a parameter to be used during the run session, click in the
Value field for the specific parameter and enter the value, or select a value
from the list. If you do not enter a value, QuickTest uses the default value
from the Business Component Settings dialog box during the run session.

For more information on setting component parameters, see “Defining
Parameters for Your Component” on page 237. For more information about
using parameters, see “Working with Parameters” on page 170.

Chapter 18 • Running Components

483

Running Part of Your Component

You can use the Run from Step option to run a selected part of your
component from the selected step to the end of the component. This
enables you to check a specific section of your application or to confirm that
a certain part of your component runs smoothly.

Note: You can also use the Debug > Run to Step option if you want to run a
component in debug mode from the start of the component to a selected
step. For more information, see “Using the Run to Step and Start from Step
Commands” on page 463.

To run a component from a selected step:

 1 Open your application to the location matching the step you want to run.

 2 Select the step where you want to start running the component.

Make sure that the step you choose is not dependent on previous steps.

 3 Choose Automation > Run from Step.

 4 In the Run dialog box, choose where to save the run session results, and any
input parameters you want to use, as described in “Understanding the
Results Location Tab” on page 480, and “Understanding the Input
Parameters Tab” on page 482.

 5 Click OK. The Run dialog box closes and the run session starts.

By default, when the run session ends, the Test Results window opens. For
more information on viewing the run session results, see Chapter 19,
“Analyzing Test Results.”

Part V • Running and Debugging Components

484

The Test Results summary displays a note indicating that the component
was run using the Run from Step option.

Note: If you cleared the View results when run session ends check box in
the Run tab of the Options dialog box, the Test Results window does not
open at the end of the run session. For more information on the Options
dialog box, see Chapter 8, “Setting Global Testing Options.”

Updating a Component

When you update a component, QuickTest runs the component to update
the test object descriptions. You can choose to update the data for an entire
component or only part of it, according to the run and debug run options
you select. After you save the component, the updated data is used for
subsequent runs.

When QuickTest updates components, it always saves the updated objects in
the local object repository, even if the objects being updated were originally
from a shared object repository. The next time you run the component,
QuickTest uses the objects from the local object repository, as the local
object repository has a higher priority than any shared object repositories.

Tip: After using Update Run Mode to update the component, you may want
to use the Update from Local Repository option in the Object Repository
Manager to merge the objects from the local repository back to a shared
object repository. For more information, see Chapter 15, “Managing Object
Repositories.”

Chapter 18 • Running Components

485

To run a component to update the test object descriptions:

 1 If your component is not already open, choose File > Open >
Business/Scripted Component, or click the Open arrow and choose
Business/Scripted Component.

 2 Select a component and click Open. The component opens and the title bar
displays the component name.

Tip: If you recently opened your component, you can also choose it from
the recent files list in the File menu.

 3 Choose Automation > Update Run Mode, or click the Update Run Mode
button. The Update Run Mode menu option and button are toggled, and
your component will be updated according to the type of run you select in
the following step.

 4 Select the type of run to perform from the following options:

➤ Automation > Run—runs and updates your entire component. You can
also click the Run button.

➤ Automation > Run from Step—runs and updates your component from
the selected step to the end of the component.

You can also select one of the following debug run modes to debug and
update your component:

➤ Debug > Step Into or click the Step Into button—debugs and updates
only the current step of the component.

➤ Debug > Step Over or click the Step Over button—debugs and updates
only the current step of the component.

➤ Debug > Step Out or click the Step Out button—debugs and updates the
current step of the component.

➤ Debug > Run to Step—debugs and updates the component from the
current location in the component until it reaches the selected step.

➤ Debug > Start from Step—debugs and updates the component from the
selected step to the end of the component.

Part V • Running and Debugging Components

486

For more information on debugging, see Chapter 17, “Debugging
Components and Function Libraries.”

The Update Run dialog box opens.

 5 Specify the settings for the update run process. For more information, see
“Understanding the Update Options Tab” on page 488, and “Understanding
the Input Parameters Tab” on page 482.

Note: The run results for an update run session are always saved in a
temporary location.

 6 Click OK. The Update Run dialog box closes and QuickTest begins running
the component update. The text Update Run flashes in the status bar while
the component is being updated.

QuickTest runs the component and updates the test object descriptions.
When the run session ends, the Test Results window opens.

Chapter 18 • Running Components

487

For information on viewing the results, see Chapter 19, “Analyzing Test
Results.”

Note: If you cleared the View results when run session ends check box in
the Run tab of the Options dialog box, the Test Results window does not
open at the end of the update run session. For more information on the
Options dialog box, see Chapter 8, “Setting Global Testing Options.”

Tip: Remember to exit the update run mode by clicking the Update Run
Mode button when you have finished updating your component.

When the update run ends, the Test Results window can show updated test
object descriptions. For example:

Part V • Running and Debugging Components

488

Understanding the Update Options Tab

 The Update Options tab enables you to update test object descriptions. The
results of the updated component are used for subsequent runs.

The Update Options tab contains the Update test object descriptions check
box. Selecting this option instructs QuickTest to update the test object
descriptions for your business component according to the properties
currently defined in the Object Identification dialog box for each object
class. You can use this option to modify the set of properties used to identify
an object. When you use this option, all values are updated, even if they are
parameterized or use regular expressions.

Tip: You can also update individual test object descriptions from the object
in your application using the Update from Application option in the Object
Repository window or Object Repository Manager. For more information,
see “Updating Test Object Properties from an Object in Your Application” on
page 317.

Chapter 18 • Running Components

489

Note: If the property set you select in the Object Identification dialog box
for an object class is not ideal for a particular object, the new object
description may cause future runs to fail. Therefore, it is recommended that
you save a copy of your component before updating it, so that you can
return to the previously saved version, if necessary.

This option can be especially useful when you want to record and debug
your component using property values that are easy to recognize in your
application (such as object labels), but may be language or operating system
dependent. After you debug your component, you can use the Update Run
Mode option to change the object descriptions to use more universal
property values.

For example, suppose you design a component for the English version of a
part of your application. The test objects are recognized according to the test
object property values in the English version, some of which may be
language dependent. You now want to use the same component for the
French version of this part of your application.

To do this, you define properties that are non-language dependent. These
properties will be used for object identification. For example, you can
identify a link object by its target property value instead of its text property
value. You can then perform an update run on the English version of this
part of your application using these new properties. This will modify the test
object descriptions so that you can later run the component successfully on
the French version of your application.

Tip: If you have a component that runs successfully, but in which certain
objects are identified using Smart Identification, you can also use the
Update test object descriptions option to update the test object description
property values.

Part V • Running and Debugging Components

490

When you run the component with Update test object descriptions
selected, QuickTest finds the test object specified in each step based on its
current test object description. If QuickTest cannot find the test object based
on its description, it uses the Smart Identification properties to identify the
test object (if Smart Identification is enabled). After QuickTest finds the test
object, it then updates its description based on the mandatory and assistive
properties that you define in the Object Identification dialog box.

Note: Test objects that cannot be identified during the update process are
not updated. As in any run session, if an object cannot be found during the
update run, the run session fails, and information about the failure is
included in the Test Results.

Any properties that were used in the previous test object description and are
no longer part of the description for that test object class, as defined in the
Object Identification dialog box, are removed from the new description,
even if the values were parameterized or defined as regular expressions.

If the same property appears both in the test object’s new and previous
descriptions, one of the following occurs:

➤ If the property value in the previous description is parameterized or
specified as a regular expression and matches the new property value,
QuickTest keeps the property’s previous parameterized or regular
expression value. For example, if the previous property value was defined
as the regular expression button.*, and the new value is button1, the
property value remains button.*.

➤ If the property value in the previous description does not match the new
property value, but the object is found using Smart Identification,
QuickTest updates the property value to the new, constant property
value. For example, if the previous property value was button.*, and the
new value is My button, if a Smart Identification definition enabled
QuickTest to find the object, My button becomes the new property value.
In this case, any parameterization or use of regular expressions is
removed from the test object description.

491

19
Analyzing Test Results

After running a component, you can view a report of major events that
occurred during the run session.

Note: You cannot view business process test run results when you open the
Test Results window from QuickTest. To view run results for a business
process test, select the results for the iteration you want to view and open
them from within Quality Center.

This chapter describes:

➤ About Analyzing Test Results

➤ Understanding the Test Results Window

➤ Viewing the Results of a Run Session

➤ Viewing Parameterized Values in the Test Results Window

➤ Analyzing Smart Identification Information in the Test Results

➤ Deleting Test Results

➤ Manually Submitting Defects Detected During a Run Session to a Quality
Center Project

➤ Customizing the Test Results Display

Part V • Running and Debugging Components

492

About Analyzing Test Results

When a run session ends, you can view the run session results in the Test
Results window. By default, the Test Results window opens automatically at
the end of a run. If you want to change this behavior, clear the View results
when run session ends check box in the Run tab of the Options dialog box.

The Test Results window contains a description of the steps performed
during the run session. It displays a single run iteration.

After you run a component, the Test Results window displays all aspects of
the run session, including:

➤ a high-level results overview report (pass/fail status)

➤ the data used in all runs

➤ an expandable tree of the steps, specifying exactly where application failures
occurred

➤ the exact locations in the component where failures occurred

➤ detailed explanations of each step pass or failure, at each stage of the
component

Note: The Test Results window can show results with up to 300 levels in the
tree hierarchy. If you have results with more than 300 nested levels, you can
view the entire report by manually opening the results.xml file.

Chapter 19 • Analyzing Test Results

493

Understanding the Test Results Window

After a run session, you view the results in the Test Results window. By
default, the Test Results window opens when a run session is completed.For
information on changing the default setting, see “Setting Run Testing
Options” on page 196.

Note: You can open the Test Results window as a standalone application
from the Start menu. To open the Test Results window, choose Start >
Programs > QuickTest Professional > Test Results Viewer.

Below is an example of the run results for a component:

Test results
title bar
Menu bar

Test results
toolbar

Test results
tree

Test results
details for
selected step
in component

Status bar

Part V • Running and Debugging Components

494

Note: In this example, the component failed due to a run error in an
associated function library. If the run error had not occurred, the Result
would indicate Done.

The Test Results window contains the following key elements:

➤ Test results title bar—Displays the name of the component.

➤ Menu bar—Displays menus of available commands.

➤ Test results toolbar—Contains buttons for viewing run session results
(choose View > Test Results Toolbar to display the toolbar). For more
information, see “Test Results Toolbar” on page 495.

➤ Test results tree—Contains a graphic representation of the run results in the
test results tree. For more information, see “Test Results Tree”, below.

➤ Test results details—Contains details of the selected step. For more
information, see “Test Results Details” on page 495.

➤ Status bar—Displays the status of the currently selected command (choose
View > Status Bar to view the status bar).

You can change the appearance of the Test Results window. For more
information, see “Changing the Appearance of the Test Results Window” on
page 496.

Test Results Tree

The left pane in the Test Results window displays the test results tree—a
graphical representation of the run session results:

➤ indicates a step that succeeded. This icon is displayed only if the
component step contains one of the following:

➤ Verify operations (functions), such as VerifyProperty

➤ AddToTestResults (or its equivalent) with a micPass status

➤ indicates a step that failed. Note that this causes all parent steps (up to
the root action or test) to fail as well.

Chapter 19 • Analyzing Test Results

495

➤ indicates a warning, meaning that the step did not succeed, but it did
not cause the component to fail.

➤ indicates a step that failed unexpectedly, such as when an object is not
found for a checkpoint.

➤ indicates that the Smart Identification mechanism successfully found
the object.

➤ indicates that a recovery scenario was activated.

➤ indicates that the run session was stopped before it ended.

You can collapse or expand a branch in the test results tree to change the
level of detail that the tree displays.

Test Results Details

By default, when the Test Results window opens, a component summary is
displayed in the right pane of the window. Indicated are the component
name, product name (for a component), results name, the date and time of
the run, and whether an iteration passed or failed. For a component, the
possible results are Done or Failed.

When you select a branch or step in the tree, the right pane displays detailed
information for the selected item.

Test Results Toolbar

The Test Results toolbar contains buttons for viewing test results.

Go to
Previous

Node

Find
Next

Filters

Print Quality
Center

Connection

Add
Defect

Find
Previous

Find

Open
Help

Topics

Go to Next
Node

Part V • Running and Debugging Components

496

Changing the Appearance of the Test Results Window

By default, the Test Results window has the same look and feel as the
QuickTest window, using the Microsoft Office 2003 theme. You can change
the look and feel of the Test Results window, as required.

To change the appearance of the Test Results window:

In the Tests Results window, choose View > Window Theme, and then select
the way the window should appear from the list of available themes. For
example, you can apply a Microsoft Office 2000 or Microsoft Windows XP
theme.

Note: You can apply the Microsoft Windows XP theme to the Tests Results
window only if your computer is set to use a Windows XP theme.

Tip: You can also change the theme used for the main QuickTest window.
For more information, see “Changing the Appearance of the QuickTest
Window” on page 28.

Viewing the Results of a Run Session

By default, at the end of the run session, the results are displayed in the Test
Results window. (You can change the default setting in the Options dialog
box. For more information, see “Setting Run Testing Options” on page 196.)

In addition, you can view the results of previous runs of the current
component, and results of other components. You can also preview run
session results on screen and print them to your default Windows printer, as
well as export them to an HTML file.

Chapter 19 • Analyzing Test Results

497

To view the results of a run:

 1 If the Test Results window is not already open, click the Results button or
choose Automation > Results.

Tip: You can open the Test Results window as a standalone application from
the Start menu. To open the Test Results window, choose Start > Programs >
QuickTest Professional > Test Results Viewer.

➤ If there are run session results for the current component, they are
displayed in the Test Results window. For information on the Test Results
window, see “Understanding the Test Results Window” on page 493.

➤ If there are no run session results for the current component, the Open
Test Results dialog box opens. You can select the run session results for
any component, or you can search for the run session results
(results.xml) file anywhere in the file system. Click Open to display the
selected results in the Test Results window. For more information on
viewing run session results, see “Opening Test Results to View a Selected
Run” on page 500.

 2 You can collapse or expand a branch in the test results tree to select the level
of detail that the tree displays.

➤ To collapse a branch, select it and click the collapse (–) sign to the left of
the branch icon, or press the minus key (–) on your keyboard number
pad. The details for the branch disappear in the results tree, and the
collapse sign changes to expand (+).

➤ To collapse all of the branches in the test results tree, choose View >
Collapse All or right click a branch and select Collapse All.

➤ To expand a branch, select it and click the expand (+) sign to the left of
the branch icon, or press the plus key (+) on your keyboard number pad.
The tree displays the details for the branch and the expand sign changes
to collapse.

If you just opened the Test Results window, the tree expands one level at
a time. If the tree was previously expanded, it reverts to its former state.

Part V • Running and Debugging Components

498

➤ To expand a branch and all branches below it, select the branch and press
the asterisk (*) key on your keyboard number pad.

➤ To expand all of the branches in the test results tree, choose View >
Expand All; right click a branch and select Expand All; or select the top
level of the tree and press the asterisk (*) key on your keyboard number
pad.

 3 You can view the results of an iteration or step. The results can be one of
three types:

➤ Steps that were not successful, but did not cause the component to stop
running, are marked Warning in the bottom right part of the Test Results
window and are identified by the icon or .

Note: A component containing a step marked Warning may still be labeled
Done.

 4 To filter the information displayed in the Test Results window, click the
Filters button or choose View > Filters. The Filters dialog box opens.

The default filter options are displayed in the image above. The Filters dialog
box contains the following options:

Chapter 19 • Analyzing Test Results

499

Status area:

➤ Fail—Displays the run results for the steps that failed.

➤ Warning—Displays the run results for the steps with the status Warning
(steps that did not pass, but did not cause the component to fail).

➤ Pass—Displays the run results for the steps that passed.

➤ Done—Displays the run results for the steps with the status Done (steps
that were performed successfully but did not receive a pass, fail, or
warning status).

Note: The Iterations and Content areas are not relevant for components.

 5 To find specific steps within the Test Results, click the Find button or choose
Tools > Find.

 6 To move between previously selected nodes within the test results tree, click
the Go to Previous Node or Go to Next Node buttons.

 7 To view the results of other run sessions, click the Open button or choose
File > Open. For more information, see “Opening Test Results to View a
Selected Run” on page 500.

 8 To print run results, click the Print button or choose File > Print. For more
information, see “Printing Run Session Results” on page 502.

Note: If you have Quality Center installed, you can add a defect to a Quality
Center project. For additional information, see “Manually Submitting
Defects Detected During a Run Session to a Quality Center Project” on
page 521.

 9 Choose File > Exit to close the Test Results window.

Part V • Running and Debugging Components

500

Opening Test Results to View a Selected Run

You can view the saved results for the current component, or you can view
the saved results for other components.

You select the run results to open for viewing from the Open Test Results
dialog box, which opens when:

➤ You choose File > Open from within the Test Results window.

➤ You click the Results button in the QuickTest window or choose
Automation > Results, when there are several results, or no results, for the
current component.

The results of run sessions for the current component are listed. To view one
of the results sets, select it and click Open.

Tip: To update the results list after you change the specified component
path, click Refresh.

To view results of runs for other components, you can search by component
result file.

Chapter 19 • Analyzing Test Results

501

Note: You cannot view business process test run results when you open the
Test Results window from QuickTest. To view run results for a business
process test, select the results for the iteration you want to view and open
them from within Quality Center.

Searching for Results in the File System

By default, the results for component runs are stored in a Quality Center
cache folder on your computer. When you run your component, you can
specify a different location to store the results, using the Results Location
tab of the Run dialog box. Specifying your own location for the results file
can make it easier for you to locate the results file in the file system. For
more information, see “Understanding the Results Location Tab” on
page 480.

You can search for results in the file system by component or by result file.

To search for results in the file system by component:

 1 In the Open Test Results dialog box, enter the path of the folder that
contains the results file for your component, or click the browse button to
open the Open Test dialog box.

 2 Find and highlight the component whose results you want to view, and
click Open.

 3 In the Open Test Results dialog box, highlight the component result set you
want to view, and click Open. The Test Results window displays the selected
results.

To search for results in the file system by result file:

 1 In the Open Test Results dialog box, click the Open File button to open the
Select Results File dialog box.

 2 Browse to the folder where the component results file is stored.

Part V • Running and Debugging Components

502

 3 Highlight the results (.xml) file you want to view, and click Open. The Test
Results window displays the selected results.

 Printing Run Session Results

You can print run results from the Test Results window. You can select the
type of report you want to print, and you can also create and print a
customized report.

To print the run results:

 1 Click the Print button or choose File > Print. The Print dialog box opens.

 2 Select a Print range option:

➤ All—Prints the results for the entire component.

➤ Selection—Prints the run results for the selected branch in the test results
tree.

 3 Specify the Number of copies of the run results that you want to print.

Chapter 19 • Analyzing Test Results

503

 4 Select a Print format option:

➤ Short—Prints a summary line (when available) for each item in the test
results tree. This option is only available if you selected All in step 2.

➤ Detailed—Prints all available information for each item in the test results
tree, or for the selected branch, according to your selection in step 2.

➤ User-defined XSL—Enables you to browse to and select a customized .xsl
file. You can create a customized .xsl file that specifies the information to
be included in the printed report, and the way it should appear. For more
information, see “Customizing the Test Results Display” on page 522.

Note: The Print format options are available only for run results created
with QuickTest version 8.0 and later.

 5 Click Print to print the selected run results information to your default
Windows printer.

Previewing Test Results

You can preview run results on screen before you print them. You can select
the type and quantity of information you want to view, and you can also
display the information in a customized format.

Note: The Print Preview option is available only for run results created with
QuickTest version 8.0 and later.

Part V • Running and Debugging Components

504

To preview the run results:

 1 Choose File > Print Preview. The Print Preview dialog box opens.

 2 Select a Print range option:

➤ All—Previews the run results for the entire component.

➤ Selection—Previews run results information for the selected branch in
the test results tree.

 3 Select a Print format option:

➤ Short—Previews a summary line (when available) for each item in the
test results tree. This option is only available if you selected All in step 2.

➤ Detailed—Previews all available information for each item in the test
results tree, or for the selected branch, according to your selection in
step 2.

➤ User-defined XSL—Enables you to browse to and select a customized .xsl
file. You can create a customized .xsl file that specifies the information to
be included in the preview, and the way it should appear. For more
information, see “Customizing the Test Results Display” on page 522.

Chapter 19 • Analyzing Test Results

505

 4 Click Preview to preview the appearance of your run results on screen.

Tip: If some of the information is cut off in the preview, for example, if
checkpoint names are too long to fit in the display, click the Page Setup
button in the Print Preview window and change the page orientation from
Portrait to Landscape.

Exporting Test Results

You can export the run results from the Test Results window to an HTML
file. This enables you to easily view the run results when you are not in a
QuickTest environment. For example, you can send the HTML file
containing the run results in an e-mail to a third-party who does not have
QuickTest installed. You can select the type of report you want to export,
and you can also create and export a customized report.

To export the run results:

 1 Choose File > Export to HTML File. The Export to HTML File dialog box
opens.

Part V • Running and Debugging Components

506

 2 Select an Export range option:

➤ All—Exports the results for the entire component.

➤ Selection—Exports run result information for the selected branch in the
test results tree.

 3 Select an Export format option:

➤ Short—Exports a summary line (when available) for each item in the test
results tree. This option is only available if you selected All in step 2.

➤ Detailed—Exports all available information for each item in the test
results tree, or for the selected branch, according to your selection in
step 2.

➤ User-defined XSL—Enables you to browse to and select a customized .xsl
file. You can create a customized .xsl file that specifies the information to
be included in the exported report, and the way it should appear. For
more information, see “Customizing the Test Results Display” on
page 522.

Note: The Export format options are available only for run results created
with QuickTest version 8.0 and later.

 4 Click Export. The Save As dialog box opens, enabling you to change the
default destination folder and rename the file, if required. By default, the file
is named <name of component> [<name of run results>], and is saved in the
run results folder.

 5 Click Save to save the HTML file and close the dialog box.

Chapter 19 • Analyzing Test Results

507

Viewing Parameterized Values in the Test Results Window

A parameter is a variable that is assigned a value from within a component.
You can view the values for the parameters defined in your component in
the Test Results window.

To view parameterized values:

 1 Display the run results for your component in the Test Results window. For
more information, see “Viewing the Results of a Run Session” on page 496.

 2 In the left pane of the Test Results window, select the root node, which
contains the name of the component.

Part V • Running and Debugging Components

508

The name and value of the input parameters are displayed at the bottom of
the right pane.

The example above shows the input parameter UserName defined for the
component with the value Mercury.

For more information on defining and using parameters in your
components, see “Working with Parameters” on page 170.

Chapter 19 • Analyzing Test Results

509

Analyzing Smart Identification Information in the Test
Results

If the recorded description does not enable QuickTest to identify the
specified object in a step, and a Smart Identification definition is defined
(and enabled) for the object, then QuickTest tries to identify the object using
the Smart Identification mechanism. The following examples illustrate two
possible scenarios.

Smart Identification—No Object Matches the Recorded Description

If QuickTest successfully uses Smart Identification to find an object after no
object matches the recorded description, the Test Results receive a warning
status and include the following information:

For more information on the Smart Identification mechanism, see
Chapter 14, “Configuring Object Identification.”

In the results tree: In the results details:

A description mismatch icon for the
missing object. For example:

An indication that the object (for example,
the userName WebEdit object) was not
found.

A Smart Identification icon for the
missing object. For example:

An indication that the Smart Identification
mechanism successfully found the object,
and information about the properties used
to find the object. You can use this
information to modify the recorded test
object description, so that QuickTest can
find the object using the description in
future run sessions.

The actual step performed. For
example:

Normal result details for the performed
step.

Part V • Running and Debugging Components

510

The image below shows the results for a component in which Smart
Identification was used to identify the userName WebEdit object after one of
the recorded description property values changed.

Chapter 19 • Analyzing Test Results

511

Smart Identification—Multiple Object Match the Recorded
Description

If QuickTest successfully uses Smart Identification to find an object after
multiple objects are found that match the recorded description, QuickTest
shows the Smart Identification information in the Test Results window. The
step still receives a passed status, because in most cases, if Smart
Identification was not used, the test object description plus the ordinal
identifier could have potentially identified the object.

In such a situation, the Test Results show the following information:

In the results tree: In the results details:

A Smart Identification icon for the
missing object. For example:

An indication that the Smart Identification
mechanism successfully found the object,
and information about the properties used
to find the object. You can use this
information to create a unique object
description for the object, so that
QuickTest can find the object using the
description in future run sessions.

The actual step performed. For
example:

Normal result details for the performed
step.

Part V • Running and Debugging Components

512

The image below shows the results for a component in which Smart
Identification was used to uniquely identify the Home object after the
recorded description resulted in multiple matches.

If the Smart Identification mechanism cannot successfully identify the
object, the component fails and a normal failed step is displayed in the Test
Results.

Chapter 19 • Analyzing Test Results

513

Deleting Test Results

You can use the Test Results Deletion Tool to remove unwanted or obsolete
run results from your system, according to specific criteria that you define.
This enables you to free up valuable disk space.

You can use this tool with a Windows-style user interface, or you can use the
Windows command line to run the tool in the background (silently) in
order to directly delete results that meet criteria that you specify.

Deleting Results Using the Test Results Deletion Tool

You can use the Test Results Deletion Tool to view a list of all the run session
results in a specific location in your file system or in a Quality Center
project. You can then delete any run results that you no longer require.

The Test Results Deletion Tool enables you to sort the run results by name,
date, size, and so forth, so that you can easily identify the results you want
to delete.

To delete run results using the Test Results Deletion Tool:

 1 Choose Start > Programs > QuickTest Professional > Tools > Test Results
Deletion Tool from the Start menu. The Tests Results Deletion Tool window
opens.

Part V • Running and Debugging Components

514

 2 In the Test or folder box, specify the folder or specific test from which you
want to delete test results. You can specify a full file system path or a full
Quality Center path.

You can also browse to a test or folder as follows:

➤ To navigate to a specific test, click the Browse button or click the arrow
to the right of the Browse button and select Tests.

➤ To navigate to a specific folder, click the arrow to the right of the Browse
button and select Folders.

Note: To delete test results from a Quality Center database, click Connect to
connect to Quality Center before browsing or entering the test path. Specify
the Quality Center test path in the format [Quality Center] Subject\<folder
name>\<test name>. For more information, see “Connecting to Your Quality
Center Project” on page 20.

 3 Select Include test results found in subfolders if you want to view all tests
results contained in subfolders of the specified folder.

Note: The Include test results found in subfolders check box is available
only for folders in the file system. It is not supported when working with
tests in Quality Center.

The test results in the specified test or folder are displayed in the Test Results
box, together with descriptive information for each one. You can click a
column's title in the Test Results box to sort test results based on the entries
in that column. To reverse the order, click the column title again.

The Delete Test Results window status bar shows information regarding the
displayed test results, including the number of results selected, the total
number of results in the specified location and the size of the files.

Chapter 19 • Analyzing Test Results

515

 4 Select the test results you want to delete. You can select multiple test results
for deletion using standard Windows selection techniques.

 5 Click Delete. The selected test results are deleted from the system and the
Quality Center database.

Tip: You can click Refresh at any time to update the list of test results
displayed in the Test Results box.

Deleting Results Using the Windows Command Line

You can use the Windows command line to instruct the Test Results
Deletion Tool to delete test results according to criteria you specify. For
example, you may want to always delete test results older than a certain date
or over a minimum file size.

To run the Test Results Deletion Tool from the command line:

Open a Windows command prompt and type <QuickTest installation
path>\bin\TestResultsDeletionTool.exe, then type a space and type the
command line options you want to use. For more information, see
“Command Line Options,” below.

Note: If you use the -Silent command line option to run the Test Results
Deletion Tool, all test results that meet the specified criteria are deleted.
Otherwise, the Delete Test Results window opens.

Part V • Running and Debugging Components

516

Command Line Options

You can use command line options to specify the criteria for the test results
that you want to delete. Following is a description of each command line
option.

Note: If you add command line options that contain spaces, you must
specify the option within quotes, for example:
TestResultsDeletionTool.exe -Test "F:\Tests\Keep\web objects"

-Domain Quality_Center_domain_name

Specifies the name of the Quality Center domain to which you want to
connect. This option should be used in conjunction with the -Server,
-Project, -User, and -Password options.

-FromDate results_creation_date

Deletes test results created after the specified date. Results created on or
before this date are not deleted. The format of the date is MM/DD/YYYY.

The following example deletes all results created after November 1, 2005.

TestResultsDeletionTool.exe -Silent -Test "C:\tests\test1" -FromDate "11/1/2005"

-Log log_file_path

Creates a log file containing an entry for each test results file in the folder or
test you specified. The log file indicates which results were deleted and the
reasons why other results were not. For example, results may not be deleted
if they are smaller than the minimum file size you specified.

You can specify a file path and name or use the default path and name. If
you do not specify a file name, the default log file name is
TestResultsDeletionTool.log in the folder where the Test Results Deletion
Tool is located.

The following example creates a log file in C:\temp\Log.txt.

TestResultsDeletionTool.exe -Silent -Log "C:\temp\Log.txt" -Test "C:\tests\test1"

Chapter 19 • Analyzing Test Results

517

The following example creates a log file named TestResultsDeletionTool.log
in the folder where the Test Results Deletion Tool is located.

TestResultsDeletionTool.exe -Silent -Log -Test "C:\tests\test1"

-MinSize minimum_file_size

Deletes test results larger than or equal to the specified minimum file size.
Specify the size in bytes.

Note: The -MinSize option is available only for test results in the file system.
It is not supported when working with tests in Quality Center.

The following example deletes all results larger than or equal to 10000 bytes.
Results that are smaller than 10000 bytes are not deleted.

TestResultsDeletionTool.exe -Silent -Test "C:\tests\test1" -MinSize "10000"

-Name result_file_name

Specifies the name(s) of the result file(s) to be deleted. Only results with the
specified name(s) are deleted.

You can use regular expressions to specify criteria for the result file(s) you
want to delete. For more information about regular expressions and regular
expression syntax, refer to the QuickTest Professional Basic Features User’s
Guide.

The following example deletes results with the name Res1.

TestResultsDeletionTool.exe -Silent -Test "C:\tests\test1" -Name "Res1"

The following example deletes all results whose name starts with Res plus
one additional character. (For example, Res1 and ResD would be deleted.
ResDD would not be deleted.)

TestResultsDeletionTool.exe -Silent -Test "C:\tests\test1" -Name "Res."

Part V • Running and Debugging Components

518

-Password Quality_Center_password

Specifies the password for the Quality Center user name. This option should
be used in conjunction with the -Domain, -Server, -Project, and -User
options.

The following example connects to the Default Quality Center domain,
using the server located at http://QCServer/qcbin, with the project named
Quality Center_Demo, using the user name Admin and the password
PassAdmin.

TestResultsDeletionTool.exe -Domain "Default" -Server "http://QCServer/qcbin"
-Project "Quality Center_Demo" -User "Admin" -Password "PassAdmin"

-Project Quality_Center_project_name

Specifies the name of the Quality Center project to which you want to
connect. This option should be used in conjunction with the -Domain, -
Server, -User, and -Password options.

-Recursive

Deletes test results from all tests in a specified folder and its subfolders.
When using the -Recursive option, the -Test option should contain the
path of the folder that contains the tests results you want to delete (and not
the path of a specific test).

The following example deletes all results in the F:\Tests folder and all of its
subfolders.

TestResultsDeletionTool.exe -Test "F:\Tests" -Recursive

Note: The -Recursive option is available only for folders in the file system. It
is not supported when working with tests in Quality Center.

Chapter 19 • Analyzing Test Results

519

-Server Quality_Center_server_path

Specifies the full path of the Quality Center server to which you want to
connect. This option should be used in conjunction with the -Domain,
-Project, -User, and -Password options.

-Silent

Instructs the Test Results Deletion Tool to run in the background (silently),
without the user interface.

The following example instructs the Test Results Deletion Tool to run
silently and delete all results located in C:\tests\test1.

TestResultsDeletionTool.exe -Silent -Test "C:\tests\test1"

-Test test_or_folder_path

Sets the test or test path from which the Test Results Deletion Tool deletes
test results. You can specify a test name and path, file system path, or full
Quality Center path.

This option is available only when used in conjunction with the -Silent
option.

Note: The -Domain, -Server, -Project, -User, and -Password options must
be used to connect to Quality Center.

The following example opens the Test Results Deletion Tool with a list of the
results in the F:\Tests\Keep\webobjects folder.

TestResultsDeletionTool.exe -Test "F:\Tests\Keep\webobjects"

Part V • Running and Debugging Components

520

The following example deletes all results in the Quality Center
Tests\webobjects test:

TestResultsDeletionTool.exe -Domain "Default" -Server "http://QCServer/qcbin" -
Project "Quality Center_Demo592" -User "Admin" -Password "PassAdmin" -
Test "Subject\Tests\webobjects"

Note: The -Test option can be combined with the -Recursive option to
delete all test results in the specified folder and all its subfolders.

-UntilDate results_creation_date

Deletes test results created before the specified date. Results created on or
after this date are not deleted. The format of the date is MM/DD/YYYY.

This option is available only when used in conjunction with the -Silent
option.

The following example deletes all results created before November 1, 2005.

TestResultsDeletionTool.exe -Silent -Test "C:\tests\test1" -UntilDate "11/1/2005"

-User Quality_Center_user_name

Specifies the user name for the Quality Center project to which you want to
connect. This option should be used in conjunction with the -Domain, -
Server, -Project, and -Password options.

This option is available only when used in conjunction with the -Silent
option.

Chapter 19 • Analyzing Test Results

521

Manually Submitting Defects Detected During a Run
Session to a Quality Center Project

When viewing the results of a run session, you can submit any defects
detected to a Quality Center project directly from the Test Results window.

For more information on working with Quality Center and QuickTest, refer
to the QuickTest Professional Advanced Features User’s Guide. For more
information on Quality Center, refer to the Quality Center User’s Guide.

To manually submit a defect to Quality Center:

 1 Choose Tools > Quality Center Connection or click the Quality Center
Connection button to connect to a Quality Center project. For more
information on connecting to Quality Center, see “Connecting to Your
Quality Center Project” on page 20.

Note: If you do not connect to a Quality Center project before proceeding to
the next step, QuickTest prompts you to connect before continuing.

 2 Choose Tools > Add Defect or click the Add Defect button to open the Add
Defect dialog box in the specified Quality Center project. The Add Defect
dialog box opens.

 3 You can modify the defect information if required. Basic information about
the component is included in the description:

 4 Click Submit to add the defect information to the Quality Center project.

 5 Click Close to close the Add Defect dialog box.

Part V • Running and Debugging Components

522

Customizing the Test Results Display

The results of each QuickTest run session are saved in a single .xml file
(called results.xml). This .xml file stores information about each of the test
result nodes in the display. The information in these nodes is used to
dynamically create .htm files that are shown in the top-right pane of the
Test Results window.

Each node in the test results tree is an element in the results.xml file. In
addition, there are different elements that represent different types of
information displayed in the test results. You can take test result
information from the .xml file and use XSL to display the information you
require in a customized format (either when printing from within the
QuickTest Test Results window, when displaying test results in your own
customized results viewer, or when exporting the test results to an HTML
file).

Chapter 19 • Analyzing Test Results

523

The diagram below shows the correlation between some of the elements in
the .xml file and the items they represent in the test results.

Tip: You can change the appearance (look and feel) of the Test Results
window. For more information, see “Changing the Appearance of the Test
Results Window” on page 496.

XSL provides you with the tools to describe exactly which test result
information to display and exactly where and how to display, print or
export it. You can also modify the .css file referenced by the .xsl file, to
change the appearance of the report (for example, fonts, colors, and so
forth).

Report element

Alter element
Action element

Tname element

Step element

Res element

sTime and
eTime attributes
of Summary
element

Component
Run Summary
attributes

Part V • Running and Debugging Components

524

For example, in the results.xml file, one element tag contains the name of
an action, and another element tag contains information about the time at
which the run session is performed. Using XSL, you could tell your
customized test results viewer that the action name should be displayed in a
specific place on the page and in a bold green font, and that the time
information should not be displayed at all.

You may find it easier to modify the existing .xsl and .css files provided with
QuickTest, instead of creating your own customized files from scratch. The
files are located in <QuickTest Installation Folder>\dat, and are named as
follows:

➤ PShort.xsl—Specifies the content of the test results report printed, or
exported to an HTML file, when you select the Short option in the Print or
Export to HTML File dialog boxes.

➤ PDetails.xsl—Specifies the content of the test results report printed, or
exported to an HTML file, when you select the Detailed option in the Print
or Export to HTML File dialog boxes.

➤ PSelection.xsl—Specifies the content of the test results report printed, or
exported to an HTML file, when you select the Selection option in the Print
or Export to HTML File dialog boxes.

➤ PResults.css—Specifies the appearance of the test results print preview. This
file is referenced by all three .xsl files.

For more information on printing test results using a customized .xsl file, see
“Printing Run Session Results” on page 502.

For more information on exporting the test results to an HTML file using a
customized .xsl file, see “Exporting Test Results” on page 505.

For information about the structure of the XML schema, and a description
of the elements and attributes you can use to customize the test results
reports, refer to the XML Report Help (located in <QuickTest Professional
installation folder>\help\XMLReport.chm).

XMLReport.chm::/XmlReport_xsd.html

Part VI

Working with Advanced Features

526

527

20
Defining and Using Recovery Scenarios

You can instruct QuickTest to recover from unexpected events and errors
that occur in your testing environment during a run session.

This chapter describes:

➤ About Defining and Using Recovery Scenarios

➤ Deciding When to Use Recovery Scenarios

➤ Defining Recovery Scenarios

➤ Understanding the Recovery Scenario Wizard

➤ Managing Recovery Scenarios

➤ Setting the Recovery Scenarios List for Your Application Areas

➤ Programmatically Controlling the Recovery Mechanism

Part VI • Working with Advanced Features

528

About Defining and Using Recovery Scenarios

Unexpected events, errors, and application crashes during a run session can
disrupt your run session and distort results. This is a problem particularly
when running components unattended—the component is suspended until
you perform the operation needed to recover. For information on when to
use recovery scenarios, see “Deciding When to Use Recovery Scenarios” on
page 530.

The Recovery Scenario Manager provides a wizard that guides you through
the process of defining a recovery scenario—a definition of an unexpected
event and the operation(s) necessary to recover the run session. For
example, you can instruct QuickTest to detect a Printer out of paper
message and recover the run session by clicking the OK button to close the
message and continue the component.

A recovery scenario consists of the following:

➤ Trigger Event—The event that interrupts your run session. For example, a
window that may pop up on screen, or a QuickTest run error.

➤ Recovery Operation(s)—The operation(s) that need to be performed in
order to continue running the component. For example, clicking an OK
button in a pop-up window, or restarting Microsoft Windows.

➤ Post-Recovery Test Run Option—The instructions on how QuickTest should
proceed once the recovery operations have been performed, and from which
point in the component QuickTest should continue, if at all. For example,
you may want to restart a component from the beginning, or skip a step
entirely and continue with the next step in the component.

Recovery scenarios are saved in recovery scenario files. A recovery scenario
file is a logical collection of recovery scenarios, grouped according to your
own specific requirements.

Chapter 20 • Defining and Using Recovery Scenarios

529

To instruct QuickTest to perform a recovery scenario during a run session,
you must first associate the recovery scenario with that component (via its
application area). A component can have any number of recovery scenarios
associated with it. You can prioritize the scenarios associated with your
component to ensure that trigger events are recognized and handled in the
required order. For more information, see “Defining Recovery Scenario
Settings for Your Application Area” on page 108.

When you run a component for which you have defined recovery scenarios
and an error occurs, QuickTest looks for the defined trigger event(s) that
caused the error. If a trigger event has occurred, QuickTest performs the
corresponding recovery and post-recovery operations.

You can also control and activate your recovery scenarios during the run
session by inserting Recovery statements into your component. For more
information, see “Programmatically Controlling the Recovery Mechanism”
on page 571.

Note: If you choose On error in the Activate recovery scenarios box in the
Recovery tab of the Business Component Settings dialog box, the recovery
mechanism does not handle triggers that occur in the last step of a
component. If you chose this option and need to recover from an
unexpected event or error that may occur in the last step of a component,
you can do this by adding an extra step to the end of your component.

Part VI • Working with Advanced Features

530

Deciding When to Use Recovery Scenarios

If you can predict that a certain event may happen at a specific point in
your component, it is highly recommended to handle that event directly
within your component by adding steps such as If statements in user-
defined functions, rather than depending on a recovery scenario.

For example, if you know that an Overwrite File message box may open
when a Save button is clicked during a run session, you can handle this
event with an If statement in a user-defined function that clicks OK if the
message box opens. Handling an event directly within your component
enables you to handle errors more specifically than recovery scenarios,
which by nature are designed to handle a more generic set of unpredictable
events. It also enables you to control the timing of the corrective operation
with minimal resource usage and maximum performance. By default,
recovery operations are activated only occur after a step returns an error,
which can potentially occur several steps after the one that actually caused
the error. The alternative, checking for trigger events after every step, may
slow performance.

You should use recovery scenarios only for unpredictable events, or events
that you cannot synchronize with a specific step in your component. For
example, a recovery scenario can handle a printer error by clicking the
default button in the Printer Error message box. You cannot handle this
error directly in your component, since you cannot know at what point the
network will return the printer error. You could try to handle this event in
your component by adding an If statement in a user-defined function
immediately after the step that sent a file to the printer, but if the network
takes time to return the printer error, your component may have progressed
several steps before the error is displayed. Therefore, for this type of event,
only a recovery scenario can handle it.

Chapter 20 • Defining and Using Recovery Scenarios

531

Defining Recovery Scenarios

The Recovery Scenario Manager dialog box enables you to create recovery
scenarios and save them in recovery files. You create recovery scenarios
using the Recovery Scenario Wizard, which leads you through the process of
defining each of the stages of the recovery scenario. You then save the
recovery scenarios in a recovery file, and associate them with specific
components.

Creating a Recovery File

You save your recovery scenarios in a recovery file. A recovery file is a
convenient way to organize and store multiple recovery scenarios together.
You can create a new recovery file or edit an existing one.

To create a recovery file:

 1 Choose Resources > Recovery Scenario Manager. The Recovery Scenario
Manager dialog box opens.

Part VI • Working with Advanced Features

532

 2 By default, the Recovery Scenario Manager dialog box opens with a new
recovery file. You can either use this new file, or click the Open button to
choose an existing recovery file. Alternatively, you can click the arrow next
to the Open button to select a recently-used recovery file from the list.

You can now create recovery scenarios using the Recovery Scenario Wizard
and save them in your recovery file, as described in the following sections.

Understanding the Recovery Scenario Manager Dialog Box

The Recovery Scenario Manager dialog box enables you to create and edit
recovery files, and create and manage recovery scenarios.

The Recovery Scenario Manager dialog box displays the name of the
currently open recovery file, a list of the scenario(s) saved in the recovery
file, and a description of each scenario.

Chapter 20 • Defining and Using Recovery Scenarios

533

The Recovery Scenario Manager dialog box contains the following toolbar
buttons:

Note: Each recovery scenario is represented by an icon that indicates its
type. For more information, see “Managing Recovery Scenarios” on
page 562.

Option Description

Creates a new recovery file. For more information, see “Creating a
Recovery File” on page 531.

Opens an existing recovery file. You can also click the arrow to select a
recovery file from the list of recently-used recovery files.

Saves the current recovery file. For more information, see “Saving the
Recovery Scenario in a Recovery File” on page 561.

Opens the Recovery Scenario Wizard, in which you define a new
recovery scenario. For more information, see “Understanding the
Recovery Scenario Wizard” on page 534.

Opens the Recovery Scenario Wizard for the selected recovery
scenario, in which you can modify the recovery scenario settings. For
more information, see “Modifying Recovery Scenarios” on page 564.

Displays summary properties for the selected recovery scenario in
read-only format. For more information, see “Viewing Recovery
Scenario Properties” on page 563.

Copies a recovery scenario from the open recovery file to the
Clipboard. This enables you to paste a recovery scenario into another
recovery file. For more information, see “Copying Recovery Scenarios
between Recovery Scenario Files” on page 565.

Pastes a recovery scenario from the Clipboard into the open recovery
file. For more information, see “Copying Recovery Scenarios between
Recovery Scenario Files” on page 565.

Deletes a recovery scenario. For more information, see “Deleting
Recovery Scenarios” on page 565.

Part VI • Working with Advanced Features

534

Understanding the Recovery Scenario Wizard

The Recovery Scenario Wizard leads you, step-by-step, through the process
of creating a recovery scenario. The Recovery Scenario Wizard contains five
main steps:

➤ defining the trigger event that interrupts the run session

➤ specifying the recovery operation(s) required to continue

➤ choosing a post-recovery test run operation

➤ specifying a name and description for the recovery scenario

You open the Recovery Scenario Wizard by clicking the New Scenario
button in the Recovery Scenario Manager dialog box (Resources > Recovery
Scenario Manager).

Chapter 20 • Defining and Using Recovery Scenarios

535

Welcome to the Recovery Scenario Wizard Screen

The Welcome to the Recovery Scenario Wizard screen provides general
information about the different options in the Recovery Scenario Wizard,
and provides an overview of the stages involved in defining a recovery
scenario.

Click Next to continue to the Select Trigger Event screen.

Part VI • Working with Advanced Features

536

Select Trigger Event Screen

The Select Trigger Event screen enables you to define the event type that
triggers the recovery scenario, and the way in which QuickTest recognizes
the event.

Chapter 20 • Defining and Using Recovery Scenarios

537

Select a type of trigger and click Next. The next screen displayed in the
wizard depends on which of the following trigger types you select:

➤ Pop-up window—QuickTest detects a pop-up window and identifies it
according to the window title and textual content. For example, a message
box may open during a run session, indicating that the printer is out of
paper. QuickTest can detect this window and activate a defined recovery
scenario in order to continue the run session.

Select this option and click Next to continue to the Specify Pop-up Window
Conditions screen.

➤ Object state—QuickTest detects a specific test object state and identifies it
according to its property values and the property values of all its ancestors.
Note that an object is identified only by its property values, and not by its
class.

For example, a specific button in a dialog box may be disabled when a
specific process is open. QuickTest can detect the object property state of the
button that occurs when this problematic process is open and activate a
defined recovery scenario to close the process and continue the run session.

Select this option and click Next to continue to the Select Object screen.

➤ Test run error—QuickTest detects a run error and identifies it by a failed
return value from a method. For example, QuickTest may not be able to
identify a menu item specified in the method argument, due to the fact that
the menu item is not available at a specific point during the run session.
QuickTest can detect this run error and activate a defined recovery scenario
in order to continue the run session.

Select this option and click Next to continue to the Select Test Run Error
screen.

Part VI • Working with Advanced Features

538

➤ Application crash—QuickTest detects an application crash and identifies it
according to a predefined list of applications. For example, a secondary
application may crash when a certain step is performed in the run session.
You want to be sure that the run session does not fail because of this crash,
which may indicate a different problem with your application. QuickTest
can detect this application crash and activate a defined recovery scenario to
continue the run session.

Select this option and click Next to continue to the Recovery Operations
screen.

Notes:

The set of recovery operations is performed for each occurrence of the
trigger event criteria. For example, suppose you define a specific object state,
and two objects match this state, the set of recovery operations is performed
two times, once for each object that matches the specified state.

The recovery mechanism does not handle triggers that occur in the last step
of a component. If you need to recover from an unexpected event or error
that may occur in the last step of a component, you can do this by adding
an extra step to the end of your component.

Chapter 20 • Defining and Using Recovery Scenarios

539

Specify Pop-up Window Conditions Screen

If you chose a Pop-up window trigger in the Select Trigger Event screen, the
Specify Pop-up Window Conditions screen opens.

Part VI • Working with Advanced Features

540

Perform one of the following to specify how the pop-up window should be
identified:

➤ Choose whether you want to identify the pop-up window according to
its Window title and/or Window text and then enter the text used to
identify the pop-up window. You can use regular expressions in the
window title or textual content by selecting the relevant Regular
expression check box and then entering the regular expression in the
relevant location. For information on regular expressions, refer to the
QuickTest Professional Basic Features User’s Guide.

➤ Click the pointing hand and then click the pop-up window to capture
the window title and textual content of the window.

Note: Using the first option (Window title and/or Window text) instructs
QuickTest to identify any pop-up window that contains the relevant title
and/or text. Using the second option (pointing hand) instructs QuickTest to
identify only pop-up windows that match the object property values of the
window you select.

Tip: Hold the left CTRL key to change the window focus or perform
operations such as a right-click or mouseover to display a context menu. If
the window containing the object you want to select is minimized, you can
display it by holding the left CTRL key, right-clicking the application in the
Windows task bar, and choosing Restore from the context menu.

Click Next to continue to the Recovery Operations screen.

Chapter 20 • Defining and Using Recovery Scenarios

541

Select Object Screen

If you chose an Object state trigger in the Select Trigger Event screen, the
Select Object screen opens.

Click the pointing hand and then click the object whose properties you
want to specify.

Tip: Hold the left CTRL key to change the window focus or perform
operations such as a right-click or mouseover to display a context menu. If
the window containing the object you want to select is minimized, you can
display it by holding the left CTRL key, right-clicking the application in the
Windows task bar, and choosing Restore from the context menu.

Part VI • Working with Advanced Features

542

If the location you click is associated with more than one object, the Object
Selection–Object State Trigger dialog box opens.

Select the object whose properties you want to specify and click OK. The
selected object and its parents are displayed in the Select Object screen.

Note: The hierarchical object selection tree also enables you to select an
object that QuickTest would not ordinarily record (a non-parent object),
such as a web table.

 Click Next to continue to the Set Object Properties and Values screen.

Chapter 20 • Defining and Using Recovery Scenarios

543

Set Object Properties and Values Screen

After you select the object whose properties you want to specify in the Select
Object screen, the Set Object Properties and Values screen opens.

For each object in the hierarchy, in the Edit property value box, you can
modify the property values used to identify the object. You can also click the
Add/Remove button to add or remove object properties from the list of
property values to check. Note that an object is identified only by its
property values, and not by its class.

Select the Regular expression check box if you want to use regular
expressions in the property value. For information on regular expressions,
refer to the QuickTest Professional Basic Features User’s Guide.

Click Next to continue to the Recovery Operations screen.

Part VI • Working with Advanced Features

544

Select Test Run Error Screen

If you chose a Test run error trigger in the Select Trigger Event screen, the
Select Test Run Error screen opens.

In the Error list, choose the run error that you want to use as the trigger
event:

➤ Any error—Any error code that is returned by a test object method.

➤ Item in list or menu is not unique—Occurs when more than one item in the
list, menu, or tree has the name specified in the method argument.

➤ Item in list or menu not found—Occurs when QuickTest cannot identify the
list, menu, or tree item specified in the method argument. This may be due
to the fact that the item is not currently available or that its name has
changed.

➤ More than one object responds to the physical description—Occurs when
more than one object in your application has the same property values as
those specified in the test object description for the object specified in the
step.

Chapter 20 • Defining and Using Recovery Scenarios

545

➤ Object is disabled—Occurs when QuickTest cannot perform the step because
the object specified in the step is currently disabled.

➤ Object not found—Occurs when no object within the specified parent
object matches the test object description for the object.

➤ Object not visible—Occurs when QuickTest cannot perform the step because
the object specified in the step is not currently visible on the screen.

Click Next to continue to the Recovery Operations screen.

Select Processes Screen

If you chose an Application crash trigger in the Select Trigger Event screen,
the Select Processes screen opens.

The Running processes list displays all application processes that are
currently running. The Processes list displays the application processes that
will trigger the recovery scenario if they crash.

Part VI • Working with Advanced Features

546

You can add application processes to the Processes list by typing them in
the Processes list or by selecting them from the Running processes list.

To add a process from the Running processes list, double-click a process in
the Running processes list or select it and click the Add button. You can
select multiple processes using standard Windows multiple selection
techniques (CTRL and SHIFT keys).

To add a process directly to the Processes list, click the Add New Process
button to enter the name of any process you want to add to the list.

To remove a process from the Processes list, select it and click the Remove
Process button.

Tip: You can modify the name of a process by selecting it in the Processes
list and clicking the process name to edit it.

Click Next to continue to the Recovery Operations screen.

Chapter 20 • Defining and Using Recovery Scenarios

547

Recovery Operations Screen

The Recovery Operations screen enables you to manage the collection of
recovery operations in the recovery scenario. Recovery operations are
operations that QuickTest performs sequentially when it recognizes the
trigger event.

You must define at least one recovery operation. To define a recovery
operation and add it to the Recovery operations list, click Next to continue
to the Recovery Operation screen.

Part VI • Working with Advanced Features

548

If you define two or more recovery operations, you can select a recovery
operation and use the Move Up or Move Down buttons to change the order
in which QuickTest performs the recovery operations. You can also select a
recovery operation and click the Remove button to delete a recovery
operation from the recovery scenario.

Note: If you define a Restart Microsoft Windows recovery operation, it is
always inserted as the last recovery operation, and you cannot change its
position in the list.

After you have defined at least one recovery operation, the Add another
recovery operation check box is displayed.

➤ Select the check box and click Next to define another recovery operation.

➤ Clear the check box and click Next to continue to the Post-Recovery Test
Run Options screen.

Chapter 20 • Defining and Using Recovery Scenarios

549

Recovery Operation Screen

The Recovery Operation screen enables you to specify the operation(s)
QuickTest performs after it detects the trigger event.

Select a type of recovery operation and click Next. The next screen displayed
in the wizard depends on which recovery operation type you select.

You can define the following types of recovery operations:

➤ Keyboard or mouse operation—QuickTest simulates a click on a button in a
window or a press of a keyboard key. Select this option and click Next to
continue to the Recovery Operation – Click Button or Press Key screen.

➤ Close application process—QuickTest closes specified processes. Select this
option and click Next to continue to the Recovery Operation – Close
Processes screen.

Part VI • Working with Advanced Features

550

➤ Function call—QuickTest calls a VBScript function. Select this option and
click Next to continue to the Recovery Operation – Function Call screen.

➤ Restart Microsoft Windows—QuickTest restarts Microsoft Windows. Select
this option and click Next to continue to the Recovery Operations screen.

Note: If you use the Restart Microsoft Windows recovery operation, you
must ensure that any component associated with this recovery scenario is
saved before you run it. You must also configure the computer on which the
component is run to automatically log in on restart.

Recovery Operation – Click Button or Press Key Screen

If you chose a Keyboard or mouse operation recovery operation in the
Recovery Operation screen, the Recovery Operation – Click Button or Press
Key screen opens.

Chapter 20 • Defining and Using Recovery Scenarios

551

Specify the keyboard or mouse operation that you want QuickTest to
perform when it detects the trigger event:

➤ Click Default button / Press the ENTER key—Instructs QuickTest to click the
default button or press the ENTER key in the displayed window when the
trigger occurs.

➤ Click Cancel button / Press the ESCAPE key—Instructs QuickTest to click the
Cancel button or press the ESCAPE key in the displayed window when the
trigger occurs.

➤ Click button with label—Instructs QuickTest to click the button with the
specified label in the displayed window when the trigger occurs. If you select
this option, click the pointing hand and then click anywhere in the trigger
window.

Tip: Hold the left CTRL key to change the window focus or perform
operations such as a right-click or mouseover to display a context menu. If
the window containing the object you want to select is minimized, you can
display it by holding the left CTRL key, right-clicking the application in the
Windows task bar, and choosing Restore from the context menu.

All button labels in the selected window are displayed in the list box. Select
the required button from the list.

➤ Press key or key combination—Instructs QuickTest to press the specified
keyboard key or key combination in the displayed window when the trigger
occurs. If you select this option, click in the edit box and then press the key
or key combination on your keyboard that you want to specify.

Click Next. The Recovery Operations screen reopens, showing the keyboard
or mouse recovery operation that you defined.

Part VI • Working with Advanced Features

552

Recovery Operation – Close Processes Screen

If you chose a Close application process recovery operation in the Recovery
Operation screen, the Recovery Operation – Close Processes screen opens.

The Running processes list displays all application processes that are
currently running. The Processes to close list displays the application
processes that will be closed when the trigger is activated.

To add a process from the Running processes list, double-click a process in
the Running processes list or select it and click the Add button. You can
select multiple processes using standard Windows multiple selection
techniques (CTRL and SHIFT keys).

Chapter 20 • Defining and Using Recovery Scenarios

553

To add a process directly to the Processes to close list, click the Add New
Process button to enter the name of any process you want to add to the list.

To remove a process from the Processes to close list, select it and click the
Remove Process button.

Tip: You can modify the name of a process by selecting it in the Processes to
close list and clicking the process name to edit it.

Click Next. The Recovery Operations screen reopens, showing the close
processes recovery operation that you defined.

Part VI • Working with Advanced Features

554

Recovery Operation – Function Call Screen

If you chose a Function call recovery operation in the Recovery Operation
screen, the Recovery Operation – Function Call screen opens.

Select a recently specified function library in the Function Library box.
Alternatively, click the browse button to navigate to an existing function
library.

Note: The function library must be stored in the Quality Center project.

Chapter 20 • Defining and Using Recovery Scenarios

555

After you select a function library, choose one of the following options:

➤ Select function—Choose an existing function from the function library you
selected.

Note: Only functions that match the prototype syntax for the trigger type
selected in the Select Trigger Event screen are displayed. Following is the
prototype for each trigger type:

Test run error trigger
OnRunStep
(
[in] Object as Object: The object of the current step.
[in] Method as String: The method of the current step.
[in] Arguments as Array: The actual method's arguments.
[in] Result as Integer: The actual method's result.
)

Pop-up window and Object state triggers
OnObject
(
[in] Object as Object: The detected object.
)

Application crash trigger
OnProcess
(
[in] ProcessName as String: The detected process's Name.
[in] ProcessId as Integer: The detected process' ID.
)

Part VI • Working with Advanced Features

556

➤ Define new function—Create a new function by specifying a unique name
for it, and defining the function in the Function Name box according to the
displayed function prototype. The new function is added to the function
library you selected.

Note: If more than one scenario uses a function with the same name from
different function libraries, the recovery process may fail. In this case,
information regarding the recovery failure is displayed during the run
session.

Click Next. The Recovery Operations screen reopens, showing the function
operation that you defined.

Chapter 20 • Defining and Using Recovery Scenarios

557

Post-Recovery Test Run Options Screen

When you clear the Add another recovery operation check box in the
Recovery Operations screen and click Next, the Post-Recovery Test Run
Options screen opens. Post-recovery test run options specify how to
continue the run session after QuickTest has identified the event and
performed all of the specified recovery operations.

QuickTest can perform one of the following run session options after it
performs the recovery operations you defined:

Part VI • Working with Advanced Features

558

➤ Repeat current step and continue

The current step is the step that QuickTest was running when the recovery
scenario was triggered. If you are using the On error activation option for
recovery scenarios, the step that returns the error is often one or more steps
later than the step that caused the trigger event to occur.

Thus, in most cases, repeating the current step does not repeat the trigger
event. For more information, see “Enabling and Disabling Recovery
Scenarios” on page 568.

➤ Proceed to next step

Skips the step that QuickTest was running when the recovery scenario was
triggered. Keep in mind that skipping a step that performs operations on
your application may cause subsequent steps to fail.

➤ Restart current test run

Stops performing steps and re-runs the component from the beginning.

➤ Stop the test run

Stops running the component.

Note: If you chose Restart Microsoft Windows as a recovery operation, you
can choose from only the last two test run options listed above.

Select a test run option and click Next to continue to the Name and
Description screen.

Chapter 20 • Defining and Using Recovery Scenarios

559

Name and Description Screen

After you specify a test run option in the Post-Recovery Test Run Options
screen, and click Next, the Name and Description screen opens.

In the Name and Description screen, you specify a name by which to
identify your recovery scenario. You can also add descriptive information
regarding the scenario.

Enter a name and a textual description for your recovery scenario, and click
Next to continue to the Completing the Recovery Scenario Wizard screen.

Part VI • Working with Advanced Features

560

Completing the Recovery Scenario Wizard Screen

After you specify a recovery scenario name and description in the Name and
Description screen and click Next, the Completing the Recovery Scenario
Wizard screen opens.

In the Completing the Recovery Scenario Wizard screen, you can review a
summary of the scenario settings you defined.

Note: You associate a recovery scenario for a component with the
component’s application area. You can also define the default recovery
scenarios for all new components associated with a specific application area.
For more information, see “Working with Application Areas” on page 73.

Click Finish to complete the recovery scenario definition.

Chapter 20 • Defining and Using Recovery Scenarios

561

Saving the Recovery Scenario in a Recovery File

After you create or modify a recovery scenario in a recovery file using the
Recovery Scenario Wizard, you need to save the recovery file.

To save a new or modified recovery file:

 1 Click the Save button. If you added or modified scenarios in an existing
recovery file, the recovery file and its scenarios are saved. If you are using a
new recovery file, the Save Attachment dialog box opens.

Tip: You can also click the arrow to the right of the Save button and select
Save As to save the recovery file under a different name.

 2 Choose the folder in which you want to save the file.

 3 Type a name for the file in the File name box. The recovery file is saved in
the specified location with the file extension .qrs.

Tip: If you have not yet saved the recovery file, and you click the Close
button in the Recovery Scenario Manager dialog box, QuickTest prompts
you to save the recovery file. Click Yes, and proceed with step 2 above. If
you added or modified scenarios in an existing recovery file, and you click
Yes to the message prompt, the recovery file and its scenarios are saved.

Part VI • Working with Advanced Features

562

Managing Recovery Scenarios

Once you have created recovery scenarios, you can use the Recovery
Scenario Manager to manage them.

The Recovery Scenario Manager contains the following recovery scenario
icons:

Icon Description

Indicates that the recovery scenario is triggered when a window pops
up in an open application during the run session.

Indicates that the recovery scenario is triggered when the property
values of an object in an application match specified values.

Indicates that the recovery scenario is triggered when a step in the
component does not run successfully.

Indicates that the recovery scenario is triggered when an open
application fails during the run session.

Chapter 20 • Defining and Using Recovery Scenarios

563

The Recovery Scenario Manager enables you to manage existing scenarios
by:

➤ Viewing Recovery Scenario Properties

➤ Modifying Recovery Scenarios

➤ Deleting Recovery Scenarios

➤ Copying Recovery Scenarios between Recovery Scenario Files

Viewing Recovery Scenario Properties

You can view properties for any defined recovery scenario.

To view recovery scenario properties:

 1 In the Scenarios box, select the recovery scenario whose properties you want
to view.

 2 Click the Properties button. Alternatively, you can double-click a scenario in
the Scenarios box. The Recovery Scenario Properties dialog box opens.

Part VI • Working with Advanced Features

564

The Recovery Scenario Properties dialog box displays the following
read-only information about the selected scenario:

➤ General tab—Displays the name and description defined for the recovery
scenario, plus the name and path of the recovery file in which the scenario
is saved.

➤ Trigger Event tab—Displays the settings for the trigger event defined for the
recovery scenario.

➤ Recovery Operation tab—Displays the recovery operation(s) defined for the
recovery scenario.

➤ Post-Recovery Operation tab—Displays the post-recovery operation defined
for the recovery scenario.

Modifying Recovery Scenarios

You can modify the settings for an existing recovery scenario.

To modify a recovery scenario:

 1 In the Scenarios box, select the scenario that you want to modify.

 2 Click the Edit button. The Recovery Scenario Wizard opens, with the
settings you defined for the selected recovery scenario.

 3 Navigate through the Recovery Scenario Wizard and modify the details as
needed. For information on the Recovery Scenario Wizard options, see
“Defining Recovery Scenarios,” on page 531.

Note: Modifications you make are not saved until you click Save in the
Recovery Scenario Manager dialog box. If you have not yet saved your
modifications, and you click the Close button in the Recovery Scenario
Manager dialog box, QuickTest prompts you to save the recovery file. Click
Yes to save your changes.

Chapter 20 • Defining and Using Recovery Scenarios

565

Deleting Recovery Scenarios

You can delete an existing recovery scenario if you no longer need it. When
you delete a recovery scenario from the Recovery Scenario Manager, the
corresponding information is deleted from the recovery scenario file.

Note: If a deleted recovery scenario is associated with a component,
QuickTest ignores it during the run session.

To delete a recovery scenario:

 1 In the Scenarios box, select the scenario that you want to delete.

 2 Click the Delete button. The recovery scenario is deleted from the Recovery
Scenario Manager dialog box.

Note: The scenario is not actually deleted until you click Save in the
Recovery Scenario Manager dialog box. If you have not yet saved the
deletion, and you click the Close button in the Recovery Scenario Manager
dialog box, QuickTest prompts you to save the recovery file. Click Yes to
save the recovery scenario file and delete the scenarios.

Copying Recovery Scenarios between Recovery Scenario Files

You can copy recovery scenarios from one recovery scenario file to another.

To copy a recovery scenario from one recovery scenario file to another:

 1 In the Scenarios box, select the recovery scenario that you want to copy.

 2 Click the Copy button. The scenario is copied to the Clipboard.

 3 Click the Open button and select the recovery scenario file to which you
want to copy the scenario, or click the New button to create a new recovery
scenario file in which to copy the scenario.

Part VI • Working with Advanced Features

566

 4 Click the Paste button. The scenario is copied to the new recovery scenario
file.

Notes:

If a scenario with the same name already exists in the recovery scenario file,
you can choose whether you want to replace it with the new scenario you
have just copied.

Modifications you make are not saved until you click Save in the Recovery
Scenario Manager dialog box. If you have not yet saved your modifications,
and you click the Close button in the Recovery Scenario Manager dialog
box, QuickTest prompts you to save the recovery file. Click Yes to save your
changes.

Setting the Recovery Scenarios List for Your Application
Areas

After you have created recovery scenarios, you associate them with selected
tests or components so that QuickTest will perform the appropriate
scenario(s) during the run sessions if a trigger event occurs. You can
prioritize the scenarios and set the order in which QuickTest applies the
scenarios during the run session. You can also choose to disable specific
scenarios, or all scenarios, that are associated with an application area.

Note: You define recovery scenarios for components in the application area.
For more information, see “Working with Application Areas” on page 73.

Chapter 20 • Defining and Using Recovery Scenarios

567

Viewing Recovery Scenario Properties

You can view properties for any recovery scenario associated with your
application area.

Note: You modify recovery scenario settings from the Recovery Scenario
Manager dialog box. For more information, see “Modifying Recovery
Scenarios” on page 564.

To view recovery scenario properties:

 1 In the General pane of the application area, click the Additional Settings
button. The Application Area Settings dialog box opens.

 2 Click the Recovery tab.

 3 In the Scenarios box, select the recovery scenario whose properties you want
to view.

 4 Click the Properties button. Alternatively, you can double-click a scenario in
the Scenarios box. The Recovery Scenario Properties dialog box opens,
displaying read-only information regarding the settings for the selected
scenario. For more information, see “Viewing Recovery Scenario Properties”
on page 563.

Setting Recovery Scenario Priorities

You can specify the order in which QuickTest performs associated scenarios
during a run session. When a trigger event occurs, QuickTest checks for
applicable recovery scenarios in the order in which they are displayed in the
Recovery tab of the Application Area Settings dialog box.

To set recovery scenario priorities:

 1 In the General pane of the application area, click the Additional Settings
button. The Application Area Settings dialog box opens.

 2 Click the Recovery tab.

 3 In the Scenarios box, select the scenario whose priority you want to change.

Part VI • Working with Advanced Features

568

 4 Click the Up or Down button. The selected scenario’s priority changes
according to your selection.

 5 Repeat steps 3-4 for each scenario whose priority you want to change.

Removing Recovery Scenarios from Your Application Area

You can remove the association between a specific scenario and an
application area using the Application Area Settings dialog box. After you
remove a scenario from an application area, the scenario itself still exists,
but QuickTest will no longer perform the scenario during a run session.

To remove a recovery scenario from your application area:

 1 In the General pane of the application area, click the Additional Settings
button. The Application Area Settings dialog box opens.

 2 Click the Recovery tab.

 3 In the Scenarios box, select the scenario you want to remove.

 4 Click the Remove button. The selected scenario is no longer associated with
the application area.

Enabling and Disabling Recovery Scenarios

You can enable or disable specific scenarios and determine when QuickTest
activates the recovery scenario mechanism in the Recovery tab of the
Application Area Settings dialog box. When you disable a specific scenario,
it remains associated with the application area, but is not performed by
QuickTest during the run session. You can enable the scenario at a later
time.

You can also specify the conditions for which the recovery scenario is to be
activated.

Chapter 20 • Defining and Using Recovery Scenarios

569

To enable/disable specific recovery scenarios:

 1 In the General pane of the application area, click the Additional Settings
button. The Application Area Settings dialog box opens.

 2 Click the Recovery tab.

 3 In the Scenarios box, perform one of the following:

➤ Select the check box to the left of one or more individual scenarios to
enable them.

➤ Clear the check box to the left of one or more individual scenarios to
disable them.

To define when the recovery mechanism is activated:

➤ Select one of the following options in the Activate recovery scenarios box:

➤ On every step—The recovery mechanism is activated after every step.

➤ On error—The recovery mechanism is activated only after steps that
return an error return value.

Note that the step that returns an error is often not the same as the step
that causes the exception event to occur.

For example, a step that selects a check box may cause a pop-up dialog
box to open. Although the pop-up dialog box is defined as a trigger
event, QuickTest moves to the next step because it successfully
performed the check box selection step. The next several steps could
potentially perform checkpoints, functions or other conditional or
looping statements that do not require performing operations on your
application. It may only be ten statements later that a step instructs
QuickTest to perform an operation on the application that it cannot
perform due to the pop-up dialog box. In this case, it is this tenth step
that returns an error and triggers the recovery mechanism to close the
dialog box. After the recovery operation is completed, the current step is
this tenth step, and not the step that caused the trigger event.

Part VI • Working with Advanced Features

570

➤ Never—The recovery mechanism is disabled.

Note: Choosing On every step may result in slower performance during the
run session.

Tip: You can also enable or disable specific scenarios or all scenarios
associated with an application area programmatically during the run
session. For more information, see “Programmatically Controlling the
Recovery Mechanism” on page 571.

Setting Default Recovery Scenario Settings for All New
Components

You define the default recovery scenarios for all new components in the
component’s application area. For more information, see “Working with
Application Areas” on page 73.

Chapter 20 • Defining and Using Recovery Scenarios

571

Programmatically Controlling the Recovery Mechanism

You can use the Recovery object to control the recovery mechanism
programmatically during the run session. For example, you can enable or
disable the entire recovery mechanism or specific recovery scenarios for
certain parts of a run session, retrieve status information about specific
recovery scenarios, and explicitly activate the recovery mechanism at a
certain point in the run session.

By default, QuickTest checks for recovery triggers when an error is returned
during the run session. You can use the Recovery object’s Activate method
to force QuickTest to check for triggers after a specific step in the run
session. For example, suppose you know that an object property checkpoint
will fail if certain processes are open when the checkpoint is performed. You
want to be sure that the pass or fail of the checkpoint is not affected by these
open processes, which may indicate a different problem with your
application.

However, a failed checkpoint does not result in a run error. So by default, the
recovery mechanism would not be activated by the object state. You can
define a recovery scenario that looks for and closes specified open processes
when an object’s properties have a certain state. This state shows the object’s
property values as they would be if the problematic processes were open.
You can instruct QuickTest to activate the recovery mechanism if the
checkpoint fails so that QuickTest will check for and close any problematic
open processes and then try to perform the checkpoint again. This ensures
that when the checkpoint is performed the second time it is not affected by
the open processes.

For more information on the Recovery object and its methods, refer to the
QuickTest Professional Object Model Reference.

Part VI • Working with Advanced Features

572

573

21
Working with User-Defined Functions and
Function Libraries

In addition to the test objects, methods, and built-in functions supported by
the QuickTest Test Object Model, you can define your own function libraries
containing VBScript functions, subroutines, modules, and so forth, and
then use their functions as operations in your component.

Note: The terms function, method, and operation are used interchangeably
in this chapter. This is because functions and methods are known as
operations in the Business Component Keyword View, whereas in
QuickTest, the terms function and method are used.

This chapter describes:

➤ About Working with User-Defined Functions and Function Libraries

➤ Managing Function Libraries

➤ Working with Associated Function Libraries

➤ Using the Function Definition Generator

➤ Registering User-Defined Functions as Test Object Methods

➤ Additional Tips for Working with User-Defined Functions

Part VI • Working with Advanced Features

574

About Working with User-Defined Functions and Function
Libraries

You can create user-defined functions to provide additional functionality for
your components. A user-defined function encapsulates an activity (or a
group of steps that require programming) into a keyword (or operation). By
using user-defined functions, your components are easier to design, read,
and maintain. You or a Subject Matter Expert can then call user-defined
functions from a component by inserting the relevant keywords (or
operations) into that component.

You can register a user-defined function as a method for a QuickTest test
object. A registered method can either override the functionality of an
existing test object method for the duration of a run session, or be registered
as a new method for a test object class. For more information about
registering user-defined functions, see “Using the Function Definition
Generator” on page 589 and “Registering User-Defined Functions as Test
Object Methods” on page 604.

Note: When you create a user-defined function, do not give it the same
name as a built-in function (for example, GetLastError, MsgBox, or Print).
Built-in functions take priority over user-defined functions, so if you call a
user-defined function that has the same name as a built-in function, the
built-in function is called instead. For a list of built-in functions, refer to the
Built-in functions list in the Step Generator (Insert > Step Generator).

Using QuickTest, you can define and store your user-defined functions in a
function library (saved as a .qfl file, by default). A function library is a Visual
Basic script containing VBscript functions, subroutines, modules, and so
forth. You can also use QuickTest to modify and debug any existing function
libraries (such as .vbs or .txt files). For information on using VBScript, see
“Handling VBScript Syntax Errors” on page 630.)

Chapter 21 • Working with User-Defined Functions and Function Libraries

575

When you store a function in a function library and associate the function
library with an application area, any component associated with that
application area can call the public functions in that function library. For
more information, see “Working with Associated Function Libraries” on
page 587. Functions that are stored in an associated function library can be
accessed from the Step Generator (for function libraries) and the Operation
column in the Keyword View.

You can also define private functions and store them in a function library.
Private functions are functions that can be called only by other functions
within the same function library. This is useful if you to reuse segments of
code in your public functions.

You can define functions manually or using the Function Definition
Generator, which creates the basic function definition for you
automatically. Even if you prefer to define functions manually, you may still
want to use the Function Definition Generator to view the syntax required
to add header information, register a function to a test object, or set the
function as the default method for the test object. For more information, see
“Using the Function Definition Generator” on page 589.

Managing Function Libraries

You can create function libraries in QuickTest and call their functions from
your component after you associate the function library with the
component’s application area. A function library is a separate QuickTest
document containing VBscript functions, subroutines, modules, and so
forth. Each function library opens in a separate window, enabling you to
open and work on one or several function libraries at the same time. After
you finish editing a function library, you can close it, leaving your QuickTest
session open. You can also close all open function libraries simultaneously.

By implementing user-defined functions in function libraries and
associating them with your component via the application area, you enable
other users, such as Subject Matter Experts, to choose functions that
perform complex operations, such as adding if/then statements and loops to
component steps—without needing any programming knowledge. In
addition, you save time and resources by implementing and using reusable
functions.

Part VI • Working with Advanced Features

576

QuickTest provides tools that enable you to edit and debug any function
library, even if it was created using an external editor. For example,
QuickTest can check the syntax of your functions, and the function library
window provides the same editing features that are available in the Expert
View. For more information on the options available in the Expert View,
refer to the QuickTest Professional Advanced Features User’s Guide.

Creating a Function Library

You can create a new function library at any time.

To create a new function library in QuickTest:

Perform one of the following:

➤ Choose File > New > Function Library

➤ Click the New button down arrow and choose Function Library

A new function library opens.

You can now add content to your function library and/or save it. When you
add content to your function library, QuickTest applies the same formatting
it applies to content in the Expert View. You can modify the formatting, if
needed. For more information, see “Customizing a Function Library
Window” on page 245.

Chapter 21 • Working with User-Defined Functions and Function Libraries

577

Saving a Function Library

After you create or edit a function library in QuickTest, you can save it to
your Quality Center project.

Tips:

➤ When you modify a function library, an asterisk (*) is displayed in the
title bar until the function library is saved.

➤ To save all open documents, choose File > Save All. QuickTest prompts
you to specify a location in which to save any new files that have not yet
been saved.

➤ To save multiple documents, choose Window > Windows. In the Window
dialog box, select the documents you want to save and click the Save
button. QuickTest prompts you for the save location for any new files
that have not yet been saved.

➤ You can also choose File > Save As to save the active function library
under a different name or using a different path.

To save a function library:

 1 Make sure that the function library you want to save is the active document.
(You can click the function library’s tab to bring it into focus.)

 2 Perform one of the following:

➤ Click the Save button

➤ Choose File > Save

➤ Right-click the function library document’s tab and choose Save

Part VI • Working with Advanced Features

578

If the function library was previously saved, QuickTest saves it with your
changes. Otherwise, if this is the first time you are saving this function
library, the Save Function Library to Quality Center dialog box opens.

 3 In the Test Plan Tree box, choose the folder in which you want to save the
function library.

Note: You must save the function library in your Quality Center project (not
the file system).

 4 In the Attachment name box, type a name for the function library.

 5 Click OK. QuickTest saves the function library with a .qfl extension (unless
you specify a different extension, such as .vbs or .txt, or remove the
extension altogether), and displays the function library name in the title
bar.

Chapter 21 • Working with User-Defined Functions and Function Libraries

579

Opening a Function Library

In QuickTest, you can open any function library that is saved in the file
system or your Quality Center project—even if another document is already
open in QuickTest. You can only open a function library if you have read or
read-write permissions for the file.

Note: To enable a component or application area to use the functions
defined in a function library, the function library must be saved in your
Quality Center project and be associated with the application area. For more
information, see “Managing Function Libraries” on page 87.

You can choose to open a function library in edit mode or read-only mode:

➤ Edit mode—Enables you to view and modify the function library. While the
function library is open on your computer, other users can view the file in
read-only mode, but they cannot modify it.

➤ Read-only mode—Enables you to view the function library but not modify
it. By default, when you open a function library that is currently open on
another computer, it opens in read-only mode. You can also choose to open
a function library in read-only mode if you want to review it, but you do not
want to prevent another user from modifying it.

Tip: You can also navigate directly from a function in your document to its
function definition in another function library. For more information, see
“Navigating to a Specific Function in a Function Library” on page 582.

Part VI • Working with Advanced Features

580

To open an existing function library:

Perform one of the following:

➤ Choose File > Open > Function Library

➤ Click the Open button down arrow and choose Function Library

Tips:

If the function library was recently created or opened, you can choose it
from the recent files list in the File menu.

If the function library is associated with the open component or application
area, you can choose it from Resources > Associated Function Libraries.

The Open Function Library from Quality Center dialog box opens.

Tip: You can open the function library in read-only mode by selecting the
Open in read-only mode check box.

Chapter 21 • Working with User-Defined Functions and Function Libraries

581

Browse to and select a function library, and click Open. QuickTest opens the
specified function library in a new window. You can now view and modify
its content. For more information, see “Editing a Function Library” on
page 582 and “Debugging a Function Library” on page 584.

Navigating Between Open QuickTest Documents

You can open multiple function libraries while a component or application
area is open, and you can navigate between all of your open documents.

To navigate between open QuickTest documents:

Perform one of the following:

➤ Click the tab for the required document in the Document pane

Tip: If not all tabs are displayed due to lack of space, use the left and right
scroll arrows in the Document pane to display the required document’s tab.

➤ Press CTRL+TAB on your keyboard to scroll between open documents

➤ Choose the required document from the Window menu

➤ Choose Window > Windows, select the required document in the Windows
dialog box, and click the Activate button

Note: You can also choose Resources > Associated Function Libraries and
choose the required function library from the list. This also opens closed
function libraries that are associated with your component or application
area.

Part VI • Working with Advanced Features

582

Navigating to a Specific Function in a Function Library

After you insert a call to a function, you can navigate directly to its
definition in the source document. The function definition can be located
either in the same function library or in another function library that is
associated with your component (via its application area). If the document
containing the function definition is already open, QuickTest activates the
window (brings the window into focus). If the document is closed,
QuickTest opens it.

To navigate to a function's definition:

 1 In the function library, click in the step containing the relevant function.

 2 Perform one of the following:

➤ Choose Edit > Advanced > Go to Function Definition

➤ Right-click the step and choose Go to Function Definition from the
context menu

QuickTest activates the relevant document (if the function definition is
located in another function library) and positions the cursor at the
beginning of the function definition.

Editing a Function Library

You can edit a function library at any time using the QuickTest editing
features that are available in the Expert View.

You can drag and drop a function (or part of it) from one document to
another. (To do so, you must first separate the tabbed documents into
separate document panes by clicking the Restore Down button (located
below the QuickTest window’s Restore Down / Maximize button).)

Chapter 21 • Working with User-Defined Functions and Function Libraries

583

You can add steps to your function library manually or using the Step
Generator. The Step Generator enables you to add steps that contain
reserved objects (the objects that QuickTest supplies for enhancement
purposes, such as utility objects), VBScript functions (such as MsgBox),
utility statements (such as Wait), and user-defined functions that are
defined in the same function library. IntelliSense is available for all
functions defined in your component or for public functions defined in
associated function libraries.

Note: In function libraries, IntelliSense does not enable you to view test
object names or collections because function libraries are not connected to
object repositories.

You can instruct QuickTest to check syntax by clicking the Check Syntax
button, or by choosing Tools > Check Syntax.

Tips:

For information on using VBScript, see “Understanding Basic VBScript
Syntax” on page 625.

Part VI • Working with Advanced Features

584

Editing a Read-Only Function Library

If you open a function library in read-only mode and then decide to modify
it, you can convert the function library to an editable file—as long as the
function library is not locked by another user. For more information on the
options available when opening a function library, see “Opening a Function
Library” on page 579.

Note: During a debug session, all documents (such as components and
function libraries) are read-only. To edit a document during a debug session,
you must first stop the debug session.

To edit a read-only function library:

Choose File > Enable Editing or click the Enable Editing button. You can
now edit the function library.

Debugging a Function Library

Before you can debug a function library, you must first associate it with a
component (via its application area) and then insert a call to at least one of
its functions. For example, you can use the Debug Viewer to view, set, or
modify the current value of objects or variables in your function library. You
can step into functions (including user-defined functions), set breakpoints,
stop at breakpoints, view expressions, and so forth. You can begin
debugging from a specific step, or you can instruct QuickTest to pause at a
specific step. For more information, see “Debugging Components and
Function Libraries” on page 457.

Note: During a debug session, all documents are read-only and cannot be
edited. To edit a document during a debug session, you must first stop the
debug session.

Chapter 21 • Working with User-Defined Functions and Function Libraries

585

Printing a Function Library

You can print a function library at any time. You can also include additional
information in the printout.

To print from the function library:

 1 Click the Print button or choose File > Print. The Print dialog box opens.

 2 Specify the print options that you want to use:

➤ Printer—Displays the printer to which the print job will be sent. You can
change the printer by clicking the Setup button.

➤ Selection only—Prints only the text that is currently selected
(highlighted) in the function library.

➤ Insert document name in header—Includes the name of the function
library at the top of the printout.

➤ Insert date in header—Includes today’s date at the top of the printout.
The date format is taken from your Windows regional settings.

➤ Page numbers—Includes page numbers on the bottom of the printout
(for example, page 1 of 3).

➤ Show line numbers every __ lines—Displays line numbers to the left of
the script lines, as specified.

➤ Number of copies—Specifies the number of times to print the document.

 3 If you want to print to a different printer or change your printer preferences,
click Setup to display the Print Setup dialog box.

 4 Click Print to print according to your selections.

Part VI • Working with Advanced Features

586

Closing a Function Library

You can close an individual function library, or if you have several function
libraries open, you can close some or all of them simultaneously. If any of
the function libraries are not saved, QuickTest prompts you to save them.

To close an individual function library:

Perform one of the following:

➤ Make sure that the function library you want to save is the active
document—you can click the function library’s tab to bring it into
focus—and choose File > Close

➤ Right-click the function library document’s tab and choose Close

➤ Click the Close button in the top right corner of the function library
window

➤ Choose Window > Windows. In the Windows dialog box, select the
function library to close if it is not already selected, and click the Close
Window(s) button

To close several function libraries:

Choose Window > Windows. In the Windows dialog box, select the function
libraries you want to close and click the Close Window(s) button.

To close all open function libraries:

Choose File > Close All Function Libraries, or Window > Close All Function
Libraries.

Chapter 21 • Working with User-Defined Functions and Function Libraries

587

Working with Associated Function Libraries

In QuickTest, you can create function libraries containing functions,
subroutines, modules, and so forth, and then associate the files with your
application area. This enables you or a Subject Matter Expert to insert a call
to a public function or subroutine in the associated function library from
any component associated with that application area. (Public functions
stored in function libraries can be called from any associated component
(via its application area), whereas private functions can be called only from
within the same function library.)

If a component can no longer access a function that was used in a step (for
example, if the function was deleted from the associated function library),
the icon is displayed adjacent to the step in the Keyword View. When
you run the component or business process test, an error will occur when it
reaches the step using the nonexistent function.

Note: Any text file written in standard VBScript syntax can be used as a
function library.

You can edit the list of associated function libraries for an existing
application area in the Function Libraries pane in an application area
(Application Area > Function Libraries sidebar button). For more
information, see “Managing Function Libraries” on page 87.

Working with Associated Function Libraries in Quality Center

When working with Quality Center and associated function libraries, you
must save the associated function library as an attachment in your Quality
Center project before you specify the associated file in the Function Libraries
pane of the application area. You can add a new or existing function library
to your Quality Center project.

Part VI • Working with Advanced Features

588

A component accesses the functions that are associated with its application
area. Therefore, any changes you make to a function library that is stored in
your Quality Center project and associated with an application area may
affect its associated components. When making changes to a function
library that is stored in your Quality Center project and associated with an
application area, consider the effect of the changes on the components that
use this application area.

Associating Function Libraries with an Application Area

You can associate an open function library with the currently open
application area.

You can also associate function libraries with the currently open application
area using the associated function libraries list. For more information, see
“Modifying Function Library Associations” on page 589.

To associate a function library with an application area:

 1 Make sure that the application area with which you want to associate the
function library is open in QuickTest.

 2 Create or open a function library in QuickTest. (Before continuing to the
next step, make sure that the function library you want to associate with the
application area is the active document—you can click the function library’s
tab to bring it into focus.) For more information, see “Managing Function
Libraries” on page 575.

 3 Save the function library in your Quality Center project as an attachment.
For more information, see “Saving a Function Library” on page 577.

 4 In QuickTest, choose File > Associate Library '<Function Library>' with
'<Application Area>' or right-click in the in the function library and choose
Associate Library '<Function Library>' with '<Application Area>'. QuickTest
associates the function library with the open application area.

Chapter 21 • Working with User-Defined Functions and Function Libraries

589

Modifying Function Library Associations

You can modify the list of associated function libraries for an application
area. You can add or remove function libraries from the list, and change
their priorities.

To modify function library associations in your application area:

 1 In QuickTest, open your application area and click the Function Libraries
button on the sidebar.

 2 In the associated function libraries list, click the Add button. QuickTest adds
[QualityCenter] to the file path and displays a browse button enabling you to
browse to a function library in your Quality Center project.

 3 Select the function library you want to associate with your application area
and click OK.

Tip: You can remove an associated function library from the list by selecting
it and clicking the Remove button. You can also prioritize associated
function libraries by using the Up and Down arrows.

For more information, see “Managing Function Libraries” on page 87.

Using the Function Definition Generator

QuickTest provides a Function Definition Generator, which enables you to
generate definitions for new user-defined functions and add header
information to them. You can then register these functions to a test object,
if needed. You fill in the required information and the Function Definition
Generator creates the basic function definition for you. After you define the
function definition, you insert the definition in your function library and
associate it with your application area. Finally, you complete the function
by adding its content (code).

If you register the function to a test object, it can be called by that test
object, and is displayed in the list of available operations for that test object

Part VI • Working with Advanced Features

590

If you do not register the function to a test object, it becomes a global
operation and is displayed in the list of operations in the Operation box in
the Step Generator (for function libraries), in the Operation list when the
Operation item is selected in the Keyword View, and when using
IntelliSense. If you register a function, you can define it as the default
operation that is displayed in the Keyword View when the test object to
which it is registered is selected.

Finally, you can document your user-defined function by defining the
tooltip that displays when the cursor is positioned over the operation in the
Step Generator (for function libraries), in the Keyword View, and when
using IntelliSense. You can also add a sentence that describes what the step
that includes the user-defined function actually does. This sentence is then
displayed in the Documentation column.

As you add information to the Function Definition Generator, the Preview
area displays the emerging function definition. After you finish defining the
function, you insert the definition in the active QuickTest document. The
function will then be accessible to any associated component (via its
application area). Finally, you add the content (code) of the function.

The following section provides an overview of the steps you perform when
using the Function Definition Generator to create a function.

To use the Function Definition Generator:

 1 Open the Function Definition Generator, as described in “Opening the
Function Definition Generator” on page 591.

 2 Define the function, as described in “Defining the Function Definition” on
page 593.

 3 Register the function to a test object, if needed, as described in “Registering
a Function Using the Function Generator” on page 594.

By default, functions that are not registered to a test object are automatically
defined as global functions that can be called by selecting the Functions
category in the Step Generator (for function libraries), the Operation item in
the Keyword View, or when using IntelliSense. Note that if you register the
function to a test object, you can also define the function (operation) as the
default operation for that selected test object.

Chapter 21 • Working with User-Defined Functions and Function Libraries

591

 4 Add arguments to the function, as described in “Specifying Arguments for
the Function” on page 598.

 5 Document the function by adding header information to it, as described in
“Documenting the Function” on page 599.

 6 Preview the function before finalizing it, as described in “Previewing the
Function” on page 601.

 7 Generate another function definition, if needed, as described in “Generating
Another User-Defined Function” on page 601.

 8 Finalize each function by inserting it in your active document and adding
content to it, as described in “Finalizing the User-Defined Function” on
page 602.

Note: Each of the steps listed in this section assumes that you have
performed the previous steps.

Opening the Function Definition Generator

You open the Function Definition Generator from QuickTest.

To open the Function Definition Generator:

 1 Make sure that the function library in which you want to insert the function
definition is the active document. (You can click the function library’s tab to
bring it into focus.) This is because the Function Definition Generator
inserts the function in the currently active document after you finish
defining it.

Part VI • Working with Advanced Features

592

 2 Choose Insert > Function Definition Generator or click the Function
Definition Generator button. The Function Definition Generator opens.

After you open the Function Definition Generator, you can begin to define a
new function.

Chapter 21 • Working with User-Defined Functions and Function Libraries

593

Defining the Function Definition

After you open the Function Definition Generator, you can begin defining a
function.

For example, if you want to define a function that verifies the value of a
specified property, you might name it VerifyProperty and define it as a public
function so that it can be called from any associated component (as long as
the function library is associated with its application area). (If you define it
as private, the function can only be called from elsewhere in the same
function library. Private functions cannot be registered to a test object.)

To define a function:

 1 In the Name box, enter a name for the new function. The name should
clearly indicate what the operation does so that it can be easily selected
from the Step Generator (for function libraries) or the Keyword View.
Function names cannot contain non-English letters or characters. In
addition, function names must begin with a letter and cannot contain
spaces or any of the following characters:
! @ # $ % ^ & * () + = [] \ { } | ; ‘ : ““ , / < > ?

Note: Do not give the user-defined function the same name as a built-in
function (for example, GetLastError, MsgBox, or Print). Built-in functions
take priority over user-defined functions, so if you call a user-defined
function that has the same name as a built-in function, the built-in function
is called instead. For a list of built-in functions, refer to the Built-in functions
list in the Step Generator (Insert > Step Generator).

 2 From the Type list, choose Function or Sub, according to whether you want
to define a function or a subroutine.

Part VI • Working with Advanced Features

594

 3 From the Scope list, choose the scope of the function—either Public (to
enable the function to be called by any component whose application area
is associated with this function library), or Private (to enable the function to
be called only from elsewhere in the same function library). By default, the
scope is set to Public. (Only public functions can be registered to a test
object.)

Note: If you create a user-defined function manually and do not define the
scope as Public or Private, it will be treated as a public function, by default.

After you define a public function, you can register the function.
Alternatively, if you defined a private function, or if you do not want to
register the function, you can continue by specifying arguments for the
function. For more information, see “Specifying Arguments for the
Function” on page 598.

Registering a Function Using the Function Generator

You can register a public function to a test object to enable the function
(operation) to be performed on a test object. When you register a function
to a test object, you can choose to override the functionality of an existing
operation, or you can register the function as a new operation for the test
object.

After you register a function to a test object, it is displayed as an operation in
the Keyword View Operation list when that test object is selected from the
Item list, as well as in IntelliSense and in the general Operation list in the
Step Generator (for function libraries). When you register a function to a
test object, it can only be called by that test object.

Chapter 21 • Working with User-Defined Functions and Function Libraries

595

If you choose to register the function to a test object, the Function
Definition Generator automatically adds the argument, test_object, as the
first argument in the Arguments area in the top-right corner of the Function
Definition Generator. The Function Definition Generator also automatically
adds a RegisterUserFunc statement with the correct argument values
immediately after your function definition.

When you register a function to a test object, you can optionally define it as
the default operation for that test object. This instructs QuickTest to display
the function in the Operation column, by default, when you or the Subject
Matter Expert choose the associated test object in the Item list. When you
define a function as the default function for a test object, the value True is
specified as the fourth argument of the RegisterUserFunc statement.

If you do not register the function to a specific test object, the function is
automatically defined as a global function. Global functions can be called
by selecting the Functions category in the Step Generator (for function
libraries), or the Operation item in the Keyword View. A list of global
functions can be viewed alphabetically in the Operation box when the
Functions category is selected in the Step Generator (for function libraries),
in the Operation list when the Operation item is selected from the Item list
in the Keyword View and when using IntelliSense.

Part VI • Working with Advanced Features

596

QuickTest searches the function libraries in the order in which they are
listed in the Resources tab. If QuickTest finds more than one function that
matches the function name in a specific function library, it uses the last
function it finds in that function library. If QuickTest finds two functions
with the same name in two different function libraries, it uses the function
from the function library that has the higher priority. To avoid confusion, it
is recommended that you verify that within the resources associated with an
application area, each function has a unique name.

Tip: If you choose not to register your function at this time, you can
manually register it later by adding a RegisterUserFunc statement after your
function as shown in the following example:
RegisterUserFunc “WebEdit”, “MySet”, “MySetFunc”

In this example, the MySet method (operation) is added to the WebEdit test
object using the MySetFunc user-defined function. If you or the Subject
Matter Expert choose the WebEdit test object from the Item list in the
Keyword View, the MySet operation will then be displayed in the Operation
list (together with other registered and out of the box operations for the
WebEdit test object).

You can also register your function to other test objects by duplicating
(copying and pasting) the RegisterUserFunc statement and modifying the
argument values as needed when you save the function code in a function
library.

To define this function as the default function, you define the value of the
fourth argument of the RegisterUserFunc statement as True. For example:
RegisterUserFunc “WebEdit”, “MySet”, “MySetFunc”, True

Note: A registered or global function can only be called from a component
after it is added to a function library that is associated with the component’s
application area.

Chapter 21 • Working with User-Defined Functions and Function Libraries

597

To register the function to a test object:

 1 Select the Register to a test object check box. The options in this area are
enabled, and a new argument, test_object, is automatically added to the list
of arguments in the Arguments area in the top-right corner of the Function
Definition Generator. (The test_object argument receives the test object to
which you want to register the function.)

Note: If you clear the Register to a test object check box, the default
test_object argument is automatically removed from the Arguments area
(unless you renamed it).

 2 Choose a Test object from the list of available objects. For example, for the
sample VerifyProperty function, you might want to register it to the Link
test object.

 3 Specify the Operation that you want to add or override for the test object.

➤ To define a new operation, enter a new operation name in the Operation
box. For example, for the sample VerifyProperty function, you may
want to define a new VerifyProperty operation.

➤ To override the standard functionality of an existing operation, choose
an operation from the list of available operations in the Operation box.

Part VI • Working with Advanced Features

598

 4 If you want the function to be displayed as the default operation in the
Operation column when you or the Subject Matter Expert choose the
associated item, select the Register as default operation check box.

For example, if you were to define the VerifyProperty operation as the
default operation for the Link test object, the value True would be defined as
the fourth argument of the RegisterUserFunc statement, and the syntax
would appear as follows:

RegisterUserFunc "Link", "VerifyProperty", "VerifyProperty", True

After you specify the test object registration information, you specify
additional arguments for the function.

Specifying Arguments for the Function

After you define the basic function definition and specify the test object
registration information, if any, you can specify the function’s arguments.

For example, if you choose to register the function to a test object, as we did
the example described in “Registering a Function Using the Function
Generator” on page 594, you may want to assign the arguments prop_name
(the name of the property to check) and expected_value (the expected value
of the property), in addition to the first argument, test_object. You must
define the required argument(s) for your function to run correctly.

You can list the arguments in any order. However, if you are registering the
function to a test object, the first argument must always receive the test
object.

Chapter 21 • Working with User-Defined Functions and Function Libraries

599

To define the arguments for the function:

In the Arguments area, specify the argument(s) for the function. You can
add as many arguments as needed. To ensure clarity, the name for each
argument should indicate the value that needs to be entered.

➤ To add an argument, click and enter a name for the argument. The
argument name should clearly indicate the value that needs to be
entered for the argument. Argument names may not contain
non-English letters or characters. In addition, argument names must
begin with a letter and cannot contain spaces or any of the following
characters:
! @ # $ % ^ & * () + = [] \ { } | ; ‘ : ““ , / < > ?

By default, the Pass Mode is set as By value. This instructs QuickTest to
pass the argument to the function by value. If you want to pass the
argument by reference, choose By reference in the Pass Mode box.

➤ To remove an argument, select it and click . The argument is removed
from the Function Definition Generator.

➤ To set the order of the arguments, use the and arrows. The order
of the arguments only affects the readability of the function code (except
if you want to register the public function—in this case, the first
argument must receive the test object).

Documenting the Function

The Function Definition Generator enables you to add header information
to your user-defined function. You can add a description, which is displayed
as a tooltip when the cursor is positioned over the operation. You and
Subject Matter Experts can then use this tooltip to determine which
operation to choose from the list of available operations. (It is advisable to
keep the description text as brief and clear as possible.)

In addition, you can add documentation that specifies exactly what a step
using your function does. You can include the test object name, test object
type, and any argument values in the text. You can also add text manually,
as needed. This text that you add here is displayed in the Documentation
column. Therefore, the sentence must be a clear and understandable.

Part VI • Working with Advanced Features

600

For example, if you were checking a link to “Mercury” from a search engine,
you might define the following documentation using the Function
Definition Generator:

‘@Documentation Check if the <Test object name> <Test object type>
<prop_name> value matches the expected value: <expected_value>.

After choosing values for the arguments in the Keyword View, the above
documentation might appear as follows: Check if the “Mercury Business
Technology” link “text” value matches the expected value: “Mercury Business
Technology Optimization (BTO) Software”.

Tip: You can right-click on any column header in the Keyword View and
select the Documentation only option to view or print a list of steps. This
instructs QuickTest or Quality Center to display only the Documentation
column (and any comments for business components). You can also choose
Edit > Copy Documentation to Clipboard and then paste the documentation
in any application. Therefore, the sentence displayed for the step in this
column must also be clear enough to use for manual testing instructions.

To document the function:

 1 In the Description box, enter the text to be displayed as a tooltip when the
cursor is positioned over the function name in the Operation list in the Step
Generator (for function libraries), in the Operation column in the Keyword
View, and in IntelliSense.

For example, for the sample VerifyProperty function, you may want to
enter: Checks whether a property value matches the actual value.

Chapter 21 • Working with User-Defined Functions and Function Libraries

601

 2 In the Documentation box, enter the text to be displayed in the
Documentation column of the Keyword View. You can use arguments in the
Documentation text by clicking and selecting the relevant argument. If
you selected the Register to a test object check box, clicking also enables
you to add the Test object name and/or Test object type items to the
Documentation column from the displayed list. If you use these test object
and argument items in the Documentation text, they are replaced
dynamically by the relevant test object names and types or argument values.

Previewing the Function

The Preview area displays the function code as you define it, in read-only
format. You can review your function and make any changes, as needed, in
the various areas of the Function Definition Generator.

For example, for the sample VerifyProperty function, the Preview area
displays the following code.

After you review the code (before you insert it in the active document), you
can choose either to generate another function definition or to finalize the
code for the function you defined.

Generating Another User-Defined Function

After you preview the code—before you insert the function in the active
document—you can decide whether you want to generate an additional
function definition.

Note: If you do not want to define an additional function, continue to the
next section.

Part VI • Working with Advanced Features

602

To generate an additional user-defined function:

 1 Select the Insert another function definition check box and click Insert.
QuickTest inserts the function definition in the active document and clears
the data from the Function Definition Generator. The Function Definition
Generator remains open.

 2 Define the new function beginning from “Defining the Function
Definition” on page 593.

Finalizing the User-Defined Function

After you preview the code, you insert it in the active document. If you
insert it in a function library, any component associated with the function
library (via its application area) can access the function.

After you insert the code in the required location, you can finalize the
function. For example, for the VerifyProperty function, the following code
would be inserted in your function library:

‘@Description Checks whether a property matches its expected value
‘@Documentation Check whether the <Test object name> <Test object type>
<prop_name> value matches the expected value: <expected_value>.
Public Function VerifyProperty (test_object, prop_name, expected_value)

‘TODO: add function body here
End Function
RegisterUserFunc "Link", "VerifyProperty", "VerifyProperty"

Tip: The RegisterUserFunc statement (in the last line) registers the
VerifyProperty function to the Link test object. If you want to register the
function to more than one test object, you could copy this line and
duplicate it for each test object, changing the argument values, as required.

Chapter 21 • Working with User-Defined Functions and Function Libraries

603

To finalize the function, you add its content (replacing the TODO
comment). For example, if you want the function to verify whether the
expected value of a property matches the actual property value of a specific
test object, you might add the following to the body of the function:

Dim actual_value
' Get the actual property value
actual_value = obj.GetROProperty(prop_name)
' Compare the actual value to the expected value
If actual_value = expected_value Then

Reporter.ReportEvent micPass, "VerifyProperty Succeeded", "The " &
prop_name & " expected value: " & expected_value & " matches the actual
value"

VerifyProperty = True
Else

Reporter.ReportEvent micFail, "VerifyProperty Failed", "The " &
prop_name & " expected value: " & expected_value & " does not match the
actual value: " & actual_value

VerifyProperty = False
End If

To finalize the user-defined function:

 1 Click OK. QuickTest inserts the function definition in the active document
and closes the Function Definition Generator.

 2 In your function library, add content to the function code, as required, by
replacing the TODO line.

Tip: To display the function in the test results tree (Test Results window)
after a run session, add a Reporter.ReportEvent statement to the function
code (as shown in the example above).

Note that if your user-defined function uses a default test object method,
this step will appear in the Test Results window after the run session.
However, you can still add a Reporter.ReportEvent statement to the
function code to provide additional information and to modify the
component or business process test status, if required.

Part VI • Working with Advanced Features

604

 3 Associate the function library with an application area to enable access to
the user-defined function(s). You also need to check its syntax to ensure that
components associated with that application area will have access to the
functions, and that you and the Subject Matter Expert will be able to see and
use the functions. For more information, see “Working with Associated
Function Libraries” on page 587.

Registering User-Defined Functions as Test Object Methods

In addition to using the QuickTest Function Definition Generator to register
a function, as described in “Registering a Function Using the Function
Generator” on page 594, you can also use the RegisterUserFunc statement
to add new methods to test objects or to change the behavior of an existing
test object method during a run session.

When you register a function to a test object, you can define it as the default
operation for that test object, if required. The default operation is displayed
by default in the Operation column in the Keyword View when the test
object to which it is registered is selected.

If you choose not to register a function to a test object, it becomes a global
function. Global functions can be called by selecting the Functions category
in the Step Generator (for function libraries), the Operation item in the
Keyword View, or when using IntelliSense. You use the UnregisterUserFunc
statement to disable new methods or to return existing methods to their
original QuickTest behavior.

To register a method, you first define a function in an associated function
library. You then enter a RegisterUserFunc statement at the end of the
function that specifies the test object class, the function to use, and the
method name that calls your function. You can register a new method for a
test object class, or you can use an existing method name to (temporarily)
override the existing functionality of the specified method.

Your registered method applies only to the function library in which you
register it. In addition, QuickTest clears all function registrations at the
beginning of each run session.

Chapter 21 • Working with User-Defined Functions and Function Libraries

605

Preparing the User-Defined Function

When you run a statement containing a registered method, it sends the test
object as the first argument. For this reason, your user-defined function
must have at least one argument. Your user-defined function can have any
number of arguments, or it can have only the test object argument. Make
sure that if the function overrides an existing method, it has the exact
syntax of the method it is replacing. This means that its first argument is the
test object and the rest of the arguments match all the original method
arguments.

Tip: You can use the parent test object property to retrieve the parent of the
object represented by the first argument in your function. For example:
ParentObj = obj.GetROProperty("parent")

When writing your function, you can use standard VBScript statements as
well as any QuickTest reserved objects, methods, functions, and any method
associated with the test object specified in the first argument of the
function.

For example, suppose you want to report the current value of an edit box to
the Test Results before you set a new value for it. You can override the
standard QuickTest Set method with a function that retrieves the current
value of an edit box, reports that value to the Test Results, and then sets the
new value of the edit box.

Part VI • Working with Advanced Features

606

The function would look something like this:

Function MyFuncWithParam (obj, x)
dim y
y = obj.GetROProperty("value")
Reporter.ReportEvent micDone, "previous value", y
MyFuncWithParam=obj.Set (x)

End Function

Note: This function defines a return value, so that each time it is used by the
component, the function returns the Set method argument value.

Registering User-Defined Test Object Methods

You can use the RegisterUserFunc statement to instruct QuickTest to use
your user-defined function as a method of a specified test object class for the
duration of a component run, or until you unregister the method.

To register a user-defined function as a test object method, use the
following syntax:

RegisterUserFunc TOClass, MethodName, FunctionName, SetAsDefault

Item Description

TOClass Note: Any test object class.

MethodName The name of the method you want to register (and display
in QuickTest, for example, in the Keyword View and
IntelliSense). If you enter the name of a method already
associated with the specified test object class, your
user-defined function overrides the existing method. If
you enter a new name, it is added to the list of methods
that the object supports.

Chapter 21 • Working with User-Defined Functions and Function Libraries

607

Tip: It is recommended to include the RegisterUserFunc statement in the
function library so that the method will be immediately available for use in
any component using that function library.

For example, suppose that the Find Flights Web page contains a Country
edit box, and by default, the box contains the value USA. The following
example registers the Set method to use the MySet function in order to
retrieve the default value of the edit box before the new value is entered.

Function MySet (obj, x)
dim y
y = obj.GetROProperty("value")
Reporter.ReportEvent micDone, "previous value", y
MySet=obj.Set(x)

End Function

RegisterUserFunc "WebEdit", "Set", "MySet"
Browser("MercuryTours").Page("FindFlights").WebEdit("Country").Set "Canada"

For more information and examples, refer to the QuickTest Professional Object
Model Reference.

FunctionName The name of the user-defined function that you want to
call from your component. The function can be located in
any function library associated with your component’s
application area.

SetAsDefault Indicates whether the registered function is used as the
default method for the test object.
When you select a test object in the Keyword View, the
default method is automatically displayed in the
Operation column.

Item Description

Part VI • Working with Advanced Features

608

Unregistering User-Defined Test Object Methods

When you register a method using a RegisterUserFunc statement, your
method becomes a recognized method of the specified test object while it is
being used by the component, or until you unregister the method. If your
method overrides a QuickTest method, unregistering the method resets the
method to its normal behavior. Unregistering other methods removes them
from the list of methods supported by the test object.

To unregister a user-defined method, use the following syntax:

UnRegisterUserFunc TOClass, MethodName

For example, suppose that the Find Flights Web page contains a Country
edit box, and by default, the box contains the value USA. The following
example registers the Set method to use the MySet function in order to
retrieve the default value of the edit box before the new value is entered.
After using the registered method in a WebEdit.Set statement for the
Country edit box, the UnRegisterUserFunc statement is used to return the
Set method to its standard functionality.

Function MySet (obj, x)
dim y
y = obj.GetROProperty("value")
Reporter.ReportEvent micDone, "previous value", y
MySet=obj.Set(x)

End Function

RegisterUserFunc "WebEdit", "Set", "MySet"
Browser("MercuryTours").Page("FindFlights").WebEdit("Country").Set "Canada"
UnRegisterUserFunc "WebEdit", "Set"

Item Description

TOClass The test object class for which your method is registered.

MethodName The method you want to unregister.

Chapter 21 • Working with User-Defined Functions and Function Libraries

609

Additional Tips for Working with User-Defined Functions

When working with user-defined functions, consider the following tips and
guidelines:

➤ For an in-depth view of the required syntax, you can define a function using
the Function Definition Generator and experiment with the various
options.

➤ When you register a function, it applies to an entire test object class. You
cannot register a method for a specific test object.

➤ If you want to call a function from additional test objects, you can copy the
RegisterUserFunc line, paste it immediately after another function and
replace any relevant argument values.

➤ It is recommended to include the RegisterUserFunc statement in the
function library so that the method will be immediately available for use in
any component using that function library.

➤ To use an Option Explicit statement in a function library associated with
your component, you must include it in all the function libraries associated
with the component. If you include an Option Explicit statement in only
some of the associated function libraries, QuickTest ignores all the Option
Explicit statements in all function libraries. You can use Option Explicit
statements directly in your action scripts without any restrictions.

➤ Each function library must have unique variables in its global scope. If you
have two associated function libraries that define the same variable in the
global scope using a Dim statement or define two constants with the same
name, the second definition causes a syntax error. If you need to use more
than one variable with the same name in the global scope, include a Dim
statement only in the last function library (since function libraries are
loaded in the reverse order).

➤ By default, steps that use user-defined functions are not displayed in the test
results tree of the Test Results window after a run session. If you want the
function to appear in the test results tree, you must add a
Reporter.ReportEvent statement to the function code. For example, you
may want to provide additional information or to modify the component
status, if required.

Part VI • Working with Advanced Features

610

➤ If you delete a function in use from an associated function library, the
component step using the function will display the icon. In subsequent
run sessions for the component or business process test, an error will occur
when the step using the non-existent function is reached.

➤ If another user modifies a function library that is referenced by a
component, or if you modify the function library using an external editor
(not QuickTest), the changes will take effect only after the component is
reopened.

➤ When more than one function with the same name exists in the function
library, the last function will always be called. To avoid confusion, make
sure that you verify that within the resources associated with an application
area or component, each function has a unique name.

➤ You can re-register the same method to use different user-defined functions
without first unregistering the method. However, when you do unregister
the method, it resets to its original QuickTest functionality (or is cleared
completely if it was a new method), and not to the previous registration.

For example, suppose you enter the following statements:

RegisterUserFunc "Link", "Click", "MyClick"
RegisterUserFunc "Link", "Click", "MyClick2"
UnRegisterUserFunc "Link", "Click"

After running the UnRegisterUserFunc statement, the Click method stops
using the functionality defined in the MyClick2 function, and returns to
the original QuickTest Click functionality, and not to the functionality
defined in the MyClick function.

➤ For more information about creating functions and subroutines using
VBScript, you can view the VBScript documentation from the QuickTest
Help menu (Help > QuickTest Professional Help > VBScript Reference).

611

22
Working with Function Library Windows

You can use the QuickTest Function Library window to create function
libraries using VBScript. This chapter provides a brief introduction to
VBScript and shows you how to enhance your function libraries using a few
simple programming techniques.

This chapter describes:

➤ About Working with the Function Library Window

➤ Generating Statements in a Function Library

➤ Navigating in Function Libraries

➤ Understanding Basic VBScript Syntax

➤ Using Programmatic Descriptions

➤ Running and Closing Applications Programmatically

➤ Using Comments, Control-Flow, and Other VBScript Statements

➤ Retrieving and Setting Test Object Property Values

➤ Accessing Run-Time Object Properties and Methods

➤ Running DOS Commands

➤ Enhancing Your Tests and Function Libraries Using the Windows API

➤ Choosing Which Steps to Report During the Run Session

Part VI • Working with Advanced Features

612

About Working with the Function Library Window

You can create and work with function libraries using the Function Library
window. To learn about working with VBScript, you can view the VBScript
documentation directly from the QuickTest Help menu (Help > QuickTest
Professional Help > VBScript Reference).

You can add statements that perform operations on objects or retrieve
information from your application. For example, you can add a step that
checks that an object exists, or you can retrieve the return value of a
method.

You can add steps to your function library either manually or using the Step
Generator. For more information on using the Step Generator, refer to the
QuickTest Professional Basic Features User’s Guide.

You can print a function library at any time. You can also include additional
information in the printout. For more information on printing a function
library, see “Printing a Function Library” on page 585.

Generating Statements in a Function Library

You can generate statements in the following ways:

➤ You can use the Step Generator to add steps that use methods and functions.
For more information, refer to the QuickTest Professional Basic Features User’s
Guide.

➤ You can manually insert VBScript statements that use methods to perform
operations. QuickTest includes IntelliSense, a statement completion feature
that helps you select the method or property for your statement and to view
the relevant syntax as you type in a function library. For more information,
see “Generating a Statement for an Object,” below.

➤ When you start to type a VBScript keyword in a function library, QuickTest
automatically adds the relevant syntax or blocks to your script, if the
Auto-expand VBScript syntax option is enabled. For more information, see
“Automatically Completing VBScript Syntax” on page 615.

Chapter 22 • Working with Function Library Windows

613

Generating a Statement for an Object

When you type in a function library, IntelliSense (the statement completion
feature included with QuickTest) enables you to select the method or
property for your statement from a drop-down list and view the relevant
syntax.

The Statement Completion option is enabled by default. You can disable or
enable this option in the Editor Options dialog box. For additional
information, see Chapter 10, “Customizing a Function Library Window.”

When the Statement Completion option is enabled:

➤ If you type a period after a test object in a statement, QuickTest displays a
list of the relevant methods, properties, and registered functions that you
can add after the object you typed.

➤ If you type the name of a method or property, QuickTest displays a list of
available methods and properties. Pressing CTRL+SPACE automatically
completes the word if there is only one option, or highlights the first
method or property (alphabetically) that matches the text you typed.

➤ If you type the name of a method or property, QuickTest displays the syntax
for it, including its mandatory and optional arguments. When you add a
step that uses a method or property, you must define a value for each
mandatory argument associated with the method or property.

➤ If you press CTRL+SPACE, QuickTest displays a list of the relevant methods,
properties, VBScript functions, user-defined functions, VBScript constants,
and utility objects that you can add. If you use the Object property in your
statement, if the object data is currently available or the open application,
QuickTest displays native methods and properties of any run-time object in
your application. For more information on the Object property, see
“Accessing Run-Time Object Properties and Methods” on page 652.

To generate a statement using statement completion in a function library:

 1 Confirm that the Statement completion option is selected (Tools > View
Options > General tab).

 2 In the function library, type the full hierarchy of an object, for example:

Browser("Welcome: Mercury Tours").Page("Book a Flight:
Mercury).WebEdit("username").

Part VI • Working with Advanced Features

614

 3 Type a period (.) after the object description, for example ("username").
QuickTest displays a list of the available methods and properties for the
object.

Tip: You can press CTRL+SPACE or choose Edit > Advanced > Complete Word
after a period, or after you have begun to type a method or property name.
QuickTest automatically completes the method or property name if only
one method or property matches the text you typed. If more than one
method or property matches the text, the first method or property
(alphabetically) that matches the text you typed is highlighted.

 4 Double-click a method or property in the list or use the arrow keys to choose
a method or property and press ENTER. QuickTest inserts the method or
property into the statement. If the method or property contains arguments,
QuickTest displays the syntax of the method or property in a tooltip.

Statement completion tooltip

Chapter 22 • Working with Function Library Windows

615

In the above example, the ReportEvent method has four arguments.

Tip: You can also place the cursor on any method or function that contains
arguments and press CTRL+SHIFT+SPACE or choose Edit > Advanced >
Argument Info to display the statement completion (argument syntax)
tooltip for that item.

 5 Enter the method arguments after the method.

For more details and examples of any QuickTest method, refer to the
QuickTest Professional Object Model Reference.

For more information about VBScript syntax, see “Understanding Basic
VBScript Syntax” on page 625.

Automatically Completing VBScript Syntax

When the Auto-expand VBScript syntax option is enabled and you start to
type a VBScript keyword in a function library, QuickTest automatically
recognizes the first two characters of the keyword and adds the relevant
VBScript syntax or blocks to the script. For example, if you enter the letters if
and then enter a space at the beginning of a line, QuickTest automatically
enters:

If Then
End If

The Auto-expand VBScript syntax option is enabled by default. You can
disable or enable this option in the Editor Options dialog box. For more
information, see “Customizing Editor Behavior” on page 247.

Part VI • Working with Advanced Features

616

If you enter two characters that are the initial characters of multiple
keywords, the Select a Keyword dialog box is displayed and you can select
the keyword you want. For example, if you enter the letters pr and then
enter a space, the Select a Keyword dialog box opens containing the
keywords private and property.

You can then select a keyword from the list and click OK. QuickTest
automatically enters the relevant VBScript syntax or block in the script.

For more information on VBScript syntax, see “Understanding Basic
VBScript Syntax” on page 625.

Chapter 22 • Working with Function Library Windows

617

Navigating in Function Libraries

You can use the Go To dialog box or bookmarks to jump to a specific line in
a function library. You can also find specific text strings in a function library,
and, if desired, replace them with different strings. These options make it
easier to navigate through sections of a long function.

Using the Go To Dialog Box

You can use the Go To dialog box to navigate to a specific line in a function
library.

Tip: By default, line numbers are displayed in function libraries. If they are
not displayed, you can select the Show line numbers option in the Tools >
View Options > General tab. For more information on the Editor options,
see Chapter 10, “Customizing a Function Library Window.”

To navigate to a line in a function library using the Go To dialog box:

 1 Activate the function library, if needed.

 2 Click the Go To button, or choose Edit > Go To. The Go To dialog box opens.

 3 Enter the line to which you want to navigate in the Line number box and
click OK. The cursor moves to the beginning of the line you specify.

Part VI • Working with Advanced Features

618

Working with Bookmarks

You can use bookmarks to mark important sections in your function library
so that you can easily navigate between the various parts. Bookmarks are
not preserved when you navigate between documents, and they are not
saved with the function library.

When you assign a bookmark, an icon is added to the left of the selected
line in the function library. You can then use the Go To button in the
Bookmarks dialog box to jump to the bookmarked rows.

Bookmarks look the same in tests and in function libraries. In the following
example, two bookmarks have been added to an action in a test.

Bookmarked lines

Chapter 22 • Working with Function Library Windows

619

To set bookmarks:

 1 Activate the function library, if needed.

 2 Click in the line to which you want to assign a bookmark.

 3 Choose Edit > Bookmarks. The Bookmarks dialog box opens.

 4 In the Bookmark name field, enter a unique name for the bookmark and
click Add. The bookmark is added to the Bookmarks dialog box, together
with the line number at which it is located and the textual content of the
line. In addition, a bookmark icon is added to the left of the selected line
in the function library.

 5 To delete a bookmark, select it in the list and click Delete.

Part VI • Working with Advanced Features

620

To navigate to a specific bookmark:

 1 Activate the function library, if needed.

 2 Choose Edit > Bookmarks. The Bookmarks dialog box opens.

 3 Select a bookmark from the list and click the Go To button. QuickTest jumps
to the appropriate line in the function library.

Tip: By default, line numbers are displayed in function libraries. If they are
not displayed, you can select the Show line numbers option in the Tools >
View Options > General tab. For more information on the Editor options,
see Chapter 10, “Customizing a Function Library Window.”

Finding Text Strings

You can specify text strings to locate in a function library. You can either
search for literal text or use regular expressions for a more advanced search.
You can also use other options to further fine-tune your search results.

To find a text string:

 1 In the function library, perform one of the following:

➤ Click the Find button.

➤ Choose Edit > Find.

The Find dialog box opens.

Chapter 22 • Working with Function Library Windows

621

 2 In the Find what box, enter the text string you want to locate.

 3 If you want to use regular expressions in the string you specify, click the
arrow button and select a regular expression. When you select a regular
expression from the list, it is automatically inserted in the Find what box at
the cursor location. For more information, see “Using Regular Expressions in
the Find and Replace Dialog Boxes” on page 624.

 4 Select any of the following options to help fine-tune your search:

➤ Match case—Distinguishes between upper-case and lower-case characters
in the search. When Match case is selected, QuickTest finds only those
occurrences in which the capitalization matches the text you entered in
the Find what box exactly.

➤ Match whole word—Searches for occurrences that are only whole words
and not part of longer words.

➤ Regular expression—Treats the specified text string as a regular
expression. This option is automatically selected when you select a
regular expression from the list.

➤ Wrap at beginning/end—Continues the search from the beginning or
end of the function library text when either the beginning or end is
reached, depending on the selected search direction.

➤ Restrict to selection—Searches only within the selected part of the
function library text.

➤ Place cursor at end—Places the cursor at the end of the highlighted
occurrence when the search string is located.

 5 Specify the direction in which you want to search, from the current cursor
location in the function library: Up or Down

 6 Click Find Next to highlight the next occurrence of the specified string in
the active function library.

Part VI • Working with Advanced Features

622

Replacing Text Strings

You can specify text strings to locate in the current function library, and
specify the text strings you want to use to replace them. You can either find
and replace literal text or use regular expressions for a more advanced
process. You can also use other options to further fine-tune your find and
replace process.

To replace a text string:

 1 In the function library, perform one of the following:

➤ Click the Replace button.

➤ Choose Edit > Replace.

The Replace dialog box opens.

 2 In the Find what box, enter the text string you want to locate.

 3 In the Replace with box, enter the text string you want to use to replace the
found text.

 4 If you want to use regular expressions in the Find what or Replace with
string, click the arrow button and select a regular expression. When you
select a regular expression from the list, it is automatically inserted in the
Find what or Replace with box at the cursor location. For more information,
see “Using Regular Expressions in the Find and Replace Dialog Boxes” on
page 624.

Chapter 22 • Working with Function Library Windows

623

 5 Select any of the following options to help fine-tune your search:

➤ Match case—Distinguishes between upper-case and lower-case characters
in the search. When Match case is selected, QuickTest finds only those
occurrences in which the capitalization exactly matches the text you
entered in the Find what box.

➤ Preserve case—Checks each occurrence of the Find what string for all
lowercase, all uppercase, sentence caps or mixed case. The Replace with
string is converted to the same case as the occurrence found, except
when the occurrence found is mixed case. In this case, the Replace with
string is used without modification.

➤ Match whole word—Searches for occurrences that are whole words only
and not part of longer words.

➤ Regular expression—Treats the specified text string as a regular
expression. This option is automatically selected when you select a
regular expression from the list.

➤ Wrap at beginning/end—Continues the search from the beginning or
end of the function library text when either the beginning or end is
reached, depending on the selected search direction.

➤ Restrict to selection—Searches only within the selected part of the
function library text.

➤ Place cursor at end—Places the cursor at the end of the highlighted
occurrence when the search string is located.

 6 Click Find Next to highlight the next occurrence of the specified text string
in the active function library.

 7 Click Replace to replace the highlighted text with the text in the Replace
with box, or click Replace All to replace all occurrences specified in the Find
what box with the text in the Replace with box in the active function
library.

Part VI • Working with Advanced Features

624

Using Regular Expressions in the Find and Replace Dialog Boxes

You can use regular expressions in the Find what and Replace with strings to
enhance your search. Note that there are differences in the expressions
supported by the Find and Replace dialog boxes and the expressions
supported in other parts of QuickTest.

You display the regular expressions available for selection by clicking the
arrow button in the Find or Replace dialog boxes.

You can select from a predefined list of regular expressions. You can also use
tagged expressions. When you use regular expressions to search for a string,
you may want the string to change depending on what was already found.

For example, you can search for (save\:n)\1, which will find any occurrence
of save followed by any number, immediately followed by save, as well as
the same number that was already found (meaning that it will find
save6save6 but not save6save7).

Chapter 22 • Working with Function Library Windows

625

You can also use tagged expressions to insert parts of what is found into the
replace string. For example, you can search for save(\:n) and replace it with
open\1. This will find save followed by any number, and replace it with
open and the number that was found.

Select Tag an Expression from the regular expressions list to insert
parentheses "()" to indicate a tagged expression in the search string.

Select Match Tagged Expression and then select the specific tag group
number to specify the tagged expression you want to use, in the format '\'
followed by a tag group number 1-9. (Count the left parentheses '(' in the
search string to determine a tagged expression number. The first (left-most)
tagged expression is "\1" and the last is "\9".)

Understanding Basic VBScript Syntax

You write function libraries using VBScript, a powerful scripting language.

This section provides some basic guidelines to help you use VBScript
statements to enhance your QuickTest function library. For more detailed
information about using VBScript, you can view the VBScript
documentation from the QuickTest Help menu (Help > QuickTest
Professional Help > VBScript Reference).

Each VBScript statement has its own specific syntax rules. If you do not
follow these rules, errors will be generated when you run the problematic
step. You can check the syntax of the function library script at any time by
clicking the Check Syntax button, or by choosing Tools > Check Syntax.

When working in a function library, you should consider the following
general VBScript syntax rules and guidelines:

➤ Case-sensitivity—By default, VBScript is not case sensitive and does not
differentiate between upper-case and lower-case spelling of words, for
example, in variables, object and method names, or constants.

For example, the two statements below are identical in VBScript:

Browser("Mercury").Page("Find a Flight:").WebList("toDay").Select "31"
browser("mercury").page("find a flight:").weblist("today").select "31"

Part VI • Working with Advanced Features

626

➤ Text strings—When you enter a value as a text string, you must add
quotation marks before and after the string. For example, in the above
segment of script, the names of the Web site, Web page, and edit box are all
text strings surrounded by quotation marks.

Note that the value 31 is also surrounded by quotation marks, because it is a
text string that represents a number and not a numeric value.

In the following example, only the property name (first argument) is a text
string and is in quotation marks. The second argument (the value of the
property) is a variable and therefore does not have quotation marks. The
third argument (specifying the timeout) is a numeric value, which also does
not need quotation marks.

Browser("Mercury").Page("Find a Flight:").WaitProperty("items count",
Total_Items, 2000)

➤ Variables—You can specify variables to store strings, integers, arrays and
objects. Using variables helps to make your script more readable and
flexible. For more information, see “Using Variables,” below.

➤ Parentheses—To achieve the desired result and to avoid errors, it is
important that you use parentheses () correctly in your statements. For more
information, see “Using Parentheses” on page 628.

➤ Indentation—You can indent or outdent your script to reflect the logical
structure and nesting of the statements. For more information, see
“Formatting VB Script Text” on page 629.

➤ Comments—You can add comments to your statements using an
apostrophe ('), either at the beginning of a separate line, or at the end of a
statement. It is recommended that you add comments wherever possible, to
make your scripts easier to understand and maintain. For more information,
see “Formatting VB Script Text” on page 629, and “Inserting Comments” on
page 643.

➤ Spaces—You can add extra blank spaces to your script to improve clarity.
These spaces are ignored by VBScript.

For more information on using specific VBScript statements to enhance
your function libraries, see “Using Comments, Control-Flow, and Other
VBScript Statements” on page 643.

Chapter 22 • Working with Function Library Windows

627

Using Variables

You can specify variables to store test objects or simple values in your
function library. When using a variable for a test object, you can use the
variable instead of the entire object hierarchy in other statements. Using
variables in this way makes your statements easier to read and to maintain.

To specify a variable to store an object, use the Set statement, with the
following syntax:

Set ObjectVar = ObjectHierarchy

In the example below, the Set statement specifies the variable UserEditBox
to store the full Browser > Page > WebEdit object hierarchy for the username
edit box. The Set method then enters the value John into the username edit
box, using the UserEditBox variable:

Set UserEditBox = Browser("Mercury Tours").Page("Mercury Tours").
WebEdit("username")

UserEditBox.Set "John"

Note: Do not use the Set statement to specify a variable containing a simple
value (such as a string or a number).

You can also use the Dim statement to declare variables of other types,
including strings, integers, and arrays. This statement is not mandatory, but
you can use it to improve the structure of your function library. In the
following example, the Dim statement is used to declare the actual_value
variable, which can then be used in different statements within the current
function library:

Dim actual_value
' Get the actual property value
actual_value = obj.GetROProperty(PropertyName)

Part VI • Working with Advanced Features

628

Using Parentheses

When programming in VBScript, it is important that you follow the rules for
using or not using parentheses () in your statements.

You must use parentheses around method arguments if you are calling a
method that returns a value and you are using the return value.

For example, use parentheses around method arguments if you are
returning a value to a variable, if you are using the method in an If
statement, or if you are using the Call keyword to call a function.

Tip: If you receive an Expected end of statement error message when
running a step in your function library, it may indicate that you need to add
parentheses around the arguments of the step's method.

Following are several examples showing when to use or not use parentheses.

The following example requires parentheses around the method arguments
for the ChildItem method because it returns a value to a variable.

Set WebEditObj = Browser("Mercury Tours").Page("Method of Payment").
WebTable("FirstName").ChildItem (8, 2, "WebEdit", 0)

WebEditObj.Set "Example"

The following example requires parentheses around the method arguments
because Call is being used.

Call MyFunction("Hello World")
...
...

The following example requires parentheses around the WaitProperty
method arguments because the method is used in an If statement.

If Browser("index").Page("index").Link("All kind of").
WaitProperty("attribute/readyState", "complete", 4) Then
Browser("index").Page("index").Link("All kind of").Click

End If

Chapter 22 • Working with Function Library Windows

629

The following example does not require parentheses around the Click
method arguments because it does not return a value.

Browser("Mercury Tours").Page("Method of Payment").WebTable("FirstName").
Click 3,4

Formatting VB Script Text

When working in a function library, it is important to follow accepted
VBScript practices for comments and indentation.

Use comments to explain sections of a script. This improves readability and
make function libraries easier to maintain and update. For more
information, see “Inserting Comments” on page 643.

Use indentation to reflect the logical structure and nesting of your
statements.

➤ Adding Comments—You can add comments to your statements by adding
an apostrophe ('), either at the beginning of a separate line, or at the end of
a statement.

Tips:

You can comment a statement by clicking anywhere in the statement and
clicking the Comment Block button.

You can comment a selected block of text by clicking the Comment Block
button, or by choosing Edit > Advanced > Comment Block. Each line in the
block will be preceded by an apostrophe.

Part VI • Working with Advanced Features

630

➤ Removing Comments—You can remove comments from your statements by
deleting the apostrophe ('), either at the beginning of a separate line, or at
the end of a statement.

Tip: You can remove the comments from a selected block or line of text by
clicking the Uncomment Block button, or by choosing Edit > Advanced >
Uncomment Block.

➤ Indenting Statements—You can indent your statements by selecting the
statements and clicking the Indent button. Alternatively, you can select text
and choose Edit > Advanced > Indent or press the TAB key. The text is
indented according to the tab spacing selected in the Editor Options dialog
box, as described in “Customizing Editor Behavior” on page 247.

Note: The Indent selected text when using the Tab key check box must be
selected in the Editor Options dialog box, otherwise pressing the TAB key
will delete the selected text.

➤ Outdenting Statements—You can outdent your statements by selecting the
statement and clicking the Outdent button. Alternatively, you can choose
Edit > Advanced > Outdent or you can delete the space at the beginning of
the statements.

For more detailed information about formatting in VBScript, you can view
the VBScript documentation from the QuickTest Help menu (Help >
QuickTest Professional Help > VBScript Reference).

Handling VBScript Syntax Errors

You can check the syntax of the current function library at any time by
clicking the Check Syntax button, or by choosing Tools > Check Syntax. If
QuickTest finds any errors, it displays them in the Information pane.

Chapter 22 • Working with Function Library Windows

631

You can view a description of each of the VBScript errors in the VBScript
Reference. For more information, choose Help > QuickTest Professional Help
> VBScript Reference > VBScript > Reference > Errors > VBScript Syntax
Errors.

The Information pane lists the syntax errors found in your document, and
enables you to locate each syntax error so that you can correct it.

The Information pane shows the following information for each syntax
error:

Pane Element Description

Details The description of the syntax error. For example, if you opened a
conditional block with an If statement but did not close it with
an End If statement, the description is Expected 'End If'.

Note: In certain cases, QuickTest is unable to identify the exact
error and displays a number of possible error conditions,
for example: Expected 'End Sub', or 'End Function', or 'End
Property’. Check the statement at the specified line to
clarify which error is relevant in your case.

Item The name of the function library containing the problematic
statement.

Action This column is not relevant for function libraries that are
associated with business components (via application areas).

Line The line containing the syntax error. Lines are numbered from
the beginning of each function library.

Part VI • Working with Advanced Features

632

Using the Information Pane

➤ Hold your mouse over the description of a syntax error to display the
currently incorrect syntax.

➤ To navigate to the line containing a specific syntax error, double-click the
syntax error in the Information pane.

➤ You can resize the columns in the Information pane to make the
information more readable by dragging the column headers.

➤ You can sort the details in the Information pane in ascending or descending
order by clicking the column header.

➤ You can press F1 on an error in the Information pane to display information
about VBScript syntax errors.

Using Programmatic Descriptions

When you record an operation on an object, QuickTest adds the appropriate
test object to the object repository. Once the object exists in the object
repository, you can add statements in the Expert View to perform additional
methods on that object. To add these statements, you usually enter the
name (not case sensitive) of each of the objects in the object’s hierarchy as
the object description, and then add the appropriate method.

For example, in the statement below, username is the name of an edit box.
The edit box is located on a page with the name Mercury Tours and the page
was recorded in a browser with the name Mercury Tours.

Browser("Mercury Tours").Page("Mercury Tours").WebEdit("username")

Because each object in the object repository has a unique name, the object
name is all you need to specify. During the run session, QuickTest finds the
object in the object repository based on its name and parent objects, and
uses the stored test object description for that test object to identify the
object in your Web site or application.

You can also instruct QuickTest to perform methods on objects without
referring to the object repository or to the object’s name. To do this, you
provide QuickTest with a list of properties and values that QuickTest can use
to identify the object or objects on which you want to perform a method.

Chapter 22 • Working with Function Library Windows

633

Such a programmatic description can be very useful if you want to perform
an operation on an object that is not stored in the object repository. You can
also use programmatic descriptions in order to perform the same operation
on several objects with certain identical properties, or in order to perform an
operation on an object whose properties match a description that you
determine dynamically during the run session.

For example, suppose you are testing a Web site that generates a list of
potential employers based on biographical information you provide, and
offers to send your resume to the employer names you select from the list.
You want your test to select all the employers displayed in the list, but when
you design your test, you do not know how many check boxes will be
displayed on the page, and you cannot, of course, know the exact object
description of each check box. In this situation, you can use a programmatic
description to instruct QuickTest to perform a Set "ON" method for all
objects that fit the description: HTML TAG = input, TYPE = check box.

There are two types of programmatic descriptions. You can either list the set
of properties and values that describe the object directly in a test statement,
or you can add a collection of properties and values to a Description object,
and then enter the Description object name in the statement.

Entering programmatic descriptions directly into your statements may be
the easier method for basic object description needs. However, in most
cases, the Description object method is more powerful and more efficient.

Part VI • Working with Advanced Features

634

Entering Programmatic Descriptions Directly into Statements

You can describe an object directly in a statement by specifying
property:=value pairs describing the object instead of specifying an object’s
name.

The general syntax is:

TestObject("PropertyName1:=PropertyValue1", "..." ,
 "PropertyNameX:=PropertyValueX")

TestObject—the test object class.

PropertyName:=PropertyValue—the test object property and its value.
Each property:=value pair should be separated by commas and quotation
marks.

Note that you can enter a variable name as the property value if you want to
find an object based on property values you retrieve during a run session.

Note: QuickTest evaluates all property values in programmatic descriptions
as regular expressions. Therefore, if you want to enter a value that contains a
special regular expression character (such as *, ?, or +), use the \ (backslash)
character to instruct QuickTest to treat the special characters as literal
characters.

Chapter 22 • Working with Function Library Windows

635

The statement below specifies a WebEdit test object in the Mercury Tours
page with the Name author and an index of 3. During the run session,
QuickTest finds the WebEdit object with matching property values and
enters the text Mark Twain.

Browser("Mercury Tours").Page("Mercury Tours").WebEdit("Name:=Author",
 "Index:=3").Set "Mark Twain"

Note: When using programmatic descriptions from a specific point within a
test object hierarchy, you must continue to use programmatic descriptions
from that point onward within the same statement. If you specify a test
object by its object repository name after other objects in the hierarchy have
been specified using programmatic descriptions, QuickTest cannot identify
the object.

For example, you can use the following statement since it uses
programmatic descriptions throughout the entire test object hierarchy:

Browser("Title:=Mercury Tours").Page("Title:=Mercury Tours").
WebEdit("Name:=Author", "Index:=3").Set "Mark Twain"

You can also use the statement below, since it uses programmatic
descriptions from a certain point in the description (starting from the Page
object description):

Browser("Mercury Tours").Page("Title:=Mercury Tours").
WebEdit("Name:=Author", "Index:=3").Set "Mark Twain"

However, you cannot use the following statement, since it uses
programmatic descriptions for the Browser and Page objects but then
attempts to use an object repository name for the WebEdit test object:

Browser("Title:=Mercury Tours").Page("Title:=Mercury Tours").
WebEdit("Author").Set "Mark Twain"

QuickTest tries to locate the WebEdit object based on its name, but cannot
locate it in the repository because the parent objects were specified using
programmatic descriptions.

For more information on working with test objects, see Chapter 13,
“Working with Test Objects.”

Part VI • Working with Advanced Features

636

If you want to use the same programmatic description several times in a
function library, you may want to assign the object you create to a variable.

For example, instead of entering:

Window("Text:=Myfile.txt - Notepad").Move 50, 50
Window("Text:=Myfile.txt - Notepad").WinEdit("AttachedText:=Find what:").

Set "hello"
Window("Text:=Myfile.txt - Notepad").WinButton("Caption:=Find next").Click

You can enter:

Set MyWin = Window("Text:=Myfile.txt - Notepad")
MyWin.Move 50, 50
MyWin.WinEdit("AttachedText:=Find what:").Set "hello"
MyWin.WinButton("Caption:=Find next").Click

Using Description Objects for Programmatic Descriptions

You can use the Description object to return a Properties collection object
containing a set of Property objects. A Property object consists of a
property name and value. You can then specify the returned Properties
collection in place of an object name in a statement. (Each property object
contains a property name and value pair.)

Note: By default, the value of all Property objects added to a Properties
collection are treated as regular expressions. Therefore, if you want to enter
a value that contains a special regular expression character (such as *, ?, +),
use the \ (backslash) character to instruct QuickTest to treat the special
characters as literal characters.

You can set the RegularExpression property to False in order to specify a
value as a literal value for a specific Property object in the collection. For
more information, refer to the Utility section of the QuickTest Professional
Object Model Reference.

Chapter 22 • Working with Function Library Windows

637

To create the Properties collection, you enter a Description.Create
statement using the following syntax:

Set MyDescription = Description.Create()

Once you have created a Properties object (such as MyDescription in the
example above), you can enter statements to add, edit, remove, and retrieve
properties and values to or from the Properties object during the run
session. This enables you to determine which, and how many properties to
include in the object description in a dynamic way during the run session.

After you fill the Properties collection with a set of Property objects
(properties and values), you can specify the Properties object in place of an
object name in a test statement.

For example, instead of entering:

Window("Error").WinButton("text:=OK", "width:=50").Click

you can enter:

Set MyDescription = Description.Create()
MyDescription("text").Value = "OK"
MyDescription("width").Value = 50
Window("Error").WinButton(MyDescription).Click

Tip: When creating a programmatic description for an ActiveX test object
and the relevant run-time object is windowless (has no window handle
associated with it), you must add the windowless property to the
description and set its value to True.

For example:

Set ButDesc = Description.Create
ButDesc("ProgId").Value = "Forms.CommandButton.1"
ButDesc("Caption").Value = "OK"
ButDesc("Windowless").Value = True
Window("Form1").AcxButton(ButDesc).Click

Part VI • Working with Advanced Features

638

Note: When using programmatic descriptions from a specific point within a
test object hierarchy, you must continue to use programmatic descriptions
from that point onward within the same statement. If you specify a test
object by its object repository name after other objects in the hierarchy have
been described using programmatic descriptions, QuickTest cannot identify
the object.

For example, you can use Browser(Desc1).Page(Desc1).Link(desc3), since it
uses programmatic descriptions throughout the entire test object hierarchy.

You can also use Browser("Index").Page(Desc1).Link(desc3), since it uses
programmatic descriptions from a certain point in the description (starting
from the Page object description).

However, you cannot use Browser(Desc1).Page(Desc1).Link("Example1"),
since it uses programmatic descriptions for the Browser and Page objects but
then attempts to use an object repository name for the Link test object
(QuickTest tries to locate the Link object based on its name, but cannot
locate it in the repository because the parent objects were specified using
programmatic descriptions).

When working with Properties objects, you can use variable names for the
properties or values in order to generate the object description based on
properties and values you retrieve during a run session.

You can create several Properties objects in your test if you want to use
programmatic descriptions for several objects.

For more information on the Description and Properties objects and their
associated methods, refer to the QuickTest Professional Object Model Reference.

Chapter 22 • Working with Function Library Windows

639

Retrieving Child Objects

You can use the ChildObjects method to retrieve all objects located inside a
specified parent object, or only those child objects that fit a certain
programmatic description. In order to retrieve this subset of child objects,
you first create a description object and add the set of properties and values
that you want your child object collection to match using the Description
object.

Note: You must use the Description object to create the programmatic
description for the ChildObjects description argument. You cannot enter
the programmatic description directly into the argument using the
property:=value syntax.

Once you have “built” a description in your description object, use the
following syntax to retrieve child objects that match the description:

Set MySubSet=TestObject.ChildObjects(MyDescription)

For example, the statements below instruct QuickTest to select all of the
check boxes on the Itinerary Web page:

Set MyDescription = Description.Create()
MyDescription("html tag").Value = "INPUT"
MyDescription("type").Value = "checkbox"

Set Checkboxes =
Browser("Itinerary").Page("Itinerary").ChildObjects(MyDescription)
NoOfChildObjs = Checkboxes.Count
For Counter=0 to NoOfChildObjs-1

Checkboxes(Counter).Set "ON"
Next

For more information about the ChildObjects method, refer to the
QuickTest Professional Object Model Reference.

Part VI • Working with Advanced Features

640

Using Programmatic Descriptions for the WebElement Object

The WebElement object enables you to perform methods on Web objects
that may not fit into any other Mercury test object class. The WebElement
test object is never recorded, but you can use a programmatic description
with the WebElement object to perform methods on any Web object in
your Web site.

For example, when you run the statement below:

Browser("Mercury Tours").Page("Mercury Tours").
WebElement("Name:=UserName", "Index:=0").Click

or

set WebObjDesc = Description.Create()
WebObjDesc("Name").Value = "UserName"
WebObjDesc("Index").Value = "0"
Browser("Mercury Tours").Page("Mercury Tours").WebElement(WebObjDesc).

Click

QuickTest clicks on the first Web object in the Mercury Tours page with the
name UserName.

For more information about the WebElement object, refer to the QuickTest
Professional Object Model Reference.

Using the Index Property in Programmatic Descriptions

The index property can sometimes be a useful test object property for
uniquely identifying an object. The index test object property identifies an
object based on the order in which it appears within the source code, where
the first occurrence is 0.

Index property values are object-specific. Thus, if you use an index value
of 3 to describe a WebEdit test object, QuickTest searches for the fourth
WebEdit object in the page.

If you use an index value of 3 to describe a WebElement object, however,
QuickTest searches for the fourth Web object on the page regardless of the
type, because the WebElement object applies to all Web objects.

Chapter 22 • Working with Function Library Windows

641

For example, suppose you have a page with the following objects:

➤ an image with the name Apple

➤ an image with the name UserName

➤ a WebEdit object with the name UserName

➤ an image with the name Password

➤ a WebEdit object with the name Password

The description below refers to the third item in the list above, as it is the
first WebEdit object on the page with the name UserName:

WebEdit("Name:=UserName", "Index:=0")

The following description, however, refers to the second item in the list
above, as that is the first object of any type (WebElement) with the name
UserName.

WebElement("Name:=UserName", "Index:=0")

Note: If there is only one object, using index=0 will not retrieve it. You
should not include the index property in the object description.

Part VI • Working with Advanced Features

642

Running and Closing Applications Programmatically

You can run any application from a specified location using a
SystemUtil.Run statement in a function library. This is especially useful if
you want to provide an operation (function) that opens an application from
within a component. You can specify an application and pass any supported
parameters, or you can specify a file name and the associated application
starts with the specified file open.

You can close most applications using the Close method.

For example, you could use the following statements to open a file named
type.txt in the default text application (Notepad), type happy days, save the
file using shortcut keys, and then close the application:

SystemUtil.Run "C:\type.txt", "","",""
Window("Text:=type.txt - Notepad").Type "happy days"
Window("Text:=type.txt - Notepad").Type micAltDwn & "F" & micAltUp
Window("Text:=type.txt - Notepad").Type micLShiftDwn & "S" & micLShiftUp
Window("Text:=type.txt - Notepad").Close

For more information, refer to the QuickTest Professional Object Model
Reference.

Chapter 22 • Working with Function Library Windows

643

Using Comments, Control-Flow, and Other VBScript
Statements

QuickTest enables you to incorporate decision-making into your function
library by adding conditional statements that control the logical flow of
your function library. In addition, you can define messages in your test that
QuickTest sends to your test results. To improve the readability of your
function libraries, you can also add comments to it.

Note: The VBScript Reference (available from Help > QuickTest Professional
Help) contains Microsoft VBScript documentation, including VBScript,
Script Runtime, and Windows Script Host.

Inserting Comments

A comment is a line or part of a line in a script that is preceded by an
apostrophe ('). When you run a test, QuickTest does not process comments.
Use comments to explain sections of a script in order to improve readability
and to make function libraries easier to update.

The following example shows how a comment describes the purpose of the
statement below it:

‘Sets the word "mercury" into the "username" edit box.
Browser("Mercury Tours").Page("Mercury Tours").WebEdit("username").

Set "mercury"

Part VI • Working with Advanced Features

644

By default, comments are displayed in green in function libraries. You can
customize the appearance of comments in the Editor Options dialog box.
For more information, see “Customizing Element Appearance” on page 250.

Tips:

You can comment a block of text by choosing Edit > Advanced > Comment
Block or by clicking the Comment Block button.

To remove the comment, choose Edit > Advanced > Uncomment Block or
click the Uncomment Block button.

Note: You can also add a comment line using VBScript’s Rem statement. For
additional information, refer to the Microsoft VBScript Language Reference
(choose Help > QuickTest Professional Help > VBScript Reference >
VBScript).

Chapter 22 • Working with Function Library Windows

645

Performing Calculations

You can write statements that perform simple calculations using
mathematical operators. For example, you can use a multiplication operator
to multiply the values displayed in two text boxes in your site. VBScript
supports the following mathematical operators:

In the following example, the multiplication operator is used to calculate
the maximum luggage weight of the passengers at 100 pounds each:

'Retrieves the number of passengers from the edit box using the GetROProperty
method

passenger = Browser ("Mercury_Tours").Page ("Find_Flights").
WebEdit("numPassengers").GetROProperty("value")

'Multiplies the number of passengers by 100

weight = passenger * 100

'Inserts the maximum weight into a message box.

msgbox("The maximum weight for the party is "& weight &"pounds.")

Operator Description

+ addition

– subtraction

– negation (a negative number—unary operator)

* multiplication

/ division

^ exponent

Part VI • Working with Advanced Features

646

For...Next Statement

A For...Next loop instructs QuickTest to execute one or more statements a
specified number of times. It has the following syntax:

For counter = start to end [Step step]
statement

Next

In the following example, QuickTest calculates the factorial value of the
number of passengers using the For statement:

passengers = Browser("Mercury Tours").Page("Find Flights").
WebEdit("numPassengers").GetROProperty("value")

total = 1
For i=1 To passengers

total = total * i
Next
MsgBox "!" & passengers & "=" & total

Item Description

counter The variable used as a counter for the number of
iterations.

start The start number of the counter.

end The last number of the counter.

step The number to increment at the end of each loop.
Default = 1.
Optional.

statement A statement, or series of statements, to be executed
during the loop.

Chapter 22 • Working with Function Library Windows

647

For...Each Statement

A For...Each loop instructs QuickTest to execute one or more statements for
each element in an array or an object collection. It has the following syntax:

For Each item In array
statement

Next

The following example uses a For...Each loop to display each of the values
in an array:

MyArray = Array("one","two","three","four","five")
For Each element In MyArray

msgbox element
Next

Do...Loop Statement

The Do...Loop statement instructs QuickTest to execute a statement or series
of statements while a condition is true or until a condition becomes true. It
has the following syntax:

Do [{while} {until} condition]
statement

Loop

Item Description

item A variable representing the element in the array.

array The name of the array.

statement A statement, or series of statements, to be executed during
the loop.

Item Description

condition A condition to be fulfilled.

statement A statement or series of statements to be executed during
the loop.

Part VI • Working with Advanced Features

648

In the following example, QuickTest calculates the factorial value of the
number of passengers using the Do...Loop:

passengers = Browser("Mercury Tours").Page("Find Flights").
WebEdit("numPassengers").GetROProperty("value")

total = 1
i = 1
Do while i <= passengers

 total = total * i
 i = i + 1

Loop
MsgBox "!" & passengers & "=" & total

While...Wend Statement

A While...Wend statement instructs QuickTest to execute a statement or
series of statements while a condition is true. It has the following syntax:

While condition
statement

Wend

In the following example, QuickTest performs a loop using the While
statement while the number of passengers is fewer than ten. Within each
loop, QuickTest increments the number of passengers by one:

passengers = Browser("Mercury Tours").Page("Find Flights").
WebEdit("numpassengers").GetROProperty("value")

While passengers < 10
passengers = passengers + 1

Wend

msgbox("The number of passengers in the party is " & passengers)

Item Description

condition A condition to be fulfilled.

statement A statement or series of statements to be executed during
the loop.

Chapter 22 • Working with Function Library Windows

649

If...Then...Else Statement

The If...Then...Else statement instructs QuickTest to execute a statement or
a series of statements based on specified conditions. If a condition is not
fulfilled, the next Elseif condition or Else statement is examined. It has the
following syntax:

If condition Then
statement

ElseIf condition2 Then
statement

Else
statement

End If

In the following example, if the number of passengers is fewer than four,
QuickTest closes the browser:

passengers = Browser("Mercury Tours").Page("Find Flights").
WebEdit("numpassengers").GetROProperty("value")

If (passengers < 4) Then
Browser("Mercury Tours").Close

Else
Browser("Mercury Tours").Page("Find Flights").Image("continue").Click 69,5

End If

Item Description

condition Condition to be fulfilled.

statement Statement to be executed.

Part VI • Working with Advanced Features

650

The following example, uses If, ElseIf, and Else statements to check
whether a value is equal to 1, 2, or a different value:

value = 2
If value = 1 Then
 msgbox "one"
ElseIf value = 2 Then
 msgbox "two"
Else
 msgbox "not one or two"
End If

Chapter 22 • Working with Function Library Windows

651

Retrieving and Setting Test Object Property Values

Test object properties are the set of properties defined by QuickTest for each
object. You can set and retrieve a test object’s property values, and you can
retrieve the values of test object properties from a run-time object.

When you run your test or component, QuickTest creates a temporary
version of the test object that is stored in the test object repository. You can
use the GetTOProperty, GetTOProperties, and SetTOProperty methods in
your function library to set and retrieve the test object property values of the
test object.

The GetTOProperty and GetTOProperties methods enable you to retrieve a
specific property value or all the properties and values that QuickTest uses to
identify an object.

The SetTOProperty method enables you to modify a property value that
QuickTest uses to identify an object.

Note: Because QuickTest refers to the temporary version of the test object
during the run session, any changes you make using the SetTOProperty
method apply only during the course of the run session, and do not affect
the values stored in the test object repository.

For example, the following statements would set the Submit button’s name
value to my button, and then retrieve the value my button to the ButtonName
variable:

Browser("QA Home Page").Page("QA Home Page").
WebButton("Submit").SetTOProperty "Name", "my button"

ButtonName=Browser("QA Home Page").Page("QA Home Page").
WebButton("Submit").GetTOProperty("Name")

You use the GetROProperty method to retrieve the current value of a test
object property from a run-time object in your application.

Part VI • Working with Advanced Features

652

For example, you can retrieve the target value of a link during the run
session as follows:

link_href = Browser("Mercury Technologies").Page("Mercury Technologies").
Link("Jobs").GetROProperty("href")

Tip: If you do not know the test object properties of objects in your Web site
or application, you can view them using the Object Spy. For information on
the Object Spy, see Chapter 12, “Understanding the Test Object Model.”

For a list and description of test object properties supported by each object,
and for additional information about the GetROProperty, GetTOProperty,
GetTOProperties, and SetTOProperty methods, refer to the QuickTest
Professional Object Model Reference.

Accessing Run-Time Object Properties and Methods

If the test object methods and properties available for a particular test object
do not provide the functionality you need, you can access the native
methods and properties of any run-time object in your application using the
Object property.

You can use QuickTest’s statement completion feature with object properties
to view a list of the available native methods and properties of an object. For
more information about the statement completion option, see “Generating
Statements in a Function Library” on page 612.

Tip: If the object is a Web object, you can also reference its native properties
in programmatic descriptions using the attribute/property notation. For
more information, see “Accessing User-Defined Properties of Web Objects”
on page 653.

Chapter 22 • Working with Function Library Windows

653

Retrieving Run-Time Object Properties

You can use the Object property to access the native properties of any
run-time object. For example, you can retrieve the current value of the
ActiveX calendar’s internal Day property as follows:

Dim MyDay
Set MyDay=
Browser("index").Page("Untitled").ActiveX("MSCAL.Calendar.7").Object.Day

For more information on the Object property, refer to the QuickTest
Professional Object Model Reference.

Activating Run-Time Object Methods

You can use the Object property to activate the internal methods of any
run-time object. For example, you can activate the native focus method of
the edit box as follows:

Dim MyWebEdit
Set MyWebEdit=Browser("Mercury Tours").Page("Mercury Tours").

WebEdit("username").Object
MyWebEdit.focus

For more information on the Object property, refer to the QuickTest
Professional Object Model Reference.

Accessing User-Defined Properties of Web Objects

You can use the attribute/<property name> notation to access native
properties of Web objects and use these properties to identify such objects
with programmatic descriptions.

For example, suppose a Web page has the same company logo image in two
places on the page:

Part VI • Working with Advanced Features

654

You could identify the image that you want to click using a programmatic
description by including the user-defined property LogoID in the
description as follows:

Browser("Mercury Tours").Page("Find Flights").Image("src:=logo.gif",
"attribute/LogoID:=123").Click 68, 12

For more information on programmatic descriptions, see “Using
Programmatic Descriptions” on page 632.

Running DOS Commands

You can run standard DOS commands in your QuickTest function using the
VBScript Windows Scripting Host Shell object (WSCript.shell). For example,
you can open a DOS command window, change the path to C:\, and
execute the DIR command using the following statements:

Dim oShell
Set oShell = CreateObject ("WSCript.shell")
oShell.run "cmd /K CD C:\ & Dir"
Set oShell = Nothing

For more information, refer to the Microsoft VBScript Language Reference
(choose Help > QuickTest Professional Help > VBScript Reference >
VBScript).

Chapter 22 • Working with Function Library Windows

655

Enhancing Your Tests and Function Libraries Using the
Windows API

Using the Windows API, you can extend testing abilities and add usability
and flexibility to your function libraries. The Windows operating system
provides a large number of functions to help you control and manage
Windows operations. You can use these functions to obtain additional
functionality.

The Windows API is documented in the Microsoft MSDN Web site, which
can be found at: http://msdn.microsoft.com/library/en-
us/winprog/winprog/windows_api_start_page.asp?frame=true

A reference to specific API functions can be found at:
http://msdn.microsoft.com/library/en-
us/winprog/winprog/windows_api_reference.asp?frame=true

To use Windows API functions:

 1 In MSDN, locate the function you want to use in your function library.

 2 Read its documentation and understand all required parameters and return
value(s).

 3 Note the location of the API function. API functions are located inside
Windows DLLs. The name of the DLL in which the requested function is
located is usually identical to the Import Library section in the function’s
documentation. For example, if the documentation refers to User32.lib, the
function is located in a DLL named User32.dll, typically located in your
System32 library.

 4 Use the QuickTest Extern object to declare an external function. For more
information, refer to the QuickTest Professional Object Model Reference.

The following example declares a call to a function called
GetForegroundWindow, located in user32.dll:

extern.declare micHwnd, "GetForegroundWindow", "user32.dll",
"GetForegroundWindow"

 5 Call the declared function, passing any required arguments, for example,
hwnd = extern.GetForegroundWindow().

http://msdn.microsoft.com/library/en-us/winprog/winprog/windows_api_start_page.asp?frame=true
http://msdn.microsoft.com/library/en-us/winprog/winprog/windows_api_start_page.asp?frame=true
http://msdn.microsoft.com/library/en-us/winprog/winprog/windows_api_reference.asp?frame=true

Part VI • Working with Advanced Features

656

In this example, the foreground window’s handle is retrieved. You can
enhance your function library if the foreground window is not in the object
repository or cannot be determined beforehand (for example, a window
with a dynamic title). You may want to use this handle as part of a
programmatic description of the window, for example:

Window("HWND:="&hWnd).Close

In some cases, you may have to use predefined constant values as function
arguments. Since these constants are not defined in the context of your
function, you need to find their numerical value in order to pass them to
the called function. The numerical values of these constants are usually
declared in the function’s header file. A reference to header files can also be
found in each function’s documentation under the Header section. If you
have Microsoft Visual Studio installed on your computer, you can typically
find header files under X:\Program Files\Microsoft Visual Studio\VC98\Include.

For example, the GetWindow API function expects to receive a numerical
value that represents the relationship between the specified window and the
window whose handle is to be retrieved. In the MSDN documentation, you
can find the constants: GW_CHILD, GW_ENABLEDPOPUP,
GW_HWNDFIRST, GW_HWNDLAST, GW_HWNDNEXT, GW_HWNDPREV
and GW_HWNDPREV. If you open the WINUSER.H file, mentioned in the
GetWindow documentation, you will find the following flag values:

/*
 * GetWindow() Constants
 */
#define GW_HWNDFIRST0
#define GW_HWNDLAST 1
#define GW_HWNDNEXT2
#define GW_HWNDPREV 3
#define GW_OWNER 4
#define GW_CHILD 5
#define GW_ENABLEDPOPUP 6
#define GW_MAX 6

Chapter 22 • Working with Function Library Windows

657

Example

The following example retrieves a specific menu item's value in the Notepad
application.

' Constant Values:
const MF_BYPOSITION = 1024
' API Functions Declarations
Extern.Declare micHwnd,"GetMenu","user32.dll","GetMenu",micHwnd
Extern.Declare
micInteger,"GetMenuItemCount","user32.dll","GetMenuItemCount",micHwnd
Extern.Declare
micHwnd,"GetSubMenu","user32.dll","GetSubMenu",micHwnd,micInteger
Extern.Declare
micInteger,"GetMenuString","user32.dll","GetMenuString",micHwnd,micInteger,

micString+micByRef,micInteger,micInteger
' Notepad.exe
hwin = Window("Notepad").GetROProperty ("hwnd")' Get Window's handle
MsgBox hwin
men_hwnd = Extern.GetMenu(hwin)' Get window's main menu's handle
MsgBox men_hwnd
' Use API Functions
item_cnt = Extern.GetMenuItemCount(men_hwnd)
MsgBox item_cnt
hSubm = Extern.GetSubMenu(men_hwnd,0)
MsgBox hSubm
rc = Extern.GetMenuString(hSubm,0,value,64 ,MF_BYPOSITION)
MsgBox value

Part VI • Working with Advanced Features

658

Choosing Which Steps to Report During the Run Session

You can use the Report.Filter method to determine which steps or types of
steps are included in the Test Results. You can completely disable or enable
reporting of steps following the statement, or you can indicate that you
only want subsequent failed or failed and warning steps to be included in
the report. You can also use the Report.Filter method to retrieve the current
report mode.

The following report modes are available:

To disable reporting of subsequent steps, enter the following statement:

Reporter.Filter = rfDisableAll

To re-enable reporting of subsequent steps, enter:

Reporter.Filter = rfEnableAll

To instruct QuickTest to include only subsequent failed steps in the Test
Results, enter:

Reporter.Filter = rfEnableErrorsOnly

Mode Description

0 or rfEnableAll All events are displayed in the Test Results.
Default.

1 or
rfEnableErrorsAndWarnings

Only events with a warning or fail status are
displayed in the Test Results.

2 or rfEnableErrorsOnly Only events with a fail status are displayed in
the Test Results.

3 or rfDisableAll No events are displayed in the Test Results.

Chapter 22 • Working with Function Library Windows

659

To instruct QuickTest to include only subsequent failed or warning steps in
the Test Results, enter:

Reporter.Filter = rfEnableErrorsAndWarnings

To retrieve the current report mode, enter:

MyVar=Reporter.Filter

For more information, refer to the QuickTest Professional Object Model
Reference.

Part VI • Working with Advanced Features

660

661

23
Automating QuickTest Operations

Just as you use QuickTest to automate the testing of your applications, you
can use the QuickTest Professional automation object model to automate
your QuickTest operations. Using the objects, methods, and properties
exposed by the QuickTest automation object model, you can write programs
that configure QuickTest options and run components instead of
performing these operations manually using the QuickTest interface.

Automation programs are especially useful for performing the same tasks
multiple times or on multiple components, or quickly configuring
QuickTest according to your needs for a particular environment or
application.

This chapter describes:

➤ About Automating QuickTest Operations

➤ Deciding When to Use QuickTest Automation Programs

➤ Choosing a Language and Development Environment for Designing and
Running Automation Programs

➤ Learning the Basic Elements of a QuickTest Automation Program

➤ Generating Automation Scripts

➤ Using the QuickTest Automation Object Model Reference

Part VI • Working with Advanced Features

662

About Automating QuickTest Operations

You can use the QuickTest Professional automation object model to write
programs that automate your QuickTest operations. The QuickTest
automation object model provides objects, methods, and properties that
enable you to control QuickTest from another application.

What is Automation?

Automation is a Microsoft technology that makes it possible to access
software objects inside one application from other applications. These
objects can be easily created and manipulated using a scripting or
programming language such as VBScript or VC++. Automation enables you
to control the functionality of an application programmatically.

An object model is a structural representation of software objects (classes)
that comprise the implementation of a system or application. An object
model defines a set of classes and interfaces, together with their properties,
methods and events, and their relationships.

What is the QuickTest Automation Object Model?

Essentially all configuration and run functionality provided via the
QuickTest interface is in some way represented in the QuickTest automation
object model via objects, methods, and properties. Although a one-on-one
comparison cannot always be made, most dialog boxes in QuickTest have a
corresponding automation object, most options in dialog boxes can be set
and/or retrieved using the corresponding object property, and most menu
commands and other operations have corresponding automation methods.

You can use the objects, methods, and properties exposed by the QuickTest
automation object model, along with standard programming elements such
as loops and conditional statements to design your program.

Automation programs are especially useful for performing the same tasks
multiple times or on multiple components, or quickly configuring
QuickTest according to your needs for a particular environment or
application.

Chapter 23 • Automating QuickTest Operations

663

For example, you can create and run an automation program from Microsoft
Visual Basic that loads the required add-ins for a component, starts
QuickTest in visible mode, opens the component, configures settings that
correspond to those in the Options, Business Component Settings, and
Record and Run Settings dialog boxes, runs the component, and saves the
component.

You can then add a simple loop to your program so that your single program
can perform the operations described above for multiple components.

You can also create an initialization program that opens QuickTest with
specific configuration settings. You can then instruct all of your testers to
open QuickTest using this automation program to ensure that all of your
testers are always working with the same configuration.

Deciding When to Use QuickTest Automation Programs

Like the components you design using QuickTest, creating a useful
QuickTest automation program requires planning, design time, and testing.
You must always weigh the initial investment with the time and human-
resource savings you gain from automating potentially long or tedious tasks.

Any QuickTest operation that you must perform many times in a row or
must perform on a regular basis is a good candidate for a QuickTest
automation program.

Part VI • Working with Advanced Features

664

The following are just a few examples of useful QuickTest automation
programs:

➤ Initialization programs—You can write a program that automatically starts
QuickTest and configures the options and the settings required for recording
on a specific environment.

➤ Maintaining your components—You can write a program that iterates over
your collection of components to accomplish a certain goal. For example:

➤ Updating values—opening each component with the proper add-ins,
running it in update run mode against an updated application, and
saving it in order to update the values in all of your components to
match the updated values in your application.

➤ Applying new options to existing components—When you upgrade to a
new version of QuickTest, you may find that the new version offers
certain options that you want to apply to your existing components. You
can write a program that opens each existing component, sets values for
the new options, then saves and closes it.

➤ Calling QuickTest from other applications—You can design your own
applications with options or controls that run QuickTest automation
programs. For example, you could create a Web form or simple Windows
interface from which a product manager could schedule QuickTest runs,
even if the manager is not familiar with QuickTest.

Chapter 23 • Automating QuickTest Operations

665

Choosing a Language and Development Environment for
Designing and Running Automation Programs

You can choose from a number of object-oriented programming languages
for your automation programs. For each language, there are a number of
development environments available for designing and running your
automation programs.

Writing Your Automation Program

You can write your QuickTest automation programs in any language and
development environment that supports automation. For example, you can
use: VBScript, JavaScript, Visual Basic, Visual C++, or Visual Studio.NET.

Some development environments support referencing a type library. A type
library is a binary file containing the description of the objects, interfaces,
and other definitions of an object model.

If you choose a development environment that supports referencing a type
library, you can take advantage of features like Microsoft IntelliSense,
automatic statement completion, and status bar help tips while writing your
program. The QuickTest automation object model supplies a type library file
named QTObjectModel.dll. This file is stored in <QuickTest installation
folder>\bin.

Part VI • Working with Advanced Features

666

If you choose an environment that supports it, be sure to reference the
QuickTest type library before you begin writing or running your automation
program. For example, if you are working in Microsoft Visual Basic, choose
Project > References to open the References dialog box for your project.
Then select QuickTest Professional <Version> Object Library (where
<Version> is the current installed version of the QuickTest automation type
library).

Running Your Automation Program

There are several applications available for running automation programs.
You can also run automation programs from command line using
Microsoft's Windows Script Host.

For example, you could use the following command line to run your
automation program:

WScript.exe /E:VBSCRIPT myScript.vbs

Chapter 23 • Automating QuickTest Operations

667

Learning the Basic Elements of a QuickTest Automation
Program

Like most automation object models, the root object of the QuickTest
automation object model is the Application object. The Application object
represents the application level of QuickTest. You can use this object to
return other elements of QuickTest such as the Test object (which represents
a component document), Options object (which represents the Options
dialog box), or Addins collection (which represents a set of add-ins from the
Add-in Manager dialog box), and to perform operations like loading add-ins,
starting QuickTest, opening and saving components, and closing QuickTest.

Each object returned by the Application object can return other objects,
perform operations related to the object and retrieve and/or set properties
associated with that object.

Every automation program begins with the creation of the QuickTest
Application object. Creating this object does not start QuickTest. It simply
provides an object from which you can access all other objects, methods
and properties of the QuickTest automation object model.

Note: You can also optionally specify a remote QuickTest computer on
which to create the object (the computer on which to run the program). For
more information, refer to the “Running Automation Programs on a Remote
Computer” section of the online QuickTest Automation Object Model Reference.

The structure for the rest of your program depends on the goals of the
program.You may perform a few operations before you start QuickTest such
as retrieving the associated add-ins for a component, loading add-ins, and
instructing QuickTest to open in visible mode.After you perform these
preparatory steps, if QuickTest is not already open on the computer, you can
open QuickTest using the Application.Launch method. Most operations in
your automation program are performed after the Launch method.

Part VI • Working with Advanced Features

668

For information on the operations you can perform in an automation
program, refer to the online QuickTest Automation Object Model Reference. For
more information on this Help file, see “Using the QuickTest Automation
Object Model Reference” on page 669.

When you finish performing the necessary operations, or you want to
perform operations that require closing and restarting QuickTest, such as
changing the set of loaded add-ins, use the Application.Quit method.

Generating Automation Scripts

The General tab of the Options dialog box, and the Object Identification
dialog box each contain a Generate Script button. Clicking this button
generates an automation script file (.vbs) containing the current settings
from the corresponding dialog box.

You can run the generated script as is to open QuickTest with the exact
configuration of the QuickTest application that generated the script, or you
can copy and paste selected lines from the generated files into your own
automation script.

For example, the generated script for the Options dialog box may look
something like this:

Dim App 'As Application
Set App = CreateObject("QuickTest.Application")
App.Launch
App.Visible = True
App.Options.DisableVORecognition = False
App.Options.AutoGenerateWith = False
App.Options.WithGenerationLevel = 2
App.Options.TimeToActivateWinAfterPoint = 500
...
...
App.Options.WindowsApps.NonUniqueListItemRecordMode = "ByName"
App.Options.WindowsApps.RecordOwnerDrawnButtonAs = "PushButtons"
App.Folders.RemoveAll

Chapter 23 • Automating QuickTest Operations

669

For more information on the Generate Script button and for information
on the options available in the Options and Object Identification dialog
boxes, see Chapter 8, “Setting Global Testing Options” and Chapter 14,
“Configuring Object Identification.”

Using the QuickTest Automation Object Model Reference

The QuickTest Automation Object Model Reference is a Help file that
provides detailed descriptions, syntax information, and examples for the
objects, methods, and properties in the QuickTest automation object model.

You can open the QuickTest Automation Object Model Reference from the:

➤ QuickTest program folder (Start > Programs > QuickTest Professional >
Documentation > QuickTest Automation Reference)

➤ QuickTest Help menu (Help > QuickTest Automation Object Model
Reference)

Part VI • Working with Advanced Features

670

Part VII

Appendixes

672

673

A
Working with QuickTest Add-Ins

QuickTest Professional has several built-in add-ins, including Web, ActiveX,
and Visual Basic, that can be installed from the QuickTest Professional setup.
You can purchase additional external add-ins separately.

When you work with these add-ins, you can use special methods, properties,
and various special options to create the best possible component for your
application.

This chapter describes:

➤ About Working with QuickTest Add-Ins

➤ Loading QuickTest Add-ins

➤ Tips for Working with QuickTest Add-ins

➤ Working with the Web Add-in

About Working with QuickTest Add-Ins

You can install the QuickTest built-in add-ins (Web, ActiveX, Visual Basic)
when you install QuickTest Professional, or you can install the QuickTest
built-in add-ins at a later time by running the installation again. Add-ins
that are available separately from the QuickTest Professional built-in
installation are referred to as external add-ins.

ActiveX Add-in—You can use the built-in ActiveX Add-in to test ActiveX
controls. You can create and run components on these controls, as well as
check their properties. You create and run components on ActiveX controls
in much the same way as you do for standard Windows applications.

Part VII • Appendixes

674

For information on supported ActiveX controls and versions, refer to the
QuickTest Professional Readme.

Visual Basic Add-in—You can use the built-in Visual Basic Add-in to test
Visual Basic applications. You can create and run components on these
controls, as well as check their properties. You create and run components
on Visual Basic applications in much the same way as you do for standard
Windows applications.

To test Visual Basic .NET Windows Forms applications, you must install and
load the .NET Add-in. Note that the .NET Add-in is an external add-in and is
not included with your core QuickTest installation. To purchase this add-in,
contact your QuickTest supplier or Mercury Customer Support.

Web Add-in—You can use the built-in Web Add-in to test your Web pages
and applications. You can test Web objects such as hyperlinks, images,
image maps, and Viewlink objects. For more information on using the Web
Add-in, see “Working with the Web Add-in” on page 682.

When QuickTest opens, you can choose which of the installed add-ins you
want to load using the QuickTest Professional - Add-In Manager dialog box.

If you choose to load an installed add-in, QuickTest recognizes the objects
you record on the corresponding environment and enables you to work
with the appropriate methods, properties, and specialized options.

Each external add-in requires a seat or concurrent license code. You install a
seat add-in license on your computer using the Add-in Manager dialog box.
You install a concurrent add-in license on the Mercury Functional Testing
Concurrent License Server computer.

For more information on installing add-ins and licenses, refer to the
QuickTest Professional Installation Guide.

Appendix A • Working with QuickTest Add-Ins

675

Loading QuickTest Add-ins

If you have installed QuickTest add-ins, you can specify which add-ins to
load at the beginning of each QuickTest session.

Notes: You can use all version 8.x and 9.0 add-ins with QuickTest
Professional 9.0. The Java, .NET, PeopleSoft, Terminal Emulator, and Siebel
version 8.x add-ins require an Add-in Upgrade patch, which is installed
automatically when upgrading QuickTest Professional. If you install these
add-ins after you install or upgrade to QuickTest 9.0, you must install the
relevant Add-in Upgrade patches.

To install the Siebel or Terminal Emulator 8.x Add-ins on a computer that
has the Java 8.x Add-in installed, you must make sure the Java Add-in
Upgrade patch is already installed.

You can install Add-in Upgrade patches by either running the relevant patch
executable from the <QuickTest Professional Installation>\AddinsUpgrade
folder, or by using the Help > Check for Updates option to download and
install the relevant Add-in Upgrade patches. For more information on the
Check for Updates option, refer to the QuickTest Professional Basic Features
User’s Guide.

If you do not install the relevant Add-in Upgrade patch for the PeopleSoft,
Terminal Emulator, or Siebel 8.x add-ins, they will be labeled Incompatible,
and cannot be loaded. If you do not install the relevant Add-in Upgrade
patch for the Java or .NET 8.x add-ins, you can load and use the add-ins, but
some functionality may be missing. For more information, refer to the
QuickTest Professional Readme.

Part VII • Appendixes

676

When you start QuickTest, the Add-in Manager dialog box opens. It displays
a list of all add-ins installed for QuickTest and the license used for each
add-in. If you are using a seat add-in license, it also displays the time
remaining for time-limited licenses. For information on the information
shown in the Add-in Manager dialog box, see “Understanding the Add-in
Manager Options” on page 677.

Note: If the Add-in Manager dialog box is not displayed when you open
QuickTest, you can choose to display it the next time you open QuickTest.
To do so, select Display Add-in Manager on startup from the General tab of
the Options dialog box.

You can select which add-ins to load for the current session of QuickTest. To
maximize performance and object identification reliability, load only the
add-ins you need.

Appendix A • Working with QuickTest Add-Ins

677

If an add-in license has not yet been installed for a specific external add-in,
the add-in is displayed as Not Licensed in the License column of the Add-in
Manager dialog box. An add-in may also be displayed as Not Licensed if no
concurrent license server within your subnet has a registered license for the
specific add-in, or if all concurrent licenses are in use (and are, therefore,
unavailable). In this case, you can use the LSFORCEHOST variable to
connect to a concurrent license server outside of the subnet that has the
relevant add-in license installed on it, if one is available. For more
information on connecting to concurrent license servers, refer to the
QuickTest Professional Installation Guide.

Understanding the Add-in Manager Options

The Add-in Manager includes the following options:

➤ Add-in column—Lists the names of the installed QuickTest Professional
add-ins.

➤ License column—Lists the license used by the add-in:

➤ Built-In—Applies to the add-ins that are provided with QuickTest
Professional. Note that built-in add-ins use the same license as QuickTest
Professional. Therefore, if QuickTest uses a Permanent license, the
built-in add-ins use the same Permanent license; if QuickTest uses a
Time-Limited license, the built-in add-ins use the same Time-Limited
license.

➤ Time-Limited—Temporary license, for example, a demo (14-day) license
or a one-year license. (Displayed only when using a QuickTest seat
license—not a concurrent license.)

➤ Permanent—Unlimited expiration date.

➤ Not Licensed—Applies to an add-in that does not have an installed seat
license or access to a concurrent license server (for example, if all
concurrent licenses are currently in use, or if the required add-in license
is not installed on the concurrent license server on your subnet). To load
the add-in, you first need to install or access a license. For more
information, refer to the QuickTest Professional Installation Guide.

Part VII • Appendixes

678

➤ Incompatible Version—Applies to an add-in that is no longer supported
by QuickTest. Note that if a supported (later) version of the add-in is
available, you can upgrade to that version or install an upgrade patch,
and then load the add-in. For more information, refer to the QuickTest
Professional Installation Guide.

➤ Time Remaining column—Specifies the number of days and hours
remaining until a Time-Limited add-in license expires. (Displayed only
when using a QuickTest seat license—not a concurrent license.)

➤ Add-in Description—Describes the environment that the add-in supports.

➤ Show on startup—Instructs QuickTest to display the Add-in Manager dialog
box each time you open QuickTest.

When this check box is cleared, QuickTest opens without displaying the
Add-in Manager. To display it again, choose Tools > Options > General and
select Display Add-in Manager on startup. For information on working with
the Options dialog box, see Chapter 8, “Setting Global Testing Options.”

➤ Modify Add-in License—Opens the QuickTest Professional License
Installation - Welcome window, which enables you to install add-in licenses
for external add-ins. (Displayed only when using a QuickTest seat license—
not a concurrent license.)

The procedure for installing an add-in license is the same as the procedure
for installing a QuickTest Professional license. For more information about
licenses and how to install them, refer to the QuickTest Professional
Installation Guide.

Selecting Add-ins to Load

You select the add-ins that you want QuickTest to load by selecting the
check boxes adjacent to required add-ins. When you click OK, QuickTest
loads the selected add-ins. QuickTest also remembers which add-ins you
selected so that the next time you open QuickTest, the same add-ins are
selected in the Add-in Manager dialog box. If you clear the Show on startup
check box, the selected add-ins are loaded automatically whenever you open
QuickTest.

Appendix A • Working with QuickTest Add-Ins

679

Matching Loaded Add-ins with Associated Add-ins

When you open a component, QuickTest compares the add-ins that are
currently loaded with the add-ins associated with your component. If they
do not match, QuickTest issues a warning message.

If there are add-ins associated with your component that are not currently
loaded, depending on your requirements, you can:

➤ close and reopen QuickTest, and select the required add-ins in the Add-in
Manager dialog box.

➤ remove the add-ins from the list of associated add-ins for your component.
To change the list of add-ins associated with your component, choose File >
Settings and use the Modify option in the Properties tab. For more
information on associating add-ins, see “Associating Add-ins with Your
Component” on page 84.

If add-ins are loaded but not associated with your component, you can:

➤ close and reopen QuickTest, and clear the check boxes for the add-ins in the
Add-in Manager dialog box, if they are not required.

➤ add the add-ins to the list of associated add-ins for your component. To
change the list of add-ins associated with your component, choose File >
Settings and use the Modify option in the Properties tab. For more
information on associating add-ins, see “Associating Add-ins with Your
Component” on page 84.

Part VII • Appendixes

680

Tips for Working with QuickTest Add-ins

QuickTest add-ins help you to create and run components on applications
in a variety of development environments. After you load an add-in, you
can record and run components on applications in the corresponding
development environment, similar to the way you do with any other
application.

To take full advantage of QuickTest add-in capabilities, keep the following in
mind when designing components using QuickTest add-ins:

➤ You must install and load an add-in to enable QuickTest to recognize objects
from the corresponding environment. To load an add-in, select the add-in
from the Add-in Manager dialog box that opens when you start QuickTest.

➤ If the Add-in Manager does not open when you start QuickTest, click the
Options button or choose Tools > Options and click the General tab. Select
the Display Add-in Manager on startup check box and click OK. Restart
QuickTest.

➤ To maximize performance and object identification reliability, load only the
add-ins you need. For example, if you want to test a process that spans a
Web application and a .NET application, load only the Web and .NET
Add-ins. Do not load all add-ins unless you need to work with all of them.

➤ You can view the list of add-ins that are currently installed or loaded by
choosing Help > About QuickTest Professional. The dialog box displays a list
of all add-ins installed on your computer. A check mark indicates that the
add-in is currently loaded.

Appendix A • Working with QuickTest Add-Ins

681

➤ You can view license details for all currently loaded licensed add-ins by
clicking License in the About QuickTest Professional dialog box (Help >
About QuickTest Professional).

➤ For seat licenses, the category for each license is displayed. The license
category may be Demo, Permanent, Commuter, or Time-Limited. For
Demo, Commuter (used with concurrent licenses), and Time-Limited
QuickTest seat licenses, the number of days and hours remaining until
the license expires is also displayed.

➤ For concurrent licenses, the URL or host name of the concurrent license
server used for each license is displayed.

To switch between a seat and a concurrent license, click Modify License.
Note that you can use only one license type per session for QuickTest
Professional and all loaded add-ins—either seat or concurrent.

Part VII • Appendixes

682

For more information on license types, installing licenses, and modifying
licenses, refer to the QuickTest Professional Installation Guide.

Working with the Web Add-in

You can use QuickTest’s Web Add-in to test your Web pages and
applications. You can test Web objects such as hyperlinks, images, image
maps, and Viewlink objects.

Before you begin recording on Web sites and applications, you should
ensure that you have installed and loaded the Web add-in. You can check
whether the Web add-in is installed by choosing Help > About QuickTest
Professional. Loaded add-ins are indicated by a check mark in the add-ins
list.

You should also set your preferences in the Web tab of the Business
Component Settings dialog box, and the Web tab of the Options dialog box.
For more information, see Chapter 9, “Working with Business Component
Settings” and Chapter 8, “Setting Global Testing Options.”

If QuickTest does not record Web events in a way that matches your needs,
you can also configure the events you want to record for each type of Web
object. For example, if you want to record events, such as a mouseover that
opens a sub-menu, you may need to modify the Web event configuration to
recognize such events. For more information, see Chapter 11, “Configuring
Web Event Recording.”

Note: If you are recording on a list in a Web page or application, you must
click on the list, scroll to an entry that was not originally showing, and
select it. If you want to select the item in the list that is already displayed,
you must first select another item in the list (click it), then return to the
originally displayed item and select it (click it). This is because QuickTest
only records a step if the value in the list changes.

Appendix A • Working with QuickTest Add-Ins

683

Working with Web Browsers

You use a Web browser to record components that check Web objects. Before
you begin recording, you must open your browser to the relevant Web page.

Note: By default, the name assigned to the Browser test object in the object
repository is always the name assigned to the first page recorded for the
browser object. The same test object is used each time you record on a
browser with the same ordinal ID in future recording sessions. Therefore,
the name used for the browser in the steps you record may not reflect the
actual browser name.

QuickTest supports recording components on Microsoft Internet Explorer
and running components on the following Web browsers:

➤ Microsoft Internet Explorer

➤ Netscape Browser

➤ Mozilla Firefox

➤ Applications with embedded Microsoft Internet Explorer Web browser
controls

Note: QuickTest components are generally cross-browser—you can record a
component on Microsoft Internet Explorer and run it on any other
supported browser. For information on supported browser versions, refer to
the Readme file.

Part VII • Appendixes

684

Working with Microsoft Internet Explorer

Consider the following when using Microsoft Internet Explorer as your Web
browser:

➤ QuickTest Professional Web support behaves as a browser extension in
Microsoft Internet Explorer. Therefore, you cannot use the Web Add-in on
Microsoft Internet Explorer without enabling the Enable third-party
browser extensions option. To set the option, in Microsoft Internet Explorer
choose Tools > Internet Options > Advanced and select the Enable third-
party browser extensions option.

➤ QuickTest Professional does not support tabbed browsing. Therefore, before
using the Web Add-in, you must disable tabbed browsing on Internet
Explorer. To disable the option, in Microsoft Internet Explorer choose Tools
> Internet Options > Advanced and clear the Enable Tabbed Browsing
option. After clearing this option, you must restart your browser before
using the QuickTest Professional Web Add-in.

Working with Netscape Browser and Mozilla Firefox

Keep the following in mind when using Netscape Browser or Mozilla Firefox
as your Web browser:

➤ You must be logged-in with Administrator privileges (or have write
permissions to the browser’s installation folder) on the QuickTest computer
when launching Mozilla Firefox with QuickTest for the first time, since
adding QuickTest support for Mozilla Firefox requires a file to be created in
the browser's installation folder.

➤ You can record components on Microsoft Internet Explorer and run them
on Netscape Browser and Mozilla Firefox. You cannot record components
on Netscape Browser and Mozilla Firefox. There are two ways to create
components to run on Netscape Browser or Mozilla Firefox:

➤ Record the component on Microsoft Internet Explorer.

➤ Use the keyword-driven methodology: create an object repository for
your application using the Object Repository window (local object
repository) or Object Repository Manager (shared object repository), and
then add steps using the Keyword View or Step Generator.

Appendix A • Working with QuickTest Add-Ins

685

When you use the keyword-driven methodology, you can add objects
using Mozilla Firefox or Netscape if you want; you do not have to use
Microsoft Internet Explorer.

➤ Generally, components that were recorded on Microsoft Internet Explorer
will run on Netscape Browser and Mozilla Firefox without requiring any
modification. However, there are several differences that you should keep in
mind:

➤ QuickTest does not support Netscape Browser and Mozilla Firefox menus
or sidebars. The only toolbar buttons that are supported are the Home,
Refresh, Back, Forward, and Stop buttons. All other toolbars and toolbar
buttons are not supported.

The following toolbar buttons are the only supported toolbar buttons for
Netscape Browser.

The following toolbar buttons are the only supported toolbar buttons for
Mozilla Firefox.

If you record steps on any unsupported menu or toolbar objects when
working with Microsoft Internet Explorer, you need to remove or replace
the steps before running the component on Netscape Browser and
Mozilla Firefox.

➤ Netscape Browser and Mozilla Firefox use different standard dialog boxes
than the Windows standard dialog boxes used by Microsoft Internet
Explorer. If your component contains steps on such dialog boxes, you
should create appropriate steps to be used when running on Netscape
Browser and Mozilla Firefox.

Part VII • Appendixes

686

For example, the following two dialog boxes are a security alert of the
same Web site, the one on the left is from Microsoft Internet Explorer
and the one on the right is from Mozilla Firefox. Although they both
look like a Windows dialog box, the Mozilla Firefox one is actually a
browser window.

➤ Due to the difference in standard dialog boxes described above, pop-up
recovery scenarios that use the Click button with label recovery operation
and were built for Microsoft Internet Explorer will not work for Netscape
Browser and Mozilla Firefox.

Appendix A • Working with QuickTest Add-Ins

687

➤ Tabbed browsing is not supported by QuickTest for any browser type. In
Netscape Browser and Mozilla Firefox, you must specifically configure your
browser to open a new browser window instead of a new tab. This
configuration is dependent on the nature of your application and therefore
configuration instructions are not provided. In most cases, you can add
objects to the object repository and run components on the active browser
tab, even if there are additional tabs currently open.

➤ Although Netscape Browser supports both Firefox and Internet Explorer
engines, QuickTest supports only the Firefox engine. If your component fails
or QuickTest does not recognize any objects in your Web page, make sure
Netscape Browser is not using the Internet Explorer engine to display it.

To change the rendering engine to Firefox, click the icon in the bottom-left
corner of Netscape Browser and select Display Like Firefox.

Tips:

You can configure the browser to always display your pages using the Firefox
engine. (In Netscape Browser, choose Tools > Options > Site Controls, and
make sure that the Firefox radio button is selected in the Rendering Engine
area.)

You can configure the browser to always display your pages using the Firefox
engine by clearing the Automatically use the Internet Explorer Engine
check box while installing Netscape Browser.

Part VII • Appendixes

688

➤ The Object property accesses DOM objects. These are not supported by
Netscape Browser and Mozilla Firefox. For more information on the Object
property, refer to the QuickTest Professional Advanced Features User’s Guide.

Working with Applications with Embedded Web Browser Controls

To record and run components on an application with embedded Web
browser controls:

➤ Make sure the ActiveX Add-in is loaded.

➤ Make sure the application is opened after QuickTest.

➤ Start recording or running the test.

Note: Embedded browser controls are supported only for Microsoft Internet
Explorer.

689

B
Working with QuickTest—Frequently
Asked Questions

This chapter answers some of the questions that are asked most frequently
by advanced users of QuickTest. The questions and answers are divided into
the following sections:

➤ Recording and Running Components

➤ Working with Function Libraries

➤ Working with Dynamic Content

➤ Advanced Web Issues

➤ Component Maintenance

➤ Improving QuickTest Performance

Part VII • Appendixes

690

Recording and Running Components

➤ How does QuickTest capture user processes in Web pages?

QuickTest hooks the Microsoft Internet Explorer browser. As the user
navigates the Web-based application, QuickTest records the user actions.
(For information about modifying which user actions are recorded, see
Chapter 11, “Configuring Web Event Recording.”) QuickTest can then run
the component by running the steps as they originally occurred.

➤ How can I record on objects or environments not supported by
QuickTest?

You can do this in a number of ways:

➤ By default, QuickTest supports several developmental environments. You
can also enable support for additional environments, such as Java,
Oracle, .NET, SAP Solutions, Siebel, PeopleSoft, terminal emulators, and
Web services, by installing and loading any of the external add-ins that
are available for QuickTest Professional.

➤ You can map objects of an unidentified or custom class to standard
Windows classes. For more information on object mapping, see
“Mapping User-Defined Test Object Classes” on page 385.

Appendix B • Working with QuickTest—Frequently Asked Questions

691

Working with Function Libraries

➤ Can I store functions and subroutines in a function library?

You can create one or more VBScript function libraries containing your
functions, and then use them in any component.

You can register your functions as methods for QuickTest test objects. Your
registered methods can override the functionality of an existing test object
method for the duration of a run session, or you can register a new method
for a test object class.

For more information, see Chapter 21, “Working with User-Defined
Functions and Function Libraries.”

Working with Dynamic Content

➤ How can I record and run components on objects that change
dynamically from viewing to viewing?

Sometimes the content of objects in a Web page or application changes due
to dynamic content. You can create dynamic descriptions of these objects so
that QuickTest will recognize them when it runs the test. For more
information, see Chapter 13, “Working with Test Objects.”

➤ How can I check that a child window exists (or does not exist)?

Sometimes a link in one window creates another window.

You can use the Exist property to check whether or not a window exists. For
example:

Browser("Window_name").Exist

You can also use the ChildObjects method to retrieve all child objects (or
the subset of child objects that match a certain description) on the Desktop
or within any other parent object.

For more information on the Exist property and ChildObjects method,
refer to the QuickTest Professional Object Model Reference.

Part VII • Appendixes

692

➤ How does QuickTest record on dynamically generated URLs and Web
pages?

QuickTest actually clicks links as they are displayed on the page. Therefore,
QuickTest records how to find a particular object, such as a link on the page,
rather than the object itself. For example, if the link to a dynamically
generated URL is an image, then QuickTest records the “IMG” HTML tag,
and the name of the image. This enables QuickTest to find this image in the
future and click on it.

Advanced Web Issues

➤ How does QuickTest handle cookies?

Server side connections, such as CGI scripts, can use cookies both to store
and retrieve information on the client side of the connection.

QuickTest stores cookies in the memory for each user, and the browser
handles them as it normally would.

➤ How does QuickTest handle session IDs?

The server, not the browser, handles session IDs, usually by a cookie or by
embedding the session ID in all links. This does not affect QuickTest.

➤ How does QuickTest handle server redirections?

When the server redirects the client, the client generally does not notice the
redirection, and misdirections generally do not occur. In most cases, the
client is redirected to another script on the server. This additional script
produces the HTML code for the subsequent page to be viewed. This has no
effect on QuickTest or the browser.

Appendix B • Working with QuickTest—Frequently Asked Questions

693

➤ How does QuickTest handle meta tags?

Meta tags do not affect how the page is displayed. Generally, they contain
information only about who created the page, how often it is updated, what
the page is about, and which keywords represent the page's content.
Therefore, QuickTest has no problem handling meta tags.

➤ Does QuickTest work with .asp?

Dynamically created Web pages utilizing Active Server Page technology have
an .asp extension. This technology is completely server-side and has no
bearing on QuickTest.

➤ Does QuickTest work with COM?

QuickTest complies with the COM standard.

QuickTest supports COM objects embedded in Web pages (which are
currently accessible only using Microsoft Internet Explorer) and you can
drive COM objects in VBScript.

➤ Does QuickTest work with XML?

XML is eXtensible Markup Language, a pared-down version of SGML for
Web documents, that enables Web designers to create their own customized
tags. QuickTest supports XML and recognizes XML tags as objects.

For more information, refer to the QuickTest Professional Basic Features User’s
Guide.

Part VII • Appendixes

694

Component Maintenance

➤ How do I maintain my component when my application changes?

The way to maintain a component when your application changes depends
on how much your application changes. This is one of the main reasons you
should create a small group of components rather than one large
component for your entire application. When your application changes,
you can re-record part of a component. If the change is not significant, you
can manually edit a component to update it.

If you have many components that contain the same test objects, it is
recommended to work with shared object repositories so that you can
update object information in a centralized location.

To update the information about your test object properties when object
properties change, use the Update Run Mode option. For more information,
see “Updating a Component” on page 484.

Improving QuickTest Performance

➤ How can I improve the working speed of QuickTest?

You can improve the working speed of QuickTest by doing any of the
following:

➤ Do not load unnecessary add-ins in the Add-in Manager when QuickTest
starts. This will improve both recording time and run session
performance. For more information about loading add-ins, see “Loading
QuickTest Add-ins” on page 675.

➤ Run your components in "fast mode." From the Run tab in the Options
dialog box, select the Fast option. This instructs QuickTest to run your
test without displaying the execution arrow for each step, enabling the
test to run faster. For more information on the Run tab of the Options
dialog box, see “Setting Run Testing Options” on page 196.

695

A

About QuickTest Professional window 68
access permissions

required for Quality Center 13
required to run QuickTest 13

Active Server Page technology 693
Add Object to Object Repository dialog

box 338
Add Repository Parameter dialog box 409
Add/Remove dialog box, object

identification 364, 380
Add/Remove Properties dialog box 322
Add-in License 674, 678
Add-in Manager dialog box 675
add-ins

associated and loaded 679
associating with a component 84
loading 675
modifying selection 85
tips for working with 680
using 673

Advanced Features User’s Guide, QuickTest
Professional xiii

Advanced Web Options dialog box 219
Advanced Windows Applications Options

dialog box 201
analyzing component run results 491
analyzing run results

exporting run results to HTML 505
previewing results before printing 503

analyzing test results
filtering results 498
parameterized values 507
printing results 502
Test Results window 493

API
using Windows 655

application area 73
about 74
adding function libraries 89
adding object repositories 95
adding shared object repository to

Quality Center project 95
Application Area Settings dialog

box 103
changing for component 135
choosing shared object repository 97
creating 76
defining additional settings 103
defining settings for 81
definition of 11
deleting 114
description 37
Function Libraries pane 87
General pane 81
Object Repositories pane 92
opening 79
recovery scenario settings 108
removing recovery scenarios from 568
saving 112
web settings 107

Application crash trigger 536
application, sample xiv, 14
applications

associated with a component 234
closing 642
running 642
specifying for a component 103

ASP files 693
assistive properties, configuring 362
associated and loaded add-ins 679
associated function libraries 587

modifying 589

Index

Index

696

associating
add-ins with a component 84
current function library 588

attribute property 653
auto-expand VBScript syntax 249
automation

Application object 667
definition 662
development environment 665
language 665
object model 661
type library 665

Automation Engineer 5, 12
Automation toolbar, QuickTest

window 26, 55

B

Basic event recording configuration level 257
Basic Features User’s Guide, QuickTest

Professional xiii
behavior, DHTML 265
bookmarks 618
breakpoints

setting 467
using 466

Browser Details dialog box 213
browsers

ignoring 212
supported 683

bubbling 266
Business Component Keyword View. See

Keyword View
Business Component Settings dialog box 225

Applications tab 234
Parameters tab 237
Properties tab 229
Recovery tab 243
Resources tab 236
Snapshot tab 232
Web tab 241

Business Component Settings dialog box,
opening 227

business components. See components

Business Process Testing
workflow using QuickTest 10

business process tests 12

C

calculations, in function libraries 645
CGI scripts 692
character set support, Unicode 3
Close application process operation 549
Close method 642
closing

object repositories 402
collection, properties. See programmatic

descriptions
color settings

Object Repository Merge Tool 430
colors

changing in Keyword View 35
columns

display options 33
COM 693
command line options, deleting test results

using 515
comments 151, 178

in function libraries 643
compact view

Object Repository window 308
Completing the Recovery Scenario Wizard

screen 560
component parameter 31, 164, 167

defining default values for 240
input 12
output 12
parameterizing input 171
parameterizing output 175
using 241

component resources, missing 181
component run

exporting results to HTML 505
previewing results before printing 503

component settings. See Business
Component Settings dialog box

Index

697

components 117, 231
adding steps 151
changing application area 135
converting business components to

scripted components 146
creating 120
debugging 457
defining settings for 225
definition 11
deleting steps 180
Keyword View 118
managing steps 180
manual 11, 130
moving steps 180
opening 126
pausing runs 465
printing 137
running 477
running from a step 483
saving 123
updating 484
viewing associated function libraries

236
viewing run results 491

components, scripted. See scripted
components

configuration levels
customizing 259
standard 257

conflict resolution settings
Object Repository Merge Tool 431

conflicts, resolving in merged object
repository 446

connecting to Quality Center 20
conventions. See typographical conventions
converting

business components to scripted
components 146

object repositories 399
cookies 692
copying function code 602
creating

application area 76
components 120
test objects during run sessions 355

creation time identifier. See ordinal identifier

CreationTime property, understanding 371
custom event-recording configuration 259

adding listening events 263
adding objects to the list 262
deleting objects from the list 263
procedure 259
specifying listening criteria 265

custom objects, mapping 385
custom web event configuration files

loading 273
saving 273

Custom Web Event Recording Configuration
dialog box 259, 270

customer support, Web site xv
customizing function libraries 245

general options 247
highlighting elements 250

D

Data Table 41
Debug toolbar, QuickTest window 25, 55
Debug Viewer 41, 470
debugging

components 457
function libraries 457, 584
pausing runs 465
Run to Step 463
setting breakpoints 467
Start from Step 463

default object identification settings 374
default properties, modifying 279, 295
defects, reporting 521

from Test Results 521
defining arguments 593
deleting

application areas 114
objects from list 263
objects from the object repository 346
repository parameters 412
steps 180

description properties
adding for test objects 322

description, test objects 283
See also objects

Index

698

descriptive programming. See programmatic
descriptions

Dim statement, in function libraries 627
disconnecting from Quality Center 23
disk space, saving 694
Do...Loop statement, in function libraries

647
docked panes 47
documentation

Advanced Features User’s Guide xiii
Basic Features User’s Guide xiii
Installation Guide xiii
online xiv
Tutorial xiii

Documentation column 32
Documentation Only option 34
documentation updates xvi
documenting a function 599
Domain command line option 516
DOS commands, run within tests 654
dynamic Web content 691
dynamically generated URLs and Web

pages 692

E

Edit toolbar, QuickTest window 55
Editor Options dialog box 247
embedded Web browser controls 688
encoding passwords 166
End Transaction button 56
environments, viewing for a component 234
errors in VBScript syntax 630
event-recording configuration 255

customizing levels 259
resetting 275
standard levels 257

Exist property 691
Export to HTML File dialog box 505
exporting

local objects to object repository
file 356

object repository to XML file 419
expressions, using in function libraries 624
eXtensible Markup Language (XML) 693

F

FAQs 689
feedback, sending to Mercury xv
Filter dialog box

Object Repository Merge Tool 448
filter properties (Smart Identification) 375
filtering

objects in Object Repository
window 308

target repository 448
finalizing function code 602
Find & Replace dialog box 347
Find dialog box

Object Repository Merge Tool 450
finding

test objects and properties 347
text in function libraries 620

floating panes 48
fonts

changing in Keyword View 35
For...Each statement, in function

libraries 647
For...Next statement, in function

libraries 646
frequently asked questions 689
FromDate command line option 516
full view

Object Repository window 308
Function call operation 549
Function Definition Generator 593

defining a function 593
documenting a function 599
opening 591
previewing function code 601
registering a function 594
using 589

function libraries 573
adding to application area 89, 91
associated with a component 236
associating current 588
closing applications 642
creating 576
creating in application area 91
customizing appearance of 245
debugging 457, 584
definition of 11

Index

699

description 39
editing 582
finding text 620
general options 247
highlighting elements 250
managing 575
modifying associated 589
navigating 581
opening 579, 586
pausing runs 465
programming in 611
read-only, editing 584
replacing text 622
running applications 642
saving 577
working with associated 587

Function Libraries pane
application area 87

function library files
functions

user-defined 573

G

general options 247
General pane

additional settings 81
application area 81

Generate Script option 668
GetROProperty method 651
global options

setting for all components 189
glossary of terms 11
Go To dialog box 617
guidelines

user-defined functions 609

H

handler 265
Help, online, from within QuickTest

Professional xiv
High event recording configuration level 257
highlighting

test objects in an application 350
home page, Mercury xv

I

identifying test objects 279
If...Then...Else statement, in function

libraries 649
ignore browsers list 212

adding browser 213
modifying browser 214
removing browser 215

image, capturing for a component 232
importing

object repository from XML file 418
index identifier. See ordinal identifier
Index property, programmatic

descriptions 640
Index property, understanding 369
Information Pane 25, 40
initialization scripts 663
Insert toolbar, QuickTest window 56
IntelliSense 248, 612
Item cell 155
Item column 30
Item list 156
item, selecting

from Item list 156
from shared object repository 156
from your application 159

K

key assignments
in function libraries 252

Keyboard or mouse operation 549
keyboard shortcuts

in function libraries 252
Keyword View 29, 149

about 150
changing fonts and colors 35
column display options 33
definition of 11

Keyword View tab 29
keywords

managing 99
Keywords pane (in application area)

filtering columns 101
sorting column content 103

knowledge base xiv

Index

700

L

language support, Unicode 3
layout

customizing QuickTest window 42
moving panes 42
moving tabs 42
restoring default 50

library files. See function libraries
license information 15
loaded and associated add-ins 679
loading QuickTest add-ins 675
local object repositories 297, 299

copying objects to 310
merging 437

local objects
exporting to object repository file 356

local parameter 31, 164, 167
definition of input parameter 12
definition of output parameter 12
parameterizing input 171
parameterizing output 175

location identifier. See ordinal identifier
Location property, understanding 370
Log command line option 516

M

Manage Repository Parameters dialog box
407

managing components
printing 137

managing test objects 295
mandatory properties, configuring 362
manual component 11
manual steps 130, 151, 178
manual tests 34
Map Shared Object Repository Parameters

dialog box 331
mapping

custom objects 385
repository parameters 331
unmapped object repositories 184
unmapped repository parameters 185

Medium event recording configuration
level 257

menu bar, QuickTest window 25

Mercury Best Practices xv
Mercury Tours, sample application xiv, 14
merging

local object repositories 437
shared object repositories 421

meta tags 693
methods

adding new or changing behavior
of 604

run-time objects 652
user-defined 604
viewing test objects 279

Microsoft Internet Explorer, working
with 684

MinSize command line option 517
missing resources 181
Missing Resources pane 40

unmapped repository parameters 185
modifying

default properties 279, 295
object repositories 405
repository parameters 411
test object properties during run

sessions 355
your license 15

moving a step 180
multiple documents

working with 51

N

Name and Description screen 559
Name command line option 517
names

modifying for test objects 319
Netscape, working with 684
New Business Component dialog box 120
New Merge dialog box 434

O

object identification
generating automation scripts 374
restoring defaults 374

Object Identification dialog box 361
Object Mapping dialog box 385

Index

701

object model
automation 661
definition 662

object names
modifying 319

object properties
viewing 311

object property values
restoring default 317, 319
specifying or modifying 315
viewing 311

Object property, run-time methods 653
object repositories

adding objects 335
adding to application area 95
closing 402
converting 399
copying, pasting and moving

objects 343
creating 398
deleting objects 346
exporting local objects 356
exporting to XML 419
importing from XML 418
local 299
locating objects 351
managing 390
modifying 405
opening 399
saving 400
shared 300
unmapped 184

Object Repositories pane
application area 92

Object Repository Manager 392
Object Repository Merge Tool 421

changing the view 424
color settings 430
conflict resolution settings 431
conflicts 443
filtering the target repository 448
primary repository pane 426
resolution options pane 426
resolving conflicts 446

secondary repository pane 426
target repository pane 425
window 423

object repository mode
choosing 298

object repository types 297
Object Repository window 302

compact view and full view 308
filtering objects 308
test object details 309

Object Selection dialog box 159
Object Spy 291
Object state trigger 536
objects

deleting from object repository 346
identification 359
identifying 279
methods, run-time 652
properties, run-time 652
viewing methods 279

Open Application Area button 79
Open Application Area dialog box 114
Open Business Component dialog box 126
Open Shared Object Repository dialog

box 97
opening

application area 79
component 126

operation
arguments 164
selecting for step 162
selecting from Item list 155, 156, 162

Operation cell 162
Operation column 31
Option Explicit statement 609
Options dialog box 190

Folders tab 194
General tab 192
Generate Script option 668
generating automation scripts 192
Run tab 196
Web tab 210
Windows Applications tab 198

ordinal identifier 368

Index

702

ordinal identifiers
specifying for test objects 329

Output cell 167
Output column 32
Output Options dialog box 167, 175
output, canceling 169

P

Page and Frame Options dialog box 216
panes

auto-hiding 47
customizing layout 42
Debug Viewer 41
docked 47
floating 48
Information 40
Missing Resources 40
moving 42

parameter
canceling output to 169
missing in repository 181
specifying for components 237
working with 170

parameter types
component 170
local 170

parameter, component. See component
parameter

parameter, local. See local parameter
parameterized values, viewing in test

results 507
parameterizing

property values using repository
parameters 414

parameters
adding repository 409
deleting repository 412
handling unmapped object repository

185
managing repository 407
mapping object repository 331
modifying repository 411
repository 406

Password command line option 518
Password Encoder dialog box 166

password, encoding 166
pausing run sessions 465
performance, improving 694
permissions

required for Quality Center 13
required to run QuickTest 13

Pop-up window trigger 536
post-recovery test run options 528
Post-Recovery Test Run Options screen 557
power users, advanced features for 689
previewing function code 601
primary repository 422
primary repository pane 426
Print dialog box 502
Print Preview dialog box 503
printing

components 137
function library 585
run session results 502

priority
setting for recovery scenarios 567

product information 68
Product Information button 68
Product Information window 68
programmatic descriptions 355, 632

for description objects 636
for WebElement objects 640
in statement 634
using the Index property 640
using variables 634

programming
in function libraries 611
in VBScript 625

project (Quality Center)
connecting to 20
disconnecting from 23

Project command line option 518
properties

adding for test object descriptions 322
CreationTime 371
default 279, 295
defining new for test object 326
deleting from a test object

description 328
Index 369
Location 370

Index

703

modifying for test objects 313
run-time objects 652
viewing for recovery

scenarios 563, 567
property collection. See programmatic

descriptions
property values

specifying in the test object
description 414

Q

Quality Center
associated function libraries 587
capturing a snapshot for a component
connecting to project 20
disconnecting from 23
reporting defaults 521
reporting defects manually 521

Quality Center Connection dialog
box 20, 23

QuickTest
automation object model 661
overview 17
product information 68
starting 18
updating software 16
window 25

QuickTest Automation Object Model
Reference 669

QuickTest layout
customizing 42

QuickTest window
Action toolbar 25
auto-hiding panes 47
Automation toolbar 26, 55
customizing layout 42
Debug toolbar 25
Edit toolbar 55
Information Pane 25, 40
Insert toolbar 56
look and feel 28
menu bar 25
Missing Resources 40
moving panes 42

moving tabs 42
multiple documents 51
restoring default layout 50
Standard toolbar 54
status bar 26
theme 28
Tools toolbar 56
View toolbar 57

R

Readme, QuickTest Professional xiii
record settings options 202
recording

on Web sites 682
right mouse button clicks 269
status, options 266
time, improving 694

recovery
application area, scenario settings 108
copying scenarios 565
deleting scenarios 565
disabling scenarios 568
files 531
modifying scenarios 564
operations 528
removing scenarios from tests 568
saving scenarios 561
scenarios 527
setting scenario priority 567
viewing scenario properties 563, 567

recovery operation
Close application process 549
Function call 549
Keyboard or mouse operation 549
Restart Microsoft Windows 549

Recovery Operation - Click Button or Press
Key screen 550

Recovery Operation - Close Processes
screen 552

Recovery Operation - Function Call
screen 554

Recovery Operation screen 549
Recovery Operations screen 547
Recovery Scenario Manager Dialog Box 531

Index

704

Recovery Scenario Wizard 534
Click Button or Press Key screen 550
Close Processes screen 552
Completing the Recovery Scenario

Wizard screen 560
Function screen 554
Name and Description screen 559
Post-Recovery Test Run Options

screen 557
Recovery Operation screen 549
Recovery Operations screen 547
Select Object screen 541
Select Processes screen 545
Select Test Run Error screen 544
Select Trigger Event screen 536
Set Object Properties and Values

screen 543
Specify Pop-up Window Conditions

screen 539
Recursive command line option 518
redirection of server 692
registering functions 594
registering methods 604

using the RegisterUserFunc
statement 606

RegisterUserFunc statement 594, 604
regular expressions

using in function libraries 624
renaming

test objects 319
replacing

test object property values 347
replacing text in function libraries 622
reporting defects

automatically 521
manually 521

reports, filter 658
repository

missing 181
Repository Parameter dialog box 414
repository parameters 406

adding 409
deleting 412
managing 407

mapping 331
modifying 411
parameterizing values 414

repository types 297
repository. See also object repository
reserved objects 587
resolution options pane 426
resolving conflicts

Object Repository Merge Tool 446
resources, missing in component 181
Restart Microsoft Windows operation 549
results

viewing for component run 491
results display, customizing 522
Results Remover Utility

running from the command line 515
results schema 522
right mouse button

configuring QuickTest to record 269
recording clicks 269

roles 12
Run dialog box 478
run options, in the Options dialog box 196
run results

reporting defects manually 521
viewing for components 491, 500

run sessions
creating test objects

programmatically 355
deleting results 513
disabling recovery scenarios 568
modifying test objects 355
printing results 502
working with test objects 354

run settings options 207
Run to Step 463
running

access permissions required 13
running components 477

advanced issues 690
from a step 483
on Web sites 682
Run dialog box 478
to update expected results 484

Index

705

Update Run dialog box 488
viewing results 496

run-time
objects 652

S

sample application, Mercury Tours xiv, 14
Save Application Area dialog box 112
Save Business Component dialog box 123
Save Shared Object Repository dialog

box 452, 453
saving

application area 112
component 123
object repositories 400
recovery scenarios 561
target repository 451

scenarios
copying recovery 565
deleting recovery 565
disabling recovery 568
modifying recovery 564
recovery 527
removing recovery from tests 568
saving recovery 561
setting recovery priority 567
viewing recovery properties 563, 567

schema, for results 522
screen shot. See snapshot
scripted components 11, 139

converting from business
components 146

creating 142
secondary repository 422
secondary repository pane 426
Select Application dialog box 106
Select Object for Step dialog box 156
Select Object screen 541
Select Processes screen 545
Select Test Run Error screen 544
Select Trigger Event screen 536
selecting a test object

from Item list 156
from shared object repository 156
from your application 159

sending feedback to Mercury xv
server

Quality Center, connecting to 20
Quality Center, disconnecting

from 23
redirections 692
server-side connections 692

Server command line option 519
session IDs 692
Set Object Properties and Values screen 543
Set statement, in function libraries 627
SetTOProperty method 355
SGML 693
shared object repositories 297, 300

merging 421
unmapped 184

shared object repository
adding to Quality Center 95
choosing 97
managing 92

shared object repository window 396
shortcut keys

in QuickTest 57
shortcuts

for menu items 57
in function libraries 252
in Object Repository Merge Tool 429
in QuickTest 57

Silent command line option 519
Smart Identification

analyzing information 509
configuring 375
enabling from the Object

Identification dialog box 373, 374
Smart Identification Properties dialog

box 380
snapshot, capturing for a component 232
software updates 16
Specify Pop-up Window Conditions

screen 539
Spy. See Object Spy
standard event-recording configuration 257
Standard toolbar, QuickTest window 54
Start from Step 463
starting QuickTest 18
statement completion 248, 612

Index

706

Statistics dialog box 442
status bar

Object Repository Merge Tool 427
QuickTest window 26

status of 231
status, component 231
step

adding 151
deleting 180
manual 151, 178
managing for component 180
moving 180

Step commands 460
Subject Matter Expert 5, 12, 74
support

knowlege base xiv
 Web site xv
syntax errors, VBScript 630
SystemUtil.Run method 642

T

tabs
customizing layout 42
moving 42

target repository 422
target repository pane 425
technical support. See customer support
terminology, QuickTest Professional 11
Test command line option 519
test database, maintaining 663
test object details

modifying 309
test object property values

replacing 347
test objects

adding description properties 322
adding shared object repository to

project 95
adding to object repository 335
choosing shared object repository 97
copying to local repository 310
copying, pasting and moving in

object repository 343

creating in run sessions 355
creating using programmatic

descriptions 355
defining new 341
defining new properties 326
deleting description properties 328
finding 347
highlighting in an application 350
identifying 279
in run sessions 354
locating in object repository 347
locating in the object repository 351
managing 295
managing shared object repository

for 92
modifying in run sessions 355
modifying names 319
modifying properties 313
property values, retrieving and

setting 651
selecting from application 159
selecting from Item list 156
selecting from shared object

repository 156
specifying ordinal identifiers 329

test results
customizing display 522
deleting with command line

options 515
deleting with Test Results Deletion

Tool 513
enabling and filtering 658
parameterized values 507
reporting defects 521

Test Results Deletion Tool 513
Test Results toolbar, Test Results window 495
Test Results tree 494
Test Results window 493

look and feel 496
Test Results toolbar 495
test results tree 494
theme 496

test results. See also run session results 491
Test run error trigger 536

Index

707

test run time, improving 694
Test Settings dialog box

Generate Script option 668
text

finding in function libraries 620
replacing in function libraries 622

toolbar
Object Repository Merge Tool 428

toolbars, QuickTest window
Automation 55
Debug 25, 55
Edit 55
Insert 56
Standard 54
Testing 26
Tools 56
View 57

Tools toolbar, QuickTest window 56
trigger

Application crash 536
events 528
Object state 536
Pop-up window 536
test run error 536

Tutorial xiii
typographical conventions xvii

U

Unicode 3
unregistering methods, using the

UnregisterUserFunc statement 608
UnregisterUserFunc statement 604
UntilDate command line option 520
update from local

merging repositories 437
Update Run dialog box 488
updates, documentation xvi
updating

components 484
updating QuickTest software 16
User command line option 520
user-defined

functions 573
methods 604

properties, accessing 653
test objects, mapping 385

user-defined function
adding a tooltip to 599
documenting 599
finalizing 602
Function Definition Generator 589
generating additional 601
guidelines for 609
previewing code in Function

Definition Generator 601
registering 594

V

Value cell 164
Value column 31
Value Configuration Options dialog box 171
values

canceling output 169
input 164
output 167
parameterizing input 171
parameterizing output 175
restoring default for object

properties 317, 319
specifying for object properties 315
viewing for object properties 311

variables
unique in global scope 609

VB Script
formatting text 629

VBScript
associated function libraries

with Quality Center 587
auto-expand syntax 249
documentation 643
syntax 625
syntax errors 630

View toolbar 57
viewing component run results 491, 500

printing test results 502
filtering results 498
Test Results window 493

Viewlink objects 682

Index

708

W

Web browsers, supported 682
Web content, dynamic 691
Web Event Recording Configuration dialog

box 258, 270
Web settings

Advanced Web Options dialog
box 219

Browser Details dialog box 213
ignore browsers 212
Options dialog box 210
Page and Frame Options dialog

box 216
Web site, Mercury xv
Web sites, recording and running

components 682
Web tab, Business Component Settings

dialog box. 241
WebElement objects, programmatic

descriptions 640
Web-event-recording configuration 255

customizing 259
standard 257

What’s New xiii
While statement, in function libraries 648
Windows API 655
Windows applications

settings 198
Windows Applications settings, Advanced

Web Options dialog box 201
Windows command line options 515
Windows dialog box 51
workflow using QuickTest 10

X

XML
exporting from object repository 419
importing as object repository 418

	Mercury QuickTest Professional for Business Process Testing User's Guide
	Table of Contents
	Welcome
	Using This Guide
	Product Documentation
	Additional Online Resources
	Documentation Updates
	Typographical Conventions

	Introducing Business Process Testing
	Using QuickTest Professional for Business Process Testing
	About Using QuickTest Professional for Business Process Testing
	Understanding Business Process Testing
	Understanding QuickTest Professional for Business Process Testing Terminology
	Setting Required Access Permissions
	Using the Sample Site
	Modifying License Information
	Updating the QuickTest Software

	QuickTest at a Glance
	Starting QuickTest
	Connecting to Your Quality Center Project
	The QuickTest Window
	Keyword View
	Application Area
	Function Library
	Information Pane
	Missing Resources Pane
	Debug Viewer Pane
	Customizing the QuickTest Window Layout
	Working With Multiple Documents
	Using QuickTest Commands
	Browsing the QuickTest Professional Program Folder
	Viewing Product Information

	Working with Application Areas and Components
	Working with Application Areas
	About Working with Application Areas
	Creating an Application Area
	Opening an Application Area
	Defining General Settings
	Managing Function Libraries
	Managing Shared Object Repositories
	Managing Keywords
	Defining Additional Settings
	Saving an Application Area
	Deleting an Application Area

	Working with Business Components
	About Working with Business Components
	Creating a New Business Component
	Saving a Business Component
	Opening a Business Component
	Working with Manual Components
	Changing the Application Area Associated with a Component
	Printing a Component

	Working with Scripted Components
	About Working with Scripted Components
	Creating a Scripted Component
	Converting to Scripted Components

	Working with the Business Component Keyword View
	About Working with the Business Component Keyword View
	Adding a Step to Your Component
	Selecting an Item for Your Step
	Selecting the Operation for Your Step
	Defining Values for Your Step Arguments
	Defining an Output Value for Your Step
	Working with Parameters
	Working with Comments
	Managing Component Steps

	Handling Missing Resources
	About Handling Missing Resources
	Handling Missing Shared Object Repositories
	Handling Unmapped Shared Object Repository Parameter Values

	Configuring Settings
	Setting Global Testing Options
	About Setting Global Testing Options
	Using the Options Dialog Box
	Setting General Testing Options
	Setting Folder Testing Options
	Setting Run Testing Options
	Setting Windows Application Testing Options
	Setting Web Testing Options

	Working with Business Component Settings
	About Working with Business Component Settings
	Accessing the Business Component Settings Dialog Box
	Working with Component Properties
	Defining a Snapshot for Your Component
	Viewing Application Settings
	Viewing Component Resources
	Defining Parameters for Your Component
	Viewing Web Settings
	Viewing Recovery Scenario Settings

	Customizing a Function Library Window
	About Customizing Function Library Windows
	Customizing Editor Behavior
	Customizing Element Appearance
	Personalizing Editing Commands

	Configuring Web Event Recording
	About Configuring Web Event Recording
	Selecting a Standard Event Recording Configuration
	Customizing the Event Recording Configuration
	Recording Right Mouse Button Clicks
	Saving and Loading Custom Event Configuration Files
	Resetting Event Recording Configuration Settings

	Working with Test Objects and Object Repositories
	Understanding the Test Object Model
	About Understanding the Test Object Model
	Applying the Test Object Model Concept
	Viewing Object Properties Using the Object Spy
	Viewing Object Methods and Method Syntax Using the Object Spy

	Working with Test Objects
	About Working with Test Objects
	Understanding Object Repository Types
	Understanding the Object Repository Window
	Viewing and Modifying Test Object Properties
	Mapping Repository Parameter Values
	Adding Objects to the Object Repository
	Copying, Pasting, and Moving Objects in the Object Repository
	Deleting Objects from the Object Repository
	Locating Objects
	Working with Test Objects During a Run Session
	Exporting Local Objects to an Object Repository

	Configuring Object Identification
	About Configuring Object Identification
	Understanding the Object Identification Dialog Box
	Configuring Smart Identification
	Mapping User-Defined Test Object Classes

	Managing Object Repositories
	About Managing Object Repositories
	Understanding the Object Repository Manager
	Working with Object Repositories
	Modifying Object Repositories
	Working with Repository Parameters
	Modifying Test Object Details
	Locating Objects
	Performing Merge Operations
	Performing Import and Export Operations

	Merging Shared Object Repositories
	About Merging Shared Object Repositories
	Understanding the Object Repository Merge Tool
	Using Object Repository Merge Tool Commands
	Defining Default Settings
	Merging Two Object Repositories
	Updating a Shared Object Repository from Local Object Repositories
	Viewing Merge Statistics
	Understanding Object Conflicts
	Resolving Object Conflicts
	Filtering the Target Repository Pane
	Synchronizing Object Repository Views
	Finding Specific Objects
	Saving the Target Object Repository

	Running and Debugging Components
	Debugging Components and Function Libraries
	About Debugging Components and Function Libraries
	Slowing a Debug Session
	Using the Single Step Commands
	Using the Run to Step and Start from Step Commands
	Pausing a Run Session
	Using Breakpoints
	Using the Debug Viewer
	Handling Run Errors
	Practicing Debugging a Function

	Running Components
	About Running Components
	Running Your Entire Component
	Running Part of Your Component
	Updating a Component

	Analyzing Test Results
	About Analyzing Test Results
	Understanding the Test Results Window
	Viewing the Results of a Run Session
	Viewing Parameterized Values in the Test Results Window
	Analyzing Smart Identification Information in the Test Results
	Deleting Test Results
	Manually Submitting Defects Detected During a Run Session to a Quality Center Project
	Customizing the Test Results Display

	Working with Advanced Features
	Defining and Using Recovery Scenarios
	About Defining and Using Recovery Scenarios
	Deciding When to Use Recovery Scenarios
	Defining Recovery Scenarios
	Understanding the Recovery Scenario Wizard
	Managing Recovery Scenarios
	Setting the Recovery Scenarios List for Your Application Areas
	Programmatically Controlling the Recovery Mechanism

	Working with User-Defined Functions and Function Libraries
	About Working with User-Defined Functions and Function Libraries
	Managing Function Libraries
	Working with Associated Function Libraries
	Using the Function Definition Generator
	Registering User-Defined Functions as Test Object Methods
	Additional Tips for Working with User-Defined Functions

	Working with Function Library Windows
	About Working with the Function Library Window
	Generating Statements in a Function Library
	Navigating in Function Libraries
	Understanding Basic VBScript Syntax
	Using Programmatic Descriptions
	Running and Closing Applications Programmatically
	Using Comments, Control-Flow, and Other VBScript Statements
	Retrieving and Setting Test Object Property Values
	Accessing Run-Time Object Properties and Methods
	Running DOS Commands
	Enhancing Your Tests and Function Libraries Using the Windows API
	Choosing Which Steps to Report During the Run Session

	Automating QuickTest Operations
	About Automating QuickTest Operations
	Deciding When to Use QuickTest Automation Programs
	Choosing a Language and Development Environment for Designing and Running Automation Programs
	Learning the Basic Elements of a QuickTest Automation Program
	Generating Automation Scripts
	Using the QuickTest Automation Object Model Reference

	Appendixes
	Working with QuickTest Add-Ins
	About Working with QuickTest Add-Ins
	Loading QuickTest Add-ins
	Tips for Working with QuickTest Add-ins
	Working with the Web Add-in

	Working with QuickTest-Frequently Asked Questions
	Recording and Running Components
	Working with Function Libraries
	Working with Dynamic Content
	Advanced Web Issues
	Component Maintenance
	Improving QuickTest Performance

	Index

